xref: /openbmc/linux/kernel/bpf/verifier.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_STACK	1024
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_PTR_UNPRIV	1UL
175 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
176 					  POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178 
179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180 {
181 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182 }
183 
184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185 {
186 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
187 }
188 
189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 			      const struct bpf_map *map, bool unpriv)
191 {
192 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 	unpriv |= bpf_map_ptr_unpriv(aux);
194 	aux->map_state = (unsigned long)map |
195 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196 }
197 
198 struct bpf_call_arg_meta {
199 	struct bpf_map *map_ptr;
200 	bool raw_mode;
201 	bool pkt_access;
202 	int regno;
203 	int access_size;
204 	s64 msize_smax_value;
205 	u64 msize_umax_value;
206 	int ref_obj_id;
207 	int func_id;
208 };
209 
210 static DEFINE_MUTEX(bpf_verifier_lock);
211 
212 static const struct bpf_line_info *
213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214 {
215 	const struct bpf_line_info *linfo;
216 	const struct bpf_prog *prog;
217 	u32 i, nr_linfo;
218 
219 	prog = env->prog;
220 	nr_linfo = prog->aux->nr_linfo;
221 
222 	if (!nr_linfo || insn_off >= prog->len)
223 		return NULL;
224 
225 	linfo = prog->aux->linfo;
226 	for (i = 1; i < nr_linfo; i++)
227 		if (insn_off < linfo[i].insn_off)
228 			break;
229 
230 	return &linfo[i - 1];
231 }
232 
233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 		       va_list args)
235 {
236 	unsigned int n;
237 
238 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
239 
240 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 		  "verifier log line truncated - local buffer too short\n");
242 
243 	n = min(log->len_total - log->len_used - 1, n);
244 	log->kbuf[n] = '\0';
245 
246 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 		log->len_used += n;
248 	else
249 		log->ubuf = NULL;
250 }
251 
252 /* log_level controls verbosity level of eBPF verifier.
253  * bpf_verifier_log_write() is used to dump the verification trace to the log,
254  * so the user can figure out what's wrong with the program
255  */
256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 					   const char *fmt, ...)
258 {
259 	va_list args;
260 
261 	if (!bpf_verifier_log_needed(&env->log))
262 		return;
263 
264 	va_start(args, fmt);
265 	bpf_verifier_vlog(&env->log, fmt, args);
266 	va_end(args);
267 }
268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269 
270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271 {
272 	struct bpf_verifier_env *env = private_data;
273 	va_list args;
274 
275 	if (!bpf_verifier_log_needed(&env->log))
276 		return;
277 
278 	va_start(args, fmt);
279 	bpf_verifier_vlog(&env->log, fmt, args);
280 	va_end(args);
281 }
282 
283 static const char *ltrim(const char *s)
284 {
285 	while (isspace(*s))
286 		s++;
287 
288 	return s;
289 }
290 
291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 					 u32 insn_off,
293 					 const char *prefix_fmt, ...)
294 {
295 	const struct bpf_line_info *linfo;
296 
297 	if (!bpf_verifier_log_needed(&env->log))
298 		return;
299 
300 	linfo = find_linfo(env, insn_off);
301 	if (!linfo || linfo == env->prev_linfo)
302 		return;
303 
304 	if (prefix_fmt) {
305 		va_list args;
306 
307 		va_start(args, prefix_fmt);
308 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 		va_end(args);
310 	}
311 
312 	verbose(env, "%s\n",
313 		ltrim(btf_name_by_offset(env->prog->aux->btf,
314 					 linfo->line_off)));
315 
316 	env->prev_linfo = linfo;
317 }
318 
319 static bool type_is_pkt_pointer(enum bpf_reg_type type)
320 {
321 	return type == PTR_TO_PACKET ||
322 	       type == PTR_TO_PACKET_META;
323 }
324 
325 static bool type_is_sk_pointer(enum bpf_reg_type type)
326 {
327 	return type == PTR_TO_SOCKET ||
328 		type == PTR_TO_SOCK_COMMON ||
329 		type == PTR_TO_TCP_SOCK;
330 }
331 
332 static bool reg_type_may_be_null(enum bpf_reg_type type)
333 {
334 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
335 	       type == PTR_TO_SOCKET_OR_NULL ||
336 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
337 	       type == PTR_TO_TCP_SOCK_OR_NULL;
338 }
339 
340 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
341 {
342 	return reg->type == PTR_TO_MAP_VALUE &&
343 		map_value_has_spin_lock(reg->map_ptr);
344 }
345 
346 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
347 {
348 	return type == PTR_TO_SOCKET ||
349 		type == PTR_TO_SOCKET_OR_NULL ||
350 		type == PTR_TO_TCP_SOCK ||
351 		type == PTR_TO_TCP_SOCK_OR_NULL;
352 }
353 
354 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
355 {
356 	return type == ARG_PTR_TO_SOCK_COMMON;
357 }
358 
359 /* Determine whether the function releases some resources allocated by another
360  * function call. The first reference type argument will be assumed to be
361  * released by release_reference().
362  */
363 static bool is_release_function(enum bpf_func_id func_id)
364 {
365 	return func_id == BPF_FUNC_sk_release;
366 }
367 
368 static bool is_acquire_function(enum bpf_func_id func_id)
369 {
370 	return func_id == BPF_FUNC_sk_lookup_tcp ||
371 		func_id == BPF_FUNC_sk_lookup_udp ||
372 		func_id == BPF_FUNC_skc_lookup_tcp;
373 }
374 
375 static bool is_ptr_cast_function(enum bpf_func_id func_id)
376 {
377 	return func_id == BPF_FUNC_tcp_sock ||
378 		func_id == BPF_FUNC_sk_fullsock;
379 }
380 
381 /* string representation of 'enum bpf_reg_type' */
382 static const char * const reg_type_str[] = {
383 	[NOT_INIT]		= "?",
384 	[SCALAR_VALUE]		= "inv",
385 	[PTR_TO_CTX]		= "ctx",
386 	[CONST_PTR_TO_MAP]	= "map_ptr",
387 	[PTR_TO_MAP_VALUE]	= "map_value",
388 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
389 	[PTR_TO_STACK]		= "fp",
390 	[PTR_TO_PACKET]		= "pkt",
391 	[PTR_TO_PACKET_META]	= "pkt_meta",
392 	[PTR_TO_PACKET_END]	= "pkt_end",
393 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
394 	[PTR_TO_SOCKET]		= "sock",
395 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
396 	[PTR_TO_SOCK_COMMON]	= "sock_common",
397 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
398 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
399 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
400 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
401 };
402 
403 static char slot_type_char[] = {
404 	[STACK_INVALID]	= '?',
405 	[STACK_SPILL]	= 'r',
406 	[STACK_MISC]	= 'm',
407 	[STACK_ZERO]	= '0',
408 };
409 
410 static void print_liveness(struct bpf_verifier_env *env,
411 			   enum bpf_reg_liveness live)
412 {
413 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
414 	    verbose(env, "_");
415 	if (live & REG_LIVE_READ)
416 		verbose(env, "r");
417 	if (live & REG_LIVE_WRITTEN)
418 		verbose(env, "w");
419 	if (live & REG_LIVE_DONE)
420 		verbose(env, "D");
421 }
422 
423 static struct bpf_func_state *func(struct bpf_verifier_env *env,
424 				   const struct bpf_reg_state *reg)
425 {
426 	struct bpf_verifier_state *cur = env->cur_state;
427 
428 	return cur->frame[reg->frameno];
429 }
430 
431 static void print_verifier_state(struct bpf_verifier_env *env,
432 				 const struct bpf_func_state *state)
433 {
434 	const struct bpf_reg_state *reg;
435 	enum bpf_reg_type t;
436 	int i;
437 
438 	if (state->frameno)
439 		verbose(env, " frame%d:", state->frameno);
440 	for (i = 0; i < MAX_BPF_REG; i++) {
441 		reg = &state->regs[i];
442 		t = reg->type;
443 		if (t == NOT_INIT)
444 			continue;
445 		verbose(env, " R%d", i);
446 		print_liveness(env, reg->live);
447 		verbose(env, "=%s", reg_type_str[t]);
448 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
449 		    tnum_is_const(reg->var_off)) {
450 			/* reg->off should be 0 for SCALAR_VALUE */
451 			verbose(env, "%lld", reg->var_off.value + reg->off);
452 			if (t == PTR_TO_STACK)
453 				verbose(env, ",call_%d", func(env, reg)->callsite);
454 		} else {
455 			verbose(env, "(id=%d", reg->id);
456 			if (reg_type_may_be_refcounted_or_null(t))
457 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
458 			if (t != SCALAR_VALUE)
459 				verbose(env, ",off=%d", reg->off);
460 			if (type_is_pkt_pointer(t))
461 				verbose(env, ",r=%d", reg->range);
462 			else if (t == CONST_PTR_TO_MAP ||
463 				 t == PTR_TO_MAP_VALUE ||
464 				 t == PTR_TO_MAP_VALUE_OR_NULL)
465 				verbose(env, ",ks=%d,vs=%d",
466 					reg->map_ptr->key_size,
467 					reg->map_ptr->value_size);
468 			if (tnum_is_const(reg->var_off)) {
469 				/* Typically an immediate SCALAR_VALUE, but
470 				 * could be a pointer whose offset is too big
471 				 * for reg->off
472 				 */
473 				verbose(env, ",imm=%llx", reg->var_off.value);
474 			} else {
475 				if (reg->smin_value != reg->umin_value &&
476 				    reg->smin_value != S64_MIN)
477 					verbose(env, ",smin_value=%lld",
478 						(long long)reg->smin_value);
479 				if (reg->smax_value != reg->umax_value &&
480 				    reg->smax_value != S64_MAX)
481 					verbose(env, ",smax_value=%lld",
482 						(long long)reg->smax_value);
483 				if (reg->umin_value != 0)
484 					verbose(env, ",umin_value=%llu",
485 						(unsigned long long)reg->umin_value);
486 				if (reg->umax_value != U64_MAX)
487 					verbose(env, ",umax_value=%llu",
488 						(unsigned long long)reg->umax_value);
489 				if (!tnum_is_unknown(reg->var_off)) {
490 					char tn_buf[48];
491 
492 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
493 					verbose(env, ",var_off=%s", tn_buf);
494 				}
495 			}
496 			verbose(env, ")");
497 		}
498 	}
499 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
500 		char types_buf[BPF_REG_SIZE + 1];
501 		bool valid = false;
502 		int j;
503 
504 		for (j = 0; j < BPF_REG_SIZE; j++) {
505 			if (state->stack[i].slot_type[j] != STACK_INVALID)
506 				valid = true;
507 			types_buf[j] = slot_type_char[
508 					state->stack[i].slot_type[j]];
509 		}
510 		types_buf[BPF_REG_SIZE] = 0;
511 		if (!valid)
512 			continue;
513 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
514 		print_liveness(env, state->stack[i].spilled_ptr.live);
515 		if (state->stack[i].slot_type[0] == STACK_SPILL)
516 			verbose(env, "=%s",
517 				reg_type_str[state->stack[i].spilled_ptr.type]);
518 		else
519 			verbose(env, "=%s", types_buf);
520 	}
521 	if (state->acquired_refs && state->refs[0].id) {
522 		verbose(env, " refs=%d", state->refs[0].id);
523 		for (i = 1; i < state->acquired_refs; i++)
524 			if (state->refs[i].id)
525 				verbose(env, ",%d", state->refs[i].id);
526 	}
527 	verbose(env, "\n");
528 }
529 
530 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
531 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
532 			       const struct bpf_func_state *src)	\
533 {									\
534 	if (!src->FIELD)						\
535 		return 0;						\
536 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
537 		/* internal bug, make state invalid to reject the program */ \
538 		memset(dst, 0, sizeof(*dst));				\
539 		return -EFAULT;						\
540 	}								\
541 	memcpy(dst->FIELD, src->FIELD,					\
542 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
543 	return 0;							\
544 }
545 /* copy_reference_state() */
546 COPY_STATE_FN(reference, acquired_refs, refs, 1)
547 /* copy_stack_state() */
548 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
549 #undef COPY_STATE_FN
550 
551 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
552 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
553 				  bool copy_old)			\
554 {									\
555 	u32 old_size = state->COUNT;					\
556 	struct bpf_##NAME##_state *new_##FIELD;				\
557 	int slot = size / SIZE;						\
558 									\
559 	if (size <= old_size || !size) {				\
560 		if (copy_old)						\
561 			return 0;					\
562 		state->COUNT = slot * SIZE;				\
563 		if (!size && old_size) {				\
564 			kfree(state->FIELD);				\
565 			state->FIELD = NULL;				\
566 		}							\
567 		return 0;						\
568 	}								\
569 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
570 				    GFP_KERNEL);			\
571 	if (!new_##FIELD)						\
572 		return -ENOMEM;						\
573 	if (copy_old) {							\
574 		if (state->FIELD)					\
575 			memcpy(new_##FIELD, state->FIELD,		\
576 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
577 		memset(new_##FIELD + old_size / SIZE, 0,		\
578 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
579 	}								\
580 	state->COUNT = slot * SIZE;					\
581 	kfree(state->FIELD);						\
582 	state->FIELD = new_##FIELD;					\
583 	return 0;							\
584 }
585 /* realloc_reference_state() */
586 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
587 /* realloc_stack_state() */
588 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
589 #undef REALLOC_STATE_FN
590 
591 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
592  * make it consume minimal amount of memory. check_stack_write() access from
593  * the program calls into realloc_func_state() to grow the stack size.
594  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
595  * which realloc_stack_state() copies over. It points to previous
596  * bpf_verifier_state which is never reallocated.
597  */
598 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
599 			      int refs_size, bool copy_old)
600 {
601 	int err = realloc_reference_state(state, refs_size, copy_old);
602 	if (err)
603 		return err;
604 	return realloc_stack_state(state, stack_size, copy_old);
605 }
606 
607 /* Acquire a pointer id from the env and update the state->refs to include
608  * this new pointer reference.
609  * On success, returns a valid pointer id to associate with the register
610  * On failure, returns a negative errno.
