1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_timer_set_callback || 551 func_id == BPF_FUNC_find_vma || 552 func_id == BPF_FUNC_loop || 553 func_id == BPF_FUNC_user_ringbuf_drain; 554 } 555 556 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 557 { 558 return func_id == BPF_FUNC_timer_set_callback; 559 } 560 561 static bool is_storage_get_function(enum bpf_func_id func_id) 562 { 563 return func_id == BPF_FUNC_sk_storage_get || 564 func_id == BPF_FUNC_inode_storage_get || 565 func_id == BPF_FUNC_task_storage_get || 566 func_id == BPF_FUNC_cgrp_storage_get; 567 } 568 569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 570 const struct bpf_map *map) 571 { 572 int ref_obj_uses = 0; 573 574 if (is_ptr_cast_function(func_id)) 575 ref_obj_uses++; 576 if (is_acquire_function(func_id, map)) 577 ref_obj_uses++; 578 if (is_dynptr_ref_function(func_id)) 579 ref_obj_uses++; 580 581 return ref_obj_uses > 1; 582 } 583 584 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 585 { 586 return BPF_CLASS(insn->code) == BPF_STX && 587 BPF_MODE(insn->code) == BPF_ATOMIC && 588 insn->imm == BPF_CMPXCHG; 589 } 590 591 /* string representation of 'enum bpf_reg_type' 592 * 593 * Note that reg_type_str() can not appear more than once in a single verbose() 594 * statement. 595 */ 596 static const char *reg_type_str(struct bpf_verifier_env *env, 597 enum bpf_reg_type type) 598 { 599 char postfix[16] = {0}, prefix[64] = {0}; 600 static const char * const str[] = { 601 [NOT_INIT] = "?", 602 [SCALAR_VALUE] = "scalar", 603 [PTR_TO_CTX] = "ctx", 604 [CONST_PTR_TO_MAP] = "map_ptr", 605 [PTR_TO_MAP_VALUE] = "map_value", 606 [PTR_TO_STACK] = "fp", 607 [PTR_TO_PACKET] = "pkt", 608 [PTR_TO_PACKET_META] = "pkt_meta", 609 [PTR_TO_PACKET_END] = "pkt_end", 610 [PTR_TO_FLOW_KEYS] = "flow_keys", 611 [PTR_TO_SOCKET] = "sock", 612 [PTR_TO_SOCK_COMMON] = "sock_common", 613 [PTR_TO_TCP_SOCK] = "tcp_sock", 614 [PTR_TO_TP_BUFFER] = "tp_buffer", 615 [PTR_TO_XDP_SOCK] = "xdp_sock", 616 [PTR_TO_BTF_ID] = "ptr_", 617 [PTR_TO_MEM] = "mem", 618 [PTR_TO_BUF] = "buf", 619 [PTR_TO_FUNC] = "func", 620 [PTR_TO_MAP_KEY] = "map_key", 621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 622 }; 623 624 if (type & PTR_MAYBE_NULL) { 625 if (base_type(type) == PTR_TO_BTF_ID) 626 strncpy(postfix, "or_null_", 16); 627 else 628 strncpy(postfix, "_or_null", 16); 629 } 630 631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 632 type & MEM_RDONLY ? "rdonly_" : "", 633 type & MEM_RINGBUF ? "ringbuf_" : "", 634 type & MEM_USER ? "user_" : "", 635 type & MEM_PERCPU ? "percpu_" : "", 636 type & MEM_RCU ? "rcu_" : "", 637 type & PTR_UNTRUSTED ? "untrusted_" : "", 638 type & PTR_TRUSTED ? "trusted_" : "" 639 ); 640 641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 642 prefix, str[base_type(type)], postfix); 643 return env->tmp_str_buf; 644 } 645 646 static char slot_type_char[] = { 647 [STACK_INVALID] = '?', 648 [STACK_SPILL] = 'r', 649 [STACK_MISC] = 'm', 650 [STACK_ZERO] = '0', 651 [STACK_DYNPTR] = 'd', 652 [STACK_ITER] = 'i', 653 }; 654 655 static void print_liveness(struct bpf_verifier_env *env, 656 enum bpf_reg_liveness live) 657 { 658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 659 verbose(env, "_"); 660 if (live & REG_LIVE_READ) 661 verbose(env, "r"); 662 if (live & REG_LIVE_WRITTEN) 663 verbose(env, "w"); 664 if (live & REG_LIVE_DONE) 665 verbose(env, "D"); 666 } 667 668 static int __get_spi(s32 off) 669 { 670 return (-off - 1) / BPF_REG_SIZE; 671 } 672 673 static struct bpf_func_state *func(struct bpf_verifier_env *env, 674 const struct bpf_reg_state *reg) 675 { 676 struct bpf_verifier_state *cur = env->cur_state; 677 678 return cur->frame[reg->frameno]; 679 } 680 681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 682 { 683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 684 685 /* We need to check that slots between [spi - nr_slots + 1, spi] are 686 * within [0, allocated_stack). 687 * 688 * Please note that the spi grows downwards. For example, a dynptr 689 * takes the size of two stack slots; the first slot will be at 690 * spi and the second slot will be at spi - 1. 691 */ 692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 693 } 694 695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 696 const char *obj_kind, int nr_slots) 697 { 698 int off, spi; 699 700 if (!tnum_is_const(reg->var_off)) { 701 verbose(env, "%s has to be at a constant offset\n", obj_kind); 702 return -EINVAL; 703 } 704 705 off = reg->off + reg->var_off.value; 706 if (off % BPF_REG_SIZE) { 707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 708 return -EINVAL; 709 } 710 711 spi = __get_spi(off); 712 if (spi + 1 < nr_slots) { 713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 714 return -EINVAL; 715 } 716 717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 718 return -ERANGE; 719 return spi; 720 } 721 722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 723 { 724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 725 } 726 727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 728 { 729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 730 } 731 732 static const char *btf_type_name(const struct btf *btf, u32 id) 733 { 734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 735 } 736 737 static const char *dynptr_type_str(enum bpf_dynptr_type type) 738 { 739 switch (type) { 740 case BPF_DYNPTR_TYPE_LOCAL: 741 return "local"; 742 case BPF_DYNPTR_TYPE_RINGBUF: 743 return "ringbuf"; 744 case BPF_DYNPTR_TYPE_SKB: 745 return "skb"; 746 case BPF_DYNPTR_TYPE_XDP: 747 return "xdp"; 748 case BPF_DYNPTR_TYPE_INVALID: 749 return "<invalid>"; 750 default: 751 WARN_ONCE(1, "unknown dynptr type %d\n", type); 752 return "<unknown>"; 753 } 754 } 755 756 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 757 { 758 if (!btf || btf_id == 0) 759 return "<invalid>"; 760 761 /* we already validated that type is valid and has conforming name */ 762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 763 } 764 765 static const char *iter_state_str(enum bpf_iter_state state) 766 { 767 switch (state) { 768 case BPF_ITER_STATE_ACTIVE: 769 return "active"; 770 case BPF_ITER_STATE_DRAINED: 771 return "drained"; 772 case BPF_ITER_STATE_INVALID: 773 return "<invalid>"; 774 default: 775 WARN_ONCE(1, "unknown iter state %d\n", state); 776 return "<unknown>"; 777 } 778 } 779 780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 781 { 782 env->scratched_regs |= 1U << regno; 783 } 784 785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 786 { 787 env->scratched_stack_slots |= 1ULL << spi; 788 } 789 790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 791 { 792 return (env->scratched_regs >> regno) & 1; 793 } 794 795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 796 { 797 return (env->scratched_stack_slots >> regno) & 1; 798 } 799 800 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 801 { 802 return env->scratched_regs || env->scratched_stack_slots; 803 } 804 805 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 806 { 807 env->scratched_regs = 0U; 808 env->scratched_stack_slots = 0ULL; 809 } 810 811 /* Used for printing the entire verifier state. */ 812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 813 { 814 env->scratched_regs = ~0U; 815 env->scratched_stack_slots = ~0ULL; 816 } 817 818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 819 { 820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 821 case DYNPTR_TYPE_LOCAL: 822 return BPF_DYNPTR_TYPE_LOCAL; 823 case DYNPTR_TYPE_RINGBUF: 824 return BPF_DYNPTR_TYPE_RINGBUF; 825 case DYNPTR_TYPE_SKB: 826 return BPF_DYNPTR_TYPE_SKB; 827 case DYNPTR_TYPE_XDP: 828 return BPF_DYNPTR_TYPE_XDP; 829 default: 830 return BPF_DYNPTR_TYPE_INVALID; 831 } 832 } 833 834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 835 { 836 switch (type) { 837 case BPF_DYNPTR_TYPE_LOCAL: 838 return DYNPTR_TYPE_LOCAL; 839 case BPF_DYNPTR_TYPE_RINGBUF: 840 return DYNPTR_TYPE_RINGBUF; 841 case BPF_DYNPTR_TYPE_SKB: 842 return DYNPTR_TYPE_SKB; 843 case BPF_DYNPTR_TYPE_XDP: 844 return DYNPTR_TYPE_XDP; 845 default: 846 return 0; 847 } 848 } 849 850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 851 { 852 return type == BPF_DYNPTR_TYPE_RINGBUF; 853 } 854 855 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 856 enum bpf_dynptr_type type, 857 bool first_slot, int dynptr_id); 858 859 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 860 struct bpf_reg_state *reg); 861 862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 863 struct bpf_reg_state *sreg1, 864 struct bpf_reg_state *sreg2, 865 enum bpf_dynptr_type type) 866 { 867 int id = ++env->id_gen; 868 869 __mark_dynptr_reg(sreg1, type, true, id); 870 __mark_dynptr_reg(sreg2, type, false, id); 871 } 872 873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 874 struct bpf_reg_state *reg, 875 enum bpf_dynptr_type type) 876 { 877 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 878 } 879 880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 881 struct bpf_func_state *state, int spi); 882 883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 885 { 886 struct bpf_func_state *state = func(env, reg); 887 enum bpf_dynptr_type type; 888 int spi, i, err; 889 890 spi = dynptr_get_spi(env, reg); 891 if (spi < 0) 892 return spi; 893 894 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 895 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 896 * to ensure that for the following example: 897 * [d1][d1][d2][d2] 898 * spi 3 2 1 0 899 * So marking spi = 2 should lead to destruction of both d1 and d2. In 900 * case they do belong to same dynptr, second call won't see slot_type 901 * as STACK_DYNPTR and will simply skip destruction. 902 */ 903 err = destroy_if_dynptr_stack_slot(env, state, spi); 904 if (err) 905 return err; 906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 907 if (err) 908 return err; 909 910 for (i = 0; i < BPF_REG_SIZE; i++) { 911 state->stack[spi].slot_type[i] = STACK_DYNPTR; 912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 913 } 914 915 type = arg_to_dynptr_type(arg_type); 916 if (type == BPF_DYNPTR_TYPE_INVALID) 917 return -EINVAL; 918 919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 920 &state->stack[spi - 1].spilled_ptr, type); 921 922 if (dynptr_type_refcounted(type)) { 923 /* The id is used to track proper releasing */ 924 int id; 925 926 if (clone_ref_obj_id) 927 id = clone_ref_obj_id; 928 else 929 id = acquire_reference_state(env, insn_idx); 930 931 if (id < 0) 932 return id; 933 934 state->stack[spi].spilled_ptr.ref_obj_id = id; 935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 936 } 937 938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 940 941 return 0; 942 } 943 944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 945 { 946 int i; 947 948 for (i = 0; i < BPF_REG_SIZE; i++) { 949 state->stack[spi].slot_type[i] = STACK_INVALID; 950 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 951 } 952 953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 955 956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 957 * 958 * While we don't allow reading STACK_INVALID, it is still possible to 959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 960 * helpers or insns can do partial read of that part without failing, 961 * but check_stack_range_initialized, check_stack_read_var_off, and 962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 963 * the slot conservatively. Hence we need to prevent those liveness 964 * marking walks. 965 * 966 * This was not a problem before because STACK_INVALID is only set by 967 * default (where the default reg state has its reg->parent as NULL), or 968 * in clean_live_states after REG_LIVE_DONE (at which point 969 * mark_reg_read won't walk reg->parent chain), but not randomly during 970 * verifier state exploration (like we did above). Hence, for our case 971 * parentage chain will still be live (i.e. reg->parent may be 972 * non-NULL), while earlier reg->parent was NULL, so we need 973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 974 * done later on reads or by mark_dynptr_read as well to unnecessary 975 * mark registers in verifier state. 976 */ 977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 979 } 980 981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 982 { 983 struct bpf_func_state *state = func(env, reg); 984 int spi, ref_obj_id, i; 985 986 spi = dynptr_get_spi(env, reg); 987 if (spi < 0) 988 return spi; 989 990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 991 invalidate_dynptr(env, state, spi); 992 return 0; 993 } 994 995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 996 997 /* If the dynptr has a ref_obj_id, then we need to invalidate 998 * two things: 999 * 1000 * 1) Any dynptrs with a matching ref_obj_id (clones) 1001 * 2) Any slices derived from this dynptr. 1002 */ 1003 1004 /* Invalidate any slices associated with this dynptr */ 1005 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1006 1007 /* Invalidate any dynptr clones */ 1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1010 continue; 1011 1012 /* it should always be the case that if the ref obj id 1013 * matches then the stack slot also belongs to a 1014 * dynptr 1015 */ 1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1018 return -EFAULT; 1019 } 1020 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1021 invalidate_dynptr(env, state, i); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1028 struct bpf_reg_state *reg); 1029 1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1031 { 1032 if (!env->allow_ptr_leaks) 1033 __mark_reg_not_init(env, reg); 1034 else 1035 __mark_reg_unknown(env, reg); 1036 } 1037 1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1039 struct bpf_func_state *state, int spi) 1040 { 1041 struct bpf_func_state *fstate; 1042 struct bpf_reg_state *dreg; 1043 int i, dynptr_id; 1044 1045 /* We always ensure that STACK_DYNPTR is never set partially, 1046 * hence just checking for slot_type[0] is enough. This is 1047 * different for STACK_SPILL, where it may be only set for 1048 * 1 byte, so code has to use is_spilled_reg. 1049 */ 1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1051 return 0; 1052 1053 /* Reposition spi to first slot */ 1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1055 spi = spi + 1; 1056 1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1058 verbose(env, "cannot overwrite referenced dynptr\n"); 1059 return -EINVAL; 1060 } 1061 1062 mark_stack_slot_scratched(env, spi); 1063 mark_stack_slot_scratched(env, spi - 1); 1064 1065 /* Writing partially to one dynptr stack slot destroys both. */ 1066 for (i = 0; i < BPF_REG_SIZE; i++) { 1067 state->stack[spi].slot_type[i] = STACK_INVALID; 1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1069 } 1070 1071 dynptr_id = state->stack[spi].spilled_ptr.id; 1072 /* Invalidate any slices associated with this dynptr */ 1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1076 continue; 1077 if (dreg->dynptr_id == dynptr_id) 1078 mark_reg_invalid(env, dreg); 1079 })); 1080 1081 /* Do not release reference state, we are destroying dynptr on stack, 1082 * not using some helper to release it. Just reset register. 1083 */ 1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1086 1087 /* Same reason as unmark_stack_slots_dynptr above */ 1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1090 1091 return 0; 1092 } 1093 1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1095 { 1096 int spi; 1097 1098 if (reg->type == CONST_PTR_TO_DYNPTR) 1099 return false; 1100 1101 spi = dynptr_get_spi(env, reg); 1102 1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1104 * error because this just means the stack state hasn't been updated yet. 1105 * We will do check_mem_access to check and update stack bounds later. 1106 */ 1107 if (spi < 0 && spi != -ERANGE) 1108 return false; 1109 1110 /* We don't need to check if the stack slots are marked by previous 1111 * dynptr initializations because we allow overwriting existing unreferenced 1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1114 * touching are completely destructed before we reinitialize them for a new 1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1116 * instead of delaying it until the end where the user will get "Unreleased 1117 * reference" error. 1118 */ 1119 return true; 1120 } 1121 1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1123 { 1124 struct bpf_func_state *state = func(env, reg); 1125 int i, spi; 1126 1127 /* This already represents first slot of initialized bpf_dynptr. 1128 * 1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1130 * check_func_arg_reg_off's logic, so we don't need to check its 1131 * offset and alignment. 1132 */ 1133 if (reg->type == CONST_PTR_TO_DYNPTR) 1134 return true; 1135 1136 spi = dynptr_get_spi(env, reg); 1137 if (spi < 0) 1138 return false; 1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1140 return false; 1141 1142 for (i = 0; i < BPF_REG_SIZE; i++) { 1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1152 enum bpf_arg_type arg_type) 1153 { 1154 struct bpf_func_state *state = func(env, reg); 1155 enum bpf_dynptr_type dynptr_type; 1156 int spi; 1157 1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1159 if (arg_type == ARG_PTR_TO_DYNPTR) 1160 return true; 1161 1162 dynptr_type = arg_to_dynptr_type(arg_type); 1163 if (reg->type == CONST_PTR_TO_DYNPTR) { 1164 return reg->dynptr.type == dynptr_type; 1165 } else { 1166 spi = dynptr_get_spi(env, reg); 1167 if (spi < 0) 1168 return false; 1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1170 } 1171 } 1172 1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1174 1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1176 struct bpf_reg_state *reg, int insn_idx, 1177 struct btf *btf, u32 btf_id, int nr_slots) 1178 { 1179 struct bpf_func_state *state = func(env, reg); 1180 int spi, i, j, id; 1181 1182 spi = iter_get_spi(env, reg, nr_slots); 1183 if (spi < 0) 1184 return spi; 1185 1186 id = acquire_reference_state(env, insn_idx); 1187 if (id < 0) 1188 return id; 1189 1190 for (i = 0; i < nr_slots; i++) { 1191 struct bpf_stack_state *slot = &state->stack[spi - i]; 1192 struct bpf_reg_state *st = &slot->spilled_ptr; 1193 1194 __mark_reg_known_zero(st); 1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1196 st->live |= REG_LIVE_WRITTEN; 1197 st->ref_obj_id = i == 0 ? id : 0; 1198 st->iter.btf = btf; 1199 st->iter.btf_id = btf_id; 1200 st->iter.state = BPF_ITER_STATE_ACTIVE; 1201 st->iter.depth = 0; 1202 1203 for (j = 0; j < BPF_REG_SIZE; j++) 1204 slot->slot_type[j] = STACK_ITER; 1205 1206 mark_stack_slot_scratched(env, spi - i); 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1213 struct bpf_reg_state *reg, int nr_slots) 1214 { 1215 struct bpf_func_state *state = func(env, reg); 1216 int spi, i, j; 1217 1218 spi = iter_get_spi(env, reg, nr_slots); 1219 if (spi < 0) 1220 return spi; 1221 1222 for (i = 0; i < nr_slots; i++) { 1223 struct bpf_stack_state *slot = &state->stack[spi - i]; 1224 struct bpf_reg_state *st = &slot->spilled_ptr; 1225 1226 if (i == 0) 1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1228 1229 __mark_reg_not_init(env, st); 1230 1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1232 st->live |= REG_LIVE_WRITTEN; 1233 1234 for (j = 0; j < BPF_REG_SIZE; j++) 1235 slot->slot_type[j] = STACK_INVALID; 1236 1237 mark_stack_slot_scratched(env, spi - i); 1238 } 1239 1240 return 0; 1241 } 1242 1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1244 struct bpf_reg_state *reg, int nr_slots) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 int spi, i, j; 1248 1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1250 * will do check_mem_access to check and update stack bounds later, so 1251 * return true for that case. 1252 */ 1253 spi = iter_get_spi(env, reg, nr_slots); 1254 if (spi == -ERANGE) 1255 return true; 1256 if (spi < 0) 1257 return false; 1258 1259 for (i = 0; i < nr_slots; i++) { 1260 struct bpf_stack_state *slot = &state->stack[spi - i]; 1261 1262 for (j = 0; j < BPF_REG_SIZE; j++) 1263 if (slot->slot_type[j] == STACK_ITER) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1271 struct btf *btf, u32 btf_id, int nr_slots) 1272 { 1273 struct bpf_func_state *state = func(env, reg); 1274 int spi, i, j; 1275 1276 spi = iter_get_spi(env, reg, nr_slots); 1277 if (spi < 0) 1278 return false; 1279 1280 for (i = 0; i < nr_slots; i++) { 1281 struct bpf_stack_state *slot = &state->stack[spi - i]; 1282 struct bpf_reg_state *st = &slot->spilled_ptr; 1283 1284 /* only main (first) slot has ref_obj_id set */ 1285 if (i == 0 && !st->ref_obj_id) 1286 return false; 1287 if (i != 0 && st->ref_obj_id) 1288 return false; 1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1290 return false; 1291 1292 for (j = 0; j < BPF_REG_SIZE; j++) 1293 if (slot->slot_type[j] != STACK_ITER) 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /* Check if given stack slot is "special": 1301 * - spilled register state (STACK_SPILL); 1302 * - dynptr state (STACK_DYNPTR); 1303 * - iter state (STACK_ITER). 1304 */ 1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1306 { 1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1308 1309 switch (type) { 1310 case STACK_SPILL: 1311 case STACK_DYNPTR: 1312 case STACK_ITER: 1313 return true; 1314 case STACK_INVALID: 1315 case STACK_MISC: 1316 case STACK_ZERO: 1317 return false; 1318 default: 1319 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1320 return true; 1321 } 1322 } 1323 1324 /* The reg state of a pointer or a bounded scalar was saved when 1325 * it was spilled to the stack. 1326 */ 1327 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1328 { 1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1330 } 1331 1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1333 { 1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1335 stack->spilled_ptr.type == SCALAR_VALUE; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 static void print_verifier_state(struct bpf_verifier_env *env, 1345 const struct bpf_func_state *state, 1346 bool print_all) 1347 { 1348 const struct bpf_reg_state *reg; 1349 enum bpf_reg_type t; 1350 int i; 1351 1352 if (state->frameno) 1353 verbose(env, " frame%d:", state->frameno); 1354 for (i = 0; i < MAX_BPF_REG; i++) { 1355 reg = &state->regs[i]; 1356 t = reg->type; 1357 if (t == NOT_INIT) 1358 continue; 1359 if (!print_all && !reg_scratched(env, i)) 1360 continue; 1361 verbose(env, " R%d", i); 1362 print_liveness(env, reg->live); 1363 verbose(env, "="); 1364 if (t == SCALAR_VALUE && reg->precise) 1365 verbose(env, "P"); 1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1367 tnum_is_const(reg->var_off)) { 1368 /* reg->off should be 0 for SCALAR_VALUE */ 1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1370 verbose(env, "%lld", reg->var_off.value + reg->off); 1371 } else { 1372 const char *sep = ""; 1373 1374 verbose(env, "%s", reg_type_str(env, t)); 1375 if (base_type(t) == PTR_TO_BTF_ID) 1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1377 verbose(env, "("); 1378 /* 1379 * _a stands for append, was shortened to avoid multiline statements below. 1380 * This macro is used to output a comma separated list of attributes. 1381 */ 1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1383 1384 if (reg->id) 1385 verbose_a("id=%d", reg->id); 1386 if (reg->ref_obj_id) 1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1388 if (type_is_non_owning_ref(reg->type)) 1389 verbose_a("%s", "non_own_ref"); 1390 if (t != SCALAR_VALUE) 1391 verbose_a("off=%d", reg->off); 1392 if (type_is_pkt_pointer(t)) 1393 verbose_a("r=%d", reg->range); 1394 else if (base_type(t) == CONST_PTR_TO_MAP || 1395 base_type(t) == PTR_TO_MAP_KEY || 1396 base_type(t) == PTR_TO_MAP_VALUE) 1397 verbose_a("ks=%d,vs=%d", 1398 reg->map_ptr->key_size, 1399 reg->map_ptr->value_size); 1400 if (tnum_is_const(reg->var_off)) { 1401 /* Typically an immediate SCALAR_VALUE, but 1402 * could be a pointer whose offset is too big 1403 * for reg->off 1404 */ 1405 verbose_a("imm=%llx", reg->var_off.value); 1406 } else { 1407 if (reg->smin_value != reg->umin_value && 1408 reg->smin_value != S64_MIN) 1409 verbose_a("smin=%lld", (long long)reg->smin_value); 1410 if (reg->smax_value != reg->umax_value && 1411 reg->smax_value != S64_MAX) 1412 verbose_a("smax=%lld", (long long)reg->smax_value); 1413 if (reg->umin_value != 0) 1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1415 if (reg->umax_value != U64_MAX) 1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1417 if (!tnum_is_unknown(reg->var_off)) { 1418 char tn_buf[48]; 1419 1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1421 verbose_a("var_off=%s", tn_buf); 1422 } 1423 if (reg->s32_min_value != reg->smin_value && 1424 reg->s32_min_value != S32_MIN) 1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1426 if (reg->s32_max_value != reg->smax_value && 1427 reg->s32_max_value != S32_MAX) 1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1429 if (reg->u32_min_value != reg->umin_value && 1430 reg->u32_min_value != U32_MIN) 1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1432 if (reg->u32_max_value != reg->umax_value && 1433 reg->u32_max_value != U32_MAX) 1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1435 } 1436 #undef verbose_a 1437 1438 verbose(env, ")"); 1439 } 1440 } 1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1442 char types_buf[BPF_REG_SIZE + 1]; 1443 bool valid = false; 1444 int j; 1445 1446 for (j = 0; j < BPF_REG_SIZE; j++) { 1447 if (state->stack[i].slot_type[j] != STACK_INVALID) 1448 valid = true; 1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1450 } 1451 types_buf[BPF_REG_SIZE] = 0; 1452 if (!valid) 1453 continue; 1454 if (!print_all && !stack_slot_scratched(env, i)) 1455 continue; 1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1457 case STACK_SPILL: 1458 reg = &state->stack[i].spilled_ptr; 1459 t = reg->type; 1460 1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1462 print_liveness(env, reg->live); 1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1464 if (t == SCALAR_VALUE && reg->precise) 1465 verbose(env, "P"); 1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1467 verbose(env, "%lld", reg->var_off.value + reg->off); 1468 break; 1469 case STACK_DYNPTR: 1470 i += BPF_DYNPTR_NR_SLOTS - 1; 1471 reg = &state->stack[i].spilled_ptr; 1472 1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1474 print_liveness(env, reg->live); 1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1476 if (reg->ref_obj_id) 1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1478 break; 1479 case STACK_ITER: 1480 /* only main slot has ref_obj_id set; skip others */ 1481 reg = &state->stack[i].spilled_ptr; 1482 if (!reg->ref_obj_id) 1483 continue; 1484 1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1486 print_liveness(env, reg->live); 1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1488 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1489 reg->ref_obj_id, iter_state_str(reg->iter.state), 1490 reg->iter.depth); 1491 break; 1492 case STACK_MISC: 1493 case STACK_ZERO: 1494 default: 1495 reg = &state->stack[i].spilled_ptr; 1496 1497 for (j = 0; j < BPF_REG_SIZE; j++) 1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1499 types_buf[BPF_REG_SIZE] = 0; 1500 1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1502 print_liveness(env, reg->live); 1503 verbose(env, "=%s", types_buf); 1504 break; 1505 } 1506 } 1507 if (state->acquired_refs && state->refs[0].id) { 1508 verbose(env, " refs=%d", state->refs[0].id); 1509 for (i = 1; i < state->acquired_refs; i++) 1510 if (state->refs[i].id) 1511 verbose(env, ",%d", state->refs[i].id); 1512 } 1513 if (state->in_callback_fn) 1514 verbose(env, " cb"); 1515 if (state->in_async_callback_fn) 1516 verbose(env, " async_cb"); 1517 verbose(env, "\n"); 1518 mark_verifier_state_clean(env); 1519 } 1520 1521 static inline u32 vlog_alignment(u32 pos) 1522 { 1523 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1524 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1525 } 1526 1527 static void print_insn_state(struct bpf_verifier_env *env, 1528 const struct bpf_func_state *state) 1529 { 1530 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1531 /* remove new line character */ 1532 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1533 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1534 } else { 1535 verbose(env, "%d:", env->insn_idx); 1536 } 1537 print_verifier_state(env, state, false); 1538 } 1539 1540 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1541 * small to hold src. This is different from krealloc since we don't want to preserve 1542 * the contents of dst. 1543 * 1544 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1545 * not be allocated. 1546 */ 1547 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1548 { 1549 size_t alloc_bytes; 1550 void *orig = dst; 1551 size_t bytes; 1552 1553 if (ZERO_OR_NULL_PTR(src)) 1554 goto out; 1555 1556 if (unlikely(check_mul_overflow(n, size, &bytes))) 1557 return NULL; 1558 1559 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1560 dst = krealloc(orig, alloc_bytes, flags); 1561 if (!dst) { 1562 kfree(orig); 1563 return NULL; 1564 } 1565 1566 memcpy(dst, src, bytes); 1567 out: 1568 return dst ? dst : ZERO_SIZE_PTR; 1569 } 1570 1571 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1572 * small to hold new_n items. new items are zeroed out if the array grows. 1573 * 1574 * Contrary to krealloc_array, does not free arr if new_n is zero. 1575 */ 1576 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1577 { 1578 size_t alloc_size; 1579 void *new_arr; 1580 1581 if (!new_n || old_n == new_n) 1582 goto out; 1583 1584 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1585 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1586 if (!new_arr) { 1587 kfree(arr); 1588 return NULL; 1589 } 1590 arr = new_arr; 1591 1592 if (new_n > old_n) 1593 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1594 1595 out: 1596 return arr ? arr : ZERO_SIZE_PTR; 1597 } 1598 1599 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1600 { 1601 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1602 sizeof(struct bpf_reference_state), GFP_KERNEL); 1603 if (!dst->refs) 1604 return -ENOMEM; 1605 1606 dst->acquired_refs = src->acquired_refs; 1607 return 0; 1608 } 1609 1610 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1611 { 1612 size_t n = src->allocated_stack / BPF_REG_SIZE; 1613 1614 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1615 GFP_KERNEL); 1616 if (!dst->stack) 1617 return -ENOMEM; 1618 1619 dst->allocated_stack = src->allocated_stack; 1620 return 0; 1621 } 1622 1623 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1624 { 1625 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1626 sizeof(struct bpf_reference_state)); 1627 if (!state->refs) 1628 return -ENOMEM; 1629 1630 state->acquired_refs = n; 1631 return 0; 1632 } 1633 1634 static int grow_stack_state(struct bpf_func_state *state, int size) 1635 { 1636 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1637 1638 if (old_n >= n) 1639 return 0; 1640 1641 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1642 if (!state->stack) 1643 return -ENOMEM; 1644 1645 state->allocated_stack = size; 1646 return 0; 1647 } 1648 1649 /* Acquire a pointer id from the env and update the state->refs to include 1650 * this new pointer reference. 1651 * On success, returns a valid pointer id to associate with the register 1652 * On failure, returns a negative errno. 1653 */ 1654 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1655 { 1656 struct bpf_func_state *state = cur_func(env); 1657 int new_ofs = state->acquired_refs; 1658 int id, err; 1659 1660 err = resize_reference_state(state, state->acquired_refs + 1); 1661 if (err) 1662 return err; 1663 id = ++env->id_gen; 1664 state->refs[new_ofs].id = id; 1665 state->refs[new_ofs].insn_idx = insn_idx; 1666 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1667 1668 return id; 1669 } 1670 1671 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1672 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1673 { 1674 int i, last_idx; 1675 1676 last_idx = state->acquired_refs - 1; 1677 for (i = 0; i < state->acquired_refs; i++) { 1678 if (state->refs[i].id == ptr_id) { 1679 /* Cannot release caller references in callbacks */ 1680 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1681 return -EINVAL; 1682 if (last_idx && i != last_idx) 1683 memcpy(&state->refs[i], &state->refs[last_idx], 1684 sizeof(*state->refs)); 1685 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1686 state->acquired_refs--; 1687 return 0; 1688 } 1689 } 1690 return -EINVAL; 1691 } 1692 1693 static void free_func_state(struct bpf_func_state *state) 1694 { 1695 if (!state) 1696 return; 1697 kfree(state->refs); 1698 kfree(state->stack); 1699 kfree(state); 1700 } 1701 1702 static void clear_jmp_history(struct bpf_verifier_state *state) 1703 { 1704 kfree(state->jmp_history); 1705 state->jmp_history = NULL; 1706 state->jmp_history_cnt = 0; 1707 } 1708 1709 static void free_verifier_state(struct bpf_verifier_state *state, 1710 bool free_self) 1711 { 1712 int i; 1713 1714 for (i = 0; i <= state->curframe; i++) { 1715 free_func_state(state->frame[i]); 1716 state->frame[i] = NULL; 1717 } 1718 clear_jmp_history(state); 1719 if (free_self) 1720 kfree(state); 1721 } 1722 1723 /* copy verifier state from src to dst growing dst stack space 1724 * when necessary to accommodate larger src stack 1725 */ 1726 static int copy_func_state(struct bpf_func_state *dst, 1727 const struct bpf_func_state *src) 1728 { 1729 int err; 1730 1731 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1732 err = copy_reference_state(dst, src); 1733 if (err) 1734 return err; 1735 return copy_stack_state(dst, src); 1736 } 1737 1738 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1739 const struct bpf_verifier_state *src) 1740 { 1741 struct bpf_func_state *dst; 1742 int i, err; 1743 1744 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1745 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1746 GFP_USER); 1747 if (!dst_state->jmp_history) 1748 return -ENOMEM; 1749 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1750 1751 /* if dst has more stack frames then src frame, free them */ 1752 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1753 free_func_state(dst_state->frame[i]); 1754 dst_state->frame[i] = NULL; 1755 } 1756 dst_state->speculative = src->speculative; 1757 dst_state->active_rcu_lock = src->active_rcu_lock; 1758 dst_state->curframe = src->curframe; 1759 dst_state->active_lock.ptr = src->active_lock.ptr; 1760 dst_state->active_lock.id = src->active_lock.id; 1761 dst_state->branches = src->branches; 1762 dst_state->parent = src->parent; 1763 dst_state->first_insn_idx = src->first_insn_idx; 1764 dst_state->last_insn_idx = src->last_insn_idx; 1765 for (i = 0; i <= src->curframe; i++) { 1766 dst = dst_state->frame[i]; 1767 if (!dst) { 1768 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1769 if (!dst) 1770 return -ENOMEM; 1771 dst_state->frame[i] = dst; 1772 } 1773 err = copy_func_state(dst, src->frame[i]); 1774 if (err) 1775 return err; 1776 } 1777 return 0; 1778 } 1779 1780 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1781 { 1782 while (st) { 1783 u32 br = --st->branches; 1784 1785 /* WARN_ON(br > 1) technically makes sense here, 1786 * but see comment in push_stack(), hence: 1787 */ 1788 WARN_ONCE((int)br < 0, 1789 "BUG update_branch_counts:branches_to_explore=%d\n", 1790 br); 1791 if (br) 1792 break; 1793 st = st->parent; 1794 } 1795 } 1796 1797 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1798 int *insn_idx, bool pop_log) 1799 { 1800 struct bpf_verifier_state *cur = env->cur_state; 1801 struct bpf_verifier_stack_elem *elem, *head = env->head; 1802 int err; 1803 1804 if (env->head == NULL) 1805 return -ENOENT; 1806 1807 if (cur) { 1808 err = copy_verifier_state(cur, &head->st); 1809 if (err) 1810 return err; 1811 } 1812 if (pop_log) 1813 bpf_vlog_reset(&env->log, head->log_pos); 1814 if (insn_idx) 1815 *insn_idx = head->insn_idx; 1816 if (prev_insn_idx) 1817 *prev_insn_idx = head->prev_insn_idx; 1818 elem = head->next; 1819 free_verifier_state(&head->st, false); 1820 kfree(head); 1821 env->head = elem; 1822 env->stack_size--; 1823 return 0; 1824 } 1825 1826 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1827 int insn_idx, int prev_insn_idx, 1828 bool speculative) 1829 { 1830 struct bpf_verifier_state *cur = env->cur_state; 1831 struct bpf_verifier_stack_elem *elem; 1832 int err; 1833 1834 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1835 if (!elem) 1836 goto err; 1837 1838 elem->insn_idx = insn_idx; 1839 elem->prev_insn_idx = prev_insn_idx; 1840 elem->next = env->head; 1841 elem->log_pos = env->log.end_pos; 1842 env->head = elem; 1843 env->stack_size++; 1844 err = copy_verifier_state(&elem->st, cur); 1845 if (err) 1846 goto err; 1847 elem->st.speculative |= speculative; 1848 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1849 verbose(env, "The sequence of %d jumps is too complex.\n", 1850 env->stack_size); 1851 goto err; 1852 } 1853 if (elem->st.parent) { 1854 ++elem->st.parent->branches; 1855 /* WARN_ON(branches > 2) technically makes sense here, 1856 * but 1857 * 1. speculative states will bump 'branches' for non-branch 1858 * instructions 1859 * 2. is_state_visited() heuristics may decide not to create 1860 * a new state for a sequence of branches and all such current 1861 * and cloned states will be pointing to a single parent state 1862 * which might have large 'branches' count. 1863 */ 1864 } 1865 return &elem->st; 1866 err: 1867 free_verifier_state(env->cur_state, true); 1868 env->cur_state = NULL; 1869 /* pop all elements and return */ 1870 while (!pop_stack(env, NULL, NULL, false)); 1871 return NULL; 1872 } 1873 1874 #define CALLER_SAVED_REGS 6 1875 static const int caller_saved[CALLER_SAVED_REGS] = { 1876 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1877 }; 1878 1879 /* This helper doesn't clear reg->id */ 1880 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1881 { 1882 reg->var_off = tnum_const(imm); 1883 reg->smin_value = (s64)imm; 1884 reg->smax_value = (s64)imm; 1885 reg->umin_value = imm; 1886 reg->umax_value = imm; 1887 1888 reg->s32_min_value = (s32)imm; 1889 reg->s32_max_value = (s32)imm; 1890 reg->u32_min_value = (u32)imm; 1891 reg->u32_max_value = (u32)imm; 1892 } 1893 1894 /* Mark the unknown part of a register (variable offset or scalar value) as 1895 * known to have the value @imm. 1896 */ 1897 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1898 { 1899 /* Clear off and union(map_ptr, range) */ 1900 memset(((u8 *)reg) + sizeof(reg->type), 0, 1901 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1902 reg->id = 0; 1903 reg->ref_obj_id = 0; 1904 ___mark_reg_known(reg, imm); 1905 } 1906 1907 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1908 { 1909 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1910 reg->s32_min_value = (s32)imm; 1911 reg->s32_max_value = (s32)imm; 1912 reg->u32_min_value = (u32)imm; 1913 reg->u32_max_value = (u32)imm; 1914 } 1915 1916 /* Mark the 'variable offset' part of a register as zero. This should be 1917 * used only on registers holding a pointer type. 1918 */ 1919 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1920 { 1921 __mark_reg_known(reg, 0); 1922 } 1923 1924 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1925 { 1926 __mark_reg_known(reg, 0); 1927 reg->type = SCALAR_VALUE; 1928 } 1929 1930 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1931 struct bpf_reg_state *regs, u32 regno) 1932 { 1933 if (WARN_ON(regno >= MAX_BPF_REG)) { 1934 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1935 /* Something bad happened, let's kill all regs */ 1936 for (regno = 0; regno < MAX_BPF_REG; regno++) 1937 __mark_reg_not_init(env, regs + regno); 1938 return; 1939 } 1940 __mark_reg_known_zero(regs + regno); 1941 } 1942 1943 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1944 bool first_slot, int dynptr_id) 1945 { 1946 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1947 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1948 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1949 */ 1950 __mark_reg_known_zero(reg); 1951 reg->type = CONST_PTR_TO_DYNPTR; 1952 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1953 reg->id = dynptr_id; 1954 reg->dynptr.type = type; 1955 reg->dynptr.first_slot = first_slot; 1956 } 1957 1958 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1959 { 1960 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1961 const struct bpf_map *map = reg->map_ptr; 1962 1963 if (map->inner_map_meta) { 1964 reg->type = CONST_PTR_TO_MAP; 1965 reg->map_ptr = map->inner_map_meta; 1966 /* transfer reg's id which is unique for every map_lookup_elem 1967 * as UID of the inner map. 1968 */ 1969 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1970 reg->map_uid = reg->id; 1971 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1972 reg->type = PTR_TO_XDP_SOCK; 1973 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1974 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1975 reg->type = PTR_TO_SOCKET; 1976 } else { 1977 reg->type = PTR_TO_MAP_VALUE; 1978 } 1979 return; 1980 } 1981 1982 reg->type &= ~PTR_MAYBE_NULL; 1983 } 1984 1985 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1986 struct btf_field_graph_root *ds_head) 1987 { 1988 __mark_reg_known_zero(®s[regno]); 1989 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1990 regs[regno].btf = ds_head->btf; 1991 regs[regno].btf_id = ds_head->value_btf_id; 1992 regs[regno].off = ds_head->node_offset; 1993 } 1994 1995 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1996 { 1997 return type_is_pkt_pointer(reg->type); 1998 } 1999 2000 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2001 { 2002 return reg_is_pkt_pointer(reg) || 2003 reg->type == PTR_TO_PACKET_END; 2004 } 2005 2006 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2007 { 2008 return base_type(reg->type) == PTR_TO_MEM && 2009 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2010 } 2011 2012 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2013 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2014 enum bpf_reg_type which) 2015 { 2016 /* The register can already have a range from prior markings. 2017 * This is fine as long as it hasn't been advanced from its 2018 * origin. 2019 */ 2020 return reg->type == which && 2021 reg->id == 0 && 2022 reg->off == 0 && 2023 tnum_equals_const(reg->var_off, 0); 2024 } 2025 2026 /* Reset the min/max bounds of a register */ 2027 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2028 { 2029 reg->smin_value = S64_MIN; 2030 reg->smax_value = S64_MAX; 2031 reg->umin_value = 0; 2032 reg->umax_value = U64_MAX; 2033 2034 reg->s32_min_value = S32_MIN; 2035 reg->s32_max_value = S32_MAX; 2036 reg->u32_min_value = 0; 2037 reg->u32_max_value = U32_MAX; 2038 } 2039 2040 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2041 { 2042 reg->smin_value = S64_MIN; 2043 reg->smax_value = S64_MAX; 2044 reg->umin_value = 0; 2045 reg->umax_value = U64_MAX; 2046 } 2047 2048 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2049 { 2050 reg->s32_min_value = S32_MIN; 2051 reg->s32_max_value = S32_MAX; 2052 reg->u32_min_value = 0; 2053 reg->u32_max_value = U32_MAX; 2054 } 2055 2056 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2057 { 2058 struct tnum var32_off = tnum_subreg(reg->var_off); 2059 2060 /* min signed is max(sign bit) | min(other bits) */ 2061 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2062 var32_off.value | (var32_off.mask & S32_MIN)); 2063 /* max signed is min(sign bit) | max(other bits) */ 2064 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2065 var32_off.value | (var32_off.mask & S32_MAX)); 2066 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2067 reg->u32_max_value = min(reg->u32_max_value, 2068 (u32)(var32_off.value | var32_off.mask)); 2069 } 2070 2071 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2072 { 2073 /* min signed is max(sign bit) | min(other bits) */ 2074 reg->smin_value = max_t(s64, reg->smin_value, 2075 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2076 /* max signed is min(sign bit) | max(other bits) */ 2077 reg->smax_value = min_t(s64, reg->smax_value, 2078 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2079 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2080 reg->umax_value = min(reg->umax_value, 2081 reg->var_off.value | reg->var_off.mask); 2082 } 2083 2084 static void __update_reg_bounds(struct bpf_reg_state *reg) 2085 { 2086 __update_reg32_bounds(reg); 2087 __update_reg64_bounds(reg); 2088 } 2089 2090 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2091 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2092 { 2093 /* Learn sign from signed bounds. 2094 * If we cannot cross the sign boundary, then signed and unsigned bounds 2095 * are the same, so combine. This works even in the negative case, e.g. 2096 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2097 */ 2098 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2099 reg->s32_min_value = reg->u32_min_value = 2100 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2101 reg->s32_max_value = reg->u32_max_value = 2102 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2103 return; 2104 } 2105 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2106 * boundary, so we must be careful. 2107 */ 2108 if ((s32)reg->u32_max_value >= 0) { 2109 /* Positive. We can't learn anything from the smin, but smax 2110 * is positive, hence safe. 2111 */ 2112 reg->s32_min_value = reg->u32_min_value; 2113 reg->s32_max_value = reg->u32_max_value = 2114 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2115 } else if ((s32)reg->u32_min_value < 0) { 2116 /* Negative. We can't learn anything from the smax, but smin 2117 * is negative, hence safe. 2118 */ 2119 reg->s32_min_value = reg->u32_min_value = 2120 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2121 reg->s32_max_value = reg->u32_max_value; 2122 } 2123 } 2124 2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2126 { 2127 /* Learn sign from signed bounds. 2128 * If we cannot cross the sign boundary, then signed and unsigned bounds 2129 * are the same, so combine. This works even in the negative case, e.g. 2130 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2131 */ 2132 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2133 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2134 reg->umin_value); 2135 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2136 reg->umax_value); 2137 return; 2138 } 2139 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2140 * boundary, so we must be careful. 2141 */ 2142 if ((s64)reg->umax_value >= 0) { 2143 /* Positive. We can't learn anything from the smin, but smax 2144 * is positive, hence safe. 2145 */ 2146 reg->smin_value = reg->umin_value; 2147 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2148 reg->umax_value); 2149 } else if ((s64)reg->umin_value < 0) { 2150 /* Negative. We can't learn anything from the smax, but smin 2151 * is negative, hence safe. 2152 */ 2153 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2154 reg->umin_value); 2155 reg->smax_value = reg->umax_value; 2156 } 2157 } 2158 2159 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2160 { 2161 __reg32_deduce_bounds(reg); 2162 __reg64_deduce_bounds(reg); 2163 } 2164 2165 /* Attempts to improve var_off based on unsigned min/max information */ 2166 static void __reg_bound_offset(struct bpf_reg_state *reg) 2167 { 2168 struct tnum var64_off = tnum_intersect(reg->var_off, 2169 tnum_range(reg->umin_value, 2170 reg->umax_value)); 2171 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2172 tnum_range(reg->u32_min_value, 2173 reg->u32_max_value)); 2174 2175 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2176 } 2177 2178 static void reg_bounds_sync(struct bpf_reg_state *reg) 2179 { 2180 /* We might have learned new bounds from the var_off. */ 2181 __update_reg_bounds(reg); 2182 /* We might have learned something about the sign bit. */ 2183 __reg_deduce_bounds(reg); 2184 /* We might have learned some bits from the bounds. */ 2185 __reg_bound_offset(reg); 2186 /* Intersecting with the old var_off might have improved our bounds 2187 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2188 * then new var_off is (0; 0x7f...fc) which improves our umax. 2189 */ 2190 __update_reg_bounds(reg); 2191 } 2192 2193 static bool __reg32_bound_s64(s32 a) 2194 { 2195 return a >= 0 && a <= S32_MAX; 2196 } 2197 2198 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2199 { 2200 reg->umin_value = reg->u32_min_value; 2201 reg->umax_value = reg->u32_max_value; 2202 2203 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2204 * be positive otherwise set to worse case bounds and refine later 2205 * from tnum. 2206 */ 2207 if (__reg32_bound_s64(reg->s32_min_value) && 2208 __reg32_bound_s64(reg->s32_max_value)) { 2209 reg->smin_value = reg->s32_min_value; 2210 reg->smax_value = reg->s32_max_value; 2211 } else { 2212 reg->smin_value = 0; 2213 reg->smax_value = U32_MAX; 2214 } 2215 } 2216 2217 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2218 { 2219 /* special case when 64-bit register has upper 32-bit register 2220 * zeroed. Typically happens after zext or <<32, >>32 sequence 2221 * allowing us to use 32-bit bounds directly, 2222 */ 2223 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2224 __reg_assign_32_into_64(reg); 2225 } else { 2226 /* Otherwise the best we can do is push lower 32bit known and 2227 * unknown bits into register (var_off set from jmp logic) 2228 * then learn as much as possible from the 64-bit tnum 2229 * known and unknown bits. The previous smin/smax bounds are 2230 * invalid here because of jmp32 compare so mark them unknown 2231 * so they do not impact tnum bounds calculation. 2232 */ 2233 __mark_reg64_unbounded(reg); 2234 } 2235 reg_bounds_sync(reg); 2236 } 2237 2238 static bool __reg64_bound_s32(s64 a) 2239 { 2240 return a >= S32_MIN && a <= S32_MAX; 2241 } 2242 2243 static bool __reg64_bound_u32(u64 a) 2244 { 2245 return a >= U32_MIN && a <= U32_MAX; 2246 } 2247 2248 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2249 { 2250 __mark_reg32_unbounded(reg); 2251 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2252 reg->s32_min_value = (s32)reg->smin_value; 2253 reg->s32_max_value = (s32)reg->smax_value; 2254 } 2255 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2256 reg->u32_min_value = (u32)reg->umin_value; 2257 reg->u32_max_value = (u32)reg->umax_value; 2258 } 2259 reg_bounds_sync(reg); 2260 } 2261 2262 /* Mark a register as having a completely unknown (scalar) value. */ 2263 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2264 struct bpf_reg_state *reg) 2265 { 2266 /* 2267 * Clear type, off, and union(map_ptr, range) and 2268 * padding between 'type' and union 2269 */ 2270 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2271 reg->type = SCALAR_VALUE; 2272 reg->id = 0; 2273 reg->ref_obj_id = 0; 2274 reg->var_off = tnum_unknown; 2275 reg->frameno = 0; 2276 reg->precise = !env->bpf_capable; 2277 __mark_reg_unbounded(reg); 2278 } 2279 2280 static void mark_reg_unknown(struct bpf_verifier_env *env, 2281 struct bpf_reg_state *regs, u32 regno) 2282 { 2283 if (WARN_ON(regno >= MAX_BPF_REG)) { 2284 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2285 /* Something bad happened, let's kill all regs except FP */ 2286 for (regno = 0; regno < BPF_REG_FP; regno++) 2287 __mark_reg_not_init(env, regs + regno); 2288 return; 2289 } 2290 __mark_reg_unknown(env, regs + regno); 2291 } 2292 2293 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2294 struct bpf_reg_state *reg) 2295 { 2296 __mark_reg_unknown(env, reg); 2297 reg->type = NOT_INIT; 2298 } 2299 2300 static void mark_reg_not_init(struct bpf_verifier_env *env, 2301 struct bpf_reg_state *regs, u32 regno) 2302 { 2303 if (WARN_ON(regno >= MAX_BPF_REG)) { 2304 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2305 /* Something bad happened, let's kill all regs except FP */ 2306 for (regno = 0; regno < BPF_REG_FP; regno++) 2307 __mark_reg_not_init(env, regs + regno); 2308 return; 2309 } 2310 __mark_reg_not_init(env, regs + regno); 2311 } 2312 2313 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2314 struct bpf_reg_state *regs, u32 regno, 2315 enum bpf_reg_type reg_type, 2316 struct btf *btf, u32 btf_id, 2317 enum bpf_type_flag flag) 2318 { 2319 if (reg_type == SCALAR_VALUE) { 2320 mark_reg_unknown(env, regs, regno); 2321 return; 2322 } 2323 mark_reg_known_zero(env, regs, regno); 2324 regs[regno].type = PTR_TO_BTF_ID | flag; 2325 regs[regno].btf = btf; 2326 regs[regno].btf_id = btf_id; 2327 } 2328 2329 #define DEF_NOT_SUBREG (0) 2330 static void init_reg_state(struct bpf_verifier_env *env, 2331 struct bpf_func_state *state) 2332 { 2333 struct bpf_reg_state *regs = state->regs; 2334 int i; 2335 2336 for (i = 0; i < MAX_BPF_REG; i++) { 2337 mark_reg_not_init(env, regs, i); 2338 regs[i].live = REG_LIVE_NONE; 2339 regs[i].parent = NULL; 2340 regs[i].subreg_def = DEF_NOT_SUBREG; 2341 } 2342 2343 /* frame pointer */ 2344 regs[BPF_REG_FP].type = PTR_TO_STACK; 2345 mark_reg_known_zero(env, regs, BPF_REG_FP); 2346 regs[BPF_REG_FP].frameno = state->frameno; 2347 } 2348 2349 #define BPF_MAIN_FUNC (-1) 2350 static void init_func_state(struct bpf_verifier_env *env, 2351 struct bpf_func_state *state, 2352 int callsite, int frameno, int subprogno) 2353 { 2354 state->callsite = callsite; 2355 state->frameno = frameno; 2356 state->subprogno = subprogno; 2357 state->callback_ret_range = tnum_range(0, 0); 2358 init_reg_state(env, state); 2359 mark_verifier_state_scratched(env); 2360 } 2361 2362 /* Similar to push_stack(), but for async callbacks */ 2363 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2364 int insn_idx, int prev_insn_idx, 2365 int subprog) 2366 { 2367 struct bpf_verifier_stack_elem *elem; 2368 struct bpf_func_state *frame; 2369 2370 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2371 if (!elem) 2372 goto err; 2373 2374 elem->insn_idx = insn_idx; 2375 elem->prev_insn_idx = prev_insn_idx; 2376 elem->next = env->head; 2377 elem->log_pos = env->log.end_pos; 2378 env->head = elem; 2379 env->stack_size++; 2380 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2381 verbose(env, 2382 "The sequence of %d jumps is too complex for async cb.\n", 2383 env->stack_size); 2384 goto err; 2385 } 2386 /* Unlike push_stack() do not copy_verifier_state(). 2387 * The caller state doesn't matter. 2388 * This is async callback. It starts in a fresh stack. 2389 * Initialize it similar to do_check_common(). 2390 */ 2391 elem->st.branches = 1; 2392 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2393 if (!frame) 2394 goto err; 2395 init_func_state(env, frame, 2396 BPF_MAIN_FUNC /* callsite */, 2397 0 /* frameno within this callchain */, 2398 subprog /* subprog number within this prog */); 2399 elem->st.frame[0] = frame; 2400 return &elem->st; 2401 err: 2402 free_verifier_state(env->cur_state, true); 2403 env->cur_state = NULL; 2404 /* pop all elements and return */ 2405 while (!pop_stack(env, NULL, NULL, false)); 2406 return NULL; 2407 } 2408 2409 2410 enum reg_arg_type { 2411 SRC_OP, /* register is used as source operand */ 2412 DST_OP, /* register is used as destination operand */ 2413 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2414 }; 2415 2416 static int cmp_subprogs(const void *a, const void *b) 2417 { 2418 return ((struct bpf_subprog_info *)a)->start - 2419 ((struct bpf_subprog_info *)b)->start; 2420 } 2421 2422 static int find_subprog(struct bpf_verifier_env *env, int off) 2423 { 2424 struct bpf_subprog_info *p; 2425 2426 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2427 sizeof(env->subprog_info[0]), cmp_subprogs); 2428 if (!p) 2429 return -ENOENT; 2430 return p - env->subprog_info; 2431 2432 } 2433 2434 static int add_subprog(struct bpf_verifier_env *env, int off) 2435 { 2436 int insn_cnt = env->prog->len; 2437 int ret; 2438 2439 if (off >= insn_cnt || off < 0) { 2440 verbose(env, "call to invalid destination\n"); 2441 return -EINVAL; 2442 } 2443 ret = find_subprog(env, off); 2444 if (ret >= 0) 2445 return ret; 2446 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2447 verbose(env, "too many subprograms\n"); 2448 return -E2BIG; 2449 } 2450 /* determine subprog starts. The end is one before the next starts */ 2451 env->subprog_info[env->subprog_cnt++].start = off; 2452 sort(env->subprog_info, env->subprog_cnt, 2453 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2454 return env->subprog_cnt - 1; 2455 } 2456 2457 #define MAX_KFUNC_DESCS 256 2458 #define MAX_KFUNC_BTFS 256 2459 2460 struct bpf_kfunc_desc { 2461 struct btf_func_model func_model; 2462 u32 func_id; 2463 s32 imm; 2464 u16 offset; 2465 unsigned long addr; 2466 }; 2467 2468 struct bpf_kfunc_btf { 2469 struct btf *btf; 2470 struct module *module; 2471 u16 offset; 2472 }; 2473 2474 struct bpf_kfunc_desc_tab { 2475 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2476 * verification. JITs do lookups by bpf_insn, where func_id may not be 2477 * available, therefore at the end of verification do_misc_fixups() 2478 * sorts this by imm and offset. 2479 */ 2480 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2481 u32 nr_descs; 2482 }; 2483 2484 struct bpf_kfunc_btf_tab { 2485 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2486 u32 nr_descs; 2487 }; 2488 2489 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2490 { 2491 const struct bpf_kfunc_desc *d0 = a; 2492 const struct bpf_kfunc_desc *d1 = b; 2493 2494 /* func_id is not greater than BTF_MAX_TYPE */ 2495 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2496 } 2497 2498 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2499 { 2500 const struct bpf_kfunc_btf *d0 = a; 2501 const struct bpf_kfunc_btf *d1 = b; 2502 2503 return d0->offset - d1->offset; 2504 } 2505 2506 static const struct bpf_kfunc_desc * 2507 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2508 { 2509 struct bpf_kfunc_desc desc = { 2510 .func_id = func_id, 2511 .offset = offset, 2512 }; 2513 struct bpf_kfunc_desc_tab *tab; 2514 2515 tab = prog->aux->kfunc_tab; 2516 return bsearch(&desc, tab->descs, tab->nr_descs, 2517 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2518 } 2519 2520 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2521 u16 btf_fd_idx, u8 **func_addr) 2522 { 2523 const struct bpf_kfunc_desc *desc; 2524 2525 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2526 if (!desc) 2527 return -EFAULT; 2528 2529 *func_addr = (u8 *)desc->addr; 2530 return 0; 2531 } 2532 2533 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2534 s16 offset) 2535 { 2536 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2537 struct bpf_kfunc_btf_tab *tab; 2538 struct bpf_kfunc_btf *b; 2539 struct module *mod; 2540 struct btf *btf; 2541 int btf_fd; 2542 2543 tab = env->prog->aux->kfunc_btf_tab; 2544 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2545 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2546 if (!b) { 2547 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2548 verbose(env, "too many different module BTFs\n"); 2549 return ERR_PTR(-E2BIG); 2550 } 2551 2552 if (bpfptr_is_null(env->fd_array)) { 2553 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2554 return ERR_PTR(-EPROTO); 2555 } 2556 2557 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2558 offset * sizeof(btf_fd), 2559 sizeof(btf_fd))) 2560 return ERR_PTR(-EFAULT); 2561 2562 btf = btf_get_by_fd(btf_fd); 2563 if (IS_ERR(btf)) { 2564 verbose(env, "invalid module BTF fd specified\n"); 2565 return btf; 2566 } 2567 2568 if (!btf_is_module(btf)) { 2569 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2570 btf_put(btf); 2571 return ERR_PTR(-EINVAL); 2572 } 2573 2574 mod = btf_try_get_module(btf); 2575 if (!mod) { 2576 btf_put(btf); 2577 return ERR_PTR(-ENXIO); 2578 } 2579 2580 b = &tab->descs[tab->nr_descs++]; 2581 b->btf = btf; 2582 b->module = mod; 2583 b->offset = offset; 2584 2585 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2586 kfunc_btf_cmp_by_off, NULL); 2587 } 2588 return b->btf; 2589 } 2590 2591 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2592 { 2593 if (!tab) 2594 return; 2595 2596 while (tab->nr_descs--) { 2597 module_put(tab->descs[tab->nr_descs].module); 2598 btf_put(tab->descs[tab->nr_descs].btf); 2599 } 2600 kfree(tab); 2601 } 2602 2603 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2604 { 2605 if (offset) { 2606 if (offset < 0) { 2607 /* In the future, this can be allowed to increase limit 2608 * of fd index into fd_array, interpreted as u16. 2609 */ 2610 verbose(env, "negative offset disallowed for kernel module function call\n"); 2611 return ERR_PTR(-EINVAL); 2612 } 2613 2614 return __find_kfunc_desc_btf(env, offset); 2615 } 2616 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2617 } 2618 2619 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2620 { 2621 const struct btf_type *func, *func_proto; 2622 struct bpf_kfunc_btf_tab *btf_tab; 2623 struct bpf_kfunc_desc_tab *tab; 2624 struct bpf_prog_aux *prog_aux; 2625 struct bpf_kfunc_desc *desc; 2626 const char *func_name; 2627 struct btf *desc_btf; 2628 unsigned long call_imm; 2629 unsigned long addr; 2630 int err; 2631 2632 prog_aux = env->prog->aux; 2633 tab = prog_aux->kfunc_tab; 2634 btf_tab = prog_aux->kfunc_btf_tab; 2635 if (!tab) { 2636 if (!btf_vmlinux) { 2637 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2638 return -ENOTSUPP; 2639 } 2640 2641 if (!env->prog->jit_requested) { 2642 verbose(env, "JIT is required for calling kernel function\n"); 2643 return -ENOTSUPP; 2644 } 2645 2646 if (!bpf_jit_supports_kfunc_call()) { 2647 verbose(env, "JIT does not support calling kernel function\n"); 2648 return -ENOTSUPP; 2649 } 2650 2651 if (!env->prog->gpl_compatible) { 2652 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2653 return -EINVAL; 2654 } 2655 2656 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2657 if (!tab) 2658 return -ENOMEM; 2659 prog_aux->kfunc_tab = tab; 2660 } 2661 2662 /* func_id == 0 is always invalid, but instead of returning an error, be 2663 * conservative and wait until the code elimination pass before returning 2664 * error, so that invalid calls that get pruned out can be in BPF programs 2665 * loaded from userspace. It is also required that offset be untouched 2666 * for such calls. 2667 */ 2668 if (!func_id && !offset) 2669 return 0; 2670 2671 if (!btf_tab && offset) { 2672 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2673 if (!btf_tab) 2674 return -ENOMEM; 2675 prog_aux->kfunc_btf_tab = btf_tab; 2676 } 2677 2678 desc_btf = find_kfunc_desc_btf(env, offset); 2679 if (IS_ERR(desc_btf)) { 2680 verbose(env, "failed to find BTF for kernel function\n"); 2681 return PTR_ERR(desc_btf); 2682 } 2683 2684 if (find_kfunc_desc(env->prog, func_id, offset)) 2685 return 0; 2686 2687 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2688 verbose(env, "too many different kernel function calls\n"); 2689 return -E2BIG; 2690 } 2691 2692 func = btf_type_by_id(desc_btf, func_id); 2693 if (!func || !btf_type_is_func(func)) { 2694 verbose(env, "kernel btf_id %u is not a function\n", 2695 func_id); 2696 return -EINVAL; 2697 } 2698 func_proto = btf_type_by_id(desc_btf, func->type); 2699 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2700 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2701 func_id); 2702 return -EINVAL; 2703 } 2704 2705 func_name = btf_name_by_offset(desc_btf, func->name_off); 2706 addr = kallsyms_lookup_name(func_name); 2707 if (!addr) { 2708 verbose(env, "cannot find address for kernel function %s\n", 2709 func_name); 2710 return -EINVAL; 2711 } 2712 specialize_kfunc(env, func_id, offset, &addr); 2713 2714 if (bpf_jit_supports_far_kfunc_call()) { 2715 call_imm = func_id; 2716 } else { 2717 call_imm = BPF_CALL_IMM(addr); 2718 /* Check whether the relative offset overflows desc->imm */ 2719 if ((unsigned long)(s32)call_imm != call_imm) { 2720 verbose(env, "address of kernel function %s is out of range\n", 2721 func_name); 2722 return -EINVAL; 2723 } 2724 } 2725 2726 if (bpf_dev_bound_kfunc_id(func_id)) { 2727 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2728 if (err) 2729 return err; 2730 } 2731 2732 desc = &tab->descs[tab->nr_descs++]; 2733 desc->func_id = func_id; 2734 desc->imm = call_imm; 2735 desc->offset = offset; 2736 desc->addr = addr; 2737 err = btf_distill_func_proto(&env->log, desc_btf, 2738 func_proto, func_name, 2739 &desc->func_model); 2740 if (!err) 2741 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2742 kfunc_desc_cmp_by_id_off, NULL); 2743 return err; 2744 } 2745 2746 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2747 { 2748 const struct bpf_kfunc_desc *d0 = a; 2749 const struct bpf_kfunc_desc *d1 = b; 2750 2751 if (d0->imm != d1->imm) 2752 return d0->imm < d1->imm ? -1 : 1; 2753 if (d0->offset != d1->offset) 2754 return d0->offset < d1->offset ? -1 : 1; 2755 return 0; 2756 } 2757 2758 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2759 { 2760 struct bpf_kfunc_desc_tab *tab; 2761 2762 tab = prog->aux->kfunc_tab; 2763 if (!tab) 2764 return; 2765 2766 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2767 kfunc_desc_cmp_by_imm_off, NULL); 2768 } 2769 2770 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2771 { 2772 return !!prog->aux->kfunc_tab; 2773 } 2774 2775 const struct btf_func_model * 2776 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2777 const struct bpf_insn *insn) 2778 { 2779 const struct bpf_kfunc_desc desc = { 2780 .imm = insn->imm, 2781 .offset = insn->off, 2782 }; 2783 const struct bpf_kfunc_desc *res; 2784 struct bpf_kfunc_desc_tab *tab; 2785 2786 tab = prog->aux->kfunc_tab; 2787 res = bsearch(&desc, tab->descs, tab->nr_descs, 2788 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2789 2790 return res ? &res->func_model : NULL; 2791 } 2792 2793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2794 { 2795 struct bpf_subprog_info *subprog = env->subprog_info; 2796 struct bpf_insn *insn = env->prog->insnsi; 2797 int i, ret, insn_cnt = env->prog->len; 2798 2799 /* Add entry function. */ 2800 ret = add_subprog(env, 0); 2801 if (ret) 2802 return ret; 2803 2804 for (i = 0; i < insn_cnt; i++, insn++) { 2805 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2806 !bpf_pseudo_kfunc_call(insn)) 2807 continue; 2808 2809 if (!env->bpf_capable) { 2810 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2811 return -EPERM; 2812 } 2813 2814 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2815 ret = add_subprog(env, i + insn->imm + 1); 2816 else 2817 ret = add_kfunc_call(env, insn->imm, insn->off); 2818 2819 if (ret < 0) 2820 return ret; 2821 } 2822 2823 /* Add a fake 'exit' subprog which could simplify subprog iteration 2824 * logic. 'subprog_cnt' should not be increased. 2825 */ 2826 subprog[env->subprog_cnt].start = insn_cnt; 2827 2828 if (env->log.level & BPF_LOG_LEVEL2) 2829 for (i = 0; i < env->subprog_cnt; i++) 2830 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2831 2832 return 0; 2833 } 2834 2835 static int check_subprogs(struct bpf_verifier_env *env) 2836 { 2837 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2838 struct bpf_subprog_info *subprog = env->subprog_info; 2839 struct bpf_insn *insn = env->prog->insnsi; 2840 int insn_cnt = env->prog->len; 2841 2842 /* now check that all jumps are within the same subprog */ 2843 subprog_start = subprog[cur_subprog].start; 2844 subprog_end = subprog[cur_subprog + 1].start; 2845 for (i = 0; i < insn_cnt; i++) { 2846 u8 code = insn[i].code; 2847 2848 if (code == (BPF_JMP | BPF_CALL) && 2849 insn[i].src_reg == 0 && 2850 insn[i].imm == BPF_FUNC_tail_call) 2851 subprog[cur_subprog].has_tail_call = true; 2852 if (BPF_CLASS(code) == BPF_LD && 2853 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2854 subprog[cur_subprog].has_ld_abs = true; 2855 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2856 goto next; 2857 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2858 goto next; 2859 if (code == (BPF_JMP32 | BPF_JA)) 2860 off = i + insn[i].imm + 1; 2861 else 2862 off = i + insn[i].off + 1; 2863 if (off < subprog_start || off >= subprog_end) { 2864 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2865 return -EINVAL; 2866 } 2867 next: 2868 if (i == subprog_end - 1) { 2869 /* to avoid fall-through from one subprog into another 2870 * the last insn of the subprog should be either exit 2871 * or unconditional jump back 2872 */ 2873 if (code != (BPF_JMP | BPF_EXIT) && 2874 code != (BPF_JMP32 | BPF_JA) && 2875 code != (BPF_JMP | BPF_JA)) { 2876 verbose(env, "last insn is not an exit or jmp\n"); 2877 return -EINVAL; 2878 } 2879 subprog_start = subprog_end; 2880 cur_subprog++; 2881 if (cur_subprog < env->subprog_cnt) 2882 subprog_end = subprog[cur_subprog + 1].start; 2883 } 2884 } 2885 return 0; 2886 } 2887 2888 /* Parentage chain of this register (or stack slot) should take care of all 2889 * issues like callee-saved registers, stack slot allocation time, etc. 2890 */ 2891 static int mark_reg_read(struct bpf_verifier_env *env, 2892 const struct bpf_reg_state *state, 2893 struct bpf_reg_state *parent, u8 flag) 2894 { 2895 bool writes = parent == state->parent; /* Observe write marks */ 2896 int cnt = 0; 2897 2898 while (parent) { 2899 /* if read wasn't screened by an earlier write ... */ 2900 if (writes && state->live & REG_LIVE_WRITTEN) 2901 break; 2902 if (parent->live & REG_LIVE_DONE) { 2903 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2904 reg_type_str(env, parent->type), 2905 parent->var_off.value, parent->off); 2906 return -EFAULT; 2907 } 2908 /* The first condition is more likely to be true than the 2909 * second, checked it first. 2910 */ 2911 if ((parent->live & REG_LIVE_READ) == flag || 2912 parent->live & REG_LIVE_READ64) 2913 /* The parentage chain never changes and 2914 * this parent was already marked as LIVE_READ. 2915 * There is no need to keep walking the chain again and 2916 * keep re-marking all parents as LIVE_READ. 2917 * This case happens when the same register is read 2918 * multiple times without writes into it in-between. 2919 * Also, if parent has the stronger REG_LIVE_READ64 set, 2920 * then no need to set the weak REG_LIVE_READ32. 2921 */ 2922 break; 2923 /* ... then we depend on parent's value */ 2924 parent->live |= flag; 2925 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2926 if (flag == REG_LIVE_READ64) 2927 parent->live &= ~REG_LIVE_READ32; 2928 state = parent; 2929 parent = state->parent; 2930 writes = true; 2931 cnt++; 2932 } 2933 2934 if (env->longest_mark_read_walk < cnt) 2935 env->longest_mark_read_walk = cnt; 2936 return 0; 2937 } 2938 2939 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2940 { 2941 struct bpf_func_state *state = func(env, reg); 2942 int spi, ret; 2943 2944 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2945 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2946 * check_kfunc_call. 2947 */ 2948 if (reg->type == CONST_PTR_TO_DYNPTR) 2949 return 0; 2950 spi = dynptr_get_spi(env, reg); 2951 if (spi < 0) 2952 return spi; 2953 /* Caller ensures dynptr is valid and initialized, which means spi is in 2954 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2955 * read. 2956 */ 2957 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2958 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2959 if (ret) 2960 return ret; 2961 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2962 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2963 } 2964 2965 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2966 int spi, int nr_slots) 2967 { 2968 struct bpf_func_state *state = func(env, reg); 2969 int err, i; 2970 2971 for (i = 0; i < nr_slots; i++) { 2972 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2973 2974 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2975 if (err) 2976 return err; 2977 2978 mark_stack_slot_scratched(env, spi - i); 2979 } 2980 2981 return 0; 2982 } 2983 2984 /* This function is supposed to be used by the following 32-bit optimization 2985 * code only. It returns TRUE if the source or destination register operates 2986 * on 64-bit, otherwise return FALSE. 2987 */ 2988 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2989 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2990 { 2991 u8 code, class, op; 2992 2993 code = insn->code; 2994 class = BPF_CLASS(code); 2995 op = BPF_OP(code); 2996 if (class == BPF_JMP) { 2997 /* BPF_EXIT for "main" will reach here. Return TRUE 2998 * conservatively. 2999 */ 3000 if (op == BPF_EXIT) 3001 return true; 3002 if (op == BPF_CALL) { 3003 /* BPF to BPF call will reach here because of marking 3004 * caller saved clobber with DST_OP_NO_MARK for which we 3005 * don't care the register def because they are anyway 3006 * marked as NOT_INIT already. 3007 */ 3008 if (insn->src_reg == BPF_PSEUDO_CALL) 3009 return false; 3010 /* Helper call will reach here because of arg type 3011 * check, conservatively return TRUE. 3012 */ 3013 if (t == SRC_OP) 3014 return true; 3015 3016 return false; 3017 } 3018 } 3019 3020 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3021 return false; 3022 3023 if (class == BPF_ALU64 || class == BPF_JMP || 3024 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3025 return true; 3026 3027 if (class == BPF_ALU || class == BPF_JMP32) 3028 return false; 3029 3030 if (class == BPF_LDX) { 3031 if (t != SRC_OP) 3032 return BPF_SIZE(code) == BPF_DW; 3033 /* LDX source must be ptr. */ 3034 return true; 3035 } 3036 3037 if (class == BPF_STX) { 3038 /* BPF_STX (including atomic variants) has multiple source 3039 * operands, one of which is a ptr. Check whether the caller is 3040 * asking about it. 3041 */ 3042 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3043 return true; 3044 return BPF_SIZE(code) == BPF_DW; 3045 } 3046 3047 if (class == BPF_LD) { 3048 u8 mode = BPF_MODE(code); 3049 3050 /* LD_IMM64 */ 3051 if (mode == BPF_IMM) 3052 return true; 3053 3054 /* Both LD_IND and LD_ABS return 32-bit data. */ 3055 if (t != SRC_OP) 3056 return false; 3057 3058 /* Implicit ctx ptr. */ 3059 if (regno == BPF_REG_6) 3060 return true; 3061 3062 /* Explicit source could be any width. */ 3063 return true; 3064 } 3065 3066 if (class == BPF_ST) 3067 /* The only source register for BPF_ST is a ptr. */ 3068 return true; 3069 3070 /* Conservatively return true at default. */ 3071 return true; 3072 } 3073 3074 /* Return the regno defined by the insn, or -1. */ 3075 static int insn_def_regno(const struct bpf_insn *insn) 3076 { 3077 switch (BPF_CLASS(insn->code)) { 3078 case BPF_JMP: 3079 case BPF_JMP32: 3080 case BPF_ST: 3081 return -1; 3082 case BPF_STX: 3083 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3084 (insn->imm & BPF_FETCH)) { 3085 if (insn->imm == BPF_CMPXCHG) 3086 return BPF_REG_0; 3087 else 3088 return insn->src_reg; 3089 } else { 3090 return -1; 3091 } 3092 default: 3093 return insn->dst_reg; 3094 } 3095 } 3096 3097 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3098 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3099 { 3100 int dst_reg = insn_def_regno(insn); 3101 3102 if (dst_reg == -1) 3103 return false; 3104 3105 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3106 } 3107 3108 static void mark_insn_zext(struct bpf_verifier_env *env, 3109 struct bpf_reg_state *reg) 3110 { 3111 s32 def_idx = reg->subreg_def; 3112 3113 if (def_idx == DEF_NOT_SUBREG) 3114 return; 3115 3116 env->insn_aux_data[def_idx - 1].zext_dst = true; 3117 /* The dst will be zero extended, so won't be sub-register anymore. */ 3118 reg->subreg_def = DEF_NOT_SUBREG; 3119 } 3120 3121 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3122 enum reg_arg_type t) 3123 { 3124 struct bpf_verifier_state *vstate = env->cur_state; 3125 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3126 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3127 struct bpf_reg_state *reg, *regs = state->regs; 3128 bool rw64; 3129 3130 if (regno >= MAX_BPF_REG) { 3131 verbose(env, "R%d is invalid\n", regno); 3132 return -EINVAL; 3133 } 3134 3135 mark_reg_scratched(env, regno); 3136 3137 reg = ®s[regno]; 3138 rw64 = is_reg64(env, insn, regno, reg, t); 3139 if (t == SRC_OP) { 3140 /* check whether register used as source operand can be read */ 3141 if (reg->type == NOT_INIT) { 3142 verbose(env, "R%d !read_ok\n", regno); 3143 return -EACCES; 3144 } 3145 /* We don't need to worry about FP liveness because it's read-only */ 3146 if (regno == BPF_REG_FP) 3147 return 0; 3148 3149 if (rw64) 3150 mark_insn_zext(env, reg); 3151 3152 return mark_reg_read(env, reg, reg->parent, 3153 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3154 } else { 3155 /* check whether register used as dest operand can be written to */ 3156 if (regno == BPF_REG_FP) { 3157 verbose(env, "frame pointer is read only\n"); 3158 return -EACCES; 3159 } 3160 reg->live |= REG_LIVE_WRITTEN; 3161 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3162 if (t == DST_OP) 3163 mark_reg_unknown(env, regs, regno); 3164 } 3165 return 0; 3166 } 3167 3168 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3169 { 3170 env->insn_aux_data[idx].jmp_point = true; 3171 } 3172 3173 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3174 { 3175 return env->insn_aux_data[insn_idx].jmp_point; 3176 } 3177 3178 /* for any branch, call, exit record the history of jmps in the given state */ 3179 static int push_jmp_history(struct bpf_verifier_env *env, 3180 struct bpf_verifier_state *cur) 3181 { 3182 u32 cnt = cur->jmp_history_cnt; 3183 struct bpf_idx_pair *p; 3184 size_t alloc_size; 3185 3186 if (!is_jmp_point(env, env->insn_idx)) 3187 return 0; 3188 3189 cnt++; 3190 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3191 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3192 if (!p) 3193 return -ENOMEM; 3194 p[cnt - 1].idx = env->insn_idx; 3195 p[cnt - 1].prev_idx = env->prev_insn_idx; 3196 cur->jmp_history = p; 3197 cur->jmp_history_cnt = cnt; 3198 return 0; 3199 } 3200 3201 /* Backtrack one insn at a time. If idx is not at the top of recorded 3202 * history then previous instruction came from straight line execution. 