1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 192 193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 194 { 195 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 196 } 197 198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 199 { 200 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 201 } 202 203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 204 const struct bpf_map *map, bool unpriv) 205 { 206 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 207 unpriv |= bpf_map_ptr_unpriv(aux); 208 aux->map_ptr_state = (unsigned long)map | 209 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 210 } 211 212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_key_state & BPF_MAP_KEY_POISON; 215 } 216 217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 218 { 219 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 220 } 221 222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 223 { 224 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 225 } 226 227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 228 { 229 bool poisoned = bpf_map_key_poisoned(aux); 230 231 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 232 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 233 } 234 235 static bool bpf_pseudo_call(const struct bpf_insn *insn) 236 { 237 return insn->code == (BPF_JMP | BPF_CALL) && 238 insn->src_reg == BPF_PSEUDO_CALL; 239 } 240 241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 242 { 243 return insn->code == (BPF_JMP | BPF_CALL) && 244 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 245 } 246 247 struct bpf_call_arg_meta { 248 struct bpf_map *map_ptr; 249 bool raw_mode; 250 bool pkt_access; 251 u8 release_regno; 252 int regno; 253 int access_size; 254 int mem_size; 255 u64 msize_max_value; 256 int ref_obj_id; 257 int map_uid; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 struct bpf_map_value_off_desc *kptr_off_desc; 265 u8 uninit_dynptr_regno; 266 }; 267 268 struct btf *btf_vmlinux; 269 270 static DEFINE_MUTEX(bpf_verifier_lock); 271 272 static const struct bpf_line_info * 273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 274 { 275 const struct bpf_line_info *linfo; 276 const struct bpf_prog *prog; 277 u32 i, nr_linfo; 278 279 prog = env->prog; 280 nr_linfo = prog->aux->nr_linfo; 281 282 if (!nr_linfo || insn_off >= prog->len) 283 return NULL; 284 285 linfo = prog->aux->linfo; 286 for (i = 1; i < nr_linfo; i++) 287 if (insn_off < linfo[i].insn_off) 288 break; 289 290 return &linfo[i - 1]; 291 } 292 293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 294 va_list args) 295 { 296 unsigned int n; 297 298 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 299 300 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 301 "verifier log line truncated - local buffer too short\n"); 302 303 if (log->level == BPF_LOG_KERNEL) { 304 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 305 306 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 307 return; 308 } 309 310 n = min(log->len_total - log->len_used - 1, n); 311 log->kbuf[n] = '\0'; 312 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 313 log->len_used += n; 314 else 315 log->ubuf = NULL; 316 } 317 318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 319 { 320 char zero = 0; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 log->len_used = new_pos; 326 if (put_user(zero, log->ubuf + new_pos)) 327 log->ubuf = NULL; 328 } 329 330 /* log_level controls verbosity level of eBPF verifier. 331 * bpf_verifier_log_write() is used to dump the verification trace to the log, 332 * so the user can figure out what's wrong with the program 333 */ 334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(&env->log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(&env->log, fmt, args); 344 va_end(args); 345 } 346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 347 348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 349 { 350 struct bpf_verifier_env *env = private_data; 351 va_list args; 352 353 if (!bpf_verifier_log_needed(&env->log)) 354 return; 355 356 va_start(args, fmt); 357 bpf_verifier_vlog(&env->log, fmt, args); 358 va_end(args); 359 } 360 361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 362 const char *fmt, ...) 363 { 364 va_list args; 365 366 if (!bpf_verifier_log_needed(log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_PACKET || 431 type == PTR_TO_PACKET_META; 432 } 433 434 static bool type_is_sk_pointer(enum bpf_reg_type type) 435 { 436 return type == PTR_TO_SOCKET || 437 type == PTR_TO_SOCK_COMMON || 438 type == PTR_TO_TCP_SOCK || 439 type == PTR_TO_XDP_SOCK; 440 } 441 442 static bool reg_type_not_null(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_SOCKET || 445 type == PTR_TO_TCP_SOCK || 446 type == PTR_TO_MAP_VALUE || 447 type == PTR_TO_MAP_KEY || 448 type == PTR_TO_SOCK_COMMON; 449 } 450 451 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 452 { 453 return reg->type == PTR_TO_MAP_VALUE && 454 map_value_has_spin_lock(reg->map_ptr); 455 } 456 457 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 458 { 459 return base_type(type) == PTR_TO_SOCKET || 460 base_type(type) == PTR_TO_TCP_SOCK || 461 base_type(type) == PTR_TO_MEM || 462 base_type(type) == PTR_TO_BTF_ID; 463 } 464 465 static bool type_is_rdonly_mem(u32 type) 466 { 467 return type & MEM_RDONLY; 468 } 469 470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 471 { 472 return type == ARG_PTR_TO_SOCK_COMMON; 473 } 474 475 static bool type_may_be_null(u32 type) 476 { 477 return type & PTR_MAYBE_NULL; 478 } 479 480 static bool may_be_acquire_function(enum bpf_func_id func_id) 481 { 482 return func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_map_lookup_elem || 486 func_id == BPF_FUNC_ringbuf_reserve; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 522 { 523 return BPF_CLASS(insn->code) == BPF_STX && 524 BPF_MODE(insn->code) == BPF_ATOMIC && 525 insn->imm == BPF_CMPXCHG; 526 } 527 528 /* string representation of 'enum bpf_reg_type' 529 * 530 * Note that reg_type_str() can not appear more than once in a single verbose() 531 * statement. 532 */ 533 static const char *reg_type_str(struct bpf_verifier_env *env, 534 enum bpf_reg_type type) 535 { 536 char postfix[16] = {0}, prefix[32] = {0}; 537 static const char * const str[] = { 538 [NOT_INIT] = "?", 539 [SCALAR_VALUE] = "scalar", 540 [PTR_TO_CTX] = "ctx", 541 [CONST_PTR_TO_MAP] = "map_ptr", 542 [PTR_TO_MAP_VALUE] = "map_value", 543 [PTR_TO_STACK] = "fp", 544 [PTR_TO_PACKET] = "pkt", 545 [PTR_TO_PACKET_META] = "pkt_meta", 546 [PTR_TO_PACKET_END] = "pkt_end", 547 [PTR_TO_FLOW_KEYS] = "flow_keys", 548 [PTR_TO_SOCKET] = "sock", 549 [PTR_TO_SOCK_COMMON] = "sock_common", 550 [PTR_TO_TCP_SOCK] = "tcp_sock", 551 [PTR_TO_TP_BUFFER] = "tp_buffer", 552 [PTR_TO_XDP_SOCK] = "xdp_sock", 553 [PTR_TO_BTF_ID] = "ptr_", 554 [PTR_TO_MEM] = "mem", 555 [PTR_TO_BUF] = "buf", 556 [PTR_TO_FUNC] = "func", 557 [PTR_TO_MAP_KEY] = "map_key", 558 }; 559 560 if (type & PTR_MAYBE_NULL) { 561 if (base_type(type) == PTR_TO_BTF_ID) 562 strncpy(postfix, "or_null_", 16); 563 else 564 strncpy(postfix, "_or_null", 16); 565 } 566 567 if (type & MEM_RDONLY) 568 strncpy(prefix, "rdonly_", 32); 569 if (type & MEM_ALLOC) 570 strncpy(prefix, "alloc_", 32); 571 if (type & MEM_USER) 572 strncpy(prefix, "user_", 32); 573 if (type & MEM_PERCPU) 574 strncpy(prefix, "percpu_", 32); 575 if (type & PTR_UNTRUSTED) 576 strncpy(prefix, "untrusted_", 32); 577 578 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 579 prefix, str[base_type(type)], postfix); 580 return env->type_str_buf; 581 } 582 583 static char slot_type_char[] = { 584 [STACK_INVALID] = '?', 585 [STACK_SPILL] = 'r', 586 [STACK_MISC] = 'm', 587 [STACK_ZERO] = '0', 588 [STACK_DYNPTR] = 'd', 589 }; 590 591 static void print_liveness(struct bpf_verifier_env *env, 592 enum bpf_reg_liveness live) 593 { 594 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 595 verbose(env, "_"); 596 if (live & REG_LIVE_READ) 597 verbose(env, "r"); 598 if (live & REG_LIVE_WRITTEN) 599 verbose(env, "w"); 600 if (live & REG_LIVE_DONE) 601 verbose(env, "D"); 602 } 603 604 static int get_spi(s32 off) 605 { 606 return (-off - 1) / BPF_REG_SIZE; 607 } 608 609 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 610 { 611 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 612 613 /* We need to check that slots between [spi - nr_slots + 1, spi] are 614 * within [0, allocated_stack). 615 * 616 * Please note that the spi grows downwards. For example, a dynptr 617 * takes the size of two stack slots; the first slot will be at 618 * spi and the second slot will be at spi - 1. 619 */ 620 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 621 } 622 623 static struct bpf_func_state *func(struct bpf_verifier_env *env, 624 const struct bpf_reg_state *reg) 625 { 626 struct bpf_verifier_state *cur = env->cur_state; 627 628 return cur->frame[reg->frameno]; 629 } 630 631 static const char *kernel_type_name(const struct btf* btf, u32 id) 632 { 633 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 634 } 635 636 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 637 { 638 env->scratched_regs |= 1U << regno; 639 } 640 641 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 642 { 643 env->scratched_stack_slots |= 1ULL << spi; 644 } 645 646 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 647 { 648 return (env->scratched_regs >> regno) & 1; 649 } 650 651 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 652 { 653 return (env->scratched_stack_slots >> regno) & 1; 654 } 655 656 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 657 { 658 return env->scratched_regs || env->scratched_stack_slots; 659 } 660 661 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 662 { 663 env->scratched_regs = 0U; 664 env->scratched_stack_slots = 0ULL; 665 } 666 667 /* Used for printing the entire verifier state. */ 668 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 669 { 670 env->scratched_regs = ~0U; 671 env->scratched_stack_slots = ~0ULL; 672 } 673 674 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 675 { 676 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 677 case DYNPTR_TYPE_LOCAL: 678 return BPF_DYNPTR_TYPE_LOCAL; 679 case DYNPTR_TYPE_RINGBUF: 680 return BPF_DYNPTR_TYPE_RINGBUF; 681 default: 682 return BPF_DYNPTR_TYPE_INVALID; 683 } 684 } 685 686 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 687 { 688 return type == BPF_DYNPTR_TYPE_RINGBUF; 689 } 690 691 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 692 enum bpf_arg_type arg_type, int insn_idx) 693 { 694 struct bpf_func_state *state = func(env, reg); 695 enum bpf_dynptr_type type; 696 int spi, i, id; 697 698 spi = get_spi(reg->off); 699 700 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 701 return -EINVAL; 702 703 for (i = 0; i < BPF_REG_SIZE; i++) { 704 state->stack[spi].slot_type[i] = STACK_DYNPTR; 705 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 706 } 707 708 type = arg_to_dynptr_type(arg_type); 709 if (type == BPF_DYNPTR_TYPE_INVALID) 710 return -EINVAL; 711 712 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 713 state->stack[spi].spilled_ptr.dynptr.type = type; 714 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 715 716 if (dynptr_type_refcounted(type)) { 717 /* The id is used to track proper releasing */ 718 id = acquire_reference_state(env, insn_idx); 719 if (id < 0) 720 return id; 721 722 state->stack[spi].spilled_ptr.id = id; 723 state->stack[spi - 1].spilled_ptr.id = id; 724 } 725 726 return 0; 727 } 728 729 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 730 { 731 struct bpf_func_state *state = func(env, reg); 732 int spi, i; 733 734 spi = get_spi(reg->off); 735 736 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 737 return -EINVAL; 738 739 for (i = 0; i < BPF_REG_SIZE; i++) { 740 state->stack[spi].slot_type[i] = STACK_INVALID; 741 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 742 } 743 744 /* Invalidate any slices associated with this dynptr */ 745 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 746 release_reference(env, state->stack[spi].spilled_ptr.id); 747 state->stack[spi].spilled_ptr.id = 0; 748 state->stack[spi - 1].spilled_ptr.id = 0; 749 } 750 751 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 752 state->stack[spi].spilled_ptr.dynptr.type = 0; 753 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 754 755 return 0; 756 } 757 758 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 759 { 760 struct bpf_func_state *state = func(env, reg); 761 int spi = get_spi(reg->off); 762 int i; 763 764 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 765 return true; 766 767 for (i = 0; i < BPF_REG_SIZE; i++) { 768 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 769 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 770 return false; 771 } 772 773 return true; 774 } 775 776 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 777 enum bpf_arg_type arg_type) 778 { 779 struct bpf_func_state *state = func(env, reg); 780 int spi = get_spi(reg->off); 781 int i; 782 783 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 784 !state->stack[spi].spilled_ptr.dynptr.first_slot) 785 return false; 786 787 for (i = 0; i < BPF_REG_SIZE; i++) { 788 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 789 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 790 return false; 791 } 792 793 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 794 if (arg_type == ARG_PTR_TO_DYNPTR) 795 return true; 796 797 return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type); 798 } 799 800 /* The reg state of a pointer or a bounded scalar was saved when 801 * it was spilled to the stack. 802 */ 803 static bool is_spilled_reg(const struct bpf_stack_state *stack) 804 { 805 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 806 } 807 808 static void scrub_spilled_slot(u8 *stype) 809 { 810 if (*stype != STACK_INVALID) 811 *stype = STACK_MISC; 812 } 813 814 static void print_verifier_state(struct bpf_verifier_env *env, 815 const struct bpf_func_state *state, 816 bool print_all) 817 { 818 const struct bpf_reg_state *reg; 819 enum bpf_reg_type t; 820 int i; 821 822 if (state->frameno) 823 verbose(env, " frame%d:", state->frameno); 824 for (i = 0; i < MAX_BPF_REG; i++) { 825 reg = &state->regs[i]; 826 t = reg->type; 827 if (t == NOT_INIT) 828 continue; 829 if (!print_all && !reg_scratched(env, i)) 830 continue; 831 verbose(env, " R%d", i); 832 print_liveness(env, reg->live); 833 verbose(env, "="); 834 if (t == SCALAR_VALUE && reg->precise) 835 verbose(env, "P"); 836 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 837 tnum_is_const(reg->var_off)) { 838 /* reg->off should be 0 for SCALAR_VALUE */ 839 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 840 verbose(env, "%lld", reg->var_off.value + reg->off); 841 } else { 842 const char *sep = ""; 843 844 verbose(env, "%s", reg_type_str(env, t)); 845 if (base_type(t) == PTR_TO_BTF_ID) 846 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 847 verbose(env, "("); 848 /* 849 * _a stands for append, was shortened to avoid multiline statements below. 850 * This macro is used to output a comma separated list of attributes. 851 */ 852 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 853 854 if (reg->id) 855 verbose_a("id=%d", reg->id); 856 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 857 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 858 if (t != SCALAR_VALUE) 859 verbose_a("off=%d", reg->off); 860 if (type_is_pkt_pointer(t)) 861 verbose_a("r=%d", reg->range); 862 else if (base_type(t) == CONST_PTR_TO_MAP || 863 base_type(t) == PTR_TO_MAP_KEY || 864 base_type(t) == PTR_TO_MAP_VALUE) 865 verbose_a("ks=%d,vs=%d", 866 reg->map_ptr->key_size, 867 reg->map_ptr->value_size); 868 if (tnum_is_const(reg->var_off)) { 869 /* Typically an immediate SCALAR_VALUE, but 870 * could be a pointer whose offset is too big 871 * for reg->off 872 */ 873 verbose_a("imm=%llx", reg->var_off.value); 874 } else { 875 if (reg->smin_value != reg->umin_value && 876 reg->smin_value != S64_MIN) 877 verbose_a("smin=%lld", (long long)reg->smin_value); 878 if (reg->smax_value != reg->umax_value && 879 reg->smax_value != S64_MAX) 880 verbose_a("smax=%lld", (long long)reg->smax_value); 881 if (reg->umin_value != 0) 882 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 883 if (reg->umax_value != U64_MAX) 884 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 885 if (!tnum_is_unknown(reg->var_off)) { 886 char tn_buf[48]; 887 888 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 889 verbose_a("var_off=%s", tn_buf); 890 } 891 if (reg->s32_min_value != reg->smin_value && 892 reg->s32_min_value != S32_MIN) 893 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 894 if (reg->s32_max_value != reg->smax_value && 895 reg->s32_max_value != S32_MAX) 896 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 897 if (reg->u32_min_value != reg->umin_value && 898 reg->u32_min_value != U32_MIN) 899 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 900 if (reg->u32_max_value != reg->umax_value && 901 reg->u32_max_value != U32_MAX) 902 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 903 } 904 #undef verbose_a 905 906 verbose(env, ")"); 907 } 908 } 909 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 910 char types_buf[BPF_REG_SIZE + 1]; 911 bool valid = false; 912 int j; 913 914 for (j = 0; j < BPF_REG_SIZE; j++) { 915 if (state->stack[i].slot_type[j] != STACK_INVALID) 916 valid = true; 917 types_buf[j] = slot_type_char[ 918 state->stack[i].slot_type[j]]; 919 } 920 types_buf[BPF_REG_SIZE] = 0; 921 if (!valid) 922 continue; 923 if (!print_all && !stack_slot_scratched(env, i)) 924 continue; 925 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 926 print_liveness(env, state->stack[i].spilled_ptr.live); 927 if (is_spilled_reg(&state->stack[i])) { 928 reg = &state->stack[i].spilled_ptr; 929 t = reg->type; 930 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 931 if (t == SCALAR_VALUE && reg->precise) 932 verbose(env, "P"); 933 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 934 verbose(env, "%lld", reg->var_off.value + reg->off); 935 } else { 936 verbose(env, "=%s", types_buf); 937 } 938 } 939 if (state->acquired_refs && state->refs[0].id) { 940 verbose(env, " refs=%d", state->refs[0].id); 941 for (i = 1; i < state->acquired_refs; i++) 942 if (state->refs[i].id) 943 verbose(env, ",%d", state->refs[i].id); 944 } 945 if (state->in_callback_fn) 946 verbose(env, " cb"); 947 if (state->in_async_callback_fn) 948 verbose(env, " async_cb"); 949 verbose(env, "\n"); 950 mark_verifier_state_clean(env); 951 } 952 953 static inline u32 vlog_alignment(u32 pos) 954 { 955 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 956 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 957 } 958 959 static void print_insn_state(struct bpf_verifier_env *env, 960 const struct bpf_func_state *state) 961 { 962 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 963 /* remove new line character */ 964 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 965 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 966 } else { 967 verbose(env, "%d:", env->insn_idx); 968 } 969 print_verifier_state(env, state, false); 970 } 971 972 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 973 * small to hold src. This is different from krealloc since we don't want to preserve 974 * the contents of dst. 975 * 976 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 977 * not be allocated. 978 */ 979 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 980 { 981 size_t bytes; 982 983 if (ZERO_OR_NULL_PTR(src)) 984 goto out; 985 986 if (unlikely(check_mul_overflow(n, size, &bytes))) 987 return NULL; 988 989 if (ksize(dst) < bytes) { 990 kfree(dst); 991 dst = kmalloc_track_caller(bytes, flags); 992 if (!dst) 993 return NULL; 994 } 995 996 memcpy(dst, src, bytes); 997 out: 998 return dst ? dst : ZERO_SIZE_PTR; 999 } 1000 1001 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1002 * small to hold new_n items. new items are zeroed out if the array grows. 1003 * 1004 * Contrary to krealloc_array, does not free arr if new_n is zero. 1005 */ 1006 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1007 { 1008 if (!new_n || old_n == new_n) 1009 goto out; 1010 1011 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1012 if (!arr) 1013 return NULL; 1014 1015 if (new_n > old_n) 1016 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1017 1018 out: 1019 return arr ? arr : ZERO_SIZE_PTR; 1020 } 1021 1022 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1023 { 1024 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1025 sizeof(struct bpf_reference_state), GFP_KERNEL); 1026 if (!dst->refs) 1027 return -ENOMEM; 1028 1029 dst->acquired_refs = src->acquired_refs; 1030 return 0; 1031 } 1032 1033 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1034 { 1035 size_t n = src->allocated_stack / BPF_REG_SIZE; 1036 1037 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1038 GFP_KERNEL); 1039 if (!dst->stack) 1040 return -ENOMEM; 1041 1042 dst->allocated_stack = src->allocated_stack; 1043 return 0; 1044 } 1045 1046 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1047 { 1048 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1049 sizeof(struct bpf_reference_state)); 1050 if (!state->refs) 1051 return -ENOMEM; 1052 1053 state->acquired_refs = n; 1054 return 0; 1055 } 1056 1057 static int grow_stack_state(struct bpf_func_state *state, int size) 1058 { 1059 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1060 1061 if (old_n >= n) 1062 return 0; 1063 1064 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1065 if (!state->stack) 1066 return -ENOMEM; 1067 1068 state->allocated_stack = size; 1069 return 0; 1070 } 1071 1072 /* Acquire a pointer id from the env and update the state->refs to include 1073 * this new pointer reference. 1074 * On success, returns a valid pointer id to associate with the register 1075 * On failure, returns a negative errno. 1076 */ 1077 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1078 { 1079 struct bpf_func_state *state = cur_func(env); 1080 int new_ofs = state->acquired_refs; 1081 int id, err; 1082 1083 err = resize_reference_state(state, state->acquired_refs + 1); 1084 if (err) 1085 return err; 1086 id = ++env->id_gen; 1087 state->refs[new_ofs].id = id; 1088 state->refs[new_ofs].insn_idx = insn_idx; 1089 1090 return id; 1091 } 1092 1093 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1094 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1095 { 1096 int i, last_idx; 1097 1098 last_idx = state->acquired_refs - 1; 1099 for (i = 0; i < state->acquired_refs; i++) { 1100 if (state->refs[i].id == ptr_id) { 1101 if (last_idx && i != last_idx) 1102 memcpy(&state->refs[i], &state->refs[last_idx], 1103 sizeof(*state->refs)); 1104 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1105 state->acquired_refs--; 1106 return 0; 1107 } 1108 } 1109 return -EINVAL; 1110 } 1111 1112 static void free_func_state(struct bpf_func_state *state) 1113 { 1114 if (!state) 1115 return; 1116 kfree(state->refs); 1117 kfree(state->stack); 1118 kfree(state); 1119 } 1120 1121 static void clear_jmp_history(struct bpf_verifier_state *state) 1122 { 1123 kfree(state->jmp_history); 1124 state->jmp_history = NULL; 1125 state->jmp_history_cnt = 0; 1126 } 1127 1128 static void free_verifier_state(struct bpf_verifier_state *state, 1129 bool free_self) 1130 { 1131 int i; 1132 1133 for (i = 0; i <= state->curframe; i++) { 1134 free_func_state(state->frame[i]); 1135 state->frame[i] = NULL; 1136 } 1137 clear_jmp_history(state); 1138 if (free_self) 1139 kfree(state); 1140 } 1141 1142 /* copy verifier state from src to dst growing dst stack space 1143 * when necessary to accommodate larger src stack 1144 */ 1145 static int copy_func_state(struct bpf_func_state *dst, 1146 const struct bpf_func_state *src) 1147 { 1148 int err; 1149 1150 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1151 err = copy_reference_state(dst, src); 1152 if (err) 1153 return err; 1154 return copy_stack_state(dst, src); 1155 } 1156 1157 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1158 const struct bpf_verifier_state *src) 1159 { 1160 struct bpf_func_state *dst; 1161 int i, err; 1162 1163 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1164 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1165 GFP_USER); 1166 if (!dst_state->jmp_history) 1167 return -ENOMEM; 1168 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1169 1170 /* if dst has more stack frames then src frame, free them */ 1171 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1172 free_func_state(dst_state->frame[i]); 1173 dst_state->frame[i] = NULL; 1174 } 1175 dst_state->speculative = src->speculative; 1176 dst_state->curframe = src->curframe; 1177 dst_state->active_spin_lock = src->active_spin_lock; 1178 dst_state->branches = src->branches; 1179 dst_state->parent = src->parent; 1180 dst_state->first_insn_idx = src->first_insn_idx; 1181 dst_state->last_insn_idx = src->last_insn_idx; 1182 for (i = 0; i <= src->curframe; i++) { 1183 dst = dst_state->frame[i]; 1184 if (!dst) { 1185 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1186 if (!dst) 1187 return -ENOMEM; 1188 dst_state->frame[i] = dst; 1189 } 1190 err = copy_func_state(dst, src->frame[i]); 1191 if (err) 1192 return err; 1193 } 1194 return 0; 1195 } 1196 1197 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1198 { 1199 while (st) { 1200 u32 br = --st->branches; 1201 1202 /* WARN_ON(br > 1) technically makes sense here, 1203 * but see comment in push_stack(), hence: 1204 */ 1205 WARN_ONCE((int)br < 0, 1206 "BUG update_branch_counts:branches_to_explore=%d\n", 1207 br); 1208 if (br) 1209 break; 1210 st = st->parent; 1211 } 1212 } 1213 1214 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1215 int *insn_idx, bool pop_log) 1216 { 1217 struct bpf_verifier_state *cur = env->cur_state; 1218 struct bpf_verifier_stack_elem *elem, *head = env->head; 1219 int err; 1220 1221 if (env->head == NULL) 1222 return -ENOENT; 1223 1224 if (cur) { 1225 err = copy_verifier_state(cur, &head->st); 1226 if (err) 1227 return err; 1228 } 1229 if (pop_log) 1230 bpf_vlog_reset(&env->log, head->log_pos); 1231 if (insn_idx) 1232 *insn_idx = head->insn_idx; 1233 if (prev_insn_idx) 1234 *prev_insn_idx = head->prev_insn_idx; 1235 elem = head->next; 1236 free_verifier_state(&head->st, false); 1237 kfree(head); 1238 env->head = elem; 1239 env->stack_size--; 1240 return 0; 1241 } 1242 1243 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1244 int insn_idx, int prev_insn_idx, 1245 bool speculative) 1246 { 1247 struct bpf_verifier_state *cur = env->cur_state; 1248 struct bpf_verifier_stack_elem *elem; 1249 int err; 1250 1251 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1252 if (!elem) 1253 goto err; 1254 1255 elem->insn_idx = insn_idx; 1256 elem->prev_insn_idx = prev_insn_idx; 1257 elem->next = env->head; 1258 elem->log_pos = env->log.len_used; 1259 env->head = elem; 1260 env->stack_size++; 1261 err = copy_verifier_state(&elem->st, cur); 1262 if (err) 1263 goto err; 1264 elem->st.speculative |= speculative; 1265 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1266 verbose(env, "The sequence of %d jumps is too complex.\n", 1267 env->stack_size); 1268 goto err; 1269 } 1270 if (elem->st.parent) { 1271 ++elem->st.parent->branches; 1272 /* WARN_ON(branches > 2) technically makes sense here, 1273 * but 1274 * 1. speculative states will bump 'branches' for non-branch 1275 * instructions 1276 * 2. is_state_visited() heuristics may decide not to create 1277 * a new state for a sequence of branches and all such current 1278 * and cloned states will be pointing to a single parent state 1279 * which might have large 'branches' count. 1280 */ 1281 } 1282 return &elem->st; 1283 err: 1284 free_verifier_state(env->cur_state, true); 1285 env->cur_state = NULL; 1286 /* pop all elements and return */ 1287 while (!pop_stack(env, NULL, NULL, false)); 1288 return NULL; 1289 } 1290 1291 #define CALLER_SAVED_REGS 6 1292 static const int caller_saved[CALLER_SAVED_REGS] = { 1293 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1294 }; 1295 1296 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1297 struct bpf_reg_state *reg); 1298 1299 /* This helper doesn't clear reg->id */ 1300 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1301 { 1302 reg->var_off = tnum_const(imm); 1303 reg->smin_value = (s64)imm; 1304 reg->smax_value = (s64)imm; 1305 reg->umin_value = imm; 1306 reg->umax_value = imm; 1307 1308 reg->s32_min_value = (s32)imm; 1309 reg->s32_max_value = (s32)imm; 1310 reg->u32_min_value = (u32)imm; 1311 reg->u32_max_value = (u32)imm; 1312 } 1313 1314 /* Mark the unknown part of a register (variable offset or scalar value) as 1315 * known to have the value @imm. 1316 */ 1317 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1318 { 1319 /* Clear id, off, and union(map_ptr, range) */ 1320 memset(((u8 *)reg) + sizeof(reg->type), 0, 1321 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1322 ___mark_reg_known(reg, imm); 1323 } 1324 1325 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1326 { 1327 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1328 reg->s32_min_value = (s32)imm; 1329 reg->s32_max_value = (s32)imm; 1330 reg->u32_min_value = (u32)imm; 1331 reg->u32_max_value = (u32)imm; 1332 } 1333 1334 /* Mark the 'variable offset' part of a register as zero. This should be 1335 * used only on registers holding a pointer type. 1336 */ 1337 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1338 { 1339 __mark_reg_known(reg, 0); 1340 } 1341 1342 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1343 { 1344 __mark_reg_known(reg, 0); 1345 reg->type = SCALAR_VALUE; 1346 } 1347 1348 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1349 struct bpf_reg_state *regs, u32 regno) 1350 { 1351 if (WARN_ON(regno >= MAX_BPF_REG)) { 1352 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1353 /* Something bad happened, let's kill all regs */ 1354 for (regno = 0; regno < MAX_BPF_REG; regno++) 1355 __mark_reg_not_init(env, regs + regno); 1356 return; 1357 } 1358 __mark_reg_known_zero(regs + regno); 1359 } 1360 1361 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1362 { 1363 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1364 const struct bpf_map *map = reg->map_ptr; 1365 1366 if (map->inner_map_meta) { 1367 reg->type = CONST_PTR_TO_MAP; 1368 reg->map_ptr = map->inner_map_meta; 1369 /* transfer reg's id which is unique for every map_lookup_elem 1370 * as UID of the inner map. 1371 */ 1372 if (map_value_has_timer(map->inner_map_meta)) 1373 reg->map_uid = reg->id; 1374 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1375 reg->type = PTR_TO_XDP_SOCK; 1376 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1377 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1378 reg->type = PTR_TO_SOCKET; 1379 } else { 1380 reg->type = PTR_TO_MAP_VALUE; 1381 } 1382 return; 1383 } 1384 1385 reg->type &= ~PTR_MAYBE_NULL; 1386 } 1387 1388 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1389 { 1390 return type_is_pkt_pointer(reg->type); 1391 } 1392 1393 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1394 { 1395 return reg_is_pkt_pointer(reg) || 1396 reg->type == PTR_TO_PACKET_END; 1397 } 1398 1399 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1400 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1401 enum bpf_reg_type which) 1402 { 1403 /* The register can already have a range from prior markings. 1404 * This is fine as long as it hasn't been advanced from its 1405 * origin. 1406 */ 1407 return reg->type == which && 1408 reg->id == 0 && 1409 reg->off == 0 && 1410 tnum_equals_const(reg->var_off, 0); 1411 } 1412 1413 /* Reset the min/max bounds of a register */ 1414 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1415 { 1416 reg->smin_value = S64_MIN; 1417 reg->smax_value = S64_MAX; 1418 reg->umin_value = 0; 1419 reg->umax_value = U64_MAX; 1420 1421 reg->s32_min_value = S32_MIN; 1422 reg->s32_max_value = S32_MAX; 1423 reg->u32_min_value = 0; 1424 reg->u32_max_value = U32_MAX; 1425 } 1426 1427 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1428 { 1429 reg->smin_value = S64_MIN; 1430 reg->smax_value = S64_MAX; 1431 reg->umin_value = 0; 1432 reg->umax_value = U64_MAX; 1433 } 1434 1435 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1436 { 1437 reg->s32_min_value = S32_MIN; 1438 reg->s32_max_value = S32_MAX; 1439 reg->u32_min_value = 0; 1440 reg->u32_max_value = U32_MAX; 1441 } 1442 1443 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1444 { 1445 struct tnum var32_off = tnum_subreg(reg->var_off); 1446 1447 /* min signed is max(sign bit) | min(other bits) */ 1448 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1449 var32_off.value | (var32_off.mask & S32_MIN)); 1450 /* max signed is min(sign bit) | max(other bits) */ 1451 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1452 var32_off.value | (var32_off.mask & S32_MAX)); 1453 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1454 reg->u32_max_value = min(reg->u32_max_value, 1455 (u32)(var32_off.value | var32_off.mask)); 1456 } 1457 1458 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1459 { 1460 /* min signed is max(sign bit) | min(other bits) */ 1461 reg->smin_value = max_t(s64, reg->smin_value, 1462 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1463 /* max signed is min(sign bit) | max(other bits) */ 1464 reg->smax_value = min_t(s64, reg->smax_value, 1465 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1466 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1467 reg->umax_value = min(reg->umax_value, 1468 reg->var_off.value | reg->var_off.mask); 1469 } 1470 1471 static void __update_reg_bounds(struct bpf_reg_state *reg) 1472 { 1473 __update_reg32_bounds(reg); 1474 __update_reg64_bounds(reg); 1475 } 1476 1477 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1478 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1479 { 1480 /* Learn sign from signed bounds. 1481 * If we cannot cross the sign boundary, then signed and unsigned bounds 1482 * are the same, so combine. This works even in the negative case, e.g. 1483 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1484 */ 1485 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1486 reg->s32_min_value = reg->u32_min_value = 1487 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1488 reg->s32_max_value = reg->u32_max_value = 1489 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1490 return; 1491 } 1492 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1493 * boundary, so we must be careful. 1494 */ 1495 if ((s32)reg->u32_max_value >= 0) { 1496 /* Positive. We can't learn anything from the smin, but smax 1497 * is positive, hence safe. 1498 */ 1499 reg->s32_min_value = reg->u32_min_value; 1500 reg->s32_max_value = reg->u32_max_value = 1501 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1502 } else if ((s32)reg->u32_min_value < 0) { 1503 /* Negative. We can't learn anything from the smax, but smin 1504 * is negative, hence safe. 1505 */ 1506 reg->s32_min_value = reg->u32_min_value = 1507 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1508 reg->s32_max_value = reg->u32_max_value; 1509 } 1510 } 1511 1512 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1513 { 1514 /* Learn sign from signed bounds. 1515 * If we cannot cross the sign boundary, then signed and unsigned bounds 1516 * are the same, so combine. This works even in the negative case, e.g. 1517 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1518 */ 1519 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1520 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1521 reg->umin_value); 1522 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1523 reg->umax_value); 1524 return; 1525 } 1526 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1527 * boundary, so we must be careful. 1528 */ 1529 if ((s64)reg->umax_value >= 0) { 1530 /* Positive. We can't learn anything from the smin, but smax 1531 * is positive, hence safe. 1532 */ 1533 reg->smin_value = reg->umin_value; 1534 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1535 reg->umax_value); 1536 } else if ((s64)reg->umin_value < 0) { 1537 /* Negative. We can't learn anything from the smax, but smin 1538 * is negative, hence safe. 1539 */ 1540 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1541 reg->umin_value); 1542 reg->smax_value = reg->umax_value; 1543 } 1544 } 1545 1546 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1547 { 1548 __reg32_deduce_bounds(reg); 1549 __reg64_deduce_bounds(reg); 1550 } 1551 1552 /* Attempts to improve var_off based on unsigned min/max information */ 1553 static void __reg_bound_offset(struct bpf_reg_state *reg) 1554 { 1555 struct tnum var64_off = tnum_intersect(reg->var_off, 1556 tnum_range(reg->umin_value, 1557 reg->umax_value)); 1558 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1559 tnum_range(reg->u32_min_value, 1560 reg->u32_max_value)); 1561 1562 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1563 } 1564 1565 static void reg_bounds_sync(struct bpf_reg_state *reg) 1566 { 1567 /* We might have learned new bounds from the var_off. */ 1568 __update_reg_bounds(reg); 1569 /* We might have learned something about the sign bit. */ 1570 __reg_deduce_bounds(reg); 1571 /* We might have learned some bits from the bounds. */ 1572 __reg_bound_offset(reg); 1573 /* Intersecting with the old var_off might have improved our bounds 1574 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1575 * then new var_off is (0; 0x7f...fc) which improves our umax. 1576 */ 1577 __update_reg_bounds(reg); 1578 } 1579 1580 static bool __reg32_bound_s64(s32 a) 1581 { 1582 return a >= 0 && a <= S32_MAX; 1583 } 1584 1585 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1586 { 1587 reg->umin_value = reg->u32_min_value; 1588 reg->umax_value = reg->u32_max_value; 1589 1590 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1591 * be positive otherwise set to worse case bounds and refine later 1592 * from tnum. 1593 */ 1594 if (__reg32_bound_s64(reg->s32_min_value) && 1595 __reg32_bound_s64(reg->s32_max_value)) { 1596 reg->smin_value = reg->s32_min_value; 1597 reg->smax_value = reg->s32_max_value; 1598 } else { 1599 reg->smin_value = 0; 1600 reg->smax_value = U32_MAX; 1601 } 1602 } 1603 1604 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1605 { 1606 /* special case when 64-bit register has upper 32-bit register 1607 * zeroed. Typically happens after zext or <<32, >>32 sequence 1608 * allowing us to use 32-bit bounds directly, 1609 */ 1610 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1611 __reg_assign_32_into_64(reg); 1612 } else { 1613 /* Otherwise the best we can do is push lower 32bit known and 1614 * unknown bits into register (var_off set from jmp logic) 1615 * then learn as much as possible from the 64-bit tnum 1616 * known and unknown bits. The previous smin/smax bounds are 1617 * invalid here because of jmp32 compare so mark them unknown 1618 * so they do not impact tnum bounds calculation. 1619 */ 1620 __mark_reg64_unbounded(reg); 1621 } 1622 reg_bounds_sync(reg); 1623 } 1624 1625 static bool __reg64_bound_s32(s64 a) 1626 { 1627 return a >= S32_MIN && a <= S32_MAX; 1628 } 1629 1630 static bool __reg64_bound_u32(u64 a) 1631 { 1632 return a >= U32_MIN && a <= U32_MAX; 1633 } 1634 1635 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1636 { 1637 __mark_reg32_unbounded(reg); 1638 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1639 reg->s32_min_value = (s32)reg->smin_value; 1640 reg->s32_max_value = (s32)reg->smax_value; 1641 } 1642 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1643 reg->u32_min_value = (u32)reg->umin_value; 1644 reg->u32_max_value = (u32)reg->umax_value; 1645 } 1646 reg_bounds_sync(reg); 1647 } 1648 1649 /* Mark a register as having a completely unknown (scalar) value. */ 1650 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1651 struct bpf_reg_state *reg) 1652 { 1653 /* 1654 * Clear type, id, off, and union(map_ptr, range) and 1655 * padding between 'type' and union 1656 */ 1657 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1658 reg->type = SCALAR_VALUE; 1659 reg->var_off = tnum_unknown; 1660 reg->frameno = 0; 1661 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1662 __mark_reg_unbounded(reg); 1663 } 1664 1665 static void mark_reg_unknown(struct bpf_verifier_env *env, 1666 struct bpf_reg_state *regs, u32 regno) 1667 { 1668 if (WARN_ON(regno >= MAX_BPF_REG)) { 1669 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1670 /* Something bad happened, let's kill all regs except FP */ 1671 for (regno = 0; regno < BPF_REG_FP; regno++) 1672 __mark_reg_not_init(env, regs + regno); 1673 return; 1674 } 1675 __mark_reg_unknown(env, regs + regno); 1676 } 1677 1678 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1679 struct bpf_reg_state *reg) 1680 { 1681 __mark_reg_unknown(env, reg); 1682 reg->type = NOT_INIT; 1683 } 1684 1685 static void mark_reg_not_init(struct bpf_verifier_env *env, 1686 struct bpf_reg_state *regs, u32 regno) 1687 { 1688 if (WARN_ON(regno >= MAX_BPF_REG)) { 1689 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1690 /* Something bad happened, let's kill all regs except FP */ 1691 for (regno = 0; regno < BPF_REG_FP; regno++) 1692 __mark_reg_not_init(env, regs + regno); 1693 return; 1694 } 1695 __mark_reg_not_init(env, regs + regno); 1696 } 1697 1698 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1699 struct bpf_reg_state *regs, u32 regno, 1700 enum bpf_reg_type reg_type, 1701 struct btf *btf, u32 btf_id, 1702 enum bpf_type_flag flag) 1703 { 1704 if (reg_type == SCALAR_VALUE) { 1705 mark_reg_unknown(env, regs, regno); 1706 return; 1707 } 1708 mark_reg_known_zero(env, regs, regno); 1709 regs[regno].type = PTR_TO_BTF_ID | flag; 1710 regs[regno].btf = btf; 1711 regs[regno].btf_id = btf_id; 1712 } 1713 1714 #define DEF_NOT_SUBREG (0) 1715 static void init_reg_state(struct bpf_verifier_env *env, 1716 struct bpf_func_state *state) 1717 { 1718 struct bpf_reg_state *regs = state->regs; 1719 int i; 1720 1721 for (i = 0; i < MAX_BPF_REG; i++) { 1722 mark_reg_not_init(env, regs, i); 1723 regs[i].live = REG_LIVE_NONE; 1724 regs[i].parent = NULL; 1725 regs[i].subreg_def = DEF_NOT_SUBREG; 1726 } 1727 1728 /* frame pointer */ 1729 regs[BPF_REG_FP].type = PTR_TO_STACK; 1730 mark_reg_known_zero(env, regs, BPF_REG_FP); 1731 regs[BPF_REG_FP].frameno = state->frameno; 1732 } 1733 1734 #define BPF_MAIN_FUNC (-1) 1735 static void init_func_state(struct bpf_verifier_env *env, 1736 struct bpf_func_state *state, 1737 int callsite, int frameno, int subprogno) 1738 { 1739 state->callsite = callsite; 1740 state->frameno = frameno; 1741 state->subprogno = subprogno; 1742 init_reg_state(env, state); 1743 mark_verifier_state_scratched(env); 1744 } 1745 1746 /* Similar to push_stack(), but for async callbacks */ 1747 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1748 int insn_idx, int prev_insn_idx, 1749 int subprog) 1750 { 1751 struct bpf_verifier_stack_elem *elem; 1752 struct bpf_func_state *frame; 1753 1754 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1755 if (!elem) 1756 goto err; 1757 1758 elem->insn_idx = insn_idx; 1759 elem->prev_insn_idx = prev_insn_idx; 1760 elem->next = env->head; 1761 elem->log_pos = env->log.len_used; 1762 env->head = elem; 1763 env->stack_size++; 1764 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1765 verbose(env, 1766 "The sequence of %d jumps is too complex for async cb.\n", 1767 env->stack_size); 1768 goto err; 1769 } 1770 /* Unlike push_stack() do not copy_verifier_state(). 1771 * The caller state doesn't matter. 1772 * This is async callback. It starts in a fresh stack. 1773 * Initialize it similar to do_check_common(). 1774 */ 1775 elem->st.branches = 1; 1776 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1777 if (!frame) 1778 goto err; 1779 init_func_state(env, frame, 1780 BPF_MAIN_FUNC /* callsite */, 1781 0 /* frameno within this callchain */, 1782 subprog /* subprog number within this prog */); 1783 elem->st.frame[0] = frame; 1784 return &elem->st; 1785 err: 1786 free_verifier_state(env->cur_state, true); 1787 env->cur_state = NULL; 1788 /* pop all elements and return */ 1789 while (!pop_stack(env, NULL, NULL, false)); 1790 return NULL; 1791 } 1792 1793 1794 enum reg_arg_type { 1795 SRC_OP, /* register is used as source operand */ 1796 DST_OP, /* register is used as destination operand */ 1797 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1798 }; 1799 1800 static int cmp_subprogs(const void *a, const void *b) 1801 { 1802 return ((struct bpf_subprog_info *)a)->start - 1803 ((struct bpf_subprog_info *)b)->start; 1804 } 1805 1806 static int find_subprog(struct bpf_verifier_env *env, int off) 1807 { 1808 struct bpf_subprog_info *p; 1809 1810 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1811 sizeof(env->subprog_info[0]), cmp_subprogs); 1812 if (!p) 1813 return -ENOENT; 1814 return p - env->subprog_info; 1815 1816 } 1817 1818 static int add_subprog(struct bpf_verifier_env *env, int off) 1819 { 1820 int insn_cnt = env->prog->len; 1821 int ret; 1822 1823 if (off >= insn_cnt || off < 0) { 1824 verbose(env, "call to invalid destination\n"); 1825 return -EINVAL; 1826 } 1827 ret = find_subprog(env, off); 1828 if (ret >= 0) 1829 return ret; 1830 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1831 verbose(env, "too many subprograms\n"); 1832 return -E2BIG; 1833 } 1834 /* determine subprog starts. The end is one before the next starts */ 1835 env->subprog_info[env->subprog_cnt++].start = off; 1836 sort(env->subprog_info, env->subprog_cnt, 1837 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1838 return env->subprog_cnt - 1; 1839 } 1840 1841 #define MAX_KFUNC_DESCS 256 1842 #define MAX_KFUNC_BTFS 256 1843 1844 struct bpf_kfunc_desc { 1845 struct btf_func_model func_model; 1846 u32 func_id; 1847 s32 imm; 1848 u16 offset; 1849 }; 1850 1851 struct bpf_kfunc_btf { 1852 struct btf *btf; 1853 struct module *module; 1854 u16 offset; 1855 }; 1856 1857 struct bpf_kfunc_desc_tab { 1858 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1859 u32 nr_descs; 1860 }; 1861 1862 struct bpf_kfunc_btf_tab { 1863 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1864 u32 nr_descs; 1865 }; 1866 1867 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1868 { 1869 const struct bpf_kfunc_desc *d0 = a; 1870 const struct bpf_kfunc_desc *d1 = b; 1871 1872 /* func_id is not greater than BTF_MAX_TYPE */ 1873 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1874 } 1875 1876 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1877 { 1878 const struct bpf_kfunc_btf *d0 = a; 1879 const struct bpf_kfunc_btf *d1 = b; 1880 1881 return d0->offset - d1->offset; 1882 } 1883 1884 static const struct bpf_kfunc_desc * 1885 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1886 { 1887 struct bpf_kfunc_desc desc = { 1888 .func_id = func_id, 1889 .offset = offset, 1890 }; 1891 struct bpf_kfunc_desc_tab *tab; 1892 1893 tab = prog->aux->kfunc_tab; 1894 return bsearch(&desc, tab->descs, tab->nr_descs, 1895 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1896 } 1897 1898 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1899 s16 offset) 1900 { 1901 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1902 struct bpf_kfunc_btf_tab *tab; 1903 struct bpf_kfunc_btf *b; 1904 struct module *mod; 1905 struct btf *btf; 1906 int btf_fd; 1907 1908 tab = env->prog->aux->kfunc_btf_tab; 1909 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1910 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1911 if (!b) { 1912 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1913 verbose(env, "too many different module BTFs\n"); 1914 return ERR_PTR(-E2BIG); 1915 } 1916 1917 if (bpfptr_is_null(env->fd_array)) { 1918 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1919 return ERR_PTR(-EPROTO); 1920 } 1921 1922 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1923 offset * sizeof(btf_fd), 1924 sizeof(btf_fd))) 1925 return ERR_PTR(-EFAULT); 1926 1927 btf = btf_get_by_fd(btf_fd); 1928 if (IS_ERR(btf)) { 1929 verbose(env, "invalid module BTF fd specified\n"); 1930 return btf; 1931 } 1932 1933 if (!btf_is_module(btf)) { 1934 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1935 btf_put(btf); 1936 return ERR_PTR(-EINVAL); 1937 } 1938 1939 mod = btf_try_get_module(btf); 1940 if (!mod) { 1941 btf_put(btf); 1942 return ERR_PTR(-ENXIO); 1943 } 1944 1945 b = &tab->descs[tab->nr_descs++]; 1946 b->btf = btf; 1947 b->module = mod; 1948 b->offset = offset; 1949 1950 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1951 kfunc_btf_cmp_by_off, NULL); 1952 } 1953 return b->btf; 1954 } 1955 1956 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1957 { 1958 if (!tab) 1959 return; 1960 1961 while (tab->nr_descs--) { 1962 module_put(tab->descs[tab->nr_descs].module); 1963 btf_put(tab->descs[tab->nr_descs].btf); 1964 } 1965 kfree(tab); 1966 } 1967 1968 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1969 { 1970 if (offset) { 1971 if (offset < 0) { 1972 /* In the future, this can be allowed to increase limit 1973 * of fd index into fd_array, interpreted as u16. 1974 */ 1975 verbose(env, "negative offset disallowed for kernel module function call\n"); 1976 return ERR_PTR(-EINVAL); 1977 } 1978 1979 return __find_kfunc_desc_btf(env, offset); 1980 } 1981 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1982 } 1983 1984 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1985 { 1986 const struct btf_type *func, *func_proto; 1987 struct bpf_kfunc_btf_tab *btf_tab; 1988 struct bpf_kfunc_desc_tab *tab; 1989 struct bpf_prog_aux *prog_aux; 1990 struct bpf_kfunc_desc *desc; 1991 const char *func_name; 1992 struct btf *desc_btf; 1993 unsigned long call_imm; 1994 unsigned long addr; 1995 int err; 1996 1997 prog_aux = env->prog->aux; 1998 tab = prog_aux->kfunc_tab; 1999 btf_tab = prog_aux->kfunc_btf_tab; 2000 if (!tab) { 2001 if (!btf_vmlinux) { 2002 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2003 return -ENOTSUPP; 2004 } 2005 2006 if (!env->prog->jit_requested) { 2007 verbose(env, "JIT is required for calling kernel function\n"); 2008 return -ENOTSUPP; 2009 } 2010 2011 if (!bpf_jit_supports_kfunc_call()) { 2012 verbose(env, "JIT does not support calling kernel function\n"); 2013 return -ENOTSUPP; 2014 } 2015 2016 if (!env->prog->gpl_compatible) { 2017 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2018 return -EINVAL; 2019 } 2020 2021 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2022 if (!tab) 2023 return -ENOMEM; 2024 prog_aux->kfunc_tab = tab; 2025 } 2026 2027 /* func_id == 0 is always invalid, but instead of returning an error, be 2028 * conservative and wait until the code elimination pass before returning 2029 * error, so that invalid calls that get pruned out can be in BPF programs 2030 * loaded from userspace. It is also required that offset be untouched 2031 * for such calls. 2032 */ 2033 if (!func_id && !offset) 2034 return 0; 2035 2036 if (!btf_tab && offset) { 2037 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2038 if (!btf_tab) 2039 return -ENOMEM; 2040 prog_aux->kfunc_btf_tab = btf_tab; 2041 } 2042 2043 desc_btf = find_kfunc_desc_btf(env, offset); 2044 if (IS_ERR(desc_btf)) { 2045 verbose(env, "failed to find BTF for kernel function\n"); 2046 return PTR_ERR(desc_btf); 2047 } 2048 2049 if (find_kfunc_desc(env->prog, func_id, offset)) 2050 return 0; 2051 2052 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2053 verbose(env, "too many different kernel function calls\n"); 2054 return -E2BIG; 2055 } 2056 2057 func = btf_type_by_id(desc_btf, func_id); 2058 if (!func || !btf_type_is_func(func)) { 2059 verbose(env, "kernel btf_id %u is not a function\n", 2060 func_id); 2061 return -EINVAL; 2062 } 2063 func_proto = btf_type_by_id(desc_btf, func->type); 2064 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2065 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2066 func_id); 2067 return -EINVAL; 2068 } 2069 2070 func_name = btf_name_by_offset(desc_btf, func->name_off); 2071 addr = kallsyms_lookup_name(func_name); 2072 if (!addr) { 2073 verbose(env, "cannot find address for kernel function %s\n", 2074 func_name); 2075 return -EINVAL; 2076 } 2077 2078 call_imm = BPF_CALL_IMM(addr); 2079 /* Check whether or not the relative offset overflows desc->imm */ 2080 if ((unsigned long)(s32)call_imm != call_imm) { 2081 verbose(env, "address of kernel function %s is out of range\n", 2082 func_name); 2083 return -EINVAL; 2084 } 2085 2086 desc = &tab->descs[tab->nr_descs++]; 2087 desc->func_id = func_id; 2088 desc->imm = call_imm; 2089 desc->offset = offset; 2090 err = btf_distill_func_proto(&env->log, desc_btf, 2091 func_proto, func_name, 2092 &desc->func_model); 2093 if (!err) 2094 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2095 kfunc_desc_cmp_by_id_off, NULL); 2096 return err; 2097 } 2098 2099 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2100 { 2101 const struct bpf_kfunc_desc *d0 = a; 2102 const struct bpf_kfunc_desc *d1 = b; 2103 2104 if (d0->imm > d1->imm) 2105 return 1; 2106 else if (d0->imm < d1->imm) 2107 return -1; 2108 return 0; 2109 } 2110 2111 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2112 { 2113 struct bpf_kfunc_desc_tab *tab; 2114 2115 tab = prog->aux->kfunc_tab; 2116 if (!tab) 2117 return; 2118 2119 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2120 kfunc_desc_cmp_by_imm, NULL); 2121 } 2122 2123 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2124 { 2125 return !!prog->aux->kfunc_tab; 2126 } 2127 2128 const struct btf_func_model * 2129 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2130 const struct bpf_insn *insn) 2131 { 2132 const struct bpf_kfunc_desc desc = { 2133 .imm = insn->imm, 2134 }; 2135 const struct bpf_kfunc_desc *res; 2136 struct bpf_kfunc_desc_tab *tab; 2137 2138 tab = prog->aux->kfunc_tab; 2139 res = bsearch(&desc, tab->descs, tab->nr_descs, 2140 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2141 2142 return res ? &res->func_model : NULL; 2143 } 2144 2145 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2146 { 2147 struct bpf_subprog_info *subprog = env->subprog_info; 2148 struct bpf_insn *insn = env->prog->insnsi; 2149 int i, ret, insn_cnt = env->prog->len; 2150 2151 /* Add entry function. */ 2152 ret = add_subprog(env, 0); 2153 if (ret) 2154 return ret; 2155 2156 for (i = 0; i < insn_cnt; i++, insn++) { 2157 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2158 !bpf_pseudo_kfunc_call(insn)) 2159 continue; 2160 2161 if (!env->bpf_capable) { 2162 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2163 return -EPERM; 2164 } 2165 2166 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2167 ret = add_subprog(env, i + insn->imm + 1); 2168 else 2169 ret = add_kfunc_call(env, insn->imm, insn->off); 2170 2171 if (ret < 0) 2172 return ret; 2173 } 2174 2175 /* Add a fake 'exit' subprog which could simplify subprog iteration 2176 * logic. 'subprog_cnt' should not be increased. 2177 */ 2178 subprog[env->subprog_cnt].start = insn_cnt; 2179 2180 if (env->log.level & BPF_LOG_LEVEL2) 2181 for (i = 0; i < env->subprog_cnt; i++) 2182 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2183 2184 return 0; 2185 } 2186 2187 static int check_subprogs(struct bpf_verifier_env *env) 2188 { 2189 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2190 struct bpf_subprog_info *subprog = env->subprog_info; 2191 struct bpf_insn *insn = env->prog->insnsi; 2192 int insn_cnt = env->prog->len; 2193 2194 /* now check that all jumps are within the same subprog */ 2195 subprog_start = subprog[cur_subprog].start; 2196 subprog_end = subprog[cur_subprog + 1].start; 2197 for (i = 0; i < insn_cnt; i++) { 2198 u8 code = insn[i].code; 2199 2200 if (code == (BPF_JMP | BPF_CALL) && 2201 insn[i].imm == BPF_FUNC_tail_call && 2202 insn[i].src_reg != BPF_PSEUDO_CALL) 2203 subprog[cur_subprog].has_tail_call = true; 2204 if (BPF_CLASS(code) == BPF_LD && 2205 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2206 subprog[cur_subprog].has_ld_abs = true; 2207 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2208 goto next; 2209 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2210 goto next; 2211 off = i + insn[i].off + 1; 2212 if (off < subprog_start || off >= subprog_end) { 2213 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2214 return -EINVAL; 2215 } 2216 next: 2217 if (i == subprog_end - 1) { 2218 /* to avoid fall-through from one subprog into another 2219 * the last insn of the subprog should be either exit 2220 * or unconditional jump back 2221 */ 2222 if (code != (BPF_JMP | BPF_EXIT) && 2223 code != (BPF_JMP | BPF_JA)) { 2224 verbose(env, "last insn is not an exit or jmp\n"); 2225 return -EINVAL; 2226 } 2227 subprog_start = subprog_end; 2228 cur_subprog++; 2229 if (cur_subprog < env->subprog_cnt) 2230 subprog_end = subprog[cur_subprog + 1].start; 2231 } 2232 } 2233 return 0; 2234 } 2235 2236 /* Parentage chain of this register (or stack slot) should take care of all 2237 * issues like callee-saved registers, stack slot allocation time, etc. 2238 */ 2239 static int mark_reg_read(struct bpf_verifier_env *env, 2240 const struct bpf_reg_state *state, 2241 struct bpf_reg_state *parent, u8 flag) 2242 { 2243 bool writes = parent == state->parent; /* Observe write marks */ 2244 int cnt = 0; 2245 2246 while (parent) { 2247 /* if read wasn't screened by an earlier write ... */ 2248 if (writes && state->live & REG_LIVE_WRITTEN) 2249 break; 2250 if (parent->live & REG_LIVE_DONE) { 2251 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2252 reg_type_str(env, parent->type), 2253 parent->var_off.value, parent->off); 2254 return -EFAULT; 2255 } 2256 /* The first condition is more likely to be true than the 2257 * second, checked it first. 