611  */
612 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
613 {
614 	struct bpf_func_state *state = cur_func(env);
615 	int new_ofs = state->acquired_refs;
616 	int id, err;
617 
618 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
619 	if (err)
620 		return err;
621 	id = ++env->id_gen;
622 	state->refs[new_ofs].id = id;
623 	state->refs[new_ofs].insn_idx = insn_idx;
624 
625 	return id;
626 }
627 
628 /* release function corresponding to acquire_reference_state(). Idempotent. */
629 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
630 {
631 	int i, last_idx;
632 
633 	last_idx = state->acquired_refs - 1;
634 	for (i = 0; i < state->acquired_refs; i++) {
635 		if (state->refs[i].id == ptr_id) {
636 			if (last_idx && i != last_idx)
637 				memcpy(&state->refs[i], &state->refs[last_idx],
638 				       sizeof(*state->refs));
639 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
640 			state->acquired_refs--;
641 			return 0;
642 		}
643 	}
644 	return -EINVAL;
645 }
646 
647 static int transfer_reference_state(struct bpf_func_state *dst,
648 				    struct bpf_func_state *src)
649 {
650 	int err = realloc_reference_state(dst, src->acquired_refs, false);
651 	if (err)
652 		return err;
653 	err = copy_reference_state(dst, src);
654 	if (err)
655 		return err;
656 	return 0;
657 }
658 
659 static void free_func_state(struct bpf_func_state *state)
660 {
661 	if (!state)
662 		return;
663 	kfree(state->refs);
664 	kfree(state->stack);
665 	kfree(state);
666 }
667 
668 static void free_verifier_state(struct bpf_verifier_state *state,
669 				bool free_self)
670 {
671 	int i;
672 
673 	for (i = 0; i <= state->curframe; i++) {
674 		free_func_state(state->frame[i]);
675 		state->frame[i] = NULL;
676 	}
677 	if (free_self)
678 		kfree(state);
679 }
680 
681 /* copy verifier state from src to dst growing dst stack space
682  * when necessary to accommodate larger src stack
683  */
684 static int copy_func_state(struct bpf_func_state *dst,
685 			   const struct bpf_func_state *src)
686 {
687 	int err;
688 
689 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
690 				 false);
691 	if (err)
692 		return err;
693 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
694 	err = copy_reference_state(dst, src);
695 	if (err)
696 		return err;
697 	return copy_stack_state(dst, src);
698 }
699 
700 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
701 			       const struct bpf_verifier_state *src)
702 {
703 	struct bpf_func_state *dst;
704 	int i, err;
705 
706 	/* if dst has more stack frames then src frame, free them */
707 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
708 		free_func_state(dst_state->frame[i]);
709 		dst_state->frame[i] = NULL;
710 	}
711 	dst_state->speculative = src->speculative;
712 	dst_state->curframe = src->curframe;
713 	dst_state->active_spin_lock = src->active_spin_lock;
714 	for (i = 0; i <= src->curframe; i++) {
715 		dst = dst_state->frame[i];
716 		if (!dst) {
717 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
718 			if (!dst)
719 				return -ENOMEM;
720 			dst_state->frame[i] = dst;
721 		}
722 		err = copy_func_state(dst, src->frame[i]);
723 		if (err)
724 			return err;
725 	}
726 	return 0;
727 }
728 
729 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
730 		     int *insn_idx)
731 {
732 	struct bpf_verifier_state *cur = env->cur_state;
733 	struct bpf_verifier_stack_elem *elem, *head = env->head;
734 	int err;
735 
736 	if (env->head == NULL)
737 		return -ENOENT;
738 
739 	if (cur) {
740 		err = copy_verifier_state(cur, &head->st);
741 		if (err)
742 			return err;
743 	}
744 	if (insn_idx)
745 		*insn_idx = head->insn_idx;
746 	if (prev_insn_idx)
747 		*prev_insn_idx = head->prev_insn_idx;
748 	elem = head->next;
749 	free_verifier_state(&head->st, false);
750 	kfree(head);
751 	env->head = elem;
752 	env->stack_size--;
753 	return 0;
754 }
755 
756 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
757 					     int insn_idx, int prev_insn_idx,
758 					     bool speculative)
759 {
760 	struct bpf_verifier_state *cur = env->cur_state;
761 	struct bpf_verifier_stack_elem *elem;
762 	int err;
763 
764 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
765 	if (!elem)
766 		goto err;
767 
768 	elem->insn_idx = insn_idx;
769 	elem->prev_insn_idx = prev_insn_idx;
770 	elem->next = env->head;
771 	env->head = elem;
772 	env->stack_size++;
773 	err = copy_verifier_state(&elem->st, cur);
774 	if (err)
775 		goto err;
776 	elem->st.speculative |= speculative;
777 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
778 		verbose(env, "BPF program is too complex\n");
779 		goto err;
780 	}
781 	return &elem->st;
782 err:
783 	free_verifier_state(env->cur_state, true);
784 	env->cur_state = NULL;
785 	/* pop all elements and return */
786 	while (!pop_stack(env, NULL, NULL));
787 	return NULL;
788 }
789 
790 #define CALLER_SAVED_REGS 6
791 static const int caller_saved[CALLER_SAVED_REGS] = {
792 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
793 };
794 
795 static void __mark_reg_not_init(struct bpf_reg_state *reg);
796 
797 /* Mark the unknown part of a register (variable offset or scalar value) as
798  * known to have the value @imm.
799  */
800 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
801 {
802 	/* Clear id, off, and union(map_ptr, range) */
803 	memset(((u8 *)reg) + sizeof(reg->type), 0,
804 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
805 	reg->var_off = tnum_const(imm);
806 	reg->smin_value = (s64)imm;
807 	reg->smax_value = (s64)imm;
808 	reg->umin_value = imm;
809 	reg->umax_value = imm;
810 }
811 
812 /* Mark the 'variable offset' part of a register as zero.  This should be
813  * used only on registers holding a pointer type.
814  */
815 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
816 {
817 	__mark_reg_known(reg, 0);
818 }
819 
820 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
821 {
822 	__mark_reg_known(reg, 0);
823 	reg->type = SCALAR_VALUE;
824 }
825 
826 static void mark_reg_known_zero(struct bpf_verifier_env *env,
827 				struct bpf_reg_state *regs, u32 regno)
828 {
829 	if (WARN_ON(regno >= MAX_BPF_REG)) {
830 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
831 		/* Something bad happened, let's kill all regs */
832 		for (regno = 0; regno < MAX_BPF_REG; regno++)
833 			__mark_reg_not_init(regs + regno);
834 		return;
835 	}
836 	__mark_reg_known_zero(regs + regno);
837 }
838 
839 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
840 {
841 	return type_is_pkt_pointer(reg->type);
842 }
843 
844 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
845 {
846 	return reg_is_pkt_pointer(reg) ||
847 	       reg->type == PTR_TO_PACKET_END;
848 }
849 
850 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
851 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
852 				    enum bpf_reg_type which)
853 {
854 	/* The register can already have a range from prior markings.
855 	 * This is fine as long as it hasn't been advanced from its
856 	 * origin.
857 	 */
858 	return reg->type == which &&
859 	       reg->id == 0 &&
860 	       reg->off == 0 &&
861 	       tnum_equals_const(reg->var_off, 0);
862 }
863 
864 /* Attempts to improve min/max values based on var_off information */
865 static void __update_reg_bounds(struct bpf_reg_state *reg)
866 {
867 	/* min signed is max(sign bit) | min(other bits) */
868 	reg->smin_value = max_t(s64, reg->smin_value,
869 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
870 	/* max signed is min(sign bit) | max(other bits) */
871 	reg->smax_value = min_t(s64, reg->smax_value,
872 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
873 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
874 	reg->umax_value = min(reg->umax_value,
875 			      reg->var_off.value | reg->var_off.mask);
876 }
877 
878 /* Uses signed min/max values to inform unsigned, and vice-versa */
879 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
880 {
881 	/* Learn sign from signed bounds.
882 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
883 	 * are the same, so combine.  This works even in the negative case, e.g.
884 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
885 	 */
886 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
887 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
888 							  reg->umin_value);
889 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
890 							  reg->umax_value);
891 		return;
892 	}
893 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
894 	 * boundary, so we must be careful.
895 	 */
896 	if ((s64)reg->umax_value >= 0) {
897 		/* Positive.  We can't learn anything from the smin, but smax
898 		 * is positive, hence safe.
899 		 */
900 		reg->smin_value = reg->umin_value;
901 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
902 							  reg->umax_value);
903 	} else if ((s64)reg->umin_value < 0) {
904 		/* Negative.  We can't learn anything from the smax, but smin
905 		 * is negative, hence safe.
906 		 */
907 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
908 							  reg->umin_value);
909 		reg->smax_value = reg->umax_value;
910 	}
911 }
912 
913 /* Attempts to improve var_off based on unsigned min/max information */
914 static void __reg_bound_offset(struct bpf_reg_state *reg)
915 {
916 	reg->var_off = tnum_intersect(reg->var_off,
917 				      tnum_range(reg->umin_value,
918 						 reg->umax_value));
919 }
920 
921 /* Reset the min/max bounds of a register */
922 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
923 {
924 	reg->smin_value = S64_MIN;
925 	reg->smax_value = S64_MAX;
926 	reg->umin_value = 0;
927 	reg->umax_value = U64_MAX;
928 }
929 
930 /* Mark a register as having a completely unknown (scalar) value. */
931 static void __mark_reg_unknown(struct bpf_reg_state *reg)
932 {
933 	/*
934 	 * Clear type, id, off, and union(map_ptr, range) and
935 	 * padding between 'type' and union
936 	 */
937 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
938 	reg->type = SCALAR_VALUE;
939 	reg->var_off = tnum_unknown;
940 	reg->frameno = 0;
941 	__mark_reg_unbounded(reg);
942 }
943 
944 static void mark_reg_unknown(struct bpf_verifier_env *env,
945 			     struct bpf_reg_state *regs, u32 regno)
946 {
947 	if (WARN_ON(regno >= MAX_BPF_REG)) {
948 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
949 		/* Something bad happened, let's kill all regs except FP */
950 		for (regno = 0; regno < BPF_REG_FP; regno++)
951 			__mark_reg_not_init(regs + regno);
952 		return;
953 	}
954 	__mark_reg_unknown(regs + regno);
955 }
956 
957 static void __mark_reg_not_init(struct bpf_reg_state *reg)
958 {
959 	__mark_reg_unknown(reg);
960 	reg->type = NOT_INIT;
961 }
962 
963 static void mark_reg_not_init(struct bpf_verifier_env *env,
964 			      struct bpf_reg_state *regs, u32 regno)
965 {
966 	if (WARN_ON(regno >= MAX_BPF_REG)) {
967 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
968 		/* Something bad happened, let's kill all regs except FP */
969 		for (regno = 0; regno < BPF_REG_FP; regno++)
970 			__mark_reg_not_init(regs + regno);
971 		return;
972 	}
973 	__mark_reg_not_init(regs + regno);
974 }
975 
976 static void init_reg_state(struct bpf_verifier_env *env,
977 			   struct bpf_func_state *state)
978 {
979 	struct bpf_reg_state *regs = state->regs;
980 	int i;
981 
982 	for (i = 0; i < MAX_BPF_REG; i++) {
983 		mark_reg_not_init(env, regs, i);
984 		regs[i].live = REG_LIVE_NONE;
985 		regs[i].parent = NULL;
986 	}
987 
988 	/* frame pointer */
989 	regs[BPF_REG_FP].type = PTR_TO_STACK;
990 	mark_reg_known_zero(env, regs, BPF_REG_FP);
991 	regs[BPF_REG_FP].frameno = state->frameno;
992 
993 	/* 1st arg to a function */
994 	regs[BPF_REG_1].type = PTR_TO_CTX;
995 	mark_reg_known_zero(env, regs, BPF_REG_1);
996 }
997 
998 #define BPF_MAIN_FUNC (-1)
999 static void init_func_state(struct bpf_verifier_env *env,
1000 			    struct bpf_func_state *state,
1001 			    int callsite, int frameno, int subprogno)
1002 {
1003 	state->callsite = callsite;
1004 	state->frameno = frameno;
1005 	state->subprogno = subprogno;
1006 	init_reg_state(env, state);
1007 }
1008 
1009 enum reg_arg_type {
1010 	SRC_OP,		/* register is used as source operand */
1011 	DST_OP,		/* register is used as destination operand */
1012 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1013 };
1014 
1015 static int cmp_subprogs(const void *a, const void *b)
1016 {
1017 	return ((struct bpf_subprog_info *)a)->start -
1018 	       ((struct bpf_subprog_info *)b)->start;
1019 }
1020 
1021 static int find_subprog(struct bpf_verifier_env *env, int off)
1022 {
1023 	struct bpf_subprog_info *p;
1024 
1025 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1026 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1027 	if (!p)
1028 		return -ENOENT;
1029 	return p - env->subprog_info;
1030 
1031 }
1032 
1033 static int add_subprog(struct bpf_verifier_env *env, int off)
1034 {
1035 	int insn_cnt = env->prog->len;
1036 	int ret;
1037 
1038 	if (off >= insn_cnt || off < 0) {
1039 		verbose(env, "call to invalid destination\n");
1040 		return -EINVAL;
1041 	}
1042 	ret = find_subprog(env, off);
1043 	if (ret >= 0)
1044 		return 0;
1045 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1046 		verbose(env, "too many subprograms\n");
1047 		return -E2BIG;
1048 	}
1049 	env->subprog_info[env->subprog_cnt++].start = off;
1050 	sort(env->subprog_info, env->subprog_cnt,
1051 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1052 	return 0;
1053 }
1054 
1055 static int check_subprogs(struct bpf_verifier_env *env)
1056 {
1057 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1058 	struct bpf_subprog_info *subprog = env->subprog_info;
1059 	struct bpf_insn *insn = env->prog->insnsi;
1060 	int insn_cnt = env->prog->len;
1061 
1062 	/* Add entry function. */
1063 	ret = add_subprog(env, 0);
1064 	if (ret < 0)
1065 		return ret;
1066 
1067 	/* determine subprog starts. The end is one before the next starts */
1068 	for (i = 0; i < insn_cnt; i++) {
1069 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1070 			continue;
1071 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1072 			continue;
1073 		if (!env->allow_ptr_leaks) {
1074 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1075 			return -EPERM;
1076 		}
1077 		ret = add_subprog(env, i + insn[i].imm + 1);
1078 		if (ret < 0)
1079 			return ret;
1080 	}
1081 
1082 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1083 	 * logic. 'subprog_cnt' should not be increased.
1084 	 */
1085 	subprog[env->subprog_cnt].start = insn_cnt;
1086 
1087 	if (env->log.level & BPF_LOG_LEVEL2)
1088 		for (i = 0; i < env->subprog_cnt; i++)
1089 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1090 
1091 	/* now check that all jumps are within the same subprog */
1092 	subprog_start = subprog[cur_subprog].start;
1093 	subprog_end = subprog[cur_subprog + 1].start;
1094 	for (i = 0; i < insn_cnt; i++) {
1095 		u8 code = insn[i].code;
1096 
1097 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1098 			goto next;
1099 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1100 			goto next;
1101 		off = i + insn[i].off + 1;
1102 		if (off < subprog_start || off >= subprog_end) {
1103 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1104 			return -EINVAL;
1105 		}
1106 next:
1107 		if (i == subprog_end - 1) {
1108 			/* to avoid fall-through from one subprog into another
1109 			 * the last insn of the subprog should be either exit
1110 			 * or unconditional jump back
1111 			 */
1112 			if (code != (BPF_JMP | BPF_EXIT) &&
1113 			    code != (BPF_JMP | BPF_JA)) {
1114 				verbose(env, "last insn is not an exit or jmp\n");
1115 				return -EINVAL;
1116 			}
1117 			subprog_start = subprog_end;
1118 			cur_subprog++;
1119 			if (cur_subprog < env->subprog_cnt)
1120 				subprog_end = subprog[cur_subprog + 1].start;
1121 		}
1122 	}
1123 	return 0;
1124 }
1125 
1126 /* Parentage chain of this register (or stack slot) should take care of all
1127  * issues like callee-saved registers, stack slot allocation time, etc.
1128  */
1129 static int mark_reg_read(struct bpf_verifier_env *env,
1130 			 const struct bpf_reg_state *state,
1131 			 struct bpf_reg_state *parent)
1132 {
1133 	bool writes = parent == state->parent; /* Observe write marks */
1134 	int cnt = 0;
1135 
1136 	while (parent) {
1137 		/* if read wasn't screened by an earlier write ... */
1138 		if (writes && state->live & REG_LIVE_WRITTEN)
1139 			break;
1140 		if (parent->live & REG_LIVE_DONE) {
1141 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1142 				reg_type_str[parent->type],
1143 				parent->var_off.value, parent->off);
1144 			return -EFAULT;
1145 		}
1146 		if (parent->live & REG_LIVE_READ)
1147 			/* The parentage chain never changes and
1148 			 * this parent was already marked as LIVE_READ.
1149 			 * There is no need to keep walking the chain again and
1150 			 * keep re-marking all parents as LIVE_READ.
1151 			 * This case happens when the same register is read
1152 			 * multiple times without writes into it in-between.
