xref: /openbmc/linux/kernel/bpf/verifier.c (revision 53df89dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 struct bpf_call_arg_meta {
238 	struct bpf_map *map_ptr;
239 	bool raw_mode;
240 	bool pkt_access;
241 	int regno;
242 	int access_size;
243 	int mem_size;
244 	u64 msize_max_value;
245 	int ref_obj_id;
246 	int func_id;
247 	struct btf *btf;
248 	u32 btf_id;
249 	struct btf *ret_btf;
250 	u32 ret_btf_id;
251 };
252 
253 struct btf *btf_vmlinux;
254 
255 static DEFINE_MUTEX(bpf_verifier_lock);
256 
257 static const struct bpf_line_info *
258 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
259 {
260 	const struct bpf_line_info *linfo;
261 	const struct bpf_prog *prog;
262 	u32 i, nr_linfo;
263 
264 	prog = env->prog;
265 	nr_linfo = prog->aux->nr_linfo;
266 
267 	if (!nr_linfo || insn_off >= prog->len)
268 		return NULL;
269 
270 	linfo = prog->aux->linfo;
271 	for (i = 1; i < nr_linfo; i++)
272 		if (insn_off < linfo[i].insn_off)
273 			break;
274 
275 	return &linfo[i - 1];
276 }
277 
278 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
279 		       va_list args)
280 {
281 	unsigned int n;
282 
283 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
284 
285 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
286 		  "verifier log line truncated - local buffer too short\n");
287 
288 	n = min(log->len_total - log->len_used - 1, n);
289 	log->kbuf[n] = '\0';
290 
291 	if (log->level == BPF_LOG_KERNEL) {
292 		pr_err("BPF:%s\n", log->kbuf);
293 		return;
294 	}
295 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
296 		log->len_used += n;
297 	else
298 		log->ubuf = NULL;
299 }
300 
301 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
302 {
303 	char zero = 0;
304 
305 	if (!bpf_verifier_log_needed(log))
306 		return;
307 
308 	log->len_used = new_pos;
309 	if (put_user(zero, log->ubuf + new_pos))
310 		log->ubuf = NULL;
311 }
312 
313 /* log_level controls verbosity level of eBPF verifier.
314  * bpf_verifier_log_write() is used to dump the verification trace to the log,
315  * so the user can figure out what's wrong with the program
316  */
317 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
318 					   const char *fmt, ...)
319 {
320 	va_list args;
321 
322 	if (!bpf_verifier_log_needed(&env->log))
323 		return;
324 
325 	va_start(args, fmt);
326 	bpf_verifier_vlog(&env->log, fmt, args);
327 	va_end(args);
328 }
329 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
330 
331 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
332 {
333 	struct bpf_verifier_env *env = private_data;
334 	va_list args;
335 
336 	if (!bpf_verifier_log_needed(&env->log))
337 		return;
338 
339 	va_start(args, fmt);
340 	bpf_verifier_vlog(&env->log, fmt, args);
341 	va_end(args);
342 }
343 
344 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
345 			    const char *fmt, ...)
346 {
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(log, fmt, args);
354 	va_end(args);
355 }
356 
357 static const char *ltrim(const char *s)
358 {
359 	while (isspace(*s))
360 		s++;
361 
362 	return s;
363 }
364 
365 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
366 					 u32 insn_off,
367 					 const char *prefix_fmt, ...)
368 {
369 	const struct bpf_line_info *linfo;
370 
371 	if (!bpf_verifier_log_needed(&env->log))
372 		return;
373 
374 	linfo = find_linfo(env, insn_off);
375 	if (!linfo || linfo == env->prev_linfo)
376 		return;
377 
378 	if (prefix_fmt) {
379 		va_list args;
380 
381 		va_start(args, prefix_fmt);
382 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
383 		va_end(args);
384 	}
385 
386 	verbose(env, "%s\n",
387 		ltrim(btf_name_by_offset(env->prog->aux->btf,
388 					 linfo->line_off)));
389 
390 	env->prev_linfo = linfo;
391 }
392 
393 static bool type_is_pkt_pointer(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_PACKET ||
396 	       type == PTR_TO_PACKET_META;
397 }
398 
399 static bool type_is_sk_pointer(enum bpf_reg_type type)
400 {
401 	return type == PTR_TO_SOCKET ||
402 		type == PTR_TO_SOCK_COMMON ||
403 		type == PTR_TO_TCP_SOCK ||
404 		type == PTR_TO_XDP_SOCK;
405 }
406 
407 static bool reg_type_not_null(enum bpf_reg_type type)
408 {
409 	return type == PTR_TO_SOCKET ||
410 		type == PTR_TO_TCP_SOCK ||
411 		type == PTR_TO_MAP_VALUE ||
412 		type == PTR_TO_SOCK_COMMON;
413 }
414 
415 static bool reg_type_may_be_null(enum bpf_reg_type type)
416 {
417 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
418 	       type == PTR_TO_SOCKET_OR_NULL ||
419 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
420 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
421 	       type == PTR_TO_BTF_ID_OR_NULL ||
422 	       type == PTR_TO_MEM_OR_NULL ||
423 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
424 	       type == PTR_TO_RDWR_BUF_OR_NULL;
425 }
426 
427 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
428 {
429 	return reg->type == PTR_TO_MAP_VALUE &&
430 		map_value_has_spin_lock(reg->map_ptr);
431 }
432 
433 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
434 {
435 	return type == PTR_TO_SOCKET ||
436 		type == PTR_TO_SOCKET_OR_NULL ||
437 		type == PTR_TO_TCP_SOCK ||
438 		type == PTR_TO_TCP_SOCK_OR_NULL ||
439 		type == PTR_TO_MEM ||
440 		type == PTR_TO_MEM_OR_NULL;
441 }
442 
443 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
444 {
445 	return type == ARG_PTR_TO_SOCK_COMMON;
446 }
447 
448 static bool arg_type_may_be_null(enum bpf_arg_type type)
449 {
450 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
451 	       type == ARG_PTR_TO_MEM_OR_NULL ||
452 	       type == ARG_PTR_TO_CTX_OR_NULL ||
453 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
454 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
455 }
456 
457 /* Determine whether the function releases some resources allocated by another
458  * function call. The first reference type argument will be assumed to be
459  * released by release_reference().
460  */
461 static bool is_release_function(enum bpf_func_id func_id)
462 {
463 	return func_id == BPF_FUNC_sk_release ||
464 	       func_id == BPF_FUNC_ringbuf_submit ||
465 	       func_id == BPF_FUNC_ringbuf_discard;
466 }
467 
468 static bool may_be_acquire_function(enum bpf_func_id func_id)
469 {
470 	return func_id == BPF_FUNC_sk_lookup_tcp ||
471 		func_id == BPF_FUNC_sk_lookup_udp ||
472 		func_id == BPF_FUNC_skc_lookup_tcp ||
473 		func_id == BPF_FUNC_map_lookup_elem ||
474 	        func_id == BPF_FUNC_ringbuf_reserve;
475 }
476 
477 static bool is_acquire_function(enum bpf_func_id func_id,
478 				const struct bpf_map *map)
479 {
480 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481 
482 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 	    func_id == BPF_FUNC_sk_lookup_udp ||
484 	    func_id == BPF_FUNC_skc_lookup_tcp ||
485 	    func_id == BPF_FUNC_ringbuf_reserve)
486 		return true;
487 
488 	if (func_id == BPF_FUNC_map_lookup_elem &&
489 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
490 	     map_type == BPF_MAP_TYPE_SOCKHASH))
491 		return true;
492 
493 	return false;
494 }
495 
496 static bool is_ptr_cast_function(enum bpf_func_id func_id)
497 {
498 	return func_id == BPF_FUNC_tcp_sock ||
499 		func_id == BPF_FUNC_sk_fullsock ||
500 		func_id == BPF_FUNC_skc_to_tcp_sock ||
501 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
502 		func_id == BPF_FUNC_skc_to_udp6_sock ||
503 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
504 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
505 }
506 
507 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
508 {
509 	return BPF_CLASS(insn->code) == BPF_STX &&
510 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
511 	       insn->imm == BPF_CMPXCHG;
512 }
513 
514 /* string representation of 'enum bpf_reg_type' */
515 static const char * const reg_type_str[] = {
516 	[NOT_INIT]		= "?",
517 	[SCALAR_VALUE]		= "inv",
518 	[PTR_TO_CTX]		= "ctx",
519 	[CONST_PTR_TO_MAP]	= "map_ptr",
520 	[PTR_TO_MAP_VALUE]	= "map_value",
521 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
522 	[PTR_TO_STACK]		= "fp",
523 	[PTR_TO_PACKET]		= "pkt",
524 	[PTR_TO_PACKET_META]	= "pkt_meta",
525 	[PTR_TO_PACKET_END]	= "pkt_end",
526 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
527 	[PTR_TO_SOCKET]		= "sock",
528 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
529 	[PTR_TO_SOCK_COMMON]	= "sock_common",
530 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
531 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
532 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
533 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
534 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
535 	[PTR_TO_BTF_ID]		= "ptr_",
536 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
537 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
538 	[PTR_TO_MEM]		= "mem",
539 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
540 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
541 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
542 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
543 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
544 };
545 
546 static char slot_type_char[] = {
547 	[STACK_INVALID]	= '?',
548 	[STACK_SPILL]	= 'r',
549 	[STACK_MISC]	= 'm',
550 	[STACK_ZERO]	= '0',
551 };
552 
553 static void print_liveness(struct bpf_verifier_env *env,
554 			   enum bpf_reg_liveness live)
555 {
556 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
557 	    verbose(env, "_");
558 	if (live & REG_LIVE_READ)
559 		verbose(env, "r");
560 	if (live & REG_LIVE_WRITTEN)
561 		verbose(env, "w");
562 	if (live & REG_LIVE_DONE)
563 		verbose(env, "D");
564 }
565 
566 static struct bpf_func_state *func(struct bpf_verifier_env *env,
567 				   const struct bpf_reg_state *reg)
568 {
569 	struct bpf_verifier_state *cur = env->cur_state;
570 
571 	return cur->frame[reg->frameno];
572 }
573 
574 static const char *kernel_type_name(const struct btf* btf, u32 id)
575 {
576 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
577 }
578 
579 static void print_verifier_state(struct bpf_verifier_env *env,
580 				 const struct bpf_func_state *state)
581 {
582 	const struct bpf_reg_state *reg;
583 	enum bpf_reg_type t;
584 	int i;
585 
586 	if (state->frameno)
587 		verbose(env, " frame%d:", state->frameno);
588 	for (i = 0; i < MAX_BPF_REG; i++) {
589 		reg = &state->regs[i];
590 		t = reg->type;
591 		if (t == NOT_INIT)
592 			continue;
593 		verbose(env, " R%d", i);
594 		print_liveness(env, reg->live);
595 		verbose(env, "=%s", reg_type_str[t]);
596 		if (t == SCALAR_VALUE && reg->precise)
597 			verbose(env, "P");
598 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
599 		    tnum_is_const(reg->var_off)) {
600 			/* reg->off should be 0 for SCALAR_VALUE */
601 			verbose(env, "%lld", reg->var_off.value + reg->off);
602 		} else {
603 			if (t == PTR_TO_BTF_ID ||
604 			    t == PTR_TO_BTF_ID_OR_NULL ||
605 			    t == PTR_TO_PERCPU_BTF_ID)
606 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
607 			verbose(env, "(id=%d", reg->id);
608 			if (reg_type_may_be_refcounted_or_null(t))
609 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
610 			if (t != SCALAR_VALUE)
611 				verbose(env, ",off=%d", reg->off);
612 			if (type_is_pkt_pointer(t))
613 				verbose(env, ",r=%d", reg->range);
614 			else if (t == CONST_PTR_TO_MAP ||
615 				 t == PTR_TO_MAP_VALUE ||
616 				 t == PTR_TO_MAP_VALUE_OR_NULL)
617 				verbose(env, ",ks=%d,vs=%d",
618 					reg->map_ptr->key_size,
619 					reg->map_ptr->value_size);
620 			if (tnum_is_const(reg->var_off)) {
621 				/* Typically an immediate SCALAR_VALUE, but
622 				 * could be a pointer whose offset is too big
623 				 * for reg->off
624 				 */
625 				verbose(env, ",imm=%llx", reg->var_off.value);
626 			} else {
627 				if (reg->smin_value != reg->umin_value &&
628 				    reg->smin_value != S64_MIN)
629 					verbose(env, ",smin_value=%lld",
630 						(long long)reg->smin_value);
631 				if (reg->smax_value != reg->umax_value &&
632 				    reg->smax_value != S64_MAX)
633 					verbose(env, ",smax_value=%lld",
634 						(long long)reg->smax_value);
635 				if (reg->umin_value != 0)
636 					verbose(env, ",umin_value=%llu",
637 						(unsigned long long)reg->umin_value);
638 				if (reg->umax_value != U64_MAX)
639 					verbose(env, ",umax_value=%llu",
640 						(unsigned long long)reg->umax_value);
641 				if (!tnum_is_unknown(reg->var_off)) {
642 					char tn_buf[48];
643 
644 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
645 					verbose(env, ",var_off=%s", tn_buf);
646 				}
647 				if (reg->s32_min_value != reg->smin_value &&
648 				    reg->s32_min_value != S32_MIN)
649 					verbose(env, ",s32_min_value=%d",
650 						(int)(reg->s32_min_value));
651 				if (reg->s32_max_value != reg->smax_value &&
652 				    reg->s32_max_value != S32_MAX)
653 					verbose(env, ",s32_max_value=%d",
654 						(int)(reg->s32_max_value));
655 				if (reg->u32_min_value != reg->umin_value &&
656 				    reg->u32_min_value != U32_MIN)
657 					verbose(env, ",u32_min_value=%d",
658 						(int)(reg->u32_min_value));
659 				if (reg->u32_max_value != reg->umax_value &&
660 				    reg->u32_max_value != U32_MAX)
661 					verbose(env, ",u32_max_value=%d",
662 						(int)(reg->u32_max_value));
663 			}
664 			verbose(env, ")");
665 		}
666 	}
667 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
668 		char types_buf[BPF_REG_SIZE + 1];
669 		bool valid = false;
670 		int j;
671 
672 		for (j = 0; j < BPF_REG_SIZE; j++) {
673 			if (state->stack[i].slot_type[j] != STACK_INVALID)
674 				valid = true;
675 			types_buf[j] = slot_type_char[
676 					state->stack[i].slot_type[j]];
677 		}
678 		types_buf[BPF_REG_SIZE] = 0;
679 		if (!valid)
680 			continue;
681 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
682 		print_liveness(env, state->stack[i].spilled_ptr.live);
683 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
684 			reg = &state->stack[i].spilled_ptr;
685 			t = reg->type;
686 			verbose(env, "=%s", reg_type_str[t]);
687 			if (t == SCALAR_VALUE && reg->precise)
688 				verbose(env, "P");
689 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
690 				verbose(env, "%lld", reg->var_off.value + reg->off);
691 		} else {
692 			verbose(env, "=%s", types_buf);
693 		}
694 	}
695 	if (state->acquired_refs && state->refs[0].id) {
696 		verbose(env, " refs=%d", state->refs[0].id);
697 		for (i = 1; i < state->acquired_refs; i++)
698 			if (state->refs[i].id)
699 				verbose(env, ",%d", state->refs[i].id);
700 	}
701 	verbose(env, "\n");
702 }
703 
704 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
705 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
706 			       const struct bpf_func_state *src)	\
707 {									\
708 	if (!src->FIELD)						\
709 		return 0;						\
710 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
711 		/* internal bug, make state invalid to reject the program */ \
712 		memset(dst, 0, sizeof(*dst));				\
713 		return -EFAULT;						\
714 	}								\
715 	memcpy(dst->FIELD, src->FIELD,					\
716 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
717 	return 0;							\
718 }
719 /* copy_reference_state() */
720 COPY_STATE_FN(reference, acquired_refs, refs, 1)
721 /* copy_stack_state() */
722 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
723 #undef COPY_STATE_FN
724 
725 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
726 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
727 				  bool copy_old)			\
728 {									\
729 	u32 old_size = state->COUNT;					\
730 	struct bpf_##NAME##_state *new_##FIELD;				\
731 	int slot = size / SIZE;						\
732 									\
733 	if (size <= old_size || !size) {				\
734 		if (copy_old)						\
735 			return 0;					\
736 		state->COUNT = slot * SIZE;				\
737 		if (!size && old_size) {				\
738 			kfree(state->FIELD);				\
739 			state->FIELD = NULL;				\
740 		}							\
741 		return 0;						\
742 	}								\
743 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
744 				    GFP_KERNEL);			\
745 	if (!new_##FIELD)						\
746 		return -ENOMEM;						\
747 	if (copy_old) {							\
748 		if (state->FIELD)					\
749 			memcpy(new_##FIELD, state->FIELD,		\
750 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
751 		memset(new_##FIELD + old_size / SIZE, 0,		\
752 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
753 	}								\
754 	state->COUNT = slot * SIZE;					\
755 	kfree(state->FIELD);						\
756 	state->FIELD = new_##FIELD;					\
757 	return 0;							\
758 }
759 /* realloc_reference_state() */
760 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
761 /* realloc_stack_state() */
762 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
763 #undef REALLOC_STATE_FN
764 
765 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
766  * make it consume minimal amount of memory. check_stack_write() access from
767  * the program calls into realloc_func_state() to grow the stack size.
768  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
769  * which realloc_stack_state() copies over. It points to previous
770  * bpf_verifier_state which is never reallocated.
771  */
772 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
773 			      int refs_size, bool copy_old)
774 {
775 	int err = realloc_reference_state(state, refs_size, copy_old);
776 	if (err)
777 		return err;
778 	return realloc_stack_state(state, stack_size, copy_old);
779 }
780 
781 /* Acquire a pointer id from the env and update the state->refs to include
782  * this new pointer reference.
783  * On success, returns a valid pointer id to associate with the register
784  * On failure, returns a negative errno.
785  */
786 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
787 {
788 	struct bpf_func_state *state = cur_func(env);
789 	int new_ofs = state->acquired_refs;
790 	int id, err;
791 
792 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
793 	if (err)
794 		return err;
795 	id = ++env->id_gen;
796 	state->refs[new_ofs].id = id;
797 	state->refs[new_ofs].insn_idx = insn_idx;
798 
799 	return id;
800 }
801 
802 /* release function corresponding to acquire_reference_state(). Idempotent. */
803 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
804 {
805 	int i, last_idx;
806 
807 	last_idx = state->acquired_refs - 1;
808 	for (i = 0; i < state->acquired_refs; i++) {
809 		if (state->refs[i].id == ptr_id) {
810 			if (last_idx && i != last_idx)
811 				memcpy(&state->refs[i], &state->refs[last_idx],
812 				       sizeof(*state->refs));
813 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
814 			state->acquired_refs--;
815 			return 0;
816 		}
817 	}
818 	return -EINVAL;
819 }
820 
821 static int transfer_reference_state(struct bpf_func_state *dst,
822 				    struct bpf_func_state *src)
823 {
824 	int err = realloc_reference_state(dst, src->acquired_refs, false);
825 	if (err)
826 		return err;
827 	err = copy_reference_state(dst, src);
828 	if (err)
829 		return err;
830 	return 0;
831 }
832 
833 static void free_func_state(struct bpf_func_state *state)
834 {
835 	if (!state)
836 		return;
837 	kfree(state->refs);
838 	kfree(state->stack);
839 	kfree(state);
840 }
841 
842 static void clear_jmp_history(struct bpf_verifier_state *state)
843 {
844 	kfree(state->jmp_history);
845 	state->jmp_history = NULL;
846 	state->jmp_history_cnt = 0;
847 }
848 
849 static void free_verifier_state(struct bpf_verifier_state *state,
850 				bool free_self)
851 {
852 	int i;
853 
854 	for (i = 0; i <= state->curframe; i++) {
855 		free_func_state(state->frame[i]);
856 		state->frame[i] = NULL;
857 	}
858 	clear_jmp_history(state);
859 	if (free_self)
860 		kfree(state);
861 }
862 
863 /* copy verifier state from src to dst growing dst stack space
864  * when necessary to accommodate larger src stack
865  */
866 static int copy_func_state(struct bpf_func_state *dst,
867 			   const struct bpf_func_state *src)
868 {
869 	int err;
870 
871 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
872 				 false);
873 	if (err)
874 		return err;
875 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
876 	err = copy_reference_state(dst, src);
877 	if (err)
878 		return err;
879 	return copy_stack_state(dst, src);
880 }
881 
882 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
883 			       const struct bpf_verifier_state *src)
884 {
885 	struct bpf_func_state *dst;
886 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
887 	int i, err;
888 
889 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
890 		kfree(dst_state->jmp_history);
891 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
892 		if (!dst_state->jmp_history)
893 			return -ENOMEM;
894 	}
895 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
896 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
897 
898 	/* if dst has more stack frames then src frame, free them */
899 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
900 		free_func_state(dst_state->frame[i]);
901 		dst_state->frame[i] = NULL;
902 	}
903 	dst_state->speculative = src->speculative;
904 	dst_state->curframe = src->curframe;
905 	dst_state->active_spin_lock = src->active_spin_lock;
906 	dst_state->branches = src->branches;
907 	dst_state->parent = src->parent;
908 	dst_state->first_insn_idx = src->first_insn_idx;
909 	dst_state->last_insn_idx = src->last_insn_idx;
910 	for (i = 0; i <= src->curframe; i++) {
911 		dst = dst_state->frame[i];
912 		if (!dst) {
913 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
914 			if (!dst)
915 				return -ENOMEM;
916 			dst_state->frame[i] = dst;
917 		}
918 		err = copy_func_state(dst, src->frame[i]);
919 		if (err)
920 			return err;
921 	}
922 	return 0;
923 }
924 
925 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
926 {
927 	while (st) {
928 		u32 br = --st->branches;
929 
930 		/* WARN_ON(br > 1) technically makes sense here,
931 		 * but see comment in push_stack(), hence:
932 		 */
933 		WARN_ONCE((int)br < 0,
934 			  "BUG update_branch_counts:branches_to_explore=%d\n",
935 			  br);
936 		if (br)
937 			break;
938 		st = st->parent;
939 	}
940 }
941 
942 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
943 		     int *insn_idx, bool pop_log)
944 {
945 	struct bpf_verifier_state *cur = env->cur_state;
946 	struct bpf_verifier_stack_elem *elem, *head = env->head;
947 	int err;
948 
949 	if (env->head == NULL)
950 		return -ENOENT;
951 
952 	if (cur) {
953 		err = copy_verifier_state(cur, &head->st);
954 		if (err)
955 			return err;
956 	}
957 	if (pop_log)
958 		bpf_vlog_reset(&env->log, head->log_pos);
959 	if (insn_idx)
960 		*insn_idx = head->insn_idx;
961 	if (prev_insn_idx)
962 		*prev_insn_idx = head->prev_insn_idx;
963 	elem = head->next;
964 	free_verifier_state(&head->st, false);
965 	kfree(head);
966 	env->head = elem;
967 	env->stack_size--;
968 	return 0;
969 }
970 
971 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
972 					     int insn_idx, int prev_insn_idx,
973 					     bool speculative)
974 {
975 	struct bpf_verifier_state *cur = env->cur_state;
976 	struct bpf_verifier_stack_elem *elem;
977 	int err;
978 
979 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
980 	if (!elem)
981 		goto err;
982 
983 	elem->insn_idx = insn_idx;
984 	elem->prev_insn_idx = prev_insn_idx;
985 	elem->next = env->head;
986 	elem->log_pos = env->log.len_used;
987 	env->head = elem;
988 	env->stack_size++;
989 	err = copy_verifier_state(&elem->st, cur);
990 	if (err)
991 		goto err;
992 	elem->st.speculative |= speculative;
993 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
994 		verbose(env, "The sequence of %d jumps is too complex.\n",
995 			env->stack_size);
996 		goto err;
997 	}
998 	if (elem->st.parent) {
999 		++elem->st.parent->branches;
1000 		/* WARN_ON(branches > 2) technically makes sense here,
1001 		 * but
1002 		 * 1. speculative states will bump 'branches' for non-branch
1003 		 * instructions
1004 		 * 2. is_state_visited() heuristics may decide not to create
1005 		 * a new state for a sequence of branches and all such current
1006 		 * and cloned states will be pointing to a single parent state
1007 		 * which might have large 'branches' count.
1008 		 */
1009 	}
1010 	return &elem->st;
1011 err:
1012 	free_verifier_state(env->cur_state, true);
1013 	env->cur_state = NULL;
1014 	/* pop all elements and return */
1015 	while (!pop_stack(env, NULL, NULL, false));
1016 	return NULL;
1017 }
1018 
1019 #define CALLER_SAVED_REGS 6
1020 static const int caller_saved[CALLER_SAVED_REGS] = {
1021 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1022 };
1023 
1024 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1025 				struct bpf_reg_state *reg);
1026 
1027 /* This helper doesn't clear reg->id */
1028 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1029 {
1030 	reg->var_off = tnum_const(imm);
1031 	reg->smin_value = (s64)imm;
1032 	reg->smax_value = (s64)imm;
1033 	reg->umin_value = imm;
1034 	reg->umax_value = imm;
1035 
1036 	reg->s32_min_value = (s32)imm;
1037 	reg->s32_max_value = (s32)imm;
1038 	reg->u32_min_value = (u32)imm;
1039 	reg->u32_max_value = (u32)imm;
1040 }
1041 
1042 /* Mark the unknown part of a register (variable offset or scalar value) as
1043  * known to have the value @imm.
1044  */
1045 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1046 {
1047 	/* Clear id, off, and union(map_ptr, range) */
1048 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1049 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1050 	___mark_reg_known(reg, imm);
1051 }
1052 
1053 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1054 {
1055 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1056 	reg->s32_min_value = (s32)imm;
1057 	reg->s32_max_value = (s32)imm;
1058 	reg->u32_min_value = (u32)imm;
1059 	reg->u32_max_value = (u32)imm;
1060 }
1061 
1062 /* Mark the 'variable offset' part of a register as zero.  This should be
1063  * used only on registers holding a pointer type.
1064  */
1065 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1066 {
1067 	__mark_reg_known(reg, 0);
1068 }
1069 
1070 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1071 {
1072 	__mark_reg_known(reg, 0);
1073 	reg->type = SCALAR_VALUE;
1074 }
1075 
1076 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1077 				struct bpf_reg_state *regs, u32 regno)
1078 {
1079 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1080 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1081 		/* Something bad happened, let's kill all regs */
1082 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1083 			__mark_reg_not_init(env, regs + regno);
1084 		return;
1085 	}
1086 	__mark_reg_known_zero(regs + regno);
1087 }
1088 
1089 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1090 {
1091 	switch (reg->type) {
1092 	case PTR_TO_MAP_VALUE_OR_NULL: {
1093 		const struct bpf_map *map = reg->map_ptr;
1094 
1095 		if (map->inner_map_meta) {
1096 			reg->type = CONST_PTR_TO_MAP;
1097 			reg->map_ptr = map->inner_map_meta;
1098 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1099 			reg->type = PTR_TO_XDP_SOCK;
1100 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1101 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1102 			reg->type = PTR_TO_SOCKET;
1103 		} else {
1104 			reg->type = PTR_TO_MAP_VALUE;
1105 		}
1106 		break;
1107 	}
1108 	case PTR_TO_SOCKET_OR_NULL:
1109 		reg->type = PTR_TO_SOCKET;
1110 		break;
1111 	case PTR_TO_SOCK_COMMON_OR_NULL:
1112 		reg->type = PTR_TO_SOCK_COMMON;
1113 		break;
1114 	case PTR_TO_TCP_SOCK_OR_NULL:
1115 		reg->type = PTR_TO_TCP_SOCK;
1116 		break;
1117 	case PTR_TO_BTF_ID_OR_NULL:
1118 		reg->type = PTR_TO_BTF_ID;
1119 		break;
1120 	case PTR_TO_MEM_OR_NULL:
1121 		reg->type = PTR_TO_MEM;
1122 		break;
1123 	case PTR_TO_RDONLY_BUF_OR_NULL:
1124 		reg->type = PTR_TO_RDONLY_BUF;
1125 		break;
1126 	case PTR_TO_RDWR_BUF_OR_NULL:
1127 		reg->type = PTR_TO_RDWR_BUF;
1128 		break;
1129 	default:
1130 		WARN_ONCE(1, "unknown nullable register type");
1131 	}
1132 }
1133 
1134 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1135 {
1136 	return type_is_pkt_pointer(reg->type);
1137 }
1138 
1139 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1140 {
1141 	return reg_is_pkt_pointer(reg) ||
1142 	       reg->type == PTR_TO_PACKET_END;
1143 }
1144 
1145 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1146 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1147 				    enum bpf_reg_type which)
1148 {
1149 	/* The register can already have a range from prior markings.
1150 	 * This is fine as long as it hasn't been advanced from its
1151 	 * origin.
1152 	 */
1153 	return reg->type == which &&
1154 	       reg->id == 0 &&
1155 	       reg->off == 0 &&
1156 	       tnum_equals_const(reg->var_off, 0);
1157 }
1158 
1159 /* Reset the min/max bounds of a register */
1160 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1161 {
1162 	reg->smin_value = S64_MIN;
1163 	reg->smax_value = S64_MAX;
1164 	reg->umin_value = 0;
1165 	reg->umax_value = U64_MAX;
1166 
1167 	reg->s32_min_value = S32_MIN;
1168 	reg->s32_max_value = S32_MAX;
1169 	reg->u32_min_value = 0;
1170 	reg->u32_max_value = U32_MAX;
1171 }
1172 
1173 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1174 {
1175 	reg->smin_value = S64_MIN;
1176 	reg->smax_value = S64_MAX;
1177 	reg->umin_value = 0;
1178 	reg->umax_value = U64_MAX;
1179 }
1180 
1181 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1182 {
1183 	reg->s32_min_value = S32_MIN;
1184 	reg->s32_max_value = S32_MAX;
1185 	reg->u32_min_value = 0;
1186 	reg->u32_max_value = U32_MAX;
1187 }
1188 
1189 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1190 {
1191 	struct tnum var32_off = tnum_subreg(reg->var_off);
1192 
1193 	/* min signed is max(sign bit) | min(other bits) */
1194 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1195 			var32_off.value | (var32_off.mask & S32_MIN));
1196 	/* max signed is min(sign bit) | max(other bits) */
1197 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1198 			var32_off.value | (var32_off.mask & S32_MAX));
1199 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1200 	reg->u32_max_value = min(reg->u32_max_value,
1201 				 (u32)(var32_off.value | var32_off.mask));
1202 }
1203 
1204 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1205 {
1206 	/* min signed is max(sign bit) | min(other bits) */
1207 	reg->smin_value = max_t(s64, reg->smin_value,
1208 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1209 	/* max signed is min(sign bit) | max(other bits) */
1210 	reg->smax_value = min_t(s64, reg->smax_value,
1211 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1212 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1213 	reg->umax_value = min(reg->umax_value,
1214 			      reg->var_off.value | reg->var_off.mask);
1215 }
1216 
1217 static void __update_reg_bounds(struct bpf_reg_state *reg)
1218 {
1219 	__update_reg32_bounds(reg);
1220 	__update_reg64_bounds(reg);
1221 }
1222 
1223 /* Uses signed min/max values to inform unsigned, and vice-versa */
1224 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1225 {
1226 	/* Learn sign from signed bounds.
1227 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1228 	 * are the same, so combine.  This works even in the negative case, e.g.
1229 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1230 	 */
1231 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1232 		reg->s32_min_value = reg->u32_min_value =
1233 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1234 		reg->s32_max_value = reg->u32_max_value =
1235 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1236 		return;
1237 	}
1238 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1239 	 * boundary, so we must be careful.
1240 	 */
1241 	if ((s32)reg->u32_max_value >= 0) {
1242 		/* Positive.  We can't learn anything from the smin, but smax
1243 		 * is positive, hence safe.
1244 		 */
1245 		reg->s32_min_value = reg->u32_min_value;
1246 		reg->s32_max_value = reg->u32_max_value =
1247 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1248 	} else if ((s32)reg->u32_min_value < 0) {
1249 		/* Negative.  We can't learn anything from the smax, but smin
1250 		 * is negative, hence safe.
1251 		 */
1252 		reg->s32_min_value = reg->u32_min_value =
1253 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1254 		reg->s32_max_value = reg->u32_max_value;
1255 	}
1256 }
1257 
1258 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1259 {
1260 	/* Learn sign from signed bounds.
1261 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1262 	 * are the same, so combine.  This works even in the negative case, e.g.
1263 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1264 	 */
1265 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1266 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1267 							  reg->umin_value);
1268 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1269 							  reg->umax_value);
1270 		return;
1271 	}
1272 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1273 	 * boundary, so we must be careful.
1274 	 */
1275 	if ((s64)reg->umax_value >= 0) {
1276 		/* Positive.  We can't learn anything from the smin, but smax
1277 		 * is positive, hence safe.
1278 		 */
1279 		reg->smin_value = reg->umin_value;
1280 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1281 							  reg->umax_value);
1282 	} else if ((s64)reg->umin_value < 0) {
1283 		/* Negative.  We can't learn anything from the smax, but smin
1284 		 * is negative, hence safe.
1285 		 */
1286 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1287 							  reg->umin_value);
1288 		reg->smax_value = reg->umax_value;
1289 	}
1290 }
1291 
1292 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1293 {
1294 	__reg32_deduce_bounds(reg);
1295 	__reg64_deduce_bounds(reg);
1296 }
1297 
1298 /* Attempts to improve var_off based on unsigned min/max information */
1299 static void __reg_bound_offset(struct bpf_reg_state *reg)
1300 {
1301 	struct tnum var64_off = tnum_intersect(reg->var_off,
1302 					       tnum_range(reg->umin_value,
1303 							  reg->umax_value));
1304 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1305 						tnum_range(reg->u32_min_value,
1306 							   reg->u32_max_value));
1307 
1308 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1309 }
1310 
1311 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1312 {
1313 	reg->umin_value = reg->u32_min_value;
1314 	reg->umax_value = reg->u32_max_value;
1315 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1316 	 * but must be positive otherwise set to worse case bounds
1317 	 * and refine later from tnum.
1318 	 */
1319 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1320 		reg->smax_value = reg->s32_max_value;
1321 	else
1322 		reg->smax_value = U32_MAX;
1323 	if (reg->s32_min_value >= 0)
1324 		reg->smin_value = reg->s32_min_value;
1325 	else
1326 		reg->smin_value = 0;
1327 }
1328 
1329 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1330 {
1331 	/* special case when 64-bit register has upper 32-bit register
1332 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1333 	 * allowing us to use 32-bit bounds directly,
1334 	 */
1335 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1336 		__reg_assign_32_into_64(reg);
1337 	} else {
1338 		/* Otherwise the best we can do is push lower 32bit known and
1339 		 * unknown bits into register (var_off set from jmp logic)
1340 		 * then learn as much as possible from the 64-bit tnum
1341 		 * known and unknown bits. The previous smin/smax bounds are
1342 		 * invalid here because of jmp32 compare so mark them unknown
1343 		 * so they do not impact tnum bounds calculation.
1344 		 */
1345 		__mark_reg64_unbounded(reg);
1346 		__update_reg_bounds(reg);
1347 	}
1348 
1349 	/* Intersecting with the old var_off might have improved our bounds
1350 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1351 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1352 	 */
1353 	__reg_deduce_bounds(reg);
1354 	__reg_bound_offset(reg);
1355 	__update_reg_bounds(reg);
1356 }
1357 
1358 static bool __reg64_bound_s32(s64 a)
1359 {
1360 	return a > S32_MIN && a < S32_MAX;
1361 }
1362 
1363 static bool __reg64_bound_u32(u64 a)
1364 {
1365 	if (a > U32_MIN && a < U32_MAX)
1366 		return true;
1367 	return false;
1368 }
1369 
1370 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1371 {
1372 	__mark_reg32_unbounded(reg);
1373 
1374 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1375 		reg->s32_min_value = (s32)reg->smin_value;
1376 		reg->s32_max_value = (s32)reg->smax_value;
1377 	}
1378 	if (__reg64_bound_u32(reg->umin_value))
1379 		reg->u32_min_value = (u32)reg->umin_value;
1380 	if (__reg64_bound_u32(reg->umax_value))
1381 		reg->u32_max_value = (u32)reg->umax_value;
1382 
1383 	/* Intersecting with the old var_off might have improved our bounds
1384 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1385 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1386 	 */
1387 	__reg_deduce_bounds(reg);
1388 	__reg_bound_offset(reg);
1389 	__update_reg_bounds(reg);
1390 }
1391 
1392 /* Mark a register as having a completely unknown (scalar) value. */
1393 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1394 			       struct bpf_reg_state *reg)
1395 {
1396 	/*
1397 	 * Clear type, id, off, and union(map_ptr, range) and
1398 	 * padding between 'type' and union
1399 	 */
1400 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1401 	reg->type = SCALAR_VALUE;
1402 	reg->var_off = tnum_unknown;
1403 	reg->frameno = 0;
1404 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1405 	__mark_reg_unbounded(reg);
1406 }
1407 
1408 static void mark_reg_unknown(struct bpf_verifier_env *env,
1409 			     struct bpf_reg_state *regs, u32 regno)
1410 {
1411 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1412 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1413 		/* Something bad happened, let's kill all regs except FP */
1414 		for (regno = 0; regno < BPF_REG_FP; regno++)
1415 			__mark_reg_not_init(env, regs + regno);
1416 		return;
1417 	}
1418 	__mark_reg_unknown(env, regs + regno);
1419 }
1420 
1421 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1422 				struct bpf_reg_state *reg)
1423 {
1424 	__mark_reg_unknown(env, reg);
1425 	reg->type = NOT_INIT;
1426 }
1427 
1428 static void mark_reg_not_init(struct bpf_verifier_env *env,
1429 			      struct bpf_reg_state *regs, u32 regno)
1430 {
1431 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1432 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1433 		/* Something bad happened, let's kill all regs except FP */
1434 		for (regno = 0; regno < BPF_REG_FP; regno++)
1435 			__mark_reg_not_init(env, regs + regno);
1436 		return;
1437 	}
1438 	__mark_reg_not_init(env, regs + regno);
1439 }
1440 
1441 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1442 			    struct bpf_reg_state *regs, u32 regno,
1443 			    enum bpf_reg_type reg_type,
1444 			    struct btf *btf, u32 btf_id)
1445 {
1446 	if (reg_type == SCALAR_VALUE) {
1447 		mark_reg_unknown(env, regs, regno);
1448 		return;
1449 	}
1450 	mark_reg_known_zero(env, regs, regno);
1451 	regs[regno].type = PTR_TO_BTF_ID;
1452 	regs[regno].btf = btf;
1453 	regs[regno].btf_id = btf_id;
1454 }
1455 
1456 #define DEF_NOT_SUBREG	(0)
1457 static void init_reg_state(struct bpf_verifier_env *env,
1458 			   struct bpf_func_state *state)
1459 {
1460 	struct bpf_reg_state *regs = state->regs;
1461 	int i;
1462 
1463 	for (i = 0; i < MAX_BPF_REG; i++) {
1464 		mark_reg_not_init(env, regs, i);
1465 		regs[i].live = REG_LIVE_NONE;
1466 		regs[i].parent = NULL;
1467 		regs[i].subreg_def = DEF_NOT_SUBREG;
1468 	}
1469 
1470 	/* frame pointer */
1471 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1472 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1473 	regs[BPF_REG_FP].frameno = state->frameno;
1474 }
1475 
1476 #define BPF_MAIN_FUNC (-1)
1477 static void init_func_state(struct bpf_verifier_env *env,
1478 			    struct bpf_func_state *state,
1479 			    int callsite, int frameno, int subprogno)
1480 {
1481 	state->callsite = callsite;
1482 	state->frameno = frameno;
1483 	state->subprogno = subprogno;
1484 	init_reg_state(env, state);
1485 }
1486 
1487 enum reg_arg_type {
1488 	SRC_OP,		/* register is used as source operand */
1489 	DST_OP,		/* register is used as destination operand */
1490 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1491 };
1492 
1493 static int cmp_subprogs(const void *a, const void *b)
1494 {
1495 	return ((struct bpf_subprog_info *)a)->start -
1496 	       ((struct bpf_subprog_info *)b)->start;
1497 }
1498 
1499 static int find_subprog(struct bpf_verifier_env *env, int off)
1500 {
1501 	struct bpf_subprog_info *p;
1502 
1503 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1504 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1505 	if (!p)
1506 		return -ENOENT;
1507 	return p - env->subprog_info;
1508 
1509 }
1510 
1511 static int add_subprog(struct bpf_verifier_env *env, int off)
1512 {
1513 	int insn_cnt = env->prog->len;
1514 	int ret;
1515 
1516 	if (off >= insn_cnt || off < 0) {
1517 		verbose(env, "call to invalid destination\n");
1518 		return -EINVAL;
1519 	}
1520 	ret = find_subprog(env, off);
1521 	if (ret >= 0)
1522 		return 0;
1523 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1524 		verbose(env, "too many subprograms\n");
1525 		return -E2BIG;
1526 	}
1527 	env->subprog_info[env->subprog_cnt++].start = off;
1528 	sort(env->subprog_info, env->subprog_cnt,
1529 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1530 	return 0;
1531 }
1532 
1533 static int check_subprogs(struct bpf_verifier_env *env)
1534 {
1535 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1536 	struct bpf_subprog_info *subprog = env->subprog_info;
1537 	struct bpf_insn *insn = env->prog->insnsi;
1538 	int insn_cnt = env->prog->len;
1539 
1540 	/* Add entry function. */
1541 	ret = add_subprog(env, 0);
1542 	if (ret < 0)
1543 		return ret;
1544 
1545 	/* determine subprog starts. The end is one before the next starts */
1546 	for (i = 0; i < insn_cnt; i++) {
1547 		if (!bpf_pseudo_call(insn + i))
1548 			continue;
1549 		if (!env->bpf_capable) {
1550 			verbose(env,
1551 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1552 			return -EPERM;
1553 		}
1554 		ret = add_subprog(env, i + insn[i].imm + 1);
1555 		if (ret < 0)
1556 			return ret;
1557 	}
1558 
1559 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1560 	 * logic. 'subprog_cnt' should not be increased.
1561 	 */
1562 	subprog[env->subprog_cnt].start = insn_cnt;
1563 
1564 	if (env->log.level & BPF_LOG_LEVEL2)
1565 		for (i = 0; i < env->subprog_cnt; i++)
1566 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1567 
1568 	/* now check that all jumps are within the same subprog */
1569 	subprog_start = subprog[cur_subprog].start;
1570 	subprog_end = subprog[cur_subprog + 1].start;
1571 	for (i = 0; i < insn_cnt; i++) {
1572 		u8 code = insn[i].code;
1573 
1574 		if (code == (BPF_JMP | BPF_CALL) &&
1575 		    insn[i].imm == BPF_FUNC_tail_call &&
1576 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1577 			subprog[cur_subprog].has_tail_call = true;
1578 		if (BPF_CLASS(code) == BPF_LD &&
1579 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1580 			subprog[cur_subprog].has_ld_abs = true;
1581 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1582 			goto next;
1583 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1584 			goto next;
1585 		off = i + insn[i].off + 1;
1586 		if (off < subprog_start || off >= subprog_end) {
1587 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1588 			return -EINVAL;
1589 		}
1590 next:
1591 		if (i == subprog_end - 1) {
1592 			/* to avoid fall-through from one subprog into another
1593 			 * the last insn of the subprog should be either exit
1594 			 * or unconditional jump back
1595 			 */
1596 			if (code != (BPF_JMP | BPF_EXIT) &&
1597 			    code != (BPF_JMP | BPF_JA)) {
1598 				verbose(env, "last insn is not an exit or jmp\n");
1599 				return -EINVAL;
1600 			}
1601 			subprog_start = subprog_end;
1602 			cur_subprog++;
1603 			if (cur_subprog < env->subprog_cnt)
1604 				subprog_end = subprog[cur_subprog + 1].start;
1605 		}
1606 	}
1607 	return 0;
1608 }
1609 
1610 /* Parentage chain of this register (or stack slot) should take care of all
1611  * issues like callee-saved registers, stack slot allocation time, etc.
1612  */
1613 static int mark_reg_read(struct bpf_verifier_env *env,
1614 			 const struct bpf_reg_state *state,
1615 			 struct bpf_reg_state *parent, u8 flag)
1616 {
1617 	bool writes = parent == state->parent; /* Observe write marks */
1618 	int cnt = 0;
1619 
1620 	while (parent) {
1621 		/* if read wasn't screened by an earlier write ... */
1622 		if (writes && state->live & REG_LIVE_WRITTEN)
1623 			break;
1624 		if (parent->live & REG_LIVE_DONE) {
1625 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1626 				reg_type_str[parent->type],
1627 				parent->var_off.value, parent->off);
1628 			return -EFAULT;
1629 		}
1630 		/* The first condition is more likely to be true than the
1631 		 * second, checked it first.
1632 		 */
1633 		if ((parent->live & REG_LIVE_READ) == flag ||
1634 		    parent->live & REG_LIVE_READ64)
1635 			/* The parentage chain never changes and
1636 			 * this parent was already marked as LIVE_READ.
1637 			 * There is no need to keep walking the chain again and
1638 			 * keep re-marking all parents as LIVE_READ.
1639 			 * This case happens when the same register is read
1640 			 * multiple times without writes into it in-between.
1641 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1642 			 * then no need to set the weak REG_LIVE_READ32.
1643 			 */
1644 			break;
1645 		/* ... then we depend on parent's value */
1646 		parent->live |= flag;
1647 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1648 		if (flag == REG_LIVE_READ64)
1649 			parent->live &= ~REG_LIVE_READ32;
1650 		state = parent;
1651 		parent = state->parent;
1652 		writes = true;
1653 		cnt++;
1654 	}
1655 
1656 	if (env->longest_mark_read_walk < cnt)
1657 		env->longest_mark_read_walk = cnt;
1658 	return 0;
1659 }
1660 
1661 /* This function is supposed to be used by the following 32-bit optimization
1662  * code only. It returns TRUE if the source or destination register operates
1663  * on 64-bit, otherwise return FALSE.
1664  */
1665 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1666 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1667 {
1668 	u8 code, class, op;
1669 
1670 	code = insn->code;
1671 	class = BPF_CLASS(code);
1672 	op = BPF_OP(code);
1673 	if (class == BPF_JMP) {
1674 		/* BPF_EXIT for "main" will reach here. Return TRUE
1675 		 * conservatively.
1676 		 */
1677 		if (op == BPF_EXIT)
1678 			return true;
1679 		if (op == BPF_CALL) {
1680 			/* BPF to BPF call will reach here because of marking
1681 			 * caller saved clobber with DST_OP_NO_MARK for which we
1682 			 * don't care the register def because they are anyway
1683 			 * marked as NOT_INIT already.
1684 			 */
1685 			if (insn->src_reg == BPF_PSEUDO_CALL)
1686 				return false;
1687 			/* Helper call will reach here because of arg type
1688 			 * check, conservatively return TRUE.
1689 			 */
1690 			if (t == SRC_OP)
1691 				return true;
1692 
1693 			return false;
1694 		}
1695 	}
1696 
1697 	if (class == BPF_ALU64 || class == BPF_JMP ||
1698 	    /* BPF_END always use BPF_ALU class. */
1699 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1700 		return true;
1701 
1702 	if (class == BPF_ALU || class == BPF_JMP32)
1703 		return false;
1704 
1705 	if (class == BPF_LDX) {
1706 		if (t != SRC_OP)
1707 			return BPF_SIZE(code) == BPF_DW;
1708 		/* LDX source must be ptr. */
1709 		return true;
1710 	}
1711 
1712 	if (class == BPF_STX) {
1713 		/* BPF_STX (including atomic variants) has multiple source
1714 		 * operands, one of which is a ptr. Check whether the caller is
1715 		 * asking about it.
1716 		 */
1717 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1718 			return true;
1719 		return BPF_SIZE(code) == BPF_DW;
1720 	}
1721 
1722 	if (class == BPF_LD) {
1723 		u8 mode = BPF_MODE(code);
1724 
1725 		/* LD_IMM64 */
1726 		if (mode == BPF_IMM)
1727 			return true;
1728 
1729 		/* Both LD_IND and LD_ABS return 32-bit data. */
1730 		if (t != SRC_OP)
1731 			return  false;
1732 
1733 		/* Implicit ctx ptr. */
1734 		if (regno == BPF_REG_6)
1735 			return true;
1736 
1737 		/* Explicit source could be any width. */
1738 		return true;
1739 	}
1740 
1741 	if (class == BPF_ST)
1742 		/* The only source register for BPF_ST is a ptr. */
1743 		return true;
1744 
1745 	/* Conservatively return true at default. */
1746 	return true;
1747 }
1748 
1749 /* Return the regno defined by the insn, or -1. */
1750 static int insn_def_regno(const struct bpf_insn *insn)
1751 {
1752 	switch (BPF_CLASS(insn->code)) {
1753 	case BPF_JMP:
1754 	case BPF_JMP32:
1755 	case BPF_ST:
1756 		return -1;
1757 	case BPF_STX:
1758 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1759 		    (insn->imm & BPF_FETCH)) {
1760 			if (insn->imm == BPF_CMPXCHG)
1761 				return BPF_REG_0;
1762 			else
1763 				return insn->src_reg;
1764 		} else {
1765 			return -1;
1766 		}
1767 	default:
1768 		return insn->dst_reg;
1769 	}
1770 }
1771 
1772 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1773 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1774 {
1775 	int dst_reg = insn_def_regno(insn);
1776 
1777 	if (dst_reg == -1)
1778 		return false;
1779 
1780 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1781 }
1782 
1783 static void mark_insn_zext(struct bpf_verifier_env *env,
1784 			   struct bpf_reg_state *reg)
1785 {
1786 	s32 def_idx = reg->subreg_def;
1787 
1788 	if (def_idx == DEF_NOT_SUBREG)
1789 		return;
1790 
1791 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1792 	/* The dst will be zero extended, so won't be sub-register anymore. */
1793 	reg->subreg_def = DEF_NOT_SUBREG;
1794 }
1795 
1796 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1797 			 enum reg_arg_type t)
1798 {
1799 	struct bpf_verifier_state *vstate = env->cur_state;
1800 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1801 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1802 	struct bpf_reg_state *reg, *regs = state->regs;
1803 	bool rw64;
1804 
1805 	if (regno >= MAX_BPF_REG) {
1806 		verbose(env, "R%d is invalid\n", regno);
1807 		return -EINVAL;
1808 	}
1809 
1810 	reg = &regs[regno];
1811 	rw64 = is_reg64(env, insn, regno, reg, t);
1812 	if (t == SRC_OP) {
1813 		/* check whether register used as source operand can be read */
1814 		if (reg->type == NOT_INIT) {
1815 			verbose(env, "R%d !read_ok\n", regno);
1816 			return -EACCES;
1817 		}
1818 		/* We don't need to worry about FP liveness because it's read-only */
1819 		if (regno == BPF_REG_FP)
1820 			return 0;
1821 
1822 		if (rw64)
1823 			mark_insn_zext(env, reg);
1824 
1825 		return mark_reg_read(env, reg, reg->parent,
1826 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1827 	} else {
1828 		/* check whether register used as dest operand can be written to */
1829 		if (regno == BPF_REG_FP) {
1830 			verbose(env, "frame pointer is read only\n");
1831 			return -EACCES;
1832 		}
1833 		reg->live |= REG_LIVE_WRITTEN;
1834 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1835 		if (t == DST_OP)
1836 			mark_reg_unknown(env, regs, regno);
1837 	}
1838 	return 0;
1839 }
1840 
1841 /* for any branch, call, exit record the history of jmps in the given state */
1842 static int push_jmp_history(struct bpf_verifier_env *env,
1843 			    struct bpf_verifier_state *cur)
1844 {
1845 	u32 cnt = cur->jmp_history_cnt;
1846 	struct bpf_idx_pair *p;
1847 
1848 	cnt++;
1849 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1850 	if (!p)
1851 		return -ENOMEM;
1852 	p[cnt - 1].idx = env->insn_idx;
1853 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1854 	cur->jmp_history = p;
1855 	cur->jmp_history_cnt = cnt;
1856 	return 0;
1857 }
1858 
1859 /* Backtrack one insn at a time. If idx is not at the top of recorded
1860  * history then previous instruction came from straight line execution.