3203 */ 3204 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3205 u32 *history) 3206 { 3207 u32 cnt = *history; 3208 3209 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3210 i = st->jmp_history[cnt - 1].prev_idx; 3211 (*history)--; 3212 } else { 3213 i--; 3214 } 3215 return i; 3216 } 3217 3218 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3219 { 3220 const struct btf_type *func; 3221 struct btf *desc_btf; 3222 3223 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3224 return NULL; 3225 3226 desc_btf = find_kfunc_desc_btf(data, insn->off); 3227 if (IS_ERR(desc_btf)) 3228 return "<error>"; 3229 3230 func = btf_type_by_id(desc_btf, insn->imm); 3231 return btf_name_by_offset(desc_btf, func->name_off); 3232 } 3233 3234 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3235 { 3236 bt->frame = frame; 3237 } 3238 3239 static inline void bt_reset(struct backtrack_state *bt) 3240 { 3241 struct bpf_verifier_env *env = bt->env; 3242 3243 memset(bt, 0, sizeof(*bt)); 3244 bt->env = env; 3245 } 3246 3247 static inline u32 bt_empty(struct backtrack_state *bt) 3248 { 3249 u64 mask = 0; 3250 int i; 3251 3252 for (i = 0; i <= bt->frame; i++) 3253 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3254 3255 return mask == 0; 3256 } 3257 3258 static inline int bt_subprog_enter(struct backtrack_state *bt) 3259 { 3260 if (bt->frame == MAX_CALL_FRAMES - 1) { 3261 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3262 WARN_ONCE(1, "verifier backtracking bug"); 3263 return -EFAULT; 3264 } 3265 bt->frame++; 3266 return 0; 3267 } 3268 3269 static inline int bt_subprog_exit(struct backtrack_state *bt) 3270 { 3271 if (bt->frame == 0) { 3272 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3273 WARN_ONCE(1, "verifier backtracking bug"); 3274 return -EFAULT; 3275 } 3276 bt->frame--; 3277 return 0; 3278 } 3279 3280 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3281 { 3282 bt->reg_masks[frame] |= 1 << reg; 3283 } 3284 3285 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3286 { 3287 bt->reg_masks[frame] &= ~(1 << reg); 3288 } 3289 3290 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3291 { 3292 bt_set_frame_reg(bt, bt->frame, reg); 3293 } 3294 3295 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3296 { 3297 bt_clear_frame_reg(bt, bt->frame, reg); 3298 } 3299 3300 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3301 { 3302 bt->stack_masks[frame] |= 1ull << slot; 3303 } 3304 3305 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3306 { 3307 bt->stack_masks[frame] &= ~(1ull << slot); 3308 } 3309 3310 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3311 { 3312 bt_set_frame_slot(bt, bt->frame, slot); 3313 } 3314 3315 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3316 { 3317 bt_clear_frame_slot(bt, bt->frame, slot); 3318 } 3319 3320 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3321 { 3322 return bt->reg_masks[frame]; 3323 } 3324 3325 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3326 { 3327 return bt->reg_masks[bt->frame]; 3328 } 3329 3330 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3331 { 3332 return bt->stack_masks[frame]; 3333 } 3334 3335 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3336 { 3337 return bt->stack_masks[bt->frame]; 3338 } 3339 3340 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3341 { 3342 return bt->reg_masks[bt->frame] & (1 << reg); 3343 } 3344 3345 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3346 { 3347 return bt->stack_masks[bt->frame] & (1ull << slot); 3348 } 3349 3350 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3351 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3352 { 3353 DECLARE_BITMAP(mask, 64); 3354 bool first = true; 3355 int i, n; 3356 3357 buf[0] = '\0'; 3358 3359 bitmap_from_u64(mask, reg_mask); 3360 for_each_set_bit(i, mask, 32) { 3361 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3362 first = false; 3363 buf += n; 3364 buf_sz -= n; 3365 if (buf_sz < 0) 3366 break; 3367 } 3368 } 3369 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3370 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3371 { 3372 DECLARE_BITMAP(mask, 64); 3373 bool first = true; 3374 int i, n; 3375 3376 buf[0] = '\0'; 3377 3378 bitmap_from_u64(mask, stack_mask); 3379 for_each_set_bit(i, mask, 64) { 3380 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3381 first = false; 3382 buf += n; 3383 buf_sz -= n; 3384 if (buf_sz < 0) 3385 break; 3386 } 3387 } 3388 3389 /* For given verifier state backtrack_insn() is called from the last insn to 3390 * the first insn. Its purpose is to compute a bitmask of registers and 3391 * stack slots that needs precision in the parent verifier state. 3392 * 3393 * @idx is an index of the instruction we are currently processing; 3394 * @subseq_idx is an index of the subsequent instruction that: 3395 * - *would be* executed next, if jump history is viewed in forward order; 3396 * - *was* processed previously during backtracking. 3397 */ 3398 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3399 struct backtrack_state *bt) 3400 { 3401 const struct bpf_insn_cbs cbs = { 3402 .cb_call = disasm_kfunc_name, 3403 .cb_print = verbose, 3404 .private_data = env, 3405 }; 3406 struct bpf_insn *insn = env->prog->insnsi + idx; 3407 u8 class = BPF_CLASS(insn->code); 3408 u8 opcode = BPF_OP(insn->code); 3409 u8 mode = BPF_MODE(insn->code); 3410 u32 dreg = insn->dst_reg; 3411 u32 sreg = insn->src_reg; 3412 u32 spi, i; 3413 3414 if (insn->code == 0) 3415 return 0; 3416 if (env->log.level & BPF_LOG_LEVEL2) { 3417 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3418 verbose(env, "mark_precise: frame%d: regs=%s ", 3419 bt->frame, env->tmp_str_buf); 3420 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3421 verbose(env, "stack=%s before ", env->tmp_str_buf); 3422 verbose(env, "%d: ", idx); 3423 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3424 } 3425 3426 if (class == BPF_ALU || class == BPF_ALU64) { 3427 if (!bt_is_reg_set(bt, dreg)) 3428 return 0; 3429 if (opcode == BPF_MOV) { 3430 if (BPF_SRC(insn->code) == BPF_X) { 3431 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3432 * dreg needs precision after this insn 3433 * sreg needs precision before this insn 3434 */ 3435 bt_clear_reg(bt, dreg); 3436 bt_set_reg(bt, sreg); 3437 } else { 3438 /* dreg = K 3439 * dreg needs precision after this insn. 3440 * Corresponding register is already marked 3441 * as precise=true in this verifier state. 3442 * No further markings in parent are necessary 3443 */ 3444 bt_clear_reg(bt, dreg); 3445 } 3446 } else { 3447 if (BPF_SRC(insn->code) == BPF_X) { 3448 /* dreg += sreg 3449 * both dreg and sreg need precision 3450 * before this insn 3451 */ 3452 bt_set_reg(bt, sreg); 3453 } /* else dreg += K 3454 * dreg still needs precision before this insn 3455 */ 3456 } 3457 } else if (class == BPF_LDX) { 3458 if (!bt_is_reg_set(bt, dreg)) 3459 return 0; 3460 bt_clear_reg(bt, dreg); 3461 3462 /* scalars can only be spilled into stack w/o losing precision. 3463 * Load from any other memory can be zero extended. 3464 * The desire to keep that precision is already indicated 3465 * by 'precise' mark in corresponding register of this state. 3466 * No further tracking necessary. 3467 */ 3468 if (insn->src_reg != BPF_REG_FP) 3469 return 0; 3470 3471 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3472 * that [fp - off] slot contains scalar that needs to be 3473 * tracked with precision 3474 */ 3475 spi = (-insn->off - 1) / BPF_REG_SIZE; 3476 if (spi >= 64) { 3477 verbose(env, "BUG spi %d\n", spi); 3478 WARN_ONCE(1, "verifier backtracking bug"); 3479 return -EFAULT; 3480 } 3481 bt_set_slot(bt, spi); 3482 } else if (class == BPF_STX || class == BPF_ST) { 3483 if (bt_is_reg_set(bt, dreg)) 3484 /* stx & st shouldn't be using _scalar_ dst_reg 3485 * to access memory. It means backtracking 3486 * encountered a case of pointer subtraction. 3487 */ 3488 return -ENOTSUPP; 3489 /* scalars can only be spilled into stack */ 3490 if (insn->dst_reg != BPF_REG_FP) 3491 return 0; 3492 spi = (-insn->off - 1) / BPF_REG_SIZE; 3493 if (spi >= 64) { 3494 verbose(env, "BUG spi %d\n", spi); 3495 WARN_ONCE(1, "verifier backtracking bug"); 3496 return -EFAULT; 3497 } 3498 if (!bt_is_slot_set(bt, spi)) 3499 return 0; 3500 bt_clear_slot(bt, spi); 3501 if (class == BPF_STX) 3502 bt_set_reg(bt, sreg); 3503 } else if (class == BPF_JMP || class == BPF_JMP32) { 3504 if (bpf_pseudo_call(insn)) { 3505 int subprog_insn_idx, subprog; 3506 3507 subprog_insn_idx = idx + insn->imm + 1; 3508 subprog = find_subprog(env, subprog_insn_idx); 3509 if (subprog < 0) 3510 return -EFAULT; 3511 3512 if (subprog_is_global(env, subprog)) { 3513 /* check that jump history doesn't have any 3514 * extra instructions from subprog; the next 3515 * instruction after call to global subprog 3516 * should be literally next instruction in 3517 * caller program 3518 */ 3519 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3520 /* r1-r5 are invalidated after subprog call, 3521 * so for global func call it shouldn't be set 3522 * anymore 3523 */ 3524 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3525 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3526 WARN_ONCE(1, "verifier backtracking bug"); 3527 return -EFAULT; 3528 } 3529 /* global subprog always sets R0 */ 3530 bt_clear_reg(bt, BPF_REG_0); 3531 return 0; 3532 } else { 3533 /* static subprog call instruction, which 3534 * means that we are exiting current subprog, 3535 * so only r1-r5 could be still requested as 3536 * precise, r0 and r6-r10 or any stack slot in 3537 * the current frame should be zero by now 3538 */ 3539 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3540 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3541 WARN_ONCE(1, "verifier backtracking bug"); 3542 return -EFAULT; 3543 } 3544 /* we don't track register spills perfectly, 3545 * so fallback to force-precise instead of failing */ 3546 if (bt_stack_mask(bt) != 0) 3547 return -ENOTSUPP; 3548 /* propagate r1-r5 to the caller */ 3549 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3550 if (bt_is_reg_set(bt, i)) { 3551 bt_clear_reg(bt, i); 3552 bt_set_frame_reg(bt, bt->frame - 1, i); 3553 } 3554 } 3555 if (bt_subprog_exit(bt)) 3556 return -EFAULT; 3557 return 0; 3558 } 3559 } else if ((bpf_helper_call(insn) && 3560 is_callback_calling_function(insn->imm) && 3561 !is_async_callback_calling_function(insn->imm)) || 3562 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3563 /* callback-calling helper or kfunc call, which means 3564 * we are exiting from subprog, but unlike the subprog 3565 * call handling above, we shouldn't propagate 3566 * precision of r1-r5 (if any requested), as they are 3567 * not actually arguments passed directly to callback 3568 * subprogs 3569 */ 3570 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3571 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3572 WARN_ONCE(1, "verifier backtracking bug"); 3573 return -EFAULT; 3574 } 3575 if (bt_stack_mask(bt) != 0) 3576 return -ENOTSUPP; 3577 /* clear r1-r5 in callback subprog's mask */ 3578 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3579 bt_clear_reg(bt, i); 3580 if (bt_subprog_exit(bt)) 3581 return -EFAULT; 3582 return 0; 3583 } else if (opcode == BPF_CALL) { 3584 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3585 * catch this error later. Make backtracking conservative 3586 * with ENOTSUPP. 3587 */ 3588 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3589 return -ENOTSUPP; 3590 /* regular helper call sets R0 */ 3591 bt_clear_reg(bt, BPF_REG_0); 3592 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3593 /* if backtracing was looking for registers R1-R5 3594 * they should have been found already. 3595 */ 3596 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3597 WARN_ONCE(1, "verifier backtracking bug"); 3598 return -EFAULT; 3599 } 3600 } else if (opcode == BPF_EXIT) { 3601 bool r0_precise; 3602 3603 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3604 /* if backtracing was looking for registers R1-R5 3605 * they should have been found already. 3606 */ 3607 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3608 WARN_ONCE(1, "verifier backtracking bug"); 3609 return -EFAULT; 3610 } 3611 3612 /* BPF_EXIT in subprog or callback always returns 3613 * right after the call instruction, so by checking 3614 * whether the instruction at subseq_idx-1 is subprog 3615 * call or not we can distinguish actual exit from 3616 * *subprog* from exit from *callback*. In the former 3617 * case, we need to propagate r0 precision, if 3618 * necessary. In the former we never do that. 3619 */ 3620 r0_precise = subseq_idx - 1 >= 0 && 3621 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3622 bt_is_reg_set(bt, BPF_REG_0); 3623 3624 bt_clear_reg(bt, BPF_REG_0); 3625 if (bt_subprog_enter(bt)) 3626 return -EFAULT; 3627 3628 if (r0_precise) 3629 bt_set_reg(bt, BPF_REG_0); 3630 /* r6-r9 and stack slots will stay set in caller frame 3631 * bitmasks until we return back from callee(s) 3632 */ 3633 return 0; 3634 } else if (BPF_SRC(insn->code) == BPF_X) { 3635 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3636 return 0; 3637 /* dreg <cond> sreg 3638 * Both dreg and sreg need precision before 3639 * this insn. If only sreg was marked precise 3640 * before it would be equally necessary to 3641 * propagate it to dreg. 3642 */ 3643 bt_set_reg(bt, dreg); 3644 bt_set_reg(bt, sreg); 3645 /* else dreg <cond> K 3646 * Only dreg still needs precision before 3647 * this insn, so for the K-based conditional 3648 * there is nothing new to be marked. 3649 */ 3650 } 3651 } else if (class == BPF_LD) { 3652 if (!bt_is_reg_set(bt, dreg)) 3653 return 0; 3654 bt_clear_reg(bt, dreg); 3655 /* It's ld_imm64 or ld_abs or ld_ind. 3656 * For ld_imm64 no further tracking of precision 3657 * into parent is necessary 3658 */ 3659 if (mode == BPF_IND || mode == BPF_ABS) 3660 /* to be analyzed */ 3661 return -ENOTSUPP; 3662 } 3663 return 0; 3664 } 3665 3666 /* the scalar precision tracking algorithm: 3667 * . at the start all registers have precise=false. 3668 * . scalar ranges are tracked as normal through alu and jmp insns. 3669 * . once precise value of the scalar register is used in: 3670 * . ptr + scalar alu 3671 * . if (scalar cond K|scalar) 3672 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3673 * backtrack through the verifier states and mark all registers and 3674 * stack slots with spilled constants that these scalar regisers 3675 * should be precise. 3676 * . during state pruning two registers (or spilled stack slots) 3677 * are equivalent if both are not precise. 3678 * 3679 * Note the verifier cannot simply walk register parentage chain, 3680 * since many different registers and stack slots could have been 3681 * used to compute single precise scalar. 3682 * 3683 * The approach of starting with precise=true for all registers and then 3684 * backtrack to mark a register as not precise when the verifier detects 3685 * that program doesn't care about specific value (e.g., when helper 3686 * takes register as ARG_ANYTHING parameter) is not safe. 3687 * 3688 * It's ok to walk single parentage chain of the verifier states. 3689 * It's possible that this backtracking will go all the way till 1st insn. 3690 * All other branches will be explored for needing precision later. 3691 * 3692 * The backtracking needs to deal with cases like: 3693 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3694 * r9 -= r8 3695 * r5 = r9 3696 * if r5 > 0x79f goto pc+7 3697 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3698 * r5 += 1 3699 * ... 3700 * call bpf_perf_event_output#25 3701 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3702 * 3703 * and this case: 3704 * r6 = 1 3705 * call foo // uses callee's r6 inside to compute r0 3706 * r0 += r6 3707 * if r0 == 0 goto 3708 * 3709 * to track above reg_mask/stack_mask needs to be independent for each frame. 3710 * 3711 * Also if parent's curframe > frame where backtracking started, 3712 * the verifier need to mark registers in both frames, otherwise callees 3713 * may incorrectly prune callers. This is similar to 3714 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3715 * 3716 * For now backtracking falls back into conservative marking. 3717 */ 3718 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3719 struct bpf_verifier_state *st) 3720 { 3721 struct bpf_func_state *func; 3722 struct bpf_reg_state *reg; 3723 int i, j; 3724 3725 if (env->log.level & BPF_LOG_LEVEL2) { 3726 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3727 st->curframe); 3728 } 3729 3730 /* big hammer: mark all scalars precise in this path. 3731 * pop_stack may still get !precise scalars. 3732 * We also skip current state and go straight to first parent state, 3733 * because precision markings in current non-checkpointed state are 3734 * not needed. See why in the comment in __mark_chain_precision below. 3735 */ 3736 for (st = st->parent; st; st = st->parent) { 3737 for (i = 0; i <= st->curframe; i++) { 3738 func = st->frame[i]; 3739 for (j = 0; j < BPF_REG_FP; j++) { 3740 reg = &func->regs[j]; 3741 if (reg->type != SCALAR_VALUE || reg->precise) 3742 continue; 3743 reg->precise = true; 3744 if (env->log.level & BPF_LOG_LEVEL2) { 3745 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3746 i, j); 3747 } 3748 } 3749 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3750 if (!is_spilled_reg(&func->stack[j])) 3751 continue; 3752 reg = &func->stack[j].spilled_ptr; 3753 if (reg->type != SCALAR_VALUE || reg->precise) 3754 continue; 3755 reg->precise = true; 3756 if (env->log.level & BPF_LOG_LEVEL2) { 3757 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3758 i, -(j + 1) * 8); 3759 } 3760 } 3761 } 3762 } 3763 } 3764 3765 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3766 { 3767 struct bpf_func_state *func; 3768 struct bpf_reg_state *reg; 3769 int i, j; 3770 3771 for (i = 0; i <= st->curframe; i++) { 3772 func = st->frame[i]; 3773 for (j = 0; j < BPF_REG_FP; j++) { 3774 reg = &func->regs[j]; 3775 if (reg->type != SCALAR_VALUE) 3776 continue; 3777 reg->precise = false; 3778 } 3779 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3780 if (!is_spilled_reg(&func->stack[j])) 3781 continue; 3782 reg = &func->stack[j].spilled_ptr; 3783 if (reg->type != SCALAR_VALUE) 3784 continue; 3785 reg->precise = false; 3786 } 3787 } 3788 } 3789 3790 static bool idset_contains(struct bpf_idset *s, u32 id) 3791 { 3792 u32 i; 3793 3794 for (i = 0; i < s->count; ++i) 3795 if (s->ids[i] == id) 3796 return true; 3797 3798 return false; 3799 } 3800 3801 static int idset_push(struct bpf_idset *s, u32 id) 3802 { 3803 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3804 return -EFAULT; 3805 s->ids[s->count++] = id; 3806 return 0; 3807 } 3808 3809 static void idset_reset(struct bpf_idset *s) 3810 { 3811 s->count = 0; 3812 } 3813 3814 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3815 * Mark all registers with these IDs as precise. 3816 */ 3817 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3818 { 3819 struct bpf_idset *precise_ids = &env->idset_scratch; 3820 struct backtrack_state *bt = &env->bt; 3821 struct bpf_func_state *func; 3822 struct bpf_reg_state *reg; 3823 DECLARE_BITMAP(mask, 64); 3824 int i, fr; 3825 3826 idset_reset(precise_ids); 3827 3828 for (fr = bt->frame; fr >= 0; fr--) { 3829 func = st->frame[fr]; 3830 3831 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3832 for_each_set_bit(i, mask, 32) { 3833 reg = &func->regs[i]; 3834 if (!reg->id || reg->type != SCALAR_VALUE) 3835 continue; 3836 if (idset_push(precise_ids, reg->id)) 3837 return -EFAULT; 3838 } 3839 3840 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3841 for_each_set_bit(i, mask, 64) { 3842 if (i >= func->allocated_stack / BPF_REG_SIZE) 3843 break; 3844 if (!is_spilled_scalar_reg(&func->stack[i])) 3845 continue; 3846 reg = &func->stack[i].spilled_ptr; 3847 if (!reg->id) 3848 continue; 3849 if (idset_push(precise_ids, reg->id)) 3850 return -EFAULT; 3851 } 3852 } 3853 3854 for (fr = 0; fr <= st->curframe; ++fr) { 3855 func = st->frame[fr]; 3856 3857 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3858 reg = &func->regs[i]; 3859 if (!reg->id) 3860 continue; 3861 if (!idset_contains(precise_ids, reg->id)) 3862 continue; 3863 bt_set_frame_reg(bt, fr, i); 3864 } 3865 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3866 if (!is_spilled_scalar_reg(&func->stack[i])) 3867 continue; 3868 reg = &func->stack[i].spilled_ptr; 3869 if (!reg->id) 3870 continue; 3871 if (!idset_contains(precise_ids, reg->id)) 3872 continue; 3873 bt_set_frame_slot(bt, fr, i); 3874 } 3875 } 3876 3877 return 0; 3878 } 3879 3880 /* 3881 * __mark_chain_precision() backtracks BPF program instruction sequence and 3882 * chain of verifier states making sure that register *regno* (if regno >= 0) 3883 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3884 * SCALARS, as well as any other registers and slots that contribute to 3885 * a tracked state of given registers/stack slots, depending on specific BPF 3886 * assembly instructions (see backtrack_insns() for exact instruction handling 3887 * logic). This backtracking relies on recorded jmp_history and is able to 3888 * traverse entire chain of parent states. This process ends only when all the 3889 * necessary registers/slots and their transitive dependencies are marked as 3890 * precise. 3891 * 3892 * One important and subtle aspect is that precise marks *do not matter* in 3893 * the currently verified state (current state). It is important to understand 3894 * why this is the case. 3895 * 3896 * First, note that current state is the state that is not yet "checkpointed", 3897 * i.e., it is not yet put into env->explored_states, and it has no children 3898 * states as well. It's ephemeral, and can end up either a) being discarded if 3899 * compatible explored state is found at some point or BPF_EXIT instruction is 3900 * reached or b) checkpointed and put into env->explored_states, branching out 3901 * into one or more children states. 3902 * 3903 * In the former case, precise markings in current state are completely 3904 * ignored by state comparison code (see regsafe() for details). Only 3905 * checkpointed ("old") state precise markings are important, and if old 3906 * state's register/slot is precise, regsafe() assumes current state's 3907 * register/slot as precise and checks value ranges exactly and precisely. If 3908 * states turn out to be compatible, current state's necessary precise 3909 * markings and any required parent states' precise markings are enforced 3910 * after the fact with propagate_precision() logic, after the fact. But it's 3911 * important to realize that in this case, even after marking current state 3912 * registers/slots as precise, we immediately discard current state. So what 3913 * actually matters is any of the precise markings propagated into current 3914 * state's parent states, which are always checkpointed (due to b) case above). 3915 * As such, for scenario a) it doesn't matter if current state has precise 3916 * markings set or not. 3917 * 3918 * Now, for the scenario b), checkpointing and forking into child(ren) 3919 * state(s). Note that before current state gets to checkpointing step, any 3920 * processed instruction always assumes precise SCALAR register/slot 3921 * knowledge: if precise value or range is useful to prune jump branch, BPF 3922 * verifier takes this opportunity enthusiastically. Similarly, when 3923 * register's value is used to calculate offset or memory address, exact 3924 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3925 * what we mentioned above about state comparison ignoring precise markings 3926 * during state comparison, BPF verifier ignores and also assumes precise 3927 * markings *at will* during instruction verification process. But as verifier 3928 * assumes precision, it also propagates any precision dependencies across 3929 * parent states, which are not yet finalized, so can be further restricted 3930 * based on new knowledge gained from restrictions enforced by their children 3931 * states. This is so that once those parent states are finalized, i.e., when 3932 * they have no more active children state, state comparison logic in 3933 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3934 * required for correctness. 3935 * 3936 * To build a bit more intuition, note also that once a state is checkpointed, 3937 * the path we took to get to that state is not important. This is crucial 3938 * property for state pruning. When state is checkpointed and finalized at 3939 * some instruction index, it can be correctly and safely used to "short 3940 * circuit" any *compatible* state that reaches exactly the same instruction 3941 * index. I.e., if we jumped to that instruction from a completely different 3942 * code path than original finalized state was derived from, it doesn't 3943 * matter, current state can be discarded because from that instruction 3944 * forward having a compatible state will ensure we will safely reach the 3945 * exit. States describe preconditions for further exploration, but completely 3946 * forget the history of how we got here. 3947 * 3948 * This also means that even if we needed precise SCALAR range to get to 3949 * finalized state, but from that point forward *that same* SCALAR register is 3950 * never used in a precise context (i.e., it's precise value is not needed for 3951 * correctness), it's correct and safe to mark such register as "imprecise" 3952 * (i.e., precise marking set to false). This is what we rely on when we do 3953 * not set precise marking in current state. If no child state requires 3954 * precision for any given SCALAR register, it's safe to dictate that it can 3955 * be imprecise. If any child state does require this register to be precise, 3956 * we'll mark it precise later retroactively during precise markings 3957 * propagation from child state to parent states. 3958 * 3959 * Skipping precise marking setting in current state is a mild version of 3960 * relying on the above observation. But we can utilize this property even 3961 * more aggressively by proactively forgetting any precise marking in the 3962 * current state (which we inherited from the parent state), right before we 3963 * checkpoint it and branch off into new child state. This is done by 3964 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3965 * finalized states which help in short circuiting more future states. 3966 */ 3967 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3968 { 3969 struct backtrack_state *bt = &env->bt; 3970 struct bpf_verifier_state *st = env->cur_state; 3971 int first_idx = st->first_insn_idx; 3972 int last_idx = env->insn_idx; 3973 int subseq_idx = -1; 3974 struct bpf_func_state *func; 3975 struct bpf_reg_state *reg; 3976 bool skip_first = true; 3977 int i, fr, err; 3978 3979 if (!env->bpf_capable) 3980 return 0; 3981 3982 /* set frame number from which we are starting to backtrack */ 3983 bt_init(bt, env->cur_state->curframe); 3984 3985 /* Do sanity checks against current state of register and/or stack 3986 * slot, but don't set precise flag in current state, as precision 3987 * tracking in the current state is unnecessary. 3988 */ 3989 func = st->frame[bt->frame]; 3990 if (regno >= 0) { 3991 reg = &func->regs[regno]; 3992 if (reg->type != SCALAR_VALUE) { 3993 WARN_ONCE(1, "backtracing misuse"); 3994 return -EFAULT; 3995 } 3996 bt_set_reg(bt, regno); 3997 } 3998 3999 if (bt_empty(bt)) 4000 return 0; 4001 4002 for (;;) { 4003 DECLARE_BITMAP(mask, 64); 4004 u32 history = st->jmp_history_cnt; 4005 4006 if (env->log.level & BPF_LOG_LEVEL2) { 4007 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4008 bt->frame, last_idx, first_idx, subseq_idx); 4009 } 4010 4011 /* If some register with scalar ID is marked as precise, 4012 * make sure that all registers sharing this ID are also precise. 4013 * This is needed to estimate effect of find_equal_scalars(). 4014 * Do this at the last instruction of each state, 4015 * bpf_reg_state::id fields are valid for these instructions. 4016 * 4017 * Allows to track precision in situation like below: 4018 * 4019 * r2 = unknown value 4020 * ... 4021 * --- state #0 --- 4022 * ... 4023 * r1 = r2 // r1 and r2 now share the same ID 4024 * ... 4025 * --- state #1 {r1.id = A, r2.id = A} --- 4026 * ... 4027 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4028 * ... 4029 * --- state #2 {r1.id = A, r2.id = A} --- 4030 * r3 = r10 4031 * r3 += r1 // need to mark both r1 and r2 4032 */ 4033 if (mark_precise_scalar_ids(env, st)) 4034 return -EFAULT; 4035 4036 if (last_idx < 0) { 4037 /* we are at the entry into subprog, which 4038 * is expected for global funcs, but only if 4039 * requested precise registers are R1-R5 4040 * (which are global func's input arguments) 4041 */ 4042 if (st->curframe == 0 && 4043 st->frame[0]->subprogno > 0 && 4044 st->frame[0]->callsite == BPF_MAIN_FUNC && 4045 bt_stack_mask(bt) == 0 && 4046 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4047 bitmap_from_u64(mask, bt_reg_mask(bt)); 4048 for_each_set_bit(i, mask, 32) { 4049 reg = &st->frame[0]->regs[i]; 4050 bt_clear_reg(bt, i); 4051 if (reg->type == SCALAR_VALUE) 4052 reg->precise = true; 4053 } 4054 return 0; 4055 } 4056 4057 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4058 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4059 WARN_ONCE(1, "verifier backtracking bug"); 4060 return -EFAULT; 4061 } 4062 4063 for (i = last_idx;;) { 4064 if (skip_first) { 4065 err = 0; 4066 skip_first = false; 4067 } else { 4068 err = backtrack_insn(env, i, subseq_idx, bt); 4069 } 4070 if (err == -ENOTSUPP) { 4071 mark_all_scalars_precise(env, env->cur_state); 4072 bt_reset(bt); 4073 return 0; 4074 } else if (err) { 4075 return err; 4076 } 4077 if (bt_empty(bt)) 4078 /* Found assignment(s) into tracked register in this state. 4079 * Since this state is already marked, just return. 4080 * Nothing to be tracked further in the parent state. 4081 */ 4082 return 0; 4083 if (i == first_idx) 4084 break; 4085 subseq_idx = i; 4086 i = get_prev_insn_idx(st, i, &history); 4087 if (i >= env->prog->len) { 4088 /* This can happen if backtracking reached insn 0 4089 * and there are still reg_mask or stack_mask 4090 * to backtrack. 4091 * It means the backtracking missed the spot where 4092 * particular register was initialized with a constant. 4093 */ 4094 verbose(env, "BUG backtracking idx %d\n", i); 4095 WARN_ONCE(1, "verifier backtracking bug"); 4096 return -EFAULT; 4097 } 4098 } 4099 st = st->parent; 4100 if (!st) 4101 break; 4102 4103 for (fr = bt->frame; fr >= 0; fr--) { 4104 func = st->frame[fr]; 4105 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4106 for_each_set_bit(i, mask, 32) { 4107 reg = &func->regs[i]; 4108 if (reg->type != SCALAR_VALUE) { 4109 bt_clear_frame_reg(bt, fr, i); 4110 continue; 4111 } 4112 if (reg->precise) 4113 bt_clear_frame_reg(bt, fr, i); 4114 else 4115 reg->precise = true; 4116 } 4117 4118 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4119 for_each_set_bit(i, mask, 64) { 4120 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4121 /* the sequence of instructions: 4122 * 2: (bf) r3 = r10 4123 * 3: (7b) *(u64 *)(r3 -8) = r0 4124 * 4: (79) r4 = *(u64 *)(r10 -8) 4125 * doesn't contain jmps. It's backtracked 4126 * as a single block. 4127 * During backtracking insn 3 is not recognized as 4128 * stack access, so at the end of backtracking 4129 * stack slot fp-8 is still marked in stack_mask. 4130 * However the parent state may not have accessed 4131 * fp-8 and it's "unallocated" stack space. 4132 * In such case fallback to conservative. 4133 */ 4134 mark_all_scalars_precise(env, env->cur_state); 4135 bt_reset(bt); 4136 return 0; 4137 } 4138 4139 if (!is_spilled_scalar_reg(&func->stack[i])) { 4140 bt_clear_frame_slot(bt, fr, i); 4141 continue; 4142 } 4143 reg = &func->stack[i].spilled_ptr; 4144 if (reg->precise) 4145 bt_clear_frame_slot(bt, fr, i); 4146 else 4147 reg->precise = true; 4148 } 4149 if (env->log.level & BPF_LOG_LEVEL2) { 4150 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4151 bt_frame_reg_mask(bt, fr)); 4152 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4153 fr, env->tmp_str_buf); 4154 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4155 bt_frame_stack_mask(bt, fr)); 4156 verbose(env, "stack=%s: ", env->tmp_str_buf); 4157 print_verifier_state(env, func, true); 4158 } 4159 } 4160 4161 if (bt_empty(bt)) 4162 return 0; 4163 4164 subseq_idx = first_idx; 4165 last_idx = st->last_insn_idx; 4166 first_idx = st->first_insn_idx; 4167 } 4168 4169 /* if we still have requested precise regs or slots, we missed 4170 * something (e.g., stack access through non-r10 register), so 4171 * fallback to marking all precise 4172 */ 4173 if (!bt_empty(bt)) { 4174 mark_all_scalars_precise(env, env->cur_state); 4175 bt_reset(bt); 4176 } 4177 4178 return 0; 4179 } 4180 4181 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4182 { 4183 return __mark_chain_precision(env, regno); 4184 } 4185 4186 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4187 * desired reg and stack masks across all relevant frames 4188 */ 4189 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4190 { 4191 return __mark_chain_precision(env, -1); 4192 } 4193 4194 static bool is_spillable_regtype(enum bpf_reg_type type) 4195 { 4196 switch (base_type(type)) { 4197 case PTR_TO_MAP_VALUE: 4198 case PTR_TO_STACK: 4199 case PTR_TO_CTX: 4200 case PTR_TO_PACKET: 4201 case PTR_TO_PACKET_META: 4202 case PTR_TO_PACKET_END: 4203 case PTR_TO_FLOW_KEYS: 4204 case CONST_PTR_TO_MAP: 4205 case PTR_TO_SOCKET: 4206 case PTR_TO_SOCK_COMMON: 4207 case PTR_TO_TCP_SOCK: 4208 case PTR_TO_XDP_SOCK: 4209 case PTR_TO_BTF_ID: 4210 case PTR_TO_BUF: 4211 case PTR_TO_MEM: 4212 case PTR_TO_FUNC: 4213 case PTR_TO_MAP_KEY: 4214 return true; 4215 default: 4216 return false; 4217 } 4218 } 4219 4220 /* Does this register contain a constant zero? */ 4221 static bool register_is_null(struct bpf_reg_state *reg) 4222 { 4223 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4224 } 4225 4226 static bool register_is_const(struct bpf_reg_state *reg) 4227 { 4228 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4229 } 4230 4231 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4232 { 4233 return tnum_is_unknown(reg->var_off) && 4234 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4235 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4236 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4237 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4238 } 4239 4240 static bool register_is_bounded(struct bpf_reg_state *reg) 4241 { 4242 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4243 } 4244 4245 static bool __is_pointer_value(bool allow_ptr_leaks, 4246 const struct bpf_reg_state *reg) 4247 { 4248 if (allow_ptr_leaks) 4249 return false; 4250 4251 return reg->type != SCALAR_VALUE; 4252 } 4253 4254 /* Copy src state preserving dst->parent and dst->live fields */ 4255 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4256 { 4257 struct bpf_reg_state *parent = dst->parent; 4258 enum bpf_reg_liveness live = dst->live; 4259 4260 *dst = *src; 4261 dst->parent = parent; 4262 dst->live = live; 4263 } 4264 4265 static void save_register_state(struct bpf_func_state *state, 4266 int spi, struct bpf_reg_state *reg, 4267 int size) 4268 { 4269 int i; 4270 4271 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4272 if (size == BPF_REG_SIZE) 4273 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4274 4275 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4276 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4277 4278 /* size < 8 bytes spill */ 4279 for (; i; i--) 4280 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4281 } 4282 4283 static bool is_bpf_st_mem(struct bpf_insn *insn) 4284 { 4285 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4286 } 4287 4288 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4289 * stack boundary and alignment are checked in check_mem_access() 4290 */ 4291 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4292 /* stack frame we're writing to */ 4293 struct bpf_func_state *state, 4294 int off, int size, int value_regno, 4295 int insn_idx) 4296 { 4297 struct bpf_func_state *cur; /* state of the current function */ 4298 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4299 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4300 struct bpf_reg_state *reg = NULL; 4301 u32 dst_reg = insn->dst_reg; 4302 4303 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4304 if (err) 4305 return err; 4306 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4307 * so it's aligned access and [off, off + size) are within stack limits 4308 */ 4309 if (!env->allow_ptr_leaks && 4310 state->stack[spi].slot_type[0] == STACK_SPILL && 4311 size != BPF_REG_SIZE) { 4312 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4313 return -EACCES; 4314 } 4315 4316 cur = env->cur_state->frame[env->cur_state->curframe]; 4317 if (value_regno >= 0) 4318 reg = &cur->regs[value_regno]; 4319 if (!env->bypass_spec_v4) { 4320 bool sanitize = reg && is_spillable_regtype(reg->type); 4321 4322 for (i = 0; i < size; i++) { 4323 u8 type = state->stack[spi].slot_type[i]; 4324 4325 if (type != STACK_MISC && type != STACK_ZERO) { 4326 sanitize = true; 4327 break; 4328 } 4329 } 4330 4331 if (sanitize) 4332 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4333 } 4334 4335 err = destroy_if_dynptr_stack_slot(env, state, spi); 4336 if (err) 4337 return err; 4338 4339 mark_stack_slot_scratched(env, spi); 4340 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4341 !register_is_null(reg) && env->bpf_capable) { 4342 if (dst_reg != BPF_REG_FP) { 4343 /* The backtracking logic can only recognize explicit 4344 * stack slot address like [fp - 8]. Other spill of 4345 * scalar via different register has to be conservative. 4346 * Backtrack from here and mark all registers as precise 4347 * that contributed into 'reg' being a constant. 4348 */ 4349 err = mark_chain_precision(env, value_regno); 4350 if (err) 4351 return err; 4352 } 4353 save_register_state(state, spi, reg, size); 4354 /* Break the relation on a narrowing spill. */ 4355 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4356 state->stack[spi].spilled_ptr.id = 0; 4357 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4358 insn->imm != 0 && env->bpf_capable) { 4359 struct bpf_reg_state fake_reg = {}; 4360 4361 __mark_reg_known(&fake_reg, (u32)insn->imm); 4362 fake_reg.type = SCALAR_VALUE; 4363 save_register_state(state, spi, &fake_reg, size); 4364 } else if (reg && is_spillable_regtype(reg->type)) { 4365 /* register containing pointer is being spilled into stack */ 4366 if (size != BPF_REG_SIZE) { 4367 verbose_linfo(env, insn_idx, "; "); 4368 verbose(env, "invalid size of register spill\n"); 4369 return -EACCES; 4370 } 4371 if (state != cur && reg->type == PTR_TO_STACK) { 4372 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4373 return -EINVAL; 4374 } 4375 save_register_state(state, spi, reg, size); 4376 } else { 4377 u8 type = STACK_MISC; 4378 4379 /* regular write of data into stack destroys any spilled ptr */ 4380 state->stack[spi].spilled_ptr.type = NOT_INIT; 4381 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4382 if (is_stack_slot_special(&state->stack[spi])) 4383 for (i = 0; i < BPF_REG_SIZE; i++) 4384 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4385 4386 /* only mark the slot as written if all 8 bytes were written 4387 * otherwise read propagation may incorrectly stop too soon 4388 * when stack slots are partially written. 4389 * This heuristic means that read propagation will be 4390 * conservative, since it will add reg_live_read marks 4391 * to stack slots all the way to first state when programs 4392 * writes+reads less than 8 bytes 4393 */ 4394 if (size == BPF_REG_SIZE) 4395 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4396 4397 /* when we zero initialize stack slots mark them as such */ 4398 if ((reg && register_is_null(reg)) || 4399 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4400 /* backtracking doesn't work for STACK_ZERO yet. */ 4401 err = mark_chain_precision(env, value_regno); 4402 if (err) 4403 return err; 4404 type = STACK_ZERO; 4405 } 4406 4407 /* Mark slots affected by this stack write. */ 4408 for (i = 0; i < size; i++) 4409 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4410 type; 4411 } 4412 return 0; 4413 } 4414 4415 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4416 * known to contain a variable offset. 4417 * This function checks whether the write is permitted and conservatively 4418 * tracks the effects of the write, considering that each stack slot in the 4419 * dynamic range is potentially written to. 4420 * 4421 * 'off' includes 'regno->off'. 4422 * 'value_regno' can be -1, meaning that an unknown value is being written to 4423 * the stack. 4424 * 4425 * Spilled pointers in range are not marked as written because we don't know 4426 * what's going to be actually written. This means that read propagation for 4427 * future reads cannot be terminated by this write. 4428 * 4429 * For privileged programs, uninitialized stack slots are considered 4430 * initialized by this write (even though we don't know exactly what offsets 4431 * are going to be written to). The idea is that we don't want the verifier to 4432 * reject future reads that access slots written to through variable offsets. 4433 */ 4434 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4435 /* func where register points to */ 4436 struct bpf_func_state *state, 4437 int ptr_regno, int off, int size, 4438 int value_regno, int insn_idx) 4439 { 4440 struct bpf_func_state *cur; /* state of the current function */ 4441 int min_off, max_off; 4442 int i, err; 4443 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4444 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4445 bool writing_zero = false; 4446 /* set if the fact that we're writing a zero is used to let any 4447 * stack slots remain STACK_ZERO 4448 */ 4449 bool zero_used = false; 4450 4451 cur = env->cur_state->frame[env->cur_state->curframe]; 4452 ptr_reg = &cur->regs[ptr_regno]; 4453 min_off = ptr_reg->smin_value + off; 4454 max_off = ptr_reg->smax_value + off + size; 4455 if (value_regno >= 0) 4456 value_reg = &cur->regs[value_regno]; 4457 if ((value_reg && register_is_null(value_reg)) || 4458 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4459 writing_zero = true; 4460 4461 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4462 if (err) 4463 return err; 4464 4465 for (i = min_off; i < max_off; i++) { 4466 int spi; 4467 4468 spi = __get_spi(i); 4469 err = destroy_if_dynptr_stack_slot(env, state, spi); 4470 if (err) 4471 return err; 4472 } 4473 4474 /* Variable offset writes destroy any spilled pointers in range. */ 4475 for (i = min_off; i < max_off; i++) { 4476 u8 new_type, *stype; 4477 int slot, spi; 4478 4479 slot = -i - 1; 4480 spi = slot / BPF_REG_SIZE; 4481 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4482 mark_stack_slot_scratched(env, spi); 4483 4484 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4485 /* Reject the write if range we may write to has not 4486 * been initialized beforehand. If we didn't reject 4487 * here, the ptr status would be erased below (even 4488 * though not all slots are actually overwritten), 4489 * possibly opening the door to leaks. 4490 * 4491 * We do however catch STACK_INVALID case below, and 4492 * only allow reading possibly uninitialized memory 4493 * later for CAP_PERFMON, as the write may not happen to 4494 * that slot. 4495 */ 4496 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4497 insn_idx, i); 4498 return -EINVAL; 4499 } 4500 4501 /* Erase all spilled pointers. */ 4502 state->stack[spi].spilled_ptr.type = NOT_INIT; 4503 4504 /* Update the slot type. */ 4505 new_type = STACK_MISC; 4506 if (writing_zero && *stype == STACK_ZERO) { 4507 new_type = STACK_ZERO; 4508 zero_used = true; 4509 } 4510 /* If the slot is STACK_INVALID, we check whether it's OK to 4511 * pretend that it will be initialized by this write. The slot 4512 * might not actually be written to, and so if we mark it as 4513 * initialized future reads might leak uninitialized memory. 4514 * For privileged programs, we will accept such reads to slots 4515 * that may or may not be written because, if we're reject 4516 * them, the error would be too confusing. 4517 */ 4518 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4519 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4520 insn_idx, i); 4521 return -EINVAL; 4522 } 4523 *stype = new_type; 4524 } 4525 if (zero_used) { 4526 /* backtracking doesn't work for STACK_ZERO yet. */ 4527 err = mark_chain_precision(env, value_regno); 4528 if (err) 4529 return err; 4530 } 4531 return 0; 4532 } 4533 4534 /* When register 'dst_regno' is assigned some values from stack[min_off, 4535 * max_off), we set the register's type according to the types of the 4536 * respective stack slots. If all the stack values are known to be zeros, then 4537 * so is the destination reg. Otherwise, the register is considered to be 4538 * SCALAR. This function does not deal with register filling; the caller must 4539 * ensure that all spilled registers in the stack range have been marked as 4540 * read. 4541 */ 4542 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4543 /* func where src register points to */ 4544 struct bpf_func_state *ptr_state, 4545 int min_off, int max_off, int dst_regno) 4546 { 4547 struct bpf_verifier_state *vstate = env->cur_state; 4548 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4549 int i, slot, spi; 4550 u8 *stype; 4551 int zeros = 0; 4552 4553 for (i = min_off; i < max_off; i++) { 4554 slot = -i - 1; 4555 spi = slot / BPF_REG_SIZE; 4556 mark_stack_slot_scratched(env, spi); 4557 stype = ptr_state->stack[spi].slot_type; 4558 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4559 break; 4560 zeros++; 4561 } 4562 if (zeros == max_off - min_off) { 4563 /* any access_size read into register is zero extended, 4564 * so the whole register == const_zero 4565 */ 4566 __mark_reg_const_zero(&state->regs[dst_regno]); 4567 /* backtracking doesn't support STACK_ZERO yet, 4568 * so mark it precise here, so that later 4569 * backtracking can stop here. 4570 * Backtracking may not need this if this register 4571 * doesn't participate in pointer adjustment. 4572 * Forward propagation of precise flag is not 4573 * necessary either. This mark is only to stop 4574 * backtracking. Any register that contributed 4575 * to const 0 was marked precise before spill. 4576 */ 4577 state->regs[dst_regno].precise = true; 4578 } else { 4579 /* have read misc data from the stack */ 4580 mark_reg_unknown(env, state->regs, dst_regno); 4581 } 4582 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4583 } 4584 4585 /* Read the stack at 'off' and put the results into the register indicated by 4586 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4587 * spilled reg. 4588 * 4589 * 'dst_regno' can be -1, meaning that the read value is not going to a 4590 * register. 4591 * 4592 * The access is assumed to be within the current stack bounds. 4593 */ 4594 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4595 /* func where src register points to */ 4596 struct bpf_func_state *reg_state, 4597 int off, int size, int dst_regno) 4598 { 4599 struct bpf_verifier_state *vstate = env->cur_state; 4600 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4601 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4602 struct bpf_reg_state *reg; 4603 u8 *stype, type; 4604 4605 stype = reg_state->stack[spi].slot_type; 4606 reg = ®_state->stack[spi].spilled_ptr; 4607 4608 mark_stack_slot_scratched(env, spi); 4609 4610 if (is_spilled_reg(®_state->stack[spi])) { 4611 u8 spill_size = 1; 4612 4613 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4614 spill_size++; 4615 4616 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4617 if (reg->type != SCALAR_VALUE) { 4618 verbose_linfo(env, env->insn_idx, "; "); 4619 verbose(env, "invalid size of register fill\n"); 4620 return -EACCES; 4621 } 4622 4623 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4624 if (dst_regno < 0) 4625 return 0; 4626 4627 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4628 /* The earlier check_reg_arg() has decided the 4629 * subreg_def for this insn. Save it first. 4630 */ 4631 s32 subreg_def = state->regs[dst_regno].subreg_def; 4632 4633 copy_register_state(&state->regs[dst_regno], reg); 4634 state->regs[dst_regno].subreg_def = subreg_def; 4635 } else { 4636 for (i = 0; i < size; i++) { 4637 type = stype[(slot - i) % BPF_REG_SIZE]; 4638 if (type == STACK_SPILL) 4639 continue; 4640 if (type == STACK_MISC) 4641 continue; 4642 if (type == STACK_INVALID && env->allow_uninit_stack) 4643 continue; 4644 verbose(env, "invalid read from stack off %d+%d size %d\n", 4645 off, i, size); 4646 return -EACCES; 4647 } 4648 mark_reg_unknown(env, state->regs, dst_regno); 4649 } 4650 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4651 return 0; 4652 } 4653 4654 if (dst_regno >= 0) { 4655 /* restore register state from stack */ 4656 copy_register_state(&state->regs[dst_regno], reg); 4657 /* mark reg as written since spilled pointer state likely 4658 * has its liveness marks cleared by is_state_visited() 4659 * which resets stack/reg liveness for state transitions 4660 */ 4661 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4662 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4663 /* If dst_regno==-1, the caller is asking us whether 4664 * it is acceptable to use this value as a SCALAR_VALUE 4665 * (e.g. for XADD). 4666 * We must not allow unprivileged callers to do that 4667 * with spilled pointers. 4668 */ 4669 verbose(env, "leaking pointer from stack off %d\n", 4670 off); 4671 return -EACCES; 4672 } 4673 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4674 } else { 4675 for (i = 0; i < size; i++) { 4676 type = stype[(slot - i) % BPF_REG_SIZE]; 4677 if (type == STACK_MISC) 4678 continue; 4679 if (type == STACK_ZERO) 4680 continue; 4681 if (type == STACK_INVALID && env->allow_uninit_stack) 4682 continue; 4683 verbose(env, "invalid read from stack off %d+%d size %d\n", 4684 off, i, size); 4685 return -EACCES; 4686 } 4687 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4688 if (dst_regno >= 0) 4689 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4690 } 4691 return 0; 4692 } 4693 4694 enum bpf_access_src { 4695 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4696 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4697 }; 4698 4699 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4700 int regno, int off, int access_size, 4701 bool zero_size_allowed, 4702 enum bpf_access_src type, 4703 struct bpf_call_arg_meta *meta); 4704 4705 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4706 { 4707 return cur_regs(env) + regno; 4708 } 4709 4710 /* Read the stack at 'ptr_regno + off' and put the result into the register 4711 * 'dst_regno'. 4712 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4713 * but not its variable offset. 4714 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4715 * 4716 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4717 * filling registers (i.e. reads of spilled register cannot be detected when 4718 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4719 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4720 * offset; for a fixed offset check_stack_read_fixed_off should be used 4721 * instead. 4722 */ 4723 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4724 int ptr_regno, int off, int size, int dst_regno) 4725 { 4726 /* The state of the source register. */ 4727 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4728 struct bpf_func_state *ptr_state = func(env, reg); 4729 int err; 4730 int min_off, max_off; 4731 4732 /* Note that we pass a NULL meta, so raw access will not be permitted. 4733 */ 4734 err = check_stack_range_initialized(env, ptr_regno, off, size, 4735 false, ACCESS_DIRECT, NULL); 4736 if (err) 4737 return err; 4738 4739 min_off = reg->smin_value + off; 4740 max_off = reg->smax_value + off; 4741 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4742 return 0; 4743 } 4744 4745 /* check_stack_read dispatches to check_stack_read_fixed_off or 4746 * check_stack_read_var_off. 4747 * 4748 * The caller must ensure that the offset falls within the allocated stack 4749 * bounds. 4750 * 4751 * 'dst_regno' is a register which will receive the value from the stack. It 4752 * can be -1, meaning that the read value is not going to a register. 4753 */ 4754 static int check_stack_read(struct bpf_verifier_env *env, 4755 int ptr_regno, int off, int size, 4756 int dst_regno) 4757 { 4758 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4759 struct bpf_func_state *state = func(env, reg); 4760 int err; 4761 /* Some accesses are only permitted with a static offset. */ 4762 bool var_off = !tnum_is_const(reg->var_off); 4763 4764 /* The offset is required to be static when reads don't go to a 4765 * register, in order to not leak pointers (see 4766 * check_stack_read_fixed_off). 4767 */ 4768 if (dst_regno < 0 && var_off) { 4769 char tn_buf[48]; 4770 4771 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4772 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4773 tn_buf, off, size); 4774 return -EACCES; 4775 } 4776 /* Variable offset is prohibited for unprivileged mode for simplicity 4777 * since it requires corresponding support in Spectre masking for stack 4778 * ALU. See also retrieve_ptr_limit(). The check in 4779 * check_stack_access_for_ptr_arithmetic() called by 4780 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4781 * with variable offsets, therefore no check is required here. Further, 4782 * just checking it here would be insufficient as speculative stack 4783 * writes could still lead to unsafe speculative behaviour. 4784 */ 4785 if (!var_off) { 4786 off += reg->var_off.value; 4787 err = check_stack_read_fixed_off(env, state, off, size, 4788 dst_regno); 4789 } else { 4790 /* Variable offset stack reads need more conservative handling 4791 * than fixed offset ones. Note that dst_regno >= 0 on this 4792 * branch. 4793 */ 4794 err = check_stack_read_var_off(env, ptr_regno, off, size, 4795 dst_regno); 4796 } 4797 return err; 4798 } 4799 4800 4801 /* check_stack_write dispatches to check_stack_write_fixed_off or 4802 * check_stack_write_var_off. 4803 * 4804 * 'ptr_regno' is the register used as a pointer into the stack. 4805 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4806 * 'value_regno' is the register whose value we're writing to the stack. It can 4807 * be -1, meaning that we're not writing from a register. 4808 * 4809 * The caller must ensure that the offset falls within the maximum stack size. 4810 */ 4811 static int check_stack_write(struct bpf_verifier_env *env, 4812 int ptr_regno, int off, int size, 4813 int value_regno, int insn_idx) 4814 { 4815 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4816 struct bpf_func_state *state = func(env, reg); 4817 int err; 4818 4819 if (tnum_is_const(reg->var_off)) { 4820 off += reg->var_off.value; 4821 err = check_stack_write_fixed_off(env, state, off, size, 4822 value_regno, insn_idx); 4823 } else { 4824 /* Variable offset stack reads need more conservative handling 4825 * than fixed offset ones. 4826 */ 4827 err = check_stack_write_var_off(env, state, 4828 ptr_regno, off, size, 4829 value_regno, insn_idx); 4830 } 4831 return err; 4832 } 4833 4834 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4835 int off, int size, enum bpf_access_type type) 4836 { 4837 struct bpf_reg_state *regs = cur_regs(env); 4838 struct bpf_map *map = regs[regno].map_ptr; 4839 u32 cap = bpf_map_flags_to_cap(map); 4840 4841 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4842 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4843 map->value_size, off, size); 4844 return -EACCES; 4845 } 4846 4847 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4848 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4849 map->value_size, off, size); 4850 return -EACCES; 4851 } 4852 4853 return 0; 4854 } 4855 4856 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4857 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4858 int off, int size, u32 mem_size, 4859 bool zero_size_allowed) 4860 { 4861 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4862 struct bpf_reg_state *reg; 4863 4864 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4865 return 0; 4866 4867 reg = &cur_regs(env)[regno]; 4868 switch (reg->type) { 4869 case PTR_TO_MAP_KEY: 4870 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4871 mem_size, off, size); 4872 break; 4873 case PTR_TO_MAP_VALUE: 4874 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4875 mem_size, off, size); 4876 break; 4877 case PTR_TO_PACKET: 4878 case PTR_TO_PACKET_META: 4879 case PTR_TO_PACKET_END: 4880 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4881 off, size, regno, reg->id, off, mem_size); 4882 break; 4883 case PTR_TO_MEM: 4884 default: 4885 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4886 mem_size, off, size); 4887 } 4888 4889 return -EACCES; 4890 } 4891 4892 /* check read/write into a memory region with possible variable offset */ 4893 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4894 int off, int size, u32 mem_size, 4895 bool zero_size_allowed) 4896 { 4897 struct bpf_verifier_state *vstate = env->cur_state; 4898 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4899 struct bpf_reg_state *reg = &state->regs[regno]; 4900 int err; 4901 4902 /* We may have adjusted the register pointing to memory region, so we 4903 * need to try adding each of min_value and max_value to off 4904 * to make sure our theoretical access will be safe. 4905 * 4906 * The minimum value is only important with signed 4907 * comparisons where we can't assume the floor of a 4908 * value is 0. If we are using signed variables for our 4909 * index'es we need to make sure that whatever we use 4910 * will have a set floor within our range. 4911 */ 4912 if (reg->smin_value < 0 && 4913 (reg->smin_value == S64_MIN || 4914 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4915 reg->smin_value + off < 0)) { 4916 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4917 regno); 4918 return -EACCES; 4919 } 4920 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4921 mem_size, zero_size_allowed); 4922 if (err) { 4923 verbose(env, "R%d min value is outside of the allowed memory range\n", 4924 regno); 4925 return err; 4926 } 4927 4928 /* If we haven't set a max value then we need to bail since we can't be 4929 * sure we won't do bad things. 4930 * If reg->umax_value + off could overflow, treat that as unbounded too. 4931 */ 4932 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4933 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4934 regno); 4935 return -EACCES; 4936 } 4937 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4938 mem_size, zero_size_allowed); 4939 if (err) { 4940 verbose(env, "R%d max value is outside of the allowed memory range\n", 4941 regno); 4942 return err; 4943 } 4944 4945 return 0; 4946 } 4947 4948 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4949 const struct bpf_reg_state *reg, int regno, 4950 bool fixed_off_ok) 4951 { 4952 /* Access to this pointer-typed register or passing it to a helper 4953 * is only allowed in its original, unmodified form. 4954 */ 4955 4956 if (reg->off < 0) { 4957 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4958 reg_type_str(env, reg->type), regno, reg->off); 4959 return -EACCES; 4960 } 4961 4962 if (!fixed_off_ok && reg->off) { 4963 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4964 reg_type_str(env, reg->type), regno, reg->off); 4965 return -EACCES; 4966 } 4967 4968 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4969 char tn_buf[48]; 4970 4971 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4972 verbose(env, "variable %s access var_off=%s disallowed\n", 4973 reg_type_str(env, reg->type), tn_buf); 4974 return -EACCES; 4975 } 4976 4977 return 0; 4978 } 4979 4980 int check_ptr_off_reg(struct bpf_verifier_env *env, 4981 const struct bpf_reg_state *reg, int regno) 4982 { 4983 return __check_ptr_off_reg(env, reg, regno, false); 4984 } 4985 4986 static int map_kptr_match_type(struct bpf_verifier_env *env, 4987 struct btf_field *kptr_field, 4988 struct bpf_reg_state *reg, u32 regno) 4989 { 4990 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4991 int perm_flags; 4992 const char *reg_name = ""; 4993 4994 if (btf_is_kernel(reg->btf)) { 4995 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4996 4997 /* Only unreferenced case accepts untrusted pointers */ 4998 if (kptr_field->type == BPF_KPTR_UNREF) 4999 perm_flags |= PTR_UNTRUSTED; 5000 } else { 5001 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5002 } 5003 5004 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5005 goto bad_type; 5006 5007 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5008 reg_name = btf_type_name(reg->btf, reg->btf_id); 5009 5010 /* For ref_ptr case, release function check should ensure we get one 5011 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5012 * normal store of unreferenced kptr, we must ensure var_off is zero. 5013 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5014 * reg->off and reg->ref_obj_id are not needed here. 5015 */ 5016 if (__check_ptr_off_reg(env, reg, regno, true)) 5017 return -EACCES; 5018 5019 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5020 * we also need to take into account the reg->off. 5021 * 5022 * We want to support cases like: 5023 * 5024 * struct foo { 5025 * struct bar br; 5026 * struct baz bz; 5027 * }; 5028 * 5029 * struct foo *v; 5030 * v = func(); // PTR_TO_BTF_ID 5031 * val->foo = v; // reg->off is zero, btf and btf_id match type 5032 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5033 * // first member type of struct after comparison fails 5034 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5035 * // to match type 5036 * 5037 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5038 * is zero. We must also ensure that btf_struct_ids_match does not walk 5039 * the struct to match type against first member of struct, i.e. reject 5040 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5041 * strict mode to true for type match. 5042 */ 5043 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5044 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5045 kptr_field->type == BPF_KPTR_REF)) 5046 goto bad_type; 5047 return 0; 5048 bad_type: 5049 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5050 reg_type_str(env, reg->type), reg_name); 5051 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5052 if (kptr_field->type == BPF_KPTR_UNREF) 5053 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5054 targ_name); 5055 else 5056 verbose(env, "\n"); 5057 return -EINVAL; 5058 } 5059 5060 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5061 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5062 */ 5063 static bool in_rcu_cs(struct bpf_verifier_env *env) 5064 { 5065 return env->cur_state->active_rcu_lock || 5066 env->cur_state->active_lock.ptr || 5067 !env->prog->aux->sleepable; 5068 } 5069 5070 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5071 BTF_SET_START(rcu_protected_types) 5072 BTF_ID(struct, prog_test_ref_kfunc) 5073 BTF_ID(struct, cgroup) 5074 BTF_ID(struct, bpf_cpumask) 5075 BTF_ID(struct, task_struct) 5076 BTF_SET_END(rcu_protected_types) 5077 5078 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5079 { 5080 if (!btf_is_kernel(btf)) 5081 return false; 5082 return btf_id_set_contains(&rcu_protected_types, btf_id); 5083 } 5084 5085 static bool rcu_safe_kptr(const struct btf_field *field) 5086 { 5087 const struct btf_field_kptr *kptr = &field->kptr; 5088 5089 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5090 } 5091 5092 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5093 int value_regno, int insn_idx, 5094 struct btf_field *kptr_field) 5095 { 5096 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5097 int class = BPF_CLASS(insn->code); 5098 struct bpf_reg_state *val_reg; 5099 5100 /* Things we already checked for in check_map_access and caller: 5101 * - Reject cases where variable offset may touch kptr 5102 * - size of access (must be BPF_DW) 5103 * - tnum_is_const(reg->var_off) 5104 * - kptr_field->offset == off + reg->var_off.value 5105 */ 5106 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5107 if (BPF_MODE(insn->code) != BPF_MEM) { 5108 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5109 return -EACCES; 5110 } 5111 5112 /* We only allow loading referenced kptr, since it will be marked as 5113 * untrusted, similar to unreferenced kptr. 5114 */ 5115 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5116 verbose(env, "store to referenced kptr disallowed\n"); 5117 return -EACCES; 5118 } 5119 5120 if (class == BPF_LDX) { 5121 val_reg = reg_state(env, value_regno); 5122 /* We can simply mark the value_regno receiving the pointer 5123 * value from map as PTR_TO_BTF_ID, with the correct type. 5124 */ 5125 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5126 kptr_field->kptr.btf_id, 5127 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5128 PTR_MAYBE_NULL | MEM_RCU : 5129 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5130 /* For mark_ptr_or_null_reg */ 5131 val_reg->id = ++env->id_gen; 5132 } else if (class == BPF_STX) { 5133 val_reg = reg_state(env, value_regno); 5134 if (!register_is_null(val_reg) && 5135 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5136 return -EACCES; 5137 } else if (class == BPF_ST) { 5138 if (insn->imm) { 5139 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5140 kptr_field->offset); 5141 return -EACCES; 5142 } 5143 } else { 5144 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5145 return -EACCES; 5146 } 5147 return 0; 5148 } 5149 5150 /* check read/write into a map element with possible variable offset */ 5151 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5152 int off, int size, bool zero_size_allowed, 5153 enum bpf_access_src src) 5154 { 5155 struct bpf_verifier_state *vstate = env->cur_state; 5156 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5157 struct bpf_reg_state *reg = &state->regs[regno]; 5158 struct bpf_map *map = reg->map_ptr; 5159 struct btf_record *rec; 5160 int err, i; 5161 5162 err = check_mem_region_access(env, regno, off, size, map->value_size, 5163 zero_size_allowed); 5164 if (err) 5165 return err; 5166 5167 if (IS_ERR_OR_NULL(map->record)) 5168 return 0; 5169 rec = map->record; 5170 for (i = 0; i < rec->cnt; i++) { 5171 struct btf_field *field = &rec->fields[i]; 5172 u32 p = field->offset; 5173 5174 /* If any part of a field can be touched by load/store, reject 5175 * this program. To check that [x1, x2) overlaps with [y1, y2), 5176 * it is sufficient to check x1 < y2 && y1 < x2. 5177 */ 5178 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5179 p < reg->umax_value + off + size) { 5180 switch (field->type) { 5181 case BPF_KPTR_UNREF: 5182 case BPF_KPTR_REF: 5183 if (src != ACCESS_DIRECT) { 5184 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5185 return -EACCES; 5186 } 5187 if (!tnum_is_const(reg->var_off)) { 5188 verbose(env, "kptr access cannot have variable offset\n"); 5189 return -EACCES; 5190 } 5191 if (p != off + reg->var_off.value) { 5192 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5193 p, off + reg->var_off.value); 5194 return -EACCES; 5195 } 5196 if (size != bpf_size_to_bytes(BPF_DW)) { 5197 verbose(env, "kptr access size must be BPF_DW\n"); 5198 return -EACCES; 5199 } 5200 break; 5201 default: 5202 verbose(env, "%s cannot be accessed directly by load/store\n", 5203 btf_field_type_name(field->type)); 5204 return -EACCES; 5205 } 5206 } 5207 } 5208 return 0; 5209 } 5210 5211 #define MAX_PACKET_OFF 0xffff 5212 5213 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5214 const struct bpf_call_arg_meta *meta, 5215 enum bpf_access_type t) 5216 { 5217 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5218 5219 switch (prog_type) { 5220 /* Program types only with direct read access go here! */ 5221 case BPF_PROG_TYPE_LWT_IN: 5222 case BPF_PROG_TYPE_LWT_OUT: 5223 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5224 case BPF_PROG_TYPE_SK_REUSEPORT: 5225 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5226 case BPF_PROG_TYPE_CGROUP_SKB: 5227 if (t == BPF_WRITE) 5228 return false; 5229 fallthrough; 5230 5231 /* Program types with direct read + write access go here! */ 5232 case BPF_PROG_TYPE_SCHED_CLS: 5233 case BPF_PROG_TYPE_SCHED_ACT: 5234 case BPF_PROG_TYPE_XDP: 5235 case BPF_PROG_TYPE_LWT_XMIT: 5236 case BPF_PROG_TYPE_SK_SKB: 5237 case BPF_PROG_TYPE_SK_MSG: 5238 if (meta) 5239 return meta->pkt_access; 5240 5241 env->seen_direct_write = true; 5242 return true; 5243 5244 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5245 if (t == BPF_WRITE) 5246 env->seen_direct_write = true; 5247 5248 return true; 5249 5250 default: 5251 return false; 5252 } 5253 } 5254 5255 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5256 int size, bool zero_size_allowed) 5257 { 5258 struct bpf_reg_state *regs = cur_regs(env); 5259 struct bpf_reg_state *reg = ®s[regno]; 5260 int err; 5261 5262 /* We may have added a variable offset to the packet pointer; but any 5263 * reg->range we have comes after that. We are only checking the fixed 5264 * offset. 5265 */ 5266 5267 /* We don't allow negative numbers, because we aren't tracking enough 5268 * detail to prove they're safe. 5269 */ 5270 if (reg->smin_value < 0) { 5271 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5272 regno); 5273 return -EACCES; 5274 } 5275 5276 err = reg->range < 0 ? -EINVAL : 5277 __check_mem_access(env, regno, off, size, reg->range, 5278 zero_size_allowed); 5279 if (err) { 5280 verbose(env, "R%d offset is outside of the packet\n", regno); 5281 return err; 5282 } 5283 5284 /* __check_mem_access has made sure "off + size - 1" is within u16. 5285 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5286 * otherwise find_good_pkt_pointers would have refused to set range info 5287 * that __check_mem_access would have rejected this pkt access. 5288 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5289 */ 5290 env->prog->aux->max_pkt_offset = 5291 max_t(u32, env->prog->aux->max_pkt_offset, 5292 off + reg->umax_value + size - 1); 5293 5294 return err; 5295 } 5296 5297 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5298 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5299 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5300 struct btf **btf, u32 *btf_id) 5301 { 5302 struct bpf_insn_access_aux info = { 5303 .reg_type = *reg_type, 5304 .log = &env->log, 5305 }; 5306 5307 if (env->ops->is_valid_access && 5308 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5309 /* A non zero info.ctx_field_size indicates that this field is a 5310 * candidate for later verifier transformation to load the whole 5311 * field and then apply a mask when accessed with a narrower 5312 * access than actual ctx access size. A zero info.ctx_field_size 5313 * will only allow for whole field access and rejects any other 5314 * type of narrower access. 5315 */ 5316 *reg_type = info.reg_type; 5317 5318 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5319 *btf = info.btf; 5320 *btf_id = info.btf_id; 5321 } else { 5322 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5323 } 5324 /* remember the offset of last byte accessed in ctx */ 5325 if (env->prog->aux->max_ctx_offset < off + size) 5326 env->prog->aux->max_ctx_offset = off + size; 5327 return 0; 5328 } 5329 5330 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5331 return -EACCES; 5332 } 5333 5334 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5335 int size) 5336 { 5337 if (size < 0 || off < 0 || 5338 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5339 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5340 off, size); 5341 return -EACCES; 5342 } 5343 return 0; 5344 } 5345 5346 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5347 u32 regno, int off, int size, 5348 enum bpf_access_type t) 5349 { 5350 struct bpf_reg_state *regs = cur_regs(env); 5351 struct bpf_reg_state *reg = ®s[regno]; 5352 struct bpf_insn_access_aux info = {}; 5353 bool valid; 5354 5355 if (reg->smin_value < 0) { 5356 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5357 regno); 5358 return -EACCES; 5359 } 5360 5361 switch (reg->type) { 5362 case PTR_TO_SOCK_COMMON: 5363 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5364 break; 5365 case PTR_TO_SOCKET: 5366 valid = bpf_sock_is_valid_access(off, size, t, &info); 5367 break; 5368 case PTR_TO_TCP_SOCK: 5369 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5370 break; 5371 case PTR_TO_XDP_SOCK: 5372 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5373 break; 5374 default: 5375 valid = false; 5376 } 5377 5378 5379 if (valid) { 5380 env->insn_aux_data[insn_idx].ctx_field_size = 5381 info.ctx_field_size; 5382 return 0; 5383 } 5384 5385 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5386 regno, reg_type_str(env, reg->type), off, size); 5387 5388 return -EACCES; 5389 } 5390 5391 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5392 { 5393 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5394 } 5395 5396 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5397 { 5398 const struct bpf_reg_state *reg = reg_state(env, regno); 5399 5400 return reg->type == PTR_TO_CTX; 5401 } 5402 5403 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5404 { 5405 const struct bpf_reg_state *reg = reg_state(env, regno); 5406 5407 return type_is_sk_pointer(reg->type); 5408 } 5409 5410 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5411 { 5412 const struct bpf_reg_state *reg = reg_state(env, regno); 5413 5414 return type_is_pkt_pointer(reg->type); 5415 } 5416 5417 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5418 { 5419 const struct bpf_reg_state *reg = reg_state(env, regno); 5420 5421 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5422 return reg->type == PTR_TO_FLOW_KEYS; 5423 } 5424 5425 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5426 #ifdef CONFIG_NET 5427 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5428 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5429 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5430 #endif 5431 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5432 }; 5433 5434 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5435 { 5436 /* A referenced register is always trusted. */ 5437 if (reg->ref_obj_id) 5438 return true; 5439 5440 /* Types listed in the reg2btf_ids are always trusted */ 5441 if (reg2btf_ids[base_type(reg->type)]) 5442 return true; 5443 5444 /* If a register is not referenced, it is trusted if it has the 5445 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5446 * other type modifiers may be safe, but we elect to take an opt-in 5447 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5448 * not. 5449 * 5450 * Eventually, we should make PTR_TRUSTED the single source of truth 5451 * for whether a register is trusted. 5452 */ 5453 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5454 !bpf_type_has_unsafe_modifiers(reg->type); 5455 } 5456 5457 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5458 { 5459 return reg->type & MEM_RCU; 5460 } 5461 5462 static void clear_trusted_flags(enum bpf_type_flag *flag) 5463 { 5464 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5465 } 5466 5467 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5468 const struct bpf_reg_state *reg, 5469 int off, int size, bool strict) 5470 { 5471 struct tnum reg_off; 5472 int ip_align; 5473 5474 /* Byte size accesses are always allowed. */ 5475 if (!strict || size == 1) 5476 return 0; 5477 5478 /* For platforms that do not have a Kconfig enabling 5479 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5480 * NET_IP_ALIGN is universally set to '2'. And on platforms 5481 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5482 * to this code only in strict mode where we want to emulate 5483 * the NET_IP_ALIGN==2 checking. Therefore use an 5484 * unconditional IP align value of '2'. 