1153 			 */
1154 			break;
1155 		/* ... then we depend on parent's value */
1156 		parent->live |= REG_LIVE_READ;
1157 		state = parent;
1158 		parent = state->parent;
1159 		writes = true;
1160 		cnt++;
1161 	}
1162 
1163 	if (env->longest_mark_read_walk < cnt)
1164 		env->longest_mark_read_walk = cnt;
1165 	return 0;
1166 }
1167 
1168 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1169 			 enum reg_arg_type t)
1170 {
1171 	struct bpf_verifier_state *vstate = env->cur_state;
1172 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1173 	struct bpf_reg_state *reg, *regs = state->regs;
1174 
1175 	if (regno >= MAX_BPF_REG) {
1176 		verbose(env, "R%d is invalid\n", regno);
1177 		return -EINVAL;
1178 	}
1179 
1180 	reg = &regs[regno];
1181 	if (t == SRC_OP) {
1182 		/* check whether register used as source operand can be read */
1183 		if (reg->type == NOT_INIT) {
1184 			verbose(env, "R%d !read_ok\n", regno);
1185 			return -EACCES;
1186 		}
1187 		/* We don't need to worry about FP liveness because it's read-only */
1188 		if (regno == BPF_REG_FP)
1189 			return 0;
1190 
1191 		return mark_reg_read(env, reg, reg->parent);
1192 	} else {
1193 		/* check whether register used as dest operand can be written to */
1194 		if (regno == BPF_REG_FP) {
1195 			verbose(env, "frame pointer is read only\n");
1196 			return -EACCES;
1197 		}
1198 		reg->live |= REG_LIVE_WRITTEN;
1199 		if (t == DST_OP)
1200 			mark_reg_unknown(env, regs, regno);
1201 	}
1202 	return 0;
1203 }
1204 
1205 static bool is_spillable_regtype(enum bpf_reg_type type)
1206 {
1207 	switch (type) {
1208 	case PTR_TO_MAP_VALUE:
1209 	case PTR_TO_MAP_VALUE_OR_NULL:
1210 	case PTR_TO_STACK:
1211 	case PTR_TO_CTX:
1212 	case PTR_TO_PACKET:
1213 	case PTR_TO_PACKET_META:
1214 	case PTR_TO_PACKET_END:
1215 	case PTR_TO_FLOW_KEYS:
1216 	case CONST_PTR_TO_MAP:
1217 	case PTR_TO_SOCKET:
1218 	case PTR_TO_SOCKET_OR_NULL:
1219 	case PTR_TO_SOCK_COMMON:
1220 	case PTR_TO_SOCK_COMMON_OR_NULL:
1221 	case PTR_TO_TCP_SOCK:
1222 	case PTR_TO_TCP_SOCK_OR_NULL:
1223 		return true;
1224 	default:
1225 		return false;
1226 	}
1227 }
1228 
1229 /* Does this register contain a constant zero? */
1230 static bool register_is_null(struct bpf_reg_state *reg)
1231 {
1232 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1233 }
1234 
1235 /* check_stack_read/write functions track spill/fill of registers,
1236  * stack boundary and alignment are checked in check_mem_access()
1237  */
1238 static int check_stack_write(struct bpf_verifier_env *env,
1239 			     struct bpf_func_state *state, /* func where register points to */
1240 			     int off, int size, int value_regno, int insn_idx)
1241 {
1242 	struct bpf_func_state *cur; /* state of the current function */
1243 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1244 	enum bpf_reg_type type;
1245 
1246 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1247 				 state->acquired_refs, true);
1248 	if (err)
1249 		return err;
1250 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1251 	 * so it's aligned access and [off, off + size) are within stack limits
1252 	 */
1253 	if (!env->allow_ptr_leaks &&
1254 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1255 	    size != BPF_REG_SIZE) {
1256 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1257 		return -EACCES;
1258 	}
1259 
1260 	cur = env->cur_state->frame[env->cur_state->curframe];
1261 	if (value_regno >= 0 &&
1262 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1263 
1264 		/* register containing pointer is being spilled into stack */
1265 		if (size != BPF_REG_SIZE) {
1266 			verbose(env, "invalid size of register spill\n");
1267 			return -EACCES;
1268 		}
1269 
1270 		if (state != cur && type == PTR_TO_STACK) {
1271 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1272 			return -EINVAL;
1273 		}
1274 
1275 		/* save register state */
1276 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1277 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1278 
1279 		for (i = 0; i < BPF_REG_SIZE; i++) {
1280 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1281 			    !env->allow_ptr_leaks) {
1282 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1283 				int soff = (-spi - 1) * BPF_REG_SIZE;
1284 
1285 				/* detected reuse of integer stack slot with a pointer
1286 				 * which means either llvm is reusing stack slot or
1287 				 * an attacker is trying to exploit CVE-2018-3639
1288 				 * (speculative store bypass)
1289 				 * Have to sanitize that slot with preemptive
1290 				 * store of zero.
1291 				 */
1292 				if (*poff && *poff != soff) {
1293 					/* disallow programs where single insn stores
1294 					 * into two different stack slots, since verifier
1295 					 * cannot sanitize them
1296 					 */
1297 					verbose(env,
1298 						"insn %d cannot access two stack slots fp%d and fp%d",
1299 						insn_idx, *poff, soff);
1300 					return -EINVAL;
1301 				}
1302 				*poff = soff;
1303 			}
1304 			state->stack[spi].slot_type[i] = STACK_SPILL;
1305 		}
1306 	} else {
1307 		u8 type = STACK_MISC;
1308 
1309 		/* regular write of data into stack destroys any spilled ptr */
1310 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1311 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1312 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1313 			for (i = 0; i < BPF_REG_SIZE; i++)
1314 				state->stack[spi].slot_type[i] = STACK_MISC;
1315 
1316 		/* only mark the slot as written if all 8 bytes were written
1317 		 * otherwise read propagation may incorrectly stop too soon
1318 		 * when stack slots are partially written.
1319 		 * This heuristic means that read propagation will be
1320 		 * conservative, since it will add reg_live_read marks
1321 		 * to stack slots all the way to first state when programs
1322 		 * writes+reads less than 8 bytes
1323 		 */
1324 		if (size == BPF_REG_SIZE)
1325 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1326 
1327 		/* when we zero initialize stack slots mark them as such */
1328 		if (value_regno >= 0 &&
1329 		    register_is_null(&cur->regs[value_regno]))
1330 			type = STACK_ZERO;
1331 
1332 		/* Mark slots affected by this stack write. */
1333 		for (i = 0; i < size; i++)
1334 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1335 				type;
1336 	}
1337 	return 0;
1338 }
1339 
1340 static int check_stack_read(struct bpf_verifier_env *env,
1341 			    struct bpf_func_state *reg_state /* func where register points to */,
1342 			    int off, int size, int value_regno)
1343 {
1344 	struct bpf_verifier_state *vstate = env->cur_state;
1345 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1346 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1347 	u8 *stype;
1348 
1349 	if (reg_state->allocated_stack <= slot) {
1350 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1351 			off, size);
1352 		return -EACCES;
1353 	}
1354 	stype = reg_state->stack[spi].slot_type;
1355 
1356 	if (stype[0] == STACK_SPILL) {
1357 		if (size != BPF_REG_SIZE) {
1358 			verbose(env, "invalid size of register spill\n");
1359 			return -EACCES;
1360 		}
1361 		for (i = 1; i < BPF_REG_SIZE; i++) {
1362 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1363 				verbose(env, "corrupted spill memory\n");
1364 				return -EACCES;
1365 			}
1366 		}
1367 
1368 		if (value_regno >= 0) {
1369 			/* restore register state from stack */
1370 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1371 			/* mark reg as written since spilled pointer state likely
1372 			 * has its liveness marks cleared by is_state_visited()
1373 			 * which resets stack/reg liveness for state transitions
1374 			 */
1375 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1376 		}
1377 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1378 			      reg_state->stack[spi].spilled_ptr.parent);
1379 		return 0;
1380 	} else {
1381 		int zeros = 0;
1382 
1383 		for (i = 0; i < size; i++) {
1384 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1385 				continue;
1386 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1387 				zeros++;
1388 				continue;
1389 			}
1390 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1391 				off, i, size);
1392 			return -EACCES;
1393 		}
1394 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1395 			      reg_state->stack[spi].spilled_ptr.parent);
1396 		if (value_regno >= 0) {
1397 			if (zeros == size) {
1398 				/* any size read into register is zero extended,
1399 				 * so the whole register == const_zero
1400 				 */
1401 				__mark_reg_const_zero(&state->regs[value_regno]);
1402 			} else {
1403 				/* have read misc data from the stack */
1404 				mark_reg_unknown(env, state->regs, value_regno);
1405 			}
1406 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1407 		}
1408 		return 0;
1409 	}
1410 }
1411 
1412 static int check_stack_access(struct bpf_verifier_env *env,
1413 			      const struct bpf_reg_state *reg,
1414 			      int off, int size)
1415 {
1416 	/* Stack accesses must be at a fixed offset, so that we
1417 	 * can determine what type of data were returned. See
1418 	 * check_stack_read().
1419 	 */
1420 	if (!tnum_is_const(reg->var_off)) {
1421 		char tn_buf[48];
1422 
1423 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1424 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1425 			tn_buf, off, size);
1426 		return -EACCES;
1427 	}
1428 
1429 	if (off >= 0 || off < -MAX_BPF_STACK) {
1430 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1431 		return -EACCES;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1438 				 int off, int size, enum bpf_access_type type)
1439 {
1440 	struct bpf_reg_state *regs = cur_regs(env);
1441 	struct bpf_map *map = regs[regno].map_ptr;
1442 	u32 cap = bpf_map_flags_to_cap(map);
1443 
1444 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1445 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1446 			map->value_size, off, size);
1447 		return -EACCES;
1448 	}
1449 
1450 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1451 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1452 			map->value_size, off, size);
1453 		return -EACCES;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 /* check read/write into map element returned by bpf_map_lookup_elem() */
1460 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1461 			      int size, bool zero_size_allowed)
1462 {
1463 	struct bpf_reg_state *regs = cur_regs(env);
1464 	struct bpf_map *map = regs[regno].map_ptr;
1465 
1466 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1467 	    off + size > map->value_size) {
1468 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1469 			map->value_size, off, size);
1470 		return -EACCES;
1471 	}
1472 	return 0;
1473 }
1474 
1475 /* check read/write into a map element with possible variable offset */
1476 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1477 			    int off, int size, bool zero_size_allowed)
1478 {
1479 	struct bpf_verifier_state *vstate = env->cur_state;
1480 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1481 	struct bpf_reg_state *reg = &state->regs[regno];
1482 	int err;
1483 
1484 	/* We may have adjusted the register to this map value, so we
1485 	 * need to try adding each of min_value and max_value to off
1486 	 * to make sure our theoretical access will be safe.
1487 	 */
1488 	if (env->log.level & BPF_LOG_LEVEL)
1489 		print_verifier_state(env, state);
1490 
1491 	/* The minimum value is only important with signed
1492 	 * comparisons where we can't assume the floor of a
1493 	 * value is 0.  If we are using signed variables for our
1494 	 * index'es we need to make sure that whatever we use
1495 	 * will have a set floor within our range.
1496 	 */
1497 	if (reg->smin_value < 0 &&
1498 	    (reg->smin_value == S64_MIN ||
1499 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1500 	      reg->smin_value + off < 0)) {
1501 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1502 			regno);
1503 		return -EACCES;
1504 	}
1505 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1506 				 zero_size_allowed);
1507 	if (err) {
1508 		verbose(env, "R%d min value is outside of the array range\n",
1509 			regno);
1510 		return err;
1511 	}
1512 
1513 	/* If we haven't set a max value then we need to bail since we can't be
1514 	 * sure we won't do bad things.
1515 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1516 	 */
1517 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1518 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1519 			regno);
1520 		return -EACCES;
1521 	}
1522 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1523 				 zero_size_allowed);
1524 	if (err)
1525 		verbose(env, "R%d max value is outside of the array range\n",
1526 			regno);
1527 
1528 	if (map_value_has_spin_lock(reg->map_ptr)) {
1529 		u32 lock = reg->map_ptr->spin_lock_off;
1530 
1531 		/* if any part of struct bpf_spin_lock can be touched by
1532 		 * load/store reject this program.
1533 		 * To check that [x1, x2) overlaps with [y1, y2)
1534 		 * it is sufficient to check x1 < y2 && y1 < x2.
1535 		 */
1536 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1537 		     lock < reg->umax_value + off + size) {
1538 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1539 			return -EACCES;
1540 		}
1541 	}
1542 	return err;
1543 }
1544 
1545 #define MAX_PACKET_OFF 0xffff
1546 
1547 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1548 				       const struct bpf_call_arg_meta *meta,
1549 				       enum bpf_access_type t)
1550 {
1551 	switch (env->prog->type) {
1552 	/* Program types only with direct read access go here! */
1553 	case BPF_PROG_TYPE_LWT_IN:
1554 	case BPF_PROG_TYPE_LWT_OUT:
1555 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1556 	case BPF_PROG_TYPE_SK_REUSEPORT:
1557 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1558 	case BPF_PROG_TYPE_CGROUP_SKB:
1559 		if (t == BPF_WRITE)
1560 			return false;
1561 		/* fallthrough */
1562 
1563 	/* Program types with direct read + write access go here! */
1564 	case BPF_PROG_TYPE_SCHED_CLS:
1565 	case BPF_PROG_TYPE_SCHED_ACT:
1566 	case BPF_PROG_TYPE_XDP:
1567 	case BPF_PROG_TYPE_LWT_XMIT:
1568 	case BPF_PROG_TYPE_SK_SKB:
1569 	case BPF_PROG_TYPE_SK_MSG:
1570 		if (meta)
1571 			return meta->pkt_access;
1572 
1573 		env->seen_direct_write = true;
1574 		return true;
1575 	default:
1576 		return false;
1577 	}
1578 }
1579 
1580 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1581 				 int off, int size, bool zero_size_allowed)
1582 {
1583 	struct bpf_reg_state *regs = cur_regs(env);
1584 	struct bpf_reg_state *reg = &regs[regno];
1585 
1586 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1587 	    (u64)off + size > reg->range) {
1588 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1589 			off, size, regno, reg->id, reg->off, reg->range);
1590 		return -EACCES;
1591 	}
1592 	return 0;
1593 }
1594 
1595 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1596 			       int size, bool zero_size_allowed)
1597 {
1598 	struct bpf_reg_state *regs = cur_regs(env);
1599 	struct bpf_reg_state *reg = &regs[regno];
1600 	int err;
1601 
1602 	/* We may have added a variable offset to the packet pointer; but any
1603 	 * reg->range we have comes after that.  We are only checking the fixed
1604 	 * offset.
1605 	 */
1606 
1607 	/* We don't allow negative numbers, because we aren't tracking enough
1608 	 * detail to prove they're safe.
1609 	 */
1610 	if (reg->smin_value < 0) {
1611 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1612 			regno);
1613 		return -EACCES;
1614 	}
1615 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1616 	if (err) {
1617 		verbose(env, "R%d offset is outside of the packet\n", regno);
1618 		return err;
1619 	}
1620 
1621 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1622 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1623 	 * otherwise find_good_pkt_pointers would have refused to set range info
1624 	 * that __check_packet_access would have rejected this pkt access.
1625 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1626 	 */
1627 	env->prog->aux->max_pkt_offset =
1628 		max_t(u32, env->prog->aux->max_pkt_offset,
1629 		      off + reg->umax_value + size - 1);
1630 
1631 	return err;
1632 }
1633 
1634 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1635 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1636 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1637 {
1638 	struct bpf_insn_access_aux info = {
1639 		.reg_type = *reg_type,
1640 	};
1641 
1642 	if (env->ops->is_valid_access &&
1643 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1644 		/* A non zero info.ctx_field_size indicates that this field is a
1645 		 * candidate for later verifier transformation to load the whole
1646 		 * field and then apply a mask when accessed with a narrower
1647 		 * access than actual ctx access size. A zero info.ctx_field_size
1648 		 * will only allow for whole field access and rejects any other
1649 		 * type of narrower access.