1861  */
1862 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1863 			     u32 *history)
1864 {
1865 	u32 cnt = *history;
1866 
1867 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1868 		i = st->jmp_history[cnt - 1].prev_idx;
1869 		(*history)--;
1870 	} else {
1871 		i--;
1872 	}
1873 	return i;
1874 }
1875 
1876 /* For given verifier state backtrack_insn() is called from the last insn to
1877  * the first insn. Its purpose is to compute a bitmask of registers and
1878  * stack slots that needs precision in the parent verifier state.
1879  */
1880 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1881 			  u32 *reg_mask, u64 *stack_mask)
1882 {
1883 	const struct bpf_insn_cbs cbs = {
1884 		.cb_print	= verbose,
1885 		.private_data	= env,
1886 	};
1887 	struct bpf_insn *insn = env->prog->insnsi + idx;
1888 	u8 class = BPF_CLASS(insn->code);
1889 	u8 opcode = BPF_OP(insn->code);
1890 	u8 mode = BPF_MODE(insn->code);
1891 	u32 dreg = 1u << insn->dst_reg;
1892 	u32 sreg = 1u << insn->src_reg;
1893 	u32 spi;
1894 
1895 	if (insn->code == 0)
1896 		return 0;
1897 	if (env->log.level & BPF_LOG_LEVEL) {
1898 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1899 		verbose(env, "%d: ", idx);
1900 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1901 	}
1902 
1903 	if (class == BPF_ALU || class == BPF_ALU64) {
1904 		if (!(*reg_mask & dreg))
1905 			return 0;
1906 		if (opcode == BPF_MOV) {
1907 			if (BPF_SRC(insn->code) == BPF_X) {
1908 				/* dreg = sreg
1909 				 * dreg needs precision after this insn
1910 				 * sreg needs precision before this insn
1911 				 */
1912 				*reg_mask &= ~dreg;
1913 				*reg_mask |= sreg;
1914 			} else {
1915 				/* dreg = K
1916 				 * dreg needs precision after this insn.
1917 				 * Corresponding register is already marked
1918 				 * as precise=true in this verifier state.
1919 				 * No further markings in parent are necessary
1920 				 */
1921 				*reg_mask &= ~dreg;
1922 			}
1923 		} else {
1924 			if (BPF_SRC(insn->code) == BPF_X) {
1925 				/* dreg += sreg
1926 				 * both dreg and sreg need precision
1927 				 * before this insn
1928 				 */
1929 				*reg_mask |= sreg;
1930 			} /* else dreg += K
1931 			   * dreg still needs precision before this insn
1932 			   */
1933 		}
1934 	} else if (class == BPF_LDX) {
1935 		if (!(*reg_mask & dreg))
1936 			return 0;
1937 		*reg_mask &= ~dreg;
1938 
1939 		/* scalars can only be spilled into stack w/o losing precision.
1940 		 * Load from any other memory can be zero extended.
1941 		 * The desire to keep that precision is already indicated
1942 		 * by 'precise' mark in corresponding register of this state.
1943 		 * No further tracking necessary.
1944 		 */
1945 		if (insn->src_reg != BPF_REG_FP)
1946 			return 0;
1947 		if (BPF_SIZE(insn->code) != BPF_DW)
1948 			return 0;
1949 
1950 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1951 		 * that [fp - off] slot contains scalar that needs to be
1952 		 * tracked with precision
1953 		 */
1954 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1955 		if (spi >= 64) {
1956 			verbose(env, "BUG spi %d\n", spi);
1957 			WARN_ONCE(1, "verifier backtracking bug");
1958 			return -EFAULT;
1959 		}
1960 		*stack_mask |= 1ull << spi;
1961 	} else if (class == BPF_STX || class == BPF_ST) {
1962 		if (*reg_mask & dreg)
1963 			/* stx & st shouldn't be using _scalar_ dst_reg
1964 			 * to access memory. It means backtracking
1965 			 * encountered a case of pointer subtraction.
1966 			 */
1967 			return -ENOTSUPP;
1968 		/* scalars can only be spilled into stack */
1969 		if (insn->dst_reg != BPF_REG_FP)
1970 			return 0;
1971 		if (BPF_SIZE(insn->code) != BPF_DW)
1972 			return 0;
1973 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1974 		if (spi >= 64) {
1975 			verbose(env, "BUG spi %d\n", spi);
1976 			WARN_ONCE(1, "verifier backtracking bug");
1977 			return -EFAULT;
1978 		}
1979 		if (!(*stack_mask & (1ull << spi)))
1980 			return 0;
1981 		*stack_mask &= ~(1ull << spi);
1982 		if (class == BPF_STX)
1983 			*reg_mask |= sreg;
1984 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1985 		if (opcode == BPF_CALL) {
1986 			if (insn->src_reg == BPF_PSEUDO_CALL)
1987 				return -ENOTSUPP;
1988 			/* regular helper call sets R0 */
1989 			*reg_mask &= ~1;
1990 			if (*reg_mask & 0x3f) {
1991 				/* if backtracing was looking for registers R1-R5
1992 				 * they should have been found already.
1993 				 */
1994 				verbose(env, "BUG regs %x\n", *reg_mask);
1995 				WARN_ONCE(1, "verifier backtracking bug");
1996 				return -EFAULT;
1997 			}
1998 		} else if (opcode == BPF_EXIT) {
1999 			return -ENOTSUPP;
2000 		}
2001 	} else if (class == BPF_LD) {
2002 		if (!(*reg_mask & dreg))
2003 			return 0;
2004 		*reg_mask &= ~dreg;
2005 		/* It's ld_imm64 or ld_abs or ld_ind.
2006 		 * For ld_imm64 no further tracking of precision
2007 		 * into parent is necessary
2008 		 */
2009 		if (mode == BPF_IND || mode == BPF_ABS)
2010 			/* to be analyzed */
2011 			return -ENOTSUPP;
2012 	}
2013 	return 0;
2014 }
2015 
2016 /* the scalar precision tracking algorithm:
2017  * . at the start all registers have precise=false.
2018  * . scalar ranges are tracked as normal through alu and jmp insns.
2019  * . once precise value of the scalar register is used in:
2020  *   .  ptr + scalar alu
2021  *   . if (scalar cond K|scalar)
2022  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2023  *   backtrack through the verifier states and mark all registers and
2024  *   stack slots with spilled constants that these scalar regisers
2025  *   should be precise.
2026  * . during state pruning two registers (or spilled stack slots)
2027  *   are equivalent if both are not precise.
2028  *
2029  * Note the verifier cannot simply walk register parentage chain,
2030  * since many different registers and stack slots could have been
2031  * used to compute single precise scalar.
2032  *
2033  * The approach of starting with precise=true for all registers and then
2034  * backtrack to mark a register as not precise when the verifier detects
2035  * that program doesn't care about specific value (e.g., when helper
2036  * takes register as ARG_ANYTHING parameter) is not safe.
2037  *
2038  * It's ok to walk single parentage chain of the verifier states.
2039  * It's possible that this backtracking will go all the way till 1st insn.
2040  * All other branches will be explored for needing precision later.
2041  *
2042  * The backtracking needs to deal with cases like:
2043  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2044  * r9 -= r8
2045  * r5 = r9
2046  * if r5 > 0x79f goto pc+7
2047  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2048  * r5 += 1
2049  * ...
2050  * call bpf_perf_event_output#25
2051  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2052  *
2053  * and this case:
2054  * r6 = 1
2055  * call foo // uses callee's r6 inside to compute r0
2056  * r0 += r6
2057  * if r0 == 0 goto
2058  *
2059  * to track above reg_mask/stack_mask needs to be independent for each frame.
2060  *
2061  * Also if parent's curframe > frame where backtracking started,
2062  * the verifier need to mark registers in both frames, otherwise callees
2063  * may incorrectly prune callers. This is similar to
2064  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2065  *
2066  * For now backtracking falls back into conservative marking.
2067  */
2068 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2069 				     struct bpf_verifier_state *st)
2070 {
2071 	struct bpf_func_state *func;
2072 	struct bpf_reg_state *reg;
2073 	int i, j;
2074 
2075 	/* big hammer: mark all scalars precise in this path.
2076 	 * pop_stack may still get !precise scalars.
2077 	 */
2078 	for (; st; st = st->parent)
2079 		for (i = 0; i <= st->curframe; i++) {
2080 			func = st->frame[i];
2081 			for (j = 0; j < BPF_REG_FP; j++) {
2082 				reg = &func->regs[j];
2083 				if (reg->type != SCALAR_VALUE)
2084 					continue;
2085 				reg->precise = true;
2086 			}
2087 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2088 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2089 					continue;
2090 				reg = &func->stack[j].spilled_ptr;
2091 				if (reg->type != SCALAR_VALUE)
2092 					continue;
2093 				reg->precise = true;
2094 			}
2095 		}
2096 }
2097 
2098 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2099 				  int spi)
2100 {
2101 	struct bpf_verifier_state *st = env->cur_state;
2102 	int first_idx = st->first_insn_idx;
2103 	int last_idx = env->insn_idx;
2104 	struct bpf_func_state *func;
2105 	struct bpf_reg_state *reg;
2106 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2107 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2108 	bool skip_first = true;
2109 	bool new_marks = false;
2110 	int i, err;
2111 
2112 	if (!env->bpf_capable)
2113 		return 0;
2114 
2115 	func = st->frame[st->curframe];
2116 	if (regno >= 0) {
2117 		reg = &func->regs[regno];
2118 		if (reg->type != SCALAR_VALUE) {
2119 			WARN_ONCE(1, "backtracing misuse");
2120 			return -EFAULT;
2121 		}
2122 		if (!reg->precise)
2123 			new_marks = true;
2124 		else
2125 			reg_mask = 0;
2126 		reg->precise = true;
2127 	}
2128 
2129 	while (spi >= 0) {
2130 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2131 			stack_mask = 0;
2132 			break;
2133 		}
2134 		reg = &func->stack[spi].spilled_ptr;
2135 		if (reg->type != SCALAR_VALUE) {
2136 			stack_mask = 0;
2137 			break;
2138 		}
2139 		if (!reg->precise)
2140 			new_marks = true;
2141 		else
2142 			stack_mask = 0;
2143 		reg->precise = true;
2144 		break;
2145 	}
2146 
2147 	if (!new_marks)
2148 		return 0;
2149 	if (!reg_mask && !stack_mask)
2150 		return 0;
2151 	for (;;) {
2152 		DECLARE_BITMAP(mask, 64);
2153 		u32 history = st->jmp_history_cnt;
2154 
2155 		if (env->log.level & BPF_LOG_LEVEL)
2156 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2157 		for (i = last_idx;;) {
2158 			if (skip_first) {
2159 				err = 0;
2160 				skip_first = false;
2161 			} else {
2162 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2163 			}
2164 			if (err == -ENOTSUPP) {
2165 				mark_all_scalars_precise(env, st);
2166 				return 0;
2167 			} else if (err) {
2168 				return err;
2169 			}
2170 			if (!reg_mask && !stack_mask)
2171 				/* Found assignment(s) into tracked register in this state.
2172 				 * Since this state is already marked, just return.
2173 				 * Nothing to be tracked further in the parent state.
2174 				 */
2175 				return 0;
2176 			if (i == first_idx)
2177 				break;
2178 			i = get_prev_insn_idx(st, i, &history);
2179 			if (i >= env->prog->len) {
2180 				/* This can happen if backtracking reached insn 0
2181 				 * and there are still reg_mask or stack_mask
2182 				 * to backtrack.
2183 				 * It means the backtracking missed the spot where
2184 				 * particular register was initialized with a constant.
2185 				 */
2186 				verbose(env, "BUG backtracking idx %d\n", i);
2187 				WARN_ONCE(1, "verifier backtracking bug");
2188 				return -EFAULT;
2189 			}
2190 		}
2191 		st = st->parent;
2192 		if (!st)
2193 			break;
2194 
2195 		new_marks = false;
2196 		func = st->frame[st->curframe];
2197 		bitmap_from_u64(mask, reg_mask);
2198 		for_each_set_bit(i, mask, 32) {
2199 			reg = &func->regs[i];
2200 			if (reg->type != SCALAR_VALUE) {
2201 				reg_mask &= ~(1u << i);
2202 				continue;
2203 			}
2204 			if (!reg->precise)
2205 				new_marks = true;
2206 			reg->precise = true;
2207 		}
2208 
2209 		bitmap_from_u64(mask, stack_mask);
2210 		for_each_set_bit(i, mask, 64) {
2211 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2212 				/* the sequence of instructions:
2213 				 * 2: (bf) r3 = r10
2214 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2215 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2216 				 * doesn't contain jmps. It's backtracked
2217 				 * as a single block.
2218 				 * During backtracking insn 3 is not recognized as
2219 				 * stack access, so at the end of backtracking
2220 				 * stack slot fp-8 is still marked in stack_mask.
2221 				 * However the parent state may not have accessed
2222 				 * fp-8 and it's "unallocated" stack space.
2223 				 * In such case fallback to conservative.
2224 				 */
2225 				mark_all_scalars_precise(env, st);
2226 				return 0;
2227 			}
2228 
2229 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2230 				stack_mask &= ~(1ull << i);
2231 				continue;
2232 			}
2233 			reg = &func->stack[i].spilled_ptr;
2234 			if (reg->type != SCALAR_VALUE) {
2235 				stack_mask &= ~(1ull << i);
2236 				continue;
2237 			}
2238 			if (!reg->precise)
2239 				new_marks = true;
2240 			reg->precise = true;
2241 		}
2242 		if (env->log.level & BPF_LOG_LEVEL) {
2243 			print_verifier_state(env, func);
2244 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2245 				new_marks ? "didn't have" : "already had",
2246 				reg_mask, stack_mask);
2247 		}
2248 
2249 		if (!reg_mask && !stack_mask)
2250 			break;
2251 		if (!new_marks)
2252 			break;
2253 
2254 		last_idx = st->last_insn_idx;
2255 		first_idx = st->first_insn_idx;
2256 	}
2257 	return 0;
2258 }
2259 
2260 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2261 {
2262 	return __mark_chain_precision(env, regno, -1);
2263 }
2264 
2265 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2266 {
2267 	return __mark_chain_precision(env, -1, spi);
2268 }
2269 
2270 static bool is_spillable_regtype(enum bpf_reg_type type)
2271 {
2272 	switch (type) {
2273 	case PTR_TO_MAP_VALUE:
2274 	case PTR_TO_MAP_VALUE_OR_NULL:
2275 	case PTR_TO_STACK:
2276 	case PTR_TO_CTX:
2277 	case PTR_TO_PACKET:
2278 	case PTR_TO_PACKET_META:
2279 	case PTR_TO_PACKET_END:
2280 	case PTR_TO_FLOW_KEYS:
2281 	case CONST_PTR_TO_MAP:
2282 	case PTR_TO_SOCKET:
2283 	case PTR_TO_SOCKET_OR_NULL:
2284 	case PTR_TO_SOCK_COMMON:
2285 	case PTR_TO_SOCK_COMMON_OR_NULL:
2286 	case PTR_TO_TCP_SOCK:
2287 	case PTR_TO_TCP_SOCK_OR_NULL:
2288 	case PTR_TO_XDP_SOCK:
2289 	case PTR_TO_BTF_ID:
2290 	case PTR_TO_BTF_ID_OR_NULL:
2291 	case PTR_TO_RDONLY_BUF:
2292 	case PTR_TO_RDONLY_BUF_OR_NULL:
2293 	case PTR_TO_RDWR_BUF:
2294 	case PTR_TO_RDWR_BUF_OR_NULL:
2295 	case PTR_TO_PERCPU_BTF_ID:
2296 	case PTR_TO_MEM:
2297 	case PTR_TO_MEM_OR_NULL:
2298 		return true;
2299 	default:
2300 		return false;
2301 	}
2302 }
2303 
2304 /* Does this register contain a constant zero? */
2305 static bool register_is_null(struct bpf_reg_state *reg)
2306 {
2307 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2308 }
2309 
2310 static bool register_is_const(struct bpf_reg_state *reg)
2311 {
2312 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2313 }
2314 
2315 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2316 {
2317 	return tnum_is_unknown(reg->var_off) &&
2318 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2319 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2320 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2321 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2322 }
2323 
2324 static bool register_is_bounded(struct bpf_reg_state *reg)
2325 {
2326 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2327 }
2328 
2329 static bool __is_pointer_value(bool allow_ptr_leaks,
2330 			       const struct bpf_reg_state *reg)
2331 {
2332 	if (allow_ptr_leaks)
2333 		return false;
2334 
2335 	return reg->type != SCALAR_VALUE;
2336 }
2337 
2338 static void save_register_state(struct bpf_func_state *state,
2339 				int spi, struct bpf_reg_state *reg)
2340 {
2341 	int i;
2342 
2343 	state->stack[spi].spilled_ptr = *reg;
2344 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2345 
2346 	for (i = 0; i < BPF_REG_SIZE; i++)
2347 		state->stack[spi].slot_type[i] = STACK_SPILL;
2348 }
2349 
2350 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2351  * stack boundary and alignment are checked in check_mem_access()
2352  */
2353 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2354 				       /* stack frame we're writing to */
2355 				       struct bpf_func_state *state,
2356 				       int off, int size, int value_regno,
2357 				       int insn_idx)
2358 {
2359 	struct bpf_func_state *cur; /* state of the current function */
2360 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2361 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2362 	struct bpf_reg_state *reg = NULL;
2363 
2364 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2365 				 state->acquired_refs, true);
2366 	if (err)
2367 		return err;
2368 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2369 	 * so it's aligned access and [off, off + size) are within stack limits
2370 	 */
2371 	if (!env->allow_ptr_leaks &&
2372 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2373 	    size != BPF_REG_SIZE) {
2374 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2375 		return -EACCES;
2376 	}
2377 
2378 	cur = env->cur_state->frame[env->cur_state->curframe];
2379 	if (value_regno >= 0)
2380 		reg = &cur->regs[value_regno];
2381 
2382 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2383 	    !register_is_null(reg) && env->bpf_capable) {
2384 		if (dst_reg != BPF_REG_FP) {
2385 			/* The backtracking logic can only recognize explicit
2386 			 * stack slot address like [fp - 8]. Other spill of
2387 			 * scalar via different register has to be conervative.
2388 			 * Backtrack from here and mark all registers as precise
2389 			 * that contributed into 'reg' being a constant.
2390 			 */
2391 			err = mark_chain_precision(env, value_regno);
2392 			if (err)
2393 				return err;
2394 		}
2395 		save_register_state(state, spi, reg);
2396 	} else if (reg && is_spillable_regtype(reg->type)) {
2397 		/* register containing pointer is being spilled into stack */
2398 		if (size != BPF_REG_SIZE) {
2399 			verbose_linfo(env, insn_idx, "; ");
2400 			verbose(env, "invalid size of register spill\n");
2401 			return -EACCES;
2402 		}
2403 
2404 		if (state != cur && reg->type == PTR_TO_STACK) {
2405 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2406 			return -EINVAL;
2407 		}
2408 
2409 		if (!env->bypass_spec_v4) {
2410 			bool sanitize = false;
2411 
2412 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2413 			    register_is_const(&state->stack[spi].spilled_ptr))
2414 				sanitize = true;
2415 			for (i = 0; i < BPF_REG_SIZE; i++)
2416 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2417 					sanitize = true;
2418 					break;
2419 				}
2420 			if (sanitize) {
2421 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2422 				int soff = (-spi - 1) * BPF_REG_SIZE;
2423 
2424 				/* detected reuse of integer stack slot with a pointer
2425 				 * which means either llvm is reusing stack slot or
2426 				 * an attacker is trying to exploit CVE-2018-3639
2427 				 * (speculative store bypass)
2428 				 * Have to sanitize that slot with preemptive
2429 				 * store of zero.
2430 				 */
2431 				if (*poff && *poff != soff) {
2432 					/* disallow programs where single insn stores
2433 					 * into two different stack slots, since verifier
2434 					 * cannot sanitize them
2435 					 */
2436 					verbose(env,
2437 						"insn %d cannot access two stack slots fp%d and fp%d",
2438 						insn_idx, *poff, soff);
2439 					return -EINVAL;
2440 				}
2441 				*poff = soff;
2442 			}
2443 		}
2444 		save_register_state(state, spi, reg);
2445 	} else {
2446 		u8 type = STACK_MISC;
2447 
2448 		/* regular write of data into stack destroys any spilled ptr */
2449 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2450 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2451 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2452 			for (i = 0; i < BPF_REG_SIZE; i++)
2453 				state->stack[spi].slot_type[i] = STACK_MISC;
2454 
2455 		/* only mark the slot as written if all 8 bytes were written
2456 		 * otherwise read propagation may incorrectly stop too soon
2457 		 * when stack slots are partially written.
2458 		 * This heuristic means that read propagation will be
2459 		 * conservative, since it will add reg_live_read marks
2460 		 * to stack slots all the way to first state when programs
2461 		 * writes+reads less than 8 bytes
2462 		 */
2463 		if (size == BPF_REG_SIZE)
2464 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2465 
2466 		/* when we zero initialize stack slots mark them as such */
2467 		if (reg && register_is_null(reg)) {
2468 			/* backtracking doesn't work for STACK_ZERO yet. */
2469 			err = mark_chain_precision(env, value_regno);
2470 			if (err)
2471 				return err;
2472 			type = STACK_ZERO;
2473 		}
2474 
2475 		/* Mark slots affected by this stack write. */
2476 		for (i = 0; i < size; i++)
2477 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2478 				type;
2479 	}
2480 	return 0;
2481 }
2482 
2483 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2484  * known to contain a variable offset.
2485  * This function checks whether the write is permitted and conservatively
2486  * tracks the effects of the write, considering that each stack slot in the
2487  * dynamic range is potentially written to.
2488  *
2489  * 'off' includes 'regno->off'.
2490  * 'value_regno' can be -1, meaning that an unknown value is being written to
2491  * the stack.
2492  *
2493  * Spilled pointers in range are not marked as written because we don't know
2494  * what's going to be actually written. This means that read propagation for
2495  * future reads cannot be terminated by this write.
2496  *
2497  * For privileged programs, uninitialized stack slots are considered
2498  * initialized by this write (even though we don't know exactly what offsets
2499  * are going to be written to). The idea is that we don't want the verifier to
2500  * reject future reads that access slots written to through variable offsets.
2501  */
2502 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2503 				     /* func where register points to */
2504 				     struct bpf_func_state *state,
2505 				     int ptr_regno, int off, int size,
2506 				     int value_regno, int insn_idx)
2507 {
2508 	struct bpf_func_state *cur; /* state of the current function */
2509 	int min_off, max_off;
2510 	int i, err;
2511 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2512 	bool writing_zero = false;
2513 	/* set if the fact that we're writing a zero is used to let any
2514 	 * stack slots remain STACK_ZERO
2515 	 */
2516 	bool zero_used = false;
2517 
2518 	cur = env->cur_state->frame[env->cur_state->curframe];
2519 	ptr_reg = &cur->regs[ptr_regno];
2520 	min_off = ptr_reg->smin_value + off;
2521 	max_off = ptr_reg->smax_value + off + size;
2522 	if (value_regno >= 0)
2523 		value_reg = &cur->regs[value_regno];
2524 	if (value_reg && register_is_null(value_reg))
2525 		writing_zero = true;
2526 
2527 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2528 				 state->acquired_refs, true);
2529 	if (err)
2530 		return err;
2531 
2532 
2533 	/* Variable offset writes destroy any spilled pointers in range. */
2534 	for (i = min_off; i < max_off; i++) {
2535 		u8 new_type, *stype;
2536 		int slot, spi;
2537 
2538 		slot = -i - 1;
2539 		spi = slot / BPF_REG_SIZE;
2540 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2541 
2542 		if (!env->allow_ptr_leaks
2543 				&& *stype != NOT_INIT
2544 				&& *stype != SCALAR_VALUE) {
2545 			/* Reject the write if there's are spilled pointers in
2546 			 * range. If we didn't reject here, the ptr status
2547 			 * would be erased below (even though not all slots are
2548 			 * actually overwritten), possibly opening the door to
2549 			 * leaks.
2550 			 */
2551 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2552 				insn_idx, i);
2553 			return -EINVAL;
2554 		}
2555 
2556 		/* Erase all spilled pointers. */
2557 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2558 
2559 		/* Update the slot type. */
2560 		new_type = STACK_MISC;
2561 		if (writing_zero && *stype == STACK_ZERO) {
2562 			new_type = STACK_ZERO;
2563 			zero_used = true;
2564 		}
2565 		/* If the slot is STACK_INVALID, we check whether it's OK to
2566 		 * pretend that it will be initialized by this write. The slot
2567 		 * might not actually be written to, and so if we mark it as
2568 		 * initialized future reads might leak uninitialized memory.
2569 		 * For privileged programs, we will accept such reads to slots
2570 		 * that may or may not be written because, if we're reject
2571 		 * them, the error would be too confusing.
2572 		 */
2573 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2574 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2575 					insn_idx, i);
2576 			return -EINVAL;
2577 		}
2578 		*stype = new_type;
2579 	}
2580 	if (zero_used) {
2581 		/* backtracking doesn't work for STACK_ZERO yet. */
2582 		err = mark_chain_precision(env, value_regno);
2583 		if (err)
2584 			return err;
2585 	}
2586 	return 0;
2587 }
2588 
2589 /* When register 'dst_regno' is assigned some values from stack[min_off,
2590  * max_off), we set the register's type according to the types of the
2591  * respective stack slots. If all the stack values are known to be zeros, then
2592  * so is the destination reg. Otherwise, the register is considered to be
2593  * SCALAR. This function does not deal with register filling; the caller must
2594  * ensure that all spilled registers in the stack range have been marked as
2595  * read.
2596  */
2597 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2598 				/* func where src register points to */
2599 				struct bpf_func_state *ptr_state,
2600 				int min_off, int max_off, int dst_regno)
2601 {
2602 	struct bpf_verifier_state *vstate = env->cur_state;
2603 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2604 	int i, slot, spi;
2605 	u8 *stype;
2606 	int zeros = 0;
2607 
2608 	for (i = min_off; i < max_off; i++) {
2609 		slot = -i - 1;
2610 		spi = slot / BPF_REG_SIZE;
2611 		stype = ptr_state->stack[spi].slot_type;
2612 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2613 			break;
2614 		zeros++;
2615 	}
2616 	if (zeros == max_off - min_off) {
2617 		/* any access_size read into register is zero extended,
2618 		 * so the whole register == const_zero
2619 		 */
2620 		__mark_reg_const_zero(&state->regs[dst_regno]);
2621 		/* backtracking doesn't support STACK_ZERO yet,
2622 		 * so mark it precise here, so that later
2623 		 * backtracking can stop here.
2624 		 * Backtracking may not need this if this register
2625 		 * doesn't participate in pointer adjustment.
2626 		 * Forward propagation of precise flag is not
2627 		 * necessary either. This mark is only to stop
2628 		 * backtracking. Any register that contributed
2629 		 * to const 0 was marked precise before spill.
2630 		 */
2631 		state->regs[dst_regno].precise = true;
2632 	} else {
2633 		/* have read misc data from the stack */
2634 		mark_reg_unknown(env, state->regs, dst_regno);
2635 	}
2636 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2637 }
2638 
2639 /* Read the stack at 'off' and put the results into the register indicated by
2640  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2641  * spilled reg.
2642  *
2643  * 'dst_regno' can be -1, meaning that the read value is not going to a
2644  * register.
2645  *
2646  * The access is assumed to be within the current stack bounds.
2647  */
2648 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2649 				      /* func where src register points to */
2650 				      struct bpf_func_state *reg_state,
2651 				      int off, int size, int dst_regno)
2652 {
2653 	struct bpf_verifier_state *vstate = env->cur_state;
2654 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2655 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2656 	struct bpf_reg_state *reg;
2657 	u8 *stype;
2658 
2659 	stype = reg_state->stack[spi].slot_type;
2660 	reg = &reg_state->stack[spi].spilled_ptr;
2661 
2662 	if (stype[0] == STACK_SPILL) {
2663 		if (size != BPF_REG_SIZE) {
2664 			if (reg->type != SCALAR_VALUE) {
2665 				verbose_linfo(env, env->insn_idx, "; ");
2666 				verbose(env, "invalid size of register fill\n");
2667 				return -EACCES;
2668 			}
2669 			if (dst_regno >= 0) {
2670 				mark_reg_unknown(env, state->regs, dst_regno);
2671 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2672 			}
2673 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2674 			return 0;
2675 		}
2676 		for (i = 1; i < BPF_REG_SIZE; i++) {
2677 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2678 				verbose(env, "corrupted spill memory\n");
2679 				return -EACCES;
2680 			}
2681 		}
2682 
2683 		if (dst_regno >= 0) {
2684 			/* restore register state from stack */
2685 			state->regs[dst_regno] = *reg;
2686 			/* mark reg as written since spilled pointer state likely
2687 			 * has its liveness marks cleared by is_state_visited()
2688 			 * which resets stack/reg liveness for state transitions
2689 			 */
2690 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2691 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2692 			/* If dst_regno==-1, the caller is asking us whether
2693 			 * it is acceptable to use this value as a SCALAR_VALUE
2694 			 * (e.g. for XADD).
2695 			 * We must not allow unprivileged callers to do that
2696 			 * with spilled pointers.
2697 			 */
2698 			verbose(env, "leaking pointer from stack off %d\n",
2699 				off);
2700 			return -EACCES;
2701 		}
2702 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2703 	} else {
2704 		u8 type;
2705 
2706 		for (i = 0; i < size; i++) {
2707 			type = stype[(slot - i) % BPF_REG_SIZE];
2708 			if (type == STACK_MISC)
2709 				continue;
2710 			if (type == STACK_ZERO)
2711 				continue;
2712 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2713 				off, i, size);
2714 			return -EACCES;
2715 		}
2716 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2717 		if (dst_regno >= 0)
2718 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2719 	}
2720 	return 0;
2721 }
2722 
2723 enum stack_access_src {
2724 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2725 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2726 };
2727 
2728 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2729 					 int regno, int off, int access_size,
2730 					 bool zero_size_allowed,
2731 					 enum stack_access_src type,
2732 					 struct bpf_call_arg_meta *meta);
2733 
2734 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2735 {
2736 	return cur_regs(env) + regno;
2737 }
2738 
2739 /* Read the stack at 'ptr_regno + off' and put the result into the register
2740  * 'dst_regno'.
2741  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2742  * but not its variable offset.
2743  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2744  *
2745  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2746  * filling registers (i.e. reads of spilled register cannot be detected when
2747  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2748  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2749  * offset; for a fixed offset check_stack_read_fixed_off should be used
2750  * instead.
2751  */
2752 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2753 				    int ptr_regno, int off, int size, int dst_regno)
2754 {
2755 	/* The state of the source register. */
2756 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2757 	struct bpf_func_state *ptr_state = func(env, reg);
2758 	int err;
2759 	int min_off, max_off;
2760 
2761 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2762 	 */
2763 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2764 					    false, ACCESS_DIRECT, NULL);
2765 	if (err)
2766 		return err;
2767 
2768 	min_off = reg->smin_value + off;
2769 	max_off = reg->smax_value + off;
2770 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2771 	return 0;
2772 }
2773 
2774 /* check_stack_read dispatches to check_stack_read_fixed_off or
2775  * check_stack_read_var_off.
2776  *
2777  * The caller must ensure that the offset falls within the allocated stack
2778  * bounds.
2779  *
2780  * 'dst_regno' is a register which will receive the value from the stack. It
2781  * can be -1, meaning that the read value is not going to a register.
2782  */
2783 static int check_stack_read(struct bpf_verifier_env *env,
2784 			    int ptr_regno, int off, int size,
2785 			    int dst_regno)
2786 {
2787 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2788 	struct bpf_func_state *state = func(env, reg);
2789 	int err;
2790 	/* Some accesses are only permitted with a static offset. */
2791 	bool var_off = !tnum_is_const(reg->var_off);
2792 
2793 	/* The offset is required to be static when reads don't go to a
2794 	 * register, in order to not leak pointers (see
2795 	 * check_stack_read_fixed_off).
2796 	 */
2797 	if (dst_regno < 0 && var_off) {
2798 		char tn_buf[48];
2799 
2800 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2801 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2802 			tn_buf, off, size);
2803 		return -EACCES;
2804 	}
2805 	/* Variable offset is prohibited for unprivileged mode for simplicity
2806 	 * since it requires corresponding support in Spectre masking for stack
2807 	 * ALU. See also retrieve_ptr_limit().
2808 	 */
2809 	if (!env->bypass_spec_v1 && var_off) {
2810 		char tn_buf[48];
2811 
2812 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2813 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2814 				ptr_regno, tn_buf);
2815 		return -EACCES;
2816 	}
2817 
2818 	if (!var_off) {
2819 		off += reg->var_off.value;
2820 		err = check_stack_read_fixed_off(env, state, off, size,
2821 						 dst_regno);
2822 	} else {
2823 		/* Variable offset stack reads need more conservative handling
2824 		 * than fixed offset ones. Note that dst_regno >= 0 on this
2825 		 * branch.
2826 		 */
2827 		err = check_stack_read_var_off(env, ptr_regno, off, size,
2828 					       dst_regno);
2829 	}
2830 	return err;
2831 }
2832 
2833 
2834 /* check_stack_write dispatches to check_stack_write_fixed_off or
2835  * check_stack_write_var_off.
2836  *
2837  * 'ptr_regno' is the register used as a pointer into the stack.
2838  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2839  * 'value_regno' is the register whose value we're writing to the stack. It can
2840  * be -1, meaning that we're not writing from a register.
2841  *
2842  * The caller must ensure that the offset falls within the maximum stack size.
2843  */
2844 static int check_stack_write(struct bpf_verifier_env *env,
2845 			     int ptr_regno, int off, int size,
2846 			     int value_regno, int insn_idx)
2847 {
2848 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2849 	struct bpf_func_state *state = func(env, reg);
2850 	int err;
2851 
2852 	if (tnum_is_const(reg->var_off)) {
2853 		off += reg->var_off.value;
2854 		err = check_stack_write_fixed_off(env, state, off, size,
2855 						  value_regno, insn_idx);
2856 	} else {
2857 		/* Variable offset stack reads need more conservative handling
2858 		 * than fixed offset ones.
2859 		 */
2860 		err = check_stack_write_var_off(env, state,
2861 						ptr_regno, off, size,
2862 						value_regno, insn_idx);
2863 	}
2864 	return err;
2865 }
2866 
2867 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2868 				 int off, int size, enum bpf_access_type type)
2869 {
2870 	struct bpf_reg_state *regs = cur_regs(env);
2871 	struct bpf_map *map = regs[regno].map_ptr;
2872 	u32 cap = bpf_map_flags_to_cap(map);
2873 
2874 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2875 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2876 			map->value_size, off, size);
2877 		return -EACCES;
2878 	}
2879 
2880 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2881 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2882 			map->value_size, off, size);
2883 		return -EACCES;
2884 	}
2885 
2886 	return 0;
2887 }
2888 
2889 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2890 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2891 			      int off, int size, u32 mem_size,
2892 			      bool zero_size_allowed)
2893 {
2894 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2895 	struct bpf_reg_state *reg;
2896 
2897 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2898 		return 0;
2899 
2900 	reg = &cur_regs(env)[regno];
2901 	switch (reg->type) {
2902 	case PTR_TO_MAP_VALUE:
2903 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2904 			mem_size, off, size);
2905 		break;
2906 	case PTR_TO_PACKET:
2907 	case PTR_TO_PACKET_META:
2908 	case PTR_TO_PACKET_END:
2909 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2910 			off, size, regno, reg->id, off, mem_size);
2911 		break;
2912 	case PTR_TO_MEM:
2913 	default:
2914 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2915 			mem_size, off, size);
2916 	}
2917 
2918 	return -EACCES;
2919 }
2920 
2921 /* check read/write into a memory region with possible variable offset */
2922 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2923 				   int off, int size, u32 mem_size,
2924 				   bool zero_size_allowed)
2925 {
2926 	struct bpf_verifier_state *vstate = env->cur_state;
2927 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2928 	struct bpf_reg_state *reg = &state->regs[regno];
2929 	int err;
2930 
2931 	/* We may have adjusted the register pointing to memory region, so we
2932 	 * need to try adding each of min_value and max_value to off
2933 	 * to make sure our theoretical access will be safe.
2934 	 */
2935 	if (env->log.level & BPF_LOG_LEVEL)
2936 		print_verifier_state(env, state);
2937 
2938 	/* The minimum value is only important with signed
2939 	 * comparisons where we can't assume the floor of a
2940 	 * value is 0.  If we are using signed variables for our
2941 	 * index'es we need to make sure that whatever we use
2942 	 * will have a set floor within our range.
2943 	 */
2944 	if (reg->smin_value < 0 &&
2945 	    (reg->smin_value == S64_MIN ||
2946 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2947 	      reg->smin_value + off < 0)) {
2948 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2949 			regno);
2950 		return -EACCES;
2951 	}
2952 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2953 				 mem_size, zero_size_allowed);
2954 	if (err) {
2955 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2956 			regno);
2957 		return err;
2958 	}
2959 
2960 	/* If we haven't set a max value then we need to bail since we can't be
2961 	 * sure we won't do bad things.
2962 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2963 	 */
2964 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2965 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2966 			regno);
2967 		return -EACCES;
2968 	}
2969 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2970 				 mem_size, zero_size_allowed);
2971 	if (err) {
2972 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2973 			regno);
2974 		return err;
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 /* check read/write into a map element with possible variable offset */
2981 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2982 			    int off, int size, bool zero_size_allowed)
2983 {
2984 	struct bpf_verifier_state *vstate = env->cur_state;
2985 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2986 	struct bpf_reg_state *reg = &state->regs[regno];
2987 	struct bpf_map *map = reg->map_ptr;
2988 	int err;
2989 
2990 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2991 				      zero_size_allowed);
2992 	if (err)
2993 		return err;
2994 
2995 	if (map_value_has_spin_lock(map)) {
2996 		u32 lock = map->spin_lock_off;
2997 
2998 		/* if any part of struct bpf_spin_lock can be touched by
2999 		 * load/store reject this program.
3000 		 * To check that [x1, x2) overlaps with [y1, y2)
3001 		 * it is sufficient to check x1 < y2 && y1 < x2.
3002 		 */
3003 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3004 		     lock < reg->umax_value + off + size) {
3005 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3006 			return -EACCES;
3007 		}
3008 	}
3009 	return err;
3010 }
3011 
3012 #define MAX_PACKET_OFF 0xffff
3013 
3014 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3015 {
3016 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3017 }
3018 
3019 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3020 				       const struct bpf_call_arg_meta *meta,
3021 				       enum bpf_access_type t)
3022 {
3023 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3024 
3025 	switch (prog_type) {
3026 	/* Program types only with direct read access go here! */
3027 	case BPF_PROG_TYPE_LWT_IN:
3028 	case BPF_PROG_TYPE_LWT_OUT:
3029 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3030 	case BPF_PROG_TYPE_SK_REUSEPORT:
3031 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3032 	case BPF_PROG_TYPE_CGROUP_SKB:
3033 		if (t == BPF_WRITE)
3034 			return false;
3035 		fallthrough;
3036 
3037 	/* Program types with direct read + write access go here! */
3038 	case BPF_PROG_TYPE_SCHED_CLS:
3039 	case BPF_PROG_TYPE_SCHED_ACT:
3040 	case BPF_PROG_TYPE_XDP:
3041 	case BPF_PROG_TYPE_LWT_XMIT:
3042 	case BPF_PROG_TYPE_SK_SKB:
3043 	case BPF_PROG_TYPE_SK_MSG:
3044 		if (meta)
3045 			return meta->pkt_access;
3046 
3047 		env->seen_direct_write = true;
3048 		return true;
3049 
3050 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3051 		if (t == BPF_WRITE)
3052 			env->seen_direct_write = true;
3053 
3054 		return true;
3055 
3056 	default:
3057 		return false;
3058 	}
3059 }
3060 
3061 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3062 			       int size, bool zero_size_allowed)
3063 {
3064 	struct bpf_reg_state *regs = cur_regs(env);
3065 	struct bpf_reg_state *reg = &regs[regno];
3066 	int err;
3067 
3068 	/* We may have added a variable offset to the packet pointer; but any
3069 	 * reg->range we have comes after that.  We are only checking the fixed
3070 	 * offset.
3071 	 */
3072 
3073 	/* We don't allow negative numbers, because we aren't tracking enough
3074 	 * detail to prove they're safe.
3075 	 */
3076 	if (reg->smin_value < 0) {
3077 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3078 			regno);
3079 		return -EACCES;
3080 	}
3081 
3082 	err = reg->range < 0 ? -EINVAL :
3083 	      __check_mem_access(env, regno, off, size, reg->range,
3084 				 zero_size_allowed);
3085 	if (err) {
3086 		verbose(env, "R%d offset is outside of the packet\n", regno);
3087 		return err;
3088 	}
3089 
3090 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3091 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3092 	 * otherwise find_good_pkt_pointers would have refused to set range info
3093 	 * that __check_mem_access would have rejected this pkt access.
3094 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3095 	 */
3096 	env->prog->aux->max_pkt_offset =
3097 		max_t(u32, env->prog->aux->max_pkt_offset,
3098 		      off + reg->umax_value + size - 1);
3099 
3100 	return err;
3101 }
3102 
3103 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3104 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3105 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3106 			    struct btf **btf, u32 *btf_id)
3107 {
3108 	struct bpf_insn_access_aux info = {
3109 		.reg_type = *reg_type,
3110 		.log = &env->log,
3111 	};
3112 
3113 	if (env->ops->is_valid_access &&
3114 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3115 		/* A non zero info.ctx_field_size indicates that this field is a
3116 		 * candidate for later verifier transformation to load the whole
3117 		 * field and then apply a mask when accessed with a narrower
3118 		 * access than actual ctx access size. A zero info.ctx_field_size
3119 		 * will only allow for whole field access and rejects any other
3120 		 * type of narrower access.
3121 		 */
3122 		*reg_type = info.reg_type;
3123 
3124 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3125 			*btf = info.btf;
3126 			*btf_id = info.btf_id;
3127 		} else {
3128 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3129 		}
3130 		/* remember the offset of last byte accessed in ctx */
3131 		if (env->prog->aux->max_ctx_offset < off + size)
3132 			env->prog->aux->max_ctx_offset = off + size;
3133 		return 0;
3134 	}
3135 
3136 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3137 	return -EACCES;
3138 }
3139 
3140 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3141 				  int size)
3142 {
3143 	if (size < 0 || off < 0 ||
3144 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3145 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3146 			off, size);
3147 		return -EACCES;
3148 	}
3149 	return 0;
3150 }
3151 
3152 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3153 			     u32 regno, int off, int size,
3154 			     enum bpf_access_type t)
3155 {
3156 	struct bpf_reg_state *regs = cur_regs(env);
3157 	struct bpf_reg_state *reg = &regs[regno];
3158 	struct bpf_insn_access_aux info = {};
3159 	bool valid;
3160 
3161 	if (reg->smin_value < 0) {
3162 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3163 			regno);
3164 		return -EACCES;
3165 	}
3166 
3167 	switch (reg->type) {
3168 	case PTR_TO_SOCK_COMMON:
3169 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3170 		break;
3171 	case PTR_TO_SOCKET:
3172 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3173 		break;
3174 	case PTR_TO_TCP_SOCK:
3175 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3176 		break;
3177 	case PTR_TO_XDP_SOCK:
3178 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3179 		break;
3180 	default:
3181 		valid = false;
3182 	}
3183 
3184 
3185 	if (valid) {
3186 		env->insn_aux_data[insn_idx].ctx_field_size =
3187 			info.ctx_field_size;
3188 		return 0;
3189 	}
3190 
3191 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3192 		regno, reg_type_str[reg->type], off, size);
3193 
3194 	return -EACCES;
3195 }
3196 
3197 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3198 {
3199 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3200 }
3201 
3202 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3203 {
3204 	const struct bpf_reg_state *reg = reg_state(env, regno);
3205 
3206 	return reg->type == PTR_TO_CTX;
3207 }
3208 
3209 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3210 {
3211 	const struct bpf_reg_state *reg = reg_state(env, regno);
3212 
3213 	return type_is_sk_pointer(reg->type);
3214 }
3215 
3216 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3217 {
3218 	const struct bpf_reg_state *reg = reg_state(env, regno);
3219 
3220 	return type_is_pkt_pointer(reg->type);
3221 }
3222 
3223 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3224 {
3225 	const struct bpf_reg_state *reg = reg_state(env, regno);
3226 
3227 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3228 	return reg->type == PTR_TO_FLOW_KEYS;
3229 }
3230 
3231 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3232 				   const struct bpf_reg_state *reg,
3233 				   int off, int size, bool strict)
3234 {
3235 	struct tnum reg_off;
3236 	int ip_align;
3237 
3238 	/* Byte size accesses are always allowed. */
3239 	if (!strict || size == 1)
3240 		return 0;
3241 
3242 	/* For platforms that do not have a Kconfig enabling
3243 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3244 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3245 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3246 	 * to this code only in strict mode where we want to emulate
3247 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3248 	 * unconditional IP align value of '2'.
3249 	 */
3250 	ip_align = 2;
3251 
3252 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3253 	if (!tnum_is_aligned(reg_off, size)) {
3254 		char tn_buf[48];
3255 
3256 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3257 		verbose(env,
3258 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3259 			ip_align, tn_buf, reg->off, off, size);
3260 		return -EACCES;
3261 	}
3262 
3263 	return 0;
3264 }
3265 
3266 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3267 				       const struct bpf_reg_state *reg,
3268 				       const char *pointer_desc,
3269 				       int off, int size, bool strict)
3270 {
3271 	struct tnum reg_off;
3272 
3273 	/* Byte size accesses are always allowed. */
3274 	if (!strict || size == 1)
3275 		return 0;
3276 
3277 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3278 	if (!tnum_is_aligned(reg_off, size)) {
3279 		char tn_buf[48];
3280 
3281 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3282 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3283 			pointer_desc, tn_buf, reg->off, off, size);
3284 		return -EACCES;
3285 	}
3286 
3287 	return 0;
3288 }
3289 
3290 static int check_ptr_alignment(struct bpf_verifier_env *env,
3291 			       const struct bpf_reg_state *reg, int off,
3292 			       int size, bool strict_alignment_once)
3293 {
3294 	bool strict = env->strict_alignment || strict_alignment_once;
3295 	const char *pointer_desc = "";
3296 
3297 	switch (reg->type) {
3298 	case PTR_TO_PACKET:
3299 	case PTR_TO_PACKET_META:
3300 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3301 		 * right in front, treat it the very same way.
3302 		 */
3303 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3304 	case PTR_TO_FLOW_KEYS:
3305 		pointer_desc = "flow keys ";
3306 		break;
3307 	case PTR_TO_MAP_VALUE:
3308 		pointer_desc = "value ";
3309 		break;
3310 	case PTR_TO_CTX:
3311 		pointer_desc = "context ";
3312 		break;
3313 	case PTR_TO_STACK:
3314 		pointer_desc = "stack ";
3315 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3316 		 * and check_stack_read_fixed_off() relies on stack accesses being
3317 		 * aligned.
3318 		 */
3319 		strict = true;
3320 		break;
3321 	case PTR_TO_SOCKET:
3322 		pointer_desc = "sock ";
3323 		break;
3324 	case PTR_TO_SOCK_COMMON:
3325 		pointer_desc = "sock_common ";
3326 		break;
3327 	case PTR_TO_TCP_SOCK:
3328 		pointer_desc = "tcp_sock ";
3329 		break;
3330 	case PTR_TO_XDP_SOCK:
3331 		pointer_desc = "xdp_sock ";
3332 		break;
3333 	default:
3334 		break;
3335 	}
3336 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3337 					   strict);
3338 }
3339 
3340 static int update_stack_depth(struct bpf_verifier_env *env,
3341 			      const struct bpf_func_state *func,
3342 			      int off)
3343 {
3344 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3345 
3346 	if (stack >= -off)
3347 		return 0;
3348 
3349 	/* update known max for given subprogram */
3350 	env->subprog_info[func->subprogno].stack_depth = -off;
3351 	return 0;
3352 }
3353 
3354 /* starting from main bpf function walk all instructions of the function
3355  * and recursively walk all callees that given function can call.
3356  * Ignore jump and exit insns.
3357  * Since recursion is prevented by check_cfg() this algorithm
3358  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3359  */
3360 static int check_max_stack_depth(struct bpf_verifier_env *env)
3361 {
3362 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3363 	struct bpf_subprog_info *subprog = env->subprog_info;
3364 	struct bpf_insn *insn = env->prog->insnsi;
3365 	bool tail_call_reachable = false;
3366 	int ret_insn[MAX_CALL_FRAMES];
3367 	int ret_prog[MAX_CALL_FRAMES];
3368 	int j;
3369 
3370 process_func:
3371 	/* protect against potential stack overflow that might happen when
3372 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3373 	 * depth for such case down to 256 so that the worst case scenario
3374 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3375 	 * 8k).