5485 */ 5486 ip_align = 2; 5487 5488 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5489 if (!tnum_is_aligned(reg_off, size)) { 5490 char tn_buf[48]; 5491 5492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5493 verbose(env, 5494 "misaligned packet access off %d+%s+%d+%d size %d\n", 5495 ip_align, tn_buf, reg->off, off, size); 5496 return -EACCES; 5497 } 5498 5499 return 0; 5500 } 5501 5502 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5503 const struct bpf_reg_state *reg, 5504 const char *pointer_desc, 5505 int off, int size, bool strict) 5506 { 5507 struct tnum reg_off; 5508 5509 /* Byte size accesses are always allowed. */ 5510 if (!strict || size == 1) 5511 return 0; 5512 5513 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5514 if (!tnum_is_aligned(reg_off, size)) { 5515 char tn_buf[48]; 5516 5517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5518 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5519 pointer_desc, tn_buf, reg->off, off, size); 5520 return -EACCES; 5521 } 5522 5523 return 0; 5524 } 5525 5526 static int check_ptr_alignment(struct bpf_verifier_env *env, 5527 const struct bpf_reg_state *reg, int off, 5528 int size, bool strict_alignment_once) 5529 { 5530 bool strict = env->strict_alignment || strict_alignment_once; 5531 const char *pointer_desc = ""; 5532 5533 switch (reg->type) { 5534 case PTR_TO_PACKET: 5535 case PTR_TO_PACKET_META: 5536 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5537 * right in front, treat it the very same way. 5538 */ 5539 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5540 case PTR_TO_FLOW_KEYS: 5541 pointer_desc = "flow keys "; 5542 break; 5543 case PTR_TO_MAP_KEY: 5544 pointer_desc = "key "; 5545 break; 5546 case PTR_TO_MAP_VALUE: 5547 pointer_desc = "value "; 5548 break; 5549 case PTR_TO_CTX: 5550 pointer_desc = "context "; 5551 break; 5552 case PTR_TO_STACK: 5553 pointer_desc = "stack "; 5554 /* The stack spill tracking logic in check_stack_write_fixed_off() 5555 * and check_stack_read_fixed_off() relies on stack accesses being 5556 * aligned. 5557 */ 5558 strict = true; 5559 break; 5560 case PTR_TO_SOCKET: 5561 pointer_desc = "sock "; 5562 break; 5563 case PTR_TO_SOCK_COMMON: 5564 pointer_desc = "sock_common "; 5565 break; 5566 case PTR_TO_TCP_SOCK: 5567 pointer_desc = "tcp_sock "; 5568 break; 5569 case PTR_TO_XDP_SOCK: 5570 pointer_desc = "xdp_sock "; 5571 break; 5572 default: 5573 break; 5574 } 5575 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5576 strict); 5577 } 5578 5579 static int update_stack_depth(struct bpf_verifier_env *env, 5580 const struct bpf_func_state *func, 5581 int off) 5582 { 5583 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5584 5585 if (stack >= -off) 5586 return 0; 5587 5588 /* update known max for given subprogram */ 5589 env->subprog_info[func->subprogno].stack_depth = -off; 5590 return 0; 5591 } 5592 5593 /* starting from main bpf function walk all instructions of the function 5594 * and recursively walk all callees that given function can call. 5595 * Ignore jump and exit insns. 5596 * Since recursion is prevented by check_cfg() this algorithm 5597 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5598 */ 5599 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5600 { 5601 struct bpf_subprog_info *subprog = env->subprog_info; 5602 struct bpf_insn *insn = env->prog->insnsi; 5603 int depth = 0, frame = 0, i, subprog_end; 5604 bool tail_call_reachable = false; 5605 int ret_insn[MAX_CALL_FRAMES]; 5606 int ret_prog[MAX_CALL_FRAMES]; 5607 int j; 5608 5609 i = subprog[idx].start; 5610 process_func: 5611 /* protect against potential stack overflow that might happen when 5612 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5613 * depth for such case down to 256 so that the worst case scenario 5614 * would result in 8k stack size (32 which is tailcall limit * 256 = 5615 * 8k). 5616 * 5617 * To get the idea what might happen, see an example: 5618 * func1 -> sub rsp, 128 5619 * subfunc1 -> sub rsp, 256 5620 * tailcall1 -> add rsp, 256 5621 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5622 * subfunc2 -> sub rsp, 64 5623 * subfunc22 -> sub rsp, 128 5624 * tailcall2 -> add rsp, 128 5625 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5626 * 5627 * tailcall will unwind the current stack frame but it will not get rid 5628 * of caller's stack as shown on the example above. 5629 */ 5630 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5631 verbose(env, 5632 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5633 depth); 5634 return -EACCES; 5635 } 5636 /* round up to 32-bytes, since this is granularity 5637 * of interpreter stack size 5638 */ 5639 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5640 if (depth > MAX_BPF_STACK) { 5641 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5642 frame + 1, depth); 5643 return -EACCES; 5644 } 5645 continue_func: 5646 subprog_end = subprog[idx + 1].start; 5647 for (; i < subprog_end; i++) { 5648 int next_insn, sidx; 5649 5650 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5651 continue; 5652 /* remember insn and function to return to */ 5653 ret_insn[frame] = i + 1; 5654 ret_prog[frame] = idx; 5655 5656 /* find the callee */ 5657 next_insn = i + insn[i].imm + 1; 5658 sidx = find_subprog(env, next_insn); 5659 if (sidx < 0) { 5660 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5661 next_insn); 5662 return -EFAULT; 5663 } 5664 if (subprog[sidx].is_async_cb) { 5665 if (subprog[sidx].has_tail_call) { 5666 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5667 return -EFAULT; 5668 } 5669 /* async callbacks don't increase bpf prog stack size unless called directly */ 5670 if (!bpf_pseudo_call(insn + i)) 5671 continue; 5672 } 5673 i = next_insn; 5674 idx = sidx; 5675 5676 if (subprog[idx].has_tail_call) 5677 tail_call_reachable = true; 5678 5679 frame++; 5680 if (frame >= MAX_CALL_FRAMES) { 5681 verbose(env, "the call stack of %d frames is too deep !\n", 5682 frame); 5683 return -E2BIG; 5684 } 5685 goto process_func; 5686 } 5687 /* if tail call got detected across bpf2bpf calls then mark each of the 5688 * currently present subprog frames as tail call reachable subprogs; 5689 * this info will be utilized by JIT so that we will be preserving the 5690 * tail call counter throughout bpf2bpf calls combined with tailcalls 5691 */ 5692 if (tail_call_reachable) 5693 for (j = 0; j < frame; j++) 5694 subprog[ret_prog[j]].tail_call_reachable = true; 5695 if (subprog[0].tail_call_reachable) 5696 env->prog->aux->tail_call_reachable = true; 5697 5698 /* end of for() loop means the last insn of the 'subprog' 5699 * was reached. Doesn't matter whether it was JA or EXIT 5700 */ 5701 if (frame == 0) 5702 return 0; 5703 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5704 frame--; 5705 i = ret_insn[frame]; 5706 idx = ret_prog[frame]; 5707 goto continue_func; 5708 } 5709 5710 static int check_max_stack_depth(struct bpf_verifier_env *env) 5711 { 5712 struct bpf_subprog_info *si = env->subprog_info; 5713 int ret; 5714 5715 for (int i = 0; i < env->subprog_cnt; i++) { 5716 if (!i || si[i].is_async_cb) { 5717 ret = check_max_stack_depth_subprog(env, i); 5718 if (ret < 0) 5719 return ret; 5720 } 5721 continue; 5722 } 5723 return 0; 5724 } 5725 5726 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5727 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5728 const struct bpf_insn *insn, int idx) 5729 { 5730 int start = idx + insn->imm + 1, subprog; 5731 5732 subprog = find_subprog(env, start); 5733 if (subprog < 0) { 5734 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5735 start); 5736 return -EFAULT; 5737 } 5738 return env->subprog_info[subprog].stack_depth; 5739 } 5740 #endif 5741 5742 static int __check_buffer_access(struct bpf_verifier_env *env, 5743 const char *buf_info, 5744 const struct bpf_reg_state *reg, 5745 int regno, int off, int size) 5746 { 5747 if (off < 0) { 5748 verbose(env, 5749 "R%d invalid %s buffer access: off=%d, size=%d\n", 5750 regno, buf_info, off, size); 5751 return -EACCES; 5752 } 5753 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5754 char tn_buf[48]; 5755 5756 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5757 verbose(env, 5758 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5759 regno, off, tn_buf); 5760 return -EACCES; 5761 } 5762 5763 return 0; 5764 } 5765 5766 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5767 const struct bpf_reg_state *reg, 5768 int regno, int off, int size) 5769 { 5770 int err; 5771 5772 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5773 if (err) 5774 return err; 5775 5776 if (off + size > env->prog->aux->max_tp_access) 5777 env->prog->aux->max_tp_access = off + size; 5778 5779 return 0; 5780 } 5781 5782 static int check_buffer_access(struct bpf_verifier_env *env, 5783 const struct bpf_reg_state *reg, 5784 int regno, int off, int size, 5785 bool zero_size_allowed, 5786 u32 *max_access) 5787 { 5788 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5789 int err; 5790 5791 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5792 if (err) 5793 return err; 5794 5795 if (off + size > *max_access) 5796 *max_access = off + size; 5797 5798 return 0; 5799 } 5800 5801 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5802 static void zext_32_to_64(struct bpf_reg_state *reg) 5803 { 5804 reg->var_off = tnum_subreg(reg->var_off); 5805 __reg_assign_32_into_64(reg); 5806 } 5807 5808 /* truncate register to smaller size (in bytes) 5809 * must be called with size < BPF_REG_SIZE 5810 */ 5811 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5812 { 5813 u64 mask; 5814 5815 /* clear high bits in bit representation */ 5816 reg->var_off = tnum_cast(reg->var_off, size); 5817 5818 /* fix arithmetic bounds */ 5819 mask = ((u64)1 << (size * 8)) - 1; 5820 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5821 reg->umin_value &= mask; 5822 reg->umax_value &= mask; 5823 } else { 5824 reg->umin_value = 0; 5825 reg->umax_value = mask; 5826 } 5827 reg->smin_value = reg->umin_value; 5828 reg->smax_value = reg->umax_value; 5829 5830 /* If size is smaller than 32bit register the 32bit register 5831 * values are also truncated so we push 64-bit bounds into 5832 * 32-bit bounds. Above were truncated < 32-bits already. 5833 */ 5834 if (size >= 4) 5835 return; 5836 __reg_combine_64_into_32(reg); 5837 } 5838 5839 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 5840 { 5841 if (size == 1) { 5842 reg->smin_value = reg->s32_min_value = S8_MIN; 5843 reg->smax_value = reg->s32_max_value = S8_MAX; 5844 } else if (size == 2) { 5845 reg->smin_value = reg->s32_min_value = S16_MIN; 5846 reg->smax_value = reg->s32_max_value = S16_MAX; 5847 } else { 5848 /* size == 4 */ 5849 reg->smin_value = reg->s32_min_value = S32_MIN; 5850 reg->smax_value = reg->s32_max_value = S32_MAX; 5851 } 5852 reg->umin_value = reg->u32_min_value = 0; 5853 reg->umax_value = U64_MAX; 5854 reg->u32_max_value = U32_MAX; 5855 reg->var_off = tnum_unknown; 5856 } 5857 5858 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 5859 { 5860 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 5861 u64 top_smax_value, top_smin_value; 5862 u64 num_bits = size * 8; 5863 5864 if (tnum_is_const(reg->var_off)) { 5865 u64_cval = reg->var_off.value; 5866 if (size == 1) 5867 reg->var_off = tnum_const((s8)u64_cval); 5868 else if (size == 2) 5869 reg->var_off = tnum_const((s16)u64_cval); 5870 else 5871 /* size == 4 */ 5872 reg->var_off = tnum_const((s32)u64_cval); 5873 5874 u64_cval = reg->var_off.value; 5875 reg->smax_value = reg->smin_value = u64_cval; 5876 reg->umax_value = reg->umin_value = u64_cval; 5877 reg->s32_max_value = reg->s32_min_value = u64_cval; 5878 reg->u32_max_value = reg->u32_min_value = u64_cval; 5879 return; 5880 } 5881 5882 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 5883 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 5884 5885 if (top_smax_value != top_smin_value) 5886 goto out; 5887 5888 /* find the s64_min and s64_min after sign extension */ 5889 if (size == 1) { 5890 init_s64_max = (s8)reg->smax_value; 5891 init_s64_min = (s8)reg->smin_value; 5892 } else if (size == 2) { 5893 init_s64_max = (s16)reg->smax_value; 5894 init_s64_min = (s16)reg->smin_value; 5895 } else { 5896 init_s64_max = (s32)reg->smax_value; 5897 init_s64_min = (s32)reg->smin_value; 5898 } 5899 5900 s64_max = max(init_s64_max, init_s64_min); 5901 s64_min = min(init_s64_max, init_s64_min); 5902 5903 /* both of s64_max/s64_min positive or negative */ 5904 if ((s64_max >= 0) == (s64_min >= 0)) { 5905 reg->smin_value = reg->s32_min_value = s64_min; 5906 reg->smax_value = reg->s32_max_value = s64_max; 5907 reg->umin_value = reg->u32_min_value = s64_min; 5908 reg->umax_value = reg->u32_max_value = s64_max; 5909 reg->var_off = tnum_range(s64_min, s64_max); 5910 return; 5911 } 5912 5913 out: 5914 set_sext64_default_val(reg, size); 5915 } 5916 5917 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 5918 { 5919 if (size == 1) { 5920 reg->s32_min_value = S8_MIN; 5921 reg->s32_max_value = S8_MAX; 5922 } else { 5923 /* size == 2 */ 5924 reg->s32_min_value = S16_MIN; 5925 reg->s32_max_value = S16_MAX; 5926 } 5927 reg->u32_min_value = 0; 5928 reg->u32_max_value = U32_MAX; 5929 } 5930 5931 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 5932 { 5933 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 5934 u32 top_smax_value, top_smin_value; 5935 u32 num_bits = size * 8; 5936 5937 if (tnum_is_const(reg->var_off)) { 5938 u32_val = reg->var_off.value; 5939 if (size == 1) 5940 reg->var_off = tnum_const((s8)u32_val); 5941 else 5942 reg->var_off = tnum_const((s16)u32_val); 5943 5944 u32_val = reg->var_off.value; 5945 reg->s32_min_value = reg->s32_max_value = u32_val; 5946 reg->u32_min_value = reg->u32_max_value = u32_val; 5947 return; 5948 } 5949 5950 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 5951 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 5952 5953 if (top_smax_value != top_smin_value) 5954 goto out; 5955 5956 /* find the s32_min and s32_min after sign extension */ 5957 if (size == 1) { 5958 init_s32_max = (s8)reg->s32_max_value; 5959 init_s32_min = (s8)reg->s32_min_value; 5960 } else { 5961 /* size == 2 */ 5962 init_s32_max = (s16)reg->s32_max_value; 5963 init_s32_min = (s16)reg->s32_min_value; 5964 } 5965 s32_max = max(init_s32_max, init_s32_min); 5966 s32_min = min(init_s32_max, init_s32_min); 5967 5968 if ((s32_min >= 0) == (s32_max >= 0)) { 5969 reg->s32_min_value = s32_min; 5970 reg->s32_max_value = s32_max; 5971 reg->u32_min_value = (u32)s32_min; 5972 reg->u32_max_value = (u32)s32_max; 5973 return; 5974 } 5975 5976 out: 5977 set_sext32_default_val(reg, size); 5978 } 5979 5980 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5981 { 5982 /* A map is considered read-only if the following condition are true: 5983 * 5984 * 1) BPF program side cannot change any of the map content. The 5985 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5986 * and was set at map creation time. 5987 * 2) The map value(s) have been initialized from user space by a 5988 * loader and then "frozen", such that no new map update/delete 5989 * operations from syscall side are possible for the rest of 5990 * the map's lifetime from that point onwards. 5991 * 3) Any parallel/pending map update/delete operations from syscall 5992 * side have been completed. Only after that point, it's safe to 5993 * assume that map value(s) are immutable. 5994 */ 5995 return (map->map_flags & BPF_F_RDONLY_PROG) && 5996 READ_ONCE(map->frozen) && 5997 !bpf_map_write_active(map); 5998 } 5999 6000 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6001 bool is_ldsx) 6002 { 6003 void *ptr; 6004 u64 addr; 6005 int err; 6006 6007 err = map->ops->map_direct_value_addr(map, &addr, off); 6008 if (err) 6009 return err; 6010 ptr = (void *)(long)addr + off; 6011 6012 switch (size) { 6013 case sizeof(u8): 6014 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6015 break; 6016 case sizeof(u16): 6017 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6018 break; 6019 case sizeof(u32): 6020 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6021 break; 6022 case sizeof(u64): 6023 *val = *(u64 *)ptr; 6024 break; 6025 default: 6026 return -EINVAL; 6027 } 6028 return 0; 6029 } 6030 6031 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6032 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6033 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6034 6035 /* 6036 * Allow list few fields as RCU trusted or full trusted. 6037 * This logic doesn't allow mix tagging and will be removed once GCC supports 6038 * btf_type_tag. 6039 */ 6040 6041 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6042 BTF_TYPE_SAFE_RCU(struct task_struct) { 6043 const cpumask_t *cpus_ptr; 6044 struct css_set __rcu *cgroups; 6045 struct task_struct __rcu *real_parent; 6046 struct task_struct *group_leader; 6047 }; 6048 6049 BTF_TYPE_SAFE_RCU(struct cgroup) { 6050 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6051 struct kernfs_node *kn; 6052 }; 6053 6054 BTF_TYPE_SAFE_RCU(struct css_set) { 6055 struct cgroup *dfl_cgrp; 6056 }; 6057 6058 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6059 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6060 struct file __rcu *exe_file; 6061 }; 6062 6063 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6064 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6065 */ 6066 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6067 struct sock *sk; 6068 }; 6069 6070 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6071 struct sock *sk; 6072 }; 6073 6074 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6075 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6076 struct seq_file *seq; 6077 }; 6078 6079 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6080 struct bpf_iter_meta *meta; 6081 struct task_struct *task; 6082 }; 6083 6084 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6085 struct file *file; 6086 }; 6087 6088 BTF_TYPE_SAFE_TRUSTED(struct file) { 6089 struct inode *f_inode; 6090 }; 6091 6092 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6093 /* no negative dentry-s in places where bpf can see it */ 6094 struct inode *d_inode; 6095 }; 6096 6097 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6098 struct sock *sk; 6099 }; 6100 6101 static bool type_is_rcu(struct bpf_verifier_env *env, 6102 struct bpf_reg_state *reg, 6103 const char *field_name, u32 btf_id) 6104 { 6105 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6106 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6107 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6108 6109 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6110 } 6111 6112 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6113 struct bpf_reg_state *reg, 6114 const char *field_name, u32 btf_id) 6115 { 6116 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6117 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6118 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6119 6120 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6121 } 6122 6123 static bool type_is_trusted(struct bpf_verifier_env *env, 6124 struct bpf_reg_state *reg, 6125 const char *field_name, u32 btf_id) 6126 { 6127 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6128 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6129 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6130 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6131 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6132 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6133 6134 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6135 } 6136 6137 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6138 struct bpf_reg_state *regs, 6139 int regno, int off, int size, 6140 enum bpf_access_type atype, 6141 int value_regno) 6142 { 6143 struct bpf_reg_state *reg = regs + regno; 6144 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6145 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6146 const char *field_name = NULL; 6147 enum bpf_type_flag flag = 0; 6148 u32 btf_id = 0; 6149 int ret; 6150 6151 if (!env->allow_ptr_leaks) { 6152 verbose(env, 6153 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6154 tname); 6155 return -EPERM; 6156 } 6157 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6158 verbose(env, 6159 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6160 tname); 6161 return -EINVAL; 6162 } 6163 if (off < 0) { 6164 verbose(env, 6165 "R%d is ptr_%s invalid negative access: off=%d\n", 6166 regno, tname, off); 6167 return -EACCES; 6168 } 6169 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6170 char tn_buf[48]; 6171 6172 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6173 verbose(env, 6174 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6175 regno, tname, off, tn_buf); 6176 return -EACCES; 6177 } 6178 6179 if (reg->type & MEM_USER) { 6180 verbose(env, 6181 "R%d is ptr_%s access user memory: off=%d\n", 6182 regno, tname, off); 6183 return -EACCES; 6184 } 6185 6186 if (reg->type & MEM_PERCPU) { 6187 verbose(env, 6188 "R%d is ptr_%s access percpu memory: off=%d\n", 6189 regno, tname, off); 6190 return -EACCES; 6191 } 6192 6193 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6194 if (!btf_is_kernel(reg->btf)) { 6195 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6196 return -EFAULT; 6197 } 6198 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6199 } else { 6200 /* Writes are permitted with default btf_struct_access for 6201 * program allocated objects (which always have ref_obj_id > 0), 6202 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6203 */ 6204 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6205 verbose(env, "only read is supported\n"); 6206 return -EACCES; 6207 } 6208 6209 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6210 !reg->ref_obj_id) { 6211 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6212 return -EFAULT; 6213 } 6214 6215 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6216 } 6217 6218 if (ret < 0) 6219 return ret; 6220 6221 if (ret != PTR_TO_BTF_ID) { 6222 /* just mark; */ 6223 6224 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6225 /* If this is an untrusted pointer, all pointers formed by walking it 6226 * also inherit the untrusted flag. 6227 */ 6228 flag = PTR_UNTRUSTED; 6229 6230 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6231 /* By default any pointer obtained from walking a trusted pointer is no 6232 * longer trusted, unless the field being accessed has explicitly been 6233 * marked as inheriting its parent's state of trust (either full or RCU). 6234 * For example: 6235 * 'cgroups' pointer is untrusted if task->cgroups dereference 6236 * happened in a sleepable program outside of bpf_rcu_read_lock() 6237 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6238 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6239 * 6240 * A regular RCU-protected pointer with __rcu tag can also be deemed 6241 * trusted if we are in an RCU CS. Such pointer can be NULL. 6242 */ 6243 if (type_is_trusted(env, reg, field_name, btf_id)) { 6244 flag |= PTR_TRUSTED; 6245 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6246 if (type_is_rcu(env, reg, field_name, btf_id)) { 6247 /* ignore __rcu tag and mark it MEM_RCU */ 6248 flag |= MEM_RCU; 6249 } else if (flag & MEM_RCU || 6250 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6251 /* __rcu tagged pointers can be NULL */ 6252 flag |= MEM_RCU | PTR_MAYBE_NULL; 6253 6254 /* We always trust them */ 6255 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6256 flag & PTR_UNTRUSTED) 6257 flag &= ~PTR_UNTRUSTED; 6258 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6259 /* keep as-is */ 6260 } else { 6261 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6262 clear_trusted_flags(&flag); 6263 } 6264 } else { 6265 /* 6266 * If not in RCU CS or MEM_RCU pointer can be NULL then 6267 * aggressively mark as untrusted otherwise such 6268 * pointers will be plain PTR_TO_BTF_ID without flags 6269 * and will be allowed to be passed into helpers for 6270 * compat reasons. 6271 */ 6272 flag = PTR_UNTRUSTED; 6273 } 6274 } else { 6275 /* Old compat. Deprecated */ 6276 clear_trusted_flags(&flag); 6277 } 6278 6279 if (atype == BPF_READ && value_regno >= 0) 6280 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6281 6282 return 0; 6283 } 6284 6285 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6286 struct bpf_reg_state *regs, 6287 int regno, int off, int size, 6288 enum bpf_access_type atype, 6289 int value_regno) 6290 { 6291 struct bpf_reg_state *reg = regs + regno; 6292 struct bpf_map *map = reg->map_ptr; 6293 struct bpf_reg_state map_reg; 6294 enum bpf_type_flag flag = 0; 6295 const struct btf_type *t; 6296 const char *tname; 6297 u32 btf_id; 6298 int ret; 6299 6300 if (!btf_vmlinux) { 6301 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6302 return -ENOTSUPP; 6303 } 6304 6305 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6306 verbose(env, "map_ptr access not supported for map type %d\n", 6307 map->map_type); 6308 return -ENOTSUPP; 6309 } 6310 6311 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6312 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6313 6314 if (!env->allow_ptr_leaks) { 6315 verbose(env, 6316 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6317 tname); 6318 return -EPERM; 6319 } 6320 6321 if (off < 0) { 6322 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6323 regno, tname, off); 6324 return -EACCES; 6325 } 6326 6327 if (atype != BPF_READ) { 6328 verbose(env, "only read from %s is supported\n", tname); 6329 return -EACCES; 6330 } 6331 6332 /* Simulate access to a PTR_TO_BTF_ID */ 6333 memset(&map_reg, 0, sizeof(map_reg)); 6334 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6335 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6336 if (ret < 0) 6337 return ret; 6338 6339 if (value_regno >= 0) 6340 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6341 6342 return 0; 6343 } 6344 6345 /* Check that the stack access at the given offset is within bounds. The 6346 * maximum valid offset is -1. 6347 * 6348 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6349 * -state->allocated_stack for reads. 6350 */ 6351 static int check_stack_slot_within_bounds(int off, 6352 struct bpf_func_state *state, 6353 enum bpf_access_type t) 6354 { 6355 int min_valid_off; 6356 6357 if (t == BPF_WRITE) 6358 min_valid_off = -MAX_BPF_STACK; 6359 else 6360 min_valid_off = -state->allocated_stack; 6361 6362 if (off < min_valid_off || off > -1) 6363 return -EACCES; 6364 return 0; 6365 } 6366 6367 /* Check that the stack access at 'regno + off' falls within the maximum stack 6368 * bounds. 6369 * 6370 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6371 */ 6372 static int check_stack_access_within_bounds( 6373 struct bpf_verifier_env *env, 6374 int regno, int off, int access_size, 6375 enum bpf_access_src src, enum bpf_access_type type) 6376 { 6377 struct bpf_reg_state *regs = cur_regs(env); 6378 struct bpf_reg_state *reg = regs + regno; 6379 struct bpf_func_state *state = func(env, reg); 6380 int min_off, max_off; 6381 int err; 6382 char *err_extra; 6383 6384 if (src == ACCESS_HELPER) 6385 /* We don't know if helpers are reading or writing (or both). */ 6386 err_extra = " indirect access to"; 6387 else if (type == BPF_READ) 6388 err_extra = " read from"; 6389 else 6390 err_extra = " write to"; 6391 6392 if (tnum_is_const(reg->var_off)) { 6393 min_off = reg->var_off.value + off; 6394 if (access_size > 0) 6395 max_off = min_off + access_size - 1; 6396 else 6397 max_off = min_off; 6398 } else { 6399 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6400 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6401 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6402 err_extra, regno); 6403 return -EACCES; 6404 } 6405 min_off = reg->smin_value + off; 6406 if (access_size > 0) 6407 max_off = reg->smax_value + off + access_size - 1; 6408 else 6409 max_off = min_off; 6410 } 6411 6412 err = check_stack_slot_within_bounds(min_off, state, type); 6413 if (!err) 6414 err = check_stack_slot_within_bounds(max_off, state, type); 6415 6416 if (err) { 6417 if (tnum_is_const(reg->var_off)) { 6418 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6419 err_extra, regno, off, access_size); 6420 } else { 6421 char tn_buf[48]; 6422 6423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6424 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6425 err_extra, regno, tn_buf, access_size); 6426 } 6427 } 6428 return err; 6429 } 6430 6431 /* check whether memory at (regno + off) is accessible for t = (read | write) 6432 * if t==write, value_regno is a register which value is stored into memory 6433 * if t==read, value_regno is a register which will receive the value from memory 6434 * if t==write && value_regno==-1, some unknown value is stored into memory 6435 * if t==read && value_regno==-1, don't care what we read from memory 6436 */ 6437 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6438 int off, int bpf_size, enum bpf_access_type t, 6439 int value_regno, bool strict_alignment_once, bool is_ldsx) 6440 { 6441 struct bpf_reg_state *regs = cur_regs(env); 6442 struct bpf_reg_state *reg = regs + regno; 6443 struct bpf_func_state *state; 6444 int size, err = 0; 6445 6446 size = bpf_size_to_bytes(bpf_size); 6447 if (size < 0) 6448 return size; 6449 6450 /* alignment checks will add in reg->off themselves */ 6451 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6452 if (err) 6453 return err; 6454 6455 /* for access checks, reg->off is just part of off */ 6456 off += reg->off; 6457 6458 if (reg->type == PTR_TO_MAP_KEY) { 6459 if (t == BPF_WRITE) { 6460 verbose(env, "write to change key R%d not allowed\n", regno); 6461 return -EACCES; 6462 } 6463 6464 err = check_mem_region_access(env, regno, off, size, 6465 reg->map_ptr->key_size, false); 6466 if (err) 6467 return err; 6468 if (value_regno >= 0) 6469 mark_reg_unknown(env, regs, value_regno); 6470 } else if (reg->type == PTR_TO_MAP_VALUE) { 6471 struct btf_field *kptr_field = NULL; 6472 6473 if (t == BPF_WRITE && value_regno >= 0 && 6474 is_pointer_value(env, value_regno)) { 6475 verbose(env, "R%d leaks addr into map\n", value_regno); 6476 return -EACCES; 6477 } 6478 err = check_map_access_type(env, regno, off, size, t); 6479 if (err) 6480 return err; 6481 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6482 if (err) 6483 return err; 6484 if (tnum_is_const(reg->var_off)) 6485 kptr_field = btf_record_find(reg->map_ptr->record, 6486 off + reg->var_off.value, BPF_KPTR); 6487 if (kptr_field) { 6488 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6489 } else if (t == BPF_READ && value_regno >= 0) { 6490 struct bpf_map *map = reg->map_ptr; 6491 6492 /* if map is read-only, track its contents as scalars */ 6493 if (tnum_is_const(reg->var_off) && 6494 bpf_map_is_rdonly(map) && 6495 map->ops->map_direct_value_addr) { 6496 int map_off = off + reg->var_off.value; 6497 u64 val = 0; 6498 6499 err = bpf_map_direct_read(map, map_off, size, 6500 &val, is_ldsx); 6501 if (err) 6502 return err; 6503 6504 regs[value_regno].type = SCALAR_VALUE; 6505 __mark_reg_known(®s[value_regno], val); 6506 } else { 6507 mark_reg_unknown(env, regs, value_regno); 6508 } 6509 } 6510 } else if (base_type(reg->type) == PTR_TO_MEM) { 6511 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6512 6513 if (type_may_be_null(reg->type)) { 6514 verbose(env, "R%d invalid mem access '%s'\n", regno, 6515 reg_type_str(env, reg->type)); 6516 return -EACCES; 6517 } 6518 6519 if (t == BPF_WRITE && rdonly_mem) { 6520 verbose(env, "R%d cannot write into %s\n", 6521 regno, reg_type_str(env, reg->type)); 6522 return -EACCES; 6523 } 6524 6525 if (t == BPF_WRITE && value_regno >= 0 && 6526 is_pointer_value(env, value_regno)) { 6527 verbose(env, "R%d leaks addr into mem\n", value_regno); 6528 return -EACCES; 6529 } 6530 6531 err = check_mem_region_access(env, regno, off, size, 6532 reg->mem_size, false); 6533 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6534 mark_reg_unknown(env, regs, value_regno); 6535 } else if (reg->type == PTR_TO_CTX) { 6536 enum bpf_reg_type reg_type = SCALAR_VALUE; 6537 struct btf *btf = NULL; 6538 u32 btf_id = 0; 6539 6540 if (t == BPF_WRITE && value_regno >= 0 && 6541 is_pointer_value(env, value_regno)) { 6542 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6543 return -EACCES; 6544 } 6545 6546 err = check_ptr_off_reg(env, reg, regno); 6547 if (err < 0) 6548 return err; 6549 6550 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6551 &btf_id); 6552 if (err) 6553 verbose_linfo(env, insn_idx, "; "); 6554 if (!err && t == BPF_READ && value_regno >= 0) { 6555 /* ctx access returns either a scalar, or a 6556 * PTR_TO_PACKET[_META,_END]. In the latter 6557 * case, we know the offset is zero. 6558 */ 6559 if (reg_type == SCALAR_VALUE) { 6560 mark_reg_unknown(env, regs, value_regno); 6561 } else { 6562 mark_reg_known_zero(env, regs, 6563 value_regno); 6564 if (type_may_be_null(reg_type)) 6565 regs[value_regno].id = ++env->id_gen; 6566 /* A load of ctx field could have different 6567 * actual load size with the one encoded in the 6568 * insn. When the dst is PTR, it is for sure not 6569 * a sub-register. 6570 */ 6571 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6572 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6573 regs[value_regno].btf = btf; 6574 regs[value_regno].btf_id = btf_id; 6575 } 6576 } 6577 regs[value_regno].type = reg_type; 6578 } 6579 6580 } else if (reg->type == PTR_TO_STACK) { 6581 /* Basic bounds checks. */ 6582 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6583 if (err) 6584 return err; 6585 6586 state = func(env, reg); 6587 err = update_stack_depth(env, state, off); 6588 if (err) 6589 return err; 6590 6591 if (t == BPF_READ) 6592 err = check_stack_read(env, regno, off, size, 6593 value_regno); 6594 else 6595 err = check_stack_write(env, regno, off, size, 6596 value_regno, insn_idx); 6597 } else if (reg_is_pkt_pointer(reg)) { 6598 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6599 verbose(env, "cannot write into packet\n"); 6600 return -EACCES; 6601 } 6602 if (t == BPF_WRITE && value_regno >= 0 && 6603 is_pointer_value(env, value_regno)) { 6604 verbose(env, "R%d leaks addr into packet\n", 6605 value_regno); 6606 return -EACCES; 6607 } 6608 err = check_packet_access(env, regno, off, size, false); 6609 if (!err && t == BPF_READ && value_regno >= 0) 6610 mark_reg_unknown(env, regs, value_regno); 6611 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6612 if (t == BPF_WRITE && value_regno >= 0 && 6613 is_pointer_value(env, value_regno)) { 6614 verbose(env, "R%d leaks addr into flow keys\n", 6615 value_regno); 6616 return -EACCES; 6617 } 6618 6619 err = check_flow_keys_access(env, off, size); 6620 if (!err && t == BPF_READ && value_regno >= 0) 6621 mark_reg_unknown(env, regs, value_regno); 6622 } else if (type_is_sk_pointer(reg->type)) { 6623 if (t == BPF_WRITE) { 6624 verbose(env, "R%d cannot write into %s\n", 6625 regno, reg_type_str(env, reg->type)); 6626 return -EACCES; 6627 } 6628 err = check_sock_access(env, insn_idx, regno, off, size, t); 6629 if (!err && value_regno >= 0) 6630 mark_reg_unknown(env, regs, value_regno); 6631 } else if (reg->type == PTR_TO_TP_BUFFER) { 6632 err = check_tp_buffer_access(env, reg, regno, off, size); 6633 if (!err && t == BPF_READ && value_regno >= 0) 6634 mark_reg_unknown(env, regs, value_regno); 6635 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6636 !type_may_be_null(reg->type)) { 6637 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6638 value_regno); 6639 } else if (reg->type == CONST_PTR_TO_MAP) { 6640 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6641 value_regno); 6642 } else if (base_type(reg->type) == PTR_TO_BUF) { 6643 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6644 u32 *max_access; 6645 6646 if (rdonly_mem) { 6647 if (t == BPF_WRITE) { 6648 verbose(env, "R%d cannot write into %s\n", 6649 regno, reg_type_str(env, reg->type)); 6650 return -EACCES; 6651 } 6652 max_access = &env->prog->aux->max_rdonly_access; 6653 } else { 6654 max_access = &env->prog->aux->max_rdwr_access; 6655 } 6656 6657 err = check_buffer_access(env, reg, regno, off, size, false, 6658 max_access); 6659 6660 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6661 mark_reg_unknown(env, regs, value_regno); 6662 } else { 6663 verbose(env, "R%d invalid mem access '%s'\n", regno, 6664 reg_type_str(env, reg->type)); 6665 return -EACCES; 6666 } 6667 6668 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6669 regs[value_regno].type == SCALAR_VALUE) { 6670 if (!is_ldsx) 6671 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6672 coerce_reg_to_size(®s[value_regno], size); 6673 else 6674 coerce_reg_to_size_sx(®s[value_regno], size); 6675 } 6676 return err; 6677 } 6678 6679 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6680 { 6681 int load_reg; 6682 int err; 6683 6684 switch (insn->imm) { 6685 case BPF_ADD: 6686 case BPF_ADD | BPF_FETCH: 6687 case BPF_AND: 6688 case BPF_AND | BPF_FETCH: 6689 case BPF_OR: 6690 case BPF_OR | BPF_FETCH: 6691 case BPF_XOR: 6692 case BPF_XOR | BPF_FETCH: 6693 case BPF_XCHG: 6694 case BPF_CMPXCHG: 6695 break; 6696 default: 6697 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6698 return -EINVAL; 6699 } 6700 6701 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6702 verbose(env, "invalid atomic operand size\n"); 6703 return -EINVAL; 6704 } 6705 6706 /* check src1 operand */ 6707 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6708 if (err) 6709 return err; 6710 6711 /* check src2 operand */ 6712 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6713 if (err) 6714 return err; 6715 6716 if (insn->imm == BPF_CMPXCHG) { 6717 /* Check comparison of R0 with memory location */ 6718 const u32 aux_reg = BPF_REG_0; 6719 6720 err = check_reg_arg(env, aux_reg, SRC_OP); 6721 if (err) 6722 return err; 6723 6724 if (is_pointer_value(env, aux_reg)) { 6725 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6726 return -EACCES; 6727 } 6728 } 6729 6730 if (is_pointer_value(env, insn->src_reg)) { 6731 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6732 return -EACCES; 6733 } 6734 6735 if (is_ctx_reg(env, insn->dst_reg) || 6736 is_pkt_reg(env, insn->dst_reg) || 6737 is_flow_key_reg(env, insn->dst_reg) || 6738 is_sk_reg(env, insn->dst_reg)) { 6739 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6740 insn->dst_reg, 6741 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6742 return -EACCES; 6743 } 6744 6745 if (insn->imm & BPF_FETCH) { 6746 if (insn->imm == BPF_CMPXCHG) 6747 load_reg = BPF_REG_0; 6748 else 6749 load_reg = insn->src_reg; 6750 6751 /* check and record load of old value */ 6752 err = check_reg_arg(env, load_reg, DST_OP); 6753 if (err) 6754 return err; 6755 } else { 6756 /* This instruction accesses a memory location but doesn't 6757 * actually load it into a register. 6758 */ 6759 load_reg = -1; 6760 } 6761 6762 /* Check whether we can read the memory, with second call for fetch 6763 * case to simulate the register fill. 6764 */ 6765 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6766 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6767 if (!err && load_reg >= 0) 6768 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6769 BPF_SIZE(insn->code), BPF_READ, load_reg, 6770 true, false); 6771 if (err) 6772 return err; 6773 6774 /* Check whether we can write into the same memory. */ 6775 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6776 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6777 if (err) 6778 return err; 6779 6780 return 0; 6781 } 6782 6783 /* When register 'regno' is used to read the stack (either directly or through 6784 * a helper function) make sure that it's within stack boundary and, depending 6785 * on the access type, that all elements of the stack are initialized. 6786 * 6787 * 'off' includes 'regno->off', but not its dynamic part (if any). 6788 * 6789 * All registers that have been spilled on the stack in the slots within the 6790 * read offsets are marked as read. 6791 */ 6792 static int check_stack_range_initialized( 6793 struct bpf_verifier_env *env, int regno, int off, 6794 int access_size, bool zero_size_allowed, 6795 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6796 { 6797 struct bpf_reg_state *reg = reg_state(env, regno); 6798 struct bpf_func_state *state = func(env, reg); 6799 int err, min_off, max_off, i, j, slot, spi; 6800 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6801 enum bpf_access_type bounds_check_type; 6802 /* Some accesses can write anything into the stack, others are 6803 * read-only. 6804 */ 6805 bool clobber = false; 6806 6807 if (access_size == 0 && !zero_size_allowed) { 6808 verbose(env, "invalid zero-sized read\n"); 6809 return -EACCES; 6810 } 6811 6812 if (type == ACCESS_HELPER) { 6813 /* The bounds checks for writes are more permissive than for 6814 * reads. However, if raw_mode is not set, we'll do extra 6815 * checks below. 6816 */ 6817 bounds_check_type = BPF_WRITE; 6818 clobber = true; 6819 } else { 6820 bounds_check_type = BPF_READ; 6821 } 6822 err = check_stack_access_within_bounds(env, regno, off, access_size, 6823 type, bounds_check_type); 6824 if (err) 6825 return err; 6826 6827 6828 if (tnum_is_const(reg->var_off)) { 6829 min_off = max_off = reg->var_off.value + off; 6830 } else { 6831 /* Variable offset is prohibited for unprivileged mode for 6832 * simplicity since it requires corresponding support in 6833 * Spectre masking for stack ALU. 6834 * See also retrieve_ptr_limit(). 6835 */ 6836 if (!env->bypass_spec_v1) { 6837 char tn_buf[48]; 6838 6839 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6840 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6841 regno, err_extra, tn_buf); 6842 return -EACCES; 6843 } 6844 /* Only initialized buffer on stack is allowed to be accessed 6845 * with variable offset. With uninitialized buffer it's hard to 6846 * guarantee that whole memory is marked as initialized on 6847 * helper return since specific bounds are unknown what may 6848 * cause uninitialized stack leaking. 6849 */ 6850 if (meta && meta->raw_mode) 6851 meta = NULL; 6852 6853 min_off = reg->smin_value + off; 6854 max_off = reg->smax_value + off; 6855 } 6856 6857 if (meta && meta->raw_mode) { 6858 /* Ensure we won't be overwriting dynptrs when simulating byte 6859 * by byte access in check_helper_call using meta.access_size. 6860 * This would be a problem if we have a helper in the future 6861 * which takes: 6862 * 6863 * helper(uninit_mem, len, dynptr) 6864 * 6865 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6866 * may end up writing to dynptr itself when touching memory from 6867 * arg 1. This can be relaxed on a case by case basis for known 6868 * safe cases, but reject due to the possibilitiy of aliasing by 6869 * default. 6870 */ 6871 for (i = min_off; i < max_off + access_size; i++) { 6872 int stack_off = -i - 1; 6873 6874 spi = __get_spi(i); 6875 /* raw_mode may write past allocated_stack */ 6876 if (state->allocated_stack <= stack_off) 6877 continue; 6878 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6879 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6880 return -EACCES; 6881 } 6882 } 6883 meta->access_size = access_size; 6884 meta->regno = regno; 6885 return 0; 6886 } 6887 6888 for (i = min_off; i < max_off + access_size; i++) { 6889 u8 *stype; 6890 6891 slot = -i - 1; 6892 spi = slot / BPF_REG_SIZE; 6893 if (state->allocated_stack <= slot) 6894 goto err; 6895 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6896 if (*stype == STACK_MISC) 6897 goto mark; 6898 if ((*stype == STACK_ZERO) || 6899 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6900 if (clobber) { 6901 /* helper can write anything into the stack */ 6902 *stype = STACK_MISC; 6903 } 6904 goto mark; 6905 } 6906 6907 if (is_spilled_reg(&state->stack[spi]) && 6908 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6909 env->allow_ptr_leaks)) { 6910 if (clobber) { 6911 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6912 for (j = 0; j < BPF_REG_SIZE; j++) 6913 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6914 } 6915 goto mark; 6916 } 6917 6918 err: 6919 if (tnum_is_const(reg->var_off)) { 6920 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6921 err_extra, regno, min_off, i - min_off, access_size); 6922 } else { 6923 char tn_buf[48]; 6924 6925 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6926 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6927 err_extra, regno, tn_buf, i - min_off, access_size); 6928 } 6929 return -EACCES; 6930 mark: 6931 /* reading any byte out of 8-byte 'spill_slot' will cause 6932 * the whole slot to be marked as 'read' 6933 */ 6934 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6935 state->stack[spi].spilled_ptr.parent, 6936 REG_LIVE_READ64); 6937 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6938 * be sure that whether stack slot is written to or not. Hence, 6939 * we must still conservatively propagate reads upwards even if 6940 * helper may write to the entire memory range. 6941 */ 6942 } 6943 return update_stack_depth(env, state, min_off); 6944 } 6945 6946 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6947 int access_size, bool zero_size_allowed, 6948 struct bpf_call_arg_meta *meta) 6949 { 6950 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6951 u32 *max_access; 6952 6953 switch (base_type(reg->type)) { 6954 case PTR_TO_PACKET: 6955 case PTR_TO_PACKET_META: 6956 return check_packet_access(env, regno, reg->off, access_size, 6957 zero_size_allowed); 6958 case PTR_TO_MAP_KEY: 6959 if (meta && meta->raw_mode) { 6960 verbose(env, "R%d cannot write into %s\n", regno, 6961 reg_type_str(env, reg->type)); 6962 return -EACCES; 6963 } 6964 return check_mem_region_access(env, regno, reg->off, access_size, 6965 reg->map_ptr->key_size, false); 6966 case PTR_TO_MAP_VALUE: 6967 if (check_map_access_type(env, regno, reg->off, access_size, 6968 meta && meta->raw_mode ? BPF_WRITE : 6969 BPF_READ)) 6970 return -EACCES; 6971 return check_map_access(env, regno, reg->off, access_size, 6972 zero_size_allowed, ACCESS_HELPER); 6973 case PTR_TO_MEM: 6974 if (type_is_rdonly_mem(reg->type)) { 6975 if (meta && meta->raw_mode) { 6976 verbose(env, "R%d cannot write into %s\n", regno, 6977 reg_type_str(env, reg->type)); 6978 return -EACCES; 6979 } 6980 } 6981 return check_mem_region_access(env, regno, reg->off, 6982 access_size, reg->mem_size, 6983 zero_size_allowed); 6984 case PTR_TO_BUF: 6985 if (type_is_rdonly_mem(reg->type)) { 6986 if (meta && meta->raw_mode) { 6987 verbose(env, "R%d cannot write into %s\n", regno, 6988 reg_type_str(env, reg->type)); 6989 return -EACCES; 6990 } 6991 6992 max_access = &env->prog->aux->max_rdonly_access; 6993 } else { 6994 max_access = &env->prog->aux->max_rdwr_access; 6995 } 6996 return check_buffer_access(env, reg, regno, reg->off, 6997 access_size, zero_size_allowed, 6998 max_access); 6999 case PTR_TO_STACK: 7000 return check_stack_range_initialized( 7001 env, 7002 regno, reg->off, access_size, 7003 zero_size_allowed, ACCESS_HELPER, meta); 7004 case PTR_TO_BTF_ID: 7005 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7006 access_size, BPF_READ, -1); 7007 case PTR_TO_CTX: 7008 /* in case the function doesn't know how to access the context, 7009 * (because we are in a program of type SYSCALL for example), we 7010 * can not statically check its size. 7011 * Dynamically check it now. 7012 */ 7013 if (!env->ops->convert_ctx_access) { 7014 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7015 int offset = access_size - 1; 7016 7017 /* Allow zero-byte read from PTR_TO_CTX */ 7018 if (access_size == 0) 7019 return zero_size_allowed ? 0 : -EACCES; 7020 7021 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7022 atype, -1, false, false); 7023 } 7024 7025 fallthrough; 7026 default: /* scalar_value or invalid ptr */ 7027 /* Allow zero-byte read from NULL, regardless of pointer type */ 7028 if (zero_size_allowed && access_size == 0 && 7029 register_is_null(reg)) 7030 return 0; 7031 7032 verbose(env, "R%d type=%s ", regno, 7033 reg_type_str(env, reg->type)); 7034 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7035 return -EACCES; 7036 } 7037 } 7038 7039 static int check_mem_size_reg(struct bpf_verifier_env *env, 7040 struct bpf_reg_state *reg, u32 regno, 7041 bool zero_size_allowed, 7042 struct bpf_call_arg_meta *meta) 7043 { 7044 int err; 7045 7046 /* This is used to refine r0 return value bounds for helpers 7047 * that enforce this value as an upper bound on return values. 7048 * See do_refine_retval_range() for helpers that can refine 7049 * the return value. C type of helper is u32 so we pull register 7050 * bound from umax_value however, if negative verifier errors 7051 * out. Only upper bounds can be learned because retval is an 7052 * int type and negative retvals are allowed. 7053 */ 7054 meta->msize_max_value = reg->umax_value; 7055 7056 /* The register is SCALAR_VALUE; the access check 7057 * happens using its boundaries. 7058 */ 7059 if (!tnum_is_const(reg->var_off)) 7060 /* For unprivileged variable accesses, disable raw 7061 * mode so that the program is required to 7062 * initialize all the memory that the helper could 7063 * just partially fill up. 7064 */ 7065 meta = NULL; 7066 7067 if (reg->smin_value < 0) { 7068 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7069 regno); 7070 return -EACCES; 7071 } 7072 7073 if (reg->umin_value == 0) { 7074 err = check_helper_mem_access(env, regno - 1, 0, 7075 zero_size_allowed, 7076 meta); 7077 if (err) 7078 return err; 7079 } 7080 7081 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7082 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7083 regno); 7084 return -EACCES; 7085 } 7086 err = check_helper_mem_access(env, regno - 1, 7087 reg->umax_value, 7088 zero_size_allowed, meta); 7089 if (!err) 7090 err = mark_chain_precision(env, regno); 7091 return err; 7092 } 7093 7094 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7095 u32 regno, u32 mem_size) 7096 { 7097 bool may_be_null = type_may_be_null(reg->type); 7098 struct bpf_reg_state saved_reg; 7099 struct bpf_call_arg_meta meta; 7100 int err; 7101 7102 if (register_is_null(reg)) 7103 return 0; 7104 7105 memset(&meta, 0, sizeof(meta)); 7106 /* Assuming that the register contains a value check if the memory 7107 * access is safe. Temporarily save and restore the register's state as 7108 * the conversion shouldn't be visible to a caller. 7109 */ 7110 if (may_be_null) { 7111 saved_reg = *reg; 7112 mark_ptr_not_null_reg(reg); 7113 } 7114 7115 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7116 /* Check access for BPF_WRITE */ 7117 meta.raw_mode = true; 7118 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7119 7120 if (may_be_null) 7121 *reg = saved_reg; 7122 7123 return err; 7124 } 7125 7126 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7127 u32 regno) 7128 { 7129 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7130 bool may_be_null = type_may_be_null(mem_reg->type); 7131 struct bpf_reg_state saved_reg; 7132 struct bpf_call_arg_meta meta; 7133 int err; 7134 7135 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7136 7137 memset(&meta, 0, sizeof(meta)); 7138 7139 if (may_be_null) { 7140 saved_reg = *mem_reg; 7141 mark_ptr_not_null_reg(mem_reg); 7142 } 7143 7144 err = check_mem_size_reg(env, reg, regno, true, &meta); 7145 /* Check access for BPF_WRITE */ 7146 meta.raw_mode = true; 7147 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7148 7149 if (may_be_null) 7150 *mem_reg = saved_reg; 7151 return err; 7152 } 7153 7154 /* Implementation details: 7155 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7156 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7157 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7158 * Two separate bpf_obj_new will also have different reg->id. 7159 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7160 * clears reg->id after value_or_null->value transition, since the verifier only 7161 * cares about the range of access to valid map value pointer and doesn't care 7162 * about actual address of the map element. 7163 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7164 * reg->id > 0 after value_or_null->value transition. By doing so 7165 * two bpf_map_lookups will be considered two different pointers that 7166 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7167 * returned from bpf_obj_new. 7168 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7169 * dead-locks. 7170 * Since only one bpf_spin_lock is allowed the checks are simpler than 7171 * reg_is_refcounted() logic. The verifier needs to remember only 7172 * one spin_lock instead of array of acquired_refs. 7173 * cur_state->active_lock remembers which map value element or allocated 7174 * object got locked and clears it after bpf_spin_unlock. 7175 */ 7176 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7177 bool is_lock) 7178 { 7179 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7180 struct bpf_verifier_state *cur = env->cur_state; 7181 bool is_const = tnum_is_const(reg->var_off); 7182 u64 val = reg->var_off.value; 7183 struct bpf_map *map = NULL; 7184 struct btf *btf = NULL; 7185 struct btf_record *rec; 7186 7187 if (!is_const) { 7188 verbose(env, 7189 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7190 regno); 7191 return -EINVAL; 7192 } 7193 if (reg->type == PTR_TO_MAP_VALUE) { 7194 map = reg->map_ptr; 7195 if (!map->btf) { 7196 verbose(env, 7197 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7198 map->name); 7199 return -EINVAL; 7200 } 7201 } else { 7202 btf = reg->btf; 7203 } 7204 7205 rec = reg_btf_record(reg); 7206 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7207 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7208 map ? map->name : "kptr"); 7209 return -EINVAL; 7210 } 7211 if (rec->spin_lock_off != val + reg->off) { 7212 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7213 val + reg->off, rec->spin_lock_off); 7214 return -EINVAL; 7215 } 7216 if (is_lock) { 7217 if (cur->active_lock.ptr) { 7218 verbose(env, 7219 "Locking two bpf_spin_locks are not allowed\n"); 7220 return -EINVAL; 7221 } 7222 if (map) 7223 cur->active_lock.ptr = map; 7224 else 7225 cur->active_lock.ptr = btf; 7226 cur->active_lock.id = reg->id; 7227 } else { 7228 void *ptr; 7229 7230 if (map) 7231 ptr = map; 7232 else 7233 ptr = btf; 7234 7235 if (!cur->active_lock.ptr) { 7236 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7237 return -EINVAL; 7238 } 7239 if (cur->active_lock.ptr != ptr || 7240 cur->active_lock.id != reg->id) { 7241 verbose(env, "bpf_spin_unlock of different lock\n"); 7242 return -EINVAL; 7243 } 7244 7245 invalidate_non_owning_refs(env); 7246 7247 cur->active_lock.ptr = NULL; 7248 cur->active_lock.id = 0; 7249 } 7250 return 0; 7251 } 7252 7253 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7254 struct bpf_call_arg_meta *meta) 7255 { 7256 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7257 bool is_const = tnum_is_const(reg->var_off); 7258 struct bpf_map *map = reg->map_ptr; 7259 u64 val = reg->var_off.value; 7260 7261 if (!is_const) { 7262 verbose(env, 7263 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7264 regno); 7265 return -EINVAL; 7266 } 7267 if (!map->btf) { 7268 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7269 map->name); 7270 return -EINVAL; 7271 } 7272 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7273 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7274 return -EINVAL; 7275 } 7276 if (map->record->timer_off != val + reg->off) { 7277 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7278 val + reg->off, map->record->timer_off); 7279 return -EINVAL; 7280 } 7281 if (meta->map_ptr) { 7282 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7283 return -EFAULT; 7284 } 7285 meta->map_uid = reg->map_uid; 7286 meta->map_ptr = map; 7287 return 0; 7288 } 7289 7290 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7291 struct bpf_call_arg_meta *meta) 7292 { 7293 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7294 struct bpf_map *map_ptr = reg->map_ptr; 7295 struct btf_field *kptr_field; 7296 u32 kptr_off; 7297 7298 if (!tnum_is_const(reg->var_off)) { 7299 verbose(env, 7300 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7301 regno); 7302 return -EINVAL; 7303 } 7304 if (!map_ptr->btf) { 7305 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7306 map_ptr->name); 7307 return -EINVAL; 7308 } 7309 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7310 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7311 return -EINVAL; 7312 } 7313 7314 meta->map_ptr = map_ptr; 7315 kptr_off = reg->off + reg->var_off.value; 7316 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7317 if (!kptr_field) { 7318 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7319 return -EACCES; 7320 } 7321 if (kptr_field->type != BPF_KPTR_REF) { 7322 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7323 return -EACCES; 7324 } 7325 meta->kptr_field = kptr_field; 7326 return 0; 7327 } 7328 7329 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7330 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7331 * 7332 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7333 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7334 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7335 * 7336 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7337 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7338 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7339 * mutate the view of the dynptr and also possibly destroy it. In the latter 7340 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7341 * memory that dynptr points to. 7342 * 7343 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7344 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7345 * readonly dynptr view yet, hence only the first case is tracked and checked. 7346 * 7347 * This is consistent with how C applies the const modifier to a struct object, 7348 * where the pointer itself inside bpf_dynptr becomes const but not what it 7349 * points to. 7350 * 7351 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7352 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7353 */ 7354 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7355 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7356 { 7357 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7358 int err; 7359 7360 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7361 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7362 */ 7363 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7364 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7365 return -EFAULT; 7366 } 7367 7368 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7369 * constructing a mutable bpf_dynptr object. 7370 * 7371 * Currently, this is only possible with PTR_TO_STACK 7372 * pointing to a region of at least 16 bytes which doesn't 7373 * contain an existing bpf_dynptr. 7374 * 7375 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7376 * mutated or destroyed. However, the memory it points to 7377 * may be mutated. 7378 * 7379 * None - Points to a initialized dynptr that can be mutated and 7380 * destroyed, including mutation of the memory it points 7381 * to. 7382 */ 7383 if (arg_type & MEM_UNINIT) { 7384 int i; 7385 7386 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7387 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7388 return -EINVAL; 7389 } 7390 7391 /* we write BPF_DW bits (8 bytes) at a time */ 7392 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7393 err = check_mem_access(env, insn_idx, regno, 7394 i, BPF_DW, BPF_WRITE, -1, false, false); 7395 if (err) 7396 return err; 7397 } 7398 7399 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7400 } else /* MEM_RDONLY and None case from above */ { 7401 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7402 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7403 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7404 return -EINVAL; 7405 } 7406 7407 if (!is_dynptr_reg_valid_init(env, reg)) { 7408 verbose(env, 7409 "Expected an initialized dynptr as arg #%d\n", 7410 regno); 7411 return -EINVAL; 7412 } 7413 7414 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7415 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7416 verbose(env, 7417 "Expected a dynptr of type %s as arg #%d\n", 7418 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7419 return -EINVAL; 7420 } 7421 7422 err = mark_dynptr_read(env, reg); 7423 } 7424 return err; 7425 } 7426 7427 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7428 { 7429 struct bpf_func_state *state = func(env, reg); 7430 7431 return state->stack[spi].spilled_ptr.ref_obj_id; 7432 } 7433 7434 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7435 { 7436 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7437 } 7438 7439 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7440 { 7441 return meta->kfunc_flags & KF_ITER_NEW; 7442 } 7443 7444 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7445 { 7446 return meta->kfunc_flags & KF_ITER_NEXT; 7447 } 7448 7449 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7450 { 7451 return meta->kfunc_flags & KF_ITER_DESTROY; 7452 } 7453 7454 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7455 { 7456 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7457 * kfunc is iter state pointer 7458 */ 7459 return arg == 0 && is_iter_kfunc(meta); 7460 } 7461 7462 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7463 struct bpf_kfunc_call_arg_meta *meta) 7464 { 7465 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7466 const struct btf_type *t; 7467 const struct btf_param *arg; 7468 int spi, err, i, nr_slots; 7469 u32 btf_id; 7470 7471 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7472 arg = &btf_params(meta->func_proto)[0]; 7473 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7474 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7475 nr_slots = t->size / BPF_REG_SIZE; 7476 7477 if (is_iter_new_kfunc(meta)) { 7478 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7479 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7480 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7481 iter_type_str(meta->btf, btf_id), regno); 7482 return -EINVAL; 7483 } 7484 7485 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7486 err = check_mem_access(env, insn_idx, regno, 7487 i, BPF_DW, BPF_WRITE, -1, false, false); 7488 if (err) 7489 return err; 7490 } 7491 7492 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7493 if (err) 7494 return err; 7495 } else { 7496 /* iter_next() or iter_destroy() expect initialized iter state*/ 7497 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7498 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7499 iter_type_str(meta->btf, btf_id), regno); 7500 return -EINVAL; 7501 } 7502 7503 spi = iter_get_spi(env, reg, nr_slots); 7504 if (spi < 0) 7505 return spi; 7506 7507 err = mark_iter_read(env, reg, spi, nr_slots); 7508 if (err) 7509 return err; 7510 7511 /* remember meta->iter info for process_iter_next_call() */ 7512 meta->iter.spi = spi; 7513 meta->iter.frameno = reg->frameno; 7514 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7515 7516 if (is_iter_destroy_kfunc(meta)) { 7517 err = unmark_stack_slots_iter(env, reg, nr_slots); 7518 if (err) 7519 return err; 7520 } 7521 } 7522 7523 return 0; 7524 } 7525 7526 /* process_iter_next_call() is called when verifier gets to iterator's next 7527 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7528 * to it as just "iter_next()" in comments below. 7529 * 7530 * BPF verifier relies on a crucial contract for any iter_next() 7531 * implementation: it should *eventually* return NULL, and once that happens 7532 * it should keep returning NULL. That is, once iterator exhausts elements to 7533 * iterate, it should never reset or spuriously return new elements. 7534 * 7535 * With the assumption of such contract, process_iter_next_call() simulates 7536 * a fork in the verifier state to validate loop logic correctness and safety 7537 * without having to simulate infinite amount of iterations. 7538 * 7539 * In current state, we first assume that iter_next() returned NULL and 7540 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7541 * conditions we should not form an infinite loop and should eventually reach 7542 * exit. 7543 * 7544 * Besides that, we also fork current state and enqueue it for later 7545 * verification. In a forked state we keep iterator state as ACTIVE 7546 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7547 * also bump iteration depth to prevent erroneous infinite loop detection 7548 * later on (see iter_active_depths_differ() comment for details). In this 7549 * state we assume that we'll eventually loop back to another iter_next() 7550 * calls (it could be in exactly same location or in some other instruction, 7551 * it doesn't matter, we don't make any unnecessary assumptions about this, 7552 * everything revolves around iterator state in a stack slot, not which 7553 * instruction is calling iter_next()). When that happens, we either will come 7554 * to iter_next() with equivalent state and can conclude that next iteration 7555 * will proceed in exactly the same way as we just verified, so it's safe to 7556 * assume that loop converges. If not, we'll go on another iteration 7557 * simulation with a different input state, until all possible starting states 7558 * are validated or we reach maximum number of instructions limit. 7559 * 7560 * This way, we will either exhaustively discover all possible input states 7561 * that iterator loop can start with and eventually will converge, or we'll 7562 * effectively regress into bounded loop simulation logic and either reach 7563 * maximum number of instructions if loop is not provably convergent, or there 7564 * is some statically known limit on number of iterations (e.g., if there is 7565 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7566 * 7567 * One very subtle but very important aspect is that we *always* simulate NULL 7568 * condition first (as the current state) before we simulate non-NULL case. 7569 * This has to do with intricacies of scalar precision tracking. By simulating 7570 * "exit condition" of iter_next() returning NULL first, we make sure all the 7571 * relevant precision marks *that will be set **after** we exit iterator loop* 7572 * are propagated backwards to common parent state of NULL and non-NULL 7573 * branches. Thanks to that, state equivalence checks done later in forked 7574 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7575 * precision marks are finalized and won't change. Because simulating another 7576 * ACTIVE iterator iteration won't change them (because given same input 7577 * states we'll end up with exactly same output states which we are currently 7578 * comparing; and verification after the loop already propagated back what 7579 * needs to be **additionally** tracked as precise). It's subtle, grok 7580 * precision tracking for more intuitive understanding. 7581 */ 7582 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7583 struct bpf_kfunc_call_arg_meta *meta) 7584 { 7585 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7586 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7587 struct bpf_reg_state *cur_iter, *queued_iter; 7588 int iter_frameno = meta->iter.frameno; 7589 int iter_spi = meta->iter.spi; 7590 7591 BTF_TYPE_EMIT(struct bpf_iter); 7592 7593 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7594 7595 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7596 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7597 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7598 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7599 return -EFAULT; 7600 } 7601 7602 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7603 /* branch out active iter state */ 7604 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7605 if (!queued_st) 7606 return -ENOMEM; 7607 7608 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7609 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7610 queued_iter->iter.depth++; 7611 7612 queued_fr = queued_st->frame[queued_st->curframe]; 7613 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7614 } 7615 7616 /* switch to DRAINED state, but keep the depth unchanged */ 7617 /* mark current iter state as drained and assume returned NULL */ 7618 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7619 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7620 7621 return 0; 7622 } 7623 7624 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7625 { 7626 return type == ARG_CONST_SIZE || 7627 type == ARG_CONST_SIZE_OR_ZERO; 7628 } 7629 7630 static bool arg_type_is_release(enum bpf_arg_type type) 7631 { 7632 return type & OBJ_RELEASE; 7633 } 7634 7635 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7636 { 7637 return base_type(type) == ARG_PTR_TO_DYNPTR; 7638 } 7639 7640 static int int_ptr_type_to_size(enum bpf_arg_type type) 7641 { 7642 if (type == ARG_PTR_TO_INT) 7643 return sizeof(u32); 7644 else if (type == ARG_PTR_TO_LONG) 7645 return sizeof(u64); 7646 7647 return -EINVAL; 7648 } 7649 7650 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7651 const struct bpf_call_arg_meta *meta, 7652 enum bpf_arg_type *arg_type) 7653 { 7654 if (!meta->map_ptr) { 7655 /* kernel subsystem misconfigured verifier */ 7656 verbose(env, "invalid map_ptr to access map->type\n"); 7657 return -EACCES; 7658 } 7659 7660 switch (meta->map_ptr->map_type) { 7661 case BPF_MAP_TYPE_SOCKMAP: 7662 case BPF_MAP_TYPE_SOCKHASH: 7663 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7664 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7665 } else { 7666 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7667 return -EINVAL; 7668 } 7669 break; 7670 case BPF_MAP_TYPE_BLOOM_FILTER: 7671 if (meta->func_id == BPF_FUNC_map_peek_elem) 7672 *arg_type = ARG_PTR_TO_MAP_VALUE; 7673 break; 7674 default: 7675 break; 7676 } 7677 return 0; 7678 } 7679 7680 struct bpf_reg_types { 7681 const enum bpf_reg_type types[10]; 7682 u32 *btf_id; 7683 }; 7684 7685 static const struct bpf_reg_types sock_types = { 7686 .types = { 7687 PTR_TO_SOCK_COMMON, 7688 PTR_TO_SOCKET, 7689 PTR_TO_TCP_SOCK, 7690 PTR_TO_XDP_SOCK, 7691 }, 7692 }; 7693 7694 #ifdef CONFIG_NET 7695 static const struct bpf_reg_types btf_id_sock_common_types = { 7696 .types = { 7697 PTR_TO_SOCK_COMMON, 7698 PTR_TO_SOCKET, 7699 PTR_TO_TCP_SOCK, 7700 PTR_TO_XDP_SOCK, 7701 PTR_TO_BTF_ID, 7702 PTR_TO_BTF_ID | PTR_TRUSTED, 7703 }, 7704 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7705 }; 7706 #endif 7707 7708 static const struct bpf_reg_types mem_types = { 7709 .types = { 7710 PTR_TO_STACK, 7711 PTR_TO_PACKET, 7712 PTR_TO_PACKET_META, 7713 PTR_TO_MAP_KEY, 7714 PTR_TO_MAP_VALUE, 7715 PTR_TO_MEM, 7716 PTR_TO_MEM | MEM_RINGBUF, 7717 PTR_TO_BUF, 7718 PTR_TO_BTF_ID | PTR_TRUSTED, 7719 }, 7720 }; 7721 7722 static const struct bpf_reg_types int_ptr_types = { 7723 .types = { 7724 PTR_TO_STACK, 7725 PTR_TO_PACKET, 7726 PTR_TO_PACKET_META, 7727 PTR_TO_MAP_KEY, 7728 PTR_TO_MAP_VALUE, 7729 }, 7730 }; 7731 7732 static const struct bpf_reg_types spin_lock_types = { 7733 .types = { 7734 PTR_TO_MAP_VALUE, 7735 PTR_TO_BTF_ID | MEM_ALLOC, 7736 } 7737 }; 7738 7739 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7740 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7741 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7742 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7743 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7744 static const struct bpf_reg_types btf_ptr_types = { 7745 .types = { 7746 PTR_TO_BTF_ID, 7747 PTR_TO_BTF_ID | PTR_TRUSTED, 7748 PTR_TO_BTF_ID | MEM_RCU, 7749 }, 7750 }; 7751 static const struct bpf_reg_types percpu_btf_ptr_types = { 7752 .types = { 7753 PTR_TO_BTF_ID | MEM_PERCPU, 7754 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7755 } 7756 }; 7757 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7758 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7759 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7760 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7761 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7762 static const struct bpf_reg_types dynptr_types = { 7763 .types = { 7764 PTR_TO_STACK, 7765 CONST_PTR_TO_DYNPTR, 7766 } 7767 }; 7768 7769 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7770 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7771 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7772 [ARG_CONST_SIZE] = &scalar_types, 7773 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7774 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7775 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7776 [ARG_PTR_TO_CTX] = &context_types, 7777 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7778 #ifdef CONFIG_NET 7779 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7780 #endif 7781 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7782 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7783 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7784 [ARG_PTR_TO_MEM] = &mem_types, 7785 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7786 [ARG_PTR_TO_INT] = &int_ptr_types, 7787 [ARG_PTR_TO_LONG] = &int_ptr_types, 7788 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7789 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7790 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7791 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7792 [ARG_PTR_TO_TIMER] = &timer_types, 7793 [ARG_PTR_TO_KPTR] = &kptr_types, 7794 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7795 }; 7796 7797 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7798 enum bpf_arg_type arg_type, 7799 const u32 *arg_btf_id, 7800 struct bpf_call_arg_meta *meta) 7801 { 7802 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7803 enum bpf_reg_type expected, type = reg->type; 7804 const struct bpf_reg_types *compatible; 7805 int i, j; 7806 7807 compatible = compatible_reg_types[base_type(arg_type)]; 7808 if (!compatible) { 7809 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7810 return -EFAULT; 7811 } 7812 7813 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7814 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7815 * 7816 * Same for MAYBE_NULL: 7817 * 7818 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7819 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7820 * 7821 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7822 * 7823 * Therefore we fold these flags depending on the arg_type before comparison. 7824 */ 7825 if (arg_type & MEM_RDONLY) 7826 type &= ~MEM_RDONLY; 7827 if (arg_type & PTR_MAYBE_NULL) 7828 type &= ~PTR_MAYBE_NULL; 7829 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7830 type &= ~DYNPTR_TYPE_FLAG_MASK; 7831 7832 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7833 type &= ~MEM_ALLOC; 7834 7835 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7836 expected = compatible->types[i]; 7837 if (expected == NOT_INIT) 7838 break; 7839 7840 if (type == expected) 7841 goto found; 7842 } 7843 7844 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7845 for (j = 0; j + 1 < i; j++) 7846 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7847 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7848 return -EACCES; 7849 7850 found: 7851 if (base_type(reg->type) != PTR_TO_BTF_ID) 7852 return 0; 7853 7854 if (compatible == &mem_types) { 7855 if (!(arg_type & MEM_RDONLY)) { 7856 verbose(env, 7857 "%s() may write into memory pointed by R%d type=%s\n", 7858 func_id_name(meta->func_id), 7859 regno, reg_type_str(env, reg->type)); 7860 return -EACCES; 7861 } 7862 return 0; 7863 } 7864 7865 switch ((int)reg->type) { 7866 case PTR_TO_BTF_ID: 7867 case PTR_TO_BTF_ID | PTR_TRUSTED: 7868 case PTR_TO_BTF_ID | MEM_RCU: 7869 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7870 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7871 { 7872 /* For bpf_sk_release, it needs to match against first member 7873 * 'struct sock_common', hence make an exception for it. This 7874 * allows bpf_sk_release to work for multiple socket types. 