2258 */ 2259 if ((parent->live & REG_LIVE_READ) == flag || 2260 parent->live & REG_LIVE_READ64) 2261 /* The parentage chain never changes and 2262 * this parent was already marked as LIVE_READ. 2263 * There is no need to keep walking the chain again and 2264 * keep re-marking all parents as LIVE_READ. 2265 * This case happens when the same register is read 2266 * multiple times without writes into it in-between. 2267 * Also, if parent has the stronger REG_LIVE_READ64 set, 2268 * then no need to set the weak REG_LIVE_READ32. 2269 */ 2270 break; 2271 /* ... then we depend on parent's value */ 2272 parent->live |= flag; 2273 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2274 if (flag == REG_LIVE_READ64) 2275 parent->live &= ~REG_LIVE_READ32; 2276 state = parent; 2277 parent = state->parent; 2278 writes = true; 2279 cnt++; 2280 } 2281 2282 if (env->longest_mark_read_walk < cnt) 2283 env->longest_mark_read_walk = cnt; 2284 return 0; 2285 } 2286 2287 /* This function is supposed to be used by the following 32-bit optimization 2288 * code only. It returns TRUE if the source or destination register operates 2289 * on 64-bit, otherwise return FALSE. 2290 */ 2291 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2292 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2293 { 2294 u8 code, class, op; 2295 2296 code = insn->code; 2297 class = BPF_CLASS(code); 2298 op = BPF_OP(code); 2299 if (class == BPF_JMP) { 2300 /* BPF_EXIT for "main" will reach here. Return TRUE 2301 * conservatively. 2302 */ 2303 if (op == BPF_EXIT) 2304 return true; 2305 if (op == BPF_CALL) { 2306 /* BPF to BPF call will reach here because of marking 2307 * caller saved clobber with DST_OP_NO_MARK for which we 2308 * don't care the register def because they are anyway 2309 * marked as NOT_INIT already. 2310 */ 2311 if (insn->src_reg == BPF_PSEUDO_CALL) 2312 return false; 2313 /* Helper call will reach here because of arg type 2314 * check, conservatively return TRUE. 2315 */ 2316 if (t == SRC_OP) 2317 return true; 2318 2319 return false; 2320 } 2321 } 2322 2323 if (class == BPF_ALU64 || class == BPF_JMP || 2324 /* BPF_END always use BPF_ALU class. */ 2325 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2326 return true; 2327 2328 if (class == BPF_ALU || class == BPF_JMP32) 2329 return false; 2330 2331 if (class == BPF_LDX) { 2332 if (t != SRC_OP) 2333 return BPF_SIZE(code) == BPF_DW; 2334 /* LDX source must be ptr. */ 2335 return true; 2336 } 2337 2338 if (class == BPF_STX) { 2339 /* BPF_STX (including atomic variants) has multiple source 2340 * operands, one of which is a ptr. Check whether the caller is 2341 * asking about it. 2342 */ 2343 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2344 return true; 2345 return BPF_SIZE(code) == BPF_DW; 2346 } 2347 2348 if (class == BPF_LD) { 2349 u8 mode = BPF_MODE(code); 2350 2351 /* LD_IMM64 */ 2352 if (mode == BPF_IMM) 2353 return true; 2354 2355 /* Both LD_IND and LD_ABS return 32-bit data. */ 2356 if (t != SRC_OP) 2357 return false; 2358 2359 /* Implicit ctx ptr. */ 2360 if (regno == BPF_REG_6) 2361 return true; 2362 2363 /* Explicit source could be any width. */ 2364 return true; 2365 } 2366 2367 if (class == BPF_ST) 2368 /* The only source register for BPF_ST is a ptr. */ 2369 return true; 2370 2371 /* Conservatively return true at default. */ 2372 return true; 2373 } 2374 2375 /* Return the regno defined by the insn, or -1. */ 2376 static int insn_def_regno(const struct bpf_insn *insn) 2377 { 2378 switch (BPF_CLASS(insn->code)) { 2379 case BPF_JMP: 2380 case BPF_JMP32: 2381 case BPF_ST: 2382 return -1; 2383 case BPF_STX: 2384 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2385 (insn->imm & BPF_FETCH)) { 2386 if (insn->imm == BPF_CMPXCHG) 2387 return BPF_REG_0; 2388 else 2389 return insn->src_reg; 2390 } else { 2391 return -1; 2392 } 2393 default: 2394 return insn->dst_reg; 2395 } 2396 } 2397 2398 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2399 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2400 { 2401 int dst_reg = insn_def_regno(insn); 2402 2403 if (dst_reg == -1) 2404 return false; 2405 2406 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2407 } 2408 2409 static void mark_insn_zext(struct bpf_verifier_env *env, 2410 struct bpf_reg_state *reg) 2411 { 2412 s32 def_idx = reg->subreg_def; 2413 2414 if (def_idx == DEF_NOT_SUBREG) 2415 return; 2416 2417 env->insn_aux_data[def_idx - 1].zext_dst = true; 2418 /* The dst will be zero extended, so won't be sub-register anymore. */ 2419 reg->subreg_def = DEF_NOT_SUBREG; 2420 } 2421 2422 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2423 enum reg_arg_type t) 2424 { 2425 struct bpf_verifier_state *vstate = env->cur_state; 2426 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2427 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2428 struct bpf_reg_state *reg, *regs = state->regs; 2429 bool rw64; 2430 2431 if (regno >= MAX_BPF_REG) { 2432 verbose(env, "R%d is invalid\n", regno); 2433 return -EINVAL; 2434 } 2435 2436 mark_reg_scratched(env, regno); 2437 2438 reg = ®s[regno]; 2439 rw64 = is_reg64(env, insn, regno, reg, t); 2440 if (t == SRC_OP) { 2441 /* check whether register used as source operand can be read */ 2442 if (reg->type == NOT_INIT) { 2443 verbose(env, "R%d !read_ok\n", regno); 2444 return -EACCES; 2445 } 2446 /* We don't need to worry about FP liveness because it's read-only */ 2447 if (regno == BPF_REG_FP) 2448 return 0; 2449 2450 if (rw64) 2451 mark_insn_zext(env, reg); 2452 2453 return mark_reg_read(env, reg, reg->parent, 2454 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2455 } else { 2456 /* check whether register used as dest operand can be written to */ 2457 if (regno == BPF_REG_FP) { 2458 verbose(env, "frame pointer is read only\n"); 2459 return -EACCES; 2460 } 2461 reg->live |= REG_LIVE_WRITTEN; 2462 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2463 if (t == DST_OP) 2464 mark_reg_unknown(env, regs, regno); 2465 } 2466 return 0; 2467 } 2468 2469 /* for any branch, call, exit record the history of jmps in the given state */ 2470 static int push_jmp_history(struct bpf_verifier_env *env, 2471 struct bpf_verifier_state *cur) 2472 { 2473 u32 cnt = cur->jmp_history_cnt; 2474 struct bpf_idx_pair *p; 2475 2476 cnt++; 2477 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2478 if (!p) 2479 return -ENOMEM; 2480 p[cnt - 1].idx = env->insn_idx; 2481 p[cnt - 1].prev_idx = env->prev_insn_idx; 2482 cur->jmp_history = p; 2483 cur->jmp_history_cnt = cnt; 2484 return 0; 2485 } 2486 2487 /* Backtrack one insn at a time. If idx is not at the top of recorded 2488 * history then previous instruction came from straight line execution. 2489 */ 2490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2491 u32 *history) 2492 { 2493 u32 cnt = *history; 2494 2495 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2496 i = st->jmp_history[cnt - 1].prev_idx; 2497 (*history)--; 2498 } else { 2499 i--; 2500 } 2501 return i; 2502 } 2503 2504 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2505 { 2506 const struct btf_type *func; 2507 struct btf *desc_btf; 2508 2509 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2510 return NULL; 2511 2512 desc_btf = find_kfunc_desc_btf(data, insn->off); 2513 if (IS_ERR(desc_btf)) 2514 return "<error>"; 2515 2516 func = btf_type_by_id(desc_btf, insn->imm); 2517 return btf_name_by_offset(desc_btf, func->name_off); 2518 } 2519 2520 /* For given verifier state backtrack_insn() is called from the last insn to 2521 * the first insn. Its purpose is to compute a bitmask of registers and 2522 * stack slots that needs precision in the parent verifier state. 2523 */ 2524 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2525 u32 *reg_mask, u64 *stack_mask) 2526 { 2527 const struct bpf_insn_cbs cbs = { 2528 .cb_call = disasm_kfunc_name, 2529 .cb_print = verbose, 2530 .private_data = env, 2531 }; 2532 struct bpf_insn *insn = env->prog->insnsi + idx; 2533 u8 class = BPF_CLASS(insn->code); 2534 u8 opcode = BPF_OP(insn->code); 2535 u8 mode = BPF_MODE(insn->code); 2536 u32 dreg = 1u << insn->dst_reg; 2537 u32 sreg = 1u << insn->src_reg; 2538 u32 spi; 2539 2540 if (insn->code == 0) 2541 return 0; 2542 if (env->log.level & BPF_LOG_LEVEL2) { 2543 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2544 verbose(env, "%d: ", idx); 2545 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2546 } 2547 2548 if (class == BPF_ALU || class == BPF_ALU64) { 2549 if (!(*reg_mask & dreg)) 2550 return 0; 2551 if (opcode == BPF_MOV) { 2552 if (BPF_SRC(insn->code) == BPF_X) { 2553 /* dreg = sreg 2554 * dreg needs precision after this insn 2555 * sreg needs precision before this insn 2556 */ 2557 *reg_mask &= ~dreg; 2558 *reg_mask |= sreg; 2559 } else { 2560 /* dreg = K 2561 * dreg needs precision after this insn. 2562 * Corresponding register is already marked 2563 * as precise=true in this verifier state. 2564 * No further markings in parent are necessary 2565 */ 2566 *reg_mask &= ~dreg; 2567 } 2568 } else { 2569 if (BPF_SRC(insn->code) == BPF_X) { 2570 /* dreg += sreg 2571 * both dreg and sreg need precision 2572 * before this insn 2573 */ 2574 *reg_mask |= sreg; 2575 } /* else dreg += K 2576 * dreg still needs precision before this insn 2577 */ 2578 } 2579 } else if (class == BPF_LDX) { 2580 if (!(*reg_mask & dreg)) 2581 return 0; 2582 *reg_mask &= ~dreg; 2583 2584 /* scalars can only be spilled into stack w/o losing precision. 2585 * Load from any other memory can be zero extended. 2586 * The desire to keep that precision is already indicated 2587 * by 'precise' mark in corresponding register of this state. 2588 * No further tracking necessary. 2589 */ 2590 if (insn->src_reg != BPF_REG_FP) 2591 return 0; 2592 2593 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2594 * that [fp - off] slot contains scalar that needs to be 2595 * tracked with precision 2596 */ 2597 spi = (-insn->off - 1) / BPF_REG_SIZE; 2598 if (spi >= 64) { 2599 verbose(env, "BUG spi %d\n", spi); 2600 WARN_ONCE(1, "verifier backtracking bug"); 2601 return -EFAULT; 2602 } 2603 *stack_mask |= 1ull << spi; 2604 } else if (class == BPF_STX || class == BPF_ST) { 2605 if (*reg_mask & dreg) 2606 /* stx & st shouldn't be using _scalar_ dst_reg 2607 * to access memory. It means backtracking 2608 * encountered a case of pointer subtraction. 2609 */ 2610 return -ENOTSUPP; 2611 /* scalars can only be spilled into stack */ 2612 if (insn->dst_reg != BPF_REG_FP) 2613 return 0; 2614 spi = (-insn->off - 1) / BPF_REG_SIZE; 2615 if (spi >= 64) { 2616 verbose(env, "BUG spi %d\n", spi); 2617 WARN_ONCE(1, "verifier backtracking bug"); 2618 return -EFAULT; 2619 } 2620 if (!(*stack_mask & (1ull << spi))) 2621 return 0; 2622 *stack_mask &= ~(1ull << spi); 2623 if (class == BPF_STX) 2624 *reg_mask |= sreg; 2625 } else if (class == BPF_JMP || class == BPF_JMP32) { 2626 if (opcode == BPF_CALL) { 2627 if (insn->src_reg == BPF_PSEUDO_CALL) 2628 return -ENOTSUPP; 2629 /* regular helper call sets R0 */ 2630 *reg_mask &= ~1; 2631 if (*reg_mask & 0x3f) { 2632 /* if backtracing was looking for registers R1-R5 2633 * they should have been found already. 2634 */ 2635 verbose(env, "BUG regs %x\n", *reg_mask); 2636 WARN_ONCE(1, "verifier backtracking bug"); 2637 return -EFAULT; 2638 } 2639 } else if (opcode == BPF_EXIT) { 2640 return -ENOTSUPP; 2641 } 2642 } else if (class == BPF_LD) { 2643 if (!(*reg_mask & dreg)) 2644 return 0; 2645 *reg_mask &= ~dreg; 2646 /* It's ld_imm64 or ld_abs or ld_ind. 2647 * For ld_imm64 no further tracking of precision 2648 * into parent is necessary 2649 */ 2650 if (mode == BPF_IND || mode == BPF_ABS) 2651 /* to be analyzed */ 2652 return -ENOTSUPP; 2653 } 2654 return 0; 2655 } 2656 2657 /* the scalar precision tracking algorithm: 2658 * . at the start all registers have precise=false. 2659 * . scalar ranges are tracked as normal through alu and jmp insns. 2660 * . once precise value of the scalar register is used in: 2661 * . ptr + scalar alu 2662 * . if (scalar cond K|scalar) 2663 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2664 * backtrack through the verifier states and mark all registers and 2665 * stack slots with spilled constants that these scalar regisers 2666 * should be precise. 2667 * . during state pruning two registers (or spilled stack slots) 2668 * are equivalent if both are not precise. 2669 * 2670 * Note the verifier cannot simply walk register parentage chain, 2671 * since many different registers and stack slots could have been 2672 * used to compute single precise scalar. 2673 * 2674 * The approach of starting with precise=true for all registers and then 2675 * backtrack to mark a register as not precise when the verifier detects 2676 * that program doesn't care about specific value (e.g., when helper 2677 * takes register as ARG_ANYTHING parameter) is not safe. 2678 * 2679 * It's ok to walk single parentage chain of the verifier states. 2680 * It's possible that this backtracking will go all the way till 1st insn. 2681 * All other branches will be explored for needing precision later. 2682 * 2683 * The backtracking needs to deal with cases like: 2684 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2685 * r9 -= r8 2686 * r5 = r9 2687 * if r5 > 0x79f goto pc+7 2688 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2689 * r5 += 1 2690 * ... 2691 * call bpf_perf_event_output#25 2692 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2693 * 2694 * and this case: 2695 * r6 = 1 2696 * call foo // uses callee's r6 inside to compute r0 2697 * r0 += r6 2698 * if r0 == 0 goto 2699 * 2700 * to track above reg_mask/stack_mask needs to be independent for each frame. 2701 * 2702 * Also if parent's curframe > frame where backtracking started, 2703 * the verifier need to mark registers in both frames, otherwise callees 2704 * may incorrectly prune callers. This is similar to 2705 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2706 * 2707 * For now backtracking falls back into conservative marking. 2708 */ 2709 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2710 struct bpf_verifier_state *st) 2711 { 2712 struct bpf_func_state *func; 2713 struct bpf_reg_state *reg; 2714 int i, j; 2715 2716 /* big hammer: mark all scalars precise in this path. 2717 * pop_stack may still get !precise scalars. 2718 */ 2719 for (; st; st = st->parent) 2720 for (i = 0; i <= st->curframe; i++) { 2721 func = st->frame[i]; 2722 for (j = 0; j < BPF_REG_FP; j++) { 2723 reg = &func->regs[j]; 2724 if (reg->type != SCALAR_VALUE) 2725 continue; 2726 reg->precise = true; 2727 } 2728 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2729 if (!is_spilled_reg(&func->stack[j])) 2730 continue; 2731 reg = &func->stack[j].spilled_ptr; 2732 if (reg->type != SCALAR_VALUE) 2733 continue; 2734 reg->precise = true; 2735 } 2736 } 2737 } 2738 2739 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2740 int spi) 2741 { 2742 struct bpf_verifier_state *st = env->cur_state; 2743 int first_idx = st->first_insn_idx; 2744 int last_idx = env->insn_idx; 2745 struct bpf_func_state *func; 2746 struct bpf_reg_state *reg; 2747 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2748 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2749 bool skip_first = true; 2750 bool new_marks = false; 2751 int i, err; 2752 2753 if (!env->bpf_capable) 2754 return 0; 2755 2756 func = st->frame[st->curframe]; 2757 if (regno >= 0) { 2758 reg = &func->regs[regno]; 2759 if (reg->type != SCALAR_VALUE) { 2760 WARN_ONCE(1, "backtracing misuse"); 2761 return -EFAULT; 2762 } 2763 if (!reg->precise) 2764 new_marks = true; 2765 else 2766 reg_mask = 0; 2767 reg->precise = true; 2768 } 2769 2770 while (spi >= 0) { 2771 if (!is_spilled_reg(&func->stack[spi])) { 2772 stack_mask = 0; 2773 break; 2774 } 2775 reg = &func->stack[spi].spilled_ptr; 2776 if (reg->type != SCALAR_VALUE) { 2777 stack_mask = 0; 2778 break; 2779 } 2780 if (!reg->precise) 2781 new_marks = true; 2782 else 2783 stack_mask = 0; 2784 reg->precise = true; 2785 break; 2786 } 2787 2788 if (!new_marks) 2789 return 0; 2790 if (!reg_mask && !stack_mask) 2791 return 0; 2792 for (;;) { 2793 DECLARE_BITMAP(mask, 64); 2794 u32 history = st->jmp_history_cnt; 2795 2796 if (env->log.level & BPF_LOG_LEVEL2) 2797 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2798 for (i = last_idx;;) { 2799 if (skip_first) { 2800 err = 0; 2801 skip_first = false; 2802 } else { 2803 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2804 } 2805 if (err == -ENOTSUPP) { 2806 mark_all_scalars_precise(env, st); 2807 return 0; 2808 } else if (err) { 2809 return err; 2810 } 2811 if (!reg_mask && !stack_mask) 2812 /* Found assignment(s) into tracked register in this state. 2813 * Since this state is already marked, just return. 2814 * Nothing to be tracked further in the parent state. 2815 */ 2816 return 0; 2817 if (i == first_idx) 2818 break; 2819 i = get_prev_insn_idx(st, i, &history); 2820 if (i >= env->prog->len) { 2821 /* This can happen if backtracking reached insn 0 2822 * and there are still reg_mask or stack_mask 2823 * to backtrack. 2824 * It means the backtracking missed the spot where 2825 * particular register was initialized with a constant. 2826 */ 2827 verbose(env, "BUG backtracking idx %d\n", i); 2828 WARN_ONCE(1, "verifier backtracking bug"); 2829 return -EFAULT; 2830 } 2831 } 2832 st = st->parent; 2833 if (!st) 2834 break; 2835 2836 new_marks = false; 2837 func = st->frame[st->curframe]; 2838 bitmap_from_u64(mask, reg_mask); 2839 for_each_set_bit(i, mask, 32) { 2840 reg = &func->regs[i]; 2841 if (reg->type != SCALAR_VALUE) { 2842 reg_mask &= ~(1u << i); 2843 continue; 2844 } 2845 if (!reg->precise) 2846 new_marks = true; 2847 reg->precise = true; 2848 } 2849 2850 bitmap_from_u64(mask, stack_mask); 2851 for_each_set_bit(i, mask, 64) { 2852 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2853 /* the sequence of instructions: 2854 * 2: (bf) r3 = r10 2855 * 3: (7b) *(u64 *)(r3 -8) = r0 2856 * 4: (79) r4 = *(u64 *)(r10 -8) 2857 * doesn't contain jmps. It's backtracked 2858 * as a single block. 2859 * During backtracking insn 3 is not recognized as 2860 * stack access, so at the end of backtracking 2861 * stack slot fp-8 is still marked in stack_mask. 2862 * However the parent state may not have accessed 2863 * fp-8 and it's "unallocated" stack space. 2864 * In such case fallback to conservative. 2865 */ 2866 mark_all_scalars_precise(env, st); 2867 return 0; 2868 } 2869 2870 if (!is_spilled_reg(&func->stack[i])) { 2871 stack_mask &= ~(1ull << i); 2872 continue; 2873 } 2874 reg = &func->stack[i].spilled_ptr; 2875 if (reg->type != SCALAR_VALUE) { 2876 stack_mask &= ~(1ull << i); 2877 continue; 2878 } 2879 if (!reg->precise) 2880 new_marks = true; 2881 reg->precise = true; 2882 } 2883 if (env->log.level & BPF_LOG_LEVEL2) { 2884 verbose(env, "parent %s regs=%x stack=%llx marks:", 2885 new_marks ? "didn't have" : "already had", 2886 reg_mask, stack_mask); 2887 print_verifier_state(env, func, true); 2888 } 2889 2890 if (!reg_mask && !stack_mask) 2891 break; 2892 if (!new_marks) 2893 break; 2894 2895 last_idx = st->last_insn_idx; 2896 first_idx = st->first_insn_idx; 2897 } 2898 return 0; 2899 } 2900 2901 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2902 { 2903 return __mark_chain_precision(env, regno, -1); 2904 } 2905 2906 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2907 { 2908 return __mark_chain_precision(env, -1, spi); 2909 } 2910 2911 static bool is_spillable_regtype(enum bpf_reg_type type) 2912 { 2913 switch (base_type(type)) { 2914 case PTR_TO_MAP_VALUE: 2915 case PTR_TO_STACK: 2916 case PTR_TO_CTX: 2917 case PTR_TO_PACKET: 2918 case PTR_TO_PACKET_META: 2919 case PTR_TO_PACKET_END: 2920 case PTR_TO_FLOW_KEYS: 2921 case CONST_PTR_TO_MAP: 2922 case PTR_TO_SOCKET: 2923 case PTR_TO_SOCK_COMMON: 2924 case PTR_TO_TCP_SOCK: 2925 case PTR_TO_XDP_SOCK: 2926 case PTR_TO_BTF_ID: 2927 case PTR_TO_BUF: 2928 case PTR_TO_MEM: 2929 case PTR_TO_FUNC: 2930 case PTR_TO_MAP_KEY: 2931 return true; 2932 default: 2933 return false; 2934 } 2935 } 2936 2937 /* Does this register contain a constant zero? */ 2938 static bool register_is_null(struct bpf_reg_state *reg) 2939 { 2940 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2941 } 2942 2943 static bool register_is_const(struct bpf_reg_state *reg) 2944 { 2945 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2946 } 2947 2948 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2949 { 2950 return tnum_is_unknown(reg->var_off) && 2951 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2952 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2953 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2954 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2955 } 2956 2957 static bool register_is_bounded(struct bpf_reg_state *reg) 2958 { 2959 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2960 } 2961 2962 static bool __is_pointer_value(bool allow_ptr_leaks, 2963 const struct bpf_reg_state *reg) 2964 { 2965 if (allow_ptr_leaks) 2966 return false; 2967 2968 return reg->type != SCALAR_VALUE; 2969 } 2970 2971 static void save_register_state(struct bpf_func_state *state, 2972 int spi, struct bpf_reg_state *reg, 2973 int size) 2974 { 2975 int i; 2976 2977 state->stack[spi].spilled_ptr = *reg; 2978 if (size == BPF_REG_SIZE) 2979 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2980 2981 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2982 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2983 2984 /* size < 8 bytes spill */ 2985 for (; i; i--) 2986 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2987 } 2988 2989 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2990 * stack boundary and alignment are checked in check_mem_access() 2991 */ 2992 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2993 /* stack frame we're writing to */ 2994 struct bpf_func_state *state, 2995 int off, int size, int value_regno, 2996 int insn_idx) 2997 { 2998 struct bpf_func_state *cur; /* state of the current function */ 2999 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3000 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3001 struct bpf_reg_state *reg = NULL; 3002 3003 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3004 if (err) 3005 return err; 3006 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3007 * so it's aligned access and [off, off + size) are within stack limits 3008 */ 3009 if (!env->allow_ptr_leaks && 3010 state->stack[spi].slot_type[0] == STACK_SPILL && 3011 size != BPF_REG_SIZE) { 3012 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3013 return -EACCES; 3014 } 3015 3016 cur = env->cur_state->frame[env->cur_state->curframe]; 3017 if (value_regno >= 0) 3018 reg = &cur->regs[value_regno]; 3019 if (!env->bypass_spec_v4) { 3020 bool sanitize = reg && is_spillable_regtype(reg->type); 3021 3022 for (i = 0; i < size; i++) { 3023 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3024 sanitize = true; 3025 break; 3026 } 3027 } 3028 3029 if (sanitize) 3030 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3031 } 3032 3033 mark_stack_slot_scratched(env, spi); 3034 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3035 !register_is_null(reg) && env->bpf_capable) { 3036 if (dst_reg != BPF_REG_FP) { 3037 /* The backtracking logic can only recognize explicit 3038 * stack slot address like [fp - 8]. Other spill of 3039 * scalar via different register has to be conservative. 3040 * Backtrack from here and mark all registers as precise 3041 * that contributed into 'reg' being a constant. 3042 */ 3043 err = mark_chain_precision(env, value_regno); 3044 if (err) 3045 return err; 3046 } 3047 save_register_state(state, spi, reg, size); 3048 } else if (reg && is_spillable_regtype(reg->type)) { 3049 /* register containing pointer is being spilled into stack */ 3050 if (size != BPF_REG_SIZE) { 3051 verbose_linfo(env, insn_idx, "; "); 3052 verbose(env, "invalid size of register spill\n"); 3053 return -EACCES; 3054 } 3055 if (state != cur && reg->type == PTR_TO_STACK) { 3056 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3057 return -EINVAL; 3058 } 3059 save_register_state(state, spi, reg, size); 3060 } else { 3061 u8 type = STACK_MISC; 3062 3063 /* regular write of data into stack destroys any spilled ptr */ 3064 state->stack[spi].spilled_ptr.type = NOT_INIT; 3065 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3066 if (is_spilled_reg(&state->stack[spi])) 3067 for (i = 0; i < BPF_REG_SIZE; i++) 3068 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3069 3070 /* only mark the slot as written if all 8 bytes were written 3071 * otherwise read propagation may incorrectly stop too soon 3072 * when stack slots are partially written. 3073 * This heuristic means that read propagation will be 3074 * conservative, since it will add reg_live_read marks 3075 * to stack slots all the way to first state when programs 3076 * writes+reads less than 8 bytes 3077 */ 3078 if (size == BPF_REG_SIZE) 3079 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3080 3081 /* when we zero initialize stack slots mark them as such */ 3082 if (reg && register_is_null(reg)) { 3083 /* backtracking doesn't work for STACK_ZERO yet. */ 3084 err = mark_chain_precision(env, value_regno); 3085 if (err) 3086 return err; 3087 type = STACK_ZERO; 3088 } 3089 3090 /* Mark slots affected by this stack write. */ 3091 for (i = 0; i < size; i++) 3092 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3093 type; 3094 } 3095 return 0; 3096 } 3097 3098 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3099 * known to contain a variable offset. 3100 * This function checks whether the write is permitted and conservatively 3101 * tracks the effects of the write, considering that each stack slot in the 3102 * dynamic range is potentially written to. 3103 * 3104 * 'off' includes 'regno->off'. 3105 * 'value_regno' can be -1, meaning that an unknown value is being written to 3106 * the stack. 3107 * 3108 * Spilled pointers in range are not marked as written because we don't know 3109 * what's going to be actually written. This means that read propagation for 3110 * future reads cannot be terminated by this write. 3111 * 3112 * For privileged programs, uninitialized stack slots are considered 3113 * initialized by this write (even though we don't know exactly what offsets 3114 * are going to be written to). The idea is that we don't want the verifier to 3115 * reject future reads that access slots written to through variable offsets. 3116 */ 3117 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3118 /* func where register points to */ 3119 struct bpf_func_state *state, 3120 int ptr_regno, int off, int size, 3121 int value_regno, int insn_idx) 3122 { 3123 struct bpf_func_state *cur; /* state of the current function */ 3124 int min_off, max_off; 3125 int i, err; 3126 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3127 bool writing_zero = false; 3128 /* set if the fact that we're writing a zero is used to let any 3129 * stack slots remain STACK_ZERO 3130 */ 3131 bool zero_used = false; 3132 3133 cur = env->cur_state->frame[env->cur_state->curframe]; 3134 ptr_reg = &cur->regs[ptr_regno]; 3135 min_off = ptr_reg->smin_value + off; 3136 max_off = ptr_reg->smax_value + off + size; 3137 if (value_regno >= 0) 3138 value_reg = &cur->regs[value_regno]; 3139 if (value_reg && register_is_null(value_reg)) 3140 writing_zero = true; 3141 3142 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3143 if (err) 3144 return err; 3145 3146 3147 /* Variable offset writes destroy any spilled pointers in range. */ 3148 for (i = min_off; i < max_off; i++) { 3149 u8 new_type, *stype; 3150 int slot, spi; 3151 3152 slot = -i - 1; 3153 spi = slot / BPF_REG_SIZE; 3154 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3155 mark_stack_slot_scratched(env, spi); 3156 3157 if (!env->allow_ptr_leaks 3158 && *stype != NOT_INIT 3159 && *stype != SCALAR_VALUE) { 3160 /* Reject the write if there's are spilled pointers in 3161 * range. If we didn't reject here, the ptr status 3162 * would be erased below (even though not all slots are 3163 * actually overwritten), possibly opening the door to 3164 * leaks. 3165 */ 3166 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3167 insn_idx, i); 3168 return -EINVAL; 3169 } 3170 3171 /* Erase all spilled pointers. */ 3172 state->stack[spi].spilled_ptr.type = NOT_INIT; 3173 3174 /* Update the slot type. */ 3175 new_type = STACK_MISC; 3176 if (writing_zero && *stype == STACK_ZERO) { 3177 new_type = STACK_ZERO; 3178 zero_used = true; 3179 } 3180 /* If the slot is STACK_INVALID, we check whether it's OK to 3181 * pretend that it will be initialized by this write. The slot 3182 * might not actually be written to, and so if we mark it as 3183 * initialized future reads might leak uninitialized memory. 3184 * For privileged programs, we will accept such reads to slots 3185 * that may or may not be written because, if we're reject 3186 * them, the error would be too confusing. 3187 */ 3188 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3189 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3190 insn_idx, i); 3191 return -EINVAL; 3192 } 3193 *stype = new_type; 3194 } 3195 if (zero_used) { 3196 /* backtracking doesn't work for STACK_ZERO yet. */ 3197 err = mark_chain_precision(env, value_regno); 3198 if (err) 3199 return err; 3200 } 3201 return 0; 3202 } 3203 3204 /* When register 'dst_regno' is assigned some values from stack[min_off, 3205 * max_off), we set the register's type according to the types of the 3206 * respective stack slots. If all the stack values are known to be zeros, then 3207 * so is the destination reg. Otherwise, the register is considered to be 3208 * SCALAR. This function does not deal with register filling; the caller must 3209 * ensure that all spilled registers in the stack range have been marked as 3210 * read. 3211 */ 3212 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3213 /* func where src register points to */ 3214 struct bpf_func_state *ptr_state, 3215 int min_off, int max_off, int dst_regno) 3216 { 3217 struct bpf_verifier_state *vstate = env->cur_state; 3218 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3219 int i, slot, spi; 3220 u8 *stype; 3221 int zeros = 0; 3222 3223 for (i = min_off; i < max_off; i++) { 3224 slot = -i - 1; 3225 spi = slot / BPF_REG_SIZE; 3226 stype = ptr_state->stack[spi].slot_type; 3227 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3228 break; 3229 zeros++; 3230 } 3231 if (zeros == max_off - min_off) { 3232 /* any access_size read into register is zero extended, 3233 * so the whole register == const_zero 3234 */ 3235 __mark_reg_const_zero(&state->regs[dst_regno]); 3236 /* backtracking doesn't support STACK_ZERO yet, 3237 * so mark it precise here, so that later 3238 * backtracking can stop here. 3239 * Backtracking may not need this if this register 3240 * doesn't participate in pointer adjustment. 3241 * Forward propagation of precise flag is not 3242 * necessary either. This mark is only to stop 3243 * backtracking. Any register that contributed 3244 * to const 0 was marked precise before spill. 3245 */ 3246 state->regs[dst_regno].precise = true; 3247 } else { 3248 /* have read misc data from the stack */ 3249 mark_reg_unknown(env, state->regs, dst_regno); 3250 } 3251 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3252 } 3253 3254 /* Read the stack at 'off' and put the results into the register indicated by 3255 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3256 * spilled reg. 3257 * 3258 * 'dst_regno' can be -1, meaning that the read value is not going to a 3259 * register. 3260 * 3261 * The access is assumed to be within the current stack bounds. 3262 */ 3263 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3264 /* func where src register points to */ 3265 struct bpf_func_state *reg_state, 3266 int off, int size, int dst_regno) 3267 { 3268 struct bpf_verifier_state *vstate = env->cur_state; 3269 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3270 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3271 struct bpf_reg_state *reg; 3272 u8 *stype, type; 3273 3274 stype = reg_state->stack[spi].slot_type; 3275 reg = ®_state->stack[spi].spilled_ptr; 3276 3277 if (is_spilled_reg(®_state->stack[spi])) { 3278 u8 spill_size = 1; 3279 3280 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3281 spill_size++; 3282 3283 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3284 if (reg->type != SCALAR_VALUE) { 3285 verbose_linfo(env, env->insn_idx, "; "); 3286 verbose(env, "invalid size of register fill\n"); 3287 return -EACCES; 3288 } 3289 3290 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3291 if (dst_regno < 0) 3292 return 0; 3293 3294 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3295 /* The earlier check_reg_arg() has decided the 3296 * subreg_def for this insn. Save it first. 3297 */ 3298 s32 subreg_def = state->regs[dst_regno].subreg_def; 3299 3300 state->regs[dst_regno] = *reg; 3301 state->regs[dst_regno].subreg_def = subreg_def; 3302 } else { 3303 for (i = 0; i < size; i++) { 3304 type = stype[(slot - i) % BPF_REG_SIZE]; 3305 if (type == STACK_SPILL) 3306 continue; 3307 if (type == STACK_MISC) 3308 continue; 3309 verbose(env, "invalid read from stack off %d+%d size %d\n", 3310 off, i, size); 3311 return -EACCES; 3312 } 3313 mark_reg_unknown(env, state->regs, dst_regno); 3314 } 3315 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3316 return 0; 3317 } 3318 3319 if (dst_regno >= 0) { 3320 /* restore register state from stack */ 3321 state->regs[dst_regno] = *reg; 3322 /* mark reg as written since spilled pointer state likely 3323 * has its liveness marks cleared by is_state_visited() 3324 * which resets stack/reg liveness for state transitions 3325 */ 3326 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3327 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3328 /* If dst_regno==-1, the caller is asking us whether 3329 * it is acceptable to use this value as a SCALAR_VALUE 3330 * (e.g. for XADD). 3331 * We must not allow unprivileged callers to do that 3332 * with spilled pointers. 3333 */ 3334 verbose(env, "leaking pointer from stack off %d\n", 3335 off); 3336 return -EACCES; 3337 } 3338 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3339 } else { 3340 for (i = 0; i < size; i++) { 3341 type = stype[(slot - i) % BPF_REG_SIZE]; 3342 if (type == STACK_MISC) 3343 continue; 3344 if (type == STACK_ZERO) 3345 continue; 3346 verbose(env, "invalid read from stack off %d+%d size %d\n", 3347 off, i, size); 3348 return -EACCES; 3349 } 3350 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3351 if (dst_regno >= 0) 3352 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3353 } 3354 return 0; 3355 } 3356 3357 enum bpf_access_src { 3358 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3359 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3360 }; 3361 3362 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3363 int regno, int off, int access_size, 3364 bool zero_size_allowed, 3365 enum bpf_access_src type, 3366 struct bpf_call_arg_meta *meta); 3367 3368 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3369 { 3370 return cur_regs(env) + regno; 3371 } 3372 3373 /* Read the stack at 'ptr_regno + off' and put the result into the register 3374 * 'dst_regno'. 3375 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3376 * but not its variable offset. 3377 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3378 * 3379 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3380 * filling registers (i.e. reads of spilled register cannot be detected when 3381 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3382 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3383 * offset; for a fixed offset check_stack_read_fixed_off should be used 3384 * instead. 3385 */ 3386 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3387 int ptr_regno, int off, int size, int dst_regno) 3388 { 3389 /* The state of the source register. */ 3390 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3391 struct bpf_func_state *ptr_state = func(env, reg); 3392 int err; 3393 int min_off, max_off; 3394 3395 /* Note that we pass a NULL meta, so raw access will not be permitted. 3396 */ 3397 err = check_stack_range_initialized(env, ptr_regno, off, size, 3398 false, ACCESS_DIRECT, NULL); 3399 if (err) 3400 return err; 3401 3402 min_off = reg->smin_value + off; 3403 max_off = reg->smax_value + off; 3404 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3405 return 0; 3406 } 3407 3408 /* check_stack_read dispatches to check_stack_read_fixed_off or 3409 * check_stack_read_var_off. 3410 * 3411 * The caller must ensure that the offset falls within the allocated stack 3412 * bounds. 3413 * 3414 * 'dst_regno' is a register which will receive the value from the stack. It 3415 * can be -1, meaning that the read value is not going to a register. 3416 */ 3417 static int check_stack_read(struct bpf_verifier_env *env, 3418 int ptr_regno, int off, int size, 3419 int dst_regno) 3420 { 3421 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3422 struct bpf_func_state *state = func(env, reg); 3423 int err; 3424 /* Some accesses are only permitted with a static offset. */ 3425 bool var_off = !tnum_is_const(reg->var_off); 3426 3427 /* The offset is required to be static when reads don't go to a 3428 * register, in order to not leak pointers (see 3429 * check_stack_read_fixed_off). 3430 */ 3431 if (dst_regno < 0 && var_off) { 3432 char tn_buf[48]; 3433 3434 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3435 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3436 tn_buf, off, size); 3437 return -EACCES; 3438 } 3439 /* Variable offset is prohibited for unprivileged mode for simplicity 3440 * since it requires corresponding support in Spectre masking for stack 3441 * ALU. See also retrieve_ptr_limit(). 3442 */ 3443 if (!env->bypass_spec_v1 && var_off) { 3444 char tn_buf[48]; 3445 3446 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3447 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3448 ptr_regno, tn_buf); 3449 return -EACCES; 3450 } 3451 3452 if (!var_off) { 3453 off += reg->var_off.value; 3454 err = check_stack_read_fixed_off(env, state, off, size, 3455 dst_regno); 3456 } else { 3457 /* Variable offset stack reads need more conservative handling 3458 * than fixed offset ones. Note that dst_regno >= 0 on this 3459 * branch. 3460 */ 3461 err = check_stack_read_var_off(env, ptr_regno, off, size, 3462 dst_regno); 3463 } 3464 return err; 3465 } 3466 3467 3468 /* check_stack_write dispatches to check_stack_write_fixed_off or 3469 * check_stack_write_var_off. 3470 * 3471 * 'ptr_regno' is the register used as a pointer into the stack. 3472 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3473 * 'value_regno' is the register whose value we're writing to the stack. It can 3474 * be -1, meaning that we're not writing from a register. 3475 * 3476 * The caller must ensure that the offset falls within the maximum stack size. 3477 */ 3478 static int check_stack_write(struct bpf_verifier_env *env, 3479 int ptr_regno, int off, int size, 3480 int value_regno, int insn_idx) 3481 { 3482 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3483 struct bpf_func_state *state = func(env, reg); 3484 int err; 3485 3486 if (tnum_is_const(reg->var_off)) { 3487 off += reg->var_off.value; 3488 err = check_stack_write_fixed_off(env, state, off, size, 3489 value_regno, insn_idx); 3490 } else { 3491 /* Variable offset stack reads need more conservative handling 3492 * than fixed offset ones. 3493 */ 3494 err = check_stack_write_var_off(env, state, 3495 ptr_regno, off, size, 3496 value_regno, insn_idx); 3497 } 3498 return err; 3499 } 3500 3501 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3502 int off, int size, enum bpf_access_type type) 3503 { 3504 struct bpf_reg_state *regs = cur_regs(env); 3505 struct bpf_map *map = regs[regno].map_ptr; 3506 u32 cap = bpf_map_flags_to_cap(map); 3507 3508 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3509 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3510 map->value_size, off, size); 3511 return -EACCES; 3512 } 3513 3514 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3515 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3516 map->value_size, off, size); 3517 return -EACCES; 3518 } 3519 3520 return 0; 3521 } 3522 3523 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3524 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3525 int off, int size, u32 mem_size, 3526 bool zero_size_allowed) 3527 { 3528 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3529 struct bpf_reg_state *reg; 3530 3531 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3532 return 0; 3533 3534 reg = &cur_regs(env)[regno]; 3535 switch (reg->type) { 3536 case PTR_TO_MAP_KEY: 3537 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3538 mem_size, off, size); 3539 break; 3540 case PTR_TO_MAP_VALUE: 3541 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3542 mem_size, off, size); 3543 break; 3544 case PTR_TO_PACKET: 3545 case PTR_TO_PACKET_META: 3546 case PTR_TO_PACKET_END: 3547 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3548 off, size, regno, reg->id, off, mem_size); 3549 break; 3550 case PTR_TO_MEM: 3551 default: 3552 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3553 mem_size, off, size); 3554 } 3555 3556 return -EACCES; 3557 } 3558 3559 /* check read/write into a memory region with possible variable offset */ 3560 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3561 int off, int size, u32 mem_size, 3562 bool zero_size_allowed) 3563 { 3564 struct bpf_verifier_state *vstate = env->cur_state; 3565 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3566 struct bpf_reg_state *reg = &state->regs[regno]; 3567 int err; 3568 3569 /* We may have adjusted the register pointing to memory region, so we 3570 * need to try adding each of min_value and max_value to off 3571 * to make sure our theoretical access will be safe. 3572 * 3573 * The minimum value is only important with signed 3574 * comparisons where we can't assume the floor of a 3575 * value is 0. If we are using signed variables for our 3576 * index'es we need to make sure that whatever we use 3577 * will have a set floor within our range. 3578 */ 3579 if (reg->smin_value < 0 && 3580 (reg->smin_value == S64_MIN || 3581 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3582 reg->smin_value + off < 0)) { 3583 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3584 regno); 3585 return -EACCES; 3586 } 3587 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3588 mem_size, zero_size_allowed); 3589 if (err) { 3590 verbose(env, "R%d min value is outside of the allowed memory range\n", 3591 regno); 3592 return err; 3593 } 3594 3595 /* If we haven't set a max value then we need to bail since we can't be 3596 * sure we won't do bad things. 3597 * If reg->umax_value + off could overflow, treat that as unbounded too. 3598 */ 3599 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3600 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3601 regno); 3602 return -EACCES; 3603 } 3604 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3605 mem_size, zero_size_allowed); 3606 if (err) { 3607 verbose(env, "R%d max value is outside of the allowed memory range\n", 3608 regno); 3609 return err; 3610 } 3611 3612 return 0; 3613 } 3614 3615 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3616 const struct bpf_reg_state *reg, int regno, 3617 bool fixed_off_ok) 3618 { 3619 /* Access to this pointer-typed register or passing it to a helper 3620 * is only allowed in its original, unmodified form. 3621 */ 3622 3623 if (reg->off < 0) { 3624 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3625 reg_type_str(env, reg->type), regno, reg->off); 3626 return -EACCES; 3627 } 3628 3629 if (!fixed_off_ok && reg->off) { 3630 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3631 reg_type_str(env, reg->type), regno, reg->off); 3632 return -EACCES; 3633 } 3634 3635 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3636 char tn_buf[48]; 3637 3638 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3639 verbose(env, "variable %s access var_off=%s disallowed\n", 3640 reg_type_str(env, reg->type), tn_buf); 3641 return -EACCES; 3642 } 3643 3644 return 0; 3645 } 3646 3647 int check_ptr_off_reg(struct bpf_verifier_env *env, 3648 const struct bpf_reg_state *reg, int regno) 3649 { 3650 return __check_ptr_off_reg(env, reg, regno, false); 3651 } 3652 3653 static int map_kptr_match_type(struct bpf_verifier_env *env, 3654 struct bpf_map_value_off_desc *off_desc, 3655 struct bpf_reg_state *reg, u32 regno) 3656 { 3657 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3658 int perm_flags = PTR_MAYBE_NULL; 3659 const char *reg_name = ""; 3660 3661 /* Only unreferenced case accepts untrusted pointers */ 3662 if (off_desc->type == BPF_KPTR_UNREF) 3663 perm_flags |= PTR_UNTRUSTED; 3664 3665 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3666 goto bad_type; 3667 3668 if (!btf_is_kernel(reg->btf)) { 3669 verbose(env, "R%d must point to kernel BTF\n", regno); 3670 return -EINVAL; 3671 } 3672 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3673 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3674 3675 /* For ref_ptr case, release function check should ensure we get one 3676 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3677 * normal store of unreferenced kptr, we must ensure var_off is zero. 3678 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3679 * reg->off and reg->ref_obj_id are not needed here. 3680 */ 3681 if (__check_ptr_off_reg(env, reg, regno, true)) 3682 return -EACCES; 3683 3684 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3685 * we also need to take into account the reg->off. 3686 * 3687 * We want to support cases like: 3688 * 3689 * struct foo { 3690 * struct bar br; 3691 * struct baz bz; 3692 * }; 3693 * 3694 * struct foo *v; 3695 * v = func(); // PTR_TO_BTF_ID 3696 * val->foo = v; // reg->off is zero, btf and btf_id match type 3697 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3698 * // first member type of struct after comparison fails 3699 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3700 * // to match type 3701 * 3702 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3703 * is zero. We must also ensure that btf_struct_ids_match does not walk 3704 * the struct to match type against first member of struct, i.e. reject 3705 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3706 * strict mode to true for type match. 3707 */ 3708 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3709 off_desc->kptr.btf, off_desc->kptr.btf_id, 3710 off_desc->type == BPF_KPTR_REF)) 3711 goto bad_type; 3712 return 0; 3713 bad_type: 3714 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3715 reg_type_str(env, reg->type), reg_name); 3716 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3717 if (off_desc->type == BPF_KPTR_UNREF) 3718 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3719 targ_name); 3720 else 3721 verbose(env, "\n"); 3722 return -EINVAL; 3723 } 3724 3725 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3726 int value_regno, int insn_idx, 3727 struct bpf_map_value_off_desc *off_desc) 3728 { 3729 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3730 int class = BPF_CLASS(insn->code); 3731 struct bpf_reg_state *val_reg; 3732 3733 /* Things we already checked for in check_map_access and caller: 3734 * - Reject cases where variable offset may touch kptr 3735 * - size of access (must be BPF_DW) 3736 * - tnum_is_const(reg->var_off) 3737 * - off_desc->offset == off + reg->var_off.value 3738 */ 3739 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3740 if (BPF_MODE(insn->code) != BPF_MEM) { 3741 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3742 return -EACCES; 3743 } 3744 3745 /* We only allow loading referenced kptr, since it will be marked as 3746 * untrusted, similar to unreferenced kptr. 3747 */ 3748 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3749 verbose(env, "store to referenced kptr disallowed\n"); 3750 return -EACCES; 3751 } 3752 3753 if (class == BPF_LDX) { 3754 val_reg = reg_state(env, value_regno); 3755 /* We can simply mark the value_regno receiving the pointer 3756 * value from map as PTR_TO_BTF_ID, with the correct type. 3757 */ 3758 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3759 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3760 /* For mark_ptr_or_null_reg */ 3761 val_reg->id = ++env->id_gen; 3762 } else if (class == BPF_STX) { 3763 val_reg = reg_state(env, value_regno); 3764 if (!register_is_null(val_reg) && 3765 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3766 return -EACCES; 3767 } else if (class == BPF_ST) { 3768 if (insn->imm) { 3769 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3770 off_desc->offset); 3771 return -EACCES; 3772 } 3773 } else { 3774 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3775 return -EACCES; 3776 } 3777 return 0; 3778 } 3779 3780 /* check read/write into a map element with possible variable offset */ 3781 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3782 int off, int size, bool zero_size_allowed, 3783 enum bpf_access_src src) 3784 { 3785 struct bpf_verifier_state *vstate = env->cur_state; 3786 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3787 struct bpf_reg_state *reg = &state->regs[regno]; 3788 struct bpf_map *map = reg->map_ptr; 3789 int err; 3790 3791 err = check_mem_region_access(env, regno, off, size, map->value_size, 3792 zero_size_allowed); 3793 if (err) 3794 return err; 3795 3796 if (map_value_has_spin_lock(map)) { 3797 u32 lock = map->spin_lock_off; 3798 3799 /* if any part of struct bpf_spin_lock can be touched by 3800 * load/store reject this program. 3801 * To check that [x1, x2) overlaps with [y1, y2) 3802 * it is sufficient to check x1 < y2 && y1 < x2. 3803 */ 3804 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3805 lock < reg->umax_value + off + size) { 3806 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3807 return -EACCES; 3808 } 3809 } 3810 if (map_value_has_timer(map)) { 3811 u32 t = map->timer_off; 3812 3813 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3814 t < reg->umax_value + off + size) { 3815 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3816 return -EACCES; 3817 } 3818 } 3819 if (map_value_has_kptrs(map)) { 3820 struct bpf_map_value_off *tab = map->kptr_off_tab; 3821 int i; 3822 3823 for (i = 0; i < tab->nr_off; i++) { 3824 u32 p = tab->off[i].offset; 3825 3826 if (reg->smin_value + off < p + sizeof(u64) && 3827 p < reg->umax_value + off + size) { 3828 if (src != ACCESS_DIRECT) { 3829 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3830 return -EACCES; 3831 } 3832 if (!tnum_is_const(reg->var_off)) { 3833 verbose(env, "kptr access cannot have variable offset\n"); 3834 return -EACCES; 3835 } 3836 if (p != off + reg->var_off.value) { 3837 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3838 p, off + reg->var_off.value); 3839 return -EACCES; 3840 } 3841 if (size != bpf_size_to_bytes(BPF_DW)) { 3842 verbose(env, "kptr access size must be BPF_DW\n"); 3843 return -EACCES; 3844 } 3845 break; 3846 } 3847 } 3848 } 3849 return err; 3850 } 3851 3852 #define MAX_PACKET_OFF 0xffff 3853 3854 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3855 const struct bpf_call_arg_meta *meta, 3856 enum bpf_access_type t) 3857 { 3858 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3859 3860 switch (prog_type) { 3861 /* Program types only with direct read access go here! */ 3862 case BPF_PROG_TYPE_LWT_IN: 3863 case BPF_PROG_TYPE_LWT_OUT: 3864 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3865 case BPF_PROG_TYPE_SK_REUSEPORT: 3866 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3867 case BPF_PROG_TYPE_CGROUP_SKB: 3868 if (t == BPF_WRITE) 3869 return false; 3870 fallthrough; 3871 3872 /* Program types with direct read + write access go here! */ 3873 case BPF_PROG_TYPE_SCHED_CLS: 3874 case BPF_PROG_TYPE_SCHED_ACT: 3875 case BPF_PROG_TYPE_XDP: 3876 case BPF_PROG_TYPE_LWT_XMIT: 3877 case BPF_PROG_TYPE_SK_SKB: 3878 case BPF_PROG_TYPE_SK_MSG: 3879 if (meta) 3880 return meta->pkt_access; 3881 3882 env->seen_direct_write = true; 3883 return true; 3884 3885 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3886 if (t == BPF_WRITE) 3887 env->seen_direct_write = true; 3888 3889 return true; 3890 3891 default: 3892 return false; 3893 } 3894 } 3895 3896 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3897 int size, bool zero_size_allowed) 3898 { 3899 struct bpf_reg_state *regs = cur_regs(env); 3900 struct bpf_reg_state *reg = ®s[regno]; 3901 int err; 3902 3903 /* We may have added a variable offset to the packet pointer; but any 3904 * reg->range we have comes after that. We are only checking the fixed 3905 * offset. 3906 */ 3907 3908 /* We don't allow negative numbers, because we aren't tracking enough 3909 * detail to prove they're safe. 3910 */ 3911 if (reg->smin_value < 0) { 3912 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3913 regno); 3914 return -EACCES; 3915 } 3916 3917 err = reg->range < 0 ? -EINVAL : 3918 __check_mem_access(env, regno, off, size, reg->range, 3919 zero_size_allowed); 3920 if (err) { 3921 verbose(env, "R%d offset is outside of the packet\n", regno); 3922 return err; 3923 } 3924 3925 /* __check_mem_access has made sure "off + size - 1" is within u16. 3926 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3927 * otherwise find_good_pkt_pointers would have refused to set range info 3928 * that __check_mem_access would have rejected this pkt access. 3929 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3930 */ 3931 env->prog->aux->max_pkt_offset = 3932 max_t(u32, env->prog->aux->max_pkt_offset, 3933 off + reg->umax_value + size - 1); 3934 3935 return err; 3936 } 3937 3938 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3939 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3940 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3941 struct btf **btf, u32 *btf_id) 3942 { 3943 struct bpf_insn_access_aux info = { 3944 .reg_type = *reg_type, 3945 .log = &env->log, 3946 }; 3947 3948 if (env->ops->is_valid_access && 3949 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3950 /* A non zero info.ctx_field_size indicates that this field is a 3951 * candidate for later verifier transformation to load the whole 3952 * field and then apply a mask when accessed with a narrower 3953 * access than actual ctx access size. A zero info.ctx_field_size 3954 * will only allow for whole field access and rejects any other 3955 * type of narrower access. 3956 */ 3957 *reg_type = info.reg_type; 3958 3959 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3960 *btf = info.btf; 3961 *btf_id = info.btf_id; 3962 } else { 3963 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3964 } 3965 /* remember the offset of last byte accessed in ctx */ 3966 if (env->prog->aux->max_ctx_offset < off + size) 3967 env->prog->aux->max_ctx_offset = off + size; 3968 return 0; 3969 } 3970 3971 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3972 return -EACCES; 3973 } 3974 3975 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3976 int size) 3977 { 3978 if (size < 0 || off < 0 || 3979 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3980 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3981 off, size); 3982 return -EACCES; 3983 } 3984 return 0; 3985 } 3986 3987 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3988 u32 regno, int off, int size, 3989 enum bpf_access_type t) 3990 { 3991 struct bpf_reg_state *regs = cur_regs(env); 3992 struct bpf_reg_state *reg = ®s[regno]; 3993 struct bpf_insn_access_aux info = {}; 3994 bool valid; 3995 3996 if (reg->smin_value < 0) { 3997 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3998 regno); 3999 return -EACCES; 4000 } 4001 4002 switch (reg->type) { 4003 case PTR_TO_SOCK_COMMON: 4004 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4005 break; 4006 case PTR_TO_SOCKET: 4007 valid = bpf_sock_is_valid_access(off, size, t, &info); 4008 break; 4009 case PTR_TO_TCP_SOCK: 4010 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4011 break; 4012 case PTR_TO_XDP_SOCK: 4013 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4014 break; 4015 default: 4016 valid = false; 4017 } 4018 4019 4020 if (valid) { 4021 env->insn_aux_data[insn_idx].ctx_field_size = 4022 info.ctx_field_size; 4023 return 0; 4024 } 4025 4026 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4027 regno, reg_type_str(env, reg->type), off, size); 4028 4029 return -EACCES; 4030 } 4031 4032 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4033 { 4034 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4035 } 4036 4037 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4038 { 4039 const struct bpf_reg_state *reg = reg_state(env, regno); 4040 4041 return reg->type == PTR_TO_CTX; 4042 } 4043 4044 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4045 { 4046 const struct bpf_reg_state *reg = reg_state(env, regno); 4047 4048 return type_is_sk_pointer(reg->type); 4049 } 4050 4051 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4052 { 4053 const struct bpf_reg_state *reg = reg_state(env, regno); 4054 4055 return type_is_pkt_pointer(reg->type); 4056 } 4057 4058 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4059 { 4060 const struct bpf_reg_state *reg = reg_state(env, regno); 4061 4062 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4063 return reg->type == PTR_TO_FLOW_KEYS; 4064 } 4065 4066 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4067 const struct bpf_reg_state *reg, 4068 int off, int size, bool strict) 4069 { 4070 struct tnum reg_off; 4071 int ip_align; 4072 4073 /* Byte size accesses are always allowed. */ 4074 if (!strict || size == 1) 4075 return 0; 4076 4077 /* For platforms that do not have a Kconfig enabling 4078 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4079 * NET_IP_ALIGN is universally set to '2'. And on platforms 4080 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4081 * to this code only in strict mode where we want to emulate 4082 * the NET_IP_ALIGN==2 checking. Therefore use an 4083 * unconditional IP align value of '2'. 