3376 	 *
3377 	 * To get the idea what might happen, see an example:
3378 	 * func1 -> sub rsp, 128
3379 	 *  subfunc1 -> sub rsp, 256
3380 	 *  tailcall1 -> add rsp, 256
3381 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3382 	 *   subfunc2 -> sub rsp, 64
3383 	 *   subfunc22 -> sub rsp, 128
3384 	 *   tailcall2 -> add rsp, 128
3385 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3386 	 *
3387 	 * tailcall will unwind the current stack frame but it will not get rid
3388 	 * of caller's stack as shown on the example above.
3389 	 */
3390 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3391 		verbose(env,
3392 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3393 			depth);
3394 		return -EACCES;
3395 	}
3396 	/* round up to 32-bytes, since this is granularity
3397 	 * of interpreter stack size
3398 	 */
3399 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3400 	if (depth > MAX_BPF_STACK) {
3401 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3402 			frame + 1, depth);
3403 		return -EACCES;
3404 	}
3405 continue_func:
3406 	subprog_end = subprog[idx + 1].start;
3407 	for (; i < subprog_end; i++) {
3408 		if (!bpf_pseudo_call(insn + i))
3409 			continue;
3410 		/* remember insn and function to return to */
3411 		ret_insn[frame] = i + 1;
3412 		ret_prog[frame] = idx;
3413 
3414 		/* find the callee */
3415 		i = i + insn[i].imm + 1;
3416 		idx = find_subprog(env, i);
3417 		if (idx < 0) {
3418 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3419 				  i);
3420 			return -EFAULT;
3421 		}
3422 
3423 		if (subprog[idx].has_tail_call)
3424 			tail_call_reachable = true;
3425 
3426 		frame++;
3427 		if (frame >= MAX_CALL_FRAMES) {
3428 			verbose(env, "the call stack of %d frames is too deep !\n",
3429 				frame);
3430 			return -E2BIG;
3431 		}
3432 		goto process_func;
3433 	}
3434 	/* if tail call got detected across bpf2bpf calls then mark each of the
3435 	 * currently present subprog frames as tail call reachable subprogs;
3436 	 * this info will be utilized by JIT so that we will be preserving the
3437 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3438 	 */
3439 	if (tail_call_reachable)
3440 		for (j = 0; j < frame; j++)
3441 			subprog[ret_prog[j]].tail_call_reachable = true;
3442 
3443 	/* end of for() loop means the last insn of the 'subprog'
3444 	 * was reached. Doesn't matter whether it was JA or EXIT
3445 	 */
3446 	if (frame == 0)
3447 		return 0;
3448 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3449 	frame--;
3450 	i = ret_insn[frame];
3451 	idx = ret_prog[frame];
3452 	goto continue_func;
3453 }
3454 
3455 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3456 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3457 				  const struct bpf_insn *insn, int idx)
3458 {
3459 	int start = idx + insn->imm + 1, subprog;
3460 
3461 	subprog = find_subprog(env, start);
3462 	if (subprog < 0) {
3463 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3464 			  start);
3465 		return -EFAULT;
3466 	}
3467 	return env->subprog_info[subprog].stack_depth;
3468 }
3469 #endif
3470 
3471 int check_ctx_reg(struct bpf_verifier_env *env,
3472 		  const struct bpf_reg_state *reg, int regno)
3473 {
3474 	/* Access to ctx or passing it to a helper is only allowed in
3475 	 * its original, unmodified form.
3476 	 */
3477 
3478 	if (reg->off) {
3479 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3480 			regno, reg->off);
3481 		return -EACCES;
3482 	}
3483 
3484 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3485 		char tn_buf[48];
3486 
3487 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3488 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3489 		return -EACCES;
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 static int __check_buffer_access(struct bpf_verifier_env *env,
3496 				 const char *buf_info,
3497 				 const struct bpf_reg_state *reg,
3498 				 int regno, int off, int size)
3499 {
3500 	if (off < 0) {
3501 		verbose(env,
3502 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3503 			regno, buf_info, off, size);
3504 		return -EACCES;
3505 	}
3506 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3507 		char tn_buf[48];
3508 
3509 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3510 		verbose(env,
3511 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3512 			regno, off, tn_buf);
3513 		return -EACCES;
3514 	}
3515 
3516 	return 0;
3517 }
3518 
3519 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3520 				  const struct bpf_reg_state *reg,
3521 				  int regno, int off, int size)
3522 {
3523 	int err;
3524 
3525 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3526 	if (err)
3527 		return err;
3528 
3529 	if (off + size > env->prog->aux->max_tp_access)
3530 		env->prog->aux->max_tp_access = off + size;
3531 
3532 	return 0;
3533 }
3534 
3535 static int check_buffer_access(struct bpf_verifier_env *env,
3536 			       const struct bpf_reg_state *reg,
3537 			       int regno, int off, int size,
3538 			       bool zero_size_allowed,
3539 			       const char *buf_info,
3540 			       u32 *max_access)
3541 {
3542 	int err;
3543 
3544 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3545 	if (err)
3546 		return err;
3547 
3548 	if (off + size > *max_access)
3549 		*max_access = off + size;
3550 
3551 	return 0;
3552 }
3553 
3554 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3555 static void zext_32_to_64(struct bpf_reg_state *reg)
3556 {
3557 	reg->var_off = tnum_subreg(reg->var_off);
3558 	__reg_assign_32_into_64(reg);
3559 }
3560 
3561 /* truncate register to smaller size (in bytes)
3562  * must be called with size < BPF_REG_SIZE
3563  */
3564 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3565 {
3566 	u64 mask;
3567 
3568 	/* clear high bits in bit representation */
3569 	reg->var_off = tnum_cast(reg->var_off, size);
3570 
3571 	/* fix arithmetic bounds */
3572 	mask = ((u64)1 << (size * 8)) - 1;
3573 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3574 		reg->umin_value &= mask;
3575 		reg->umax_value &= mask;
3576 	} else {
3577 		reg->umin_value = 0;
3578 		reg->umax_value = mask;
3579 	}
3580 	reg->smin_value = reg->umin_value;
3581 	reg->smax_value = reg->umax_value;
3582 
3583 	/* If size is smaller than 32bit register the 32bit register
3584 	 * values are also truncated so we push 64-bit bounds into
3585 	 * 32-bit bounds. Above were truncated < 32-bits already.
3586 	 */
3587 	if (size >= 4)
3588 		return;
3589 	__reg_combine_64_into_32(reg);
3590 }
3591 
3592 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3593 {
3594 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3595 }
3596 
3597 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3598 {
3599 	void *ptr;
3600 	u64 addr;
3601 	int err;
3602 
3603 	err = map->ops->map_direct_value_addr(map, &addr, off);
3604 	if (err)
3605 		return err;
3606 	ptr = (void *)(long)addr + off;
3607 
3608 	switch (size) {
3609 	case sizeof(u8):
3610 		*val = (u64)*(u8 *)ptr;
3611 		break;
3612 	case sizeof(u16):
3613 		*val = (u64)*(u16 *)ptr;
3614 		break;
3615 	case sizeof(u32):
3616 		*val = (u64)*(u32 *)ptr;
3617 		break;
3618 	case sizeof(u64):
3619 		*val = *(u64 *)ptr;
3620 		break;
3621 	default:
3622 		return -EINVAL;
3623 	}
3624 	return 0;
3625 }
3626 
3627 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3628 				   struct bpf_reg_state *regs,
3629 				   int regno, int off, int size,
3630 				   enum bpf_access_type atype,
3631 				   int value_regno)
3632 {
3633 	struct bpf_reg_state *reg = regs + regno;
3634 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3635 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3636 	u32 btf_id;
3637 	int ret;
3638 
3639 	if (off < 0) {
3640 		verbose(env,
3641 			"R%d is ptr_%s invalid negative access: off=%d\n",
3642 			regno, tname, off);
3643 		return -EACCES;
3644 	}
3645 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3646 		char tn_buf[48];
3647 
3648 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3649 		verbose(env,
3650 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3651 			regno, tname, off, tn_buf);
3652 		return -EACCES;
3653 	}
3654 
3655 	if (env->ops->btf_struct_access) {
3656 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3657 						  off, size, atype, &btf_id);
3658 	} else {
3659 		if (atype != BPF_READ) {
3660 			verbose(env, "only read is supported\n");
3661 			return -EACCES;
3662 		}
3663 
3664 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3665 					atype, &btf_id);
3666 	}
3667 
3668 	if (ret < 0)
3669 		return ret;
3670 
3671 	if (atype == BPF_READ && value_regno >= 0)
3672 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3673 
3674 	return 0;
3675 }
3676 
3677 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3678 				   struct bpf_reg_state *regs,
3679 				   int regno, int off, int size,
3680 				   enum bpf_access_type atype,
3681 				   int value_regno)
3682 {
3683 	struct bpf_reg_state *reg = regs + regno;
3684 	struct bpf_map *map = reg->map_ptr;
3685 	const struct btf_type *t;
3686 	const char *tname;
3687 	u32 btf_id;
3688 	int ret;
3689 
3690 	if (!btf_vmlinux) {
3691 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3692 		return -ENOTSUPP;
3693 	}
3694 
3695 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3696 		verbose(env, "map_ptr access not supported for map type %d\n",
3697 			map->map_type);
3698 		return -ENOTSUPP;
3699 	}
3700 
3701 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3702 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3703 
3704 	if (!env->allow_ptr_to_map_access) {
3705 		verbose(env,
3706 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3707 			tname);
3708 		return -EPERM;
3709 	}
3710 
3711 	if (off < 0) {
3712 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3713 			regno, tname, off);
3714 		return -EACCES;
3715 	}
3716 
3717 	if (atype != BPF_READ) {
3718 		verbose(env, "only read from %s is supported\n", tname);
3719 		return -EACCES;
3720 	}
3721 
3722 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3723 	if (ret < 0)
3724 		return ret;
3725 
3726 	if (value_regno >= 0)
3727 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3728 
3729 	return 0;
3730 }
3731 
3732 /* Check that the stack access at the given offset is within bounds. The
3733  * maximum valid offset is -1.
3734  *
3735  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3736  * -state->allocated_stack for reads.
3737  */
3738 static int check_stack_slot_within_bounds(int off,
3739 					  struct bpf_func_state *state,
3740 					  enum bpf_access_type t)
3741 {
3742 	int min_valid_off;
3743 
3744 	if (t == BPF_WRITE)
3745 		min_valid_off = -MAX_BPF_STACK;
3746 	else
3747 		min_valid_off = -state->allocated_stack;
3748 
3749 	if (off < min_valid_off || off > -1)
3750 		return -EACCES;
3751 	return 0;
3752 }
3753 
3754 /* Check that the stack access at 'regno + off' falls within the maximum stack
3755  * bounds.
3756  *
3757  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3758  */
3759 static int check_stack_access_within_bounds(
3760 		struct bpf_verifier_env *env,
3761 		int regno, int off, int access_size,
3762 		enum stack_access_src src, enum bpf_access_type type)
3763 {
3764 	struct bpf_reg_state *regs = cur_regs(env);
3765 	struct bpf_reg_state *reg = regs + regno;
3766 	struct bpf_func_state *state = func(env, reg);
3767 	int min_off, max_off;
3768 	int err;
3769 	char *err_extra;
3770 
3771 	if (src == ACCESS_HELPER)
3772 		/* We don't know if helpers are reading or writing (or both). */
3773 		err_extra = " indirect access to";
3774 	else if (type == BPF_READ)
3775 		err_extra = " read from";
3776 	else
3777 		err_extra = " write to";
3778 
3779 	if (tnum_is_const(reg->var_off)) {
3780 		min_off = reg->var_off.value + off;
3781 		if (access_size > 0)
3782 			max_off = min_off + access_size - 1;
3783 		else
3784 			max_off = min_off;
3785 	} else {
3786 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3787 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
3788 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3789 				err_extra, regno);
3790 			return -EACCES;
3791 		}
3792 		min_off = reg->smin_value + off;
3793 		if (access_size > 0)
3794 			max_off = reg->smax_value + off + access_size - 1;
3795 		else
3796 			max_off = min_off;
3797 	}
3798 
3799 	err = check_stack_slot_within_bounds(min_off, state, type);
3800 	if (!err)
3801 		err = check_stack_slot_within_bounds(max_off, state, type);
3802 
3803 	if (err) {
3804 		if (tnum_is_const(reg->var_off)) {
3805 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3806 				err_extra, regno, off, access_size);
3807 		} else {
3808 			char tn_buf[48];
3809 
3810 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3811 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3812 				err_extra, regno, tn_buf, access_size);
3813 		}
3814 	}
3815 	return err;
3816 }
3817 
3818 /* check whether memory at (regno + off) is accessible for t = (read | write)
3819  * if t==write, value_regno is a register which value is stored into memory
3820  * if t==read, value_regno is a register which will receive the value from memory
3821  * if t==write && value_regno==-1, some unknown value is stored into memory
3822  * if t==read && value_regno==-1, don't care what we read from memory
3823  */
3824 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3825 			    int off, int bpf_size, enum bpf_access_type t,
3826 			    int value_regno, bool strict_alignment_once)
3827 {
3828 	struct bpf_reg_state *regs = cur_regs(env);
3829 	struct bpf_reg_state *reg = regs + regno;
3830 	struct bpf_func_state *state;
3831 	int size, err = 0;
3832 
3833 	size = bpf_size_to_bytes(bpf_size);
3834 	if (size < 0)
3835 		return size;
3836 
3837 	/* alignment checks will add in reg->off themselves */
3838 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3839 	if (err)
3840 		return err;
3841 
3842 	/* for access checks, reg->off is just part of off */
3843 	off += reg->off;
3844 
3845 	if (reg->type == PTR_TO_MAP_VALUE) {
3846 		if (t == BPF_WRITE && value_regno >= 0 &&
3847 		    is_pointer_value(env, value_regno)) {
3848 			verbose(env, "R%d leaks addr into map\n", value_regno);
3849 			return -EACCES;
3850 		}
3851 		err = check_map_access_type(env, regno, off, size, t);
3852 		if (err)
3853 			return err;
3854 		err = check_map_access(env, regno, off, size, false);
3855 		if (!err && t == BPF_READ && value_regno >= 0) {
3856 			struct bpf_map *map = reg->map_ptr;
3857 
3858 			/* if map is read-only, track its contents as scalars */
3859 			if (tnum_is_const(reg->var_off) &&
3860 			    bpf_map_is_rdonly(map) &&
3861 			    map->ops->map_direct_value_addr) {
3862 				int map_off = off + reg->var_off.value;
3863 				u64 val = 0;
3864 
3865 				err = bpf_map_direct_read(map, map_off, size,
3866 							  &val);
3867 				if (err)
3868 					return err;
3869 
3870 				regs[value_regno].type = SCALAR_VALUE;
3871 				__mark_reg_known(&regs[value_regno], val);
3872 			} else {
3873 				mark_reg_unknown(env, regs, value_regno);
3874 			}
3875 		}
3876 	} else if (reg->type == PTR_TO_MEM) {
3877 		if (t == BPF_WRITE && value_regno >= 0 &&
3878 		    is_pointer_value(env, value_regno)) {
3879 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3880 			return -EACCES;
3881 		}
3882 		err = check_mem_region_access(env, regno, off, size,
3883 					      reg->mem_size, false);
3884 		if (!err && t == BPF_READ && value_regno >= 0)
3885 			mark_reg_unknown(env, regs, value_regno);
3886 	} else if (reg->type == PTR_TO_CTX) {
3887 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3888 		struct btf *btf = NULL;
3889 		u32 btf_id = 0;
3890 
3891 		if (t == BPF_WRITE && value_regno >= 0 &&
3892 		    is_pointer_value(env, value_regno)) {
3893 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3894 			return -EACCES;
3895 		}
3896 
3897 		err = check_ctx_reg(env, reg, regno);
3898 		if (err < 0)
3899 			return err;
3900 
3901 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3902 		if (err)
3903 			verbose_linfo(env, insn_idx, "; ");
3904 		if (!err && t == BPF_READ && value_regno >= 0) {
3905 			/* ctx access returns either a scalar, or a
3906 			 * PTR_TO_PACKET[_META,_END]. In the latter
3907 			 * case, we know the offset is zero.
3908 			 */
3909 			if (reg_type == SCALAR_VALUE) {
3910 				mark_reg_unknown(env, regs, value_regno);
3911 			} else {
3912 				mark_reg_known_zero(env, regs,
3913 						    value_regno);
3914 				if (reg_type_may_be_null(reg_type))
3915 					regs[value_regno].id = ++env->id_gen;
3916 				/* A load of ctx field could have different
3917 				 * actual load size with the one encoded in the
3918 				 * insn. When the dst is PTR, it is for sure not
3919 				 * a sub-register.
3920 				 */
3921 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3922 				if (reg_type == PTR_TO_BTF_ID ||
3923 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3924 					regs[value_regno].btf = btf;
3925 					regs[value_regno].btf_id = btf_id;
3926 				}
3927 			}
3928 			regs[value_regno].type = reg_type;
3929 		}
3930 
3931 	} else if (reg->type == PTR_TO_STACK) {
3932 		/* Basic bounds checks. */
3933 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3934 		if (err)
3935 			return err;
3936 
3937 		state = func(env, reg);
3938 		err = update_stack_depth(env, state, off);
3939 		if (err)
3940 			return err;
3941 
3942 		if (t == BPF_READ)
3943 			err = check_stack_read(env, regno, off, size,
3944 					       value_regno);
3945 		else
3946 			err = check_stack_write(env, regno, off, size,
3947 						value_regno, insn_idx);
3948 	} else if (reg_is_pkt_pointer(reg)) {
3949 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3950 			verbose(env, "cannot write into packet\n");
3951 			return -EACCES;
3952 		}
3953 		if (t == BPF_WRITE && value_regno >= 0 &&
3954 		    is_pointer_value(env, value_regno)) {
3955 			verbose(env, "R%d leaks addr into packet\n",
3956 				value_regno);
3957 			return -EACCES;
3958 		}
3959 		err = check_packet_access(env, regno, off, size, false);
3960 		if (!err && t == BPF_READ && value_regno >= 0)
3961 			mark_reg_unknown(env, regs, value_regno);
3962 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3963 		if (t == BPF_WRITE && value_regno >= 0 &&
3964 		    is_pointer_value(env, value_regno)) {
3965 			verbose(env, "R%d leaks addr into flow keys\n",
3966 				value_regno);
3967 			return -EACCES;
3968 		}
3969 
3970 		err = check_flow_keys_access(env, off, size);
3971 		if (!err && t == BPF_READ && value_regno >= 0)
3972 			mark_reg_unknown(env, regs, value_regno);
3973 	} else if (type_is_sk_pointer(reg->type)) {
3974 		if (t == BPF_WRITE) {
3975 			verbose(env, "R%d cannot write into %s\n",
3976 				regno, reg_type_str[reg->type]);
3977 			return -EACCES;
3978 		}
3979 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3980 		if (!err && value_regno >= 0)
3981 			mark_reg_unknown(env, regs, value_regno);
3982 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3983 		err = check_tp_buffer_access(env, reg, regno, off, size);
3984 		if (!err && t == BPF_READ && value_regno >= 0)
3985 			mark_reg_unknown(env, regs, value_regno);
3986 	} else if (reg->type == PTR_TO_BTF_ID) {
3987 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3988 					      value_regno);
3989 	} else if (reg->type == CONST_PTR_TO_MAP) {
3990 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3991 					      value_regno);
3992 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3993 		if (t == BPF_WRITE) {
3994 			verbose(env, "R%d cannot write into %s\n",
3995 				regno, reg_type_str[reg->type]);
3996 			return -EACCES;
3997 		}
3998 		err = check_buffer_access(env, reg, regno, off, size, false,
3999 					  "rdonly",
4000 					  &env->prog->aux->max_rdonly_access);
4001 		if (!err && value_regno >= 0)
4002 			mark_reg_unknown(env, regs, value_regno);
4003 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4004 		err = check_buffer_access(env, reg, regno, off, size, false,
4005 					  "rdwr",
4006 					  &env->prog->aux->max_rdwr_access);
4007 		if (!err && t == BPF_READ && value_regno >= 0)
4008 			mark_reg_unknown(env, regs, value_regno);
4009 	} else {
4010 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4011 			reg_type_str[reg->type]);
4012 		return -EACCES;
4013 	}
4014 
4015 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4016 	    regs[value_regno].type == SCALAR_VALUE) {
4017 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4018 		coerce_reg_to_size(&regs[value_regno], size);
4019 	}
4020 	return err;
4021 }
4022 
4023 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4024 {
4025 	int load_reg;
4026 	int err;
4027 
4028 	switch (insn->imm) {
4029 	case BPF_ADD:
4030 	case BPF_ADD | BPF_FETCH:
4031 	case BPF_AND:
4032 	case BPF_AND | BPF_FETCH:
4033 	case BPF_OR:
4034 	case BPF_OR | BPF_FETCH:
4035 	case BPF_XOR:
4036 	case BPF_XOR | BPF_FETCH:
4037 	case BPF_XCHG:
4038 	case BPF_CMPXCHG:
4039 		break;
4040 	default:
4041 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4042 		return -EINVAL;
4043 	}
4044 
4045 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4046 		verbose(env, "invalid atomic operand size\n");
4047 		return -EINVAL;
4048 	}
4049 
4050 	/* check src1 operand */
4051 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4052 	if (err)
4053 		return err;
4054 
4055 	/* check src2 operand */
4056 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4057 	if (err)
4058 		return err;
4059 
4060 	if (insn->imm == BPF_CMPXCHG) {
4061 		/* Check comparison of R0 with memory location */
4062 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4063 		if (err)
4064 			return err;
4065 	}
4066 
4067 	if (is_pointer_value(env, insn->src_reg)) {
4068 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4069 		return -EACCES;
4070 	}
4071 
4072 	if (is_ctx_reg(env, insn->dst_reg) ||
4073 	    is_pkt_reg(env, insn->dst_reg) ||
4074 	    is_flow_key_reg(env, insn->dst_reg) ||
4075 	    is_sk_reg(env, insn->dst_reg)) {
4076 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4077 			insn->dst_reg,
4078 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4079 		return -EACCES;
4080 	}
4081 
4082 	if (insn->imm & BPF_FETCH) {
4083 		if (insn->imm == BPF_CMPXCHG)
4084 			load_reg = BPF_REG_0;
4085 		else
4086 			load_reg = insn->src_reg;
4087 
4088 		/* check and record load of old value */
4089 		err = check_reg_arg(env, load_reg, DST_OP);
4090 		if (err)
4091 			return err;
4092 	} else {
4093 		/* This instruction accesses a memory location but doesn't
4094 		 * actually load it into a register.
4095 		 */
4096 		load_reg = -1;
4097 	}
4098 
4099 	/* check whether we can read the memory */
4100 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4101 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4102 	if (err)
4103 		return err;
4104 
4105 	/* check whether we can write into the same memory */
4106 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4107 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4108 	if (err)
4109 		return err;
4110 
4111 	return 0;
4112 }
4113 
4114 /* When register 'regno' is used to read the stack (either directly or through
4115  * a helper function) make sure that it's within stack boundary and, depending
4116  * on the access type, that all elements of the stack are initialized.
4117  *
4118  * 'off' includes 'regno->off', but not its dynamic part (if any).
4119  *
4120  * All registers that have been spilled on the stack in the slots within the
4121  * read offsets are marked as read.
4122  */
4123 static int check_stack_range_initialized(
4124 		struct bpf_verifier_env *env, int regno, int off,
4125 		int access_size, bool zero_size_allowed,
4126 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4127 {
4128 	struct bpf_reg_state *reg = reg_state(env, regno);
4129 	struct bpf_func_state *state = func(env, reg);
4130 	int err, min_off, max_off, i, j, slot, spi;
4131 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4132 	enum bpf_access_type bounds_check_type;
4133 	/* Some accesses can write anything into the stack, others are
4134 	 * read-only.
4135 	 */
4136 	bool clobber = false;
4137 
4138 	if (access_size == 0 && !zero_size_allowed) {
4139 		verbose(env, "invalid zero-sized read\n");
4140 		return -EACCES;
4141 	}
4142 
4143 	if (type == ACCESS_HELPER) {
4144 		/* The bounds checks for writes are more permissive than for
4145 		 * reads. However, if raw_mode is not set, we'll do extra
4146 		 * checks below.
4147 		 */
4148 		bounds_check_type = BPF_WRITE;
4149 		clobber = true;
4150 	} else {
4151 		bounds_check_type = BPF_READ;
4152 	}
4153 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4154 					       type, bounds_check_type);
4155 	if (err)
4156 		return err;
4157 
4158 
4159 	if (tnum_is_const(reg->var_off)) {
4160 		min_off = max_off = reg->var_off.value + off;
4161 	} else {
4162 		/* Variable offset is prohibited for unprivileged mode for
4163 		 * simplicity since it requires corresponding support in
4164 		 * Spectre masking for stack ALU.
4165 		 * See also retrieve_ptr_limit().
4166 		 */
4167 		if (!env->bypass_spec_v1) {
4168 			char tn_buf[48];
4169 
4170 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4171 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4172 				regno, err_extra, tn_buf);
4173 			return -EACCES;
4174 		}
4175 		/* Only initialized buffer on stack is allowed to be accessed
4176 		 * with variable offset. With uninitialized buffer it's hard to
4177 		 * guarantee that whole memory is marked as initialized on
4178 		 * helper return since specific bounds are unknown what may
4179 		 * cause uninitialized stack leaking.
4180 		 */
4181 		if (meta && meta->raw_mode)
4182 			meta = NULL;
4183 
4184 		min_off = reg->smin_value + off;
4185 		max_off = reg->smax_value + off;
4186 	}
4187 
4188 	if (meta && meta->raw_mode) {
4189 		meta->access_size = access_size;
4190 		meta->regno = regno;
4191 		return 0;
4192 	}
4193 
4194 	for (i = min_off; i < max_off + access_size; i++) {
4195 		u8 *stype;
4196 
4197 		slot = -i - 1;
4198 		spi = slot / BPF_REG_SIZE;
4199 		if (state->allocated_stack <= slot)
4200 			goto err;
4201 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4202 		if (*stype == STACK_MISC)
4203 			goto mark;
4204 		if (*stype == STACK_ZERO) {
4205 			if (clobber) {
4206 				/* helper can write anything into the stack */
4207 				*stype = STACK_MISC;
4208 			}
4209 			goto mark;
4210 		}
4211 
4212 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4213 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4214 			goto mark;
4215 
4216 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4217 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4218 		     env->allow_ptr_leaks)) {
4219 			if (clobber) {
4220 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4221 				for (j = 0; j < BPF_REG_SIZE; j++)
4222 					state->stack[spi].slot_type[j] = STACK_MISC;
4223 			}
4224 			goto mark;
4225 		}
4226 
4227 err:
4228 		if (tnum_is_const(reg->var_off)) {
4229 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4230 				err_extra, regno, min_off, i - min_off, access_size);
4231 		} else {
4232 			char tn_buf[48];
4233 
4234 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4235 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4236 				err_extra, regno, tn_buf, i - min_off, access_size);
4237 		}
4238 		return -EACCES;
4239 mark:
4240 		/* reading any byte out of 8-byte 'spill_slot' will cause
4241 		 * the whole slot to be marked as 'read'
4242 		 */
4243 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4244 			      state->stack[spi].spilled_ptr.parent,
4245 			      REG_LIVE_READ64);
4246 	}
4247 	return update_stack_depth(env, state, min_off);
4248 }
4249 
4250 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4251 				   int access_size, bool zero_size_allowed,
4252 				   struct bpf_call_arg_meta *meta)
4253 {
4254 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4255 
4256 	switch (reg->type) {
4257 	case PTR_TO_PACKET:
4258 	case PTR_TO_PACKET_META:
4259 		return check_packet_access(env, regno, reg->off, access_size,
4260 					   zero_size_allowed);
4261 	case PTR_TO_MAP_VALUE:
4262 		if (check_map_access_type(env, regno, reg->off, access_size,
4263 					  meta && meta->raw_mode ? BPF_WRITE :
4264 					  BPF_READ))
4265 			return -EACCES;
4266 		return check_map_access(env, regno, reg->off, access_size,
4267 					zero_size_allowed);
4268 	case PTR_TO_MEM:
4269 		return check_mem_region_access(env, regno, reg->off,
4270 					       access_size, reg->mem_size,
4271 					       zero_size_allowed);
4272 	case PTR_TO_RDONLY_BUF:
4273 		if (meta && meta->raw_mode)
4274 			return -EACCES;
4275 		return check_buffer_access(env, reg, regno, reg->off,
4276 					   access_size, zero_size_allowed,
4277 					   "rdonly",
4278 					   &env->prog->aux->max_rdonly_access);
4279 	case PTR_TO_RDWR_BUF:
4280 		return check_buffer_access(env, reg, regno, reg->off,
4281 					   access_size, zero_size_allowed,
4282 					   "rdwr",
4283 					   &env->prog->aux->max_rdwr_access);
4284 	case PTR_TO_STACK:
4285 		return check_stack_range_initialized(
4286 				env,
4287 				regno, reg->off, access_size,
4288 				zero_size_allowed, ACCESS_HELPER, meta);
4289 	default: /* scalar_value or invalid ptr */
4290 		/* Allow zero-byte read from NULL, regardless of pointer type */
4291 		if (zero_size_allowed && access_size == 0 &&
4292 		    register_is_null(reg))
4293 			return 0;
4294 
4295 		verbose(env, "R%d type=%s expected=%s\n", regno,
4296 			reg_type_str[reg->type],
4297 			reg_type_str[PTR_TO_STACK]);
4298 		return -EACCES;
4299 	}
4300 }
4301 
4302 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4303 		   u32 regno, u32 mem_size)
4304 {
4305 	if (register_is_null(reg))
4306 		return 0;
4307 
4308 	if (reg_type_may_be_null(reg->type)) {
4309 		/* Assuming that the register contains a value check if the memory
4310 		 * access is safe. Temporarily save and restore the register's state as
4311 		 * the conversion shouldn't be visible to a caller.
4312 		 */
4313 		const struct bpf_reg_state saved_reg = *reg;
4314 		int rv;
4315 
4316 		mark_ptr_not_null_reg(reg);
4317 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4318 		*reg = saved_reg;
4319 		return rv;
4320 	}
4321 
4322 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4323 }
4324 
4325 /* Implementation details:
4326  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4327  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4328  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4329  * value_or_null->value transition, since the verifier only cares about
4330  * the range of access to valid map value pointer and doesn't care about actual
4331  * address of the map element.
4332  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4333  * reg->id > 0 after value_or_null->value transition. By doing so
4334  * two bpf_map_lookups will be considered two different pointers that
4335  * point to different bpf_spin_locks.
4336  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4337  * dead-locks.
4338  * Since only one bpf_spin_lock is allowed the checks are simpler than
4339  * reg_is_refcounted() logic. The verifier needs to remember only
4340  * one spin_lock instead of array of acquired_refs.
4341  * cur_state->active_spin_lock remembers which map value element got locked
4342  * and clears it after bpf_spin_unlock.
4343  */
4344 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4345 			     bool is_lock)
4346 {
4347 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4348 	struct bpf_verifier_state *cur = env->cur_state;
4349 	bool is_const = tnum_is_const(reg->var_off);
4350 	struct bpf_map *map = reg->map_ptr;
4351 	u64 val = reg->var_off.value;
4352 
4353 	if (!is_const) {
4354 		verbose(env,
4355 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4356 			regno);
4357 		return -EINVAL;
4358 	}
4359 	if (!map->btf) {
4360 		verbose(env,
4361 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4362 			map->name);
4363 		return -EINVAL;
4364 	}
4365 	if (!map_value_has_spin_lock(map)) {
4366 		if (map->spin_lock_off == -E2BIG)
4367 			verbose(env,
4368 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4369 				map->name);
4370 		else if (map->spin_lock_off == -ENOENT)
4371 			verbose(env,
4372 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4373 				map->name);
4374 		else
4375 			verbose(env,
4376 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4377 				map->name);
4378 		return -EINVAL;
4379 	}
4380 	if (map->spin_lock_off != val + reg->off) {
4381 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4382 			val + reg->off);
4383 		return -EINVAL;
4384 	}
4385 	if (is_lock) {
4386 		if (cur->active_spin_lock) {
4387 			verbose(env,
4388 				"Locking two bpf_spin_locks are not allowed\n");
4389 			return -EINVAL;
4390 		}
4391 		cur->active_spin_lock = reg->id;
4392 	} else {
4393 		if (!cur->active_spin_lock) {
4394 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4395 			return -EINVAL;
4396 		}
4397 		if (cur->active_spin_lock != reg->id) {
4398 			verbose(env, "bpf_spin_unlock of different lock\n");
4399 			return -EINVAL;
4400 		}
4401 		cur->active_spin_lock = 0;
4402 	}
4403 	return 0;
4404 }
4405 
4406 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4407 {
4408 	return type == ARG_PTR_TO_MEM ||
4409 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4410 	       type == ARG_PTR_TO_UNINIT_MEM;
4411 }
4412 
4413 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4414 {
4415 	return type == ARG_CONST_SIZE ||
4416 	       type == ARG_CONST_SIZE_OR_ZERO;
4417 }
4418 
4419 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4420 {
4421 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4422 }
4423 
4424 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4425 {
4426 	return type == ARG_PTR_TO_INT ||
4427 	       type == ARG_PTR_TO_LONG;
4428 }
4429 
4430 static int int_ptr_type_to_size(enum bpf_arg_type type)
4431 {
4432 	if (type == ARG_PTR_TO_INT)
4433 		return sizeof(u32);
4434 	else if (type == ARG_PTR_TO_LONG)
4435 		return sizeof(u64);
4436 
4437 	return -EINVAL;
4438 }
4439 
4440 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4441 				 const struct bpf_call_arg_meta *meta,
4442 				 enum bpf_arg_type *arg_type)
4443 {
4444 	if (!meta->map_ptr) {
4445 		/* kernel subsystem misconfigured verifier */
4446 		verbose(env, "invalid map_ptr to access map->type\n");
4447 		return -EACCES;
4448 	}
4449 
4450 	switch (meta->map_ptr->map_type) {
4451 	case BPF_MAP_TYPE_SOCKMAP:
4452 	case BPF_MAP_TYPE_SOCKHASH:
4453 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4454 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4455 		} else {
4456 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4457 			return -EINVAL;
4458 		}
4459 		break;
4460 
4461 	default:
4462 		break;
4463 	}
4464 	return 0;
4465 }
4466 
4467 struct bpf_reg_types {
4468 	const enum bpf_reg_type types[10];
4469 	u32 *btf_id;
4470 };
4471 
4472 static const struct bpf_reg_types map_key_value_types = {
4473 	.types = {
4474 		PTR_TO_STACK,
4475 		PTR_TO_PACKET,
4476 		PTR_TO_PACKET_META,
4477 		PTR_TO_MAP_VALUE,
4478 	},
4479 };
4480 
4481 static const struct bpf_reg_types sock_types = {
4482 	.types = {
4483 		PTR_TO_SOCK_COMMON,
4484 		PTR_TO_SOCKET,
4485 		PTR_TO_TCP_SOCK,
4486 		PTR_TO_XDP_SOCK,
4487 	},
4488 };
4489 
4490 #ifdef CONFIG_NET
4491 static const struct bpf_reg_types btf_id_sock_common_types = {
4492 	.types = {
4493 		PTR_TO_SOCK_COMMON,
4494 		PTR_TO_SOCKET,
4495 		PTR_TO_TCP_SOCK,
4496 		PTR_TO_XDP_SOCK,
4497 		PTR_TO_BTF_ID,
4498 	},
4499 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4500 };
4501 #endif
4502 
4503 static const struct bpf_reg_types mem_types = {
4504 	.types = {
4505 		PTR_TO_STACK,
4506 		PTR_TO_PACKET,
4507 		PTR_TO_PACKET_META,
4508 		PTR_TO_MAP_VALUE,
4509 		PTR_TO_MEM,
4510 		PTR_TO_RDONLY_BUF,
4511 		PTR_TO_RDWR_BUF,
4512 	},
4513 };
4514 
4515 static const struct bpf_reg_types int_ptr_types = {
4516 	.types = {
4517 		PTR_TO_STACK,
4518 		PTR_TO_PACKET,
4519 		PTR_TO_PACKET_META,
4520 		PTR_TO_MAP_VALUE,
4521 	},
4522 };
4523 
4524 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4525 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4526 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4527 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4528 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4529 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4530 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4531 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4532 
4533 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4534 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4535 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4536 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4537 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4538 	[ARG_CONST_SIZE]		= &scalar_types,
4539 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4540 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4541 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4542 	[ARG_PTR_TO_CTX]		= &context_types,
4543 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4544 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4545 #ifdef CONFIG_NET
4546 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4547 #endif
4548 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4549 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4550 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4551 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4552 	[ARG_PTR_TO_MEM]		= &mem_types,
4553 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4554 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4555 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4556 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4557 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4558 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4559 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4560 };
4561 
4562 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4563 			  enum bpf_arg_type arg_type,
4564 			  const u32 *arg_btf_id)
4565 {
4566 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4567 	enum bpf_reg_type expected, type = reg->type;
4568 	const struct bpf_reg_types *compatible;
4569 	int i, j;
4570 
4571 	compatible = compatible_reg_types[arg_type];
4572 	if (!compatible) {
4573 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4574 		return -EFAULT;
4575 	}
4576 
4577 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4578 		expected = compatible->types[i];
4579 		if (expected == NOT_INIT)
4580 			break;
4581 
4582 		if (type == expected)
4583 			goto found;
4584 	}
4585 
4586 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4587 	for (j = 0; j + 1 < i; j++)
4588 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4589 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4590 	return -EACCES;
4591 
4592 found:
4593 	if (type == PTR_TO_BTF_ID) {
4594 		if (!arg_btf_id) {
4595 			if (!compatible->btf_id) {
4596 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4597 				return -EFAULT;
4598 			}
4599 			arg_btf_id = compatible->btf_id;
4600 		}
4601 
4602 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4603 					  btf_vmlinux, *arg_btf_id)) {
4604 			verbose(env, "R%d is of type %s but %s is expected\n",
4605 				regno, kernel_type_name(reg->btf, reg->btf_id),
4606 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4607 			return -EACCES;
4608 		}
4609 
4610 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4611 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4612 				regno);
4613 			return -EACCES;
4614 		}
4615 	}
4616 
4617 	return 0;
4618 }
4619 
4620 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4621 			  struct bpf_call_arg_meta *meta,
4622 			  const struct bpf_func_proto *fn)
4623 {
4624 	u32 regno = BPF_REG_1 + arg;
4625 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4626 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4627 	enum bpf_reg_type type = reg->type;
4628 	int err = 0;
4629 
4630 	if (arg_type == ARG_DONTCARE)
4631 		return 0;
4632 
4633 	err = check_reg_arg(env, regno, SRC_OP);
4634 	if (err)
4635 		return err;
4636 
4637 	if (arg_type == ARG_ANYTHING) {
4638 		if (is_pointer_value(env, regno)) {
4639 			verbose(env, "R%d leaks addr into helper function\n",
4640 				regno);
4641 			return -EACCES;
4642 		}
4643 		return 0;
4644 	}
4645 
4646 	if (type_is_pkt_pointer(type) &&
4647 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4648 		verbose(env, "helper access to the packet is not allowed\n");
4649 		return -EACCES;
4650 	}
4651 
4652 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4653 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4654 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4655 		err = resolve_map_arg_type(env, meta, &arg_type);
4656 		if (err)
4657 			return err;
4658 	}
4659 
4660 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4661 		/* A NULL register has a SCALAR_VALUE type, so skip
4662 		 * type checking.
4663 		 */
4664 		goto skip_type_check;
4665 
4666 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4667 	if (err)
4668 		return err;
4669 
4670 	if (type == PTR_TO_CTX) {
4671 		err = check_ctx_reg(env, reg, regno);
4672 		if (err < 0)
4673 			return err;
4674 	}
4675 
4676 skip_type_check:
4677 	if (reg->ref_obj_id) {
4678 		if (meta->ref_obj_id) {
4679 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4680 				regno, reg->ref_obj_id,
4681 				meta->ref_obj_id);
4682 			return -EFAULT;
4683 		}
4684 		meta->ref_obj_id = reg->ref_obj_id;
4685 	}
4686 
4687 	if (arg_type == ARG_CONST_MAP_PTR) {
4688 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4689 		meta->map_ptr = reg->map_ptr;
4690 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4691 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4692 		 * check that [key, key + map->key_size) are within
4693 		 * stack limits and initialized
4694 		 */
4695 		if (!meta->map_ptr) {
4696 			/* in function declaration map_ptr must come before
4697 			 * map_key, so that it's verified and known before
4698 			 * we have to check map_key here. Otherwise it means
4699 			 * that kernel subsystem misconfigured verifier
4700 			 */
4701 			verbose(env, "invalid map_ptr to access map->key\n");
4702 			return -EACCES;
4703 		}
4704 		err = check_helper_mem_access(env, regno,
4705 					      meta->map_ptr->key_size, false,
4706 					      NULL);
4707 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4708 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4709 		    !register_is_null(reg)) ||
4710 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4711 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4712 		 * check [value, value + map->value_size) validity
4713 		 */
4714 		if (!meta->map_ptr) {
4715 			/* kernel subsystem misconfigured verifier */
4716 			verbose(env, "invalid map_ptr to access map->value\n");
4717 			return -EACCES;
4718 		}
4719 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4720 		err = check_helper_mem_access(env, regno,
4721 					      meta->map_ptr->value_size, false,
4722 					      meta);
4723 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4724 		if (!reg->btf_id) {
4725 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4726 			return -EACCES;
4727 		}
4728 		meta->ret_btf = reg->btf;
4729 		meta->ret_btf_id = reg->btf_id;
4730 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4731 		if (meta->func_id == BPF_FUNC_spin_lock) {
4732 			if (process_spin_lock(env, regno, true))
4733 				return -EACCES;
4734 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4735 			if (process_spin_lock(env, regno, false))
4736 				return -EACCES;
4737 		} else {
4738 			verbose(env, "verifier internal error\n");
4739 			return -EFAULT;
4740 		}
4741 	} else if (arg_type_is_mem_ptr(arg_type)) {
4742 		/* The access to this pointer is only checked when we hit the
4743 		 * next is_mem_size argument below.
4744 		 */
4745 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4746 	} else if (arg_type_is_mem_size(arg_type)) {
4747 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4748 
4749 		/* This is used to refine r0 return value bounds for helpers
4750 		 * that enforce this value as an upper bound on return values.
4751 		 * See do_refine_retval_range() for helpers that can refine
4752 		 * the return value. C type of helper is u32 so we pull register
4753 		 * bound from umax_value however, if negative verifier errors
4754 		 * out. Only upper bounds can be learned because retval is an
4755 		 * int type and negative retvals are allowed.
4756 		 */
4757 		meta->msize_max_value = reg->umax_value;
4758 
4759 		/* The register is SCALAR_VALUE; the access check
4760 		 * happens using its boundaries.
4761 		 */
4762 		if (!tnum_is_const(reg->var_off))
4763 			/* For unprivileged variable accesses, disable raw
4764 			 * mode so that the program is required to
4765 			 * initialize all the memory that the helper could
4766 			 * just partially fill up.
4767 			 */
4768 			meta = NULL;
4769 
4770 		if (reg->smin_value < 0) {
4771 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4772 				regno);
4773 			return -EACCES;
4774 		}
4775 
4776 		if (reg->umin_value == 0) {
4777 			err = check_helper_mem_access(env, regno - 1, 0,
4778 						      zero_size_allowed,
4779 						      meta);
4780 			if (err)
4781 				return err;
4782 		}
4783 
4784 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4785 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4786 				regno);
4787 			return -EACCES;
4788 		}
4789 		err = check_helper_mem_access(env, regno - 1,
4790 					      reg->umax_value,
4791 					      zero_size_allowed, meta);
4792 		if (!err)
4793 			err = mark_chain_precision(env, regno);
4794 	} else if (arg_type_is_alloc_size(arg_type)) {
4795 		if (!tnum_is_const(reg->var_off)) {
4796 			verbose(env, "R%d is not a known constant'\n",
4797 				regno);
4798 			return -EACCES;
4799 		}
4800 		meta->mem_size = reg->var_off.value;
4801 	} else if (arg_type_is_int_ptr(arg_type)) {
4802 		int size = int_ptr_type_to_size(arg_type);
4803 
4804 		err = check_helper_mem_access(env, regno, size, false, meta);
4805 		if (err)
4806 			return err;
4807 		err = check_ptr_alignment(env, reg, 0, size, true);
4808 	}
4809 
4810 	return err;
4811 }
4812 
4813 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4814 {
4815 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4816 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4817 
4818 	if (func_id != BPF_FUNC_map_update_elem)
4819 		return false;
4820 
4821 	/* It's not possible to get access to a locked struct sock in these
4822 	 * contexts, so updating is safe.
4823 	 */
4824 	switch (type) {
4825 	case BPF_PROG_TYPE_TRACING:
4826 		if (eatype == BPF_TRACE_ITER)
4827 			return true;
4828 		break;
4829 	case BPF_PROG_TYPE_SOCKET_FILTER:
4830 	case BPF_PROG_TYPE_SCHED_CLS:
4831 	case BPF_PROG_TYPE_SCHED_ACT:
4832 	case BPF_PROG_TYPE_XDP:
4833 	case BPF_PROG_TYPE_SK_REUSEPORT:
4834 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4835 	case BPF_PROG_TYPE_SK_LOOKUP:
4836 		return true;
4837 	default:
4838 		break;
4839 	}
4840 
4841 	verbose(env, "cannot update sockmap in this context\n");
4842 	return false;
4843 }
4844 
4845 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4846 {
4847 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4848 }
4849 
4850 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4851 					struct bpf_map *map, int func_id)
4852 {
4853 	if (!map)
4854 		return 0;
4855 
4856 	/* We need a two way check, first is from map perspective ... */
4857 	switch (map->map_type) {
4858 	case BPF_MAP_TYPE_PROG_ARRAY:
4859 		if (func_id != BPF_FUNC_tail_call)
4860 			goto error;
4861 		break;
4862 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4863 		if (func_id != BPF_FUNC_perf_event_read &&
4864 		    func_id != BPF_FUNC_perf_event_output &&
4865 		    func_id != BPF_FUNC_skb_output &&
4866 		    func_id != BPF_FUNC_perf_event_read_value &&
4867 		    func_id != BPF_FUNC_xdp_output)
4868 			goto error;
4869 		break;
4870 	case BPF_MAP_TYPE_RINGBUF:
4871 		if (func_id != BPF_FUNC_ringbuf_output &&
4872 		    func_id != BPF_FUNC_ringbuf_reserve &&
4873 		    func_id != BPF_FUNC_ringbuf_submit &&
4874 		    func_id != BPF_FUNC_ringbuf_discard &&
4875 		    func_id != BPF_FUNC_ringbuf_query)
4876 			goto error;
4877 		break;
4878 	case BPF_MAP_TYPE_STACK_TRACE:
4879 		if (func_id != BPF_FUNC_get_stackid)
4880 			goto error;
4881 		break;
4882 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4883 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4884 		    func_id != BPF_FUNC_current_task_under_cgroup)
4885 			goto error;
4886 		break;
4887 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4888 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4889 		if (func_id != BPF_FUNC_get_local_storage)
4890 			goto error;
4891 		break;
4892 	case BPF_MAP_TYPE_DEVMAP:
4893 	case BPF_MAP_TYPE_DEVMAP_HASH:
4894 		if (func_id != BPF_FUNC_redirect_map &&
4895 		    func_id != BPF_FUNC_map_lookup_elem)
4896 			goto error;
4897 		break;
4898 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4899 	 * appear.