7875 */ 7876 bool strict_type_match = arg_type_is_release(arg_type) && 7877 meta->func_id != BPF_FUNC_sk_release; 7878 7879 if (type_may_be_null(reg->type) && 7880 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7881 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7882 return -EACCES; 7883 } 7884 7885 if (!arg_btf_id) { 7886 if (!compatible->btf_id) { 7887 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7888 return -EFAULT; 7889 } 7890 arg_btf_id = compatible->btf_id; 7891 } 7892 7893 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7894 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7895 return -EACCES; 7896 } else { 7897 if (arg_btf_id == BPF_PTR_POISON) { 7898 verbose(env, "verifier internal error:"); 7899 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7900 regno); 7901 return -EACCES; 7902 } 7903 7904 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7905 btf_vmlinux, *arg_btf_id, 7906 strict_type_match)) { 7907 verbose(env, "R%d is of type %s but %s is expected\n", 7908 regno, btf_type_name(reg->btf, reg->btf_id), 7909 btf_type_name(btf_vmlinux, *arg_btf_id)); 7910 return -EACCES; 7911 } 7912 } 7913 break; 7914 } 7915 case PTR_TO_BTF_ID | MEM_ALLOC: 7916 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7917 meta->func_id != BPF_FUNC_kptr_xchg) { 7918 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7919 return -EFAULT; 7920 } 7921 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7922 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7923 return -EACCES; 7924 } 7925 break; 7926 case PTR_TO_BTF_ID | MEM_PERCPU: 7927 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7928 /* Handled by helper specific checks */ 7929 break; 7930 default: 7931 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7932 return -EFAULT; 7933 } 7934 return 0; 7935 } 7936 7937 static struct btf_field * 7938 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7939 { 7940 struct btf_field *field; 7941 struct btf_record *rec; 7942 7943 rec = reg_btf_record(reg); 7944 if (!rec) 7945 return NULL; 7946 7947 field = btf_record_find(rec, off, fields); 7948 if (!field) 7949 return NULL; 7950 7951 return field; 7952 } 7953 7954 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7955 const struct bpf_reg_state *reg, int regno, 7956 enum bpf_arg_type arg_type) 7957 { 7958 u32 type = reg->type; 7959 7960 /* When referenced register is passed to release function, its fixed 7961 * offset must be 0. 7962 * 7963 * We will check arg_type_is_release reg has ref_obj_id when storing 7964 * meta->release_regno. 7965 */ 7966 if (arg_type_is_release(arg_type)) { 7967 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7968 * may not directly point to the object being released, but to 7969 * dynptr pointing to such object, which might be at some offset 7970 * on the stack. In that case, we simply to fallback to the 7971 * default handling. 7972 */ 7973 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7974 return 0; 7975 7976 /* Doing check_ptr_off_reg check for the offset will catch this 7977 * because fixed_off_ok is false, but checking here allows us 7978 * to give the user a better error message. 7979 */ 7980 if (reg->off) { 7981 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7982 regno); 7983 return -EINVAL; 7984 } 7985 return __check_ptr_off_reg(env, reg, regno, false); 7986 } 7987 7988 switch (type) { 7989 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7990 case PTR_TO_STACK: 7991 case PTR_TO_PACKET: 7992 case PTR_TO_PACKET_META: 7993 case PTR_TO_MAP_KEY: 7994 case PTR_TO_MAP_VALUE: 7995 case PTR_TO_MEM: 7996 case PTR_TO_MEM | MEM_RDONLY: 7997 case PTR_TO_MEM | MEM_RINGBUF: 7998 case PTR_TO_BUF: 7999 case PTR_TO_BUF | MEM_RDONLY: 8000 case SCALAR_VALUE: 8001 return 0; 8002 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8003 * fixed offset. 8004 */ 8005 case PTR_TO_BTF_ID: 8006 case PTR_TO_BTF_ID | MEM_ALLOC: 8007 case PTR_TO_BTF_ID | PTR_TRUSTED: 8008 case PTR_TO_BTF_ID | MEM_RCU: 8009 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8010 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8011 /* When referenced PTR_TO_BTF_ID is passed to release function, 8012 * its fixed offset must be 0. In the other cases, fixed offset 8013 * can be non-zero. This was already checked above. So pass 8014 * fixed_off_ok as true to allow fixed offset for all other 8015 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8016 * still need to do checks instead of returning. 8017 */ 8018 return __check_ptr_off_reg(env, reg, regno, true); 8019 default: 8020 return __check_ptr_off_reg(env, reg, regno, false); 8021 } 8022 } 8023 8024 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8025 const struct bpf_func_proto *fn, 8026 struct bpf_reg_state *regs) 8027 { 8028 struct bpf_reg_state *state = NULL; 8029 int i; 8030 8031 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8032 if (arg_type_is_dynptr(fn->arg_type[i])) { 8033 if (state) { 8034 verbose(env, "verifier internal error: multiple dynptr args\n"); 8035 return NULL; 8036 } 8037 state = ®s[BPF_REG_1 + i]; 8038 } 8039 8040 if (!state) 8041 verbose(env, "verifier internal error: no dynptr arg found\n"); 8042 8043 return state; 8044 } 8045 8046 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8047 { 8048 struct bpf_func_state *state = func(env, reg); 8049 int spi; 8050 8051 if (reg->type == CONST_PTR_TO_DYNPTR) 8052 return reg->id; 8053 spi = dynptr_get_spi(env, reg); 8054 if (spi < 0) 8055 return spi; 8056 return state->stack[spi].spilled_ptr.id; 8057 } 8058 8059 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8060 { 8061 struct bpf_func_state *state = func(env, reg); 8062 int spi; 8063 8064 if (reg->type == CONST_PTR_TO_DYNPTR) 8065 return reg->ref_obj_id; 8066 spi = dynptr_get_spi(env, reg); 8067 if (spi < 0) 8068 return spi; 8069 return state->stack[spi].spilled_ptr.ref_obj_id; 8070 } 8071 8072 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8073 struct bpf_reg_state *reg) 8074 { 8075 struct bpf_func_state *state = func(env, reg); 8076 int spi; 8077 8078 if (reg->type == CONST_PTR_TO_DYNPTR) 8079 return reg->dynptr.type; 8080 8081 spi = __get_spi(reg->off); 8082 if (spi < 0) { 8083 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8084 return BPF_DYNPTR_TYPE_INVALID; 8085 } 8086 8087 return state->stack[spi].spilled_ptr.dynptr.type; 8088 } 8089 8090 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8091 struct bpf_call_arg_meta *meta, 8092 const struct bpf_func_proto *fn, 8093 int insn_idx) 8094 { 8095 u32 regno = BPF_REG_1 + arg; 8096 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8097 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8098 enum bpf_reg_type type = reg->type; 8099 u32 *arg_btf_id = NULL; 8100 int err = 0; 8101 8102 if (arg_type == ARG_DONTCARE) 8103 return 0; 8104 8105 err = check_reg_arg(env, regno, SRC_OP); 8106 if (err) 8107 return err; 8108 8109 if (arg_type == ARG_ANYTHING) { 8110 if (is_pointer_value(env, regno)) { 8111 verbose(env, "R%d leaks addr into helper function\n", 8112 regno); 8113 return -EACCES; 8114 } 8115 return 0; 8116 } 8117 8118 if (type_is_pkt_pointer(type) && 8119 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8120 verbose(env, "helper access to the packet is not allowed\n"); 8121 return -EACCES; 8122 } 8123 8124 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8125 err = resolve_map_arg_type(env, meta, &arg_type); 8126 if (err) 8127 return err; 8128 } 8129 8130 if (register_is_null(reg) && type_may_be_null(arg_type)) 8131 /* A NULL register has a SCALAR_VALUE type, so skip 8132 * type checking. 8133 */ 8134 goto skip_type_check; 8135 8136 /* arg_btf_id and arg_size are in a union. */ 8137 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8138 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8139 arg_btf_id = fn->arg_btf_id[arg]; 8140 8141 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8142 if (err) 8143 return err; 8144 8145 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8146 if (err) 8147 return err; 8148 8149 skip_type_check: 8150 if (arg_type_is_release(arg_type)) { 8151 if (arg_type_is_dynptr(arg_type)) { 8152 struct bpf_func_state *state = func(env, reg); 8153 int spi; 8154 8155 /* Only dynptr created on stack can be released, thus 8156 * the get_spi and stack state checks for spilled_ptr 8157 * should only be done before process_dynptr_func for 8158 * PTR_TO_STACK. 8159 */ 8160 if (reg->type == PTR_TO_STACK) { 8161 spi = dynptr_get_spi(env, reg); 8162 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8163 verbose(env, "arg %d is an unacquired reference\n", regno); 8164 return -EINVAL; 8165 } 8166 } else { 8167 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8168 return -EINVAL; 8169 } 8170 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8171 verbose(env, "R%d must be referenced when passed to release function\n", 8172 regno); 8173 return -EINVAL; 8174 } 8175 if (meta->release_regno) { 8176 verbose(env, "verifier internal error: more than one release argument\n"); 8177 return -EFAULT; 8178 } 8179 meta->release_regno = regno; 8180 } 8181 8182 if (reg->ref_obj_id) { 8183 if (meta->ref_obj_id) { 8184 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8185 regno, reg->ref_obj_id, 8186 meta->ref_obj_id); 8187 return -EFAULT; 8188 } 8189 meta->ref_obj_id = reg->ref_obj_id; 8190 } 8191 8192 switch (base_type(arg_type)) { 8193 case ARG_CONST_MAP_PTR: 8194 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8195 if (meta->map_ptr) { 8196 /* Use map_uid (which is unique id of inner map) to reject: 8197 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8198 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8199 * if (inner_map1 && inner_map2) { 8200 * timer = bpf_map_lookup_elem(inner_map1); 8201 * if (timer) 8202 * // mismatch would have been allowed 8203 * bpf_timer_init(timer, inner_map2); 8204 * } 8205 * 8206 * Comparing map_ptr is enough to distinguish normal and outer maps. 8207 */ 8208 if (meta->map_ptr != reg->map_ptr || 8209 meta->map_uid != reg->map_uid) { 8210 verbose(env, 8211 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8212 meta->map_uid, reg->map_uid); 8213 return -EINVAL; 8214 } 8215 } 8216 meta->map_ptr = reg->map_ptr; 8217 meta->map_uid = reg->map_uid; 8218 break; 8219 case ARG_PTR_TO_MAP_KEY: 8220 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8221 * check that [key, key + map->key_size) are within 8222 * stack limits and initialized 8223 */ 8224 if (!meta->map_ptr) { 8225 /* in function declaration map_ptr must come before 8226 * map_key, so that it's verified and known before 8227 * we have to check map_key here. Otherwise it means 8228 * that kernel subsystem misconfigured verifier 8229 */ 8230 verbose(env, "invalid map_ptr to access map->key\n"); 8231 return -EACCES; 8232 } 8233 err = check_helper_mem_access(env, regno, 8234 meta->map_ptr->key_size, false, 8235 NULL); 8236 break; 8237 case ARG_PTR_TO_MAP_VALUE: 8238 if (type_may_be_null(arg_type) && register_is_null(reg)) 8239 return 0; 8240 8241 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8242 * check [value, value + map->value_size) validity 8243 */ 8244 if (!meta->map_ptr) { 8245 /* kernel subsystem misconfigured verifier */ 8246 verbose(env, "invalid map_ptr to access map->value\n"); 8247 return -EACCES; 8248 } 8249 meta->raw_mode = arg_type & MEM_UNINIT; 8250 err = check_helper_mem_access(env, regno, 8251 meta->map_ptr->value_size, false, 8252 meta); 8253 break; 8254 case ARG_PTR_TO_PERCPU_BTF_ID: 8255 if (!reg->btf_id) { 8256 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8257 return -EACCES; 8258 } 8259 meta->ret_btf = reg->btf; 8260 meta->ret_btf_id = reg->btf_id; 8261 break; 8262 case ARG_PTR_TO_SPIN_LOCK: 8263 if (in_rbtree_lock_required_cb(env)) { 8264 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8265 return -EACCES; 8266 } 8267 if (meta->func_id == BPF_FUNC_spin_lock) { 8268 err = process_spin_lock(env, regno, true); 8269 if (err) 8270 return err; 8271 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8272 err = process_spin_lock(env, regno, false); 8273 if (err) 8274 return err; 8275 } else { 8276 verbose(env, "verifier internal error\n"); 8277 return -EFAULT; 8278 } 8279 break; 8280 case ARG_PTR_TO_TIMER: 8281 err = process_timer_func(env, regno, meta); 8282 if (err) 8283 return err; 8284 break; 8285 case ARG_PTR_TO_FUNC: 8286 meta->subprogno = reg->subprogno; 8287 break; 8288 case ARG_PTR_TO_MEM: 8289 /* The access to this pointer is only checked when we hit the 8290 * next is_mem_size argument below. 8291 */ 8292 meta->raw_mode = arg_type & MEM_UNINIT; 8293 if (arg_type & MEM_FIXED_SIZE) { 8294 err = check_helper_mem_access(env, regno, 8295 fn->arg_size[arg], false, 8296 meta); 8297 } 8298 break; 8299 case ARG_CONST_SIZE: 8300 err = check_mem_size_reg(env, reg, regno, false, meta); 8301 break; 8302 case ARG_CONST_SIZE_OR_ZERO: 8303 err = check_mem_size_reg(env, reg, regno, true, meta); 8304 break; 8305 case ARG_PTR_TO_DYNPTR: 8306 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8307 if (err) 8308 return err; 8309 break; 8310 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8311 if (!tnum_is_const(reg->var_off)) { 8312 verbose(env, "R%d is not a known constant'\n", 8313 regno); 8314 return -EACCES; 8315 } 8316 meta->mem_size = reg->var_off.value; 8317 err = mark_chain_precision(env, regno); 8318 if (err) 8319 return err; 8320 break; 8321 case ARG_PTR_TO_INT: 8322 case ARG_PTR_TO_LONG: 8323 { 8324 int size = int_ptr_type_to_size(arg_type); 8325 8326 err = check_helper_mem_access(env, regno, size, false, meta); 8327 if (err) 8328 return err; 8329 err = check_ptr_alignment(env, reg, 0, size, true); 8330 break; 8331 } 8332 case ARG_PTR_TO_CONST_STR: 8333 { 8334 struct bpf_map *map = reg->map_ptr; 8335 int map_off; 8336 u64 map_addr; 8337 char *str_ptr; 8338 8339 if (!bpf_map_is_rdonly(map)) { 8340 verbose(env, "R%d does not point to a readonly map'\n", regno); 8341 return -EACCES; 8342 } 8343 8344 if (!tnum_is_const(reg->var_off)) { 8345 verbose(env, "R%d is not a constant address'\n", regno); 8346 return -EACCES; 8347 } 8348 8349 if (!map->ops->map_direct_value_addr) { 8350 verbose(env, "no direct value access support for this map type\n"); 8351 return -EACCES; 8352 } 8353 8354 err = check_map_access(env, regno, reg->off, 8355 map->value_size - reg->off, false, 8356 ACCESS_HELPER); 8357 if (err) 8358 return err; 8359 8360 map_off = reg->off + reg->var_off.value; 8361 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8362 if (err) { 8363 verbose(env, "direct value access on string failed\n"); 8364 return err; 8365 } 8366 8367 str_ptr = (char *)(long)(map_addr); 8368 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8369 verbose(env, "string is not zero-terminated\n"); 8370 return -EINVAL; 8371 } 8372 break; 8373 } 8374 case ARG_PTR_TO_KPTR: 8375 err = process_kptr_func(env, regno, meta); 8376 if (err) 8377 return err; 8378 break; 8379 } 8380 8381 return err; 8382 } 8383 8384 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8385 { 8386 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8387 enum bpf_prog_type type = resolve_prog_type(env->prog); 8388 8389 if (func_id != BPF_FUNC_map_update_elem) 8390 return false; 8391 8392 /* It's not possible to get access to a locked struct sock in these 8393 * contexts, so updating is safe. 8394 */ 8395 switch (type) { 8396 case BPF_PROG_TYPE_TRACING: 8397 if (eatype == BPF_TRACE_ITER) 8398 return true; 8399 break; 8400 case BPF_PROG_TYPE_SOCKET_FILTER: 8401 case BPF_PROG_TYPE_SCHED_CLS: 8402 case BPF_PROG_TYPE_SCHED_ACT: 8403 case BPF_PROG_TYPE_XDP: 8404 case BPF_PROG_TYPE_SK_REUSEPORT: 8405 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8406 case BPF_PROG_TYPE_SK_LOOKUP: 8407 return true; 8408 default: 8409 break; 8410 } 8411 8412 verbose(env, "cannot update sockmap in this context\n"); 8413 return false; 8414 } 8415 8416 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8417 { 8418 return env->prog->jit_requested && 8419 bpf_jit_supports_subprog_tailcalls(); 8420 } 8421 8422 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8423 struct bpf_map *map, int func_id) 8424 { 8425 if (!map) 8426 return 0; 8427 8428 /* We need a two way check, first is from map perspective ... */ 8429 switch (map->map_type) { 8430 case BPF_MAP_TYPE_PROG_ARRAY: 8431 if (func_id != BPF_FUNC_tail_call) 8432 goto error; 8433 break; 8434 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8435 if (func_id != BPF_FUNC_perf_event_read && 8436 func_id != BPF_FUNC_perf_event_output && 8437 func_id != BPF_FUNC_skb_output && 8438 func_id != BPF_FUNC_perf_event_read_value && 8439 func_id != BPF_FUNC_xdp_output) 8440 goto error; 8441 break; 8442 case BPF_MAP_TYPE_RINGBUF: 8443 if (func_id != BPF_FUNC_ringbuf_output && 8444 func_id != BPF_FUNC_ringbuf_reserve && 8445 func_id != BPF_FUNC_ringbuf_query && 8446 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8447 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8448 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8449 goto error; 8450 break; 8451 case BPF_MAP_TYPE_USER_RINGBUF: 8452 if (func_id != BPF_FUNC_user_ringbuf_drain) 8453 goto error; 8454 break; 8455 case BPF_MAP_TYPE_STACK_TRACE: 8456 if (func_id != BPF_FUNC_get_stackid) 8457 goto error; 8458 break; 8459 case BPF_MAP_TYPE_CGROUP_ARRAY: 8460 if (func_id != BPF_FUNC_skb_under_cgroup && 8461 func_id != BPF_FUNC_current_task_under_cgroup) 8462 goto error; 8463 break; 8464 case BPF_MAP_TYPE_CGROUP_STORAGE: 8465 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8466 if (func_id != BPF_FUNC_get_local_storage) 8467 goto error; 8468 break; 8469 case BPF_MAP_TYPE_DEVMAP: 8470 case BPF_MAP_TYPE_DEVMAP_HASH: 8471 if (func_id != BPF_FUNC_redirect_map && 8472 func_id != BPF_FUNC_map_lookup_elem) 8473 goto error; 8474 break; 8475 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8476 * appear. 8477 */ 8478 case BPF_MAP_TYPE_CPUMAP: 8479 if (func_id != BPF_FUNC_redirect_map) 8480 goto error; 8481 break; 8482 case BPF_MAP_TYPE_XSKMAP: 8483 if (func_id != BPF_FUNC_redirect_map && 8484 func_id != BPF_FUNC_map_lookup_elem) 8485 goto error; 8486 break; 8487 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8488 case BPF_MAP_TYPE_HASH_OF_MAPS: 8489 if (func_id != BPF_FUNC_map_lookup_elem) 8490 goto error; 8491 break; 8492 case BPF_MAP_TYPE_SOCKMAP: 8493 if (func_id != BPF_FUNC_sk_redirect_map && 8494 func_id != BPF_FUNC_sock_map_update && 8495 func_id != BPF_FUNC_map_delete_elem && 8496 func_id != BPF_FUNC_msg_redirect_map && 8497 func_id != BPF_FUNC_sk_select_reuseport && 8498 func_id != BPF_FUNC_map_lookup_elem && 8499 !may_update_sockmap(env, func_id)) 8500 goto error; 8501 break; 8502 case BPF_MAP_TYPE_SOCKHASH: 8503 if (func_id != BPF_FUNC_sk_redirect_hash && 8504 func_id != BPF_FUNC_sock_hash_update && 8505 func_id != BPF_FUNC_map_delete_elem && 8506 func_id != BPF_FUNC_msg_redirect_hash && 8507 func_id != BPF_FUNC_sk_select_reuseport && 8508 func_id != BPF_FUNC_map_lookup_elem && 8509 !may_update_sockmap(env, func_id)) 8510 goto error; 8511 break; 8512 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8513 if (func_id != BPF_FUNC_sk_select_reuseport) 8514 goto error; 8515 break; 8516 case BPF_MAP_TYPE_QUEUE: 8517 case BPF_MAP_TYPE_STACK: 8518 if (func_id != BPF_FUNC_map_peek_elem && 8519 func_id != BPF_FUNC_map_pop_elem && 8520 func_id != BPF_FUNC_map_push_elem) 8521 goto error; 8522 break; 8523 case BPF_MAP_TYPE_SK_STORAGE: 8524 if (func_id != BPF_FUNC_sk_storage_get && 8525 func_id != BPF_FUNC_sk_storage_delete && 8526 func_id != BPF_FUNC_kptr_xchg) 8527 goto error; 8528 break; 8529 case BPF_MAP_TYPE_INODE_STORAGE: 8530 if (func_id != BPF_FUNC_inode_storage_get && 8531 func_id != BPF_FUNC_inode_storage_delete && 8532 func_id != BPF_FUNC_kptr_xchg) 8533 goto error; 8534 break; 8535 case BPF_MAP_TYPE_TASK_STORAGE: 8536 if (func_id != BPF_FUNC_task_storage_get && 8537 func_id != BPF_FUNC_task_storage_delete && 8538 func_id != BPF_FUNC_kptr_xchg) 8539 goto error; 8540 break; 8541 case BPF_MAP_TYPE_CGRP_STORAGE: 8542 if (func_id != BPF_FUNC_cgrp_storage_get && 8543 func_id != BPF_FUNC_cgrp_storage_delete && 8544 func_id != BPF_FUNC_kptr_xchg) 8545 goto error; 8546 break; 8547 case BPF_MAP_TYPE_BLOOM_FILTER: 8548 if (func_id != BPF_FUNC_map_peek_elem && 8549 func_id != BPF_FUNC_map_push_elem) 8550 goto error; 8551 break; 8552 default: 8553 break; 8554 } 8555 8556 /* ... and second from the function itself. */ 8557 switch (func_id) { 8558 case BPF_FUNC_tail_call: 8559 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8560 goto error; 8561 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8562 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8563 return -EINVAL; 8564 } 8565 break; 8566 case BPF_FUNC_perf_event_read: 8567 case BPF_FUNC_perf_event_output: 8568 case BPF_FUNC_perf_event_read_value: 8569 case BPF_FUNC_skb_output: 8570 case BPF_FUNC_xdp_output: 8571 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8572 goto error; 8573 break; 8574 case BPF_FUNC_ringbuf_output: 8575 case BPF_FUNC_ringbuf_reserve: 8576 case BPF_FUNC_ringbuf_query: 8577 case BPF_FUNC_ringbuf_reserve_dynptr: 8578 case BPF_FUNC_ringbuf_submit_dynptr: 8579 case BPF_FUNC_ringbuf_discard_dynptr: 8580 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8581 goto error; 8582 break; 8583 case BPF_FUNC_user_ringbuf_drain: 8584 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8585 goto error; 8586 break; 8587 case BPF_FUNC_get_stackid: 8588 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8589 goto error; 8590 break; 8591 case BPF_FUNC_current_task_under_cgroup: 8592 case BPF_FUNC_skb_under_cgroup: 8593 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8594 goto error; 8595 break; 8596 case BPF_FUNC_redirect_map: 8597 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8598 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8599 map->map_type != BPF_MAP_TYPE_CPUMAP && 8600 map->map_type != BPF_MAP_TYPE_XSKMAP) 8601 goto error; 8602 break; 8603 case BPF_FUNC_sk_redirect_map: 8604 case BPF_FUNC_msg_redirect_map: 8605 case BPF_FUNC_sock_map_update: 8606 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8607 goto error; 8608 break; 8609 case BPF_FUNC_sk_redirect_hash: 8610 case BPF_FUNC_msg_redirect_hash: 8611 case BPF_FUNC_sock_hash_update: 8612 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8613 goto error; 8614 break; 8615 case BPF_FUNC_get_local_storage: 8616 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8617 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8618 goto error; 8619 break; 8620 case BPF_FUNC_sk_select_reuseport: 8621 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8622 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8623 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8624 goto error; 8625 break; 8626 case BPF_FUNC_map_pop_elem: 8627 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8628 map->map_type != BPF_MAP_TYPE_STACK) 8629 goto error; 8630 break; 8631 case BPF_FUNC_map_peek_elem: 8632 case BPF_FUNC_map_push_elem: 8633 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8634 map->map_type != BPF_MAP_TYPE_STACK && 8635 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8636 goto error; 8637 break; 8638 case BPF_FUNC_map_lookup_percpu_elem: 8639 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8640 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8641 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8642 goto error; 8643 break; 8644 case BPF_FUNC_sk_storage_get: 8645 case BPF_FUNC_sk_storage_delete: 8646 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8647 goto error; 8648 break; 8649 case BPF_FUNC_inode_storage_get: 8650 case BPF_FUNC_inode_storage_delete: 8651 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8652 goto error; 8653 break; 8654 case BPF_FUNC_task_storage_get: 8655 case BPF_FUNC_task_storage_delete: 8656 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8657 goto error; 8658 break; 8659 case BPF_FUNC_cgrp_storage_get: 8660 case BPF_FUNC_cgrp_storage_delete: 8661 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8662 goto error; 8663 break; 8664 default: 8665 break; 8666 } 8667 8668 return 0; 8669 error: 8670 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8671 map->map_type, func_id_name(func_id), func_id); 8672 return -EINVAL; 8673 } 8674 8675 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8676 { 8677 int count = 0; 8678 8679 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8680 count++; 8681 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8682 count++; 8683 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8684 count++; 8685 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8686 count++; 8687 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8688 count++; 8689 8690 /* We only support one arg being in raw mode at the moment, 8691 * which is sufficient for the helper functions we have 8692 * right now. 8693 */ 8694 return count <= 1; 8695 } 8696 8697 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8698 { 8699 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8700 bool has_size = fn->arg_size[arg] != 0; 8701 bool is_next_size = false; 8702 8703 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8704 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8705 8706 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8707 return is_next_size; 8708 8709 return has_size == is_next_size || is_next_size == is_fixed; 8710 } 8711 8712 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8713 { 8714 /* bpf_xxx(..., buf, len) call will access 'len' 8715 * bytes from memory 'buf'. Both arg types need 8716 * to be paired, so make sure there's no buggy 8717 * helper function specification. 8718 */ 8719 if (arg_type_is_mem_size(fn->arg1_type) || 8720 check_args_pair_invalid(fn, 0) || 8721 check_args_pair_invalid(fn, 1) || 8722 check_args_pair_invalid(fn, 2) || 8723 check_args_pair_invalid(fn, 3) || 8724 check_args_pair_invalid(fn, 4)) 8725 return false; 8726 8727 return true; 8728 } 8729 8730 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8731 { 8732 int i; 8733 8734 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8735 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8736 return !!fn->arg_btf_id[i]; 8737 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8738 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8739 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8740 /* arg_btf_id and arg_size are in a union. */ 8741 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8742 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8743 return false; 8744 } 8745 8746 return true; 8747 } 8748 8749 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8750 { 8751 return check_raw_mode_ok(fn) && 8752 check_arg_pair_ok(fn) && 8753 check_btf_id_ok(fn) ? 0 : -EINVAL; 8754 } 8755 8756 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8757 * are now invalid, so turn them into unknown SCALAR_VALUE. 8758 * 8759 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8760 * since these slices point to packet data. 8761 */ 8762 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8763 { 8764 struct bpf_func_state *state; 8765 struct bpf_reg_state *reg; 8766 8767 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8768 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8769 mark_reg_invalid(env, reg); 8770 })); 8771 } 8772 8773 enum { 8774 AT_PKT_END = -1, 8775 BEYOND_PKT_END = -2, 8776 }; 8777 8778 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8779 { 8780 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8781 struct bpf_reg_state *reg = &state->regs[regn]; 8782 8783 if (reg->type != PTR_TO_PACKET) 8784 /* PTR_TO_PACKET_META is not supported yet */ 8785 return; 8786 8787 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8788 * How far beyond pkt_end it goes is unknown. 8789 * if (!range_open) it's the case of pkt >= pkt_end 8790 * if (range_open) it's the case of pkt > pkt_end 8791 * hence this pointer is at least 1 byte bigger than pkt_end 8792 */ 8793 if (range_open) 8794 reg->range = BEYOND_PKT_END; 8795 else 8796 reg->range = AT_PKT_END; 8797 } 8798 8799 /* The pointer with the specified id has released its reference to kernel 8800 * resources. Identify all copies of the same pointer and clear the reference. 8801 */ 8802 static int release_reference(struct bpf_verifier_env *env, 8803 int ref_obj_id) 8804 { 8805 struct bpf_func_state *state; 8806 struct bpf_reg_state *reg; 8807 int err; 8808 8809 err = release_reference_state(cur_func(env), ref_obj_id); 8810 if (err) 8811 return err; 8812 8813 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8814 if (reg->ref_obj_id == ref_obj_id) 8815 mark_reg_invalid(env, reg); 8816 })); 8817 8818 return 0; 8819 } 8820 8821 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8822 { 8823 struct bpf_func_state *unused; 8824 struct bpf_reg_state *reg; 8825 8826 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8827 if (type_is_non_owning_ref(reg->type)) 8828 mark_reg_invalid(env, reg); 8829 })); 8830 } 8831 8832 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8833 struct bpf_reg_state *regs) 8834 { 8835 int i; 8836 8837 /* after the call registers r0 - r5 were scratched */ 8838 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8839 mark_reg_not_init(env, regs, caller_saved[i]); 8840 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8841 } 8842 } 8843 8844 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8845 struct bpf_func_state *caller, 8846 struct bpf_func_state *callee, 8847 int insn_idx); 8848 8849 static int set_callee_state(struct bpf_verifier_env *env, 8850 struct bpf_func_state *caller, 8851 struct bpf_func_state *callee, int insn_idx); 8852 8853 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8854 int *insn_idx, int subprog, 8855 set_callee_state_fn set_callee_state_cb) 8856 { 8857 struct bpf_verifier_state *state = env->cur_state; 8858 struct bpf_func_state *caller, *callee; 8859 int err; 8860 8861 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8862 verbose(env, "the call stack of %d frames is too deep\n", 8863 state->curframe + 2); 8864 return -E2BIG; 8865 } 8866 8867 caller = state->frame[state->curframe]; 8868 if (state->frame[state->curframe + 1]) { 8869 verbose(env, "verifier bug. Frame %d already allocated\n", 8870 state->curframe + 1); 8871 return -EFAULT; 8872 } 8873 8874 err = btf_check_subprog_call(env, subprog, caller->regs); 8875 if (err == -EFAULT) 8876 return err; 8877 if (subprog_is_global(env, subprog)) { 8878 if (err) { 8879 verbose(env, "Caller passes invalid args into func#%d\n", 8880 subprog); 8881 return err; 8882 } else { 8883 if (env->log.level & BPF_LOG_LEVEL) 8884 verbose(env, 8885 "Func#%d is global and valid. Skipping.\n", 8886 subprog); 8887 clear_caller_saved_regs(env, caller->regs); 8888 8889 /* All global functions return a 64-bit SCALAR_VALUE */ 8890 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8891 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8892 8893 /* continue with next insn after call */ 8894 return 0; 8895 } 8896 } 8897 8898 /* set_callee_state is used for direct subprog calls, but we are 8899 * interested in validating only BPF helpers that can call subprogs as 8900 * callbacks 8901 */ 8902 if (set_callee_state_cb != set_callee_state) { 8903 if (bpf_pseudo_kfunc_call(insn) && 8904 !is_callback_calling_kfunc(insn->imm)) { 8905 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8906 func_id_name(insn->imm), insn->imm); 8907 return -EFAULT; 8908 } else if (!bpf_pseudo_kfunc_call(insn) && 8909 !is_callback_calling_function(insn->imm)) { /* helper */ 8910 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8911 func_id_name(insn->imm), insn->imm); 8912 return -EFAULT; 8913 } 8914 } 8915 8916 if (insn->code == (BPF_JMP | BPF_CALL) && 8917 insn->src_reg == 0 && 8918 insn->imm == BPF_FUNC_timer_set_callback) { 8919 struct bpf_verifier_state *async_cb; 8920 8921 /* there is no real recursion here. timer callbacks are async */ 8922 env->subprog_info[subprog].is_async_cb = true; 8923 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8924 *insn_idx, subprog); 8925 if (!async_cb) 8926 return -EFAULT; 8927 callee = async_cb->frame[0]; 8928 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8929 8930 /* Convert bpf_timer_set_callback() args into timer callback args */ 8931 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8932 if (err) 8933 return err; 8934 8935 clear_caller_saved_regs(env, caller->regs); 8936 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8937 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8938 /* continue with next insn after call */ 8939 return 0; 8940 } 8941 8942 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8943 if (!callee) 8944 return -ENOMEM; 8945 state->frame[state->curframe + 1] = callee; 8946 8947 /* callee cannot access r0, r6 - r9 for reading and has to write 8948 * into its own stack before reading from it. 8949 * callee can read/write into caller's stack 8950 */ 8951 init_func_state(env, callee, 8952 /* remember the callsite, it will be used by bpf_exit */ 8953 *insn_idx /* callsite */, 8954 state->curframe + 1 /* frameno within this callchain */, 8955 subprog /* subprog number within this prog */); 8956 8957 /* Transfer references to the callee */ 8958 err = copy_reference_state(callee, caller); 8959 if (err) 8960 goto err_out; 8961 8962 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8963 if (err) 8964 goto err_out; 8965 8966 clear_caller_saved_regs(env, caller->regs); 8967 8968 /* only increment it after check_reg_arg() finished */ 8969 state->curframe++; 8970 8971 /* and go analyze first insn of the callee */ 8972 *insn_idx = env->subprog_info[subprog].start - 1; 8973 8974 if (env->log.level & BPF_LOG_LEVEL) { 8975 verbose(env, "caller:\n"); 8976 print_verifier_state(env, caller, true); 8977 verbose(env, "callee:\n"); 8978 print_verifier_state(env, callee, true); 8979 } 8980 return 0; 8981 8982 err_out: 8983 free_func_state(callee); 8984 state->frame[state->curframe + 1] = NULL; 8985 return err; 8986 } 8987 8988 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8989 struct bpf_func_state *caller, 8990 struct bpf_func_state *callee) 8991 { 8992 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8993 * void *callback_ctx, u64 flags); 8994 * callback_fn(struct bpf_map *map, void *key, void *value, 8995 * void *callback_ctx); 8996 */ 8997 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8998 8999 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9000 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9001 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9002 9003 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9004 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9005 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9006 9007 /* pointer to stack or null */ 9008 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9009 9010 /* unused */ 9011 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9012 return 0; 9013 } 9014 9015 static int set_callee_state(struct bpf_verifier_env *env, 9016 struct bpf_func_state *caller, 9017 struct bpf_func_state *callee, int insn_idx) 9018 { 9019 int i; 9020 9021 /* copy r1 - r5 args that callee can access. The copy includes parent 9022 * pointers, which connects us up to the liveness chain 9023 */ 9024 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9025 callee->regs[i] = caller->regs[i]; 9026 return 0; 9027 } 9028 9029 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9030 int *insn_idx) 9031 { 9032 int subprog, target_insn; 9033 9034 target_insn = *insn_idx + insn->imm + 1; 9035 subprog = find_subprog(env, target_insn); 9036 if (subprog < 0) { 9037 verbose(env, "verifier bug. No program starts at insn %d\n", 9038 target_insn); 9039 return -EFAULT; 9040 } 9041 9042 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 9043 } 9044 9045 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9046 struct bpf_func_state *caller, 9047 struct bpf_func_state *callee, 9048 int insn_idx) 9049 { 9050 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9051 struct bpf_map *map; 9052 int err; 9053 9054 if (bpf_map_ptr_poisoned(insn_aux)) { 9055 verbose(env, "tail_call abusing map_ptr\n"); 9056 return -EINVAL; 9057 } 9058 9059 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9060 if (!map->ops->map_set_for_each_callback_args || 9061 !map->ops->map_for_each_callback) { 9062 verbose(env, "callback function not allowed for map\n"); 9063 return -ENOTSUPP; 9064 } 9065 9066 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9067 if (err) 9068 return err; 9069 9070 callee->in_callback_fn = true; 9071 callee->callback_ret_range = tnum_range(0, 1); 9072 return 0; 9073 } 9074 9075 static int set_loop_callback_state(struct bpf_verifier_env *env, 9076 struct bpf_func_state *caller, 9077 struct bpf_func_state *callee, 9078 int insn_idx) 9079 { 9080 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9081 * u64 flags); 9082 * callback_fn(u32 index, void *callback_ctx); 9083 */ 9084 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9085 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9086 9087 /* unused */ 9088 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9089 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9090 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9091 9092 callee->in_callback_fn = true; 9093 callee->callback_ret_range = tnum_range(0, 1); 9094 return 0; 9095 } 9096 9097 static int set_timer_callback_state(struct bpf_verifier_env *env, 9098 struct bpf_func_state *caller, 9099 struct bpf_func_state *callee, 9100 int insn_idx) 9101 { 9102 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9103 9104 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9105 * callback_fn(struct bpf_map *map, void *key, void *value); 9106 */ 9107 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9108 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9109 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9110 9111 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9112 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9113 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9114 9115 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9116 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9117 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9118 9119 /* unused */ 9120 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9121 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9122 callee->in_async_callback_fn = true; 9123 callee->callback_ret_range = tnum_range(0, 1); 9124 return 0; 9125 } 9126 9127 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9128 struct bpf_func_state *caller, 9129 struct bpf_func_state *callee, 9130 int insn_idx) 9131 { 9132 /* bpf_find_vma(struct task_struct *task, u64 addr, 9133 * void *callback_fn, void *callback_ctx, u64 flags) 9134 * (callback_fn)(struct task_struct *task, 9135 * struct vm_area_struct *vma, void *callback_ctx); 9136 */ 9137 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9138 9139 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9140 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9141 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9142 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9143 9144 /* pointer to stack or null */ 9145 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9146 9147 /* unused */ 9148 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9149 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9150 callee->in_callback_fn = true; 9151 callee->callback_ret_range = tnum_range(0, 1); 9152 return 0; 9153 } 9154 9155 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9156 struct bpf_func_state *caller, 9157 struct bpf_func_state *callee, 9158 int insn_idx) 9159 { 9160 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9161 * callback_ctx, u64 flags); 9162 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9163 */ 9164 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9165 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9166 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9167 9168 /* unused */ 9169 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9170 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9171 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9172 9173 callee->in_callback_fn = true; 9174 callee->callback_ret_range = tnum_range(0, 1); 9175 return 0; 9176 } 9177 9178 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9179 struct bpf_func_state *caller, 9180 struct bpf_func_state *callee, 9181 int insn_idx) 9182 { 9183 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9184 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9185 * 9186 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9187 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9188 * by this point, so look at 'root' 9189 */ 9190 struct btf_field *field; 9191 9192 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9193 BPF_RB_ROOT); 9194 if (!field || !field->graph_root.value_btf_id) 9195 return -EFAULT; 9196 9197 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9198 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9199 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9200 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9201 9202 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9203 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9204 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9205 callee->in_callback_fn = true; 9206 callee->callback_ret_range = tnum_range(0, 1); 9207 return 0; 9208 } 9209 9210 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9211 9212 /* Are we currently verifying the callback for a rbtree helper that must 9213 * be called with lock held? If so, no need to complain about unreleased 9214 * lock 9215 */ 9216 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9217 { 9218 struct bpf_verifier_state *state = env->cur_state; 9219 struct bpf_insn *insn = env->prog->insnsi; 9220 struct bpf_func_state *callee; 9221 int kfunc_btf_id; 9222 9223 if (!state->curframe) 9224 return false; 9225 9226 callee = state->frame[state->curframe]; 9227 9228 if (!callee->in_callback_fn) 9229 return false; 9230 9231 kfunc_btf_id = insn[callee->callsite].imm; 9232 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9233 } 9234 9235 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9236 { 9237 struct bpf_verifier_state *state = env->cur_state; 9238 struct bpf_func_state *caller, *callee; 9239 struct bpf_reg_state *r0; 9240 int err; 9241 9242 callee = state->frame[state->curframe]; 9243 r0 = &callee->regs[BPF_REG_0]; 9244 if (r0->type == PTR_TO_STACK) { 9245 /* technically it's ok to return caller's stack pointer 9246 * (or caller's caller's pointer) back to the caller, 9247 * since these pointers are valid. Only current stack 9248 * pointer will be invalid as soon as function exits, 9249 * but let's be conservative 9250 */ 9251 verbose(env, "cannot return stack pointer to the caller\n"); 9252 return -EINVAL; 9253 } 9254 9255 caller = state->frame[state->curframe - 1]; 9256 if (callee->in_callback_fn) { 9257 /* enforce R0 return value range [0, 1]. */ 9258 struct tnum range = callee->callback_ret_range; 9259 9260 if (r0->type != SCALAR_VALUE) { 9261 verbose(env, "R0 not a scalar value\n"); 9262 return -EACCES; 9263 } 9264 if (!tnum_in(range, r0->var_off)) { 9265 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9266 return -EINVAL; 9267 } 9268 } else { 9269 /* return to the caller whatever r0 had in the callee */ 9270 caller->regs[BPF_REG_0] = *r0; 9271 } 9272 9273 /* callback_fn frame should have released its own additions to parent's 9274 * reference state at this point, or check_reference_leak would 9275 * complain, hence it must be the same as the caller. There is no need 9276 * to copy it back. 9277 */ 9278 if (!callee->in_callback_fn) { 9279 /* Transfer references to the caller */ 9280 err = copy_reference_state(caller, callee); 9281 if (err) 9282 return err; 9283 } 9284 9285 *insn_idx = callee->callsite + 1; 9286 if (env->log.level & BPF_LOG_LEVEL) { 9287 verbose(env, "returning from callee:\n"); 9288 print_verifier_state(env, callee, true); 9289 verbose(env, "to caller at %d:\n", *insn_idx); 9290 print_verifier_state(env, caller, true); 9291 } 9292 /* clear everything in the callee */ 9293 free_func_state(callee); 9294 state->frame[state->curframe--] = NULL; 9295 return 0; 9296 } 9297 9298 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9299 int func_id, 9300 struct bpf_call_arg_meta *meta) 9301 { 9302 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9303 9304 if (ret_type != RET_INTEGER) 9305 return; 9306 9307 switch (func_id) { 9308 case BPF_FUNC_get_stack: 9309 case BPF_FUNC_get_task_stack: 9310 case BPF_FUNC_probe_read_str: 9311 case BPF_FUNC_probe_read_kernel_str: 9312 case BPF_FUNC_probe_read_user_str: 9313 ret_reg->smax_value = meta->msize_max_value; 9314 ret_reg->s32_max_value = meta->msize_max_value; 9315 ret_reg->smin_value = -MAX_ERRNO; 9316 ret_reg->s32_min_value = -MAX_ERRNO; 9317 reg_bounds_sync(ret_reg); 9318 break; 9319 case BPF_FUNC_get_smp_processor_id: 9320 ret_reg->umax_value = nr_cpu_ids - 1; 9321 ret_reg->u32_max_value = nr_cpu_ids - 1; 9322 ret_reg->smax_value = nr_cpu_ids - 1; 9323 ret_reg->s32_max_value = nr_cpu_ids - 1; 9324 ret_reg->umin_value = 0; 9325 ret_reg->u32_min_value = 0; 9326 ret_reg->smin_value = 0; 9327 ret_reg->s32_min_value = 0; 9328 reg_bounds_sync(ret_reg); 9329 break; 9330 } 9331 } 9332 9333 static int 9334 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9335 int func_id, int insn_idx) 9336 { 9337 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9338 struct bpf_map *map = meta->map_ptr; 9339 9340 if (func_id != BPF_FUNC_tail_call && 9341 func_id != BPF_FUNC_map_lookup_elem && 9342 func_id != BPF_FUNC_map_update_elem && 9343 func_id != BPF_FUNC_map_delete_elem && 9344 func_id != BPF_FUNC_map_push_elem && 9345 func_id != BPF_FUNC_map_pop_elem && 9346 func_id != BPF_FUNC_map_peek_elem && 9347 func_id != BPF_FUNC_for_each_map_elem && 9348 func_id != BPF_FUNC_redirect_map && 9349 func_id != BPF_FUNC_map_lookup_percpu_elem) 9350 return 0; 9351 9352 if (map == NULL) { 9353 verbose(env, "kernel subsystem misconfigured verifier\n"); 9354 return -EINVAL; 9355 } 9356 9357 /* In case of read-only, some additional restrictions 9358 * need to be applied in order to prevent altering the 9359 * state of the map from program side. 9360 */ 9361 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9362 (func_id == BPF_FUNC_map_delete_elem || 9363 func_id == BPF_FUNC_map_update_elem || 9364 func_id == BPF_FUNC_map_push_elem || 9365 func_id == BPF_FUNC_map_pop_elem)) { 9366 verbose(env, "write into map forbidden\n"); 9367 return -EACCES; 9368 } 9369 9370 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9371 bpf_map_ptr_store(aux, meta->map_ptr, 9372 !meta->map_ptr->bypass_spec_v1); 9373 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9374 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9375 !meta->map_ptr->bypass_spec_v1); 9376 return 0; 9377 } 9378 9379 static int 9380 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9381 int func_id, int insn_idx) 9382 { 9383 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9384 struct bpf_reg_state *regs = cur_regs(env), *reg; 9385 struct bpf_map *map = meta->map_ptr; 9386 u64 val, max; 9387 int err; 9388 9389 if (func_id != BPF_FUNC_tail_call) 9390 return 0; 9391 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9392 verbose(env, "kernel subsystem misconfigured verifier\n"); 9393 return -EINVAL; 9394 } 9395 9396 reg = ®s[BPF_REG_3]; 9397 val = reg->var_off.value; 9398 max = map->max_entries; 9399 9400 if (!(register_is_const(reg) && val < max)) { 9401 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9402 return 0; 9403 } 9404 9405 err = mark_chain_precision(env, BPF_REG_3); 9406 if (err) 9407 return err; 9408 if (bpf_map_key_unseen(aux)) 9409 bpf_map_key_store(aux, val); 9410 else if (!bpf_map_key_poisoned(aux) && 9411 bpf_map_key_immediate(aux) != val) 9412 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9413 return 0; 9414 } 9415 9416 static int check_reference_leak(struct bpf_verifier_env *env) 9417 { 9418 struct bpf_func_state *state = cur_func(env); 9419 bool refs_lingering = false; 9420 int i; 9421 9422 if (state->frameno && !state->in_callback_fn) 9423 return 0; 9424 9425 for (i = 0; i < state->acquired_refs; i++) { 9426 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9427 continue; 9428 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9429 state->refs[i].id, state->refs[i].insn_idx); 9430 refs_lingering = true; 9431 } 9432 return refs_lingering ? -EINVAL : 0; 9433 } 9434 9435 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9436 struct bpf_reg_state *regs) 9437 { 9438 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9439 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9440 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9441 struct bpf_bprintf_data data = {}; 9442 int err, fmt_map_off, num_args; 9443 u64 fmt_addr; 9444 char *fmt; 9445 9446 /* data must be an array of u64 */ 9447 if (data_len_reg->var_off.value % 8) 9448 return -EINVAL; 9449 num_args = data_len_reg->var_off.value / 8; 9450 9451 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9452 * and map_direct_value_addr is set. 9453 */ 9454 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9455 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9456 fmt_map_off); 9457 if (err) { 9458 verbose(env, "verifier bug\n"); 9459 return -EFAULT; 9460 } 9461 fmt = (char *)(long)fmt_addr + fmt_map_off; 9462 9463 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9464 * can focus on validating the format specifiers. 9465 */ 9466 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9467 if (err < 0) 9468 verbose(env, "Invalid format string\n"); 9469 9470 return err; 9471 } 9472 9473 static int check_get_func_ip(struct bpf_verifier_env *env) 9474 { 9475 enum bpf_prog_type type = resolve_prog_type(env->prog); 9476 int func_id = BPF_FUNC_get_func_ip; 9477 9478 if (type == BPF_PROG_TYPE_TRACING) { 9479 if (!bpf_prog_has_trampoline(env->prog)) { 9480 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9481 func_id_name(func_id), func_id); 9482 return -ENOTSUPP; 9483 } 9484 return 0; 9485 } else if (type == BPF_PROG_TYPE_KPROBE) { 9486 return 0; 9487 } 9488 9489 verbose(env, "func %s#%d not supported for program type %d\n", 9490 func_id_name(func_id), func_id, type); 9491 return -ENOTSUPP; 9492 } 9493 9494 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9495 { 9496 return &env->insn_aux_data[env->insn_idx]; 9497 } 9498 9499 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9500 { 9501 struct bpf_reg_state *regs = cur_regs(env); 9502 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9503 bool reg_is_null = register_is_null(reg); 9504 9505 if (reg_is_null) 9506 mark_chain_precision(env, BPF_REG_4); 9507 9508 return reg_is_null; 9509 } 9510 9511 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9512 { 9513 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9514 9515 if (!state->initialized) { 9516 state->initialized = 1; 9517 state->fit_for_inline = loop_flag_is_zero(env); 9518 state->callback_subprogno = subprogno; 9519 return; 9520 } 9521 9522 if (!state->fit_for_inline) 9523 return; 9524 9525 state->fit_for_inline = (loop_flag_is_zero(env) && 9526 state->callback_subprogno == subprogno); 9527 } 9528 9529 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9530 int *insn_idx_p) 9531 { 9532 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9533 const struct bpf_func_proto *fn = NULL; 9534 enum bpf_return_type ret_type; 9535 enum bpf_type_flag ret_flag; 9536 struct bpf_reg_state *regs; 9537 struct bpf_call_arg_meta meta; 9538 int insn_idx = *insn_idx_p; 9539 bool changes_data; 9540 int i, err, func_id; 9541 9542 /* find function prototype */ 9543 func_id = insn->imm; 9544 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9545 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9546 func_id); 9547 return -EINVAL; 9548 } 9549 9550 if (env->ops->get_func_proto) 9551 fn = env->ops->get_func_proto(func_id, env->prog); 9552 if (!fn) { 9553 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9554 func_id); 9555 return -EINVAL; 9556 } 9557 9558 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9559 if (!env->prog->gpl_compatible && fn->gpl_only) { 9560 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9561 return -EINVAL; 9562 } 9563 9564 if (fn->allowed && !fn->allowed(env->prog)) { 9565 verbose(env, "helper call is not allowed in probe\n"); 9566 return -EINVAL; 9567 } 9568 9569 if (!env->prog->aux->sleepable && fn->might_sleep) { 9570 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9571 return -EINVAL; 9572 } 9573 9574 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9575 changes_data = bpf_helper_changes_pkt_data(fn->func); 9576 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9577 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9578 func_id_name(func_id), func_id); 9579 return -EINVAL; 9580 } 9581 9582 memset(&meta, 0, sizeof(meta)); 9583 meta.pkt_access = fn->pkt_access; 9584 9585 err = check_func_proto(fn, func_id); 9586 if (err) { 9587 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9588 func_id_name(func_id), func_id); 9589 return err; 9590 } 9591 9592 if (env->cur_state->active_rcu_lock) { 9593 if (fn->might_sleep) { 9594 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9595 func_id_name(func_id), func_id); 9596 return -EINVAL; 9597 } 9598 9599 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9600 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9601 } 9602 9603 meta.func_id = func_id; 9604 /* check args */ 9605 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9606 err = check_func_arg(env, i, &meta, fn, insn_idx); 9607 if (err) 9608 return err; 9609 } 9610 9611 err = record_func_map(env, &meta, func_id, insn_idx); 9612 if (err) 9613 return err; 9614 9615 err = record_func_key(env, &meta, func_id, insn_idx); 9616 if (err) 9617 return err; 9618 9619 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9620 * is inferred from register state. 9621 */ 9622 for (i = 0; i < meta.access_size; i++) { 9623 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9624 BPF_WRITE, -1, false, false); 9625 if (err) 9626 return err; 9627 } 9628 9629 regs = cur_regs(env); 9630 9631 if (meta.release_regno) { 9632 err = -EINVAL; 9633 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9634 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9635 * is safe to do directly. 9636 */ 9637 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9638 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9639 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9640 return -EFAULT; 9641 } 9642 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9643 } else if (meta.ref_obj_id) { 9644 err = release_reference(env, meta.ref_obj_id); 9645 } else if (register_is_null(®s[meta.release_regno])) { 9646 /* meta.ref_obj_id can only be 0 if register that is meant to be 9647 * released is NULL, which must be > R0. 9648 */ 9649 err = 0; 9650 } 9651 if (err) { 9652 verbose(env, "func %s#%d reference has not been acquired before\n", 9653 func_id_name(func_id), func_id); 9654 return err; 9655 } 9656 } 9657 9658 switch (func_id) { 9659 case BPF_FUNC_tail_call: 9660 err = check_reference_leak(env); 9661 if (err) { 9662 verbose(env, "tail_call would lead to reference leak\n"); 9663 return err; 9664 } 9665 break; 9666 case BPF_FUNC_get_local_storage: 9667 /* check that flags argument in get_local_storage(map, flags) is 0, 9668 * this is required because get_local_storage() can't return an error. 9669 */ 9670 if (!register_is_null(®s[BPF_REG_2])) { 9671 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9672 return -EINVAL; 9673 } 9674 break; 9675 case BPF_FUNC_for_each_map_elem: 9676 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9677 set_map_elem_callback_state); 9678 break; 9679 case BPF_FUNC_timer_set_callback: 9680 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9681 set_timer_callback_state); 9682 break; 9683 case BPF_FUNC_find_vma: 9684 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9685 set_find_vma_callback_state); 9686 break; 9687 case BPF_FUNC_snprintf: 9688 err = check_bpf_snprintf_call(env, regs); 9689 break; 9690 case BPF_FUNC_loop: 9691 update_loop_inline_state(env, meta.subprogno); 9692 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9693 set_loop_callback_state); 9694 break; 9695 case BPF_FUNC_dynptr_from_mem: 9696 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9697 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9698 reg_type_str(env, regs[BPF_REG_1].type)); 9699 return -EACCES; 9700 } 9701 break; 9702 case BPF_FUNC_set_retval: 9703 if (prog_type == BPF_PROG_TYPE_LSM && 9704 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9705 if (!env->prog->aux->attach_func_proto->type) { 9706 /* Make sure programs that attach to void 9707 * hooks don't try to modify return value. 9708 */ 9709 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9710 return -EINVAL; 9711 } 9712 } 9713 break; 9714 case BPF_FUNC_dynptr_data: 9715 { 9716 struct bpf_reg_state *reg; 9717 int id, ref_obj_id; 9718 9719 reg = get_dynptr_arg_reg(env, fn, regs); 9720 if (!reg) 9721 return -EFAULT; 9722 9723 9724 if (meta.dynptr_id) { 9725 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9726 return -EFAULT; 9727 } 9728 if (meta.ref_obj_id) { 9729 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9730 return -EFAULT; 9731 } 9732 9733 id = dynptr_id(env, reg); 9734 if (id < 0) { 9735 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9736 return id; 9737 } 9738 9739 ref_obj_id = dynptr_ref_obj_id(env, reg); 9740 if (ref_obj_id < 0) { 9741 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9742 return ref_obj_id; 9743 } 9744 9745 meta.dynptr_id = id; 9746 meta.ref_obj_id = ref_obj_id; 9747 9748 break; 9749 } 9750 case BPF_FUNC_dynptr_write: 9751 { 9752 enum bpf_dynptr_type dynptr_type; 9753 struct bpf_reg_state *reg; 9754 9755 reg = get_dynptr_arg_reg(env, fn, regs); 9756 if (!reg) 9757 return -EFAULT; 9758 9759 dynptr_type = dynptr_get_type(env, reg); 9760 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9761 return -EFAULT; 9762 9763 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9764 /* this will trigger clear_all_pkt_pointers(), which will 9765 * invalidate all dynptr slices associated with the skb 9766 */ 9767 changes_data = true; 9768 9769 break; 9770 } 9771 case BPF_FUNC_user_ringbuf_drain: 9772 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9773 set_user_ringbuf_callback_state); 9774 break; 9775 } 9776 9777 if (err) 9778 return err; 9779 9780 /* reset caller saved regs */ 9781 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9782 mark_reg_not_init(env, regs, caller_saved[i]); 9783 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9784 } 9785 9786 /* helper call returns 64-bit value. */ 9787 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9788 9789 /* update return register (already marked as written above) */ 9790 ret_type = fn->ret_type; 9791 ret_flag = type_flag(ret_type); 9792 9793 switch (base_type(ret_type)) { 9794 case RET_INTEGER: 9795 /* sets type to SCALAR_VALUE */ 9796 mark_reg_unknown(env, regs, BPF_REG_0); 9797 break; 9798 case RET_VOID: 9799 regs[BPF_REG_0].type = NOT_INIT; 9800 break; 9801 case RET_PTR_TO_MAP_VALUE: 9802 /* There is no offset yet applied, variable or fixed */ 9803 mark_reg_known_zero(env, regs, BPF_REG_0); 9804 /* remember map_ptr, so that check_map_access() 9805 * can check 'value_size' boundary of memory access 9806 * to map element returned from bpf_map_lookup_elem() 9807 */ 9808 if (meta.map_ptr == NULL) { 9809 verbose(env, 9810 "kernel subsystem misconfigured verifier\n"); 9811 return -EINVAL; 9812 } 9813 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9814 regs[BPF_REG_0].map_uid = meta.map_uid; 9815 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9816 if (!type_may_be_null(ret_type) && 9817 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9818 regs[BPF_REG_0].id = ++env->id_gen; 9819 } 9820 break; 9821 case RET_PTR_TO_SOCKET: 9822 mark_reg_known_zero(env, regs, BPF_REG_0); 9823 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9824 break; 9825 case RET_PTR_TO_SOCK_COMMON: 9826 mark_reg_known_zero(env, regs, BPF_REG_0); 9827 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9828 break; 9829 case RET_PTR_TO_TCP_SOCK: 9830 mark_reg_known_zero(env, regs, BPF_REG_0); 9831 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9832 break; 9833 case RET_PTR_TO_MEM: 9834 mark_reg_known_zero(env, regs, BPF_REG_0); 9835 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9836 regs[BPF_REG_0].mem_size = meta.mem_size; 9837 break; 9838 case RET_PTR_TO_MEM_OR_BTF_ID: 9839 { 9840 const struct btf_type *t; 9841 9842 mark_reg_known_zero(env, regs, BPF_REG_0); 9843 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9844 if (!btf_type_is_struct(t)) { 9845 u32 tsize; 9846 const struct btf_type *ret; 9847 const char *tname; 9848 9849 /* resolve the type size of ksym. */ 9850 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9851 if (IS_ERR(ret)) { 9852 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9853 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9854 tname, PTR_ERR(ret)); 9855 return -EINVAL; 9856 } 9857 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9858 regs[BPF_REG_0].mem_size = tsize; 9859 } else { 9860 /* MEM_RDONLY may be carried from ret_flag, but it 9861 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9862 * it will confuse the check of PTR_TO_BTF_ID in 9863 * check_mem_access(). 9864 */ 9865 ret_flag &= ~MEM_RDONLY; 9866 9867 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9868 regs[BPF_REG_0].btf = meta.ret_btf; 9869 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9870 } 9871 break; 9872 } 9873 case RET_PTR_TO_BTF_ID: 9874 { 9875 struct btf *ret_btf; 9876 int ret_btf_id; 9877 9878 mark_reg_known_zero(env, regs, BPF_REG_0); 9879 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9880 if (func_id == BPF_FUNC_kptr_xchg) { 9881 ret_btf = meta.kptr_field->kptr.btf; 9882 ret_btf_id = meta.kptr_field->kptr.btf_id; 9883 if (!btf_is_kernel(ret_btf)) 9884 regs[BPF_REG_0].type |= MEM_ALLOC; 9885 } else { 9886 if (fn->ret_btf_id == BPF_PTR_POISON) { 9887 verbose(env, "verifier internal error:"); 9888 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9889 func_id_name(func_id)); 9890 return -EINVAL; 9891 } 9892 ret_btf = btf_vmlinux; 9893 ret_btf_id = *fn->ret_btf_id; 9894 } 9895 if (ret_btf_id == 0) { 9896 verbose(env, "invalid return type %u of func %s#%d\n", 9897 base_type(ret_type), func_id_name(func_id), 9898 func_id); 9899 return -EINVAL; 9900 } 9901 regs[BPF_REG_0].btf = ret_btf; 9902 regs[BPF_REG_0].btf_id = ret_btf_id; 9903 break; 9904 } 9905 default: 9906 verbose(env, "unknown return type %u of func %s#%d\n", 9907 base_type(ret_type), func_id_name(func_id), func_id); 9908 return -EINVAL; 9909 } 9910 9911 if (type_may_be_null(regs[BPF_REG_0].type)) 9912 regs[BPF_REG_0].id = ++env->id_gen; 9913 9914 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9915 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9916 func_id_name(func_id), func_id); 9917 return -EFAULT; 9918 } 9919 9920 if (is_dynptr_ref_function(func_id)) 9921 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9922 9923 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9924 /* For release_reference() */ 9925 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9926 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9927 int id = acquire_reference_state(env, insn_idx); 9928 9929 if (id < 0) 9930 return id; 9931 /* For mark_ptr_or_null_reg() */ 9932 regs[BPF_REG_0].id = id; 9933 /* For release_reference() */ 9934 regs[BPF_REG_0].ref_obj_id = id; 9935 } 9936 9937 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9938 9939 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9940 if (err) 9941 return err; 9942 9943 if ((func_id == BPF_FUNC_get_stack || 9944 func_id == BPF_FUNC_get_task_stack) && 9945 !env->prog->has_callchain_buf) { 9946 const char *err_str; 9947 9948 #ifdef CONFIG_PERF_EVENTS 9949 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9950 err_str = "cannot get callchain buffer for func %s#%d\n"; 9951 #else 9952 err = -ENOTSUPP; 9953 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9954 #endif 9955 if (err) { 9956 verbose(env, err_str, func_id_name(func_id), func_id); 9957 return err; 9958 } 9959 9960 env->prog->has_callchain_buf = true; 9961 } 9962 9963 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9964 env->prog->call_get_stack = true; 9965 9966 if (func_id == BPF_FUNC_get_func_ip) { 9967 if (check_get_func_ip(env)) 9968 return -ENOTSUPP; 9969 env->prog->call_get_func_ip = true; 9970 } 9971 9972 if (changes_data) 9973 clear_all_pkt_pointers(env); 9974 return 0; 9975 } 9976 9977 /* mark_btf_func_reg_size() is used when the reg size is determined by 9978 * the BTF func_proto's return value size and argument. 9979 */ 9980 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9981 size_t reg_size) 9982 { 9983 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9984 9985 if (regno == BPF_REG_0) { 9986 /* Function return value */ 9987 reg->live |= REG_LIVE_WRITTEN; 9988 reg->subreg_def = reg_size == sizeof(u64) ? 9989 DEF_NOT_SUBREG : env->insn_idx + 1; 9990 } else { 9991 /* Function argument */ 9992 if (reg_size == sizeof(u64)) { 9993 mark_insn_zext(env, reg); 9994 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9995 } else { 9996 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9997 } 9998 } 9999 } 10000 10001 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10002 { 10003 return meta->kfunc_flags & KF_ACQUIRE; 10004 } 10005 10006 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10007 { 10008 return meta->kfunc_flags & KF_RELEASE; 10009 } 10010 10011 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10012 { 10013 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10014 } 10015 10016 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10017 { 10018 return meta->kfunc_flags & KF_SLEEPABLE; 10019 } 10020 10021 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10022 { 10023 return meta->kfunc_flags & KF_DESTRUCTIVE; 10024 } 10025 10026 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10027 { 10028 return meta->kfunc_flags & KF_RCU; 10029 } 10030 10031 static bool __kfunc_param_match_suffix(const struct btf *btf, 10032 const struct btf_param *arg, 10033 const char *suffix) 10034 { 10035 int suffix_len = strlen(suffix), len; 10036 const char *param_name; 10037 10038 /* In the future, this can be ported to use BTF tagging */ 10039 param_name = btf_name_by_offset(btf, arg->name_off); 10040 if (str_is_empty(param_name)) 10041 return false; 10042 len = strlen(param_name); 10043 if (len < suffix_len) 10044 return false; 10045 param_name += len - suffix_len; 10046 return !strncmp(param_name, suffix, suffix_len); 10047 } 10048 10049 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10050 const struct btf_param *arg, 10051 const struct bpf_reg_state *reg) 10052 { 10053 const struct btf_type *t; 10054 10055 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10056 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10057 return false; 10058 10059 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10060 } 10061 10062 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10063 const struct btf_param *arg, 10064 const struct bpf_reg_state *reg) 10065 { 10066 const struct btf_type *t; 10067 10068 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10069 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10070 return false; 10071 10072 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10073 } 10074 10075 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10076 { 10077 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10078 } 10079 10080 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10081 { 10082 return __kfunc_param_match_suffix(btf, arg, "__k"); 10083 } 10084 10085 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10086 { 10087 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10088 } 10089 10090 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10091 { 10092 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10093 } 10094 10095 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10096 { 10097 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10098 } 10099 10100 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10101 { 10102 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10103 } 10104 10105 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10106 const struct btf_param *arg, 10107 const char *name) 10108 { 10109 int len, target_len = strlen(name); 10110 const char *param_name; 10111 10112 param_name = btf_name_by_offset(btf, arg->name_off); 10113 if (str_is_empty(param_name)) 10114 return false; 10115 len = strlen(param_name); 10116 if (len != target_len) 10117 return false; 10118 if (strcmp(param_name, name)) 10119 return false; 10120 10121 return true; 10122 } 10123 10124 enum { 10125 KF_ARG_DYNPTR_ID, 10126 KF_ARG_LIST_HEAD_ID, 10127 KF_ARG_LIST_NODE_ID, 10128 KF_ARG_RB_ROOT_ID, 10129 KF_ARG_RB_NODE_ID, 10130 }; 10131 10132 BTF_ID_LIST(kf_arg_btf_ids) 10133 BTF_ID(struct, bpf_dynptr_kern) 10134 BTF_ID(struct, bpf_list_head) 10135 BTF_ID(struct, bpf_list_node) 10136 BTF_ID(struct, bpf_rb_root) 10137 BTF_ID(struct, bpf_rb_node) 10138 10139 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10140 const struct btf_param *arg, int type) 10141 { 10142 const struct btf_type *t; 10143 u32 res_id; 10144 10145 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10146 if (!t) 10147 return false; 10148 if (!btf_type_is_ptr(t)) 10149 return false; 10150 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10151 if (!t) 10152 return false; 10153 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10154 } 10155 10156 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10157 { 10158 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10159 } 10160 10161 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10162 { 10163 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10164 } 10165 10166 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10167 { 10168 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10169 } 10170 10171 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10172 { 10173 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10174 } 10175 10176 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10177 { 10178 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10179 } 10180 10181 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10182 const struct btf_param *arg) 10183 { 10184 const struct btf_type *t; 10185 10186 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10187 if (!t) 10188 return false; 10189 10190 return true; 10191 } 10192 10193 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10194 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10195 const struct btf *btf, 10196 const struct btf_type *t, int rec) 10197 { 10198 const struct btf_type *member_type; 10199 const struct btf_member *member; 10200 u32 i; 10201 10202 if (!btf_type_is_struct(t)) 10203 return false; 10204 10205 for_each_member(i, t, member) { 10206 const struct btf_array *array; 10207 10208 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10209 if (btf_type_is_struct(member_type)) { 10210 if (rec >= 3) { 10211 verbose(env, "max struct nesting depth exceeded\n"); 10212 return false; 10213 } 10214 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10215 return false; 10216 continue; 10217 } 10218 if (btf_type_is_array(member_type)) { 10219 array = btf_array(member_type); 10220 if (!array->nelems) 10221 return false; 10222 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10223 if (!btf_type_is_scalar(member_type)) 10224 return false; 10225 continue; 10226 } 10227 if (!btf_type_is_scalar(member_type)) 10228 return false; 10229 } 10230 return true; 10231 } 10232 10233 enum kfunc_ptr_arg_type { 10234 KF_ARG_PTR_TO_CTX, 10235 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10236 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10237 KF_ARG_PTR_TO_DYNPTR, 10238 KF_ARG_PTR_TO_ITER, 10239 KF_ARG_PTR_TO_LIST_HEAD, 10240 KF_ARG_PTR_TO_LIST_NODE, 10241 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10242 KF_ARG_PTR_TO_MEM, 10243 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10244 KF_ARG_PTR_TO_CALLBACK, 10245 KF_ARG_PTR_TO_RB_ROOT, 10246 KF_ARG_PTR_TO_RB_NODE, 10247 }; 10248 10249 enum special_kfunc_type { 10250 KF_bpf_obj_new_impl, 10251 KF_bpf_obj_drop_impl, 10252 KF_bpf_refcount_acquire_impl, 10253 KF_bpf_list_push_front_impl, 10254 KF_bpf_list_push_back_impl, 10255 KF_bpf_list_pop_front, 10256 KF_bpf_list_pop_back, 10257 KF_bpf_cast_to_kern_ctx, 10258 KF_bpf_rdonly_cast, 10259 KF_bpf_rcu_read_lock, 10260 KF_bpf_rcu_read_unlock, 10261 KF_bpf_rbtree_remove, 10262 KF_bpf_rbtree_add_impl, 10263 KF_bpf_rbtree_first, 10264 KF_bpf_dynptr_from_skb, 10265 KF_bpf_dynptr_from_xdp, 10266 KF_bpf_dynptr_slice, 10267 KF_bpf_dynptr_slice_rdwr, 10268 KF_bpf_dynptr_clone, 10269 }; 10270 10271 BTF_SET_START(special_kfunc_set) 10272 BTF_ID(func, bpf_obj_new_impl) 10273 BTF_ID(func, bpf_obj_drop_impl) 10274 BTF_ID(func, bpf_refcount_acquire_impl) 10275 BTF_ID(func, bpf_list_push_front_impl) 10276 BTF_ID(func, bpf_list_push_back_impl) 10277 BTF_ID(func, bpf_list_pop_front) 10278 BTF_ID(func, bpf_list_pop_back) 10279 BTF_ID(func, bpf_cast_to_kern_ctx) 10280 BTF_ID(func, bpf_rdonly_cast) 10281 BTF_ID(func, bpf_rbtree_remove) 10282 BTF_ID(func, bpf_rbtree_add_impl) 10283 BTF_ID(func, bpf_rbtree_first) 10284 BTF_ID(func, bpf_dynptr_from_skb) 10285 BTF_ID(func, bpf_dynptr_from_xdp) 10286 BTF_ID(func, bpf_dynptr_slice) 10287 BTF_ID(func, bpf_dynptr_slice_rdwr) 10288 BTF_ID(func, bpf_dynptr_clone) 10289 BTF_SET_END(special_kfunc_set) 10290 10291 BTF_ID_LIST(special_kfunc_list) 10292 BTF_ID(func, bpf_obj_new_impl) 10293 BTF_ID(func, bpf_obj_drop_impl) 10294 BTF_ID(func, bpf_refcount_acquire_impl) 10295 BTF_ID(func, bpf_list_push_front_impl) 10296 BTF_ID(func, bpf_list_push_back_impl) 10297 BTF_ID(func, bpf_list_pop_front) 10298 BTF_ID(func, bpf_list_pop_back) 10299 BTF_ID(func, bpf_cast_to_kern_ctx) 10300 BTF_ID(func, bpf_rdonly_cast) 10301 BTF_ID(func, bpf_rcu_read_lock) 10302 BTF_ID(func, bpf_rcu_read_unlock) 10303 BTF_ID(func, bpf_rbtree_remove) 10304 BTF_ID(func, bpf_rbtree_add_impl) 10305 BTF_ID(func, bpf_rbtree_first) 10306 BTF_ID(func, bpf_dynptr_from_skb) 10307 BTF_ID(func, bpf_dynptr_from_xdp) 10308 BTF_ID(func, bpf_dynptr_slice) 10309 BTF_ID(func, bpf_dynptr_slice_rdwr) 10310 BTF_ID(func, bpf_dynptr_clone) 10311 10312 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10313 { 10314 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10315 meta->arg_owning_ref) { 10316 return false; 10317 } 10318 10319 return meta->kfunc_flags & KF_RET_NULL; 10320 } 10321 10322 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10323 { 10324 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10325 } 10326 10327 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10328 { 10329 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10330 } 10331 10332 static enum kfunc_ptr_arg_type 10333 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10334 struct bpf_kfunc_call_arg_meta *meta, 10335 const struct btf_type *t, const struct btf_type *ref_t, 10336 const char *ref_tname, const struct btf_param *args, 10337 int argno, int nargs) 10338 { 10339 u32 regno = argno + 1; 10340 struct bpf_reg_state *regs = cur_regs(env); 10341 struct bpf_reg_state *reg = ®s[regno]; 10342 bool arg_mem_size = false; 10343 10344 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10345 return KF_ARG_PTR_TO_CTX; 10346 10347 /* In this function, we verify the kfunc's BTF as per the argument type, 10348 * leaving the rest of the verification with respect to the register 10349 * type to our caller. When a set of conditions hold in the BTF type of 10350 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10351 */ 10352 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10353 return KF_ARG_PTR_TO_CTX; 10354 10355 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10356 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10357 10358 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10359 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10360 10361 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10362 return KF_ARG_PTR_TO_DYNPTR; 10363 10364 if (is_kfunc_arg_iter(meta, argno)) 10365 return KF_ARG_PTR_TO_ITER; 10366 10367 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10368 return KF_ARG_PTR_TO_LIST_HEAD; 10369 10370 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10371 return KF_ARG_PTR_TO_LIST_NODE; 10372 10373 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10374 return KF_ARG_PTR_TO_RB_ROOT; 10375 10376 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10377 return KF_ARG_PTR_TO_RB_NODE; 10378 10379 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10380 if (!btf_type_is_struct(ref_t)) { 10381 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10382 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10383 return -EINVAL; 10384 } 10385 return KF_ARG_PTR_TO_BTF_ID; 10386 } 10387 10388 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10389 return KF_ARG_PTR_TO_CALLBACK; 10390 10391 10392 if (argno + 1 < nargs && 10393 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10394 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10395 arg_mem_size = true; 10396 10397 /* This is the catch all argument type of register types supported by 10398 * check_helper_mem_access. However, we only allow when argument type is 10399 * pointer to scalar, or struct composed (recursively) of scalars. When 10400 * arg_mem_size is true, the pointer can be void *. 