1650 		 */
1651 		*reg_type = info.reg_type;
1652 
1653 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1654 		/* remember the offset of last byte accessed in ctx */
1655 		if (env->prog->aux->max_ctx_offset < off + size)
1656 			env->prog->aux->max_ctx_offset = off + size;
1657 		return 0;
1658 	}
1659 
1660 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1661 	return -EACCES;
1662 }
1663 
1664 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1665 				  int size)
1666 {
1667 	if (size < 0 || off < 0 ||
1668 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1669 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1670 			off, size);
1671 		return -EACCES;
1672 	}
1673 	return 0;
1674 }
1675 
1676 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1677 			     u32 regno, int off, int size,
1678 			     enum bpf_access_type t)
1679 {
1680 	struct bpf_reg_state *regs = cur_regs(env);
1681 	struct bpf_reg_state *reg = &regs[regno];
1682 	struct bpf_insn_access_aux info = {};
1683 	bool valid;
1684 
1685 	if (reg->smin_value < 0) {
1686 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1687 			regno);
1688 		return -EACCES;
1689 	}
1690 
1691 	switch (reg->type) {
1692 	case PTR_TO_SOCK_COMMON:
1693 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1694 		break;
1695 	case PTR_TO_SOCKET:
1696 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1697 		break;
1698 	case PTR_TO_TCP_SOCK:
1699 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1700 		break;
1701 	default:
1702 		valid = false;
1703 	}
1704 
1705 
1706 	if (valid) {
1707 		env->insn_aux_data[insn_idx].ctx_field_size =
1708 			info.ctx_field_size;
1709 		return 0;
1710 	}
1711 
1712 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1713 		regno, reg_type_str[reg->type], off, size);
1714 
1715 	return -EACCES;
1716 }
1717 
1718 static bool __is_pointer_value(bool allow_ptr_leaks,
1719 			       const struct bpf_reg_state *reg)
1720 {
1721 	if (allow_ptr_leaks)
1722 		return false;
1723 
1724 	return reg->type != SCALAR_VALUE;
1725 }
1726 
1727 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1728 {
1729 	return cur_regs(env) + regno;
1730 }
1731 
1732 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1733 {
1734 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1735 }
1736 
1737 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1738 {
1739 	const struct bpf_reg_state *reg = reg_state(env, regno);
1740 
1741 	return reg->type == PTR_TO_CTX;
1742 }
1743 
1744 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1745 {
1746 	const struct bpf_reg_state *reg = reg_state(env, regno);
1747 
1748 	return type_is_sk_pointer(reg->type);
1749 }
1750 
1751 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1752 {
1753 	const struct bpf_reg_state *reg = reg_state(env, regno);
1754 
1755 	return type_is_pkt_pointer(reg->type);
1756 }
1757 
1758 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1759 {
1760 	const struct bpf_reg_state *reg = reg_state(env, regno);
1761 
1762 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1763 	return reg->type == PTR_TO_FLOW_KEYS;
1764 }
1765 
1766 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1767 				   const struct bpf_reg_state *reg,
1768 				   int off, int size, bool strict)
1769 {
1770 	struct tnum reg_off;
1771 	int ip_align;
1772 
1773 	/* Byte size accesses are always allowed. */
1774 	if (!strict || size == 1)
1775 		return 0;
1776 
1777 	/* For platforms that do not have a Kconfig enabling
1778 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1779 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1780 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1781 	 * to this code only in strict mode where we want to emulate
1782 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1783 	 * unconditional IP align value of '2'.
1784 	 */
1785 	ip_align = 2;
1786 
1787 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1788 	if (!tnum_is_aligned(reg_off, size)) {
1789 		char tn_buf[48];
1790 
1791 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1792 		verbose(env,
1793 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1794 			ip_align, tn_buf, reg->off, off, size);
1795 		return -EACCES;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1802 				       const struct bpf_reg_state *reg,
1803 				       const char *pointer_desc,
1804 				       int off, int size, bool strict)
1805 {
1806 	struct tnum reg_off;
1807 
1808 	/* Byte size accesses are always allowed. */
1809 	if (!strict || size == 1)
1810 		return 0;
1811 
1812 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1813 	if (!tnum_is_aligned(reg_off, size)) {
1814 		char tn_buf[48];
1815 
1816 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1817 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1818 			pointer_desc, tn_buf, reg->off, off, size);
1819 		return -EACCES;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static int check_ptr_alignment(struct bpf_verifier_env *env,
1826 			       const struct bpf_reg_state *reg, int off,
1827 			       int size, bool strict_alignment_once)
1828 {
1829 	bool strict = env->strict_alignment || strict_alignment_once;
1830 	const char *pointer_desc = "";
1831 
1832 	switch (reg->type) {
1833 	case PTR_TO_PACKET:
1834 	case PTR_TO_PACKET_META:
1835 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1836 		 * right in front, treat it the very same way.
1837 		 */
1838 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1839 	case PTR_TO_FLOW_KEYS:
1840 		pointer_desc = "flow keys ";
1841 		break;
1842 	case PTR_TO_MAP_VALUE:
1843 		pointer_desc = "value ";
1844 		break;
1845 	case PTR_TO_CTX:
1846 		pointer_desc = "context ";
1847 		break;
1848 	case PTR_TO_STACK:
1849 		pointer_desc = "stack ";
1850 		/* The stack spill tracking logic in check_stack_write()
1851 		 * and check_stack_read() relies on stack accesses being
1852 		 * aligned.
1853 		 */
1854 		strict = true;
1855 		break;
1856 	case PTR_TO_SOCKET:
1857 		pointer_desc = "sock ";
1858 		break;
1859 	case PTR_TO_SOCK_COMMON:
1860 		pointer_desc = "sock_common ";
1861 		break;
1862 	case PTR_TO_TCP_SOCK:
1863 		pointer_desc = "tcp_sock ";
1864 		break;
1865 	default:
1866 		break;
1867 	}
1868 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1869 					   strict);
1870 }
1871 
1872 static int update_stack_depth(struct bpf_verifier_env *env,
1873 			      const struct bpf_func_state *func,
1874 			      int off)
1875 {
1876 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1877 
1878 	if (stack >= -off)
1879 		return 0;
1880 
1881 	/* update known max for given subprogram */
1882 	env->subprog_info[func->subprogno].stack_depth = -off;
1883 	return 0;
1884 }
1885 
1886 /* starting from main bpf function walk all instructions of the function
1887  * and recursively walk all callees that given function can call.
1888  * Ignore jump and exit insns.
1889  * Since recursion is prevented by check_cfg() this algorithm
1890  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1891  */
1892 static int check_max_stack_depth(struct bpf_verifier_env *env)
1893 {
1894 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1895 	struct bpf_subprog_info *subprog = env->subprog_info;
1896 	struct bpf_insn *insn = env->prog->insnsi;
1897 	int ret_insn[MAX_CALL_FRAMES];
1898 	int ret_prog[MAX_CALL_FRAMES];
1899 
1900 process_func:
1901 	/* round up to 32-bytes, since this is granularity
1902 	 * of interpreter stack size
1903 	 */
1904 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1905 	if (depth > MAX_BPF_STACK) {
1906 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1907 			frame + 1, depth);
1908 		return -EACCES;
1909 	}
1910 continue_func:
1911 	subprog_end = subprog[idx + 1].start;
1912 	for (; i < subprog_end; i++) {
1913 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1914 			continue;
1915 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1916 			continue;
1917 		/* remember insn and function to return to */
1918 		ret_insn[frame] = i + 1;
1919 		ret_prog[frame] = idx;
1920 
1921 		/* find the callee */
1922 		i = i + insn[i].imm + 1;
1923 		idx = find_subprog(env, i);
1924 		if (idx < 0) {
1925 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1926 				  i);
1927 			return -EFAULT;
1928 		}
1929 		frame++;
1930 		if (frame >= MAX_CALL_FRAMES) {
1931 			verbose(env, "the call stack of %d frames is too deep !\n",
1932 				frame);
1933 			return -E2BIG;
1934 		}
1935 		goto process_func;
1936 	}
1937 	/* end of for() loop means the last insn of the 'subprog'
1938 	 * was reached. Doesn't matter whether it was JA or EXIT
1939 	 */
1940 	if (frame == 0)
1941 		return 0;
1942 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1943 	frame--;
1944 	i = ret_insn[frame];
1945 	idx = ret_prog[frame];
1946 	goto continue_func;
1947 }
1948 
1949 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1950 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1951 				  const struct bpf_insn *insn, int idx)
1952 {
1953 	int start = idx + insn->imm + 1, subprog;
1954 
1955 	subprog = find_subprog(env, start);
1956 	if (subprog < 0) {
1957 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1958 			  start);
1959 		return -EFAULT;
1960 	}
1961 	return env->subprog_info[subprog].stack_depth;
1962 }
1963 #endif
1964 
1965 static int check_ctx_reg(struct bpf_verifier_env *env,
1966 			 const struct bpf_reg_state *reg, int regno)
1967 {
1968 	/* Access to ctx or passing it to a helper is only allowed in
1969 	 * its original, unmodified form.
1970 	 */
1971 
1972 	if (reg->off) {
1973 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1974 			regno, reg->off);
1975 		return -EACCES;
1976 	}
1977 
1978 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1979 		char tn_buf[48];
1980 
1981 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1982 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1983 		return -EACCES;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int check_tp_buffer_access(struct bpf_verifier_env *env,
1990 				  const struct bpf_reg_state *reg,
1991 				  int regno, int off, int size)
1992 {
1993 	if (off < 0) {
1994 		verbose(env,
1995 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
1996 			regno, off, size);
1997 		return -EACCES;
1998 	}
1999 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2000 		char tn_buf[48];
2001 
2002 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2003 		verbose(env,
2004 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2005 			regno, off, tn_buf);
2006 		return -EACCES;
2007 	}
2008 	if (off + size > env->prog->aux->max_tp_access)
2009 		env->prog->aux->max_tp_access = off + size;
2010 
2011 	return 0;
2012 }
2013 
2014 
2015 /* truncate register to smaller size (in bytes)
2016  * must be called with size < BPF_REG_SIZE
2017  */
2018 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2019 {
2020 	u64 mask;
2021 
2022 	/* clear high bits in bit representation */
2023 	reg->var_off = tnum_cast(reg->var_off, size);
2024 
2025 	/* fix arithmetic bounds */
2026 	mask = ((u64)1 << (size * 8)) - 1;
2027 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2028 		reg->umin_value &= mask;
2029 		reg->umax_value &= mask;
2030 	} else {
2031 		reg->umin_value = 0;
2032 		reg->umax_value = mask;
2033 	}
2034 	reg->smin_value = reg->umin_value;
2035 	reg->smax_value = reg->umax_value;
2036 }
2037 
2038 /* check whether memory at (regno + off) is accessible for t = (read | write)
2039  * if t==write, value_regno is a register which value is stored into memory
2040  * if t==read, value_regno is a register which will receive the value from memory
2041  * if t==write && value_regno==-1, some unknown value is stored into memory
2042  * if t==read && value_regno==-1, don't care what we read from memory
2043  */
2044 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2045 			    int off, int bpf_size, enum bpf_access_type t,
2046 			    int value_regno, bool strict_alignment_once)
2047 {
2048 	struct bpf_reg_state *regs = cur_regs(env);
2049 	struct bpf_reg_state *reg = regs + regno;
2050 	struct bpf_func_state *state;
2051 	int size, err = 0;
2052 
2053 	size = bpf_size_to_bytes(bpf_size);
2054 	if (size < 0)
2055 		return size;
2056 
2057 	/* alignment checks will add in reg->off themselves */
2058 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2059 	if (err)
2060 		return err;
2061 
2062 	/* for access checks, reg->off is just part of off */
2063 	off += reg->off;
2064 
2065 	if (reg->type == PTR_TO_MAP_VALUE) {
2066 		if (t == BPF_WRITE && value_regno >= 0 &&
2067 		    is_pointer_value(env, value_regno)) {
2068 			verbose(env, "R%d leaks addr into map\n", value_regno);
2069 			return -EACCES;
2070 		}
2071 		err = check_map_access_type(env, regno, off, size, t);
2072 		if (err)
2073 			return err;
2074 		err = check_map_access(env, regno, off, size, false);
2075 		if (!err && t == BPF_READ && value_regno >= 0)
2076 			mark_reg_unknown(env, regs, value_regno);
2077 
2078 	} else if (reg->type == PTR_TO_CTX) {
2079 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2080 
2081 		if (t == BPF_WRITE && value_regno >= 0 &&
2082 		    is_pointer_value(env, value_regno)) {
2083 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2084 			return -EACCES;
2085 		}
2086 
2087 		err = check_ctx_reg(env, reg, regno);
2088 		if (err < 0)
2089 			return err;
2090 
2091 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2092 		if (!err && t == BPF_READ && value_regno >= 0) {
2093 			/* ctx access returns either a scalar, or a
2094 			 * PTR_TO_PACKET[_META,_END]. In the latter
2095 			 * case, we know the offset is zero.
2096 			 */
2097 			if (reg_type == SCALAR_VALUE) {
2098 				mark_reg_unknown(env, regs, value_regno);
2099 			} else {
2100 				mark_reg_known_zero(env, regs,
2101 						    value_regno);
2102 				if (reg_type_may_be_null(reg_type))
2103 					regs[value_regno].id = ++env->id_gen;
2104 			}
2105 			regs[value_regno].type = reg_type;
2106 		}
2107 
2108 	} else if (reg->type == PTR_TO_STACK) {
2109 		off += reg->var_off.value;
2110 		err = check_stack_access(env, reg, off, size);
2111 		if (err)
2112 			return err;
2113 
2114 		state = func(env, reg);
2115 		err = update_stack_depth(env, state, off);
2116 		if (err)
2117 			return err;
2118 
2119 		if (t == BPF_WRITE)
2120 			err = check_stack_write(env, state, off, size,
2121 						value_regno, insn_idx);
2122 		else
2123 			err = check_stack_read(env, state, off, size,
2124 					       value_regno);
2125 	} else if (reg_is_pkt_pointer(reg)) {
2126 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2127 			verbose(env, "cannot write into packet\n");
2128 			return -EACCES;
2129 		}
2130 		if (t == BPF_WRITE && value_regno >= 0 &&
2131 		    is_pointer_value(env, value_regno)) {
2132 			verbose(env, "R%d leaks addr into packet\n",
2133 				value_regno);
2134 			return -EACCES;
2135 		}
2136 		err = check_packet_access(env, regno, off, size, false);
2137 		if (!err && t == BPF_READ && value_regno >= 0)
2138 			mark_reg_unknown(env, regs, value_regno);
2139 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2140 		if (t == BPF_WRITE && value_regno >= 0 &&
2141 		    is_pointer_value(env, value_regno)) {
2142 			verbose(env, "R%d leaks addr into flow keys\n",
2143 				value_regno);
2144 			return -EACCES;
2145 		}
2146 
2147 		err = check_flow_keys_access(env, off, size);
2148 		if (!err && t == BPF_READ && value_regno >= 0)
2149 			mark_reg_unknown(env, regs, value_regno);
2150 	} else if (type_is_sk_pointer(reg->type)) {
2151 		if (t == BPF_WRITE) {
2152 			verbose(env, "R%d cannot write into %s\n",
2153 				regno, reg_type_str[reg->type]);
2154 			return -EACCES;
2155 		}
2156 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2157 		if (!err && value_regno >= 0)
2158 			mark_reg_unknown(env, regs, value_regno);
2159 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2160 		err = check_tp_buffer_access(env, reg, regno, off, size);
2161 		if (!err && t == BPF_READ && value_regno >= 0)
2162 			mark_reg_unknown(env, regs, value_regno);
2163 	} else {
2164 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2165 			reg_type_str[reg->type]);
2166 		return -EACCES;
2167 	}
2168 
2169 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2170 	    regs[value_regno].type == SCALAR_VALUE) {
2171 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2172 		coerce_reg_to_size(&regs[value_regno], size);
2173 	}
2174 	return err;
2175 }
2176 
2177 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2178 {
2179 	int err;
2180 
2181 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2182 	    insn->imm != 0) {
2183 		verbose(env, "BPF_XADD uses reserved fields\n");
2184 		return -EINVAL;
2185 	}
2186 
2187 	/* check src1 operand */
2188 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2189 	if (err)
2190 		return err;
2191 
2192 	/* check src2 operand */
2193 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2194 	if (err)
2195 		return err;
2196 
2197 	if (is_pointer_value(env, insn->src_reg)) {
2198 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2199 		return -EACCES;
2200 	}
2201 
2202 	if (is_ctx_reg(env, insn->dst_reg) ||
2203 	    is_pkt_reg(env, insn->dst_reg) ||
2204 	    is_flow_key_reg(env, insn->dst_reg) ||
2205 	    is_sk_reg(env, insn->dst_reg)) {
2206 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2207 			insn->dst_reg,
2208 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2209 		return -EACCES;
2210 	}
2211 
2212 	/* check whether atomic_add can read the memory */
2213 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2214 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2215 	if (err)
2216 		return err;
2217 
2218 	/* check whether atomic_add can write into the same memory */
2219 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2220 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2221 }
2222 
2223 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2224 				  int off, int access_size,
2225 				  bool zero_size_allowed)
2226 {
2227 	struct bpf_reg_state *reg = reg_state(env, regno);
2228 
2229 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2230 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2231 		if (tnum_is_const(reg->var_off)) {
2232 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2233 				regno, off, access_size);
2234 		} else {
2235 			char tn_buf[48];
2236 
2237 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2238 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2239 				regno, tn_buf, access_size);
2240 		}
2241 		return -EACCES;
2242 	}
2243 	return 0;
2244 }
2245 
2246 /* when register 'regno' is passed into function that will read 'access_size'
2247  * bytes from that pointer, make sure that it's within stack boundary
2248  * and all elements of stack are initialized.