4900 	 */
4901 	case BPF_MAP_TYPE_CPUMAP:
4902 		if (func_id != BPF_FUNC_redirect_map)
4903 			goto error;
4904 		break;
4905 	case BPF_MAP_TYPE_XSKMAP:
4906 		if (func_id != BPF_FUNC_redirect_map &&
4907 		    func_id != BPF_FUNC_map_lookup_elem)
4908 			goto error;
4909 		break;
4910 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4911 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4912 		if (func_id != BPF_FUNC_map_lookup_elem)
4913 			goto error;
4914 		break;
4915 	case BPF_MAP_TYPE_SOCKMAP:
4916 		if (func_id != BPF_FUNC_sk_redirect_map &&
4917 		    func_id != BPF_FUNC_sock_map_update &&
4918 		    func_id != BPF_FUNC_map_delete_elem &&
4919 		    func_id != BPF_FUNC_msg_redirect_map &&
4920 		    func_id != BPF_FUNC_sk_select_reuseport &&
4921 		    func_id != BPF_FUNC_map_lookup_elem &&
4922 		    !may_update_sockmap(env, func_id))
4923 			goto error;
4924 		break;
4925 	case BPF_MAP_TYPE_SOCKHASH:
4926 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4927 		    func_id != BPF_FUNC_sock_hash_update &&
4928 		    func_id != BPF_FUNC_map_delete_elem &&
4929 		    func_id != BPF_FUNC_msg_redirect_hash &&
4930 		    func_id != BPF_FUNC_sk_select_reuseport &&
4931 		    func_id != BPF_FUNC_map_lookup_elem &&
4932 		    !may_update_sockmap(env, func_id))
4933 			goto error;
4934 		break;
4935 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4936 		if (func_id != BPF_FUNC_sk_select_reuseport)
4937 			goto error;
4938 		break;
4939 	case BPF_MAP_TYPE_QUEUE:
4940 	case BPF_MAP_TYPE_STACK:
4941 		if (func_id != BPF_FUNC_map_peek_elem &&
4942 		    func_id != BPF_FUNC_map_pop_elem &&
4943 		    func_id != BPF_FUNC_map_push_elem)
4944 			goto error;
4945 		break;
4946 	case BPF_MAP_TYPE_SK_STORAGE:
4947 		if (func_id != BPF_FUNC_sk_storage_get &&
4948 		    func_id != BPF_FUNC_sk_storage_delete)
4949 			goto error;
4950 		break;
4951 	case BPF_MAP_TYPE_INODE_STORAGE:
4952 		if (func_id != BPF_FUNC_inode_storage_get &&
4953 		    func_id != BPF_FUNC_inode_storage_delete)
4954 			goto error;
4955 		break;
4956 	case BPF_MAP_TYPE_TASK_STORAGE:
4957 		if (func_id != BPF_FUNC_task_storage_get &&
4958 		    func_id != BPF_FUNC_task_storage_delete)
4959 			goto error;
4960 		break;
4961 	default:
4962 		break;
4963 	}
4964 
4965 	/* ... and second from the function itself. */
4966 	switch (func_id) {
4967 	case BPF_FUNC_tail_call:
4968 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4969 			goto error;
4970 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4971 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4972 			return -EINVAL;
4973 		}
4974 		break;
4975 	case BPF_FUNC_perf_event_read:
4976 	case BPF_FUNC_perf_event_output:
4977 	case BPF_FUNC_perf_event_read_value:
4978 	case BPF_FUNC_skb_output:
4979 	case BPF_FUNC_xdp_output:
4980 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4981 			goto error;
4982 		break;
4983 	case BPF_FUNC_get_stackid:
4984 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4985 			goto error;
4986 		break;
4987 	case BPF_FUNC_current_task_under_cgroup:
4988 	case BPF_FUNC_skb_under_cgroup:
4989 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4990 			goto error;
4991 		break;
4992 	case BPF_FUNC_redirect_map:
4993 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4994 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4995 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4996 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4997 			goto error;
4998 		break;
4999 	case BPF_FUNC_sk_redirect_map:
5000 	case BPF_FUNC_msg_redirect_map:
5001 	case BPF_FUNC_sock_map_update:
5002 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5003 			goto error;
5004 		break;
5005 	case BPF_FUNC_sk_redirect_hash:
5006 	case BPF_FUNC_msg_redirect_hash:
5007 	case BPF_FUNC_sock_hash_update:
5008 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5009 			goto error;
5010 		break;
5011 	case BPF_FUNC_get_local_storage:
5012 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5013 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5014 			goto error;
5015 		break;
5016 	case BPF_FUNC_sk_select_reuseport:
5017 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5018 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5019 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5020 			goto error;
5021 		break;
5022 	case BPF_FUNC_map_peek_elem:
5023 	case BPF_FUNC_map_pop_elem:
5024 	case BPF_FUNC_map_push_elem:
5025 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5026 		    map->map_type != BPF_MAP_TYPE_STACK)
5027 			goto error;
5028 		break;
5029 	case BPF_FUNC_sk_storage_get:
5030 	case BPF_FUNC_sk_storage_delete:
5031 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5032 			goto error;
5033 		break;
5034 	case BPF_FUNC_inode_storage_get:
5035 	case BPF_FUNC_inode_storage_delete:
5036 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5037 			goto error;
5038 		break;
5039 	case BPF_FUNC_task_storage_get:
5040 	case BPF_FUNC_task_storage_delete:
5041 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5042 			goto error;
5043 		break;
5044 	default:
5045 		break;
5046 	}
5047 
5048 	return 0;
5049 error:
5050 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5051 		map->map_type, func_id_name(func_id), func_id);
5052 	return -EINVAL;
5053 }
5054 
5055 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5056 {
5057 	int count = 0;
5058 
5059 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5060 		count++;
5061 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5062 		count++;
5063 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5064 		count++;
5065 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5066 		count++;
5067 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5068 		count++;
5069 
5070 	/* We only support one arg being in raw mode at the moment,
5071 	 * which is sufficient for the helper functions we have
5072 	 * right now.
5073 	 */
5074 	return count <= 1;
5075 }
5076 
5077 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5078 				    enum bpf_arg_type arg_next)
5079 {
5080 	return (arg_type_is_mem_ptr(arg_curr) &&
5081 	        !arg_type_is_mem_size(arg_next)) ||
5082 	       (!arg_type_is_mem_ptr(arg_curr) &&
5083 		arg_type_is_mem_size(arg_next));
5084 }
5085 
5086 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5087 {
5088 	/* bpf_xxx(..., buf, len) call will access 'len'
5089 	 * bytes from memory 'buf'. Both arg types need
5090 	 * to be paired, so make sure there's no buggy
5091 	 * helper function specification.
5092 	 */
5093 	if (arg_type_is_mem_size(fn->arg1_type) ||
5094 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5095 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5096 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5097 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5098 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5099 		return false;
5100 
5101 	return true;
5102 }
5103 
5104 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5105 {
5106 	int count = 0;
5107 
5108 	if (arg_type_may_be_refcounted(fn->arg1_type))
5109 		count++;
5110 	if (arg_type_may_be_refcounted(fn->arg2_type))
5111 		count++;
5112 	if (arg_type_may_be_refcounted(fn->arg3_type))
5113 		count++;
5114 	if (arg_type_may_be_refcounted(fn->arg4_type))
5115 		count++;
5116 	if (arg_type_may_be_refcounted(fn->arg5_type))
5117 		count++;
5118 
5119 	/* A reference acquiring function cannot acquire
5120 	 * another refcounted ptr.
5121 	 */
5122 	if (may_be_acquire_function(func_id) && count)
5123 		return false;
5124 
5125 	/* We only support one arg being unreferenced at the moment,
5126 	 * which is sufficient for the helper functions we have right now.
5127 	 */
5128 	return count <= 1;
5129 }
5130 
5131 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5132 {
5133 	int i;
5134 
5135 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5136 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5137 			return false;
5138 
5139 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5140 			return false;
5141 	}
5142 
5143 	return true;
5144 }
5145 
5146 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5147 {
5148 	return check_raw_mode_ok(fn) &&
5149 	       check_arg_pair_ok(fn) &&
5150 	       check_btf_id_ok(fn) &&
5151 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5152 }
5153 
5154 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5155  * are now invalid, so turn them into unknown SCALAR_VALUE.
5156  */
5157 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5158 				     struct bpf_func_state *state)
5159 {
5160 	struct bpf_reg_state *regs = state->regs, *reg;
5161 	int i;
5162 
5163 	for (i = 0; i < MAX_BPF_REG; i++)
5164 		if (reg_is_pkt_pointer_any(&regs[i]))
5165 			mark_reg_unknown(env, regs, i);
5166 
5167 	bpf_for_each_spilled_reg(i, state, reg) {
5168 		if (!reg)
5169 			continue;
5170 		if (reg_is_pkt_pointer_any(reg))
5171 			__mark_reg_unknown(env, reg);
5172 	}
5173 }
5174 
5175 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5176 {
5177 	struct bpf_verifier_state *vstate = env->cur_state;
5178 	int i;
5179 
5180 	for (i = 0; i <= vstate->curframe; i++)
5181 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5182 }
5183 
5184 enum {
5185 	AT_PKT_END = -1,
5186 	BEYOND_PKT_END = -2,
5187 };
5188 
5189 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5190 {
5191 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5192 	struct bpf_reg_state *reg = &state->regs[regn];
5193 
5194 	if (reg->type != PTR_TO_PACKET)
5195 		/* PTR_TO_PACKET_META is not supported yet */
5196 		return;
5197 
5198 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5199 	 * How far beyond pkt_end it goes is unknown.
5200 	 * if (!range_open) it's the case of pkt >= pkt_end
5201 	 * if (range_open) it's the case of pkt > pkt_end
5202 	 * hence this pointer is at least 1 byte bigger than pkt_end
5203 	 */
5204 	if (range_open)
5205 		reg->range = BEYOND_PKT_END;
5206 	else
5207 		reg->range = AT_PKT_END;
5208 }
5209 
5210 static void release_reg_references(struct bpf_verifier_env *env,
5211 				   struct bpf_func_state *state,
5212 				   int ref_obj_id)
5213 {
5214 	struct bpf_reg_state *regs = state->regs, *reg;
5215 	int i;
5216 
5217 	for (i = 0; i < MAX_BPF_REG; i++)
5218 		if (regs[i].ref_obj_id == ref_obj_id)
5219 			mark_reg_unknown(env, regs, i);
5220 
5221 	bpf_for_each_spilled_reg(i, state, reg) {
5222 		if (!reg)
5223 			continue;
5224 		if (reg->ref_obj_id == ref_obj_id)
5225 			__mark_reg_unknown(env, reg);
5226 	}
5227 }
5228 
5229 /* The pointer with the specified id has released its reference to kernel
5230  * resources. Identify all copies of the same pointer and clear the reference.
5231  */
5232 static int release_reference(struct bpf_verifier_env *env,
5233 			     int ref_obj_id)
5234 {
5235 	struct bpf_verifier_state *vstate = env->cur_state;
5236 	int err;
5237 	int i;
5238 
5239 	err = release_reference_state(cur_func(env), ref_obj_id);
5240 	if (err)
5241 		return err;
5242 
5243 	for (i = 0; i <= vstate->curframe; i++)
5244 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5245 
5246 	return 0;
5247 }
5248 
5249 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5250 				    struct bpf_reg_state *regs)
5251 {
5252 	int i;
5253 
5254 	/* after the call registers r0 - r5 were scratched */
5255 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5256 		mark_reg_not_init(env, regs, caller_saved[i]);
5257 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5258 	}
5259 }
5260 
5261 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5262 			   int *insn_idx)
5263 {
5264 	struct bpf_verifier_state *state = env->cur_state;
5265 	struct bpf_func_info_aux *func_info_aux;
5266 	struct bpf_func_state *caller, *callee;
5267 	int i, err, subprog, target_insn;
5268 	bool is_global = false;
5269 
5270 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5271 		verbose(env, "the call stack of %d frames is too deep\n",
5272 			state->curframe + 2);
5273 		return -E2BIG;
5274 	}
5275 
5276 	target_insn = *insn_idx + insn->imm;
5277 	subprog = find_subprog(env, target_insn + 1);
5278 	if (subprog < 0) {
5279 		verbose(env, "verifier bug. No program starts at insn %d\n",
5280 			target_insn + 1);
5281 		return -EFAULT;
5282 	}
5283 
5284 	caller = state->frame[state->curframe];
5285 	if (state->frame[state->curframe + 1]) {
5286 		verbose(env, "verifier bug. Frame %d already allocated\n",
5287 			state->curframe + 1);
5288 		return -EFAULT;
5289 	}
5290 
5291 	func_info_aux = env->prog->aux->func_info_aux;
5292 	if (func_info_aux)
5293 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5294 	err = btf_check_func_arg_match(env, subprog, caller->regs);
5295 	if (err == -EFAULT)
5296 		return err;
5297 	if (is_global) {
5298 		if (err) {
5299 			verbose(env, "Caller passes invalid args into func#%d\n",
5300 				subprog);
5301 			return err;
5302 		} else {
5303 			if (env->log.level & BPF_LOG_LEVEL)
5304 				verbose(env,
5305 					"Func#%d is global and valid. Skipping.\n",
5306 					subprog);
5307 			clear_caller_saved_regs(env, caller->regs);
5308 
5309 			/* All global functions return a 64-bit SCALAR_VALUE */
5310 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5311 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5312 
5313 			/* continue with next insn after call */
5314 			return 0;
5315 		}
5316 	}
5317 
5318 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5319 	if (!callee)
5320 		return -ENOMEM;
5321 	state->frame[state->curframe + 1] = callee;
5322 
5323 	/* callee cannot access r0, r6 - r9 for reading and has to write
5324 	 * into its own stack before reading from it.
5325 	 * callee can read/write into caller's stack
5326 	 */
5327 	init_func_state(env, callee,
5328 			/* remember the callsite, it will be used by bpf_exit */
5329 			*insn_idx /* callsite */,
5330 			state->curframe + 1 /* frameno within this callchain */,
5331 			subprog /* subprog number within this prog */);
5332 
5333 	/* Transfer references to the callee */
5334 	err = transfer_reference_state(callee, caller);
5335 	if (err)
5336 		return err;
5337 
5338 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5339 	 * pointers, which connects us up to the liveness chain
5340 	 */
5341 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5342 		callee->regs[i] = caller->regs[i];
5343 
5344 	clear_caller_saved_regs(env, caller->regs);
5345 
5346 	/* only increment it after check_reg_arg() finished */
5347 	state->curframe++;
5348 
5349 	/* and go analyze first insn of the callee */
5350 	*insn_idx = target_insn;
5351 
5352 	if (env->log.level & BPF_LOG_LEVEL) {
5353 		verbose(env, "caller:\n");
5354 		print_verifier_state(env, caller);
5355 		verbose(env, "callee:\n");
5356 		print_verifier_state(env, callee);
5357 	}
5358 	return 0;
5359 }
5360 
5361 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5362 {
5363 	struct bpf_verifier_state *state = env->cur_state;
5364 	struct bpf_func_state *caller, *callee;
5365 	struct bpf_reg_state *r0;
5366 	int err;
5367 
5368 	callee = state->frame[state->curframe];
5369 	r0 = &callee->regs[BPF_REG_0];
5370 	if (r0->type == PTR_TO_STACK) {
5371 		/* technically it's ok to return caller's stack pointer
5372 		 * (or caller's caller's pointer) back to the caller,
5373 		 * since these pointers are valid. Only current stack
5374 		 * pointer will be invalid as soon as function exits,
5375 		 * but let's be conservative
5376 		 */
5377 		verbose(env, "cannot return stack pointer to the caller\n");
5378 		return -EINVAL;
5379 	}
5380 
5381 	state->curframe--;
5382 	caller = state->frame[state->curframe];
5383 	/* return to the caller whatever r0 had in the callee */
5384 	caller->regs[BPF_REG_0] = *r0;
5385 
5386 	/* Transfer references to the caller */
5387 	err = transfer_reference_state(caller, callee);
5388 	if (err)
5389 		return err;
5390 
5391 	*insn_idx = callee->callsite + 1;
5392 	if (env->log.level & BPF_LOG_LEVEL) {
5393 		verbose(env, "returning from callee:\n");
5394 		print_verifier_state(env, callee);
5395 		verbose(env, "to caller at %d:\n", *insn_idx);
5396 		print_verifier_state(env, caller);
5397 	}
5398 	/* clear everything in the callee */
5399 	free_func_state(callee);
5400 	state->frame[state->curframe + 1] = NULL;
5401 	return 0;
5402 }
5403 
5404 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5405 				   int func_id,
5406 				   struct bpf_call_arg_meta *meta)
5407 {
5408 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5409 
5410 	if (ret_type != RET_INTEGER ||
5411 	    (func_id != BPF_FUNC_get_stack &&
5412 	     func_id != BPF_FUNC_probe_read_str &&
5413 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5414 	     func_id != BPF_FUNC_probe_read_user_str))
5415 		return;
5416 
5417 	ret_reg->smax_value = meta->msize_max_value;
5418 	ret_reg->s32_max_value = meta->msize_max_value;
5419 	ret_reg->smin_value = -MAX_ERRNO;
5420 	ret_reg->s32_min_value = -MAX_ERRNO;
5421 	__reg_deduce_bounds(ret_reg);
5422 	__reg_bound_offset(ret_reg);
5423 	__update_reg_bounds(ret_reg);
5424 }
5425 
5426 static int
5427 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5428 		int func_id, int insn_idx)
5429 {
5430 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5431 	struct bpf_map *map = meta->map_ptr;
5432 
5433 	if (func_id != BPF_FUNC_tail_call &&
5434 	    func_id != BPF_FUNC_map_lookup_elem &&
5435 	    func_id != BPF_FUNC_map_update_elem &&
5436 	    func_id != BPF_FUNC_map_delete_elem &&
5437 	    func_id != BPF_FUNC_map_push_elem &&
5438 	    func_id != BPF_FUNC_map_pop_elem &&
5439 	    func_id != BPF_FUNC_map_peek_elem)
5440 		return 0;
5441 
5442 	if (map == NULL) {
5443 		verbose(env, "kernel subsystem misconfigured verifier\n");
5444 		return -EINVAL;
5445 	}
5446 
5447 	/* In case of read-only, some additional restrictions
5448 	 * need to be applied in order to prevent altering the
5449 	 * state of the map from program side.
5450 	 */
5451 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5452 	    (func_id == BPF_FUNC_map_delete_elem ||
5453 	     func_id == BPF_FUNC_map_update_elem ||
5454 	     func_id == BPF_FUNC_map_push_elem ||
5455 	     func_id == BPF_FUNC_map_pop_elem)) {
5456 		verbose(env, "write into map forbidden\n");
5457 		return -EACCES;
5458 	}
5459 
5460 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5461 		bpf_map_ptr_store(aux, meta->map_ptr,
5462 				  !meta->map_ptr->bypass_spec_v1);
5463 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5464 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5465 				  !meta->map_ptr->bypass_spec_v1);
5466 	return 0;
5467 }
5468 
5469 static int
5470 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5471 		int func_id, int insn_idx)
5472 {
5473 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5474 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5475 	struct bpf_map *map = meta->map_ptr;
5476 	struct tnum range;
5477 	u64 val;
5478 	int err;
5479 
5480 	if (func_id != BPF_FUNC_tail_call)
5481 		return 0;
5482 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5483 		verbose(env, "kernel subsystem misconfigured verifier\n");
5484 		return -EINVAL;
5485 	}
5486 
5487 	range = tnum_range(0, map->max_entries - 1);
5488 	reg = &regs[BPF_REG_3];
5489 
5490 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5491 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5492 		return 0;
5493 	}
5494 
5495 	err = mark_chain_precision(env, BPF_REG_3);
5496 	if (err)
5497 		return err;
5498 
5499 	val = reg->var_off.value;
5500 	if (bpf_map_key_unseen(aux))
5501 		bpf_map_key_store(aux, val);
5502 	else if (!bpf_map_key_poisoned(aux) &&
5503 		  bpf_map_key_immediate(aux) != val)
5504 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5505 	return 0;
5506 }
5507 
5508 static int check_reference_leak(struct bpf_verifier_env *env)
5509 {
5510 	struct bpf_func_state *state = cur_func(env);
5511 	int i;
5512 
5513 	for (i = 0; i < state->acquired_refs; i++) {
5514 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5515 			state->refs[i].id, state->refs[i].insn_idx);
5516 	}
5517 	return state->acquired_refs ? -EINVAL : 0;
5518 }
5519 
5520 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5521 {
5522 	const struct bpf_func_proto *fn = NULL;
5523 	struct bpf_reg_state *regs;
5524 	struct bpf_call_arg_meta meta;
5525 	bool changes_data;
5526 	int i, err;
5527 
5528 	/* find function prototype */
5529 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5530 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5531 			func_id);
5532 		return -EINVAL;
5533 	}
5534 
5535 	if (env->ops->get_func_proto)
5536 		fn = env->ops->get_func_proto(func_id, env->prog);
5537 	if (!fn) {
5538 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5539 			func_id);
5540 		return -EINVAL;
5541 	}
5542 
5543 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5544 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5545 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5546 		return -EINVAL;
5547 	}
5548 
5549 	if (fn->allowed && !fn->allowed(env->prog)) {
5550 		verbose(env, "helper call is not allowed in probe\n");
5551 		return -EINVAL;
5552 	}
5553 
5554 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5555 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5556 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5557 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5558 			func_id_name(func_id), func_id);
5559 		return -EINVAL;
5560 	}
5561 
5562 	memset(&meta, 0, sizeof(meta));
5563 	meta.pkt_access = fn->pkt_access;
5564 
5565 	err = check_func_proto(fn, func_id);
5566 	if (err) {
5567 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5568 			func_id_name(func_id), func_id);
5569 		return err;
5570 	}
5571 
5572 	meta.func_id = func_id;
5573 	/* check args */
5574 	for (i = 0; i < 5; i++) {
5575 		err = check_func_arg(env, i, &meta, fn);
5576 		if (err)
5577 			return err;
5578 	}
5579 
5580 	err = record_func_map(env, &meta, func_id, insn_idx);
5581 	if (err)
5582 		return err;
5583 
5584 	err = record_func_key(env, &meta, func_id, insn_idx);
5585 	if (err)
5586 		return err;
5587 
5588 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5589 	 * is inferred from register state.
5590 	 */
5591 	for (i = 0; i < meta.access_size; i++) {
5592 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5593 				       BPF_WRITE, -1, false);
5594 		if (err)
5595 			return err;
5596 	}
5597 
5598 	if (func_id == BPF_FUNC_tail_call) {
5599 		err = check_reference_leak(env);
5600 		if (err) {
5601 			verbose(env, "tail_call would lead to reference leak\n");
5602 			return err;
5603 		}
5604 	} else if (is_release_function(func_id)) {
5605 		err = release_reference(env, meta.ref_obj_id);
5606 		if (err) {
5607 			verbose(env, "func %s#%d reference has not been acquired before\n",
5608 				func_id_name(func_id), func_id);
5609 			return err;
5610 		}
5611 	}
5612 
5613 	regs = cur_regs(env);
5614 
5615 	/* check that flags argument in get_local_storage(map, flags) is 0,
5616 	 * this is required because get_local_storage() can't return an error.
5617 	 */
5618 	if (func_id == BPF_FUNC_get_local_storage &&
5619 	    !register_is_null(&regs[BPF_REG_2])) {
5620 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5621 		return -EINVAL;
5622 	}
5623 
5624 	/* reset caller saved regs */
5625 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5626 		mark_reg_not_init(env, regs, caller_saved[i]);
5627 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5628 	}
5629 
5630 	/* helper call returns 64-bit value. */
5631 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5632 
5633 	/* update return register (already marked as written above) */
5634 	if (fn->ret_type == RET_INTEGER) {
5635 		/* sets type to SCALAR_VALUE */
5636 		mark_reg_unknown(env, regs, BPF_REG_0);
5637 	} else if (fn->ret_type == RET_VOID) {
5638 		regs[BPF_REG_0].type = NOT_INIT;
5639 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5640 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5641 		/* There is no offset yet applied, variable or fixed */
5642 		mark_reg_known_zero(env, regs, BPF_REG_0);
5643 		/* remember map_ptr, so that check_map_access()
5644 		 * can check 'value_size' boundary of memory access
5645 		 * to map element returned from bpf_map_lookup_elem()
5646 		 */
5647 		if (meta.map_ptr == NULL) {
5648 			verbose(env,
5649 				"kernel subsystem misconfigured verifier\n");
5650 			return -EINVAL;
5651 		}
5652 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5653 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5654 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5655 			if (map_value_has_spin_lock(meta.map_ptr))
5656 				regs[BPF_REG_0].id = ++env->id_gen;
5657 		} else {
5658 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5659 		}
5660 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5661 		mark_reg_known_zero(env, regs, BPF_REG_0);
5662 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5663 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5664 		mark_reg_known_zero(env, regs, BPF_REG_0);
5665 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5666 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5667 		mark_reg_known_zero(env, regs, BPF_REG_0);
5668 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5669 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5670 		mark_reg_known_zero(env, regs, BPF_REG_0);
5671 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5672 		regs[BPF_REG_0].mem_size = meta.mem_size;
5673 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5674 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5675 		const struct btf_type *t;
5676 
5677 		mark_reg_known_zero(env, regs, BPF_REG_0);
5678 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5679 		if (!btf_type_is_struct(t)) {
5680 			u32 tsize;
5681 			const struct btf_type *ret;
5682 			const char *tname;
5683 
5684 			/* resolve the type size of ksym. */
5685 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5686 			if (IS_ERR(ret)) {
5687 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5688 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5689 					tname, PTR_ERR(ret));
5690 				return -EINVAL;
5691 			}
5692 			regs[BPF_REG_0].type =
5693 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5694 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5695 			regs[BPF_REG_0].mem_size = tsize;
5696 		} else {
5697 			regs[BPF_REG_0].type =
5698 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5699 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5700 			regs[BPF_REG_0].btf = meta.ret_btf;
5701 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5702 		}
5703 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5704 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5705 		int ret_btf_id;
5706 
5707 		mark_reg_known_zero(env, regs, BPF_REG_0);
5708 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5709 						     PTR_TO_BTF_ID :
5710 						     PTR_TO_BTF_ID_OR_NULL;
5711 		ret_btf_id = *fn->ret_btf_id;
5712 		if (ret_btf_id == 0) {
5713 			verbose(env, "invalid return type %d of func %s#%d\n",
5714 				fn->ret_type, func_id_name(func_id), func_id);
5715 			return -EINVAL;
5716 		}
5717 		/* current BPF helper definitions are only coming from
5718 		 * built-in code with type IDs from  vmlinux BTF
5719 		 */
5720 		regs[BPF_REG_0].btf = btf_vmlinux;
5721 		regs[BPF_REG_0].btf_id = ret_btf_id;
5722 	} else {
5723 		verbose(env, "unknown return type %d of func %s#%d\n",
5724 			fn->ret_type, func_id_name(func_id), func_id);
5725 		return -EINVAL;
5726 	}
5727 
5728 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5729 		regs[BPF_REG_0].id = ++env->id_gen;
5730 
5731 	if (is_ptr_cast_function(func_id)) {
5732 		/* For release_reference() */
5733 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5734 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5735 		int id = acquire_reference_state(env, insn_idx);
5736 
5737 		if (id < 0)
5738 			return id;
5739 		/* For mark_ptr_or_null_reg() */
5740 		regs[BPF_REG_0].id = id;
5741 		/* For release_reference() */
5742 		regs[BPF_REG_0].ref_obj_id = id;
5743 	}
5744 
5745 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5746 
5747 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5748 	if (err)
5749 		return err;
5750 
5751 	if ((func_id == BPF_FUNC_get_stack ||
5752 	     func_id == BPF_FUNC_get_task_stack) &&
5753 	    !env->prog->has_callchain_buf) {
5754 		const char *err_str;
5755 
5756 #ifdef CONFIG_PERF_EVENTS
5757 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5758 		err_str = "cannot get callchain buffer for func %s#%d\n";
5759 #else
5760 		err = -ENOTSUPP;
5761 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5762 #endif
5763 		if (err) {
5764 			verbose(env, err_str, func_id_name(func_id), func_id);
5765 			return err;
5766 		}
5767 
5768 		env->prog->has_callchain_buf = true;
5769 	}
5770 
5771 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5772 		env->prog->call_get_stack = true;
5773 
5774 	if (changes_data)
5775 		clear_all_pkt_pointers(env);
5776 	return 0;
5777 }
5778 
5779 static bool signed_add_overflows(s64 a, s64 b)
5780 {
5781 	/* Do the add in u64, where overflow is well-defined */
5782 	s64 res = (s64)((u64)a + (u64)b);
5783 
5784 	if (b < 0)
5785 		return res > a;
5786 	return res < a;
5787 }
5788 
5789 static bool signed_add32_overflows(s32 a, s32 b)
5790 {
5791 	/* Do the add in u32, where overflow is well-defined */
5792 	s32 res = (s32)((u32)a + (u32)b);
5793 
5794 	if (b < 0)
5795 		return res > a;
5796 	return res < a;
5797 }
5798 
5799 static bool signed_sub_overflows(s64 a, s64 b)
5800 {
5801 	/* Do the sub in u64, where overflow is well-defined */
5802 	s64 res = (s64)((u64)a - (u64)b);
5803 
5804 	if (b < 0)
5805 		return res < a;
5806 	return res > a;
5807 }
5808 
5809 static bool signed_sub32_overflows(s32 a, s32 b)
5810 {
5811 	/* Do the sub in u32, where overflow is well-defined */
5812 	s32 res = (s32)((u32)a - (u32)b);
5813 
5814 	if (b < 0)
5815 		return res < a;
5816 	return res > a;
5817 }
5818 
5819 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5820 				  const struct bpf_reg_state *reg,
5821 				  enum bpf_reg_type type)
5822 {
5823 	bool known = tnum_is_const(reg->var_off);
5824 	s64 val = reg->var_off.value;
5825 	s64 smin = reg->smin_value;
5826 
5827 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5828 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5829 			reg_type_str[type], val);
5830 		return false;
5831 	}
5832 
5833 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5834 		verbose(env, "%s pointer offset %d is not allowed\n",
5835 			reg_type_str[type], reg->off);
5836 		return false;
5837 	}
5838 
5839 	if (smin == S64_MIN) {
5840 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5841 			reg_type_str[type]);
5842 		return false;
5843 	}
5844 
5845 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5846 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5847 			smin, reg_type_str[type]);
5848 		return false;
5849 	}
5850 
5851 	return true;
5852 }
5853 
5854 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5855 {
5856 	return &env->insn_aux_data[env->insn_idx];
5857 }
5858 
5859 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5860 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5861 {
5862 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5863 			    (opcode == BPF_SUB && !off_is_neg);
5864 	u32 off;
5865 
5866 	switch (ptr_reg->type) {
5867 	case PTR_TO_STACK:
5868 		/* Indirect variable offset stack access is prohibited in
5869 		 * unprivileged mode so it's not handled here.
5870 		 */
5871 		off = ptr_reg->off + ptr_reg->var_off.value;
5872 		if (mask_to_left)
5873 			*ptr_limit = MAX_BPF_STACK + off;
5874 		else
5875 			*ptr_limit = -off;
5876 		return 0;
5877 	case PTR_TO_MAP_VALUE:
5878 		if (mask_to_left) {
5879 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5880 		} else {
5881 			off = ptr_reg->smin_value + ptr_reg->off;
5882 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
5883 		}
5884 		return 0;
5885 	default:
5886 		return -EINVAL;
5887 	}
5888 }
5889 
5890 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5891 				    const struct bpf_insn *insn)
5892 {
5893 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5894 }
5895 
5896 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5897 				       u32 alu_state, u32 alu_limit)
5898 {
5899 	/* If we arrived here from different branches with different
5900 	 * state or limits to sanitize, then this won't work.
5901 	 */
5902 	if (aux->alu_state &&
5903 	    (aux->alu_state != alu_state ||
5904 	     aux->alu_limit != alu_limit))
5905 		return -EACCES;
5906 
5907 	/* Corresponding fixup done in fixup_bpf_calls(). */
5908 	aux->alu_state = alu_state;
5909 	aux->alu_limit = alu_limit;
5910 	return 0;
5911 }
5912 
5913 static int sanitize_val_alu(struct bpf_verifier_env *env,
5914 			    struct bpf_insn *insn)
5915 {
5916 	struct bpf_insn_aux_data *aux = cur_aux(env);
5917 
5918 	if (can_skip_alu_sanitation(env, insn))
5919 		return 0;
5920 
5921 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5922 }
5923 
5924 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5925 			    struct bpf_insn *insn,
5926 			    const struct bpf_reg_state *ptr_reg,
5927 			    struct bpf_reg_state *dst_reg,
5928 			    bool off_is_neg)
5929 {
5930 	struct bpf_verifier_state *vstate = env->cur_state;
5931 	struct bpf_insn_aux_data *aux = cur_aux(env);
5932 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5933 	u8 opcode = BPF_OP(insn->code);
5934 	u32 alu_state, alu_limit;
5935 	struct bpf_reg_state tmp;
5936 	bool ret;
5937 
5938 	if (can_skip_alu_sanitation(env, insn))
5939 		return 0;
5940 
5941 	/* We already marked aux for masking from non-speculative
5942 	 * paths, thus we got here in the first place. We only care
5943 	 * to explore bad access from here.
5944 	 */
5945 	if (vstate->speculative)
5946 		goto do_sim;
5947 
5948 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5949 	alu_state |= ptr_is_dst_reg ?
5950 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5951 
5952 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5953 		return 0;
5954 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5955 		return -EACCES;
5956 do_sim:
5957 	/* Simulate and find potential out-of-bounds access under
5958 	 * speculative execution from truncation as a result of
5959 	 * masking when off was not within expected range. If off
5960 	 * sits in dst, then we temporarily need to move ptr there
5961 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5962 	 * for cases where we use K-based arithmetic in one direction
5963 	 * and truncated reg-based in the other in order to explore
5964 	 * bad access.
5965 	 */
5966 	if (!ptr_is_dst_reg) {
5967 		tmp = *dst_reg;
5968 		*dst_reg = *ptr_reg;
5969 	}
5970 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5971 	if (!ptr_is_dst_reg && ret)
5972 		*dst_reg = tmp;
5973 	return !ret ? -EFAULT : 0;
5974 }
5975 
5976 /* check that stack access falls within stack limits and that 'reg' doesn't
5977  * have a variable offset.
5978  *
5979  * Variable offset is prohibited for unprivileged mode for simplicity since it
5980  * requires corresponding support in Spectre masking for stack ALU.  See also
5981  * retrieve_ptr_limit().
5982  *
5983  *
5984  * 'off' includes 'reg->off'.
5985  */
5986 static int check_stack_access_for_ptr_arithmetic(
5987 				struct bpf_verifier_env *env,
5988 				int regno,
5989 				const struct bpf_reg_state *reg,
5990 				int off)
5991 {
5992 	if (!tnum_is_const(reg->var_off)) {
5993 		char tn_buf[48];
5994 
5995 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5996 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
5997 			regno, tn_buf, off);
5998 		return -EACCES;
5999 	}
6000 
6001 	if (off >= 0 || off < -MAX_BPF_STACK) {
6002 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6003 			"prohibited for !root; off=%d\n", regno, off);
6004 		return -EACCES;
6005 	}
6006 
6007 	return 0;
6008 }
6009 
6010 
6011 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6012  * Caller should also handle BPF_MOV case separately.
6013  * If we return -EACCES, caller may want to try again treating pointer as a
6014  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6015  */
6016 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6017 				   struct bpf_insn *insn,
6018 				   const struct bpf_reg_state *ptr_reg,
6019 				   const struct bpf_reg_state *off_reg)
6020 {
6021 	struct bpf_verifier_state *vstate = env->cur_state;
6022 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6023 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6024 	bool known = tnum_is_const(off_reg->var_off);
6025 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6026 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6027 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6028 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6029 	u32 dst = insn->dst_reg, src = insn->src_reg;
6030 	u8 opcode = BPF_OP(insn->code);
6031 	int ret;
6032 
6033 	dst_reg = &regs[dst];
6034 
6035 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6036 	    smin_val > smax_val || umin_val > umax_val) {
6037 		/* Taint dst register if offset had invalid bounds derived from
6038 		 * e.g. dead branches.
6039 		 */
6040 		__mark_reg_unknown(env, dst_reg);
6041 		return 0;
6042 	}
6043 
6044 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6045 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6046 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6047 			__mark_reg_unknown(env, dst_reg);
6048 			return 0;
6049 		}
6050 
6051 		verbose(env,
6052 			"R%d 32-bit pointer arithmetic prohibited\n",
6053 			dst);
6054 		return -EACCES;
6055 	}
6056 
6057 	switch (ptr_reg->type) {
6058 	case PTR_TO_MAP_VALUE_OR_NULL:
6059 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6060 			dst, reg_type_str[ptr_reg->type]);
6061 		return -EACCES;
6062 	case CONST_PTR_TO_MAP:
6063 		/* smin_val represents the known value */
6064 		if (known && smin_val == 0 && opcode == BPF_ADD)
6065 			break;
6066 		fallthrough;
6067 	case PTR_TO_PACKET_END:
6068 	case PTR_TO_SOCKET:
6069 	case PTR_TO_SOCKET_OR_NULL:
6070 	case PTR_TO_SOCK_COMMON:
6071 	case PTR_TO_SOCK_COMMON_OR_NULL:
6072 	case PTR_TO_TCP_SOCK:
6073 	case PTR_TO_TCP_SOCK_OR_NULL:
6074 	case PTR_TO_XDP_SOCK:
6075 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6076 			dst, reg_type_str[ptr_reg->type]);
6077 		return -EACCES;
6078 	case PTR_TO_MAP_VALUE:
6079 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
6080 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
6081 				off_reg == dst_reg ? dst : src);
6082 			return -EACCES;
6083 		}
6084 		fallthrough;
6085 	default:
6086 		break;
6087 	}
6088 
6089 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6090 	 * The id may be overwritten later if we create a new variable offset.
6091 	 */
6092 	dst_reg->type = ptr_reg->type;
6093 	dst_reg->id = ptr_reg->id;
6094 
6095 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6096 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6097 		return -EINVAL;
6098 
6099 	/* pointer types do not carry 32-bit bounds at the moment. */
6100 	__mark_reg32_unbounded(dst_reg);
6101 
6102 	switch (opcode) {
6103 	case BPF_ADD:
6104 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6105 		if (ret < 0) {
6106 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
6107 			return ret;
6108 		}
6109 		/* We can take a fixed offset as long as it doesn't overflow
6110 		 * the s32 'off' field
6111 		 */
6112 		if (known && (ptr_reg->off + smin_val ==
6113 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6114 			/* pointer += K.  Accumulate it into fixed offset */
6115 			dst_reg->smin_value = smin_ptr;
6116 			dst_reg->smax_value = smax_ptr;
6117 			dst_reg->umin_value = umin_ptr;
6118 			dst_reg->umax_value = umax_ptr;
6119 			dst_reg->var_off = ptr_reg->var_off;
6120 			dst_reg->off = ptr_reg->off + smin_val;
6121 			dst_reg->raw = ptr_reg->raw;
6122 			break;
6123 		}
6124 		/* A new variable offset is created.  Note that off_reg->off
6125 		 * == 0, since it's a scalar.
6126 		 * dst_reg gets the pointer type and since some positive
6127 		 * integer value was added to the pointer, give it a new 'id'
6128 		 * if it's a PTR_TO_PACKET.
6129 		 * this creates a new 'base' pointer, off_reg (variable) gets
6130 		 * added into the variable offset, and we copy the fixed offset
6131 		 * from ptr_reg.
6132 		 */
6133 		if (signed_add_overflows(smin_ptr, smin_val) ||
6134 		    signed_add_overflows(smax_ptr, smax_val)) {
6135 			dst_reg->smin_value = S64_MIN;
6136 			dst_reg->smax_value = S64_MAX;
6137 		} else {
6138 			dst_reg->smin_value = smin_ptr + smin_val;
6139 			dst_reg->smax_value = smax_ptr + smax_val;
6140 		}
6141 		if (umin_ptr + umin_val < umin_ptr ||
6142 		    umax_ptr + umax_val < umax_ptr) {
6143 			dst_reg->umin_value = 0;
6144 			dst_reg->umax_value = U64_MAX;
6145 		} else {
6146 			dst_reg->umin_value = umin_ptr + umin_val;
6147 			dst_reg->umax_value = umax_ptr + umax_val;
6148 		}
6149 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6150 		dst_reg->off = ptr_reg->off;
6151 		dst_reg->raw = ptr_reg->raw;
6152 		if (reg_is_pkt_pointer(ptr_reg)) {
6153 			dst_reg->id = ++env->id_gen;
6154 			/* something was added to pkt_ptr, set range to zero */
6155 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6156 		}
6157 		break;
6158 	case BPF_SUB:
6159 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6160 		if (ret < 0) {
6161 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
6162 			return ret;
6163 		}
6164 		if (dst_reg == off_reg) {
6165 			/* scalar -= pointer.  Creates an unknown scalar */
6166 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6167 				dst);
6168 			return -EACCES;
6169 		}
6170 		/* We don't allow subtraction from FP, because (according to
6171 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6172 		 * be able to deal with it.
6173 		 */
6174 		if (ptr_reg->type == PTR_TO_STACK) {
6175 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6176 				dst);
6177 			return -EACCES;
6178 		}
6179 		if (known && (ptr_reg->off - smin_val ==
6180 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6181 			/* pointer -= K.  Subtract it from fixed offset */
6182 			dst_reg->smin_value = smin_ptr;
6183 			dst_reg->smax_value = smax_ptr;
6184 			dst_reg->umin_value = umin_ptr;
6185 			dst_reg->umax_value = umax_ptr;
6186 			dst_reg->var_off = ptr_reg->var_off;
6187 			dst_reg->id = ptr_reg->id;
6188 			dst_reg->off = ptr_reg->off - smin_val;
6189 			dst_reg->raw = ptr_reg->raw;
6190 			break;
6191 		}
6192 		/* A new variable offset is created.  If the subtrahend is known
6193 		 * nonnegative, then any reg->range we had before is still good.
6194 		 */
6195 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6196 		    signed_sub_overflows(smax_ptr, smin_val)) {
6197 			/* Overflow possible, we know nothing */
6198 			dst_reg->smin_value = S64_MIN;
6199 			dst_reg->smax_value = S64_MAX;
6200 		} else {
6201 			dst_reg->smin_value = smin_ptr - smax_val;
6202 			dst_reg->smax_value = smax_ptr - smin_val;
6203 		}
6204 		if (umin_ptr < umax_val) {
6205 			/* Overflow possible, we know nothing */
6206 			dst_reg->umin_value = 0;
6207 			dst_reg->umax_value = U64_MAX;
6208 		} else {
6209 			/* Cannot overflow (as long as bounds are consistent) */
6210 			dst_reg->umin_value = umin_ptr - umax_val;
6211 			dst_reg->umax_value = umax_ptr - umin_val;
6212 		}
6213 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6214 		dst_reg->off = ptr_reg->off;
6215 		dst_reg->raw = ptr_reg->raw;
6216 		if (reg_is_pkt_pointer(ptr_reg)) {
6217 			dst_reg->id = ++env->id_gen;
6218 			/* something was added to pkt_ptr, set range to zero */
6219 			if (smin_val < 0)
6220 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6221 		}
6222 		break;
6223 	case BPF_AND:
6224 	case BPF_OR:
6225 	case BPF_XOR:
6226 		/* bitwise ops on pointers are troublesome, prohibit. */
6227 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6228 			dst, bpf_alu_string[opcode >> 4]);
6229 		return -EACCES;
6230 	default:
6231 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6232 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6233 			dst, bpf_alu_string[opcode >> 4]);
6234 		return -EACCES;
6235 	}
6236 
6237 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6238 		return -EINVAL;
6239 
6240 	__update_reg_bounds(dst_reg);
6241 	__reg_deduce_bounds(dst_reg);
6242 	__reg_bound_offset(dst_reg);
6243 
6244 	/* For unprivileged we require that resulting offset must be in bounds
6245 	 * in order to be able to sanitize access later on.
6246 	 */
6247 	if (!env->bypass_spec_v1) {
6248 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
6249 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
6250 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6251 				"prohibited for !root\n", dst);
6252 			return -EACCES;
6253 		} else if (dst_reg->type == PTR_TO_STACK &&
6254 			   check_stack_access_for_ptr_arithmetic(
6255 				   env, dst, dst_reg, dst_reg->off +
6256 				   dst_reg->var_off.value)) {
6257 			return -EACCES;
6258 		}
6259 	}
6260 
6261 	return 0;
6262 }
6263 
6264 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6265 				 struct bpf_reg_state *src_reg)
6266 {
6267 	s32 smin_val = src_reg->s32_min_value;
6268 	s32 smax_val = src_reg->s32_max_value;
6269 	u32 umin_val = src_reg->u32_min_value;
6270 	u32 umax_val = src_reg->u32_max_value;
6271 
6272 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6273 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6274 		dst_reg->s32_min_value = S32_MIN;
6275 		dst_reg->s32_max_value = S32_MAX;
6276 	} else {
6277 		dst_reg->s32_min_value += smin_val;
6278 		dst_reg->s32_max_value += smax_val;
6279 	}
6280 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6281 	    dst_reg->u32_max_value + umax_val < umax_val) {
6282 		dst_reg->u32_min_value = 0;
6283 		dst_reg->u32_max_value = U32_MAX;
6284 	} else {
6285 		dst_reg->u32_min_value += umin_val;
6286 		dst_reg->u32_max_value += umax_val;
6287 	}
6288 }
6289 
6290 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6291 			       struct bpf_reg_state *src_reg)
6292 {
6293 	s64 smin_val = src_reg->smin_value;
6294 	s64 smax_val = src_reg->smax_value;
6295 	u64 umin_val = src_reg->umin_value;
6296 	u64 umax_val = src_reg->umax_value;
6297 
6298 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6299 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6300 		dst_reg->smin_value = S64_MIN;
6301 		dst_reg->smax_value = S64_MAX;
6302 	} else {
6303 		dst_reg->smin_value += smin_val;
6304 		dst_reg->smax_value += smax_val;
6305 	}
6306 	if (dst_reg->umin_value + umin_val < umin_val ||
6307 	    dst_reg->umax_value + umax_val < umax_val) {
6308 		dst_reg->umin_value = 0;
6309 		dst_reg->umax_value = U64_MAX;
6310 	} else {
6311 		dst_reg->umin_value += umin_val;
6312 		dst_reg->umax_value += umax_val;
6313 	}
6314 }
6315 
6316 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6317 				 struct bpf_reg_state *src_reg)
6318 {
6319 	s32 smin_val = src_reg->s32_min_value;
6320 	s32 smax_val = src_reg->s32_max_value;
6321 	u32 umin_val = src_reg->u32_min_value;
6322 	u32 umax_val = src_reg->u32_max_value;
6323 
6324 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6325 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6326 		/* Overflow possible, we know nothing */
6327 		dst_reg->s32_min_value = S32_MIN;
6328 		dst_reg->s32_max_value = S32_MAX;
6329 	} else {
6330 		dst_reg->s32_min_value -= smax_val;
6331 		dst_reg->s32_max_value -= smin_val;
6332 	}
6333 	if (dst_reg->u32_min_value < umax_val) {
6334 		/* Overflow possible, we know nothing */
6335 		dst_reg->u32_min_value = 0;
6336 		dst_reg->u32_max_value = U32_MAX;
6337 	} else {
6338 		/* Cannot overflow (as long as bounds are consistent) */
6339 		dst_reg->u32_min_value -= umax_val;
6340 		dst_reg->u32_max_value -= umin_val;
6341 	}
6342 }
6343 
6344 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6345 			       struct bpf_reg_state *src_reg)
6346 {
6347 	s64 smin_val = src_reg->smin_value;
6348 	s64 smax_val = src_reg->smax_value;
6349 	u64 umin_val = src_reg->umin_value;
6350 	u64 umax_val = src_reg->umax_value;
6351 
6352 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6353 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6354 		/* Overflow possible, we know nothing */
6355 		dst_reg->smin_value = S64_MIN;
6356 		dst_reg->smax_value = S64_MAX;
6357 	} else {
6358 		dst_reg->smin_value -= smax_val;
6359 		dst_reg->smax_value -= smin_val;
6360 	}
6361 	if (dst_reg->umin_value < umax_val) {
6362 		/* Overflow possible, we know nothing */
6363 		dst_reg->umin_value = 0;
6364 		dst_reg->umax_value = U64_MAX;
6365 	} else {
6366 		/* Cannot overflow (as long as bounds are consistent) */
6367 		dst_reg->umin_value -= umax_val;
6368 		dst_reg->umax_value -= umin_val;
6369 	}
6370 }
6371 
6372 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6373 				 struct bpf_reg_state *src_reg)
6374 {
6375 	s32 smin_val = src_reg->s32_min_value;
6376 	u32 umin_val = src_reg->u32_min_value;
6377 	u32 umax_val = src_reg->u32_max_value;
6378 
6379 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6380 		/* Ain't nobody got time to multiply that sign */
6381 		__mark_reg32_unbounded(dst_reg);
6382 		return;
6383 	}
6384 	/* Both values are positive, so we can work with unsigned and
6385 	 * copy the result to signed (unless it exceeds S32_MAX).
6386 	 */
6387 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6388 		/* Potential overflow, we know nothing */
6389 		__mark_reg32_unbounded(dst_reg);
6390 		return;
6391 	}
6392 	dst_reg->u32_min_value *= umin_val;
6393 	dst_reg->u32_max_value *= umax_val;
6394 	if (dst_reg->u32_max_value > S32_MAX) {
6395 		/* Overflow possible, we know nothing */
6396 		dst_reg->s32_min_value = S32_MIN;
6397 		dst_reg->s32_max_value = S32_MAX;
6398 	} else {
6399 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6400 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6401 	}
6402 }
6403 
6404 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6405 			       struct bpf_reg_state *src_reg)
6406 {
6407 	s64 smin_val = src_reg->smin_value;
6408 	u64 umin_val = src_reg->umin_value;
6409 	u64 umax_val = src_reg->umax_value;
6410 
6411 	if (smin_val < 0 || dst_reg->smin_value < 0) {
6412 		/* Ain't nobody got time to multiply that sign */
6413 		__mark_reg64_unbounded(dst_reg);
6414 		return;
6415 	}
6416 	/* Both values are positive, so we can work with unsigned and
6417 	 * copy the result to signed (unless it exceeds S64_MAX).
6418 	 */
6419 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6420 		/* Potential overflow, we know nothing */
6421 		__mark_reg64_unbounded(dst_reg);
6422 		return;
6423 	}
6424 	dst_reg->umin_value *= umin_val;
6425 	dst_reg->umax_value *= umax_val;
6426 	if (dst_reg->umax_value > S64_MAX) {
6427 		/* Overflow possible, we know nothing */
6428 		dst_reg->smin_value = S64_MIN;
6429 		dst_reg->smax_value = S64_MAX;
6430 	} else {
6431 		dst_reg->smin_value = dst_reg->umin_value;
6432 		dst_reg->smax_value = dst_reg->umax_value;
6433 	}
6434 }
6435 
6436 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6437 				 struct bpf_reg_state *src_reg)
6438 {
6439 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6440 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6441 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6442 	s32 smin_val = src_reg->s32_min_value;
6443 	u32 umax_val = src_reg->u32_max_value;
6444 
6445 	/* Assuming scalar64_min_max_and will be called so its safe
6446 	 * to skip updating register for known 32-bit case.
6447 	 */
6448 	if (src_known && dst_known)
6449 		return;
6450 
6451 	/* We get our minimum from the var_off, since that's inherently
6452 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6453 	 */
6454 	dst_reg->u32_min_value = var32_off.value;
6455 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6456 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6457 		/* Lose signed bounds when ANDing negative numbers,
6458 		 * ain't nobody got time for that.
6459 		 */
6460 		dst_reg->s32_min_value = S32_MIN;
6461 		dst_reg->s32_max_value = S32_MAX;
6462 	} else {
6463 		/* ANDing two positives gives a positive, so safe to
6464 		 * cast result into s64.
6465 		 */
6466 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6467 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6468 	}
6469 
6470 }
6471 
6472 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6473 			       struct bpf_reg_state *src_reg)
6474 {
6475 	bool src_known = tnum_is_const(src_reg->var_off);
6476 	bool dst_known = tnum_is_const(dst_reg->var_off);
6477 	s64 smin_val = src_reg->smin_value;
6478 	u64 umax_val = src_reg->umax_value;
6479 
6480 	if (src_known && dst_known) {
6481 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6482 		return;
6483 	}
6484 
6485 	/* We get our minimum from the var_off, since that's inherently
6486 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6487 	 */
6488 	dst_reg->umin_value = dst_reg->var_off.value;
6489 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6490 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6491 		/* Lose signed bounds when ANDing negative numbers,
6492 		 * ain't nobody got time for that.
6493 		 */
6494 		dst_reg->smin_value = S64_MIN;
6495 		dst_reg->smax_value = S64_MAX;
6496 	} else {
6497 		/* ANDing two positives gives a positive, so safe to
6498 		 * cast result into s64.
6499 		 */
6500 		dst_reg->smin_value = dst_reg->umin_value;
6501 		dst_reg->smax_value = dst_reg->umax_value;
6502 	}
6503 	/* We may learn something more from the var_off */
6504 	__update_reg_bounds(dst_reg);
6505 }
6506 
6507 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6508 				struct bpf_reg_state *src_reg)
6509 {
6510 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6511 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6512 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6513 	s32 smin_val = src_reg->s32_min_value;
6514 	u32 umin_val = src_reg->u32_min_value;
6515 
6516 	/* Assuming scalar64_min_max_or will be called so it is safe
6517 	 * to skip updating register for known case.