4084 */ 4085 ip_align = 2; 4086 4087 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4088 if (!tnum_is_aligned(reg_off, size)) { 4089 char tn_buf[48]; 4090 4091 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4092 verbose(env, 4093 "misaligned packet access off %d+%s+%d+%d size %d\n", 4094 ip_align, tn_buf, reg->off, off, size); 4095 return -EACCES; 4096 } 4097 4098 return 0; 4099 } 4100 4101 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4102 const struct bpf_reg_state *reg, 4103 const char *pointer_desc, 4104 int off, int size, bool strict) 4105 { 4106 struct tnum reg_off; 4107 4108 /* Byte size accesses are always allowed. */ 4109 if (!strict || size == 1) 4110 return 0; 4111 4112 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4113 if (!tnum_is_aligned(reg_off, size)) { 4114 char tn_buf[48]; 4115 4116 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4117 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4118 pointer_desc, tn_buf, reg->off, off, size); 4119 return -EACCES; 4120 } 4121 4122 return 0; 4123 } 4124 4125 static int check_ptr_alignment(struct bpf_verifier_env *env, 4126 const struct bpf_reg_state *reg, int off, 4127 int size, bool strict_alignment_once) 4128 { 4129 bool strict = env->strict_alignment || strict_alignment_once; 4130 const char *pointer_desc = ""; 4131 4132 switch (reg->type) { 4133 case PTR_TO_PACKET: 4134 case PTR_TO_PACKET_META: 4135 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4136 * right in front, treat it the very same way. 4137 */ 4138 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4139 case PTR_TO_FLOW_KEYS: 4140 pointer_desc = "flow keys "; 4141 break; 4142 case PTR_TO_MAP_KEY: 4143 pointer_desc = "key "; 4144 break; 4145 case PTR_TO_MAP_VALUE: 4146 pointer_desc = "value "; 4147 break; 4148 case PTR_TO_CTX: 4149 pointer_desc = "context "; 4150 break; 4151 case PTR_TO_STACK: 4152 pointer_desc = "stack "; 4153 /* The stack spill tracking logic in check_stack_write_fixed_off() 4154 * and check_stack_read_fixed_off() relies on stack accesses being 4155 * aligned. 4156 */ 4157 strict = true; 4158 break; 4159 case PTR_TO_SOCKET: 4160 pointer_desc = "sock "; 4161 break; 4162 case PTR_TO_SOCK_COMMON: 4163 pointer_desc = "sock_common "; 4164 break; 4165 case PTR_TO_TCP_SOCK: 4166 pointer_desc = "tcp_sock "; 4167 break; 4168 case PTR_TO_XDP_SOCK: 4169 pointer_desc = "xdp_sock "; 4170 break; 4171 default: 4172 break; 4173 } 4174 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4175 strict); 4176 } 4177 4178 static int update_stack_depth(struct bpf_verifier_env *env, 4179 const struct bpf_func_state *func, 4180 int off) 4181 { 4182 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4183 4184 if (stack >= -off) 4185 return 0; 4186 4187 /* update known max for given subprogram */ 4188 env->subprog_info[func->subprogno].stack_depth = -off; 4189 return 0; 4190 } 4191 4192 /* starting from main bpf function walk all instructions of the function 4193 * and recursively walk all callees that given function can call. 4194 * Ignore jump and exit insns. 4195 * Since recursion is prevented by check_cfg() this algorithm 4196 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4197 */ 4198 static int check_max_stack_depth(struct bpf_verifier_env *env) 4199 { 4200 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4201 struct bpf_subprog_info *subprog = env->subprog_info; 4202 struct bpf_insn *insn = env->prog->insnsi; 4203 bool tail_call_reachable = false; 4204 int ret_insn[MAX_CALL_FRAMES]; 4205 int ret_prog[MAX_CALL_FRAMES]; 4206 int j; 4207 4208 process_func: 4209 /* protect against potential stack overflow that might happen when 4210 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4211 * depth for such case down to 256 so that the worst case scenario 4212 * would result in 8k stack size (32 which is tailcall limit * 256 = 4213 * 8k). 4214 * 4215 * To get the idea what might happen, see an example: 4216 * func1 -> sub rsp, 128 4217 * subfunc1 -> sub rsp, 256 4218 * tailcall1 -> add rsp, 256 4219 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4220 * subfunc2 -> sub rsp, 64 4221 * subfunc22 -> sub rsp, 128 4222 * tailcall2 -> add rsp, 128 4223 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4224 * 4225 * tailcall will unwind the current stack frame but it will not get rid 4226 * of caller's stack as shown on the example above. 4227 */ 4228 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4229 verbose(env, 4230 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4231 depth); 4232 return -EACCES; 4233 } 4234 /* round up to 32-bytes, since this is granularity 4235 * of interpreter stack size 4236 */ 4237 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4238 if (depth > MAX_BPF_STACK) { 4239 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4240 frame + 1, depth); 4241 return -EACCES; 4242 } 4243 continue_func: 4244 subprog_end = subprog[idx + 1].start; 4245 for (; i < subprog_end; i++) { 4246 int next_insn; 4247 4248 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4249 continue; 4250 /* remember insn and function to return to */ 4251 ret_insn[frame] = i + 1; 4252 ret_prog[frame] = idx; 4253 4254 /* find the callee */ 4255 next_insn = i + insn[i].imm + 1; 4256 idx = find_subprog(env, next_insn); 4257 if (idx < 0) { 4258 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4259 next_insn); 4260 return -EFAULT; 4261 } 4262 if (subprog[idx].is_async_cb) { 4263 if (subprog[idx].has_tail_call) { 4264 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4265 return -EFAULT; 4266 } 4267 /* async callbacks don't increase bpf prog stack size */ 4268 continue; 4269 } 4270 i = next_insn; 4271 4272 if (subprog[idx].has_tail_call) 4273 tail_call_reachable = true; 4274 4275 frame++; 4276 if (frame >= MAX_CALL_FRAMES) { 4277 verbose(env, "the call stack of %d frames is too deep !\n", 4278 frame); 4279 return -E2BIG; 4280 } 4281 goto process_func; 4282 } 4283 /* if tail call got detected across bpf2bpf calls then mark each of the 4284 * currently present subprog frames as tail call reachable subprogs; 4285 * this info will be utilized by JIT so that we will be preserving the 4286 * tail call counter throughout bpf2bpf calls combined with tailcalls 4287 */ 4288 if (tail_call_reachable) 4289 for (j = 0; j < frame; j++) 4290 subprog[ret_prog[j]].tail_call_reachable = true; 4291 if (subprog[0].tail_call_reachable) 4292 env->prog->aux->tail_call_reachable = true; 4293 4294 /* end of for() loop means the last insn of the 'subprog' 4295 * was reached. Doesn't matter whether it was JA or EXIT 4296 */ 4297 if (frame == 0) 4298 return 0; 4299 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4300 frame--; 4301 i = ret_insn[frame]; 4302 idx = ret_prog[frame]; 4303 goto continue_func; 4304 } 4305 4306 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4307 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4308 const struct bpf_insn *insn, int idx) 4309 { 4310 int start = idx + insn->imm + 1, subprog; 4311 4312 subprog = find_subprog(env, start); 4313 if (subprog < 0) { 4314 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4315 start); 4316 return -EFAULT; 4317 } 4318 return env->subprog_info[subprog].stack_depth; 4319 } 4320 #endif 4321 4322 static int __check_buffer_access(struct bpf_verifier_env *env, 4323 const char *buf_info, 4324 const struct bpf_reg_state *reg, 4325 int regno, int off, int size) 4326 { 4327 if (off < 0) { 4328 verbose(env, 4329 "R%d invalid %s buffer access: off=%d, size=%d\n", 4330 regno, buf_info, off, size); 4331 return -EACCES; 4332 } 4333 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4334 char tn_buf[48]; 4335 4336 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4337 verbose(env, 4338 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4339 regno, off, tn_buf); 4340 return -EACCES; 4341 } 4342 4343 return 0; 4344 } 4345 4346 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4347 const struct bpf_reg_state *reg, 4348 int regno, int off, int size) 4349 { 4350 int err; 4351 4352 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4353 if (err) 4354 return err; 4355 4356 if (off + size > env->prog->aux->max_tp_access) 4357 env->prog->aux->max_tp_access = off + size; 4358 4359 return 0; 4360 } 4361 4362 static int check_buffer_access(struct bpf_verifier_env *env, 4363 const struct bpf_reg_state *reg, 4364 int regno, int off, int size, 4365 bool zero_size_allowed, 4366 u32 *max_access) 4367 { 4368 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4369 int err; 4370 4371 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4372 if (err) 4373 return err; 4374 4375 if (off + size > *max_access) 4376 *max_access = off + size; 4377 4378 return 0; 4379 } 4380 4381 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4382 static void zext_32_to_64(struct bpf_reg_state *reg) 4383 { 4384 reg->var_off = tnum_subreg(reg->var_off); 4385 __reg_assign_32_into_64(reg); 4386 } 4387 4388 /* truncate register to smaller size (in bytes) 4389 * must be called with size < BPF_REG_SIZE 4390 */ 4391 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4392 { 4393 u64 mask; 4394 4395 /* clear high bits in bit representation */ 4396 reg->var_off = tnum_cast(reg->var_off, size); 4397 4398 /* fix arithmetic bounds */ 4399 mask = ((u64)1 << (size * 8)) - 1; 4400 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4401 reg->umin_value &= mask; 4402 reg->umax_value &= mask; 4403 } else { 4404 reg->umin_value = 0; 4405 reg->umax_value = mask; 4406 } 4407 reg->smin_value = reg->umin_value; 4408 reg->smax_value = reg->umax_value; 4409 4410 /* If size is smaller than 32bit register the 32bit register 4411 * values are also truncated so we push 64-bit bounds into 4412 * 32-bit bounds. Above were truncated < 32-bits already. 4413 */ 4414 if (size >= 4) 4415 return; 4416 __reg_combine_64_into_32(reg); 4417 } 4418 4419 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4420 { 4421 /* A map is considered read-only if the following condition are true: 4422 * 4423 * 1) BPF program side cannot change any of the map content. The 4424 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4425 * and was set at map creation time. 4426 * 2) The map value(s) have been initialized from user space by a 4427 * loader and then "frozen", such that no new map update/delete 4428 * operations from syscall side are possible for the rest of 4429 * the map's lifetime from that point onwards. 4430 * 3) Any parallel/pending map update/delete operations from syscall 4431 * side have been completed. Only after that point, it's safe to 4432 * assume that map value(s) are immutable. 4433 */ 4434 return (map->map_flags & BPF_F_RDONLY_PROG) && 4435 READ_ONCE(map->frozen) && 4436 !bpf_map_write_active(map); 4437 } 4438 4439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4440 { 4441 void *ptr; 4442 u64 addr; 4443 int err; 4444 4445 err = map->ops->map_direct_value_addr(map, &addr, off); 4446 if (err) 4447 return err; 4448 ptr = (void *)(long)addr + off; 4449 4450 switch (size) { 4451 case sizeof(u8): 4452 *val = (u64)*(u8 *)ptr; 4453 break; 4454 case sizeof(u16): 4455 *val = (u64)*(u16 *)ptr; 4456 break; 4457 case sizeof(u32): 4458 *val = (u64)*(u32 *)ptr; 4459 break; 4460 case sizeof(u64): 4461 *val = *(u64 *)ptr; 4462 break; 4463 default: 4464 return -EINVAL; 4465 } 4466 return 0; 4467 } 4468 4469 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4470 struct bpf_reg_state *regs, 4471 int regno, int off, int size, 4472 enum bpf_access_type atype, 4473 int value_regno) 4474 { 4475 struct bpf_reg_state *reg = regs + regno; 4476 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4477 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4478 enum bpf_type_flag flag = 0; 4479 u32 btf_id; 4480 int ret; 4481 4482 if (off < 0) { 4483 verbose(env, 4484 "R%d is ptr_%s invalid negative access: off=%d\n", 4485 regno, tname, off); 4486 return -EACCES; 4487 } 4488 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4489 char tn_buf[48]; 4490 4491 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4492 verbose(env, 4493 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4494 regno, tname, off, tn_buf); 4495 return -EACCES; 4496 } 4497 4498 if (reg->type & MEM_USER) { 4499 verbose(env, 4500 "R%d is ptr_%s access user memory: off=%d\n", 4501 regno, tname, off); 4502 return -EACCES; 4503 } 4504 4505 if (reg->type & MEM_PERCPU) { 4506 verbose(env, 4507 "R%d is ptr_%s access percpu memory: off=%d\n", 4508 regno, tname, off); 4509 return -EACCES; 4510 } 4511 4512 if (env->ops->btf_struct_access) { 4513 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4514 off, size, atype, &btf_id, &flag); 4515 } else { 4516 if (atype != BPF_READ) { 4517 verbose(env, "only read is supported\n"); 4518 return -EACCES; 4519 } 4520 4521 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4522 atype, &btf_id, &flag); 4523 } 4524 4525 if (ret < 0) 4526 return ret; 4527 4528 /* If this is an untrusted pointer, all pointers formed by walking it 4529 * also inherit the untrusted flag. 4530 */ 4531 if (type_flag(reg->type) & PTR_UNTRUSTED) 4532 flag |= PTR_UNTRUSTED; 4533 4534 if (atype == BPF_READ && value_regno >= 0) 4535 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4536 4537 return 0; 4538 } 4539 4540 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4541 struct bpf_reg_state *regs, 4542 int regno, int off, int size, 4543 enum bpf_access_type atype, 4544 int value_regno) 4545 { 4546 struct bpf_reg_state *reg = regs + regno; 4547 struct bpf_map *map = reg->map_ptr; 4548 enum bpf_type_flag flag = 0; 4549 const struct btf_type *t; 4550 const char *tname; 4551 u32 btf_id; 4552 int ret; 4553 4554 if (!btf_vmlinux) { 4555 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4556 return -ENOTSUPP; 4557 } 4558 4559 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4560 verbose(env, "map_ptr access not supported for map type %d\n", 4561 map->map_type); 4562 return -ENOTSUPP; 4563 } 4564 4565 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4566 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4567 4568 if (!env->allow_ptr_to_map_access) { 4569 verbose(env, 4570 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4571 tname); 4572 return -EPERM; 4573 } 4574 4575 if (off < 0) { 4576 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4577 regno, tname, off); 4578 return -EACCES; 4579 } 4580 4581 if (atype != BPF_READ) { 4582 verbose(env, "only read from %s is supported\n", tname); 4583 return -EACCES; 4584 } 4585 4586 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4587 if (ret < 0) 4588 return ret; 4589 4590 if (value_regno >= 0) 4591 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4592 4593 return 0; 4594 } 4595 4596 /* Check that the stack access at the given offset is within bounds. The 4597 * maximum valid offset is -1. 4598 * 4599 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4600 * -state->allocated_stack for reads. 4601 */ 4602 static int check_stack_slot_within_bounds(int off, 4603 struct bpf_func_state *state, 4604 enum bpf_access_type t) 4605 { 4606 int min_valid_off; 4607 4608 if (t == BPF_WRITE) 4609 min_valid_off = -MAX_BPF_STACK; 4610 else 4611 min_valid_off = -state->allocated_stack; 4612 4613 if (off < min_valid_off || off > -1) 4614 return -EACCES; 4615 return 0; 4616 } 4617 4618 /* Check that the stack access at 'regno + off' falls within the maximum stack 4619 * bounds. 4620 * 4621 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4622 */ 4623 static int check_stack_access_within_bounds( 4624 struct bpf_verifier_env *env, 4625 int regno, int off, int access_size, 4626 enum bpf_access_src src, enum bpf_access_type type) 4627 { 4628 struct bpf_reg_state *regs = cur_regs(env); 4629 struct bpf_reg_state *reg = regs + regno; 4630 struct bpf_func_state *state = func(env, reg); 4631 int min_off, max_off; 4632 int err; 4633 char *err_extra; 4634 4635 if (src == ACCESS_HELPER) 4636 /* We don't know if helpers are reading or writing (or both). */ 4637 err_extra = " indirect access to"; 4638 else if (type == BPF_READ) 4639 err_extra = " read from"; 4640 else 4641 err_extra = " write to"; 4642 4643 if (tnum_is_const(reg->var_off)) { 4644 min_off = reg->var_off.value + off; 4645 if (access_size > 0) 4646 max_off = min_off + access_size - 1; 4647 else 4648 max_off = min_off; 4649 } else { 4650 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4651 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4652 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4653 err_extra, regno); 4654 return -EACCES; 4655 } 4656 min_off = reg->smin_value + off; 4657 if (access_size > 0) 4658 max_off = reg->smax_value + off + access_size - 1; 4659 else 4660 max_off = min_off; 4661 } 4662 4663 err = check_stack_slot_within_bounds(min_off, state, type); 4664 if (!err) 4665 err = check_stack_slot_within_bounds(max_off, state, type); 4666 4667 if (err) { 4668 if (tnum_is_const(reg->var_off)) { 4669 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4670 err_extra, regno, off, access_size); 4671 } else { 4672 char tn_buf[48]; 4673 4674 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4675 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4676 err_extra, regno, tn_buf, access_size); 4677 } 4678 } 4679 return err; 4680 } 4681 4682 /* check whether memory at (regno + off) is accessible for t = (read | write) 4683 * if t==write, value_regno is a register which value is stored into memory 4684 * if t==read, value_regno is a register which will receive the value from memory 4685 * if t==write && value_regno==-1, some unknown value is stored into memory 4686 * if t==read && value_regno==-1, don't care what we read from memory 4687 */ 4688 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4689 int off, int bpf_size, enum bpf_access_type t, 4690 int value_regno, bool strict_alignment_once) 4691 { 4692 struct bpf_reg_state *regs = cur_regs(env); 4693 struct bpf_reg_state *reg = regs + regno; 4694 struct bpf_func_state *state; 4695 int size, err = 0; 4696 4697 size = bpf_size_to_bytes(bpf_size); 4698 if (size < 0) 4699 return size; 4700 4701 /* alignment checks will add in reg->off themselves */ 4702 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4703 if (err) 4704 return err; 4705 4706 /* for access checks, reg->off is just part of off */ 4707 off += reg->off; 4708 4709 if (reg->type == PTR_TO_MAP_KEY) { 4710 if (t == BPF_WRITE) { 4711 verbose(env, "write to change key R%d not allowed\n", regno); 4712 return -EACCES; 4713 } 4714 4715 err = check_mem_region_access(env, regno, off, size, 4716 reg->map_ptr->key_size, false); 4717 if (err) 4718 return err; 4719 if (value_regno >= 0) 4720 mark_reg_unknown(env, regs, value_regno); 4721 } else if (reg->type == PTR_TO_MAP_VALUE) { 4722 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4723 4724 if (t == BPF_WRITE && value_regno >= 0 && 4725 is_pointer_value(env, value_regno)) { 4726 verbose(env, "R%d leaks addr into map\n", value_regno); 4727 return -EACCES; 4728 } 4729 err = check_map_access_type(env, regno, off, size, t); 4730 if (err) 4731 return err; 4732 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4733 if (err) 4734 return err; 4735 if (tnum_is_const(reg->var_off)) 4736 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4737 off + reg->var_off.value); 4738 if (kptr_off_desc) { 4739 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4740 kptr_off_desc); 4741 } else if (t == BPF_READ && value_regno >= 0) { 4742 struct bpf_map *map = reg->map_ptr; 4743 4744 /* if map is read-only, track its contents as scalars */ 4745 if (tnum_is_const(reg->var_off) && 4746 bpf_map_is_rdonly(map) && 4747 map->ops->map_direct_value_addr) { 4748 int map_off = off + reg->var_off.value; 4749 u64 val = 0; 4750 4751 err = bpf_map_direct_read(map, map_off, size, 4752 &val); 4753 if (err) 4754 return err; 4755 4756 regs[value_regno].type = SCALAR_VALUE; 4757 __mark_reg_known(®s[value_regno], val); 4758 } else { 4759 mark_reg_unknown(env, regs, value_regno); 4760 } 4761 } 4762 } else if (base_type(reg->type) == PTR_TO_MEM) { 4763 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4764 4765 if (type_may_be_null(reg->type)) { 4766 verbose(env, "R%d invalid mem access '%s'\n", regno, 4767 reg_type_str(env, reg->type)); 4768 return -EACCES; 4769 } 4770 4771 if (t == BPF_WRITE && rdonly_mem) { 4772 verbose(env, "R%d cannot write into %s\n", 4773 regno, reg_type_str(env, reg->type)); 4774 return -EACCES; 4775 } 4776 4777 if (t == BPF_WRITE && value_regno >= 0 && 4778 is_pointer_value(env, value_regno)) { 4779 verbose(env, "R%d leaks addr into mem\n", value_regno); 4780 return -EACCES; 4781 } 4782 4783 err = check_mem_region_access(env, regno, off, size, 4784 reg->mem_size, false); 4785 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4786 mark_reg_unknown(env, regs, value_regno); 4787 } else if (reg->type == PTR_TO_CTX) { 4788 enum bpf_reg_type reg_type = SCALAR_VALUE; 4789 struct btf *btf = NULL; 4790 u32 btf_id = 0; 4791 4792 if (t == BPF_WRITE && value_regno >= 0 && 4793 is_pointer_value(env, value_regno)) { 4794 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4795 return -EACCES; 4796 } 4797 4798 err = check_ptr_off_reg(env, reg, regno); 4799 if (err < 0) 4800 return err; 4801 4802 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4803 &btf_id); 4804 if (err) 4805 verbose_linfo(env, insn_idx, "; "); 4806 if (!err && t == BPF_READ && value_regno >= 0) { 4807 /* ctx access returns either a scalar, or a 4808 * PTR_TO_PACKET[_META,_END]. In the latter 4809 * case, we know the offset is zero. 4810 */ 4811 if (reg_type == SCALAR_VALUE) { 4812 mark_reg_unknown(env, regs, value_regno); 4813 } else { 4814 mark_reg_known_zero(env, regs, 4815 value_regno); 4816 if (type_may_be_null(reg_type)) 4817 regs[value_regno].id = ++env->id_gen; 4818 /* A load of ctx field could have different 4819 * actual load size with the one encoded in the 4820 * insn. When the dst is PTR, it is for sure not 4821 * a sub-register. 4822 */ 4823 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4824 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4825 regs[value_regno].btf = btf; 4826 regs[value_regno].btf_id = btf_id; 4827 } 4828 } 4829 regs[value_regno].type = reg_type; 4830 } 4831 4832 } else if (reg->type == PTR_TO_STACK) { 4833 /* Basic bounds checks. */ 4834 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4835 if (err) 4836 return err; 4837 4838 state = func(env, reg); 4839 err = update_stack_depth(env, state, off); 4840 if (err) 4841 return err; 4842 4843 if (t == BPF_READ) 4844 err = check_stack_read(env, regno, off, size, 4845 value_regno); 4846 else 4847 err = check_stack_write(env, regno, off, size, 4848 value_regno, insn_idx); 4849 } else if (reg_is_pkt_pointer(reg)) { 4850 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4851 verbose(env, "cannot write into packet\n"); 4852 return -EACCES; 4853 } 4854 if (t == BPF_WRITE && value_regno >= 0 && 4855 is_pointer_value(env, value_regno)) { 4856 verbose(env, "R%d leaks addr into packet\n", 4857 value_regno); 4858 return -EACCES; 4859 } 4860 err = check_packet_access(env, regno, off, size, false); 4861 if (!err && t == BPF_READ && value_regno >= 0) 4862 mark_reg_unknown(env, regs, value_regno); 4863 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4864 if (t == BPF_WRITE && value_regno >= 0 && 4865 is_pointer_value(env, value_regno)) { 4866 verbose(env, "R%d leaks addr into flow keys\n", 4867 value_regno); 4868 return -EACCES; 4869 } 4870 4871 err = check_flow_keys_access(env, off, size); 4872 if (!err && t == BPF_READ && value_regno >= 0) 4873 mark_reg_unknown(env, regs, value_regno); 4874 } else if (type_is_sk_pointer(reg->type)) { 4875 if (t == BPF_WRITE) { 4876 verbose(env, "R%d cannot write into %s\n", 4877 regno, reg_type_str(env, reg->type)); 4878 return -EACCES; 4879 } 4880 err = check_sock_access(env, insn_idx, regno, off, size, t); 4881 if (!err && value_regno >= 0) 4882 mark_reg_unknown(env, regs, value_regno); 4883 } else if (reg->type == PTR_TO_TP_BUFFER) { 4884 err = check_tp_buffer_access(env, reg, regno, off, size); 4885 if (!err && t == BPF_READ && value_regno >= 0) 4886 mark_reg_unknown(env, regs, value_regno); 4887 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4888 !type_may_be_null(reg->type)) { 4889 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4890 value_regno); 4891 } else if (reg->type == CONST_PTR_TO_MAP) { 4892 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4893 value_regno); 4894 } else if (base_type(reg->type) == PTR_TO_BUF) { 4895 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4896 u32 *max_access; 4897 4898 if (rdonly_mem) { 4899 if (t == BPF_WRITE) { 4900 verbose(env, "R%d cannot write into %s\n", 4901 regno, reg_type_str(env, reg->type)); 4902 return -EACCES; 4903 } 4904 max_access = &env->prog->aux->max_rdonly_access; 4905 } else { 4906 max_access = &env->prog->aux->max_rdwr_access; 4907 } 4908 4909 err = check_buffer_access(env, reg, regno, off, size, false, 4910 max_access); 4911 4912 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4913 mark_reg_unknown(env, regs, value_regno); 4914 } else { 4915 verbose(env, "R%d invalid mem access '%s'\n", regno, 4916 reg_type_str(env, reg->type)); 4917 return -EACCES; 4918 } 4919 4920 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4921 regs[value_regno].type == SCALAR_VALUE) { 4922 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4923 coerce_reg_to_size(®s[value_regno], size); 4924 } 4925 return err; 4926 } 4927 4928 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4929 { 4930 int load_reg; 4931 int err; 4932 4933 switch (insn->imm) { 4934 case BPF_ADD: 4935 case BPF_ADD | BPF_FETCH: 4936 case BPF_AND: 4937 case BPF_AND | BPF_FETCH: 4938 case BPF_OR: 4939 case BPF_OR | BPF_FETCH: 4940 case BPF_XOR: 4941 case BPF_XOR | BPF_FETCH: 4942 case BPF_XCHG: 4943 case BPF_CMPXCHG: 4944 break; 4945 default: 4946 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4947 return -EINVAL; 4948 } 4949 4950 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4951 verbose(env, "invalid atomic operand size\n"); 4952 return -EINVAL; 4953 } 4954 4955 /* check src1 operand */ 4956 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4957 if (err) 4958 return err; 4959 4960 /* check src2 operand */ 4961 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4962 if (err) 4963 return err; 4964 4965 if (insn->imm == BPF_CMPXCHG) { 4966 /* Check comparison of R0 with memory location */ 4967 const u32 aux_reg = BPF_REG_0; 4968 4969 err = check_reg_arg(env, aux_reg, SRC_OP); 4970 if (err) 4971 return err; 4972 4973 if (is_pointer_value(env, aux_reg)) { 4974 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4975 return -EACCES; 4976 } 4977 } 4978 4979 if (is_pointer_value(env, insn->src_reg)) { 4980 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4981 return -EACCES; 4982 } 4983 4984 if (is_ctx_reg(env, insn->dst_reg) || 4985 is_pkt_reg(env, insn->dst_reg) || 4986 is_flow_key_reg(env, insn->dst_reg) || 4987 is_sk_reg(env, insn->dst_reg)) { 4988 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4989 insn->dst_reg, 4990 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4991 return -EACCES; 4992 } 4993 4994 if (insn->imm & BPF_FETCH) { 4995 if (insn->imm == BPF_CMPXCHG) 4996 load_reg = BPF_REG_0; 4997 else 4998 load_reg = insn->src_reg; 4999 5000 /* check and record load of old value */ 5001 err = check_reg_arg(env, load_reg, DST_OP); 5002 if (err) 5003 return err; 5004 } else { 5005 /* This instruction accesses a memory location but doesn't 5006 * actually load it into a register. 5007 */ 5008 load_reg = -1; 5009 } 5010 5011 /* Check whether we can read the memory, with second call for fetch 5012 * case to simulate the register fill. 5013 */ 5014 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5015 BPF_SIZE(insn->code), BPF_READ, -1, true); 5016 if (!err && load_reg >= 0) 5017 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5018 BPF_SIZE(insn->code), BPF_READ, load_reg, 5019 true); 5020 if (err) 5021 return err; 5022 5023 /* Check whether we can write into the same memory. */ 5024 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5025 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5026 if (err) 5027 return err; 5028 5029 return 0; 5030 } 5031 5032 /* When register 'regno' is used to read the stack (either directly or through 5033 * a helper function) make sure that it's within stack boundary and, depending 5034 * on the access type, that all elements of the stack are initialized. 5035 * 5036 * 'off' includes 'regno->off', but not its dynamic part (if any). 5037 * 5038 * All registers that have been spilled on the stack in the slots within the 5039 * read offsets are marked as read. 5040 */ 5041 static int check_stack_range_initialized( 5042 struct bpf_verifier_env *env, int regno, int off, 5043 int access_size, bool zero_size_allowed, 5044 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5045 { 5046 struct bpf_reg_state *reg = reg_state(env, regno); 5047 struct bpf_func_state *state = func(env, reg); 5048 int err, min_off, max_off, i, j, slot, spi; 5049 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5050 enum bpf_access_type bounds_check_type; 5051 /* Some accesses can write anything into the stack, others are 5052 * read-only. 5053 */ 5054 bool clobber = false; 5055 5056 if (access_size == 0 && !zero_size_allowed) { 5057 verbose(env, "invalid zero-sized read\n"); 5058 return -EACCES; 5059 } 5060 5061 if (type == ACCESS_HELPER) { 5062 /* The bounds checks for writes are more permissive than for 5063 * reads. However, if raw_mode is not set, we'll do extra 5064 * checks below. 5065 */ 5066 bounds_check_type = BPF_WRITE; 5067 clobber = true; 5068 } else { 5069 bounds_check_type = BPF_READ; 5070 } 5071 err = check_stack_access_within_bounds(env, regno, off, access_size, 5072 type, bounds_check_type); 5073 if (err) 5074 return err; 5075 5076 5077 if (tnum_is_const(reg->var_off)) { 5078 min_off = max_off = reg->var_off.value + off; 5079 } else { 5080 /* Variable offset is prohibited for unprivileged mode for 5081 * simplicity since it requires corresponding support in 5082 * Spectre masking for stack ALU. 5083 * See also retrieve_ptr_limit(). 5084 */ 5085 if (!env->bypass_spec_v1) { 5086 char tn_buf[48]; 5087 5088 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5089 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5090 regno, err_extra, tn_buf); 5091 return -EACCES; 5092 } 5093 /* Only initialized buffer on stack is allowed to be accessed 5094 * with variable offset. With uninitialized buffer it's hard to 5095 * guarantee that whole memory is marked as initialized on 5096 * helper return since specific bounds are unknown what may 5097 * cause uninitialized stack leaking. 5098 */ 5099 if (meta && meta->raw_mode) 5100 meta = NULL; 5101 5102 min_off = reg->smin_value + off; 5103 max_off = reg->smax_value + off; 5104 } 5105 5106 if (meta && meta->raw_mode) { 5107 meta->access_size = access_size; 5108 meta->regno = regno; 5109 return 0; 5110 } 5111 5112 for (i = min_off; i < max_off + access_size; i++) { 5113 u8 *stype; 5114 5115 slot = -i - 1; 5116 spi = slot / BPF_REG_SIZE; 5117 if (state->allocated_stack <= slot) 5118 goto err; 5119 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5120 if (*stype == STACK_MISC) 5121 goto mark; 5122 if (*stype == STACK_ZERO) { 5123 if (clobber) { 5124 /* helper can write anything into the stack */ 5125 *stype = STACK_MISC; 5126 } 5127 goto mark; 5128 } 5129 5130 if (is_spilled_reg(&state->stack[spi]) && 5131 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5132 goto mark; 5133 5134 if (is_spilled_reg(&state->stack[spi]) && 5135 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5136 env->allow_ptr_leaks)) { 5137 if (clobber) { 5138 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5139 for (j = 0; j < BPF_REG_SIZE; j++) 5140 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5141 } 5142 goto mark; 5143 } 5144 5145 err: 5146 if (tnum_is_const(reg->var_off)) { 5147 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5148 err_extra, regno, min_off, i - min_off, access_size); 5149 } else { 5150 char tn_buf[48]; 5151 5152 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5153 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5154 err_extra, regno, tn_buf, i - min_off, access_size); 5155 } 5156 return -EACCES; 5157 mark: 5158 /* reading any byte out of 8-byte 'spill_slot' will cause 5159 * the whole slot to be marked as 'read' 5160 */ 5161 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5162 state->stack[spi].spilled_ptr.parent, 5163 REG_LIVE_READ64); 5164 } 5165 return update_stack_depth(env, state, min_off); 5166 } 5167 5168 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5169 int access_size, bool zero_size_allowed, 5170 struct bpf_call_arg_meta *meta) 5171 { 5172 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5173 u32 *max_access; 5174 5175 switch (base_type(reg->type)) { 5176 case PTR_TO_PACKET: 5177 case PTR_TO_PACKET_META: 5178 return check_packet_access(env, regno, reg->off, access_size, 5179 zero_size_allowed); 5180 case PTR_TO_MAP_KEY: 5181 if (meta && meta->raw_mode) { 5182 verbose(env, "R%d cannot write into %s\n", regno, 5183 reg_type_str(env, reg->type)); 5184 return -EACCES; 5185 } 5186 return check_mem_region_access(env, regno, reg->off, access_size, 5187 reg->map_ptr->key_size, false); 5188 case PTR_TO_MAP_VALUE: 5189 if (check_map_access_type(env, regno, reg->off, access_size, 5190 meta && meta->raw_mode ? BPF_WRITE : 5191 BPF_READ)) 5192 return -EACCES; 5193 return check_map_access(env, regno, reg->off, access_size, 5194 zero_size_allowed, ACCESS_HELPER); 5195 case PTR_TO_MEM: 5196 if (type_is_rdonly_mem(reg->type)) { 5197 if (meta && meta->raw_mode) { 5198 verbose(env, "R%d cannot write into %s\n", regno, 5199 reg_type_str(env, reg->type)); 5200 return -EACCES; 5201 } 5202 } 5203 return check_mem_region_access(env, regno, reg->off, 5204 access_size, reg->mem_size, 5205 zero_size_allowed); 5206 case PTR_TO_BUF: 5207 if (type_is_rdonly_mem(reg->type)) { 5208 if (meta && meta->raw_mode) { 5209 verbose(env, "R%d cannot write into %s\n", regno, 5210 reg_type_str(env, reg->type)); 5211 return -EACCES; 5212 } 5213 5214 max_access = &env->prog->aux->max_rdonly_access; 5215 } else { 5216 max_access = &env->prog->aux->max_rdwr_access; 5217 } 5218 return check_buffer_access(env, reg, regno, reg->off, 5219 access_size, zero_size_allowed, 5220 max_access); 5221 case PTR_TO_STACK: 5222 return check_stack_range_initialized( 5223 env, 5224 regno, reg->off, access_size, 5225 zero_size_allowed, ACCESS_HELPER, meta); 5226 default: /* scalar_value or invalid ptr */ 5227 /* Allow zero-byte read from NULL, regardless of pointer type */ 5228 if (zero_size_allowed && access_size == 0 && 5229 register_is_null(reg)) 5230 return 0; 5231 5232 verbose(env, "R%d type=%s ", regno, 5233 reg_type_str(env, reg->type)); 5234 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5235 return -EACCES; 5236 } 5237 } 5238 5239 static int check_mem_size_reg(struct bpf_verifier_env *env, 5240 struct bpf_reg_state *reg, u32 regno, 5241 bool zero_size_allowed, 5242 struct bpf_call_arg_meta *meta) 5243 { 5244 int err; 5245 5246 /* This is used to refine r0 return value bounds for helpers 5247 * that enforce this value as an upper bound on return values. 5248 * See do_refine_retval_range() for helpers that can refine 5249 * the return value. C type of helper is u32 so we pull register 5250 * bound from umax_value however, if negative verifier errors 5251 * out. Only upper bounds can be learned because retval is an 5252 * int type and negative retvals are allowed. 5253 */ 5254 meta->msize_max_value = reg->umax_value; 5255 5256 /* The register is SCALAR_VALUE; the access check 5257 * happens using its boundaries. 5258 */ 5259 if (!tnum_is_const(reg->var_off)) 5260 /* For unprivileged variable accesses, disable raw 5261 * mode so that the program is required to 5262 * initialize all the memory that the helper could 5263 * just partially fill up. 5264 */ 5265 meta = NULL; 5266 5267 if (reg->smin_value < 0) { 5268 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5269 regno); 5270 return -EACCES; 5271 } 5272 5273 if (reg->umin_value == 0) { 5274 err = check_helper_mem_access(env, regno - 1, 0, 5275 zero_size_allowed, 5276 meta); 5277 if (err) 5278 return err; 5279 } 5280 5281 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5282 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5283 regno); 5284 return -EACCES; 5285 } 5286 err = check_helper_mem_access(env, regno - 1, 5287 reg->umax_value, 5288 zero_size_allowed, meta); 5289 if (!err) 5290 err = mark_chain_precision(env, regno); 5291 return err; 5292 } 5293 5294 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5295 u32 regno, u32 mem_size) 5296 { 5297 bool may_be_null = type_may_be_null(reg->type); 5298 struct bpf_reg_state saved_reg; 5299 struct bpf_call_arg_meta meta; 5300 int err; 5301 5302 if (register_is_null(reg)) 5303 return 0; 5304 5305 memset(&meta, 0, sizeof(meta)); 5306 /* Assuming that the register contains a value check if the memory 5307 * access is safe. Temporarily save and restore the register's state as 5308 * the conversion shouldn't be visible to a caller. 5309 */ 5310 if (may_be_null) { 5311 saved_reg = *reg; 5312 mark_ptr_not_null_reg(reg); 5313 } 5314 5315 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5316 /* Check access for BPF_WRITE */ 5317 meta.raw_mode = true; 5318 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5319 5320 if (may_be_null) 5321 *reg = saved_reg; 5322 5323 return err; 5324 } 5325 5326 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5327 u32 regno) 5328 { 5329 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5330 bool may_be_null = type_may_be_null(mem_reg->type); 5331 struct bpf_reg_state saved_reg; 5332 struct bpf_call_arg_meta meta; 5333 int err; 5334 5335 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5336 5337 memset(&meta, 0, sizeof(meta)); 5338 5339 if (may_be_null) { 5340 saved_reg = *mem_reg; 5341 mark_ptr_not_null_reg(mem_reg); 5342 } 5343 5344 err = check_mem_size_reg(env, reg, regno, true, &meta); 5345 /* Check access for BPF_WRITE */ 5346 meta.raw_mode = true; 5347 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5348 5349 if (may_be_null) 5350 *mem_reg = saved_reg; 5351 return err; 5352 } 5353 5354 /* Implementation details: 5355 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5356 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5357 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5358 * value_or_null->value transition, since the verifier only cares about 5359 * the range of access to valid map value pointer and doesn't care about actual 5360 * address of the map element. 5361 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5362 * reg->id > 0 after value_or_null->value transition. By doing so 5363 * two bpf_map_lookups will be considered two different pointers that 5364 * point to different bpf_spin_locks. 5365 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5366 * dead-locks. 5367 * Since only one bpf_spin_lock is allowed the checks are simpler than 5368 * reg_is_refcounted() logic. The verifier needs to remember only 5369 * one spin_lock instead of array of acquired_refs. 5370 * cur_state->active_spin_lock remembers which map value element got locked 5371 * and clears it after bpf_spin_unlock. 5372 */ 5373 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5374 bool is_lock) 5375 { 5376 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5377 struct bpf_verifier_state *cur = env->cur_state; 5378 bool is_const = tnum_is_const(reg->var_off); 5379 struct bpf_map *map = reg->map_ptr; 5380 u64 val = reg->var_off.value; 5381 5382 if (!is_const) { 5383 verbose(env, 5384 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5385 regno); 5386 return -EINVAL; 5387 } 5388 if (!map->btf) { 5389 verbose(env, 5390 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5391 map->name); 5392 return -EINVAL; 5393 } 5394 if (!map_value_has_spin_lock(map)) { 5395 if (map->spin_lock_off == -E2BIG) 5396 verbose(env, 5397 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5398 map->name); 5399 else if (map->spin_lock_off == -ENOENT) 5400 verbose(env, 5401 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5402 map->name); 5403 else 5404 verbose(env, 5405 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5406 map->name); 5407 return -EINVAL; 5408 } 5409 if (map->spin_lock_off != val + reg->off) { 5410 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5411 val + reg->off); 5412 return -EINVAL; 5413 } 5414 if (is_lock) { 5415 if (cur->active_spin_lock) { 5416 verbose(env, 5417 "Locking two bpf_spin_locks are not allowed\n"); 5418 return -EINVAL; 5419 } 5420 cur->active_spin_lock = reg->id; 5421 } else { 5422 if (!cur->active_spin_lock) { 5423 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5424 return -EINVAL; 5425 } 5426 if (cur->active_spin_lock != reg->id) { 5427 verbose(env, "bpf_spin_unlock of different lock\n"); 5428 return -EINVAL; 5429 } 5430 cur->active_spin_lock = 0; 5431 } 5432 return 0; 5433 } 5434 5435 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5436 struct bpf_call_arg_meta *meta) 5437 { 5438 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5439 bool is_const = tnum_is_const(reg->var_off); 5440 struct bpf_map *map = reg->map_ptr; 5441 u64 val = reg->var_off.value; 5442 5443 if (!is_const) { 5444 verbose(env, 5445 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5446 regno); 5447 return -EINVAL; 5448 } 5449 if (!map->btf) { 5450 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5451 map->name); 5452 return -EINVAL; 5453 } 5454 if (!map_value_has_timer(map)) { 5455 if (map->timer_off == -E2BIG) 5456 verbose(env, 5457 "map '%s' has more than one 'struct bpf_timer'\n", 5458 map->name); 5459 else if (map->timer_off == -ENOENT) 5460 verbose(env, 5461 "map '%s' doesn't have 'struct bpf_timer'\n", 5462 map->name); 5463 else 5464 verbose(env, 5465 "map '%s' is not a struct type or bpf_timer is mangled\n", 5466 map->name); 5467 return -EINVAL; 5468 } 5469 if (map->timer_off != val + reg->off) { 5470 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5471 val + reg->off, map->timer_off); 5472 return -EINVAL; 5473 } 5474 if (meta->map_ptr) { 5475 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5476 return -EFAULT; 5477 } 5478 meta->map_uid = reg->map_uid; 5479 meta->map_ptr = map; 5480 return 0; 5481 } 5482 5483 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5484 struct bpf_call_arg_meta *meta) 5485 { 5486 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5487 struct bpf_map_value_off_desc *off_desc; 5488 struct bpf_map *map_ptr = reg->map_ptr; 5489 u32 kptr_off; 5490 int ret; 5491 5492 if (!tnum_is_const(reg->var_off)) { 5493 verbose(env, 5494 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5495 regno); 5496 return -EINVAL; 5497 } 5498 if (!map_ptr->btf) { 5499 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5500 map_ptr->name); 5501 return -EINVAL; 5502 } 5503 if (!map_value_has_kptrs(map_ptr)) { 5504 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5505 if (ret == -E2BIG) 5506 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5507 BPF_MAP_VALUE_OFF_MAX); 5508 else if (ret == -EEXIST) 5509 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5510 else 5511 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5512 return -EINVAL; 5513 } 5514 5515 meta->map_ptr = map_ptr; 5516 kptr_off = reg->off + reg->var_off.value; 5517 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5518 if (!off_desc) { 5519 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5520 return -EACCES; 5521 } 5522 if (off_desc->type != BPF_KPTR_REF) { 5523 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5524 return -EACCES; 5525 } 5526 meta->kptr_off_desc = off_desc; 5527 return 0; 5528 } 5529 5530 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5531 { 5532 return type == ARG_CONST_SIZE || 5533 type == ARG_CONST_SIZE_OR_ZERO; 5534 } 5535 5536 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 5537 { 5538 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 5539 } 5540 5541 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 5542 { 5543 return type == ARG_PTR_TO_INT || 5544 type == ARG_PTR_TO_LONG; 5545 } 5546 5547 static bool arg_type_is_release(enum bpf_arg_type type) 5548 { 5549 return type & OBJ_RELEASE; 5550 } 5551 5552 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5553 { 5554 return base_type(type) == ARG_PTR_TO_DYNPTR; 5555 } 5556 5557 static int int_ptr_type_to_size(enum bpf_arg_type type) 5558 { 5559 if (type == ARG_PTR_TO_INT) 5560 return sizeof(u32); 5561 else if (type == ARG_PTR_TO_LONG) 5562 return sizeof(u64); 5563 5564 return -EINVAL; 5565 } 5566 5567 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5568 const struct bpf_call_arg_meta *meta, 5569 enum bpf_arg_type *arg_type) 5570 { 5571 if (!meta->map_ptr) { 5572 /* kernel subsystem misconfigured verifier */ 5573 verbose(env, "invalid map_ptr to access map->type\n"); 5574 return -EACCES; 5575 } 5576 5577 switch (meta->map_ptr->map_type) { 5578 case BPF_MAP_TYPE_SOCKMAP: 5579 case BPF_MAP_TYPE_SOCKHASH: 5580 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5581 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5582 } else { 5583 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5584 return -EINVAL; 5585 } 5586 break; 5587 case BPF_MAP_TYPE_BLOOM_FILTER: 5588 if (meta->func_id == BPF_FUNC_map_peek_elem) 5589 *arg_type = ARG_PTR_TO_MAP_VALUE; 5590 break; 5591 default: 5592 break; 5593 } 5594 return 0; 5595 } 5596 5597 struct bpf_reg_types { 5598 const enum bpf_reg_type types[10]; 5599 u32 *btf_id; 5600 }; 5601 5602 static const struct bpf_reg_types map_key_value_types = { 5603 .types = { 5604 PTR_TO_STACK, 5605 PTR_TO_PACKET, 5606 PTR_TO_PACKET_META, 5607 PTR_TO_MAP_KEY, 5608 PTR_TO_MAP_VALUE, 5609 }, 5610 }; 5611 5612 static const struct bpf_reg_types sock_types = { 5613 .types = { 5614 PTR_TO_SOCK_COMMON, 5615 PTR_TO_SOCKET, 5616 PTR_TO_TCP_SOCK, 5617 PTR_TO_XDP_SOCK, 5618 }, 5619 }; 5620 5621 #ifdef CONFIG_NET 5622 static const struct bpf_reg_types btf_id_sock_common_types = { 5623 .types = { 5624 PTR_TO_SOCK_COMMON, 5625 PTR_TO_SOCKET, 5626 PTR_TO_TCP_SOCK, 5627 PTR_TO_XDP_SOCK, 5628 PTR_TO_BTF_ID, 5629 }, 5630 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5631 }; 5632 #endif 5633 5634 static const struct bpf_reg_types mem_types = { 5635 .types = { 5636 PTR_TO_STACK, 5637 PTR_TO_PACKET, 5638 PTR_TO_PACKET_META, 5639 PTR_TO_MAP_KEY, 5640 PTR_TO_MAP_VALUE, 5641 PTR_TO_MEM, 5642 PTR_TO_MEM | MEM_ALLOC, 5643 PTR_TO_BUF, 5644 }, 5645 }; 5646 5647 static const struct bpf_reg_types int_ptr_types = { 5648 .types = { 5649 PTR_TO_STACK, 5650 PTR_TO_PACKET, 5651 PTR_TO_PACKET_META, 5652 PTR_TO_MAP_KEY, 5653 PTR_TO_MAP_VALUE, 5654 }, 5655 }; 5656 5657 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5658 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5659 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5660 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5661 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5662 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5663 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5664 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5665 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5666 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5667 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5668 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5669 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5670 5671 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5672 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5673 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5674 [ARG_CONST_SIZE] = &scalar_types, 5675 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5676 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5677 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5678 [ARG_PTR_TO_CTX] = &context_types, 5679 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5680 #ifdef CONFIG_NET 5681 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5682 #endif 5683 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5684 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5685 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5686 [ARG_PTR_TO_MEM] = &mem_types, 5687 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5688 [ARG_PTR_TO_INT] = &int_ptr_types, 5689 [ARG_PTR_TO_LONG] = &int_ptr_types, 5690 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5691 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5692 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5693 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5694 [ARG_PTR_TO_TIMER] = &timer_types, 5695 [ARG_PTR_TO_KPTR] = &kptr_types, 5696 [ARG_PTR_TO_DYNPTR] = &stack_ptr_types, 5697 }; 5698 5699 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5700 enum bpf_arg_type arg_type, 5701 const u32 *arg_btf_id, 5702 struct bpf_call_arg_meta *meta) 5703 { 5704 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5705 enum bpf_reg_type expected, type = reg->type; 5706 const struct bpf_reg_types *compatible; 5707 int i, j; 5708 5709 compatible = compatible_reg_types[base_type(arg_type)]; 5710 if (!compatible) { 5711 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5712 return -EFAULT; 5713 } 5714 5715 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5716 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5717 * 5718 * Same for MAYBE_NULL: 5719 * 5720 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5721 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5722 * 5723 * Therefore we fold these flags depending on the arg_type before comparison. 5724 */ 5725 if (arg_type & MEM_RDONLY) 5726 type &= ~MEM_RDONLY; 5727 if (arg_type & PTR_MAYBE_NULL) 5728 type &= ~PTR_MAYBE_NULL; 5729 5730 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5731 expected = compatible->types[i]; 5732 if (expected == NOT_INIT) 5733 break; 5734 5735 if (type == expected) 5736 goto found; 5737 } 5738 5739 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5740 for (j = 0; j + 1 < i; j++) 5741 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5742 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5743 return -EACCES; 5744 5745 found: 5746 if (reg->type == PTR_TO_BTF_ID) { 5747 /* For bpf_sk_release, it needs to match against first member 5748 * 'struct sock_common', hence make an exception for it. This 5749 * allows bpf_sk_release to work for multiple socket types. 5750 */ 5751 bool strict_type_match = arg_type_is_release(arg_type) && 5752 meta->func_id != BPF_FUNC_sk_release; 5753 5754 if (!arg_btf_id) { 5755 if (!compatible->btf_id) { 5756 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5757 return -EFAULT; 5758 } 5759 arg_btf_id = compatible->btf_id; 5760 } 5761 5762 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5763 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5764 return -EACCES; 5765 } else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5766 btf_vmlinux, *arg_btf_id, 5767 strict_type_match)) { 5768 verbose(env, "R%d is of type %s but %s is expected\n", 5769 regno, kernel_type_name(reg->btf, reg->btf_id), 5770 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5771 return -EACCES; 5772 } 5773 } 5774 5775 return 0; 5776 } 5777 5778 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5779 const struct bpf_reg_state *reg, int regno, 5780 enum bpf_arg_type arg_type) 5781 { 5782 enum bpf_reg_type type = reg->type; 5783 bool fixed_off_ok = false; 5784 5785 switch ((u32)type) { 5786 /* Pointer types where reg offset is explicitly allowed: */ 5787 case PTR_TO_STACK: 5788 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5789 verbose(env, "cannot pass in dynptr at an offset\n"); 5790 return -EINVAL; 5791 } 5792 fallthrough; 5793 case PTR_TO_PACKET: 5794 case PTR_TO_PACKET_META: 5795 case PTR_TO_MAP_KEY: 5796 case PTR_TO_MAP_VALUE: 5797 case PTR_TO_MEM: 5798 case PTR_TO_MEM | MEM_RDONLY: 5799 case PTR_TO_MEM | MEM_ALLOC: 5800 case PTR_TO_BUF: 5801 case PTR_TO_BUF | MEM_RDONLY: 5802 case SCALAR_VALUE: 5803 /* Some of the argument types nevertheless require a 5804 * zero register offset. 5805 */ 5806 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5807 return 0; 5808 break; 5809 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5810 * fixed offset. 5811 */ 5812 case PTR_TO_BTF_ID: 5813 /* When referenced PTR_TO_BTF_ID is passed to release function, 5814 * it's fixed offset must be 0. In the other cases, fixed offset 5815 * can be non-zero. 5816 */ 5817 if (arg_type_is_release(arg_type) && reg->off) { 5818 verbose(env, "R%d must have zero offset when passed to release func\n", 5819 regno); 5820 return -EINVAL; 5821 } 5822 /* For arg is release pointer, fixed_off_ok must be false, but 5823 * we already checked and rejected reg->off != 0 above, so set 5824 * to true to allow fixed offset for all other cases. 5825 */ 5826 fixed_off_ok = true; 5827 break; 5828 default: 5829 break; 5830 } 5831 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5832 } 5833 5834 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5835 { 5836 struct bpf_func_state *state = func(env, reg); 5837 int spi = get_spi(reg->off); 5838 5839 return state->stack[spi].spilled_ptr.id; 5840 } 5841 5842 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5843 struct bpf_call_arg_meta *meta, 5844 const struct bpf_func_proto *fn) 5845 { 5846 u32 regno = BPF_REG_1 + arg; 5847 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5848 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5849 enum bpf_reg_type type = reg->type; 5850 int err = 0; 5851 5852 if (arg_type == ARG_DONTCARE) 5853 return 0; 5854 5855 err = check_reg_arg(env, regno, SRC_OP); 5856 if (err) 5857 return err; 5858 5859 if (arg_type == ARG_ANYTHING) { 5860 if (is_pointer_value(env, regno)) { 5861 verbose(env, "R%d leaks addr into helper function\n", 5862 regno); 5863 return -EACCES; 5864 } 5865 return 0; 5866 } 5867 5868 if (type_is_pkt_pointer(type) && 5869 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5870 verbose(env, "helper access to the packet is not allowed\n"); 5871 return -EACCES; 5872 } 5873 5874 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5875 err = resolve_map_arg_type(env, meta, &arg_type); 5876 if (err) 5877 return err; 5878 } 5879 5880 if (register_is_null(reg) && type_may_be_null(arg_type)) 5881 /* A NULL register has a SCALAR_VALUE type, so skip 5882 * type checking. 5883 */ 5884 goto skip_type_check; 5885 5886 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg], meta); 5887 if (err) 5888 return err; 5889 5890 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5891 if (err) 5892 return err; 5893 5894 skip_type_check: 5895 if (arg_type_is_release(arg_type)) { 5896 if (arg_type_is_dynptr(arg_type)) { 5897 struct bpf_func_state *state = func(env, reg); 5898 int spi = get_spi(reg->off); 5899 5900 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5901 !state->stack[spi].spilled_ptr.id) { 5902 verbose(env, "arg %d is an unacquired reference\n", regno); 5903 return -EINVAL; 5904 } 5905 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5906 verbose(env, "R%d must be referenced when passed to release function\n", 5907 regno); 5908 return -EINVAL; 5909 } 5910 if (meta->release_regno) { 5911 verbose(env, "verifier internal error: more than one release argument\n"); 5912 return -EFAULT; 5913 } 5914 meta->release_regno = regno; 5915 } 5916 5917 if (reg->ref_obj_id) { 5918 if (meta->ref_obj_id) { 5919 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5920 regno, reg->ref_obj_id, 5921 meta->ref_obj_id); 5922 return -EFAULT; 5923 } 5924 meta->ref_obj_id = reg->ref_obj_id; 5925 } 5926 5927 if (arg_type == ARG_CONST_MAP_PTR) { 5928 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5929 if (meta->map_ptr) { 5930 /* Use map_uid (which is unique id of inner map) to reject: 5931 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5932 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5933 * if (inner_map1 && inner_map2) { 5934 * timer = bpf_map_lookup_elem(inner_map1); 5935 * if (timer) 5936 * // mismatch would have been allowed 5937 * bpf_timer_init(timer, inner_map2); 5938 * } 5939 * 5940 * Comparing map_ptr is enough to distinguish normal and outer maps. 5941 */ 5942 if (meta->map_ptr != reg->map_ptr || 5943 meta->map_uid != reg->map_uid) { 5944 verbose(env, 5945 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5946 meta->map_uid, reg->map_uid); 5947 return -EINVAL; 5948 } 5949 } 5950 meta->map_ptr = reg->map_ptr; 5951 meta->map_uid = reg->map_uid; 5952 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5953 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5954 * check that [key, key + map->key_size) are within 5955 * stack limits and initialized 5956 */ 5957 if (!meta->map_ptr) { 5958 /* in function declaration map_ptr must come before 5959 * map_key, so that it's verified and known before 5960 * we have to check map_key here. Otherwise it means 5961 * that kernel subsystem misconfigured verifier 5962 */ 5963 verbose(env, "invalid map_ptr to access map->key\n"); 5964 return -EACCES; 5965 } 5966 err = check_helper_mem_access(env, regno, 5967 meta->map_ptr->key_size, false, 5968 NULL); 5969 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5970 if (type_may_be_null(arg_type) && register_is_null(reg)) 5971 return 0; 5972 5973 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5974 * check [value, value + map->value_size) validity 5975 */ 5976 if (!meta->map_ptr) { 5977 /* kernel subsystem misconfigured verifier */ 5978 verbose(env, "invalid map_ptr to access map->value\n"); 5979 return -EACCES; 5980 } 5981 meta->raw_mode = arg_type & MEM_UNINIT; 5982 err = check_helper_mem_access(env, regno, 5983 meta->map_ptr->value_size, false, 5984 meta); 5985 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5986 if (!reg->btf_id) { 5987 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5988 return -EACCES; 5989 } 5990 meta->ret_btf = reg->btf; 5991 meta->ret_btf_id = reg->btf_id; 5992 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5993 if (meta->func_id == BPF_FUNC_spin_lock) { 5994 if (process_spin_lock(env, regno, true)) 5995 return -EACCES; 5996 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5997 if (process_spin_lock(env, regno, false)) 5998 return -EACCES; 5999 } else { 6000 verbose(env, "verifier internal error\n"); 6001 return -EFAULT; 6002 } 6003 } else if (arg_type == ARG_PTR_TO_TIMER) { 6004 if (process_timer_func(env, regno, meta)) 6005 return -EACCES; 6006 } else if (arg_type == ARG_PTR_TO_FUNC) { 6007 meta->subprogno = reg->subprogno; 6008 } else if (base_type(arg_type) == ARG_PTR_TO_MEM) { 6009 /* The access to this pointer is only checked when we hit the 6010 * next is_mem_size argument below. 