2249  * Unlike most pointer bounds-checking functions, this one doesn't take an
2250  * 'off' argument, so it has to add in reg->off itself.
2251  */
2252 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2253 				int access_size, bool zero_size_allowed,
2254 				struct bpf_call_arg_meta *meta)
2255 {
2256 	struct bpf_reg_state *reg = reg_state(env, regno);
2257 	struct bpf_func_state *state = func(env, reg);
2258 	int err, min_off, max_off, i, slot, spi;
2259 
2260 	if (reg->type != PTR_TO_STACK) {
2261 		/* Allow zero-byte read from NULL, regardless of pointer type */
2262 		if (zero_size_allowed && access_size == 0 &&
2263 		    register_is_null(reg))
2264 			return 0;
2265 
2266 		verbose(env, "R%d type=%s expected=%s\n", regno,
2267 			reg_type_str[reg->type],
2268 			reg_type_str[PTR_TO_STACK]);
2269 		return -EACCES;
2270 	}
2271 
2272 	if (tnum_is_const(reg->var_off)) {
2273 		min_off = max_off = reg->var_off.value + reg->off;
2274 		err = __check_stack_boundary(env, regno, min_off, access_size,
2275 					     zero_size_allowed);
2276 		if (err)
2277 			return err;
2278 	} else {
2279 		/* Variable offset is prohibited for unprivileged mode for
2280 		 * simplicity since it requires corresponding support in
2281 		 * Spectre masking for stack ALU.
2282 		 * See also retrieve_ptr_limit().
2283 		 */
2284 		if (!env->allow_ptr_leaks) {
2285 			char tn_buf[48];
2286 
2287 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2288 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2289 				regno, tn_buf);
2290 			return -EACCES;
2291 		}
2292 		/* Only initialized buffer on stack is allowed to be accessed
2293 		 * with variable offset. With uninitialized buffer it's hard to
2294 		 * guarantee that whole memory is marked as initialized on
2295 		 * helper return since specific bounds are unknown what may
2296 		 * cause uninitialized stack leaking.
2297 		 */
2298 		if (meta && meta->raw_mode)
2299 			meta = NULL;
2300 
2301 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2302 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
2303 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
2304 				regno);
2305 			return -EACCES;
2306 		}
2307 		min_off = reg->smin_value + reg->off;
2308 		max_off = reg->smax_value + reg->off;
2309 		err = __check_stack_boundary(env, regno, min_off, access_size,
2310 					     zero_size_allowed);
2311 		if (err) {
2312 			verbose(env, "R%d min value is outside of stack bound\n",
2313 				regno);
2314 			return err;
2315 		}
2316 		err = __check_stack_boundary(env, regno, max_off, access_size,
2317 					     zero_size_allowed);
2318 		if (err) {
2319 			verbose(env, "R%d max value is outside of stack bound\n",
2320 				regno);
2321 			return err;
2322 		}
2323 	}
2324 
2325 	if (meta && meta->raw_mode) {
2326 		meta->access_size = access_size;
2327 		meta->regno = regno;
2328 		return 0;
2329 	}
2330 
2331 	for (i = min_off; i < max_off + access_size; i++) {
2332 		u8 *stype;
2333 
2334 		slot = -i - 1;
2335 		spi = slot / BPF_REG_SIZE;
2336 		if (state->allocated_stack <= slot)
2337 			goto err;
2338 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2339 		if (*stype == STACK_MISC)
2340 			goto mark;
2341 		if (*stype == STACK_ZERO) {
2342 			/* helper can write anything into the stack */
2343 			*stype = STACK_MISC;
2344 			goto mark;
2345 		}
2346 err:
2347 		if (tnum_is_const(reg->var_off)) {
2348 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2349 				min_off, i - min_off, access_size);
2350 		} else {
2351 			char tn_buf[48];
2352 
2353 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2354 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2355 				tn_buf, i - min_off, access_size);
2356 		}
2357 		return -EACCES;
2358 mark:
2359 		/* reading any byte out of 8-byte 'spill_slot' will cause
2360 		 * the whole slot to be marked as 'read'
2361 		 */
2362 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2363 			      state->stack[spi].spilled_ptr.parent);
2364 	}
2365 	return update_stack_depth(env, state, min_off);
2366 }
2367 
2368 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2369 				   int access_size, bool zero_size_allowed,
2370 				   struct bpf_call_arg_meta *meta)
2371 {
2372 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2373 
2374 	switch (reg->type) {
2375 	case PTR_TO_PACKET:
2376 	case PTR_TO_PACKET_META:
2377 		return check_packet_access(env, regno, reg->off, access_size,
2378 					   zero_size_allowed);
2379 	case PTR_TO_MAP_VALUE:
2380 		if (check_map_access_type(env, regno, reg->off, access_size,
2381 					  meta && meta->raw_mode ? BPF_WRITE :
2382 					  BPF_READ))
2383 			return -EACCES;
2384 		return check_map_access(env, regno, reg->off, access_size,
2385 					zero_size_allowed);
2386 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2387 		return check_stack_boundary(env, regno, access_size,
2388 					    zero_size_allowed, meta);
2389 	}
2390 }
2391 
2392 /* Implementation details:
2393  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2394  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2395  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2396  * value_or_null->value transition, since the verifier only cares about
2397  * the range of access to valid map value pointer and doesn't care about actual
2398  * address of the map element.
2399  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2400  * reg->id > 0 after value_or_null->value transition. By doing so
2401  * two bpf_map_lookups will be considered two different pointers that
2402  * point to different bpf_spin_locks.
2403  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2404  * dead-locks.
2405  * Since only one bpf_spin_lock is allowed the checks are simpler than
2406  * reg_is_refcounted() logic. The verifier needs to remember only
2407  * one spin_lock instead of array of acquired_refs.
2408  * cur_state->active_spin_lock remembers which map value element got locked
2409  * and clears it after bpf_spin_unlock.
2410  */
2411 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2412 			     bool is_lock)
2413 {
2414 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2415 	struct bpf_verifier_state *cur = env->cur_state;
2416 	bool is_const = tnum_is_const(reg->var_off);
2417 	struct bpf_map *map = reg->map_ptr;
2418 	u64 val = reg->var_off.value;
2419 
2420 	if (reg->type != PTR_TO_MAP_VALUE) {
2421 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2422 		return -EINVAL;
2423 	}
2424 	if (!is_const) {
2425 		verbose(env,
2426 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2427 			regno);
2428 		return -EINVAL;
2429 	}
2430 	if (!map->btf) {
2431 		verbose(env,
2432 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2433 			map->name);
2434 		return -EINVAL;
2435 	}
2436 	if (!map_value_has_spin_lock(map)) {
2437 		if (map->spin_lock_off == -E2BIG)
2438 			verbose(env,
2439 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2440 				map->name);
2441 		else if (map->spin_lock_off == -ENOENT)
2442 			verbose(env,
2443 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2444 				map->name);
2445 		else
2446 			verbose(env,
2447 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2448 				map->name);
2449 		return -EINVAL;
2450 	}
2451 	if (map->spin_lock_off != val + reg->off) {
2452 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2453 			val + reg->off);
2454 		return -EINVAL;
2455 	}
2456 	if (is_lock) {
2457 		if (cur->active_spin_lock) {
2458 			verbose(env,
2459 				"Locking two bpf_spin_locks are not allowed\n");
2460 			return -EINVAL;
2461 		}
2462 		cur->active_spin_lock = reg->id;
2463 	} else {
2464 		if (!cur->active_spin_lock) {
2465 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2466 			return -EINVAL;
2467 		}
2468 		if (cur->active_spin_lock != reg->id) {
2469 			verbose(env, "bpf_spin_unlock of different lock\n");
2470 			return -EINVAL;
2471 		}
2472 		cur->active_spin_lock = 0;
2473 	}
2474 	return 0;
2475 }
2476 
2477 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2478 {
2479 	return type == ARG_PTR_TO_MEM ||
2480 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2481 	       type == ARG_PTR_TO_UNINIT_MEM;
2482 }
2483 
2484 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2485 {
2486 	return type == ARG_CONST_SIZE ||
2487 	       type == ARG_CONST_SIZE_OR_ZERO;
2488 }
2489 
2490 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2491 {
2492 	return type == ARG_PTR_TO_INT ||
2493 	       type == ARG_PTR_TO_LONG;
2494 }
2495 
2496 static int int_ptr_type_to_size(enum bpf_arg_type type)
2497 {
2498 	if (type == ARG_PTR_TO_INT)
2499 		return sizeof(u32);
2500 	else if (type == ARG_PTR_TO_LONG)
2501 		return sizeof(u64);
2502 
2503 	return -EINVAL;
2504 }
2505 
2506 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2507 			  enum bpf_arg_type arg_type,
2508 			  struct bpf_call_arg_meta *meta)
2509 {
2510 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2511 	enum bpf_reg_type expected_type, type = reg->type;
2512 	int err = 0;
2513 
2514 	if (arg_type == ARG_DONTCARE)
2515 		return 0;
2516 
2517 	err = check_reg_arg(env, regno, SRC_OP);
2518 	if (err)
2519 		return err;
2520 
2521 	if (arg_type == ARG_ANYTHING) {
2522 		if (is_pointer_value(env, regno)) {
2523 			verbose(env, "R%d leaks addr into helper function\n",
2524 				regno);
2525 			return -EACCES;
2526 		}
2527 		return 0;
2528 	}
2529 
2530 	if (type_is_pkt_pointer(type) &&
2531 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2532 		verbose(env, "helper access to the packet is not allowed\n");
2533 		return -EACCES;
2534 	}
2535 
2536 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2537 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2538 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2539 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2540 		expected_type = PTR_TO_STACK;
2541 		if (register_is_null(reg) &&
2542 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2543 			/* final test in check_stack_boundary() */;
2544 		else if (!type_is_pkt_pointer(type) &&
2545 			 type != PTR_TO_MAP_VALUE &&
2546 			 type != expected_type)
2547 			goto err_type;
2548 	} else if (arg_type == ARG_CONST_SIZE ||
2549 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2550 		expected_type = SCALAR_VALUE;
2551 		if (type != expected_type)
2552 			goto err_type;
2553 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2554 		expected_type = CONST_PTR_TO_MAP;
2555 		if (type != expected_type)
2556 			goto err_type;
2557 	} else if (arg_type == ARG_PTR_TO_CTX) {
2558 		expected_type = PTR_TO_CTX;
2559 		if (type != expected_type)
2560 			goto err_type;
2561 		err = check_ctx_reg(env, reg, regno);
2562 		if (err < 0)
2563 			return err;
2564 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2565 		expected_type = PTR_TO_SOCK_COMMON;
2566 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2567 		if (!type_is_sk_pointer(type))
2568 			goto err_type;
2569 		if (reg->ref_obj_id) {
2570 			if (meta->ref_obj_id) {
2571 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2572 					regno, reg->ref_obj_id,
2573 					meta->ref_obj_id);
2574 				return -EFAULT;
2575 			}
2576 			meta->ref_obj_id = reg->ref_obj_id;
2577 		}
2578 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2579 		expected_type = PTR_TO_SOCKET;
2580 		if (type != expected_type)
2581 			goto err_type;
2582 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2583 		if (meta->func_id == BPF_FUNC_spin_lock) {
2584 			if (process_spin_lock(env, regno, true))
2585 				return -EACCES;
2586 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2587 			if (process_spin_lock(env, regno, false))
2588 				return -EACCES;
2589 		} else {
2590 			verbose(env, "verifier internal error\n");
2591 			return -EFAULT;
2592 		}
2593 	} else if (arg_type_is_mem_ptr(arg_type)) {
2594 		expected_type = PTR_TO_STACK;
2595 		/* One exception here. In case function allows for NULL to be
2596 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2597 		 * happens during stack boundary checking.
2598 		 */
2599 		if (register_is_null(reg) &&
2600 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2601 			/* final test in check_stack_boundary() */;
2602 		else if (!type_is_pkt_pointer(type) &&
2603 			 type != PTR_TO_MAP_VALUE &&
2604 			 type != expected_type)
2605 			goto err_type;
2606 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2607 	} else if (arg_type_is_int_ptr(arg_type)) {
2608 		expected_type = PTR_TO_STACK;
2609 		if (!type_is_pkt_pointer(type) &&
2610 		    type != PTR_TO_MAP_VALUE &&
2611 		    type != expected_type)
2612 			goto err_type;
2613 	} else {
2614 		verbose(env, "unsupported arg_type %d\n", arg_type);
2615 		return -EFAULT;
2616 	}
2617 
2618 	if (arg_type == ARG_CONST_MAP_PTR) {
2619 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2620 		meta->map_ptr = reg->map_ptr;
2621 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2622 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2623 		 * check that [key, key + map->key_size) are within
2624 		 * stack limits and initialized
2625 		 */
2626 		if (!meta->map_ptr) {
2627 			/* in function declaration map_ptr must come before
2628 			 * map_key, so that it's verified and known before
2629 			 * we have to check map_key here. Otherwise it means
2630 			 * that kernel subsystem misconfigured verifier
2631 			 */
2632 			verbose(env, "invalid map_ptr to access map->key\n");
2633 			return -EACCES;
2634 		}
2635 		err = check_helper_mem_access(env, regno,
2636 					      meta->map_ptr->key_size, false,
2637 					      NULL);
2638 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2639 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2640 		    !register_is_null(reg)) ||
2641 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2642 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2643 		 * check [value, value + map->value_size) validity
2644 		 */
2645 		if (!meta->map_ptr) {
2646 			/* kernel subsystem misconfigured verifier */
2647 			verbose(env, "invalid map_ptr to access map->value\n");
2648 			return -EACCES;
2649 		}
2650 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2651 		err = check_helper_mem_access(env, regno,
2652 					      meta->map_ptr->value_size, false,
2653 					      meta);
2654 	} else if (arg_type_is_mem_size(arg_type)) {
2655 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2656 
2657 		/* remember the mem_size which may be used later
2658 		 * to refine return values.
2659 		 */
2660 		meta->msize_smax_value = reg->smax_value;
2661 		meta->msize_umax_value = reg->umax_value;
2662 
2663 		/* The register is SCALAR_VALUE; the access check
2664 		 * happens using its boundaries.
2665 		 */
2666 		if (!tnum_is_const(reg->var_off))
2667 			/* For unprivileged variable accesses, disable raw
2668 			 * mode so that the program is required to
2669 			 * initialize all the memory that the helper could
2670 			 * just partially fill up.
2671 			 */
2672 			meta = NULL;
2673 
2674 		if (reg->smin_value < 0) {
2675 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2676 				regno);
2677 			return -EACCES;
2678 		}
2679 
2680 		if (reg->umin_value == 0) {
2681 			err = check_helper_mem_access(env, regno - 1, 0,
2682 						      zero_size_allowed,
2683 						      meta);
2684 			if (err)
2685 				return err;
2686 		}
2687 
2688 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2689 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2690 				regno);
2691 			return -EACCES;
2692 		}
2693 		err = check_helper_mem_access(env, regno - 1,
2694 					      reg->umax_value,
2695 					      zero_size_allowed, meta);
2696 	} else if (arg_type_is_int_ptr(arg_type)) {
2697 		int size = int_ptr_type_to_size(arg_type);
2698 
2699 		err = check_helper_mem_access(env, regno, size, false, meta);
2700 		if (err)
2701 			return err;
2702 		err = check_ptr_alignment(env, reg, 0, size, true);
2703 	}
2704 
2705 	return err;
2706 err_type:
2707 	verbose(env, "R%d type=%s expected=%s\n", regno,
2708 		reg_type_str[type], reg_type_str[expected_type]);
2709 	return -EACCES;
2710 }
2711 
2712 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2713 					struct bpf_map *map, int func_id)
2714 {
2715 	if (!map)
2716 		return 0;
2717 
2718 	/* We need a two way check, first is from map perspective ... */
2719 	switch (map->map_type) {
2720 	case BPF_MAP_TYPE_PROG_ARRAY:
2721 		if (func_id != BPF_FUNC_tail_call)
2722 			goto error;
2723 		break;
2724 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2725 		if (func_id != BPF_FUNC_perf_event_read &&
2726 		    func_id != BPF_FUNC_perf_event_output &&
2727 		    func_id != BPF_FUNC_perf_event_read_value)
2728 			goto error;
2729 		break;
2730 	case BPF_MAP_TYPE_STACK_TRACE:
2731 		if (func_id != BPF_FUNC_get_stackid)
2732 			goto error;
2733 		break;
2734 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2735 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2736 		    func_id != BPF_FUNC_current_task_under_cgroup)
2737 			goto error;
2738 		break;
2739 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2740 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2741 		if (func_id != BPF_FUNC_get_local_storage)
2742 			goto error;
2743 		break;
2744 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2745 	 * allow to be modified from bpf side. So do not allow lookup elements
2746 	 * for now.