10401 */ 10402 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10403 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10404 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10405 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10406 return -EINVAL; 10407 } 10408 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10409 } 10410 10411 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10412 struct bpf_reg_state *reg, 10413 const struct btf_type *ref_t, 10414 const char *ref_tname, u32 ref_id, 10415 struct bpf_kfunc_call_arg_meta *meta, 10416 int argno) 10417 { 10418 const struct btf_type *reg_ref_t; 10419 bool strict_type_match = false; 10420 const struct btf *reg_btf; 10421 const char *reg_ref_tname; 10422 u32 reg_ref_id; 10423 10424 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10425 reg_btf = reg->btf; 10426 reg_ref_id = reg->btf_id; 10427 } else { 10428 reg_btf = btf_vmlinux; 10429 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10430 } 10431 10432 /* Enforce strict type matching for calls to kfuncs that are acquiring 10433 * or releasing a reference, or are no-cast aliases. We do _not_ 10434 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10435 * as we want to enable BPF programs to pass types that are bitwise 10436 * equivalent without forcing them to explicitly cast with something 10437 * like bpf_cast_to_kern_ctx(). 10438 * 10439 * For example, say we had a type like the following: 10440 * 10441 * struct bpf_cpumask { 10442 * cpumask_t cpumask; 10443 * refcount_t usage; 10444 * }; 10445 * 10446 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10447 * to a struct cpumask, so it would be safe to pass a struct 10448 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10449 * 10450 * The philosophy here is similar to how we allow scalars of different 10451 * types to be passed to kfuncs as long as the size is the same. The 10452 * only difference here is that we're simply allowing 10453 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10454 * resolve types. 10455 */ 10456 if (is_kfunc_acquire(meta) || 10457 (is_kfunc_release(meta) && reg->ref_obj_id) || 10458 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10459 strict_type_match = true; 10460 10461 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10462 10463 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10464 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10465 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10466 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10467 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10468 btf_type_str(reg_ref_t), reg_ref_tname); 10469 return -EINVAL; 10470 } 10471 return 0; 10472 } 10473 10474 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10475 { 10476 struct bpf_verifier_state *state = env->cur_state; 10477 struct btf_record *rec = reg_btf_record(reg); 10478 10479 if (!state->active_lock.ptr) { 10480 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10481 return -EFAULT; 10482 } 10483 10484 if (type_flag(reg->type) & NON_OWN_REF) { 10485 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10486 return -EFAULT; 10487 } 10488 10489 reg->type |= NON_OWN_REF; 10490 if (rec->refcount_off >= 0) 10491 reg->type |= MEM_RCU; 10492 10493 return 0; 10494 } 10495 10496 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10497 { 10498 struct bpf_func_state *state, *unused; 10499 struct bpf_reg_state *reg; 10500 int i; 10501 10502 state = cur_func(env); 10503 10504 if (!ref_obj_id) { 10505 verbose(env, "verifier internal error: ref_obj_id is zero for " 10506 "owning -> non-owning conversion\n"); 10507 return -EFAULT; 10508 } 10509 10510 for (i = 0; i < state->acquired_refs; i++) { 10511 if (state->refs[i].id != ref_obj_id) 10512 continue; 10513 10514 /* Clear ref_obj_id here so release_reference doesn't clobber 10515 * the whole reg 10516 */ 10517 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10518 if (reg->ref_obj_id == ref_obj_id) { 10519 reg->ref_obj_id = 0; 10520 ref_set_non_owning(env, reg); 10521 } 10522 })); 10523 return 0; 10524 } 10525 10526 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10527 return -EFAULT; 10528 } 10529 10530 /* Implementation details: 10531 * 10532 * Each register points to some region of memory, which we define as an 10533 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10534 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10535 * allocation. The lock and the data it protects are colocated in the same 10536 * memory region. 10537 * 10538 * Hence, everytime a register holds a pointer value pointing to such 10539 * allocation, the verifier preserves a unique reg->id for it. 10540 * 10541 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10542 * bpf_spin_lock is called. 10543 * 10544 * To enable this, lock state in the verifier captures two values: 10545 * active_lock.ptr = Register's type specific pointer 10546 * active_lock.id = A unique ID for each register pointer value 10547 * 10548 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10549 * supported register types. 10550 * 10551 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10552 * allocated objects is the reg->btf pointer. 10553 * 10554 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10555 * can establish the provenance of the map value statically for each distinct 10556 * lookup into such maps. They always contain a single map value hence unique 10557 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10558 * 10559 * So, in case of global variables, they use array maps with max_entries = 1, 10560 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10561 * into the same map value as max_entries is 1, as described above). 10562 * 10563 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10564 * outer map pointer (in verifier context), but each lookup into an inner map 10565 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10566 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10567 * will get different reg->id assigned to each lookup, hence different 10568 * active_lock.id. 10569 * 10570 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10571 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10572 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10573 */ 10574 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10575 { 10576 void *ptr; 10577 u32 id; 10578 10579 switch ((int)reg->type) { 10580 case PTR_TO_MAP_VALUE: 10581 ptr = reg->map_ptr; 10582 break; 10583 case PTR_TO_BTF_ID | MEM_ALLOC: 10584 ptr = reg->btf; 10585 break; 10586 default: 10587 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10588 return -EFAULT; 10589 } 10590 id = reg->id; 10591 10592 if (!env->cur_state->active_lock.ptr) 10593 return -EINVAL; 10594 if (env->cur_state->active_lock.ptr != ptr || 10595 env->cur_state->active_lock.id != id) { 10596 verbose(env, "held lock and object are not in the same allocation\n"); 10597 return -EINVAL; 10598 } 10599 return 0; 10600 } 10601 10602 static bool is_bpf_list_api_kfunc(u32 btf_id) 10603 { 10604 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10605 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10606 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10607 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10608 } 10609 10610 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10611 { 10612 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10613 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10614 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10615 } 10616 10617 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10618 { 10619 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10620 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10621 } 10622 10623 static bool is_callback_calling_kfunc(u32 btf_id) 10624 { 10625 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10626 } 10627 10628 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10629 { 10630 return is_bpf_rbtree_api_kfunc(btf_id); 10631 } 10632 10633 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10634 enum btf_field_type head_field_type, 10635 u32 kfunc_btf_id) 10636 { 10637 bool ret; 10638 10639 switch (head_field_type) { 10640 case BPF_LIST_HEAD: 10641 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10642 break; 10643 case BPF_RB_ROOT: 10644 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10645 break; 10646 default: 10647 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10648 btf_field_type_name(head_field_type)); 10649 return false; 10650 } 10651 10652 if (!ret) 10653 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10654 btf_field_type_name(head_field_type)); 10655 return ret; 10656 } 10657 10658 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10659 enum btf_field_type node_field_type, 10660 u32 kfunc_btf_id) 10661 { 10662 bool ret; 10663 10664 switch (node_field_type) { 10665 case BPF_LIST_NODE: 10666 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10667 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10668 break; 10669 case BPF_RB_NODE: 10670 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10671 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10672 break; 10673 default: 10674 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10675 btf_field_type_name(node_field_type)); 10676 return false; 10677 } 10678 10679 if (!ret) 10680 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10681 btf_field_type_name(node_field_type)); 10682 return ret; 10683 } 10684 10685 static int 10686 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10687 struct bpf_reg_state *reg, u32 regno, 10688 struct bpf_kfunc_call_arg_meta *meta, 10689 enum btf_field_type head_field_type, 10690 struct btf_field **head_field) 10691 { 10692 const char *head_type_name; 10693 struct btf_field *field; 10694 struct btf_record *rec; 10695 u32 head_off; 10696 10697 if (meta->btf != btf_vmlinux) { 10698 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10699 return -EFAULT; 10700 } 10701 10702 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10703 return -EFAULT; 10704 10705 head_type_name = btf_field_type_name(head_field_type); 10706 if (!tnum_is_const(reg->var_off)) { 10707 verbose(env, 10708 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10709 regno, head_type_name); 10710 return -EINVAL; 10711 } 10712 10713 rec = reg_btf_record(reg); 10714 head_off = reg->off + reg->var_off.value; 10715 field = btf_record_find(rec, head_off, head_field_type); 10716 if (!field) { 10717 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10718 return -EINVAL; 10719 } 10720 10721 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10722 if (check_reg_allocation_locked(env, reg)) { 10723 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10724 rec->spin_lock_off, head_type_name); 10725 return -EINVAL; 10726 } 10727 10728 if (*head_field) { 10729 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10730 return -EFAULT; 10731 } 10732 *head_field = field; 10733 return 0; 10734 } 10735 10736 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10737 struct bpf_reg_state *reg, u32 regno, 10738 struct bpf_kfunc_call_arg_meta *meta) 10739 { 10740 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10741 &meta->arg_list_head.field); 10742 } 10743 10744 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10745 struct bpf_reg_state *reg, u32 regno, 10746 struct bpf_kfunc_call_arg_meta *meta) 10747 { 10748 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10749 &meta->arg_rbtree_root.field); 10750 } 10751 10752 static int 10753 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10754 struct bpf_reg_state *reg, u32 regno, 10755 struct bpf_kfunc_call_arg_meta *meta, 10756 enum btf_field_type head_field_type, 10757 enum btf_field_type node_field_type, 10758 struct btf_field **node_field) 10759 { 10760 const char *node_type_name; 10761 const struct btf_type *et, *t; 10762 struct btf_field *field; 10763 u32 node_off; 10764 10765 if (meta->btf != btf_vmlinux) { 10766 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10767 return -EFAULT; 10768 } 10769 10770 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10771 return -EFAULT; 10772 10773 node_type_name = btf_field_type_name(node_field_type); 10774 if (!tnum_is_const(reg->var_off)) { 10775 verbose(env, 10776 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10777 regno, node_type_name); 10778 return -EINVAL; 10779 } 10780 10781 node_off = reg->off + reg->var_off.value; 10782 field = reg_find_field_offset(reg, node_off, node_field_type); 10783 if (!field || field->offset != node_off) { 10784 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10785 return -EINVAL; 10786 } 10787 10788 field = *node_field; 10789 10790 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10791 t = btf_type_by_id(reg->btf, reg->btf_id); 10792 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10793 field->graph_root.value_btf_id, true)) { 10794 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10795 "in struct %s, but arg is at offset=%d in struct %s\n", 10796 btf_field_type_name(head_field_type), 10797 btf_field_type_name(node_field_type), 10798 field->graph_root.node_offset, 10799 btf_name_by_offset(field->graph_root.btf, et->name_off), 10800 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10801 return -EINVAL; 10802 } 10803 meta->arg_btf = reg->btf; 10804 meta->arg_btf_id = reg->btf_id; 10805 10806 if (node_off != field->graph_root.node_offset) { 10807 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10808 node_off, btf_field_type_name(node_field_type), 10809 field->graph_root.node_offset, 10810 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10811 return -EINVAL; 10812 } 10813 10814 return 0; 10815 } 10816 10817 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10818 struct bpf_reg_state *reg, u32 regno, 10819 struct bpf_kfunc_call_arg_meta *meta) 10820 { 10821 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10822 BPF_LIST_HEAD, BPF_LIST_NODE, 10823 &meta->arg_list_head.field); 10824 } 10825 10826 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10827 struct bpf_reg_state *reg, u32 regno, 10828 struct bpf_kfunc_call_arg_meta *meta) 10829 { 10830 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10831 BPF_RB_ROOT, BPF_RB_NODE, 10832 &meta->arg_rbtree_root.field); 10833 } 10834 10835 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10836 int insn_idx) 10837 { 10838 const char *func_name = meta->func_name, *ref_tname; 10839 const struct btf *btf = meta->btf; 10840 const struct btf_param *args; 10841 struct btf_record *rec; 10842 u32 i, nargs; 10843 int ret; 10844 10845 args = (const struct btf_param *)(meta->func_proto + 1); 10846 nargs = btf_type_vlen(meta->func_proto); 10847 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10848 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10849 MAX_BPF_FUNC_REG_ARGS); 10850 return -EINVAL; 10851 } 10852 10853 /* Check that BTF function arguments match actual types that the 10854 * verifier sees. 10855 */ 10856 for (i = 0; i < nargs; i++) { 10857 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10858 const struct btf_type *t, *ref_t, *resolve_ret; 10859 enum bpf_arg_type arg_type = ARG_DONTCARE; 10860 u32 regno = i + 1, ref_id, type_size; 10861 bool is_ret_buf_sz = false; 10862 int kf_arg_type; 10863 10864 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10865 10866 if (is_kfunc_arg_ignore(btf, &args[i])) 10867 continue; 10868 10869 if (btf_type_is_scalar(t)) { 10870 if (reg->type != SCALAR_VALUE) { 10871 verbose(env, "R%d is not a scalar\n", regno); 10872 return -EINVAL; 10873 } 10874 10875 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10876 if (meta->arg_constant.found) { 10877 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10878 return -EFAULT; 10879 } 10880 if (!tnum_is_const(reg->var_off)) { 10881 verbose(env, "R%d must be a known constant\n", regno); 10882 return -EINVAL; 10883 } 10884 ret = mark_chain_precision(env, regno); 10885 if (ret < 0) 10886 return ret; 10887 meta->arg_constant.found = true; 10888 meta->arg_constant.value = reg->var_off.value; 10889 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10890 meta->r0_rdonly = true; 10891 is_ret_buf_sz = true; 10892 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10893 is_ret_buf_sz = true; 10894 } 10895 10896 if (is_ret_buf_sz) { 10897 if (meta->r0_size) { 10898 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10899 return -EINVAL; 10900 } 10901 10902 if (!tnum_is_const(reg->var_off)) { 10903 verbose(env, "R%d is not a const\n", regno); 10904 return -EINVAL; 10905 } 10906 10907 meta->r0_size = reg->var_off.value; 10908 ret = mark_chain_precision(env, regno); 10909 if (ret) 10910 return ret; 10911 } 10912 continue; 10913 } 10914 10915 if (!btf_type_is_ptr(t)) { 10916 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10917 return -EINVAL; 10918 } 10919 10920 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10921 (register_is_null(reg) || type_may_be_null(reg->type))) { 10922 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10923 return -EACCES; 10924 } 10925 10926 if (reg->ref_obj_id) { 10927 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10928 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10929 regno, reg->ref_obj_id, 10930 meta->ref_obj_id); 10931 return -EFAULT; 10932 } 10933 meta->ref_obj_id = reg->ref_obj_id; 10934 if (is_kfunc_release(meta)) 10935 meta->release_regno = regno; 10936 } 10937 10938 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10939 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10940 10941 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10942 if (kf_arg_type < 0) 10943 return kf_arg_type; 10944 10945 switch (kf_arg_type) { 10946 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10947 case KF_ARG_PTR_TO_BTF_ID: 10948 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10949 break; 10950 10951 if (!is_trusted_reg(reg)) { 10952 if (!is_kfunc_rcu(meta)) { 10953 verbose(env, "R%d must be referenced or trusted\n", regno); 10954 return -EINVAL; 10955 } 10956 if (!is_rcu_reg(reg)) { 10957 verbose(env, "R%d must be a rcu pointer\n", regno); 10958 return -EINVAL; 10959 } 10960 } 10961 10962 fallthrough; 10963 case KF_ARG_PTR_TO_CTX: 10964 /* Trusted arguments have the same offset checks as release arguments */ 10965 arg_type |= OBJ_RELEASE; 10966 break; 10967 case KF_ARG_PTR_TO_DYNPTR: 10968 case KF_ARG_PTR_TO_ITER: 10969 case KF_ARG_PTR_TO_LIST_HEAD: 10970 case KF_ARG_PTR_TO_LIST_NODE: 10971 case KF_ARG_PTR_TO_RB_ROOT: 10972 case KF_ARG_PTR_TO_RB_NODE: 10973 case KF_ARG_PTR_TO_MEM: 10974 case KF_ARG_PTR_TO_MEM_SIZE: 10975 case KF_ARG_PTR_TO_CALLBACK: 10976 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10977 /* Trusted by default */ 10978 break; 10979 default: 10980 WARN_ON_ONCE(1); 10981 return -EFAULT; 10982 } 10983 10984 if (is_kfunc_release(meta) && reg->ref_obj_id) 10985 arg_type |= OBJ_RELEASE; 10986 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10987 if (ret < 0) 10988 return ret; 10989 10990 switch (kf_arg_type) { 10991 case KF_ARG_PTR_TO_CTX: 10992 if (reg->type != PTR_TO_CTX) { 10993 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10994 return -EINVAL; 10995 } 10996 10997 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10998 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10999 if (ret < 0) 11000 return -EINVAL; 11001 meta->ret_btf_id = ret; 11002 } 11003 break; 11004 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11005 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11006 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11007 return -EINVAL; 11008 } 11009 if (!reg->ref_obj_id) { 11010 verbose(env, "allocated object must be referenced\n"); 11011 return -EINVAL; 11012 } 11013 if (meta->btf == btf_vmlinux && 11014 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11015 meta->arg_btf = reg->btf; 11016 meta->arg_btf_id = reg->btf_id; 11017 } 11018 break; 11019 case KF_ARG_PTR_TO_DYNPTR: 11020 { 11021 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11022 int clone_ref_obj_id = 0; 11023 11024 if (reg->type != PTR_TO_STACK && 11025 reg->type != CONST_PTR_TO_DYNPTR) { 11026 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11027 return -EINVAL; 11028 } 11029 11030 if (reg->type == CONST_PTR_TO_DYNPTR) 11031 dynptr_arg_type |= MEM_RDONLY; 11032 11033 if (is_kfunc_arg_uninit(btf, &args[i])) 11034 dynptr_arg_type |= MEM_UNINIT; 11035 11036 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11037 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11038 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11039 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11040 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11041 (dynptr_arg_type & MEM_UNINIT)) { 11042 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11043 11044 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11045 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11046 return -EFAULT; 11047 } 11048 11049 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11050 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11051 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11052 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11053 return -EFAULT; 11054 } 11055 } 11056 11057 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11058 if (ret < 0) 11059 return ret; 11060 11061 if (!(dynptr_arg_type & MEM_UNINIT)) { 11062 int id = dynptr_id(env, reg); 11063 11064 if (id < 0) { 11065 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11066 return id; 11067 } 11068 meta->initialized_dynptr.id = id; 11069 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11070 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11071 } 11072 11073 break; 11074 } 11075 case KF_ARG_PTR_TO_ITER: 11076 ret = process_iter_arg(env, regno, insn_idx, meta); 11077 if (ret < 0) 11078 return ret; 11079 break; 11080 case KF_ARG_PTR_TO_LIST_HEAD: 11081 if (reg->type != PTR_TO_MAP_VALUE && 11082 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11083 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11084 return -EINVAL; 11085 } 11086 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11087 verbose(env, "allocated object must be referenced\n"); 11088 return -EINVAL; 11089 } 11090 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11091 if (ret < 0) 11092 return ret; 11093 break; 11094 case KF_ARG_PTR_TO_RB_ROOT: 11095 if (reg->type != PTR_TO_MAP_VALUE && 11096 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11097 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11098 return -EINVAL; 11099 } 11100 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11101 verbose(env, "allocated object must be referenced\n"); 11102 return -EINVAL; 11103 } 11104 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11105 if (ret < 0) 11106 return ret; 11107 break; 11108 case KF_ARG_PTR_TO_LIST_NODE: 11109 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11110 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11111 return -EINVAL; 11112 } 11113 if (!reg->ref_obj_id) { 11114 verbose(env, "allocated object must be referenced\n"); 11115 return -EINVAL; 11116 } 11117 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11118 if (ret < 0) 11119 return ret; 11120 break; 11121 case KF_ARG_PTR_TO_RB_NODE: 11122 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11123 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11124 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11125 return -EINVAL; 11126 } 11127 if (in_rbtree_lock_required_cb(env)) { 11128 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11129 return -EINVAL; 11130 } 11131 } else { 11132 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11133 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11134 return -EINVAL; 11135 } 11136 if (!reg->ref_obj_id) { 11137 verbose(env, "allocated object must be referenced\n"); 11138 return -EINVAL; 11139 } 11140 } 11141 11142 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11143 if (ret < 0) 11144 return ret; 11145 break; 11146 case KF_ARG_PTR_TO_BTF_ID: 11147 /* Only base_type is checked, further checks are done here */ 11148 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11149 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11150 !reg2btf_ids[base_type(reg->type)]) { 11151 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11152 verbose(env, "expected %s or socket\n", 11153 reg_type_str(env, base_type(reg->type) | 11154 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11155 return -EINVAL; 11156 } 11157 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11158 if (ret < 0) 11159 return ret; 11160 break; 11161 case KF_ARG_PTR_TO_MEM: 11162 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11163 if (IS_ERR(resolve_ret)) { 11164 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11165 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11166 return -EINVAL; 11167 } 11168 ret = check_mem_reg(env, reg, regno, type_size); 11169 if (ret < 0) 11170 return ret; 11171 break; 11172 case KF_ARG_PTR_TO_MEM_SIZE: 11173 { 11174 struct bpf_reg_state *buff_reg = ®s[regno]; 11175 const struct btf_param *buff_arg = &args[i]; 11176 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11177 const struct btf_param *size_arg = &args[i + 1]; 11178 11179 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11180 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11181 if (ret < 0) { 11182 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11183 return ret; 11184 } 11185 } 11186 11187 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11188 if (meta->arg_constant.found) { 11189 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11190 return -EFAULT; 11191 } 11192 if (!tnum_is_const(size_reg->var_off)) { 11193 verbose(env, "R%d must be a known constant\n", regno + 1); 11194 return -EINVAL; 11195 } 11196 meta->arg_constant.found = true; 11197 meta->arg_constant.value = size_reg->var_off.value; 11198 } 11199 11200 /* Skip next '__sz' or '__szk' argument */ 11201 i++; 11202 break; 11203 } 11204 case KF_ARG_PTR_TO_CALLBACK: 11205 meta->subprogno = reg->subprogno; 11206 break; 11207 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11208 if (!type_is_ptr_alloc_obj(reg->type)) { 11209 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11210 return -EINVAL; 11211 } 11212 if (!type_is_non_owning_ref(reg->type)) 11213 meta->arg_owning_ref = true; 11214 11215 rec = reg_btf_record(reg); 11216 if (!rec) { 11217 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11218 return -EFAULT; 11219 } 11220 11221 if (rec->refcount_off < 0) { 11222 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11223 return -EINVAL; 11224 } 11225 11226 meta->arg_btf = reg->btf; 11227 meta->arg_btf_id = reg->btf_id; 11228 break; 11229 } 11230 } 11231 11232 if (is_kfunc_release(meta) && !meta->release_regno) { 11233 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11234 func_name); 11235 return -EINVAL; 11236 } 11237 11238 return 0; 11239 } 11240 11241 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11242 struct bpf_insn *insn, 11243 struct bpf_kfunc_call_arg_meta *meta, 11244 const char **kfunc_name) 11245 { 11246 const struct btf_type *func, *func_proto; 11247 u32 func_id, *kfunc_flags; 11248 const char *func_name; 11249 struct btf *desc_btf; 11250 11251 if (kfunc_name) 11252 *kfunc_name = NULL; 11253 11254 if (!insn->imm) 11255 return -EINVAL; 11256 11257 desc_btf = find_kfunc_desc_btf(env, insn->off); 11258 if (IS_ERR(desc_btf)) 11259 return PTR_ERR(desc_btf); 11260 11261 func_id = insn->imm; 11262 func = btf_type_by_id(desc_btf, func_id); 11263 func_name = btf_name_by_offset(desc_btf, func->name_off); 11264 if (kfunc_name) 11265 *kfunc_name = func_name; 11266 func_proto = btf_type_by_id(desc_btf, func->type); 11267 11268 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11269 if (!kfunc_flags) { 11270 return -EACCES; 11271 } 11272 11273 memset(meta, 0, sizeof(*meta)); 11274 meta->btf = desc_btf; 11275 meta->func_id = func_id; 11276 meta->kfunc_flags = *kfunc_flags; 11277 meta->func_proto = func_proto; 11278 meta->func_name = func_name; 11279 11280 return 0; 11281 } 11282 11283 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11284 int *insn_idx_p) 11285 { 11286 const struct btf_type *t, *ptr_type; 11287 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11288 struct bpf_reg_state *regs = cur_regs(env); 11289 const char *func_name, *ptr_type_name; 11290 bool sleepable, rcu_lock, rcu_unlock; 11291 struct bpf_kfunc_call_arg_meta meta; 11292 struct bpf_insn_aux_data *insn_aux; 11293 int err, insn_idx = *insn_idx_p; 11294 const struct btf_param *args; 11295 const struct btf_type *ret_t; 11296 struct btf *desc_btf; 11297 11298 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11299 if (!insn->imm) 11300 return 0; 11301 11302 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11303 if (err == -EACCES && func_name) 11304 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11305 if (err) 11306 return err; 11307 desc_btf = meta.btf; 11308 insn_aux = &env->insn_aux_data[insn_idx]; 11309 11310 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11311 11312 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11313 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11314 return -EACCES; 11315 } 11316 11317 sleepable = is_kfunc_sleepable(&meta); 11318 if (sleepable && !env->prog->aux->sleepable) { 11319 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11320 return -EACCES; 11321 } 11322 11323 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11324 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11325 11326 if (env->cur_state->active_rcu_lock) { 11327 struct bpf_func_state *state; 11328 struct bpf_reg_state *reg; 11329 11330 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11331 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11332 return -EACCES; 11333 } 11334 11335 if (rcu_lock) { 11336 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11337 return -EINVAL; 11338 } else if (rcu_unlock) { 11339 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11340 if (reg->type & MEM_RCU) { 11341 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11342 reg->type |= PTR_UNTRUSTED; 11343 } 11344 })); 11345 env->cur_state->active_rcu_lock = false; 11346 } else if (sleepable) { 11347 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11348 return -EACCES; 11349 } 11350 } else if (rcu_lock) { 11351 env->cur_state->active_rcu_lock = true; 11352 } else if (rcu_unlock) { 11353 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11354 return -EINVAL; 11355 } 11356 11357 /* Check the arguments */ 11358 err = check_kfunc_args(env, &meta, insn_idx); 11359 if (err < 0) 11360 return err; 11361 /* In case of release function, we get register number of refcounted 11362 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11363 */ 11364 if (meta.release_regno) { 11365 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11366 if (err) { 11367 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11368 func_name, meta.func_id); 11369 return err; 11370 } 11371 } 11372 11373 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11374 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11375 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11376 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11377 insn_aux->insert_off = regs[BPF_REG_2].off; 11378 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11379 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11380 if (err) { 11381 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11382 func_name, meta.func_id); 11383 return err; 11384 } 11385 11386 err = release_reference(env, release_ref_obj_id); 11387 if (err) { 11388 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11389 func_name, meta.func_id); 11390 return err; 11391 } 11392 } 11393 11394 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11395 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11396 set_rbtree_add_callback_state); 11397 if (err) { 11398 verbose(env, "kfunc %s#%d failed callback verification\n", 11399 func_name, meta.func_id); 11400 return err; 11401 } 11402 } 11403 11404 for (i = 0; i < CALLER_SAVED_REGS; i++) 11405 mark_reg_not_init(env, regs, caller_saved[i]); 11406 11407 /* Check return type */ 11408 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11409 11410 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11411 /* Only exception is bpf_obj_new_impl */ 11412 if (meta.btf != btf_vmlinux || 11413 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11414 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11415 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11416 return -EINVAL; 11417 } 11418 } 11419 11420 if (btf_type_is_scalar(t)) { 11421 mark_reg_unknown(env, regs, BPF_REG_0); 11422 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11423 } else if (btf_type_is_ptr(t)) { 11424 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11425 11426 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11427 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11428 struct btf *ret_btf; 11429 u32 ret_btf_id; 11430 11431 if (unlikely(!bpf_global_ma_set)) 11432 return -ENOMEM; 11433 11434 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11435 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11436 return -EINVAL; 11437 } 11438 11439 ret_btf = env->prog->aux->btf; 11440 ret_btf_id = meta.arg_constant.value; 11441 11442 /* This may be NULL due to user not supplying a BTF */ 11443 if (!ret_btf) { 11444 verbose(env, "bpf_obj_new requires prog BTF\n"); 11445 return -EINVAL; 11446 } 11447 11448 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11449 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11450 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11451 return -EINVAL; 11452 } 11453 11454 mark_reg_known_zero(env, regs, BPF_REG_0); 11455 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11456 regs[BPF_REG_0].btf = ret_btf; 11457 regs[BPF_REG_0].btf_id = ret_btf_id; 11458 11459 insn_aux->obj_new_size = ret_t->size; 11460 insn_aux->kptr_struct_meta = 11461 btf_find_struct_meta(ret_btf, ret_btf_id); 11462 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11463 mark_reg_known_zero(env, regs, BPF_REG_0); 11464 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11465 regs[BPF_REG_0].btf = meta.arg_btf; 11466 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11467 11468 insn_aux->kptr_struct_meta = 11469 btf_find_struct_meta(meta.arg_btf, 11470 meta.arg_btf_id); 11471 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11472 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11473 struct btf_field *field = meta.arg_list_head.field; 11474 11475 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11476 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11477 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11478 struct btf_field *field = meta.arg_rbtree_root.field; 11479 11480 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11481 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11482 mark_reg_known_zero(env, regs, BPF_REG_0); 11483 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11484 regs[BPF_REG_0].btf = desc_btf; 11485 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11486 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11487 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11488 if (!ret_t || !btf_type_is_struct(ret_t)) { 11489 verbose(env, 11490 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11491 return -EINVAL; 11492 } 11493 11494 mark_reg_known_zero(env, regs, BPF_REG_0); 11495 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11496 regs[BPF_REG_0].btf = desc_btf; 11497 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11498 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11499 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11500 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11501 11502 mark_reg_known_zero(env, regs, BPF_REG_0); 11503 11504 if (!meta.arg_constant.found) { 11505 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11506 return -EFAULT; 11507 } 11508 11509 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11510 11511 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11512 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11513 11514 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11515 regs[BPF_REG_0].type |= MEM_RDONLY; 11516 } else { 11517 /* this will set env->seen_direct_write to true */ 11518 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11519 verbose(env, "the prog does not allow writes to packet data\n"); 11520 return -EINVAL; 11521 } 11522 } 11523 11524 if (!meta.initialized_dynptr.id) { 11525 verbose(env, "verifier internal error: no dynptr id\n"); 11526 return -EFAULT; 11527 } 11528 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11529 11530 /* we don't need to set BPF_REG_0's ref obj id 11531 * because packet slices are not refcounted (see 11532 * dynptr_type_refcounted) 11533 */ 11534 } else { 11535 verbose(env, "kernel function %s unhandled dynamic return type\n", 11536 meta.func_name); 11537 return -EFAULT; 11538 } 11539 } else if (!__btf_type_is_struct(ptr_type)) { 11540 if (!meta.r0_size) { 11541 __u32 sz; 11542 11543 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11544 meta.r0_size = sz; 11545 meta.r0_rdonly = true; 11546 } 11547 } 11548 if (!meta.r0_size) { 11549 ptr_type_name = btf_name_by_offset(desc_btf, 11550 ptr_type->name_off); 11551 verbose(env, 11552 "kernel function %s returns pointer type %s %s is not supported\n", 11553 func_name, 11554 btf_type_str(ptr_type), 11555 ptr_type_name); 11556 return -EINVAL; 11557 } 11558 11559 mark_reg_known_zero(env, regs, BPF_REG_0); 11560 regs[BPF_REG_0].type = PTR_TO_MEM; 11561 regs[BPF_REG_0].mem_size = meta.r0_size; 11562 11563 if (meta.r0_rdonly) 11564 regs[BPF_REG_0].type |= MEM_RDONLY; 11565 11566 /* Ensures we don't access the memory after a release_reference() */ 11567 if (meta.ref_obj_id) 11568 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11569 } else { 11570 mark_reg_known_zero(env, regs, BPF_REG_0); 11571 regs[BPF_REG_0].btf = desc_btf; 11572 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11573 regs[BPF_REG_0].btf_id = ptr_type_id; 11574 } 11575 11576 if (is_kfunc_ret_null(&meta)) { 11577 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11578 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11579 regs[BPF_REG_0].id = ++env->id_gen; 11580 } 11581 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11582 if (is_kfunc_acquire(&meta)) { 11583 int id = acquire_reference_state(env, insn_idx); 11584 11585 if (id < 0) 11586 return id; 11587 if (is_kfunc_ret_null(&meta)) 11588 regs[BPF_REG_0].id = id; 11589 regs[BPF_REG_0].ref_obj_id = id; 11590 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11591 ref_set_non_owning(env, ®s[BPF_REG_0]); 11592 } 11593 11594 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11595 regs[BPF_REG_0].id = ++env->id_gen; 11596 } else if (btf_type_is_void(t)) { 11597 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11598 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11599 insn_aux->kptr_struct_meta = 11600 btf_find_struct_meta(meta.arg_btf, 11601 meta.arg_btf_id); 11602 } 11603 } 11604 } 11605 11606 nargs = btf_type_vlen(meta.func_proto); 11607 args = (const struct btf_param *)(meta.func_proto + 1); 11608 for (i = 0; i < nargs; i++) { 11609 u32 regno = i + 1; 11610 11611 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11612 if (btf_type_is_ptr(t)) 11613 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11614 else 11615 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11616 mark_btf_func_reg_size(env, regno, t->size); 11617 } 11618 11619 if (is_iter_next_kfunc(&meta)) { 11620 err = process_iter_next_call(env, insn_idx, &meta); 11621 if (err) 11622 return err; 11623 } 11624 11625 return 0; 11626 } 11627 11628 static bool signed_add_overflows(s64 a, s64 b) 11629 { 11630 /* Do the add in u64, where overflow is well-defined */ 11631 s64 res = (s64)((u64)a + (u64)b); 11632 11633 if (b < 0) 11634 return res > a; 11635 return res < a; 11636 } 11637 11638 static bool signed_add32_overflows(s32 a, s32 b) 11639 { 11640 /* Do the add in u32, where overflow is well-defined */ 11641 s32 res = (s32)((u32)a + (u32)b); 11642 11643 if (b < 0) 11644 return res > a; 11645 return res < a; 11646 } 11647 11648 static bool signed_sub_overflows(s64 a, s64 b) 11649 { 11650 /* Do the sub in u64, where overflow is well-defined */ 11651 s64 res = (s64)((u64)a - (u64)b); 11652 11653 if (b < 0) 11654 return res < a; 11655 return res > a; 11656 } 11657 11658 static bool signed_sub32_overflows(s32 a, s32 b) 11659 { 11660 /* Do the sub in u32, where overflow is well-defined */ 11661 s32 res = (s32)((u32)a - (u32)b); 11662 11663 if (b < 0) 11664 return res < a; 11665 return res > a; 11666 } 11667 11668 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11669 const struct bpf_reg_state *reg, 11670 enum bpf_reg_type type) 11671 { 11672 bool known = tnum_is_const(reg->var_off); 11673 s64 val = reg->var_off.value; 11674 s64 smin = reg->smin_value; 11675 11676 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11677 verbose(env, "math between %s pointer and %lld is not allowed\n", 11678 reg_type_str(env, type), val); 11679 return false; 11680 } 11681 11682 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11683 verbose(env, "%s pointer offset %d is not allowed\n", 11684 reg_type_str(env, type), reg->off); 11685 return false; 11686 } 11687 11688 if (smin == S64_MIN) { 11689 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11690 reg_type_str(env, type)); 11691 return false; 11692 } 11693 11694 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11695 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11696 smin, reg_type_str(env, type)); 11697 return false; 11698 } 11699 11700 return true; 11701 } 11702 11703 enum { 11704 REASON_BOUNDS = -1, 11705 REASON_TYPE = -2, 11706 REASON_PATHS = -3, 11707 REASON_LIMIT = -4, 11708 REASON_STACK = -5, 11709 }; 11710 11711 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11712 u32 *alu_limit, bool mask_to_left) 11713 { 11714 u32 max = 0, ptr_limit = 0; 11715 11716 switch (ptr_reg->type) { 11717 case PTR_TO_STACK: 11718 /* Offset 0 is out-of-bounds, but acceptable start for the 11719 * left direction, see BPF_REG_FP. Also, unknown scalar 11720 * offset where we would need to deal with min/max bounds is 11721 * currently prohibited for unprivileged. 11722 */ 11723 max = MAX_BPF_STACK + mask_to_left; 11724 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11725 break; 11726 case PTR_TO_MAP_VALUE: 11727 max = ptr_reg->map_ptr->value_size; 11728 ptr_limit = (mask_to_left ? 11729 ptr_reg->smin_value : 11730 ptr_reg->umax_value) + ptr_reg->off; 11731 break; 11732 default: 11733 return REASON_TYPE; 11734 } 11735 11736 if (ptr_limit >= max) 11737 return REASON_LIMIT; 11738 *alu_limit = ptr_limit; 11739 return 0; 11740 } 11741 11742 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11743 const struct bpf_insn *insn) 11744 { 11745 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11746 } 11747 11748 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11749 u32 alu_state, u32 alu_limit) 11750 { 11751 /* If we arrived here from different branches with different 11752 * state or limits to sanitize, then this won't work. 11753 */ 11754 if (aux->alu_state && 11755 (aux->alu_state != alu_state || 11756 aux->alu_limit != alu_limit)) 11757 return REASON_PATHS; 11758 11759 /* Corresponding fixup done in do_misc_fixups(). */ 11760 aux->alu_state = alu_state; 11761 aux->alu_limit = alu_limit; 11762 return 0; 11763 } 11764 11765 static int sanitize_val_alu(struct bpf_verifier_env *env, 11766 struct bpf_insn *insn) 11767 { 11768 struct bpf_insn_aux_data *aux = cur_aux(env); 11769 11770 if (can_skip_alu_sanitation(env, insn)) 11771 return 0; 11772 11773 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11774 } 11775 11776 static bool sanitize_needed(u8 opcode) 11777 { 11778 return opcode == BPF_ADD || opcode == BPF_SUB; 11779 } 11780 11781 struct bpf_sanitize_info { 11782 struct bpf_insn_aux_data aux; 11783 bool mask_to_left; 11784 }; 11785 11786 static struct bpf_verifier_state * 11787 sanitize_speculative_path(struct bpf_verifier_env *env, 11788 const struct bpf_insn *insn, 11789 u32 next_idx, u32 curr_idx) 11790 { 11791 struct bpf_verifier_state *branch; 11792 struct bpf_reg_state *regs; 11793 11794 branch = push_stack(env, next_idx, curr_idx, true); 11795 if (branch && insn) { 11796 regs = branch->frame[branch->curframe]->regs; 11797 if (BPF_SRC(insn->code) == BPF_K) { 11798 mark_reg_unknown(env, regs, insn->dst_reg); 11799 } else if (BPF_SRC(insn->code) == BPF_X) { 11800 mark_reg_unknown(env, regs, insn->dst_reg); 11801 mark_reg_unknown(env, regs, insn->src_reg); 11802 } 11803 } 11804 return branch; 11805 } 11806 11807 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11808 struct bpf_insn *insn, 11809 const struct bpf_reg_state *ptr_reg, 11810 const struct bpf_reg_state *off_reg, 11811 struct bpf_reg_state *dst_reg, 11812 struct bpf_sanitize_info *info, 11813 const bool commit_window) 11814 { 11815 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11816 struct bpf_verifier_state *vstate = env->cur_state; 11817 bool off_is_imm = tnum_is_const(off_reg->var_off); 11818 bool off_is_neg = off_reg->smin_value < 0; 11819 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11820 u8 opcode = BPF_OP(insn->code); 11821 u32 alu_state, alu_limit; 11822 struct bpf_reg_state tmp; 11823 bool ret; 11824 int err; 11825 11826 if (can_skip_alu_sanitation(env, insn)) 11827 return 0; 11828 11829 /* We already marked aux for masking from non-speculative 11830 * paths, thus we got here in the first place. We only care 11831 * to explore bad access from here. 11832 */ 11833 if (vstate->speculative) 11834 goto do_sim; 11835 11836 if (!commit_window) { 11837 if (!tnum_is_const(off_reg->var_off) && 11838 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11839 return REASON_BOUNDS; 11840 11841 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11842 (opcode == BPF_SUB && !off_is_neg); 11843 } 11844 11845 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11846 if (err < 0) 11847 return err; 11848 11849 if (commit_window) { 11850 /* In commit phase we narrow the masking window based on 11851 * the observed pointer move after the simulated operation. 11852 */ 11853 alu_state = info->aux.alu_state; 11854 alu_limit = abs(info->aux.alu_limit - alu_limit); 11855 } else { 11856 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11857 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11858 alu_state |= ptr_is_dst_reg ? 11859 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11860 11861 /* Limit pruning on unknown scalars to enable deep search for 11862 * potential masking differences from other program paths. 11863 */ 11864 if (!off_is_imm) 11865 env->explore_alu_limits = true; 11866 } 11867 11868 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11869 if (err < 0) 11870 return err; 11871 do_sim: 11872 /* If we're in commit phase, we're done here given we already 11873 * pushed the truncated dst_reg into the speculative verification 11874 * stack. 11875 * 11876 * Also, when register is a known constant, we rewrite register-based 11877 * operation to immediate-based, and thus do not need masking (and as 11878 * a consequence, do not need to simulate the zero-truncation either). 11879 */ 11880 if (commit_window || off_is_imm) 11881 return 0; 11882 11883 /* Simulate and find potential out-of-bounds access under 11884 * speculative execution from truncation as a result of 11885 * masking when off was not within expected range. If off 11886 * sits in dst, then we temporarily need to move ptr there 11887 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11888 * for cases where we use K-based arithmetic in one direction 11889 * and truncated reg-based in the other in order to explore 11890 * bad access. 11891 */ 11892 if (!ptr_is_dst_reg) { 11893 tmp = *dst_reg; 11894 copy_register_state(dst_reg, ptr_reg); 11895 } 11896 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11897 env->insn_idx); 11898 if (!ptr_is_dst_reg && ret) 11899 *dst_reg = tmp; 11900 return !ret ? REASON_STACK : 0; 11901 } 11902 11903 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11904 { 11905 struct bpf_verifier_state *vstate = env->cur_state; 11906 11907 /* If we simulate paths under speculation, we don't update the 11908 * insn as 'seen' such that when we verify unreachable paths in 11909 * the non-speculative domain, sanitize_dead_code() can still 11910 * rewrite/sanitize them. 11911 */ 11912 if (!vstate->speculative) 11913 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11914 } 11915 11916 static int sanitize_err(struct bpf_verifier_env *env, 11917 const struct bpf_insn *insn, int reason, 11918 const struct bpf_reg_state *off_reg, 11919 const struct bpf_reg_state *dst_reg) 11920 { 11921 static const char *err = "pointer arithmetic with it prohibited for !root"; 11922 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11923 u32 dst = insn->dst_reg, src = insn->src_reg; 11924 11925 switch (reason) { 11926 case REASON_BOUNDS: 11927 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11928 off_reg == dst_reg ? dst : src, err); 11929 break; 11930 case REASON_TYPE: 11931 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11932 off_reg == dst_reg ? src : dst, err); 11933 break; 11934 case REASON_PATHS: 11935 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11936 dst, op, err); 11937 break; 11938 case REASON_LIMIT: 11939 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11940 dst, op, err); 11941 break; 11942 case REASON_STACK: 11943 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11944 dst, err); 11945 break; 11946 default: 11947 verbose(env, "verifier internal error: unknown reason (%d)\n", 11948 reason); 11949 break; 11950 } 11951 11952 return -EACCES; 11953 } 11954 11955 /* check that stack access falls within stack limits and that 'reg' doesn't 11956 * have a variable offset. 11957 * 11958 * Variable offset is prohibited for unprivileged mode for simplicity since it 11959 * requires corresponding support in Spectre masking for stack ALU. See also 11960 * retrieve_ptr_limit(). 11961 * 11962 * 11963 * 'off' includes 'reg->off'. 11964 */ 11965 static int check_stack_access_for_ptr_arithmetic( 11966 struct bpf_verifier_env *env, 11967 int regno, 11968 const struct bpf_reg_state *reg, 11969 int off) 11970 { 11971 if (!tnum_is_const(reg->var_off)) { 11972 char tn_buf[48]; 11973 11974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11975 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11976 regno, tn_buf, off); 11977 return -EACCES; 11978 } 11979 11980 if (off >= 0 || off < -MAX_BPF_STACK) { 11981 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11982 "prohibited for !root; off=%d\n", regno, off); 11983 return -EACCES; 11984 } 11985 11986 return 0; 11987 } 11988 11989 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11990 const struct bpf_insn *insn, 11991 const struct bpf_reg_state *dst_reg) 11992 { 11993 u32 dst = insn->dst_reg; 11994 11995 /* For unprivileged we require that resulting offset must be in bounds 11996 * in order to be able to sanitize access later on. 11997 */ 11998 if (env->bypass_spec_v1) 11999 return 0; 12000 12001 switch (dst_reg->type) { 12002 case PTR_TO_STACK: 12003 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12004 dst_reg->off + dst_reg->var_off.value)) 12005 return -EACCES; 12006 break; 12007 case PTR_TO_MAP_VALUE: 12008 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12009 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12010 "prohibited for !root\n", dst); 12011 return -EACCES; 12012 } 12013 break; 12014 default: 12015 break; 12016 } 12017 12018 return 0; 12019 } 12020 12021 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12022 * Caller should also handle BPF_MOV case separately. 12023 * If we return -EACCES, caller may want to try again treating pointer as a 12024 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12025 */ 12026 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12027 struct bpf_insn *insn, 12028 const struct bpf_reg_state *ptr_reg, 12029 const struct bpf_reg_state *off_reg) 12030 { 12031 struct bpf_verifier_state *vstate = env->cur_state; 12032 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12033 struct bpf_reg_state *regs = state->regs, *dst_reg; 12034 bool known = tnum_is_const(off_reg->var_off); 12035 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12036 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12037 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12038 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12039 struct bpf_sanitize_info info = {}; 12040 u8 opcode = BPF_OP(insn->code); 12041 u32 dst = insn->dst_reg; 12042 int ret; 12043 12044 dst_reg = ®s[dst]; 12045 12046 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12047 smin_val > smax_val || umin_val > umax_val) { 12048 /* Taint dst register if offset had invalid bounds derived from 12049 * e.g. dead branches. 12050 */ 12051 __mark_reg_unknown(env, dst_reg); 12052 return 0; 12053 } 12054 12055 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12056 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12057 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12058 __mark_reg_unknown(env, dst_reg); 12059 return 0; 12060 } 12061 12062 verbose(env, 12063 "R%d 32-bit pointer arithmetic prohibited\n", 12064 dst); 12065 return -EACCES; 12066 } 12067 12068 if (ptr_reg->type & PTR_MAYBE_NULL) { 12069 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12070 dst, reg_type_str(env, ptr_reg->type)); 12071 return -EACCES; 12072 } 12073 12074 switch (base_type(ptr_reg->type)) { 12075 case CONST_PTR_TO_MAP: 12076 /* smin_val represents the known value */ 12077 if (known && smin_val == 0 && opcode == BPF_ADD) 12078 break; 12079 fallthrough; 12080 case PTR_TO_PACKET_END: 12081 case PTR_TO_SOCKET: 12082 case PTR_TO_SOCK_COMMON: 12083 case PTR_TO_TCP_SOCK: 12084 case PTR_TO_XDP_SOCK: 12085 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12086 dst, reg_type_str(env, ptr_reg->type)); 12087 return -EACCES; 12088 default: 12089 break; 12090 } 12091 12092 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12093 * The id may be overwritten later if we create a new variable offset. 12094 */ 12095 dst_reg->type = ptr_reg->type; 12096 dst_reg->id = ptr_reg->id; 12097 12098 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12099 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12100 return -EINVAL; 12101 12102 /* pointer types do not carry 32-bit bounds at the moment. */ 12103 __mark_reg32_unbounded(dst_reg); 12104 12105 if (sanitize_needed(opcode)) { 12106 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12107 &info, false); 12108 if (ret < 0) 12109 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12110 } 12111 12112 switch (opcode) { 12113 case BPF_ADD: 12114 /* We can take a fixed offset as long as it doesn't overflow 12115 * the s32 'off' field 12116 */ 12117 if (known && (ptr_reg->off + smin_val == 12118 (s64)(s32)(ptr_reg->off + smin_val))) { 12119 /* pointer += K. Accumulate it into fixed offset */ 12120 dst_reg->smin_value = smin_ptr; 12121 dst_reg->smax_value = smax_ptr; 12122 dst_reg->umin_value = umin_ptr; 12123 dst_reg->umax_value = umax_ptr; 12124 dst_reg->var_off = ptr_reg->var_off; 12125 dst_reg->off = ptr_reg->off + smin_val; 12126 dst_reg->raw = ptr_reg->raw; 12127 break; 12128 } 12129 /* A new variable offset is created. Note that off_reg->off 12130 * == 0, since it's a scalar. 12131 * dst_reg gets the pointer type and since some positive 12132 * integer value was added to the pointer, give it a new 'id' 12133 * if it's a PTR_TO_PACKET. 12134 * this creates a new 'base' pointer, off_reg (variable) gets 12135 * added into the variable offset, and we copy the fixed offset 12136 * from ptr_reg. 12137 */ 12138 if (signed_add_overflows(smin_ptr, smin_val) || 12139 signed_add_overflows(smax_ptr, smax_val)) { 12140 dst_reg->smin_value = S64_MIN; 12141 dst_reg->smax_value = S64_MAX; 12142 } else { 12143 dst_reg->smin_value = smin_ptr + smin_val; 12144 dst_reg->smax_value = smax_ptr + smax_val; 12145 } 12146 if (umin_ptr + umin_val < umin_ptr || 12147 umax_ptr + umax_val < umax_ptr) { 12148 dst_reg->umin_value = 0; 12149 dst_reg->umax_value = U64_MAX; 12150 } else { 12151 dst_reg->umin_value = umin_ptr + umin_val; 12152 dst_reg->umax_value = umax_ptr + umax_val; 12153 } 12154 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12155 dst_reg->off = ptr_reg->off; 12156 dst_reg->raw = ptr_reg->raw; 12157 if (reg_is_pkt_pointer(ptr_reg)) { 12158 dst_reg->id = ++env->id_gen; 12159 /* something was added to pkt_ptr, set range to zero */ 12160 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12161 } 12162 break; 12163 case BPF_SUB: 12164 if (dst_reg == off_reg) { 12165 /* scalar -= pointer. Creates an unknown scalar */ 12166 verbose(env, "R%d tried to subtract pointer from scalar\n", 12167 dst); 12168 return -EACCES; 12169 } 12170 /* We don't allow subtraction from FP, because (according to 12171 * test_verifier.c test "invalid fp arithmetic", JITs might not 12172 * be able to deal with it. 12173 */ 12174 if (ptr_reg->type == PTR_TO_STACK) { 12175 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12176 dst); 12177 return -EACCES; 12178 } 12179 if (known && (ptr_reg->off - smin_val == 12180 (s64)(s32)(ptr_reg->off - smin_val))) { 12181 /* pointer -= K. Subtract it from fixed offset */ 12182 dst_reg->smin_value = smin_ptr; 12183 dst_reg->smax_value = smax_ptr; 12184 dst_reg->umin_value = umin_ptr; 12185 dst_reg->umax_value = umax_ptr; 12186 dst_reg->var_off = ptr_reg->var_off; 12187 dst_reg->id = ptr_reg->id; 12188 dst_reg->off = ptr_reg->off - smin_val; 12189 dst_reg->raw = ptr_reg->raw; 12190 break; 12191 } 12192 /* A new variable offset is created. If the subtrahend is known 12193 * nonnegative, then any reg->range we had before is still good. 12194 */ 12195 if (signed_sub_overflows(smin_ptr, smax_val) || 12196 signed_sub_overflows(smax_ptr, smin_val)) { 12197 /* Overflow possible, we know nothing */ 12198 dst_reg->smin_value = S64_MIN; 12199 dst_reg->smax_value = S64_MAX; 12200 } else { 12201 dst_reg->smin_value = smin_ptr - smax_val; 12202 dst_reg->smax_value = smax_ptr - smin_val; 12203 } 12204 if (umin_ptr < umax_val) { 12205 /* Overflow possible, we know nothing */ 12206 dst_reg->umin_value = 0; 12207 dst_reg->umax_value = U64_MAX; 12208 } else { 12209 /* Cannot overflow (as long as bounds are consistent) */ 12210 dst_reg->umin_value = umin_ptr - umax_val; 12211 dst_reg->umax_value = umax_ptr - umin_val; 12212 } 12213 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12214 dst_reg->off = ptr_reg->off; 12215 dst_reg->raw = ptr_reg->raw; 12216 if (reg_is_pkt_pointer(ptr_reg)) { 12217 dst_reg->id = ++env->id_gen; 12218 /* something was added to pkt_ptr, set range to zero */ 12219 if (smin_val < 0) 12220 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12221 } 12222 break; 12223 case BPF_AND: 12224 case BPF_OR: 12225 case BPF_XOR: 12226 /* bitwise ops on pointers are troublesome, prohibit. */ 12227 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12228 dst, bpf_alu_string[opcode >> 4]); 12229 return -EACCES; 12230 default: 12231 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12232 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12233 dst, bpf_alu_string[opcode >> 4]); 12234 return -EACCES; 12235 } 12236 12237 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12238 return -EINVAL; 12239 reg_bounds_sync(dst_reg); 12240 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12241 return -EACCES; 12242 if (sanitize_needed(opcode)) { 12243 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12244 &info, true); 12245 if (ret < 0) 12246 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12247 } 12248 12249 return 0; 12250 } 12251 12252 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12253 struct bpf_reg_state *src_reg) 12254 { 12255 s32 smin_val = src_reg->s32_min_value; 12256 s32 smax_val = src_reg->s32_max_value; 12257 u32 umin_val = src_reg->u32_min_value; 12258 u32 umax_val = src_reg->u32_max_value; 12259 12260 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12261 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12262 dst_reg->s32_min_value = S32_MIN; 12263 dst_reg->s32_max_value = S32_MAX; 12264 } else { 12265 dst_reg->s32_min_value += smin_val; 12266 dst_reg->s32_max_value += smax_val; 12267 } 12268 if (dst_reg->u32_min_value + umin_val < umin_val || 12269 dst_reg->u32_max_value + umax_val < umax_val) { 12270 dst_reg->u32_min_value = 0; 12271 dst_reg->u32_max_value = U32_MAX; 12272 } else { 12273 dst_reg->u32_min_value += umin_val; 12274 dst_reg->u32_max_value += umax_val; 12275 } 12276 } 12277 12278 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12279 struct bpf_reg_state *src_reg) 12280 { 12281 s64 smin_val = src_reg->smin_value; 12282 s64 smax_val = src_reg->smax_value; 12283 u64 umin_val = src_reg->umin_value; 12284 u64 umax_val = src_reg->umax_value; 12285 12286 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12287 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12288 dst_reg->smin_value = S64_MIN; 12289 dst_reg->smax_value = S64_MAX; 12290 } else { 12291 dst_reg->smin_value += smin_val; 12292 dst_reg->smax_value += smax_val; 12293 } 12294 if (dst_reg->umin_value + umin_val < umin_val || 12295 dst_reg->umax_value + umax_val < umax_val) { 12296 dst_reg->umin_value = 0; 12297 dst_reg->umax_value = U64_MAX; 12298 } else { 12299 dst_reg->umin_value += umin_val; 12300 dst_reg->umax_value += umax_val; 12301 } 12302 } 12303 12304 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12305 struct bpf_reg_state *src_reg) 12306 { 12307 s32 smin_val = src_reg->s32_min_value; 12308 s32 smax_val = src_reg->s32_max_value; 12309 u32 umin_val = src_reg->u32_min_value; 12310 u32 umax_val = src_reg->u32_max_value; 12311 12312 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12313 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12314 /* Overflow possible, we know nothing */ 12315 dst_reg->s32_min_value = S32_MIN; 12316 dst_reg->s32_max_value = S32_MAX; 12317 } else { 12318 dst_reg->s32_min_value -= smax_val; 12319 dst_reg->s32_max_value -= smin_val; 12320 } 12321 if (dst_reg->u32_min_value < umax_val) { 12322 /* Overflow possible, we know nothing */ 12323 dst_reg->u32_min_value = 0; 12324 dst_reg->u32_max_value = U32_MAX; 12325 } else { 12326 /* Cannot overflow (as long as bounds are consistent) */ 12327 dst_reg->u32_min_value -= umax_val; 12328 dst_reg->u32_max_value -= umin_val; 12329 } 12330 } 12331 12332 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12333 struct bpf_reg_state *src_reg) 12334 { 12335 s64 smin_val = src_reg->smin_value; 12336 s64 smax_val = src_reg->smax_value; 12337 u64 umin_val = src_reg->umin_value; 12338 u64 umax_val = src_reg->umax_value; 12339 12340 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12341 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12342 /* Overflow possible, we know nothing */ 12343 dst_reg->smin_value = S64_MIN; 12344 dst_reg->smax_value = S64_MAX; 12345 } else { 12346 dst_reg->smin_value -= smax_val; 12347 dst_reg->smax_value -= smin_val; 12348 } 12349 if (dst_reg->umin_value < umax_val) { 12350 /* Overflow possible, we know nothing */ 12351 dst_reg->umin_value = 0; 12352 dst_reg->umax_value = U64_MAX; 12353 } else { 12354 /* Cannot overflow (as long as bounds are consistent) */ 12355 dst_reg->umin_value -= umax_val; 12356 dst_reg->umax_value -= umin_val; 12357 } 12358 } 12359 12360 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12361 struct bpf_reg_state *src_reg) 12362 { 12363 s32 smin_val = src_reg->s32_min_value; 12364 u32 umin_val = src_reg->u32_min_value; 12365 u32 umax_val = src_reg->u32_max_value; 12366 12367 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12368 /* Ain't nobody got time to multiply that sign */ 12369 __mark_reg32_unbounded(dst_reg); 12370 return; 12371 } 12372 /* Both values are positive, so we can work with unsigned and 12373 * copy the result to signed (unless it exceeds S32_MAX). 12374 */ 12375 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12376 /* Potential overflow, we know nothing */ 12377 __mark_reg32_unbounded(dst_reg); 12378 return; 12379 } 12380 dst_reg->u32_min_value *= umin_val; 12381 dst_reg->u32_max_value *= umax_val; 12382 if (dst_reg->u32_max_value > S32_MAX) { 12383 /* Overflow possible, we know nothing */ 12384 dst_reg->s32_min_value = S32_MIN; 12385 dst_reg->s32_max_value = S32_MAX; 12386 } else { 12387 dst_reg->s32_min_value = dst_reg->u32_min_value; 12388 dst_reg->s32_max_value = dst_reg->u32_max_value; 12389 } 12390 } 12391 12392 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12393 struct bpf_reg_state *src_reg) 12394 { 12395 s64 smin_val = src_reg->smin_value; 12396 u64 umin_val = src_reg->umin_value; 12397 u64 umax_val = src_reg->umax_value; 12398 12399 if (smin_val < 0 || dst_reg->smin_value < 0) { 12400 /* Ain't nobody got time to multiply that sign */ 12401 __mark_reg64_unbounded(dst_reg); 12402 return; 12403 } 12404 /* Both values are positive, so we can work with unsigned and 12405 * copy the result to signed (unless it exceeds S64_MAX). 12406 */ 12407 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12408 /* Potential overflow, we know nothing */ 12409 __mark_reg64_unbounded(dst_reg); 12410 return; 12411 } 12412 dst_reg->umin_value *= umin_val; 12413 dst_reg->umax_value *= umax_val; 12414 if (dst_reg->umax_value > S64_MAX) { 12415 /* Overflow possible, we know nothing */ 12416 dst_reg->smin_value = S64_MIN; 12417 dst_reg->smax_value = S64_MAX; 12418 } else { 12419 dst_reg->smin_value = dst_reg->umin_value; 12420 dst_reg->smax_value = dst_reg->umax_value; 12421 } 12422 } 12423 12424 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12425 struct bpf_reg_state *src_reg) 12426 { 12427 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12428 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12429 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12430 s32 smin_val = src_reg->s32_min_value; 12431 u32 umax_val = src_reg->u32_max_value; 12432 12433 if (src_known && dst_known) { 12434 __mark_reg32_known(dst_reg, var32_off.value); 12435 return; 12436 } 12437 12438 /* We get our minimum from the var_off, since that's inherently 12439 * bitwise. Our maximum is the minimum of the operands' maxima. 12440 */ 12441 dst_reg->u32_min_value = var32_off.value; 12442 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12443 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12444 /* Lose signed bounds when ANDing negative numbers, 12445 * ain't nobody got time for that. 12446 */ 12447 dst_reg->s32_min_value = S32_MIN; 12448 dst_reg->s32_max_value = S32_MAX; 12449 } else { 12450 /* ANDing two positives gives a positive, so safe to 12451 * cast result into s64. 12452 */ 12453 dst_reg->s32_min_value = dst_reg->u32_min_value; 12454 dst_reg->s32_max_value = dst_reg->u32_max_value; 12455 } 12456 } 12457 12458 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12459 struct bpf_reg_state *src_reg) 12460 { 12461 bool src_known = tnum_is_const(src_reg->var_off); 12462 bool dst_known = tnum_is_const(dst_reg->var_off); 12463 s64 smin_val = src_reg->smin_value; 12464 u64 umax_val = src_reg->umax_value; 12465 12466 if (src_known && dst_known) { 12467 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12468 return; 12469 } 12470 12471 /* We get our minimum from the var_off, since that's inherently 12472 * bitwise. Our maximum is the minimum of the operands' maxima. 12473 */ 12474 dst_reg->umin_value = dst_reg->var_off.value; 12475 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12476 if (dst_reg->smin_value < 0 || smin_val < 0) { 12477 /* Lose signed bounds when ANDing negative numbers, 12478 * ain't nobody got time for that. 12479 */ 12480 dst_reg->smin_value = S64_MIN; 12481 dst_reg->smax_value = S64_MAX; 12482 } else { 12483 /* ANDing two positives gives a positive, so safe to 12484 * cast result into s64. 12485 */ 12486 dst_reg->smin_value = dst_reg->umin_value; 12487 dst_reg->smax_value = dst_reg->umax_value; 12488 } 12489 /* We may learn something more from the var_off */ 12490 __update_reg_bounds(dst_reg); 12491 } 12492 12493 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12494 struct bpf_reg_state *src_reg) 12495 { 12496 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12497 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12498 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12499 s32 smin_val = src_reg->s32_min_value; 12500 u32 umin_val = src_reg->u32_min_value; 12501 12502 if (src_known && dst_known) { 12503 __mark_reg32_known(dst_reg, var32_off.value); 12504 return; 12505 } 12506 12507 /* We get our maximum from the var_off, and our minimum is the 12508 * maximum of the operands' minima 12509 */ 12510 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12511 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12512 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12513 /* Lose signed bounds when ORing negative numbers, 12514 * ain't nobody got time for that. 12515 */ 12516 dst_reg->s32_min_value = S32_MIN; 12517 dst_reg->s32_max_value = S32_MAX; 12518 } else { 12519 /* ORing two positives gives a positive, so safe to 12520 * cast result into s64. 12521 */ 12522 dst_reg->s32_min_value = dst_reg->u32_min_value; 12523 dst_reg->s32_max_value = dst_reg->u32_max_value; 12524 } 12525 } 12526 12527 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12528 struct bpf_reg_state *src_reg) 12529 { 12530 bool src_known = tnum_is_const(src_reg->var_off); 12531 bool dst_known = tnum_is_const(dst_reg->var_off); 12532 s64 smin_val = src_reg->smin_value; 12533 u64 umin_val = src_reg->umin_value; 12534 12535 if (src_known && dst_known) { 12536 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12537 return; 12538 } 12539 12540 /* We get our maximum from the var_off, and our minimum is the 12541 * maximum of the operands' minima 12542 */ 12543 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12544 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12545 if (dst_reg->smin_value < 0 || smin_val < 0) { 12546 /* Lose signed bounds when ORing negative numbers, 12547 * ain't nobody got time for that. 12548 */ 12549 dst_reg->smin_value = S64_MIN; 12550 dst_reg->smax_value = S64_MAX; 12551 } else { 12552 /* ORing two positives gives a positive, so safe to 12553 * cast result into s64. 12554 */ 12555 dst_reg->smin_value = dst_reg->umin_value; 12556 dst_reg->smax_value = dst_reg->umax_value; 12557 } 12558 /* We may learn something more from the var_off */ 12559 __update_reg_bounds(dst_reg); 12560 } 12561 12562 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12563 struct bpf_reg_state *src_reg) 12564 { 12565 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12566 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12567 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12568 s32 smin_val = src_reg->s32_min_value; 12569 12570 if (src_known && dst_known) { 12571 __mark_reg32_known(dst_reg, var32_off.value); 12572 return; 12573 } 12574 12575 /* We get both minimum and maximum from the var32_off. */ 12576 dst_reg->u32_min_value = var32_off.value; 12577 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12578 12579 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12580 /* XORing two positive sign numbers gives a positive, 12581 * so safe to cast u32 result into s32. 12582 */ 12583 dst_reg->s32_min_value = dst_reg->u32_min_value; 12584 dst_reg->s32_max_value = dst_reg->u32_max_value; 12585 } else { 12586 dst_reg->s32_min_value = S32_MIN; 12587 dst_reg->s32_max_value = S32_MAX; 12588 } 12589 } 12590 12591 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12592 struct bpf_reg_state *src_reg) 12593 { 12594 bool src_known = tnum_is_const(src_reg->var_off); 12595 bool dst_known = tnum_is_const(dst_reg->var_off); 12596 s64 smin_val = src_reg->smin_value; 12597 12598 if (src_known && dst_known) { 12599 /* dst_reg->var_off.value has been updated earlier */ 12600 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12601 return; 12602 } 12603 12604 /* We get both minimum and maximum from the var_off. */ 12605 dst_reg->umin_value = dst_reg->var_off.value; 12606 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12607 12608 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12609 /* XORing two positive sign numbers gives a positive, 12610 * so safe to cast u64 result into s64. 12611 */ 12612 dst_reg->smin_value = dst_reg->umin_value; 12613 dst_reg->smax_value = dst_reg->umax_value; 12614 } else { 12615 dst_reg->smin_value = S64_MIN; 12616 dst_reg->smax_value = S64_MAX; 12617 } 12618 12619 __update_reg_bounds(dst_reg); 12620 } 12621 12622 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12623 u64 umin_val, u64 umax_val) 12624 { 12625 /* We lose all sign bit information (except what we can pick 12626 * up from var_off) 12627 */ 12628 dst_reg->s32_min_value = S32_MIN; 12629 dst_reg->s32_max_value = S32_MAX; 12630 /* If we might shift our top bit out, then we know nothing */ 12631 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12632 dst_reg->u32_min_value = 0; 12633 dst_reg->u32_max_value = U32_MAX; 12634 } else { 12635 dst_reg->u32_min_value <<= umin_val; 12636 dst_reg->u32_max_value <<= umax_val; 12637 } 12638 } 12639 12640 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12641 struct bpf_reg_state *src_reg) 12642 { 12643 u32 umax_val = src_reg->u32_max_value; 12644 u32 umin_val = src_reg->u32_min_value; 12645 /* u32 alu operation will zext upper bits */ 12646 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12647 12648 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12649 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12650 /* Not required but being careful mark reg64 bounds as unknown so 12651 * that we are forced to pick them up from tnum and zext later and 12652 * if some path skips this step we are still safe. 12653 */ 12654 __mark_reg64_unbounded(dst_reg); 12655 __update_reg32_bounds(dst_reg); 12656 } 12657 12658 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12659 u64 umin_val, u64 umax_val) 12660 { 12661 /* Special case <<32 because it is a common compiler pattern to sign 12662 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12663 * positive we know this shift will also be positive so we can track 12664 * bounds correctly. Otherwise we lose all sign bit information except 12665 * what we can pick up from var_off. Perhaps we can generalize this 12666 * later to shifts of any length. 12667 */ 12668 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12669 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12670 else 12671 dst_reg->smax_value = S64_MAX; 12672 12673 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12674 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12675 else 12676 dst_reg->smin_value = S64_MIN; 12677 12678 /* If we might shift our top bit out, then we know nothing */ 12679 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12680 dst_reg->umin_value = 0; 12681 dst_reg->umax_value = U64_MAX; 12682 } else { 12683 dst_reg->umin_value <<= umin_val; 12684 dst_reg->umax_value <<= umax_val; 12685 } 12686 } 12687 12688 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12689 struct bpf_reg_state *src_reg) 12690 { 12691 u64 umax_val = src_reg->umax_value; 12692 u64 umin_val = src_reg->umin_value; 12693 12694 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12695 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12696 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12697 12698 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12699 /* We may learn something more from the var_off */ 12700 __update_reg_bounds(dst_reg); 12701 } 12702 12703 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12704 struct bpf_reg_state *src_reg) 12705 { 12706 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12707 u32 umax_val = src_reg->u32_max_value; 12708 u32 umin_val = src_reg->u32_min_value; 12709 12710 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12711 * be negative, then either: 12712 * 1) src_reg might be zero, so the sign bit of the result is 12713 * unknown, so we lose our signed bounds 12714 * 2) it's known negative, thus the unsigned bounds capture the 12715 * signed bounds 12716 * 3) the signed bounds cross zero, so they tell us nothing 12717 * about the result 12718 * If the value in dst_reg is known nonnegative, then again the 12719 * unsigned bounds capture the signed bounds. 