6011 */ 6012 meta->raw_mode = arg_type & MEM_UNINIT; 6013 } else if (arg_type_is_mem_size(arg_type)) { 6014 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 6015 6016 err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta); 6017 } else if (arg_type_is_dynptr(arg_type)) { 6018 if (arg_type & MEM_UNINIT) { 6019 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6020 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6021 return -EINVAL; 6022 } 6023 6024 /* We only support one dynptr being uninitialized at the moment, 6025 * which is sufficient for the helper functions we have right now. 6026 */ 6027 if (meta->uninit_dynptr_regno) { 6028 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6029 return -EFAULT; 6030 } 6031 6032 meta->uninit_dynptr_regno = regno; 6033 } else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) { 6034 const char *err_extra = ""; 6035 6036 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6037 case DYNPTR_TYPE_LOCAL: 6038 err_extra = "local "; 6039 break; 6040 case DYNPTR_TYPE_RINGBUF: 6041 err_extra = "ringbuf "; 6042 break; 6043 default: 6044 break; 6045 } 6046 6047 verbose(env, "Expected an initialized %sdynptr as arg #%d\n", 6048 err_extra, arg + 1); 6049 return -EINVAL; 6050 } 6051 } else if (arg_type_is_alloc_size(arg_type)) { 6052 if (!tnum_is_const(reg->var_off)) { 6053 verbose(env, "R%d is not a known constant'\n", 6054 regno); 6055 return -EACCES; 6056 } 6057 meta->mem_size = reg->var_off.value; 6058 } else if (arg_type_is_int_ptr(arg_type)) { 6059 int size = int_ptr_type_to_size(arg_type); 6060 6061 err = check_helper_mem_access(env, regno, size, false, meta); 6062 if (err) 6063 return err; 6064 err = check_ptr_alignment(env, reg, 0, size, true); 6065 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 6066 struct bpf_map *map = reg->map_ptr; 6067 int map_off; 6068 u64 map_addr; 6069 char *str_ptr; 6070 6071 if (!bpf_map_is_rdonly(map)) { 6072 verbose(env, "R%d does not point to a readonly map'\n", regno); 6073 return -EACCES; 6074 } 6075 6076 if (!tnum_is_const(reg->var_off)) { 6077 verbose(env, "R%d is not a constant address'\n", regno); 6078 return -EACCES; 6079 } 6080 6081 if (!map->ops->map_direct_value_addr) { 6082 verbose(env, "no direct value access support for this map type\n"); 6083 return -EACCES; 6084 } 6085 6086 err = check_map_access(env, regno, reg->off, 6087 map->value_size - reg->off, false, 6088 ACCESS_HELPER); 6089 if (err) 6090 return err; 6091 6092 map_off = reg->off + reg->var_off.value; 6093 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6094 if (err) { 6095 verbose(env, "direct value access on string failed\n"); 6096 return err; 6097 } 6098 6099 str_ptr = (char *)(long)(map_addr); 6100 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6101 verbose(env, "string is not zero-terminated\n"); 6102 return -EINVAL; 6103 } 6104 } else if (arg_type == ARG_PTR_TO_KPTR) { 6105 if (process_kptr_func(env, regno, meta)) 6106 return -EACCES; 6107 } 6108 6109 return err; 6110 } 6111 6112 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6113 { 6114 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6115 enum bpf_prog_type type = resolve_prog_type(env->prog); 6116 6117 if (func_id != BPF_FUNC_map_update_elem) 6118 return false; 6119 6120 /* It's not possible to get access to a locked struct sock in these 6121 * contexts, so updating is safe. 6122 */ 6123 switch (type) { 6124 case BPF_PROG_TYPE_TRACING: 6125 if (eatype == BPF_TRACE_ITER) 6126 return true; 6127 break; 6128 case BPF_PROG_TYPE_SOCKET_FILTER: 6129 case BPF_PROG_TYPE_SCHED_CLS: 6130 case BPF_PROG_TYPE_SCHED_ACT: 6131 case BPF_PROG_TYPE_XDP: 6132 case BPF_PROG_TYPE_SK_REUSEPORT: 6133 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6134 case BPF_PROG_TYPE_SK_LOOKUP: 6135 return true; 6136 default: 6137 break; 6138 } 6139 6140 verbose(env, "cannot update sockmap in this context\n"); 6141 return false; 6142 } 6143 6144 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6145 { 6146 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 6147 } 6148 6149 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6150 struct bpf_map *map, int func_id) 6151 { 6152 if (!map) 6153 return 0; 6154 6155 /* We need a two way check, first is from map perspective ... */ 6156 switch (map->map_type) { 6157 case BPF_MAP_TYPE_PROG_ARRAY: 6158 if (func_id != BPF_FUNC_tail_call) 6159 goto error; 6160 break; 6161 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6162 if (func_id != BPF_FUNC_perf_event_read && 6163 func_id != BPF_FUNC_perf_event_output && 6164 func_id != BPF_FUNC_skb_output && 6165 func_id != BPF_FUNC_perf_event_read_value && 6166 func_id != BPF_FUNC_xdp_output) 6167 goto error; 6168 break; 6169 case BPF_MAP_TYPE_RINGBUF: 6170 if (func_id != BPF_FUNC_ringbuf_output && 6171 func_id != BPF_FUNC_ringbuf_reserve && 6172 func_id != BPF_FUNC_ringbuf_query && 6173 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6174 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6175 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6176 goto error; 6177 break; 6178 case BPF_MAP_TYPE_STACK_TRACE: 6179 if (func_id != BPF_FUNC_get_stackid) 6180 goto error; 6181 break; 6182 case BPF_MAP_TYPE_CGROUP_ARRAY: 6183 if (func_id != BPF_FUNC_skb_under_cgroup && 6184 func_id != BPF_FUNC_current_task_under_cgroup) 6185 goto error; 6186 break; 6187 case BPF_MAP_TYPE_CGROUP_STORAGE: 6188 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6189 if (func_id != BPF_FUNC_get_local_storage) 6190 goto error; 6191 break; 6192 case BPF_MAP_TYPE_DEVMAP: 6193 case BPF_MAP_TYPE_DEVMAP_HASH: 6194 if (func_id != BPF_FUNC_redirect_map && 6195 func_id != BPF_FUNC_map_lookup_elem) 6196 goto error; 6197 break; 6198 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6199 * appear. 6200 */ 6201 case BPF_MAP_TYPE_CPUMAP: 6202 if (func_id != BPF_FUNC_redirect_map) 6203 goto error; 6204 break; 6205 case BPF_MAP_TYPE_XSKMAP: 6206 if (func_id != BPF_FUNC_redirect_map && 6207 func_id != BPF_FUNC_map_lookup_elem) 6208 goto error; 6209 break; 6210 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6211 case BPF_MAP_TYPE_HASH_OF_MAPS: 6212 if (func_id != BPF_FUNC_map_lookup_elem) 6213 goto error; 6214 break; 6215 case BPF_MAP_TYPE_SOCKMAP: 6216 if (func_id != BPF_FUNC_sk_redirect_map && 6217 func_id != BPF_FUNC_sock_map_update && 6218 func_id != BPF_FUNC_map_delete_elem && 6219 func_id != BPF_FUNC_msg_redirect_map && 6220 func_id != BPF_FUNC_sk_select_reuseport && 6221 func_id != BPF_FUNC_map_lookup_elem && 6222 !may_update_sockmap(env, func_id)) 6223 goto error; 6224 break; 6225 case BPF_MAP_TYPE_SOCKHASH: 6226 if (func_id != BPF_FUNC_sk_redirect_hash && 6227 func_id != BPF_FUNC_sock_hash_update && 6228 func_id != BPF_FUNC_map_delete_elem && 6229 func_id != BPF_FUNC_msg_redirect_hash && 6230 func_id != BPF_FUNC_sk_select_reuseport && 6231 func_id != BPF_FUNC_map_lookup_elem && 6232 !may_update_sockmap(env, func_id)) 6233 goto error; 6234 break; 6235 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6236 if (func_id != BPF_FUNC_sk_select_reuseport) 6237 goto error; 6238 break; 6239 case BPF_MAP_TYPE_QUEUE: 6240 case BPF_MAP_TYPE_STACK: 6241 if (func_id != BPF_FUNC_map_peek_elem && 6242 func_id != BPF_FUNC_map_pop_elem && 6243 func_id != BPF_FUNC_map_push_elem) 6244 goto error; 6245 break; 6246 case BPF_MAP_TYPE_SK_STORAGE: 6247 if (func_id != BPF_FUNC_sk_storage_get && 6248 func_id != BPF_FUNC_sk_storage_delete) 6249 goto error; 6250 break; 6251 case BPF_MAP_TYPE_INODE_STORAGE: 6252 if (func_id != BPF_FUNC_inode_storage_get && 6253 func_id != BPF_FUNC_inode_storage_delete) 6254 goto error; 6255 break; 6256 case BPF_MAP_TYPE_TASK_STORAGE: 6257 if (func_id != BPF_FUNC_task_storage_get && 6258 func_id != BPF_FUNC_task_storage_delete) 6259 goto error; 6260 break; 6261 case BPF_MAP_TYPE_BLOOM_FILTER: 6262 if (func_id != BPF_FUNC_map_peek_elem && 6263 func_id != BPF_FUNC_map_push_elem) 6264 goto error; 6265 break; 6266 default: 6267 break; 6268 } 6269 6270 /* ... and second from the function itself. */ 6271 switch (func_id) { 6272 case BPF_FUNC_tail_call: 6273 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6274 goto error; 6275 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6276 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6277 return -EINVAL; 6278 } 6279 break; 6280 case BPF_FUNC_perf_event_read: 6281 case BPF_FUNC_perf_event_output: 6282 case BPF_FUNC_perf_event_read_value: 6283 case BPF_FUNC_skb_output: 6284 case BPF_FUNC_xdp_output: 6285 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6286 goto error; 6287 break; 6288 case BPF_FUNC_ringbuf_output: 6289 case BPF_FUNC_ringbuf_reserve: 6290 case BPF_FUNC_ringbuf_query: 6291 case BPF_FUNC_ringbuf_reserve_dynptr: 6292 case BPF_FUNC_ringbuf_submit_dynptr: 6293 case BPF_FUNC_ringbuf_discard_dynptr: 6294 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6295 goto error; 6296 break; 6297 case BPF_FUNC_get_stackid: 6298 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6299 goto error; 6300 break; 6301 case BPF_FUNC_current_task_under_cgroup: 6302 case BPF_FUNC_skb_under_cgroup: 6303 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6304 goto error; 6305 break; 6306 case BPF_FUNC_redirect_map: 6307 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6308 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6309 map->map_type != BPF_MAP_TYPE_CPUMAP && 6310 map->map_type != BPF_MAP_TYPE_XSKMAP) 6311 goto error; 6312 break; 6313 case BPF_FUNC_sk_redirect_map: 6314 case BPF_FUNC_msg_redirect_map: 6315 case BPF_FUNC_sock_map_update: 6316 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6317 goto error; 6318 break; 6319 case BPF_FUNC_sk_redirect_hash: 6320 case BPF_FUNC_msg_redirect_hash: 6321 case BPF_FUNC_sock_hash_update: 6322 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6323 goto error; 6324 break; 6325 case BPF_FUNC_get_local_storage: 6326 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6327 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6328 goto error; 6329 break; 6330 case BPF_FUNC_sk_select_reuseport: 6331 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6332 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6333 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6334 goto error; 6335 break; 6336 case BPF_FUNC_map_pop_elem: 6337 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6338 map->map_type != BPF_MAP_TYPE_STACK) 6339 goto error; 6340 break; 6341 case BPF_FUNC_map_peek_elem: 6342 case BPF_FUNC_map_push_elem: 6343 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6344 map->map_type != BPF_MAP_TYPE_STACK && 6345 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6346 goto error; 6347 break; 6348 case BPF_FUNC_map_lookup_percpu_elem: 6349 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6350 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6351 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6352 goto error; 6353 break; 6354 case BPF_FUNC_sk_storage_get: 6355 case BPF_FUNC_sk_storage_delete: 6356 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6357 goto error; 6358 break; 6359 case BPF_FUNC_inode_storage_get: 6360 case BPF_FUNC_inode_storage_delete: 6361 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6362 goto error; 6363 break; 6364 case BPF_FUNC_task_storage_get: 6365 case BPF_FUNC_task_storage_delete: 6366 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6367 goto error; 6368 break; 6369 default: 6370 break; 6371 } 6372 6373 return 0; 6374 error: 6375 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6376 map->map_type, func_id_name(func_id), func_id); 6377 return -EINVAL; 6378 } 6379 6380 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6381 { 6382 int count = 0; 6383 6384 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6385 count++; 6386 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6387 count++; 6388 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6389 count++; 6390 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6391 count++; 6392 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6393 count++; 6394 6395 /* We only support one arg being in raw mode at the moment, 6396 * which is sufficient for the helper functions we have 6397 * right now. 6398 */ 6399 return count <= 1; 6400 } 6401 6402 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 6403 enum bpf_arg_type arg_next) 6404 { 6405 return (base_type(arg_curr) == ARG_PTR_TO_MEM) != 6406 arg_type_is_mem_size(arg_next); 6407 } 6408 6409 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6410 { 6411 /* bpf_xxx(..., buf, len) call will access 'len' 6412 * bytes from memory 'buf'. Both arg types need 6413 * to be paired, so make sure there's no buggy 6414 * helper function specification. 6415 */ 6416 if (arg_type_is_mem_size(fn->arg1_type) || 6417 base_type(fn->arg5_type) == ARG_PTR_TO_MEM || 6418 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 6419 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 6420 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 6421 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 6422 return false; 6423 6424 return true; 6425 } 6426 6427 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 6428 { 6429 int count = 0; 6430 6431 if (arg_type_may_be_refcounted(fn->arg1_type)) 6432 count++; 6433 if (arg_type_may_be_refcounted(fn->arg2_type)) 6434 count++; 6435 if (arg_type_may_be_refcounted(fn->arg3_type)) 6436 count++; 6437 if (arg_type_may_be_refcounted(fn->arg4_type)) 6438 count++; 6439 if (arg_type_may_be_refcounted(fn->arg5_type)) 6440 count++; 6441 6442 /* A reference acquiring function cannot acquire 6443 * another refcounted ptr. 6444 */ 6445 if (may_be_acquire_function(func_id) && count) 6446 return false; 6447 6448 /* We only support one arg being unreferenced at the moment, 6449 * which is sufficient for the helper functions we have right now. 6450 */ 6451 return count <= 1; 6452 } 6453 6454 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6455 { 6456 int i; 6457 6458 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6459 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6460 return false; 6461 6462 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 6463 return false; 6464 } 6465 6466 return true; 6467 } 6468 6469 static int check_func_proto(const struct bpf_func_proto *fn, int func_id, 6470 struct bpf_call_arg_meta *meta) 6471 { 6472 return check_raw_mode_ok(fn) && 6473 check_arg_pair_ok(fn) && 6474 check_btf_id_ok(fn) && 6475 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 6476 } 6477 6478 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6479 * are now invalid, so turn them into unknown SCALAR_VALUE. 6480 */ 6481 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 6482 struct bpf_func_state *state) 6483 { 6484 struct bpf_reg_state *regs = state->regs, *reg; 6485 int i; 6486 6487 for (i = 0; i < MAX_BPF_REG; i++) 6488 if (reg_is_pkt_pointer_any(®s[i])) 6489 mark_reg_unknown(env, regs, i); 6490 6491 bpf_for_each_spilled_reg(i, state, reg) { 6492 if (!reg) 6493 continue; 6494 if (reg_is_pkt_pointer_any(reg)) 6495 __mark_reg_unknown(env, reg); 6496 } 6497 } 6498 6499 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6500 { 6501 struct bpf_verifier_state *vstate = env->cur_state; 6502 int i; 6503 6504 for (i = 0; i <= vstate->curframe; i++) 6505 __clear_all_pkt_pointers(env, vstate->frame[i]); 6506 } 6507 6508 enum { 6509 AT_PKT_END = -1, 6510 BEYOND_PKT_END = -2, 6511 }; 6512 6513 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6514 { 6515 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6516 struct bpf_reg_state *reg = &state->regs[regn]; 6517 6518 if (reg->type != PTR_TO_PACKET) 6519 /* PTR_TO_PACKET_META is not supported yet */ 6520 return; 6521 6522 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6523 * How far beyond pkt_end it goes is unknown. 6524 * if (!range_open) it's the case of pkt >= pkt_end 6525 * if (range_open) it's the case of pkt > pkt_end 6526 * hence this pointer is at least 1 byte bigger than pkt_end 6527 */ 6528 if (range_open) 6529 reg->range = BEYOND_PKT_END; 6530 else 6531 reg->range = AT_PKT_END; 6532 } 6533 6534 static void release_reg_references(struct bpf_verifier_env *env, 6535 struct bpf_func_state *state, 6536 int ref_obj_id) 6537 { 6538 struct bpf_reg_state *regs = state->regs, *reg; 6539 int i; 6540 6541 for (i = 0; i < MAX_BPF_REG; i++) 6542 if (regs[i].ref_obj_id == ref_obj_id) 6543 mark_reg_unknown(env, regs, i); 6544 6545 bpf_for_each_spilled_reg(i, state, reg) { 6546 if (!reg) 6547 continue; 6548 if (reg->ref_obj_id == ref_obj_id) 6549 __mark_reg_unknown(env, reg); 6550 } 6551 } 6552 6553 /* The pointer with the specified id has released its reference to kernel 6554 * resources. Identify all copies of the same pointer and clear the reference. 6555 */ 6556 static int release_reference(struct bpf_verifier_env *env, 6557 int ref_obj_id) 6558 { 6559 struct bpf_verifier_state *vstate = env->cur_state; 6560 int err; 6561 int i; 6562 6563 err = release_reference_state(cur_func(env), ref_obj_id); 6564 if (err) 6565 return err; 6566 6567 for (i = 0; i <= vstate->curframe; i++) 6568 release_reg_references(env, vstate->frame[i], ref_obj_id); 6569 6570 return 0; 6571 } 6572 6573 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6574 struct bpf_reg_state *regs) 6575 { 6576 int i; 6577 6578 /* after the call registers r0 - r5 were scratched */ 6579 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6580 mark_reg_not_init(env, regs, caller_saved[i]); 6581 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6582 } 6583 } 6584 6585 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6586 struct bpf_func_state *caller, 6587 struct bpf_func_state *callee, 6588 int insn_idx); 6589 6590 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6591 int *insn_idx, int subprog, 6592 set_callee_state_fn set_callee_state_cb) 6593 { 6594 struct bpf_verifier_state *state = env->cur_state; 6595 struct bpf_func_info_aux *func_info_aux; 6596 struct bpf_func_state *caller, *callee; 6597 int err; 6598 bool is_global = false; 6599 6600 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6601 verbose(env, "the call stack of %d frames is too deep\n", 6602 state->curframe + 2); 6603 return -E2BIG; 6604 } 6605 6606 caller = state->frame[state->curframe]; 6607 if (state->frame[state->curframe + 1]) { 6608 verbose(env, "verifier bug. Frame %d already allocated\n", 6609 state->curframe + 1); 6610 return -EFAULT; 6611 } 6612 6613 func_info_aux = env->prog->aux->func_info_aux; 6614 if (func_info_aux) 6615 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6616 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6617 if (err == -EFAULT) 6618 return err; 6619 if (is_global) { 6620 if (err) { 6621 verbose(env, "Caller passes invalid args into func#%d\n", 6622 subprog); 6623 return err; 6624 } else { 6625 if (env->log.level & BPF_LOG_LEVEL) 6626 verbose(env, 6627 "Func#%d is global and valid. Skipping.\n", 6628 subprog); 6629 clear_caller_saved_regs(env, caller->regs); 6630 6631 /* All global functions return a 64-bit SCALAR_VALUE */ 6632 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6633 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6634 6635 /* continue with next insn after call */ 6636 return 0; 6637 } 6638 } 6639 6640 if (insn->code == (BPF_JMP | BPF_CALL) && 6641 insn->src_reg == 0 && 6642 insn->imm == BPF_FUNC_timer_set_callback) { 6643 struct bpf_verifier_state *async_cb; 6644 6645 /* there is no real recursion here. timer callbacks are async */ 6646 env->subprog_info[subprog].is_async_cb = true; 6647 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6648 *insn_idx, subprog); 6649 if (!async_cb) 6650 return -EFAULT; 6651 callee = async_cb->frame[0]; 6652 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6653 6654 /* Convert bpf_timer_set_callback() args into timer callback args */ 6655 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6656 if (err) 6657 return err; 6658 6659 clear_caller_saved_regs(env, caller->regs); 6660 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6661 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6662 /* continue with next insn after call */ 6663 return 0; 6664 } 6665 6666 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6667 if (!callee) 6668 return -ENOMEM; 6669 state->frame[state->curframe + 1] = callee; 6670 6671 /* callee cannot access r0, r6 - r9 for reading and has to write 6672 * into its own stack before reading from it. 6673 * callee can read/write into caller's stack 6674 */ 6675 init_func_state(env, callee, 6676 /* remember the callsite, it will be used by bpf_exit */ 6677 *insn_idx /* callsite */, 6678 state->curframe + 1 /* frameno within this callchain */, 6679 subprog /* subprog number within this prog */); 6680 6681 /* Transfer references to the callee */ 6682 err = copy_reference_state(callee, caller); 6683 if (err) 6684 return err; 6685 6686 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6687 if (err) 6688 return err; 6689 6690 clear_caller_saved_regs(env, caller->regs); 6691 6692 /* only increment it after check_reg_arg() finished */ 6693 state->curframe++; 6694 6695 /* and go analyze first insn of the callee */ 6696 *insn_idx = env->subprog_info[subprog].start - 1; 6697 6698 if (env->log.level & BPF_LOG_LEVEL) { 6699 verbose(env, "caller:\n"); 6700 print_verifier_state(env, caller, true); 6701 verbose(env, "callee:\n"); 6702 print_verifier_state(env, callee, true); 6703 } 6704 return 0; 6705 } 6706 6707 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6708 struct bpf_func_state *caller, 6709 struct bpf_func_state *callee) 6710 { 6711 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6712 * void *callback_ctx, u64 flags); 6713 * callback_fn(struct bpf_map *map, void *key, void *value, 6714 * void *callback_ctx); 6715 */ 6716 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6717 6718 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6719 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6720 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6721 6722 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6723 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6724 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6725 6726 /* pointer to stack or null */ 6727 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6728 6729 /* unused */ 6730 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6731 return 0; 6732 } 6733 6734 static int set_callee_state(struct bpf_verifier_env *env, 6735 struct bpf_func_state *caller, 6736 struct bpf_func_state *callee, int insn_idx) 6737 { 6738 int i; 6739 6740 /* copy r1 - r5 args that callee can access. The copy includes parent 6741 * pointers, which connects us up to the liveness chain 6742 */ 6743 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6744 callee->regs[i] = caller->regs[i]; 6745 return 0; 6746 } 6747 6748 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6749 int *insn_idx) 6750 { 6751 int subprog, target_insn; 6752 6753 target_insn = *insn_idx + insn->imm + 1; 6754 subprog = find_subprog(env, target_insn); 6755 if (subprog < 0) { 6756 verbose(env, "verifier bug. No program starts at insn %d\n", 6757 target_insn); 6758 return -EFAULT; 6759 } 6760 6761 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6762 } 6763 6764 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6765 struct bpf_func_state *caller, 6766 struct bpf_func_state *callee, 6767 int insn_idx) 6768 { 6769 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6770 struct bpf_map *map; 6771 int err; 6772 6773 if (bpf_map_ptr_poisoned(insn_aux)) { 6774 verbose(env, "tail_call abusing map_ptr\n"); 6775 return -EINVAL; 6776 } 6777 6778 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6779 if (!map->ops->map_set_for_each_callback_args || 6780 !map->ops->map_for_each_callback) { 6781 verbose(env, "callback function not allowed for map\n"); 6782 return -ENOTSUPP; 6783 } 6784 6785 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6786 if (err) 6787 return err; 6788 6789 callee->in_callback_fn = true; 6790 return 0; 6791 } 6792 6793 static int set_loop_callback_state(struct bpf_verifier_env *env, 6794 struct bpf_func_state *caller, 6795 struct bpf_func_state *callee, 6796 int insn_idx) 6797 { 6798 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6799 * u64 flags); 6800 * callback_fn(u32 index, void *callback_ctx); 6801 */ 6802 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6803 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6804 6805 /* unused */ 6806 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6807 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6808 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6809 6810 callee->in_callback_fn = true; 6811 return 0; 6812 } 6813 6814 static int set_timer_callback_state(struct bpf_verifier_env *env, 6815 struct bpf_func_state *caller, 6816 struct bpf_func_state *callee, 6817 int insn_idx) 6818 { 6819 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6820 6821 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6822 * callback_fn(struct bpf_map *map, void *key, void *value); 6823 */ 6824 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6825 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6826 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6827 6828 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6829 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6830 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6831 6832 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6833 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6834 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6835 6836 /* unused */ 6837 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6838 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6839 callee->in_async_callback_fn = true; 6840 return 0; 6841 } 6842 6843 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6844 struct bpf_func_state *caller, 6845 struct bpf_func_state *callee, 6846 int insn_idx) 6847 { 6848 /* bpf_find_vma(struct task_struct *task, u64 addr, 6849 * void *callback_fn, void *callback_ctx, u64 flags) 6850 * (callback_fn)(struct task_struct *task, 6851 * struct vm_area_struct *vma, void *callback_ctx); 6852 */ 6853 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6854 6855 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6856 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6857 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6858 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6859 6860 /* pointer to stack or null */ 6861 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6862 6863 /* unused */ 6864 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6865 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6866 callee->in_callback_fn = true; 6867 return 0; 6868 } 6869 6870 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6871 { 6872 struct bpf_verifier_state *state = env->cur_state; 6873 struct bpf_func_state *caller, *callee; 6874 struct bpf_reg_state *r0; 6875 int err; 6876 6877 callee = state->frame[state->curframe]; 6878 r0 = &callee->regs[BPF_REG_0]; 6879 if (r0->type == PTR_TO_STACK) { 6880 /* technically it's ok to return caller's stack pointer 6881 * (or caller's caller's pointer) back to the caller, 6882 * since these pointers are valid. Only current stack 6883 * pointer will be invalid as soon as function exits, 6884 * but let's be conservative 6885 */ 6886 verbose(env, "cannot return stack pointer to the caller\n"); 6887 return -EINVAL; 6888 } 6889 6890 state->curframe--; 6891 caller = state->frame[state->curframe]; 6892 if (callee->in_callback_fn) { 6893 /* enforce R0 return value range [0, 1]. */ 6894 struct tnum range = tnum_range(0, 1); 6895 6896 if (r0->type != SCALAR_VALUE) { 6897 verbose(env, "R0 not a scalar value\n"); 6898 return -EACCES; 6899 } 6900 if (!tnum_in(range, r0->var_off)) { 6901 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6902 return -EINVAL; 6903 } 6904 } else { 6905 /* return to the caller whatever r0 had in the callee */ 6906 caller->regs[BPF_REG_0] = *r0; 6907 } 6908 6909 /* Transfer references to the caller */ 6910 err = copy_reference_state(caller, callee); 6911 if (err) 6912 return err; 6913 6914 *insn_idx = callee->callsite + 1; 6915 if (env->log.level & BPF_LOG_LEVEL) { 6916 verbose(env, "returning from callee:\n"); 6917 print_verifier_state(env, callee, true); 6918 verbose(env, "to caller at %d:\n", *insn_idx); 6919 print_verifier_state(env, caller, true); 6920 } 6921 /* clear everything in the callee */ 6922 free_func_state(callee); 6923 state->frame[state->curframe + 1] = NULL; 6924 return 0; 6925 } 6926 6927 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6928 int func_id, 6929 struct bpf_call_arg_meta *meta) 6930 { 6931 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6932 6933 if (ret_type != RET_INTEGER || 6934 (func_id != BPF_FUNC_get_stack && 6935 func_id != BPF_FUNC_get_task_stack && 6936 func_id != BPF_FUNC_probe_read_str && 6937 func_id != BPF_FUNC_probe_read_kernel_str && 6938 func_id != BPF_FUNC_probe_read_user_str)) 6939 return; 6940 6941 ret_reg->smax_value = meta->msize_max_value; 6942 ret_reg->s32_max_value = meta->msize_max_value; 6943 ret_reg->smin_value = -MAX_ERRNO; 6944 ret_reg->s32_min_value = -MAX_ERRNO; 6945 reg_bounds_sync(ret_reg); 6946 } 6947 6948 static int 6949 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6950 int func_id, int insn_idx) 6951 { 6952 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6953 struct bpf_map *map = meta->map_ptr; 6954 6955 if (func_id != BPF_FUNC_tail_call && 6956 func_id != BPF_FUNC_map_lookup_elem && 6957 func_id != BPF_FUNC_map_update_elem && 6958 func_id != BPF_FUNC_map_delete_elem && 6959 func_id != BPF_FUNC_map_push_elem && 6960 func_id != BPF_FUNC_map_pop_elem && 6961 func_id != BPF_FUNC_map_peek_elem && 6962 func_id != BPF_FUNC_for_each_map_elem && 6963 func_id != BPF_FUNC_redirect_map && 6964 func_id != BPF_FUNC_map_lookup_percpu_elem) 6965 return 0; 6966 6967 if (map == NULL) { 6968 verbose(env, "kernel subsystem misconfigured verifier\n"); 6969 return -EINVAL; 6970 } 6971 6972 /* In case of read-only, some additional restrictions 6973 * need to be applied in order to prevent altering the 6974 * state of the map from program side. 6975 */ 6976 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6977 (func_id == BPF_FUNC_map_delete_elem || 6978 func_id == BPF_FUNC_map_update_elem || 6979 func_id == BPF_FUNC_map_push_elem || 6980 func_id == BPF_FUNC_map_pop_elem)) { 6981 verbose(env, "write into map forbidden\n"); 6982 return -EACCES; 6983 } 6984 6985 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6986 bpf_map_ptr_store(aux, meta->map_ptr, 6987 !meta->map_ptr->bypass_spec_v1); 6988 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6989 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6990 !meta->map_ptr->bypass_spec_v1); 6991 return 0; 6992 } 6993 6994 static int 6995 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6996 int func_id, int insn_idx) 6997 { 6998 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6999 struct bpf_reg_state *regs = cur_regs(env), *reg; 7000 struct bpf_map *map = meta->map_ptr; 7001 struct tnum range; 7002 u64 val; 7003 int err; 7004 7005 if (func_id != BPF_FUNC_tail_call) 7006 return 0; 7007 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7008 verbose(env, "kernel subsystem misconfigured verifier\n"); 7009 return -EINVAL; 7010 } 7011 7012 range = tnum_range(0, map->max_entries - 1); 7013 reg = ®s[BPF_REG_3]; 7014 7015 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 7016 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7017 return 0; 7018 } 7019 7020 err = mark_chain_precision(env, BPF_REG_3); 7021 if (err) 7022 return err; 7023 7024 val = reg->var_off.value; 7025 if (bpf_map_key_unseen(aux)) 7026 bpf_map_key_store(aux, val); 7027 else if (!bpf_map_key_poisoned(aux) && 7028 bpf_map_key_immediate(aux) != val) 7029 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7030 return 0; 7031 } 7032 7033 static int check_reference_leak(struct bpf_verifier_env *env) 7034 { 7035 struct bpf_func_state *state = cur_func(env); 7036 int i; 7037 7038 for (i = 0; i < state->acquired_refs; i++) { 7039 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7040 state->refs[i].id, state->refs[i].insn_idx); 7041 } 7042 return state->acquired_refs ? -EINVAL : 0; 7043 } 7044 7045 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7046 struct bpf_reg_state *regs) 7047 { 7048 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7049 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7050 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7051 int err, fmt_map_off, num_args; 7052 u64 fmt_addr; 7053 char *fmt; 7054 7055 /* data must be an array of u64 */ 7056 if (data_len_reg->var_off.value % 8) 7057 return -EINVAL; 7058 num_args = data_len_reg->var_off.value / 8; 7059 7060 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7061 * and map_direct_value_addr is set. 7062 */ 7063 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7064 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7065 fmt_map_off); 7066 if (err) { 7067 verbose(env, "verifier bug\n"); 7068 return -EFAULT; 7069 } 7070 fmt = (char *)(long)fmt_addr + fmt_map_off; 7071 7072 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7073 * can focus on validating the format specifiers. 7074 */ 7075 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7076 if (err < 0) 7077 verbose(env, "Invalid format string\n"); 7078 7079 return err; 7080 } 7081 7082 static int check_get_func_ip(struct bpf_verifier_env *env) 7083 { 7084 enum bpf_prog_type type = resolve_prog_type(env->prog); 7085 int func_id = BPF_FUNC_get_func_ip; 7086 7087 if (type == BPF_PROG_TYPE_TRACING) { 7088 if (!bpf_prog_has_trampoline(env->prog)) { 7089 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7090 func_id_name(func_id), func_id); 7091 return -ENOTSUPP; 7092 } 7093 return 0; 7094 } else if (type == BPF_PROG_TYPE_KPROBE) { 7095 return 0; 7096 } 7097 7098 verbose(env, "func %s#%d not supported for program type %d\n", 7099 func_id_name(func_id), func_id, type); 7100 return -ENOTSUPP; 7101 } 7102 7103 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7104 int *insn_idx_p) 7105 { 7106 const struct bpf_func_proto *fn = NULL; 7107 enum bpf_return_type ret_type; 7108 enum bpf_type_flag ret_flag; 7109 struct bpf_reg_state *regs; 7110 struct bpf_call_arg_meta meta; 7111 int insn_idx = *insn_idx_p; 7112 bool changes_data; 7113 int i, err, func_id; 7114 7115 /* find function prototype */ 7116 func_id = insn->imm; 7117 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7118 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7119 func_id); 7120 return -EINVAL; 7121 } 7122 7123 if (env->ops->get_func_proto) 7124 fn = env->ops->get_func_proto(func_id, env->prog); 7125 if (!fn) { 7126 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7127 func_id); 7128 return -EINVAL; 7129 } 7130 7131 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7132 if (!env->prog->gpl_compatible && fn->gpl_only) { 7133 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7134 return -EINVAL; 7135 } 7136 7137 if (fn->allowed && !fn->allowed(env->prog)) { 7138 verbose(env, "helper call is not allowed in probe\n"); 7139 return -EINVAL; 7140 } 7141 7142 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7143 changes_data = bpf_helper_changes_pkt_data(fn->func); 7144 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7145 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7146 func_id_name(func_id), func_id); 7147 return -EINVAL; 7148 } 7149 7150 memset(&meta, 0, sizeof(meta)); 7151 meta.pkt_access = fn->pkt_access; 7152 7153 err = check_func_proto(fn, func_id, &meta); 7154 if (err) { 7155 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7156 func_id_name(func_id), func_id); 7157 return err; 7158 } 7159 7160 meta.func_id = func_id; 7161 /* check args */ 7162 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7163 err = check_func_arg(env, i, &meta, fn); 7164 if (err) 7165 return err; 7166 } 7167 7168 err = record_func_map(env, &meta, func_id, insn_idx); 7169 if (err) 7170 return err; 7171 7172 err = record_func_key(env, &meta, func_id, insn_idx); 7173 if (err) 7174 return err; 7175 7176 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7177 * is inferred from register state. 7178 */ 7179 for (i = 0; i < meta.access_size; i++) { 7180 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7181 BPF_WRITE, -1, false); 7182 if (err) 7183 return err; 7184 } 7185 7186 regs = cur_regs(env); 7187 7188 if (meta.uninit_dynptr_regno) { 7189 /* we write BPF_DW bits (8 bytes) at a time */ 7190 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7191 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7192 i, BPF_DW, BPF_WRITE, -1, false); 7193 if (err) 7194 return err; 7195 } 7196 7197 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7198 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7199 insn_idx); 7200 if (err) 7201 return err; 7202 } 7203 7204 if (meta.release_regno) { 7205 err = -EINVAL; 7206 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7207 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7208 else if (meta.ref_obj_id) 7209 err = release_reference(env, meta.ref_obj_id); 7210 /* meta.ref_obj_id can only be 0 if register that is meant to be 7211 * released is NULL, which must be > R0. 7212 */ 7213 else if (register_is_null(®s[meta.release_regno])) 7214 err = 0; 7215 if (err) { 7216 verbose(env, "func %s#%d reference has not been acquired before\n", 7217 func_id_name(func_id), func_id); 7218 return err; 7219 } 7220 } 7221 7222 switch (func_id) { 7223 case BPF_FUNC_tail_call: 7224 err = check_reference_leak(env); 7225 if (err) { 7226 verbose(env, "tail_call would lead to reference leak\n"); 7227 return err; 7228 } 7229 break; 7230 case BPF_FUNC_get_local_storage: 7231 /* check that flags argument in get_local_storage(map, flags) is 0, 7232 * this is required because get_local_storage() can't return an error. 7233 */ 7234 if (!register_is_null(®s[BPF_REG_2])) { 7235 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7236 return -EINVAL; 7237 } 7238 break; 7239 case BPF_FUNC_for_each_map_elem: 7240 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7241 set_map_elem_callback_state); 7242 break; 7243 case BPF_FUNC_timer_set_callback: 7244 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7245 set_timer_callback_state); 7246 break; 7247 case BPF_FUNC_find_vma: 7248 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7249 set_find_vma_callback_state); 7250 break; 7251 case BPF_FUNC_snprintf: 7252 err = check_bpf_snprintf_call(env, regs); 7253 break; 7254 case BPF_FUNC_loop: 7255 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7256 set_loop_callback_state); 7257 break; 7258 case BPF_FUNC_dynptr_from_mem: 7259 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7260 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7261 reg_type_str(env, regs[BPF_REG_1].type)); 7262 return -EACCES; 7263 } 7264 } 7265 7266 if (err) 7267 return err; 7268 7269 /* reset caller saved regs */ 7270 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7271 mark_reg_not_init(env, regs, caller_saved[i]); 7272 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7273 } 7274 7275 /* helper call returns 64-bit value. */ 7276 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7277 7278 /* update return register (already marked as written above) */ 7279 ret_type = fn->ret_type; 7280 ret_flag = type_flag(fn->ret_type); 7281 if (ret_type == RET_INTEGER) { 7282 /* sets type to SCALAR_VALUE */ 7283 mark_reg_unknown(env, regs, BPF_REG_0); 7284 } else if (ret_type == RET_VOID) { 7285 regs[BPF_REG_0].type = NOT_INIT; 7286 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 7287 /* There is no offset yet applied, variable or fixed */ 7288 mark_reg_known_zero(env, regs, BPF_REG_0); 7289 /* remember map_ptr, so that check_map_access() 7290 * can check 'value_size' boundary of memory access 7291 * to map element returned from bpf_map_lookup_elem() 7292 */ 7293 if (meta.map_ptr == NULL) { 7294 verbose(env, 7295 "kernel subsystem misconfigured verifier\n"); 7296 return -EINVAL; 7297 } 7298 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7299 regs[BPF_REG_0].map_uid = meta.map_uid; 7300 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7301 if (!type_may_be_null(ret_type) && 7302 map_value_has_spin_lock(meta.map_ptr)) { 7303 regs[BPF_REG_0].id = ++env->id_gen; 7304 } 7305 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 7306 mark_reg_known_zero(env, regs, BPF_REG_0); 7307 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7308 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 7309 mark_reg_known_zero(env, regs, BPF_REG_0); 7310 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7311 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 7312 mark_reg_known_zero(env, regs, BPF_REG_0); 7313 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7314 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 7315 mark_reg_known_zero(env, regs, BPF_REG_0); 7316 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7317 regs[BPF_REG_0].mem_size = meta.mem_size; 7318 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 7319 const struct btf_type *t; 7320 7321 mark_reg_known_zero(env, regs, BPF_REG_0); 7322 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7323 if (!btf_type_is_struct(t)) { 7324 u32 tsize; 7325 const struct btf_type *ret; 7326 const char *tname; 7327 7328 /* resolve the type size of ksym. */ 7329 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7330 if (IS_ERR(ret)) { 7331 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7332 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7333 tname, PTR_ERR(ret)); 7334 return -EINVAL; 7335 } 7336 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7337 regs[BPF_REG_0].mem_size = tsize; 7338 } else { 7339 /* MEM_RDONLY may be carried from ret_flag, but it 7340 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7341 * it will confuse the check of PTR_TO_BTF_ID in 7342 * check_mem_access(). 7343 */ 7344 ret_flag &= ~MEM_RDONLY; 7345 7346 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7347 regs[BPF_REG_0].btf = meta.ret_btf; 7348 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7349 } 7350 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 7351 struct btf *ret_btf; 7352 int ret_btf_id; 7353 7354 mark_reg_known_zero(env, regs, BPF_REG_0); 7355 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7356 if (func_id == BPF_FUNC_kptr_xchg) { 7357 ret_btf = meta.kptr_off_desc->kptr.btf; 7358 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7359 } else { 7360 ret_btf = btf_vmlinux; 7361 ret_btf_id = *fn->ret_btf_id; 7362 } 7363 if (ret_btf_id == 0) { 7364 verbose(env, "invalid return type %u of func %s#%d\n", 7365 base_type(ret_type), func_id_name(func_id), 7366 func_id); 7367 return -EINVAL; 7368 } 7369 regs[BPF_REG_0].btf = ret_btf; 7370 regs[BPF_REG_0].btf_id = ret_btf_id; 7371 } else { 7372 verbose(env, "unknown return type %u of func %s#%d\n", 7373 base_type(ret_type), func_id_name(func_id), func_id); 7374 return -EINVAL; 7375 } 7376 7377 if (type_may_be_null(regs[BPF_REG_0].type)) 7378 regs[BPF_REG_0].id = ++env->id_gen; 7379 7380 if (is_ptr_cast_function(func_id)) { 7381 /* For release_reference() */ 7382 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7383 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7384 int id = acquire_reference_state(env, insn_idx); 7385 7386 if (id < 0) 7387 return id; 7388 /* For mark_ptr_or_null_reg() */ 7389 regs[BPF_REG_0].id = id; 7390 /* For release_reference() */ 7391 regs[BPF_REG_0].ref_obj_id = id; 7392 } else if (func_id == BPF_FUNC_dynptr_data) { 7393 int dynptr_id = 0, i; 7394 7395 /* Find the id of the dynptr we're acquiring a reference to */ 7396 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7397 if (arg_type_is_dynptr(fn->arg_type[i])) { 7398 if (dynptr_id) { 7399 verbose(env, "verifier internal error: multiple dynptr args in func\n"); 7400 return -EFAULT; 7401 } 7402 dynptr_id = stack_slot_get_id(env, ®s[BPF_REG_1 + i]); 7403 } 7404 } 7405 /* For release_reference() */ 7406 regs[BPF_REG_0].ref_obj_id = dynptr_id; 7407 } 7408 7409 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7410 7411 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7412 if (err) 7413 return err; 7414 7415 if ((func_id == BPF_FUNC_get_stack || 7416 func_id == BPF_FUNC_get_task_stack) && 7417 !env->prog->has_callchain_buf) { 7418 const char *err_str; 7419 7420 #ifdef CONFIG_PERF_EVENTS 7421 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7422 err_str = "cannot get callchain buffer for func %s#%d\n"; 7423 #else 7424 err = -ENOTSUPP; 7425 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7426 #endif 7427 if (err) { 7428 verbose(env, err_str, func_id_name(func_id), func_id); 7429 return err; 7430 } 7431 7432 env->prog->has_callchain_buf = true; 7433 } 7434 7435 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7436 env->prog->call_get_stack = true; 7437 7438 if (func_id == BPF_FUNC_get_func_ip) { 7439 if (check_get_func_ip(env)) 7440 return -ENOTSUPP; 7441 env->prog->call_get_func_ip = true; 7442 } 7443 7444 if (changes_data) 7445 clear_all_pkt_pointers(env); 7446 return 0; 7447 } 7448 7449 /* mark_btf_func_reg_size() is used when the reg size is determined by 7450 * the BTF func_proto's return value size and argument. 7451 */ 7452 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7453 size_t reg_size) 7454 { 7455 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7456 7457 if (regno == BPF_REG_0) { 7458 /* Function return value */ 7459 reg->live |= REG_LIVE_WRITTEN; 7460 reg->subreg_def = reg_size == sizeof(u64) ? 7461 DEF_NOT_SUBREG : env->insn_idx + 1; 7462 } else { 7463 /* Function argument */ 7464 if (reg_size == sizeof(u64)) { 7465 mark_insn_zext(env, reg); 7466 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7467 } else { 7468 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7469 } 7470 } 7471 } 7472 7473 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7474 int *insn_idx_p) 7475 { 7476 const struct btf_type *t, *func, *func_proto, *ptr_type; 7477 struct bpf_reg_state *regs = cur_regs(env); 7478 const char *func_name, *ptr_type_name; 7479 u32 i, nargs, func_id, ptr_type_id; 7480 int err, insn_idx = *insn_idx_p; 7481 const struct btf_param *args; 7482 struct btf *desc_btf; 7483 bool acq; 7484 7485 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7486 if (!insn->imm) 7487 return 0; 7488 7489 desc_btf = find_kfunc_desc_btf(env, insn->off); 7490 if (IS_ERR(desc_btf)) 7491 return PTR_ERR(desc_btf); 7492 7493 func_id = insn->imm; 7494 func = btf_type_by_id(desc_btf, func_id); 7495 func_name = btf_name_by_offset(desc_btf, func->name_off); 7496 func_proto = btf_type_by_id(desc_btf, func->type); 7497 7498 if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7499 BTF_KFUNC_TYPE_CHECK, func_id)) { 7500 verbose(env, "calling kernel function %s is not allowed\n", 7501 func_name); 7502 return -EACCES; 7503 } 7504 7505 acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7506 BTF_KFUNC_TYPE_ACQUIRE, func_id); 7507 7508 /* Check the arguments */ 7509 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 7510 if (err < 0) 7511 return err; 7512 /* In case of release function, we get register number of refcounted 7513 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7514 */ 7515 if (err) { 7516 err = release_reference(env, regs[err].ref_obj_id); 7517 if (err) { 7518 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7519 func_name, func_id); 7520 return err; 7521 } 7522 } 7523 7524 for (i = 0; i < CALLER_SAVED_REGS; i++) 7525 mark_reg_not_init(env, regs, caller_saved[i]); 7526 7527 /* Check return type */ 7528 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7529 7530 if (acq && !btf_type_is_ptr(t)) { 7531 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7532 return -EINVAL; 7533 } 7534 7535 if (btf_type_is_scalar(t)) { 7536 mark_reg_unknown(env, regs, BPF_REG_0); 7537 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7538 } else if (btf_type_is_ptr(t)) { 7539 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7540 &ptr_type_id); 7541 if (!btf_type_is_struct(ptr_type)) { 7542 ptr_type_name = btf_name_by_offset(desc_btf, 7543 ptr_type->name_off); 7544 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 7545 func_name, btf_type_str(ptr_type), 7546 ptr_type_name); 7547 return -EINVAL; 7548 } 7549 mark_reg_known_zero(env, regs, BPF_REG_0); 7550 regs[BPF_REG_0].btf = desc_btf; 7551 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7552 regs[BPF_REG_0].btf_id = ptr_type_id; 7553 if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7554 BTF_KFUNC_TYPE_RET_NULL, func_id)) { 7555 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7556 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7557 regs[BPF_REG_0].id = ++env->id_gen; 7558 } 7559 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7560 if (acq) { 7561 int id = acquire_reference_state(env, insn_idx); 7562 7563 if (id < 0) 7564 return id; 7565 regs[BPF_REG_0].id = id; 7566 regs[BPF_REG_0].ref_obj_id = id; 7567 } 7568 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7569 7570 nargs = btf_type_vlen(func_proto); 7571 args = (const struct btf_param *)(func_proto + 1); 7572 for (i = 0; i < nargs; i++) { 7573 u32 regno = i + 1; 7574 7575 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7576 if (btf_type_is_ptr(t)) 7577 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7578 else 7579 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7580 mark_btf_func_reg_size(env, regno, t->size); 7581 } 7582 7583 return 0; 7584 } 7585 7586 static bool signed_add_overflows(s64 a, s64 b) 7587 { 7588 /* Do the add in u64, where overflow is well-defined */ 7589 s64 res = (s64)((u64)a + (u64)b); 7590 7591 if (b < 0) 7592 return res > a; 7593 return res < a; 7594 } 7595 7596 static bool signed_add32_overflows(s32 a, s32 b) 7597 { 7598 /* Do the add in u32, where overflow is well-defined */ 7599 s32 res = (s32)((u32)a + (u32)b); 7600 7601 if (b < 0) 7602 return res > a; 7603 return res < a; 7604 } 7605 7606 static bool signed_sub_overflows(s64 a, s64 b) 7607 { 7608 /* Do the sub in u64, where overflow is well-defined */ 7609 s64 res = (s64)((u64)a - (u64)b); 7610 7611 if (b < 0) 7612 return res < a; 7613 return res > a; 7614 } 7615 7616 static bool signed_sub32_overflows(s32 a, s32 b) 7617 { 7618 /* Do the sub in u32, where overflow is well-defined */ 7619 s32 res = (s32)((u32)a - (u32)b); 7620 7621 if (b < 0) 7622 return res < a; 7623 return res > a; 7624 } 7625 7626 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7627 const struct bpf_reg_state *reg, 7628 enum bpf_reg_type type) 7629 { 7630 bool known = tnum_is_const(reg->var_off); 7631 s64 val = reg->var_off.value; 7632 s64 smin = reg->smin_value; 7633 7634 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7635 verbose(env, "math between %s pointer and %lld is not allowed\n", 7636 reg_type_str(env, type), val); 7637 return false; 7638 } 7639 7640 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7641 verbose(env, "%s pointer offset %d is not allowed\n", 7642 reg_type_str(env, type), reg->off); 7643 return false; 7644 } 7645 7646 if (smin == S64_MIN) { 7647 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7648 reg_type_str(env, type)); 7649 return false; 7650 } 7651 7652 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7653 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7654 smin, reg_type_str(env, type)); 7655 return false; 7656 } 7657 7658 return true; 7659 } 7660 7661 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7662 { 7663 return &env->insn_aux_data[env->insn_idx]; 7664 } 7665 7666 enum { 7667 REASON_BOUNDS = -1, 7668 REASON_TYPE = -2, 7669 REASON_PATHS = -3, 7670 REASON_LIMIT = -4, 7671 REASON_STACK = -5, 7672 }; 7673 7674 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7675 u32 *alu_limit, bool mask_to_left) 7676 { 7677 u32 max = 0, ptr_limit = 0; 7678 7679 switch (ptr_reg->type) { 7680 case PTR_TO_STACK: 7681 /* Offset 0 is out-of-bounds, but acceptable start for the 7682 * left direction, see BPF_REG_FP. Also, unknown scalar 7683 * offset where we would need to deal with min/max bounds is 7684 * currently prohibited for unprivileged. 7685 */ 7686 max = MAX_BPF_STACK + mask_to_left; 7687 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7688 break; 7689 case PTR_TO_MAP_VALUE: 7690 max = ptr_reg->map_ptr->value_size; 7691 ptr_limit = (mask_to_left ? 7692 ptr_reg->smin_value : 7693 ptr_reg->umax_value) + ptr_reg->off; 7694 break; 7695 default: 7696 return REASON_TYPE; 7697 } 7698 7699 if (ptr_limit >= max) 7700 return REASON_LIMIT; 7701 *alu_limit = ptr_limit; 7702 return 0; 7703 } 7704 7705 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7706 const struct bpf_insn *insn) 7707 { 7708 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7709 } 7710 7711 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7712 u32 alu_state, u32 alu_limit) 7713 { 7714 /* If we arrived here from different branches with different 7715 * state or limits to sanitize, then this won't work. 7716 */ 7717 if (aux->alu_state && 7718 (aux->alu_state != alu_state || 7719 aux->alu_limit != alu_limit)) 7720 return REASON_PATHS; 7721 7722 /* Corresponding fixup done in do_misc_fixups(). */ 7723 aux->alu_state = alu_state; 7724 aux->alu_limit = alu_limit; 7725 return 0; 7726 } 7727 7728 static int sanitize_val_alu(struct bpf_verifier_env *env, 7729 struct bpf_insn *insn) 7730 { 7731 struct bpf_insn_aux_data *aux = cur_aux(env); 7732 7733 if (can_skip_alu_sanitation(env, insn)) 7734 return 0; 7735 7736 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7737 } 7738 7739 static bool sanitize_needed(u8 opcode) 7740 { 7741 return opcode == BPF_ADD || opcode == BPF_SUB; 7742 } 7743 7744 struct bpf_sanitize_info { 7745 struct bpf_insn_aux_data aux; 7746 bool mask_to_left; 7747 }; 7748 7749 static struct bpf_verifier_state * 7750 sanitize_speculative_path(struct bpf_verifier_env *env, 7751 const struct bpf_insn *insn, 7752 u32 next_idx, u32 curr_idx) 7753 { 7754 struct bpf_verifier_state *branch; 7755 struct bpf_reg_state *regs; 7756 7757 branch = push_stack(env, next_idx, curr_idx, true); 7758 if (branch && insn) { 7759 regs = branch->frame[branch->curframe]->regs; 7760 if (BPF_SRC(insn->code) == BPF_K) { 7761 mark_reg_unknown(env, regs, insn->dst_reg); 7762 } else if (BPF_SRC(insn->code) == BPF_X) { 7763 mark_reg_unknown(env, regs, insn->dst_reg); 7764 mark_reg_unknown(env, regs, insn->src_reg); 7765 } 7766 } 7767 return branch; 7768 } 7769 7770 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7771 struct bpf_insn *insn, 7772 const struct bpf_reg_state *ptr_reg, 7773 const struct bpf_reg_state *off_reg, 7774 struct bpf_reg_state *dst_reg, 7775 struct bpf_sanitize_info *info, 7776 const bool commit_window) 7777 { 7778 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7779 struct bpf_verifier_state *vstate = env->cur_state; 7780 bool off_is_imm = tnum_is_const(off_reg->var_off); 7781 bool off_is_neg = off_reg->smin_value < 0; 7782 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7783 u8 opcode = BPF_OP(insn->code); 7784 u32 alu_state, alu_limit; 7785 struct bpf_reg_state tmp; 7786 bool ret; 7787 int err; 7788 7789 if (can_skip_alu_sanitation(env, insn)) 7790 return 0; 7791 7792 /* We already marked aux for masking from non-speculative 7793 * paths, thus we got here in the first place. We only care 7794 * to explore bad access from here. 7795 */ 7796 if (vstate->speculative) 7797 goto do_sim; 7798 7799 if (!commit_window) { 7800 if (!tnum_is_const(off_reg->var_off) && 7801 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7802 return REASON_BOUNDS; 7803 7804 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7805 (opcode == BPF_SUB && !off_is_neg); 7806 } 7807 7808 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7809 if (err < 0) 7810 return err; 7811 7812 if (commit_window) { 7813 /* In commit phase we narrow the masking window based on 7814 * the observed pointer move after the simulated operation. 7815 */ 7816 alu_state = info->aux.alu_state; 7817 alu_limit = abs(info->aux.alu_limit - alu_limit); 7818 } else { 7819 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7820 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7821 alu_state |= ptr_is_dst_reg ? 7822 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7823 7824 /* Limit pruning on unknown scalars to enable deep search for 7825 * potential masking differences from other program paths. 