6518 	 */
6519 	if (src_known && dst_known)
6520 		return;
6521 
6522 	/* We get our maximum from the var_off, and our minimum is the
6523 	 * maximum of the operands' minima
6524 	 */
6525 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6526 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6527 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6528 		/* Lose signed bounds when ORing negative numbers,
6529 		 * ain't nobody got time for that.
6530 		 */
6531 		dst_reg->s32_min_value = S32_MIN;
6532 		dst_reg->s32_max_value = S32_MAX;
6533 	} else {
6534 		/* ORing two positives gives a positive, so safe to
6535 		 * cast result into s64.
6536 		 */
6537 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6538 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6539 	}
6540 }
6541 
6542 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6543 			      struct bpf_reg_state *src_reg)
6544 {
6545 	bool src_known = tnum_is_const(src_reg->var_off);
6546 	bool dst_known = tnum_is_const(dst_reg->var_off);
6547 	s64 smin_val = src_reg->smin_value;
6548 	u64 umin_val = src_reg->umin_value;
6549 
6550 	if (src_known && dst_known) {
6551 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6552 		return;
6553 	}
6554 
6555 	/* We get our maximum from the var_off, and our minimum is the
6556 	 * maximum of the operands' minima
6557 	 */
6558 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6559 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6560 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6561 		/* Lose signed bounds when ORing negative numbers,
6562 		 * ain't nobody got time for that.
6563 		 */
6564 		dst_reg->smin_value = S64_MIN;
6565 		dst_reg->smax_value = S64_MAX;
6566 	} else {
6567 		/* ORing two positives gives a positive, so safe to
6568 		 * cast result into s64.
6569 		 */
6570 		dst_reg->smin_value = dst_reg->umin_value;
6571 		dst_reg->smax_value = dst_reg->umax_value;
6572 	}
6573 	/* We may learn something more from the var_off */
6574 	__update_reg_bounds(dst_reg);
6575 }
6576 
6577 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6578 				 struct bpf_reg_state *src_reg)
6579 {
6580 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6581 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6582 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6583 	s32 smin_val = src_reg->s32_min_value;
6584 
6585 	/* Assuming scalar64_min_max_xor will be called so it is safe
6586 	 * to skip updating register for known case.
6587 	 */
6588 	if (src_known && dst_known)
6589 		return;
6590 
6591 	/* We get both minimum and maximum from the var32_off. */
6592 	dst_reg->u32_min_value = var32_off.value;
6593 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6594 
6595 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6596 		/* XORing two positive sign numbers gives a positive,
6597 		 * so safe to cast u32 result into s32.
6598 		 */
6599 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6600 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6601 	} else {
6602 		dst_reg->s32_min_value = S32_MIN;
6603 		dst_reg->s32_max_value = S32_MAX;
6604 	}
6605 }
6606 
6607 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6608 			       struct bpf_reg_state *src_reg)
6609 {
6610 	bool src_known = tnum_is_const(src_reg->var_off);
6611 	bool dst_known = tnum_is_const(dst_reg->var_off);
6612 	s64 smin_val = src_reg->smin_value;
6613 
6614 	if (src_known && dst_known) {
6615 		/* dst_reg->var_off.value has been updated earlier */
6616 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6617 		return;
6618 	}
6619 
6620 	/* We get both minimum and maximum from the var_off. */
6621 	dst_reg->umin_value = dst_reg->var_off.value;
6622 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6623 
6624 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6625 		/* XORing two positive sign numbers gives a positive,
6626 		 * so safe to cast u64 result into s64.
6627 		 */
6628 		dst_reg->smin_value = dst_reg->umin_value;
6629 		dst_reg->smax_value = dst_reg->umax_value;
6630 	} else {
6631 		dst_reg->smin_value = S64_MIN;
6632 		dst_reg->smax_value = S64_MAX;
6633 	}
6634 
6635 	__update_reg_bounds(dst_reg);
6636 }
6637 
6638 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6639 				   u64 umin_val, u64 umax_val)
6640 {
6641 	/* We lose all sign bit information (except what we can pick
6642 	 * up from var_off)
6643 	 */
6644 	dst_reg->s32_min_value = S32_MIN;
6645 	dst_reg->s32_max_value = S32_MAX;
6646 	/* If we might shift our top bit out, then we know nothing */
6647 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6648 		dst_reg->u32_min_value = 0;
6649 		dst_reg->u32_max_value = U32_MAX;
6650 	} else {
6651 		dst_reg->u32_min_value <<= umin_val;
6652 		dst_reg->u32_max_value <<= umax_val;
6653 	}
6654 }
6655 
6656 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6657 				 struct bpf_reg_state *src_reg)
6658 {
6659 	u32 umax_val = src_reg->u32_max_value;
6660 	u32 umin_val = src_reg->u32_min_value;
6661 	/* u32 alu operation will zext upper bits */
6662 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6663 
6664 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6665 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6666 	/* Not required but being careful mark reg64 bounds as unknown so
6667 	 * that we are forced to pick them up from tnum and zext later and
6668 	 * if some path skips this step we are still safe.
6669 	 */
6670 	__mark_reg64_unbounded(dst_reg);
6671 	__update_reg32_bounds(dst_reg);
6672 }
6673 
6674 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6675 				   u64 umin_val, u64 umax_val)
6676 {
6677 	/* Special case <<32 because it is a common compiler pattern to sign
6678 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6679 	 * positive we know this shift will also be positive so we can track
6680 	 * bounds correctly. Otherwise we lose all sign bit information except
6681 	 * what we can pick up from var_off. Perhaps we can generalize this
6682 	 * later to shifts of any length.
6683 	 */
6684 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6685 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6686 	else
6687 		dst_reg->smax_value = S64_MAX;
6688 
6689 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6690 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6691 	else
6692 		dst_reg->smin_value = S64_MIN;
6693 
6694 	/* If we might shift our top bit out, then we know nothing */
6695 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6696 		dst_reg->umin_value = 0;
6697 		dst_reg->umax_value = U64_MAX;
6698 	} else {
6699 		dst_reg->umin_value <<= umin_val;
6700 		dst_reg->umax_value <<= umax_val;
6701 	}
6702 }
6703 
6704 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6705 			       struct bpf_reg_state *src_reg)
6706 {
6707 	u64 umax_val = src_reg->umax_value;
6708 	u64 umin_val = src_reg->umin_value;
6709 
6710 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6711 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6712 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6713 
6714 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6715 	/* We may learn something more from the var_off */
6716 	__update_reg_bounds(dst_reg);
6717 }
6718 
6719 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6720 				 struct bpf_reg_state *src_reg)
6721 {
6722 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6723 	u32 umax_val = src_reg->u32_max_value;
6724 	u32 umin_val = src_reg->u32_min_value;
6725 
6726 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6727 	 * be negative, then either:
6728 	 * 1) src_reg might be zero, so the sign bit of the result is
6729 	 *    unknown, so we lose our signed bounds
6730 	 * 2) it's known negative, thus the unsigned bounds capture the
6731 	 *    signed bounds
6732 	 * 3) the signed bounds cross zero, so they tell us nothing
6733 	 *    about the result
6734 	 * If the value in dst_reg is known nonnegative, then again the
6735 	 * unsigned bounds capture the signed bounds.
6736 	 * Thus, in all cases it suffices to blow away our signed bounds
6737 	 * and rely on inferring new ones from the unsigned bounds and
6738 	 * var_off of the result.
6739 	 */
6740 	dst_reg->s32_min_value = S32_MIN;
6741 	dst_reg->s32_max_value = S32_MAX;
6742 
6743 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6744 	dst_reg->u32_min_value >>= umax_val;
6745 	dst_reg->u32_max_value >>= umin_val;
6746 
6747 	__mark_reg64_unbounded(dst_reg);
6748 	__update_reg32_bounds(dst_reg);
6749 }
6750 
6751 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6752 			       struct bpf_reg_state *src_reg)
6753 {
6754 	u64 umax_val = src_reg->umax_value;
6755 	u64 umin_val = src_reg->umin_value;
6756 
6757 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6758 	 * be negative, then either:
6759 	 * 1) src_reg might be zero, so the sign bit of the result is
6760 	 *    unknown, so we lose our signed bounds
6761 	 * 2) it's known negative, thus the unsigned bounds capture the
6762 	 *    signed bounds
6763 	 * 3) the signed bounds cross zero, so they tell us nothing
6764 	 *    about the result
6765 	 * If the value in dst_reg is known nonnegative, then again the
6766 	 * unsigned bounds capture the signed bounds.
6767 	 * Thus, in all cases it suffices to blow away our signed bounds
6768 	 * and rely on inferring new ones from the unsigned bounds and
6769 	 * var_off of the result.
6770 	 */
6771 	dst_reg->smin_value = S64_MIN;
6772 	dst_reg->smax_value = S64_MAX;
6773 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6774 	dst_reg->umin_value >>= umax_val;
6775 	dst_reg->umax_value >>= umin_val;
6776 
6777 	/* Its not easy to operate on alu32 bounds here because it depends
6778 	 * on bits being shifted in. Take easy way out and mark unbounded
6779 	 * so we can recalculate later from tnum.
6780 	 */
6781 	__mark_reg32_unbounded(dst_reg);
6782 	__update_reg_bounds(dst_reg);
6783 }
6784 
6785 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6786 				  struct bpf_reg_state *src_reg)
6787 {
6788 	u64 umin_val = src_reg->u32_min_value;
6789 
6790 	/* Upon reaching here, src_known is true and
6791 	 * umax_val is equal to umin_val.
6792 	 */
6793 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6794 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6795 
6796 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6797 
6798 	/* blow away the dst_reg umin_value/umax_value and rely on
6799 	 * dst_reg var_off to refine the result.
6800 	 */
6801 	dst_reg->u32_min_value = 0;
6802 	dst_reg->u32_max_value = U32_MAX;
6803 
6804 	__mark_reg64_unbounded(dst_reg);
6805 	__update_reg32_bounds(dst_reg);
6806 }
6807 
6808 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6809 				struct bpf_reg_state *src_reg)
6810 {
6811 	u64 umin_val = src_reg->umin_value;
6812 
6813 	/* Upon reaching here, src_known is true and umax_val is equal
6814 	 * to umin_val.
6815 	 */
6816 	dst_reg->smin_value >>= umin_val;
6817 	dst_reg->smax_value >>= umin_val;
6818 
6819 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6820 
6821 	/* blow away the dst_reg umin_value/umax_value and rely on
6822 	 * dst_reg var_off to refine the result.
6823 	 */
6824 	dst_reg->umin_value = 0;
6825 	dst_reg->umax_value = U64_MAX;
6826 
6827 	/* Its not easy to operate on alu32 bounds here because it depends
6828 	 * on bits being shifted in from upper 32-bits. Take easy way out
6829 	 * and mark unbounded so we can recalculate later from tnum.
6830 	 */
6831 	__mark_reg32_unbounded(dst_reg);
6832 	__update_reg_bounds(dst_reg);
6833 }
6834 
6835 /* WARNING: This function does calculations on 64-bit values, but the actual
6836  * execution may occur on 32-bit values. Therefore, things like bitshifts
6837  * need extra checks in the 32-bit case.
6838  */
6839 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6840 				      struct bpf_insn *insn,
6841 				      struct bpf_reg_state *dst_reg,
6842 				      struct bpf_reg_state src_reg)
6843 {
6844 	struct bpf_reg_state *regs = cur_regs(env);
6845 	u8 opcode = BPF_OP(insn->code);
6846 	bool src_known;
6847 	s64 smin_val, smax_val;
6848 	u64 umin_val, umax_val;
6849 	s32 s32_min_val, s32_max_val;
6850 	u32 u32_min_val, u32_max_val;
6851 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6852 	u32 dst = insn->dst_reg;
6853 	int ret;
6854 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6855 
6856 	smin_val = src_reg.smin_value;
6857 	smax_val = src_reg.smax_value;
6858 	umin_val = src_reg.umin_value;
6859 	umax_val = src_reg.umax_value;
6860 
6861 	s32_min_val = src_reg.s32_min_value;
6862 	s32_max_val = src_reg.s32_max_value;
6863 	u32_min_val = src_reg.u32_min_value;
6864 	u32_max_val = src_reg.u32_max_value;
6865 
6866 	if (alu32) {
6867 		src_known = tnum_subreg_is_const(src_reg.var_off);
6868 		if ((src_known &&
6869 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6870 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6871 			/* Taint dst register if offset had invalid bounds
6872 			 * derived from e.g. dead branches.
6873 			 */
6874 			__mark_reg_unknown(env, dst_reg);
6875 			return 0;
6876 		}
6877 	} else {
6878 		src_known = tnum_is_const(src_reg.var_off);
6879 		if ((src_known &&
6880 		     (smin_val != smax_val || umin_val != umax_val)) ||
6881 		    smin_val > smax_val || umin_val > umax_val) {
6882 			/* Taint dst register if offset had invalid bounds
6883 			 * derived from e.g. dead branches.
6884 			 */
6885 			__mark_reg_unknown(env, dst_reg);
6886 			return 0;
6887 		}
6888 	}
6889 
6890 	if (!src_known &&
6891 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6892 		__mark_reg_unknown(env, dst_reg);
6893 		return 0;
6894 	}
6895 
6896 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6897 	 * There are two classes of instructions: The first class we track both
6898 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6899 	 * greatest amount of precision when alu operations are mixed with jmp32
6900 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6901 	 * and BPF_OR. This is possible because these ops have fairly easy to
6902 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6903 	 * See alu32 verifier tests for examples. The second class of
6904 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6905 	 * with regards to tracking sign/unsigned bounds because the bits may
6906 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6907 	 * the reg unbounded in the subreg bound space and use the resulting
6908 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6909 	 */
6910 	switch (opcode) {
6911 	case BPF_ADD:
6912 		ret = sanitize_val_alu(env, insn);
6913 		if (ret < 0) {
6914 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6915 			return ret;
6916 		}
6917 		scalar32_min_max_add(dst_reg, &src_reg);
6918 		scalar_min_max_add(dst_reg, &src_reg);
6919 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6920 		break;
6921 	case BPF_SUB:
6922 		ret = sanitize_val_alu(env, insn);
6923 		if (ret < 0) {
6924 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6925 			return ret;
6926 		}
6927 		scalar32_min_max_sub(dst_reg, &src_reg);
6928 		scalar_min_max_sub(dst_reg, &src_reg);
6929 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6930 		break;
6931 	case BPF_MUL:
6932 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6933 		scalar32_min_max_mul(dst_reg, &src_reg);
6934 		scalar_min_max_mul(dst_reg, &src_reg);
6935 		break;
6936 	case BPF_AND:
6937 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6938 		scalar32_min_max_and(dst_reg, &src_reg);
6939 		scalar_min_max_and(dst_reg, &src_reg);
6940 		break;
6941 	case BPF_OR:
6942 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6943 		scalar32_min_max_or(dst_reg, &src_reg);
6944 		scalar_min_max_or(dst_reg, &src_reg);
6945 		break;
6946 	case BPF_XOR:
6947 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6948 		scalar32_min_max_xor(dst_reg, &src_reg);
6949 		scalar_min_max_xor(dst_reg, &src_reg);
6950 		break;
6951 	case BPF_LSH:
6952 		if (umax_val >= insn_bitness) {
6953 			/* Shifts greater than 31 or 63 are undefined.
6954 			 * This includes shifts by a negative number.
6955 			 */
6956 			mark_reg_unknown(env, regs, insn->dst_reg);
6957 			break;
6958 		}
6959 		if (alu32)
6960 			scalar32_min_max_lsh(dst_reg, &src_reg);
6961 		else
6962 			scalar_min_max_lsh(dst_reg, &src_reg);
6963 		break;
6964 	case BPF_RSH:
6965 		if (umax_val >= insn_bitness) {
6966 			/* Shifts greater than 31 or 63 are undefined.
6967 			 * This includes shifts by a negative number.
6968 			 */
6969 			mark_reg_unknown(env, regs, insn->dst_reg);
6970 			break;
6971 		}
6972 		if (alu32)
6973 			scalar32_min_max_rsh(dst_reg, &src_reg);
6974 		else
6975 			scalar_min_max_rsh(dst_reg, &src_reg);
6976 		break;
6977 	case BPF_ARSH:
6978 		if (umax_val >= insn_bitness) {
6979 			/* Shifts greater than 31 or 63 are undefined.
6980 			 * This includes shifts by a negative number.
6981 			 */
6982 			mark_reg_unknown(env, regs, insn->dst_reg);
6983 			break;
6984 		}
6985 		if (alu32)
6986 			scalar32_min_max_arsh(dst_reg, &src_reg);
6987 		else
6988 			scalar_min_max_arsh(dst_reg, &src_reg);
6989 		break;
6990 	default:
6991 		mark_reg_unknown(env, regs, insn->dst_reg);
6992 		break;
6993 	}
6994 
6995 	/* ALU32 ops are zero extended into 64bit register */
6996 	if (alu32)
6997 		zext_32_to_64(dst_reg);
6998 
6999 	__update_reg_bounds(dst_reg);
7000 	__reg_deduce_bounds(dst_reg);
7001 	__reg_bound_offset(dst_reg);
7002 	return 0;
7003 }
7004 
7005 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7006  * and var_off.
7007  */
7008 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7009 				   struct bpf_insn *insn)
7010 {
7011 	struct bpf_verifier_state *vstate = env->cur_state;
7012 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7013 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7014 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7015 	u8 opcode = BPF_OP(insn->code);
7016 	int err;
7017 
7018 	dst_reg = &regs[insn->dst_reg];
7019 	src_reg = NULL;
7020 	if (dst_reg->type != SCALAR_VALUE)
7021 		ptr_reg = dst_reg;
7022 	else
7023 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7024 		 * incorrectly propagated into other registers by find_equal_scalars()
7025 		 */
7026 		dst_reg->id = 0;
7027 	if (BPF_SRC(insn->code) == BPF_X) {
7028 		src_reg = &regs[insn->src_reg];
7029 		if (src_reg->type != SCALAR_VALUE) {
7030 			if (dst_reg->type != SCALAR_VALUE) {
7031 				/* Combining two pointers by any ALU op yields
7032 				 * an arbitrary scalar. Disallow all math except
7033 				 * pointer subtraction
7034 				 */
7035 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7036 					mark_reg_unknown(env, regs, insn->dst_reg);
7037 					return 0;
7038 				}
7039 				verbose(env, "R%d pointer %s pointer prohibited\n",
7040 					insn->dst_reg,
7041 					bpf_alu_string[opcode >> 4]);
7042 				return -EACCES;
7043 			} else {
7044 				/* scalar += pointer
7045 				 * This is legal, but we have to reverse our
7046 				 * src/dest handling in computing the range
7047 				 */
7048 				err = mark_chain_precision(env, insn->dst_reg);
7049 				if (err)
7050 					return err;
7051 				return adjust_ptr_min_max_vals(env, insn,
7052 							       src_reg, dst_reg);
7053 			}
7054 		} else if (ptr_reg) {
7055 			/* pointer += scalar */
7056 			err = mark_chain_precision(env, insn->src_reg);
7057 			if (err)
7058 				return err;
7059 			return adjust_ptr_min_max_vals(env, insn,
7060 						       dst_reg, src_reg);
7061 		}
7062 	} else {
7063 		/* Pretend the src is a reg with a known value, since we only
7064 		 * need to be able to read from this state.
7065 		 */
7066 		off_reg.type = SCALAR_VALUE;
7067 		__mark_reg_known(&off_reg, insn->imm);
7068 		src_reg = &off_reg;
7069 		if (ptr_reg) /* pointer += K */
7070 			return adjust_ptr_min_max_vals(env, insn,
7071 						       ptr_reg, src_reg);
7072 	}
7073 
7074 	/* Got here implies adding two SCALAR_VALUEs */
7075 	if (WARN_ON_ONCE(ptr_reg)) {
7076 		print_verifier_state(env, state);
7077 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7078 		return -EINVAL;
7079 	}
7080 	if (WARN_ON(!src_reg)) {
7081 		print_verifier_state(env, state);
7082 		verbose(env, "verifier internal error: no src_reg\n");
7083 		return -EINVAL;
7084 	}
7085 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7086 }
7087 
7088 /* check validity of 32-bit and 64-bit arithmetic operations */
7089 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7090 {
7091 	struct bpf_reg_state *regs = cur_regs(env);
7092 	u8 opcode = BPF_OP(insn->code);
7093 	int err;
7094 
7095 	if (opcode == BPF_END || opcode == BPF_NEG) {
7096 		if (opcode == BPF_NEG) {
7097 			if (BPF_SRC(insn->code) != 0 ||
7098 			    insn->src_reg != BPF_REG_0 ||
7099 			    insn->off != 0 || insn->imm != 0) {
7100 				verbose(env, "BPF_NEG uses reserved fields\n");
7101 				return -EINVAL;
7102 			}
7103 		} else {
7104 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7105 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7106 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7107 				verbose(env, "BPF_END uses reserved fields\n");
7108 				return -EINVAL;
7109 			}
7110 		}
7111 
7112 		/* check src operand */
7113 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7114 		if (err)
7115 			return err;
7116 
7117 		if (is_pointer_value(env, insn->dst_reg)) {
7118 			verbose(env, "R%d pointer arithmetic prohibited\n",
7119 				insn->dst_reg);
7120 			return -EACCES;
7121 		}
7122 
7123 		/* check dest operand */
7124 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7125 		if (err)
7126 			return err;
7127 
7128 	} else if (opcode == BPF_MOV) {
7129 
7130 		if (BPF_SRC(insn->code) == BPF_X) {
7131 			if (insn->imm != 0 || insn->off != 0) {
7132 				verbose(env, "BPF_MOV uses reserved fields\n");
7133 				return -EINVAL;
7134 			}
7135 
7136 			/* check src operand */
7137 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7138 			if (err)
7139 				return err;
7140 		} else {
7141 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7142 				verbose(env, "BPF_MOV uses reserved fields\n");
7143 				return -EINVAL;
7144 			}
7145 		}
7146 
7147 		/* check dest operand, mark as required later */
7148 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7149 		if (err)
7150 			return err;
7151 
7152 		if (BPF_SRC(insn->code) == BPF_X) {
7153 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7154 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7155 
7156 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7157 				/* case: R1 = R2
7158 				 * copy register state to dest reg
7159 				 */
7160 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7161 					/* Assign src and dst registers the same ID
7162 					 * that will be used by find_equal_scalars()
7163 					 * to propagate min/max range.
7164 					 */
7165 					src_reg->id = ++env->id_gen;
7166 				*dst_reg = *src_reg;
7167 				dst_reg->live |= REG_LIVE_WRITTEN;
7168 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7169 			} else {
7170 				/* R1 = (u32) R2 */
7171 				if (is_pointer_value(env, insn->src_reg)) {
7172 					verbose(env,
7173 						"R%d partial copy of pointer\n",
7174 						insn->src_reg);
7175 					return -EACCES;
7176 				} else if (src_reg->type == SCALAR_VALUE) {
7177 					*dst_reg = *src_reg;
7178 					/* Make sure ID is cleared otherwise
7179 					 * dst_reg min/max could be incorrectly
7180 					 * propagated into src_reg by find_equal_scalars()
7181 					 */
7182 					dst_reg->id = 0;
7183 					dst_reg->live |= REG_LIVE_WRITTEN;
7184 					dst_reg->subreg_def = env->insn_idx + 1;
7185 				} else {
7186 					mark_reg_unknown(env, regs,
7187 							 insn->dst_reg);
7188 				}
7189 				zext_32_to_64(dst_reg);
7190 			}
7191 		} else {
7192 			/* case: R = imm
7193 			 * remember the value we stored into this reg
7194 			 */
7195 			/* clear any state __mark_reg_known doesn't set */
7196 			mark_reg_unknown(env, regs, insn->dst_reg);
7197 			regs[insn->dst_reg].type = SCALAR_VALUE;
7198 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7199 				__mark_reg_known(regs + insn->dst_reg,
7200 						 insn->imm);
7201 			} else {
7202 				__mark_reg_known(regs + insn->dst_reg,
7203 						 (u32)insn->imm);
7204 			}
7205 		}
7206 
7207 	} else if (opcode > BPF_END) {
7208 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7209 		return -EINVAL;
7210 
7211 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7212 
7213 		if (BPF_SRC(insn->code) == BPF_X) {
7214 			if (insn->imm != 0 || insn->off != 0) {
7215 				verbose(env, "BPF_ALU uses reserved fields\n");
7216 				return -EINVAL;
7217 			}
7218 			/* check src1 operand */
7219 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7220 			if (err)
7221 				return err;
7222 		} else {
7223 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7224 				verbose(env, "BPF_ALU uses reserved fields\n");
7225 				return -EINVAL;
7226 			}
7227 		}
7228 
7229 		/* check src2 operand */
7230 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7231 		if (err)
7232 			return err;
7233 
7234 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7235 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7236 			verbose(env, "div by zero\n");
7237 			return -EINVAL;
7238 		}
7239 
7240 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7241 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7242 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7243 
7244 			if (insn->imm < 0 || insn->imm >= size) {
7245 				verbose(env, "invalid shift %d\n", insn->imm);
7246 				return -EINVAL;
7247 			}
7248 		}
7249 
7250 		/* check dest operand */
7251 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7252 		if (err)
7253 			return err;
7254 
7255 		return adjust_reg_min_max_vals(env, insn);
7256 	}
7257 
7258 	return 0;
7259 }
7260 
7261 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7262 				     struct bpf_reg_state *dst_reg,
7263 				     enum bpf_reg_type type, int new_range)
7264 {
7265 	struct bpf_reg_state *reg;
7266 	int i;
7267 
7268 	for (i = 0; i < MAX_BPF_REG; i++) {
7269 		reg = &state->regs[i];
7270 		if (reg->type == type && reg->id == dst_reg->id)
7271 			/* keep the maximum range already checked */
7272 			reg->range = max(reg->range, new_range);
7273 	}
7274 
7275 	bpf_for_each_spilled_reg(i, state, reg) {
7276 		if (!reg)
7277 			continue;
7278 		if (reg->type == type && reg->id == dst_reg->id)
7279 			reg->range = max(reg->range, new_range);
7280 	}
7281 }
7282 
7283 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7284 				   struct bpf_reg_state *dst_reg,
7285 				   enum bpf_reg_type type,
7286 				   bool range_right_open)
7287 {
7288 	int new_range, i;
7289 
7290 	if (dst_reg->off < 0 ||
7291 	    (dst_reg->off == 0 && range_right_open))
7292 		/* This doesn't give us any range */
7293 		return;
7294 
7295 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7296 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7297 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7298 		 * than pkt_end, but that's because it's also less than pkt.
7299 		 */
7300 		return;
7301 
7302 	new_range = dst_reg->off;
7303 	if (range_right_open)
7304 		new_range--;
7305 
7306 	/* Examples for register markings:
7307 	 *
7308 	 * pkt_data in dst register:
7309 	 *
7310 	 *   r2 = r3;
7311 	 *   r2 += 8;
7312 	 *   if (r2 > pkt_end) goto <handle exception>
7313 	 *   <access okay>
7314 	 *
7315 	 *   r2 = r3;
7316 	 *   r2 += 8;
7317 	 *   if (r2 < pkt_end) goto <access okay>
7318 	 *   <handle exception>
7319 	 *
7320 	 *   Where:
7321 	 *     r2 == dst_reg, pkt_end == src_reg
7322 	 *     r2=pkt(id=n,off=8,r=0)
7323 	 *     r3=pkt(id=n,off=0,r=0)
7324 	 *
7325 	 * pkt_data in src register:
7326 	 *
7327 	 *   r2 = r3;
7328 	 *   r2 += 8;
7329 	 *   if (pkt_end >= r2) goto <access okay>
7330 	 *   <handle exception>
7331 	 *
7332 	 *   r2 = r3;
7333 	 *   r2 += 8;
7334 	 *   if (pkt_end <= r2) goto <handle exception>
7335 	 *   <access okay>
7336 	 *
7337 	 *   Where:
7338 	 *     pkt_end == dst_reg, r2 == src_reg
7339 	 *     r2=pkt(id=n,off=8,r=0)
7340 	 *     r3=pkt(id=n,off=0,r=0)
7341 	 *
7342 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7343 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7344 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7345 	 * the check.
7346 	 */
7347 
7348 	/* If our ids match, then we must have the same max_value.  And we
7349 	 * don't care about the other reg's fixed offset, since if it's too big
7350 	 * the range won't allow anything.
7351 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7352 	 */
7353 	for (i = 0; i <= vstate->curframe; i++)
7354 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7355 					 new_range);
7356 }
7357 
7358 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7359 {
7360 	struct tnum subreg = tnum_subreg(reg->var_off);
7361 	s32 sval = (s32)val;
7362 
7363 	switch (opcode) {
7364 	case BPF_JEQ:
7365 		if (tnum_is_const(subreg))
7366 			return !!tnum_equals_const(subreg, val);
7367 		break;
7368 	case BPF_JNE:
7369 		if (tnum_is_const(subreg))
7370 			return !tnum_equals_const(subreg, val);
7371 		break;
7372 	case BPF_JSET:
7373 		if ((~subreg.mask & subreg.value) & val)
7374 			return 1;
7375 		if (!((subreg.mask | subreg.value) & val))
7376 			return 0;
7377 		break;
7378 	case BPF_JGT:
7379 		if (reg->u32_min_value > val)
7380 			return 1;
7381 		else if (reg->u32_max_value <= val)
7382 			return 0;
7383 		break;
7384 	case BPF_JSGT:
7385 		if (reg->s32_min_value > sval)
7386 			return 1;
7387 		else if (reg->s32_max_value <= sval)
7388 			return 0;
7389 		break;
7390 	case BPF_JLT:
7391 		if (reg->u32_max_value < val)
7392 			return 1;
7393 		else if (reg->u32_min_value >= val)
7394 			return 0;
7395 		break;
7396 	case BPF_JSLT:
7397 		if (reg->s32_max_value < sval)
7398 			return 1;
7399 		else if (reg->s32_min_value >= sval)
7400 			return 0;
7401 		break;
7402 	case BPF_JGE:
7403 		if (reg->u32_min_value >= val)
7404 			return 1;
7405 		else if (reg->u32_max_value < val)
7406 			return 0;
7407 		break;
7408 	case BPF_JSGE:
7409 		if (reg->s32_min_value >= sval)
7410 			return 1;
7411 		else if (reg->s32_max_value < sval)
7412 			return 0;
7413 		break;
7414 	case BPF_JLE:
7415 		if (reg->u32_max_value <= val)
7416 			return 1;
7417 		else if (reg->u32_min_value > val)
7418 			return 0;
7419 		break;
7420 	case BPF_JSLE:
7421 		if (reg->s32_max_value <= sval)
7422 			return 1;
7423 		else if (reg->s32_min_value > sval)
7424 			return 0;
7425 		break;
7426 	}
7427 
7428 	return -1;
7429 }
7430 
7431 
7432 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7433 {
7434 	s64 sval = (s64)val;
7435 
7436 	switch (opcode) {
7437 	case BPF_JEQ:
7438 		if (tnum_is_const(reg->var_off))
7439 			return !!tnum_equals_const(reg->var_off, val);
7440 		break;
7441 	case BPF_JNE:
7442 		if (tnum_is_const(reg->var_off))
7443 			return !tnum_equals_const(reg->var_off, val);
7444 		break;
7445 	case BPF_JSET:
7446 		if ((~reg->var_off.mask & reg->var_off.value) & val)
7447 			return 1;
7448 		if (!((reg->var_off.mask | reg->var_off.value) & val))
7449 			return 0;
7450 		break;
7451 	case BPF_JGT:
7452 		if (reg->umin_value > val)
7453 			return 1;
7454 		else if (reg->umax_value <= val)
7455 			return 0;
7456 		break;
7457 	case BPF_JSGT:
7458 		if (reg->smin_value > sval)
7459 			return 1;
7460 		else if (reg->smax_value <= sval)
7461 			return 0;
7462 		break;
7463 	case BPF_JLT:
7464 		if (reg->umax_value < val)
7465 			return 1;
7466 		else if (reg->umin_value >= val)
7467 			return 0;
7468 		break;
7469 	case BPF_JSLT:
7470 		if (reg->smax_value < sval)
7471 			return 1;
7472 		else if (reg->smin_value >= sval)
7473 			return 0;
7474 		break;
7475 	case BPF_JGE:
7476 		if (reg->umin_value >= val)
7477 			return 1;
7478 		else if (reg->umax_value < val)
7479 			return 0;
7480 		break;
7481 	case BPF_JSGE:
7482 		if (reg->smin_value >= sval)
7483 			return 1;
7484 		else if (reg->smax_value < sval)
7485 			return 0;
7486 		break;
7487 	case BPF_JLE:
7488 		if (reg->umax_value <= val)
7489 			return 1;
7490 		else if (reg->umin_value > val)
7491 			return 0;
7492 		break;
7493 	case BPF_JSLE:
7494 		if (reg->smax_value <= sval)
7495 			return 1;
7496 		else if (reg->smin_value > sval)
7497 			return 0;
7498 		break;
7499 	}
7500 
7501 	return -1;
7502 }
7503 
7504 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7505  * and return:
7506  *  1 - branch will be taken and "goto target" will be executed
7507  *  0 - branch will not be taken and fall-through to next insn
7508  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7509  *      range [0,10]
7510  */
7511 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7512 			   bool is_jmp32)
7513 {
7514 	if (__is_pointer_value(false, reg)) {
7515 		if (!reg_type_not_null(reg->type))
7516 			return -1;
7517 
7518 		/* If pointer is valid tests against zero will fail so we can
7519 		 * use this to direct branch taken.
7520 		 */
7521 		if (val != 0)
7522 			return -1;
7523 
7524 		switch (opcode) {
7525 		case BPF_JEQ:
7526 			return 0;
7527 		case BPF_JNE:
7528 			return 1;
7529 		default:
7530 			return -1;
7531 		}
7532 	}
7533 
7534 	if (is_jmp32)
7535 		return is_branch32_taken(reg, val, opcode);
7536 	return is_branch64_taken(reg, val, opcode);
7537 }
7538 
7539 static int flip_opcode(u32 opcode)
7540 {
7541 	/* How can we transform "a <op> b" into "b <op> a"? */
7542 	static const u8 opcode_flip[16] = {
7543 		/* these stay the same */
7544 		[BPF_JEQ  >> 4] = BPF_JEQ,
7545 		[BPF_JNE  >> 4] = BPF_JNE,
7546 		[BPF_JSET >> 4] = BPF_JSET,
7547 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7548 		[BPF_JGE  >> 4] = BPF_JLE,
7549 		[BPF_JGT  >> 4] = BPF_JLT,
7550 		[BPF_JLE  >> 4] = BPF_JGE,
7551 		[BPF_JLT  >> 4] = BPF_JGT,
7552 		[BPF_JSGE >> 4] = BPF_JSLE,
7553 		[BPF_JSGT >> 4] = BPF_JSLT,
7554 		[BPF_JSLE >> 4] = BPF_JSGE,
7555 		[BPF_JSLT >> 4] = BPF_JSGT
7556 	};
7557 	return opcode_flip[opcode >> 4];
7558 }
7559 
7560 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7561 				   struct bpf_reg_state *src_reg,
7562 				   u8 opcode)
7563 {
7564 	struct bpf_reg_state *pkt;
7565 
7566 	if (src_reg->type == PTR_TO_PACKET_END) {
7567 		pkt = dst_reg;
7568 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7569 		pkt = src_reg;
7570 		opcode = flip_opcode(opcode);
7571 	} else {
7572 		return -1;
7573 	}
7574 
7575 	if (pkt->range >= 0)
7576 		return -1;
7577 
7578 	switch (opcode) {
7579 	case BPF_JLE:
7580 		/* pkt <= pkt_end */
7581 		fallthrough;
7582 	case BPF_JGT:
7583 		/* pkt > pkt_end */
7584 		if (pkt->range == BEYOND_PKT_END)
7585 			/* pkt has at last one extra byte beyond pkt_end */
7586 			return opcode == BPF_JGT;
7587 		break;
7588 	case BPF_JLT:
7589 		/* pkt < pkt_end */
7590 		fallthrough;
7591 	case BPF_JGE:
7592 		/* pkt >= pkt_end */
7593 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7594 			return opcode == BPF_JGE;
7595 		break;
7596 	}
7597 	return -1;
7598 }
7599 
7600 /* Adjusts the register min/max values in the case that the dst_reg is the
7601  * variable register that we are working on, and src_reg is a constant or we're
7602  * simply doing a BPF_K check.
7603  * In JEQ/JNE cases we also adjust the var_off values.
7604  */
7605 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7606 			    struct bpf_reg_state *false_reg,
7607 			    u64 val, u32 val32,
7608 			    u8 opcode, bool is_jmp32)
7609 {
7610 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7611 	struct tnum false_64off = false_reg->var_off;
7612 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7613 	struct tnum true_64off = true_reg->var_off;
7614 	s64 sval = (s64)val;
7615 	s32 sval32 = (s32)val32;
7616 
7617 	/* If the dst_reg is a pointer, we can't learn anything about its
7618 	 * variable offset from the compare (unless src_reg were a pointer into
7619 	 * the same object, but we don't bother with that.
7620 	 * Since false_reg and true_reg have the same type by construction, we
7621 	 * only need to check one of them for pointerness.
7622 	 */
7623 	if (__is_pointer_value(false, false_reg))
7624 		return;
7625 
7626 	switch (opcode) {
7627 	case BPF_JEQ:
7628 	case BPF_JNE:
7629 	{
7630 		struct bpf_reg_state *reg =
7631 			opcode == BPF_JEQ ? true_reg : false_reg;
7632 
7633 		/* JEQ/JNE comparison doesn't change the register equivalence.
7634 		 * r1 = r2;
7635 		 * if (r1 == 42) goto label;
7636 		 * ...
7637 		 * label: // here both r1 and r2 are known to be 42.
7638 		 *
7639 		 * Hence when marking register as known preserve it's ID.
7640 		 */
7641 		if (is_jmp32)
7642 			__mark_reg32_known(reg, val32);
7643 		else
7644 			___mark_reg_known(reg, val);
7645 		break;
7646 	}
7647 	case BPF_JSET:
7648 		if (is_jmp32) {
7649 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7650 			if (is_power_of_2(val32))
7651 				true_32off = tnum_or(true_32off,
7652 						     tnum_const(val32));
7653 		} else {
7654 			false_64off = tnum_and(false_64off, tnum_const(~val));
7655 			if (is_power_of_2(val))
7656 				true_64off = tnum_or(true_64off,
7657 						     tnum_const(val));
7658 		}
7659 		break;
7660 	case BPF_JGE:
7661 	case BPF_JGT:
7662 	{
7663 		if (is_jmp32) {
7664 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7665 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7666 
7667 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7668 						       false_umax);
7669 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7670 						      true_umin);
7671 		} else {
7672 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7673 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7674 
7675 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7676 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7677 		}
7678 		break;
7679 	}
7680 	case BPF_JSGE:
7681 	case BPF_JSGT:
7682 	{
7683 		if (is_jmp32) {
7684 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7685 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7686 
7687 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7688 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7689 		} else {
7690 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7691 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7692 
7693 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7694 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7695 		}
7696 		break;
7697 	}
7698 	case BPF_JLE:
7699 	case BPF_JLT:
7700 	{
7701 		if (is_jmp32) {
7702 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7703 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7704 
7705 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7706 						       false_umin);
7707 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7708 						      true_umax);
7709 		} else {
7710 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7711 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7712 
7713 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7714 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7715 		}
7716 		break;
7717 	}
7718 	case BPF_JSLE:
7719 	case BPF_JSLT:
7720 	{
7721 		if (is_jmp32) {
7722 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7723 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7724 
7725 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7726 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7727 		} else {
7728 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7729 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7730 
7731 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7732 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7733 		}
7734 		break;
7735 	}
7736 	default:
7737 		return;
7738 	}
7739 
7740 	if (is_jmp32) {
7741 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7742 					     tnum_subreg(false_32off));
7743 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7744 					    tnum_subreg(true_32off));
7745 		__reg_combine_32_into_64(false_reg);
7746 		__reg_combine_32_into_64(true_reg);
7747 	} else {
7748 		false_reg->var_off = false_64off;
7749 		true_reg->var_off = true_64off;
7750 		__reg_combine_64_into_32(false_reg);
7751 		__reg_combine_64_into_32(true_reg);
7752 	}
7753 }
7754 
7755 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7756  * the variable reg.
7757  */
7758 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7759 				struct bpf_reg_state *false_reg,
7760 				u64 val, u32 val32,
7761 				u8 opcode, bool is_jmp32)
7762 {
7763 	opcode = flip_opcode(opcode);
7764 	/* This uses zero as "not present in table"; luckily the zero opcode,
7765 	 * BPF_JA, can't get here.
7766 	 */
7767 	if (opcode)
7768 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7769 }
7770 
7771 /* Regs are known to be equal, so intersect their min/max/var_off */
7772 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7773 				  struct bpf_reg_state *dst_reg)
7774 {
7775 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7776 							dst_reg->umin_value);
7777 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7778 							dst_reg->umax_value);
7779 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7780 							dst_reg->smin_value);
7781 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7782 							dst_reg->smax_value);
7783 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7784 							     dst_reg->var_off);
7785 	/* We might have learned new bounds from the var_off. */
7786 	__update_reg_bounds(src_reg);
7787 	__update_reg_bounds(dst_reg);
7788 	/* We might have learned something about the sign bit. */
7789 	__reg_deduce_bounds(src_reg);
7790 	__reg_deduce_bounds(dst_reg);
7791 	/* We might have learned some bits from the bounds. */
7792 	__reg_bound_offset(src_reg);
7793 	__reg_bound_offset(dst_reg);
7794 	/* Intersecting with the old var_off might have improved our bounds
7795 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7796 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7797 	 */
7798 	__update_reg_bounds(src_reg);
7799 	__update_reg_bounds(dst_reg);
7800 }
7801 
7802 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7803 				struct bpf_reg_state *true_dst,
7804 				struct bpf_reg_state *false_src,
7805 				struct bpf_reg_state *false_dst,
7806 				u8 opcode)
7807 {
7808 	switch (opcode) {
7809 	case BPF_JEQ:
7810 		__reg_combine_min_max(true_src, true_dst);
7811 		break;
7812 	case BPF_JNE:
7813 		__reg_combine_min_max(false_src, false_dst);
7814 		break;
7815 	}
7816 }
7817 
7818 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7819 				 struct bpf_reg_state *reg, u32 id,
7820 				 bool is_null)
7821 {
7822 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7823 	    !WARN_ON_ONCE(!reg->id)) {
7824 		/* Old offset (both fixed and variable parts) should
7825 		 * have been known-zero, because we don't allow pointer
7826 		 * arithmetic on pointers that might be NULL.
7827 		 */
7828 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7829 				 !tnum_equals_const(reg->var_off, 0) ||
7830 				 reg->off)) {
7831 			__mark_reg_known_zero(reg);
7832 			reg->off = 0;
7833 		}
7834 		if (is_null) {
7835 			reg->type = SCALAR_VALUE;
7836 			/* We don't need id and ref_obj_id from this point
7837 			 * onwards anymore, thus we should better reset it,
7838 			 * so that state pruning has chances to take effect.
7839 			 */
7840 			reg->id = 0;
7841 			reg->ref_obj_id = 0;
7842 
7843 			return;
7844 		}
7845 
7846 		mark_ptr_not_null_reg(reg);
7847 
7848 		if (!reg_may_point_to_spin_lock(reg)) {
7849 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7850 			 * in release_reg_references().
7851 			 *
7852 			 * reg->id is still used by spin_lock ptr. Other
7853 			 * than spin_lock ptr type, reg->id can be reset.
7854 			 */
7855 			reg->id = 0;
7856 		}
7857 	}
7858 }
7859 
7860 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7861 				    bool is_null)
7862 {
7863 	struct bpf_reg_state *reg;
7864 	int i;
7865 
7866 	for (i = 0; i < MAX_BPF_REG; i++)
7867 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7868 
7869 	bpf_for_each_spilled_reg(i, state, reg) {
7870 		if (!reg)
7871 			continue;
7872 		mark_ptr_or_null_reg(state, reg, id, is_null);
7873 	}
7874 }
7875 
7876 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7877  * be folded together at some point.
7878  */
7879 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7880 				  bool is_null)
7881 {
7882 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7883 	struct bpf_reg_state *regs = state->regs;
7884 	u32 ref_obj_id = regs[regno].ref_obj_id;
7885 	u32 id = regs[regno].id;
7886 	int i;
7887 
7888 	if (ref_obj_id && ref_obj_id == id && is_null)
7889 		/* regs[regno] is in the " == NULL" branch.
7890 		 * No one could have freed the reference state before
7891 		 * doing the NULL check.
7892 		 */
7893 		WARN_ON_ONCE(release_reference_state(state, id));
7894 
7895 	for (i = 0; i <= vstate->curframe; i++)
7896 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7897 }
7898 
7899 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7900 				   struct bpf_reg_state *dst_reg,
7901 				   struct bpf_reg_state *src_reg,
7902 				   struct bpf_verifier_state *this_branch,
7903 				   struct bpf_verifier_state *other_branch)
7904 {
7905 	if (BPF_SRC(insn->code) != BPF_X)
7906 		return false;
7907 
7908 	/* Pointers are always 64-bit. */
7909 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7910 		return false;
7911 
7912 	switch (BPF_OP(insn->code)) {
7913 	case BPF_JGT:
7914 		if ((dst_reg->type == PTR_TO_PACKET &&
7915 		     src_reg->type == PTR_TO_PACKET_END) ||
7916 		    (dst_reg->type == PTR_TO_PACKET_META &&
7917 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7918 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7919 			find_good_pkt_pointers(this_branch, dst_reg,
7920 					       dst_reg->type, false);
7921 			mark_pkt_end(other_branch, insn->dst_reg, true);
7922 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7923 			    src_reg->type == PTR_TO_PACKET) ||
7924 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7925 			    src_reg->type == PTR_TO_PACKET_META)) {
7926 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7927 			find_good_pkt_pointers(other_branch, src_reg,
7928 					       src_reg->type, true);
7929 			mark_pkt_end(this_branch, insn->src_reg, false);
7930 		} else {
7931 			return false;
7932 		}
7933 		break;
7934 	case BPF_JLT:
7935 		if ((dst_reg->type == PTR_TO_PACKET &&
7936 		     src_reg->type == PTR_TO_PACKET_END) ||
7937 		    (dst_reg->type == PTR_TO_PACKET_META &&
7938 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7939 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7940 			find_good_pkt_pointers(other_branch, dst_reg,
7941 					       dst_reg->type, true);
7942 			mark_pkt_end(this_branch, insn->dst_reg, false);
7943 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7944 			    src_reg->type == PTR_TO_PACKET) ||
7945 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7946 			    src_reg->type == PTR_TO_PACKET_META)) {
7947 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7948 			find_good_pkt_pointers(this_branch, src_reg,
7949 					       src_reg->type, false);
7950 			mark_pkt_end(other_branch, insn->src_reg, true);
7951 		} else {
7952 			return false;
7953 		}
7954 		break;
7955 	case BPF_JGE:
7956 		if ((dst_reg->type == PTR_TO_PACKET &&
7957 		     src_reg->type == PTR_TO_PACKET_END) ||
7958 		    (dst_reg->type == PTR_TO_PACKET_META &&
7959 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7960 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7961 			find_good_pkt_pointers(this_branch, dst_reg,
7962 					       dst_reg->type, true);
7963 			mark_pkt_end(other_branch, insn->dst_reg, false);
7964 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7965 			    src_reg->type == PTR_TO_PACKET) ||
7966 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7967 			    src_reg->type == PTR_TO_PACKET_META)) {
7968 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7969 			find_good_pkt_pointers(other_branch, src_reg,
7970 					       src_reg->type, false);
7971 			mark_pkt_end(this_branch, insn->src_reg, true);
7972 		} else {
7973 			return false;
7974 		}
7975 		break;
7976 	case BPF_JLE:
7977 		if ((dst_reg->type == PTR_TO_PACKET &&
7978 		     src_reg->type == PTR_TO_PACKET_END) ||
7979 		    (dst_reg->type == PTR_TO_PACKET_META &&
7980 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7981 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7982 			find_good_pkt_pointers(other_branch, dst_reg,
7983 					       dst_reg->type, false);
7984 			mark_pkt_end(this_branch, insn->dst_reg, true);
7985 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7986 			    src_reg->type == PTR_TO_PACKET) ||
7987 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7988 			    src_reg->type == PTR_TO_PACKET_META)) {
7989 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7990 			find_good_pkt_pointers(this_branch, src_reg,
7991 					       src_reg->type, true);
7992 			mark_pkt_end(other_branch, insn->src_reg, false);
7993 		} else {
7994 			return false;
7995 		}
7996 		break;
7997 	default:
7998 		return false;
7999 	}
8000 
8001 	return true;
8002 }
8003 
8004 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8005 			       struct bpf_reg_state *known_reg)
8006 {
8007 	struct bpf_func_state *state;
8008 	struct bpf_reg_state *reg;
8009 	int i, j;
8010 
8011 	for (i = 0; i <= vstate->curframe; i++) {
8012 		state = vstate->frame[i];
8013 		for (j = 0; j < MAX_BPF_REG; j++) {
8014 			reg = &state->regs[j];
8015 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8016 				*reg = *known_reg;
8017 		}
8018 
8019 		bpf_for_each_spilled_reg(j, state, reg) {
8020 			if (!reg)
8021 				continue;
8022 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8023 				*reg = *known_reg;
8024 		}
8025 	}
8026 }
8027 
8028 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8029 			     struct bpf_insn *insn, int *insn_idx)
8030 {
8031 	struct bpf_verifier_state *this_branch = env->cur_state;
8032 	struct bpf_verifier_state *other_branch;
8033 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8034 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8035 	u8 opcode = BPF_OP(insn->code);
8036 	bool is_jmp32;
8037 	int pred = -1;
8038 	int err;
8039 
8040 	/* Only conditional jumps are expected to reach here. */
8041 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8042 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8043 		return -EINVAL;
8044 	}
8045 
8046 	if (BPF_SRC(insn->code) == BPF_X) {
8047 		if (insn->imm != 0) {
8048 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8049 			return -EINVAL;
8050 		}
8051 
8052 		/* check src1 operand */
8053 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8054 		if (err)
8055 			return err;
8056 
8057 		if (is_pointer_value(env, insn->src_reg)) {
8058 			verbose(env, "R%d pointer comparison prohibited\n",
8059 				insn->src_reg);
8060 			return -EACCES;
8061 		}
8062 		src_reg = &regs[insn->src_reg];
8063 	} else {
8064 		if (insn->src_reg != BPF_REG_0) {
8065 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8066 			return -EINVAL;
8067 		}
8068 	}
8069 
8070 	/* check src2 operand */
8071 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8072 	if (err)
8073 		return err;
8074 
8075 	dst_reg = &regs[insn->dst_reg];
8076 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8077 
8078 	if (BPF_SRC(insn->code) == BPF_K) {
8079 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8080 	} else if (src_reg->type == SCALAR_VALUE &&
8081 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8082 		pred = is_branch_taken(dst_reg,
8083 				       tnum_subreg(src_reg->var_off).value,
8084 				       opcode,
8085 				       is_jmp32);
8086 	} else if (src_reg->type == SCALAR_VALUE &&
8087 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8088 		pred = is_branch_taken(dst_reg,
8089 				       src_reg->var_off.value,
8090 				       opcode,
8091 				       is_jmp32);
8092 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8093 		   reg_is_pkt_pointer_any(src_reg) &&
8094 		   !is_jmp32) {
8095 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8096 	}
8097 
8098 	if (pred >= 0) {
8099 		/* If we get here with a dst_reg pointer type it is because
8100 		 * above is_branch_taken() special cased the 0 comparison.