12720 * Thus, in all cases it suffices to blow away our signed bounds 12721 * and rely on inferring new ones from the unsigned bounds and 12722 * var_off of the result. 12723 */ 12724 dst_reg->s32_min_value = S32_MIN; 12725 dst_reg->s32_max_value = S32_MAX; 12726 12727 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12728 dst_reg->u32_min_value >>= umax_val; 12729 dst_reg->u32_max_value >>= umin_val; 12730 12731 __mark_reg64_unbounded(dst_reg); 12732 __update_reg32_bounds(dst_reg); 12733 } 12734 12735 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12736 struct bpf_reg_state *src_reg) 12737 { 12738 u64 umax_val = src_reg->umax_value; 12739 u64 umin_val = src_reg->umin_value; 12740 12741 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12742 * be negative, then either: 12743 * 1) src_reg might be zero, so the sign bit of the result is 12744 * unknown, so we lose our signed bounds 12745 * 2) it's known negative, thus the unsigned bounds capture the 12746 * signed bounds 12747 * 3) the signed bounds cross zero, so they tell us nothing 12748 * about the result 12749 * If the value in dst_reg is known nonnegative, then again the 12750 * unsigned bounds capture the signed bounds. 12751 * Thus, in all cases it suffices to blow away our signed bounds 12752 * and rely on inferring new ones from the unsigned bounds and 12753 * var_off of the result. 12754 */ 12755 dst_reg->smin_value = S64_MIN; 12756 dst_reg->smax_value = S64_MAX; 12757 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12758 dst_reg->umin_value >>= umax_val; 12759 dst_reg->umax_value >>= umin_val; 12760 12761 /* Its not easy to operate on alu32 bounds here because it depends 12762 * on bits being shifted in. Take easy way out and mark unbounded 12763 * so we can recalculate later from tnum. 12764 */ 12765 __mark_reg32_unbounded(dst_reg); 12766 __update_reg_bounds(dst_reg); 12767 } 12768 12769 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12770 struct bpf_reg_state *src_reg) 12771 { 12772 u64 umin_val = src_reg->u32_min_value; 12773 12774 /* Upon reaching here, src_known is true and 12775 * umax_val is equal to umin_val. 12776 */ 12777 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12778 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12779 12780 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12781 12782 /* blow away the dst_reg umin_value/umax_value and rely on 12783 * dst_reg var_off to refine the result. 12784 */ 12785 dst_reg->u32_min_value = 0; 12786 dst_reg->u32_max_value = U32_MAX; 12787 12788 __mark_reg64_unbounded(dst_reg); 12789 __update_reg32_bounds(dst_reg); 12790 } 12791 12792 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12793 struct bpf_reg_state *src_reg) 12794 { 12795 u64 umin_val = src_reg->umin_value; 12796 12797 /* Upon reaching here, src_known is true and umax_val is equal 12798 * to umin_val. 12799 */ 12800 dst_reg->smin_value >>= umin_val; 12801 dst_reg->smax_value >>= umin_val; 12802 12803 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12804 12805 /* blow away the dst_reg umin_value/umax_value and rely on 12806 * dst_reg var_off to refine the result. 12807 */ 12808 dst_reg->umin_value = 0; 12809 dst_reg->umax_value = U64_MAX; 12810 12811 /* Its not easy to operate on alu32 bounds here because it depends 12812 * on bits being shifted in from upper 32-bits. Take easy way out 12813 * and mark unbounded so we can recalculate later from tnum. 12814 */ 12815 __mark_reg32_unbounded(dst_reg); 12816 __update_reg_bounds(dst_reg); 12817 } 12818 12819 /* WARNING: This function does calculations on 64-bit values, but the actual 12820 * execution may occur on 32-bit values. Therefore, things like bitshifts 12821 * need extra checks in the 32-bit case. 12822 */ 12823 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12824 struct bpf_insn *insn, 12825 struct bpf_reg_state *dst_reg, 12826 struct bpf_reg_state src_reg) 12827 { 12828 struct bpf_reg_state *regs = cur_regs(env); 12829 u8 opcode = BPF_OP(insn->code); 12830 bool src_known; 12831 s64 smin_val, smax_val; 12832 u64 umin_val, umax_val; 12833 s32 s32_min_val, s32_max_val; 12834 u32 u32_min_val, u32_max_val; 12835 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12836 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12837 int ret; 12838 12839 smin_val = src_reg.smin_value; 12840 smax_val = src_reg.smax_value; 12841 umin_val = src_reg.umin_value; 12842 umax_val = src_reg.umax_value; 12843 12844 s32_min_val = src_reg.s32_min_value; 12845 s32_max_val = src_reg.s32_max_value; 12846 u32_min_val = src_reg.u32_min_value; 12847 u32_max_val = src_reg.u32_max_value; 12848 12849 if (alu32) { 12850 src_known = tnum_subreg_is_const(src_reg.var_off); 12851 if ((src_known && 12852 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12853 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12854 /* Taint dst register if offset had invalid bounds 12855 * derived from e.g. dead branches. 12856 */ 12857 __mark_reg_unknown(env, dst_reg); 12858 return 0; 12859 } 12860 } else { 12861 src_known = tnum_is_const(src_reg.var_off); 12862 if ((src_known && 12863 (smin_val != smax_val || umin_val != umax_val)) || 12864 smin_val > smax_val || umin_val > umax_val) { 12865 /* Taint dst register if offset had invalid bounds 12866 * derived from e.g. dead branches. 12867 */ 12868 __mark_reg_unknown(env, dst_reg); 12869 return 0; 12870 } 12871 } 12872 12873 if (!src_known && 12874 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12875 __mark_reg_unknown(env, dst_reg); 12876 return 0; 12877 } 12878 12879 if (sanitize_needed(opcode)) { 12880 ret = sanitize_val_alu(env, insn); 12881 if (ret < 0) 12882 return sanitize_err(env, insn, ret, NULL, NULL); 12883 } 12884 12885 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12886 * There are two classes of instructions: The first class we track both 12887 * alu32 and alu64 sign/unsigned bounds independently this provides the 12888 * greatest amount of precision when alu operations are mixed with jmp32 12889 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12890 * and BPF_OR. This is possible because these ops have fairly easy to 12891 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12892 * See alu32 verifier tests for examples. The second class of 12893 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12894 * with regards to tracking sign/unsigned bounds because the bits may 12895 * cross subreg boundaries in the alu64 case. When this happens we mark 12896 * the reg unbounded in the subreg bound space and use the resulting 12897 * tnum to calculate an approximation of the sign/unsigned bounds. 12898 */ 12899 switch (opcode) { 12900 case BPF_ADD: 12901 scalar32_min_max_add(dst_reg, &src_reg); 12902 scalar_min_max_add(dst_reg, &src_reg); 12903 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12904 break; 12905 case BPF_SUB: 12906 scalar32_min_max_sub(dst_reg, &src_reg); 12907 scalar_min_max_sub(dst_reg, &src_reg); 12908 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12909 break; 12910 case BPF_MUL: 12911 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12912 scalar32_min_max_mul(dst_reg, &src_reg); 12913 scalar_min_max_mul(dst_reg, &src_reg); 12914 break; 12915 case BPF_AND: 12916 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12917 scalar32_min_max_and(dst_reg, &src_reg); 12918 scalar_min_max_and(dst_reg, &src_reg); 12919 break; 12920 case BPF_OR: 12921 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12922 scalar32_min_max_or(dst_reg, &src_reg); 12923 scalar_min_max_or(dst_reg, &src_reg); 12924 break; 12925 case BPF_XOR: 12926 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12927 scalar32_min_max_xor(dst_reg, &src_reg); 12928 scalar_min_max_xor(dst_reg, &src_reg); 12929 break; 12930 case BPF_LSH: 12931 if (umax_val >= insn_bitness) { 12932 /* Shifts greater than 31 or 63 are undefined. 12933 * This includes shifts by a negative number. 12934 */ 12935 mark_reg_unknown(env, regs, insn->dst_reg); 12936 break; 12937 } 12938 if (alu32) 12939 scalar32_min_max_lsh(dst_reg, &src_reg); 12940 else 12941 scalar_min_max_lsh(dst_reg, &src_reg); 12942 break; 12943 case BPF_RSH: 12944 if (umax_val >= insn_bitness) { 12945 /* Shifts greater than 31 or 63 are undefined. 12946 * This includes shifts by a negative number. 12947 */ 12948 mark_reg_unknown(env, regs, insn->dst_reg); 12949 break; 12950 } 12951 if (alu32) 12952 scalar32_min_max_rsh(dst_reg, &src_reg); 12953 else 12954 scalar_min_max_rsh(dst_reg, &src_reg); 12955 break; 12956 case BPF_ARSH: 12957 if (umax_val >= insn_bitness) { 12958 /* Shifts greater than 31 or 63 are undefined. 12959 * This includes shifts by a negative number. 12960 */ 12961 mark_reg_unknown(env, regs, insn->dst_reg); 12962 break; 12963 } 12964 if (alu32) 12965 scalar32_min_max_arsh(dst_reg, &src_reg); 12966 else 12967 scalar_min_max_arsh(dst_reg, &src_reg); 12968 break; 12969 default: 12970 mark_reg_unknown(env, regs, insn->dst_reg); 12971 break; 12972 } 12973 12974 /* ALU32 ops are zero extended into 64bit register */ 12975 if (alu32) 12976 zext_32_to_64(dst_reg); 12977 reg_bounds_sync(dst_reg); 12978 return 0; 12979 } 12980 12981 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12982 * and var_off. 12983 */ 12984 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12985 struct bpf_insn *insn) 12986 { 12987 struct bpf_verifier_state *vstate = env->cur_state; 12988 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12989 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12990 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12991 u8 opcode = BPF_OP(insn->code); 12992 int err; 12993 12994 dst_reg = ®s[insn->dst_reg]; 12995 src_reg = NULL; 12996 if (dst_reg->type != SCALAR_VALUE) 12997 ptr_reg = dst_reg; 12998 else 12999 /* Make sure ID is cleared otherwise dst_reg min/max could be 13000 * incorrectly propagated into other registers by find_equal_scalars() 13001 */ 13002 dst_reg->id = 0; 13003 if (BPF_SRC(insn->code) == BPF_X) { 13004 src_reg = ®s[insn->src_reg]; 13005 if (src_reg->type != SCALAR_VALUE) { 13006 if (dst_reg->type != SCALAR_VALUE) { 13007 /* Combining two pointers by any ALU op yields 13008 * an arbitrary scalar. Disallow all math except 13009 * pointer subtraction 13010 */ 13011 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13012 mark_reg_unknown(env, regs, insn->dst_reg); 13013 return 0; 13014 } 13015 verbose(env, "R%d pointer %s pointer prohibited\n", 13016 insn->dst_reg, 13017 bpf_alu_string[opcode >> 4]); 13018 return -EACCES; 13019 } else { 13020 /* scalar += pointer 13021 * This is legal, but we have to reverse our 13022 * src/dest handling in computing the range 13023 */ 13024 err = mark_chain_precision(env, insn->dst_reg); 13025 if (err) 13026 return err; 13027 return adjust_ptr_min_max_vals(env, insn, 13028 src_reg, dst_reg); 13029 } 13030 } else if (ptr_reg) { 13031 /* pointer += scalar */ 13032 err = mark_chain_precision(env, insn->src_reg); 13033 if (err) 13034 return err; 13035 return adjust_ptr_min_max_vals(env, insn, 13036 dst_reg, src_reg); 13037 } else if (dst_reg->precise) { 13038 /* if dst_reg is precise, src_reg should be precise as well */ 13039 err = mark_chain_precision(env, insn->src_reg); 13040 if (err) 13041 return err; 13042 } 13043 } else { 13044 /* Pretend the src is a reg with a known value, since we only 13045 * need to be able to read from this state. 13046 */ 13047 off_reg.type = SCALAR_VALUE; 13048 __mark_reg_known(&off_reg, insn->imm); 13049 src_reg = &off_reg; 13050 if (ptr_reg) /* pointer += K */ 13051 return adjust_ptr_min_max_vals(env, insn, 13052 ptr_reg, src_reg); 13053 } 13054 13055 /* Got here implies adding two SCALAR_VALUEs */ 13056 if (WARN_ON_ONCE(ptr_reg)) { 13057 print_verifier_state(env, state, true); 13058 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13059 return -EINVAL; 13060 } 13061 if (WARN_ON(!src_reg)) { 13062 print_verifier_state(env, state, true); 13063 verbose(env, "verifier internal error: no src_reg\n"); 13064 return -EINVAL; 13065 } 13066 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13067 } 13068 13069 /* check validity of 32-bit and 64-bit arithmetic operations */ 13070 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13071 { 13072 struct bpf_reg_state *regs = cur_regs(env); 13073 u8 opcode = BPF_OP(insn->code); 13074 int err; 13075 13076 if (opcode == BPF_END || opcode == BPF_NEG) { 13077 if (opcode == BPF_NEG) { 13078 if (BPF_SRC(insn->code) != BPF_K || 13079 insn->src_reg != BPF_REG_0 || 13080 insn->off != 0 || insn->imm != 0) { 13081 verbose(env, "BPF_NEG uses reserved fields\n"); 13082 return -EINVAL; 13083 } 13084 } else { 13085 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13086 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13087 (BPF_CLASS(insn->code) == BPF_ALU64 && 13088 BPF_SRC(insn->code) != BPF_TO_LE)) { 13089 verbose(env, "BPF_END uses reserved fields\n"); 13090 return -EINVAL; 13091 } 13092 } 13093 13094 /* check src operand */ 13095 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13096 if (err) 13097 return err; 13098 13099 if (is_pointer_value(env, insn->dst_reg)) { 13100 verbose(env, "R%d pointer arithmetic prohibited\n", 13101 insn->dst_reg); 13102 return -EACCES; 13103 } 13104 13105 /* check dest operand */ 13106 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13107 if (err) 13108 return err; 13109 13110 } else if (opcode == BPF_MOV) { 13111 13112 if (BPF_SRC(insn->code) == BPF_X) { 13113 if (insn->imm != 0) { 13114 verbose(env, "BPF_MOV uses reserved fields\n"); 13115 return -EINVAL; 13116 } 13117 13118 if (BPF_CLASS(insn->code) == BPF_ALU) { 13119 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13120 verbose(env, "BPF_MOV uses reserved fields\n"); 13121 return -EINVAL; 13122 } 13123 } else { 13124 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13125 insn->off != 32) { 13126 verbose(env, "BPF_MOV uses reserved fields\n"); 13127 return -EINVAL; 13128 } 13129 } 13130 13131 /* check src operand */ 13132 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13133 if (err) 13134 return err; 13135 } else { 13136 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13137 verbose(env, "BPF_MOV uses reserved fields\n"); 13138 return -EINVAL; 13139 } 13140 } 13141 13142 /* check dest operand, mark as required later */ 13143 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13144 if (err) 13145 return err; 13146 13147 if (BPF_SRC(insn->code) == BPF_X) { 13148 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13149 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13150 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13151 !tnum_is_const(src_reg->var_off); 13152 13153 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13154 if (insn->off == 0) { 13155 /* case: R1 = R2 13156 * copy register state to dest reg 13157 */ 13158 if (need_id) 13159 /* Assign src and dst registers the same ID 13160 * that will be used by find_equal_scalars() 13161 * to propagate min/max range. 13162 */ 13163 src_reg->id = ++env->id_gen; 13164 copy_register_state(dst_reg, src_reg); 13165 dst_reg->live |= REG_LIVE_WRITTEN; 13166 dst_reg->subreg_def = DEF_NOT_SUBREG; 13167 } else { 13168 /* case: R1 = (s8, s16 s32)R2 */ 13169 if (is_pointer_value(env, insn->src_reg)) { 13170 verbose(env, 13171 "R%d sign-extension part of pointer\n", 13172 insn->src_reg); 13173 return -EACCES; 13174 } else if (src_reg->type == SCALAR_VALUE) { 13175 bool no_sext; 13176 13177 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13178 if (no_sext && need_id) 13179 src_reg->id = ++env->id_gen; 13180 copy_register_state(dst_reg, src_reg); 13181 if (!no_sext) 13182 dst_reg->id = 0; 13183 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13184 dst_reg->live |= REG_LIVE_WRITTEN; 13185 dst_reg->subreg_def = DEF_NOT_SUBREG; 13186 } else { 13187 mark_reg_unknown(env, regs, insn->dst_reg); 13188 } 13189 } 13190 } else { 13191 /* R1 = (u32) R2 */ 13192 if (is_pointer_value(env, insn->src_reg)) { 13193 verbose(env, 13194 "R%d partial copy of pointer\n", 13195 insn->src_reg); 13196 return -EACCES; 13197 } else if (src_reg->type == SCALAR_VALUE) { 13198 if (insn->off == 0) { 13199 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13200 13201 if (is_src_reg_u32 && need_id) 13202 src_reg->id = ++env->id_gen; 13203 copy_register_state(dst_reg, src_reg); 13204 /* Make sure ID is cleared if src_reg is not in u32 13205 * range otherwise dst_reg min/max could be incorrectly 13206 * propagated into src_reg by find_equal_scalars() 13207 */ 13208 if (!is_src_reg_u32) 13209 dst_reg->id = 0; 13210 dst_reg->live |= REG_LIVE_WRITTEN; 13211 dst_reg->subreg_def = env->insn_idx + 1; 13212 } else { 13213 /* case: W1 = (s8, s16)W2 */ 13214 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13215 13216 if (no_sext && need_id) 13217 src_reg->id = ++env->id_gen; 13218 copy_register_state(dst_reg, src_reg); 13219 if (!no_sext) 13220 dst_reg->id = 0; 13221 dst_reg->live |= REG_LIVE_WRITTEN; 13222 dst_reg->subreg_def = env->insn_idx + 1; 13223 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13224 } 13225 } else { 13226 mark_reg_unknown(env, regs, 13227 insn->dst_reg); 13228 } 13229 zext_32_to_64(dst_reg); 13230 reg_bounds_sync(dst_reg); 13231 } 13232 } else { 13233 /* case: R = imm 13234 * remember the value we stored into this reg 13235 */ 13236 /* clear any state __mark_reg_known doesn't set */ 13237 mark_reg_unknown(env, regs, insn->dst_reg); 13238 regs[insn->dst_reg].type = SCALAR_VALUE; 13239 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13240 __mark_reg_known(regs + insn->dst_reg, 13241 insn->imm); 13242 } else { 13243 __mark_reg_known(regs + insn->dst_reg, 13244 (u32)insn->imm); 13245 } 13246 } 13247 13248 } else if (opcode > BPF_END) { 13249 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13250 return -EINVAL; 13251 13252 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13253 13254 if (BPF_SRC(insn->code) == BPF_X) { 13255 if (insn->imm != 0 || insn->off > 1 || 13256 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13257 verbose(env, "BPF_ALU uses reserved fields\n"); 13258 return -EINVAL; 13259 } 13260 /* check src1 operand */ 13261 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13262 if (err) 13263 return err; 13264 } else { 13265 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13266 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13267 verbose(env, "BPF_ALU uses reserved fields\n"); 13268 return -EINVAL; 13269 } 13270 } 13271 13272 /* check src2 operand */ 13273 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13274 if (err) 13275 return err; 13276 13277 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13278 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13279 verbose(env, "div by zero\n"); 13280 return -EINVAL; 13281 } 13282 13283 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13284 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13285 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13286 13287 if (insn->imm < 0 || insn->imm >= size) { 13288 verbose(env, "invalid shift %d\n", insn->imm); 13289 return -EINVAL; 13290 } 13291 } 13292 13293 /* check dest operand */ 13294 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13295 if (err) 13296 return err; 13297 13298 return adjust_reg_min_max_vals(env, insn); 13299 } 13300 13301 return 0; 13302 } 13303 13304 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13305 struct bpf_reg_state *dst_reg, 13306 enum bpf_reg_type type, 13307 bool range_right_open) 13308 { 13309 struct bpf_func_state *state; 13310 struct bpf_reg_state *reg; 13311 int new_range; 13312 13313 if (dst_reg->off < 0 || 13314 (dst_reg->off == 0 && range_right_open)) 13315 /* This doesn't give us any range */ 13316 return; 13317 13318 if (dst_reg->umax_value > MAX_PACKET_OFF || 13319 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13320 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13321 * than pkt_end, but that's because it's also less than pkt. 13322 */ 13323 return; 13324 13325 new_range = dst_reg->off; 13326 if (range_right_open) 13327 new_range++; 13328 13329 /* Examples for register markings: 13330 * 13331 * pkt_data in dst register: 13332 * 13333 * r2 = r3; 13334 * r2 += 8; 13335 * if (r2 > pkt_end) goto <handle exception> 13336 * <access okay> 13337 * 13338 * r2 = r3; 13339 * r2 += 8; 13340 * if (r2 < pkt_end) goto <access okay> 13341 * <handle exception> 13342 * 13343 * Where: 13344 * r2 == dst_reg, pkt_end == src_reg 13345 * r2=pkt(id=n,off=8,r=0) 13346 * r3=pkt(id=n,off=0,r=0) 13347 * 13348 * pkt_data in src register: 13349 * 13350 * r2 = r3; 13351 * r2 += 8; 13352 * if (pkt_end >= r2) goto <access okay> 13353 * <handle exception> 13354 * 13355 * r2 = r3; 13356 * r2 += 8; 13357 * if (pkt_end <= r2) goto <handle exception> 13358 * <access okay> 13359 * 13360 * Where: 13361 * pkt_end == dst_reg, r2 == src_reg 13362 * r2=pkt(id=n,off=8,r=0) 13363 * r3=pkt(id=n,off=0,r=0) 13364 * 13365 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13366 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13367 * and [r3, r3 + 8-1) respectively is safe to access depending on 13368 * the check. 13369 */ 13370 13371 /* If our ids match, then we must have the same max_value. And we 13372 * don't care about the other reg's fixed offset, since if it's too big 13373 * the range won't allow anything. 13374 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13375 */ 13376 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13377 if (reg->type == type && reg->id == dst_reg->id) 13378 /* keep the maximum range already checked */ 13379 reg->range = max(reg->range, new_range); 13380 })); 13381 } 13382 13383 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13384 { 13385 struct tnum subreg = tnum_subreg(reg->var_off); 13386 s32 sval = (s32)val; 13387 13388 switch (opcode) { 13389 case BPF_JEQ: 13390 if (tnum_is_const(subreg)) 13391 return !!tnum_equals_const(subreg, val); 13392 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13393 return 0; 13394 break; 13395 case BPF_JNE: 13396 if (tnum_is_const(subreg)) 13397 return !tnum_equals_const(subreg, val); 13398 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13399 return 1; 13400 break; 13401 case BPF_JSET: 13402 if ((~subreg.mask & subreg.value) & val) 13403 return 1; 13404 if (!((subreg.mask | subreg.value) & val)) 13405 return 0; 13406 break; 13407 case BPF_JGT: 13408 if (reg->u32_min_value > val) 13409 return 1; 13410 else if (reg->u32_max_value <= val) 13411 return 0; 13412 break; 13413 case BPF_JSGT: 13414 if (reg->s32_min_value > sval) 13415 return 1; 13416 else if (reg->s32_max_value <= sval) 13417 return 0; 13418 break; 13419 case BPF_JLT: 13420 if (reg->u32_max_value < val) 13421 return 1; 13422 else if (reg->u32_min_value >= val) 13423 return 0; 13424 break; 13425 case BPF_JSLT: 13426 if (reg->s32_max_value < sval) 13427 return 1; 13428 else if (reg->s32_min_value >= sval) 13429 return 0; 13430 break; 13431 case BPF_JGE: 13432 if (reg->u32_min_value >= val) 13433 return 1; 13434 else if (reg->u32_max_value < val) 13435 return 0; 13436 break; 13437 case BPF_JSGE: 13438 if (reg->s32_min_value >= sval) 13439 return 1; 13440 else if (reg->s32_max_value < sval) 13441 return 0; 13442 break; 13443 case BPF_JLE: 13444 if (reg->u32_max_value <= val) 13445 return 1; 13446 else if (reg->u32_min_value > val) 13447 return 0; 13448 break; 13449 case BPF_JSLE: 13450 if (reg->s32_max_value <= sval) 13451 return 1; 13452 else if (reg->s32_min_value > sval) 13453 return 0; 13454 break; 13455 } 13456 13457 return -1; 13458 } 13459 13460 13461 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13462 { 13463 s64 sval = (s64)val; 13464 13465 switch (opcode) { 13466 case BPF_JEQ: 13467 if (tnum_is_const(reg->var_off)) 13468 return !!tnum_equals_const(reg->var_off, val); 13469 else if (val < reg->umin_value || val > reg->umax_value) 13470 return 0; 13471 break; 13472 case BPF_JNE: 13473 if (tnum_is_const(reg->var_off)) 13474 return !tnum_equals_const(reg->var_off, val); 13475 else if (val < reg->umin_value || val > reg->umax_value) 13476 return 1; 13477 break; 13478 case BPF_JSET: 13479 if ((~reg->var_off.mask & reg->var_off.value) & val) 13480 return 1; 13481 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13482 return 0; 13483 break; 13484 case BPF_JGT: 13485 if (reg->umin_value > val) 13486 return 1; 13487 else if (reg->umax_value <= val) 13488 return 0; 13489 break; 13490 case BPF_JSGT: 13491 if (reg->smin_value > sval) 13492 return 1; 13493 else if (reg->smax_value <= sval) 13494 return 0; 13495 break; 13496 case BPF_JLT: 13497 if (reg->umax_value < val) 13498 return 1; 13499 else if (reg->umin_value >= val) 13500 return 0; 13501 break; 13502 case BPF_JSLT: 13503 if (reg->smax_value < sval) 13504 return 1; 13505 else if (reg->smin_value >= sval) 13506 return 0; 13507 break; 13508 case BPF_JGE: 13509 if (reg->umin_value >= val) 13510 return 1; 13511 else if (reg->umax_value < val) 13512 return 0; 13513 break; 13514 case BPF_JSGE: 13515 if (reg->smin_value >= sval) 13516 return 1; 13517 else if (reg->smax_value < sval) 13518 return 0; 13519 break; 13520 case BPF_JLE: 13521 if (reg->umax_value <= val) 13522 return 1; 13523 else if (reg->umin_value > val) 13524 return 0; 13525 break; 13526 case BPF_JSLE: 13527 if (reg->smax_value <= sval) 13528 return 1; 13529 else if (reg->smin_value > sval) 13530 return 0; 13531 break; 13532 } 13533 13534 return -1; 13535 } 13536 13537 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13538 * and return: 13539 * 1 - branch will be taken and "goto target" will be executed 13540 * 0 - branch will not be taken and fall-through to next insn 13541 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13542 * range [0,10] 13543 */ 13544 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13545 bool is_jmp32) 13546 { 13547 if (__is_pointer_value(false, reg)) { 13548 if (!reg_not_null(reg)) 13549 return -1; 13550 13551 /* If pointer is valid tests against zero will fail so we can 13552 * use this to direct branch taken. 13553 */ 13554 if (val != 0) 13555 return -1; 13556 13557 switch (opcode) { 13558 case BPF_JEQ: 13559 return 0; 13560 case BPF_JNE: 13561 return 1; 13562 default: 13563 return -1; 13564 } 13565 } 13566 13567 if (is_jmp32) 13568 return is_branch32_taken(reg, val, opcode); 13569 return is_branch64_taken(reg, val, opcode); 13570 } 13571 13572 static int flip_opcode(u32 opcode) 13573 { 13574 /* How can we transform "a <op> b" into "b <op> a"? */ 13575 static const u8 opcode_flip[16] = { 13576 /* these stay the same */ 13577 [BPF_JEQ >> 4] = BPF_JEQ, 13578 [BPF_JNE >> 4] = BPF_JNE, 13579 [BPF_JSET >> 4] = BPF_JSET, 13580 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13581 [BPF_JGE >> 4] = BPF_JLE, 13582 [BPF_JGT >> 4] = BPF_JLT, 13583 [BPF_JLE >> 4] = BPF_JGE, 13584 [BPF_JLT >> 4] = BPF_JGT, 13585 [BPF_JSGE >> 4] = BPF_JSLE, 13586 [BPF_JSGT >> 4] = BPF_JSLT, 13587 [BPF_JSLE >> 4] = BPF_JSGE, 13588 [BPF_JSLT >> 4] = BPF_JSGT 13589 }; 13590 return opcode_flip[opcode >> 4]; 13591 } 13592 13593 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13594 struct bpf_reg_state *src_reg, 13595 u8 opcode) 13596 { 13597 struct bpf_reg_state *pkt; 13598 13599 if (src_reg->type == PTR_TO_PACKET_END) { 13600 pkt = dst_reg; 13601 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13602 pkt = src_reg; 13603 opcode = flip_opcode(opcode); 13604 } else { 13605 return -1; 13606 } 13607 13608 if (pkt->range >= 0) 13609 return -1; 13610 13611 switch (opcode) { 13612 case BPF_JLE: 13613 /* pkt <= pkt_end */ 13614 fallthrough; 13615 case BPF_JGT: 13616 /* pkt > pkt_end */ 13617 if (pkt->range == BEYOND_PKT_END) 13618 /* pkt has at last one extra byte beyond pkt_end */ 13619 return opcode == BPF_JGT; 13620 break; 13621 case BPF_JLT: 13622 /* pkt < pkt_end */ 13623 fallthrough; 13624 case BPF_JGE: 13625 /* pkt >= pkt_end */ 13626 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13627 return opcode == BPF_JGE; 13628 break; 13629 } 13630 return -1; 13631 } 13632 13633 /* Adjusts the register min/max values in the case that the dst_reg is the 13634 * variable register that we are working on, and src_reg is a constant or we're 13635 * simply doing a BPF_K check. 13636 * In JEQ/JNE cases we also adjust the var_off values. 13637 */ 13638 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13639 struct bpf_reg_state *false_reg, 13640 u64 val, u32 val32, 13641 u8 opcode, bool is_jmp32) 13642 { 13643 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13644 struct tnum false_64off = false_reg->var_off; 13645 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13646 struct tnum true_64off = true_reg->var_off; 13647 s64 sval = (s64)val; 13648 s32 sval32 = (s32)val32; 13649 13650 /* If the dst_reg is a pointer, we can't learn anything about its 13651 * variable offset from the compare (unless src_reg were a pointer into 13652 * the same object, but we don't bother with that. 13653 * Since false_reg and true_reg have the same type by construction, we 13654 * only need to check one of them for pointerness. 13655 */ 13656 if (__is_pointer_value(false, false_reg)) 13657 return; 13658 13659 switch (opcode) { 13660 /* JEQ/JNE comparison doesn't change the register equivalence. 13661 * 13662 * r1 = r2; 13663 * if (r1 == 42) goto label; 13664 * ... 13665 * label: // here both r1 and r2 are known to be 42. 13666 * 13667 * Hence when marking register as known preserve it's ID. 13668 */ 13669 case BPF_JEQ: 13670 if (is_jmp32) { 13671 __mark_reg32_known(true_reg, val32); 13672 true_32off = tnum_subreg(true_reg->var_off); 13673 } else { 13674 ___mark_reg_known(true_reg, val); 13675 true_64off = true_reg->var_off; 13676 } 13677 break; 13678 case BPF_JNE: 13679 if (is_jmp32) { 13680 __mark_reg32_known(false_reg, val32); 13681 false_32off = tnum_subreg(false_reg->var_off); 13682 } else { 13683 ___mark_reg_known(false_reg, val); 13684 false_64off = false_reg->var_off; 13685 } 13686 break; 13687 case BPF_JSET: 13688 if (is_jmp32) { 13689 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13690 if (is_power_of_2(val32)) 13691 true_32off = tnum_or(true_32off, 13692 tnum_const(val32)); 13693 } else { 13694 false_64off = tnum_and(false_64off, tnum_const(~val)); 13695 if (is_power_of_2(val)) 13696 true_64off = tnum_or(true_64off, 13697 tnum_const(val)); 13698 } 13699 break; 13700 case BPF_JGE: 13701 case BPF_JGT: 13702 { 13703 if (is_jmp32) { 13704 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13705 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13706 13707 false_reg->u32_max_value = min(false_reg->u32_max_value, 13708 false_umax); 13709 true_reg->u32_min_value = max(true_reg->u32_min_value, 13710 true_umin); 13711 } else { 13712 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13713 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13714 13715 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13716 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13717 } 13718 break; 13719 } 13720 case BPF_JSGE: 13721 case BPF_JSGT: 13722 { 13723 if (is_jmp32) { 13724 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13725 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13726 13727 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13728 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13729 } else { 13730 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13731 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13732 13733 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13734 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13735 } 13736 break; 13737 } 13738 case BPF_JLE: 13739 case BPF_JLT: 13740 { 13741 if (is_jmp32) { 13742 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13743 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13744 13745 false_reg->u32_min_value = max(false_reg->u32_min_value, 13746 false_umin); 13747 true_reg->u32_max_value = min(true_reg->u32_max_value, 13748 true_umax); 13749 } else { 13750 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13751 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13752 13753 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13754 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13755 } 13756 break; 13757 } 13758 case BPF_JSLE: 13759 case BPF_JSLT: 13760 { 13761 if (is_jmp32) { 13762 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13763 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13764 13765 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13766 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13767 } else { 13768 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13769 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13770 13771 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13772 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13773 } 13774 break; 13775 } 13776 default: 13777 return; 13778 } 13779 13780 if (is_jmp32) { 13781 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13782 tnum_subreg(false_32off)); 13783 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13784 tnum_subreg(true_32off)); 13785 __reg_combine_32_into_64(false_reg); 13786 __reg_combine_32_into_64(true_reg); 13787 } else { 13788 false_reg->var_off = false_64off; 13789 true_reg->var_off = true_64off; 13790 __reg_combine_64_into_32(false_reg); 13791 __reg_combine_64_into_32(true_reg); 13792 } 13793 } 13794 13795 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13796 * the variable reg. 13797 */ 13798 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13799 struct bpf_reg_state *false_reg, 13800 u64 val, u32 val32, 13801 u8 opcode, bool is_jmp32) 13802 { 13803 opcode = flip_opcode(opcode); 13804 /* This uses zero as "not present in table"; luckily the zero opcode, 13805 * BPF_JA, can't get here. 13806 */ 13807 if (opcode) 13808 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13809 } 13810 13811 /* Regs are known to be equal, so intersect their min/max/var_off */ 13812 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13813 struct bpf_reg_state *dst_reg) 13814 { 13815 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13816 dst_reg->umin_value); 13817 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13818 dst_reg->umax_value); 13819 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13820 dst_reg->smin_value); 13821 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13822 dst_reg->smax_value); 13823 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13824 dst_reg->var_off); 13825 reg_bounds_sync(src_reg); 13826 reg_bounds_sync(dst_reg); 13827 } 13828 13829 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13830 struct bpf_reg_state *true_dst, 13831 struct bpf_reg_state *false_src, 13832 struct bpf_reg_state *false_dst, 13833 u8 opcode) 13834 { 13835 switch (opcode) { 13836 case BPF_JEQ: 13837 __reg_combine_min_max(true_src, true_dst); 13838 break; 13839 case BPF_JNE: 13840 __reg_combine_min_max(false_src, false_dst); 13841 break; 13842 } 13843 } 13844 13845 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13846 struct bpf_reg_state *reg, u32 id, 13847 bool is_null) 13848 { 13849 if (type_may_be_null(reg->type) && reg->id == id && 13850 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13851 /* Old offset (both fixed and variable parts) should have been 13852 * known-zero, because we don't allow pointer arithmetic on 13853 * pointers that might be NULL. If we see this happening, don't 13854 * convert the register. 13855 * 13856 * But in some cases, some helpers that return local kptrs 13857 * advance offset for the returned pointer. In those cases, it 13858 * is fine to expect to see reg->off. 13859 */ 13860 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13861 return; 13862 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13863 WARN_ON_ONCE(reg->off)) 13864 return; 13865 13866 if (is_null) { 13867 reg->type = SCALAR_VALUE; 13868 /* We don't need id and ref_obj_id from this point 13869 * onwards anymore, thus we should better reset it, 13870 * so that state pruning has chances to take effect. 13871 */ 13872 reg->id = 0; 13873 reg->ref_obj_id = 0; 13874 13875 return; 13876 } 13877 13878 mark_ptr_not_null_reg(reg); 13879 13880 if (!reg_may_point_to_spin_lock(reg)) { 13881 /* For not-NULL ptr, reg->ref_obj_id will be reset 13882 * in release_reference(). 13883 * 13884 * reg->id is still used by spin_lock ptr. Other 13885 * than spin_lock ptr type, reg->id can be reset. 13886 */ 13887 reg->id = 0; 13888 } 13889 } 13890 } 13891 13892 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13893 * be folded together at some point. 13894 */ 13895 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13896 bool is_null) 13897 { 13898 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13899 struct bpf_reg_state *regs = state->regs, *reg; 13900 u32 ref_obj_id = regs[regno].ref_obj_id; 13901 u32 id = regs[regno].id; 13902 13903 if (ref_obj_id && ref_obj_id == id && is_null) 13904 /* regs[regno] is in the " == NULL" branch. 13905 * No one could have freed the reference state before 13906 * doing the NULL check. 13907 */ 13908 WARN_ON_ONCE(release_reference_state(state, id)); 13909 13910 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13911 mark_ptr_or_null_reg(state, reg, id, is_null); 13912 })); 13913 } 13914 13915 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13916 struct bpf_reg_state *dst_reg, 13917 struct bpf_reg_state *src_reg, 13918 struct bpf_verifier_state *this_branch, 13919 struct bpf_verifier_state *other_branch) 13920 { 13921 if (BPF_SRC(insn->code) != BPF_X) 13922 return false; 13923 13924 /* Pointers are always 64-bit. */ 13925 if (BPF_CLASS(insn->code) == BPF_JMP32) 13926 return false; 13927 13928 switch (BPF_OP(insn->code)) { 13929 case BPF_JGT: 13930 if ((dst_reg->type == PTR_TO_PACKET && 13931 src_reg->type == PTR_TO_PACKET_END) || 13932 (dst_reg->type == PTR_TO_PACKET_META && 13933 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13934 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13935 find_good_pkt_pointers(this_branch, dst_reg, 13936 dst_reg->type, false); 13937 mark_pkt_end(other_branch, insn->dst_reg, true); 13938 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13939 src_reg->type == PTR_TO_PACKET) || 13940 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13941 src_reg->type == PTR_TO_PACKET_META)) { 13942 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13943 find_good_pkt_pointers(other_branch, src_reg, 13944 src_reg->type, true); 13945 mark_pkt_end(this_branch, insn->src_reg, false); 13946 } else { 13947 return false; 13948 } 13949 break; 13950 case BPF_JLT: 13951 if ((dst_reg->type == PTR_TO_PACKET && 13952 src_reg->type == PTR_TO_PACKET_END) || 13953 (dst_reg->type == PTR_TO_PACKET_META && 13954 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13955 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13956 find_good_pkt_pointers(other_branch, dst_reg, 13957 dst_reg->type, true); 13958 mark_pkt_end(this_branch, insn->dst_reg, false); 13959 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13960 src_reg->type == PTR_TO_PACKET) || 13961 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13962 src_reg->type == PTR_TO_PACKET_META)) { 13963 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13964 find_good_pkt_pointers(this_branch, src_reg, 13965 src_reg->type, false); 13966 mark_pkt_end(other_branch, insn->src_reg, true); 13967 } else { 13968 return false; 13969 } 13970 break; 13971 case BPF_JGE: 13972 if ((dst_reg->type == PTR_TO_PACKET && 13973 src_reg->type == PTR_TO_PACKET_END) || 13974 (dst_reg->type == PTR_TO_PACKET_META && 13975 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13976 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13977 find_good_pkt_pointers(this_branch, dst_reg, 13978 dst_reg->type, true); 13979 mark_pkt_end(other_branch, insn->dst_reg, false); 13980 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13981 src_reg->type == PTR_TO_PACKET) || 13982 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13983 src_reg->type == PTR_TO_PACKET_META)) { 13984 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13985 find_good_pkt_pointers(other_branch, src_reg, 13986 src_reg->type, false); 13987 mark_pkt_end(this_branch, insn->src_reg, true); 13988 } else { 13989 return false; 13990 } 13991 break; 13992 case BPF_JLE: 13993 if ((dst_reg->type == PTR_TO_PACKET && 13994 src_reg->type == PTR_TO_PACKET_END) || 13995 (dst_reg->type == PTR_TO_PACKET_META && 13996 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13997 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13998 find_good_pkt_pointers(other_branch, dst_reg, 13999 dst_reg->type, false); 14000 mark_pkt_end(this_branch, insn->dst_reg, true); 14001 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14002 src_reg->type == PTR_TO_PACKET) || 14003 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14004 src_reg->type == PTR_TO_PACKET_META)) { 14005 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14006 find_good_pkt_pointers(this_branch, src_reg, 14007 src_reg->type, true); 14008 mark_pkt_end(other_branch, insn->src_reg, false); 14009 } else { 14010 return false; 14011 } 14012 break; 14013 default: 14014 return false; 14015 } 14016 14017 return true; 14018 } 14019 14020 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14021 struct bpf_reg_state *known_reg) 14022 { 14023 struct bpf_func_state *state; 14024 struct bpf_reg_state *reg; 14025 14026 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14027 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14028 copy_register_state(reg, known_reg); 14029 })); 14030 } 14031 14032 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14033 struct bpf_insn *insn, int *insn_idx) 14034 { 14035 struct bpf_verifier_state *this_branch = env->cur_state; 14036 struct bpf_verifier_state *other_branch; 14037 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14038 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14039 struct bpf_reg_state *eq_branch_regs; 14040 u8 opcode = BPF_OP(insn->code); 14041 bool is_jmp32; 14042 int pred = -1; 14043 int err; 14044 14045 /* Only conditional jumps are expected to reach here. */ 14046 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14047 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14048 return -EINVAL; 14049 } 14050 14051 /* check src2 operand */ 14052 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14053 if (err) 14054 return err; 14055 14056 dst_reg = ®s[insn->dst_reg]; 14057 if (BPF_SRC(insn->code) == BPF_X) { 14058 if (insn->imm != 0) { 14059 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14060 return -EINVAL; 14061 } 14062 14063 /* check src1 operand */ 14064 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14065 if (err) 14066 return err; 14067 14068 src_reg = ®s[insn->src_reg]; 14069 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14070 is_pointer_value(env, insn->src_reg)) { 14071 verbose(env, "R%d pointer comparison prohibited\n", 14072 insn->src_reg); 14073 return -EACCES; 14074 } 14075 } else { 14076 if (insn->src_reg != BPF_REG_0) { 14077 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14078 return -EINVAL; 14079 } 14080 } 14081 14082 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14083 14084 if (BPF_SRC(insn->code) == BPF_K) { 14085 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14086 } else if (src_reg->type == SCALAR_VALUE && 14087 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14088 pred = is_branch_taken(dst_reg, 14089 tnum_subreg(src_reg->var_off).value, 14090 opcode, 14091 is_jmp32); 14092 } else if (src_reg->type == SCALAR_VALUE && 14093 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14094 pred = is_branch_taken(dst_reg, 14095 src_reg->var_off.value, 14096 opcode, 14097 is_jmp32); 14098 } else if (dst_reg->type == SCALAR_VALUE && 14099 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14100 pred = is_branch_taken(src_reg, 14101 tnum_subreg(dst_reg->var_off).value, 14102 flip_opcode(opcode), 14103 is_jmp32); 14104 } else if (dst_reg->type == SCALAR_VALUE && 14105 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14106 pred = is_branch_taken(src_reg, 14107 dst_reg->var_off.value, 14108 flip_opcode(opcode), 14109 is_jmp32); 14110 } else if (reg_is_pkt_pointer_any(dst_reg) && 14111 reg_is_pkt_pointer_any(src_reg) && 14112 !is_jmp32) { 14113 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14114 } 14115 14116 if (pred >= 0) { 14117 /* If we get here with a dst_reg pointer type it is because 14118 * above is_branch_taken() special cased the 0 comparison. 14119 */ 14120 if (!__is_pointer_value(false, dst_reg)) 14121 err = mark_chain_precision(env, insn->dst_reg); 14122 if (BPF_SRC(insn->code) == BPF_X && !err && 14123 !__is_pointer_value(false, src_reg)) 14124 err = mark_chain_precision(env, insn->src_reg); 14125 if (err) 14126 return err; 14127 } 14128 14129 if (pred == 1) { 14130 /* Only follow the goto, ignore fall-through. If needed, push 14131 * the fall-through branch for simulation under speculative 14132 * execution. 14133 */ 14134 if (!env->bypass_spec_v1 && 14135 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14136 *insn_idx)) 14137 return -EFAULT; 14138 *insn_idx += insn->off; 14139 return 0; 14140 } else if (pred == 0) { 14141 /* Only follow the fall-through branch, since that's where the 14142 * program will go. If needed, push the goto branch for 14143 * simulation under speculative execution. 14144 */ 14145 if (!env->bypass_spec_v1 && 14146 !sanitize_speculative_path(env, insn, 14147 *insn_idx + insn->off + 1, 14148 *insn_idx)) 14149 return -EFAULT; 14150 return 0; 14151 } 14152 14153 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14154 false); 14155 if (!other_branch) 14156 return -EFAULT; 14157 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14158 14159 /* detect if we are comparing against a constant value so we can adjust 14160 * our min/max values for our dst register. 14161 * this is only legit if both are scalars (or pointers to the same 14162 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14163 * because otherwise the different base pointers mean the offsets aren't 14164 * comparable. 14165 */ 14166 if (BPF_SRC(insn->code) == BPF_X) { 14167 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14168 14169 if (dst_reg->type == SCALAR_VALUE && 14170 src_reg->type == SCALAR_VALUE) { 14171 if (tnum_is_const(src_reg->var_off) || 14172 (is_jmp32 && 14173 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14174 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14175 dst_reg, 14176 src_reg->var_off.value, 14177 tnum_subreg(src_reg->var_off).value, 14178 opcode, is_jmp32); 14179 else if (tnum_is_const(dst_reg->var_off) || 14180 (is_jmp32 && 14181 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14182 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14183 src_reg, 14184 dst_reg->var_off.value, 14185 tnum_subreg(dst_reg->var_off).value, 14186 opcode, is_jmp32); 14187 else if (!is_jmp32 && 14188 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14189 /* Comparing for equality, we can combine knowledge */ 14190 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14191 &other_branch_regs[insn->dst_reg], 14192 src_reg, dst_reg, opcode); 14193 if (src_reg->id && 14194 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14195 find_equal_scalars(this_branch, src_reg); 14196 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14197 } 14198 14199 } 14200 } else if (dst_reg->type == SCALAR_VALUE) { 14201 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14202 dst_reg, insn->imm, (u32)insn->imm, 14203 opcode, is_jmp32); 14204 } 14205 14206 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14207 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14208 find_equal_scalars(this_branch, dst_reg); 14209 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14210 } 14211 14212 /* if one pointer register is compared to another pointer 14213 * register check if PTR_MAYBE_NULL could be lifted. 14214 * E.g. register A - maybe null 14215 * register B - not null 14216 * for JNE A, B, ... - A is not null in the false branch; 14217 * for JEQ A, B, ... - A is not null in the true branch. 14218 * 14219 * Since PTR_TO_BTF_ID points to a kernel struct that does 14220 * not need to be null checked by the BPF program, i.e., 14221 * could be null even without PTR_MAYBE_NULL marking, so 14222 * only propagate nullness when neither reg is that type. 14223 */ 14224 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14225 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14226 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14227 base_type(src_reg->type) != PTR_TO_BTF_ID && 14228 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14229 eq_branch_regs = NULL; 14230 switch (opcode) { 14231 case BPF_JEQ: 14232 eq_branch_regs = other_branch_regs; 14233 break; 14234 case BPF_JNE: 14235 eq_branch_regs = regs; 14236 break; 14237 default: 14238 /* do nothing */ 14239 break; 14240 } 14241 if (eq_branch_regs) { 14242 if (type_may_be_null(src_reg->type)) 14243 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14244 else 14245 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14246 } 14247 } 14248 14249 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14250 * NOTE: these optimizations below are related with pointer comparison 14251 * which will never be JMP32. 14252 */ 14253 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14254 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14255 type_may_be_null(dst_reg->type)) { 14256 /* Mark all identical registers in each branch as either 14257 * safe or unknown depending R == 0 or R != 0 conditional. 14258 */ 14259 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14260 opcode == BPF_JNE); 14261 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14262 opcode == BPF_JEQ); 14263 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14264 this_branch, other_branch) && 14265 is_pointer_value(env, insn->dst_reg)) { 14266 verbose(env, "R%d pointer comparison prohibited\n", 14267 insn->dst_reg); 14268 return -EACCES; 14269 } 14270 if (env->log.level & BPF_LOG_LEVEL) 14271 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14272 return 0; 14273 } 14274 14275 /* verify BPF_LD_IMM64 instruction */ 14276 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14277 { 14278 struct bpf_insn_aux_data *aux = cur_aux(env); 14279 struct bpf_reg_state *regs = cur_regs(env); 14280 struct bpf_reg_state *dst_reg; 14281 struct bpf_map *map; 14282 int err; 14283 14284 if (BPF_SIZE(insn->code) != BPF_DW) { 14285 verbose(env, "invalid BPF_LD_IMM insn\n"); 14286 return -EINVAL; 14287 } 14288 if (insn->off != 0) { 14289 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14290 return -EINVAL; 14291 } 14292 14293 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14294 if (err) 14295 return err; 14296 14297 dst_reg = ®s[insn->dst_reg]; 14298 if (insn->src_reg == 0) { 14299 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14300 14301 dst_reg->type = SCALAR_VALUE; 14302 __mark_reg_known(®s[insn->dst_reg], imm); 14303 return 0; 14304 } 14305 14306 /* All special src_reg cases are listed below. From this point onwards 14307 * we either succeed and assign a corresponding dst_reg->type after 14308 * zeroing the offset, or fail and reject the program. 14309 */ 14310 mark_reg_known_zero(env, regs, insn->dst_reg); 14311 14312 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14313 dst_reg->type = aux->btf_var.reg_type; 14314 switch (base_type(dst_reg->type)) { 14315 case PTR_TO_MEM: 14316 dst_reg->mem_size = aux->btf_var.mem_size; 14317 break; 14318 case PTR_TO_BTF_ID: 14319 dst_reg->btf = aux->btf_var.btf; 14320 dst_reg->btf_id = aux->btf_var.btf_id; 14321 break; 14322 default: 14323 verbose(env, "bpf verifier is misconfigured\n"); 14324 return -EFAULT; 14325 } 14326 return 0; 14327 } 14328 14329 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14330 struct bpf_prog_aux *aux = env->prog->aux; 14331 u32 subprogno = find_subprog(env, 14332 env->insn_idx + insn->imm + 1); 14333 14334 if (!aux->func_info) { 14335 verbose(env, "missing btf func_info\n"); 14336 return -EINVAL; 14337 } 14338 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14339 verbose(env, "callback function not static\n"); 14340 return -EINVAL; 14341 } 14342 14343 dst_reg->type = PTR_TO_FUNC; 14344 dst_reg->subprogno = subprogno; 14345 return 0; 14346 } 14347 14348 map = env->used_maps[aux->map_index]; 14349 dst_reg->map_ptr = map; 14350 14351 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14352 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14353 dst_reg->type = PTR_TO_MAP_VALUE; 14354 dst_reg->off = aux->map_off; 14355 WARN_ON_ONCE(map->max_entries != 1); 14356 /* We want reg->id to be same (0) as map_value is not distinct */ 14357 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14358 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14359 dst_reg->type = CONST_PTR_TO_MAP; 14360 } else { 14361 verbose(env, "bpf verifier is misconfigured\n"); 14362 return -EINVAL; 14363 } 14364 14365 return 0; 14366 } 14367 14368 static bool may_access_skb(enum bpf_prog_type type) 14369 { 14370 switch (type) { 14371 case BPF_PROG_TYPE_SOCKET_FILTER: 14372 case BPF_PROG_TYPE_SCHED_CLS: 14373 case BPF_PROG_TYPE_SCHED_ACT: 14374 return true; 14375 default: 14376 return false; 14377 } 14378 } 14379 14380 /* verify safety of LD_ABS|LD_IND instructions: 14381 * - they can only appear in the programs where ctx == skb 14382 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14383 * preserve R6-R9, and store return value into R0 14384 * 14385 * Implicit input: 14386 * ctx == skb == R6 == CTX 14387 * 14388 * Explicit input: 14389 * SRC == any register 14390 * IMM == 32-bit immediate 14391 * 14392 * Output: 14393 * R0 - 8/16/32-bit skb data converted to cpu endianness 14394 */ 14395 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14396 { 14397 struct bpf_reg_state *regs = cur_regs(env); 14398 static const int ctx_reg = BPF_REG_6; 14399 u8 mode = BPF_MODE(insn->code); 14400 int i, err; 14401 14402 if (!may_access_skb(resolve_prog_type(env->prog))) { 14403 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14404 return -EINVAL; 14405 } 14406 14407 if (!env->ops->gen_ld_abs) { 14408 verbose(env, "bpf verifier is misconfigured\n"); 14409 return -EINVAL; 14410 } 14411 14412 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14413 BPF_SIZE(insn->code) == BPF_DW || 14414 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14415 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14416 return -EINVAL; 14417 } 14418 14419 /* check whether implicit source operand (register R6) is readable */ 14420 err = check_reg_arg(env, ctx_reg, SRC_OP); 14421 if (err) 14422 return err; 14423 14424 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14425 * gen_ld_abs() may terminate the program at runtime, leading to 14426 * reference leak. 14427 */ 14428 err = check_reference_leak(env); 14429 if (err) { 14430 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14431 return err; 14432 } 14433 14434 if (env->cur_state->active_lock.ptr) { 14435 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14436 return -EINVAL; 14437 } 14438 14439 if (env->cur_state->active_rcu_lock) { 14440 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14441 return -EINVAL; 14442 } 14443 14444 if (regs[ctx_reg].type != PTR_TO_CTX) { 14445 verbose(env, 14446 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14447 return -EINVAL; 14448 } 14449 14450 if (mode == BPF_IND) { 14451 /* check explicit source operand */ 14452 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14453 if (err) 14454 return err; 14455 } 14456 14457 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14458 if (err < 0) 14459 return err; 14460 14461 /* reset caller saved regs to unreadable */ 14462 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14463 mark_reg_not_init(env, regs, caller_saved[i]); 14464 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14465 } 14466 14467 /* mark destination R0 register as readable, since it contains 14468 * the value fetched from the packet. 14469 * Already marked as written above. 14470 */ 14471 mark_reg_unknown(env, regs, BPF_REG_0); 14472 /* ld_abs load up to 32-bit skb data. */ 14473 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14474 return 0; 14475 } 14476 14477 static int check_return_code(struct bpf_verifier_env *env) 14478 { 14479 struct tnum enforce_attach_type_range = tnum_unknown; 14480 const struct bpf_prog *prog = env->prog; 14481 struct bpf_reg_state *reg; 14482 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14483 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14484 int err; 14485 struct bpf_func_state *frame = env->cur_state->frame[0]; 14486 const bool is_subprog = frame->subprogno; 14487 14488 /* LSM and struct_ops func-ptr's return type could be "void" */ 14489 if (!is_subprog) { 14490 switch (prog_type) { 14491 case BPF_PROG_TYPE_LSM: 14492 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14493 /* See below, can be 0 or 0-1 depending on hook. */ 14494 break; 14495 fallthrough; 14496 case BPF_PROG_TYPE_STRUCT_OPS: 14497 if (!prog->aux->attach_func_proto->type) 14498 return 0; 14499 break; 14500 default: 14501 break; 14502 } 14503 } 14504 14505 /* eBPF calling convention is such that R0 is used 14506 * to return the value from eBPF program. 14507 * Make sure that it's readable at this time 14508 * of bpf_exit, which means that program wrote 14509 * something into it earlier 14510 */ 14511 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14512 if (err) 14513 return err; 14514 14515 if (is_pointer_value(env, BPF_REG_0)) { 14516 verbose(env, "R0 leaks addr as return value\n"); 14517 return -EACCES; 14518 } 14519 14520 reg = cur_regs(env) + BPF_REG_0; 14521 14522 if (frame->in_async_callback_fn) { 14523 /* enforce return zero from async callbacks like timer */ 14524 if (reg->type != SCALAR_VALUE) { 14525 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14526 reg_type_str(env, reg->type)); 14527 return -EINVAL; 14528 } 14529 14530 if (!tnum_in(const_0, reg->var_off)) { 14531 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14532 return -EINVAL; 14533 } 14534 return 0; 14535 } 14536 14537 if (is_subprog) { 14538 if (reg->type != SCALAR_VALUE) { 14539 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14540 reg_type_str(env, reg->type)); 14541 return -EINVAL; 14542 } 14543 return 0; 14544 } 14545 14546 switch (prog_type) { 14547 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14548 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14549 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14550 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14551 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14552 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14553 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14554 range = tnum_range(1, 1); 14555 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14556 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14557 range = tnum_range(0, 3); 14558 break; 14559 case BPF_PROG_TYPE_CGROUP_SKB: 14560 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14561 range = tnum_range(0, 3); 14562 enforce_attach_type_range = tnum_range(2, 3); 14563 } 14564 break; 14565 case BPF_PROG_TYPE_CGROUP_SOCK: 14566 case BPF_PROG_TYPE_SOCK_OPS: 14567 case BPF_PROG_TYPE_CGROUP_DEVICE: 14568 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14569 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14570 break; 14571 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14572 if (!env->prog->aux->attach_btf_id) 14573 return 0; 14574 range = tnum_const(0); 14575 break; 14576 case BPF_PROG_TYPE_TRACING: 14577 switch (env->prog->expected_attach_type) { 14578 case BPF_TRACE_FENTRY: 14579 case BPF_TRACE_FEXIT: 14580 range = tnum_const(0); 14581 break; 14582 case BPF_TRACE_RAW_TP: 14583 case BPF_MODIFY_RETURN: 14584 return 0; 14585 case BPF_TRACE_ITER: 14586 break; 14587 default: 14588 return -ENOTSUPP; 14589 } 14590 break; 14591 case BPF_PROG_TYPE_SK_LOOKUP: 14592 range = tnum_range(SK_DROP, SK_PASS); 14593 break; 14594 14595 case BPF_PROG_TYPE_LSM: 14596 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14597 /* Regular BPF_PROG_TYPE_LSM programs can return 14598 * any value. 14599 */ 14600 return 0; 14601 } 14602 if (!env->prog->aux->attach_func_proto->type) { 14603 /* Make sure programs that attach to void 14604 * hooks don't try to modify return value. 14605 */ 14606 range = tnum_range(1, 1); 14607 } 14608 break; 14609 14610 case BPF_PROG_TYPE_NETFILTER: 14611 range = tnum_range(NF_DROP, NF_ACCEPT); 14612 break; 14613 case BPF_PROG_TYPE_EXT: 14614 /* freplace program can return anything as its return value 14615 * depends on the to-be-replaced kernel func or bpf program. 14616 */ 14617 default: 14618 return 0; 14619 } 14620 14621 if (reg->type != SCALAR_VALUE) { 14622 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14623 reg_type_str(env, reg->type)); 14624 return -EINVAL; 14625 } 14626 14627 if (!tnum_in(range, reg->var_off)) { 14628 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14629 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14630 prog_type == BPF_PROG_TYPE_LSM && 14631 !prog->aux->attach_func_proto->type) 14632 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14633 return -EINVAL; 14634 } 14635 14636 if (!tnum_is_unknown(enforce_attach_type_range) && 14637 tnum_in(enforce_attach_type_range, reg->var_off)) 14638 env->prog->enforce_expected_attach_type = 1; 14639 return 0; 14640 } 14641 14642 /* non-recursive DFS pseudo code 14643 * 1 procedure DFS-iterative(G,v): 14644 * 2 label v as discovered 14645 * 3 let S be a stack 14646 * 4 S.push(v) 14647 * 5 while S is not empty 14648 * 6 t <- S.peek() 14649 * 7 if t is what we're looking for: 14650 * 8 return t 14651 * 9 for all edges e in G.adjacentEdges(t) do 14652 * 10 if edge e is already labelled 14653 * 11 continue with the next edge 14654 * 12 w <- G.adjacentVertex(t,e) 14655 * 13 if vertex w is not discovered and not explored 14656 * 14 label e as tree-edge 14657 * 15 label w as discovered 14658 * 16 S.push(w) 14659 * 17 continue at 5 14660 * 18 else if vertex w is discovered 14661 * 19 label e as back-edge 14662 * 20 else 14663 * 21 // vertex w is explored 14664 * 22 label e as forward- or cross-edge 14665 * 23 label t as explored 14666 * 24 S.pop() 14667 * 14668 * convention: 14669 * 0x10 - discovered 14670 * 0x11 - discovered and fall-through edge labelled 14671 * 0x12 - discovered and fall-through and branch edges labelled 14672 * 0x20 - explored 14673 */ 14674 14675 enum { 14676 DISCOVERED = 0x10, 14677 EXPLORED = 0x20, 14678 FALLTHROUGH = 1, 14679 BRANCH = 2, 14680 }; 14681 14682 static u32 state_htab_size(struct bpf_verifier_env *env) 14683 { 14684 return env->prog->len; 14685 } 14686 14687 static struct bpf_verifier_state_list **explored_state( 14688 struct bpf_verifier_env *env, 14689 int idx) 14690 { 14691 struct bpf_verifier_state *cur = env->cur_state; 14692 struct bpf_func_state *state = cur->frame[cur->curframe]; 14693 14694 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14695 } 14696 14697 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14698 { 14699 env->insn_aux_data[idx].prune_point = true; 14700 } 14701 14702 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14703 { 14704 return env->insn_aux_data[insn_idx].prune_point; 14705 } 14706 14707 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14708 { 14709 env->insn_aux_data[idx].force_checkpoint = true; 14710 } 14711 14712 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14713 { 14714 return env->insn_aux_data[insn_idx].force_checkpoint; 14715 } 14716 14717 14718 enum { 14719 DONE_EXPLORING = 0, 14720 KEEP_EXPLORING = 1, 14721 }; 14722 14723 /* t, w, e - match pseudo-code above: 14724 * t - index of current instruction 14725 * w - next instruction 14726 * e - edge 14727 */ 14728 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14729 bool loop_ok) 14730 { 14731 int *insn_stack = env->cfg.insn_stack; 14732 int *insn_state = env->cfg.insn_state; 14733 14734 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14735 return DONE_EXPLORING; 14736 14737 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14738 return DONE_EXPLORING; 14739 14740 if (w < 0 || w >= env->prog->len) { 14741 verbose_linfo(env, t, "%d: ", t); 14742 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14743 return -EINVAL; 14744 } 14745 14746 if (e == BRANCH) { 14747 /* mark branch target for state pruning */ 14748 mark_prune_point(env, w); 14749 mark_jmp_point(env, w); 14750 } 14751 14752 if (insn_state[w] == 0) { 14753 /* tree-edge */ 14754 insn_state[t] = DISCOVERED | e; 14755 insn_state[w] = DISCOVERED; 14756 if (env->cfg.cur_stack >= env->prog->len) 14757 return -E2BIG; 14758 insn_stack[env->cfg.cur_stack++] = w; 14759 return KEEP_EXPLORING; 14760 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14761 if (loop_ok && env->bpf_capable) 14762 return DONE_EXPLORING; 14763 verbose_linfo(env, t, "%d: ", t); 14764 verbose_linfo(env, w, "%d: ", w); 14765 verbose(env, "back-edge from insn %d to %d\n", t, w); 14766 return -EINVAL; 14767 } else if (insn_state[w] == EXPLORED) { 14768 /* forward- or cross-edge */ 14769 insn_state[t] = DISCOVERED | e; 14770 } else { 14771 verbose(env, "insn state internal bug\n"); 14772 return -EFAULT; 14773 } 14774 return DONE_EXPLORING; 14775 } 14776 14777 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14778 struct bpf_verifier_env *env, 14779 bool visit_callee) 14780 { 14781 int ret; 14782 14783 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14784 if (ret) 14785 return ret; 14786 14787 mark_prune_point(env, t + 1); 14788 /* when we exit from subprog, we need to record non-linear history */ 14789 mark_jmp_point(env, t + 1); 14790 14791 if (visit_callee) { 14792 mark_prune_point(env, t); 14793 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14794 /* It's ok to allow recursion from CFG point of 14795 * view. __check_func_call() will do the actual 14796 * check. 14797 */ 14798 bpf_pseudo_func(insns + t)); 14799 } 14800 return ret; 14801 } 14802 14803 /* Visits the instruction at index t and returns one of the following: 14804 * < 0 - an error occurred 14805 * DONE_EXPLORING - the instruction was fully explored 14806 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14807 */ 14808 static int visit_insn(int t, struct bpf_verifier_env *env) 14809 { 14810 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14811 int ret, off; 14812 14813 if (bpf_pseudo_func(insn)) 14814 return visit_func_call_insn(t, insns, env, true); 14815 14816 /* All non-branch instructions have a single fall-through edge. */ 14817 if (BPF_CLASS(insn->code) != BPF_JMP && 14818 BPF_CLASS(insn->code) != BPF_JMP32) 14819 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14820 14821 switch (BPF_OP(insn->code)) { 14822 case BPF_EXIT: 14823 return DONE_EXPLORING; 14824 14825 case BPF_CALL: 14826 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14827 /* Mark this call insn as a prune point to trigger 14828 * is_state_visited() check before call itself is 14829 * processed by __check_func_call(). Otherwise new 14830 * async state will be pushed for further exploration. 14831 */ 14832 mark_prune_point(env, t); 14833 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14834 struct bpf_kfunc_call_arg_meta meta; 14835 14836 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14837 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14838 mark_prune_point(env, t); 14839 /* Checking and saving state checkpoints at iter_next() call 14840 * is crucial for fast convergence of open-coded iterator loop 14841 * logic, so we need to force it. If we don't do that, 14842 * is_state_visited() might skip saving a checkpoint, causing 14843 * unnecessarily long sequence of not checkpointed 14844 * instructions and jumps, leading to exhaustion of jump 14845 * history buffer, and potentially other undesired outcomes. 14846 * It is expected that with correct open-coded iterators 14847 * convergence will happen quickly, so we don't run a risk of 14848 * exhausting memory. 14849 */ 14850 mark_force_checkpoint(env, t); 14851 } 14852 } 14853 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14854 14855 case BPF_JA: 14856 if (BPF_SRC(insn->code) != BPF_K) 14857 return -EINVAL; 14858 14859 if (BPF_CLASS(insn->code) == BPF_JMP) 14860 off = insn->off; 14861 else 14862 off = insn->imm; 14863 14864 /* unconditional jump with single edge */ 14865 ret = push_insn(t, t + off + 1, FALLTHROUGH, env, 14866 true); 14867 if (ret) 14868 return ret; 14869 14870 mark_prune_point(env, t + off + 1); 14871 mark_jmp_point(env, t + off + 1); 14872 14873 return ret; 14874 14875 default: 14876 /* conditional jump with two edges */ 14877 mark_prune_point(env, t); 14878 14879 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14880 if (ret) 14881 return ret; 14882 14883 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14884 } 14885 } 14886 14887 /* non-recursive depth-first-search to detect loops in BPF program 14888 * loop == back-edge in directed graph 14889 */ 14890 static int check_cfg(struct bpf_verifier_env *env) 14891 { 14892 int insn_cnt = env->prog->len; 14893 int *insn_stack, *insn_state; 14894 int ret = 0; 14895 int i; 14896 14897 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14898 if (!insn_state) 14899 return -ENOMEM; 14900 14901 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14902 if (!insn_stack) { 14903 kvfree(insn_state); 14904 return -ENOMEM; 14905 } 14906 14907 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14908 insn_stack[0] = 0; /* 0 is the first instruction */ 14909 env->cfg.cur_stack = 1; 14910 14911 while (env->cfg.cur_stack > 0) { 14912 int t = insn_stack[env->cfg.cur_stack - 1]; 14913 14914 ret = visit_insn(t, env); 14915 switch (ret) { 14916 case DONE_EXPLORING: 14917 insn_state[t] = EXPLORED; 14918 env->cfg.cur_stack--; 14919 break; 14920 case KEEP_EXPLORING: 14921 break; 14922 default: 14923 if (ret > 0) { 14924 verbose(env, "visit_insn internal bug\n"); 14925 ret = -EFAULT; 14926 } 14927 goto err_free; 14928 } 14929 } 14930 14931 if (env->cfg.cur_stack < 0) { 14932 verbose(env, "pop stack internal bug\n"); 14933 ret = -EFAULT; 14934 goto err_free; 14935 } 14936 14937 for (i = 0; i < insn_cnt; i++) { 14938 if (insn_state[i] != EXPLORED) { 14939 verbose(env, "unreachable insn %d\n", i); 14940 ret = -EINVAL; 14941 goto err_free; 14942 } 14943 } 14944 ret = 0; /* cfg looks good */ 14945 14946 err_free: 14947 kvfree(insn_state); 14948 kvfree(insn_stack); 14949 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14950 return ret; 14951 } 14952 14953 static int check_abnormal_return(struct bpf_verifier_env *env) 14954 { 14955 int i; 14956 14957 for (i = 1; i < env->subprog_cnt; i++) { 14958 if (env->subprog_info[i].has_ld_abs) { 14959 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14960 return -EINVAL; 14961 } 14962 if (env->subprog_info[i].has_tail_call) { 14963 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14964 return -EINVAL; 14965 } 14966 } 14967 return 0; 14968 } 14969 14970 /* The minimum supported BTF func info size */ 14971 #define MIN_BPF_FUNCINFO_SIZE 8 14972 #define MAX_FUNCINFO_REC_SIZE 252 14973 14974 static int check_btf_func(struct bpf_verifier_env *env, 14975 const union bpf_attr *attr, 14976 bpfptr_t uattr) 14977 { 14978 const struct btf_type *type, *func_proto, *ret_type; 14979 u32 i, nfuncs, urec_size, min_size; 14980 u32 krec_size = sizeof(struct bpf_func_info); 14981 struct bpf_func_info *krecord; 14982 struct bpf_func_info_aux *info_aux = NULL; 14983 struct bpf_prog *prog; 14984 const struct btf *btf; 14985 bpfptr_t urecord; 14986 u32 prev_offset = 0; 14987 bool scalar_return; 14988 int ret = -ENOMEM; 14989 14990 nfuncs = attr->func_info_cnt; 14991 if (!nfuncs) { 14992 if (check_abnormal_return(env)) 14993 return -EINVAL; 14994 return 0; 14995 } 14996 14997 if (nfuncs != env->subprog_cnt) { 14998 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14999 return -EINVAL; 15000 } 15001 15002 urec_size = attr->func_info_rec_size; 15003 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15004 urec_size > MAX_FUNCINFO_REC_SIZE || 15005 urec_size % sizeof(u32)) { 15006 verbose(env, "invalid func info rec size %u\n", urec_size); 15007 return -EINVAL; 15008 } 15009 15010 prog = env->prog; 15011 btf = prog->aux->btf; 15012 15013 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15014 min_size = min_t(u32, krec_size, urec_size); 15015 15016 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15017 if (!krecord) 15018 return -ENOMEM; 15019 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15020 if (!info_aux) 15021 goto err_free; 15022 15023 for (i = 0; i < nfuncs; i++) { 15024 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15025 if (ret) { 15026 if (ret == -E2BIG) { 15027 verbose(env, "nonzero tailing record in func info"); 15028 /* set the size kernel expects so loader can zero 15029 * out the rest of the record. 15030 */ 15031 if (copy_to_bpfptr_offset(uattr, 15032 offsetof(union bpf_attr, func_info_rec_size), 15033 &min_size, sizeof(min_size))) 15034 ret = -EFAULT; 15035 } 15036 goto err_free; 15037 } 15038 15039 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15040 ret = -EFAULT; 15041 goto err_free; 15042 } 15043 15044 /* check insn_off */ 15045 ret = -EINVAL; 15046 if (i == 0) { 15047 if (krecord[i].insn_off) { 15048 verbose(env, 15049 "nonzero insn_off %u for the first func info record", 15050 krecord[i].insn_off); 15051 goto err_free; 15052 } 15053 } else if (krecord[i].insn_off <= prev_offset) { 15054 verbose(env, 15055 "same or smaller insn offset (%u) than previous func info record (%u)", 15056 krecord[i].insn_off, prev_offset); 15057 goto err_free; 15058 } 15059 15060 if (env->subprog_info[i].start != krecord[i].insn_off) { 15061 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15062 goto err_free; 15063 } 15064 15065 /* check type_id */ 15066 type = btf_type_by_id(btf, krecord[i].type_id); 15067 if (!type || !btf_type_is_func(type)) { 15068 verbose(env, "invalid type id %d in func info", 15069 krecord[i].type_id); 15070 goto err_free; 15071 } 15072 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15073 15074 func_proto = btf_type_by_id(btf, type->type); 15075 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15076 /* btf_func_check() already verified it during BTF load */ 15077 goto err_free; 15078 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15079 scalar_return = 15080 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15081 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15082 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15083 goto err_free; 15084 } 15085 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15086 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15087 goto err_free; 15088 } 15089 15090 prev_offset = krecord[i].insn_off; 15091 bpfptr_add(&urecord, urec_size); 15092 } 15093 15094 prog->aux->func_info = krecord; 15095 prog->aux->func_info_cnt = nfuncs; 15096 prog->aux->func_info_aux = info_aux; 15097 return 0; 15098 15099 err_free: 15100 kvfree(krecord); 15101 kfree(info_aux); 15102 return ret; 15103 } 15104 15105 static void adjust_btf_func(struct bpf_verifier_env *env) 15106 { 15107 struct bpf_prog_aux *aux = env->prog->aux; 15108 int i; 15109 15110 if (!aux->func_info) 15111 return; 15112 15113 for (i = 0; i < env->subprog_cnt; i++) 15114 aux->func_info[i].insn_off = env->subprog_info[i].start; 15115 } 15116 15117 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15118 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15119 15120 static int check_btf_line(struct bpf_verifier_env *env, 15121 const union bpf_attr *attr, 15122 bpfptr_t uattr) 15123 { 15124 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15125 struct bpf_subprog_info *sub; 15126 struct bpf_line_info *linfo; 15127 struct bpf_prog *prog; 15128 const struct btf *btf; 15129 bpfptr_t ulinfo; 15130 int err; 15131 15132 nr_linfo = attr->line_info_cnt; 15133 if (!nr_linfo) 15134 return 0; 15135 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15136 return -EINVAL; 15137 15138 rec_size = attr->line_info_rec_size; 15139 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15140 rec_size > MAX_LINEINFO_REC_SIZE || 15141 rec_size & (sizeof(u32) - 1)) 15142 return -EINVAL; 15143 15144 /* Need to zero it in case the userspace may 15145 * pass in a smaller bpf_line_info object. 