7826 */ 7827 if (!off_is_imm) 7828 env->explore_alu_limits = true; 7829 } 7830 7831 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7832 if (err < 0) 7833 return err; 7834 do_sim: 7835 /* If we're in commit phase, we're done here given we already 7836 * pushed the truncated dst_reg into the speculative verification 7837 * stack. 7838 * 7839 * Also, when register is a known constant, we rewrite register-based 7840 * operation to immediate-based, and thus do not need masking (and as 7841 * a consequence, do not need to simulate the zero-truncation either). 7842 */ 7843 if (commit_window || off_is_imm) 7844 return 0; 7845 7846 /* Simulate and find potential out-of-bounds access under 7847 * speculative execution from truncation as a result of 7848 * masking when off was not within expected range. If off 7849 * sits in dst, then we temporarily need to move ptr there 7850 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7851 * for cases where we use K-based arithmetic in one direction 7852 * and truncated reg-based in the other in order to explore 7853 * bad access. 7854 */ 7855 if (!ptr_is_dst_reg) { 7856 tmp = *dst_reg; 7857 *dst_reg = *ptr_reg; 7858 } 7859 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7860 env->insn_idx); 7861 if (!ptr_is_dst_reg && ret) 7862 *dst_reg = tmp; 7863 return !ret ? REASON_STACK : 0; 7864 } 7865 7866 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7867 { 7868 struct bpf_verifier_state *vstate = env->cur_state; 7869 7870 /* If we simulate paths under speculation, we don't update the 7871 * insn as 'seen' such that when we verify unreachable paths in 7872 * the non-speculative domain, sanitize_dead_code() can still 7873 * rewrite/sanitize them. 7874 */ 7875 if (!vstate->speculative) 7876 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7877 } 7878 7879 static int sanitize_err(struct bpf_verifier_env *env, 7880 const struct bpf_insn *insn, int reason, 7881 const struct bpf_reg_state *off_reg, 7882 const struct bpf_reg_state *dst_reg) 7883 { 7884 static const char *err = "pointer arithmetic with it prohibited for !root"; 7885 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7886 u32 dst = insn->dst_reg, src = insn->src_reg; 7887 7888 switch (reason) { 7889 case REASON_BOUNDS: 7890 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7891 off_reg == dst_reg ? dst : src, err); 7892 break; 7893 case REASON_TYPE: 7894 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7895 off_reg == dst_reg ? src : dst, err); 7896 break; 7897 case REASON_PATHS: 7898 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7899 dst, op, err); 7900 break; 7901 case REASON_LIMIT: 7902 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7903 dst, op, err); 7904 break; 7905 case REASON_STACK: 7906 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7907 dst, err); 7908 break; 7909 default: 7910 verbose(env, "verifier internal error: unknown reason (%d)\n", 7911 reason); 7912 break; 7913 } 7914 7915 return -EACCES; 7916 } 7917 7918 /* check that stack access falls within stack limits and that 'reg' doesn't 7919 * have a variable offset. 7920 * 7921 * Variable offset is prohibited for unprivileged mode for simplicity since it 7922 * requires corresponding support in Spectre masking for stack ALU. See also 7923 * retrieve_ptr_limit(). 7924 * 7925 * 7926 * 'off' includes 'reg->off'. 7927 */ 7928 static int check_stack_access_for_ptr_arithmetic( 7929 struct bpf_verifier_env *env, 7930 int regno, 7931 const struct bpf_reg_state *reg, 7932 int off) 7933 { 7934 if (!tnum_is_const(reg->var_off)) { 7935 char tn_buf[48]; 7936 7937 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7938 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7939 regno, tn_buf, off); 7940 return -EACCES; 7941 } 7942 7943 if (off >= 0 || off < -MAX_BPF_STACK) { 7944 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7945 "prohibited for !root; off=%d\n", regno, off); 7946 return -EACCES; 7947 } 7948 7949 return 0; 7950 } 7951 7952 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7953 const struct bpf_insn *insn, 7954 const struct bpf_reg_state *dst_reg) 7955 { 7956 u32 dst = insn->dst_reg; 7957 7958 /* For unprivileged we require that resulting offset must be in bounds 7959 * in order to be able to sanitize access later on. 7960 */ 7961 if (env->bypass_spec_v1) 7962 return 0; 7963 7964 switch (dst_reg->type) { 7965 case PTR_TO_STACK: 7966 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7967 dst_reg->off + dst_reg->var_off.value)) 7968 return -EACCES; 7969 break; 7970 case PTR_TO_MAP_VALUE: 7971 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 7972 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7973 "prohibited for !root\n", dst); 7974 return -EACCES; 7975 } 7976 break; 7977 default: 7978 break; 7979 } 7980 7981 return 0; 7982 } 7983 7984 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7985 * Caller should also handle BPF_MOV case separately. 7986 * If we return -EACCES, caller may want to try again treating pointer as a 7987 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7988 */ 7989 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7990 struct bpf_insn *insn, 7991 const struct bpf_reg_state *ptr_reg, 7992 const struct bpf_reg_state *off_reg) 7993 { 7994 struct bpf_verifier_state *vstate = env->cur_state; 7995 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7996 struct bpf_reg_state *regs = state->regs, *dst_reg; 7997 bool known = tnum_is_const(off_reg->var_off); 7998 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7999 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8000 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8001 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8002 struct bpf_sanitize_info info = {}; 8003 u8 opcode = BPF_OP(insn->code); 8004 u32 dst = insn->dst_reg; 8005 int ret; 8006 8007 dst_reg = ®s[dst]; 8008 8009 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8010 smin_val > smax_val || umin_val > umax_val) { 8011 /* Taint dst register if offset had invalid bounds derived from 8012 * e.g. dead branches. 8013 */ 8014 __mark_reg_unknown(env, dst_reg); 8015 return 0; 8016 } 8017 8018 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8019 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8020 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8021 __mark_reg_unknown(env, dst_reg); 8022 return 0; 8023 } 8024 8025 verbose(env, 8026 "R%d 32-bit pointer arithmetic prohibited\n", 8027 dst); 8028 return -EACCES; 8029 } 8030 8031 if (ptr_reg->type & PTR_MAYBE_NULL) { 8032 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8033 dst, reg_type_str(env, ptr_reg->type)); 8034 return -EACCES; 8035 } 8036 8037 switch (base_type(ptr_reg->type)) { 8038 case CONST_PTR_TO_MAP: 8039 /* smin_val represents the known value */ 8040 if (known && smin_val == 0 && opcode == BPF_ADD) 8041 break; 8042 fallthrough; 8043 case PTR_TO_PACKET_END: 8044 case PTR_TO_SOCKET: 8045 case PTR_TO_SOCK_COMMON: 8046 case PTR_TO_TCP_SOCK: 8047 case PTR_TO_XDP_SOCK: 8048 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8049 dst, reg_type_str(env, ptr_reg->type)); 8050 return -EACCES; 8051 default: 8052 break; 8053 } 8054 8055 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8056 * The id may be overwritten later if we create a new variable offset. 8057 */ 8058 dst_reg->type = ptr_reg->type; 8059 dst_reg->id = ptr_reg->id; 8060 8061 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8062 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8063 return -EINVAL; 8064 8065 /* pointer types do not carry 32-bit bounds at the moment. */ 8066 __mark_reg32_unbounded(dst_reg); 8067 8068 if (sanitize_needed(opcode)) { 8069 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8070 &info, false); 8071 if (ret < 0) 8072 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8073 } 8074 8075 switch (opcode) { 8076 case BPF_ADD: 8077 /* We can take a fixed offset as long as it doesn't overflow 8078 * the s32 'off' field 8079 */ 8080 if (known && (ptr_reg->off + smin_val == 8081 (s64)(s32)(ptr_reg->off + smin_val))) { 8082 /* pointer += K. Accumulate it into fixed offset */ 8083 dst_reg->smin_value = smin_ptr; 8084 dst_reg->smax_value = smax_ptr; 8085 dst_reg->umin_value = umin_ptr; 8086 dst_reg->umax_value = umax_ptr; 8087 dst_reg->var_off = ptr_reg->var_off; 8088 dst_reg->off = ptr_reg->off + smin_val; 8089 dst_reg->raw = ptr_reg->raw; 8090 break; 8091 } 8092 /* A new variable offset is created. Note that off_reg->off 8093 * == 0, since it's a scalar. 8094 * dst_reg gets the pointer type and since some positive 8095 * integer value was added to the pointer, give it a new 'id' 8096 * if it's a PTR_TO_PACKET. 8097 * this creates a new 'base' pointer, off_reg (variable) gets 8098 * added into the variable offset, and we copy the fixed offset 8099 * from ptr_reg. 8100 */ 8101 if (signed_add_overflows(smin_ptr, smin_val) || 8102 signed_add_overflows(smax_ptr, smax_val)) { 8103 dst_reg->smin_value = S64_MIN; 8104 dst_reg->smax_value = S64_MAX; 8105 } else { 8106 dst_reg->smin_value = smin_ptr + smin_val; 8107 dst_reg->smax_value = smax_ptr + smax_val; 8108 } 8109 if (umin_ptr + umin_val < umin_ptr || 8110 umax_ptr + umax_val < umax_ptr) { 8111 dst_reg->umin_value = 0; 8112 dst_reg->umax_value = U64_MAX; 8113 } else { 8114 dst_reg->umin_value = umin_ptr + umin_val; 8115 dst_reg->umax_value = umax_ptr + umax_val; 8116 } 8117 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8118 dst_reg->off = ptr_reg->off; 8119 dst_reg->raw = ptr_reg->raw; 8120 if (reg_is_pkt_pointer(ptr_reg)) { 8121 dst_reg->id = ++env->id_gen; 8122 /* something was added to pkt_ptr, set range to zero */ 8123 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8124 } 8125 break; 8126 case BPF_SUB: 8127 if (dst_reg == off_reg) { 8128 /* scalar -= pointer. Creates an unknown scalar */ 8129 verbose(env, "R%d tried to subtract pointer from scalar\n", 8130 dst); 8131 return -EACCES; 8132 } 8133 /* We don't allow subtraction from FP, because (according to 8134 * test_verifier.c test "invalid fp arithmetic", JITs might not 8135 * be able to deal with it. 8136 */ 8137 if (ptr_reg->type == PTR_TO_STACK) { 8138 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8139 dst); 8140 return -EACCES; 8141 } 8142 if (known && (ptr_reg->off - smin_val == 8143 (s64)(s32)(ptr_reg->off - smin_val))) { 8144 /* pointer -= K. Subtract it from fixed offset */ 8145 dst_reg->smin_value = smin_ptr; 8146 dst_reg->smax_value = smax_ptr; 8147 dst_reg->umin_value = umin_ptr; 8148 dst_reg->umax_value = umax_ptr; 8149 dst_reg->var_off = ptr_reg->var_off; 8150 dst_reg->id = ptr_reg->id; 8151 dst_reg->off = ptr_reg->off - smin_val; 8152 dst_reg->raw = ptr_reg->raw; 8153 break; 8154 } 8155 /* A new variable offset is created. If the subtrahend is known 8156 * nonnegative, then any reg->range we had before is still good. 8157 */ 8158 if (signed_sub_overflows(smin_ptr, smax_val) || 8159 signed_sub_overflows(smax_ptr, smin_val)) { 8160 /* Overflow possible, we know nothing */ 8161 dst_reg->smin_value = S64_MIN; 8162 dst_reg->smax_value = S64_MAX; 8163 } else { 8164 dst_reg->smin_value = smin_ptr - smax_val; 8165 dst_reg->smax_value = smax_ptr - smin_val; 8166 } 8167 if (umin_ptr < umax_val) { 8168 /* Overflow possible, we know nothing */ 8169 dst_reg->umin_value = 0; 8170 dst_reg->umax_value = U64_MAX; 8171 } else { 8172 /* Cannot overflow (as long as bounds are consistent) */ 8173 dst_reg->umin_value = umin_ptr - umax_val; 8174 dst_reg->umax_value = umax_ptr - umin_val; 8175 } 8176 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8177 dst_reg->off = ptr_reg->off; 8178 dst_reg->raw = ptr_reg->raw; 8179 if (reg_is_pkt_pointer(ptr_reg)) { 8180 dst_reg->id = ++env->id_gen; 8181 /* something was added to pkt_ptr, set range to zero */ 8182 if (smin_val < 0) 8183 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8184 } 8185 break; 8186 case BPF_AND: 8187 case BPF_OR: 8188 case BPF_XOR: 8189 /* bitwise ops on pointers are troublesome, prohibit. */ 8190 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8191 dst, bpf_alu_string[opcode >> 4]); 8192 return -EACCES; 8193 default: 8194 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8195 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8196 dst, bpf_alu_string[opcode >> 4]); 8197 return -EACCES; 8198 } 8199 8200 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8201 return -EINVAL; 8202 reg_bounds_sync(dst_reg); 8203 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8204 return -EACCES; 8205 if (sanitize_needed(opcode)) { 8206 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8207 &info, true); 8208 if (ret < 0) 8209 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8210 } 8211 8212 return 0; 8213 } 8214 8215 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8216 struct bpf_reg_state *src_reg) 8217 { 8218 s32 smin_val = src_reg->s32_min_value; 8219 s32 smax_val = src_reg->s32_max_value; 8220 u32 umin_val = src_reg->u32_min_value; 8221 u32 umax_val = src_reg->u32_max_value; 8222 8223 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8224 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8225 dst_reg->s32_min_value = S32_MIN; 8226 dst_reg->s32_max_value = S32_MAX; 8227 } else { 8228 dst_reg->s32_min_value += smin_val; 8229 dst_reg->s32_max_value += smax_val; 8230 } 8231 if (dst_reg->u32_min_value + umin_val < umin_val || 8232 dst_reg->u32_max_value + umax_val < umax_val) { 8233 dst_reg->u32_min_value = 0; 8234 dst_reg->u32_max_value = U32_MAX; 8235 } else { 8236 dst_reg->u32_min_value += umin_val; 8237 dst_reg->u32_max_value += umax_val; 8238 } 8239 } 8240 8241 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8242 struct bpf_reg_state *src_reg) 8243 { 8244 s64 smin_val = src_reg->smin_value; 8245 s64 smax_val = src_reg->smax_value; 8246 u64 umin_val = src_reg->umin_value; 8247 u64 umax_val = src_reg->umax_value; 8248 8249 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8250 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8251 dst_reg->smin_value = S64_MIN; 8252 dst_reg->smax_value = S64_MAX; 8253 } else { 8254 dst_reg->smin_value += smin_val; 8255 dst_reg->smax_value += smax_val; 8256 } 8257 if (dst_reg->umin_value + umin_val < umin_val || 8258 dst_reg->umax_value + umax_val < umax_val) { 8259 dst_reg->umin_value = 0; 8260 dst_reg->umax_value = U64_MAX; 8261 } else { 8262 dst_reg->umin_value += umin_val; 8263 dst_reg->umax_value += umax_val; 8264 } 8265 } 8266 8267 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8268 struct bpf_reg_state *src_reg) 8269 { 8270 s32 smin_val = src_reg->s32_min_value; 8271 s32 smax_val = src_reg->s32_max_value; 8272 u32 umin_val = src_reg->u32_min_value; 8273 u32 umax_val = src_reg->u32_max_value; 8274 8275 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8276 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8277 /* Overflow possible, we know nothing */ 8278 dst_reg->s32_min_value = S32_MIN; 8279 dst_reg->s32_max_value = S32_MAX; 8280 } else { 8281 dst_reg->s32_min_value -= smax_val; 8282 dst_reg->s32_max_value -= smin_val; 8283 } 8284 if (dst_reg->u32_min_value < umax_val) { 8285 /* Overflow possible, we know nothing */ 8286 dst_reg->u32_min_value = 0; 8287 dst_reg->u32_max_value = U32_MAX; 8288 } else { 8289 /* Cannot overflow (as long as bounds are consistent) */ 8290 dst_reg->u32_min_value -= umax_val; 8291 dst_reg->u32_max_value -= umin_val; 8292 } 8293 } 8294 8295 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8296 struct bpf_reg_state *src_reg) 8297 { 8298 s64 smin_val = src_reg->smin_value; 8299 s64 smax_val = src_reg->smax_value; 8300 u64 umin_val = src_reg->umin_value; 8301 u64 umax_val = src_reg->umax_value; 8302 8303 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8304 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8305 /* Overflow possible, we know nothing */ 8306 dst_reg->smin_value = S64_MIN; 8307 dst_reg->smax_value = S64_MAX; 8308 } else { 8309 dst_reg->smin_value -= smax_val; 8310 dst_reg->smax_value -= smin_val; 8311 } 8312 if (dst_reg->umin_value < umax_val) { 8313 /* Overflow possible, we know nothing */ 8314 dst_reg->umin_value = 0; 8315 dst_reg->umax_value = U64_MAX; 8316 } else { 8317 /* Cannot overflow (as long as bounds are consistent) */ 8318 dst_reg->umin_value -= umax_val; 8319 dst_reg->umax_value -= umin_val; 8320 } 8321 } 8322 8323 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8324 struct bpf_reg_state *src_reg) 8325 { 8326 s32 smin_val = src_reg->s32_min_value; 8327 u32 umin_val = src_reg->u32_min_value; 8328 u32 umax_val = src_reg->u32_max_value; 8329 8330 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8331 /* Ain't nobody got time to multiply that sign */ 8332 __mark_reg32_unbounded(dst_reg); 8333 return; 8334 } 8335 /* Both values are positive, so we can work with unsigned and 8336 * copy the result to signed (unless it exceeds S32_MAX). 8337 */ 8338 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8339 /* Potential overflow, we know nothing */ 8340 __mark_reg32_unbounded(dst_reg); 8341 return; 8342 } 8343 dst_reg->u32_min_value *= umin_val; 8344 dst_reg->u32_max_value *= umax_val; 8345 if (dst_reg->u32_max_value > S32_MAX) { 8346 /* Overflow possible, we know nothing */ 8347 dst_reg->s32_min_value = S32_MIN; 8348 dst_reg->s32_max_value = S32_MAX; 8349 } else { 8350 dst_reg->s32_min_value = dst_reg->u32_min_value; 8351 dst_reg->s32_max_value = dst_reg->u32_max_value; 8352 } 8353 } 8354 8355 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8356 struct bpf_reg_state *src_reg) 8357 { 8358 s64 smin_val = src_reg->smin_value; 8359 u64 umin_val = src_reg->umin_value; 8360 u64 umax_val = src_reg->umax_value; 8361 8362 if (smin_val < 0 || dst_reg->smin_value < 0) { 8363 /* Ain't nobody got time to multiply that sign */ 8364 __mark_reg64_unbounded(dst_reg); 8365 return; 8366 } 8367 /* Both values are positive, so we can work with unsigned and 8368 * copy the result to signed (unless it exceeds S64_MAX). 8369 */ 8370 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8371 /* Potential overflow, we know nothing */ 8372 __mark_reg64_unbounded(dst_reg); 8373 return; 8374 } 8375 dst_reg->umin_value *= umin_val; 8376 dst_reg->umax_value *= umax_val; 8377 if (dst_reg->umax_value > S64_MAX) { 8378 /* Overflow possible, we know nothing */ 8379 dst_reg->smin_value = S64_MIN; 8380 dst_reg->smax_value = S64_MAX; 8381 } else { 8382 dst_reg->smin_value = dst_reg->umin_value; 8383 dst_reg->smax_value = dst_reg->umax_value; 8384 } 8385 } 8386 8387 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8388 struct bpf_reg_state *src_reg) 8389 { 8390 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8391 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8392 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8393 s32 smin_val = src_reg->s32_min_value; 8394 u32 umax_val = src_reg->u32_max_value; 8395 8396 if (src_known && dst_known) { 8397 __mark_reg32_known(dst_reg, var32_off.value); 8398 return; 8399 } 8400 8401 /* We get our minimum from the var_off, since that's inherently 8402 * bitwise. Our maximum is the minimum of the operands' maxima. 8403 */ 8404 dst_reg->u32_min_value = var32_off.value; 8405 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8406 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8407 /* Lose signed bounds when ANDing negative numbers, 8408 * ain't nobody got time for that. 8409 */ 8410 dst_reg->s32_min_value = S32_MIN; 8411 dst_reg->s32_max_value = S32_MAX; 8412 } else { 8413 /* ANDing two positives gives a positive, so safe to 8414 * cast result into s64. 8415 */ 8416 dst_reg->s32_min_value = dst_reg->u32_min_value; 8417 dst_reg->s32_max_value = dst_reg->u32_max_value; 8418 } 8419 } 8420 8421 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8422 struct bpf_reg_state *src_reg) 8423 { 8424 bool src_known = tnum_is_const(src_reg->var_off); 8425 bool dst_known = tnum_is_const(dst_reg->var_off); 8426 s64 smin_val = src_reg->smin_value; 8427 u64 umax_val = src_reg->umax_value; 8428 8429 if (src_known && dst_known) { 8430 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8431 return; 8432 } 8433 8434 /* We get our minimum from the var_off, since that's inherently 8435 * bitwise. Our maximum is the minimum of the operands' maxima. 8436 */ 8437 dst_reg->umin_value = dst_reg->var_off.value; 8438 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8439 if (dst_reg->smin_value < 0 || smin_val < 0) { 8440 /* Lose signed bounds when ANDing negative numbers, 8441 * ain't nobody got time for that. 8442 */ 8443 dst_reg->smin_value = S64_MIN; 8444 dst_reg->smax_value = S64_MAX; 8445 } else { 8446 /* ANDing two positives gives a positive, so safe to 8447 * cast result into s64. 8448 */ 8449 dst_reg->smin_value = dst_reg->umin_value; 8450 dst_reg->smax_value = dst_reg->umax_value; 8451 } 8452 /* We may learn something more from the var_off */ 8453 __update_reg_bounds(dst_reg); 8454 } 8455 8456 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8457 struct bpf_reg_state *src_reg) 8458 { 8459 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8460 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8461 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8462 s32 smin_val = src_reg->s32_min_value; 8463 u32 umin_val = src_reg->u32_min_value; 8464 8465 if (src_known && dst_known) { 8466 __mark_reg32_known(dst_reg, var32_off.value); 8467 return; 8468 } 8469 8470 /* We get our maximum from the var_off, and our minimum is the 8471 * maximum of the operands' minima 8472 */ 8473 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8474 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8475 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8476 /* Lose signed bounds when ORing negative numbers, 8477 * ain't nobody got time for that. 8478 */ 8479 dst_reg->s32_min_value = S32_MIN; 8480 dst_reg->s32_max_value = S32_MAX; 8481 } else { 8482 /* ORing two positives gives a positive, so safe to 8483 * cast result into s64. 8484 */ 8485 dst_reg->s32_min_value = dst_reg->u32_min_value; 8486 dst_reg->s32_max_value = dst_reg->u32_max_value; 8487 } 8488 } 8489 8490 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8491 struct bpf_reg_state *src_reg) 8492 { 8493 bool src_known = tnum_is_const(src_reg->var_off); 8494 bool dst_known = tnum_is_const(dst_reg->var_off); 8495 s64 smin_val = src_reg->smin_value; 8496 u64 umin_val = src_reg->umin_value; 8497 8498 if (src_known && dst_known) { 8499 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8500 return; 8501 } 8502 8503 /* We get our maximum from the var_off, and our minimum is the 8504 * maximum of the operands' minima 8505 */ 8506 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8507 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8508 if (dst_reg->smin_value < 0 || smin_val < 0) { 8509 /* Lose signed bounds when ORing negative numbers, 8510 * ain't nobody got time for that. 8511 */ 8512 dst_reg->smin_value = S64_MIN; 8513 dst_reg->smax_value = S64_MAX; 8514 } else { 8515 /* ORing two positives gives a positive, so safe to 8516 * cast result into s64. 8517 */ 8518 dst_reg->smin_value = dst_reg->umin_value; 8519 dst_reg->smax_value = dst_reg->umax_value; 8520 } 8521 /* We may learn something more from the var_off */ 8522 __update_reg_bounds(dst_reg); 8523 } 8524 8525 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8526 struct bpf_reg_state *src_reg) 8527 { 8528 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8529 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8530 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8531 s32 smin_val = src_reg->s32_min_value; 8532 8533 if (src_known && dst_known) { 8534 __mark_reg32_known(dst_reg, var32_off.value); 8535 return; 8536 } 8537 8538 /* We get both minimum and maximum from the var32_off. */ 8539 dst_reg->u32_min_value = var32_off.value; 8540 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8541 8542 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8543 /* XORing two positive sign numbers gives a positive, 8544 * so safe to cast u32 result into s32. 8545 */ 8546 dst_reg->s32_min_value = dst_reg->u32_min_value; 8547 dst_reg->s32_max_value = dst_reg->u32_max_value; 8548 } else { 8549 dst_reg->s32_min_value = S32_MIN; 8550 dst_reg->s32_max_value = S32_MAX; 8551 } 8552 } 8553 8554 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8555 struct bpf_reg_state *src_reg) 8556 { 8557 bool src_known = tnum_is_const(src_reg->var_off); 8558 bool dst_known = tnum_is_const(dst_reg->var_off); 8559 s64 smin_val = src_reg->smin_value; 8560 8561 if (src_known && dst_known) { 8562 /* dst_reg->var_off.value has been updated earlier */ 8563 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8564 return; 8565 } 8566 8567 /* We get both minimum and maximum from the var_off. */ 8568 dst_reg->umin_value = dst_reg->var_off.value; 8569 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8570 8571 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8572 /* XORing two positive sign numbers gives a positive, 8573 * so safe to cast u64 result into s64. 8574 */ 8575 dst_reg->smin_value = dst_reg->umin_value; 8576 dst_reg->smax_value = dst_reg->umax_value; 8577 } else { 8578 dst_reg->smin_value = S64_MIN; 8579 dst_reg->smax_value = S64_MAX; 8580 } 8581 8582 __update_reg_bounds(dst_reg); 8583 } 8584 8585 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8586 u64 umin_val, u64 umax_val) 8587 { 8588 /* We lose all sign bit information (except what we can pick 8589 * up from var_off) 8590 */ 8591 dst_reg->s32_min_value = S32_MIN; 8592 dst_reg->s32_max_value = S32_MAX; 8593 /* If we might shift our top bit out, then we know nothing */ 8594 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8595 dst_reg->u32_min_value = 0; 8596 dst_reg->u32_max_value = U32_MAX; 8597 } else { 8598 dst_reg->u32_min_value <<= umin_val; 8599 dst_reg->u32_max_value <<= umax_val; 8600 } 8601 } 8602 8603 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8604 struct bpf_reg_state *src_reg) 8605 { 8606 u32 umax_val = src_reg->u32_max_value; 8607 u32 umin_val = src_reg->u32_min_value; 8608 /* u32 alu operation will zext upper bits */ 8609 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8610 8611 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8612 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8613 /* Not required but being careful mark reg64 bounds as unknown so 8614 * that we are forced to pick them up from tnum and zext later and 8615 * if some path skips this step we are still safe. 8616 */ 8617 __mark_reg64_unbounded(dst_reg); 8618 __update_reg32_bounds(dst_reg); 8619 } 8620 8621 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8622 u64 umin_val, u64 umax_val) 8623 { 8624 /* Special case <<32 because it is a common compiler pattern to sign 8625 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8626 * positive we know this shift will also be positive so we can track 8627 * bounds correctly. Otherwise we lose all sign bit information except 8628 * what we can pick up from var_off. Perhaps we can generalize this 8629 * later to shifts of any length. 8630 */ 8631 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8632 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8633 else 8634 dst_reg->smax_value = S64_MAX; 8635 8636 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8637 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8638 else 8639 dst_reg->smin_value = S64_MIN; 8640 8641 /* If we might shift our top bit out, then we know nothing */ 8642 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8643 dst_reg->umin_value = 0; 8644 dst_reg->umax_value = U64_MAX; 8645 } else { 8646 dst_reg->umin_value <<= umin_val; 8647 dst_reg->umax_value <<= umax_val; 8648 } 8649 } 8650 8651 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8652 struct bpf_reg_state *src_reg) 8653 { 8654 u64 umax_val = src_reg->umax_value; 8655 u64 umin_val = src_reg->umin_value; 8656 8657 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8658 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8659 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8660 8661 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8662 /* We may learn something more from the var_off */ 8663 __update_reg_bounds(dst_reg); 8664 } 8665 8666 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8667 struct bpf_reg_state *src_reg) 8668 { 8669 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8670 u32 umax_val = src_reg->u32_max_value; 8671 u32 umin_val = src_reg->u32_min_value; 8672 8673 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8674 * be negative, then either: 8675 * 1) src_reg might be zero, so the sign bit of the result is 8676 * unknown, so we lose our signed bounds 8677 * 2) it's known negative, thus the unsigned bounds capture the 8678 * signed bounds 8679 * 3) the signed bounds cross zero, so they tell us nothing 8680 * about the result 8681 * If the value in dst_reg is known nonnegative, then again the 8682 * unsigned bounds capture the signed bounds. 8683 * Thus, in all cases it suffices to blow away our signed bounds 8684 * and rely on inferring new ones from the unsigned bounds and 8685 * var_off of the result. 8686 */ 8687 dst_reg->s32_min_value = S32_MIN; 8688 dst_reg->s32_max_value = S32_MAX; 8689 8690 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8691 dst_reg->u32_min_value >>= umax_val; 8692 dst_reg->u32_max_value >>= umin_val; 8693 8694 __mark_reg64_unbounded(dst_reg); 8695 __update_reg32_bounds(dst_reg); 8696 } 8697 8698 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8699 struct bpf_reg_state *src_reg) 8700 { 8701 u64 umax_val = src_reg->umax_value; 8702 u64 umin_val = src_reg->umin_value; 8703 8704 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8705 * be negative, then either: 8706 * 1) src_reg might be zero, so the sign bit of the result is 8707 * unknown, so we lose our signed bounds 8708 * 2) it's known negative, thus the unsigned bounds capture the 8709 * signed bounds 8710 * 3) the signed bounds cross zero, so they tell us nothing 8711 * about the result 8712 * If the value in dst_reg is known nonnegative, then again the 8713 * unsigned bounds capture the signed bounds. 8714 * Thus, in all cases it suffices to blow away our signed bounds 8715 * and rely on inferring new ones from the unsigned bounds and 8716 * var_off of the result. 8717 */ 8718 dst_reg->smin_value = S64_MIN; 8719 dst_reg->smax_value = S64_MAX; 8720 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8721 dst_reg->umin_value >>= umax_val; 8722 dst_reg->umax_value >>= umin_val; 8723 8724 /* Its not easy to operate on alu32 bounds here because it depends 8725 * on bits being shifted in. Take easy way out and mark unbounded 8726 * so we can recalculate later from tnum. 8727 */ 8728 __mark_reg32_unbounded(dst_reg); 8729 __update_reg_bounds(dst_reg); 8730 } 8731 8732 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8733 struct bpf_reg_state *src_reg) 8734 { 8735 u64 umin_val = src_reg->u32_min_value; 8736 8737 /* Upon reaching here, src_known is true and 8738 * umax_val is equal to umin_val. 8739 */ 8740 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8741 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8742 8743 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8744 8745 /* blow away the dst_reg umin_value/umax_value and rely on 8746 * dst_reg var_off to refine the result. 8747 */ 8748 dst_reg->u32_min_value = 0; 8749 dst_reg->u32_max_value = U32_MAX; 8750 8751 __mark_reg64_unbounded(dst_reg); 8752 __update_reg32_bounds(dst_reg); 8753 } 8754 8755 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8756 struct bpf_reg_state *src_reg) 8757 { 8758 u64 umin_val = src_reg->umin_value; 8759 8760 /* Upon reaching here, src_known is true and umax_val is equal 8761 * to umin_val. 8762 */ 8763 dst_reg->smin_value >>= umin_val; 8764 dst_reg->smax_value >>= umin_val; 8765 8766 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8767 8768 /* blow away the dst_reg umin_value/umax_value and rely on 8769 * dst_reg var_off to refine the result. 8770 */ 8771 dst_reg->umin_value = 0; 8772 dst_reg->umax_value = U64_MAX; 8773 8774 /* Its not easy to operate on alu32 bounds here because it depends 8775 * on bits being shifted in from upper 32-bits. Take easy way out 8776 * and mark unbounded so we can recalculate later from tnum. 8777 */ 8778 __mark_reg32_unbounded(dst_reg); 8779 __update_reg_bounds(dst_reg); 8780 } 8781 8782 /* WARNING: This function does calculations on 64-bit values, but the actual 8783 * execution may occur on 32-bit values. Therefore, things like bitshifts 8784 * need extra checks in the 32-bit case. 8785 */ 8786 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8787 struct bpf_insn *insn, 8788 struct bpf_reg_state *dst_reg, 8789 struct bpf_reg_state src_reg) 8790 { 8791 struct bpf_reg_state *regs = cur_regs(env); 8792 u8 opcode = BPF_OP(insn->code); 8793 bool src_known; 8794 s64 smin_val, smax_val; 8795 u64 umin_val, umax_val; 8796 s32 s32_min_val, s32_max_val; 8797 u32 u32_min_val, u32_max_val; 8798 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8799 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8800 int ret; 8801 8802 smin_val = src_reg.smin_value; 8803 smax_val = src_reg.smax_value; 8804 umin_val = src_reg.umin_value; 8805 umax_val = src_reg.umax_value; 8806 8807 s32_min_val = src_reg.s32_min_value; 8808 s32_max_val = src_reg.s32_max_value; 8809 u32_min_val = src_reg.u32_min_value; 8810 u32_max_val = src_reg.u32_max_value; 8811 8812 if (alu32) { 8813 src_known = tnum_subreg_is_const(src_reg.var_off); 8814 if ((src_known && 8815 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8816 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8817 /* Taint dst register if offset had invalid bounds 8818 * derived from e.g. dead branches. 8819 */ 8820 __mark_reg_unknown(env, dst_reg); 8821 return 0; 8822 } 8823 } else { 8824 src_known = tnum_is_const(src_reg.var_off); 8825 if ((src_known && 8826 (smin_val != smax_val || umin_val != umax_val)) || 8827 smin_val > smax_val || umin_val > umax_val) { 8828 /* Taint dst register if offset had invalid bounds 8829 * derived from e.g. dead branches. 8830 */ 8831 __mark_reg_unknown(env, dst_reg); 8832 return 0; 8833 } 8834 } 8835 8836 if (!src_known && 8837 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8838 __mark_reg_unknown(env, dst_reg); 8839 return 0; 8840 } 8841 8842 if (sanitize_needed(opcode)) { 8843 ret = sanitize_val_alu(env, insn); 8844 if (ret < 0) 8845 return sanitize_err(env, insn, ret, NULL, NULL); 8846 } 8847 8848 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8849 * There are two classes of instructions: The first class we track both 8850 * alu32 and alu64 sign/unsigned bounds independently this provides the 8851 * greatest amount of precision when alu operations are mixed with jmp32 8852 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8853 * and BPF_OR. This is possible because these ops have fairly easy to 8854 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8855 * See alu32 verifier tests for examples. The second class of 8856 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8857 * with regards to tracking sign/unsigned bounds because the bits may 8858 * cross subreg boundaries in the alu64 case. When this happens we mark 8859 * the reg unbounded in the subreg bound space and use the resulting 8860 * tnum to calculate an approximation of the sign/unsigned bounds. 8861 */ 8862 switch (opcode) { 8863 case BPF_ADD: 8864 scalar32_min_max_add(dst_reg, &src_reg); 8865 scalar_min_max_add(dst_reg, &src_reg); 8866 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8867 break; 8868 case BPF_SUB: 8869 scalar32_min_max_sub(dst_reg, &src_reg); 8870 scalar_min_max_sub(dst_reg, &src_reg); 8871 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8872 break; 8873 case BPF_MUL: 8874 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8875 scalar32_min_max_mul(dst_reg, &src_reg); 8876 scalar_min_max_mul(dst_reg, &src_reg); 8877 break; 8878 case BPF_AND: 8879 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8880 scalar32_min_max_and(dst_reg, &src_reg); 8881 scalar_min_max_and(dst_reg, &src_reg); 8882 break; 8883 case BPF_OR: 8884 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8885 scalar32_min_max_or(dst_reg, &src_reg); 8886 scalar_min_max_or(dst_reg, &src_reg); 8887 break; 8888 case BPF_XOR: 8889 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8890 scalar32_min_max_xor(dst_reg, &src_reg); 8891 scalar_min_max_xor(dst_reg, &src_reg); 8892 break; 8893 case BPF_LSH: 8894 if (umax_val >= insn_bitness) { 8895 /* Shifts greater than 31 or 63 are undefined. 8896 * This includes shifts by a negative number. 8897 */ 8898 mark_reg_unknown(env, regs, insn->dst_reg); 8899 break; 8900 } 8901 if (alu32) 8902 scalar32_min_max_lsh(dst_reg, &src_reg); 8903 else 8904 scalar_min_max_lsh(dst_reg, &src_reg); 8905 break; 8906 case BPF_RSH: 8907 if (umax_val >= insn_bitness) { 8908 /* Shifts greater than 31 or 63 are undefined. 8909 * This includes shifts by a negative number. 8910 */ 8911 mark_reg_unknown(env, regs, insn->dst_reg); 8912 break; 8913 } 8914 if (alu32) 8915 scalar32_min_max_rsh(dst_reg, &src_reg); 8916 else 8917 scalar_min_max_rsh(dst_reg, &src_reg); 8918 break; 8919 case BPF_ARSH: 8920 if (umax_val >= insn_bitness) { 8921 /* Shifts greater than 31 or 63 are undefined. 8922 * This includes shifts by a negative number. 8923 */ 8924 mark_reg_unknown(env, regs, insn->dst_reg); 8925 break; 8926 } 8927 if (alu32) 8928 scalar32_min_max_arsh(dst_reg, &src_reg); 8929 else 8930 scalar_min_max_arsh(dst_reg, &src_reg); 8931 break; 8932 default: 8933 mark_reg_unknown(env, regs, insn->dst_reg); 8934 break; 8935 } 8936 8937 /* ALU32 ops are zero extended into 64bit register */ 8938 if (alu32) 8939 zext_32_to_64(dst_reg); 8940 reg_bounds_sync(dst_reg); 8941 return 0; 8942 } 8943 8944 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8945 * and var_off. 8946 */ 8947 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8948 struct bpf_insn *insn) 8949 { 8950 struct bpf_verifier_state *vstate = env->cur_state; 8951 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8952 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8953 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8954 u8 opcode = BPF_OP(insn->code); 8955 int err; 8956 8957 dst_reg = ®s[insn->dst_reg]; 8958 src_reg = NULL; 8959 if (dst_reg->type != SCALAR_VALUE) 8960 ptr_reg = dst_reg; 8961 else 8962 /* Make sure ID is cleared otherwise dst_reg min/max could be 8963 * incorrectly propagated into other registers by find_equal_scalars() 8964 */ 8965 dst_reg->id = 0; 8966 if (BPF_SRC(insn->code) == BPF_X) { 8967 src_reg = ®s[insn->src_reg]; 8968 if (src_reg->type != SCALAR_VALUE) { 8969 if (dst_reg->type != SCALAR_VALUE) { 8970 /* Combining two pointers by any ALU op yields 8971 * an arbitrary scalar. Disallow all math except 8972 * pointer subtraction 8973 */ 8974 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8975 mark_reg_unknown(env, regs, insn->dst_reg); 8976 return 0; 8977 } 8978 verbose(env, "R%d pointer %s pointer prohibited\n", 8979 insn->dst_reg, 8980 bpf_alu_string[opcode >> 4]); 8981 return -EACCES; 8982 } else { 8983 /* scalar += pointer 8984 * This is legal, but we have to reverse our 8985 * src/dest handling in computing the range 8986 */ 8987 err = mark_chain_precision(env, insn->dst_reg); 8988 if (err) 8989 return err; 8990 return adjust_ptr_min_max_vals(env, insn, 8991 src_reg, dst_reg); 8992 } 8993 } else if (ptr_reg) { 8994 /* pointer += scalar */ 8995 err = mark_chain_precision(env, insn->src_reg); 8996 if (err) 8997 return err; 8998 return adjust_ptr_min_max_vals(env, insn, 8999 dst_reg, src_reg); 9000 } 9001 } else { 9002 /* Pretend the src is a reg with a known value, since we only 9003 * need to be able to read from this state. 9004 */ 9005 off_reg.type = SCALAR_VALUE; 9006 __mark_reg_known(&off_reg, insn->imm); 9007 src_reg = &off_reg; 9008 if (ptr_reg) /* pointer += K */ 9009 return adjust_ptr_min_max_vals(env, insn, 9010 ptr_reg, src_reg); 9011 } 9012 9013 /* Got here implies adding two SCALAR_VALUEs */ 9014 if (WARN_ON_ONCE(ptr_reg)) { 9015 print_verifier_state(env, state, true); 9016 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9017 return -EINVAL; 9018 } 9019 if (WARN_ON(!src_reg)) { 9020 print_verifier_state(env, state, true); 9021 verbose(env, "verifier internal error: no src_reg\n"); 9022 return -EINVAL; 9023 } 9024 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9025 } 9026 9027 /* check validity of 32-bit and 64-bit arithmetic operations */ 9028 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9029 { 9030 struct bpf_reg_state *regs = cur_regs(env); 9031 u8 opcode = BPF_OP(insn->code); 9032 int err; 9033 9034 if (opcode == BPF_END || opcode == BPF_NEG) { 9035 if (opcode == BPF_NEG) { 9036 if (BPF_SRC(insn->code) != 0 || 9037 insn->src_reg != BPF_REG_0 || 9038 insn->off != 0 || insn->imm != 0) { 9039 verbose(env, "BPF_NEG uses reserved fields\n"); 9040 return -EINVAL; 9041 } 9042 } else { 9043 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9044 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9045 BPF_CLASS(insn->code) == BPF_ALU64) { 9046 verbose(env, "BPF_END uses reserved fields\n"); 9047 return -EINVAL; 9048 } 9049 } 9050 9051 /* check src operand */ 9052 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9053 if (err) 9054 return err; 9055 9056 if (is_pointer_value(env, insn->dst_reg)) { 9057 verbose(env, "R%d pointer arithmetic prohibited\n", 9058 insn->dst_reg); 9059 return -EACCES; 9060 } 9061 9062 /* check dest operand */ 9063 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9064 if (err) 9065 return err; 9066 9067 } else if (opcode == BPF_MOV) { 9068 9069 if (BPF_SRC(insn->code) == BPF_X) { 9070 if (insn->imm != 0 || insn->off != 0) { 9071 verbose(env, "BPF_MOV uses reserved fields\n"); 9072 return -EINVAL; 9073 } 9074 9075 /* check src operand */ 9076 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9077 if (err) 9078 return err; 9079 } else { 9080 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9081 verbose(env, "BPF_MOV uses reserved fields\n"); 9082 return -EINVAL; 9083 } 9084 } 9085 9086 /* check dest operand, mark as required later */ 9087 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9088 if (err) 9089 return err; 9090 9091 if (BPF_SRC(insn->code) == BPF_X) { 9092 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9093 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9094 9095 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9096 /* case: R1 = R2 9097 * copy register state to dest reg 9098 */ 9099 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9100 /* Assign src and dst registers the same ID 9101 * that will be used by find_equal_scalars() 9102 * to propagate min/max range. 9103 */ 9104 src_reg->id = ++env->id_gen; 9105 *dst_reg = *src_reg; 9106 dst_reg->live |= REG_LIVE_WRITTEN; 9107 dst_reg->subreg_def = DEF_NOT_SUBREG; 9108 } else { 9109 /* R1 = (u32) R2 */ 9110 if (is_pointer_value(env, insn->src_reg)) { 9111 verbose(env, 9112 "R%d partial copy of pointer\n", 9113 insn->src_reg); 9114 return -EACCES; 9115 } else if (src_reg->type == SCALAR_VALUE) { 9116 *dst_reg = *src_reg; 9117 /* Make sure ID is cleared otherwise 9118 * dst_reg min/max could be incorrectly 9119 * propagated into src_reg by find_equal_scalars() 9120 */ 9121 dst_reg->id = 0; 9122 dst_reg->live |= REG_LIVE_WRITTEN; 9123 dst_reg->subreg_def = env->insn_idx + 1; 9124 } else { 9125 mark_reg_unknown(env, regs, 9126 insn->dst_reg); 9127 } 9128 zext_32_to_64(dst_reg); 9129 reg_bounds_sync(dst_reg); 9130 } 9131 } else { 9132 /* case: R = imm 9133 * remember the value we stored into this reg 9134 */ 9135 /* clear any state __mark_reg_known doesn't set */ 9136 mark_reg_unknown(env, regs, insn->dst_reg); 9137 regs[insn->dst_reg].type = SCALAR_VALUE; 9138 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9139 __mark_reg_known(regs + insn->dst_reg, 9140 insn->imm); 9141 } else { 9142 __mark_reg_known(regs + insn->dst_reg, 9143 (u32)insn->imm); 9144 } 9145 } 9146 9147 } else if (opcode > BPF_END) { 9148 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9149 return -EINVAL; 9150 9151 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9152 9153 if (BPF_SRC(insn->code) == BPF_X) { 9154 if (insn->imm != 0 || insn->off != 0) { 9155 verbose(env, "BPF_ALU uses reserved fields\n"); 9156 return -EINVAL; 9157 } 9158 /* check src1 operand */ 9159 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9160 if (err) 9161 return err; 9162 } else { 9163 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9164 verbose(env, "BPF_ALU uses reserved fields\n"); 9165 return -EINVAL; 9166 } 9167 } 9168 9169 /* check src2 operand */ 9170 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9171 if (err) 9172 return err; 9173 9174 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9175 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9176 verbose(env, "div by zero\n"); 9177 return -EINVAL; 9178 } 9179 9180 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9181 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9182 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9183 9184 if (insn->imm < 0 || insn->imm >= size) { 9185 verbose(env, "invalid shift %d\n", insn->imm); 9186 return -EINVAL; 9187 } 9188 } 9189 9190 /* check dest operand */ 9191 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9192 if (err) 9193 return err; 9194 9195 return adjust_reg_min_max_vals(env, insn); 9196 } 9197 9198 return 0; 9199 } 9200 9201 static void __find_good_pkt_pointers(struct bpf_func_state *state, 9202 struct bpf_reg_state *dst_reg, 9203 enum bpf_reg_type type, int new_range) 9204 { 9205 struct bpf_reg_state *reg; 9206 int i; 9207 9208 for (i = 0; i < MAX_BPF_REG; i++) { 9209 reg = &state->regs[i]; 9210 if (reg->type == type && reg->id == dst_reg->id) 9211 /* keep the maximum range already checked */ 9212 reg->range = max(reg->range, new_range); 9213 } 9214 9215 bpf_for_each_spilled_reg(i, state, reg) { 9216 if (!reg) 9217 continue; 9218 if (reg->type == type && reg->id == dst_reg->id) 9219 reg->range = max(reg->range, new_range); 9220 } 9221 } 9222 9223 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9224 struct bpf_reg_state *dst_reg, 9225 enum bpf_reg_type type, 9226 bool range_right_open) 9227 { 9228 int new_range, i; 9229 9230 if (dst_reg->off < 0 || 9231 (dst_reg->off == 0 && range_right_open)) 9232 /* This doesn't give us any range */ 9233 return; 9234 9235 if (dst_reg->umax_value > MAX_PACKET_OFF || 9236 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9237 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9238 * than pkt_end, but that's because it's also less than pkt. 9239 */ 9240 return; 9241 9242 new_range = dst_reg->off; 9243 if (range_right_open) 9244 new_range++; 9245 9246 /* Examples for register markings: 9247 * 9248 * pkt_data in dst register: 9249 * 9250 * r2 = r3; 9251 * r2 += 8; 9252 * if (r2 > pkt_end) goto <handle exception> 9253 * <access okay> 9254 * 9255 * r2 = r3; 9256 * r2 += 8; 9257 * if (r2 < pkt_end) goto <access okay> 9258 * <handle exception> 9259 * 9260 * Where: 9261 * r2 == dst_reg, pkt_end == src_reg 9262 * r2=pkt(id=n,off=8,r=0) 9263 * r3=pkt(id=n,off=0,r=0) 9264 * 9265 * pkt_data in src register: 9266 * 9267 * r2 = r3; 9268 * r2 += 8; 9269 * if (pkt_end >= r2) goto <access okay> 9270 * <handle exception> 9271 * 9272 * r2 = r3; 9273 * r2 += 8; 9274 * if (pkt_end <= r2) goto <handle exception> 9275 * <access okay> 9276 * 9277 * Where: 9278 * pkt_end == dst_reg, r2 == src_reg 9279 * r2=pkt(id=n,off=8,r=0) 9280 * r3=pkt(id=n,off=0,r=0) 9281 * 9282 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9283 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9284 * and [r3, r3 + 8-1) respectively is safe to access depending on 9285 * the check. 9286 */ 9287 9288 /* If our ids match, then we must have the same max_value. And we 9289 * don't care about the other reg's fixed offset, since if it's too big 9290 * the range won't allow anything. 9291 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9292 */ 9293 for (i = 0; i <= vstate->curframe; i++) 9294 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 9295 new_range); 9296 } 9297 9298 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9299 { 9300 struct tnum subreg = tnum_subreg(reg->var_off); 9301 s32 sval = (s32)val; 9302 9303 switch (opcode) { 9304 case BPF_JEQ: 9305 if (tnum_is_const(subreg)) 9306 return !!tnum_equals_const(subreg, val); 9307 break; 9308 case BPF_JNE: 9309 if (tnum_is_const(subreg)) 9310 return !tnum_equals_const(subreg, val); 9311 break; 9312 case BPF_JSET: 9313 if ((~subreg.mask & subreg.value) & val) 9314 return 1; 9315 if (!((subreg.mask | subreg.value) & val)) 9316 return 0; 9317 break; 9318 case BPF_JGT: 9319 if (reg->u32_min_value > val) 9320 return 1; 9321 else if (reg->u32_max_value <= val) 9322 return 0; 9323 break; 9324 case BPF_JSGT: 9325 if (reg->s32_min_value > sval) 9326 return 1; 9327 else if (reg->s32_max_value <= sval) 9328 return 0; 9329 break; 9330 case BPF_JLT: 9331 if (reg->u32_max_value < val) 9332 return 1; 9333 else if (reg->u32_min_value >= val) 9334 return 0; 9335 break; 9336 case BPF_JSLT: 9337 if (reg->s32_max_value < sval) 9338 return 1; 9339 else if (reg->s32_min_value >= sval) 9340 return 0; 9341 break; 9342 case BPF_JGE: 9343 if (reg->u32_min_value >= val) 9344 return 1; 9345 else if (reg->u32_max_value < val) 9346 return 0; 9347 break; 9348 case BPF_JSGE: 9349 if (reg->s32_min_value >= sval) 9350 return 1; 9351 else if (reg->s32_max_value < sval) 9352 return 0; 9353 break; 9354 case BPF_JLE: 9355 if (reg->u32_max_value <= val) 9356 return 1; 9357 else if (reg->u32_min_value > val) 9358 return 0; 9359 break; 9360 case BPF_JSLE: 9361 if (reg->s32_max_value <= sval) 9362 return 1; 9363 else if (reg->s32_min_value > sval) 9364 return 0; 9365 break; 9366 } 9367 9368 return -1; 9369 } 9370 9371 9372 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9373 { 9374 s64 sval = (s64)val; 9375 9376 switch (opcode) { 9377 case BPF_JEQ: 9378 if (tnum_is_const(reg->var_off)) 9379 return !!tnum_equals_const(reg->var_off, val); 9380 break; 9381 case BPF_JNE: 9382 if (tnum_is_const(reg->var_off)) 9383 return !tnum_equals_const(reg->var_off, val); 9384 break; 9385 case BPF_JSET: 9386 if ((~reg->var_off.mask & reg->var_off.value) & val) 9387 return 1; 9388 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9389 return 0; 9390 break; 9391 case BPF_JGT: 9392 if (reg->umin_value > val) 9393 return 1; 9394 else if (reg->umax_value <= val) 9395 return 0; 9396 break; 9397 case BPF_JSGT: 9398 if (reg->smin_value > sval) 9399 return 1; 9400 else if (reg->smax_value <= sval) 9401 return 0; 9402 break; 9403 case BPF_JLT: 9404 if (reg->umax_value < val) 9405 return 1; 9406 else if (reg->umin_value >= val) 9407 return 0; 9408 break; 9409 case BPF_JSLT: 9410 if (reg->smax_value < sval) 9411 return 1; 9412 else if (reg->smin_value >= sval) 9413 return 0; 9414 break; 9415 case BPF_JGE: 9416 if (reg->umin_value >= val) 9417 return 1; 9418 else if (reg->umax_value < val) 9419 return 0; 9420 break; 9421 case BPF_JSGE: 9422 if (reg->smin_value >= sval) 9423 return 1; 9424 else if (reg->smax_value < sval) 9425 return 0; 9426 break; 9427 case BPF_JLE: 9428 if (reg->umax_value <= val) 9429 return 1; 9430 else if (reg->umin_value > val) 9431 return 0; 9432 break; 9433 case BPF_JSLE: 9434 if (reg->smax_value <= sval) 9435 return 1; 9436 else if (reg->smin_value > sval) 9437 return 0; 9438 break; 9439 } 9440 9441 return -1; 9442 } 9443 9444 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9445 * and return: 9446 * 1 - branch will be taken and "goto target" will be executed 9447 * 0 - branch will not be taken and fall-through to next insn 9448 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9449 * range [0,10] 9450 */ 9451 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9452 bool is_jmp32) 9453 { 9454 if (__is_pointer_value(false, reg)) { 9455 if (!reg_type_not_null(reg->type)) 9456 return -1; 9457 9458 /* If pointer is valid tests against zero will fail so we can 9459 * use this to direct branch taken. 9460 */ 9461 if (val != 0) 9462 return -1; 9463 9464 switch (opcode) { 9465 case BPF_JEQ: 9466 return 0; 9467 case BPF_JNE: 9468 return 1; 9469 default: 9470 return -1; 9471 } 9472 } 9473 9474 if (is_jmp32) 9475 return is_branch32_taken(reg, val, opcode); 9476 return is_branch64_taken(reg, val, opcode); 9477 } 9478 9479 static int flip_opcode(u32 opcode) 9480 { 9481 /* How can we transform "a <op> b" into "b <op> a"? */ 9482 static const u8 opcode_flip[16] = { 9483 /* these stay the same */ 9484 [BPF_JEQ >> 4] = BPF_JEQ, 9485 [BPF_JNE >> 4] = BPF_JNE, 9486 [BPF_JSET >> 4] = BPF_JSET, 9487 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9488 [BPF_JGE >> 4] = BPF_JLE, 9489 [BPF_JGT >> 4] = BPF_JLT, 9490 [BPF_JLE >> 4] = BPF_JGE, 9491 [BPF_JLT >> 4] = BPF_JGT, 9492 [BPF_JSGE >> 4] = BPF_JSLE, 9493 [BPF_JSGT >> 4] = BPF_JSLT, 9494 [BPF_JSLE >> 4] = BPF_JSGE, 9495 [BPF_JSLT >> 4] = BPF_JSGT 9496 }; 9497 return opcode_flip[opcode >> 4]; 9498 } 9499 9500 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9501 struct bpf_reg_state *src_reg, 9502 u8 opcode) 9503 { 9504 struct bpf_reg_state *pkt; 9505 9506 if (src_reg->type == PTR_TO_PACKET_END) { 9507 pkt = dst_reg; 9508 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9509 pkt = src_reg; 9510 opcode = flip_opcode(opcode); 9511 } else { 9512 return -1; 9513 } 9514 9515 if (pkt->range >= 0) 9516 return -1; 9517 9518 switch (opcode) { 9519 case BPF_JLE: 9520 /* pkt <= pkt_end */ 9521 fallthrough; 9522 case BPF_JGT: 9523 /* pkt > pkt_end */ 9524 if (pkt->range == BEYOND_PKT_END) 9525 /* pkt has at last one extra byte beyond pkt_end */ 9526 return opcode == BPF_JGT; 9527 break; 9528 case BPF_JLT: 9529 /* pkt < pkt_end */ 9530 fallthrough; 9531 case BPF_JGE: 9532 /* pkt >= pkt_end */ 9533 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9534 return opcode == BPF_JGE; 9535 break; 9536 } 9537 return -1; 9538 } 9539 9540 /* Adjusts the register min/max values in the case that the dst_reg is the 9541 * variable register that we are working on, and src_reg is a constant or we're 9542 * simply doing a BPF_K check. 9543 * In JEQ/JNE cases we also adjust the var_off values. 9544 */ 9545 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9546 struct bpf_reg_state *false_reg, 9547 u64 val, u32 val32, 9548 u8 opcode, bool is_jmp32) 9549 { 9550 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9551 struct tnum false_64off = false_reg->var_off; 9552 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9553 struct tnum true_64off = true_reg->var_off; 9554 s64 sval = (s64)val; 9555 s32 sval32 = (s32)val32; 9556 9557 /* If the dst_reg is a pointer, we can't learn anything about its 9558 * variable offset from the compare (unless src_reg were a pointer into 9559 * the same object, but we don't bother with that. 9560 * Since false_reg and true_reg have the same type by construction, we 9561 * only need to check one of them for pointerness. 9562 */ 9563 if (__is_pointer_value(false, false_reg)) 9564 return; 9565 9566 switch (opcode) { 9567 /* JEQ/JNE comparison doesn't change the register equivalence. 9568 * 9569 * r1 = r2; 9570 * if (r1 == 42) goto label; 9571 * ... 9572 * label: // here both r1 and r2 are known to be 42. 