2747 	 */
2748 	case BPF_MAP_TYPE_DEVMAP:
2749 		if (func_id != BPF_FUNC_redirect_map)
2750 			goto error;
2751 		break;
2752 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2753 	 * appear.
2754 	 */
2755 	case BPF_MAP_TYPE_CPUMAP:
2756 	case BPF_MAP_TYPE_XSKMAP:
2757 		if (func_id != BPF_FUNC_redirect_map)
2758 			goto error;
2759 		break;
2760 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2761 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2762 		if (func_id != BPF_FUNC_map_lookup_elem)
2763 			goto error;
2764 		break;
2765 	case BPF_MAP_TYPE_SOCKMAP:
2766 		if (func_id != BPF_FUNC_sk_redirect_map &&
2767 		    func_id != BPF_FUNC_sock_map_update &&
2768 		    func_id != BPF_FUNC_map_delete_elem &&
2769 		    func_id != BPF_FUNC_msg_redirect_map)
2770 			goto error;
2771 		break;
2772 	case BPF_MAP_TYPE_SOCKHASH:
2773 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2774 		    func_id != BPF_FUNC_sock_hash_update &&
2775 		    func_id != BPF_FUNC_map_delete_elem &&
2776 		    func_id != BPF_FUNC_msg_redirect_hash)
2777 			goto error;
2778 		break;
2779 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2780 		if (func_id != BPF_FUNC_sk_select_reuseport)
2781 			goto error;
2782 		break;
2783 	case BPF_MAP_TYPE_QUEUE:
2784 	case BPF_MAP_TYPE_STACK:
2785 		if (func_id != BPF_FUNC_map_peek_elem &&
2786 		    func_id != BPF_FUNC_map_pop_elem &&
2787 		    func_id != BPF_FUNC_map_push_elem)
2788 			goto error;
2789 		break;
2790 	case BPF_MAP_TYPE_SK_STORAGE:
2791 		if (func_id != BPF_FUNC_sk_storage_get &&
2792 		    func_id != BPF_FUNC_sk_storage_delete)
2793 			goto error;
2794 		break;
2795 	default:
2796 		break;
2797 	}
2798 
2799 	/* ... and second from the function itself. */
2800 	switch (func_id) {
2801 	case BPF_FUNC_tail_call:
2802 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2803 			goto error;
2804 		if (env->subprog_cnt > 1) {
2805 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2806 			return -EINVAL;
2807 		}
2808 		break;
2809 	case BPF_FUNC_perf_event_read:
2810 	case BPF_FUNC_perf_event_output:
2811 	case BPF_FUNC_perf_event_read_value:
2812 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2813 			goto error;
2814 		break;
2815 	case BPF_FUNC_get_stackid:
2816 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2817 			goto error;
2818 		break;
2819 	case BPF_FUNC_current_task_under_cgroup:
2820 	case BPF_FUNC_skb_under_cgroup:
2821 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2822 			goto error;
2823 		break;
2824 	case BPF_FUNC_redirect_map:
2825 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2826 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2827 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2828 			goto error;
2829 		break;
2830 	case BPF_FUNC_sk_redirect_map:
2831 	case BPF_FUNC_msg_redirect_map:
2832 	case BPF_FUNC_sock_map_update:
2833 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2834 			goto error;
2835 		break;
2836 	case BPF_FUNC_sk_redirect_hash:
2837 	case BPF_FUNC_msg_redirect_hash:
2838 	case BPF_FUNC_sock_hash_update:
2839 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2840 			goto error;
2841 		break;
2842 	case BPF_FUNC_get_local_storage:
2843 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2844 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2845 			goto error;
2846 		break;
2847 	case BPF_FUNC_sk_select_reuseport:
2848 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2849 			goto error;
2850 		break;
2851 	case BPF_FUNC_map_peek_elem:
2852 	case BPF_FUNC_map_pop_elem:
2853 	case BPF_FUNC_map_push_elem:
2854 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2855 		    map->map_type != BPF_MAP_TYPE_STACK)
2856 			goto error;
2857 		break;
2858 	case BPF_FUNC_sk_storage_get:
2859 	case BPF_FUNC_sk_storage_delete:
2860 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
2861 			goto error;
2862 		break;
2863 	default:
2864 		break;
2865 	}
2866 
2867 	return 0;
2868 error:
2869 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2870 		map->map_type, func_id_name(func_id), func_id);
2871 	return -EINVAL;
2872 }
2873 
2874 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2875 {
2876 	int count = 0;
2877 
2878 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2879 		count++;
2880 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2881 		count++;
2882 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2883 		count++;
2884 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2885 		count++;
2886 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2887 		count++;
2888 
2889 	/* We only support one arg being in raw mode at the moment,
2890 	 * which is sufficient for the helper functions we have
2891 	 * right now.
2892 	 */
2893 	return count <= 1;
2894 }
2895 
2896 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2897 				    enum bpf_arg_type arg_next)
2898 {
2899 	return (arg_type_is_mem_ptr(arg_curr) &&
2900 	        !arg_type_is_mem_size(arg_next)) ||
2901 	       (!arg_type_is_mem_ptr(arg_curr) &&
2902 		arg_type_is_mem_size(arg_next));
2903 }
2904 
2905 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2906 {
2907 	/* bpf_xxx(..., buf, len) call will access 'len'
2908 	 * bytes from memory 'buf'. Both arg types need
2909 	 * to be paired, so make sure there's no buggy
2910 	 * helper function specification.
2911 	 */
2912 	if (arg_type_is_mem_size(fn->arg1_type) ||
2913 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2914 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2915 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2916 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2917 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2918 		return false;
2919 
2920 	return true;
2921 }
2922 
2923 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2924 {
2925 	int count = 0;
2926 
2927 	if (arg_type_may_be_refcounted(fn->arg1_type))
2928 		count++;
2929 	if (arg_type_may_be_refcounted(fn->arg2_type))
2930 		count++;
2931 	if (arg_type_may_be_refcounted(fn->arg3_type))
2932 		count++;
2933 	if (arg_type_may_be_refcounted(fn->arg4_type))
2934 		count++;
2935 	if (arg_type_may_be_refcounted(fn->arg5_type))
2936 		count++;
2937 
2938 	/* A reference acquiring function cannot acquire
2939 	 * another refcounted ptr.
2940 	 */
2941 	if (is_acquire_function(func_id) && count)
2942 		return false;
2943 
2944 	/* We only support one arg being unreferenced at the moment,
2945 	 * which is sufficient for the helper functions we have right now.
2946 	 */
2947 	return count <= 1;
2948 }
2949 
2950 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2951 {
2952 	return check_raw_mode_ok(fn) &&
2953 	       check_arg_pair_ok(fn) &&
2954 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2955 }
2956 
2957 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2958  * are now invalid, so turn them into unknown SCALAR_VALUE.
2959  */
2960 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2961 				     struct bpf_func_state *state)
2962 {
2963 	struct bpf_reg_state *regs = state->regs, *reg;
2964 	int i;
2965 
2966 	for (i = 0; i < MAX_BPF_REG; i++)
2967 		if (reg_is_pkt_pointer_any(&regs[i]))
2968 			mark_reg_unknown(env, regs, i);
2969 
2970 	bpf_for_each_spilled_reg(i, state, reg) {
2971 		if (!reg)
2972 			continue;
2973 		if (reg_is_pkt_pointer_any(reg))
2974 			__mark_reg_unknown(reg);
2975 	}
2976 }
2977 
2978 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2979 {
2980 	struct bpf_verifier_state *vstate = env->cur_state;
2981 	int i;
2982 
2983 	for (i = 0; i <= vstate->curframe; i++)
2984 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2985 }
2986 
2987 static void release_reg_references(struct bpf_verifier_env *env,
2988 				   struct bpf_func_state *state,
2989 				   int ref_obj_id)
2990 {
2991 	struct bpf_reg_state *regs = state->regs, *reg;
2992 	int i;
2993 
2994 	for (i = 0; i < MAX_BPF_REG; i++)
2995 		if (regs[i].ref_obj_id == ref_obj_id)
2996 			mark_reg_unknown(env, regs, i);
2997 
2998 	bpf_for_each_spilled_reg(i, state, reg) {
2999 		if (!reg)
3000 			continue;
3001 		if (reg->ref_obj_id == ref_obj_id)
3002 			__mark_reg_unknown(reg);
3003 	}
3004 }
3005 
3006 /* The pointer with the specified id has released its reference to kernel
3007  * resources. Identify all copies of the same pointer and clear the reference.
3008  */
3009 static int release_reference(struct bpf_verifier_env *env,
3010 			     int ref_obj_id)
3011 {
3012 	struct bpf_verifier_state *vstate = env->cur_state;
3013 	int err;
3014 	int i;
3015 
3016 	err = release_reference_state(cur_func(env), ref_obj_id);
3017 	if (err)
3018 		return err;
3019 
3020 	for (i = 0; i <= vstate->curframe; i++)
3021 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3022 
3023 	return 0;
3024 }
3025 
3026 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3027 			   int *insn_idx)
3028 {
3029 	struct bpf_verifier_state *state = env->cur_state;
3030 	struct bpf_func_state *caller, *callee;
3031 	int i, err, subprog, target_insn;
3032 
3033 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3034 		verbose(env, "the call stack of %d frames is too deep\n",
3035 			state->curframe + 2);
3036 		return -E2BIG;
3037 	}
3038 
3039 	target_insn = *insn_idx + insn->imm;
3040 	subprog = find_subprog(env, target_insn + 1);
3041 	if (subprog < 0) {
3042 		verbose(env, "verifier bug. No program starts at insn %d\n",
3043 			target_insn + 1);
3044 		return -EFAULT;
3045 	}
3046 
3047 	caller = state->frame[state->curframe];
3048 	if (state->frame[state->curframe + 1]) {
3049 		verbose(env, "verifier bug. Frame %d already allocated\n",
3050 			state->curframe + 1);
3051 		return -EFAULT;
3052 	}
3053 
3054 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3055 	if (!callee)
3056 		return -ENOMEM;
3057 	state->frame[state->curframe + 1] = callee;
3058 
3059 	/* callee cannot access r0, r6 - r9 for reading and has to write
3060 	 * into its own stack before reading from it.
3061 	 * callee can read/write into caller's stack
3062 	 */
3063 	init_func_state(env, callee,
3064 			/* remember the callsite, it will be used by bpf_exit */
3065 			*insn_idx /* callsite */,
3066 			state->curframe + 1 /* frameno within this callchain */,
3067 			subprog /* subprog number within this prog */);
3068 
3069 	/* Transfer references to the callee */
3070 	err = transfer_reference_state(callee, caller);
3071 	if (err)
3072 		return err;
3073 
3074 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3075 	 * pointers, which connects us up to the liveness chain
3076 	 */
3077 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3078 		callee->regs[i] = caller->regs[i];
3079 
3080 	/* after the call registers r0 - r5 were scratched */
3081 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3082 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3083 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3084 	}
3085 
3086 	/* only increment it after check_reg_arg() finished */
3087 	state->curframe++;
3088 
3089 	/* and go analyze first insn of the callee */
3090 	*insn_idx = target_insn;
3091 
3092 	if (env->log.level & BPF_LOG_LEVEL) {
3093 		verbose(env, "caller:\n");
3094 		print_verifier_state(env, caller);
3095 		verbose(env, "callee:\n");
3096 		print_verifier_state(env, callee);
3097 	}
3098 	return 0;
3099 }
3100 
3101 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3102 {
3103 	struct bpf_verifier_state *state = env->cur_state;
3104 	struct bpf_func_state *caller, *callee;
3105 	struct bpf_reg_state *r0;
3106 	int err;
3107 
3108 	callee = state->frame[state->curframe];
3109 	r0 = &callee->regs[BPF_REG_0];
3110 	if (r0->type == PTR_TO_STACK) {
3111 		/* technically it's ok to return caller's stack pointer
3112 		 * (or caller's caller's pointer) back to the caller,
3113 		 * since these pointers are valid. Only current stack
3114 		 * pointer will be invalid as soon as function exits,
3115 		 * but let's be conservative
3116 		 */
3117 		verbose(env, "cannot return stack pointer to the caller\n");
3118 		return -EINVAL;
3119 	}
3120 
3121 	state->curframe--;
3122 	caller = state->frame[state->curframe];
3123 	/* return to the caller whatever r0 had in the callee */
3124 	caller->regs[BPF_REG_0] = *r0;
3125 
3126 	/* Transfer references to the caller */
3127 	err = transfer_reference_state(caller, callee);
3128 	if (err)
3129 		return err;
3130 
3131 	*insn_idx = callee->callsite + 1;
3132 	if (env->log.level & BPF_LOG_LEVEL) {
3133 		verbose(env, "returning from callee:\n");
3134 		print_verifier_state(env, callee);
3135 		verbose(env, "to caller at %d:\n", *insn_idx);
3136 		print_verifier_state(env, caller);
3137 	}
3138 	/* clear everything in the callee */
3139 	free_func_state(callee);
3140 	state->frame[state->curframe + 1] = NULL;
3141 	return 0;
3142 }
3143 
3144 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3145 				   int func_id,
3146 				   struct bpf_call_arg_meta *meta)
3147 {
3148 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3149 
3150 	if (ret_type != RET_INTEGER ||
3151 	    (func_id != BPF_FUNC_get_stack &&
3152 	     func_id != BPF_FUNC_probe_read_str))
3153 		return;
3154 
3155 	ret_reg->smax_value = meta->msize_smax_value;
3156 	ret_reg->umax_value = meta->msize_umax_value;
3157 	__reg_deduce_bounds(ret_reg);
3158 	__reg_bound_offset(ret_reg);
3159 }
3160 
3161 static int
3162 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3163 		int func_id, int insn_idx)
3164 {
3165 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3166 	struct bpf_map *map = meta->map_ptr;
3167 
3168 	if (func_id != BPF_FUNC_tail_call &&
3169 	    func_id != BPF_FUNC_map_lookup_elem &&
3170 	    func_id != BPF_FUNC_map_update_elem &&
3171 	    func_id != BPF_FUNC_map_delete_elem &&
3172 	    func_id != BPF_FUNC_map_push_elem &&
3173 	    func_id != BPF_FUNC_map_pop_elem &&
3174 	    func_id != BPF_FUNC_map_peek_elem)
3175 		return 0;
3176 
3177 	if (map == NULL) {
3178 		verbose(env, "kernel subsystem misconfigured verifier\n");
3179 		return -EINVAL;
3180 	}
3181 
3182 	/* In case of read-only, some additional restrictions
3183 	 * need to be applied in order to prevent altering the
3184 	 * state of the map from program side.