15146 */ 15147 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15148 GFP_KERNEL | __GFP_NOWARN); 15149 if (!linfo) 15150 return -ENOMEM; 15151 15152 prog = env->prog; 15153 btf = prog->aux->btf; 15154 15155 s = 0; 15156 sub = env->subprog_info; 15157 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15158 expected_size = sizeof(struct bpf_line_info); 15159 ncopy = min_t(u32, expected_size, rec_size); 15160 for (i = 0; i < nr_linfo; i++) { 15161 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15162 if (err) { 15163 if (err == -E2BIG) { 15164 verbose(env, "nonzero tailing record in line_info"); 15165 if (copy_to_bpfptr_offset(uattr, 15166 offsetof(union bpf_attr, line_info_rec_size), 15167 &expected_size, sizeof(expected_size))) 15168 err = -EFAULT; 15169 } 15170 goto err_free; 15171 } 15172 15173 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15174 err = -EFAULT; 15175 goto err_free; 15176 } 15177 15178 /* 15179 * Check insn_off to ensure 15180 * 1) strictly increasing AND 15181 * 2) bounded by prog->len 15182 * 15183 * The linfo[0].insn_off == 0 check logically falls into 15184 * the later "missing bpf_line_info for func..." case 15185 * because the first linfo[0].insn_off must be the 15186 * first sub also and the first sub must have 15187 * subprog_info[0].start == 0. 15188 */ 15189 if ((i && linfo[i].insn_off <= prev_offset) || 15190 linfo[i].insn_off >= prog->len) { 15191 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15192 i, linfo[i].insn_off, prev_offset, 15193 prog->len); 15194 err = -EINVAL; 15195 goto err_free; 15196 } 15197 15198 if (!prog->insnsi[linfo[i].insn_off].code) { 15199 verbose(env, 15200 "Invalid insn code at line_info[%u].insn_off\n", 15201 i); 15202 err = -EINVAL; 15203 goto err_free; 15204 } 15205 15206 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15207 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15208 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15209 err = -EINVAL; 15210 goto err_free; 15211 } 15212 15213 if (s != env->subprog_cnt) { 15214 if (linfo[i].insn_off == sub[s].start) { 15215 sub[s].linfo_idx = i; 15216 s++; 15217 } else if (sub[s].start < linfo[i].insn_off) { 15218 verbose(env, "missing bpf_line_info for func#%u\n", s); 15219 err = -EINVAL; 15220 goto err_free; 15221 } 15222 } 15223 15224 prev_offset = linfo[i].insn_off; 15225 bpfptr_add(&ulinfo, rec_size); 15226 } 15227 15228 if (s != env->subprog_cnt) { 15229 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15230 env->subprog_cnt - s, s); 15231 err = -EINVAL; 15232 goto err_free; 15233 } 15234 15235 prog->aux->linfo = linfo; 15236 prog->aux->nr_linfo = nr_linfo; 15237 15238 return 0; 15239 15240 err_free: 15241 kvfree(linfo); 15242 return err; 15243 } 15244 15245 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15246 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15247 15248 static int check_core_relo(struct bpf_verifier_env *env, 15249 const union bpf_attr *attr, 15250 bpfptr_t uattr) 15251 { 15252 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15253 struct bpf_core_relo core_relo = {}; 15254 struct bpf_prog *prog = env->prog; 15255 const struct btf *btf = prog->aux->btf; 15256 struct bpf_core_ctx ctx = { 15257 .log = &env->log, 15258 .btf = btf, 15259 }; 15260 bpfptr_t u_core_relo; 15261 int err; 15262 15263 nr_core_relo = attr->core_relo_cnt; 15264 if (!nr_core_relo) 15265 return 0; 15266 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15267 return -EINVAL; 15268 15269 rec_size = attr->core_relo_rec_size; 15270 if (rec_size < MIN_CORE_RELO_SIZE || 15271 rec_size > MAX_CORE_RELO_SIZE || 15272 rec_size % sizeof(u32)) 15273 return -EINVAL; 15274 15275 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15276 expected_size = sizeof(struct bpf_core_relo); 15277 ncopy = min_t(u32, expected_size, rec_size); 15278 15279 /* Unlike func_info and line_info, copy and apply each CO-RE 15280 * relocation record one at a time. 15281 */ 15282 for (i = 0; i < nr_core_relo; i++) { 15283 /* future proofing when sizeof(bpf_core_relo) changes */ 15284 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15285 if (err) { 15286 if (err == -E2BIG) { 15287 verbose(env, "nonzero tailing record in core_relo"); 15288 if (copy_to_bpfptr_offset(uattr, 15289 offsetof(union bpf_attr, core_relo_rec_size), 15290 &expected_size, sizeof(expected_size))) 15291 err = -EFAULT; 15292 } 15293 break; 15294 } 15295 15296 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15297 err = -EFAULT; 15298 break; 15299 } 15300 15301 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15302 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15303 i, core_relo.insn_off, prog->len); 15304 err = -EINVAL; 15305 break; 15306 } 15307 15308 err = bpf_core_apply(&ctx, &core_relo, i, 15309 &prog->insnsi[core_relo.insn_off / 8]); 15310 if (err) 15311 break; 15312 bpfptr_add(&u_core_relo, rec_size); 15313 } 15314 return err; 15315 } 15316 15317 static int check_btf_info(struct bpf_verifier_env *env, 15318 const union bpf_attr *attr, 15319 bpfptr_t uattr) 15320 { 15321 struct btf *btf; 15322 int err; 15323 15324 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15325 if (check_abnormal_return(env)) 15326 return -EINVAL; 15327 return 0; 15328 } 15329 15330 btf = btf_get_by_fd(attr->prog_btf_fd); 15331 if (IS_ERR(btf)) 15332 return PTR_ERR(btf); 15333 if (btf_is_kernel(btf)) { 15334 btf_put(btf); 15335 return -EACCES; 15336 } 15337 env->prog->aux->btf = btf; 15338 15339 err = check_btf_func(env, attr, uattr); 15340 if (err) 15341 return err; 15342 15343 err = check_btf_line(env, attr, uattr); 15344 if (err) 15345 return err; 15346 15347 err = check_core_relo(env, attr, uattr); 15348 if (err) 15349 return err; 15350 15351 return 0; 15352 } 15353 15354 /* check %cur's range satisfies %old's */ 15355 static bool range_within(struct bpf_reg_state *old, 15356 struct bpf_reg_state *cur) 15357 { 15358 return old->umin_value <= cur->umin_value && 15359 old->umax_value >= cur->umax_value && 15360 old->smin_value <= cur->smin_value && 15361 old->smax_value >= cur->smax_value && 15362 old->u32_min_value <= cur->u32_min_value && 15363 old->u32_max_value >= cur->u32_max_value && 15364 old->s32_min_value <= cur->s32_min_value && 15365 old->s32_max_value >= cur->s32_max_value; 15366 } 15367 15368 /* If in the old state two registers had the same id, then they need to have 15369 * the same id in the new state as well. But that id could be different from 15370 * the old state, so we need to track the mapping from old to new ids. 15371 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15372 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15373 * regs with a different old id could still have new id 9, we don't care about 15374 * that. 15375 * So we look through our idmap to see if this old id has been seen before. If 15376 * so, we require the new id to match; otherwise, we add the id pair to the map. 15377 */ 15378 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15379 { 15380 struct bpf_id_pair *map = idmap->map; 15381 unsigned int i; 15382 15383 /* either both IDs should be set or both should be zero */ 15384 if (!!old_id != !!cur_id) 15385 return false; 15386 15387 if (old_id == 0) /* cur_id == 0 as well */ 15388 return true; 15389 15390 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15391 if (!map[i].old) { 15392 /* Reached an empty slot; haven't seen this id before */ 15393 map[i].old = old_id; 15394 map[i].cur = cur_id; 15395 return true; 15396 } 15397 if (map[i].old == old_id) 15398 return map[i].cur == cur_id; 15399 if (map[i].cur == cur_id) 15400 return false; 15401 } 15402 /* We ran out of idmap slots, which should be impossible */ 15403 WARN_ON_ONCE(1); 15404 return false; 15405 } 15406 15407 /* Similar to check_ids(), but allocate a unique temporary ID 15408 * for 'old_id' or 'cur_id' of zero. 15409 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15410 */ 15411 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15412 { 15413 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15414 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15415 15416 return check_ids(old_id, cur_id, idmap); 15417 } 15418 15419 static void clean_func_state(struct bpf_verifier_env *env, 15420 struct bpf_func_state *st) 15421 { 15422 enum bpf_reg_liveness live; 15423 int i, j; 15424 15425 for (i = 0; i < BPF_REG_FP; i++) { 15426 live = st->regs[i].live; 15427 /* liveness must not touch this register anymore */ 15428 st->regs[i].live |= REG_LIVE_DONE; 15429 if (!(live & REG_LIVE_READ)) 15430 /* since the register is unused, clear its state 15431 * to make further comparison simpler 15432 */ 15433 __mark_reg_not_init(env, &st->regs[i]); 15434 } 15435 15436 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15437 live = st->stack[i].spilled_ptr.live; 15438 /* liveness must not touch this stack slot anymore */ 15439 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15440 if (!(live & REG_LIVE_READ)) { 15441 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15442 for (j = 0; j < BPF_REG_SIZE; j++) 15443 st->stack[i].slot_type[j] = STACK_INVALID; 15444 } 15445 } 15446 } 15447 15448 static void clean_verifier_state(struct bpf_verifier_env *env, 15449 struct bpf_verifier_state *st) 15450 { 15451 int i; 15452 15453 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15454 /* all regs in this state in all frames were already marked */ 15455 return; 15456 15457 for (i = 0; i <= st->curframe; i++) 15458 clean_func_state(env, st->frame[i]); 15459 } 15460 15461 /* the parentage chains form a tree. 15462 * the verifier states are added to state lists at given insn and 15463 * pushed into state stack for future exploration. 15464 * when the verifier reaches bpf_exit insn some of the verifer states 15465 * stored in the state lists have their final liveness state already, 15466 * but a lot of states will get revised from liveness point of view when 15467 * the verifier explores other branches. 15468 * Example: 15469 * 1: r0 = 1 15470 * 2: if r1 == 100 goto pc+1 15471 * 3: r0 = 2 15472 * 4: exit 15473 * when the verifier reaches exit insn the register r0 in the state list of 15474 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15475 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15476 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15477 * 15478 * Since the verifier pushes the branch states as it sees them while exploring 15479 * the program the condition of walking the branch instruction for the second 15480 * time means that all states below this branch were already explored and 15481 * their final liveness marks are already propagated. 15482 * Hence when the verifier completes the search of state list in is_state_visited() 15483 * we can call this clean_live_states() function to mark all liveness states 15484 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15485 * will not be used. 15486 * This function also clears the registers and stack for states that !READ 15487 * to simplify state merging. 15488 * 15489 * Important note here that walking the same branch instruction in the callee 15490 * doesn't meant that the states are DONE. The verifier has to compare 15491 * the callsites 15492 */ 15493 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15494 struct bpf_verifier_state *cur) 15495 { 15496 struct bpf_verifier_state_list *sl; 15497 int i; 15498 15499 sl = *explored_state(env, insn); 15500 while (sl) { 15501 if (sl->state.branches) 15502 goto next; 15503 if (sl->state.insn_idx != insn || 15504 sl->state.curframe != cur->curframe) 15505 goto next; 15506 for (i = 0; i <= cur->curframe; i++) 15507 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15508 goto next; 15509 clean_verifier_state(env, &sl->state); 15510 next: 15511 sl = sl->next; 15512 } 15513 } 15514 15515 static bool regs_exact(const struct bpf_reg_state *rold, 15516 const struct bpf_reg_state *rcur, 15517 struct bpf_idmap *idmap) 15518 { 15519 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15520 check_ids(rold->id, rcur->id, idmap) && 15521 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15522 } 15523 15524 /* Returns true if (rold safe implies rcur safe) */ 15525 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15526 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15527 { 15528 if (!(rold->live & REG_LIVE_READ)) 15529 /* explored state didn't use this */ 15530 return true; 15531 if (rold->type == NOT_INIT) 15532 /* explored state can't have used this */ 15533 return true; 15534 if (rcur->type == NOT_INIT) 15535 return false; 15536 15537 /* Enforce that register types have to match exactly, including their 15538 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15539 * rule. 15540 * 15541 * One can make a point that using a pointer register as unbounded 15542 * SCALAR would be technically acceptable, but this could lead to 15543 * pointer leaks because scalars are allowed to leak while pointers 15544 * are not. We could make this safe in special cases if root is 15545 * calling us, but it's probably not worth the hassle. 15546 * 15547 * Also, register types that are *not* MAYBE_NULL could technically be 15548 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15549 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15550 * to the same map). 15551 * However, if the old MAYBE_NULL register then got NULL checked, 15552 * doing so could have affected others with the same id, and we can't 15553 * check for that because we lost the id when we converted to 15554 * a non-MAYBE_NULL variant. 15555 * So, as a general rule we don't allow mixing MAYBE_NULL and 15556 * non-MAYBE_NULL registers as well. 15557 */ 15558 if (rold->type != rcur->type) 15559 return false; 15560 15561 switch (base_type(rold->type)) { 15562 case SCALAR_VALUE: 15563 if (env->explore_alu_limits) { 15564 /* explore_alu_limits disables tnum_in() and range_within() 15565 * logic and requires everything to be strict 15566 */ 15567 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15568 check_scalar_ids(rold->id, rcur->id, idmap); 15569 } 15570 if (!rold->precise) 15571 return true; 15572 /* Why check_ids() for scalar registers? 15573 * 15574 * Consider the following BPF code: 15575 * 1: r6 = ... unbound scalar, ID=a ... 15576 * 2: r7 = ... unbound scalar, ID=b ... 15577 * 3: if (r6 > r7) goto +1 15578 * 4: r6 = r7 15579 * 5: if (r6 > X) goto ... 15580 * 6: ... memory operation using r7 ... 15581 * 15582 * First verification path is [1-6]: 15583 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15584 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15585 * r7 <= X, because r6 and r7 share same id. 15586 * Next verification path is [1-4, 6]. 15587 * 15588 * Instruction (6) would be reached in two states: 15589 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15590 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15591 * 15592 * Use check_ids() to distinguish these states. 15593 * --- 15594 * Also verify that new value satisfies old value range knowledge. 15595 */ 15596 return range_within(rold, rcur) && 15597 tnum_in(rold->var_off, rcur->var_off) && 15598 check_scalar_ids(rold->id, rcur->id, idmap); 15599 case PTR_TO_MAP_KEY: 15600 case PTR_TO_MAP_VALUE: 15601 case PTR_TO_MEM: 15602 case PTR_TO_BUF: 15603 case PTR_TO_TP_BUFFER: 15604 /* If the new min/max/var_off satisfy the old ones and 15605 * everything else matches, we are OK. 15606 */ 15607 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15608 range_within(rold, rcur) && 15609 tnum_in(rold->var_off, rcur->var_off) && 15610 check_ids(rold->id, rcur->id, idmap) && 15611 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15612 case PTR_TO_PACKET_META: 15613 case PTR_TO_PACKET: 15614 /* We must have at least as much range as the old ptr 15615 * did, so that any accesses which were safe before are 15616 * still safe. This is true even if old range < old off, 15617 * since someone could have accessed through (ptr - k), or 15618 * even done ptr -= k in a register, to get a safe access. 15619 */ 15620 if (rold->range > rcur->range) 15621 return false; 15622 /* If the offsets don't match, we can't trust our alignment; 15623 * nor can we be sure that we won't fall out of range. 15624 */ 15625 if (rold->off != rcur->off) 15626 return false; 15627 /* id relations must be preserved */ 15628 if (!check_ids(rold->id, rcur->id, idmap)) 15629 return false; 15630 /* new val must satisfy old val knowledge */ 15631 return range_within(rold, rcur) && 15632 tnum_in(rold->var_off, rcur->var_off); 15633 case PTR_TO_STACK: 15634 /* two stack pointers are equal only if they're pointing to 15635 * the same stack frame, since fp-8 in foo != fp-8 in bar 15636 */ 15637 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15638 default: 15639 return regs_exact(rold, rcur, idmap); 15640 } 15641 } 15642 15643 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15644 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15645 { 15646 int i, spi; 15647 15648 /* walk slots of the explored stack and ignore any additional 15649 * slots in the current stack, since explored(safe) state 15650 * didn't use them 15651 */ 15652 for (i = 0; i < old->allocated_stack; i++) { 15653 struct bpf_reg_state *old_reg, *cur_reg; 15654 15655 spi = i / BPF_REG_SIZE; 15656 15657 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15658 i += BPF_REG_SIZE - 1; 15659 /* explored state didn't use this */ 15660 continue; 15661 } 15662 15663 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15664 continue; 15665 15666 if (env->allow_uninit_stack && 15667 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15668 continue; 15669 15670 /* explored stack has more populated slots than current stack 15671 * and these slots were used 15672 */ 15673 if (i >= cur->allocated_stack) 15674 return false; 15675 15676 /* if old state was safe with misc data in the stack 15677 * it will be safe with zero-initialized stack. 15678 * The opposite is not true 15679 */ 15680 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15681 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15682 continue; 15683 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15684 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15685 /* Ex: old explored (safe) state has STACK_SPILL in 15686 * this stack slot, but current has STACK_MISC -> 15687 * this verifier states are not equivalent, 15688 * return false to continue verification of this path 15689 */ 15690 return false; 15691 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15692 continue; 15693 /* Both old and cur are having same slot_type */ 15694 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15695 case STACK_SPILL: 15696 /* when explored and current stack slot are both storing 15697 * spilled registers, check that stored pointers types 15698 * are the same as well. 15699 * Ex: explored safe path could have stored 15700 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15701 * but current path has stored: 15702 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15703 * such verifier states are not equivalent. 15704 * return false to continue verification of this path 15705 */ 15706 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15707 &cur->stack[spi].spilled_ptr, idmap)) 15708 return false; 15709 break; 15710 case STACK_DYNPTR: 15711 old_reg = &old->stack[spi].spilled_ptr; 15712 cur_reg = &cur->stack[spi].spilled_ptr; 15713 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15714 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15715 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15716 return false; 15717 break; 15718 case STACK_ITER: 15719 old_reg = &old->stack[spi].spilled_ptr; 15720 cur_reg = &cur->stack[spi].spilled_ptr; 15721 /* iter.depth is not compared between states as it 15722 * doesn't matter for correctness and would otherwise 15723 * prevent convergence; we maintain it only to prevent 15724 * infinite loop check triggering, see 15725 * iter_active_depths_differ() 15726 */ 15727 if (old_reg->iter.btf != cur_reg->iter.btf || 15728 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15729 old_reg->iter.state != cur_reg->iter.state || 15730 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15731 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15732 return false; 15733 break; 15734 case STACK_MISC: 15735 case STACK_ZERO: 15736 case STACK_INVALID: 15737 continue; 15738 /* Ensure that new unhandled slot types return false by default */ 15739 default: 15740 return false; 15741 } 15742 } 15743 return true; 15744 } 15745 15746 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15747 struct bpf_idmap *idmap) 15748 { 15749 int i; 15750 15751 if (old->acquired_refs != cur->acquired_refs) 15752 return false; 15753 15754 for (i = 0; i < old->acquired_refs; i++) { 15755 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15756 return false; 15757 } 15758 15759 return true; 15760 } 15761 15762 /* compare two verifier states 15763 * 15764 * all states stored in state_list are known to be valid, since 15765 * verifier reached 'bpf_exit' instruction through them 15766 * 15767 * this function is called when verifier exploring different branches of 15768 * execution popped from the state stack. If it sees an old state that has 15769 * more strict register state and more strict stack state then this execution 15770 * branch doesn't need to be explored further, since verifier already 15771 * concluded that more strict state leads to valid finish. 15772 * 15773 * Therefore two states are equivalent if register state is more conservative 15774 * and explored stack state is more conservative than the current one. 15775 * Example: 15776 * explored current 15777 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15778 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15779 * 15780 * In other words if current stack state (one being explored) has more 15781 * valid slots than old one that already passed validation, it means 15782 * the verifier can stop exploring and conclude that current state is valid too 15783 * 15784 * Similarly with registers. If explored state has register type as invalid 15785 * whereas register type in current state is meaningful, it means that 15786 * the current state will reach 'bpf_exit' instruction safely 15787 */ 15788 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15789 struct bpf_func_state *cur) 15790 { 15791 int i; 15792 15793 for (i = 0; i < MAX_BPF_REG; i++) 15794 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15795 &env->idmap_scratch)) 15796 return false; 15797 15798 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15799 return false; 15800 15801 if (!refsafe(old, cur, &env->idmap_scratch)) 15802 return false; 15803 15804 return true; 15805 } 15806 15807 static bool states_equal(struct bpf_verifier_env *env, 15808 struct bpf_verifier_state *old, 15809 struct bpf_verifier_state *cur) 15810 { 15811 int i; 15812 15813 if (old->curframe != cur->curframe) 15814 return false; 15815 15816 env->idmap_scratch.tmp_id_gen = env->id_gen; 15817 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15818 15819 /* Verification state from speculative execution simulation 15820 * must never prune a non-speculative execution one. 15821 */ 15822 if (old->speculative && !cur->speculative) 15823 return false; 15824 15825 if (old->active_lock.ptr != cur->active_lock.ptr) 15826 return false; 15827 15828 /* Old and cur active_lock's have to be either both present 15829 * or both absent. 15830 */ 15831 if (!!old->active_lock.id != !!cur->active_lock.id) 15832 return false; 15833 15834 if (old->active_lock.id && 15835 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15836 return false; 15837 15838 if (old->active_rcu_lock != cur->active_rcu_lock) 15839 return false; 15840 15841 /* for states to be equal callsites have to be the same 15842 * and all frame states need to be equivalent 15843 */ 15844 for (i = 0; i <= old->curframe; i++) { 15845 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15846 return false; 15847 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15848 return false; 15849 } 15850 return true; 15851 } 15852 15853 /* Return 0 if no propagation happened. Return negative error code if error 15854 * happened. Otherwise, return the propagated bit. 15855 */ 15856 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15857 struct bpf_reg_state *reg, 15858 struct bpf_reg_state *parent_reg) 15859 { 15860 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15861 u8 flag = reg->live & REG_LIVE_READ; 15862 int err; 15863 15864 /* When comes here, read flags of PARENT_REG or REG could be any of 15865 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15866 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15867 */ 15868 if (parent_flag == REG_LIVE_READ64 || 15869 /* Or if there is no read flag from REG. */ 15870 !flag || 15871 /* Or if the read flag from REG is the same as PARENT_REG. */ 15872 parent_flag == flag) 15873 return 0; 15874 15875 err = mark_reg_read(env, reg, parent_reg, flag); 15876 if (err) 15877 return err; 15878 15879 return flag; 15880 } 15881 15882 /* A write screens off any subsequent reads; but write marks come from the 15883 * straight-line code between a state and its parent. When we arrive at an 15884 * equivalent state (jump target or such) we didn't arrive by the straight-line 15885 * code, so read marks in the state must propagate to the parent regardless 15886 * of the state's write marks. That's what 'parent == state->parent' comparison 15887 * in mark_reg_read() is for. 15888 */ 15889 static int propagate_liveness(struct bpf_verifier_env *env, 15890 const struct bpf_verifier_state *vstate, 15891 struct bpf_verifier_state *vparent) 15892 { 15893 struct bpf_reg_state *state_reg, *parent_reg; 15894 struct bpf_func_state *state, *parent; 15895 int i, frame, err = 0; 15896 15897 if (vparent->curframe != vstate->curframe) { 15898 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15899 vparent->curframe, vstate->curframe); 15900 return -EFAULT; 15901 } 15902 /* Propagate read liveness of registers... */ 15903 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15904 for (frame = 0; frame <= vstate->curframe; frame++) { 15905 parent = vparent->frame[frame]; 15906 state = vstate->frame[frame]; 15907 parent_reg = parent->regs; 15908 state_reg = state->regs; 15909 /* We don't need to worry about FP liveness, it's read-only */ 15910 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15911 err = propagate_liveness_reg(env, &state_reg[i], 15912 &parent_reg[i]); 15913 if (err < 0) 15914 return err; 15915 if (err == REG_LIVE_READ64) 15916 mark_insn_zext(env, &parent_reg[i]); 15917 } 15918 15919 /* Propagate stack slots. */ 15920 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15921 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15922 parent_reg = &parent->stack[i].spilled_ptr; 15923 state_reg = &state->stack[i].spilled_ptr; 15924 err = propagate_liveness_reg(env, state_reg, 15925 parent_reg); 15926 if (err < 0) 15927 return err; 15928 } 15929 } 15930 return 0; 15931 } 15932 15933 /* find precise scalars in the previous equivalent state and 15934 * propagate them into the current state 15935 */ 15936 static int propagate_precision(struct bpf_verifier_env *env, 15937 const struct bpf_verifier_state *old) 15938 { 15939 struct bpf_reg_state *state_reg; 15940 struct bpf_func_state *state; 15941 int i, err = 0, fr; 15942 bool first; 15943 15944 for (fr = old->curframe; fr >= 0; fr--) { 15945 state = old->frame[fr]; 15946 state_reg = state->regs; 15947 first = true; 15948 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15949 if (state_reg->type != SCALAR_VALUE || 15950 !state_reg->precise || 15951 !(state_reg->live & REG_LIVE_READ)) 15952 continue; 15953 if (env->log.level & BPF_LOG_LEVEL2) { 15954 if (first) 15955 verbose(env, "frame %d: propagating r%d", fr, i); 15956 else 15957 verbose(env, ",r%d", i); 15958 } 15959 bt_set_frame_reg(&env->bt, fr, i); 15960 first = false; 15961 } 15962 15963 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15964 if (!is_spilled_reg(&state->stack[i])) 15965 continue; 15966 state_reg = &state->stack[i].spilled_ptr; 15967 if (state_reg->type != SCALAR_VALUE || 15968 !state_reg->precise || 15969 !(state_reg->live & REG_LIVE_READ)) 15970 continue; 15971 if (env->log.level & BPF_LOG_LEVEL2) { 15972 if (first) 15973 verbose(env, "frame %d: propagating fp%d", 15974 fr, (-i - 1) * BPF_REG_SIZE); 15975 else 15976 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15977 } 15978 bt_set_frame_slot(&env->bt, fr, i); 15979 first = false; 15980 } 15981 if (!first) 15982 verbose(env, "\n"); 15983 } 15984 15985 err = mark_chain_precision_batch(env); 15986 if (err < 0) 15987 return err; 15988 15989 return 0; 15990 } 15991 15992 static bool states_maybe_looping(struct bpf_verifier_state *old, 15993 struct bpf_verifier_state *cur) 15994 { 15995 struct bpf_func_state *fold, *fcur; 15996 int i, fr = cur->curframe; 15997 15998 if (old->curframe != fr) 15999 return false; 16000 16001 fold = old->frame[fr]; 16002 fcur = cur->frame[fr]; 16003 for (i = 0; i < MAX_BPF_REG; i++) 16004 if (memcmp(&fold->regs[i], &fcur->regs[i], 16005 offsetof(struct bpf_reg_state, parent))) 16006 return false; 16007 return true; 16008 } 16009 16010 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16011 { 16012 return env->insn_aux_data[insn_idx].is_iter_next; 16013 } 16014 16015 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16016 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16017 * states to match, which otherwise would look like an infinite loop. So while 16018 * iter_next() calls are taken care of, we still need to be careful and 16019 * prevent erroneous and too eager declaration of "ininite loop", when 16020 * iterators are involved. 16021 * 16022 * Here's a situation in pseudo-BPF assembly form: 16023 * 16024 * 0: again: ; set up iter_next() call args 16025 * 1: r1 = &it ; <CHECKPOINT HERE> 16026 * 2: call bpf_iter_num_next ; this is iter_next() call 16027 * 3: if r0 == 0 goto done 16028 * 4: ... something useful here ... 16029 * 5: goto again ; another iteration 16030 * 6: done: 16031 * 7: r1 = &it 16032 * 8: call bpf_iter_num_destroy ; clean up iter state 16033 * 9: exit 16034 * 16035 * This is a typical loop. Let's assume that we have a prune point at 1:, 16036 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16037 * again`, assuming other heuristics don't get in a way). 16038 * 16039 * When we first time come to 1:, let's say we have some state X. We proceed 16040 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16041 * Now we come back to validate that forked ACTIVE state. We proceed through 16042 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16043 * are converging. But the problem is that we don't know that yet, as this 16044 * convergence has to happen at iter_next() call site only. So if nothing is 16045 * done, at 1: verifier will use bounded loop logic and declare infinite 16046 * looping (and would be *technically* correct, if not for iterator's 16047 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16048 * don't want that. So what we do in process_iter_next_call() when we go on 16049 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16050 * a different iteration. So when we suspect an infinite loop, we additionally 16051 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16052 * pretend we are not looping and wait for next iter_next() call. 16053 * 16054 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16055 * loop, because that would actually mean infinite loop, as DRAINED state is 16056 * "sticky", and so we'll keep returning into the same instruction with the 16057 * same state (at least in one of possible code paths). 16058 * 16059 * This approach allows to keep infinite loop heuristic even in the face of 16060 * active iterator. E.g., C snippet below is and will be detected as 16061 * inifintely looping: 16062 * 16063 * struct bpf_iter_num it; 16064 * int *p, x; 16065 * 16066 * bpf_iter_num_new(&it, 0, 10); 16067 * while ((p = bpf_iter_num_next(&t))) { 16068 * x = p; 16069 * while (x--) {} // <<-- infinite loop here 16070 * } 16071 * 16072 */ 16073 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16074 { 16075 struct bpf_reg_state *slot, *cur_slot; 16076 struct bpf_func_state *state; 16077 int i, fr; 16078 16079 for (fr = old->curframe; fr >= 0; fr--) { 16080 state = old->frame[fr]; 16081 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16082 if (state->stack[i].slot_type[0] != STACK_ITER) 16083 continue; 16084 16085 slot = &state->stack[i].spilled_ptr; 16086 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16087 continue; 16088 16089 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16090 if (cur_slot->iter.depth != slot->iter.depth) 16091 return true; 16092 } 16093 } 16094 return false; 16095 } 16096 16097 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16098 { 16099 struct bpf_verifier_state_list *new_sl; 16100 struct bpf_verifier_state_list *sl, **pprev; 16101 struct bpf_verifier_state *cur = env->cur_state, *new; 16102 int i, j, err, states_cnt = 0; 16103 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16104 bool add_new_state = force_new_state; 16105 16106 /* bpf progs typically have pruning point every 4 instructions 16107 * http://vger.kernel.org/bpfconf2019.html#session-1 16108 * Do not add new state for future pruning if the verifier hasn't seen 16109 * at least 2 jumps and at least 8 instructions. 16110 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16111 * In tests that amounts to up to 50% reduction into total verifier 16112 * memory consumption and 20% verifier time speedup. 16113 */ 16114 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16115 env->insn_processed - env->prev_insn_processed >= 8) 16116 add_new_state = true; 16117 16118 pprev = explored_state(env, insn_idx); 16119 sl = *pprev; 16120 16121 clean_live_states(env, insn_idx, cur); 16122 16123 while (sl) { 16124 states_cnt++; 16125 if (sl->state.insn_idx != insn_idx) 16126 goto next; 16127 16128 if (sl->state.branches) { 16129 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16130 16131 if (frame->in_async_callback_fn && 16132 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16133 /* Different async_entry_cnt means that the verifier is 16134 * processing another entry into async callback. 16135 * Seeing the same state is not an indication of infinite 16136 * loop or infinite recursion. 16137 * But finding the same state doesn't mean that it's safe 16138 * to stop processing the current state. The previous state 16139 * hasn't yet reached bpf_exit, since state.branches > 0. 16140 * Checking in_async_callback_fn alone is not enough either. 16141 * Since the verifier still needs to catch infinite loops 16142 * inside async callbacks. 16143 */ 16144 goto skip_inf_loop_check; 16145 } 16146 /* BPF open-coded iterators loop detection is special. 16147 * states_maybe_looping() logic is too simplistic in detecting 16148 * states that *might* be equivalent, because it doesn't know 16149 * about ID remapping, so don't even perform it. 16150 * See process_iter_next_call() and iter_active_depths_differ() 16151 * for overview of the logic. When current and one of parent 16152 * states are detected as equivalent, it's a good thing: we prove 16153 * convergence and can stop simulating further iterations. 16154 * It's safe to assume that iterator loop will finish, taking into 16155 * account iter_next() contract of eventually returning 16156 * sticky NULL result. 16157 */ 16158 if (is_iter_next_insn(env, insn_idx)) { 16159 if (states_equal(env, &sl->state, cur)) { 16160 struct bpf_func_state *cur_frame; 16161 struct bpf_reg_state *iter_state, *iter_reg; 16162 int spi; 16163 16164 cur_frame = cur->frame[cur->curframe]; 16165 /* btf_check_iter_kfuncs() enforces that 16166 * iter state pointer is always the first arg 16167 */ 16168 iter_reg = &cur_frame->regs[BPF_REG_1]; 16169 /* current state is valid due to states_equal(), 16170 * so we can assume valid iter and reg state, 16171 * no need for extra (re-)validations 16172 */ 16173 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16174 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16175 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 16176 goto hit; 16177 } 16178 goto skip_inf_loop_check; 16179 } 16180 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16181 if (states_maybe_looping(&sl->state, cur) && 16182 states_equal(env, &sl->state, cur) && 16183 !iter_active_depths_differ(&sl->state, cur)) { 16184 verbose_linfo(env, insn_idx, "; "); 16185 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16186 return -EINVAL; 16187 } 16188 /* if the verifier is processing a loop, avoid adding new state 16189 * too often, since different loop iterations have distinct 16190 * states and may not help future pruning. 16191 * This threshold shouldn't be too low to make sure that 16192 * a loop with large bound will be rejected quickly. 16193 * The most abusive loop will be: 16194 * r1 += 1 16195 * if r1 < 1000000 goto pc-2 16196 * 1M insn_procssed limit / 100 == 10k peak states. 16197 * This threshold shouldn't be too high either, since states 16198 * at the end of the loop are likely to be useful in pruning. 16199 */ 16200 skip_inf_loop_check: 16201 if (!force_new_state && 16202 env->jmps_processed - env->prev_jmps_processed < 20 && 16203 env->insn_processed - env->prev_insn_processed < 100) 16204 add_new_state = false; 16205 goto miss; 16206 } 16207 if (states_equal(env, &sl->state, cur)) { 16208 hit: 16209 sl->hit_cnt++; 16210 /* reached equivalent register/stack state, 16211 * prune the search. 16212 * Registers read by the continuation are read by us. 16213 * If we have any write marks in env->cur_state, they 16214 * will prevent corresponding reads in the continuation 16215 * from reaching our parent (an explored_state). Our 16216 * own state will get the read marks recorded, but 16217 * they'll be immediately forgotten as we're pruning 16218 * this state and will pop a new one. 16219 */ 16220 err = propagate_liveness(env, &sl->state, cur); 16221 16222 /* if previous state reached the exit with precision and 16223 * current state is equivalent to it (except precsion marks) 16224 * the precision needs to be propagated back in 16225 * the current state. 16226 */ 16227 err = err ? : push_jmp_history(env, cur); 16228 err = err ? : propagate_precision(env, &sl->state); 16229 if (err) 16230 return err; 16231 return 1; 16232 } 16233 miss: 16234 /* when new state is not going to be added do not increase miss count. 16235 * Otherwise several loop iterations will remove the state 16236 * recorded earlier. The goal of these heuristics is to have 16237 * states from some iterations of the loop (some in the beginning 16238 * and some at the end) to help pruning. 16239 */ 16240 if (add_new_state) 16241 sl->miss_cnt++; 16242 /* heuristic to determine whether this state is beneficial 16243 * to keep checking from state equivalence point of view. 16244 * Higher numbers increase max_states_per_insn and verification time, 16245 * but do not meaningfully decrease insn_processed. 16246 */ 16247 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16248 /* the state is unlikely to be useful. Remove it to 16249 * speed up verification 16250 */ 16251 *pprev = sl->next; 16252 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16253 u32 br = sl->state.branches; 16254 16255 WARN_ONCE(br, 16256 "BUG live_done but branches_to_explore %d\n", 16257 br); 16258 free_verifier_state(&sl->state, false); 16259 kfree(sl); 16260 env->peak_states--; 16261 } else { 16262 /* cannot free this state, since parentage chain may 16263 * walk it later. Add it for free_list instead to 16264 * be freed at the end of verification 16265 */ 16266 sl->next = env->free_list; 16267 env->free_list = sl; 16268 } 16269 sl = *pprev; 16270 continue; 16271 } 16272 next: 16273 pprev = &sl->next; 16274 sl = *pprev; 16275 } 16276 16277 if (env->max_states_per_insn < states_cnt) 16278 env->max_states_per_insn = states_cnt; 16279 16280 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16281 return 0; 16282 16283 if (!add_new_state) 16284 return 0; 16285 16286 /* There were no equivalent states, remember the current one. 16287 * Technically the current state is not proven to be safe yet, 16288 * but it will either reach outer most bpf_exit (which means it's safe) 16289 * or it will be rejected. When there are no loops the verifier won't be 16290 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16291 * again on the way to bpf_exit. 16292 * When looping the sl->state.branches will be > 0 and this state 16293 * will not be considered for equivalence until branches == 0. 16294 */ 16295 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16296 if (!new_sl) 16297 return -ENOMEM; 16298 env->total_states++; 16299 env->peak_states++; 16300 env->prev_jmps_processed = env->jmps_processed; 16301 env->prev_insn_processed = env->insn_processed; 16302 16303 /* forget precise markings we inherited, see __mark_chain_precision */ 16304 if (env->bpf_capable) 16305 mark_all_scalars_imprecise(env, cur); 16306 16307 /* add new state to the head of linked list */ 16308 new = &new_sl->state; 16309 err = copy_verifier_state(new, cur); 16310 if (err) { 16311 free_verifier_state(new, false); 16312 kfree(new_sl); 16313 return err; 16314 } 16315 new->insn_idx = insn_idx; 16316 WARN_ONCE(new->branches != 1, 16317 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16318 16319 cur->parent = new; 16320 cur->first_insn_idx = insn_idx; 16321 clear_jmp_history(cur); 16322 new_sl->next = *explored_state(env, insn_idx); 16323 *explored_state(env, insn_idx) = new_sl; 16324 /* connect new state to parentage chain. Current frame needs all 16325 * registers connected. Only r6 - r9 of the callers are alive (pushed 16326 * to the stack implicitly by JITs) so in callers' frames connect just 16327 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16328 * the state of the call instruction (with WRITTEN set), and r0 comes 16329 * from callee with its full parentage chain, anyway. 16330 */ 16331 /* clear write marks in current state: the writes we did are not writes 16332 * our child did, so they don't screen off its reads from us. 16333 * (There are no read marks in current state, because reads always mark 16334 * their parent and current state never has children yet. Only 16335 * explored_states can get read marks.) 16336 */ 16337 for (j = 0; j <= cur->curframe; j++) { 16338 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16339 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16340 for (i = 0; i < BPF_REG_FP; i++) 16341 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16342 } 16343 16344 /* all stack frames are accessible from callee, clear them all */ 16345 for (j = 0; j <= cur->curframe; j++) { 16346 struct bpf_func_state *frame = cur->frame[j]; 16347 struct bpf_func_state *newframe = new->frame[j]; 16348 16349 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16350 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16351 frame->stack[i].spilled_ptr.parent = 16352 &newframe->stack[i].spilled_ptr; 16353 } 16354 } 16355 return 0; 16356 } 16357 16358 /* Return true if it's OK to have the same insn return a different type. */ 16359 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16360 { 16361 switch (base_type(type)) { 16362 case PTR_TO_CTX: 16363 case PTR_TO_SOCKET: 16364 case PTR_TO_SOCK_COMMON: 16365 case PTR_TO_TCP_SOCK: 16366 case PTR_TO_XDP_SOCK: 16367 case PTR_TO_BTF_ID: 16368 return false; 16369 default: 16370 return true; 16371 } 16372 } 16373 16374 /* If an instruction was previously used with particular pointer types, then we 16375 * need to be careful to avoid cases such as the below, where it may be ok 16376 * for one branch accessing the pointer, but not ok for the other branch: 16377 * 16378 * R1 = sock_ptr 16379 * goto X; 16380 * ... 16381 * R1 = some_other_valid_ptr; 16382 * goto X; 16383 * ... 16384 * R2 = *(u32 *)(R1 + 0); 16385 */ 16386 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16387 { 16388 return src != prev && (!reg_type_mismatch_ok(src) || 16389 !reg_type_mismatch_ok(prev)); 16390 } 16391 16392 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16393 bool allow_trust_missmatch) 16394 { 16395 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16396 16397 if (*prev_type == NOT_INIT) { 16398 /* Saw a valid insn 16399 * dst_reg = *(u32 *)(src_reg + off) 16400 * save type to validate intersecting paths 16401 */ 16402 *prev_type = type; 16403 } else if (reg_type_mismatch(type, *prev_type)) { 16404 /* Abuser program is trying to use the same insn 16405 * dst_reg = *(u32*) (src_reg + off) 16406 * with different pointer types: 16407 * src_reg == ctx in one branch and 16408 * src_reg == stack|map in some other branch. 16409 * Reject it. 16410 */ 16411 if (allow_trust_missmatch && 16412 base_type(type) == PTR_TO_BTF_ID && 16413 base_type(*prev_type) == PTR_TO_BTF_ID) { 16414 /* 16415 * Have to support a use case when one path through 16416 * the program yields TRUSTED pointer while another 16417 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16418 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16419 */ 16420 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16421 } else { 16422 verbose(env, "same insn cannot be used with different pointers\n"); 16423 return -EINVAL; 16424 } 16425 } 16426 16427 return 0; 16428 } 16429 16430 static int do_check(struct bpf_verifier_env *env) 16431 { 16432 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16433 struct bpf_verifier_state *state = env->cur_state; 16434 struct bpf_insn *insns = env->prog->insnsi; 16435 struct bpf_reg_state *regs; 16436 int insn_cnt = env->prog->len; 16437 bool do_print_state = false; 16438 int prev_insn_idx = -1; 16439 16440 for (;;) { 16441 struct bpf_insn *insn; 16442 u8 class; 16443 int err; 16444 16445 env->prev_insn_idx = prev_insn_idx; 16446 if (env->insn_idx >= insn_cnt) { 16447 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16448 env->insn_idx, insn_cnt); 16449 return -EFAULT; 16450 } 16451 16452 insn = &insns[env->insn_idx]; 16453 class = BPF_CLASS(insn->code); 16454 16455 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16456 verbose(env, 16457 "BPF program is too large. Processed %d insn\n", 16458 env->insn_processed); 16459 return -E2BIG; 16460 } 16461 16462 state->last_insn_idx = env->prev_insn_idx; 16463 16464 if (is_prune_point(env, env->insn_idx)) { 16465 err = is_state_visited(env, env->insn_idx); 16466 if (err < 0) 16467 return err; 16468 if (err == 1) { 16469 /* found equivalent state, can prune the search */ 16470 if (env->log.level & BPF_LOG_LEVEL) { 16471 if (do_print_state) 16472 verbose(env, "\nfrom %d to %d%s: safe\n", 16473 env->prev_insn_idx, env->insn_idx, 16474 env->cur_state->speculative ? 16475 " (speculative execution)" : ""); 16476 else 16477 verbose(env, "%d: safe\n", env->insn_idx); 16478 } 16479 goto process_bpf_exit; 16480 } 16481 } 16482 16483 if (is_jmp_point(env, env->insn_idx)) { 16484 err = push_jmp_history(env, state); 16485 if (err) 16486 return err; 16487 } 16488 16489 if (signal_pending(current)) 16490 return -EAGAIN; 16491 16492 if (need_resched()) 16493 cond_resched(); 16494 16495 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16496 verbose(env, "\nfrom %d to %d%s:", 16497 env->prev_insn_idx, env->insn_idx, 16498 env->cur_state->speculative ? 16499 " (speculative execution)" : ""); 16500 print_verifier_state(env, state->frame[state->curframe], true); 16501 do_print_state = false; 16502 } 16503 16504 if (env->log.level & BPF_LOG_LEVEL) { 16505 const struct bpf_insn_cbs cbs = { 16506 .cb_call = disasm_kfunc_name, 16507 .cb_print = verbose, 16508 .private_data = env, 16509 }; 16510 16511 if (verifier_state_scratched(env)) 16512 print_insn_state(env, state->frame[state->curframe]); 16513 16514 verbose_linfo(env, env->insn_idx, "; "); 16515 env->prev_log_pos = env->log.end_pos; 16516 verbose(env, "%d: ", env->insn_idx); 16517 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16518 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16519 env->prev_log_pos = env->log.end_pos; 16520 } 16521 16522 if (bpf_prog_is_offloaded(env->prog->aux)) { 16523 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16524 env->prev_insn_idx); 16525 if (err) 16526 return err; 16527 } 16528 16529 regs = cur_regs(env); 16530 sanitize_mark_insn_seen(env); 16531 prev_insn_idx = env->insn_idx; 16532 16533 if (class == BPF_ALU || class == BPF_ALU64) { 16534 err = check_alu_op(env, insn); 16535 if (err) 16536 return err; 16537 16538 } else if (class == BPF_LDX) { 16539 enum bpf_reg_type src_reg_type; 16540 16541 /* check for reserved fields is already done */ 16542 16543 /* check src operand */ 16544 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16545 if (err) 16546 return err; 16547 16548 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16549 if (err) 16550 return err; 16551 16552 src_reg_type = regs[insn->src_reg].type; 16553 16554 /* check that memory (src_reg + off) is readable, 16555 * the state of dst_reg will be updated by this func 16556 */ 16557 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16558 insn->off, BPF_SIZE(insn->code), 16559 BPF_READ, insn->dst_reg, false, 16560 BPF_MODE(insn->code) == BPF_MEMSX); 16561 if (err) 16562 return err; 16563 16564 err = save_aux_ptr_type(env, src_reg_type, true); 16565 if (err) 16566 return err; 16567 } else if (class == BPF_STX) { 16568 enum bpf_reg_type dst_reg_type; 16569 16570 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16571 err = check_atomic(env, env->insn_idx, insn); 16572 if (err) 16573 return err; 16574 env->insn_idx++; 16575 continue; 16576 } 16577 16578 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16579 verbose(env, "BPF_STX uses reserved fields\n"); 16580 return -EINVAL; 16581 } 16582 16583 /* check src1 operand */ 16584 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16585 if (err) 16586 return err; 16587 /* check src2 operand */ 16588 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16589 if (err) 16590 return err; 16591 16592 dst_reg_type = regs[insn->dst_reg].type; 16593 16594 /* check that memory (dst_reg + off) is writeable */ 16595 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16596 insn->off, BPF_SIZE(insn->code), 16597 BPF_WRITE, insn->src_reg, false, false); 16598 if (err) 16599 return err; 16600 16601 err = save_aux_ptr_type(env, dst_reg_type, false); 16602 if (err) 16603 return err; 16604 } else if (class == BPF_ST) { 16605 enum bpf_reg_type dst_reg_type; 16606 16607 if (BPF_MODE(insn->code) != BPF_MEM || 16608 insn->src_reg != BPF_REG_0) { 16609 verbose(env, "BPF_ST uses reserved fields\n"); 16610 return -EINVAL; 16611 } 16612 /* check src operand */ 16613 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16614 if (err) 16615 return err; 16616 16617 dst_reg_type = regs[insn->dst_reg].type; 16618 16619 /* check that memory (dst_reg + off) is writeable */ 16620 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16621 insn->off, BPF_SIZE(insn->code), 16622 BPF_WRITE, -1, false, false); 16623 if (err) 16624 return err; 16625 16626 err = save_aux_ptr_type(env, dst_reg_type, false); 16627 if (err) 16628 return err; 16629 } else if (class == BPF_JMP || class == BPF_JMP32) { 16630 u8 opcode = BPF_OP(insn->code); 16631 16632 env->jmps_processed++; 16633 if (opcode == BPF_CALL) { 16634 if (BPF_SRC(insn->code) != BPF_K || 16635 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16636 && insn->off != 0) || 16637 (insn->src_reg != BPF_REG_0 && 16638 insn->src_reg != BPF_PSEUDO_CALL && 16639 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16640 insn->dst_reg != BPF_REG_0 || 16641 class == BPF_JMP32) { 16642 verbose(env, "BPF_CALL uses reserved fields\n"); 16643 return -EINVAL; 16644 } 16645 16646 if (env->cur_state->active_lock.ptr) { 16647 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16648 (insn->src_reg == BPF_PSEUDO_CALL) || 16649 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16650 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16651 verbose(env, "function calls are not allowed while holding a lock\n"); 16652 return -EINVAL; 16653 } 16654 } 16655 if (insn->src_reg == BPF_PSEUDO_CALL) 16656 err = check_func_call(env, insn, &env->insn_idx); 16657 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16658 err = check_kfunc_call(env, insn, &env->insn_idx); 16659 else 16660 err = check_helper_call(env, insn, &env->insn_idx); 16661 if (err) 16662 return err; 16663 16664 mark_reg_scratched(env, BPF_REG_0); 16665 } else if (opcode == BPF_JA) { 16666 if (BPF_SRC(insn->code) != BPF_K || 16667 insn->src_reg != BPF_REG_0 || 16668 insn->dst_reg != BPF_REG_0 || 16669 (class == BPF_JMP && insn->imm != 0) || 16670 (class == BPF_JMP32 && insn->off != 0)) { 16671 verbose(env, "BPF_JA uses reserved fields\n"); 16672 return -EINVAL; 16673 } 16674 16675 if (class == BPF_JMP) 16676 env->insn_idx += insn->off + 1; 16677 else 16678 env->insn_idx += insn->imm + 1; 16679 continue; 16680 16681 } else if (opcode == BPF_EXIT) { 16682 if (BPF_SRC(insn->code) != BPF_K || 16683 insn->imm != 0 || 16684 insn->src_reg != BPF_REG_0 || 16685 insn->dst_reg != BPF_REG_0 || 16686 class == BPF_JMP32) { 16687 verbose(env, "BPF_EXIT uses reserved fields\n"); 16688 return -EINVAL; 16689 } 16690 16691 if (env->cur_state->active_lock.ptr && 16692 !in_rbtree_lock_required_cb(env)) { 16693 verbose(env, "bpf_spin_unlock is missing\n"); 16694 return -EINVAL; 16695 } 16696 16697 if (env->cur_state->active_rcu_lock && 16698 !in_rbtree_lock_required_cb(env)) { 16699 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16700 return -EINVAL; 16701 } 16702 16703 /* We must do check_reference_leak here before 16704 * prepare_func_exit to handle the case when 16705 * state->curframe > 0, it may be a callback 16706 * function, for which reference_state must 16707 * match caller reference state when it exits. 16708 */ 16709 err = check_reference_leak(env); 16710 if (err) 16711 return err; 16712 16713 if (state->curframe) { 16714 /* exit from nested function */ 16715 err = prepare_func_exit(env, &env->insn_idx); 16716 if (err) 16717 return err; 16718 do_print_state = true; 16719 continue; 16720 } 16721 16722 err = check_return_code(env); 16723 if (err) 16724 return err; 16725 process_bpf_exit: 16726 mark_verifier_state_scratched(env); 16727 update_branch_counts(env, env->cur_state); 16728 err = pop_stack(env, &prev_insn_idx, 16729 &env->insn_idx, pop_log); 16730 if (err < 0) { 16731 if (err != -ENOENT) 16732 return err; 16733 break; 16734 } else { 16735 do_print_state = true; 16736 continue; 16737 } 16738 } else { 16739 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16740 if (err) 16741 return err; 16742 } 16743 } else if (class == BPF_LD) { 16744 u8 mode = BPF_MODE(insn->code); 16745 16746 if (mode == BPF_ABS || mode == BPF_IND) { 16747 err = check_ld_abs(env, insn); 16748 if (err) 16749 return err; 16750 16751 } else if (mode == BPF_IMM) { 16752 err = check_ld_imm(env, insn); 16753 if (err) 16754 return err; 16755 16756 env->insn_idx++; 16757 sanitize_mark_insn_seen(env); 16758 } else { 16759 verbose(env, "invalid BPF_LD mode\n"); 16760 return -EINVAL; 16761 } 16762 } else { 16763 verbose(env, "unknown insn class %d\n", class); 16764 return -EINVAL; 16765 } 16766 16767 env->insn_idx++; 16768 } 16769 16770 return 0; 16771 } 16772 16773 static int find_btf_percpu_datasec(struct btf *btf) 16774 { 16775 const struct btf_type *t; 16776 const char *tname; 16777 int i, n; 16778 16779 /* 16780 * Both vmlinux and module each have their own ".data..percpu" 16781 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16782 * types to look at only module's own BTF types. 16783 */ 16784 n = btf_nr_types(btf); 16785 if (btf_is_module(btf)) 16786 i = btf_nr_types(btf_vmlinux); 16787 else 16788 i = 1; 16789 16790 for(; i < n; i++) { 16791 t = btf_type_by_id(btf, i); 16792 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16793 continue; 16794 16795 tname = btf_name_by_offset(btf, t->name_off); 16796 if (!strcmp(tname, ".data..percpu")) 16797 return i; 16798 } 16799 16800 return -ENOENT; 16801 } 16802 16803 /* replace pseudo btf_id with kernel symbol address */ 16804 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16805 struct bpf_insn *insn, 16806 struct bpf_insn_aux_data *aux) 16807 { 16808 const struct btf_var_secinfo *vsi; 16809 const struct btf_type *datasec; 16810 struct btf_mod_pair *btf_mod; 16811 const struct btf_type *t; 16812 const char *sym_name; 16813 bool percpu = false; 16814 u32 type, id = insn->imm; 16815 struct btf *btf; 16816 s32 datasec_id; 16817 u64 addr; 16818 int i, btf_fd, err; 16819 16820 btf_fd = insn[1].imm; 16821 if (btf_fd) { 16822 btf = btf_get_by_fd(btf_fd); 16823 if (IS_ERR(btf)) { 16824 verbose(env, "invalid module BTF object FD specified.\n"); 16825 return -EINVAL; 16826 } 16827 } else { 16828 if (!btf_vmlinux) { 16829 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16830 return -EINVAL; 16831 } 16832 btf = btf_vmlinux; 16833 btf_get(btf); 16834 } 16835 16836 t = btf_type_by_id(btf, id); 16837 if (!t) { 16838 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16839 err = -ENOENT; 16840 goto err_put; 16841 } 16842 16843 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16844 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16845 err = -EINVAL; 16846 goto err_put; 16847 } 16848 16849 sym_name = btf_name_by_offset(btf, t->name_off); 16850 addr = kallsyms_lookup_name(sym_name); 16851 if (!addr) { 16852 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16853 sym_name); 16854 err = -ENOENT; 16855 goto err_put; 16856 } 16857 insn[0].imm = (u32)addr; 16858 insn[1].imm = addr >> 32; 16859 16860 if (btf_type_is_func(t)) { 16861 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16862 aux->btf_var.mem_size = 0; 16863 goto check_btf; 16864 } 16865 16866 datasec_id = find_btf_percpu_datasec(btf); 16867 if (datasec_id > 0) { 16868 datasec = btf_type_by_id(btf, datasec_id); 16869 for_each_vsi(i, datasec, vsi) { 16870 if (vsi->type == id) { 16871 percpu = true; 16872 break; 16873 } 16874 } 16875 } 16876 16877 type = t->type; 16878 t = btf_type_skip_modifiers(btf, type, NULL); 16879 if (percpu) { 16880 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16881 aux->btf_var.btf = btf; 16882 aux->btf_var.btf_id = type; 16883 } else if (!btf_type_is_struct(t)) { 16884 const struct btf_type *ret; 16885 const char *tname; 16886 u32 tsize; 16887 16888 /* resolve the type size of ksym. */ 16889 ret = btf_resolve_size(btf, t, &tsize); 16890 if (IS_ERR(ret)) { 16891 tname = btf_name_by_offset(btf, t->name_off); 16892 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16893 tname, PTR_ERR(ret)); 16894 err = -EINVAL; 16895 goto err_put; 16896 } 16897 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16898 aux->btf_var.mem_size = tsize; 16899 } else { 16900 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16901 aux->btf_var.btf = btf; 16902 aux->btf_var.btf_id = type; 16903 } 16904 check_btf: 16905 /* check whether we recorded this BTF (and maybe module) already */ 16906 for (i = 0; i < env->used_btf_cnt; i++) { 16907 if (env->used_btfs[i].btf == btf) { 16908 btf_put(btf); 16909 return 0; 16910 } 16911 } 16912 16913 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16914 err = -E2BIG; 16915 goto err_put; 16916 } 16917 16918 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16919 btf_mod->btf = btf; 16920 btf_mod->module = NULL; 16921 16922 /* if we reference variables from kernel module, bump its refcount */ 16923 if (btf_is_module(btf)) { 16924 btf_mod->module = btf_try_get_module(btf); 16925 if (!btf_mod->module) { 16926 err = -ENXIO; 16927 goto err_put; 16928 } 16929 } 16930 16931 env->used_btf_cnt++; 16932 16933 return 0; 16934 err_put: 16935 btf_put(btf); 16936 return err; 16937 } 16938 16939 static bool is_tracing_prog_type(enum bpf_prog_type type) 16940 { 16941 switch (type) { 16942 case BPF_PROG_TYPE_KPROBE: 16943 case BPF_PROG_TYPE_TRACEPOINT: 16944 case BPF_PROG_TYPE_PERF_EVENT: 16945 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16946 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16947 return true; 16948 default: 16949 return false; 16950 } 16951 } 16952 16953 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16954 struct bpf_map *map, 16955 struct bpf_prog *prog) 16956 16957 { 16958 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16959 16960 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16961 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16962 if (is_tracing_prog_type(prog_type)) { 16963 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16964 return -EINVAL; 16965 } 16966 } 16967 16968 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16969 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16970 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16971 return -EINVAL; 16972 } 16973 16974 if (is_tracing_prog_type(prog_type)) { 16975 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16976 return -EINVAL; 16977 } 16978 } 16979 16980 if (btf_record_has_field(map->record, BPF_TIMER)) { 16981 if (is_tracing_prog_type(prog_type)) { 16982 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16983 return -EINVAL; 16984 } 16985 } 16986 16987 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16988 !bpf_offload_prog_map_match(prog, map)) { 16989 verbose(env, "offload device mismatch between prog and map\n"); 16990 return -EINVAL; 16991 } 16992 16993 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16994 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16995 return -EINVAL; 16996 } 16997 16998 if (prog->aux->sleepable) 16999 switch (map->map_type) { 17000 case BPF_MAP_TYPE_HASH: 17001 case BPF_MAP_TYPE_LRU_HASH: 17002 case BPF_MAP_TYPE_ARRAY: 17003 case BPF_MAP_TYPE_PERCPU_HASH: 17004 case BPF_MAP_TYPE_PERCPU_ARRAY: 17005 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17006 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17007 case BPF_MAP_TYPE_HASH_OF_MAPS: 17008 case BPF_MAP_TYPE_RINGBUF: 17009 case BPF_MAP_TYPE_USER_RINGBUF: 17010 case BPF_MAP_TYPE_INODE_STORAGE: 17011 case BPF_MAP_TYPE_SK_STORAGE: 17012 case BPF_MAP_TYPE_TASK_STORAGE: 17013 case BPF_MAP_TYPE_CGRP_STORAGE: 17014 break; 17015 default: 17016 verbose(env, 17017 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17018 return -EINVAL; 17019 } 17020 17021 return 0; 17022 } 17023 17024 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17025 { 17026 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17027 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17028 } 17029 17030 /* find and rewrite pseudo imm in ld_imm64 instructions: 17031 * 17032 * 1. if it accesses map FD, replace it with actual map pointer. 17033 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17034 * 17035 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17036 */ 17037 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17038 { 17039 struct bpf_insn *insn = env->prog->insnsi; 17040 int insn_cnt = env->prog->len; 17041 int i, j, err; 17042 17043 err = bpf_prog_calc_tag(env->prog); 17044 if (err) 17045 return err; 17046 17047 for (i = 0; i < insn_cnt; i++, insn++) { 17048 if (BPF_CLASS(insn->code) == BPF_LDX && 17049 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17050 insn->imm != 0)) { 17051 verbose(env, "BPF_LDX uses reserved fields\n"); 17052 return -EINVAL; 17053 } 17054 17055 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17056 struct bpf_insn_aux_data *aux; 17057 struct bpf_map *map; 17058 struct fd f; 17059 u64 addr; 17060 u32 fd; 17061 17062 if (i == insn_cnt - 1 || insn[1].code != 0 || 17063 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17064 insn[1].off != 0) { 17065 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17066 return -EINVAL; 17067 } 17068 17069 if (insn[0].src_reg == 0) 17070 /* valid generic load 64-bit imm */ 17071 goto next_insn; 17072 17073 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17074 aux = &env->insn_aux_data[i]; 17075 err = check_pseudo_btf_id(env, insn, aux); 17076 if (err) 17077 return err; 17078 goto next_insn; 17079 } 17080 17081 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17082 aux = &env->insn_aux_data[i]; 17083 aux->ptr_type = PTR_TO_FUNC; 17084 goto next_insn; 17085 } 17086 17087 /* In final convert_pseudo_ld_imm64() step, this is 17088 * converted into regular 64-bit imm load insn. 17089 */ 17090 switch (insn[0].src_reg) { 17091 case BPF_PSEUDO_MAP_VALUE: 17092 case BPF_PSEUDO_MAP_IDX_VALUE: 17093 break; 17094 case BPF_PSEUDO_MAP_FD: 17095 case BPF_PSEUDO_MAP_IDX: 17096 if (insn[1].imm == 0) 17097 break; 17098 fallthrough; 17099 default: 17100 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17101 return -EINVAL; 17102 } 17103 17104 switch (insn[0].src_reg) { 17105 case BPF_PSEUDO_MAP_IDX_VALUE: 17106 case BPF_PSEUDO_MAP_IDX: 17107 if (bpfptr_is_null(env->fd_array)) { 17108 verbose(env, "fd_idx without fd_array is invalid\n"); 17109 return -EPROTO; 17110 } 17111 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17112 insn[0].imm * sizeof(fd), 17113 sizeof(fd))) 17114 return -EFAULT; 17115 break; 17116 default: 17117 fd = insn[0].imm; 17118 break; 17119 } 17120 17121 f = fdget(fd); 17122 map = __bpf_map_get(f); 17123 if (IS_ERR(map)) { 17124 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17125 insn[0].imm); 17126 return PTR_ERR(map); 17127 } 17128 17129 err = check_map_prog_compatibility(env, map, env->prog); 17130 if (err) { 17131 fdput(f); 17132 return err; 17133 } 17134 17135 aux = &env->insn_aux_data[i]; 17136 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17137 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17138 addr = (unsigned long)map; 17139 } else { 17140 u32 off = insn[1].imm; 17141 17142 if (off >= BPF_MAX_VAR_OFF) { 17143 verbose(env, "direct value offset of %u is not allowed\n", off); 17144 fdput(f); 17145 return -EINVAL; 17146 } 17147 17148 if (!map->ops->map_direct_value_addr) { 17149 verbose(env, "no direct value access support for this map type\n"); 17150 fdput(f); 17151 return -EINVAL; 17152 } 17153 17154 err = map->ops->map_direct_value_addr(map, &addr, off); 17155 if (err) { 17156 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17157 map->value_size, off); 17158 fdput(f); 17159 return err; 17160 } 17161 17162 aux->map_off = off; 17163 addr += off; 17164 } 17165 17166 insn[0].imm = (u32)addr; 17167 insn[1].imm = addr >> 32; 17168 17169 /* check whether we recorded this map already */ 17170 for (j = 0; j < env->used_map_cnt; j++) { 17171 if (env->used_maps[j] == map) { 17172 aux->map_index = j; 17173 fdput(f); 17174 goto next_insn; 17175 } 17176 } 17177 17178 if (env->used_map_cnt >= MAX_USED_MAPS) { 17179 fdput(f); 17180 return -E2BIG; 17181 } 17182 17183 /* hold the map. If the program is rejected by verifier, 17184 * the map will be released by release_maps() or it 17185 * will be used by the valid program until it's unloaded 17186 * and all maps are released in free_used_maps() 17187 */ 17188 bpf_map_inc(map); 17189 17190 aux->map_index = env->used_map_cnt; 17191 env->used_maps[env->used_map_cnt++] = map; 17192 17193 if (bpf_map_is_cgroup_storage(map) && 17194 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17195 verbose(env, "only one cgroup storage of each type is allowed\n"); 17196 fdput(f); 17197 return -EBUSY; 17198 } 17199 17200 fdput(f); 17201 next_insn: 17202 insn++; 17203 i++; 17204 continue; 17205 } 17206 17207 /* Basic sanity check before we invest more work here. */ 17208 if (!bpf_opcode_in_insntable(insn->code)) { 17209 verbose(env, "unknown opcode %02x\n", insn->code); 17210 return -EINVAL; 17211 } 17212 } 17213 17214 /* now all pseudo BPF_LD_IMM64 instructions load valid 17215 * 'struct bpf_map *' into a register instead of user map_fd. 17216 * These pointers will be used later by verifier to validate map access. 17217 */ 17218 return 0; 17219 } 17220 17221 /* drop refcnt of maps used by the rejected program */ 17222 static void release_maps(struct bpf_verifier_env *env) 17223 { 17224 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17225 env->used_map_cnt); 17226 } 17227 17228 /* drop refcnt of maps used by the rejected program */ 17229 static void release_btfs(struct bpf_verifier_env *env) 17230 { 17231 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17232 env->used_btf_cnt); 17233 } 17234 17235 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17236 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17237 { 17238 struct bpf_insn *insn = env->prog->insnsi; 17239 int insn_cnt = env->prog->len; 17240 int i; 17241 17242 for (i = 0; i < insn_cnt; i++, insn++) { 17243 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17244 continue; 17245 if (insn->src_reg == BPF_PSEUDO_FUNC) 17246 continue; 17247 insn->src_reg = 0; 17248 } 17249 } 17250 17251 /* single env->prog->insni[off] instruction was replaced with the range 17252 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17253 * [0, off) and [off, end) to new locations, so the patched range stays zero 17254 */ 17255 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17256 struct bpf_insn_aux_data *new_data, 17257 struct bpf_prog *new_prog, u32 off, u32 cnt) 17258 { 17259 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17260 struct bpf_insn *insn = new_prog->insnsi; 17261 u32 old_seen = old_data[off].seen; 17262 u32 prog_len; 17263 int i; 17264 17265 /* aux info at OFF always needs adjustment, no matter fast path 17266 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17267 * original insn at old prog. 17268 */ 17269 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17270 17271 if (cnt == 1) 17272 return; 17273 prog_len = new_prog->len; 17274 17275 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17276 memcpy(new_data + off + cnt - 1, old_data + off, 17277 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17278 for (i = off; i < off + cnt - 1; i++) { 17279 /* Expand insni[off]'s seen count to the patched range. */ 17280 new_data[i].seen = old_seen; 17281 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17282 } 17283 env->insn_aux_data = new_data; 17284 vfree(old_data); 17285 } 17286 17287 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17288 { 17289 int i; 17290 17291 if (len == 1) 17292 return; 17293 /* NOTE: fake 'exit' subprog should be updated as well. */ 17294 for (i = 0; i <= env->subprog_cnt; i++) { 17295 if (env->subprog_info[i].start <= off) 17296 continue; 17297 env->subprog_info[i].start += len - 1; 17298 } 17299 } 17300 17301 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17302 { 17303 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17304 int i, sz = prog->aux->size_poke_tab; 17305 struct bpf_jit_poke_descriptor *desc; 17306 17307 for (i = 0; i < sz; i++) { 17308 desc = &tab[i]; 17309 if (desc->insn_idx <= off) 17310 continue; 17311 desc->insn_idx += len - 1; 17312 } 17313 } 17314 17315 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17316 const struct bpf_insn *patch, u32 len) 17317 { 17318 struct bpf_prog *new_prog; 17319 struct bpf_insn_aux_data *new_data = NULL; 17320 17321 if (len > 1) { 17322 new_data = vzalloc(array_size(env->prog->len + len - 1, 17323 sizeof(struct bpf_insn_aux_data))); 17324 if (!new_data) 17325 return NULL; 17326 } 17327 17328 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17329 if (IS_ERR(new_prog)) { 17330 if (PTR_ERR(new_prog) == -ERANGE) 17331 verbose(env, 17332 "insn %d cannot be patched due to 16-bit range\n", 17333 env->insn_aux_data[off].orig_idx); 17334 vfree(new_data); 17335 return NULL; 17336 } 17337 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17338 adjust_subprog_starts(env, off, len); 17339 adjust_poke_descs(new_prog, off, len); 17340 return new_prog; 17341 } 17342 17343 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17344 u32 off, u32 cnt) 17345 { 17346 int i, j; 17347 17348 /* find first prog starting at or after off (first to remove) */ 17349 for (i = 0; i < env->subprog_cnt; i++) 17350 if (env->subprog_info[i].start >= off) 17351 break; 17352 /* find first prog starting at or after off + cnt (first to stay) */ 17353 for (j = i; j < env->subprog_cnt; j++) 17354 if (env->subprog_info[j].start >= off + cnt) 17355 break; 17356 /* if j doesn't start exactly at off + cnt, we are just removing 17357 * the front of previous prog 17358 */ 17359 if (env->subprog_info[j].start != off + cnt) 17360 j--; 17361 17362 if (j > i) { 17363 struct bpf_prog_aux *aux = env->prog->aux; 17364 int move; 17365 17366 /* move fake 'exit' subprog as well */ 17367 move = env->subprog_cnt + 1 - j; 17368 17369 memmove(env->subprog_info + i, 17370 env->subprog_info + j, 17371 sizeof(*env->subprog_info) * move); 17372 env->subprog_cnt -= j - i; 17373 17374 /* remove func_info */ 17375 if (aux->func_info) { 17376 move = aux->func_info_cnt - j; 17377 17378 memmove(aux->func_info + i, 17379 aux->func_info + j, 17380 sizeof(*aux->func_info) * move); 17381 aux->func_info_cnt -= j - i; 17382 /* func_info->insn_off is set after all code rewrites, 17383 * in adjust_btf_func() - no need to adjust 17384 */ 17385 } 17386 } else { 17387 /* convert i from "first prog to remove" to "first to adjust" */ 17388 if (env->subprog_info[i].start == off) 17389 i++; 17390 } 17391 17392 /* update fake 'exit' subprog as well */ 17393 for (; i <= env->subprog_cnt; i++) 17394 env->subprog_info[i].start -= cnt; 17395 17396 return 0; 17397 } 17398 17399 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17400 u32 cnt) 17401 { 17402 struct bpf_prog *prog = env->prog; 17403 u32 i, l_off, l_cnt, nr_linfo; 17404 struct bpf_line_info *linfo; 17405 17406 nr_linfo = prog->aux->nr_linfo; 17407 if (!nr_linfo) 17408 return 0; 17409 17410 linfo = prog->aux->linfo; 17411 17412 /* find first line info to remove, count lines to be removed */ 17413 for (i = 0; i < nr_linfo; i++) 17414 if (linfo[i].insn_off >= off) 17415 break; 17416 17417 l_off = i; 17418 l_cnt = 0; 17419 for (; i < nr_linfo; i++) 17420 if (linfo[i].insn_off < off + cnt) 17421 l_cnt++; 17422 else 17423 break; 17424 17425 /* First live insn doesn't match first live linfo, it needs to "inherit" 17426 * last removed linfo. prog is already modified, so prog->len == off 17427 * means no live instructions after (tail of the program was removed). 17428 */ 17429 if (prog->len != off && l_cnt && 17430 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17431 l_cnt--; 17432 linfo[--i].insn_off = off + cnt; 17433 } 17434 17435 /* remove the line info which refer to the removed instructions */ 17436 if (l_cnt) { 17437 memmove(linfo + l_off, linfo + i, 17438 sizeof(*linfo) * (nr_linfo - i)); 17439 17440 prog->aux->nr_linfo -= l_cnt; 17441 nr_linfo = prog->aux->nr_linfo; 17442 } 17443 17444 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17445 for (i = l_off; i < nr_linfo; i++) 17446 linfo[i].insn_off -= cnt; 17447 17448 /* fix up all subprogs (incl. 'exit') which start >= off */ 17449 for (i = 0; i <= env->subprog_cnt; i++) 17450 if (env->subprog_info[i].linfo_idx > l_off) { 17451 /* program may have started in the removed region but 17452 * may not be fully removed 17453 */ 17454 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17455 env->subprog_info[i].linfo_idx -= l_cnt; 17456 else 17457 env->subprog_info[i].linfo_idx = l_off; 17458 } 17459 17460 return 0; 17461 } 17462 17463 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17464 { 17465 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17466 unsigned int orig_prog_len = env->prog->len; 17467 int err; 17468 17469 if (bpf_prog_is_offloaded(env->prog->aux)) 17470 bpf_prog_offload_remove_insns(env, off, cnt); 17471 17472 err = bpf_remove_insns(env->prog, off, cnt); 17473 if (err) 17474 return err; 17475 17476 err = adjust_subprog_starts_after_remove(env, off, cnt); 17477 if (err) 17478 return err; 17479 17480 err = bpf_adj_linfo_after_remove(env, off, cnt); 17481 if (err) 17482 return err; 17483 17484 memmove(aux_data + off, aux_data + off + cnt, 17485 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17486 17487 return 0; 17488 } 17489 17490 /* The verifier does more data flow analysis than llvm and will not 17491 * explore branches that are dead at run time. Malicious programs can 17492 * have dead code too. Therefore replace all dead at-run-time code 17493 * with 'ja -1'. 17494 * 17495 * Just nops are not optimal, e.g. if they would sit at the end of the 17496 * program and through another bug we would manage to jump there, then 17497 * we'd execute beyond program memory otherwise. Returning exception 17498 * code also wouldn't work since we can have subprogs where the dead 17499 * code could be located. 