9573 * 9574 * Hence when marking register as known preserve it's ID. 9575 */ 9576 case BPF_JEQ: 9577 if (is_jmp32) { 9578 __mark_reg32_known(true_reg, val32); 9579 true_32off = tnum_subreg(true_reg->var_off); 9580 } else { 9581 ___mark_reg_known(true_reg, val); 9582 true_64off = true_reg->var_off; 9583 } 9584 break; 9585 case BPF_JNE: 9586 if (is_jmp32) { 9587 __mark_reg32_known(false_reg, val32); 9588 false_32off = tnum_subreg(false_reg->var_off); 9589 } else { 9590 ___mark_reg_known(false_reg, val); 9591 false_64off = false_reg->var_off; 9592 } 9593 break; 9594 case BPF_JSET: 9595 if (is_jmp32) { 9596 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9597 if (is_power_of_2(val32)) 9598 true_32off = tnum_or(true_32off, 9599 tnum_const(val32)); 9600 } else { 9601 false_64off = tnum_and(false_64off, tnum_const(~val)); 9602 if (is_power_of_2(val)) 9603 true_64off = tnum_or(true_64off, 9604 tnum_const(val)); 9605 } 9606 break; 9607 case BPF_JGE: 9608 case BPF_JGT: 9609 { 9610 if (is_jmp32) { 9611 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9612 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9613 9614 false_reg->u32_max_value = min(false_reg->u32_max_value, 9615 false_umax); 9616 true_reg->u32_min_value = max(true_reg->u32_min_value, 9617 true_umin); 9618 } else { 9619 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9620 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9621 9622 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9623 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9624 } 9625 break; 9626 } 9627 case BPF_JSGE: 9628 case BPF_JSGT: 9629 { 9630 if (is_jmp32) { 9631 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9632 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9633 9634 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9635 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9636 } else { 9637 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9638 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9639 9640 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9641 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9642 } 9643 break; 9644 } 9645 case BPF_JLE: 9646 case BPF_JLT: 9647 { 9648 if (is_jmp32) { 9649 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9650 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9651 9652 false_reg->u32_min_value = max(false_reg->u32_min_value, 9653 false_umin); 9654 true_reg->u32_max_value = min(true_reg->u32_max_value, 9655 true_umax); 9656 } else { 9657 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9658 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9659 9660 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9661 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9662 } 9663 break; 9664 } 9665 case BPF_JSLE: 9666 case BPF_JSLT: 9667 { 9668 if (is_jmp32) { 9669 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9670 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9671 9672 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9673 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9674 } else { 9675 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9676 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9677 9678 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9679 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9680 } 9681 break; 9682 } 9683 default: 9684 return; 9685 } 9686 9687 if (is_jmp32) { 9688 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9689 tnum_subreg(false_32off)); 9690 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9691 tnum_subreg(true_32off)); 9692 __reg_combine_32_into_64(false_reg); 9693 __reg_combine_32_into_64(true_reg); 9694 } else { 9695 false_reg->var_off = false_64off; 9696 true_reg->var_off = true_64off; 9697 __reg_combine_64_into_32(false_reg); 9698 __reg_combine_64_into_32(true_reg); 9699 } 9700 } 9701 9702 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9703 * the variable reg. 9704 */ 9705 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9706 struct bpf_reg_state *false_reg, 9707 u64 val, u32 val32, 9708 u8 opcode, bool is_jmp32) 9709 { 9710 opcode = flip_opcode(opcode); 9711 /* This uses zero as "not present in table"; luckily the zero opcode, 9712 * BPF_JA, can't get here. 9713 */ 9714 if (opcode) 9715 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9716 } 9717 9718 /* Regs are known to be equal, so intersect their min/max/var_off */ 9719 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9720 struct bpf_reg_state *dst_reg) 9721 { 9722 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9723 dst_reg->umin_value); 9724 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9725 dst_reg->umax_value); 9726 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9727 dst_reg->smin_value); 9728 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9729 dst_reg->smax_value); 9730 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9731 dst_reg->var_off); 9732 reg_bounds_sync(src_reg); 9733 reg_bounds_sync(dst_reg); 9734 } 9735 9736 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9737 struct bpf_reg_state *true_dst, 9738 struct bpf_reg_state *false_src, 9739 struct bpf_reg_state *false_dst, 9740 u8 opcode) 9741 { 9742 switch (opcode) { 9743 case BPF_JEQ: 9744 __reg_combine_min_max(true_src, true_dst); 9745 break; 9746 case BPF_JNE: 9747 __reg_combine_min_max(false_src, false_dst); 9748 break; 9749 } 9750 } 9751 9752 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9753 struct bpf_reg_state *reg, u32 id, 9754 bool is_null) 9755 { 9756 if (type_may_be_null(reg->type) && reg->id == id && 9757 !WARN_ON_ONCE(!reg->id)) { 9758 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9759 !tnum_equals_const(reg->var_off, 0) || 9760 reg->off)) { 9761 /* Old offset (both fixed and variable parts) should 9762 * have been known-zero, because we don't allow pointer 9763 * arithmetic on pointers that might be NULL. If we 9764 * see this happening, don't convert the register. 9765 */ 9766 return; 9767 } 9768 if (is_null) { 9769 reg->type = SCALAR_VALUE; 9770 /* We don't need id and ref_obj_id from this point 9771 * onwards anymore, thus we should better reset it, 9772 * so that state pruning has chances to take effect. 9773 */ 9774 reg->id = 0; 9775 reg->ref_obj_id = 0; 9776 9777 return; 9778 } 9779 9780 mark_ptr_not_null_reg(reg); 9781 9782 if (!reg_may_point_to_spin_lock(reg)) { 9783 /* For not-NULL ptr, reg->ref_obj_id will be reset 9784 * in release_reg_references(). 9785 * 9786 * reg->id is still used by spin_lock ptr. Other 9787 * than spin_lock ptr type, reg->id can be reset. 9788 */ 9789 reg->id = 0; 9790 } 9791 } 9792 } 9793 9794 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9795 bool is_null) 9796 { 9797 struct bpf_reg_state *reg; 9798 int i; 9799 9800 for (i = 0; i < MAX_BPF_REG; i++) 9801 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9802 9803 bpf_for_each_spilled_reg(i, state, reg) { 9804 if (!reg) 9805 continue; 9806 mark_ptr_or_null_reg(state, reg, id, is_null); 9807 } 9808 } 9809 9810 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9811 * be folded together at some point. 9812 */ 9813 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9814 bool is_null) 9815 { 9816 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9817 struct bpf_reg_state *regs = state->regs; 9818 u32 ref_obj_id = regs[regno].ref_obj_id; 9819 u32 id = regs[regno].id; 9820 int i; 9821 9822 if (ref_obj_id && ref_obj_id == id && is_null) 9823 /* regs[regno] is in the " == NULL" branch. 9824 * No one could have freed the reference state before 9825 * doing the NULL check. 9826 */ 9827 WARN_ON_ONCE(release_reference_state(state, id)); 9828 9829 for (i = 0; i <= vstate->curframe; i++) 9830 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9831 } 9832 9833 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9834 struct bpf_reg_state *dst_reg, 9835 struct bpf_reg_state *src_reg, 9836 struct bpf_verifier_state *this_branch, 9837 struct bpf_verifier_state *other_branch) 9838 { 9839 if (BPF_SRC(insn->code) != BPF_X) 9840 return false; 9841 9842 /* Pointers are always 64-bit. */ 9843 if (BPF_CLASS(insn->code) == BPF_JMP32) 9844 return false; 9845 9846 switch (BPF_OP(insn->code)) { 9847 case BPF_JGT: 9848 if ((dst_reg->type == PTR_TO_PACKET && 9849 src_reg->type == PTR_TO_PACKET_END) || 9850 (dst_reg->type == PTR_TO_PACKET_META && 9851 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9852 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9853 find_good_pkt_pointers(this_branch, dst_reg, 9854 dst_reg->type, false); 9855 mark_pkt_end(other_branch, insn->dst_reg, true); 9856 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9857 src_reg->type == PTR_TO_PACKET) || 9858 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9859 src_reg->type == PTR_TO_PACKET_META)) { 9860 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9861 find_good_pkt_pointers(other_branch, src_reg, 9862 src_reg->type, true); 9863 mark_pkt_end(this_branch, insn->src_reg, false); 9864 } else { 9865 return false; 9866 } 9867 break; 9868 case BPF_JLT: 9869 if ((dst_reg->type == PTR_TO_PACKET && 9870 src_reg->type == PTR_TO_PACKET_END) || 9871 (dst_reg->type == PTR_TO_PACKET_META && 9872 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9873 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9874 find_good_pkt_pointers(other_branch, dst_reg, 9875 dst_reg->type, true); 9876 mark_pkt_end(this_branch, insn->dst_reg, false); 9877 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9878 src_reg->type == PTR_TO_PACKET) || 9879 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9880 src_reg->type == PTR_TO_PACKET_META)) { 9881 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9882 find_good_pkt_pointers(this_branch, src_reg, 9883 src_reg->type, false); 9884 mark_pkt_end(other_branch, insn->src_reg, true); 9885 } else { 9886 return false; 9887 } 9888 break; 9889 case BPF_JGE: 9890 if ((dst_reg->type == PTR_TO_PACKET && 9891 src_reg->type == PTR_TO_PACKET_END) || 9892 (dst_reg->type == PTR_TO_PACKET_META && 9893 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9894 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9895 find_good_pkt_pointers(this_branch, dst_reg, 9896 dst_reg->type, true); 9897 mark_pkt_end(other_branch, insn->dst_reg, false); 9898 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9899 src_reg->type == PTR_TO_PACKET) || 9900 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9901 src_reg->type == PTR_TO_PACKET_META)) { 9902 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9903 find_good_pkt_pointers(other_branch, src_reg, 9904 src_reg->type, false); 9905 mark_pkt_end(this_branch, insn->src_reg, true); 9906 } else { 9907 return false; 9908 } 9909 break; 9910 case BPF_JLE: 9911 if ((dst_reg->type == PTR_TO_PACKET && 9912 src_reg->type == PTR_TO_PACKET_END) || 9913 (dst_reg->type == PTR_TO_PACKET_META && 9914 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9915 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9916 find_good_pkt_pointers(other_branch, dst_reg, 9917 dst_reg->type, false); 9918 mark_pkt_end(this_branch, insn->dst_reg, true); 9919 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9920 src_reg->type == PTR_TO_PACKET) || 9921 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9922 src_reg->type == PTR_TO_PACKET_META)) { 9923 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9924 find_good_pkt_pointers(this_branch, src_reg, 9925 src_reg->type, true); 9926 mark_pkt_end(other_branch, insn->src_reg, false); 9927 } else { 9928 return false; 9929 } 9930 break; 9931 default: 9932 return false; 9933 } 9934 9935 return true; 9936 } 9937 9938 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9939 struct bpf_reg_state *known_reg) 9940 { 9941 struct bpf_func_state *state; 9942 struct bpf_reg_state *reg; 9943 int i, j; 9944 9945 for (i = 0; i <= vstate->curframe; i++) { 9946 state = vstate->frame[i]; 9947 for (j = 0; j < MAX_BPF_REG; j++) { 9948 reg = &state->regs[j]; 9949 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9950 *reg = *known_reg; 9951 } 9952 9953 bpf_for_each_spilled_reg(j, state, reg) { 9954 if (!reg) 9955 continue; 9956 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9957 *reg = *known_reg; 9958 } 9959 } 9960 } 9961 9962 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9963 struct bpf_insn *insn, int *insn_idx) 9964 { 9965 struct bpf_verifier_state *this_branch = env->cur_state; 9966 struct bpf_verifier_state *other_branch; 9967 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9968 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9969 u8 opcode = BPF_OP(insn->code); 9970 bool is_jmp32; 9971 int pred = -1; 9972 int err; 9973 9974 /* Only conditional jumps are expected to reach here. */ 9975 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9976 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9977 return -EINVAL; 9978 } 9979 9980 if (BPF_SRC(insn->code) == BPF_X) { 9981 if (insn->imm != 0) { 9982 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9983 return -EINVAL; 9984 } 9985 9986 /* check src1 operand */ 9987 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9988 if (err) 9989 return err; 9990 9991 if (is_pointer_value(env, insn->src_reg)) { 9992 verbose(env, "R%d pointer comparison prohibited\n", 9993 insn->src_reg); 9994 return -EACCES; 9995 } 9996 src_reg = ®s[insn->src_reg]; 9997 } else { 9998 if (insn->src_reg != BPF_REG_0) { 9999 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10000 return -EINVAL; 10001 } 10002 } 10003 10004 /* check src2 operand */ 10005 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10006 if (err) 10007 return err; 10008 10009 dst_reg = ®s[insn->dst_reg]; 10010 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10011 10012 if (BPF_SRC(insn->code) == BPF_K) { 10013 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10014 } else if (src_reg->type == SCALAR_VALUE && 10015 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10016 pred = is_branch_taken(dst_reg, 10017 tnum_subreg(src_reg->var_off).value, 10018 opcode, 10019 is_jmp32); 10020 } else if (src_reg->type == SCALAR_VALUE && 10021 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10022 pred = is_branch_taken(dst_reg, 10023 src_reg->var_off.value, 10024 opcode, 10025 is_jmp32); 10026 } else if (reg_is_pkt_pointer_any(dst_reg) && 10027 reg_is_pkt_pointer_any(src_reg) && 10028 !is_jmp32) { 10029 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10030 } 10031 10032 if (pred >= 0) { 10033 /* If we get here with a dst_reg pointer type it is because 10034 * above is_branch_taken() special cased the 0 comparison. 10035 */ 10036 if (!__is_pointer_value(false, dst_reg)) 10037 err = mark_chain_precision(env, insn->dst_reg); 10038 if (BPF_SRC(insn->code) == BPF_X && !err && 10039 !__is_pointer_value(false, src_reg)) 10040 err = mark_chain_precision(env, insn->src_reg); 10041 if (err) 10042 return err; 10043 } 10044 10045 if (pred == 1) { 10046 /* Only follow the goto, ignore fall-through. If needed, push 10047 * the fall-through branch for simulation under speculative 10048 * execution. 10049 */ 10050 if (!env->bypass_spec_v1 && 10051 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10052 *insn_idx)) 10053 return -EFAULT; 10054 *insn_idx += insn->off; 10055 return 0; 10056 } else if (pred == 0) { 10057 /* Only follow the fall-through branch, since that's where the 10058 * program will go. If needed, push the goto branch for 10059 * simulation under speculative execution. 10060 */ 10061 if (!env->bypass_spec_v1 && 10062 !sanitize_speculative_path(env, insn, 10063 *insn_idx + insn->off + 1, 10064 *insn_idx)) 10065 return -EFAULT; 10066 return 0; 10067 } 10068 10069 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10070 false); 10071 if (!other_branch) 10072 return -EFAULT; 10073 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10074 10075 /* detect if we are comparing against a constant value so we can adjust 10076 * our min/max values for our dst register. 10077 * this is only legit if both are scalars (or pointers to the same 10078 * object, I suppose, but we don't support that right now), because 10079 * otherwise the different base pointers mean the offsets aren't 10080 * comparable. 10081 */ 10082 if (BPF_SRC(insn->code) == BPF_X) { 10083 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10084 10085 if (dst_reg->type == SCALAR_VALUE && 10086 src_reg->type == SCALAR_VALUE) { 10087 if (tnum_is_const(src_reg->var_off) || 10088 (is_jmp32 && 10089 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10090 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10091 dst_reg, 10092 src_reg->var_off.value, 10093 tnum_subreg(src_reg->var_off).value, 10094 opcode, is_jmp32); 10095 else if (tnum_is_const(dst_reg->var_off) || 10096 (is_jmp32 && 10097 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10098 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10099 src_reg, 10100 dst_reg->var_off.value, 10101 tnum_subreg(dst_reg->var_off).value, 10102 opcode, is_jmp32); 10103 else if (!is_jmp32 && 10104 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10105 /* Comparing for equality, we can combine knowledge */ 10106 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10107 &other_branch_regs[insn->dst_reg], 10108 src_reg, dst_reg, opcode); 10109 if (src_reg->id && 10110 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10111 find_equal_scalars(this_branch, src_reg); 10112 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10113 } 10114 10115 } 10116 } else if (dst_reg->type == SCALAR_VALUE) { 10117 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10118 dst_reg, insn->imm, (u32)insn->imm, 10119 opcode, is_jmp32); 10120 } 10121 10122 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10123 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10124 find_equal_scalars(this_branch, dst_reg); 10125 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10126 } 10127 10128 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10129 * NOTE: these optimizations below are related with pointer comparison 10130 * which will never be JMP32. 10131 */ 10132 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10133 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10134 type_may_be_null(dst_reg->type)) { 10135 /* Mark all identical registers in each branch as either 10136 * safe or unknown depending R == 0 or R != 0 conditional. 10137 */ 10138 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10139 opcode == BPF_JNE); 10140 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10141 opcode == BPF_JEQ); 10142 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10143 this_branch, other_branch) && 10144 is_pointer_value(env, insn->dst_reg)) { 10145 verbose(env, "R%d pointer comparison prohibited\n", 10146 insn->dst_reg); 10147 return -EACCES; 10148 } 10149 if (env->log.level & BPF_LOG_LEVEL) 10150 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10151 return 0; 10152 } 10153 10154 /* verify BPF_LD_IMM64 instruction */ 10155 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10156 { 10157 struct bpf_insn_aux_data *aux = cur_aux(env); 10158 struct bpf_reg_state *regs = cur_regs(env); 10159 struct bpf_reg_state *dst_reg; 10160 struct bpf_map *map; 10161 int err; 10162 10163 if (BPF_SIZE(insn->code) != BPF_DW) { 10164 verbose(env, "invalid BPF_LD_IMM insn\n"); 10165 return -EINVAL; 10166 } 10167 if (insn->off != 0) { 10168 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10169 return -EINVAL; 10170 } 10171 10172 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10173 if (err) 10174 return err; 10175 10176 dst_reg = ®s[insn->dst_reg]; 10177 if (insn->src_reg == 0) { 10178 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10179 10180 dst_reg->type = SCALAR_VALUE; 10181 __mark_reg_known(®s[insn->dst_reg], imm); 10182 return 0; 10183 } 10184 10185 /* All special src_reg cases are listed below. From this point onwards 10186 * we either succeed and assign a corresponding dst_reg->type after 10187 * zeroing the offset, or fail and reject the program. 10188 */ 10189 mark_reg_known_zero(env, regs, insn->dst_reg); 10190 10191 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10192 dst_reg->type = aux->btf_var.reg_type; 10193 switch (base_type(dst_reg->type)) { 10194 case PTR_TO_MEM: 10195 dst_reg->mem_size = aux->btf_var.mem_size; 10196 break; 10197 case PTR_TO_BTF_ID: 10198 dst_reg->btf = aux->btf_var.btf; 10199 dst_reg->btf_id = aux->btf_var.btf_id; 10200 break; 10201 default: 10202 verbose(env, "bpf verifier is misconfigured\n"); 10203 return -EFAULT; 10204 } 10205 return 0; 10206 } 10207 10208 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10209 struct bpf_prog_aux *aux = env->prog->aux; 10210 u32 subprogno = find_subprog(env, 10211 env->insn_idx + insn->imm + 1); 10212 10213 if (!aux->func_info) { 10214 verbose(env, "missing btf func_info\n"); 10215 return -EINVAL; 10216 } 10217 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10218 verbose(env, "callback function not static\n"); 10219 return -EINVAL; 10220 } 10221 10222 dst_reg->type = PTR_TO_FUNC; 10223 dst_reg->subprogno = subprogno; 10224 return 0; 10225 } 10226 10227 map = env->used_maps[aux->map_index]; 10228 dst_reg->map_ptr = map; 10229 10230 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10231 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10232 dst_reg->type = PTR_TO_MAP_VALUE; 10233 dst_reg->off = aux->map_off; 10234 if (map_value_has_spin_lock(map)) 10235 dst_reg->id = ++env->id_gen; 10236 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10237 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10238 dst_reg->type = CONST_PTR_TO_MAP; 10239 } else { 10240 verbose(env, "bpf verifier is misconfigured\n"); 10241 return -EINVAL; 10242 } 10243 10244 return 0; 10245 } 10246 10247 static bool may_access_skb(enum bpf_prog_type type) 10248 { 10249 switch (type) { 10250 case BPF_PROG_TYPE_SOCKET_FILTER: 10251 case BPF_PROG_TYPE_SCHED_CLS: 10252 case BPF_PROG_TYPE_SCHED_ACT: 10253 return true; 10254 default: 10255 return false; 10256 } 10257 } 10258 10259 /* verify safety of LD_ABS|LD_IND instructions: 10260 * - they can only appear in the programs where ctx == skb 10261 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10262 * preserve R6-R9, and store return value into R0 10263 * 10264 * Implicit input: 10265 * ctx == skb == R6 == CTX 10266 * 10267 * Explicit input: 10268 * SRC == any register 10269 * IMM == 32-bit immediate 10270 * 10271 * Output: 10272 * R0 - 8/16/32-bit skb data converted to cpu endianness 10273 */ 10274 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10275 { 10276 struct bpf_reg_state *regs = cur_regs(env); 10277 static const int ctx_reg = BPF_REG_6; 10278 u8 mode = BPF_MODE(insn->code); 10279 int i, err; 10280 10281 if (!may_access_skb(resolve_prog_type(env->prog))) { 10282 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10283 return -EINVAL; 10284 } 10285 10286 if (!env->ops->gen_ld_abs) { 10287 verbose(env, "bpf verifier is misconfigured\n"); 10288 return -EINVAL; 10289 } 10290 10291 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10292 BPF_SIZE(insn->code) == BPF_DW || 10293 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10294 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10295 return -EINVAL; 10296 } 10297 10298 /* check whether implicit source operand (register R6) is readable */ 10299 err = check_reg_arg(env, ctx_reg, SRC_OP); 10300 if (err) 10301 return err; 10302 10303 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10304 * gen_ld_abs() may terminate the program at runtime, leading to 10305 * reference leak. 10306 */ 10307 err = check_reference_leak(env); 10308 if (err) { 10309 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10310 return err; 10311 } 10312 10313 if (env->cur_state->active_spin_lock) { 10314 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10315 return -EINVAL; 10316 } 10317 10318 if (regs[ctx_reg].type != PTR_TO_CTX) { 10319 verbose(env, 10320 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10321 return -EINVAL; 10322 } 10323 10324 if (mode == BPF_IND) { 10325 /* check explicit source operand */ 10326 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10327 if (err) 10328 return err; 10329 } 10330 10331 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10332 if (err < 0) 10333 return err; 10334 10335 /* reset caller saved regs to unreadable */ 10336 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10337 mark_reg_not_init(env, regs, caller_saved[i]); 10338 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10339 } 10340 10341 /* mark destination R0 register as readable, since it contains 10342 * the value fetched from the packet. 10343 * Already marked as written above. 10344 */ 10345 mark_reg_unknown(env, regs, BPF_REG_0); 10346 /* ld_abs load up to 32-bit skb data. */ 10347 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10348 return 0; 10349 } 10350 10351 static int check_return_code(struct bpf_verifier_env *env) 10352 { 10353 struct tnum enforce_attach_type_range = tnum_unknown; 10354 const struct bpf_prog *prog = env->prog; 10355 struct bpf_reg_state *reg; 10356 struct tnum range = tnum_range(0, 1); 10357 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10358 int err; 10359 struct bpf_func_state *frame = env->cur_state->frame[0]; 10360 const bool is_subprog = frame->subprogno; 10361 10362 /* LSM and struct_ops func-ptr's return type could be "void" */ 10363 if (!is_subprog && 10364 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 10365 prog_type == BPF_PROG_TYPE_LSM) && 10366 !prog->aux->attach_func_proto->type) 10367 return 0; 10368 10369 /* eBPF calling convention is such that R0 is used 10370 * to return the value from eBPF program. 10371 * Make sure that it's readable at this time 10372 * of bpf_exit, which means that program wrote 10373 * something into it earlier 10374 */ 10375 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10376 if (err) 10377 return err; 10378 10379 if (is_pointer_value(env, BPF_REG_0)) { 10380 verbose(env, "R0 leaks addr as return value\n"); 10381 return -EACCES; 10382 } 10383 10384 reg = cur_regs(env) + BPF_REG_0; 10385 10386 if (frame->in_async_callback_fn) { 10387 /* enforce return zero from async callbacks like timer */ 10388 if (reg->type != SCALAR_VALUE) { 10389 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10390 reg_type_str(env, reg->type)); 10391 return -EINVAL; 10392 } 10393 10394 if (!tnum_in(tnum_const(0), reg->var_off)) { 10395 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10396 return -EINVAL; 10397 } 10398 return 0; 10399 } 10400 10401 if (is_subprog) { 10402 if (reg->type != SCALAR_VALUE) { 10403 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10404 reg_type_str(env, reg->type)); 10405 return -EINVAL; 10406 } 10407 return 0; 10408 } 10409 10410 switch (prog_type) { 10411 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10412 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10413 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10414 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10415 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10416 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10417 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10418 range = tnum_range(1, 1); 10419 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10420 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10421 range = tnum_range(0, 3); 10422 break; 10423 case BPF_PROG_TYPE_CGROUP_SKB: 10424 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10425 range = tnum_range(0, 3); 10426 enforce_attach_type_range = tnum_range(2, 3); 10427 } 10428 break; 10429 case BPF_PROG_TYPE_CGROUP_SOCK: 10430 case BPF_PROG_TYPE_SOCK_OPS: 10431 case BPF_PROG_TYPE_CGROUP_DEVICE: 10432 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10433 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10434 break; 10435 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10436 if (!env->prog->aux->attach_btf_id) 10437 return 0; 10438 range = tnum_const(0); 10439 break; 10440 case BPF_PROG_TYPE_TRACING: 10441 switch (env->prog->expected_attach_type) { 10442 case BPF_TRACE_FENTRY: 10443 case BPF_TRACE_FEXIT: 10444 range = tnum_const(0); 10445 break; 10446 case BPF_TRACE_RAW_TP: 10447 case BPF_MODIFY_RETURN: 10448 return 0; 10449 case BPF_TRACE_ITER: 10450 break; 10451 default: 10452 return -ENOTSUPP; 10453 } 10454 break; 10455 case BPF_PROG_TYPE_SK_LOOKUP: 10456 range = tnum_range(SK_DROP, SK_PASS); 10457 break; 10458 case BPF_PROG_TYPE_EXT: 10459 /* freplace program can return anything as its return value 10460 * depends on the to-be-replaced kernel func or bpf program. 10461 */ 10462 default: 10463 return 0; 10464 } 10465 10466 if (reg->type != SCALAR_VALUE) { 10467 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10468 reg_type_str(env, reg->type)); 10469 return -EINVAL; 10470 } 10471 10472 if (!tnum_in(range, reg->var_off)) { 10473 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10474 return -EINVAL; 10475 } 10476 10477 if (!tnum_is_unknown(enforce_attach_type_range) && 10478 tnum_in(enforce_attach_type_range, reg->var_off)) 10479 env->prog->enforce_expected_attach_type = 1; 10480 return 0; 10481 } 10482 10483 /* non-recursive DFS pseudo code 10484 * 1 procedure DFS-iterative(G,v): 10485 * 2 label v as discovered 10486 * 3 let S be a stack 10487 * 4 S.push(v) 10488 * 5 while S is not empty 10489 * 6 t <- S.pop() 10490 * 7 if t is what we're looking for: 10491 * 8 return t 10492 * 9 for all edges e in G.adjacentEdges(t) do 10493 * 10 if edge e is already labelled 10494 * 11 continue with the next edge 10495 * 12 w <- G.adjacentVertex(t,e) 10496 * 13 if vertex w is not discovered and not explored 10497 * 14 label e as tree-edge 10498 * 15 label w as discovered 10499 * 16 S.push(w) 10500 * 17 continue at 5 10501 * 18 else if vertex w is discovered 10502 * 19 label e as back-edge 10503 * 20 else 10504 * 21 // vertex w is explored 10505 * 22 label e as forward- or cross-edge 10506 * 23 label t as explored 10507 * 24 S.pop() 10508 * 10509 * convention: 10510 * 0x10 - discovered 10511 * 0x11 - discovered and fall-through edge labelled 10512 * 0x12 - discovered and fall-through and branch edges labelled 10513 * 0x20 - explored 10514 */ 10515 10516 enum { 10517 DISCOVERED = 0x10, 10518 EXPLORED = 0x20, 10519 FALLTHROUGH = 1, 10520 BRANCH = 2, 10521 }; 10522 10523 static u32 state_htab_size(struct bpf_verifier_env *env) 10524 { 10525 return env->prog->len; 10526 } 10527 10528 static struct bpf_verifier_state_list **explored_state( 10529 struct bpf_verifier_env *env, 10530 int idx) 10531 { 10532 struct bpf_verifier_state *cur = env->cur_state; 10533 struct bpf_func_state *state = cur->frame[cur->curframe]; 10534 10535 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10536 } 10537 10538 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10539 { 10540 env->insn_aux_data[idx].prune_point = true; 10541 } 10542 10543 enum { 10544 DONE_EXPLORING = 0, 10545 KEEP_EXPLORING = 1, 10546 }; 10547 10548 /* t, w, e - match pseudo-code above: 10549 * t - index of current instruction 10550 * w - next instruction 10551 * e - edge 10552 */ 10553 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10554 bool loop_ok) 10555 { 10556 int *insn_stack = env->cfg.insn_stack; 10557 int *insn_state = env->cfg.insn_state; 10558 10559 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10560 return DONE_EXPLORING; 10561 10562 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10563 return DONE_EXPLORING; 10564 10565 if (w < 0 || w >= env->prog->len) { 10566 verbose_linfo(env, t, "%d: ", t); 10567 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10568 return -EINVAL; 10569 } 10570 10571 if (e == BRANCH) 10572 /* mark branch target for state pruning */ 10573 init_explored_state(env, w); 10574 10575 if (insn_state[w] == 0) { 10576 /* tree-edge */ 10577 insn_state[t] = DISCOVERED | e; 10578 insn_state[w] = DISCOVERED; 10579 if (env->cfg.cur_stack >= env->prog->len) 10580 return -E2BIG; 10581 insn_stack[env->cfg.cur_stack++] = w; 10582 return KEEP_EXPLORING; 10583 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10584 if (loop_ok && env->bpf_capable) 10585 return DONE_EXPLORING; 10586 verbose_linfo(env, t, "%d: ", t); 10587 verbose_linfo(env, w, "%d: ", w); 10588 verbose(env, "back-edge from insn %d to %d\n", t, w); 10589 return -EINVAL; 10590 } else if (insn_state[w] == EXPLORED) { 10591 /* forward- or cross-edge */ 10592 insn_state[t] = DISCOVERED | e; 10593 } else { 10594 verbose(env, "insn state internal bug\n"); 10595 return -EFAULT; 10596 } 10597 return DONE_EXPLORING; 10598 } 10599 10600 static int visit_func_call_insn(int t, int insn_cnt, 10601 struct bpf_insn *insns, 10602 struct bpf_verifier_env *env, 10603 bool visit_callee) 10604 { 10605 int ret; 10606 10607 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10608 if (ret) 10609 return ret; 10610 10611 if (t + 1 < insn_cnt) 10612 init_explored_state(env, t + 1); 10613 if (visit_callee) { 10614 init_explored_state(env, t); 10615 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10616 /* It's ok to allow recursion from CFG point of 10617 * view. __check_func_call() will do the actual 10618 * check. 10619 */ 10620 bpf_pseudo_func(insns + t)); 10621 } 10622 return ret; 10623 } 10624 10625 /* Visits the instruction at index t and returns one of the following: 10626 * < 0 - an error occurred 10627 * DONE_EXPLORING - the instruction was fully explored 10628 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10629 */ 10630 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10631 { 10632 struct bpf_insn *insns = env->prog->insnsi; 10633 int ret; 10634 10635 if (bpf_pseudo_func(insns + t)) 10636 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10637 10638 /* All non-branch instructions have a single fall-through edge. */ 10639 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10640 BPF_CLASS(insns[t].code) != BPF_JMP32) 10641 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10642 10643 switch (BPF_OP(insns[t].code)) { 10644 case BPF_EXIT: 10645 return DONE_EXPLORING; 10646 10647 case BPF_CALL: 10648 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10649 /* Mark this call insn to trigger is_state_visited() check 10650 * before call itself is processed by __check_func_call(). 10651 * Otherwise new async state will be pushed for further 10652 * exploration. 10653 */ 10654 init_explored_state(env, t); 10655 return visit_func_call_insn(t, insn_cnt, insns, env, 10656 insns[t].src_reg == BPF_PSEUDO_CALL); 10657 10658 case BPF_JA: 10659 if (BPF_SRC(insns[t].code) != BPF_K) 10660 return -EINVAL; 10661 10662 /* unconditional jump with single edge */ 10663 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10664 true); 10665 if (ret) 10666 return ret; 10667 10668 /* unconditional jmp is not a good pruning point, 10669 * but it's marked, since backtracking needs 10670 * to record jmp history in is_state_visited(). 10671 */ 10672 init_explored_state(env, t + insns[t].off + 1); 10673 /* tell verifier to check for equivalent states 10674 * after every call and jump 10675 */ 10676 if (t + 1 < insn_cnt) 10677 init_explored_state(env, t + 1); 10678 10679 return ret; 10680 10681 default: 10682 /* conditional jump with two edges */ 10683 init_explored_state(env, t); 10684 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10685 if (ret) 10686 return ret; 10687 10688 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10689 } 10690 } 10691 10692 /* non-recursive depth-first-search to detect loops in BPF program 10693 * loop == back-edge in directed graph 10694 */ 10695 static int check_cfg(struct bpf_verifier_env *env) 10696 { 10697 int insn_cnt = env->prog->len; 10698 int *insn_stack, *insn_state; 10699 int ret = 0; 10700 int i; 10701 10702 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10703 if (!insn_state) 10704 return -ENOMEM; 10705 10706 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10707 if (!insn_stack) { 10708 kvfree(insn_state); 10709 return -ENOMEM; 10710 } 10711 10712 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10713 insn_stack[0] = 0; /* 0 is the first instruction */ 10714 env->cfg.cur_stack = 1; 10715 10716 while (env->cfg.cur_stack > 0) { 10717 int t = insn_stack[env->cfg.cur_stack - 1]; 10718 10719 ret = visit_insn(t, insn_cnt, env); 10720 switch (ret) { 10721 case DONE_EXPLORING: 10722 insn_state[t] = EXPLORED; 10723 env->cfg.cur_stack--; 10724 break; 10725 case KEEP_EXPLORING: 10726 break; 10727 default: 10728 if (ret > 0) { 10729 verbose(env, "visit_insn internal bug\n"); 10730 ret = -EFAULT; 10731 } 10732 goto err_free; 10733 } 10734 } 10735 10736 if (env->cfg.cur_stack < 0) { 10737 verbose(env, "pop stack internal bug\n"); 10738 ret = -EFAULT; 10739 goto err_free; 10740 } 10741 10742 for (i = 0; i < insn_cnt; i++) { 10743 if (insn_state[i] != EXPLORED) { 10744 verbose(env, "unreachable insn %d\n", i); 10745 ret = -EINVAL; 10746 goto err_free; 10747 } 10748 } 10749 ret = 0; /* cfg looks good */ 10750 10751 err_free: 10752 kvfree(insn_state); 10753 kvfree(insn_stack); 10754 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10755 return ret; 10756 } 10757 10758 static int check_abnormal_return(struct bpf_verifier_env *env) 10759 { 10760 int i; 10761 10762 for (i = 1; i < env->subprog_cnt; i++) { 10763 if (env->subprog_info[i].has_ld_abs) { 10764 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10765 return -EINVAL; 10766 } 10767 if (env->subprog_info[i].has_tail_call) { 10768 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10769 return -EINVAL; 10770 } 10771 } 10772 return 0; 10773 } 10774 10775 /* The minimum supported BTF func info size */ 10776 #define MIN_BPF_FUNCINFO_SIZE 8 10777 #define MAX_FUNCINFO_REC_SIZE 252 10778 10779 static int check_btf_func(struct bpf_verifier_env *env, 10780 const union bpf_attr *attr, 10781 bpfptr_t uattr) 10782 { 10783 const struct btf_type *type, *func_proto, *ret_type; 10784 u32 i, nfuncs, urec_size, min_size; 10785 u32 krec_size = sizeof(struct bpf_func_info); 10786 struct bpf_func_info *krecord; 10787 struct bpf_func_info_aux *info_aux = NULL; 10788 struct bpf_prog *prog; 10789 const struct btf *btf; 10790 bpfptr_t urecord; 10791 u32 prev_offset = 0; 10792 bool scalar_return; 10793 int ret = -ENOMEM; 10794 10795 nfuncs = attr->func_info_cnt; 10796 if (!nfuncs) { 10797 if (check_abnormal_return(env)) 10798 return -EINVAL; 10799 return 0; 10800 } 10801 10802 if (nfuncs != env->subprog_cnt) { 10803 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10804 return -EINVAL; 10805 } 10806 10807 urec_size = attr->func_info_rec_size; 10808 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10809 urec_size > MAX_FUNCINFO_REC_SIZE || 10810 urec_size % sizeof(u32)) { 10811 verbose(env, "invalid func info rec size %u\n", urec_size); 10812 return -EINVAL; 10813 } 10814 10815 prog = env->prog; 10816 btf = prog->aux->btf; 10817 10818 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10819 min_size = min_t(u32, krec_size, urec_size); 10820 10821 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10822 if (!krecord) 10823 return -ENOMEM; 10824 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10825 if (!info_aux) 10826 goto err_free; 10827 10828 for (i = 0; i < nfuncs; i++) { 10829 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10830 if (ret) { 10831 if (ret == -E2BIG) { 10832 verbose(env, "nonzero tailing record in func info"); 10833 /* set the size kernel expects so loader can zero 10834 * out the rest of the record. 10835 */ 10836 if (copy_to_bpfptr_offset(uattr, 10837 offsetof(union bpf_attr, func_info_rec_size), 10838 &min_size, sizeof(min_size))) 10839 ret = -EFAULT; 10840 } 10841 goto err_free; 10842 } 10843 10844 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10845 ret = -EFAULT; 10846 goto err_free; 10847 } 10848 10849 /* check insn_off */ 10850 ret = -EINVAL; 10851 if (i == 0) { 10852 if (krecord[i].insn_off) { 10853 verbose(env, 10854 "nonzero insn_off %u for the first func info record", 10855 krecord[i].insn_off); 10856 goto err_free; 10857 } 10858 } else if (krecord[i].insn_off <= prev_offset) { 10859 verbose(env, 10860 "same or smaller insn offset (%u) than previous func info record (%u)", 10861 krecord[i].insn_off, prev_offset); 10862 goto err_free; 10863 } 10864 10865 if (env->subprog_info[i].start != krecord[i].insn_off) { 10866 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10867 goto err_free; 10868 } 10869 10870 /* check type_id */ 10871 type = btf_type_by_id(btf, krecord[i].type_id); 10872 if (!type || !btf_type_is_func(type)) { 10873 verbose(env, "invalid type id %d in func info", 10874 krecord[i].type_id); 10875 goto err_free; 10876 } 10877 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10878 10879 func_proto = btf_type_by_id(btf, type->type); 10880 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10881 /* btf_func_check() already verified it during BTF load */ 10882 goto err_free; 10883 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10884 scalar_return = 10885 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10886 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10887 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10888 goto err_free; 10889 } 10890 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10891 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10892 goto err_free; 10893 } 10894 10895 prev_offset = krecord[i].insn_off; 10896 bpfptr_add(&urecord, urec_size); 10897 } 10898 10899 prog->aux->func_info = krecord; 10900 prog->aux->func_info_cnt = nfuncs; 10901 prog->aux->func_info_aux = info_aux; 10902 return 0; 10903 10904 err_free: 10905 kvfree(krecord); 10906 kfree(info_aux); 10907 return ret; 10908 } 10909 10910 static void adjust_btf_func(struct bpf_verifier_env *env) 10911 { 10912 struct bpf_prog_aux *aux = env->prog->aux; 10913 int i; 10914 10915 if (!aux->func_info) 10916 return; 10917 10918 for (i = 0; i < env->subprog_cnt; i++) 10919 aux->func_info[i].insn_off = env->subprog_info[i].start; 10920 } 10921 10922 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 10923 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10924 10925 static int check_btf_line(struct bpf_verifier_env *env, 10926 const union bpf_attr *attr, 10927 bpfptr_t uattr) 10928 { 10929 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10930 struct bpf_subprog_info *sub; 10931 struct bpf_line_info *linfo; 10932 struct bpf_prog *prog; 10933 const struct btf *btf; 10934 bpfptr_t ulinfo; 10935 int err; 10936 10937 nr_linfo = attr->line_info_cnt; 10938 if (!nr_linfo) 10939 return 0; 10940 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10941 return -EINVAL; 10942 10943 rec_size = attr->line_info_rec_size; 10944 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10945 rec_size > MAX_LINEINFO_REC_SIZE || 10946 rec_size & (sizeof(u32) - 1)) 10947 return -EINVAL; 10948 10949 /* Need to zero it in case the userspace may 10950 * pass in a smaller bpf_line_info object. 10951 */ 10952 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10953 GFP_KERNEL | __GFP_NOWARN); 10954 if (!linfo) 10955 return -ENOMEM; 10956 10957 prog = env->prog; 10958 btf = prog->aux->btf; 10959 10960 s = 0; 10961 sub = env->subprog_info; 10962 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10963 expected_size = sizeof(struct bpf_line_info); 10964 ncopy = min_t(u32, expected_size, rec_size); 10965 for (i = 0; i < nr_linfo; i++) { 10966 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10967 if (err) { 10968 if (err == -E2BIG) { 10969 verbose(env, "nonzero tailing record in line_info"); 10970 if (copy_to_bpfptr_offset(uattr, 10971 offsetof(union bpf_attr, line_info_rec_size), 10972 &expected_size, sizeof(expected_size))) 10973 err = -EFAULT; 10974 } 10975 goto err_free; 10976 } 10977 10978 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10979 err = -EFAULT; 10980 goto err_free; 10981 } 10982 10983 /* 10984 * Check insn_off to ensure 10985 * 1) strictly increasing AND 10986 * 2) bounded by prog->len 10987 * 10988 * The linfo[0].insn_off == 0 check logically falls into 10989 * the later "missing bpf_line_info for func..." case 10990 * because the first linfo[0].insn_off must be the 10991 * first sub also and the first sub must have 10992 * subprog_info[0].start == 0. 10993 */ 10994 if ((i && linfo[i].insn_off <= prev_offset) || 10995 linfo[i].insn_off >= prog->len) { 10996 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10997 i, linfo[i].insn_off, prev_offset, 10998 prog->len); 10999 err = -EINVAL; 11000 goto err_free; 11001 } 11002 11003 if (!prog->insnsi[linfo[i].insn_off].code) { 11004 verbose(env, 11005 "Invalid insn code at line_info[%u].insn_off\n", 11006 i); 11007 err = -EINVAL; 11008 goto err_free; 11009 } 11010 11011 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11012 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11013 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11014 err = -EINVAL; 11015 goto err_free; 11016 } 11017 11018 if (s != env->subprog_cnt) { 11019 if (linfo[i].insn_off == sub[s].start) { 11020 sub[s].linfo_idx = i; 11021 s++; 11022 } else if (sub[s].start < linfo[i].insn_off) { 11023 verbose(env, "missing bpf_line_info for func#%u\n", s); 11024 err = -EINVAL; 11025 goto err_free; 11026 } 11027 } 11028 11029 prev_offset = linfo[i].insn_off; 11030 bpfptr_add(&ulinfo, rec_size); 11031 } 11032 11033 if (s != env->subprog_cnt) { 11034 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11035 env->subprog_cnt - s, s); 11036 err = -EINVAL; 11037 goto err_free; 11038 } 11039 11040 prog->aux->linfo = linfo; 11041 prog->aux->nr_linfo = nr_linfo; 11042 11043 return 0; 11044 11045 err_free: 11046 kvfree(linfo); 11047 return err; 11048 } 11049 11050 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11051 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11052 11053 static int check_core_relo(struct bpf_verifier_env *env, 11054 const union bpf_attr *attr, 11055 bpfptr_t uattr) 11056 { 11057 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11058 struct bpf_core_relo core_relo = {}; 11059 struct bpf_prog *prog = env->prog; 11060 const struct btf *btf = prog->aux->btf; 11061 struct bpf_core_ctx ctx = { 11062 .log = &env->log, 11063 .btf = btf, 11064 }; 11065 bpfptr_t u_core_relo; 11066 int err; 11067 11068 nr_core_relo = attr->core_relo_cnt; 11069 if (!nr_core_relo) 11070 return 0; 11071 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11072 return -EINVAL; 11073 11074 rec_size = attr->core_relo_rec_size; 11075 if (rec_size < MIN_CORE_RELO_SIZE || 11076 rec_size > MAX_CORE_RELO_SIZE || 11077 rec_size % sizeof(u32)) 11078 return -EINVAL; 11079 11080 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11081 expected_size = sizeof(struct bpf_core_relo); 11082 ncopy = min_t(u32, expected_size, rec_size); 11083 11084 /* Unlike func_info and line_info, copy and apply each CO-RE 11085 * relocation record one at a time. 11086 */ 11087 for (i = 0; i < nr_core_relo; i++) { 11088 /* future proofing when sizeof(bpf_core_relo) changes */ 11089 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11090 if (err) { 11091 if (err == -E2BIG) { 11092 verbose(env, "nonzero tailing record in core_relo"); 11093 if (copy_to_bpfptr_offset(uattr, 11094 offsetof(union bpf_attr, core_relo_rec_size), 11095 &expected_size, sizeof(expected_size))) 11096 err = -EFAULT; 11097 } 11098 break; 11099 } 11100 11101 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11102 err = -EFAULT; 11103 break; 11104 } 11105 11106 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11107 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11108 i, core_relo.insn_off, prog->len); 11109 err = -EINVAL; 11110 break; 11111 } 11112 11113 err = bpf_core_apply(&ctx, &core_relo, i, 11114 &prog->insnsi[core_relo.insn_off / 8]); 11115 if (err) 11116 break; 11117 bpfptr_add(&u_core_relo, rec_size); 11118 } 11119 return err; 11120 } 11121 11122 static int check_btf_info(struct bpf_verifier_env *env, 11123 const union bpf_attr *attr, 11124 bpfptr_t uattr) 11125 { 11126 struct btf *btf; 11127 int err; 11128 11129 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11130 if (check_abnormal_return(env)) 11131 return -EINVAL; 11132 return 0; 11133 } 11134 11135 btf = btf_get_by_fd(attr->prog_btf_fd); 11136 if (IS_ERR(btf)) 11137 return PTR_ERR(btf); 11138 if (btf_is_kernel(btf)) { 11139 btf_put(btf); 11140 return -EACCES; 11141 } 11142 env->prog->aux->btf = btf; 11143 11144 err = check_btf_func(env, attr, uattr); 11145 if (err) 11146 return err; 11147 11148 err = check_btf_line(env, attr, uattr); 11149 if (err) 11150 return err; 11151 11152 err = check_core_relo(env, attr, uattr); 11153 if (err) 11154 return err; 11155 11156 return 0; 11157 } 11158 11159 /* check %cur's range satisfies %old's */ 11160 static bool range_within(struct bpf_reg_state *old, 11161 struct bpf_reg_state *cur) 11162 { 11163 return old->umin_value <= cur->umin_value && 11164 old->umax_value >= cur->umax_value && 11165 old->smin_value <= cur->smin_value && 11166 old->smax_value >= cur->smax_value && 11167 old->u32_min_value <= cur->u32_min_value && 11168 old->u32_max_value >= cur->u32_max_value && 11169 old->s32_min_value <= cur->s32_min_value && 11170 old->s32_max_value >= cur->s32_max_value; 11171 } 11172 11173 /* If in the old state two registers had the same id, then they need to have 11174 * the same id in the new state as well. But that id could be different from 11175 * the old state, so we need to track the mapping from old to new ids. 11176 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11177 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11178 * regs with a different old id could still have new id 9, we don't care about 11179 * that. 11180 * So we look through our idmap to see if this old id has been seen before. If 11181 * so, we require the new id to match; otherwise, we add the id pair to the map. 11182 */ 11183 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11184 { 11185 unsigned int i; 11186 11187 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11188 if (!idmap[i].old) { 11189 /* Reached an empty slot; haven't seen this id before */ 11190 idmap[i].old = old_id; 11191 idmap[i].cur = cur_id; 11192 return true; 11193 } 11194 if (idmap[i].old == old_id) 11195 return idmap[i].cur == cur_id; 11196 } 11197 /* We ran out of idmap slots, which should be impossible */ 11198 WARN_ON_ONCE(1); 11199 return false; 11200 } 11201 11202 static void clean_func_state(struct bpf_verifier_env *env, 11203 struct bpf_func_state *st) 11204 { 11205 enum bpf_reg_liveness live; 11206 int i, j; 11207 11208 for (i = 0; i < BPF_REG_FP; i++) { 11209 live = st->regs[i].live; 11210 /* liveness must not touch this register anymore */ 11211 st->regs[i].live |= REG_LIVE_DONE; 11212 if (!(live & REG_LIVE_READ)) 11213 /* since the register is unused, clear its state 11214 * to make further comparison simpler 11215 */ 11216 __mark_reg_not_init(env, &st->regs[i]); 11217 } 11218 11219 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11220 live = st->stack[i].spilled_ptr.live; 11221 /* liveness must not touch this stack slot anymore */ 11222 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11223 if (!(live & REG_LIVE_READ)) { 11224 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11225 for (j = 0; j < BPF_REG_SIZE; j++) 11226 st->stack[i].slot_type[j] = STACK_INVALID; 11227 } 11228 } 11229 } 11230 11231 static void clean_verifier_state(struct bpf_verifier_env *env, 11232 struct bpf_verifier_state *st) 11233 { 11234 int i; 11235 11236 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11237 /* all regs in this state in all frames were already marked */ 11238 return; 11239 11240 for (i = 0; i <= st->curframe; i++) 11241 clean_func_state(env, st->frame[i]); 11242 } 11243 11244 /* the parentage chains form a tree. 11245 * the verifier states are added to state lists at given insn and 11246 * pushed into state stack for future exploration. 11247 * when the verifier reaches bpf_exit insn some of the verifer states 11248 * stored in the state lists have their final liveness state already, 11249 * but a lot of states will get revised from liveness point of view when 11250 * the verifier explores other branches. 11251 * Example: 11252 * 1: r0 = 1 11253 * 2: if r1 == 100 goto pc+1 11254 * 3: r0 = 2 11255 * 4: exit 11256 * when the verifier reaches exit insn the register r0 in the state list of 11257 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11258 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11259 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11260 * 11261 * Since the verifier pushes the branch states as it sees them while exploring 11262 * the program the condition of walking the branch instruction for the second 11263 * time means that all states below this branch were already explored and 11264 * their final liveness marks are already propagated. 11265 * Hence when the verifier completes the search of state list in is_state_visited() 11266 * we can call this clean_live_states() function to mark all liveness states 11267 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11268 * will not be used. 11269 * This function also clears the registers and stack for states that !READ 11270 * to simplify state merging. 11271 * 11272 * Important note here that walking the same branch instruction in the callee 11273 * doesn't meant that the states are DONE. The verifier has to compare 11274 * the callsites 11275 */ 11276 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11277 struct bpf_verifier_state *cur) 11278 { 11279 struct bpf_verifier_state_list *sl; 11280 int i; 11281 11282 sl = *explored_state(env, insn); 11283 while (sl) { 11284 if (sl->state.branches) 11285 goto next; 11286 if (sl->state.insn_idx != insn || 11287 sl->state.curframe != cur->curframe) 11288 goto next; 11289 for (i = 0; i <= cur->curframe; i++) 11290 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11291 goto next; 11292 clean_verifier_state(env, &sl->state); 11293 next: 11294 sl = sl->next; 11295 } 11296 } 11297 11298 /* Returns true if (rold safe implies rcur safe) */ 11299 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11300 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11301 { 11302 bool equal; 11303 11304 if (!(rold->live & REG_LIVE_READ)) 11305 /* explored state didn't use this */ 11306 return true; 11307 11308 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11309 11310 if (rold->type == PTR_TO_STACK) 11311 /* two stack pointers are equal only if they're pointing to 11312 * the same stack frame, since fp-8 in foo != fp-8 in bar 11313 */ 11314 return equal && rold->frameno == rcur->frameno; 11315 11316 if (equal) 11317 return true; 11318 11319 if (rold->type == NOT_INIT) 11320 /* explored state can't have used this */ 11321 return true; 11322 if (rcur->type == NOT_INIT) 11323 return false; 11324 switch (base_type(rold->type)) { 11325 case SCALAR_VALUE: 11326 if (env->explore_alu_limits) 11327 return false; 11328 if (rcur->type == SCALAR_VALUE) { 11329 if (!rold->precise && !rcur->precise) 11330 return true; 11331 /* new val must satisfy old val knowledge */ 11332 return range_within(rold, rcur) && 11333 tnum_in(rold->var_off, rcur->var_off); 11334 } else { 11335 /* We're trying to use a pointer in place of a scalar. 11336 * Even if the scalar was unbounded, this could lead to 11337 * pointer leaks because scalars are allowed to leak 11338 * while pointers are not. We could make this safe in 11339 * special cases if root is calling us, but it's 11340 * probably not worth the hassle. 11341 */ 11342 return false; 11343 } 11344 case PTR_TO_MAP_KEY: 11345 case PTR_TO_MAP_VALUE: 11346 /* a PTR_TO_MAP_VALUE could be safe to use as a 11347 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11348 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11349 * checked, doing so could have affected others with the same 11350 * id, and we can't check for that because we lost the id when 11351 * we converted to a PTR_TO_MAP_VALUE. 11352 */ 11353 if (type_may_be_null(rold->type)) { 11354 if (!type_may_be_null(rcur->type)) 11355 return false; 11356 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11357 return false; 11358 /* Check our ids match any regs they're supposed to */ 11359 return check_ids(rold->id, rcur->id, idmap); 11360 } 11361 11362 /* If the new min/max/var_off satisfy the old ones and 11363 * everything else matches, we are OK. 11364 * 'id' is not compared, since it's only used for maps with 11365 * bpf_spin_lock inside map element and in such cases if 11366 * the rest of the prog is valid for one map element then 11367 * it's valid for all map elements regardless of the key 11368 * used in bpf_map_lookup() 11369 */ 11370 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11371 range_within(rold, rcur) && 11372 tnum_in(rold->var_off, rcur->var_off); 11373 case PTR_TO_PACKET_META: 11374 case PTR_TO_PACKET: 11375 if (rcur->type != rold->type) 11376 return false; 11377 /* We must have at least as much range as the old ptr 11378 * did, so that any accesses which were safe before are 11379 * still safe. This is true even if old range < old off, 11380 * since someone could have accessed through (ptr - k), or 11381 * even done ptr -= k in a register, to get a safe access. 11382 */ 11383 if (rold->range > rcur->range) 11384 return false; 11385 /* If the offsets don't match, we can't trust our alignment; 11386 * nor can we be sure that we won't fall out of range. 11387 */ 11388 if (rold->off != rcur->off) 11389 return false; 11390 /* id relations must be preserved */ 11391 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11392 return false; 11393 /* new val must satisfy old val knowledge */ 11394 return range_within(rold, rcur) && 11395 tnum_in(rold->var_off, rcur->var_off); 11396 case PTR_TO_CTX: 11397 case CONST_PTR_TO_MAP: 11398 case PTR_TO_PACKET_END: 11399 case PTR_TO_FLOW_KEYS: 11400 case PTR_TO_SOCKET: 11401 case PTR_TO_SOCK_COMMON: 11402 case PTR_TO_TCP_SOCK: 11403 case PTR_TO_XDP_SOCK: 11404 /* Only valid matches are exact, which memcmp() above 11405 * would have accepted 11406 */ 11407 default: 11408 /* Don't know what's going on, just say it's not safe */ 11409 return false; 11410 } 11411 11412 /* Shouldn't get here; if we do, say it's not safe */ 11413 WARN_ON_ONCE(1); 11414 return false; 11415 } 11416 11417 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11418 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11419 { 11420 int i, spi; 11421 11422 /* walk slots of the explored stack and ignore any additional 11423 * slots in the current stack, since explored(safe) state 11424 * didn't use them 11425 */ 11426 for (i = 0; i < old->allocated_stack; i++) { 11427 spi = i / BPF_REG_SIZE; 11428 11429 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11430 i += BPF_REG_SIZE - 1; 11431 /* explored state didn't use this */ 11432 continue; 11433 } 11434 11435 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11436 continue; 11437 11438 /* explored stack has more populated slots than current stack 11439 * and these slots were used 11440 */ 11441 if (i >= cur->allocated_stack) 11442 return false; 11443 11444 /* if old state was safe with misc data in the stack 11445 * it will be safe with zero-initialized stack. 11446 * The opposite is not true 11447 */ 11448 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11449 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11450 continue; 11451 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11452 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11453 /* Ex: old explored (safe) state has STACK_SPILL in 11454 * this stack slot, but current has STACK_MISC -> 11455 * this verifier states are not equivalent, 11456 * return false to continue verification of this path 11457 */ 11458 return false; 11459 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11460 continue; 11461 if (!is_spilled_reg(&old->stack[spi])) 11462 continue; 11463 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11464 &cur->stack[spi].spilled_ptr, idmap)) 11465 /* when explored and current stack slot are both storing 11466 * spilled registers, check that stored pointers types 11467 * are the same as well. 11468 * Ex: explored safe path could have stored 11469 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11470 * but current path has stored: 11471 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11472 * such verifier states are not equivalent. 