3185 	 */
3186 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3187 	    (func_id == BPF_FUNC_map_delete_elem ||
3188 	     func_id == BPF_FUNC_map_update_elem ||
3189 	     func_id == BPF_FUNC_map_push_elem ||
3190 	     func_id == BPF_FUNC_map_pop_elem)) {
3191 		verbose(env, "write into map forbidden\n");
3192 		return -EACCES;
3193 	}
3194 
3195 	if (!BPF_MAP_PTR(aux->map_state))
3196 		bpf_map_ptr_store(aux, meta->map_ptr,
3197 				  meta->map_ptr->unpriv_array);
3198 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3199 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3200 				  meta->map_ptr->unpriv_array);
3201 	return 0;
3202 }
3203 
3204 static int check_reference_leak(struct bpf_verifier_env *env)
3205 {
3206 	struct bpf_func_state *state = cur_func(env);
3207 	int i;
3208 
3209 	for (i = 0; i < state->acquired_refs; i++) {
3210 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3211 			state->refs[i].id, state->refs[i].insn_idx);
3212 	}
3213 	return state->acquired_refs ? -EINVAL : 0;
3214 }
3215 
3216 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3217 {
3218 	const struct bpf_func_proto *fn = NULL;
3219 	struct bpf_reg_state *regs;
3220 	struct bpf_call_arg_meta meta;
3221 	bool changes_data;
3222 	int i, err;
3223 
3224 	/* find function prototype */
3225 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3226 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3227 			func_id);
3228 		return -EINVAL;
3229 	}
3230 
3231 	if (env->ops->get_func_proto)
3232 		fn = env->ops->get_func_proto(func_id, env->prog);
3233 	if (!fn) {
3234 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3235 			func_id);
3236 		return -EINVAL;
3237 	}
3238 
3239 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3240 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3241 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3242 		return -EINVAL;
3243 	}
3244 
3245 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3246 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3247 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3248 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3249 			func_id_name(func_id), func_id);
3250 		return -EINVAL;
3251 	}
3252 
3253 	memset(&meta, 0, sizeof(meta));
3254 	meta.pkt_access = fn->pkt_access;
3255 
3256 	err = check_func_proto(fn, func_id);
3257 	if (err) {
3258 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3259 			func_id_name(func_id), func_id);
3260 		return err;
3261 	}
3262 
3263 	meta.func_id = func_id;
3264 	/* check args */
3265 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3266 	if (err)
3267 		return err;
3268 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3269 	if (err)
3270 		return err;
3271 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3272 	if (err)
3273 		return err;
3274 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3275 	if (err)
3276 		return err;
3277 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3278 	if (err)
3279 		return err;
3280 
3281 	err = record_func_map(env, &meta, func_id, insn_idx);
3282 	if (err)
3283 		return err;
3284 
3285 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3286 	 * is inferred from register state.
3287 	 */
3288 	for (i = 0; i < meta.access_size; i++) {
3289 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3290 				       BPF_WRITE, -1, false);
3291 		if (err)
3292 			return err;
3293 	}
3294 
3295 	if (func_id == BPF_FUNC_tail_call) {
3296 		err = check_reference_leak(env);
3297 		if (err) {
3298 			verbose(env, "tail_call would lead to reference leak\n");
3299 			return err;
3300 		}
3301 	} else if (is_release_function(func_id)) {
3302 		err = release_reference(env, meta.ref_obj_id);
3303 		if (err) {
3304 			verbose(env, "func %s#%d reference has not been acquired before\n",
3305 				func_id_name(func_id), func_id);
3306 			return err;
3307 		}
3308 	}
3309 
3310 	regs = cur_regs(env);
3311 
3312 	/* check that flags argument in get_local_storage(map, flags) is 0,
3313 	 * this is required because get_local_storage() can't return an error.
3314 	 */
3315 	if (func_id == BPF_FUNC_get_local_storage &&
3316 	    !register_is_null(&regs[BPF_REG_2])) {
3317 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3318 		return -EINVAL;
3319 	}
3320 
3321 	/* reset caller saved regs */
3322 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3323 		mark_reg_not_init(env, regs, caller_saved[i]);
3324 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3325 	}
3326 
3327 	/* update return register (already marked as written above) */
3328 	if (fn->ret_type == RET_INTEGER) {
3329 		/* sets type to SCALAR_VALUE */
3330 		mark_reg_unknown(env, regs, BPF_REG_0);
3331 	} else if (fn->ret_type == RET_VOID) {
3332 		regs[BPF_REG_0].type = NOT_INIT;
3333 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3334 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3335 		/* There is no offset yet applied, variable or fixed */
3336 		mark_reg_known_zero(env, regs, BPF_REG_0);
3337 		/* remember map_ptr, so that check_map_access()
3338 		 * can check 'value_size' boundary of memory access
3339 		 * to map element returned from bpf_map_lookup_elem()
3340 		 */
3341 		if (meta.map_ptr == NULL) {
3342 			verbose(env,
3343 				"kernel subsystem misconfigured verifier\n");
3344 			return -EINVAL;
3345 		}
3346 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3347 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3348 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3349 			if (map_value_has_spin_lock(meta.map_ptr))
3350 				regs[BPF_REG_0].id = ++env->id_gen;
3351 		} else {
3352 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3353 			regs[BPF_REG_0].id = ++env->id_gen;
3354 		}
3355 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3356 		mark_reg_known_zero(env, regs, BPF_REG_0);
3357 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3358 		regs[BPF_REG_0].id = ++env->id_gen;
3359 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3360 		mark_reg_known_zero(env, regs, BPF_REG_0);
3361 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3362 		regs[BPF_REG_0].id = ++env->id_gen;
3363 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3364 		mark_reg_known_zero(env, regs, BPF_REG_0);
3365 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3366 		regs[BPF_REG_0].id = ++env->id_gen;
3367 	} else {
3368 		verbose(env, "unknown return type %d of func %s#%d\n",
3369 			fn->ret_type, func_id_name(func_id), func_id);
3370 		return -EINVAL;
3371 	}
3372 
3373 	if (is_ptr_cast_function(func_id)) {
3374 		/* For release_reference() */
3375 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3376 	} else if (is_acquire_function(func_id)) {
3377 		int id = acquire_reference_state(env, insn_idx);
3378 
3379 		if (id < 0)
3380 			return id;
3381 		/* For mark_ptr_or_null_reg() */
3382 		regs[BPF_REG_0].id = id;
3383 		/* For release_reference() */
3384 		regs[BPF_REG_0].ref_obj_id = id;
3385 	}
3386 
3387 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3388 
3389 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3390 	if (err)
3391 		return err;
3392 
3393 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3394 		const char *err_str;
3395 
3396 #ifdef CONFIG_PERF_EVENTS
3397 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3398 		err_str = "cannot get callchain buffer for func %s#%d\n";
3399 #else
3400 		err = -ENOTSUPP;
3401 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3402 #endif
3403 		if (err) {
3404 			verbose(env, err_str, func_id_name(func_id), func_id);
3405 			return err;
3406 		}
3407 
3408 		env->prog->has_callchain_buf = true;
3409 	}
3410 
3411 	if (changes_data)
3412 		clear_all_pkt_pointers(env);
3413 	return 0;
3414 }
3415 
3416 static bool signed_add_overflows(s64 a, s64 b)
3417 {
3418 	/* Do the add in u64, where overflow is well-defined */
3419 	s64 res = (s64)((u64)a + (u64)b);
3420 
3421 	if (b < 0)
3422 		return res > a;
3423 	return res < a;
3424 }
3425 
3426 static bool signed_sub_overflows(s64 a, s64 b)
3427 {
3428 	/* Do the sub in u64, where overflow is well-defined */
3429 	s64 res = (s64)((u64)a - (u64)b);
3430 
3431 	if (b < 0)
3432 		return res < a;
3433 	return res > a;
3434 }
3435 
3436 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3437 				  const struct bpf_reg_state *reg,
3438 				  enum bpf_reg_type type)
3439 {
3440 	bool known = tnum_is_const(reg->var_off);
3441 	s64 val = reg->var_off.value;
3442 	s64 smin = reg->smin_value;
3443 
3444 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3445 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3446 			reg_type_str[type], val);
3447 		return false;
3448 	}
3449 
3450 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3451 		verbose(env, "%s pointer offset %d is not allowed\n",
3452 			reg_type_str[type], reg->off);
3453 		return false;
3454 	}
3455 
3456 	if (smin == S64_MIN) {
3457 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3458 			reg_type_str[type]);
3459 		return false;
3460 	}
3461 
3462 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3463 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3464 			smin, reg_type_str[type]);
3465 		return false;
3466 	}
3467 
3468 	return true;
3469 }
3470 
3471 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3472 {
3473 	return &env->insn_aux_data[env->insn_idx];
3474 }
3475 
3476 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3477 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3478 {
3479 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3480 			    (opcode == BPF_SUB && !off_is_neg);
3481 	u32 off;
3482 
3483 	switch (ptr_reg->type) {
3484 	case PTR_TO_STACK:
3485 		/* Indirect variable offset stack access is prohibited in
3486 		 * unprivileged mode so it's not handled here.
3487 		 */
3488 		off = ptr_reg->off + ptr_reg->var_off.value;
3489 		if (mask_to_left)
3490 			*ptr_limit = MAX_BPF_STACK + off;
3491 		else
3492 			*ptr_limit = -off;
3493 		return 0;
3494 	case PTR_TO_MAP_VALUE:
3495 		if (mask_to_left) {
3496 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3497 		} else {
3498 			off = ptr_reg->smin_value + ptr_reg->off;
3499 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3500 		}
3501 		return 0;
3502 	default:
3503 		return -EINVAL;
3504 	}
3505 }
3506 
3507 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3508 				    const struct bpf_insn *insn)
3509 {
3510 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3511 }
3512 
3513 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3514 				       u32 alu_state, u32 alu_limit)
3515 {
3516 	/* If we arrived here from different branches with different
3517 	 * state or limits to sanitize, then this won't work.
3518 	 */
3519 	if (aux->alu_state &&
3520 	    (aux->alu_state != alu_state ||
3521 	     aux->alu_limit != alu_limit))
3522 		return -EACCES;
3523 
3524 	/* Corresponding fixup done in fixup_bpf_calls(). */
3525 	aux->alu_state = alu_state;
3526 	aux->alu_limit = alu_limit;
3527 	return 0;
3528 }
3529 
3530 static int sanitize_val_alu(struct bpf_verifier_env *env,
3531 			    struct bpf_insn *insn)
3532 {
3533 	struct bpf_insn_aux_data *aux = cur_aux(env);
3534 
3535 	if (can_skip_alu_sanitation(env, insn))
3536 		return 0;
3537 
3538 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3539 }
3540 
3541 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3542 			    struct bpf_insn *insn,
3543 			    const struct bpf_reg_state *ptr_reg,
3544 			    struct bpf_reg_state *dst_reg,
3545 			    bool off_is_neg)
3546 {
3547 	struct bpf_verifier_state *vstate = env->cur_state;
3548 	struct bpf_insn_aux_data *aux = cur_aux(env);
3549 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3550 	u8 opcode = BPF_OP(insn->code);
3551 	u32 alu_state, alu_limit;
3552 	struct bpf_reg_state tmp;
3553 	bool ret;
3554 
3555 	if (can_skip_alu_sanitation(env, insn))
3556 		return 0;
3557 
3558 	/* We already marked aux for masking from non-speculative
3559 	 * paths, thus we got here in the first place. We only care
3560 	 * to explore bad access from here.
3561 	 */
3562 	if (vstate->speculative)
3563 		goto do_sim;
3564 
3565 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3566 	alu_state |= ptr_is_dst_reg ?
3567 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3568 
3569 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3570 		return 0;
3571 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3572 		return -EACCES;
3573 do_sim:
3574 	/* Simulate and find potential out-of-bounds access under
3575 	 * speculative execution from truncation as a result of
3576 	 * masking when off was not within expected range. If off
3577 	 * sits in dst, then we temporarily need to move ptr there
3578 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3579 	 * for cases where we use K-based arithmetic in one direction
3580 	 * and truncated reg-based in the other in order to explore
3581 	 * bad access.
3582 	 */
3583 	if (!ptr_is_dst_reg) {
3584 		tmp = *dst_reg;
3585 		*dst_reg = *ptr_reg;
3586 	}
3587 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3588 	if (!ptr_is_dst_reg && ret)
3589 		*dst_reg = tmp;
3590 	return !ret ? -EFAULT : 0;
3591 }
3592 
3593 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3594  * Caller should also handle BPF_MOV case separately.
3595  * If we return -EACCES, caller may want to try again treating pointer as a
3596  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3597  */
3598 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3599 				   struct bpf_insn *insn,
3600 				   const struct bpf_reg_state *ptr_reg,
3601 				   const struct bpf_reg_state *off_reg)
3602 {
3603 	struct bpf_verifier_state *vstate = env->cur_state;
3604 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3605 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3606 	bool known = tnum_is_const(off_reg->var_off);
3607 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3608 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3609 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3610 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3611 	u32 dst = insn->dst_reg, src = insn->src_reg;
3612 	u8 opcode = BPF_OP(insn->code);
3613 	int ret;
3614 
3615 	dst_reg = &regs[dst];
3616 
3617 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3618 	    smin_val > smax_val || umin_val > umax_val) {
3619 		/* Taint dst register if offset had invalid bounds derived from
3620 		 * e.g. dead branches.
3621 		 */
3622 		__mark_reg_unknown(dst_reg);
3623 		return 0;
3624 	}
3625 
3626 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3627 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3628 		verbose(env,
3629 			"R%d 32-bit pointer arithmetic prohibited\n",
3630 			dst);
3631 		return -EACCES;
3632 	}
3633 
3634 	switch (ptr_reg->type) {
3635 	case PTR_TO_MAP_VALUE_OR_NULL:
3636 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3637 			dst, reg_type_str[ptr_reg->type]);
3638 		return -EACCES;
3639 	case CONST_PTR_TO_MAP:
3640 	case PTR_TO_PACKET_END:
3641 	case PTR_TO_SOCKET:
3642 	case PTR_TO_SOCKET_OR_NULL:
3643 	case PTR_TO_SOCK_COMMON:
3644 	case PTR_TO_SOCK_COMMON_OR_NULL:
3645 	case PTR_TO_TCP_SOCK:
3646 	case PTR_TO_TCP_SOCK_OR_NULL:
3647 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3648 			dst, reg_type_str[ptr_reg->type]);
3649 		return -EACCES;
3650 	case PTR_TO_MAP_VALUE:
3651 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3652 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3653 				off_reg == dst_reg ? dst : src);
3654 			return -EACCES;
3655 		}
3656 		/* fall-through */
3657 	default:
3658 		break;
3659 	}
3660 
3661 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3662 	 * The id may be overwritten later if we create a new variable offset.
3663 	 */
3664 	dst_reg->type = ptr_reg->type;
3665 	dst_reg->id = ptr_reg->id;
3666 
3667 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3668 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3669 		return -EINVAL;
3670 
3671 	switch (opcode) {
3672 	case BPF_ADD:
3673 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3674 		if (ret < 0) {
3675 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3676 			return ret;
3677 		}
3678 		/* We can take a fixed offset as long as it doesn't overflow
3679 		 * the s32 'off' field
3680 		 */
3681 		if (known && (ptr_reg->off + smin_val ==
3682 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3683 			/* pointer += K.  Accumulate it into fixed offset */
3684 			dst_reg->smin_value = smin_ptr;
3685 			dst_reg->smax_value = smax_ptr;
3686 			dst_reg->umin_value = umin_ptr;
3687 			dst_reg->umax_value = umax_ptr;
3688 			dst_reg->var_off = ptr_reg->var_off;
3689 			dst_reg->off = ptr_reg->off + smin_val;
3690 			dst_reg->raw = ptr_reg->raw;
3691 			break;
3692 		}
3693 		/* A new variable offset is created.  Note that off_reg->off
3694 		 * == 0, since it's a scalar.
3695 		 * dst_reg gets the pointer type and since some positive
3696 		 * integer value was added to the pointer, give it a new 'id'
3697 		 * if it's a PTR_TO_PACKET.
3698 		 * this creates a new 'base' pointer, off_reg (variable) gets
3699 		 * added into the variable offset, and we copy the fixed offset
3700 		 * from ptr_reg.
3701 		 */
3702 		if (signed_add_overflows(smin_ptr, smin_val) ||
3703 		    signed_add_overflows(smax_ptr, smax_val)) {
3704 			dst_reg->smin_value = S64_MIN;
3705 			dst_reg->smax_value = S64_MAX;
3706 		} else {
3707 			dst_reg->smin_value = smin_ptr + smin_val;
3708 			dst_reg->smax_value = smax_ptr + smax_val;
3709 		}
3710 		if (umin_ptr + umin_val < umin_ptr ||
3711 		    umax_ptr + umax_val < umax_ptr) {
3712 			dst_reg->umin_value = 0;
3713 			dst_reg->umax_value = U64_MAX;
3714 		} else {
3715 			dst_reg->umin_value = umin_ptr + umin_val;
3716 			dst_reg->umax_value = umax_ptr + umax_val;
3717 		}
3718 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3719 		dst_reg->off = ptr_reg->off;
3720 		dst_reg->raw = ptr_reg->raw;
3721 		if (reg_is_pkt_pointer(ptr_reg)) {
3722 			dst_reg->id = ++env->id_gen;
3723 			/* something was added to pkt_ptr, set range to zero */
3724 			dst_reg->raw = 0;
3725 		}
3726 		break;
3727 	case BPF_SUB:
3728 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3729 		if (ret < 0) {
3730 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3731 			return ret;
3732 		}
3733 		if (dst_reg == off_reg) {
3734 			/* scalar -= pointer.  Creates an unknown scalar */
3735 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3736 				dst);
3737 			return -EACCES;
3738 		}
3739 		/* We don't allow subtraction from FP, because (according to
3740 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3741 		 * be able to deal with it.