8101 		 */
8102 		if (!__is_pointer_value(false, dst_reg))
8103 			err = mark_chain_precision(env, insn->dst_reg);
8104 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8105 		    !__is_pointer_value(false, src_reg))
8106 			err = mark_chain_precision(env, insn->src_reg);
8107 		if (err)
8108 			return err;
8109 	}
8110 	if (pred == 1) {
8111 		/* only follow the goto, ignore fall-through */
8112 		*insn_idx += insn->off;
8113 		return 0;
8114 	} else if (pred == 0) {
8115 		/* only follow fall-through branch, since
8116 		 * that's where the program will go
8117 		 */
8118 		return 0;
8119 	}
8120 
8121 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8122 				  false);
8123 	if (!other_branch)
8124 		return -EFAULT;
8125 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8126 
8127 	/* detect if we are comparing against a constant value so we can adjust
8128 	 * our min/max values for our dst register.
8129 	 * this is only legit if both are scalars (or pointers to the same
8130 	 * object, I suppose, but we don't support that right now), because
8131 	 * otherwise the different base pointers mean the offsets aren't
8132 	 * comparable.
8133 	 */
8134 	if (BPF_SRC(insn->code) == BPF_X) {
8135 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8136 
8137 		if (dst_reg->type == SCALAR_VALUE &&
8138 		    src_reg->type == SCALAR_VALUE) {
8139 			if (tnum_is_const(src_reg->var_off) ||
8140 			    (is_jmp32 &&
8141 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8142 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8143 						dst_reg,
8144 						src_reg->var_off.value,
8145 						tnum_subreg(src_reg->var_off).value,
8146 						opcode, is_jmp32);
8147 			else if (tnum_is_const(dst_reg->var_off) ||
8148 				 (is_jmp32 &&
8149 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8150 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8151 						    src_reg,
8152 						    dst_reg->var_off.value,
8153 						    tnum_subreg(dst_reg->var_off).value,
8154 						    opcode, is_jmp32);
8155 			else if (!is_jmp32 &&
8156 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8157 				/* Comparing for equality, we can combine knowledge */
8158 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8159 						    &other_branch_regs[insn->dst_reg],
8160 						    src_reg, dst_reg, opcode);
8161 			if (src_reg->id &&
8162 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8163 				find_equal_scalars(this_branch, src_reg);
8164 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8165 			}
8166 
8167 		}
8168 	} else if (dst_reg->type == SCALAR_VALUE) {
8169 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8170 					dst_reg, insn->imm, (u32)insn->imm,
8171 					opcode, is_jmp32);
8172 	}
8173 
8174 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8175 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8176 		find_equal_scalars(this_branch, dst_reg);
8177 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8178 	}
8179 
8180 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8181 	 * NOTE: these optimizations below are related with pointer comparison
8182 	 *       which will never be JMP32.
8183 	 */
8184 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8185 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8186 	    reg_type_may_be_null(dst_reg->type)) {
8187 		/* Mark all identical registers in each branch as either
8188 		 * safe or unknown depending R == 0 or R != 0 conditional.
8189 		 */
8190 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8191 				      opcode == BPF_JNE);
8192 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8193 				      opcode == BPF_JEQ);
8194 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8195 					   this_branch, other_branch) &&
8196 		   is_pointer_value(env, insn->dst_reg)) {
8197 		verbose(env, "R%d pointer comparison prohibited\n",
8198 			insn->dst_reg);
8199 		return -EACCES;
8200 	}
8201 	if (env->log.level & BPF_LOG_LEVEL)
8202 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8203 	return 0;
8204 }
8205 
8206 /* verify BPF_LD_IMM64 instruction */
8207 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8208 {
8209 	struct bpf_insn_aux_data *aux = cur_aux(env);
8210 	struct bpf_reg_state *regs = cur_regs(env);
8211 	struct bpf_reg_state *dst_reg;
8212 	struct bpf_map *map;
8213 	int err;
8214 
8215 	if (BPF_SIZE(insn->code) != BPF_DW) {
8216 		verbose(env, "invalid BPF_LD_IMM insn\n");
8217 		return -EINVAL;
8218 	}
8219 	if (insn->off != 0) {
8220 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8221 		return -EINVAL;
8222 	}
8223 
8224 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8225 	if (err)
8226 		return err;
8227 
8228 	dst_reg = &regs[insn->dst_reg];
8229 	if (insn->src_reg == 0) {
8230 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8231 
8232 		dst_reg->type = SCALAR_VALUE;
8233 		__mark_reg_known(&regs[insn->dst_reg], imm);
8234 		return 0;
8235 	}
8236 
8237 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8238 		mark_reg_known_zero(env, regs, insn->dst_reg);
8239 
8240 		dst_reg->type = aux->btf_var.reg_type;
8241 		switch (dst_reg->type) {
8242 		case PTR_TO_MEM:
8243 			dst_reg->mem_size = aux->btf_var.mem_size;
8244 			break;
8245 		case PTR_TO_BTF_ID:
8246 		case PTR_TO_PERCPU_BTF_ID:
8247 			dst_reg->btf = aux->btf_var.btf;
8248 			dst_reg->btf_id = aux->btf_var.btf_id;
8249 			break;
8250 		default:
8251 			verbose(env, "bpf verifier is misconfigured\n");
8252 			return -EFAULT;
8253 		}
8254 		return 0;
8255 	}
8256 
8257 	map = env->used_maps[aux->map_index];
8258 	mark_reg_known_zero(env, regs, insn->dst_reg);
8259 	dst_reg->map_ptr = map;
8260 
8261 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8262 		dst_reg->type = PTR_TO_MAP_VALUE;
8263 		dst_reg->off = aux->map_off;
8264 		if (map_value_has_spin_lock(map))
8265 			dst_reg->id = ++env->id_gen;
8266 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8267 		dst_reg->type = CONST_PTR_TO_MAP;
8268 	} else {
8269 		verbose(env, "bpf verifier is misconfigured\n");
8270 		return -EINVAL;
8271 	}
8272 
8273 	return 0;
8274 }
8275 
8276 static bool may_access_skb(enum bpf_prog_type type)
8277 {
8278 	switch (type) {
8279 	case BPF_PROG_TYPE_SOCKET_FILTER:
8280 	case BPF_PROG_TYPE_SCHED_CLS:
8281 	case BPF_PROG_TYPE_SCHED_ACT:
8282 		return true;
8283 	default:
8284 		return false;
8285 	}
8286 }
8287 
8288 /* verify safety of LD_ABS|LD_IND instructions:
8289  * - they can only appear in the programs where ctx == skb
8290  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8291  *   preserve R6-R9, and store return value into R0
8292  *
8293  * Implicit input:
8294  *   ctx == skb == R6 == CTX
8295  *
8296  * Explicit input:
8297  *   SRC == any register
8298  *   IMM == 32-bit immediate
8299  *
8300  * Output:
8301  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8302  */
8303 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8304 {
8305 	struct bpf_reg_state *regs = cur_regs(env);
8306 	static const int ctx_reg = BPF_REG_6;
8307 	u8 mode = BPF_MODE(insn->code);
8308 	int i, err;
8309 
8310 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8311 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8312 		return -EINVAL;
8313 	}
8314 
8315 	if (!env->ops->gen_ld_abs) {
8316 		verbose(env, "bpf verifier is misconfigured\n");
8317 		return -EINVAL;
8318 	}
8319 
8320 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8321 	    BPF_SIZE(insn->code) == BPF_DW ||
8322 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8323 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8324 		return -EINVAL;
8325 	}
8326 
8327 	/* check whether implicit source operand (register R6) is readable */
8328 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8329 	if (err)
8330 		return err;
8331 
8332 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8333 	 * gen_ld_abs() may terminate the program at runtime, leading to
8334 	 * reference leak.
8335 	 */
8336 	err = check_reference_leak(env);
8337 	if (err) {
8338 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8339 		return err;
8340 	}
8341 
8342 	if (env->cur_state->active_spin_lock) {
8343 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8344 		return -EINVAL;
8345 	}
8346 
8347 	if (regs[ctx_reg].type != PTR_TO_CTX) {
8348 		verbose(env,
8349 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8350 		return -EINVAL;
8351 	}
8352 
8353 	if (mode == BPF_IND) {
8354 		/* check explicit source operand */
8355 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8356 		if (err)
8357 			return err;
8358 	}
8359 
8360 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8361 	if (err < 0)
8362 		return err;
8363 
8364 	/* reset caller saved regs to unreadable */
8365 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8366 		mark_reg_not_init(env, regs, caller_saved[i]);
8367 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8368 	}
8369 
8370 	/* mark destination R0 register as readable, since it contains
8371 	 * the value fetched from the packet.
8372 	 * Already marked as written above.
8373 	 */
8374 	mark_reg_unknown(env, regs, BPF_REG_0);
8375 	/* ld_abs load up to 32-bit skb data. */
8376 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8377 	return 0;
8378 }
8379 
8380 static int check_return_code(struct bpf_verifier_env *env)
8381 {
8382 	struct tnum enforce_attach_type_range = tnum_unknown;
8383 	const struct bpf_prog *prog = env->prog;
8384 	struct bpf_reg_state *reg;
8385 	struct tnum range = tnum_range(0, 1);
8386 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8387 	int err;
8388 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
8389 
8390 	/* LSM and struct_ops func-ptr's return type could be "void" */
8391 	if (!is_subprog &&
8392 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8393 	     prog_type == BPF_PROG_TYPE_LSM) &&
8394 	    !prog->aux->attach_func_proto->type)
8395 		return 0;
8396 
8397 	/* eBPF calling convetion is such that R0 is used
8398 	 * to return the value from eBPF program.
8399 	 * Make sure that it's readable at this time
8400 	 * of bpf_exit, which means that program wrote
8401 	 * something into it earlier
8402 	 */
8403 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8404 	if (err)
8405 		return err;
8406 
8407 	if (is_pointer_value(env, BPF_REG_0)) {
8408 		verbose(env, "R0 leaks addr as return value\n");
8409 		return -EACCES;
8410 	}
8411 
8412 	reg = cur_regs(env) + BPF_REG_0;
8413 	if (is_subprog) {
8414 		if (reg->type != SCALAR_VALUE) {
8415 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8416 				reg_type_str[reg->type]);
8417 			return -EINVAL;
8418 		}
8419 		return 0;
8420 	}
8421 
8422 	switch (prog_type) {
8423 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8424 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8425 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8426 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8427 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8428 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8429 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8430 			range = tnum_range(1, 1);
8431 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
8432 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
8433 			range = tnum_range(0, 3);
8434 		break;
8435 	case BPF_PROG_TYPE_CGROUP_SKB:
8436 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8437 			range = tnum_range(0, 3);
8438 			enforce_attach_type_range = tnum_range(2, 3);
8439 		}
8440 		break;
8441 	case BPF_PROG_TYPE_CGROUP_SOCK:
8442 	case BPF_PROG_TYPE_SOCK_OPS:
8443 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8444 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8445 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8446 		break;
8447 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8448 		if (!env->prog->aux->attach_btf_id)
8449 			return 0;
8450 		range = tnum_const(0);
8451 		break;
8452 	case BPF_PROG_TYPE_TRACING:
8453 		switch (env->prog->expected_attach_type) {
8454 		case BPF_TRACE_FENTRY:
8455 		case BPF_TRACE_FEXIT:
8456 			range = tnum_const(0);
8457 			break;
8458 		case BPF_TRACE_RAW_TP:
8459 		case BPF_MODIFY_RETURN:
8460 			return 0;
8461 		case BPF_TRACE_ITER:
8462 			break;
8463 		default:
8464 			return -ENOTSUPP;
8465 		}
8466 		break;
8467 	case BPF_PROG_TYPE_SK_LOOKUP:
8468 		range = tnum_range(SK_DROP, SK_PASS);
8469 		break;
8470 	case BPF_PROG_TYPE_EXT:
8471 		/* freplace program can return anything as its return value
8472 		 * depends on the to-be-replaced kernel func or bpf program.
8473 		 */
8474 	default:
8475 		return 0;
8476 	}
8477 
8478 	if (reg->type != SCALAR_VALUE) {
8479 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8480 			reg_type_str[reg->type]);
8481 		return -EINVAL;
8482 	}
8483 
8484 	if (!tnum_in(range, reg->var_off)) {
8485 		char tn_buf[48];
8486 
8487 		verbose(env, "At program exit the register R0 ");
8488 		if (!tnum_is_unknown(reg->var_off)) {
8489 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8490 			verbose(env, "has value %s", tn_buf);
8491 		} else {
8492 			verbose(env, "has unknown scalar value");
8493 		}
8494 		tnum_strn(tn_buf, sizeof(tn_buf), range);
8495 		verbose(env, " should have been in %s\n", tn_buf);
8496 		return -EINVAL;
8497 	}
8498 
8499 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8500 	    tnum_in(enforce_attach_type_range, reg->var_off))
8501 		env->prog->enforce_expected_attach_type = 1;
8502 	return 0;
8503 }
8504 
8505 /* non-recursive DFS pseudo code
8506  * 1  procedure DFS-iterative(G,v):
8507  * 2      label v as discovered
8508  * 3      let S be a stack
8509  * 4      S.push(v)
8510  * 5      while S is not empty
8511  * 6            t <- S.pop()
8512  * 7            if t is what we're looking for:
8513  * 8                return t
8514  * 9            for all edges e in G.adjacentEdges(t) do
8515  * 10               if edge e is already labelled
8516  * 11                   continue with the next edge
8517  * 12               w <- G.adjacentVertex(t,e)
8518  * 13               if vertex w is not discovered and not explored
8519  * 14                   label e as tree-edge
8520  * 15                   label w as discovered
8521  * 16                   S.push(w)
8522  * 17                   continue at 5
8523  * 18               else if vertex w is discovered
8524  * 19                   label e as back-edge
8525  * 20               else
8526  * 21                   // vertex w is explored
8527  * 22                   label e as forward- or cross-edge
8528  * 23           label t as explored
8529  * 24           S.pop()
8530  *
8531  * convention:
8532  * 0x10 - discovered
8533  * 0x11 - discovered and fall-through edge labelled
8534  * 0x12 - discovered and fall-through and branch edges labelled
8535  * 0x20 - explored
8536  */
8537 
8538 enum {
8539 	DISCOVERED = 0x10,
8540 	EXPLORED = 0x20,
8541 	FALLTHROUGH = 1,
8542 	BRANCH = 2,
8543 };
8544 
8545 static u32 state_htab_size(struct bpf_verifier_env *env)
8546 {
8547 	return env->prog->len;
8548 }
8549 
8550 static struct bpf_verifier_state_list **explored_state(
8551 					struct bpf_verifier_env *env,
8552 					int idx)
8553 {
8554 	struct bpf_verifier_state *cur = env->cur_state;
8555 	struct bpf_func_state *state = cur->frame[cur->curframe];
8556 
8557 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8558 }
8559 
8560 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8561 {
8562 	env->insn_aux_data[idx].prune_point = true;
8563 }
8564 
8565 enum {
8566 	DONE_EXPLORING = 0,
8567 	KEEP_EXPLORING = 1,
8568 };
8569 
8570 /* t, w, e - match pseudo-code above:
8571  * t - index of current instruction
8572  * w - next instruction
8573  * e - edge
8574  */
8575 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8576 		     bool loop_ok)
8577 {
8578 	int *insn_stack = env->cfg.insn_stack;
8579 	int *insn_state = env->cfg.insn_state;
8580 
8581 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8582 		return DONE_EXPLORING;
8583 
8584 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8585 		return DONE_EXPLORING;
8586 
8587 	if (w < 0 || w >= env->prog->len) {
8588 		verbose_linfo(env, t, "%d: ", t);
8589 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8590 		return -EINVAL;
8591 	}
8592 
8593 	if (e == BRANCH)
8594 		/* mark branch target for state pruning */
8595 		init_explored_state(env, w);
8596 
8597 	if (insn_state[w] == 0) {
8598 		/* tree-edge */
8599 		insn_state[t] = DISCOVERED | e;
8600 		insn_state[w] = DISCOVERED;
8601 		if (env->cfg.cur_stack >= env->prog->len)
8602 			return -E2BIG;
8603 		insn_stack[env->cfg.cur_stack++] = w;
8604 		return KEEP_EXPLORING;
8605 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8606 		if (loop_ok && env->bpf_capable)
8607 			return DONE_EXPLORING;
8608 		verbose_linfo(env, t, "%d: ", t);
8609 		verbose_linfo(env, w, "%d: ", w);
8610 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8611 		return -EINVAL;
8612 	} else if (insn_state[w] == EXPLORED) {
8613 		/* forward- or cross-edge */
8614 		insn_state[t] = DISCOVERED | e;
8615 	} else {
8616 		verbose(env, "insn state internal bug\n");
8617 		return -EFAULT;
8618 	}
8619 	return DONE_EXPLORING;
8620 }
8621 
8622 /* Visits the instruction at index t and returns one of the following:
8623  *  < 0 - an error occurred
8624  *  DONE_EXPLORING - the instruction was fully explored
8625  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8626  */
8627 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8628 {
8629 	struct bpf_insn *insns = env->prog->insnsi;
8630 	int ret;
8631 
8632 	/* All non-branch instructions have a single fall-through edge. */
8633 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8634 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8635 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8636 
8637 	switch (BPF_OP(insns[t].code)) {
8638 	case BPF_EXIT:
8639 		return DONE_EXPLORING;
8640 
8641 	case BPF_CALL:
8642 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8643 		if (ret)
8644 			return ret;
8645 
8646 		if (t + 1 < insn_cnt)
8647 			init_explored_state(env, t + 1);
8648 		if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8649 			init_explored_state(env, t);
8650 			ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8651 					env, false);
8652 		}
8653 		return ret;
8654 
8655 	case BPF_JA:
8656 		if (BPF_SRC(insns[t].code) != BPF_K)
8657 			return -EINVAL;
8658 
8659 		/* unconditional jump with single edge */
8660 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8661 				true);
8662 		if (ret)
8663 			return ret;
8664 
8665 		/* unconditional jmp is not a good pruning point,
8666 		 * but it's marked, since backtracking needs
8667 		 * to record jmp history in is_state_visited().
8668 		 */
8669 		init_explored_state(env, t + insns[t].off + 1);
8670 		/* tell verifier to check for equivalent states
8671 		 * after every call and jump
8672 		 */
8673 		if (t + 1 < insn_cnt)
8674 			init_explored_state(env, t + 1);
8675 
8676 		return ret;
8677 
8678 	default:
8679 		/* conditional jump with two edges */
8680 		init_explored_state(env, t);
8681 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8682 		if (ret)
8683 			return ret;
8684 
8685 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8686 	}
8687 }
8688 
8689 /* non-recursive depth-first-search to detect loops in BPF program
8690  * loop == back-edge in directed graph
8691  */
8692 static int check_cfg(struct bpf_verifier_env *env)
8693 {
8694 	int insn_cnt = env->prog->len;
8695 	int *insn_stack, *insn_state;
8696 	int ret = 0;
8697 	int i;
8698 
8699 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8700 	if (!insn_state)
8701 		return -ENOMEM;
8702 
8703 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8704 	if (!insn_stack) {
8705 		kvfree(insn_state);
8706 		return -ENOMEM;
8707 	}
8708 
8709 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8710 	insn_stack[0] = 0; /* 0 is the first instruction */
8711 	env->cfg.cur_stack = 1;
8712 
8713 	while (env->cfg.cur_stack > 0) {
8714 		int t = insn_stack[env->cfg.cur_stack - 1];
8715 
8716 		ret = visit_insn(t, insn_cnt, env);
8717 		switch (ret) {
8718 		case DONE_EXPLORING:
8719 			insn_state[t] = EXPLORED;
8720 			env->cfg.cur_stack--;
8721 			break;
8722 		case KEEP_EXPLORING:
8723 			break;
8724 		default:
8725 			if (ret > 0) {
8726 				verbose(env, "visit_insn internal bug\n");
8727 				ret = -EFAULT;
8728 			}
8729 			goto err_free;
8730 		}
8731 	}
8732 
8733 	if (env->cfg.cur_stack < 0) {
8734 		verbose(env, "pop stack internal bug\n");
8735 		ret = -EFAULT;
8736 		goto err_free;
8737 	}
8738 
8739 	for (i = 0; i < insn_cnt; i++) {
8740 		if (insn_state[i] != EXPLORED) {
8741 			verbose(env, "unreachable insn %d\n", i);
8742 			ret = -EINVAL;
8743 			goto err_free;
8744 		}
8745 	}
8746 	ret = 0; /* cfg looks good */
8747 
8748 err_free:
8749 	kvfree(insn_state);
8750 	kvfree(insn_stack);
8751 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8752 	return ret;
8753 }
8754 
8755 static int check_abnormal_return(struct bpf_verifier_env *env)
8756 {
8757 	int i;
8758 
8759 	for (i = 1; i < env->subprog_cnt; i++) {
8760 		if (env->subprog_info[i].has_ld_abs) {
8761 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8762 			return -EINVAL;
8763 		}
8764 		if (env->subprog_info[i].has_tail_call) {
8765 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8766 			return -EINVAL;
8767 		}
8768 	}
8769 	return 0;
8770 }
8771 
8772 /* The minimum supported BTF func info size */
8773 #define MIN_BPF_FUNCINFO_SIZE	8
8774 #define MAX_FUNCINFO_REC_SIZE	252
8775 
8776 static int check_btf_func(struct bpf_verifier_env *env,
8777 			  const union bpf_attr *attr,
8778 			  union bpf_attr __user *uattr)
8779 {
8780 	const struct btf_type *type, *func_proto, *ret_type;
8781 	u32 i, nfuncs, urec_size, min_size;
8782 	u32 krec_size = sizeof(struct bpf_func_info);
8783 	struct bpf_func_info *krecord;
8784 	struct bpf_func_info_aux *info_aux = NULL;
8785 	struct bpf_prog *prog;
8786 	const struct btf *btf;
8787 	void __user *urecord;
8788 	u32 prev_offset = 0;
8789 	bool scalar_return;
8790 	int ret = -ENOMEM;
8791 
8792 	nfuncs = attr->func_info_cnt;
8793 	if (!nfuncs) {
8794 		if (check_abnormal_return(env))
8795 			return -EINVAL;
8796 		return 0;
8797 	}
8798 
8799 	if (nfuncs != env->subprog_cnt) {
8800 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8801 		return -EINVAL;
8802 	}
8803 
8804 	urec_size = attr->func_info_rec_size;
8805 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8806 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8807 	    urec_size % sizeof(u32)) {
8808 		verbose(env, "invalid func info rec size %u\n", urec_size);
8809 		return -EINVAL;
8810 	}
8811 
8812 	prog = env->prog;
8813 	btf = prog->aux->btf;
8814 
8815 	urecord = u64_to_user_ptr(attr->func_info);
8816 	min_size = min_t(u32, krec_size, urec_size);
8817 
8818 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8819 	if (!krecord)
8820 		return -ENOMEM;
8821 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8822 	if (!info_aux)
8823 		goto err_free;
8824 
8825 	for (i = 0; i < nfuncs; i++) {
8826 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8827 		if (ret) {
8828 			if (ret == -E2BIG) {
8829 				verbose(env, "nonzero tailing record in func info");
8830 				/* set the size kernel expects so loader can zero
8831 				 * out the rest of the record.
8832 				 */
8833 				if (put_user(min_size, &uattr->func_info_rec_size))
8834 					ret = -EFAULT;
8835 			}
8836 			goto err_free;
8837 		}
8838 
8839 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8840 			ret = -EFAULT;
8841 			goto err_free;
8842 		}
8843 
8844 		/* check insn_off */
8845 		ret = -EINVAL;
8846 		if (i == 0) {
8847 			if (krecord[i].insn_off) {
8848 				verbose(env,
8849 					"nonzero insn_off %u for the first func info record",
8850 					krecord[i].insn_off);
8851 				goto err_free;
8852 			}
8853 		} else if (krecord[i].insn_off <= prev_offset) {
8854 			verbose(env,
8855 				"same or smaller insn offset (%u) than previous func info record (%u)",
8856 				krecord[i].insn_off, prev_offset);
8857 			goto err_free;
8858 		}
8859 
8860 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8861 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8862 			goto err_free;
8863 		}
8864 
8865 		/* check type_id */
8866 		type = btf_type_by_id(btf, krecord[i].type_id);
8867 		if (!type || !btf_type_is_func(type)) {
8868 			verbose(env, "invalid type id %d in func info",
8869 				krecord[i].type_id);
8870 			goto err_free;
8871 		}
8872 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8873 
8874 		func_proto = btf_type_by_id(btf, type->type);
8875 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8876 			/* btf_func_check() already verified it during BTF load */
8877 			goto err_free;
8878 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8879 		scalar_return =
8880 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8881 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8882 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8883 			goto err_free;
8884 		}
8885 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8886 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8887 			goto err_free;
8888 		}
8889 
8890 		prev_offset = krecord[i].insn_off;
8891 		urecord += urec_size;
8892 	}
8893 
8894 	prog->aux->func_info = krecord;
8895 	prog->aux->func_info_cnt = nfuncs;
8896 	prog->aux->func_info_aux = info_aux;
8897 	return 0;
8898 
8899 err_free:
8900 	kvfree(krecord);
8901 	kfree(info_aux);
8902 	return ret;
8903 }
8904 
8905 static void adjust_btf_func(struct bpf_verifier_env *env)
8906 {
8907 	struct bpf_prog_aux *aux = env->prog->aux;
8908 	int i;
8909 
8910 	if (!aux->func_info)
8911 		return;
8912 
8913 	for (i = 0; i < env->subprog_cnt; i++)
8914 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8915 }
8916 
8917 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8918 		sizeof(((struct bpf_line_info *)(0))->line_col))
8919 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8920 
8921 static int check_btf_line(struct bpf_verifier_env *env,
8922 			  const union bpf_attr *attr,
8923 			  union bpf_attr __user *uattr)
8924 {
8925 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8926 	struct bpf_subprog_info *sub;
8927 	struct bpf_line_info *linfo;
8928 	struct bpf_prog *prog;
8929 	const struct btf *btf;
8930 	void __user *ulinfo;
8931 	int err;
8932 
8933 	nr_linfo = attr->line_info_cnt;
8934 	if (!nr_linfo)
8935 		return 0;
8936 
8937 	rec_size = attr->line_info_rec_size;
8938 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8939 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8940 	    rec_size & (sizeof(u32) - 1))
8941 		return -EINVAL;
8942 
8943 	/* Need to zero it in case the userspace may
8944 	 * pass in a smaller bpf_line_info object.
8945 	 */
8946 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8947 			 GFP_KERNEL | __GFP_NOWARN);
8948 	if (!linfo)
8949 		return -ENOMEM;
8950 
8951 	prog = env->prog;
8952 	btf = prog->aux->btf;
8953 
8954 	s = 0;
8955 	sub = env->subprog_info;
8956 	ulinfo = u64_to_user_ptr(attr->line_info);
8957 	expected_size = sizeof(struct bpf_line_info);
8958 	ncopy = min_t(u32, expected_size, rec_size);
8959 	for (i = 0; i < nr_linfo; i++) {
8960 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8961 		if (err) {
8962 			if (err == -E2BIG) {
8963 				verbose(env, "nonzero tailing record in line_info");
8964 				if (put_user(expected_size,
8965 					     &uattr->line_info_rec_size))
8966 					err = -EFAULT;
8967 			}
8968 			goto err_free;
8969 		}
8970 
8971 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8972 			err = -EFAULT;
8973 			goto err_free;
8974 		}
8975 
8976 		/*
8977 		 * Check insn_off to ensure
8978 		 * 1) strictly increasing AND
8979 		 * 2) bounded by prog->len
8980 		 *
8981 		 * The linfo[0].insn_off == 0 check logically falls into
8982 		 * the later "missing bpf_line_info for func..." case
8983 		 * because the first linfo[0].insn_off must be the
8984 		 * first sub also and the first sub must have
8985 		 * subprog_info[0].start == 0.
8986 		 */
8987 		if ((i && linfo[i].insn_off <= prev_offset) ||
8988 		    linfo[i].insn_off >= prog->len) {
8989 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8990 				i, linfo[i].insn_off, prev_offset,
8991 				prog->len);
8992 			err = -EINVAL;
8993 			goto err_free;
8994 		}
8995 
8996 		if (!prog->insnsi[linfo[i].insn_off].code) {
8997 			verbose(env,
8998 				"Invalid insn code at line_info[%u].insn_off\n",
8999 				i);
9000 			err = -EINVAL;
9001 			goto err_free;
9002 		}
9003 
9004 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9005 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9006 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9007 			err = -EINVAL;
9008 			goto err_free;
9009 		}
9010 
9011 		if (s != env->subprog_cnt) {
9012 			if (linfo[i].insn_off == sub[s].start) {
9013 				sub[s].linfo_idx = i;
9014 				s++;
9015 			} else if (sub[s].start < linfo[i].insn_off) {
9016 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9017 				err = -EINVAL;
9018 				goto err_free;
9019 			}
9020 		}
9021 
9022 		prev_offset = linfo[i].insn_off;
9023 		ulinfo += rec_size;
9024 	}
9025 
9026 	if (s != env->subprog_cnt) {
9027 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9028 			env->subprog_cnt - s, s);
9029 		err = -EINVAL;
9030 		goto err_free;
9031 	}
9032 
9033 	prog->aux->linfo = linfo;
9034 	prog->aux->nr_linfo = nr_linfo;
9035 
9036 	return 0;
9037 
9038 err_free:
9039 	kvfree(linfo);
9040 	return err;
9041 }
9042 
9043 static int check_btf_info(struct bpf_verifier_env *env,
9044 			  const union bpf_attr *attr,
9045 			  union bpf_attr __user *uattr)
9046 {
9047 	struct btf *btf;
9048 	int err;
9049 
9050 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9051 		if (check_abnormal_return(env))
9052 			return -EINVAL;
9053 		return 0;
9054 	}
9055 
9056 	btf = btf_get_by_fd(attr->prog_btf_fd);
9057 	if (IS_ERR(btf))
9058 		return PTR_ERR(btf);
9059 	env->prog->aux->btf = btf;
9060 
9061 	err = check_btf_func(env, attr, uattr);
9062 	if (err)
9063 		return err;
9064 
9065 	err = check_btf_line(env, attr, uattr);
9066 	if (err)
9067 		return err;
9068 
9069 	return 0;
9070 }
9071 
9072 /* check %cur's range satisfies %old's */
9073 static bool range_within(struct bpf_reg_state *old,
9074 			 struct bpf_reg_state *cur)
9075 {
9076 	return old->umin_value <= cur->umin_value &&
9077 	       old->umax_value >= cur->umax_value &&
9078 	       old->smin_value <= cur->smin_value &&
9079 	       old->smax_value >= cur->smax_value &&
9080 	       old->u32_min_value <= cur->u32_min_value &&
9081 	       old->u32_max_value >= cur->u32_max_value &&
9082 	       old->s32_min_value <= cur->s32_min_value &&
9083 	       old->s32_max_value >= cur->s32_max_value;
9084 }
9085 
9086 /* Maximum number of register states that can exist at once */
9087 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9088 struct idpair {
9089 	u32 old;
9090 	u32 cur;
9091 };
9092 
9093 /* If in the old state two registers had the same id, then they need to have
9094  * the same id in the new state as well.  But that id could be different from
9095  * the old state, so we need to track the mapping from old to new ids.
9096  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9097  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9098  * regs with a different old id could still have new id 9, we don't care about
9099  * that.
9100  * So we look through our idmap to see if this old id has been seen before.  If
9101  * so, we require the new id to match; otherwise, we add the id pair to the map.
9102  */
9103 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9104 {
9105 	unsigned int i;
9106 
9107 	for (i = 0; i < ID_MAP_SIZE; i++) {
9108 		if (!idmap[i].old) {
9109 			/* Reached an empty slot; haven't seen this id before */
9110 			idmap[i].old = old_id;
9111 			idmap[i].cur = cur_id;
9112 			return true;
9113 		}
9114 		if (idmap[i].old == old_id)
9115 			return idmap[i].cur == cur_id;
9116 	}
9117 	/* We ran out of idmap slots, which should be impossible */
9118 	WARN_ON_ONCE(1);
9119 	return false;
9120 }
9121 
9122 static void clean_func_state(struct bpf_verifier_env *env,
9123 			     struct bpf_func_state *st)
9124 {
9125 	enum bpf_reg_liveness live;
9126 	int i, j;
9127 
9128 	for (i = 0; i < BPF_REG_FP; i++) {
9129 		live = st->regs[i].live;
9130 		/* liveness must not touch this register anymore */
9131 		st->regs[i].live |= REG_LIVE_DONE;
9132 		if (!(live & REG_LIVE_READ))
9133 			/* since the register is unused, clear its state
9134 			 * to make further comparison simpler
9135 			 */
9136 			__mark_reg_not_init(env, &st->regs[i]);
9137 	}
9138 
9139 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9140 		live = st->stack[i].spilled_ptr.live;
9141 		/* liveness must not touch this stack slot anymore */
9142 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9143 		if (!(live & REG_LIVE_READ)) {
9144 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9145 			for (j = 0; j < BPF_REG_SIZE; j++)
9146 				st->stack[i].slot_type[j] = STACK_INVALID;
9147 		}
9148 	}
9149 }
9150 
9151 static void clean_verifier_state(struct bpf_verifier_env *env,
9152 				 struct bpf_verifier_state *st)
9153 {
9154 	int i;
9155 
9156 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9157 		/* all regs in this state in all frames were already marked */
9158 		return;
9159 
9160 	for (i = 0; i <= st->curframe; i++)
9161 		clean_func_state(env, st->frame[i]);
9162 }
9163 
9164 /* the parentage chains form a tree.
9165  * the verifier states are added to state lists at given insn and
9166  * pushed into state stack for future exploration.
9167  * when the verifier reaches bpf_exit insn some of the verifer states
9168  * stored in the state lists have their final liveness state already,
9169  * but a lot of states will get revised from liveness point of view when
9170  * the verifier explores other branches.
9171  * Example:
9172  * 1: r0 = 1
9173  * 2: if r1 == 100 goto pc+1
9174  * 3: r0 = 2
9175  * 4: exit
9176  * when the verifier reaches exit insn the register r0 in the state list of
9177  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9178  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9179  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9180  *
9181  * Since the verifier pushes the branch states as it sees them while exploring
9182  * the program the condition of walking the branch instruction for the second
9183  * time means that all states below this branch were already explored and
9184  * their final liveness markes are already propagated.
9185  * Hence when the verifier completes the search of state list in is_state_visited()
9186  * we can call this clean_live_states() function to mark all liveness states
9187  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9188  * will not be used.
9189  * This function also clears the registers and stack for states that !READ
9190  * to simplify state merging.
9191  *
9192  * Important note here that walking the same branch instruction in the callee
9193  * doesn't meant that the states are DONE. The verifier has to compare
9194  * the callsites
9195  */
9196 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9197 			      struct bpf_verifier_state *cur)
9198 {
9199 	struct bpf_verifier_state_list *sl;
9200 	int i;
9201 
9202 	sl = *explored_state(env, insn);
9203 	while (sl) {
9204 		if (sl->state.branches)
9205 			goto next;
9206 		if (sl->state.insn_idx != insn ||
9207 		    sl->state.curframe != cur->curframe)
9208 			goto next;
9209 		for (i = 0; i <= cur->curframe; i++)
9210 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9211 				goto next;
9212 		clean_verifier_state(env, &sl->state);
9213 next:
9214 		sl = sl->next;
9215 	}
9216 }
9217 
9218 /* Returns true if (rold safe implies rcur safe) */
9219 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9220 		    struct idpair *idmap)
9221 {
9222 	bool equal;
9223 
9224 	if (!(rold->live & REG_LIVE_READ))
9225 		/* explored state didn't use this */
9226 		return true;
9227 
9228 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9229 
9230 	if (rold->type == PTR_TO_STACK)
9231 		/* two stack pointers are equal only if they're pointing to
9232 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9233 		 */
9234 		return equal && rold->frameno == rcur->frameno;
9235 
9236 	if (equal)
9237 		return true;
9238 
9239 	if (rold->type == NOT_INIT)
9240 		/* explored state can't have used this */
9241 		return true;
9242 	if (rcur->type == NOT_INIT)
9243 		return false;
9244 	switch (rold->type) {
9245 	case SCALAR_VALUE:
9246 		if (rcur->type == SCALAR_VALUE) {
9247 			if (!rold->precise && !rcur->precise)
9248 				return true;
9249 			/* new val must satisfy old val knowledge */
9250 			return range_within(rold, rcur) &&
9251 			       tnum_in(rold->var_off, rcur->var_off);
9252 		} else {
9253 			/* We're trying to use a pointer in place of a scalar.
9254 			 * Even if the scalar was unbounded, this could lead to
9255 			 * pointer leaks because scalars are allowed to leak
9256 			 * while pointers are not. We could make this safe in
9257 			 * special cases if root is calling us, but it's
9258 			 * probably not worth the hassle.
9259 			 */
9260 			return false;
9261 		}
9262 	case PTR_TO_MAP_VALUE:
9263 		/* If the new min/max/var_off satisfy the old ones and
9264 		 * everything else matches, we are OK.
9265 		 * 'id' is not compared, since it's only used for maps with
9266 		 * bpf_spin_lock inside map element and in such cases if
9267 		 * the rest of the prog is valid for one map element then
9268 		 * it's valid for all map elements regardless of the key
9269 		 * used in bpf_map_lookup()
9270 		 */
9271 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9272 		       range_within(rold, rcur) &&
9273 		       tnum_in(rold->var_off, rcur->var_off);
9274 	case PTR_TO_MAP_VALUE_OR_NULL:
9275 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9276 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9277 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9278 		 * checked, doing so could have affected others with the same
9279 		 * id, and we can't check for that because we lost the id when
9280 		 * we converted to a PTR_TO_MAP_VALUE.
9281 		 */
9282 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9283 			return false;
9284 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9285 			return false;
9286 		/* Check our ids match any regs they're supposed to */
9287 		return check_ids(rold->id, rcur->id, idmap);
9288 	case PTR_TO_PACKET_META:
9289 	case PTR_TO_PACKET:
9290 		if (rcur->type != rold->type)
9291 			return false;
9292 		/* We must have at least as much range as the old ptr
9293 		 * did, so that any accesses which were safe before are
9294 		 * still safe.  This is true even if old range < old off,
9295 		 * since someone could have accessed through (ptr - k), or
9296 		 * even done ptr -= k in a register, to get a safe access.
9297 		 */
9298 		if (rold->range > rcur->range)
9299 			return false;
9300 		/* If the offsets don't match, we can't trust our alignment;
9301 		 * nor can we be sure that we won't fall out of range.
9302 		 */
9303 		if (rold->off != rcur->off)
9304 			return false;
9305 		/* id relations must be preserved */
9306 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9307 			return false;
9308 		/* new val must satisfy old val knowledge */
9309 		return range_within(rold, rcur) &&
9310 		       tnum_in(rold->var_off, rcur->var_off);
9311 	case PTR_TO_CTX:
9312 	case CONST_PTR_TO_MAP:
9313 	case PTR_TO_PACKET_END:
9314 	case PTR_TO_FLOW_KEYS:
9315 	case PTR_TO_SOCKET:
9316 	case PTR_TO_SOCKET_OR_NULL:
9317 	case PTR_TO_SOCK_COMMON:
9318 	case PTR_TO_SOCK_COMMON_OR_NULL:
9319 	case PTR_TO_TCP_SOCK:
9320 	case PTR_TO_TCP_SOCK_OR_NULL:
9321 	case PTR_TO_XDP_SOCK:
9322 		/* Only valid matches are exact, which memcmp() above
9323 		 * would have accepted
9324 		 */
9325 	default:
9326 		/* Don't know what's going on, just say it's not safe */
9327 		return false;
9328 	}
9329 
9330 	/* Shouldn't get here; if we do, say it's not safe */
9331 	WARN_ON_ONCE(1);
9332 	return false;
9333 }
9334 
9335 static bool stacksafe(struct bpf_func_state *old,
9336 		      struct bpf_func_state *cur,
9337 		      struct idpair *idmap)
9338 {
9339 	int i, spi;
9340 
9341 	/* walk slots of the explored stack and ignore any additional
9342 	 * slots in the current stack, since explored(safe) state
9343 	 * didn't use them
9344 	 */
9345 	for (i = 0; i < old->allocated_stack; i++) {
9346 		spi = i / BPF_REG_SIZE;
9347 
9348 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9349 			i += BPF_REG_SIZE - 1;
9350 			/* explored state didn't use this */
9351 			continue;
9352 		}
9353 
9354 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9355 			continue;
9356 
9357 		/* explored stack has more populated slots than current stack
9358 		 * and these slots were used
9359 		 */
9360 		if (i >= cur->allocated_stack)
9361 			return false;
9362 
9363 		/* if old state was safe with misc data in the stack
9364 		 * it will be safe with zero-initialized stack.
9365 		 * The opposite is not true
9366 		 */
9367 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9368 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9369 			continue;
9370 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9371 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9372 			/* Ex: old explored (safe) state has STACK_SPILL in
9373 			 * this stack slot, but current has STACK_MISC ->
9374 			 * this verifier states are not equivalent,
9375 			 * return false to continue verification of this path
9376 			 */
9377 			return false;
9378 		if (i % BPF_REG_SIZE)
9379 			continue;
9380 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
9381 			continue;
9382 		if (!regsafe(&old->stack[spi].spilled_ptr,
9383 			     &cur->stack[spi].spilled_ptr,
9384 			     idmap))
9385 			/* when explored and current stack slot are both storing
9386 			 * spilled registers, check that stored pointers types
9387 			 * are the same as well.
9388 			 * Ex: explored safe path could have stored
9389 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9390 			 * but current path has stored:
9391 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9392 			 * such verifier states are not equivalent.
9393 			 * return false to continue verification of this path
9394 			 */
9395 			return false;
9396 	}
9397 	return true;
9398 }
9399 
9400 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9401 {
9402 	if (old->acquired_refs != cur->acquired_refs)
9403 		return false;
9404 	return !memcmp(old->refs, cur->refs,
9405 		       sizeof(*old->refs) * old->acquired_refs);
9406 }
9407 
9408 /* compare two verifier states
9409  *
9410  * all states stored in state_list are known to be valid, since
9411  * verifier reached 'bpf_exit' instruction through them
9412  *
9413  * this function is called when verifier exploring different branches of
9414  * execution popped from the state stack. If it sees an old state that has
9415  * more strict register state and more strict stack state then this execution
9416  * branch doesn't need to be explored further, since verifier already
9417  * concluded that more strict state leads to valid finish.
9418  *
9419  * Therefore two states are equivalent if register state is more conservative
9420  * and explored stack state is more conservative than the current one.
9421  * Example:
9422  *       explored                   current
9423  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9424  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9425  *
9426  * In other words if current stack state (one being explored) has more
9427  * valid slots than old one that already passed validation, it means
9428  * the verifier can stop exploring and conclude that current state is valid too
9429  *
9430  * Similarly with registers. If explored state has register type as invalid
9431  * whereas register type in current state is meaningful, it means that
9432  * the current state will reach 'bpf_exit' instruction safely
9433  */
9434 static bool func_states_equal(struct bpf_func_state *old,
9435 			      struct bpf_func_state *cur)
9436 {
9437 	struct idpair *idmap;
9438 	bool ret = false;
9439 	int i;
9440 
9441 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9442 	/* If we failed to allocate the idmap, just say it's not safe */
9443 	if (!idmap)
9444 		return false;
9445 
9446 	for (i = 0; i < MAX_BPF_REG; i++) {
9447 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9448 			goto out_free;
9449 	}
9450 
9451 	if (!stacksafe(old, cur, idmap))
9452 		goto out_free;
9453 
9454 	if (!refsafe(old, cur))
9455 		goto out_free;
9456 	ret = true;
9457 out_free:
9458 	kfree(idmap);
9459 	return ret;
9460 }
9461 
9462 static bool states_equal(struct bpf_verifier_env *env,
9463 			 struct bpf_verifier_state *old,
9464 			 struct bpf_verifier_state *cur)
9465 {
9466 	int i;
9467 
9468 	if (old->curframe != cur->curframe)
9469 		return false;
9470 
9471 	/* Verification state from speculative execution simulation
9472 	 * must never prune a non-speculative execution one.
9473 	 */
9474 	if (old->speculative && !cur->speculative)
9475 		return false;
9476 
9477 	if (old->active_spin_lock != cur->active_spin_lock)
9478 		return false;
9479 
9480 	/* for states to be equal callsites have to be the same
9481 	 * and all frame states need to be equivalent
9482 	 */
9483 	for (i = 0; i <= old->curframe; i++) {
9484 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9485 			return false;
9486 		if (!func_states_equal(old->frame[i], cur->frame[i]))
9487 			return false;
9488 	}
9489 	return true;
9490 }
9491 
9492 /* Return 0 if no propagation happened. Return negative error code if error
9493  * happened. Otherwise, return the propagated bit.
9494  */
9495 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9496 				  struct bpf_reg_state *reg,
9497 				  struct bpf_reg_state *parent_reg)
9498 {
9499 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9500 	u8 flag = reg->live & REG_LIVE_READ;
9501 	int err;
9502 
9503 	/* When comes here, read flags of PARENT_REG or REG could be any of
9504 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9505 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9506 	 */
9507 	if (parent_flag == REG_LIVE_READ64 ||
9508 	    /* Or if there is no read flag from REG. */
9509 	    !flag ||
9510 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9511 	    parent_flag == flag)
9512 		return 0;
9513 
9514 	err = mark_reg_read(env, reg, parent_reg, flag);
9515 	if (err)
9516 		return err;
9517 
9518 	return flag;
9519 }
9520 
9521 /* A write screens off any subsequent reads; but write marks come from the
9522  * straight-line code between a state and its parent.  When we arrive at an
9523  * equivalent state (jump target or such) we didn't arrive by the straight-line
9524  * code, so read marks in the state must propagate to the parent regardless
9525  * of the state's write marks. That's what 'parent == state->parent' comparison
9526  * in mark_reg_read() is for.
9527  */
9528 static int propagate_liveness(struct bpf_verifier_env *env,
9529 			      const struct bpf_verifier_state *vstate,
9530 			      struct bpf_verifier_state *vparent)
9531 {
9532 	struct bpf_reg_state *state_reg, *parent_reg;
9533 	struct bpf_func_state *state, *parent;
9534 	int i, frame, err = 0;
9535 
9536 	if (vparent->curframe != vstate->curframe) {
9537 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9538 		     vparent->curframe, vstate->curframe);
9539 		return -EFAULT;
9540 	}
9541 	/* Propagate read liveness of registers... */
9542 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9543 	for (frame = 0; frame <= vstate->curframe; frame++) {
9544 		parent = vparent->frame[frame];
9545 		state = vstate->frame[frame];
9546 		parent_reg = parent->regs;
9547 		state_reg = state->regs;
9548 		/* We don't need to worry about FP liveness, it's read-only */
9549 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9550 			err = propagate_liveness_reg(env, &state_reg[i],
9551 						     &parent_reg[i]);
9552 			if (err < 0)
9553 				return err;
9554 			if (err == REG_LIVE_READ64)
9555 				mark_insn_zext(env, &parent_reg[i]);
9556 		}
9557 
9558 		/* Propagate stack slots. */
9559 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9560 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9561 			parent_reg = &parent->stack[i].spilled_ptr;
9562 			state_reg = &state->stack[i].spilled_ptr;
9563 			err = propagate_liveness_reg(env, state_reg,
9564 						     parent_reg);
9565 			if (err < 0)
9566 				return err;
9567 		}
9568 	}
9569 	return 0;
9570 }
9571 
9572 /* find precise scalars in the previous equivalent state and
9573  * propagate them into the current state
9574  */
9575 static int propagate_precision(struct bpf_verifier_env *env,
9576 			       const struct bpf_verifier_state *old)
9577 {
9578 	struct bpf_reg_state *state_reg;
9579 	struct bpf_func_state *state;
9580 	int i, err = 0;
9581 
9582 	state = old->frame[old->curframe];
9583 	state_reg = state->regs;
9584 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9585 		if (state_reg->type != SCALAR_VALUE ||
9586 		    !state_reg->precise)
9587 			continue;
9588 		if (env->log.level & BPF_LOG_LEVEL2)
9589 			verbose(env, "propagating r%d\n", i);
9590 		err = mark_chain_precision(env, i);
9591 		if (err < 0)
9592 			return err;
9593 	}
9594 
9595 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9596 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9597 			continue;
9598 		state_reg = &state->stack[i].spilled_ptr;
9599 		if (state_reg->type != SCALAR_VALUE ||
9600 		    !state_reg->precise)
9601 			continue;
9602 		if (env->log.level & BPF_LOG_LEVEL2)
9603 			verbose(env, "propagating fp%d\n",
9604 				(-i - 1) * BPF_REG_SIZE);
9605 		err = mark_chain_precision_stack(env, i);
9606 		if (err < 0)
9607 			return err;
9608 	}
9609 	return 0;
9610 }
9611 
9612 static bool states_maybe_looping(struct bpf_verifier_state *old,
9613 				 struct bpf_verifier_state *cur)
9614 {
9615 	struct bpf_func_state *fold, *fcur;
9616 	int i, fr = cur->curframe;
9617 
9618 	if (old->curframe != fr)
9619 		return false;
9620 
9621 	fold = old->frame[fr];
9622 	fcur = cur->frame[fr];
9623 	for (i = 0; i < MAX_BPF_REG; i++)
9624 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9625 			   offsetof(struct bpf_reg_state, parent)))
9626 			return false;
9627 	return true;
9628 }
9629 
9630 
9631 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9632 {
9633 	struct bpf_verifier_state_list *new_sl;
9634 	struct bpf_verifier_state_list *sl, **pprev;
9635 	struct bpf_verifier_state *cur = env->cur_state, *new;
9636 	int i, j, err, states_cnt = 0;
9637 	bool add_new_state = env->test_state_freq ? true : false;
9638 
9639 	cur->last_insn_idx = env->prev_insn_idx;
9640 	if (!env->insn_aux_data[insn_idx].prune_point)
9641 		/* this 'insn_idx' instruction wasn't marked, so we will not
9642 		 * be doing state search here
9643 		 */
9644 		return 0;
9645 
9646 	/* bpf progs typically have pruning point every 4 instructions
9647 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9648 	 * Do not add new state for future pruning if the verifier hasn't seen
9649 	 * at least 2 jumps and at least 8 instructions.