11473 * return false to continue verification of this path 11474 */ 11475 return false; 11476 } 11477 return true; 11478 } 11479 11480 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11481 { 11482 if (old->acquired_refs != cur->acquired_refs) 11483 return false; 11484 return !memcmp(old->refs, cur->refs, 11485 sizeof(*old->refs) * old->acquired_refs); 11486 } 11487 11488 /* compare two verifier states 11489 * 11490 * all states stored in state_list are known to be valid, since 11491 * verifier reached 'bpf_exit' instruction through them 11492 * 11493 * this function is called when verifier exploring different branches of 11494 * execution popped from the state stack. If it sees an old state that has 11495 * more strict register state and more strict stack state then this execution 11496 * branch doesn't need to be explored further, since verifier already 11497 * concluded that more strict state leads to valid finish. 11498 * 11499 * Therefore two states are equivalent if register state is more conservative 11500 * and explored stack state is more conservative than the current one. 11501 * Example: 11502 * explored current 11503 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11504 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11505 * 11506 * In other words if current stack state (one being explored) has more 11507 * valid slots than old one that already passed validation, it means 11508 * the verifier can stop exploring and conclude that current state is valid too 11509 * 11510 * Similarly with registers. If explored state has register type as invalid 11511 * whereas register type in current state is meaningful, it means that 11512 * the current state will reach 'bpf_exit' instruction safely 11513 */ 11514 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11515 struct bpf_func_state *cur) 11516 { 11517 int i; 11518 11519 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11520 for (i = 0; i < MAX_BPF_REG; i++) 11521 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11522 env->idmap_scratch)) 11523 return false; 11524 11525 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11526 return false; 11527 11528 if (!refsafe(old, cur)) 11529 return false; 11530 11531 return true; 11532 } 11533 11534 static bool states_equal(struct bpf_verifier_env *env, 11535 struct bpf_verifier_state *old, 11536 struct bpf_verifier_state *cur) 11537 { 11538 int i; 11539 11540 if (old->curframe != cur->curframe) 11541 return false; 11542 11543 /* Verification state from speculative execution simulation 11544 * must never prune a non-speculative execution one. 11545 */ 11546 if (old->speculative && !cur->speculative) 11547 return false; 11548 11549 if (old->active_spin_lock != cur->active_spin_lock) 11550 return false; 11551 11552 /* for states to be equal callsites have to be the same 11553 * and all frame states need to be equivalent 11554 */ 11555 for (i = 0; i <= old->curframe; i++) { 11556 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11557 return false; 11558 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11559 return false; 11560 } 11561 return true; 11562 } 11563 11564 /* Return 0 if no propagation happened. Return negative error code if error 11565 * happened. Otherwise, return the propagated bit. 11566 */ 11567 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11568 struct bpf_reg_state *reg, 11569 struct bpf_reg_state *parent_reg) 11570 { 11571 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11572 u8 flag = reg->live & REG_LIVE_READ; 11573 int err; 11574 11575 /* When comes here, read flags of PARENT_REG or REG could be any of 11576 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11577 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11578 */ 11579 if (parent_flag == REG_LIVE_READ64 || 11580 /* Or if there is no read flag from REG. */ 11581 !flag || 11582 /* Or if the read flag from REG is the same as PARENT_REG. */ 11583 parent_flag == flag) 11584 return 0; 11585 11586 err = mark_reg_read(env, reg, parent_reg, flag); 11587 if (err) 11588 return err; 11589 11590 return flag; 11591 } 11592 11593 /* A write screens off any subsequent reads; but write marks come from the 11594 * straight-line code between a state and its parent. When we arrive at an 11595 * equivalent state (jump target or such) we didn't arrive by the straight-line 11596 * code, so read marks in the state must propagate to the parent regardless 11597 * of the state's write marks. That's what 'parent == state->parent' comparison 11598 * in mark_reg_read() is for. 11599 */ 11600 static int propagate_liveness(struct bpf_verifier_env *env, 11601 const struct bpf_verifier_state *vstate, 11602 struct bpf_verifier_state *vparent) 11603 { 11604 struct bpf_reg_state *state_reg, *parent_reg; 11605 struct bpf_func_state *state, *parent; 11606 int i, frame, err = 0; 11607 11608 if (vparent->curframe != vstate->curframe) { 11609 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11610 vparent->curframe, vstate->curframe); 11611 return -EFAULT; 11612 } 11613 /* Propagate read liveness of registers... */ 11614 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11615 for (frame = 0; frame <= vstate->curframe; frame++) { 11616 parent = vparent->frame[frame]; 11617 state = vstate->frame[frame]; 11618 parent_reg = parent->regs; 11619 state_reg = state->regs; 11620 /* We don't need to worry about FP liveness, it's read-only */ 11621 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11622 err = propagate_liveness_reg(env, &state_reg[i], 11623 &parent_reg[i]); 11624 if (err < 0) 11625 return err; 11626 if (err == REG_LIVE_READ64) 11627 mark_insn_zext(env, &parent_reg[i]); 11628 } 11629 11630 /* Propagate stack slots. */ 11631 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11632 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11633 parent_reg = &parent->stack[i].spilled_ptr; 11634 state_reg = &state->stack[i].spilled_ptr; 11635 err = propagate_liveness_reg(env, state_reg, 11636 parent_reg); 11637 if (err < 0) 11638 return err; 11639 } 11640 } 11641 return 0; 11642 } 11643 11644 /* find precise scalars in the previous equivalent state and 11645 * propagate them into the current state 11646 */ 11647 static int propagate_precision(struct bpf_verifier_env *env, 11648 const struct bpf_verifier_state *old) 11649 { 11650 struct bpf_reg_state *state_reg; 11651 struct bpf_func_state *state; 11652 int i, err = 0; 11653 11654 state = old->frame[old->curframe]; 11655 state_reg = state->regs; 11656 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11657 if (state_reg->type != SCALAR_VALUE || 11658 !state_reg->precise) 11659 continue; 11660 if (env->log.level & BPF_LOG_LEVEL2) 11661 verbose(env, "propagating r%d\n", i); 11662 err = mark_chain_precision(env, i); 11663 if (err < 0) 11664 return err; 11665 } 11666 11667 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11668 if (!is_spilled_reg(&state->stack[i])) 11669 continue; 11670 state_reg = &state->stack[i].spilled_ptr; 11671 if (state_reg->type != SCALAR_VALUE || 11672 !state_reg->precise) 11673 continue; 11674 if (env->log.level & BPF_LOG_LEVEL2) 11675 verbose(env, "propagating fp%d\n", 11676 (-i - 1) * BPF_REG_SIZE); 11677 err = mark_chain_precision_stack(env, i); 11678 if (err < 0) 11679 return err; 11680 } 11681 return 0; 11682 } 11683 11684 static bool states_maybe_looping(struct bpf_verifier_state *old, 11685 struct bpf_verifier_state *cur) 11686 { 11687 struct bpf_func_state *fold, *fcur; 11688 int i, fr = cur->curframe; 11689 11690 if (old->curframe != fr) 11691 return false; 11692 11693 fold = old->frame[fr]; 11694 fcur = cur->frame[fr]; 11695 for (i = 0; i < MAX_BPF_REG; i++) 11696 if (memcmp(&fold->regs[i], &fcur->regs[i], 11697 offsetof(struct bpf_reg_state, parent))) 11698 return false; 11699 return true; 11700 } 11701 11702 11703 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11704 { 11705 struct bpf_verifier_state_list *new_sl; 11706 struct bpf_verifier_state_list *sl, **pprev; 11707 struct bpf_verifier_state *cur = env->cur_state, *new; 11708 int i, j, err, states_cnt = 0; 11709 bool add_new_state = env->test_state_freq ? true : false; 11710 11711 cur->last_insn_idx = env->prev_insn_idx; 11712 if (!env->insn_aux_data[insn_idx].prune_point) 11713 /* this 'insn_idx' instruction wasn't marked, so we will not 11714 * be doing state search here 11715 */ 11716 return 0; 11717 11718 /* bpf progs typically have pruning point every 4 instructions 11719 * http://vger.kernel.org/bpfconf2019.html#session-1 11720 * Do not add new state for future pruning if the verifier hasn't seen 11721 * at least 2 jumps and at least 8 instructions. 11722 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11723 * In tests that amounts to up to 50% reduction into total verifier 11724 * memory consumption and 20% verifier time speedup. 11725 */ 11726 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11727 env->insn_processed - env->prev_insn_processed >= 8) 11728 add_new_state = true; 11729 11730 pprev = explored_state(env, insn_idx); 11731 sl = *pprev; 11732 11733 clean_live_states(env, insn_idx, cur); 11734 11735 while (sl) { 11736 states_cnt++; 11737 if (sl->state.insn_idx != insn_idx) 11738 goto next; 11739 11740 if (sl->state.branches) { 11741 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11742 11743 if (frame->in_async_callback_fn && 11744 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11745 /* Different async_entry_cnt means that the verifier is 11746 * processing another entry into async callback. 11747 * Seeing the same state is not an indication of infinite 11748 * loop or infinite recursion. 11749 * But finding the same state doesn't mean that it's safe 11750 * to stop processing the current state. The previous state 11751 * hasn't yet reached bpf_exit, since state.branches > 0. 11752 * Checking in_async_callback_fn alone is not enough either. 11753 * Since the verifier still needs to catch infinite loops 11754 * inside async callbacks. 11755 */ 11756 } else if (states_maybe_looping(&sl->state, cur) && 11757 states_equal(env, &sl->state, cur)) { 11758 verbose_linfo(env, insn_idx, "; "); 11759 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11760 return -EINVAL; 11761 } 11762 /* if the verifier is processing a loop, avoid adding new state 11763 * too often, since different loop iterations have distinct 11764 * states and may not help future pruning. 11765 * This threshold shouldn't be too low to make sure that 11766 * a loop with large bound will be rejected quickly. 11767 * The most abusive loop will be: 11768 * r1 += 1 11769 * if r1 < 1000000 goto pc-2 11770 * 1M insn_procssed limit / 100 == 10k peak states. 11771 * This threshold shouldn't be too high either, since states 11772 * at the end of the loop are likely to be useful in pruning. 11773 */ 11774 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11775 env->insn_processed - env->prev_insn_processed < 100) 11776 add_new_state = false; 11777 goto miss; 11778 } 11779 if (states_equal(env, &sl->state, cur)) { 11780 sl->hit_cnt++; 11781 /* reached equivalent register/stack state, 11782 * prune the search. 11783 * Registers read by the continuation are read by us. 11784 * If we have any write marks in env->cur_state, they 11785 * will prevent corresponding reads in the continuation 11786 * from reaching our parent (an explored_state). Our 11787 * own state will get the read marks recorded, but 11788 * they'll be immediately forgotten as we're pruning 11789 * this state and will pop a new one. 11790 */ 11791 err = propagate_liveness(env, &sl->state, cur); 11792 11793 /* if previous state reached the exit with precision and 11794 * current state is equivalent to it (except precsion marks) 11795 * the precision needs to be propagated back in 11796 * the current state. 11797 */ 11798 err = err ? : push_jmp_history(env, cur); 11799 err = err ? : propagate_precision(env, &sl->state); 11800 if (err) 11801 return err; 11802 return 1; 11803 } 11804 miss: 11805 /* when new state is not going to be added do not increase miss count. 11806 * Otherwise several loop iterations will remove the state 11807 * recorded earlier. The goal of these heuristics is to have 11808 * states from some iterations of the loop (some in the beginning 11809 * and some at the end) to help pruning. 11810 */ 11811 if (add_new_state) 11812 sl->miss_cnt++; 11813 /* heuristic to determine whether this state is beneficial 11814 * to keep checking from state equivalence point of view. 11815 * Higher numbers increase max_states_per_insn and verification time, 11816 * but do not meaningfully decrease insn_processed. 11817 */ 11818 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11819 /* the state is unlikely to be useful. Remove it to 11820 * speed up verification 11821 */ 11822 *pprev = sl->next; 11823 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11824 u32 br = sl->state.branches; 11825 11826 WARN_ONCE(br, 11827 "BUG live_done but branches_to_explore %d\n", 11828 br); 11829 free_verifier_state(&sl->state, false); 11830 kfree(sl); 11831 env->peak_states--; 11832 } else { 11833 /* cannot free this state, since parentage chain may 11834 * walk it later. Add it for free_list instead to 11835 * be freed at the end of verification 11836 */ 11837 sl->next = env->free_list; 11838 env->free_list = sl; 11839 } 11840 sl = *pprev; 11841 continue; 11842 } 11843 next: 11844 pprev = &sl->next; 11845 sl = *pprev; 11846 } 11847 11848 if (env->max_states_per_insn < states_cnt) 11849 env->max_states_per_insn = states_cnt; 11850 11851 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11852 return push_jmp_history(env, cur); 11853 11854 if (!add_new_state) 11855 return push_jmp_history(env, cur); 11856 11857 /* There were no equivalent states, remember the current one. 11858 * Technically the current state is not proven to be safe yet, 11859 * but it will either reach outer most bpf_exit (which means it's safe) 11860 * or it will be rejected. When there are no loops the verifier won't be 11861 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11862 * again on the way to bpf_exit. 11863 * When looping the sl->state.branches will be > 0 and this state 11864 * will not be considered for equivalence until branches == 0. 11865 */ 11866 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11867 if (!new_sl) 11868 return -ENOMEM; 11869 env->total_states++; 11870 env->peak_states++; 11871 env->prev_jmps_processed = env->jmps_processed; 11872 env->prev_insn_processed = env->insn_processed; 11873 11874 /* add new state to the head of linked list */ 11875 new = &new_sl->state; 11876 err = copy_verifier_state(new, cur); 11877 if (err) { 11878 free_verifier_state(new, false); 11879 kfree(new_sl); 11880 return err; 11881 } 11882 new->insn_idx = insn_idx; 11883 WARN_ONCE(new->branches != 1, 11884 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11885 11886 cur->parent = new; 11887 cur->first_insn_idx = insn_idx; 11888 clear_jmp_history(cur); 11889 new_sl->next = *explored_state(env, insn_idx); 11890 *explored_state(env, insn_idx) = new_sl; 11891 /* connect new state to parentage chain. Current frame needs all 11892 * registers connected. Only r6 - r9 of the callers are alive (pushed 11893 * to the stack implicitly by JITs) so in callers' frames connect just 11894 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11895 * the state of the call instruction (with WRITTEN set), and r0 comes 11896 * from callee with its full parentage chain, anyway. 11897 */ 11898 /* clear write marks in current state: the writes we did are not writes 11899 * our child did, so they don't screen off its reads from us. 11900 * (There are no read marks in current state, because reads always mark 11901 * their parent and current state never has children yet. Only 11902 * explored_states can get read marks.) 11903 */ 11904 for (j = 0; j <= cur->curframe; j++) { 11905 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11906 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11907 for (i = 0; i < BPF_REG_FP; i++) 11908 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11909 } 11910 11911 /* all stack frames are accessible from callee, clear them all */ 11912 for (j = 0; j <= cur->curframe; j++) { 11913 struct bpf_func_state *frame = cur->frame[j]; 11914 struct bpf_func_state *newframe = new->frame[j]; 11915 11916 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11917 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11918 frame->stack[i].spilled_ptr.parent = 11919 &newframe->stack[i].spilled_ptr; 11920 } 11921 } 11922 return 0; 11923 } 11924 11925 /* Return true if it's OK to have the same insn return a different type. */ 11926 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11927 { 11928 switch (base_type(type)) { 11929 case PTR_TO_CTX: 11930 case PTR_TO_SOCKET: 11931 case PTR_TO_SOCK_COMMON: 11932 case PTR_TO_TCP_SOCK: 11933 case PTR_TO_XDP_SOCK: 11934 case PTR_TO_BTF_ID: 11935 return false; 11936 default: 11937 return true; 11938 } 11939 } 11940 11941 /* If an instruction was previously used with particular pointer types, then we 11942 * need to be careful to avoid cases such as the below, where it may be ok 11943 * for one branch accessing the pointer, but not ok for the other branch: 11944 * 11945 * R1 = sock_ptr 11946 * goto X; 11947 * ... 11948 * R1 = some_other_valid_ptr; 11949 * goto X; 11950 * ... 11951 * R2 = *(u32 *)(R1 + 0); 11952 */ 11953 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11954 { 11955 return src != prev && (!reg_type_mismatch_ok(src) || 11956 !reg_type_mismatch_ok(prev)); 11957 } 11958 11959 static int do_check(struct bpf_verifier_env *env) 11960 { 11961 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11962 struct bpf_verifier_state *state = env->cur_state; 11963 struct bpf_insn *insns = env->prog->insnsi; 11964 struct bpf_reg_state *regs; 11965 int insn_cnt = env->prog->len; 11966 bool do_print_state = false; 11967 int prev_insn_idx = -1; 11968 11969 for (;;) { 11970 struct bpf_insn *insn; 11971 u8 class; 11972 int err; 11973 11974 env->prev_insn_idx = prev_insn_idx; 11975 if (env->insn_idx >= insn_cnt) { 11976 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11977 env->insn_idx, insn_cnt); 11978 return -EFAULT; 11979 } 11980 11981 insn = &insns[env->insn_idx]; 11982 class = BPF_CLASS(insn->code); 11983 11984 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11985 verbose(env, 11986 "BPF program is too large. Processed %d insn\n", 11987 env->insn_processed); 11988 return -E2BIG; 11989 } 11990 11991 err = is_state_visited(env, env->insn_idx); 11992 if (err < 0) 11993 return err; 11994 if (err == 1) { 11995 /* found equivalent state, can prune the search */ 11996 if (env->log.level & BPF_LOG_LEVEL) { 11997 if (do_print_state) 11998 verbose(env, "\nfrom %d to %d%s: safe\n", 11999 env->prev_insn_idx, env->insn_idx, 12000 env->cur_state->speculative ? 12001 " (speculative execution)" : ""); 12002 else 12003 verbose(env, "%d: safe\n", env->insn_idx); 12004 } 12005 goto process_bpf_exit; 12006 } 12007 12008 if (signal_pending(current)) 12009 return -EAGAIN; 12010 12011 if (need_resched()) 12012 cond_resched(); 12013 12014 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12015 verbose(env, "\nfrom %d to %d%s:", 12016 env->prev_insn_idx, env->insn_idx, 12017 env->cur_state->speculative ? 12018 " (speculative execution)" : ""); 12019 print_verifier_state(env, state->frame[state->curframe], true); 12020 do_print_state = false; 12021 } 12022 12023 if (env->log.level & BPF_LOG_LEVEL) { 12024 const struct bpf_insn_cbs cbs = { 12025 .cb_call = disasm_kfunc_name, 12026 .cb_print = verbose, 12027 .private_data = env, 12028 }; 12029 12030 if (verifier_state_scratched(env)) 12031 print_insn_state(env, state->frame[state->curframe]); 12032 12033 verbose_linfo(env, env->insn_idx, "; "); 12034 env->prev_log_len = env->log.len_used; 12035 verbose(env, "%d: ", env->insn_idx); 12036 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12037 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12038 env->prev_log_len = env->log.len_used; 12039 } 12040 12041 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12042 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12043 env->prev_insn_idx); 12044 if (err) 12045 return err; 12046 } 12047 12048 regs = cur_regs(env); 12049 sanitize_mark_insn_seen(env); 12050 prev_insn_idx = env->insn_idx; 12051 12052 if (class == BPF_ALU || class == BPF_ALU64) { 12053 err = check_alu_op(env, insn); 12054 if (err) 12055 return err; 12056 12057 } else if (class == BPF_LDX) { 12058 enum bpf_reg_type *prev_src_type, src_reg_type; 12059 12060 /* check for reserved fields is already done */ 12061 12062 /* check src operand */ 12063 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12064 if (err) 12065 return err; 12066 12067 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12068 if (err) 12069 return err; 12070 12071 src_reg_type = regs[insn->src_reg].type; 12072 12073 /* check that memory (src_reg + off) is readable, 12074 * the state of dst_reg will be updated by this func 12075 */ 12076 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12077 insn->off, BPF_SIZE(insn->code), 12078 BPF_READ, insn->dst_reg, false); 12079 if (err) 12080 return err; 12081 12082 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12083 12084 if (*prev_src_type == NOT_INIT) { 12085 /* saw a valid insn 12086 * dst_reg = *(u32 *)(src_reg + off) 12087 * save type to validate intersecting paths 12088 */ 12089 *prev_src_type = src_reg_type; 12090 12091 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12092 /* ABuser program is trying to use the same insn 12093 * dst_reg = *(u32*) (src_reg + off) 12094 * with different pointer types: 12095 * src_reg == ctx in one branch and 12096 * src_reg == stack|map in some other branch. 12097 * Reject it. 12098 */ 12099 verbose(env, "same insn cannot be used with different pointers\n"); 12100 return -EINVAL; 12101 } 12102 12103 } else if (class == BPF_STX) { 12104 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12105 12106 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12107 err = check_atomic(env, env->insn_idx, insn); 12108 if (err) 12109 return err; 12110 env->insn_idx++; 12111 continue; 12112 } 12113 12114 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12115 verbose(env, "BPF_STX uses reserved fields\n"); 12116 return -EINVAL; 12117 } 12118 12119 /* check src1 operand */ 12120 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12121 if (err) 12122 return err; 12123 /* check src2 operand */ 12124 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12125 if (err) 12126 return err; 12127 12128 dst_reg_type = regs[insn->dst_reg].type; 12129 12130 /* check that memory (dst_reg + off) is writeable */ 12131 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12132 insn->off, BPF_SIZE(insn->code), 12133 BPF_WRITE, insn->src_reg, false); 12134 if (err) 12135 return err; 12136 12137 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12138 12139 if (*prev_dst_type == NOT_INIT) { 12140 *prev_dst_type = dst_reg_type; 12141 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12142 verbose(env, "same insn cannot be used with different pointers\n"); 12143 return -EINVAL; 12144 } 12145 12146 } else if (class == BPF_ST) { 12147 if (BPF_MODE(insn->code) != BPF_MEM || 12148 insn->src_reg != BPF_REG_0) { 12149 verbose(env, "BPF_ST uses reserved fields\n"); 12150 return -EINVAL; 12151 } 12152 /* check src operand */ 12153 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12154 if (err) 12155 return err; 12156 12157 if (is_ctx_reg(env, insn->dst_reg)) { 12158 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12159 insn->dst_reg, 12160 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12161 return -EACCES; 12162 } 12163 12164 /* check that memory (dst_reg + off) is writeable */ 12165 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12166 insn->off, BPF_SIZE(insn->code), 12167 BPF_WRITE, -1, false); 12168 if (err) 12169 return err; 12170 12171 } else if (class == BPF_JMP || class == BPF_JMP32) { 12172 u8 opcode = BPF_OP(insn->code); 12173 12174 env->jmps_processed++; 12175 if (opcode == BPF_CALL) { 12176 if (BPF_SRC(insn->code) != BPF_K || 12177 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12178 && insn->off != 0) || 12179 (insn->src_reg != BPF_REG_0 && 12180 insn->src_reg != BPF_PSEUDO_CALL && 12181 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12182 insn->dst_reg != BPF_REG_0 || 12183 class == BPF_JMP32) { 12184 verbose(env, "BPF_CALL uses reserved fields\n"); 12185 return -EINVAL; 12186 } 12187 12188 if (env->cur_state->active_spin_lock && 12189 (insn->src_reg == BPF_PSEUDO_CALL || 12190 insn->imm != BPF_FUNC_spin_unlock)) { 12191 verbose(env, "function calls are not allowed while holding a lock\n"); 12192 return -EINVAL; 12193 } 12194 if (insn->src_reg == BPF_PSEUDO_CALL) 12195 err = check_func_call(env, insn, &env->insn_idx); 12196 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12197 err = check_kfunc_call(env, insn, &env->insn_idx); 12198 else 12199 err = check_helper_call(env, insn, &env->insn_idx); 12200 if (err) 12201 return err; 12202 } else if (opcode == BPF_JA) { 12203 if (BPF_SRC(insn->code) != BPF_K || 12204 insn->imm != 0 || 12205 insn->src_reg != BPF_REG_0 || 12206 insn->dst_reg != BPF_REG_0 || 12207 class == BPF_JMP32) { 12208 verbose(env, "BPF_JA uses reserved fields\n"); 12209 return -EINVAL; 12210 } 12211 12212 env->insn_idx += insn->off + 1; 12213 continue; 12214 12215 } else if (opcode == BPF_EXIT) { 12216 if (BPF_SRC(insn->code) != BPF_K || 12217 insn->imm != 0 || 12218 insn->src_reg != BPF_REG_0 || 12219 insn->dst_reg != BPF_REG_0 || 12220 class == BPF_JMP32) { 12221 verbose(env, "BPF_EXIT uses reserved fields\n"); 12222 return -EINVAL; 12223 } 12224 12225 if (env->cur_state->active_spin_lock) { 12226 verbose(env, "bpf_spin_unlock is missing\n"); 12227 return -EINVAL; 12228 } 12229 12230 if (state->curframe) { 12231 /* exit from nested function */ 12232 err = prepare_func_exit(env, &env->insn_idx); 12233 if (err) 12234 return err; 12235 do_print_state = true; 12236 continue; 12237 } 12238 12239 err = check_reference_leak(env); 12240 if (err) 12241 return err; 12242 12243 err = check_return_code(env); 12244 if (err) 12245 return err; 12246 process_bpf_exit: 12247 mark_verifier_state_scratched(env); 12248 update_branch_counts(env, env->cur_state); 12249 err = pop_stack(env, &prev_insn_idx, 12250 &env->insn_idx, pop_log); 12251 if (err < 0) { 12252 if (err != -ENOENT) 12253 return err; 12254 break; 12255 } else { 12256 do_print_state = true; 12257 continue; 12258 } 12259 } else { 12260 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12261 if (err) 12262 return err; 12263 } 12264 } else if (class == BPF_LD) { 12265 u8 mode = BPF_MODE(insn->code); 12266 12267 if (mode == BPF_ABS || mode == BPF_IND) { 12268 err = check_ld_abs(env, insn); 12269 if (err) 12270 return err; 12271 12272 } else if (mode == BPF_IMM) { 12273 err = check_ld_imm(env, insn); 12274 if (err) 12275 return err; 12276 12277 env->insn_idx++; 12278 sanitize_mark_insn_seen(env); 12279 } else { 12280 verbose(env, "invalid BPF_LD mode\n"); 12281 return -EINVAL; 12282 } 12283 } else { 12284 verbose(env, "unknown insn class %d\n", class); 12285 return -EINVAL; 12286 } 12287 12288 env->insn_idx++; 12289 } 12290 12291 return 0; 12292 } 12293 12294 static int find_btf_percpu_datasec(struct btf *btf) 12295 { 12296 const struct btf_type *t; 12297 const char *tname; 12298 int i, n; 12299 12300 /* 12301 * Both vmlinux and module each have their own ".data..percpu" 12302 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12303 * types to look at only module's own BTF types. 12304 */ 12305 n = btf_nr_types(btf); 12306 if (btf_is_module(btf)) 12307 i = btf_nr_types(btf_vmlinux); 12308 else 12309 i = 1; 12310 12311 for(; i < n; i++) { 12312 t = btf_type_by_id(btf, i); 12313 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12314 continue; 12315 12316 tname = btf_name_by_offset(btf, t->name_off); 12317 if (!strcmp(tname, ".data..percpu")) 12318 return i; 12319 } 12320 12321 return -ENOENT; 12322 } 12323 12324 /* replace pseudo btf_id with kernel symbol address */ 12325 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12326 struct bpf_insn *insn, 12327 struct bpf_insn_aux_data *aux) 12328 { 12329 const struct btf_var_secinfo *vsi; 12330 const struct btf_type *datasec; 12331 struct btf_mod_pair *btf_mod; 12332 const struct btf_type *t; 12333 const char *sym_name; 12334 bool percpu = false; 12335 u32 type, id = insn->imm; 12336 struct btf *btf; 12337 s32 datasec_id; 12338 u64 addr; 12339 int i, btf_fd, err; 12340 12341 btf_fd = insn[1].imm; 12342 if (btf_fd) { 12343 btf = btf_get_by_fd(btf_fd); 12344 if (IS_ERR(btf)) { 12345 verbose(env, "invalid module BTF object FD specified.\n"); 12346 return -EINVAL; 12347 } 12348 } else { 12349 if (!btf_vmlinux) { 12350 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12351 return -EINVAL; 12352 } 12353 btf = btf_vmlinux; 12354 btf_get(btf); 12355 } 12356 12357 t = btf_type_by_id(btf, id); 12358 if (!t) { 12359 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12360 err = -ENOENT; 12361 goto err_put; 12362 } 12363 12364 if (!btf_type_is_var(t)) { 12365 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12366 err = -EINVAL; 12367 goto err_put; 12368 } 12369 12370 sym_name = btf_name_by_offset(btf, t->name_off); 12371 addr = kallsyms_lookup_name(sym_name); 12372 if (!addr) { 12373 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12374 sym_name); 12375 err = -ENOENT; 12376 goto err_put; 12377 } 12378 12379 datasec_id = find_btf_percpu_datasec(btf); 12380 if (datasec_id > 0) { 12381 datasec = btf_type_by_id(btf, datasec_id); 12382 for_each_vsi(i, datasec, vsi) { 12383 if (vsi->type == id) { 12384 percpu = true; 12385 break; 12386 } 12387 } 12388 } 12389 12390 insn[0].imm = (u32)addr; 12391 insn[1].imm = addr >> 32; 12392 12393 type = t->type; 12394 t = btf_type_skip_modifiers(btf, type, NULL); 12395 if (percpu) { 12396 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12397 aux->btf_var.btf = btf; 12398 aux->btf_var.btf_id = type; 12399 } else if (!btf_type_is_struct(t)) { 12400 const struct btf_type *ret; 12401 const char *tname; 12402 u32 tsize; 12403 12404 /* resolve the type size of ksym. */ 12405 ret = btf_resolve_size(btf, t, &tsize); 12406 if (IS_ERR(ret)) { 12407 tname = btf_name_by_offset(btf, t->name_off); 12408 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12409 tname, PTR_ERR(ret)); 12410 err = -EINVAL; 12411 goto err_put; 12412 } 12413 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12414 aux->btf_var.mem_size = tsize; 12415 } else { 12416 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12417 aux->btf_var.btf = btf; 12418 aux->btf_var.btf_id = type; 12419 } 12420 12421 /* check whether we recorded this BTF (and maybe module) already */ 12422 for (i = 0; i < env->used_btf_cnt; i++) { 12423 if (env->used_btfs[i].btf == btf) { 12424 btf_put(btf); 12425 return 0; 12426 } 12427 } 12428 12429 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12430 err = -E2BIG; 12431 goto err_put; 12432 } 12433 12434 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12435 btf_mod->btf = btf; 12436 btf_mod->module = NULL; 12437 12438 /* if we reference variables from kernel module, bump its refcount */ 12439 if (btf_is_module(btf)) { 12440 btf_mod->module = btf_try_get_module(btf); 12441 if (!btf_mod->module) { 12442 err = -ENXIO; 12443 goto err_put; 12444 } 12445 } 12446 12447 env->used_btf_cnt++; 12448 12449 return 0; 12450 err_put: 12451 btf_put(btf); 12452 return err; 12453 } 12454 12455 static int check_map_prealloc(struct bpf_map *map) 12456 { 12457 return (map->map_type != BPF_MAP_TYPE_HASH && 12458 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 12459 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 12460 !(map->map_flags & BPF_F_NO_PREALLOC); 12461 } 12462 12463 static bool is_tracing_prog_type(enum bpf_prog_type type) 12464 { 12465 switch (type) { 12466 case BPF_PROG_TYPE_KPROBE: 12467 case BPF_PROG_TYPE_TRACEPOINT: 12468 case BPF_PROG_TYPE_PERF_EVENT: 12469 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12470 return true; 12471 default: 12472 return false; 12473 } 12474 } 12475 12476 static bool is_preallocated_map(struct bpf_map *map) 12477 { 12478 if (!check_map_prealloc(map)) 12479 return false; 12480 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 12481 return false; 12482 return true; 12483 } 12484 12485 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12486 struct bpf_map *map, 12487 struct bpf_prog *prog) 12488 12489 { 12490 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12491 /* 12492 * Validate that trace type programs use preallocated hash maps. 12493 * 12494 * For programs attached to PERF events this is mandatory as the 12495 * perf NMI can hit any arbitrary code sequence. 12496 * 12497 * All other trace types using preallocated hash maps are unsafe as 12498 * well because tracepoint or kprobes can be inside locked regions 12499 * of the memory allocator or at a place where a recursion into the 12500 * memory allocator would see inconsistent state. 12501 * 12502 * On RT enabled kernels run-time allocation of all trace type 12503 * programs is strictly prohibited due to lock type constraints. On 12504 * !RT kernels it is allowed for backwards compatibility reasons for 12505 * now, but warnings are emitted so developers are made aware of 12506 * the unsafety and can fix their programs before this is enforced. 12507 */ 12508 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 12509 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 12510 verbose(env, "perf_event programs can only use preallocated hash map\n"); 12511 return -EINVAL; 12512 } 12513 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 12514 verbose(env, "trace type programs can only use preallocated hash map\n"); 12515 return -EINVAL; 12516 } 12517 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 12518 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 12519 } 12520 12521 if (map_value_has_spin_lock(map)) { 12522 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12523 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12524 return -EINVAL; 12525 } 12526 12527 if (is_tracing_prog_type(prog_type)) { 12528 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12529 return -EINVAL; 12530 } 12531 12532 if (prog->aux->sleepable) { 12533 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12534 return -EINVAL; 12535 } 12536 } 12537 12538 if (map_value_has_timer(map)) { 12539 if (is_tracing_prog_type(prog_type)) { 12540 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12541 return -EINVAL; 12542 } 12543 } 12544 12545 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12546 !bpf_offload_prog_map_match(prog, map)) { 12547 verbose(env, "offload device mismatch between prog and map\n"); 12548 return -EINVAL; 12549 } 12550 12551 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12552 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12553 return -EINVAL; 12554 } 12555 12556 if (prog->aux->sleepable) 12557 switch (map->map_type) { 12558 case BPF_MAP_TYPE_HASH: 12559 case BPF_MAP_TYPE_LRU_HASH: 12560 case BPF_MAP_TYPE_ARRAY: 12561 case BPF_MAP_TYPE_PERCPU_HASH: 12562 case BPF_MAP_TYPE_PERCPU_ARRAY: 12563 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12564 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12565 case BPF_MAP_TYPE_HASH_OF_MAPS: 12566 if (!is_preallocated_map(map)) { 12567 verbose(env, 12568 "Sleepable programs can only use preallocated maps\n"); 12569 return -EINVAL; 12570 } 12571 break; 12572 case BPF_MAP_TYPE_RINGBUF: 12573 case BPF_MAP_TYPE_INODE_STORAGE: 12574 case BPF_MAP_TYPE_SK_STORAGE: 12575 case BPF_MAP_TYPE_TASK_STORAGE: 12576 break; 12577 default: 12578 verbose(env, 12579 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12580 return -EINVAL; 12581 } 12582 12583 return 0; 12584 } 12585 12586 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12587 { 12588 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12589 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12590 } 12591 12592 /* find and rewrite pseudo imm in ld_imm64 instructions: 12593 * 12594 * 1. if it accesses map FD, replace it with actual map pointer. 12595 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12596 * 12597 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12598 */ 12599 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12600 { 12601 struct bpf_insn *insn = env->prog->insnsi; 12602 int insn_cnt = env->prog->len; 12603 int i, j, err; 12604 12605 err = bpf_prog_calc_tag(env->prog); 12606 if (err) 12607 return err; 12608 12609 for (i = 0; i < insn_cnt; i++, insn++) { 12610 if (BPF_CLASS(insn->code) == BPF_LDX && 12611 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12612 verbose(env, "BPF_LDX uses reserved fields\n"); 12613 return -EINVAL; 12614 } 12615 12616 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12617 struct bpf_insn_aux_data *aux; 12618 struct bpf_map *map; 12619 struct fd f; 12620 u64 addr; 12621 u32 fd; 12622 12623 if (i == insn_cnt - 1 || insn[1].code != 0 || 12624 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12625 insn[1].off != 0) { 12626 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12627 return -EINVAL; 12628 } 12629 12630 if (insn[0].src_reg == 0) 12631 /* valid generic load 64-bit imm */ 12632 goto next_insn; 12633 12634 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12635 aux = &env->insn_aux_data[i]; 12636 err = check_pseudo_btf_id(env, insn, aux); 12637 if (err) 12638 return err; 12639 goto next_insn; 12640 } 12641 12642 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12643 aux = &env->insn_aux_data[i]; 12644 aux->ptr_type = PTR_TO_FUNC; 12645 goto next_insn; 12646 } 12647 12648 /* In final convert_pseudo_ld_imm64() step, this is 12649 * converted into regular 64-bit imm load insn. 12650 */ 12651 switch (insn[0].src_reg) { 12652 case BPF_PSEUDO_MAP_VALUE: 12653 case BPF_PSEUDO_MAP_IDX_VALUE: 12654 break; 12655 case BPF_PSEUDO_MAP_FD: 12656 case BPF_PSEUDO_MAP_IDX: 12657 if (insn[1].imm == 0) 12658 break; 12659 fallthrough; 12660 default: 12661 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12662 return -EINVAL; 12663 } 12664 12665 switch (insn[0].src_reg) { 12666 case BPF_PSEUDO_MAP_IDX_VALUE: 12667 case BPF_PSEUDO_MAP_IDX: 12668 if (bpfptr_is_null(env->fd_array)) { 12669 verbose(env, "fd_idx without fd_array is invalid\n"); 12670 return -EPROTO; 12671 } 12672 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12673 insn[0].imm * sizeof(fd), 12674 sizeof(fd))) 12675 return -EFAULT; 12676 break; 12677 default: 12678 fd = insn[0].imm; 12679 break; 12680 } 12681 12682 f = fdget(fd); 12683 map = __bpf_map_get(f); 12684 if (IS_ERR(map)) { 12685 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12686 insn[0].imm); 12687 return PTR_ERR(map); 12688 } 12689 12690 err = check_map_prog_compatibility(env, map, env->prog); 12691 if (err) { 12692 fdput(f); 12693 return err; 12694 } 12695 12696 aux = &env->insn_aux_data[i]; 12697 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12698 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12699 addr = (unsigned long)map; 12700 } else { 12701 u32 off = insn[1].imm; 12702 12703 if (off >= BPF_MAX_VAR_OFF) { 12704 verbose(env, "direct value offset of %u is not allowed\n", off); 12705 fdput(f); 12706 return -EINVAL; 12707 } 12708 12709 if (!map->ops->map_direct_value_addr) { 12710 verbose(env, "no direct value access support for this map type\n"); 12711 fdput(f); 12712 return -EINVAL; 12713 } 12714 12715 err = map->ops->map_direct_value_addr(map, &addr, off); 12716 if (err) { 12717 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12718 map->value_size, off); 12719 fdput(f); 12720 return err; 12721 } 12722 12723 aux->map_off = off; 12724 addr += off; 12725 } 12726 12727 insn[0].imm = (u32)addr; 12728 insn[1].imm = addr >> 32; 12729 12730 /* check whether we recorded this map already */ 12731 for (j = 0; j < env->used_map_cnt; j++) { 12732 if (env->used_maps[j] == map) { 12733 aux->map_index = j; 12734 fdput(f); 12735 goto next_insn; 12736 } 12737 } 12738 12739 if (env->used_map_cnt >= MAX_USED_MAPS) { 12740 fdput(f); 12741 return -E2BIG; 12742 } 12743 12744 /* hold the map. If the program is rejected by verifier, 12745 * the map will be released by release_maps() or it 12746 * will be used by the valid program until it's unloaded 12747 * and all maps are released in free_used_maps() 12748 */ 12749 bpf_map_inc(map); 12750 12751 aux->map_index = env->used_map_cnt; 12752 env->used_maps[env->used_map_cnt++] = map; 12753 12754 if (bpf_map_is_cgroup_storage(map) && 12755 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12756 verbose(env, "only one cgroup storage of each type is allowed\n"); 12757 fdput(f); 12758 return -EBUSY; 12759 } 12760 12761 fdput(f); 12762 next_insn: 12763 insn++; 12764 i++; 12765 continue; 12766 } 12767 12768 /* Basic sanity check before we invest more work here. */ 12769 if (!bpf_opcode_in_insntable(insn->code)) { 12770 verbose(env, "unknown opcode %02x\n", insn->code); 12771 return -EINVAL; 12772 } 12773 } 12774 12775 /* now all pseudo BPF_LD_IMM64 instructions load valid 12776 * 'struct bpf_map *' into a register instead of user map_fd. 12777 * These pointers will be used later by verifier to validate map access. 12778 */ 12779 return 0; 12780 } 12781 12782 /* drop refcnt of maps used by the rejected program */ 12783 static void release_maps(struct bpf_verifier_env *env) 12784 { 12785 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12786 env->used_map_cnt); 12787 } 12788 12789 /* drop refcnt of maps used by the rejected program */ 12790 static void release_btfs(struct bpf_verifier_env *env) 12791 { 12792 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12793 env->used_btf_cnt); 12794 } 12795 12796 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12797 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12798 { 12799 struct bpf_insn *insn = env->prog->insnsi; 12800 int insn_cnt = env->prog->len; 12801 int i; 12802 12803 for (i = 0; i < insn_cnt; i++, insn++) { 12804 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12805 continue; 12806 if (insn->src_reg == BPF_PSEUDO_FUNC) 12807 continue; 12808 insn->src_reg = 0; 12809 } 12810 } 12811 12812 /* single env->prog->insni[off] instruction was replaced with the range 12813 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12814 * [0, off) and [off, end) to new locations, so the patched range stays zero 12815 */ 12816 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12817 struct bpf_insn_aux_data *new_data, 12818 struct bpf_prog *new_prog, u32 off, u32 cnt) 12819 { 12820 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12821 struct bpf_insn *insn = new_prog->insnsi; 12822 u32 old_seen = old_data[off].seen; 12823 u32 prog_len; 12824 int i; 12825 12826 /* aux info at OFF always needs adjustment, no matter fast path 12827 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12828 * original insn at old prog. 12829 */ 12830 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12831 12832 if (cnt == 1) 12833 return; 12834 prog_len = new_prog->len; 12835 12836 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12837 memcpy(new_data + off + cnt - 1, old_data + off, 12838 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12839 for (i = off; i < off + cnt - 1; i++) { 12840 /* Expand insni[off]'s seen count to the patched range. */ 12841 new_data[i].seen = old_seen; 12842 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12843 } 12844 env->insn_aux_data = new_data; 12845 vfree(old_data); 12846 } 12847 12848 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12849 { 12850 int i; 12851 12852 if (len == 1) 12853 return; 12854 /* NOTE: fake 'exit' subprog should be updated as well. */ 12855 for (i = 0; i <= env->subprog_cnt; i++) { 12856 if (env->subprog_info[i].start <= off) 12857 continue; 12858 env->subprog_info[i].start += len - 1; 12859 } 12860 } 12861 12862 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12863 { 12864 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12865 int i, sz = prog->aux->size_poke_tab; 12866 struct bpf_jit_poke_descriptor *desc; 12867 12868 for (i = 0; i < sz; i++) { 12869 desc = &tab[i]; 12870 if (desc->insn_idx <= off) 12871 continue; 12872 desc->insn_idx += len - 1; 12873 } 12874 } 12875 12876 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12877 const struct bpf_insn *patch, u32 len) 12878 { 12879 struct bpf_prog *new_prog; 12880 struct bpf_insn_aux_data *new_data = NULL; 12881 12882 if (len > 1) { 12883 new_data = vzalloc(array_size(env->prog->len + len - 1, 12884 sizeof(struct bpf_insn_aux_data))); 12885 if (!new_data) 12886 return NULL; 12887 } 12888 12889 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12890 if (IS_ERR(new_prog)) { 12891 if (PTR_ERR(new_prog) == -ERANGE) 12892 verbose(env, 12893 "insn %d cannot be patched due to 16-bit range\n", 12894 env->insn_aux_data[off].orig_idx); 12895 vfree(new_data); 12896 return NULL; 12897 } 12898 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12899 adjust_subprog_starts(env, off, len); 12900 adjust_poke_descs(new_prog, off, len); 12901 return new_prog; 12902 } 12903 12904 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12905 u32 off, u32 cnt) 12906 { 12907 int i, j; 12908 12909 /* find first prog starting at or after off (first to remove) */ 12910 for (i = 0; i < env->subprog_cnt; i++) 12911 if (env->subprog_info[i].start >= off) 12912 break; 12913 /* find first prog starting at or after off + cnt (first to stay) */ 12914 for (j = i; j < env->subprog_cnt; j++) 12915 if (env->subprog_info[j].start >= off + cnt) 12916 break; 12917 /* if j doesn't start exactly at off + cnt, we are just removing 12918 * the front of previous prog 12919 */ 12920 if (env->subprog_info[j].start != off + cnt) 12921 j--; 12922 12923 if (j > i) { 12924 struct bpf_prog_aux *aux = env->prog->aux; 12925 int move; 12926 12927 /* move fake 'exit' subprog as well */ 12928 move = env->subprog_cnt + 1 - j; 12929 12930 memmove(env->subprog_info + i, 12931 env->subprog_info + j, 12932 sizeof(*env->subprog_info) * move); 12933 env->subprog_cnt -= j - i; 12934 12935 /* remove func_info */ 12936 if (aux->func_info) { 12937 move = aux->func_info_cnt - j; 12938 12939 memmove(aux->func_info + i, 12940 aux->func_info + j, 12941 sizeof(*aux->func_info) * move); 12942 aux->func_info_cnt -= j - i; 12943 /* func_info->insn_off is set after all code rewrites, 12944 * in adjust_btf_func() - no need to adjust 12945 */ 12946 } 12947 } else { 12948 /* convert i from "first prog to remove" to "first to adjust" */ 12949 if (env->subprog_info[i].start == off) 12950 i++; 12951 } 12952 12953 /* update fake 'exit' subprog as well */ 12954 for (; i <= env->subprog_cnt; i++) 12955 env->subprog_info[i].start -= cnt; 12956 12957 return 0; 12958 } 12959 12960 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12961 u32 cnt) 12962 { 12963 struct bpf_prog *prog = env->prog; 12964 u32 i, l_off, l_cnt, nr_linfo; 12965 struct bpf_line_info *linfo; 12966 12967 nr_linfo = prog->aux->nr_linfo; 12968 if (!nr_linfo) 12969 return 0; 12970 12971 linfo = prog->aux->linfo; 12972 12973 /* find first line info to remove, count lines to be removed */ 12974 for (i = 0; i < nr_linfo; i++) 12975 if (linfo[i].insn_off >= off) 12976 break; 12977 12978 l_off = i; 12979 l_cnt = 0; 12980 for (; i < nr_linfo; i++) 12981 if (linfo[i].insn_off < off + cnt) 12982 l_cnt++; 12983 else 12984 break; 12985 12986 /* First live insn doesn't match first live linfo, it needs to "inherit" 12987 * last removed linfo. prog is already modified, so prog->len == off 12988 * means no live instructions after (tail of the program was removed). 12989 */ 12990 if (prog->len != off && l_cnt && 12991 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12992 l_cnt--; 12993 linfo[--i].insn_off = off + cnt; 12994 } 12995 12996 /* remove the line info which refer to the removed instructions */ 12997 if (l_cnt) { 12998 memmove(linfo + l_off, linfo + i, 12999 sizeof(*linfo) * (nr_linfo - i)); 13000 13001 prog->aux->nr_linfo -= l_cnt; 13002 nr_linfo = prog->aux->nr_linfo; 13003 } 13004 13005 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13006 for (i = l_off; i < nr_linfo; i++) 13007 linfo[i].insn_off -= cnt; 13008 13009 /* fix up all subprogs (incl. 'exit') which start >= off */ 13010 for (i = 0; i <= env->subprog_cnt; i++) 13011 if (env->subprog_info[i].linfo_idx > l_off) { 13012 /* program may have started in the removed region but 13013 * may not be fully removed 13014 */ 13015 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13016 env->subprog_info[i].linfo_idx -= l_cnt; 13017 else 13018 env->subprog_info[i].linfo_idx = l_off; 13019 } 13020 13021 return 0; 13022 } 13023 13024 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13025 { 13026 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13027 unsigned int orig_prog_len = env->prog->len; 13028 int err; 13029 13030 if (bpf_prog_is_dev_bound(env->prog->aux)) 13031 bpf_prog_offload_remove_insns(env, off, cnt); 13032 13033 err = bpf_remove_insns(env->prog, off, cnt); 13034 if (err) 13035 return err; 13036 13037 err = adjust_subprog_starts_after_remove(env, off, cnt); 13038 if (err) 13039 return err; 13040 13041 err = bpf_adj_linfo_after_remove(env, off, cnt); 13042 if (err) 13043 return err; 13044 13045 memmove(aux_data + off, aux_data + off + cnt, 13046 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13047 13048 return 0; 13049 } 13050 13051 /* The verifier does more data flow analysis than llvm and will not 13052 * explore branches that are dead at run time. Malicious programs can 13053 * have dead code too. Therefore replace all dead at-run-time code 13054 * with 'ja -1'. 13055 * 13056 * Just nops are not optimal, e.g. if they would sit at the end of the 13057 * program and through another bug we would manage to jump there, then 13058 * we'd execute beyond program memory otherwise. Returning exception 13059 * code also wouldn't work since we can have subprogs where the dead 13060 * code could be located. 13061 */ 13062 static void sanitize_dead_code(struct bpf_verifier_env *env) 13063 { 13064 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13065 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13066 struct bpf_insn *insn = env->prog->insnsi; 13067 const int insn_cnt = env->prog->len; 13068 int i; 13069 13070 for (i = 0; i < insn_cnt; i++) { 13071 if (aux_data[i].seen) 13072 continue; 13073 memcpy(insn + i, &trap, sizeof(trap)); 13074 aux_data[i].zext_dst = false; 13075 } 13076 } 13077 13078 static bool insn_is_cond_jump(u8 code) 13079 { 13080 u8 op; 13081 13082 if (BPF_CLASS(code) == BPF_JMP32) 13083 return true; 13084 13085 if (BPF_CLASS(code) != BPF_JMP) 13086 return false; 13087 13088 op = BPF_OP(code); 13089 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13090 } 13091 13092 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13093 { 13094 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13095 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13096 struct bpf_insn *insn = env->prog->insnsi; 13097 const int insn_cnt = env->prog->len; 13098 int i; 13099 13100 for (i = 0; i < insn_cnt; i++, insn++) { 13101 if (!insn_is_cond_jump(insn->code)) 13102 continue; 13103 13104 if (!aux_data[i + 1].seen) 13105 ja.off = insn->off; 13106 else if (!aux_data[i + 1 + insn->off].seen) 13107 ja.off = 0; 13108 else 13109 continue; 13110 13111 if (bpf_prog_is_dev_bound(env->prog->aux)) 13112 bpf_prog_offload_replace_insn(env, i, &ja); 13113 13114 memcpy(insn, &ja, sizeof(ja)); 13115 } 13116 } 13117 13118 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13119 { 13120 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13121 int insn_cnt = env->prog->len; 13122 int i, err; 13123 13124 for (i = 0; i < insn_cnt; i++) { 13125 int j; 13126 13127 j = 0; 13128 while (i + j < insn_cnt && !aux_data[i + j].seen) 13129 j++; 13130 if (!j) 13131 continue; 13132 13133 err = verifier_remove_insns(env, i, j); 13134 if (err) 13135 return err; 13136 insn_cnt = env->prog->len; 13137 } 13138 13139 return 0; 13140 } 13141 13142 static int opt_remove_nops(struct bpf_verifier_env *env) 13143 { 13144 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13145 struct bpf_insn *insn = env->prog->insnsi; 13146 int insn_cnt = env->prog->len; 13147 int i, err; 13148 13149 for (i = 0; i < insn_cnt; i++) { 13150 if (memcmp(&insn[i], &ja, sizeof(ja))) 13151 continue; 13152 13153 err = verifier_remove_insns(env, i, 1); 13154 if (err) 13155 return err; 13156 insn_cnt--; 13157 i--; 13158 } 13159 13160 return 0; 13161 } 13162 13163 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13164 const union bpf_attr *attr) 13165 { 13166 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13167 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13168 int i, patch_len, delta = 0, len = env->prog->len; 13169 struct bpf_insn *insns = env->prog->insnsi; 13170 struct bpf_prog *new_prog; 13171 bool rnd_hi32; 13172 13173 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13174 zext_patch[1] = BPF_ZEXT_REG(0); 13175 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13176 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13177 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13178 for (i = 0; i < len; i++) { 13179 int adj_idx = i + delta; 13180 struct bpf_insn insn; 13181 int load_reg; 13182 13183 insn = insns[adj_idx]; 13184 load_reg = insn_def_regno(&insn); 13185 if (!aux[adj_idx].zext_dst) { 13186 u8 code, class; 13187 u32 imm_rnd; 13188 13189 if (!rnd_hi32) 13190 continue; 13191 13192 code = insn.code; 13193 class = BPF_CLASS(code); 13194 if (load_reg == -1) 13195 continue; 13196 13197 /* NOTE: arg "reg" (the fourth one) is only used for 13198 * BPF_STX + SRC_OP, so it is safe to pass NULL 13199 * here. 13200 */ 13201 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13202 if (class == BPF_LD && 13203 BPF_MODE(code) == BPF_IMM) 13204 i++; 13205 continue; 13206 } 13207 13208 /* ctx load could be transformed into wider load. */ 13209 if (class == BPF_LDX && 13210 aux[adj_idx].ptr_type == PTR_TO_CTX) 13211 continue; 13212 13213 imm_rnd = get_random_int(); 13214 rnd_hi32_patch[0] = insn; 13215 rnd_hi32_patch[1].imm = imm_rnd; 13216 rnd_hi32_patch[3].dst_reg = load_reg; 13217 patch = rnd_hi32_patch; 13218 patch_len = 4; 13219 goto apply_patch_buffer; 13220 } 13221 13222 /* Add in an zero-extend instruction if a) the JIT has requested 13223 * it or b) it's a CMPXCHG. 13224 * 13225 * The latter is because: BPF_CMPXCHG always loads a value into 13226 * R0, therefore always zero-extends. However some archs' 13227 * equivalent instruction only does this load when the 13228 * comparison is successful. This detail of CMPXCHG is 13229 * orthogonal to the general zero-extension behaviour of the 13230 * CPU, so it's treated independently of bpf_jit_needs_zext. 13231 */ 13232 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13233 continue; 13234 13235 if (WARN_ON(load_reg == -1)) { 13236 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13237 return -EFAULT; 13238 } 13239 13240 zext_patch[0] = insn; 13241 zext_patch[1].dst_reg = load_reg; 13242 zext_patch[1].src_reg = load_reg; 13243 patch = zext_patch; 13244 patch_len = 2; 13245 apply_patch_buffer: 13246 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13247 if (!new_prog) 13248 return -ENOMEM; 13249 env->prog = new_prog; 13250 insns = new_prog->insnsi; 13251 aux = env->insn_aux_data; 13252 delta += patch_len - 1; 13253 } 13254 13255 return 0; 13256 } 13257 13258 /* convert load instructions that access fields of a context type into a 13259 * sequence of instructions that access fields of the underlying structure: 13260 * struct __sk_buff -> struct sk_buff 13261 * struct bpf_sock_ops -> struct sock 13262 */ 13263 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13264 { 13265 const struct bpf_verifier_ops *ops = env->ops; 13266 int i, cnt, size, ctx_field_size, delta = 0; 13267 const int insn_cnt = env->prog->len; 13268 struct bpf_insn insn_buf[16], *insn; 13269 u32 target_size, size_default, off; 13270 struct bpf_prog *new_prog; 13271 enum bpf_access_type type; 13272 bool is_narrower_load; 13273 13274 if (ops->gen_prologue || env->seen_direct_write) { 13275 if (!ops->gen_prologue) { 13276 verbose(env, "bpf verifier is misconfigured\n"); 13277 return -EINVAL; 13278 } 13279 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13280 env->prog); 13281 if (cnt >= ARRAY_SIZE(insn_buf)) { 13282 verbose(env, "bpf verifier is misconfigured\n"); 13283 return -EINVAL; 13284 } else if (cnt) { 13285 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13286 if (!new_prog) 13287 return -ENOMEM; 13288 13289 env->prog = new_prog; 13290 delta += cnt - 1; 13291 } 13292 } 13293 13294 if (bpf_prog_is_dev_bound(env->prog->aux)) 13295 return 0; 13296 13297 insn = env->prog->insnsi + delta; 13298 13299 for (i = 0; i < insn_cnt; i++, insn++) { 13300 bpf_convert_ctx_access_t convert_ctx_access; 13301 bool ctx_access; 13302 13303 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13304 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13305 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13306 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13307 type = BPF_READ; 13308 ctx_access = true; 13309 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13310 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13311 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13312 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13313 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13314 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13315 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13316 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13317 type = BPF_WRITE; 13318 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13319 } else { 13320 continue; 13321 } 13322 13323 if (type == BPF_WRITE && 13324 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13325 struct bpf_insn patch[] = { 13326 *insn, 13327 BPF_ST_NOSPEC(), 13328 }; 13329 13330 cnt = ARRAY_SIZE(patch); 13331 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13332 if (!new_prog) 13333 return -ENOMEM; 13334 13335 delta += cnt - 1; 13336 env->prog = new_prog; 13337 insn = new_prog->insnsi + i + delta; 13338 continue; 13339 } 13340 13341 if (!ctx_access) 13342 continue; 13343 13344 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13345 case PTR_TO_CTX: 13346 if (!ops->convert_ctx_access) 13347 continue; 13348 convert_ctx_access = ops->convert_ctx_access; 13349 break; 13350 case PTR_TO_SOCKET: 13351 case PTR_TO_SOCK_COMMON: 13352 convert_ctx_access = bpf_sock_convert_ctx_access; 13353 break; 13354 case PTR_TO_TCP_SOCK: 13355 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13356 break; 13357 case PTR_TO_XDP_SOCK: 13358 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13359 break; 13360 case PTR_TO_BTF_ID: 13361 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13362 if (type == BPF_READ) { 13363 insn->code = BPF_LDX | BPF_PROBE_MEM | 13364 BPF_SIZE((insn)->code); 13365 env->prog->aux->num_exentries++; 13366 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 13367 verbose(env, "Writes through BTF pointers are not allowed\n"); 13368 return -EINVAL; 13369 } 13370 continue; 13371 default: 13372 continue; 13373 } 13374 13375 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13376 size = BPF_LDST_BYTES(insn); 13377 13378 /* If the read access is a narrower load of the field, 13379 * convert to a 4/8-byte load, to minimum program type specific 13380 * convert_ctx_access changes. If conversion is successful, 13381 * we will apply proper mask to the result. 