17500 */ 17501 static void sanitize_dead_code(struct bpf_verifier_env *env) 17502 { 17503 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17504 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17505 struct bpf_insn *insn = env->prog->insnsi; 17506 const int insn_cnt = env->prog->len; 17507 int i; 17508 17509 for (i = 0; i < insn_cnt; i++) { 17510 if (aux_data[i].seen) 17511 continue; 17512 memcpy(insn + i, &trap, sizeof(trap)); 17513 aux_data[i].zext_dst = false; 17514 } 17515 } 17516 17517 static bool insn_is_cond_jump(u8 code) 17518 { 17519 u8 op; 17520 17521 op = BPF_OP(code); 17522 if (BPF_CLASS(code) == BPF_JMP32) 17523 return op != BPF_JA; 17524 17525 if (BPF_CLASS(code) != BPF_JMP) 17526 return false; 17527 17528 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17529 } 17530 17531 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17532 { 17533 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17534 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17535 struct bpf_insn *insn = env->prog->insnsi; 17536 const int insn_cnt = env->prog->len; 17537 int i; 17538 17539 for (i = 0; i < insn_cnt; i++, insn++) { 17540 if (!insn_is_cond_jump(insn->code)) 17541 continue; 17542 17543 if (!aux_data[i + 1].seen) 17544 ja.off = insn->off; 17545 else if (!aux_data[i + 1 + insn->off].seen) 17546 ja.off = 0; 17547 else 17548 continue; 17549 17550 if (bpf_prog_is_offloaded(env->prog->aux)) 17551 bpf_prog_offload_replace_insn(env, i, &ja); 17552 17553 memcpy(insn, &ja, sizeof(ja)); 17554 } 17555 } 17556 17557 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17558 { 17559 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17560 int insn_cnt = env->prog->len; 17561 int i, err; 17562 17563 for (i = 0; i < insn_cnt; i++) { 17564 int j; 17565 17566 j = 0; 17567 while (i + j < insn_cnt && !aux_data[i + j].seen) 17568 j++; 17569 if (!j) 17570 continue; 17571 17572 err = verifier_remove_insns(env, i, j); 17573 if (err) 17574 return err; 17575 insn_cnt = env->prog->len; 17576 } 17577 17578 return 0; 17579 } 17580 17581 static int opt_remove_nops(struct bpf_verifier_env *env) 17582 { 17583 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17584 struct bpf_insn *insn = env->prog->insnsi; 17585 int insn_cnt = env->prog->len; 17586 int i, err; 17587 17588 for (i = 0; i < insn_cnt; i++) { 17589 if (memcmp(&insn[i], &ja, sizeof(ja))) 17590 continue; 17591 17592 err = verifier_remove_insns(env, i, 1); 17593 if (err) 17594 return err; 17595 insn_cnt--; 17596 i--; 17597 } 17598 17599 return 0; 17600 } 17601 17602 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17603 const union bpf_attr *attr) 17604 { 17605 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17606 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17607 int i, patch_len, delta = 0, len = env->prog->len; 17608 struct bpf_insn *insns = env->prog->insnsi; 17609 struct bpf_prog *new_prog; 17610 bool rnd_hi32; 17611 17612 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17613 zext_patch[1] = BPF_ZEXT_REG(0); 17614 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17615 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17616 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17617 for (i = 0; i < len; i++) { 17618 int adj_idx = i + delta; 17619 struct bpf_insn insn; 17620 int load_reg; 17621 17622 insn = insns[adj_idx]; 17623 load_reg = insn_def_regno(&insn); 17624 if (!aux[adj_idx].zext_dst) { 17625 u8 code, class; 17626 u32 imm_rnd; 17627 17628 if (!rnd_hi32) 17629 continue; 17630 17631 code = insn.code; 17632 class = BPF_CLASS(code); 17633 if (load_reg == -1) 17634 continue; 17635 17636 /* NOTE: arg "reg" (the fourth one) is only used for 17637 * BPF_STX + SRC_OP, so it is safe to pass NULL 17638 * here. 17639 */ 17640 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17641 if (class == BPF_LD && 17642 BPF_MODE(code) == BPF_IMM) 17643 i++; 17644 continue; 17645 } 17646 17647 /* ctx load could be transformed into wider load. */ 17648 if (class == BPF_LDX && 17649 aux[adj_idx].ptr_type == PTR_TO_CTX) 17650 continue; 17651 17652 imm_rnd = get_random_u32(); 17653 rnd_hi32_patch[0] = insn; 17654 rnd_hi32_patch[1].imm = imm_rnd; 17655 rnd_hi32_patch[3].dst_reg = load_reg; 17656 patch = rnd_hi32_patch; 17657 patch_len = 4; 17658 goto apply_patch_buffer; 17659 } 17660 17661 /* Add in an zero-extend instruction if a) the JIT has requested 17662 * it or b) it's a CMPXCHG. 17663 * 17664 * The latter is because: BPF_CMPXCHG always loads a value into 17665 * R0, therefore always zero-extends. However some archs' 17666 * equivalent instruction only does this load when the 17667 * comparison is successful. This detail of CMPXCHG is 17668 * orthogonal to the general zero-extension behaviour of the 17669 * CPU, so it's treated independently of bpf_jit_needs_zext. 17670 */ 17671 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17672 continue; 17673 17674 /* Zero-extension is done by the caller. */ 17675 if (bpf_pseudo_kfunc_call(&insn)) 17676 continue; 17677 17678 if (WARN_ON(load_reg == -1)) { 17679 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17680 return -EFAULT; 17681 } 17682 17683 zext_patch[0] = insn; 17684 zext_patch[1].dst_reg = load_reg; 17685 zext_patch[1].src_reg = load_reg; 17686 patch = zext_patch; 17687 patch_len = 2; 17688 apply_patch_buffer: 17689 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17690 if (!new_prog) 17691 return -ENOMEM; 17692 env->prog = new_prog; 17693 insns = new_prog->insnsi; 17694 aux = env->insn_aux_data; 17695 delta += patch_len - 1; 17696 } 17697 17698 return 0; 17699 } 17700 17701 /* convert load instructions that access fields of a context type into a 17702 * sequence of instructions that access fields of the underlying structure: 17703 * struct __sk_buff -> struct sk_buff 17704 * struct bpf_sock_ops -> struct sock 17705 */ 17706 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17707 { 17708 const struct bpf_verifier_ops *ops = env->ops; 17709 int i, cnt, size, ctx_field_size, delta = 0; 17710 const int insn_cnt = env->prog->len; 17711 struct bpf_insn insn_buf[16], *insn; 17712 u32 target_size, size_default, off; 17713 struct bpf_prog *new_prog; 17714 enum bpf_access_type type; 17715 bool is_narrower_load; 17716 17717 if (ops->gen_prologue || env->seen_direct_write) { 17718 if (!ops->gen_prologue) { 17719 verbose(env, "bpf verifier is misconfigured\n"); 17720 return -EINVAL; 17721 } 17722 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17723 env->prog); 17724 if (cnt >= ARRAY_SIZE(insn_buf)) { 17725 verbose(env, "bpf verifier is misconfigured\n"); 17726 return -EINVAL; 17727 } else if (cnt) { 17728 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17729 if (!new_prog) 17730 return -ENOMEM; 17731 17732 env->prog = new_prog; 17733 delta += cnt - 1; 17734 } 17735 } 17736 17737 if (bpf_prog_is_offloaded(env->prog->aux)) 17738 return 0; 17739 17740 insn = env->prog->insnsi + delta; 17741 17742 for (i = 0; i < insn_cnt; i++, insn++) { 17743 bpf_convert_ctx_access_t convert_ctx_access; 17744 u8 mode; 17745 17746 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17747 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17748 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17749 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 17750 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 17751 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 17752 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 17753 type = BPF_READ; 17754 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17755 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17756 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17757 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17758 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17759 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17760 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17761 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17762 type = BPF_WRITE; 17763 } else { 17764 continue; 17765 } 17766 17767 if (type == BPF_WRITE && 17768 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17769 struct bpf_insn patch[] = { 17770 *insn, 17771 BPF_ST_NOSPEC(), 17772 }; 17773 17774 cnt = ARRAY_SIZE(patch); 17775 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17776 if (!new_prog) 17777 return -ENOMEM; 17778 17779 delta += cnt - 1; 17780 env->prog = new_prog; 17781 insn = new_prog->insnsi + i + delta; 17782 continue; 17783 } 17784 17785 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17786 case PTR_TO_CTX: 17787 if (!ops->convert_ctx_access) 17788 continue; 17789 convert_ctx_access = ops->convert_ctx_access; 17790 break; 17791 case PTR_TO_SOCKET: 17792 case PTR_TO_SOCK_COMMON: 17793 convert_ctx_access = bpf_sock_convert_ctx_access; 17794 break; 17795 case PTR_TO_TCP_SOCK: 17796 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17797 break; 17798 case PTR_TO_XDP_SOCK: 17799 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17800 break; 17801 case PTR_TO_BTF_ID: 17802 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17803 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17804 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17805 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17806 * any faults for loads into such types. BPF_WRITE is disallowed 17807 * for this case. 17808 */ 17809 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17810 if (type == BPF_READ) { 17811 if (BPF_MODE(insn->code) == BPF_MEM) 17812 insn->code = BPF_LDX | BPF_PROBE_MEM | 17813 BPF_SIZE((insn)->code); 17814 else 17815 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 17816 BPF_SIZE((insn)->code); 17817 env->prog->aux->num_exentries++; 17818 } 17819 continue; 17820 default: 17821 continue; 17822 } 17823 17824 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17825 size = BPF_LDST_BYTES(insn); 17826 mode = BPF_MODE(insn->code); 17827 17828 /* If the read access is a narrower load of the field, 17829 * convert to a 4/8-byte load, to minimum program type specific 17830 * convert_ctx_access changes. If conversion is successful, 17831 * we will apply proper mask to the result. 17832 */ 17833 is_narrower_load = size < ctx_field_size; 17834 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17835 off = insn->off; 17836 if (is_narrower_load) { 17837 u8 size_code; 17838 17839 if (type == BPF_WRITE) { 17840 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17841 return -EINVAL; 17842 } 17843 17844 size_code = BPF_H; 17845 if (ctx_field_size == 4) 17846 size_code = BPF_W; 17847 else if (ctx_field_size == 8) 17848 size_code = BPF_DW; 17849 17850 insn->off = off & ~(size_default - 1); 17851 insn->code = BPF_LDX | BPF_MEM | size_code; 17852 } 17853 17854 target_size = 0; 17855 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17856 &target_size); 17857 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17858 (ctx_field_size && !target_size)) { 17859 verbose(env, "bpf verifier is misconfigured\n"); 17860 return -EINVAL; 17861 } 17862 17863 if (is_narrower_load && size < target_size) { 17864 u8 shift = bpf_ctx_narrow_access_offset( 17865 off, size, size_default) * 8; 17866 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17867 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17868 return -EINVAL; 17869 } 17870 if (ctx_field_size <= 4) { 17871 if (shift) 17872 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17873 insn->dst_reg, 17874 shift); 17875 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17876 (1 << size * 8) - 1); 17877 } else { 17878 if (shift) 17879 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17880 insn->dst_reg, 17881 shift); 17882 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17883 (1ULL << size * 8) - 1); 17884 } 17885 } 17886 if (mode == BPF_MEMSX) 17887 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 17888 insn->dst_reg, insn->dst_reg, 17889 size * 8, 0); 17890 17891 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17892 if (!new_prog) 17893 return -ENOMEM; 17894 17895 delta += cnt - 1; 17896 17897 /* keep walking new program and skip insns we just inserted */ 17898 env->prog = new_prog; 17899 insn = new_prog->insnsi + i + delta; 17900 } 17901 17902 return 0; 17903 } 17904 17905 static int jit_subprogs(struct bpf_verifier_env *env) 17906 { 17907 struct bpf_prog *prog = env->prog, **func, *tmp; 17908 int i, j, subprog_start, subprog_end = 0, len, subprog; 17909 struct bpf_map *map_ptr; 17910 struct bpf_insn *insn; 17911 void *old_bpf_func; 17912 int err, num_exentries; 17913 17914 if (env->subprog_cnt <= 1) 17915 return 0; 17916 17917 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17918 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17919 continue; 17920 17921 /* Upon error here we cannot fall back to interpreter but 17922 * need a hard reject of the program. Thus -EFAULT is 17923 * propagated in any case. 17924 */ 17925 subprog = find_subprog(env, i + insn->imm + 1); 17926 if (subprog < 0) { 17927 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17928 i + insn->imm + 1); 17929 return -EFAULT; 17930 } 17931 /* temporarily remember subprog id inside insn instead of 17932 * aux_data, since next loop will split up all insns into funcs 17933 */ 17934 insn->off = subprog; 17935 /* remember original imm in case JIT fails and fallback 17936 * to interpreter will be needed 17937 */ 17938 env->insn_aux_data[i].call_imm = insn->imm; 17939 /* point imm to __bpf_call_base+1 from JITs point of view */ 17940 insn->imm = 1; 17941 if (bpf_pseudo_func(insn)) 17942 /* jit (e.g. x86_64) may emit fewer instructions 17943 * if it learns a u32 imm is the same as a u64 imm. 17944 * Force a non zero here. 17945 */ 17946 insn[1].imm = 1; 17947 } 17948 17949 err = bpf_prog_alloc_jited_linfo(prog); 17950 if (err) 17951 goto out_undo_insn; 17952 17953 err = -ENOMEM; 17954 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17955 if (!func) 17956 goto out_undo_insn; 17957 17958 for (i = 0; i < env->subprog_cnt; i++) { 17959 subprog_start = subprog_end; 17960 subprog_end = env->subprog_info[i + 1].start; 17961 17962 len = subprog_end - subprog_start; 17963 /* bpf_prog_run() doesn't call subprogs directly, 17964 * hence main prog stats include the runtime of subprogs. 17965 * subprogs don't have IDs and not reachable via prog_get_next_id 17966 * func[i]->stats will never be accessed and stays NULL 17967 */ 17968 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17969 if (!func[i]) 17970 goto out_free; 17971 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17972 len * sizeof(struct bpf_insn)); 17973 func[i]->type = prog->type; 17974 func[i]->len = len; 17975 if (bpf_prog_calc_tag(func[i])) 17976 goto out_free; 17977 func[i]->is_func = 1; 17978 func[i]->aux->func_idx = i; 17979 /* Below members will be freed only at prog->aux */ 17980 func[i]->aux->btf = prog->aux->btf; 17981 func[i]->aux->func_info = prog->aux->func_info; 17982 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17983 func[i]->aux->poke_tab = prog->aux->poke_tab; 17984 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17985 17986 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17987 struct bpf_jit_poke_descriptor *poke; 17988 17989 poke = &prog->aux->poke_tab[j]; 17990 if (poke->insn_idx < subprog_end && 17991 poke->insn_idx >= subprog_start) 17992 poke->aux = func[i]->aux; 17993 } 17994 17995 func[i]->aux->name[0] = 'F'; 17996 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17997 func[i]->jit_requested = 1; 17998 func[i]->blinding_requested = prog->blinding_requested; 17999 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18000 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18001 func[i]->aux->linfo = prog->aux->linfo; 18002 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18003 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18004 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18005 num_exentries = 0; 18006 insn = func[i]->insnsi; 18007 for (j = 0; j < func[i]->len; j++, insn++) { 18008 if (BPF_CLASS(insn->code) == BPF_LDX && 18009 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18010 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18011 num_exentries++; 18012 } 18013 func[i]->aux->num_exentries = num_exentries; 18014 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18015 func[i] = bpf_int_jit_compile(func[i]); 18016 if (!func[i]->jited) { 18017 err = -ENOTSUPP; 18018 goto out_free; 18019 } 18020 cond_resched(); 18021 } 18022 18023 /* at this point all bpf functions were successfully JITed 18024 * now populate all bpf_calls with correct addresses and 18025 * run last pass of JIT 18026 */ 18027 for (i = 0; i < env->subprog_cnt; i++) { 18028 insn = func[i]->insnsi; 18029 for (j = 0; j < func[i]->len; j++, insn++) { 18030 if (bpf_pseudo_func(insn)) { 18031 subprog = insn->off; 18032 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18033 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18034 continue; 18035 } 18036 if (!bpf_pseudo_call(insn)) 18037 continue; 18038 subprog = insn->off; 18039 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18040 } 18041 18042 /* we use the aux data to keep a list of the start addresses 18043 * of the JITed images for each function in the program 18044 * 18045 * for some architectures, such as powerpc64, the imm field 18046 * might not be large enough to hold the offset of the start 18047 * address of the callee's JITed image from __bpf_call_base 18048 * 18049 * in such cases, we can lookup the start address of a callee 18050 * by using its subprog id, available from the off field of 18051 * the call instruction, as an index for this list 18052 */ 18053 func[i]->aux->func = func; 18054 func[i]->aux->func_cnt = env->subprog_cnt; 18055 } 18056 for (i = 0; i < env->subprog_cnt; i++) { 18057 old_bpf_func = func[i]->bpf_func; 18058 tmp = bpf_int_jit_compile(func[i]); 18059 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18060 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18061 err = -ENOTSUPP; 18062 goto out_free; 18063 } 18064 cond_resched(); 18065 } 18066 18067 /* finally lock prog and jit images for all functions and 18068 * populate kallsysm. Begin at the first subprogram, since 18069 * bpf_prog_load will add the kallsyms for the main program. 18070 */ 18071 for (i = 1; i < env->subprog_cnt; i++) { 18072 bpf_prog_lock_ro(func[i]); 18073 bpf_prog_kallsyms_add(func[i]); 18074 } 18075 18076 /* Last step: make now unused interpreter insns from main 18077 * prog consistent for later dump requests, so they can 18078 * later look the same as if they were interpreted only. 18079 */ 18080 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18081 if (bpf_pseudo_func(insn)) { 18082 insn[0].imm = env->insn_aux_data[i].call_imm; 18083 insn[1].imm = insn->off; 18084 insn->off = 0; 18085 continue; 18086 } 18087 if (!bpf_pseudo_call(insn)) 18088 continue; 18089 insn->off = env->insn_aux_data[i].call_imm; 18090 subprog = find_subprog(env, i + insn->off + 1); 18091 insn->imm = subprog; 18092 } 18093 18094 prog->jited = 1; 18095 prog->bpf_func = func[0]->bpf_func; 18096 prog->jited_len = func[0]->jited_len; 18097 prog->aux->extable = func[0]->aux->extable; 18098 prog->aux->num_exentries = func[0]->aux->num_exentries; 18099 prog->aux->func = func; 18100 prog->aux->func_cnt = env->subprog_cnt; 18101 bpf_prog_jit_attempt_done(prog); 18102 return 0; 18103 out_free: 18104 /* We failed JIT'ing, so at this point we need to unregister poke 18105 * descriptors from subprogs, so that kernel is not attempting to 18106 * patch it anymore as we're freeing the subprog JIT memory. 18107 */ 18108 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18109 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18110 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18111 } 18112 /* At this point we're guaranteed that poke descriptors are not 18113 * live anymore. We can just unlink its descriptor table as it's 18114 * released with the main prog. 18115 */ 18116 for (i = 0; i < env->subprog_cnt; i++) { 18117 if (!func[i]) 18118 continue; 18119 func[i]->aux->poke_tab = NULL; 18120 bpf_jit_free(func[i]); 18121 } 18122 kfree(func); 18123 out_undo_insn: 18124 /* cleanup main prog to be interpreted */ 18125 prog->jit_requested = 0; 18126 prog->blinding_requested = 0; 18127 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18128 if (!bpf_pseudo_call(insn)) 18129 continue; 18130 insn->off = 0; 18131 insn->imm = env->insn_aux_data[i].call_imm; 18132 } 18133 bpf_prog_jit_attempt_done(prog); 18134 return err; 18135 } 18136 18137 static int fixup_call_args(struct bpf_verifier_env *env) 18138 { 18139 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18140 struct bpf_prog *prog = env->prog; 18141 struct bpf_insn *insn = prog->insnsi; 18142 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18143 int i, depth; 18144 #endif 18145 int err = 0; 18146 18147 if (env->prog->jit_requested && 18148 !bpf_prog_is_offloaded(env->prog->aux)) { 18149 err = jit_subprogs(env); 18150 if (err == 0) 18151 return 0; 18152 if (err == -EFAULT) 18153 return err; 18154 } 18155 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18156 if (has_kfunc_call) { 18157 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18158 return -EINVAL; 18159 } 18160 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18161 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18162 * have to be rejected, since interpreter doesn't support them yet. 18163 */ 18164 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18165 return -EINVAL; 18166 } 18167 for (i = 0; i < prog->len; i++, insn++) { 18168 if (bpf_pseudo_func(insn)) { 18169 /* When JIT fails the progs with callback calls 18170 * have to be rejected, since interpreter doesn't support them yet. 18171 */ 18172 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18173 return -EINVAL; 18174 } 18175 18176 if (!bpf_pseudo_call(insn)) 18177 continue; 18178 depth = get_callee_stack_depth(env, insn, i); 18179 if (depth < 0) 18180 return depth; 18181 bpf_patch_call_args(insn, depth); 18182 } 18183 err = 0; 18184 #endif 18185 return err; 18186 } 18187 18188 /* replace a generic kfunc with a specialized version if necessary */ 18189 static void specialize_kfunc(struct bpf_verifier_env *env, 18190 u32 func_id, u16 offset, unsigned long *addr) 18191 { 18192 struct bpf_prog *prog = env->prog; 18193 bool seen_direct_write; 18194 void *xdp_kfunc; 18195 bool is_rdonly; 18196 18197 if (bpf_dev_bound_kfunc_id(func_id)) { 18198 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18199 if (xdp_kfunc) { 18200 *addr = (unsigned long)xdp_kfunc; 18201 return; 18202 } 18203 /* fallback to default kfunc when not supported by netdev */ 18204 } 18205 18206 if (offset) 18207 return; 18208 18209 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18210 seen_direct_write = env->seen_direct_write; 18211 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18212 18213 if (is_rdonly) 18214 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18215 18216 /* restore env->seen_direct_write to its original value, since 18217 * may_access_direct_pkt_data mutates it 18218 */ 18219 env->seen_direct_write = seen_direct_write; 18220 } 18221 } 18222 18223 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18224 u16 struct_meta_reg, 18225 u16 node_offset_reg, 18226 struct bpf_insn *insn, 18227 struct bpf_insn *insn_buf, 18228 int *cnt) 18229 { 18230 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18231 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18232 18233 insn_buf[0] = addr[0]; 18234 insn_buf[1] = addr[1]; 18235 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18236 insn_buf[3] = *insn; 18237 *cnt = 4; 18238 } 18239 18240 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18241 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18242 { 18243 const struct bpf_kfunc_desc *desc; 18244 18245 if (!insn->imm) { 18246 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18247 return -EINVAL; 18248 } 18249 18250 *cnt = 0; 18251 18252 /* insn->imm has the btf func_id. Replace it with an offset relative to 18253 * __bpf_call_base, unless the JIT needs to call functions that are 18254 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18255 */ 18256 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18257 if (!desc) { 18258 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18259 insn->imm); 18260 return -EFAULT; 18261 } 18262 18263 if (!bpf_jit_supports_far_kfunc_call()) 18264 insn->imm = BPF_CALL_IMM(desc->addr); 18265 if (insn->off) 18266 return 0; 18267 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18268 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18269 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18270 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18271 18272 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18273 insn_buf[1] = addr[0]; 18274 insn_buf[2] = addr[1]; 18275 insn_buf[3] = *insn; 18276 *cnt = 4; 18277 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18278 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18279 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18280 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18281 18282 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18283 !kptr_struct_meta) { 18284 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18285 insn_idx); 18286 return -EFAULT; 18287 } 18288 18289 insn_buf[0] = addr[0]; 18290 insn_buf[1] = addr[1]; 18291 insn_buf[2] = *insn; 18292 *cnt = 3; 18293 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18294 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18295 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18296 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18297 int struct_meta_reg = BPF_REG_3; 18298 int node_offset_reg = BPF_REG_4; 18299 18300 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18301 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18302 struct_meta_reg = BPF_REG_4; 18303 node_offset_reg = BPF_REG_5; 18304 } 18305 18306 if (!kptr_struct_meta) { 18307 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18308 insn_idx); 18309 return -EFAULT; 18310 } 18311 18312 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18313 node_offset_reg, insn, insn_buf, cnt); 18314 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18315 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18316 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18317 *cnt = 1; 18318 } 18319 return 0; 18320 } 18321 18322 /* Do various post-verification rewrites in a single program pass. 18323 * These rewrites simplify JIT and interpreter implementations. 18324 */ 18325 static int do_misc_fixups(struct bpf_verifier_env *env) 18326 { 18327 struct bpf_prog *prog = env->prog; 18328 enum bpf_attach_type eatype = prog->expected_attach_type; 18329 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18330 struct bpf_insn *insn = prog->insnsi; 18331 const struct bpf_func_proto *fn; 18332 const int insn_cnt = prog->len; 18333 const struct bpf_map_ops *ops; 18334 struct bpf_insn_aux_data *aux; 18335 struct bpf_insn insn_buf[16]; 18336 struct bpf_prog *new_prog; 18337 struct bpf_map *map_ptr; 18338 int i, ret, cnt, delta = 0; 18339 18340 for (i = 0; i < insn_cnt; i++, insn++) { 18341 /* Make divide-by-zero exceptions impossible. */ 18342 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18343 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18344 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18345 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18346 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18347 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18348 struct bpf_insn *patchlet; 18349 struct bpf_insn chk_and_div[] = { 18350 /* [R,W]x div 0 -> 0 */ 18351 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18352 BPF_JNE | BPF_K, insn->src_reg, 18353 0, 2, 0), 18354 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18355 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18356 *insn, 18357 }; 18358 struct bpf_insn chk_and_mod[] = { 18359 /* [R,W]x mod 0 -> [R,W]x */ 18360 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18361 BPF_JEQ | BPF_K, insn->src_reg, 18362 0, 1 + (is64 ? 0 : 1), 0), 18363 *insn, 18364 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18365 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18366 }; 18367 18368 patchlet = isdiv ? chk_and_div : chk_and_mod; 18369 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18370 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18371 18372 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18373 if (!new_prog) 18374 return -ENOMEM; 18375 18376 delta += cnt - 1; 18377 env->prog = prog = new_prog; 18378 insn = new_prog->insnsi + i + delta; 18379 continue; 18380 } 18381 18382 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18383 if (BPF_CLASS(insn->code) == BPF_LD && 18384 (BPF_MODE(insn->code) == BPF_ABS || 18385 BPF_MODE(insn->code) == BPF_IND)) { 18386 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18387 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18388 verbose(env, "bpf verifier is misconfigured\n"); 18389 return -EINVAL; 18390 } 18391 18392 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18393 if (!new_prog) 18394 return -ENOMEM; 18395 18396 delta += cnt - 1; 18397 env->prog = prog = new_prog; 18398 insn = new_prog->insnsi + i + delta; 18399 continue; 18400 } 18401 18402 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18403 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18404 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18405 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18406 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18407 struct bpf_insn *patch = &insn_buf[0]; 18408 bool issrc, isneg, isimm; 18409 u32 off_reg; 18410 18411 aux = &env->insn_aux_data[i + delta]; 18412 if (!aux->alu_state || 18413 aux->alu_state == BPF_ALU_NON_POINTER) 18414 continue; 18415 18416 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18417 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18418 BPF_ALU_SANITIZE_SRC; 18419 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18420 18421 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18422 if (isimm) { 18423 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18424 } else { 18425 if (isneg) 18426 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18427 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18428 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18429 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18430 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18431 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18432 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18433 } 18434 if (!issrc) 18435 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18436 insn->src_reg = BPF_REG_AX; 18437 if (isneg) 18438 insn->code = insn->code == code_add ? 18439 code_sub : code_add; 18440 *patch++ = *insn; 18441 if (issrc && isneg && !isimm) 18442 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18443 cnt = patch - insn_buf; 18444 18445 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18446 if (!new_prog) 18447 return -ENOMEM; 18448 18449 delta += cnt - 1; 18450 env->prog = prog = new_prog; 18451 insn = new_prog->insnsi + i + delta; 18452 continue; 18453 } 18454 18455 if (insn->code != (BPF_JMP | BPF_CALL)) 18456 continue; 18457 if (insn->src_reg == BPF_PSEUDO_CALL) 18458 continue; 18459 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18460 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18461 if (ret) 18462 return ret; 18463 if (cnt == 0) 18464 continue; 18465 18466 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18467 if (!new_prog) 18468 return -ENOMEM; 18469 18470 delta += cnt - 1; 18471 env->prog = prog = new_prog; 18472 insn = new_prog->insnsi + i + delta; 18473 continue; 18474 } 18475 18476 if (insn->imm == BPF_FUNC_get_route_realm) 18477 prog->dst_needed = 1; 18478 if (insn->imm == BPF_FUNC_get_prandom_u32) 18479 bpf_user_rnd_init_once(); 18480 if (insn->imm == BPF_FUNC_override_return) 18481 prog->kprobe_override = 1; 18482 if (insn->imm == BPF_FUNC_tail_call) { 18483 /* If we tail call into other programs, we 18484 * cannot make any assumptions since they can 18485 * be replaced dynamically during runtime in 18486 * the program array. 18487 */ 18488 prog->cb_access = 1; 18489 if (!allow_tail_call_in_subprogs(env)) 18490 prog->aux->stack_depth = MAX_BPF_STACK; 18491 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18492 18493 /* mark bpf_tail_call as different opcode to avoid 18494 * conditional branch in the interpreter for every normal 18495 * call and to prevent accidental JITing by JIT compiler 18496 * that doesn't support bpf_tail_call yet 18497 */ 18498 insn->imm = 0; 18499 insn->code = BPF_JMP | BPF_TAIL_CALL; 18500 18501 aux = &env->insn_aux_data[i + delta]; 18502 if (env->bpf_capable && !prog->blinding_requested && 18503 prog->jit_requested && 18504 !bpf_map_key_poisoned(aux) && 18505 !bpf_map_ptr_poisoned(aux) && 18506 !bpf_map_ptr_unpriv(aux)) { 18507 struct bpf_jit_poke_descriptor desc = { 18508 .reason = BPF_POKE_REASON_TAIL_CALL, 18509 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18510 .tail_call.key = bpf_map_key_immediate(aux), 18511 .insn_idx = i + delta, 18512 }; 18513 18514 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18515 if (ret < 0) { 18516 verbose(env, "adding tail call poke descriptor failed\n"); 18517 return ret; 18518 } 18519 18520 insn->imm = ret + 1; 18521 continue; 18522 } 18523 18524 if (!bpf_map_ptr_unpriv(aux)) 18525 continue; 18526 18527 /* instead of changing every JIT dealing with tail_call 18528 * emit two extra insns: 18529 * if (index >= max_entries) goto out; 18530 * index &= array->index_mask; 18531 * to avoid out-of-bounds cpu speculation 18532 */ 18533 if (bpf_map_ptr_poisoned(aux)) { 18534 verbose(env, "tail_call abusing map_ptr\n"); 18535 return -EINVAL; 18536 } 18537 18538 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18539 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18540 map_ptr->max_entries, 2); 18541 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18542 container_of(map_ptr, 18543 struct bpf_array, 18544 map)->index_mask); 18545 insn_buf[2] = *insn; 18546 cnt = 3; 18547 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18548 if (!new_prog) 18549 return -ENOMEM; 18550 18551 delta += cnt - 1; 18552 env->prog = prog = new_prog; 18553 insn = new_prog->insnsi + i + delta; 18554 continue; 18555 } 18556 18557 if (insn->imm == BPF_FUNC_timer_set_callback) { 18558 /* The verifier will process callback_fn as many times as necessary 18559 * with different maps and the register states prepared by 18560 * set_timer_callback_state will be accurate. 18561 * 18562 * The following use case is valid: 18563 * map1 is shared by prog1, prog2, prog3. 18564 * prog1 calls bpf_timer_init for some map1 elements 18565 * prog2 calls bpf_timer_set_callback for some map1 elements. 18566 * Those that were not bpf_timer_init-ed will return -EINVAL. 18567 * prog3 calls bpf_timer_start for some map1 elements. 18568 * Those that were not both bpf_timer_init-ed and 18569 * bpf_timer_set_callback-ed will return -EINVAL. 18570 */ 18571 struct bpf_insn ld_addrs[2] = { 18572 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18573 }; 18574 18575 insn_buf[0] = ld_addrs[0]; 18576 insn_buf[1] = ld_addrs[1]; 18577 insn_buf[2] = *insn; 18578 cnt = 3; 18579 18580 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18581 if (!new_prog) 18582 return -ENOMEM; 18583 18584 delta += cnt - 1; 18585 env->prog = prog = new_prog; 18586 insn = new_prog->insnsi + i + delta; 18587 goto patch_call_imm; 18588 } 18589 18590 if (is_storage_get_function(insn->imm)) { 18591 if (!env->prog->aux->sleepable || 18592 env->insn_aux_data[i + delta].storage_get_func_atomic) 18593 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18594 else 18595 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18596 insn_buf[1] = *insn; 18597 cnt = 2; 18598 18599 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18600 if (!new_prog) 18601 return -ENOMEM; 18602 18603 delta += cnt - 1; 18604 env->prog = prog = new_prog; 18605 insn = new_prog->insnsi + i + delta; 18606 goto patch_call_imm; 18607 } 18608 18609 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18610 * and other inlining handlers are currently limited to 64 bit 18611 * only. 18612 */ 18613 if (prog->jit_requested && BITS_PER_LONG == 64 && 18614 (insn->imm == BPF_FUNC_map_lookup_elem || 18615 insn->imm == BPF_FUNC_map_update_elem || 18616 insn->imm == BPF_FUNC_map_delete_elem || 18617 insn->imm == BPF_FUNC_map_push_elem || 18618 insn->imm == BPF_FUNC_map_pop_elem || 18619 insn->imm == BPF_FUNC_map_peek_elem || 18620 insn->imm == BPF_FUNC_redirect_map || 18621 insn->imm == BPF_FUNC_for_each_map_elem || 18622 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18623 aux = &env->insn_aux_data[i + delta]; 18624 if (bpf_map_ptr_poisoned(aux)) 18625 goto patch_call_imm; 18626 18627 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18628 ops = map_ptr->ops; 18629 if (insn->imm == BPF_FUNC_map_lookup_elem && 18630 ops->map_gen_lookup) { 18631 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18632 if (cnt == -EOPNOTSUPP) 18633 goto patch_map_ops_generic; 18634 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18635 verbose(env, "bpf verifier is misconfigured\n"); 18636 return -EINVAL; 18637 } 18638 18639 new_prog = bpf_patch_insn_data(env, i + delta, 18640 insn_buf, cnt); 18641 if (!new_prog) 18642 return -ENOMEM; 18643 18644 delta += cnt - 1; 18645 env->prog = prog = new_prog; 18646 insn = new_prog->insnsi + i + delta; 18647 continue; 18648 } 18649 18650 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18651 (void *(*)(struct bpf_map *map, void *key))NULL)); 18652 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18653 (long (*)(struct bpf_map *map, void *key))NULL)); 18654 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18655 (long (*)(struct bpf_map *map, void *key, void *value, 18656 u64 flags))NULL)); 18657 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18658 (long (*)(struct bpf_map *map, void *value, 18659 u64 flags))NULL)); 18660 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18661 (long (*)(struct bpf_map *map, void *value))NULL)); 18662 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18663 (long (*)(struct bpf_map *map, void *value))NULL)); 18664 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18665 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18666 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18667 (long (*)(struct bpf_map *map, 18668 bpf_callback_t callback_fn, 18669 void *callback_ctx, 18670 u64 flags))NULL)); 18671 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18672 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18673 18674 patch_map_ops_generic: 18675 switch (insn->imm) { 18676 case BPF_FUNC_map_lookup_elem: 18677 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18678 continue; 18679 case BPF_FUNC_map_update_elem: 18680 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18681 continue; 18682 case BPF_FUNC_map_delete_elem: 18683 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18684 continue; 18685 case BPF_FUNC_map_push_elem: 18686 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18687 continue; 18688 case BPF_FUNC_map_pop_elem: 18689 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18690 continue; 18691 case BPF_FUNC_map_peek_elem: 18692 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18693 continue; 18694 case BPF_FUNC_redirect_map: 18695 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18696 continue; 18697 case BPF_FUNC_for_each_map_elem: 18698 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18699 continue; 18700 case BPF_FUNC_map_lookup_percpu_elem: 18701 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18702 continue; 18703 } 18704 18705 goto patch_call_imm; 18706 } 18707 18708 /* Implement bpf_jiffies64 inline. */ 18709 if (prog->jit_requested && BITS_PER_LONG == 64 && 18710 insn->imm == BPF_FUNC_jiffies64) { 18711 struct bpf_insn ld_jiffies_addr[2] = { 18712 BPF_LD_IMM64(BPF_REG_0, 18713 (unsigned long)&jiffies), 18714 }; 18715 18716 insn_buf[0] = ld_jiffies_addr[0]; 18717 insn_buf[1] = ld_jiffies_addr[1]; 18718 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18719 BPF_REG_0, 0); 18720 cnt = 3; 18721 18722 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18723 cnt); 18724 if (!new_prog) 18725 return -ENOMEM; 18726 18727 delta += cnt - 1; 18728 env->prog = prog = new_prog; 18729 insn = new_prog->insnsi + i + delta; 18730 continue; 18731 } 18732 18733 /* Implement bpf_get_func_arg inline. */ 18734 if (prog_type == BPF_PROG_TYPE_TRACING && 18735 insn->imm == BPF_FUNC_get_func_arg) { 18736 /* Load nr_args from ctx - 8 */ 18737 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18738 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18739 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18740 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18741 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18742 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18743 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18744 insn_buf[7] = BPF_JMP_A(1); 18745 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18746 cnt = 9; 18747 18748 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18749 if (!new_prog) 18750 return -ENOMEM; 18751 18752 delta += cnt - 1; 18753 env->prog = prog = new_prog; 18754 insn = new_prog->insnsi + i + delta; 18755 continue; 18756 } 18757 18758 /* Implement bpf_get_func_ret inline. */ 18759 if (prog_type == BPF_PROG_TYPE_TRACING && 18760 insn->imm == BPF_FUNC_get_func_ret) { 18761 if (eatype == BPF_TRACE_FEXIT || 18762 eatype == BPF_MODIFY_RETURN) { 18763 /* Load nr_args from ctx - 8 */ 18764 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18765 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18766 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18767 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18768 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18769 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18770 cnt = 6; 18771 } else { 18772 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18773 cnt = 1; 18774 } 18775 18776 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18777 if (!new_prog) 18778 return -ENOMEM; 18779 18780 delta += cnt - 1; 18781 env->prog = prog = new_prog; 18782 insn = new_prog->insnsi + i + delta; 18783 continue; 18784 } 18785 18786 /* Implement get_func_arg_cnt inline. */ 18787 if (prog_type == BPF_PROG_TYPE_TRACING && 18788 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18789 /* Load nr_args from ctx - 8 */ 18790 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18791 18792 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18793 if (!new_prog) 18794 return -ENOMEM; 18795 18796 env->prog = prog = new_prog; 18797 insn = new_prog->insnsi + i + delta; 18798 continue; 18799 } 18800 18801 /* Implement bpf_get_func_ip inline. */ 18802 if (prog_type == BPF_PROG_TYPE_TRACING && 18803 insn->imm == BPF_FUNC_get_func_ip) { 18804 /* Load IP address from ctx - 16 */ 18805 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18806 18807 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18808 if (!new_prog) 18809 return -ENOMEM; 18810 18811 env->prog = prog = new_prog; 18812 insn = new_prog->insnsi + i + delta; 18813 continue; 18814 } 18815 18816 patch_call_imm: 18817 fn = env->ops->get_func_proto(insn->imm, env->prog); 18818 /* all functions that have prototype and verifier allowed 18819 * programs to call them, must be real in-kernel functions 18820 */ 18821 if (!fn->func) { 18822 verbose(env, 18823 "kernel subsystem misconfigured func %s#%d\n", 18824 func_id_name(insn->imm), insn->imm); 18825 return -EFAULT; 18826 } 18827 insn->imm = fn->func - __bpf_call_base; 18828 } 18829 18830 /* Since poke tab is now finalized, publish aux to tracker. */ 18831 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18832 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18833 if (!map_ptr->ops->map_poke_track || 18834 !map_ptr->ops->map_poke_untrack || 18835 !map_ptr->ops->map_poke_run) { 18836 verbose(env, "bpf verifier is misconfigured\n"); 18837 return -EINVAL; 18838 } 18839 18840 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18841 if (ret < 0) { 18842 verbose(env, "tracking tail call prog failed\n"); 18843 return ret; 18844 } 18845 } 18846 18847 sort_kfunc_descs_by_imm_off(env->prog); 18848 18849 return 0; 18850 } 18851 18852 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18853 int position, 18854 s32 stack_base, 18855 u32 callback_subprogno, 18856 u32 *cnt) 18857 { 18858 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18859 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18860 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18861 int reg_loop_max = BPF_REG_6; 18862 int reg_loop_cnt = BPF_REG_7; 18863 int reg_loop_ctx = BPF_REG_8; 18864 18865 struct bpf_prog *new_prog; 18866 u32 callback_start; 18867 u32 call_insn_offset; 18868 s32 callback_offset; 18869 18870 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18871 * be careful to modify this code in sync. 18872 */ 18873 struct bpf_insn insn_buf[] = { 18874 /* Return error and jump to the end of the patch if 18875 * expected number of iterations is too big. 18876 */ 18877 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18878 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18879 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18880 /* spill R6, R7, R8 to use these as loop vars */ 18881 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18882 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18883 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18884 /* initialize loop vars */ 18885 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18886 BPF_MOV32_IMM(reg_loop_cnt, 0), 18887 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18888 /* loop header, 18889 * if reg_loop_cnt >= reg_loop_max skip the loop body 18890 */ 18891 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18892 /* callback call, 18893 * correct callback offset would be set after patching 18894 */ 18895 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18896 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18897 BPF_CALL_REL(0), 18898 /* increment loop counter */ 18899 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18900 /* jump to loop header if callback returned 0 */ 18901 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18902 /* return value of bpf_loop, 18903 * set R0 to the number of iterations 18904 */ 18905 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18906 /* restore original values of R6, R7, R8 */ 18907 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18908 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18909 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18910 }; 18911 18912 *cnt = ARRAY_SIZE(insn_buf); 18913 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18914 if (!new_prog) 18915 return new_prog; 18916 18917 /* callback start is known only after patching */ 18918 callback_start = env->subprog_info[callback_subprogno].start; 18919 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18920 call_insn_offset = position + 12; 18921 callback_offset = callback_start - call_insn_offset - 1; 18922 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18923 18924 return new_prog; 18925 } 18926 18927 static bool is_bpf_loop_call(struct bpf_insn *insn) 18928 { 18929 return insn->code == (BPF_JMP | BPF_CALL) && 18930 insn->src_reg == 0 && 18931 insn->imm == BPF_FUNC_loop; 18932 } 18933 18934 /* For all sub-programs in the program (including main) check 18935 * insn_aux_data to see if there are bpf_loop calls that require 18936 * inlining. If such calls are found the calls are replaced with a 18937 * sequence of instructions produced by `inline_bpf_loop` function and 18938 * subprog stack_depth is increased by the size of 3 registers. 18939 * This stack space is used to spill values of the R6, R7, R8. These 18940 * registers are used to store the loop bound, counter and context 18941 * variables. 18942 */ 18943 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18944 { 18945 struct bpf_subprog_info *subprogs = env->subprog_info; 18946 int i, cur_subprog = 0, cnt, delta = 0; 18947 struct bpf_insn *insn = env->prog->insnsi; 18948 int insn_cnt = env->prog->len; 18949 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18950 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18951 u16 stack_depth_extra = 0; 18952 18953 for (i = 0; i < insn_cnt; i++, insn++) { 18954 struct bpf_loop_inline_state *inline_state = 18955 &env->insn_aux_data[i + delta].loop_inline_state; 18956 18957 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18958 struct bpf_prog *new_prog; 18959 18960 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18961 new_prog = inline_bpf_loop(env, 18962 i + delta, 18963 -(stack_depth + stack_depth_extra), 18964 inline_state->callback_subprogno, 18965 &cnt); 18966 if (!new_prog) 18967 return -ENOMEM; 18968 18969 delta += cnt - 1; 18970 env->prog = new_prog; 18971 insn = new_prog->insnsi + i + delta; 18972 } 18973 18974 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18975 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18976 cur_subprog++; 18977 stack_depth = subprogs[cur_subprog].stack_depth; 18978 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18979 stack_depth_extra = 0; 18980 } 18981 } 18982 18983 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18984 18985 return 0; 18986 } 18987 18988 static void free_states(struct bpf_verifier_env *env) 18989 { 18990 struct bpf_verifier_state_list *sl, *sln; 18991 int i; 18992 18993 sl = env->free_list; 18994 while (sl) { 18995 sln = sl->next; 18996 free_verifier_state(&sl->state, false); 18997 kfree(sl); 18998 sl = sln; 18999 } 19000 env->free_list = NULL; 19001 19002 if (!env->explored_states) 19003 return; 19004 19005 for (i = 0; i < state_htab_size(env); i++) { 19006 sl = env->explored_states[i]; 19007 19008 while (sl) { 19009 sln = sl->next; 19010 free_verifier_state(&sl->state, false); 19011 kfree(sl); 19012 sl = sln; 19013 } 19014 env->explored_states[i] = NULL; 19015 } 19016 } 19017 19018 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19019 { 19020 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19021 struct bpf_verifier_state *state; 19022 struct bpf_reg_state *regs; 19023 int ret, i; 19024 19025 env->prev_linfo = NULL; 19026 env->pass_cnt++; 19027 19028 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19029 if (!state) 19030 return -ENOMEM; 19031 state->curframe = 0; 19032 state->speculative = false; 19033 state->branches = 1; 19034 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19035 if (!state->frame[0]) { 19036 kfree(state); 19037 return -ENOMEM; 19038 } 19039 env->cur_state = state; 19040 init_func_state(env, state->frame[0], 19041 BPF_MAIN_FUNC /* callsite */, 19042 0 /* frameno */, 19043 subprog); 19044 state->first_insn_idx = env->subprog_info[subprog].start; 19045 state->last_insn_idx = -1; 19046 19047 regs = state->frame[state->curframe]->regs; 19048 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19049 ret = btf_prepare_func_args(env, subprog, regs); 19050 if (ret) 19051 goto out; 19052 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19053 if (regs[i].type == PTR_TO_CTX) 19054 mark_reg_known_zero(env, regs, i); 19055 else if (regs[i].type == SCALAR_VALUE) 19056 mark_reg_unknown(env, regs, i); 19057 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19058 const u32 mem_size = regs[i].mem_size; 19059 19060 mark_reg_known_zero(env, regs, i); 19061 regs[i].mem_size = mem_size; 19062 regs[i].id = ++env->id_gen; 19063 } 19064 } 19065 } else { 19066 /* 1st arg to a function */ 19067 regs[BPF_REG_1].type = PTR_TO_CTX; 19068 mark_reg_known_zero(env, regs, BPF_REG_1); 19069 ret = btf_check_subprog_arg_match(env, subprog, regs); 19070 if (ret == -EFAULT) 19071 /* unlikely verifier bug. abort. 19072 * ret == 0 and ret < 0 are sadly acceptable for 19073 * main() function due to backward compatibility. 19074 * Like socket filter program may be written as: 19075 * int bpf_prog(struct pt_regs *ctx) 19076 * and never dereference that ctx in the program. 19077 * 'struct pt_regs' is a type mismatch for socket 19078 * filter that should be using 'struct __sk_buff'. 19079 */ 19080 goto out; 19081 } 19082 19083 ret = do_check(env); 19084 out: 19085 /* check for NULL is necessary, since cur_state can be freed inside 19086 * do_check() under memory pressure. 19087 */ 19088 if (env->cur_state) { 19089 free_verifier_state(env->cur_state, true); 19090 env->cur_state = NULL; 19091 } 19092 while (!pop_stack(env, NULL, NULL, false)); 19093 if (!ret && pop_log) 19094 bpf_vlog_reset(&env->log, 0); 19095 free_states(env); 19096 return ret; 19097 } 19098 19099 /* Verify all global functions in a BPF program one by one based on their BTF. 19100 * All global functions must pass verification. Otherwise the whole program is rejected. 19101 * Consider: 19102 * int bar(int); 19103 * int foo(int f) 19104 * { 19105 * return bar(f); 19106 * } 19107 * int bar(int b) 19108 * { 19109 * ... 19110 * } 19111 * foo() will be verified first for R1=any_scalar_value. During verification it 19112 * will be assumed that bar() already verified successfully and call to bar() 19113 * from foo() will be checked for type match only. Later bar() will be verified 19114 * independently to check that it's safe for R1=any_scalar_value. 19115 */ 19116 static int do_check_subprogs(struct bpf_verifier_env *env) 19117 { 19118 struct bpf_prog_aux *aux = env->prog->aux; 19119 int i, ret; 19120 19121 if (!aux->func_info) 19122 return 0; 19123 19124 for (i = 1; i < env->subprog_cnt; i++) { 19125 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19126 continue; 19127 env->insn_idx = env->subprog_info[i].start; 19128 WARN_ON_ONCE(env->insn_idx == 0); 19129 ret = do_check_common(env, i); 19130 if (ret) { 19131 return ret; 19132 } else if (env->log.level & BPF_LOG_LEVEL) { 19133 verbose(env, 19134 "Func#%d is safe for any args that match its prototype\n", 19135 i); 19136 } 19137 } 19138 return 0; 19139 } 19140 19141 static int do_check_main(struct bpf_verifier_env *env) 19142 { 19143 int ret; 19144 19145 env->insn_idx = 0; 19146 ret = do_check_common(env, 0); 19147 if (!ret) 19148 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19149 return ret; 19150 } 19151 19152 19153 static void print_verification_stats(struct bpf_verifier_env *env) 19154 { 19155 int i; 19156 19157 if (env->log.level & BPF_LOG_STATS) { 19158 verbose(env, "verification time %lld usec\n", 19159 div_u64(env->verification_time, 1000)); 19160 verbose(env, "stack depth "); 19161 for (i = 0; i < env->subprog_cnt; i++) { 19162 u32 depth = env->subprog_info[i].stack_depth; 19163 19164 verbose(env, "%d", depth); 19165 if (i + 1 < env->subprog_cnt) 19166 verbose(env, "+"); 19167 } 19168 verbose(env, "\n"); 19169 } 19170 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19171 "total_states %d peak_states %d mark_read %d\n", 19172 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19173 env->max_states_per_insn, env->total_states, 19174 env->peak_states, env->longest_mark_read_walk); 19175 } 19176 19177 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19178 { 19179 const struct btf_type *t, *func_proto; 19180 const struct bpf_struct_ops *st_ops; 19181 const struct btf_member *member; 19182 struct bpf_prog *prog = env->prog; 19183 u32 btf_id, member_idx; 19184 const char *mname; 19185 19186 if (!prog->gpl_compatible) { 19187 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19188 return -EINVAL; 19189 } 19190 19191 btf_id = prog->aux->attach_btf_id; 19192 st_ops = bpf_struct_ops_find(btf_id); 19193 if (!st_ops) { 19194 verbose(env, "attach_btf_id %u is not a supported struct\n", 19195 btf_id); 19196 return -ENOTSUPP; 19197 } 19198 19199 t = st_ops->type; 19200 member_idx = prog->expected_attach_type; 19201 if (member_idx >= btf_type_vlen(t)) { 19202 verbose(env, "attach to invalid member idx %u of struct %s\n", 19203 member_idx, st_ops->name); 19204 return -EINVAL; 19205 } 19206 19207 member = &btf_type_member(t)[member_idx]; 19208 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19209 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19210 NULL); 19211 if (!func_proto) { 19212 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19213 mname, member_idx, st_ops->name); 19214 return -EINVAL; 19215 } 19216 19217 if (st_ops->check_member) { 19218 int err = st_ops->check_member(t, member, prog); 19219 19220 if (err) { 19221 verbose(env, "attach to unsupported member %s of struct %s\n", 19222 mname, st_ops->name); 19223 return err; 19224 } 19225 } 19226 19227 prog->aux->attach_func_proto = func_proto; 19228 prog->aux->attach_func_name = mname; 19229 env->ops = st_ops->verifier_ops; 19230 19231 return 0; 19232 } 19233 #define SECURITY_PREFIX "security_" 19234 19235 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19236 { 19237 if (within_error_injection_list(addr) || 19238 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19239 return 0; 19240 19241 return -EINVAL; 19242 } 19243 19244 /* list of non-sleepable functions that are otherwise on 19245 * ALLOW_ERROR_INJECTION list 19246 */ 19247 BTF_SET_START(btf_non_sleepable_error_inject) 19248 /* Three functions below can be called from sleepable and non-sleepable context. 19249 * Assume non-sleepable from bpf safety point of view. 19250 */ 19251 BTF_ID(func, __filemap_add_folio) 19252 BTF_ID(func, should_fail_alloc_page) 19253 BTF_ID(func, should_failslab) 19254 BTF_SET_END(btf_non_sleepable_error_inject) 19255 19256 static int check_non_sleepable_error_inject(u32 btf_id) 19257 { 19258 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19259 } 19260 19261 int bpf_check_attach_target(struct bpf_verifier_log *log, 19262 const struct bpf_prog *prog, 19263 const struct bpf_prog *tgt_prog, 19264 u32 btf_id, 19265 struct bpf_attach_target_info *tgt_info) 19266 { 19267 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19268 const char prefix[] = "btf_trace_"; 19269 int ret = 0, subprog = -1, i; 19270 const struct btf_type *t; 19271 bool conservative = true; 19272 const char *tname; 19273 struct btf *btf; 19274 long addr = 0; 19275 struct module *mod = NULL; 19276 19277 if (!btf_id) { 19278 bpf_log(log, "Tracing programs must provide btf_id\n"); 19279 return -EINVAL; 19280 } 19281 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19282 if (!btf) { 19283 bpf_log(log, 19284 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19285 return -EINVAL; 19286 } 19287 t = btf_type_by_id(btf, btf_id); 19288 if (!t) { 19289 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19290 return -EINVAL; 19291 } 19292 tname = btf_name_by_offset(btf, t->name_off); 19293 if (!tname) { 19294 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19295 return -EINVAL; 19296 } 19297 if (tgt_prog) { 19298 struct bpf_prog_aux *aux = tgt_prog->aux; 19299 19300 if (bpf_prog_is_dev_bound(prog->aux) && 19301 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19302 bpf_log(log, "Target program bound device mismatch"); 19303 return -EINVAL; 19304 } 19305 19306 for (i = 0; i < aux->func_info_cnt; i++) 19307 if (aux->func_info[i].type_id == btf_id) { 19308 subprog = i; 19309 break; 19310 } 19311 if (subprog == -1) { 19312 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19313 return -EINVAL; 19314 } 19315 conservative = aux->func_info_aux[subprog].unreliable; 19316 if (prog_extension) { 19317 if (conservative) { 19318 bpf_log(log, 19319 "Cannot replace static functions\n"); 19320 return -EINVAL; 19321 } 19322 if (!prog->jit_requested) { 19323 bpf_log(log, 19324 "Extension programs should be JITed\n"); 19325 return -EINVAL; 19326 } 19327 } 19328 if (!tgt_prog->jited) { 19329 bpf_log(log, "Can attach to only JITed progs\n"); 19330 return -EINVAL; 19331 } 19332 if (tgt_prog->type == prog->type) { 19333 /* Cannot fentry/fexit another fentry/fexit program. 19334 * Cannot attach program extension to another extension. 19335 * It's ok to attach fentry/fexit to extension program. 19336 */ 19337 bpf_log(log, "Cannot recursively attach\n"); 19338 return -EINVAL; 19339 } 19340 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19341 prog_extension && 19342 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19343 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19344 /* Program extensions can extend all program types 19345 * except fentry/fexit. The reason is the following. 19346 * The fentry/fexit programs are used for performance 19347 * analysis, stats and can be attached to any program 19348 * type except themselves. When extension program is 19349 * replacing XDP function it is necessary to allow 19350 * performance analysis of all functions. Both original 19351 * XDP program and its program extension. Hence 19352 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19353 * allowed. If extending of fentry/fexit was allowed it 19354 * would be possible to create long call chain 19355 * fentry->extension->fentry->extension beyond 19356 * reasonable stack size. Hence extending fentry is not 19357 * allowed. 19358 */ 19359 bpf_log(log, "Cannot extend fentry/fexit\n"); 19360 return -EINVAL; 19361 } 19362 } else { 19363 if (prog_extension) { 19364 bpf_log(log, "Cannot replace kernel functions\n"); 19365 return -EINVAL; 19366 } 19367 } 19368 19369 switch (prog->expected_attach_type) { 19370 case BPF_TRACE_RAW_TP: 19371 if (tgt_prog) { 19372 bpf_log(log, 19373 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19374 return -EINVAL; 19375 } 19376 if (!btf_type_is_typedef(t)) { 19377 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19378 btf_id); 19379 return -EINVAL; 19380 } 19381 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19382 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19383 btf_id, tname); 19384 return -EINVAL; 19385 } 19386 tname += sizeof(prefix) - 1; 19387 t = btf_type_by_id(btf, t->type); 19388 if (!btf_type_is_ptr(t)) 19389 /* should never happen in valid vmlinux build */ 19390 return -EINVAL; 19391 t = btf_type_by_id(btf, t->type); 19392 if (!btf_type_is_func_proto(t)) 19393 /* should never happen in valid vmlinux build */ 19394 return -EINVAL; 19395 19396 break; 19397 case BPF_TRACE_ITER: 19398 if (!btf_type_is_func(t)) { 19399 bpf_log(log, "attach_btf_id %u is not a function\n", 19400 btf_id); 19401 return -EINVAL; 19402 } 19403 t = btf_type_by_id(btf, t->type); 19404 if (!btf_type_is_func_proto(t)) 19405 return -EINVAL; 19406 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19407 if (ret) 19408 return ret; 19409 break; 19410 default: 19411 if (!prog_extension) 19412 return -EINVAL; 19413 fallthrough; 19414 case BPF_MODIFY_RETURN: 19415 case BPF_LSM_MAC: 19416 case BPF_LSM_CGROUP: 19417 case BPF_TRACE_FENTRY: 19418 case BPF_TRACE_FEXIT: 19419 if (!btf_type_is_func(t)) { 19420 bpf_log(log, "attach_btf_id %u is not a function\n", 19421 btf_id); 19422 return -EINVAL; 19423 } 19424 if (prog_extension && 19425 btf_check_type_match(log, prog, btf, t)) 19426 return -EINVAL; 19427 t = btf_type_by_id(btf, t->type); 19428 if (!btf_type_is_func_proto(t)) 19429 return -EINVAL; 19430 19431 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19432 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19433 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19434 return -EINVAL; 19435 19436 if (tgt_prog && conservative) 19437 t = NULL; 19438 19439 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19440 if (ret < 0) 19441 return ret; 19442 19443 if (tgt_prog) { 19444 if (subprog == 0) 19445 addr = (long) tgt_prog->bpf_func; 19446 else 19447 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19448 } else { 19449 if (btf_is_module(btf)) { 19450 mod = btf_try_get_module(btf); 19451 if (mod) 19452 addr = find_kallsyms_symbol_value(mod, tname); 19453 else 19454 addr = 0; 19455 } else { 19456 addr = kallsyms_lookup_name(tname); 19457 } 19458 if (!addr) { 19459 module_put(mod); 19460 bpf_log(log, 19461 "The address of function %s cannot be found\n", 19462 tname); 19463 return -ENOENT; 19464 } 19465 } 19466 19467 if (prog->aux->sleepable) { 19468 ret = -EINVAL; 19469 switch (prog->type) { 19470 case BPF_PROG_TYPE_TRACING: 19471 19472 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19473 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19474 */ 19475 if (!check_non_sleepable_error_inject(btf_id) && 19476 within_error_injection_list(addr)) 19477 ret = 0; 19478 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19479 * in the fmodret id set with the KF_SLEEPABLE flag. 19480 */ 19481 else { 19482 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19483 prog); 19484 19485 if (flags && (*flags & KF_SLEEPABLE)) 19486 ret = 0; 19487 } 19488 break; 19489 case BPF_PROG_TYPE_LSM: 19490 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19491 * Only some of them are sleepable. 19492 */ 19493 if (bpf_lsm_is_sleepable_hook(btf_id)) 19494 ret = 0; 19495 break; 19496 default: 19497 break; 19498 } 19499 if (ret) { 19500 module_put(mod); 19501 bpf_log(log, "%s is not sleepable\n", tname); 19502 return ret; 19503 } 19504 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19505 if (tgt_prog) { 19506 module_put(mod); 19507 bpf_log(log, "can't modify return codes of BPF programs\n"); 19508 return -EINVAL; 19509 } 19510 ret = -EINVAL; 19511 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19512 !check_attach_modify_return(addr, tname)) 19513 ret = 0; 19514 if (ret) { 19515 module_put(mod); 19516 bpf_log(log, "%s() is not modifiable\n", tname); 19517 return ret; 19518 } 19519 } 19520 19521 break; 19522 } 19523 tgt_info->tgt_addr = addr; 19524 tgt_info->tgt_name = tname; 19525 tgt_info->tgt_type = t; 19526 tgt_info->tgt_mod = mod; 19527 return 0; 19528 } 19529 19530 BTF_SET_START(btf_id_deny) 19531 BTF_ID_UNUSED 19532 #ifdef CONFIG_SMP 19533 BTF_ID(func, migrate_disable) 19534 BTF_ID(func, migrate_enable) 19535 #endif 19536 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19537 BTF_ID(func, rcu_read_unlock_strict) 19538 #endif 19539 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19540 BTF_ID(func, preempt_count_add) 19541 BTF_ID(func, preempt_count_sub) 19542 #endif 19543 #ifdef CONFIG_PREEMPT_RCU 19544 BTF_ID(func, __rcu_read_lock) 19545 BTF_ID(func, __rcu_read_unlock) 19546 #endif 19547 BTF_SET_END(btf_id_deny) 19548 19549 static bool can_be_sleepable(struct bpf_prog *prog) 19550 { 19551 if (prog->type == BPF_PROG_TYPE_TRACING) { 19552 switch (prog->expected_attach_type) { 19553 case BPF_TRACE_FENTRY: 19554 case BPF_TRACE_FEXIT: 19555 case BPF_MODIFY_RETURN: 19556 case BPF_TRACE_ITER: 19557 return true; 19558 default: 19559 return false; 19560 } 19561 } 19562 return prog->type == BPF_PROG_TYPE_LSM || 19563 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19564 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19565 } 19566 19567 static int check_attach_btf_id(struct bpf_verifier_env *env) 19568 { 19569 struct bpf_prog *prog = env->prog; 19570 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19571 struct bpf_attach_target_info tgt_info = {}; 19572 u32 btf_id = prog->aux->attach_btf_id; 19573 struct bpf_trampoline *tr; 19574 int ret; 19575 u64 key; 19576 19577 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19578 if (prog->aux->sleepable) 19579 /* attach_btf_id checked to be zero already */ 19580 return 0; 19581 verbose(env, "Syscall programs can only be sleepable\n"); 19582 return -EINVAL; 19583 } 19584 19585 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19586 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19587 return -EINVAL; 19588 } 19589 19590 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19591 return check_struct_ops_btf_id(env); 19592 19593 if (prog->type != BPF_PROG_TYPE_TRACING && 19594 prog->type != BPF_PROG_TYPE_LSM && 19595 prog->type != BPF_PROG_TYPE_EXT) 19596 return 0; 19597 19598 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19599 if (ret) 19600 return ret; 19601 19602 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19603 /* to make freplace equivalent to their targets, they need to 19604 * inherit env->ops and expected_attach_type for the rest of the 19605 * verification 19606 */ 19607 env->ops = bpf_verifier_ops[tgt_prog->type]; 19608 prog->expected_attach_type = tgt_prog->expected_attach_type; 19609 } 19610 19611 /* store info about the attachment target that will be used later */ 19612 prog->aux->attach_func_proto = tgt_info.tgt_type; 19613 prog->aux->attach_func_name = tgt_info.tgt_name; 19614 prog->aux->mod = tgt_info.tgt_mod; 19615 19616 if (tgt_prog) { 19617 prog->aux->saved_dst_prog_type = tgt_prog->type; 19618 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19619 } 19620 19621 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19622 prog->aux->attach_btf_trace = true; 19623 return 0; 19624 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19625 if (!bpf_iter_prog_supported(prog)) 19626 return -EINVAL; 19627 return 0; 19628 } 19629 19630 if (prog->type == BPF_PROG_TYPE_LSM) { 19631 ret = bpf_lsm_verify_prog(&env->log, prog); 19632 if (ret < 0) 19633 return ret; 19634 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19635 btf_id_set_contains(&btf_id_deny, btf_id)) { 19636 return -EINVAL; 19637 } 19638 19639 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19640 tr = bpf_trampoline_get(key, &tgt_info); 19641 if (!tr) 19642 return -ENOMEM; 19643 19644 prog->aux->dst_trampoline = tr; 19645 return 0; 19646 } 19647 19648 struct btf *bpf_get_btf_vmlinux(void) 19649 { 19650 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19651 mutex_lock(&bpf_verifier_lock); 19652 if (!btf_vmlinux) 19653 btf_vmlinux = btf_parse_vmlinux(); 19654 mutex_unlock(&bpf_verifier_lock); 19655 } 19656 return btf_vmlinux; 19657 } 19658 19659 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19660 { 19661 u64 start_time = ktime_get_ns(); 19662 struct bpf_verifier_env *env; 19663 int i, len, ret = -EINVAL, err; 19664 u32 log_true_size; 19665 bool is_priv; 19666 19667 /* no program is valid */ 19668 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19669 return -EINVAL; 19670 19671 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19672 * allocate/free it every time bpf_check() is called 19673 */ 19674 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19675 if (!env) 19676 return -ENOMEM; 19677 19678 env->bt.env = env; 19679 19680 len = (*prog)->len; 19681 env->insn_aux_data = 19682 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19683 ret = -ENOMEM; 19684 if (!env->insn_aux_data) 19685 goto err_free_env; 19686 for (i = 0; i < len; i++) 19687 env->insn_aux_data[i].orig_idx = i; 19688 env->prog = *prog; 19689 env->ops = bpf_verifier_ops[env->prog->type]; 19690 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19691 is_priv = bpf_capable(); 19692 19693 bpf_get_btf_vmlinux(); 19694 19695 /* grab the mutex to protect few globals used by verifier */ 19696 if (!is_priv) 19697 mutex_lock(&bpf_verifier_lock); 19698 19699 /* user could have requested verbose verifier output 19700 * and supplied buffer to store the verification trace 19701 */ 19702 ret = bpf_vlog_init(&env->log, attr->log_level, 19703 (char __user *) (unsigned long) attr->log_buf, 19704 attr->log_size); 19705 if (ret) 19706 goto err_unlock; 19707 19708 mark_verifier_state_clean(env); 19709 19710 if (IS_ERR(btf_vmlinux)) { 19711 /* Either gcc or pahole or kernel are broken. */ 19712 verbose(env, "in-kernel BTF is malformed\n"); 19713 ret = PTR_ERR(btf_vmlinux); 19714 goto skip_full_check; 19715 } 19716 19717 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19718 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19719 env->strict_alignment = true; 19720 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19721 env->strict_alignment = false; 19722 19723 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19724 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19725 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19726 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19727 env->bpf_capable = bpf_capable(); 19728 19729 if (is_priv) 19730 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19731 19732 env->explored_states = kvcalloc(state_htab_size(env), 19733 sizeof(struct bpf_verifier_state_list *), 19734 GFP_USER); 19735 ret = -ENOMEM; 19736 if (!env->explored_states) 19737 goto skip_full_check; 19738 19739 ret = add_subprog_and_kfunc(env); 19740 if (ret < 0) 19741 goto skip_full_check; 19742 19743 ret = check_subprogs(env); 19744 if (ret < 0) 19745 goto skip_full_check; 19746 19747 ret = check_btf_info(env, attr, uattr); 19748 if (ret < 0) 19749 goto skip_full_check; 19750 19751 ret = check_attach_btf_id(env); 19752 if (ret) 19753 goto skip_full_check; 19754 19755 ret = resolve_pseudo_ldimm64(env); 19756 if (ret < 0) 19757 goto skip_full_check; 19758 19759 if (bpf_prog_is_offloaded(env->prog->aux)) { 19760 ret = bpf_prog_offload_verifier_prep(env->prog); 19761 if (ret) 19762 goto skip_full_check; 19763 } 19764 19765 ret = check_cfg(env); 19766 if (ret < 0) 19767 goto skip_full_check; 19768 19769 ret = do_check_subprogs(env); 19770 ret = ret ?: do_check_main(env); 19771 19772 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19773 ret = bpf_prog_offload_finalize(env); 19774 19775 skip_full_check: 19776 kvfree(env->explored_states); 19777 19778 if (ret == 0) 19779 ret = check_max_stack_depth(env); 19780 19781 /* instruction rewrites happen after this point */ 19782 if (ret == 0) 19783 ret = optimize_bpf_loop(env); 19784 19785 if (is_priv) { 19786 if (ret == 0) 19787 opt_hard_wire_dead_code_branches(env); 19788 if (ret == 0) 19789 ret = opt_remove_dead_code(env); 19790 if (ret == 0) 19791 ret = opt_remove_nops(env); 19792 } else { 19793 if (ret == 0) 19794 sanitize_dead_code(env); 19795 } 19796 19797 if (ret == 0) 19798 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19799 ret = convert_ctx_accesses(env); 19800 19801 if (ret == 0) 19802 ret = do_misc_fixups(env); 19803 19804 /* do 32-bit optimization after insn patching has done so those patched 19805 * insns could be handled correctly. 19806 */ 19807 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19808 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19809 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19810 : false; 19811 } 19812 19813 if (ret == 0) 19814 ret = fixup_call_args(env); 19815 19816 env->verification_time = ktime_get_ns() - start_time; 19817 print_verification_stats(env); 19818 env->prog->aux->verified_insns = env->insn_processed; 19819 19820 /* preserve original error even if log finalization is successful */ 19821 err = bpf_vlog_finalize(&env->log, &log_true_size); 19822 if (err) 19823 ret = err; 19824 19825 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19826 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19827 &log_true_size, sizeof(log_true_size))) { 19828 ret = -EFAULT; 19829 goto err_release_maps; 19830 } 19831 19832 if (ret) 19833 goto err_release_maps; 19834 19835 if (env->used_map_cnt) { 19836 /* if program passed verifier, update used_maps in bpf_prog_info */ 19837 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19838 sizeof(env->used_maps[0]), 19839 GFP_KERNEL); 19840 19841 if (!env->prog->aux->used_maps) { 19842 ret = -ENOMEM; 19843 goto err_release_maps; 19844 } 19845 19846 memcpy(env->prog->aux->used_maps, env->used_maps, 19847 sizeof(env->used_maps[0]) * env->used_map_cnt); 19848 env->prog->aux->used_map_cnt = env->used_map_cnt; 19849 } 19850 if (env->used_btf_cnt) { 19851 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19852 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19853 sizeof(env->used_btfs[0]), 19854 GFP_KERNEL); 19855 if (!env->prog->aux->used_btfs) { 19856 ret = -ENOMEM; 19857 goto err_release_maps; 19858 } 19859 19860 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19861 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19862 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19863 } 19864 if (env->used_map_cnt || env->used_btf_cnt) { 19865 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19866 * bpf_ld_imm64 instructions 19867 */ 19868 convert_pseudo_ld_imm64(env); 19869 } 19870 19871 adjust_btf_func(env); 19872 19873 err_release_maps: 19874 if (!env->prog->aux->used_maps) 19875 /* if we didn't copy map pointers into bpf_prog_info, release 19876 * them now. Otherwise free_used_maps() will release them. 19877 */ 19878 release_maps(env); 19879 if (!env->prog->aux->used_btfs) 19880 release_btfs(env); 19881 19882 /* extension progs temporarily inherit the attach_type of their targets 19883 for verification purposes, so set it back to zero before returning 19884 */ 19885 if (env->prog->type == BPF_PROG_TYPE_EXT) 19886 env->prog->expected_attach_type = 0; 19887 19888 *prog = env->prog; 19889 err_unlock: 19890 if (!is_priv) 19891 mutex_unlock(&bpf_verifier_lock); 19892 vfree(env->insn_aux_data); 19893 err_free_env: 19894 kfree(env); 19895 return ret; 19896 } 19897