9650 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9651 	 * In tests that amounts to up to 50% reduction into total verifier
9652 	 * memory consumption and 20% verifier time speedup.
9653 	 */
9654 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9655 	    env->insn_processed - env->prev_insn_processed >= 8)
9656 		add_new_state = true;
9657 
9658 	pprev = explored_state(env, insn_idx);
9659 	sl = *pprev;
9660 
9661 	clean_live_states(env, insn_idx, cur);
9662 
9663 	while (sl) {
9664 		states_cnt++;
9665 		if (sl->state.insn_idx != insn_idx)
9666 			goto next;
9667 		if (sl->state.branches) {
9668 			if (states_maybe_looping(&sl->state, cur) &&
9669 			    states_equal(env, &sl->state, cur)) {
9670 				verbose_linfo(env, insn_idx, "; ");
9671 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9672 				return -EINVAL;
9673 			}
9674 			/* if the verifier is processing a loop, avoid adding new state
9675 			 * too often, since different loop iterations have distinct
9676 			 * states and may not help future pruning.
9677 			 * This threshold shouldn't be too low to make sure that
9678 			 * a loop with large bound will be rejected quickly.
9679 			 * The most abusive loop will be:
9680 			 * r1 += 1
9681 			 * if r1 < 1000000 goto pc-2
9682 			 * 1M insn_procssed limit / 100 == 10k peak states.
9683 			 * This threshold shouldn't be too high either, since states
9684 			 * at the end of the loop are likely to be useful in pruning.
9685 			 */
9686 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9687 			    env->insn_processed - env->prev_insn_processed < 100)
9688 				add_new_state = false;
9689 			goto miss;
9690 		}
9691 		if (states_equal(env, &sl->state, cur)) {
9692 			sl->hit_cnt++;
9693 			/* reached equivalent register/stack state,
9694 			 * prune the search.
9695 			 * Registers read by the continuation are read by us.
9696 			 * If we have any write marks in env->cur_state, they
9697 			 * will prevent corresponding reads in the continuation
9698 			 * from reaching our parent (an explored_state).  Our
9699 			 * own state will get the read marks recorded, but
9700 			 * they'll be immediately forgotten as we're pruning
9701 			 * this state and will pop a new one.
9702 			 */
9703 			err = propagate_liveness(env, &sl->state, cur);
9704 
9705 			/* if previous state reached the exit with precision and
9706 			 * current state is equivalent to it (except precsion marks)
9707 			 * the precision needs to be propagated back in
9708 			 * the current state.
9709 			 */
9710 			err = err ? : push_jmp_history(env, cur);
9711 			err = err ? : propagate_precision(env, &sl->state);
9712 			if (err)
9713 				return err;
9714 			return 1;
9715 		}
9716 miss:
9717 		/* when new state is not going to be added do not increase miss count.
9718 		 * Otherwise several loop iterations will remove the state
9719 		 * recorded earlier. The goal of these heuristics is to have
9720 		 * states from some iterations of the loop (some in the beginning
9721 		 * and some at the end) to help pruning.
9722 		 */
9723 		if (add_new_state)
9724 			sl->miss_cnt++;
9725 		/* heuristic to determine whether this state is beneficial
9726 		 * to keep checking from state equivalence point of view.
9727 		 * Higher numbers increase max_states_per_insn and verification time,
9728 		 * but do not meaningfully decrease insn_processed.
9729 		 */
9730 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9731 			/* the state is unlikely to be useful. Remove it to
9732 			 * speed up verification
9733 			 */
9734 			*pprev = sl->next;
9735 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9736 				u32 br = sl->state.branches;
9737 
9738 				WARN_ONCE(br,
9739 					  "BUG live_done but branches_to_explore %d\n",
9740 					  br);
9741 				free_verifier_state(&sl->state, false);
9742 				kfree(sl);
9743 				env->peak_states--;
9744 			} else {
9745 				/* cannot free this state, since parentage chain may
9746 				 * walk it later. Add it for free_list instead to
9747 				 * be freed at the end of verification
9748 				 */
9749 				sl->next = env->free_list;
9750 				env->free_list = sl;
9751 			}
9752 			sl = *pprev;
9753 			continue;
9754 		}
9755 next:
9756 		pprev = &sl->next;
9757 		sl = *pprev;
9758 	}
9759 
9760 	if (env->max_states_per_insn < states_cnt)
9761 		env->max_states_per_insn = states_cnt;
9762 
9763 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9764 		return push_jmp_history(env, cur);
9765 
9766 	if (!add_new_state)
9767 		return push_jmp_history(env, cur);
9768 
9769 	/* There were no equivalent states, remember the current one.
9770 	 * Technically the current state is not proven to be safe yet,
9771 	 * but it will either reach outer most bpf_exit (which means it's safe)
9772 	 * or it will be rejected. When there are no loops the verifier won't be
9773 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9774 	 * again on the way to bpf_exit.
9775 	 * When looping the sl->state.branches will be > 0 and this state
9776 	 * will not be considered for equivalence until branches == 0.
9777 	 */
9778 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9779 	if (!new_sl)
9780 		return -ENOMEM;
9781 	env->total_states++;
9782 	env->peak_states++;
9783 	env->prev_jmps_processed = env->jmps_processed;
9784 	env->prev_insn_processed = env->insn_processed;
9785 
9786 	/* add new state to the head of linked list */
9787 	new = &new_sl->state;
9788 	err = copy_verifier_state(new, cur);
9789 	if (err) {
9790 		free_verifier_state(new, false);
9791 		kfree(new_sl);
9792 		return err;
9793 	}
9794 	new->insn_idx = insn_idx;
9795 	WARN_ONCE(new->branches != 1,
9796 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9797 
9798 	cur->parent = new;
9799 	cur->first_insn_idx = insn_idx;
9800 	clear_jmp_history(cur);
9801 	new_sl->next = *explored_state(env, insn_idx);
9802 	*explored_state(env, insn_idx) = new_sl;
9803 	/* connect new state to parentage chain. Current frame needs all
9804 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9805 	 * to the stack implicitly by JITs) so in callers' frames connect just
9806 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9807 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9808 	 * from callee with its full parentage chain, anyway.
9809 	 */
9810 	/* clear write marks in current state: the writes we did are not writes
9811 	 * our child did, so they don't screen off its reads from us.
9812 	 * (There are no read marks in current state, because reads always mark
9813 	 * their parent and current state never has children yet.  Only
9814 	 * explored_states can get read marks.)
9815 	 */
9816 	for (j = 0; j <= cur->curframe; j++) {
9817 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9818 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9819 		for (i = 0; i < BPF_REG_FP; i++)
9820 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9821 	}
9822 
9823 	/* all stack frames are accessible from callee, clear them all */
9824 	for (j = 0; j <= cur->curframe; j++) {
9825 		struct bpf_func_state *frame = cur->frame[j];
9826 		struct bpf_func_state *newframe = new->frame[j];
9827 
9828 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9829 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9830 			frame->stack[i].spilled_ptr.parent =
9831 						&newframe->stack[i].spilled_ptr;
9832 		}
9833 	}
9834 	return 0;
9835 }
9836 
9837 /* Return true if it's OK to have the same insn return a different type. */
9838 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9839 {
9840 	switch (type) {
9841 	case PTR_TO_CTX:
9842 	case PTR_TO_SOCKET:
9843 	case PTR_TO_SOCKET_OR_NULL:
9844 	case PTR_TO_SOCK_COMMON:
9845 	case PTR_TO_SOCK_COMMON_OR_NULL:
9846 	case PTR_TO_TCP_SOCK:
9847 	case PTR_TO_TCP_SOCK_OR_NULL:
9848 	case PTR_TO_XDP_SOCK:
9849 	case PTR_TO_BTF_ID:
9850 	case PTR_TO_BTF_ID_OR_NULL:
9851 		return false;
9852 	default:
9853 		return true;
9854 	}
9855 }
9856 
9857 /* If an instruction was previously used with particular pointer types, then we
9858  * need to be careful to avoid cases such as the below, where it may be ok
9859  * for one branch accessing the pointer, but not ok for the other branch:
9860  *
9861  * R1 = sock_ptr
9862  * goto X;
9863  * ...
9864  * R1 = some_other_valid_ptr;
9865  * goto X;
9866  * ...
9867  * R2 = *(u32 *)(R1 + 0);
9868  */
9869 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9870 {
9871 	return src != prev && (!reg_type_mismatch_ok(src) ||
9872 			       !reg_type_mismatch_ok(prev));
9873 }
9874 
9875 static int do_check(struct bpf_verifier_env *env)
9876 {
9877 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9878 	struct bpf_verifier_state *state = env->cur_state;
9879 	struct bpf_insn *insns = env->prog->insnsi;
9880 	struct bpf_reg_state *regs;
9881 	int insn_cnt = env->prog->len;
9882 	bool do_print_state = false;
9883 	int prev_insn_idx = -1;
9884 
9885 	for (;;) {
9886 		struct bpf_insn *insn;
9887 		u8 class;
9888 		int err;
9889 
9890 		env->prev_insn_idx = prev_insn_idx;
9891 		if (env->insn_idx >= insn_cnt) {
9892 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9893 				env->insn_idx, insn_cnt);
9894 			return -EFAULT;
9895 		}
9896 
9897 		insn = &insns[env->insn_idx];
9898 		class = BPF_CLASS(insn->code);
9899 
9900 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9901 			verbose(env,
9902 				"BPF program is too large. Processed %d insn\n",
9903 				env->insn_processed);
9904 			return -E2BIG;
9905 		}
9906 
9907 		err = is_state_visited(env, env->insn_idx);
9908 		if (err < 0)
9909 			return err;
9910 		if (err == 1) {
9911 			/* found equivalent state, can prune the search */
9912 			if (env->log.level & BPF_LOG_LEVEL) {
9913 				if (do_print_state)
9914 					verbose(env, "\nfrom %d to %d%s: safe\n",
9915 						env->prev_insn_idx, env->insn_idx,
9916 						env->cur_state->speculative ?
9917 						" (speculative execution)" : "");
9918 				else
9919 					verbose(env, "%d: safe\n", env->insn_idx);
9920 			}
9921 			goto process_bpf_exit;
9922 		}
9923 
9924 		if (signal_pending(current))
9925 			return -EAGAIN;
9926 
9927 		if (need_resched())
9928 			cond_resched();
9929 
9930 		if (env->log.level & BPF_LOG_LEVEL2 ||
9931 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9932 			if (env->log.level & BPF_LOG_LEVEL2)
9933 				verbose(env, "%d:", env->insn_idx);
9934 			else
9935 				verbose(env, "\nfrom %d to %d%s:",
9936 					env->prev_insn_idx, env->insn_idx,
9937 					env->cur_state->speculative ?
9938 					" (speculative execution)" : "");
9939 			print_verifier_state(env, state->frame[state->curframe]);
9940 			do_print_state = false;
9941 		}
9942 
9943 		if (env->log.level & BPF_LOG_LEVEL) {
9944 			const struct bpf_insn_cbs cbs = {
9945 				.cb_print	= verbose,
9946 				.private_data	= env,
9947 			};
9948 
9949 			verbose_linfo(env, env->insn_idx, "; ");
9950 			verbose(env, "%d: ", env->insn_idx);
9951 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9952 		}
9953 
9954 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9955 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9956 							   env->prev_insn_idx);
9957 			if (err)
9958 				return err;
9959 		}
9960 
9961 		regs = cur_regs(env);
9962 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9963 		prev_insn_idx = env->insn_idx;
9964 
9965 		if (class == BPF_ALU || class == BPF_ALU64) {
9966 			err = check_alu_op(env, insn);
9967 			if (err)
9968 				return err;
9969 
9970 		} else if (class == BPF_LDX) {
9971 			enum bpf_reg_type *prev_src_type, src_reg_type;
9972 
9973 			/* check for reserved fields is already done */
9974 
9975 			/* check src operand */
9976 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9977 			if (err)
9978 				return err;
9979 
9980 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9981 			if (err)
9982 				return err;
9983 
9984 			src_reg_type = regs[insn->src_reg].type;
9985 
9986 			/* check that memory (src_reg + off) is readable,
9987 			 * the state of dst_reg will be updated by this func
9988 			 */
9989 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
9990 					       insn->off, BPF_SIZE(insn->code),
9991 					       BPF_READ, insn->dst_reg, false);
9992 			if (err)
9993 				return err;
9994 
9995 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9996 
9997 			if (*prev_src_type == NOT_INIT) {
9998 				/* saw a valid insn
9999 				 * dst_reg = *(u32 *)(src_reg + off)
10000 				 * save type to validate intersecting paths
10001 				 */
10002 				*prev_src_type = src_reg_type;
10003 
10004 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10005 				/* ABuser program is trying to use the same insn
10006 				 * dst_reg = *(u32*) (src_reg + off)
10007 				 * with different pointer types:
10008 				 * src_reg == ctx in one branch and
10009 				 * src_reg == stack|map in some other branch.
10010 				 * Reject it.
10011 				 */
10012 				verbose(env, "same insn cannot be used with different pointers\n");
10013 				return -EINVAL;
10014 			}
10015 
10016 		} else if (class == BPF_STX) {
10017 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10018 
10019 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10020 				err = check_atomic(env, env->insn_idx, insn);
10021 				if (err)
10022 					return err;
10023 				env->insn_idx++;
10024 				continue;
10025 			}
10026 
10027 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10028 				verbose(env, "BPF_STX uses reserved fields\n");
10029 				return -EINVAL;
10030 			}
10031 
10032 			/* check src1 operand */
10033 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10034 			if (err)
10035 				return err;
10036 			/* check src2 operand */
10037 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10038 			if (err)
10039 				return err;
10040 
10041 			dst_reg_type = regs[insn->dst_reg].type;
10042 
10043 			/* check that memory (dst_reg + off) is writeable */
10044 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10045 					       insn->off, BPF_SIZE(insn->code),
10046 					       BPF_WRITE, insn->src_reg, false);
10047 			if (err)
10048 				return err;
10049 
10050 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10051 
10052 			if (*prev_dst_type == NOT_INIT) {
10053 				*prev_dst_type = dst_reg_type;
10054 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10055 				verbose(env, "same insn cannot be used with different pointers\n");
10056 				return -EINVAL;
10057 			}
10058 
10059 		} else if (class == BPF_ST) {
10060 			if (BPF_MODE(insn->code) != BPF_MEM ||
10061 			    insn->src_reg != BPF_REG_0) {
10062 				verbose(env, "BPF_ST uses reserved fields\n");
10063 				return -EINVAL;
10064 			}
10065 			/* check src operand */
10066 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10067 			if (err)
10068 				return err;
10069 
10070 			if (is_ctx_reg(env, insn->dst_reg)) {
10071 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10072 					insn->dst_reg,
10073 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10074 				return -EACCES;
10075 			}
10076 
10077 			/* check that memory (dst_reg + off) is writeable */
10078 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10079 					       insn->off, BPF_SIZE(insn->code),
10080 					       BPF_WRITE, -1, false);
10081 			if (err)
10082 				return err;
10083 
10084 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10085 			u8 opcode = BPF_OP(insn->code);
10086 
10087 			env->jmps_processed++;
10088 			if (opcode == BPF_CALL) {
10089 				if (BPF_SRC(insn->code) != BPF_K ||
10090 				    insn->off != 0 ||
10091 				    (insn->src_reg != BPF_REG_0 &&
10092 				     insn->src_reg != BPF_PSEUDO_CALL) ||
10093 				    insn->dst_reg != BPF_REG_0 ||
10094 				    class == BPF_JMP32) {
10095 					verbose(env, "BPF_CALL uses reserved fields\n");
10096 					return -EINVAL;
10097 				}
10098 
10099 				if (env->cur_state->active_spin_lock &&
10100 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10101 				     insn->imm != BPF_FUNC_spin_unlock)) {
10102 					verbose(env, "function calls are not allowed while holding a lock\n");
10103 					return -EINVAL;
10104 				}
10105 				if (insn->src_reg == BPF_PSEUDO_CALL)
10106 					err = check_func_call(env, insn, &env->insn_idx);
10107 				else
10108 					err = check_helper_call(env, insn->imm, env->insn_idx);
10109 				if (err)
10110 					return err;
10111 
10112 			} else if (opcode == BPF_JA) {
10113 				if (BPF_SRC(insn->code) != BPF_K ||
10114 				    insn->imm != 0 ||
10115 				    insn->src_reg != BPF_REG_0 ||
10116 				    insn->dst_reg != BPF_REG_0 ||
10117 				    class == BPF_JMP32) {
10118 					verbose(env, "BPF_JA uses reserved fields\n");
10119 					return -EINVAL;
10120 				}
10121 
10122 				env->insn_idx += insn->off + 1;
10123 				continue;
10124 
10125 			} else if (opcode == BPF_EXIT) {
10126 				if (BPF_SRC(insn->code) != BPF_K ||
10127 				    insn->imm != 0 ||
10128 				    insn->src_reg != BPF_REG_0 ||
10129 				    insn->dst_reg != BPF_REG_0 ||
10130 				    class == BPF_JMP32) {
10131 					verbose(env, "BPF_EXIT uses reserved fields\n");
10132 					return -EINVAL;
10133 				}
10134 
10135 				if (env->cur_state->active_spin_lock) {
10136 					verbose(env, "bpf_spin_unlock is missing\n");
10137 					return -EINVAL;
10138 				}
10139 
10140 				if (state->curframe) {
10141 					/* exit from nested function */
10142 					err = prepare_func_exit(env, &env->insn_idx);
10143 					if (err)
10144 						return err;
10145 					do_print_state = true;
10146 					continue;
10147 				}
10148 
10149 				err = check_reference_leak(env);
10150 				if (err)
10151 					return err;
10152 
10153 				err = check_return_code(env);
10154 				if (err)
10155 					return err;
10156 process_bpf_exit:
10157 				update_branch_counts(env, env->cur_state);
10158 				err = pop_stack(env, &prev_insn_idx,
10159 						&env->insn_idx, pop_log);
10160 				if (err < 0) {
10161 					if (err != -ENOENT)
10162 						return err;
10163 					break;
10164 				} else {
10165 					do_print_state = true;
10166 					continue;
10167 				}
10168 			} else {
10169 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10170 				if (err)
10171 					return err;
10172 			}
10173 		} else if (class == BPF_LD) {
10174 			u8 mode = BPF_MODE(insn->code);
10175 
10176 			if (mode == BPF_ABS || mode == BPF_IND) {
10177 				err = check_ld_abs(env, insn);
10178 				if (err)
10179 					return err;
10180 
10181 			} else if (mode == BPF_IMM) {
10182 				err = check_ld_imm(env, insn);
10183 				if (err)
10184 					return err;
10185 
10186 				env->insn_idx++;
10187 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10188 			} else {
10189 				verbose(env, "invalid BPF_LD mode\n");
10190 				return -EINVAL;
10191 			}
10192 		} else {
10193 			verbose(env, "unknown insn class %d\n", class);
10194 			return -EINVAL;
10195 		}
10196 
10197 		env->insn_idx++;
10198 	}
10199 
10200 	return 0;
10201 }
10202 
10203 static int find_btf_percpu_datasec(struct btf *btf)
10204 {
10205 	const struct btf_type *t;
10206 	const char *tname;
10207 	int i, n;
10208 
10209 	/*
10210 	 * Both vmlinux and module each have their own ".data..percpu"
10211 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10212 	 * types to look at only module's own BTF types.
10213 	 */
10214 	n = btf_nr_types(btf);
10215 	if (btf_is_module(btf))
10216 		i = btf_nr_types(btf_vmlinux);
10217 	else
10218 		i = 1;
10219 
10220 	for(; i < n; i++) {
10221 		t = btf_type_by_id(btf, i);
10222 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10223 			continue;
10224 
10225 		tname = btf_name_by_offset(btf, t->name_off);
10226 		if (!strcmp(tname, ".data..percpu"))
10227 			return i;
10228 	}
10229 
10230 	return -ENOENT;
10231 }
10232 
10233 /* replace pseudo btf_id with kernel symbol address */
10234 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10235 			       struct bpf_insn *insn,
10236 			       struct bpf_insn_aux_data *aux)
10237 {
10238 	const struct btf_var_secinfo *vsi;
10239 	const struct btf_type *datasec;
10240 	struct btf_mod_pair *btf_mod;
10241 	const struct btf_type *t;
10242 	const char *sym_name;
10243 	bool percpu = false;
10244 	u32 type, id = insn->imm;
10245 	struct btf *btf;
10246 	s32 datasec_id;
10247 	u64 addr;
10248 	int i, btf_fd, err;
10249 
10250 	btf_fd = insn[1].imm;
10251 	if (btf_fd) {
10252 		btf = btf_get_by_fd(btf_fd);
10253 		if (IS_ERR(btf)) {
10254 			verbose(env, "invalid module BTF object FD specified.\n");
10255 			return -EINVAL;
10256 		}
10257 	} else {
10258 		if (!btf_vmlinux) {
10259 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10260 			return -EINVAL;
10261 		}
10262 		btf = btf_vmlinux;
10263 		btf_get(btf);
10264 	}
10265 
10266 	t = btf_type_by_id(btf, id);
10267 	if (!t) {
10268 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10269 		err = -ENOENT;
10270 		goto err_put;
10271 	}
10272 
10273 	if (!btf_type_is_var(t)) {
10274 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10275 		err = -EINVAL;
10276 		goto err_put;
10277 	}
10278 
10279 	sym_name = btf_name_by_offset(btf, t->name_off);
10280 	addr = kallsyms_lookup_name(sym_name);
10281 	if (!addr) {
10282 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10283 			sym_name);
10284 		err = -ENOENT;
10285 		goto err_put;
10286 	}
10287 
10288 	datasec_id = find_btf_percpu_datasec(btf);
10289 	if (datasec_id > 0) {
10290 		datasec = btf_type_by_id(btf, datasec_id);
10291 		for_each_vsi(i, datasec, vsi) {
10292 			if (vsi->type == id) {
10293 				percpu = true;
10294 				break;
10295 			}
10296 		}
10297 	}
10298 
10299 	insn[0].imm = (u32)addr;
10300 	insn[1].imm = addr >> 32;
10301 
10302 	type = t->type;
10303 	t = btf_type_skip_modifiers(btf, type, NULL);
10304 	if (percpu) {
10305 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10306 		aux->btf_var.btf = btf;
10307 		aux->btf_var.btf_id = type;
10308 	} else if (!btf_type_is_struct(t)) {
10309 		const struct btf_type *ret;
10310 		const char *tname;
10311 		u32 tsize;
10312 
10313 		/* resolve the type size of ksym. */
10314 		ret = btf_resolve_size(btf, t, &tsize);
10315 		if (IS_ERR(ret)) {
10316 			tname = btf_name_by_offset(btf, t->name_off);
10317 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10318 				tname, PTR_ERR(ret));
10319 			err = -EINVAL;
10320 			goto err_put;
10321 		}
10322 		aux->btf_var.reg_type = PTR_TO_MEM;
10323 		aux->btf_var.mem_size = tsize;
10324 	} else {
10325 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10326 		aux->btf_var.btf = btf;
10327 		aux->btf_var.btf_id = type;
10328 	}
10329 
10330 	/* check whether we recorded this BTF (and maybe module) already */
10331 	for (i = 0; i < env->used_btf_cnt; i++) {
10332 		if (env->used_btfs[i].btf == btf) {
10333 			btf_put(btf);
10334 			return 0;
10335 		}
10336 	}
10337 
10338 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
10339 		err = -E2BIG;
10340 		goto err_put;
10341 	}
10342 
10343 	btf_mod = &env->used_btfs[env->used_btf_cnt];
10344 	btf_mod->btf = btf;
10345 	btf_mod->module = NULL;
10346 
10347 	/* if we reference variables from kernel module, bump its refcount */
10348 	if (btf_is_module(btf)) {
10349 		btf_mod->module = btf_try_get_module(btf);
10350 		if (!btf_mod->module) {
10351 			err = -ENXIO;
10352 			goto err_put;
10353 		}
10354 	}
10355 
10356 	env->used_btf_cnt++;
10357 
10358 	return 0;
10359 err_put:
10360 	btf_put(btf);
10361 	return err;
10362 }
10363 
10364 static int check_map_prealloc(struct bpf_map *map)
10365 {
10366 	return (map->map_type != BPF_MAP_TYPE_HASH &&
10367 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10368 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10369 		!(map->map_flags & BPF_F_NO_PREALLOC);
10370 }
10371 
10372 static bool is_tracing_prog_type(enum bpf_prog_type type)
10373 {
10374 	switch (type) {
10375 	case BPF_PROG_TYPE_KPROBE:
10376 	case BPF_PROG_TYPE_TRACEPOINT:
10377 	case BPF_PROG_TYPE_PERF_EVENT:
10378 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10379 		return true;
10380 	default:
10381 		return false;
10382 	}
10383 }
10384 
10385 static bool is_preallocated_map(struct bpf_map *map)
10386 {
10387 	if (!check_map_prealloc(map))
10388 		return false;
10389 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10390 		return false;
10391 	return true;
10392 }
10393 
10394 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10395 					struct bpf_map *map,
10396 					struct bpf_prog *prog)
10397 
10398 {
10399 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
10400 	/*
10401 	 * Validate that trace type programs use preallocated hash maps.
10402 	 *
10403 	 * For programs attached to PERF events this is mandatory as the
10404 	 * perf NMI can hit any arbitrary code sequence.
10405 	 *
10406 	 * All other trace types using preallocated hash maps are unsafe as
10407 	 * well because tracepoint or kprobes can be inside locked regions
10408 	 * of the memory allocator or at a place where a recursion into the
10409 	 * memory allocator would see inconsistent state.
10410 	 *
10411 	 * On RT enabled kernels run-time allocation of all trace type
10412 	 * programs is strictly prohibited due to lock type constraints. On
10413 	 * !RT kernels it is allowed for backwards compatibility reasons for
10414 	 * now, but warnings are emitted so developers are made aware of
10415 	 * the unsafety and can fix their programs before this is enforced.
10416 	 */
10417 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10418 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10419 			verbose(env, "perf_event programs can only use preallocated hash map\n");
10420 			return -EINVAL;
10421 		}
10422 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10423 			verbose(env, "trace type programs can only use preallocated hash map\n");
10424 			return -EINVAL;
10425 		}
10426 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10427 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10428 	}
10429 
10430 	if (map_value_has_spin_lock(map)) {
10431 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10432 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10433 			return -EINVAL;
10434 		}
10435 
10436 		if (is_tracing_prog_type(prog_type)) {
10437 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10438 			return -EINVAL;
10439 		}
10440 
10441 		if (prog->aux->sleepable) {
10442 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10443 			return -EINVAL;
10444 		}
10445 	}
10446 
10447 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10448 	    !bpf_offload_prog_map_match(prog, map)) {
10449 		verbose(env, "offload device mismatch between prog and map\n");
10450 		return -EINVAL;
10451 	}
10452 
10453 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10454 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10455 		return -EINVAL;
10456 	}
10457 
10458 	if (prog->aux->sleepable)
10459 		switch (map->map_type) {
10460 		case BPF_MAP_TYPE_HASH:
10461 		case BPF_MAP_TYPE_LRU_HASH:
10462 		case BPF_MAP_TYPE_ARRAY:
10463 		case BPF_MAP_TYPE_PERCPU_HASH:
10464 		case BPF_MAP_TYPE_PERCPU_ARRAY:
10465 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10466 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10467 		case BPF_MAP_TYPE_HASH_OF_MAPS:
10468 			if (!is_preallocated_map(map)) {
10469 				verbose(env,
10470 					"Sleepable programs can only use preallocated maps\n");
10471 				return -EINVAL;
10472 			}
10473 			break;
10474 		case BPF_MAP_TYPE_RINGBUF:
10475 			break;
10476 		default:
10477 			verbose(env,
10478 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
10479 			return -EINVAL;
10480 		}
10481 
10482 	return 0;
10483 }
10484 
10485 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10486 {
10487 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10488 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10489 }
10490 
10491 /* find and rewrite pseudo imm in ld_imm64 instructions:
10492  *
10493  * 1. if it accesses map FD, replace it with actual map pointer.
10494  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10495  *
10496  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10497  */
10498 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10499 {
10500 	struct bpf_insn *insn = env->prog->insnsi;
10501 	int insn_cnt = env->prog->len;
10502 	int i, j, err;
10503 
10504 	err = bpf_prog_calc_tag(env->prog);
10505 	if (err)
10506 		return err;
10507 
10508 	for (i = 0; i < insn_cnt; i++, insn++) {
10509 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10510 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10511 			verbose(env, "BPF_LDX uses reserved fields\n");
10512 			return -EINVAL;
10513 		}
10514 
10515 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10516 			struct bpf_insn_aux_data *aux;
10517 			struct bpf_map *map;
10518 			struct fd f;
10519 			u64 addr;
10520 
10521 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10522 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10523 			    insn[1].off != 0) {
10524 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10525 				return -EINVAL;
10526 			}
10527 
10528 			if (insn[0].src_reg == 0)
10529 				/* valid generic load 64-bit imm */
10530 				goto next_insn;
10531 
10532 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10533 				aux = &env->insn_aux_data[i];
10534 				err = check_pseudo_btf_id(env, insn, aux);
10535 				if (err)
10536 					return err;
10537 				goto next_insn;
10538 			}
10539 
10540 			/* In final convert_pseudo_ld_imm64() step, this is
10541 			 * converted into regular 64-bit imm load insn.
10542 			 */
10543 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10544 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10545 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10546 			     insn[1].imm != 0)) {
10547 				verbose(env,
10548 					"unrecognized bpf_ld_imm64 insn\n");
10549 				return -EINVAL;
10550 			}
10551 
10552 			f = fdget(insn[0].imm);
10553 			map = __bpf_map_get(f);
10554 			if (IS_ERR(map)) {
10555 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10556 					insn[0].imm);
10557 				return PTR_ERR(map);
10558 			}
10559 
10560 			err = check_map_prog_compatibility(env, map, env->prog);
10561 			if (err) {
10562 				fdput(f);
10563 				return err;
10564 			}
10565 
10566 			aux = &env->insn_aux_data[i];
10567 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10568 				addr = (unsigned long)map;
10569 			} else {
10570 				u32 off = insn[1].imm;
10571 
10572 				if (off >= BPF_MAX_VAR_OFF) {
10573 					verbose(env, "direct value offset of %u is not allowed\n", off);
10574 					fdput(f);
10575 					return -EINVAL;
10576 				}
10577 
10578 				if (!map->ops->map_direct_value_addr) {
10579 					verbose(env, "no direct value access support for this map type\n");
10580 					fdput(f);
10581 					return -EINVAL;
10582 				}
10583 
10584 				err = map->ops->map_direct_value_addr(map, &addr, off);
10585 				if (err) {
10586 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10587 						map->value_size, off);
10588 					fdput(f);
10589 					return err;
10590 				}
10591 
10592 				aux->map_off = off;
10593 				addr += off;
10594 			}
10595 
10596 			insn[0].imm = (u32)addr;
10597 			insn[1].imm = addr >> 32;
10598 
10599 			/* check whether we recorded this map already */
10600 			for (j = 0; j < env->used_map_cnt; j++) {
10601 				if (env->used_maps[j] == map) {
10602 					aux->map_index = j;
10603 					fdput(f);
10604 					goto next_insn;
10605 				}
10606 			}
10607 
10608 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10609 				fdput(f);
10610 				return -E2BIG;
10611 			}
10612 
10613 			/* hold the map. If the program is rejected by verifier,
10614 			 * the map will be released by release_maps() or it
10615 			 * will be used by the valid program until it's unloaded
10616 			 * and all maps are released in free_used_maps()
10617 			 */
10618 			bpf_map_inc(map);
10619 
10620 			aux->map_index = env->used_map_cnt;
10621 			env->used_maps[env->used_map_cnt++] = map;
10622 
10623 			if (bpf_map_is_cgroup_storage(map) &&
10624 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10625 				verbose(env, "only one cgroup storage of each type is allowed\n");
10626 				fdput(f);
10627 				return -EBUSY;
10628 			}
10629 
10630 			fdput(f);
10631 next_insn:
10632 			insn++;
10633 			i++;
10634 			continue;
10635 		}
10636 
10637 		/* Basic sanity check before we invest more work here. */
10638 		if (!bpf_opcode_in_insntable(insn->code)) {
10639 			verbose(env, "unknown opcode %02x\n", insn->code);
10640 			return -EINVAL;
10641 		}
10642 	}
10643 
10644 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10645 	 * 'struct bpf_map *' into a register instead of user map_fd.
10646 	 * These pointers will be used later by verifier to validate map access.
10647 	 */
10648 	return 0;
10649 }
10650 
10651 /* drop refcnt of maps used by the rejected program */
10652 static void release_maps(struct bpf_verifier_env *env)
10653 {
10654 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10655 			     env->used_map_cnt);
10656 }
10657 
10658 /* drop refcnt of maps used by the rejected program */
10659 static void release_btfs(struct bpf_verifier_env *env)
10660 {
10661 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10662 			     env->used_btf_cnt);
10663 }
10664 
10665 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10666 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10667 {
10668 	struct bpf_insn *insn = env->prog->insnsi;
10669 	int insn_cnt = env->prog->len;
10670 	int i;
10671 
10672 	for (i = 0; i < insn_cnt; i++, insn++)
10673 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10674 			insn->src_reg = 0;
10675 }
10676 
10677 /* single env->prog->insni[off] instruction was replaced with the range
10678  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10679  * [0, off) and [off, end) to new locations, so the patched range stays zero
10680  */
10681 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10682 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10683 {
10684 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10685 	struct bpf_insn *insn = new_prog->insnsi;
10686 	u32 prog_len;
10687 	int i;
10688 
10689 	/* aux info at OFF always needs adjustment, no matter fast path
10690 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10691 	 * original insn at old prog.
10692 	 */
10693 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10694 
10695 	if (cnt == 1)
10696 		return 0;
10697 	prog_len = new_prog->len;
10698 	new_data = vzalloc(array_size(prog_len,
10699 				      sizeof(struct bpf_insn_aux_data)));
10700 	if (!new_data)
10701 		return -ENOMEM;
10702 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10703 	memcpy(new_data + off + cnt - 1, old_data + off,
10704 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10705 	for (i = off; i < off + cnt - 1; i++) {
10706 		new_data[i].seen = env->pass_cnt;
10707 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10708 	}
10709 	env->insn_aux_data = new_data;
10710 	vfree(old_data);
10711 	return 0;
10712 }
10713 
10714 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10715 {
10716 	int i;
10717 
10718 	if (len == 1)
10719 		return;
10720 	/* NOTE: fake 'exit' subprog should be updated as well. */
10721 	for (i = 0; i <= env->subprog_cnt; i++) {
10722 		if (env->subprog_info[i].start <= off)
10723 			continue;
10724 		env->subprog_info[i].start += len - 1;
10725 	}
10726 }
10727 
10728 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10729 {
10730 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10731 	int i, sz = prog->aux->size_poke_tab;
10732 	struct bpf_jit_poke_descriptor *desc;
10733 
10734 	for (i = 0; i < sz; i++) {
10735 		desc = &tab[i];
10736 		desc->insn_idx += len - 1;
10737 	}
10738 }
10739 
10740 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10741 					    const struct bpf_insn *patch, u32 len)
10742 {
10743 	struct bpf_prog *new_prog;
10744 
10745 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10746 	if (IS_ERR(new_prog)) {
10747 		if (PTR_ERR(new_prog) == -ERANGE)
10748 			verbose(env,
10749 				"insn %d cannot be patched due to 16-bit range\n",
10750 				env->insn_aux_data[off].orig_idx);
10751 		return NULL;
10752 	}
10753 	if (adjust_insn_aux_data(env, new_prog, off, len))
10754 		return NULL;
10755 	adjust_subprog_starts(env, off, len);
10756 	adjust_poke_descs(new_prog, len);
10757 	return new_prog;
10758 }
10759 
10760 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10761 					      u32 off, u32 cnt)
10762 {
10763 	int i, j;
10764 
10765 	/* find first prog starting at or after off (first to remove) */
10766 	for (i = 0; i < env->subprog_cnt; i++)
10767 		if (env->subprog_info[i].start >= off)
10768 			break;
10769 	/* find first prog starting at or after off + cnt (first to stay) */
10770 	for (j = i; j < env->subprog_cnt; j++)
10771 		if (env->subprog_info[j].start >= off + cnt)
10772 			break;
10773 	/* if j doesn't start exactly at off + cnt, we are just removing
10774 	 * the front of previous prog
10775 	 */
10776 	if (env->subprog_info[j].start != off + cnt)
10777 		j--;
10778 
10779 	if (j > i) {
10780 		struct bpf_prog_aux *aux = env->prog->aux;
10781 		int move;
10782 
10783 		/* move fake 'exit' subprog as well */
10784 		move = env->subprog_cnt + 1 - j;
10785 
10786 		memmove(env->subprog_info + i,
10787 			env->subprog_info + j,
10788 			sizeof(*env->subprog_info) * move);
10789 		env->subprog_cnt -= j - i;
10790 
10791 		/* remove func_info */
10792 		if (aux->func_info) {
10793 			move = aux->func_info_cnt - j;
10794 
10795 			memmove(aux->func_info + i,
10796 				aux->func_info + j,
10797 				sizeof(*aux->func_info) * move);
10798 			aux->func_info_cnt -= j - i;
10799 			/* func_info->insn_off is set after all code rewrites,
10800 			 * in adjust_btf_func() - no need to adjust
10801 			 */
10802 		}
10803 	} else {
10804 		/* convert i from "first prog to remove" to "first to adjust" */
10805 		if (env->subprog_info[i].start == off)
10806 			i++;
10807 	}
10808 
10809 	/* update fake 'exit' subprog as well */
10810 	for (; i <= env->subprog_cnt; i++)
10811 		env->subprog_info[i].start -= cnt;
10812 
10813 	return 0;
10814 }
10815 
10816 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10817 				      u32 cnt)
10818 {
10819 	struct bpf_prog *prog = env->prog;
10820 	u32 i, l_off, l_cnt, nr_linfo;
10821 	struct bpf_line_info *linfo;
10822 
10823 	nr_linfo = prog->aux->nr_linfo;
10824 	if (!nr_linfo)
10825 		return 0;
10826 
10827 	linfo = prog->aux->linfo;
10828 
10829 	/* find first line info to remove, count lines to be removed */
10830 	for (i = 0; i < nr_linfo; i++)
10831 		if (linfo[i].insn_off >= off)
10832 			break;
10833 
10834 	l_off = i;
10835 	l_cnt = 0;
10836 	for (; i < nr_linfo; i++)
10837 		if (linfo[i].insn_off < off + cnt)
10838 			l_cnt++;
10839 		else
10840 			break;
10841 
10842 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10843 	 * last removed linfo.  prog is already modified, so prog->len == off
10844 	 * means no live instructions after (tail of the program was removed).
10845 	 */
10846 	if (prog->len != off && l_cnt &&
10847 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10848 		l_cnt--;
10849 		linfo[--i].insn_off = off + cnt;
10850 	}
10851 
10852 	/* remove the line info which refer to the removed instructions */
10853 	if (l_cnt) {
10854 		memmove(linfo + l_off, linfo + i,
10855 			sizeof(*linfo) * (nr_linfo - i));
10856 
10857 		prog->aux->nr_linfo -= l_cnt;
10858 		nr_linfo = prog->aux->nr_linfo;
10859 	}
10860 
10861 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10862 	for (i = l_off; i < nr_linfo; i++)
10863 		linfo[i].insn_off -= cnt;
10864 
10865 	/* fix up all subprogs (incl. 'exit') which start >= off */
10866 	for (i = 0; i <= env->subprog_cnt; i++)
10867 		if (env->subprog_info[i].linfo_idx > l_off) {
10868 			/* program may have started in the removed region but
10869 			 * may not be fully removed
10870 			 */
10871 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10872 				env->subprog_info[i].linfo_idx -= l_cnt;
10873 			else
10874 				env->subprog_info[i].linfo_idx = l_off;
10875 		}
10876 
10877 	return 0;
10878 }
10879 
10880 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10881 {
10882 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10883 	unsigned int orig_prog_len = env->prog->len;
10884 	int err;
10885 
10886 	if (bpf_prog_is_dev_bound(env->prog->aux))
10887 		bpf_prog_offload_remove_insns(env, off, cnt);
10888 
10889 	err = bpf_remove_insns(env->prog, off, cnt);
10890 	if (err)
10891 		return err;
10892 
10893 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10894 	if (err)
10895 		return err;
10896 
10897 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10898 	if (err)
10899 		return err;
10900 
10901 	memmove(aux_data + off,	aux_data + off + cnt,
10902 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10903 
10904 	return 0;
10905 }
10906 
10907 /* The verifier does more data flow analysis than llvm and will not
10908  * explore branches that are dead at run time. Malicious programs can
10909  * have dead code too. Therefore replace all dead at-run-time code
10910  * with 'ja -1'.
10911  *
10912  * Just nops are not optimal, e.g. if they would sit at the end of the
10913  * program and through another bug we would manage to jump there, then
10914  * we'd execute beyond program memory otherwise. Returning exception
10915  * code also wouldn't work since we can have subprogs where the dead
10916  * code could be located.
10917  */
10918 static void sanitize_dead_code(struct bpf_verifier_env *env)
10919 {
10920 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10921 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10922 	struct bpf_insn *insn = env->prog->insnsi;
10923 	const int insn_cnt = env->prog->len;
10924 	int i;
10925 
10926 	for (i = 0; i < insn_cnt; i++) {
10927 		if (aux_data[i].seen)
10928 			continue;
10929 		memcpy(insn + i, &trap, sizeof(trap));
10930 	}
10931 }
10932 
10933 static bool insn_is_cond_jump(u8 code)
10934 {
10935 	u8 op;
10936 
10937 	if (BPF_CLASS(code) == BPF_JMP32)
10938 		return true;
10939 
10940 	if (BPF_CLASS(code) != BPF_JMP)
10941 		return false;
10942 
10943 	op = BPF_OP(code);
10944 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10945 }
10946 
10947 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10948 {
10949 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10950 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10951 	struct bpf_insn *insn = env->prog->insnsi;
10952 	const int insn_cnt = env->prog->len;
10953 	int i;
10954 
10955 	for (i = 0; i < insn_cnt; i++, insn++) {
10956 		if (!insn_is_cond_jump(insn->code))
10957 			continue;
10958 
10959 		if (!aux_data[i + 1].seen)
10960 			ja.off = insn->off;
10961 		else if (!aux_data[i + 1 + insn->off].seen)
10962 			ja.off = 0;
10963 		else
10964 			continue;
10965 
10966 		if (bpf_prog_is_dev_bound(env->prog->aux))
10967 			bpf_prog_offload_replace_insn(env, i, &ja);
10968 
10969 		memcpy(insn, &ja, sizeof(ja));
10970 	}
10971 }
10972 
10973 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10974 {
10975 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10976 	int insn_cnt = env->prog->len;
10977 	int i, err;
10978 
10979 	for (i = 0; i < insn_cnt; i++) {
10980 		int j;
10981 
10982 		j = 0;
10983 		while (i + j < insn_cnt && !aux_data[i + j].seen)
10984 			j++;
10985 		if (!j)
10986 			continue;
10987 
10988 		err = verifier_remove_insns(env, i, j);
10989 		if (err)
10990 			return err;
10991 		insn_cnt = env->prog->len;
10992 	}
10993 
10994 	return 0;
10995 }
10996 
10997 static int opt_remove_nops(struct bpf_verifier_env *env)
10998 {
10999 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11000 	struct bpf_insn *insn = env->prog->insnsi;
11001 	int insn_cnt = env->prog->len;
11002 	int i, err;
11003 
11004 	for (i = 0; i < insn_cnt; i++) {
11005 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11006 			continue;
11007 
11008 		err = verifier_remove_insns(env, i, 1);
11009 		if (err)
11010 			return err;
11011 		insn_cnt--;
11012 		i--;
11013 	}
11014 
11015 	return 0;
11016 }
11017 
11018 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11019 					 const union bpf_attr *attr)
11020 {
11021 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11022 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11023 	int i, patch_len, delta = 0, len = env->prog->len;
11024 	struct bpf_insn *insns = env->prog->insnsi;
11025 	struct bpf_prog *new_prog;
11026 	bool rnd_hi32;
11027 
11028 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11029 	zext_patch[1] = BPF_ZEXT_REG(0);
11030 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11031 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11032 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11033 	for (i = 0; i < len; i++) {
11034 		int adj_idx = i + delta;
11035 		struct bpf_insn insn;
11036 		int load_reg;
11037 
11038 		insn = insns[adj_idx];
11039 		load_reg = insn_def_regno(&insn);
11040 		if (!aux[adj_idx].zext_dst) {
11041 			u8 code, class;
11042 			u32 imm_rnd;
11043 
11044 			if (!rnd_hi32)
11045 				continue;
11046 
11047 			code = insn.code;
11048 			class = BPF_CLASS(code);
11049 			if (load_reg == -1)
11050 				continue;
11051 
11052 			/* NOTE: arg "reg" (the fourth one) is only used for
11053 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11054 			 *       here.
11055 			 */
11056 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11057 				if (class == BPF_LD &&
11058 				    BPF_MODE(code) == BPF_IMM)
11059 					i++;
11060 				continue;
11061 			}
11062 
11063 			/* ctx load could be transformed into wider load. */
11064 			if (class == BPF_LDX &&
11065 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11066 				continue;
11067 
11068 			imm_rnd = get_random_int();
11069 			rnd_hi32_patch[0] = insn;
11070 			rnd_hi32_patch[1].imm = imm_rnd;
11071 			rnd_hi32_patch[3].dst_reg = load_reg;
11072 			patch = rnd_hi32_patch;
11073 			patch_len = 4;
11074 			goto apply_patch_buffer;
11075 		}
11076 
11077 		/* Add in an zero-extend instruction if a) the JIT has requested
11078 		 * it or b) it's a CMPXCHG.
11079 		 *
11080 		 * The latter is because: BPF_CMPXCHG always loads a value into
11081 		 * R0, therefore always zero-extends. However some archs'
11082 		 * equivalent instruction only does this load when the
11083 		 * comparison is successful. This detail of CMPXCHG is
11084 		 * orthogonal to the general zero-extension behaviour of the
11085 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11086 		 */
11087 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11088 			continue;
11089 
11090 		if (WARN_ON(load_reg == -1)) {
11091 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11092 			return -EFAULT;
11093 		}
11094 
11095 		zext_patch[0] = insn;
11096 		zext_patch[1].dst_reg = load_reg;
11097 		zext_patch[1].src_reg = load_reg;
11098 		patch = zext_patch;
11099 		patch_len = 2;
11100 apply_patch_buffer:
11101 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11102 		if (!new_prog)
11103 			return -ENOMEM;
11104 		env->prog = new_prog;
11105 		insns = new_prog->insnsi;
11106 		aux = env->insn_aux_data;
11107 		delta += patch_len - 1;
11108 	}
11109 
11110 	return 0;
11111 }
11112 
11113 /* convert load instructions that access fields of a context type into a
11114  * sequence of instructions that access fields of the underlying structure:
11115  *     struct __sk_buff    -> struct sk_buff
11116  *     struct bpf_sock_ops -> struct sock
11117  */
11118 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11119 {
11120 	const struct bpf_verifier_ops *ops = env->ops;
11121 	int i, cnt, size, ctx_field_size, delta = 0;
11122 	const int insn_cnt = env->prog->len;
11123 	struct bpf_insn insn_buf[16], *insn;
11124 	u32 target_size, size_default, off;
11125 	struct bpf_prog *new_prog;
11126 	enum bpf_access_type type;
11127 	bool is_narrower_load;
11128 
11129 	if (ops->gen_prologue || env->seen_direct_write) {
11130 		if (!ops->gen_prologue) {
11131 			verbose(env, "bpf verifier is misconfigured\n");
11132 			return -EINVAL;
11133 		}
11134 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11135 					env->prog);
11136 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11137 			verbose(env, "bpf verifier is misconfigured\n");
11138 			return -EINVAL;
11139 		} else if (cnt) {
11140 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11141 			if (!new_prog)
11142 				return -ENOMEM;
11143 
11144 			env->prog = new_prog;
11145 			delta += cnt - 1;
11146 		}
11147 	}
11148 
11149 	if (bpf_prog_is_dev_bound(env->prog->aux))
11150 		return 0;
11151 
11152 	insn = env->prog->insnsi + delta;
11153 
11154 	for (i = 0; i < insn_cnt; i++, insn++) {
11155 		bpf_convert_ctx_access_t convert_ctx_access;
11156 
11157 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11158 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11159 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11160 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11161 			type = BPF_READ;
11162 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11163 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11164 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11165 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11166 			type = BPF_WRITE;
11167 		else
11168 			continue;
11169 
11170 		if (type == BPF_WRITE &&
11171 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11172 			struct bpf_insn patch[] = {
11173 				/* Sanitize suspicious stack slot with zero.