13382 */ 13383 is_narrower_load = size < ctx_field_size; 13384 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13385 off = insn->off; 13386 if (is_narrower_load) { 13387 u8 size_code; 13388 13389 if (type == BPF_WRITE) { 13390 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13391 return -EINVAL; 13392 } 13393 13394 size_code = BPF_H; 13395 if (ctx_field_size == 4) 13396 size_code = BPF_W; 13397 else if (ctx_field_size == 8) 13398 size_code = BPF_DW; 13399 13400 insn->off = off & ~(size_default - 1); 13401 insn->code = BPF_LDX | BPF_MEM | size_code; 13402 } 13403 13404 target_size = 0; 13405 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13406 &target_size); 13407 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13408 (ctx_field_size && !target_size)) { 13409 verbose(env, "bpf verifier is misconfigured\n"); 13410 return -EINVAL; 13411 } 13412 13413 if (is_narrower_load && size < target_size) { 13414 u8 shift = bpf_ctx_narrow_access_offset( 13415 off, size, size_default) * 8; 13416 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13417 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13418 return -EINVAL; 13419 } 13420 if (ctx_field_size <= 4) { 13421 if (shift) 13422 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13423 insn->dst_reg, 13424 shift); 13425 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13426 (1 << size * 8) - 1); 13427 } else { 13428 if (shift) 13429 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13430 insn->dst_reg, 13431 shift); 13432 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13433 (1ULL << size * 8) - 1); 13434 } 13435 } 13436 13437 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13438 if (!new_prog) 13439 return -ENOMEM; 13440 13441 delta += cnt - 1; 13442 13443 /* keep walking new program and skip insns we just inserted */ 13444 env->prog = new_prog; 13445 insn = new_prog->insnsi + i + delta; 13446 } 13447 13448 return 0; 13449 } 13450 13451 static int jit_subprogs(struct bpf_verifier_env *env) 13452 { 13453 struct bpf_prog *prog = env->prog, **func, *tmp; 13454 int i, j, subprog_start, subprog_end = 0, len, subprog; 13455 struct bpf_map *map_ptr; 13456 struct bpf_insn *insn; 13457 void *old_bpf_func; 13458 int err, num_exentries; 13459 13460 if (env->subprog_cnt <= 1) 13461 return 0; 13462 13463 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13464 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13465 continue; 13466 13467 /* Upon error here we cannot fall back to interpreter but 13468 * need a hard reject of the program. Thus -EFAULT is 13469 * propagated in any case. 13470 */ 13471 subprog = find_subprog(env, i + insn->imm + 1); 13472 if (subprog < 0) { 13473 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13474 i + insn->imm + 1); 13475 return -EFAULT; 13476 } 13477 /* temporarily remember subprog id inside insn instead of 13478 * aux_data, since next loop will split up all insns into funcs 13479 */ 13480 insn->off = subprog; 13481 /* remember original imm in case JIT fails and fallback 13482 * to interpreter will be needed 13483 */ 13484 env->insn_aux_data[i].call_imm = insn->imm; 13485 /* point imm to __bpf_call_base+1 from JITs point of view */ 13486 insn->imm = 1; 13487 if (bpf_pseudo_func(insn)) 13488 /* jit (e.g. x86_64) may emit fewer instructions 13489 * if it learns a u32 imm is the same as a u64 imm. 13490 * Force a non zero here. 13491 */ 13492 insn[1].imm = 1; 13493 } 13494 13495 err = bpf_prog_alloc_jited_linfo(prog); 13496 if (err) 13497 goto out_undo_insn; 13498 13499 err = -ENOMEM; 13500 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13501 if (!func) 13502 goto out_undo_insn; 13503 13504 for (i = 0; i < env->subprog_cnt; i++) { 13505 subprog_start = subprog_end; 13506 subprog_end = env->subprog_info[i + 1].start; 13507 13508 len = subprog_end - subprog_start; 13509 /* bpf_prog_run() doesn't call subprogs directly, 13510 * hence main prog stats include the runtime of subprogs. 13511 * subprogs don't have IDs and not reachable via prog_get_next_id 13512 * func[i]->stats will never be accessed and stays NULL 13513 */ 13514 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13515 if (!func[i]) 13516 goto out_free; 13517 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13518 len * sizeof(struct bpf_insn)); 13519 func[i]->type = prog->type; 13520 func[i]->len = len; 13521 if (bpf_prog_calc_tag(func[i])) 13522 goto out_free; 13523 func[i]->is_func = 1; 13524 func[i]->aux->func_idx = i; 13525 /* Below members will be freed only at prog->aux */ 13526 func[i]->aux->btf = prog->aux->btf; 13527 func[i]->aux->func_info = prog->aux->func_info; 13528 func[i]->aux->poke_tab = prog->aux->poke_tab; 13529 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13530 13531 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13532 struct bpf_jit_poke_descriptor *poke; 13533 13534 poke = &prog->aux->poke_tab[j]; 13535 if (poke->insn_idx < subprog_end && 13536 poke->insn_idx >= subprog_start) 13537 poke->aux = func[i]->aux; 13538 } 13539 13540 /* Use bpf_prog_F_tag to indicate functions in stack traces. 13541 * Long term would need debug info to populate names 13542 */ 13543 func[i]->aux->name[0] = 'F'; 13544 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13545 func[i]->jit_requested = 1; 13546 func[i]->blinding_requested = prog->blinding_requested; 13547 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13548 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13549 func[i]->aux->linfo = prog->aux->linfo; 13550 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13551 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13552 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13553 num_exentries = 0; 13554 insn = func[i]->insnsi; 13555 for (j = 0; j < func[i]->len; j++, insn++) { 13556 if (BPF_CLASS(insn->code) == BPF_LDX && 13557 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13558 num_exentries++; 13559 } 13560 func[i]->aux->num_exentries = num_exentries; 13561 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13562 func[i] = bpf_int_jit_compile(func[i]); 13563 if (!func[i]->jited) { 13564 err = -ENOTSUPP; 13565 goto out_free; 13566 } 13567 cond_resched(); 13568 } 13569 13570 /* at this point all bpf functions were successfully JITed 13571 * now populate all bpf_calls with correct addresses and 13572 * run last pass of JIT 13573 */ 13574 for (i = 0; i < env->subprog_cnt; i++) { 13575 insn = func[i]->insnsi; 13576 for (j = 0; j < func[i]->len; j++, insn++) { 13577 if (bpf_pseudo_func(insn)) { 13578 subprog = insn->off; 13579 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13580 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13581 continue; 13582 } 13583 if (!bpf_pseudo_call(insn)) 13584 continue; 13585 subprog = insn->off; 13586 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13587 } 13588 13589 /* we use the aux data to keep a list of the start addresses 13590 * of the JITed images for each function in the program 13591 * 13592 * for some architectures, such as powerpc64, the imm field 13593 * might not be large enough to hold the offset of the start 13594 * address of the callee's JITed image from __bpf_call_base 13595 * 13596 * in such cases, we can lookup the start address of a callee 13597 * by using its subprog id, available from the off field of 13598 * the call instruction, as an index for this list 13599 */ 13600 func[i]->aux->func = func; 13601 func[i]->aux->func_cnt = env->subprog_cnt; 13602 } 13603 for (i = 0; i < env->subprog_cnt; i++) { 13604 old_bpf_func = func[i]->bpf_func; 13605 tmp = bpf_int_jit_compile(func[i]); 13606 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13607 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13608 err = -ENOTSUPP; 13609 goto out_free; 13610 } 13611 cond_resched(); 13612 } 13613 13614 /* finally lock prog and jit images for all functions and 13615 * populate kallsysm 13616 */ 13617 for (i = 0; i < env->subprog_cnt; i++) { 13618 bpf_prog_lock_ro(func[i]); 13619 bpf_prog_kallsyms_add(func[i]); 13620 } 13621 13622 /* Last step: make now unused interpreter insns from main 13623 * prog consistent for later dump requests, so they can 13624 * later look the same as if they were interpreted only. 13625 */ 13626 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13627 if (bpf_pseudo_func(insn)) { 13628 insn[0].imm = env->insn_aux_data[i].call_imm; 13629 insn[1].imm = insn->off; 13630 insn->off = 0; 13631 continue; 13632 } 13633 if (!bpf_pseudo_call(insn)) 13634 continue; 13635 insn->off = env->insn_aux_data[i].call_imm; 13636 subprog = find_subprog(env, i + insn->off + 1); 13637 insn->imm = subprog; 13638 } 13639 13640 prog->jited = 1; 13641 prog->bpf_func = func[0]->bpf_func; 13642 prog->jited_len = func[0]->jited_len; 13643 prog->aux->func = func; 13644 prog->aux->func_cnt = env->subprog_cnt; 13645 bpf_prog_jit_attempt_done(prog); 13646 return 0; 13647 out_free: 13648 /* We failed JIT'ing, so at this point we need to unregister poke 13649 * descriptors from subprogs, so that kernel is not attempting to 13650 * patch it anymore as we're freeing the subprog JIT memory. 13651 */ 13652 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13653 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13654 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13655 } 13656 /* At this point we're guaranteed that poke descriptors are not 13657 * live anymore. We can just unlink its descriptor table as it's 13658 * released with the main prog. 13659 */ 13660 for (i = 0; i < env->subprog_cnt; i++) { 13661 if (!func[i]) 13662 continue; 13663 func[i]->aux->poke_tab = NULL; 13664 bpf_jit_free(func[i]); 13665 } 13666 kfree(func); 13667 out_undo_insn: 13668 /* cleanup main prog to be interpreted */ 13669 prog->jit_requested = 0; 13670 prog->blinding_requested = 0; 13671 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13672 if (!bpf_pseudo_call(insn)) 13673 continue; 13674 insn->off = 0; 13675 insn->imm = env->insn_aux_data[i].call_imm; 13676 } 13677 bpf_prog_jit_attempt_done(prog); 13678 return err; 13679 } 13680 13681 static int fixup_call_args(struct bpf_verifier_env *env) 13682 { 13683 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13684 struct bpf_prog *prog = env->prog; 13685 struct bpf_insn *insn = prog->insnsi; 13686 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13687 int i, depth; 13688 #endif 13689 int err = 0; 13690 13691 if (env->prog->jit_requested && 13692 !bpf_prog_is_dev_bound(env->prog->aux)) { 13693 err = jit_subprogs(env); 13694 if (err == 0) 13695 return 0; 13696 if (err == -EFAULT) 13697 return err; 13698 } 13699 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13700 if (has_kfunc_call) { 13701 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13702 return -EINVAL; 13703 } 13704 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13705 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13706 * have to be rejected, since interpreter doesn't support them yet. 13707 */ 13708 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13709 return -EINVAL; 13710 } 13711 for (i = 0; i < prog->len; i++, insn++) { 13712 if (bpf_pseudo_func(insn)) { 13713 /* When JIT fails the progs with callback calls 13714 * have to be rejected, since interpreter doesn't support them yet. 13715 */ 13716 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13717 return -EINVAL; 13718 } 13719 13720 if (!bpf_pseudo_call(insn)) 13721 continue; 13722 depth = get_callee_stack_depth(env, insn, i); 13723 if (depth < 0) 13724 return depth; 13725 bpf_patch_call_args(insn, depth); 13726 } 13727 err = 0; 13728 #endif 13729 return err; 13730 } 13731 13732 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13733 struct bpf_insn *insn) 13734 { 13735 const struct bpf_kfunc_desc *desc; 13736 13737 if (!insn->imm) { 13738 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13739 return -EINVAL; 13740 } 13741 13742 /* insn->imm has the btf func_id. Replace it with 13743 * an address (relative to __bpf_base_call). 13744 */ 13745 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13746 if (!desc) { 13747 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13748 insn->imm); 13749 return -EFAULT; 13750 } 13751 13752 insn->imm = desc->imm; 13753 13754 return 0; 13755 } 13756 13757 /* Do various post-verification rewrites in a single program pass. 13758 * These rewrites simplify JIT and interpreter implementations. 13759 */ 13760 static int do_misc_fixups(struct bpf_verifier_env *env) 13761 { 13762 struct bpf_prog *prog = env->prog; 13763 enum bpf_attach_type eatype = prog->expected_attach_type; 13764 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13765 struct bpf_insn *insn = prog->insnsi; 13766 const struct bpf_func_proto *fn; 13767 const int insn_cnt = prog->len; 13768 const struct bpf_map_ops *ops; 13769 struct bpf_insn_aux_data *aux; 13770 struct bpf_insn insn_buf[16]; 13771 struct bpf_prog *new_prog; 13772 struct bpf_map *map_ptr; 13773 int i, ret, cnt, delta = 0; 13774 13775 for (i = 0; i < insn_cnt; i++, insn++) { 13776 /* Make divide-by-zero exceptions impossible. */ 13777 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13778 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13779 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13780 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13781 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13782 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13783 struct bpf_insn *patchlet; 13784 struct bpf_insn chk_and_div[] = { 13785 /* [R,W]x div 0 -> 0 */ 13786 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13787 BPF_JNE | BPF_K, insn->src_reg, 13788 0, 2, 0), 13789 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13790 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13791 *insn, 13792 }; 13793 struct bpf_insn chk_and_mod[] = { 13794 /* [R,W]x mod 0 -> [R,W]x */ 13795 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13796 BPF_JEQ | BPF_K, insn->src_reg, 13797 0, 1 + (is64 ? 0 : 1), 0), 13798 *insn, 13799 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13800 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13801 }; 13802 13803 patchlet = isdiv ? chk_and_div : chk_and_mod; 13804 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13805 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13806 13807 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13808 if (!new_prog) 13809 return -ENOMEM; 13810 13811 delta += cnt - 1; 13812 env->prog = prog = new_prog; 13813 insn = new_prog->insnsi + i + delta; 13814 continue; 13815 } 13816 13817 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13818 if (BPF_CLASS(insn->code) == BPF_LD && 13819 (BPF_MODE(insn->code) == BPF_ABS || 13820 BPF_MODE(insn->code) == BPF_IND)) { 13821 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13822 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13823 verbose(env, "bpf verifier is misconfigured\n"); 13824 return -EINVAL; 13825 } 13826 13827 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13828 if (!new_prog) 13829 return -ENOMEM; 13830 13831 delta += cnt - 1; 13832 env->prog = prog = new_prog; 13833 insn = new_prog->insnsi + i + delta; 13834 continue; 13835 } 13836 13837 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13838 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13839 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13840 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13841 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13842 struct bpf_insn *patch = &insn_buf[0]; 13843 bool issrc, isneg, isimm; 13844 u32 off_reg; 13845 13846 aux = &env->insn_aux_data[i + delta]; 13847 if (!aux->alu_state || 13848 aux->alu_state == BPF_ALU_NON_POINTER) 13849 continue; 13850 13851 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13852 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13853 BPF_ALU_SANITIZE_SRC; 13854 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13855 13856 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13857 if (isimm) { 13858 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13859 } else { 13860 if (isneg) 13861 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13862 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13863 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13864 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13865 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13866 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13867 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13868 } 13869 if (!issrc) 13870 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13871 insn->src_reg = BPF_REG_AX; 13872 if (isneg) 13873 insn->code = insn->code == code_add ? 13874 code_sub : code_add; 13875 *patch++ = *insn; 13876 if (issrc && isneg && !isimm) 13877 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13878 cnt = patch - insn_buf; 13879 13880 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13881 if (!new_prog) 13882 return -ENOMEM; 13883 13884 delta += cnt - 1; 13885 env->prog = prog = new_prog; 13886 insn = new_prog->insnsi + i + delta; 13887 continue; 13888 } 13889 13890 if (insn->code != (BPF_JMP | BPF_CALL)) 13891 continue; 13892 if (insn->src_reg == BPF_PSEUDO_CALL) 13893 continue; 13894 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13895 ret = fixup_kfunc_call(env, insn); 13896 if (ret) 13897 return ret; 13898 continue; 13899 } 13900 13901 if (insn->imm == BPF_FUNC_get_route_realm) 13902 prog->dst_needed = 1; 13903 if (insn->imm == BPF_FUNC_get_prandom_u32) 13904 bpf_user_rnd_init_once(); 13905 if (insn->imm == BPF_FUNC_override_return) 13906 prog->kprobe_override = 1; 13907 if (insn->imm == BPF_FUNC_tail_call) { 13908 /* If we tail call into other programs, we 13909 * cannot make any assumptions since they can 13910 * be replaced dynamically during runtime in 13911 * the program array. 13912 */ 13913 prog->cb_access = 1; 13914 if (!allow_tail_call_in_subprogs(env)) 13915 prog->aux->stack_depth = MAX_BPF_STACK; 13916 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13917 13918 /* mark bpf_tail_call as different opcode to avoid 13919 * conditional branch in the interpreter for every normal 13920 * call and to prevent accidental JITing by JIT compiler 13921 * that doesn't support bpf_tail_call yet 13922 */ 13923 insn->imm = 0; 13924 insn->code = BPF_JMP | BPF_TAIL_CALL; 13925 13926 aux = &env->insn_aux_data[i + delta]; 13927 if (env->bpf_capable && !prog->blinding_requested && 13928 prog->jit_requested && 13929 !bpf_map_key_poisoned(aux) && 13930 !bpf_map_ptr_poisoned(aux) && 13931 !bpf_map_ptr_unpriv(aux)) { 13932 struct bpf_jit_poke_descriptor desc = { 13933 .reason = BPF_POKE_REASON_TAIL_CALL, 13934 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13935 .tail_call.key = bpf_map_key_immediate(aux), 13936 .insn_idx = i + delta, 13937 }; 13938 13939 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13940 if (ret < 0) { 13941 verbose(env, "adding tail call poke descriptor failed\n"); 13942 return ret; 13943 } 13944 13945 insn->imm = ret + 1; 13946 continue; 13947 } 13948 13949 if (!bpf_map_ptr_unpriv(aux)) 13950 continue; 13951 13952 /* instead of changing every JIT dealing with tail_call 13953 * emit two extra insns: 13954 * if (index >= max_entries) goto out; 13955 * index &= array->index_mask; 13956 * to avoid out-of-bounds cpu speculation 13957 */ 13958 if (bpf_map_ptr_poisoned(aux)) { 13959 verbose(env, "tail_call abusing map_ptr\n"); 13960 return -EINVAL; 13961 } 13962 13963 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13964 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13965 map_ptr->max_entries, 2); 13966 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13967 container_of(map_ptr, 13968 struct bpf_array, 13969 map)->index_mask); 13970 insn_buf[2] = *insn; 13971 cnt = 3; 13972 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13973 if (!new_prog) 13974 return -ENOMEM; 13975 13976 delta += cnt - 1; 13977 env->prog = prog = new_prog; 13978 insn = new_prog->insnsi + i + delta; 13979 continue; 13980 } 13981 13982 if (insn->imm == BPF_FUNC_timer_set_callback) { 13983 /* The verifier will process callback_fn as many times as necessary 13984 * with different maps and the register states prepared by 13985 * set_timer_callback_state will be accurate. 13986 * 13987 * The following use case is valid: 13988 * map1 is shared by prog1, prog2, prog3. 13989 * prog1 calls bpf_timer_init for some map1 elements 13990 * prog2 calls bpf_timer_set_callback for some map1 elements. 13991 * Those that were not bpf_timer_init-ed will return -EINVAL. 13992 * prog3 calls bpf_timer_start for some map1 elements. 13993 * Those that were not both bpf_timer_init-ed and 13994 * bpf_timer_set_callback-ed will return -EINVAL. 13995 */ 13996 struct bpf_insn ld_addrs[2] = { 13997 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13998 }; 13999 14000 insn_buf[0] = ld_addrs[0]; 14001 insn_buf[1] = ld_addrs[1]; 14002 insn_buf[2] = *insn; 14003 cnt = 3; 14004 14005 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14006 if (!new_prog) 14007 return -ENOMEM; 14008 14009 delta += cnt - 1; 14010 env->prog = prog = new_prog; 14011 insn = new_prog->insnsi + i + delta; 14012 goto patch_call_imm; 14013 } 14014 14015 if (insn->imm == BPF_FUNC_task_storage_get || 14016 insn->imm == BPF_FUNC_sk_storage_get || 14017 insn->imm == BPF_FUNC_inode_storage_get) { 14018 if (env->prog->aux->sleepable) 14019 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14020 else 14021 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14022 insn_buf[1] = *insn; 14023 cnt = 2; 14024 14025 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14026 if (!new_prog) 14027 return -ENOMEM; 14028 14029 delta += cnt - 1; 14030 env->prog = prog = new_prog; 14031 insn = new_prog->insnsi + i + delta; 14032 goto patch_call_imm; 14033 } 14034 14035 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14036 * and other inlining handlers are currently limited to 64 bit 14037 * only. 14038 */ 14039 if (prog->jit_requested && BITS_PER_LONG == 64 && 14040 (insn->imm == BPF_FUNC_map_lookup_elem || 14041 insn->imm == BPF_FUNC_map_update_elem || 14042 insn->imm == BPF_FUNC_map_delete_elem || 14043 insn->imm == BPF_FUNC_map_push_elem || 14044 insn->imm == BPF_FUNC_map_pop_elem || 14045 insn->imm == BPF_FUNC_map_peek_elem || 14046 insn->imm == BPF_FUNC_redirect_map || 14047 insn->imm == BPF_FUNC_for_each_map_elem || 14048 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14049 aux = &env->insn_aux_data[i + delta]; 14050 if (bpf_map_ptr_poisoned(aux)) 14051 goto patch_call_imm; 14052 14053 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14054 ops = map_ptr->ops; 14055 if (insn->imm == BPF_FUNC_map_lookup_elem && 14056 ops->map_gen_lookup) { 14057 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14058 if (cnt == -EOPNOTSUPP) 14059 goto patch_map_ops_generic; 14060 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14061 verbose(env, "bpf verifier is misconfigured\n"); 14062 return -EINVAL; 14063 } 14064 14065 new_prog = bpf_patch_insn_data(env, i + delta, 14066 insn_buf, cnt); 14067 if (!new_prog) 14068 return -ENOMEM; 14069 14070 delta += cnt - 1; 14071 env->prog = prog = new_prog; 14072 insn = new_prog->insnsi + i + delta; 14073 continue; 14074 } 14075 14076 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14077 (void *(*)(struct bpf_map *map, void *key))NULL)); 14078 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14079 (int (*)(struct bpf_map *map, void *key))NULL)); 14080 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14081 (int (*)(struct bpf_map *map, void *key, void *value, 14082 u64 flags))NULL)); 14083 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14084 (int (*)(struct bpf_map *map, void *value, 14085 u64 flags))NULL)); 14086 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14087 (int (*)(struct bpf_map *map, void *value))NULL)); 14088 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14089 (int (*)(struct bpf_map *map, void *value))NULL)); 14090 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14091 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14092 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14093 (int (*)(struct bpf_map *map, 14094 bpf_callback_t callback_fn, 14095 void *callback_ctx, 14096 u64 flags))NULL)); 14097 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14098 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14099 14100 patch_map_ops_generic: 14101 switch (insn->imm) { 14102 case BPF_FUNC_map_lookup_elem: 14103 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14104 continue; 14105 case BPF_FUNC_map_update_elem: 14106 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14107 continue; 14108 case BPF_FUNC_map_delete_elem: 14109 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14110 continue; 14111 case BPF_FUNC_map_push_elem: 14112 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14113 continue; 14114 case BPF_FUNC_map_pop_elem: 14115 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14116 continue; 14117 case BPF_FUNC_map_peek_elem: 14118 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14119 continue; 14120 case BPF_FUNC_redirect_map: 14121 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14122 continue; 14123 case BPF_FUNC_for_each_map_elem: 14124 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14125 continue; 14126 case BPF_FUNC_map_lookup_percpu_elem: 14127 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14128 continue; 14129 } 14130 14131 goto patch_call_imm; 14132 } 14133 14134 /* Implement bpf_jiffies64 inline. */ 14135 if (prog->jit_requested && BITS_PER_LONG == 64 && 14136 insn->imm == BPF_FUNC_jiffies64) { 14137 struct bpf_insn ld_jiffies_addr[2] = { 14138 BPF_LD_IMM64(BPF_REG_0, 14139 (unsigned long)&jiffies), 14140 }; 14141 14142 insn_buf[0] = ld_jiffies_addr[0]; 14143 insn_buf[1] = ld_jiffies_addr[1]; 14144 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14145 BPF_REG_0, 0); 14146 cnt = 3; 14147 14148 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14149 cnt); 14150 if (!new_prog) 14151 return -ENOMEM; 14152 14153 delta += cnt - 1; 14154 env->prog = prog = new_prog; 14155 insn = new_prog->insnsi + i + delta; 14156 continue; 14157 } 14158 14159 /* Implement bpf_get_func_arg inline. */ 14160 if (prog_type == BPF_PROG_TYPE_TRACING && 14161 insn->imm == BPF_FUNC_get_func_arg) { 14162 /* Load nr_args from ctx - 8 */ 14163 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14164 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14165 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14166 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14167 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14168 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14169 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14170 insn_buf[7] = BPF_JMP_A(1); 14171 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14172 cnt = 9; 14173 14174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14175 if (!new_prog) 14176 return -ENOMEM; 14177 14178 delta += cnt - 1; 14179 env->prog = prog = new_prog; 14180 insn = new_prog->insnsi + i + delta; 14181 continue; 14182 } 14183 14184 /* Implement bpf_get_func_ret inline. */ 14185 if (prog_type == BPF_PROG_TYPE_TRACING && 14186 insn->imm == BPF_FUNC_get_func_ret) { 14187 if (eatype == BPF_TRACE_FEXIT || 14188 eatype == BPF_MODIFY_RETURN) { 14189 /* Load nr_args from ctx - 8 */ 14190 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14191 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14192 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14193 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14194 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14195 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14196 cnt = 6; 14197 } else { 14198 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14199 cnt = 1; 14200 } 14201 14202 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14203 if (!new_prog) 14204 return -ENOMEM; 14205 14206 delta += cnt - 1; 14207 env->prog = prog = new_prog; 14208 insn = new_prog->insnsi + i + delta; 14209 continue; 14210 } 14211 14212 /* Implement get_func_arg_cnt inline. */ 14213 if (prog_type == BPF_PROG_TYPE_TRACING && 14214 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14215 /* Load nr_args from ctx - 8 */ 14216 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14217 14218 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14219 if (!new_prog) 14220 return -ENOMEM; 14221 14222 env->prog = prog = new_prog; 14223 insn = new_prog->insnsi + i + delta; 14224 continue; 14225 } 14226 14227 /* Implement bpf_get_func_ip inline. */ 14228 if (prog_type == BPF_PROG_TYPE_TRACING && 14229 insn->imm == BPF_FUNC_get_func_ip) { 14230 /* Load IP address from ctx - 16 */ 14231 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14232 14233 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14234 if (!new_prog) 14235 return -ENOMEM; 14236 14237 env->prog = prog = new_prog; 14238 insn = new_prog->insnsi + i + delta; 14239 continue; 14240 } 14241 14242 patch_call_imm: 14243 fn = env->ops->get_func_proto(insn->imm, env->prog); 14244 /* all functions that have prototype and verifier allowed 14245 * programs to call them, must be real in-kernel functions 14246 */ 14247 if (!fn->func) { 14248 verbose(env, 14249 "kernel subsystem misconfigured func %s#%d\n", 14250 func_id_name(insn->imm), insn->imm); 14251 return -EFAULT; 14252 } 14253 insn->imm = fn->func - __bpf_call_base; 14254 } 14255 14256 /* Since poke tab is now finalized, publish aux to tracker. */ 14257 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14258 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14259 if (!map_ptr->ops->map_poke_track || 14260 !map_ptr->ops->map_poke_untrack || 14261 !map_ptr->ops->map_poke_run) { 14262 verbose(env, "bpf verifier is misconfigured\n"); 14263 return -EINVAL; 14264 } 14265 14266 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14267 if (ret < 0) { 14268 verbose(env, "tracking tail call prog failed\n"); 14269 return ret; 14270 } 14271 } 14272 14273 sort_kfunc_descs_by_imm(env->prog); 14274 14275 return 0; 14276 } 14277 14278 static void free_states(struct bpf_verifier_env *env) 14279 { 14280 struct bpf_verifier_state_list *sl, *sln; 14281 int i; 14282 14283 sl = env->free_list; 14284 while (sl) { 14285 sln = sl->next; 14286 free_verifier_state(&sl->state, false); 14287 kfree(sl); 14288 sl = sln; 14289 } 14290 env->free_list = NULL; 14291 14292 if (!env->explored_states) 14293 return; 14294 14295 for (i = 0; i < state_htab_size(env); i++) { 14296 sl = env->explored_states[i]; 14297 14298 while (sl) { 14299 sln = sl->next; 14300 free_verifier_state(&sl->state, false); 14301 kfree(sl); 14302 sl = sln; 14303 } 14304 env->explored_states[i] = NULL; 14305 } 14306 } 14307 14308 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14309 { 14310 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14311 struct bpf_verifier_state *state; 14312 struct bpf_reg_state *regs; 14313 int ret, i; 14314 14315 env->prev_linfo = NULL; 14316 env->pass_cnt++; 14317 14318 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14319 if (!state) 14320 return -ENOMEM; 14321 state->curframe = 0; 14322 state->speculative = false; 14323 state->branches = 1; 14324 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14325 if (!state->frame[0]) { 14326 kfree(state); 14327 return -ENOMEM; 14328 } 14329 env->cur_state = state; 14330 init_func_state(env, state->frame[0], 14331 BPF_MAIN_FUNC /* callsite */, 14332 0 /* frameno */, 14333 subprog); 14334 14335 regs = state->frame[state->curframe]->regs; 14336 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14337 ret = btf_prepare_func_args(env, subprog, regs); 14338 if (ret) 14339 goto out; 14340 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14341 if (regs[i].type == PTR_TO_CTX) 14342 mark_reg_known_zero(env, regs, i); 14343 else if (regs[i].type == SCALAR_VALUE) 14344 mark_reg_unknown(env, regs, i); 14345 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14346 const u32 mem_size = regs[i].mem_size; 14347 14348 mark_reg_known_zero(env, regs, i); 14349 regs[i].mem_size = mem_size; 14350 regs[i].id = ++env->id_gen; 14351 } 14352 } 14353 } else { 14354 /* 1st arg to a function */ 14355 regs[BPF_REG_1].type = PTR_TO_CTX; 14356 mark_reg_known_zero(env, regs, BPF_REG_1); 14357 ret = btf_check_subprog_arg_match(env, subprog, regs); 14358 if (ret == -EFAULT) 14359 /* unlikely verifier bug. abort. 14360 * ret == 0 and ret < 0 are sadly acceptable for 14361 * main() function due to backward compatibility. 14362 * Like socket filter program may be written as: 14363 * int bpf_prog(struct pt_regs *ctx) 14364 * and never dereference that ctx in the program. 14365 * 'struct pt_regs' is a type mismatch for socket 14366 * filter that should be using 'struct __sk_buff'. 14367 */ 14368 goto out; 14369 } 14370 14371 ret = do_check(env); 14372 out: 14373 /* check for NULL is necessary, since cur_state can be freed inside 14374 * do_check() under memory pressure. 14375 */ 14376 if (env->cur_state) { 14377 free_verifier_state(env->cur_state, true); 14378 env->cur_state = NULL; 14379 } 14380 while (!pop_stack(env, NULL, NULL, false)); 14381 if (!ret && pop_log) 14382 bpf_vlog_reset(&env->log, 0); 14383 free_states(env); 14384 return ret; 14385 } 14386 14387 /* Verify all global functions in a BPF program one by one based on their BTF. 14388 * All global functions must pass verification. Otherwise the whole program is rejected. 14389 * Consider: 14390 * int bar(int); 14391 * int foo(int f) 14392 * { 14393 * return bar(f); 14394 * } 14395 * int bar(int b) 14396 * { 14397 * ... 14398 * } 14399 * foo() will be verified first for R1=any_scalar_value. During verification it 14400 * will be assumed that bar() already verified successfully and call to bar() 14401 * from foo() will be checked for type match only. Later bar() will be verified 14402 * independently to check that it's safe for R1=any_scalar_value. 14403 */ 14404 static int do_check_subprogs(struct bpf_verifier_env *env) 14405 { 14406 struct bpf_prog_aux *aux = env->prog->aux; 14407 int i, ret; 14408 14409 if (!aux->func_info) 14410 return 0; 14411 14412 for (i = 1; i < env->subprog_cnt; i++) { 14413 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14414 continue; 14415 env->insn_idx = env->subprog_info[i].start; 14416 WARN_ON_ONCE(env->insn_idx == 0); 14417 ret = do_check_common(env, i); 14418 if (ret) { 14419 return ret; 14420 } else if (env->log.level & BPF_LOG_LEVEL) { 14421 verbose(env, 14422 "Func#%d is safe for any args that match its prototype\n", 14423 i); 14424 } 14425 } 14426 return 0; 14427 } 14428 14429 static int do_check_main(struct bpf_verifier_env *env) 14430 { 14431 int ret; 14432 14433 env->insn_idx = 0; 14434 ret = do_check_common(env, 0); 14435 if (!ret) 14436 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14437 return ret; 14438 } 14439 14440 14441 static void print_verification_stats(struct bpf_verifier_env *env) 14442 { 14443 int i; 14444 14445 if (env->log.level & BPF_LOG_STATS) { 14446 verbose(env, "verification time %lld usec\n", 14447 div_u64(env->verification_time, 1000)); 14448 verbose(env, "stack depth "); 14449 for (i = 0; i < env->subprog_cnt; i++) { 14450 u32 depth = env->subprog_info[i].stack_depth; 14451 14452 verbose(env, "%d", depth); 14453 if (i + 1 < env->subprog_cnt) 14454 verbose(env, "+"); 14455 } 14456 verbose(env, "\n"); 14457 } 14458 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14459 "total_states %d peak_states %d mark_read %d\n", 14460 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14461 env->max_states_per_insn, env->total_states, 14462 env->peak_states, env->longest_mark_read_walk); 14463 } 14464 14465 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14466 { 14467 const struct btf_type *t, *func_proto; 14468 const struct bpf_struct_ops *st_ops; 14469 const struct btf_member *member; 14470 struct bpf_prog *prog = env->prog; 14471 u32 btf_id, member_idx; 14472 const char *mname; 14473 14474 if (!prog->gpl_compatible) { 14475 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14476 return -EINVAL; 14477 } 14478 14479 btf_id = prog->aux->attach_btf_id; 14480 st_ops = bpf_struct_ops_find(btf_id); 14481 if (!st_ops) { 14482 verbose(env, "attach_btf_id %u is not a supported struct\n", 14483 btf_id); 14484 return -ENOTSUPP; 14485 } 14486 14487 t = st_ops->type; 14488 member_idx = prog->expected_attach_type; 14489 if (member_idx >= btf_type_vlen(t)) { 14490 verbose(env, "attach to invalid member idx %u of struct %s\n", 14491 member_idx, st_ops->name); 14492 return -EINVAL; 14493 } 14494 14495 member = &btf_type_member(t)[member_idx]; 14496 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14497 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14498 NULL); 14499 if (!func_proto) { 14500 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14501 mname, member_idx, st_ops->name); 14502 return -EINVAL; 14503 } 14504 14505 if (st_ops->check_member) { 14506 int err = st_ops->check_member(t, member); 14507 14508 if (err) { 14509 verbose(env, "attach to unsupported member %s of struct %s\n", 14510 mname, st_ops->name); 14511 return err; 14512 } 14513 } 14514 14515 prog->aux->attach_func_proto = func_proto; 14516 prog->aux->attach_func_name = mname; 14517 env->ops = st_ops->verifier_ops; 14518 14519 return 0; 14520 } 14521 #define SECURITY_PREFIX "security_" 14522 14523 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14524 { 14525 if (within_error_injection_list(addr) || 14526 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14527 return 0; 14528 14529 return -EINVAL; 14530 } 14531 14532 /* list of non-sleepable functions that are otherwise on 14533 * ALLOW_ERROR_INJECTION list 14534 */ 14535 BTF_SET_START(btf_non_sleepable_error_inject) 14536 /* Three functions below can be called from sleepable and non-sleepable context. 14537 * Assume non-sleepable from bpf safety point of view. 14538 */ 14539 BTF_ID(func, __filemap_add_folio) 14540 BTF_ID(func, should_fail_alloc_page) 14541 BTF_ID(func, should_failslab) 14542 BTF_SET_END(btf_non_sleepable_error_inject) 14543 14544 static int check_non_sleepable_error_inject(u32 btf_id) 14545 { 14546 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14547 } 14548 14549 int bpf_check_attach_target(struct bpf_verifier_log *log, 14550 const struct bpf_prog *prog, 14551 const struct bpf_prog *tgt_prog, 14552 u32 btf_id, 14553 struct bpf_attach_target_info *tgt_info) 14554 { 14555 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14556 const char prefix[] = "btf_trace_"; 14557 int ret = 0, subprog = -1, i; 14558 const struct btf_type *t; 14559 bool conservative = true; 14560 const char *tname; 14561 struct btf *btf; 14562 long addr = 0; 14563 14564 if (!btf_id) { 14565 bpf_log(log, "Tracing programs must provide btf_id\n"); 14566 return -EINVAL; 14567 } 14568 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14569 if (!btf) { 14570 bpf_log(log, 14571 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14572 return -EINVAL; 14573 } 14574 t = btf_type_by_id(btf, btf_id); 14575 if (!t) { 14576 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14577 return -EINVAL; 14578 } 14579 tname = btf_name_by_offset(btf, t->name_off); 14580 if (!tname) { 14581 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14582 return -EINVAL; 14583 } 14584 if (tgt_prog) { 14585 struct bpf_prog_aux *aux = tgt_prog->aux; 14586 14587 for (i = 0; i < aux->func_info_cnt; i++) 14588 if (aux->func_info[i].type_id == btf_id) { 14589 subprog = i; 14590 break; 14591 } 14592 if (subprog == -1) { 14593 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14594 return -EINVAL; 14595 } 14596 conservative = aux->func_info_aux[subprog].unreliable; 14597 if (prog_extension) { 14598 if (conservative) { 14599 bpf_log(log, 14600 "Cannot replace static functions\n"); 14601 return -EINVAL; 14602 } 14603 if (!prog->jit_requested) { 14604 bpf_log(log, 14605 "Extension programs should be JITed\n"); 14606 return -EINVAL; 14607 } 14608 } 14609 if (!tgt_prog->jited) { 14610 bpf_log(log, "Can attach to only JITed progs\n"); 14611 return -EINVAL; 14612 } 14613 if (tgt_prog->type == prog->type) { 14614 /* Cannot fentry/fexit another fentry/fexit program. 14615 * Cannot attach program extension to another extension. 14616 * It's ok to attach fentry/fexit to extension program. 14617 */ 14618 bpf_log(log, "Cannot recursively attach\n"); 14619 return -EINVAL; 14620 } 14621 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14622 prog_extension && 14623 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14624 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14625 /* Program extensions can extend all program types 14626 * except fentry/fexit. The reason is the following. 14627 * The fentry/fexit programs are used for performance 14628 * analysis, stats and can be attached to any program 14629 * type except themselves. When extension program is 14630 * replacing XDP function it is necessary to allow 14631 * performance analysis of all functions. Both original 14632 * XDP program and its program extension. Hence 14633 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14634 * allowed. If extending of fentry/fexit was allowed it 14635 * would be possible to create long call chain 14636 * fentry->extension->fentry->extension beyond 14637 * reasonable stack size. Hence extending fentry is not 14638 * allowed. 14639 */ 14640 bpf_log(log, "Cannot extend fentry/fexit\n"); 14641 return -EINVAL; 14642 } 14643 } else { 14644 if (prog_extension) { 14645 bpf_log(log, "Cannot replace kernel functions\n"); 14646 return -EINVAL; 14647 } 14648 } 14649 14650 switch (prog->expected_attach_type) { 14651 case BPF_TRACE_RAW_TP: 14652 if (tgt_prog) { 14653 bpf_log(log, 14654 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14655 return -EINVAL; 14656 } 14657 if (!btf_type_is_typedef(t)) { 14658 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14659 btf_id); 14660 return -EINVAL; 14661 } 14662 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14663 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14664 btf_id, tname); 14665 return -EINVAL; 14666 } 14667 tname += sizeof(prefix) - 1; 14668 t = btf_type_by_id(btf, t->type); 14669 if (!btf_type_is_ptr(t)) 14670 /* should never happen in valid vmlinux build */ 14671 return -EINVAL; 14672 t = btf_type_by_id(btf, t->type); 14673 if (!btf_type_is_func_proto(t)) 14674 /* should never happen in valid vmlinux build */ 14675 return -EINVAL; 14676 14677 break; 14678 case BPF_TRACE_ITER: 14679 if (!btf_type_is_func(t)) { 14680 bpf_log(log, "attach_btf_id %u is not a function\n", 14681 btf_id); 14682 return -EINVAL; 14683 } 14684 t = btf_type_by_id(btf, t->type); 14685 if (!btf_type_is_func_proto(t)) 14686 return -EINVAL; 14687 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14688 if (ret) 14689 return ret; 14690 break; 14691 default: 14692 if (!prog_extension) 14693 return -EINVAL; 14694 fallthrough; 14695 case BPF_MODIFY_RETURN: 14696 case BPF_LSM_MAC: 14697 case BPF_TRACE_FENTRY: 14698 case BPF_TRACE_FEXIT: 14699 if (!btf_type_is_func(t)) { 14700 bpf_log(log, "attach_btf_id %u is not a function\n", 14701 btf_id); 14702 return -EINVAL; 14703 } 14704 if (prog_extension && 14705 btf_check_type_match(log, prog, btf, t)) 14706 return -EINVAL; 14707 t = btf_type_by_id(btf, t->type); 14708 if (!btf_type_is_func_proto(t)) 14709 return -EINVAL; 14710 14711 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14712 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14713 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14714 return -EINVAL; 14715 14716 if (tgt_prog && conservative) 14717 t = NULL; 14718 14719 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14720 if (ret < 0) 14721 return ret; 14722 14723 if (tgt_prog) { 14724 if (subprog == 0) 14725 addr = (long) tgt_prog->bpf_func; 14726 else 14727 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14728 } else { 14729 addr = kallsyms_lookup_name(tname); 14730 if (!addr) { 14731 bpf_log(log, 14732 "The address of function %s cannot be found\n", 14733 tname); 14734 return -ENOENT; 14735 } 14736 } 14737 14738 if (prog->aux->sleepable) { 14739 ret = -EINVAL; 14740 switch (prog->type) { 14741 case BPF_PROG_TYPE_TRACING: 14742 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14743 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14744 */ 14745 if (!check_non_sleepable_error_inject(btf_id) && 14746 within_error_injection_list(addr)) 14747 ret = 0; 14748 break; 14749 case BPF_PROG_TYPE_LSM: 14750 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14751 * Only some of them are sleepable. 14752 */ 14753 if (bpf_lsm_is_sleepable_hook(btf_id)) 14754 ret = 0; 14755 break; 14756 default: 14757 break; 14758 } 14759 if (ret) { 14760 bpf_log(log, "%s is not sleepable\n", tname); 14761 return ret; 14762 } 14763 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14764 if (tgt_prog) { 14765 bpf_log(log, "can't modify return codes of BPF programs\n"); 14766 return -EINVAL; 14767 } 14768 ret = check_attach_modify_return(addr, tname); 14769 if (ret) { 14770 bpf_log(log, "%s() is not modifiable\n", tname); 14771 return ret; 14772 } 14773 } 14774 14775 break; 14776 } 14777 tgt_info->tgt_addr = addr; 14778 tgt_info->tgt_name = tname; 14779 tgt_info->tgt_type = t; 14780 return 0; 14781 } 14782 14783 BTF_SET_START(btf_id_deny) 14784 BTF_ID_UNUSED 14785 #ifdef CONFIG_SMP 14786 BTF_ID(func, migrate_disable) 14787 BTF_ID(func, migrate_enable) 14788 #endif 14789 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 14790 BTF_ID(func, rcu_read_unlock_strict) 14791 #endif 14792 BTF_SET_END(btf_id_deny) 14793 14794 static int check_attach_btf_id(struct bpf_verifier_env *env) 14795 { 14796 struct bpf_prog *prog = env->prog; 14797 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 14798 struct bpf_attach_target_info tgt_info = {}; 14799 u32 btf_id = prog->aux->attach_btf_id; 14800 struct bpf_trampoline *tr; 14801 int ret; 14802 u64 key; 14803 14804 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 14805 if (prog->aux->sleepable) 14806 /* attach_btf_id checked to be zero already */ 14807 return 0; 14808 verbose(env, "Syscall programs can only be sleepable\n"); 14809 return -EINVAL; 14810 } 14811 14812 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 14813 prog->type != BPF_PROG_TYPE_LSM) { 14814 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 14815 return -EINVAL; 14816 } 14817 14818 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 14819 return check_struct_ops_btf_id(env); 14820 14821 if (prog->type != BPF_PROG_TYPE_TRACING && 14822 prog->type != BPF_PROG_TYPE_LSM && 14823 prog->type != BPF_PROG_TYPE_EXT) 14824 return 0; 14825 14826 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 14827 if (ret) 14828 return ret; 14829 14830 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 14831 /* to make freplace equivalent to their targets, they need to 14832 * inherit env->ops and expected_attach_type for the rest of the 14833 * verification 14834 */ 14835 env->ops = bpf_verifier_ops[tgt_prog->type]; 14836 prog->expected_attach_type = tgt_prog->expected_attach_type; 14837 } 14838 14839 /* store info about the attachment target that will be used later */ 14840 prog->aux->attach_func_proto = tgt_info.tgt_type; 14841 prog->aux->attach_func_name = tgt_info.tgt_name; 14842 14843 if (tgt_prog) { 14844 prog->aux->saved_dst_prog_type = tgt_prog->type; 14845 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 14846 } 14847 14848 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 14849 prog->aux->attach_btf_trace = true; 14850 return 0; 14851 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 14852 if (!bpf_iter_prog_supported(prog)) 14853 return -EINVAL; 14854 return 0; 14855 } 14856 14857 if (prog->type == BPF_PROG_TYPE_LSM) { 14858 ret = bpf_lsm_verify_prog(&env->log, prog); 14859 if (ret < 0) 14860 return ret; 14861 } else if (prog->type == BPF_PROG_TYPE_TRACING && 14862 btf_id_set_contains(&btf_id_deny, btf_id)) { 14863 return -EINVAL; 14864 } 14865 14866 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 14867 tr = bpf_trampoline_get(key, &tgt_info); 14868 if (!tr) 14869 return -ENOMEM; 14870 14871 prog->aux->dst_trampoline = tr; 14872 return 0; 14873 } 14874 14875 struct btf *bpf_get_btf_vmlinux(void) 14876 { 14877 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 14878 mutex_lock(&bpf_verifier_lock); 14879 if (!btf_vmlinux) 14880 btf_vmlinux = btf_parse_vmlinux(); 14881 mutex_unlock(&bpf_verifier_lock); 14882 } 14883 return btf_vmlinux; 14884 } 14885 14886 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 14887 { 14888 u64 start_time = ktime_get_ns(); 14889 struct bpf_verifier_env *env; 14890 struct bpf_verifier_log *log; 14891 int i, len, ret = -EINVAL; 14892 bool is_priv; 14893 14894 /* no program is valid */ 14895 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 14896 return -EINVAL; 14897 14898 /* 'struct bpf_verifier_env' can be global, but since it's not small, 14899 * allocate/free it every time bpf_check() is called 14900 */ 14901 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 14902 if (!env) 14903 return -ENOMEM; 14904 log = &env->log; 14905 14906 len = (*prog)->len; 14907 env->insn_aux_data = 14908 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 14909 ret = -ENOMEM; 14910 if (!env->insn_aux_data) 14911 goto err_free_env; 14912 for (i = 0; i < len; i++) 14913 env->insn_aux_data[i].orig_idx = i; 14914 env->prog = *prog; 14915 env->ops = bpf_verifier_ops[env->prog->type]; 14916 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 14917 is_priv = bpf_capable(); 14918 14919 bpf_get_btf_vmlinux(); 14920 14921 /* grab the mutex to protect few globals used by verifier */ 14922 if (!is_priv) 14923 mutex_lock(&bpf_verifier_lock); 14924 14925 if (attr->log_level || attr->log_buf || attr->log_size) { 14926 /* user requested verbose verifier output 14927 * and supplied buffer to store the verification trace 14928 */ 14929 log->level = attr->log_level; 14930 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 14931 log->len_total = attr->log_size; 14932 14933 /* log attributes have to be sane */ 14934 if (!bpf_verifier_log_attr_valid(log)) { 14935 ret = -EINVAL; 14936 goto err_unlock; 14937 } 14938 } 14939 14940 mark_verifier_state_clean(env); 14941 14942 if (IS_ERR(btf_vmlinux)) { 14943 /* Either gcc or pahole or kernel are broken. */ 14944 verbose(env, "in-kernel BTF is malformed\n"); 14945 ret = PTR_ERR(btf_vmlinux); 14946 goto skip_full_check; 14947 } 14948 14949 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 14950 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 14951 env->strict_alignment = true; 14952 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 14953 env->strict_alignment = false; 14954 14955 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 14956 env->allow_uninit_stack = bpf_allow_uninit_stack(); 14957 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 14958 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 14959 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 14960 env->bpf_capable = bpf_capable(); 14961 14962 if (is_priv) 14963 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 14964 14965 env->explored_states = kvcalloc(state_htab_size(env), 14966 sizeof(struct bpf_verifier_state_list *), 14967 GFP_USER); 14968 ret = -ENOMEM; 14969 if (!env->explored_states) 14970 goto skip_full_check; 14971 14972 ret = add_subprog_and_kfunc(env); 14973 if (ret < 0) 14974 goto skip_full_check; 14975 14976 ret = check_subprogs(env); 14977 if (ret < 0) 14978 goto skip_full_check; 14979 14980 ret = check_btf_info(env, attr, uattr); 14981 if (ret < 0) 14982 goto skip_full_check; 14983 14984 ret = check_attach_btf_id(env); 14985 if (ret) 14986 goto skip_full_check; 14987 14988 ret = resolve_pseudo_ldimm64(env); 14989 if (ret < 0) 14990 goto skip_full_check; 14991 14992 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14993 ret = bpf_prog_offload_verifier_prep(env->prog); 14994 if (ret) 14995 goto skip_full_check; 14996 } 14997 14998 ret = check_cfg(env); 14999 if (ret < 0) 15000 goto skip_full_check; 15001 15002 ret = do_check_subprogs(env); 15003 ret = ret ?: do_check_main(env); 15004 15005 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15006 ret = bpf_prog_offload_finalize(env); 15007 15008 skip_full_check: 15009 kvfree(env->explored_states); 15010 15011 if (ret == 0) 15012 ret = check_max_stack_depth(env); 15013 15014 /* instruction rewrites happen after this point */ 15015 if (is_priv) { 15016 if (ret == 0) 15017 opt_hard_wire_dead_code_branches(env); 15018 if (ret == 0) 15019 ret = opt_remove_dead_code(env); 15020 if (ret == 0) 15021 ret = opt_remove_nops(env); 15022 } else { 15023 if (ret == 0) 15024 sanitize_dead_code(env); 15025 } 15026 15027 if (ret == 0) 15028 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15029 ret = convert_ctx_accesses(env); 15030 15031 if (ret == 0) 15032 ret = do_misc_fixups(env); 15033 15034 /* do 32-bit optimization after insn patching has done so those patched 15035 * insns could be handled correctly. 15036 */ 15037 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15038 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15039 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15040 : false; 15041 } 15042 15043 if (ret == 0) 15044 ret = fixup_call_args(env); 15045 15046 env->verification_time = ktime_get_ns() - start_time; 15047 print_verification_stats(env); 15048 env->prog->aux->verified_insns = env->insn_processed; 15049 15050 if (log->level && bpf_verifier_log_full(log)) 15051 ret = -ENOSPC; 15052 if (log->level && !log->ubuf) { 15053 ret = -EFAULT; 15054 goto err_release_maps; 15055 } 15056 15057 if (ret) 15058 goto err_release_maps; 15059 15060 if (env->used_map_cnt) { 15061 /* if program passed verifier, update used_maps in bpf_prog_info */ 15062 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15063 sizeof(env->used_maps[0]), 15064 GFP_KERNEL); 15065 15066 if (!env->prog->aux->used_maps) { 15067 ret = -ENOMEM; 15068 goto err_release_maps; 15069 } 15070 15071 memcpy(env->prog->aux->used_maps, env->used_maps, 15072 sizeof(env->used_maps[0]) * env->used_map_cnt); 15073 env->prog->aux->used_map_cnt = env->used_map_cnt; 15074 } 15075 if (env->used_btf_cnt) { 15076 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15077 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15078 sizeof(env->used_btfs[0]), 15079 GFP_KERNEL); 15080 if (!env->prog->aux->used_btfs) { 15081 ret = -ENOMEM; 15082 goto err_release_maps; 15083 } 15084 15085 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15086 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15087 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15088 } 15089 if (env->used_map_cnt || env->used_btf_cnt) { 15090 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15091 * bpf_ld_imm64 instructions 15092 */ 15093 convert_pseudo_ld_imm64(env); 15094 } 15095 15096 adjust_btf_func(env); 15097 15098 err_release_maps: 15099 if (!env->prog->aux->used_maps) 15100 /* if we didn't copy map pointers into bpf_prog_info, release 15101 * them now. Otherwise free_used_maps() will release them. 15102 */ 15103 release_maps(env); 15104 if (!env->prog->aux->used_btfs) 15105 release_btfs(env); 15106 15107 /* extension progs temporarily inherit the attach_type of their targets 15108 for verification purposes, so set it back to zero before returning 15109 */ 15110 if (env->prog->type == BPF_PROG_TYPE_EXT) 15111 env->prog->expected_attach_type = 0; 15112 15113 *prog = env->prog; 15114 err_unlock: 15115 if (!is_priv) 15116 mutex_unlock(&bpf_verifier_lock); 15117 vfree(env->insn_aux_data); 15118 err_free_env: 15119 kfree(env); 15120 return ret; 15121 } 15122