11174 				 * There are no memory dependencies for this store,
11175 				 * since it's only using frame pointer and immediate
11176 				 * constant of zero
11177 				 */
11178 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11179 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11180 					   0),
11181 				/* the original STX instruction will immediately
11182 				 * overwrite the same stack slot with appropriate value
11183 				 */
11184 				*insn,
11185 			};
11186 
11187 			cnt = ARRAY_SIZE(patch);
11188 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11189 			if (!new_prog)
11190 				return -ENOMEM;
11191 
11192 			delta    += cnt - 1;
11193 			env->prog = new_prog;
11194 			insn      = new_prog->insnsi + i + delta;
11195 			continue;
11196 		}
11197 
11198 		switch (env->insn_aux_data[i + delta].ptr_type) {
11199 		case PTR_TO_CTX:
11200 			if (!ops->convert_ctx_access)
11201 				continue;
11202 			convert_ctx_access = ops->convert_ctx_access;
11203 			break;
11204 		case PTR_TO_SOCKET:
11205 		case PTR_TO_SOCK_COMMON:
11206 			convert_ctx_access = bpf_sock_convert_ctx_access;
11207 			break;
11208 		case PTR_TO_TCP_SOCK:
11209 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11210 			break;
11211 		case PTR_TO_XDP_SOCK:
11212 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11213 			break;
11214 		case PTR_TO_BTF_ID:
11215 			if (type == BPF_READ) {
11216 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11217 					BPF_SIZE((insn)->code);
11218 				env->prog->aux->num_exentries++;
11219 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11220 				verbose(env, "Writes through BTF pointers are not allowed\n");
11221 				return -EINVAL;
11222 			}
11223 			continue;
11224 		default:
11225 			continue;
11226 		}
11227 
11228 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11229 		size = BPF_LDST_BYTES(insn);
11230 
11231 		/* If the read access is a narrower load of the field,
11232 		 * convert to a 4/8-byte load, to minimum program type specific
11233 		 * convert_ctx_access changes. If conversion is successful,
11234 		 * we will apply proper mask to the result.
11235 		 */
11236 		is_narrower_load = size < ctx_field_size;
11237 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11238 		off = insn->off;
11239 		if (is_narrower_load) {
11240 			u8 size_code;
11241 
11242 			if (type == BPF_WRITE) {
11243 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11244 				return -EINVAL;
11245 			}
11246 
11247 			size_code = BPF_H;
11248 			if (ctx_field_size == 4)
11249 				size_code = BPF_W;
11250 			else if (ctx_field_size == 8)
11251 				size_code = BPF_DW;
11252 
11253 			insn->off = off & ~(size_default - 1);
11254 			insn->code = BPF_LDX | BPF_MEM | size_code;
11255 		}
11256 
11257 		target_size = 0;
11258 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11259 					 &target_size);
11260 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11261 		    (ctx_field_size && !target_size)) {
11262 			verbose(env, "bpf verifier is misconfigured\n");
11263 			return -EINVAL;
11264 		}
11265 
11266 		if (is_narrower_load && size < target_size) {
11267 			u8 shift = bpf_ctx_narrow_access_offset(
11268 				off, size, size_default) * 8;
11269 			if (ctx_field_size <= 4) {
11270 				if (shift)
11271 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11272 									insn->dst_reg,
11273 									shift);
11274 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11275 								(1 << size * 8) - 1);
11276 			} else {
11277 				if (shift)
11278 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11279 									insn->dst_reg,
11280 									shift);
11281 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11282 								(1ULL << size * 8) - 1);
11283 			}
11284 		}
11285 
11286 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11287 		if (!new_prog)
11288 			return -ENOMEM;
11289 
11290 		delta += cnt - 1;
11291 
11292 		/* keep walking new program and skip insns we just inserted */
11293 		env->prog = new_prog;
11294 		insn      = new_prog->insnsi + i + delta;
11295 	}
11296 
11297 	return 0;
11298 }
11299 
11300 static int jit_subprogs(struct bpf_verifier_env *env)
11301 {
11302 	struct bpf_prog *prog = env->prog, **func, *tmp;
11303 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11304 	struct bpf_map *map_ptr;
11305 	struct bpf_insn *insn;
11306 	void *old_bpf_func;
11307 	int err, num_exentries;
11308 
11309 	if (env->subprog_cnt <= 1)
11310 		return 0;
11311 
11312 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11313 		if (!bpf_pseudo_call(insn))
11314 			continue;
11315 		/* Upon error here we cannot fall back to interpreter but
11316 		 * need a hard reject of the program. Thus -EFAULT is
11317 		 * propagated in any case.
11318 		 */
11319 		subprog = find_subprog(env, i + insn->imm + 1);
11320 		if (subprog < 0) {
11321 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11322 				  i + insn->imm + 1);
11323 			return -EFAULT;
11324 		}
11325 		/* temporarily remember subprog id inside insn instead of
11326 		 * aux_data, since next loop will split up all insns into funcs
11327 		 */
11328 		insn->off = subprog;
11329 		/* remember original imm in case JIT fails and fallback
11330 		 * to interpreter will be needed
11331 		 */
11332 		env->insn_aux_data[i].call_imm = insn->imm;
11333 		/* point imm to __bpf_call_base+1 from JITs point of view */
11334 		insn->imm = 1;
11335 	}
11336 
11337 	err = bpf_prog_alloc_jited_linfo(prog);
11338 	if (err)
11339 		goto out_undo_insn;
11340 
11341 	err = -ENOMEM;
11342 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11343 	if (!func)
11344 		goto out_undo_insn;
11345 
11346 	for (i = 0; i < env->subprog_cnt; i++) {
11347 		subprog_start = subprog_end;
11348 		subprog_end = env->subprog_info[i + 1].start;
11349 
11350 		len = subprog_end - subprog_start;
11351 		/* BPF_PROG_RUN doesn't call subprogs directly,
11352 		 * hence main prog stats include the runtime of subprogs.
11353 		 * subprogs don't have IDs and not reachable via prog_get_next_id
11354 		 * func[i]->stats will never be accessed and stays NULL
11355 		 */
11356 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11357 		if (!func[i])
11358 			goto out_free;
11359 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11360 		       len * sizeof(struct bpf_insn));
11361 		func[i]->type = prog->type;
11362 		func[i]->len = len;
11363 		if (bpf_prog_calc_tag(func[i]))
11364 			goto out_free;
11365 		func[i]->is_func = 1;
11366 		func[i]->aux->func_idx = i;
11367 		/* the btf and func_info will be freed only at prog->aux */
11368 		func[i]->aux->btf = prog->aux->btf;
11369 		func[i]->aux->func_info = prog->aux->func_info;
11370 
11371 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
11372 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11373 			int ret;
11374 
11375 			if (!(insn_idx >= subprog_start &&
11376 			      insn_idx <= subprog_end))
11377 				continue;
11378 
11379 			ret = bpf_jit_add_poke_descriptor(func[i],
11380 							  &prog->aux->poke_tab[j]);
11381 			if (ret < 0) {
11382 				verbose(env, "adding tail call poke descriptor failed\n");
11383 				goto out_free;
11384 			}
11385 
11386 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11387 
11388 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11389 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11390 			if (ret < 0) {
11391 				verbose(env, "tracking tail call prog failed\n");
11392 				goto out_free;
11393 			}
11394 		}
11395 
11396 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
11397 		 * Long term would need debug info to populate names
11398 		 */
11399 		func[i]->aux->name[0] = 'F';
11400 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11401 		func[i]->jit_requested = 1;
11402 		func[i]->aux->linfo = prog->aux->linfo;
11403 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11404 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11405 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11406 		num_exentries = 0;
11407 		insn = func[i]->insnsi;
11408 		for (j = 0; j < func[i]->len; j++, insn++) {
11409 			if (BPF_CLASS(insn->code) == BPF_LDX &&
11410 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
11411 				num_exentries++;
11412 		}
11413 		func[i]->aux->num_exentries = num_exentries;
11414 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11415 		func[i] = bpf_int_jit_compile(func[i]);
11416 		if (!func[i]->jited) {
11417 			err = -ENOTSUPP;
11418 			goto out_free;
11419 		}
11420 		cond_resched();
11421 	}
11422 
11423 	/* Untrack main program's aux structs so that during map_poke_run()
11424 	 * we will not stumble upon the unfilled poke descriptors; each
11425 	 * of the main program's poke descs got distributed across subprogs
11426 	 * and got tracked onto map, so we are sure that none of them will
11427 	 * be missed after the operation below
11428 	 */
11429 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11430 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11431 
11432 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11433 	}
11434 
11435 	/* at this point all bpf functions were successfully JITed
11436 	 * now populate all bpf_calls with correct addresses and
11437 	 * run last pass of JIT
11438 	 */
11439 	for (i = 0; i < env->subprog_cnt; i++) {
11440 		insn = func[i]->insnsi;
11441 		for (j = 0; j < func[i]->len; j++, insn++) {
11442 			if (!bpf_pseudo_call(insn))
11443 				continue;
11444 			subprog = insn->off;
11445 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11446 				    __bpf_call_base;
11447 		}
11448 
11449 		/* we use the aux data to keep a list of the start addresses
11450 		 * of the JITed images for each function in the program
11451 		 *
11452 		 * for some architectures, such as powerpc64, the imm field
11453 		 * might not be large enough to hold the offset of the start
11454 		 * address of the callee's JITed image from __bpf_call_base
11455 		 *
11456 		 * in such cases, we can lookup the start address of a callee
11457 		 * by using its subprog id, available from the off field of
11458 		 * the call instruction, as an index for this list
11459 		 */
11460 		func[i]->aux->func = func;
11461 		func[i]->aux->func_cnt = env->subprog_cnt;
11462 	}
11463 	for (i = 0; i < env->subprog_cnt; i++) {
11464 		old_bpf_func = func[i]->bpf_func;
11465 		tmp = bpf_int_jit_compile(func[i]);
11466 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11467 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11468 			err = -ENOTSUPP;
11469 			goto out_free;
11470 		}
11471 		cond_resched();
11472 	}
11473 
11474 	/* finally lock prog and jit images for all functions and
11475 	 * populate kallsysm
11476 	 */
11477 	for (i = 0; i < env->subprog_cnt; i++) {
11478 		bpf_prog_lock_ro(func[i]);
11479 		bpf_prog_kallsyms_add(func[i]);
11480 	}
11481 
11482 	/* Last step: make now unused interpreter insns from main
11483 	 * prog consistent for later dump requests, so they can
11484 	 * later look the same as if they were interpreted only.
11485 	 */
11486 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11487 		if (!bpf_pseudo_call(insn))
11488 			continue;
11489 		insn->off = env->insn_aux_data[i].call_imm;
11490 		subprog = find_subprog(env, i + insn->off + 1);
11491 		insn->imm = subprog;
11492 	}
11493 
11494 	prog->jited = 1;
11495 	prog->bpf_func = func[0]->bpf_func;
11496 	prog->aux->func = func;
11497 	prog->aux->func_cnt = env->subprog_cnt;
11498 	bpf_prog_free_unused_jited_linfo(prog);
11499 	return 0;
11500 out_free:
11501 	for (i = 0; i < env->subprog_cnt; i++) {
11502 		if (!func[i])
11503 			continue;
11504 
11505 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11506 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11507 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11508 		}
11509 		bpf_jit_free(func[i]);
11510 	}
11511 	kfree(func);
11512 out_undo_insn:
11513 	/* cleanup main prog to be interpreted */
11514 	prog->jit_requested = 0;
11515 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11516 		if (!bpf_pseudo_call(insn))
11517 			continue;
11518 		insn->off = 0;
11519 		insn->imm = env->insn_aux_data[i].call_imm;
11520 	}
11521 	bpf_prog_free_jited_linfo(prog);
11522 	return err;
11523 }
11524 
11525 static int fixup_call_args(struct bpf_verifier_env *env)
11526 {
11527 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11528 	struct bpf_prog *prog = env->prog;
11529 	struct bpf_insn *insn = prog->insnsi;
11530 	int i, depth;
11531 #endif
11532 	int err = 0;
11533 
11534 	if (env->prog->jit_requested &&
11535 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11536 		err = jit_subprogs(env);
11537 		if (err == 0)
11538 			return 0;
11539 		if (err == -EFAULT)
11540 			return err;
11541 	}
11542 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11543 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11544 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11545 		 * have to be rejected, since interpreter doesn't support them yet.
11546 		 */
11547 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11548 		return -EINVAL;
11549 	}
11550 	for (i = 0; i < prog->len; i++, insn++) {
11551 		if (!bpf_pseudo_call(insn))
11552 			continue;
11553 		depth = get_callee_stack_depth(env, insn, i);
11554 		if (depth < 0)
11555 			return depth;
11556 		bpf_patch_call_args(insn, depth);
11557 	}
11558 	err = 0;
11559 #endif
11560 	return err;
11561 }
11562 
11563 /* fixup insn->imm field of bpf_call instructions
11564  * and inline eligible helpers as explicit sequence of BPF instructions
11565  *
11566  * this function is called after eBPF program passed verification
11567  */
11568 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11569 {
11570 	struct bpf_prog *prog = env->prog;
11571 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11572 	struct bpf_insn *insn = prog->insnsi;
11573 	const struct bpf_func_proto *fn;
11574 	const int insn_cnt = prog->len;
11575 	const struct bpf_map_ops *ops;
11576 	struct bpf_insn_aux_data *aux;
11577 	struct bpf_insn insn_buf[16];
11578 	struct bpf_prog *new_prog;
11579 	struct bpf_map *map_ptr;
11580 	int i, ret, cnt, delta = 0;
11581 
11582 	for (i = 0; i < insn_cnt; i++, insn++) {
11583 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11584 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11585 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11586 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11587 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11588 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11589 			struct bpf_insn *patchlet;
11590 			struct bpf_insn chk_and_div[] = {
11591 				/* [R,W]x div 0 -> 0 */
11592 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11593 					     BPF_JNE | BPF_K, insn->src_reg,
11594 					     0, 2, 0),
11595 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11596 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11597 				*insn,
11598 			};
11599 			struct bpf_insn chk_and_mod[] = {
11600 				/* [R,W]x mod 0 -> [R,W]x */
11601 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11602 					     BPF_JEQ | BPF_K, insn->src_reg,
11603 					     0, 1 + (is64 ? 0 : 1), 0),
11604 				*insn,
11605 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11606 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11607 			};
11608 
11609 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11610 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11611 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11612 
11613 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11614 			if (!new_prog)
11615 				return -ENOMEM;
11616 
11617 			delta    += cnt - 1;
11618 			env->prog = prog = new_prog;
11619 			insn      = new_prog->insnsi + i + delta;
11620 			continue;
11621 		}
11622 
11623 		if (BPF_CLASS(insn->code) == BPF_LD &&
11624 		    (BPF_MODE(insn->code) == BPF_ABS ||
11625 		     BPF_MODE(insn->code) == BPF_IND)) {
11626 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11627 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11628 				verbose(env, "bpf verifier is misconfigured\n");
11629 				return -EINVAL;
11630 			}
11631 
11632 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11633 			if (!new_prog)
11634 				return -ENOMEM;
11635 
11636 			delta    += cnt - 1;
11637 			env->prog = prog = new_prog;
11638 			insn      = new_prog->insnsi + i + delta;
11639 			continue;
11640 		}
11641 
11642 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11643 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11644 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11645 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11646 			struct bpf_insn insn_buf[16];
11647 			struct bpf_insn *patch = &insn_buf[0];
11648 			bool issrc, isneg;
11649 			u32 off_reg;
11650 
11651 			aux = &env->insn_aux_data[i + delta];
11652 			if (!aux->alu_state ||
11653 			    aux->alu_state == BPF_ALU_NON_POINTER)
11654 				continue;
11655 
11656 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11657 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11658 				BPF_ALU_SANITIZE_SRC;
11659 
11660 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11661 			if (isneg)
11662 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11663 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11664 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11665 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11666 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11667 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11668 			if (issrc) {
11669 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11670 							 off_reg);
11671 				insn->src_reg = BPF_REG_AX;
11672 			} else {
11673 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11674 							 BPF_REG_AX);
11675 			}
11676 			if (isneg)
11677 				insn->code = insn->code == code_add ?
11678 					     code_sub : code_add;
11679 			*patch++ = *insn;
11680 			if (issrc && isneg)
11681 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11682 			cnt = patch - insn_buf;
11683 
11684 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11685 			if (!new_prog)
11686 				return -ENOMEM;
11687 
11688 			delta    += cnt - 1;
11689 			env->prog = prog = new_prog;
11690 			insn      = new_prog->insnsi + i + delta;
11691 			continue;
11692 		}
11693 
11694 		if (insn->code != (BPF_JMP | BPF_CALL))
11695 			continue;
11696 		if (insn->src_reg == BPF_PSEUDO_CALL)
11697 			continue;
11698 
11699 		if (insn->imm == BPF_FUNC_get_route_realm)
11700 			prog->dst_needed = 1;
11701 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11702 			bpf_user_rnd_init_once();
11703 		if (insn->imm == BPF_FUNC_override_return)
11704 			prog->kprobe_override = 1;
11705 		if (insn->imm == BPF_FUNC_tail_call) {
11706 			/* If we tail call into other programs, we
11707 			 * cannot make any assumptions since they can
11708 			 * be replaced dynamically during runtime in
11709 			 * the program array.
11710 			 */
11711 			prog->cb_access = 1;
11712 			if (!allow_tail_call_in_subprogs(env))
11713 				prog->aux->stack_depth = MAX_BPF_STACK;
11714 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11715 
11716 			/* mark bpf_tail_call as different opcode to avoid
11717 			 * conditional branch in the interpeter for every normal
11718 			 * call and to prevent accidental JITing by JIT compiler
11719 			 * that doesn't support bpf_tail_call yet
11720 			 */
11721 			insn->imm = 0;
11722 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11723 
11724 			aux = &env->insn_aux_data[i + delta];
11725 			if (env->bpf_capable && !expect_blinding &&
11726 			    prog->jit_requested &&
11727 			    !bpf_map_key_poisoned(aux) &&
11728 			    !bpf_map_ptr_poisoned(aux) &&
11729 			    !bpf_map_ptr_unpriv(aux)) {
11730 				struct bpf_jit_poke_descriptor desc = {
11731 					.reason = BPF_POKE_REASON_TAIL_CALL,
11732 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11733 					.tail_call.key = bpf_map_key_immediate(aux),
11734 					.insn_idx = i + delta,
11735 				};
11736 
11737 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11738 				if (ret < 0) {
11739 					verbose(env, "adding tail call poke descriptor failed\n");
11740 					return ret;
11741 				}
11742 
11743 				insn->imm = ret + 1;
11744 				continue;
11745 			}
11746 
11747 			if (!bpf_map_ptr_unpriv(aux))
11748 				continue;
11749 
11750 			/* instead of changing every JIT dealing with tail_call
11751 			 * emit two extra insns:
11752 			 * if (index >= max_entries) goto out;
11753 			 * index &= array->index_mask;
11754 			 * to avoid out-of-bounds cpu speculation
11755 			 */
11756 			if (bpf_map_ptr_poisoned(aux)) {
11757 				verbose(env, "tail_call abusing map_ptr\n");
11758 				return -EINVAL;
11759 			}
11760 
11761 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11762 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11763 						  map_ptr->max_entries, 2);
11764 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11765 						    container_of(map_ptr,
11766 								 struct bpf_array,
11767 								 map)->index_mask);
11768 			insn_buf[2] = *insn;
11769 			cnt = 3;
11770 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11771 			if (!new_prog)
11772 				return -ENOMEM;
11773 
11774 			delta    += cnt - 1;
11775 			env->prog = prog = new_prog;
11776 			insn      = new_prog->insnsi + i + delta;
11777 			continue;
11778 		}
11779 
11780 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11781 		 * and other inlining handlers are currently limited to 64 bit
11782 		 * only.
11783 		 */
11784 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11785 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11786 		     insn->imm == BPF_FUNC_map_update_elem ||
11787 		     insn->imm == BPF_FUNC_map_delete_elem ||
11788 		     insn->imm == BPF_FUNC_map_push_elem   ||
11789 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11790 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11791 			aux = &env->insn_aux_data[i + delta];
11792 			if (bpf_map_ptr_poisoned(aux))
11793 				goto patch_call_imm;
11794 
11795 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11796 			ops = map_ptr->ops;
11797 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11798 			    ops->map_gen_lookup) {
11799 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11800 				if (cnt == -EOPNOTSUPP)
11801 					goto patch_map_ops_generic;
11802 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11803 					verbose(env, "bpf verifier is misconfigured\n");
11804 					return -EINVAL;
11805 				}
11806 
11807 				new_prog = bpf_patch_insn_data(env, i + delta,
11808 							       insn_buf, cnt);
11809 				if (!new_prog)
11810 					return -ENOMEM;
11811 
11812 				delta    += cnt - 1;
11813 				env->prog = prog = new_prog;
11814 				insn      = new_prog->insnsi + i + delta;
11815 				continue;
11816 			}
11817 
11818 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11819 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11820 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11821 				     (int (*)(struct bpf_map *map, void *key))NULL));
11822 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11823 				     (int (*)(struct bpf_map *map, void *key, void *value,
11824 					      u64 flags))NULL));
11825 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11826 				     (int (*)(struct bpf_map *map, void *value,
11827 					      u64 flags))NULL));
11828 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11829 				     (int (*)(struct bpf_map *map, void *value))NULL));
11830 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11831 				     (int (*)(struct bpf_map *map, void *value))NULL));
11832 patch_map_ops_generic:
11833 			switch (insn->imm) {
11834 			case BPF_FUNC_map_lookup_elem:
11835 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11836 					    __bpf_call_base;
11837 				continue;
11838 			case BPF_FUNC_map_update_elem:
11839 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11840 					    __bpf_call_base;
11841 				continue;
11842 			case BPF_FUNC_map_delete_elem:
11843 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11844 					    __bpf_call_base;
11845 				continue;
11846 			case BPF_FUNC_map_push_elem:
11847 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11848 					    __bpf_call_base;
11849 				continue;
11850 			case BPF_FUNC_map_pop_elem:
11851 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11852 					    __bpf_call_base;
11853 				continue;
11854 			case BPF_FUNC_map_peek_elem:
11855 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11856 					    __bpf_call_base;
11857 				continue;
11858 			}
11859 
11860 			goto patch_call_imm;
11861 		}
11862 
11863 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11864 		    insn->imm == BPF_FUNC_jiffies64) {
11865 			struct bpf_insn ld_jiffies_addr[2] = {
11866 				BPF_LD_IMM64(BPF_REG_0,
11867 					     (unsigned long)&jiffies),
11868 			};
11869 
11870 			insn_buf[0] = ld_jiffies_addr[0];
11871 			insn_buf[1] = ld_jiffies_addr[1];
11872 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11873 						  BPF_REG_0, 0);
11874 			cnt = 3;
11875 
11876 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11877 						       cnt);
11878 			if (!new_prog)
11879 				return -ENOMEM;
11880 
11881 			delta    += cnt - 1;
11882 			env->prog = prog = new_prog;
11883 			insn      = new_prog->insnsi + i + delta;
11884 			continue;
11885 		}
11886 
11887 patch_call_imm:
11888 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11889 		/* all functions that have prototype and verifier allowed
11890 		 * programs to call them, must be real in-kernel functions
11891 		 */
11892 		if (!fn->func) {
11893 			verbose(env,
11894 				"kernel subsystem misconfigured func %s#%d\n",
11895 				func_id_name(insn->imm), insn->imm);
11896 			return -EFAULT;
11897 		}
11898 		insn->imm = fn->func - __bpf_call_base;
11899 	}
11900 
11901 	/* Since poke tab is now finalized, publish aux to tracker. */
11902 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11903 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11904 		if (!map_ptr->ops->map_poke_track ||
11905 		    !map_ptr->ops->map_poke_untrack ||
11906 		    !map_ptr->ops->map_poke_run) {
11907 			verbose(env, "bpf verifier is misconfigured\n");
11908 			return -EINVAL;
11909 		}
11910 
11911 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11912 		if (ret < 0) {
11913 			verbose(env, "tracking tail call prog failed\n");
11914 			return ret;
11915 		}
11916 	}
11917 
11918 	return 0;
11919 }
11920 
11921 static void free_states(struct bpf_verifier_env *env)
11922 {
11923 	struct bpf_verifier_state_list *sl, *sln;
11924 	int i;
11925 
11926 	sl = env->free_list;
11927 	while (sl) {
11928 		sln = sl->next;
11929 		free_verifier_state(&sl->state, false);
11930 		kfree(sl);
11931 		sl = sln;
11932 	}
11933 	env->free_list = NULL;
11934 
11935 	if (!env->explored_states)
11936 		return;
11937 
11938 	for (i = 0; i < state_htab_size(env); i++) {
11939 		sl = env->explored_states[i];
11940 
11941 		while (sl) {
11942 			sln = sl->next;
11943 			free_verifier_state(&sl->state, false);
11944 			kfree(sl);
11945 			sl = sln;
11946 		}
11947 		env->explored_states[i] = NULL;
11948 	}
11949 }
11950 
11951 /* The verifier is using insn_aux_data[] to store temporary data during
11952  * verification and to store information for passes that run after the
11953  * verification like dead code sanitization. do_check_common() for subprogram N
11954  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11955  * temporary data after do_check_common() finds that subprogram N cannot be
11956  * verified independently. pass_cnt counts the number of times
11957  * do_check_common() was run and insn->aux->seen tells the pass number
11958  * insn_aux_data was touched. These variables are compared to clear temporary
11959  * data from failed pass. For testing and experiments do_check_common() can be
11960  * run multiple times even when prior attempt to verify is unsuccessful.
11961  */
11962 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11963 {
11964 	struct bpf_insn *insn = env->prog->insnsi;
11965 	struct bpf_insn_aux_data *aux;
11966 	int i, class;
11967 
11968 	for (i = 0; i < env->prog->len; i++) {
11969 		class = BPF_CLASS(insn[i].code);
11970 		if (class != BPF_LDX && class != BPF_STX)
11971 			continue;
11972 		aux = &env->insn_aux_data[i];
11973 		if (aux->seen != env->pass_cnt)
11974 			continue;
11975 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11976 	}
11977 }
11978 
11979 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11980 {
11981 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11982 	struct bpf_verifier_state *state;
11983 	struct bpf_reg_state *regs;
11984 	int ret, i;
11985 
11986 	env->prev_linfo = NULL;
11987 	env->pass_cnt++;
11988 
11989 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11990 	if (!state)
11991 		return -ENOMEM;
11992 	state->curframe = 0;
11993 	state->speculative = false;
11994 	state->branches = 1;
11995 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11996 	if (!state->frame[0]) {
11997 		kfree(state);
11998 		return -ENOMEM;
11999 	}
12000 	env->cur_state = state;
12001 	init_func_state(env, state->frame[0],
12002 			BPF_MAIN_FUNC /* callsite */,
12003 			0 /* frameno */,
12004 			subprog);
12005 
12006 	regs = state->frame[state->curframe]->regs;
12007 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12008 		ret = btf_prepare_func_args(env, subprog, regs);
12009 		if (ret)
12010 			goto out;
12011 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12012 			if (regs[i].type == PTR_TO_CTX)
12013 				mark_reg_known_zero(env, regs, i);
12014 			else if (regs[i].type == SCALAR_VALUE)
12015 				mark_reg_unknown(env, regs, i);
12016 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12017 				const u32 mem_size = regs[i].mem_size;
12018 
12019 				mark_reg_known_zero(env, regs, i);
12020 				regs[i].mem_size = mem_size;
12021 				regs[i].id = ++env->id_gen;
12022 			}
12023 		}
12024 	} else {
12025 		/* 1st arg to a function */
12026 		regs[BPF_REG_1].type = PTR_TO_CTX;
12027 		mark_reg_known_zero(env, regs, BPF_REG_1);
12028 		ret = btf_check_func_arg_match(env, subprog, regs);
12029 		if (ret == -EFAULT)
12030 			/* unlikely verifier bug. abort.
12031 			 * ret == 0 and ret < 0 are sadly acceptable for
12032 			 * main() function due to backward compatibility.
12033 			 * Like socket filter program may be written as:
12034 			 * int bpf_prog(struct pt_regs *ctx)
12035 			 * and never dereference that ctx in the program.
12036 			 * 'struct pt_regs' is a type mismatch for socket
12037 			 * filter that should be using 'struct __sk_buff'.
12038 			 */
12039 			goto out;
12040 	}
12041 
12042 	ret = do_check(env);
12043 out:
12044 	/* check for NULL is necessary, since cur_state can be freed inside
12045 	 * do_check() under memory pressure.
12046 	 */
12047 	if (env->cur_state) {
12048 		free_verifier_state(env->cur_state, true);
12049 		env->cur_state = NULL;
12050 	}
12051 	while (!pop_stack(env, NULL, NULL, false));
12052 	if (!ret && pop_log)
12053 		bpf_vlog_reset(&env->log, 0);
12054 	free_states(env);
12055 	if (ret)
12056 		/* clean aux data in case subprog was rejected */
12057 		sanitize_insn_aux_data(env);
12058 	return ret;
12059 }
12060 
12061 /* Verify all global functions in a BPF program one by one based on their BTF.
12062  * All global functions must pass verification. Otherwise the whole program is rejected.
12063  * Consider:
12064  * int bar(int);
12065  * int foo(int f)
12066  * {
12067  *    return bar(f);
12068  * }
12069  * int bar(int b)
12070  * {
12071  *    ...
12072  * }
12073  * foo() will be verified first for R1=any_scalar_value. During verification it
12074  * will be assumed that bar() already verified successfully and call to bar()
12075  * from foo() will be checked for type match only. Later bar() will be verified
12076  * independently to check that it's safe for R1=any_scalar_value.
12077  */
12078 static int do_check_subprogs(struct bpf_verifier_env *env)
12079 {
12080 	struct bpf_prog_aux *aux = env->prog->aux;
12081 	int i, ret;
12082 
12083 	if (!aux->func_info)
12084 		return 0;
12085 
12086 	for (i = 1; i < env->subprog_cnt; i++) {
12087 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12088 			continue;
12089 		env->insn_idx = env->subprog_info[i].start;
12090 		WARN_ON_ONCE(env->insn_idx == 0);
12091 		ret = do_check_common(env, i);
12092 		if (ret) {
12093 			return ret;
12094 		} else if (env->log.level & BPF_LOG_LEVEL) {
12095 			verbose(env,
12096 				"Func#%d is safe for any args that match its prototype\n",
12097 				i);
12098 		}
12099 	}
12100 	return 0;
12101 }
12102 
12103 static int do_check_main(struct bpf_verifier_env *env)
12104 {
12105 	int ret;
12106 
12107 	env->insn_idx = 0;
12108 	ret = do_check_common(env, 0);
12109 	if (!ret)
12110 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12111 	return ret;
12112 }
12113 
12114 
12115 static void print_verification_stats(struct bpf_verifier_env *env)
12116 {
12117 	int i;
12118 
12119 	if (env->log.level & BPF_LOG_STATS) {
12120 		verbose(env, "verification time %lld usec\n",
12121 			div_u64(env->verification_time, 1000));
12122 		verbose(env, "stack depth ");
12123 		for (i = 0; i < env->subprog_cnt; i++) {
12124 			u32 depth = env->subprog_info[i].stack_depth;
12125 
12126 			verbose(env, "%d", depth);
12127 			if (i + 1 < env->subprog_cnt)
12128 				verbose(env, "+");
12129 		}
12130 		verbose(env, "\n");
12131 	}
12132 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12133 		"total_states %d peak_states %d mark_read %d\n",
12134 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12135 		env->max_states_per_insn, env->total_states,
12136 		env->peak_states, env->longest_mark_read_walk);
12137 }
12138 
12139 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12140 {
12141 	const struct btf_type *t, *func_proto;
12142 	const struct bpf_struct_ops *st_ops;
12143 	const struct btf_member *member;
12144 	struct bpf_prog *prog = env->prog;
12145 	u32 btf_id, member_idx;
12146 	const char *mname;
12147 
12148 	btf_id = prog->aux->attach_btf_id;
12149 	st_ops = bpf_struct_ops_find(btf_id);
12150 	if (!st_ops) {
12151 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12152 			btf_id);
12153 		return -ENOTSUPP;
12154 	}
12155 
12156 	t = st_ops->type;
12157 	member_idx = prog->expected_attach_type;
12158 	if (member_idx >= btf_type_vlen(t)) {
12159 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12160 			member_idx, st_ops->name);
12161 		return -EINVAL;
12162 	}
12163 
12164 	member = &btf_type_member(t)[member_idx];
12165 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12166 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12167 					       NULL);
12168 	if (!func_proto) {
12169 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12170 			mname, member_idx, st_ops->name);
12171 		return -EINVAL;
12172 	}
12173 
12174 	if (st_ops->check_member) {
12175 		int err = st_ops->check_member(t, member);
12176 
12177 		if (err) {
12178 			verbose(env, "attach to unsupported member %s of struct %s\n",
12179 				mname, st_ops->name);
12180 			return err;
12181 		}
12182 	}
12183 
12184 	prog->aux->attach_func_proto = func_proto;
12185 	prog->aux->attach_func_name = mname;
12186 	env->ops = st_ops->verifier_ops;
12187 
12188 	return 0;
12189 }
12190 #define SECURITY_PREFIX "security_"
12191 
12192 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12193 {
12194 	if (within_error_injection_list(addr) ||
12195 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12196 		return 0;
12197 
12198 	return -EINVAL;
12199 }
12200 
12201 /* list of non-sleepable functions that are otherwise on
12202  * ALLOW_ERROR_INJECTION list
12203  */
12204 BTF_SET_START(btf_non_sleepable_error_inject)
12205 /* Three functions below can be called from sleepable and non-sleepable context.
12206  * Assume non-sleepable from bpf safety point of view.
12207  */
12208 BTF_ID(func, __add_to_page_cache_locked)
12209 BTF_ID(func, should_fail_alloc_page)
12210 BTF_ID(func, should_failslab)
12211 BTF_SET_END(btf_non_sleepable_error_inject)
12212 
12213 static int check_non_sleepable_error_inject(u32 btf_id)
12214 {
12215 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12216 }
12217 
12218 int bpf_check_attach_target(struct bpf_verifier_log *log,
12219 			    const struct bpf_prog *prog,
12220 			    const struct bpf_prog *tgt_prog,
12221 			    u32 btf_id,
12222 			    struct bpf_attach_target_info *tgt_info)
12223 {
12224 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12225 	const char prefix[] = "btf_trace_";
12226 	int ret = 0, subprog = -1, i;
12227 	const struct btf_type *t;
12228 	bool conservative = true;
12229 	const char *tname;
12230 	struct btf *btf;
12231 	long addr = 0;
12232 
12233 	if (!btf_id) {
12234 		bpf_log(log, "Tracing programs must provide btf_id\n");
12235 		return -EINVAL;
12236 	}
12237 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12238 	if (!btf) {
12239 		bpf_log(log,
12240 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12241 		return -EINVAL;
12242 	}
12243 	t = btf_type_by_id(btf, btf_id);
12244 	if (!t) {
12245 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12246 		return -EINVAL;
12247 	}
12248 	tname = btf_name_by_offset(btf, t->name_off);
12249 	if (!tname) {
12250 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12251 		return -EINVAL;
12252 	}
12253 	if (tgt_prog) {
12254 		struct bpf_prog_aux *aux = tgt_prog->aux;
12255 
12256 		for (i = 0; i < aux->func_info_cnt; i++)
12257 			if (aux->func_info[i].type_id == btf_id) {
12258 				subprog = i;
12259 				break;
12260 			}
12261 		if (subprog == -1) {
12262 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
12263 			return -EINVAL;
12264 		}
12265 		conservative = aux->func_info_aux[subprog].unreliable;
12266 		if (prog_extension) {
12267 			if (conservative) {
12268 				bpf_log(log,
12269 					"Cannot replace static functions\n");
12270 				return -EINVAL;
12271 			}
12272 			if (!prog->jit_requested) {
12273 				bpf_log(log,
12274 					"Extension programs should be JITed\n");
12275 				return -EINVAL;
12276 			}
12277 		}
12278 		if (!tgt_prog->jited) {
12279 			bpf_log(log, "Can attach to only JITed progs\n");
12280 			return -EINVAL;
12281 		}
12282 		if (tgt_prog->type == prog->type) {
12283 			/* Cannot fentry/fexit another fentry/fexit program.
12284 			 * Cannot attach program extension to another extension.
12285 			 * It's ok to attach fentry/fexit to extension program.
12286 			 */
12287 			bpf_log(log, "Cannot recursively attach\n");
12288 			return -EINVAL;
12289 		}
12290 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12291 		    prog_extension &&
12292 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12293 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12294 			/* Program extensions can extend all program types
12295 			 * except fentry/fexit. The reason is the following.
12296 			 * The fentry/fexit programs are used for performance
12297 			 * analysis, stats and can be attached to any program
12298 			 * type except themselves. When extension program is
12299 			 * replacing XDP function it is necessary to allow
12300 			 * performance analysis of all functions. Both original
12301 			 * XDP program and its program extension. Hence
12302 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12303 			 * allowed. If extending of fentry/fexit was allowed it
12304 			 * would be possible to create long call chain
12305 			 * fentry->extension->fentry->extension beyond
12306 			 * reasonable stack size. Hence extending fentry is not
12307 			 * allowed.
12308 			 */
12309 			bpf_log(log, "Cannot extend fentry/fexit\n");
12310 			return -EINVAL;
12311 		}
12312 	} else {
12313 		if (prog_extension) {
12314 			bpf_log(log, "Cannot replace kernel functions\n");
12315 			return -EINVAL;
12316 		}
12317 	}
12318 
12319 	switch (prog->expected_attach_type) {
12320 	case BPF_TRACE_RAW_TP:
12321 		if (tgt_prog) {
12322 			bpf_log(log,
12323 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12324 			return -EINVAL;
12325 		}
12326 		if (!btf_type_is_typedef(t)) {
12327 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
12328 				btf_id);
12329 			return -EINVAL;
12330 		}
12331 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12332 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12333 				btf_id, tname);
12334 			return -EINVAL;
12335 		}
12336 		tname += sizeof(prefix) - 1;
12337 		t = btf_type_by_id(btf, t->type);
12338 		if (!btf_type_is_ptr(t))
12339 			/* should never happen in valid vmlinux build */
12340 			return -EINVAL;
12341 		t = btf_type_by_id(btf, t->type);
12342 		if (!btf_type_is_func_proto(t))
12343 			/* should never happen in valid vmlinux build */
12344 			return -EINVAL;
12345 
12346 		break;
12347 	case BPF_TRACE_ITER:
12348 		if (!btf_type_is_func(t)) {
12349 			bpf_log(log, "attach_btf_id %u is not a function\n",
12350 				btf_id);
12351 			return -EINVAL;
12352 		}
12353 		t = btf_type_by_id(btf, t->type);
12354 		if (!btf_type_is_func_proto(t))
12355 			return -EINVAL;
12356 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12357 		if (ret)
12358 			return ret;
12359 		break;
12360 	default:
12361 		if (!prog_extension)
12362 			return -EINVAL;
12363 		fallthrough;
12364 	case BPF_MODIFY_RETURN:
12365 	case BPF_LSM_MAC:
12366 	case BPF_TRACE_FENTRY:
12367 	case BPF_TRACE_FEXIT:
12368 		if (!btf_type_is_func(t)) {
12369 			bpf_log(log, "attach_btf_id %u is not a function\n",
12370 				btf_id);
12371 			return -EINVAL;
12372 		}
12373 		if (prog_extension &&
12374 		    btf_check_type_match(log, prog, btf, t))
12375 			return -EINVAL;
12376 		t = btf_type_by_id(btf, t->type);
12377 		if (!btf_type_is_func_proto(t))
12378 			return -EINVAL;
12379 
12380 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12381 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12382 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12383 			return -EINVAL;
12384 
12385 		if (tgt_prog && conservative)
12386 			t = NULL;
12387 
12388 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12389 		if (ret < 0)
12390 			return ret;
12391 
12392 		if (tgt_prog) {
12393 			if (subprog == 0)
12394 				addr = (long) tgt_prog->bpf_func;
12395 			else
12396 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12397 		} else {
12398 			addr = kallsyms_lookup_name(tname);
12399 			if (!addr) {
12400 				bpf_log(log,
12401 					"The address of function %s cannot be found\n",
12402 					tname);
12403 				return -ENOENT;
12404 			}
12405 		}
12406 
12407 		if (prog->aux->sleepable) {
12408 			ret = -EINVAL;
12409 			switch (prog->type) {
12410 			case BPF_PROG_TYPE_TRACING:
12411 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
12412 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12413 				 */
12414 				if (!check_non_sleepable_error_inject(btf_id) &&
12415 				    within_error_injection_list(addr))
12416 					ret = 0;
12417 				break;
12418 			case BPF_PROG_TYPE_LSM:
12419 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
12420 				 * Only some of them are sleepable.
12421 				 */
12422 				if (bpf_lsm_is_sleepable_hook(btf_id))
12423 					ret = 0;
12424 				break;
12425 			default:
12426 				break;
12427 			}
12428 			if (ret) {
12429 				bpf_log(log, "%s is not sleepable\n", tname);
12430 				return ret;
12431 			}
12432 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12433 			if (tgt_prog) {
12434 				bpf_log(log, "can't modify return codes of BPF programs\n");
12435 				return -EINVAL;
12436 			}
12437 			ret = check_attach_modify_return(addr, tname);
12438 			if (ret) {
12439 				bpf_log(log, "%s() is not modifiable\n", tname);
12440 				return ret;
12441 			}
12442 		}
12443 
12444 		break;
12445 	}
12446 	tgt_info->tgt_addr = addr;
12447 	tgt_info->tgt_name = tname;
12448 	tgt_info->tgt_type = t;
12449 	return 0;
12450 }
12451 
12452 static int check_attach_btf_id(struct bpf_verifier_env *env)
12453 {
12454 	struct bpf_prog *prog = env->prog;
12455 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12456 	struct bpf_attach_target_info tgt_info = {};
12457 	u32 btf_id = prog->aux->attach_btf_id;
12458 	struct bpf_trampoline *tr;
12459 	int ret;
12460 	u64 key;
12461 
12462 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12463 	    prog->type != BPF_PROG_TYPE_LSM) {
12464 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12465 		return -EINVAL;
12466 	}
12467 
12468 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12469 		return check_struct_ops_btf_id(env);
12470 
12471 	if (prog->type != BPF_PROG_TYPE_TRACING &&
12472 	    prog->type != BPF_PROG_TYPE_LSM &&
12473 	    prog->type != BPF_PROG_TYPE_EXT)
12474 		return 0;
12475 
12476 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12477 	if (ret)
12478 		return ret;
12479 
12480 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12481 		/* to make freplace equivalent to their targets, they need to
12482 		 * inherit env->ops and expected_attach_type for the rest of the
12483 		 * verification
12484 		 */
12485 		env->ops = bpf_verifier_ops[tgt_prog->type];
12486 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12487 	}
12488 
12489 	/* store info about the attachment target that will be used later */
12490 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12491 	prog->aux->attach_func_name = tgt_info.tgt_name;
12492 
12493 	if (tgt_prog) {
12494 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12495 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12496 	}
12497 
12498 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12499 		prog->aux->attach_btf_trace = true;
12500 		return 0;
12501 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12502 		if (!bpf_iter_prog_supported(prog))
12503 			return -EINVAL;
12504 		return 0;
12505 	}
12506 
12507 	if (prog->type == BPF_PROG_TYPE_LSM) {
12508 		ret = bpf_lsm_verify_prog(&env->log, prog);
12509 		if (ret < 0)
12510 			return ret;
12511 	}
12512 
12513 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12514 	tr = bpf_trampoline_get(key, &tgt_info);
12515 	if (!tr)
12516 		return -ENOMEM;
12517 
12518 	prog->aux->dst_trampoline = tr;
12519 	return 0;
12520 }
12521 
12522 struct btf *bpf_get_btf_vmlinux(void)
12523 {
12524 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12525 		mutex_lock(&bpf_verifier_lock);
12526 		if (!btf_vmlinux)
12527 			btf_vmlinux = btf_parse_vmlinux();
12528 		mutex_unlock(&bpf_verifier_lock);
12529 	}
12530 	return btf_vmlinux;
12531 }
12532 
12533 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12534 	      union bpf_attr __user *uattr)
12535 {
12536 	u64 start_time = ktime_get_ns();
12537 	struct bpf_verifier_env *env;
12538 	struct bpf_verifier_log *log;
12539 	int i, len, ret = -EINVAL;
12540 	bool is_priv;
12541 
12542 	/* no program is valid */
12543 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12544 		return -EINVAL;
12545 
12546 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12547 	 * allocate/free it every time bpf_check() is called
12548 	 */
12549 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12550 	if (!env)
12551 		return -ENOMEM;
12552 	log = &env->log;
12553 
12554 	len = (*prog)->len;
12555 	env->insn_aux_data =
12556 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12557 	ret = -ENOMEM;
12558 	if (!env->insn_aux_data)
12559 		goto err_free_env;
12560 	for (i = 0; i < len; i++)
12561 		env->insn_aux_data[i].orig_idx = i;
12562 	env->prog = *prog;
12563 	env->ops = bpf_verifier_ops[env->prog->type];
12564 	is_priv = bpf_capable();
12565 
12566 	bpf_get_btf_vmlinux();
12567 
12568 	/* grab the mutex to protect few globals used by verifier */
12569 	if (!is_priv)
12570 		mutex_lock(&bpf_verifier_lock);
12571 
12572 	if (attr->log_level || attr->log_buf || attr->log_size) {
12573 		/* user requested verbose verifier output
12574 		 * and supplied buffer to store the verification trace
12575 		 */
12576 		log->level = attr->log_level;
12577 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12578 		log->len_total = attr->log_size;
12579 
12580 		ret = -EINVAL;
12581 		/* log attributes have to be sane */
12582 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12583 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12584 			goto err_unlock;
12585 	}
12586 
12587 	if (IS_ERR(btf_vmlinux)) {
12588 		/* Either gcc or pahole or kernel are broken. */
12589 		verbose(env, "in-kernel BTF is malformed\n");
12590 		ret = PTR_ERR(btf_vmlinux);
12591 		goto skip_full_check;
12592 	}
12593 
12594 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12595 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12596 		env->strict_alignment = true;
12597 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12598 		env->strict_alignment = false;
12599 
12600 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12601 	env->allow_uninit_stack = bpf_allow_uninit_stack();
12602 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12603 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12604 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12605 	env->bpf_capable = bpf_capable();
12606 
12607 	if (is_priv)
12608 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12609 
12610 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12611 		ret = bpf_prog_offload_verifier_prep(env->prog);
12612 		if (ret)
12613 			goto skip_full_check;
12614 	}
12615 
12616 	env->explored_states = kvcalloc(state_htab_size(env),
12617 				       sizeof(struct bpf_verifier_state_list *),
12618 				       GFP_USER);
12619 	ret = -ENOMEM;
12620 	if (!env->explored_states)
12621 		goto skip_full_check;
12622 
12623 	ret = check_subprogs(env);
12624 	if (ret < 0)
12625 		goto skip_full_check;
12626 
12627 	ret = check_btf_info(env, attr, uattr);
12628 	if (ret < 0)
12629 		goto skip_full_check;
12630 
12631 	ret = check_attach_btf_id(env);
12632 	if (ret)
12633 		goto skip_full_check;
12634 
12635 	ret = resolve_pseudo_ldimm64(env);
12636 	if (ret < 0)
12637 		goto skip_full_check;
12638 
12639 	ret = check_cfg(env);
12640 	if (ret < 0)
12641 		goto skip_full_check;
12642 
12643 	ret = do_check_subprogs(env);
12644 	ret = ret ?: do_check_main(env);
12645 
12646 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12647 		ret = bpf_prog_offload_finalize(env);
12648 
12649 skip_full_check:
12650 	kvfree(env->explored_states);
12651 
12652 	if (ret == 0)
12653 		ret = check_max_stack_depth(env);
12654 
12655 	/* instruction rewrites happen after this point */
12656 	if (is_priv) {
12657 		if (ret == 0)
12658 			opt_hard_wire_dead_code_branches(env);
12659 		if (ret == 0)
12660 			ret = opt_remove_dead_code(env);
12661 		if (ret == 0)
12662 			ret = opt_remove_nops(env);
12663 	} else {
12664 		if (ret == 0)
12665 			sanitize_dead_code(env);
12666 	}
12667 
12668 	if (ret == 0)
12669 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12670 		ret = convert_ctx_accesses(env);
12671 
12672 	if (ret == 0)
12673 		ret = fixup_bpf_calls(env);
12674 
12675 	/* do 32-bit optimization after insn patching has done so those patched
12676 	 * insns could be handled correctly.
12677 	 */
12678 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12679 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12680 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12681 								     : false;
12682 	}
12683 
12684 	if (ret == 0)
12685 		ret = fixup_call_args(env);
12686 
12687 	env->verification_time = ktime_get_ns() - start_time;
12688 	print_verification_stats(env);
12689 
12690 	if (log->level && bpf_verifier_log_full(log))
12691 		ret = -ENOSPC;
12692 	if (log->level && !log->ubuf) {
12693 		ret = -EFAULT;
12694 		goto err_release_maps;
12695 	}
12696 
12697 	if (ret)
12698 		goto err_release_maps;
12699 
12700 	if (env->used_map_cnt) {
12701 		/* if program passed verifier, update used_maps in bpf_prog_info */
12702 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12703 							  sizeof(env->used_maps[0]),
12704 							  GFP_KERNEL);
12705 
12706 		if (!env->prog->aux->used_maps) {
12707 			ret = -ENOMEM;
12708 			goto err_release_maps;
12709 		}
12710 
12711 		memcpy(env->prog->aux->used_maps, env->used_maps,
12712 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12713 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12714 	}
12715 	if (env->used_btf_cnt) {
12716 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
12717 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12718 							  sizeof(env->used_btfs[0]),
12719 							  GFP_KERNEL);
12720 		if (!env->prog->aux->used_btfs) {
12721 			ret = -ENOMEM;
12722 			goto err_release_maps;
12723 		}
12724 
12725 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
12726 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12727 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12728 	}
12729 	if (env->used_map_cnt || env->used_btf_cnt) {
12730 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12731 		 * bpf_ld_imm64 instructions
12732 		 */
12733 		convert_pseudo_ld_imm64(env);
12734 	}
12735 
12736 	adjust_btf_func(env);
12737 
12738 err_release_maps:
12739 	if (!env->prog->aux->used_maps)
12740 		/* if we didn't copy map pointers into bpf_prog_info, release
12741 		 * them now. Otherwise free_used_maps() will release them.
12742 		 */
12743 		release_maps(env);
12744 	if (!env->prog->aux->used_btfs)
12745 		release_btfs(env);
12746 
12747 	/* extension progs temporarily inherit the attach_type of their targets
12748 	   for verification purposes, so set it back to zero before returning
12749 	 */
12750 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12751 		env->prog->expected_attach_type = 0;
12752 
12753 	*prog = env->prog;
12754 err_unlock:
12755 	if (!is_priv)
12756 		mutex_unlock(&bpf_verifier_lock);
12757 	vfree(env->insn_aux_data);
12758 err_free_env:
12759 	kfree(env);
12760 	return ret;
12761 }
12762