3742 		 */
3743 		if (ptr_reg->type == PTR_TO_STACK) {
3744 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3745 				dst);
3746 			return -EACCES;
3747 		}
3748 		if (known && (ptr_reg->off - smin_val ==
3749 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3750 			/* pointer -= K.  Subtract it from fixed offset */
3751 			dst_reg->smin_value = smin_ptr;
3752 			dst_reg->smax_value = smax_ptr;
3753 			dst_reg->umin_value = umin_ptr;
3754 			dst_reg->umax_value = umax_ptr;
3755 			dst_reg->var_off = ptr_reg->var_off;
3756 			dst_reg->id = ptr_reg->id;
3757 			dst_reg->off = ptr_reg->off - smin_val;
3758 			dst_reg->raw = ptr_reg->raw;
3759 			break;
3760 		}
3761 		/* A new variable offset is created.  If the subtrahend is known
3762 		 * nonnegative, then any reg->range we had before is still good.
3763 		 */
3764 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3765 		    signed_sub_overflows(smax_ptr, smin_val)) {
3766 			/* Overflow possible, we know nothing */
3767 			dst_reg->smin_value = S64_MIN;
3768 			dst_reg->smax_value = S64_MAX;
3769 		} else {
3770 			dst_reg->smin_value = smin_ptr - smax_val;
3771 			dst_reg->smax_value = smax_ptr - smin_val;
3772 		}
3773 		if (umin_ptr < umax_val) {
3774 			/* Overflow possible, we know nothing */
3775 			dst_reg->umin_value = 0;
3776 			dst_reg->umax_value = U64_MAX;
3777 		} else {
3778 			/* Cannot overflow (as long as bounds are consistent) */
3779 			dst_reg->umin_value = umin_ptr - umax_val;
3780 			dst_reg->umax_value = umax_ptr - umin_val;
3781 		}
3782 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3783 		dst_reg->off = ptr_reg->off;
3784 		dst_reg->raw = ptr_reg->raw;
3785 		if (reg_is_pkt_pointer(ptr_reg)) {
3786 			dst_reg->id = ++env->id_gen;
3787 			/* something was added to pkt_ptr, set range to zero */
3788 			if (smin_val < 0)
3789 				dst_reg->raw = 0;
3790 		}
3791 		break;
3792 	case BPF_AND:
3793 	case BPF_OR:
3794 	case BPF_XOR:
3795 		/* bitwise ops on pointers are troublesome, prohibit. */
3796 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3797 			dst, bpf_alu_string[opcode >> 4]);
3798 		return -EACCES;
3799 	default:
3800 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3801 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3802 			dst, bpf_alu_string[opcode >> 4]);
3803 		return -EACCES;
3804 	}
3805 
3806 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3807 		return -EINVAL;
3808 
3809 	__update_reg_bounds(dst_reg);
3810 	__reg_deduce_bounds(dst_reg);
3811 	__reg_bound_offset(dst_reg);
3812 
3813 	/* For unprivileged we require that resulting offset must be in bounds
3814 	 * in order to be able to sanitize access later on.
3815 	 */
3816 	if (!env->allow_ptr_leaks) {
3817 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3818 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3819 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3820 				"prohibited for !root\n", dst);
3821 			return -EACCES;
3822 		} else if (dst_reg->type == PTR_TO_STACK &&
3823 			   check_stack_access(env, dst_reg, dst_reg->off +
3824 					      dst_reg->var_off.value, 1)) {
3825 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3826 				"prohibited for !root\n", dst);
3827 			return -EACCES;
3828 		}
3829 	}
3830 
3831 	return 0;
3832 }
3833 
3834 /* WARNING: This function does calculations on 64-bit values, but the actual
3835  * execution may occur on 32-bit values. Therefore, things like bitshifts
3836  * need extra checks in the 32-bit case.
3837  */
3838 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3839 				      struct bpf_insn *insn,
3840 				      struct bpf_reg_state *dst_reg,
3841 				      struct bpf_reg_state src_reg)
3842 {
3843 	struct bpf_reg_state *regs = cur_regs(env);
3844 	u8 opcode = BPF_OP(insn->code);
3845 	bool src_known, dst_known;
3846 	s64 smin_val, smax_val;
3847 	u64 umin_val, umax_val;
3848 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3849 	u32 dst = insn->dst_reg;
3850 	int ret;
3851 
3852 	if (insn_bitness == 32) {
3853 		/* Relevant for 32-bit RSH: Information can propagate towards
3854 		 * LSB, so it isn't sufficient to only truncate the output to
3855 		 * 32 bits.
3856 		 */
3857 		coerce_reg_to_size(dst_reg, 4);
3858 		coerce_reg_to_size(&src_reg, 4);
3859 	}
3860 
3861 	smin_val = src_reg.smin_value;
3862 	smax_val = src_reg.smax_value;
3863 	umin_val = src_reg.umin_value;
3864 	umax_val = src_reg.umax_value;
3865 	src_known = tnum_is_const(src_reg.var_off);
3866 	dst_known = tnum_is_const(dst_reg->var_off);
3867 
3868 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3869 	    smin_val > smax_val || umin_val > umax_val) {
3870 		/* Taint dst register if offset had invalid bounds derived from
3871 		 * e.g. dead branches.
3872 		 */
3873 		__mark_reg_unknown(dst_reg);
3874 		return 0;
3875 	}
3876 
3877 	if (!src_known &&
3878 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3879 		__mark_reg_unknown(dst_reg);
3880 		return 0;
3881 	}
3882 
3883 	switch (opcode) {
3884 	case BPF_ADD:
3885 		ret = sanitize_val_alu(env, insn);
3886 		if (ret < 0) {
3887 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3888 			return ret;
3889 		}
3890 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3891 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3892 			dst_reg->smin_value = S64_MIN;
3893 			dst_reg->smax_value = S64_MAX;
3894 		} else {
3895 			dst_reg->smin_value += smin_val;
3896 			dst_reg->smax_value += smax_val;
3897 		}
3898 		if (dst_reg->umin_value + umin_val < umin_val ||
3899 		    dst_reg->umax_value + umax_val < umax_val) {
3900 			dst_reg->umin_value = 0;
3901 			dst_reg->umax_value = U64_MAX;
3902 		} else {
3903 			dst_reg->umin_value += umin_val;
3904 			dst_reg->umax_value += umax_val;
3905 		}
3906 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3907 		break;
3908 	case BPF_SUB:
3909 		ret = sanitize_val_alu(env, insn);
3910 		if (ret < 0) {
3911 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3912 			return ret;
3913 		}
3914 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3915 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3916 			/* Overflow possible, we know nothing */
3917 			dst_reg->smin_value = S64_MIN;
3918 			dst_reg->smax_value = S64_MAX;
3919 		} else {
3920 			dst_reg->smin_value -= smax_val;
3921 			dst_reg->smax_value -= smin_val;
3922 		}
3923 		if (dst_reg->umin_value < umax_val) {
3924 			/* Overflow possible, we know nothing */
3925 			dst_reg->umin_value = 0;
3926 			dst_reg->umax_value = U64_MAX;
3927 		} else {
3928 			/* Cannot overflow (as long as bounds are consistent) */
3929 			dst_reg->umin_value -= umax_val;
3930 			dst_reg->umax_value -= umin_val;
3931 		}
3932 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3933 		break;
3934 	case BPF_MUL:
3935 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3936 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3937 			/* Ain't nobody got time to multiply that sign */
3938 			__mark_reg_unbounded(dst_reg);
3939 			__update_reg_bounds(dst_reg);
3940 			break;
3941 		}
3942 		/* Both values are positive, so we can work with unsigned and
3943 		 * copy the result to signed (unless it exceeds S64_MAX).
3944 		 */
3945 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3946 			/* Potential overflow, we know nothing */
3947 			__mark_reg_unbounded(dst_reg);
3948 			/* (except what we can learn from the var_off) */
3949 			__update_reg_bounds(dst_reg);
3950 			break;
3951 		}
3952 		dst_reg->umin_value *= umin_val;
3953 		dst_reg->umax_value *= umax_val;
3954 		if (dst_reg->umax_value > S64_MAX) {
3955 			/* Overflow possible, we know nothing */
3956 			dst_reg->smin_value = S64_MIN;
3957 			dst_reg->smax_value = S64_MAX;
3958 		} else {
3959 			dst_reg->smin_value = dst_reg->umin_value;
3960 			dst_reg->smax_value = dst_reg->umax_value;
3961 		}
3962 		break;
3963 	case BPF_AND:
3964 		if (src_known && dst_known) {
3965 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3966 						  src_reg.var_off.value);
3967 			break;
3968 		}
3969 		/* We get our minimum from the var_off, since that's inherently
3970 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3971 		 */
3972 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3973 		dst_reg->umin_value = dst_reg->var_off.value;
3974 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3975 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3976 			/* Lose signed bounds when ANDing negative numbers,
3977 			 * ain't nobody got time for that.
3978 			 */
3979 			dst_reg->smin_value = S64_MIN;
3980 			dst_reg->smax_value = S64_MAX;
3981 		} else {
3982 			/* ANDing two positives gives a positive, so safe to
3983 			 * cast result into s64.
3984 			 */
3985 			dst_reg->smin_value = dst_reg->umin_value;
3986 			dst_reg->smax_value = dst_reg->umax_value;
3987 		}
3988 		/* We may learn something more from the var_off */
3989 		__update_reg_bounds(dst_reg);
3990 		break;
3991 	case BPF_OR:
3992 		if (src_known && dst_known) {
3993 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3994 						  src_reg.var_off.value);
3995 			break;
3996 		}
3997 		/* We get our maximum from the var_off, and our minimum is the
3998 		 * maximum of the operands' minima
3999 		 */
4000 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4001 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4002 		dst_reg->umax_value = dst_reg->var_off.value |
4003 				      dst_reg->var_off.mask;
4004 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4005 			/* Lose signed bounds when ORing negative numbers,
4006 			 * ain't nobody got time for that.
4007 			 */
4008 			dst_reg->smin_value = S64_MIN;
4009 			dst_reg->smax_value = S64_MAX;
4010 		} else {
4011 			/* ORing two positives gives a positive, so safe to
4012 			 * cast result into s64.
4013 			 */
4014 			dst_reg->smin_value = dst_reg->umin_value;
4015 			dst_reg->smax_value = dst_reg->umax_value;
4016 		}
4017 		/* We may learn something more from the var_off */
4018 		__update_reg_bounds(dst_reg);
4019 		break;
4020 	case BPF_LSH:
4021 		if (umax_val >= insn_bitness) {
4022 			/* Shifts greater than 31 or 63 are undefined.
4023 			 * This includes shifts by a negative number.
4024 			 */
4025 			mark_reg_unknown(env, regs, insn->dst_reg);
4026 			break;
4027 		}
4028 		/* We lose all sign bit information (except what we can pick
4029 		 * up from var_off)
4030 		 */
4031 		dst_reg->smin_value = S64_MIN;
4032 		dst_reg->smax_value = S64_MAX;
4033 		/* If we might shift our top bit out, then we know nothing */
4034 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4035 			dst_reg->umin_value = 0;
4036 			dst_reg->umax_value = U64_MAX;
4037 		} else {
4038 			dst_reg->umin_value <<= umin_val;
4039 			dst_reg->umax_value <<= umax_val;
4040 		}
4041 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4042 		/* We may learn something more from the var_off */
4043 		__update_reg_bounds(dst_reg);
4044 		break;
4045 	case BPF_RSH:
4046 		if (umax_val >= insn_bitness) {
4047 			/* Shifts greater than 31 or 63 are undefined.
4048 			 * This includes shifts by a negative number.
4049 			 */
4050 			mark_reg_unknown(env, regs, insn->dst_reg);
4051 			break;
4052 		}
4053 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4054 		 * be negative, then either:
4055 		 * 1) src_reg might be zero, so the sign bit of the result is
4056 		 *    unknown, so we lose our signed bounds
4057 		 * 2) it's known negative, thus the unsigned bounds capture the
4058 		 *    signed bounds
4059 		 * 3) the signed bounds cross zero, so they tell us nothing
4060 		 *    about the result
4061 		 * If the value in dst_reg is known nonnegative, then again the
4062 		 * unsigned bounts capture the signed bounds.
4063 		 * Thus, in all cases it suffices to blow away our signed bounds
4064 		 * and rely on inferring new ones from the unsigned bounds and
4065 		 * var_off of the result.
4066 		 */
4067 		dst_reg->smin_value = S64_MIN;
4068 		dst_reg->smax_value = S64_MAX;
4069 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4070 		dst_reg->umin_value >>= umax_val;
4071 		dst_reg->umax_value >>= umin_val;
4072 		/* We may learn something more from the var_off */
4073 		__update_reg_bounds(dst_reg);
4074 		break;
4075 	case BPF_ARSH:
4076 		if (umax_val >= insn_bitness) {
4077 			/* Shifts greater than 31 or 63 are undefined.
4078 			 * This includes shifts by a negative number.
4079 			 */
4080 			mark_reg_unknown(env, regs, insn->dst_reg);
4081 			break;
4082 		}
4083 
4084 		/* Upon reaching here, src_known is true and
4085 		 * umax_val is equal to umin_val.
4086 		 */
4087 		dst_reg->smin_value >>= umin_val;
4088 		dst_reg->smax_value >>= umin_val;
4089 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4090 
4091 		/* blow away the dst_reg umin_value/umax_value and rely on
4092 		 * dst_reg var_off to refine the result.
4093 		 */
4094 		dst_reg->umin_value = 0;
4095 		dst_reg->umax_value = U64_MAX;
4096 		__update_reg_bounds(dst_reg);
4097 		break;
4098 	default:
4099 		mark_reg_unknown(env, regs, insn->dst_reg);
4100 		break;
4101 	}
4102 
4103 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4104 		/* 32-bit ALU ops are (32,32)->32 */
4105 		coerce_reg_to_size(dst_reg, 4);
4106 	}
4107 
4108 	__reg_deduce_bounds(dst_reg);
4109 	__reg_bound_offset(dst_reg);
4110 	return 0;
4111 }
4112 
4113 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4114  * and var_off.
4115  */
4116 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4117 				   struct bpf_insn *insn)
4118 {
4119 	struct bpf_verifier_state *vstate = env->cur_state;
4120 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4121 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4122 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4123 	u8 opcode = BPF_OP(insn->code);
4124 
4125 	dst_reg = &regs[insn->dst_reg];
4126 	src_reg = NULL;
4127 	if (dst_reg->type != SCALAR_VALUE)
4128 		ptr_reg = dst_reg;
4129 	if (BPF_SRC(insn->code) == BPF_X) {
4130 		src_reg = &regs[insn->src_reg];
4131 		if (src_reg->type != SCALAR_VALUE) {
4132 			if (dst_reg->type != SCALAR_VALUE) {
4133 				/* Combining two pointers by any ALU op yields
4134 				 * an arbitrary scalar. Disallow all math except
4135 				 * pointer subtraction
4136 				 */
4137 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4138 					mark_reg_unknown(env, regs, insn->dst_reg);
4139 					return 0;
4140 				}
4141 				verbose(env, "R%d pointer %s pointer prohibited\n",
4142 					insn->dst_reg,
4143 					bpf_alu_string[opcode >> 4]);
4144 				return -EACCES;
4145 			} else {
4146 				/* scalar += pointer
4147 				 * This is legal, but we have to reverse our
4148 				 * src/dest handling in computing the range
4149 				 */
4150 				return adjust_ptr_min_max_vals(env, insn,
4151 							       src_reg, dst_reg);
4152 			}
4153 		} else if (ptr_reg) {
4154 			/* pointer += scalar */
4155 			return adjust_ptr_min_max_vals(env, insn,
4156 						       dst_reg, src_reg);
4157 		}
4158 	} else {
4159 		/* Pretend the src is a reg with a known value, since we only
4160 		 * need to be able to read from this state.
4161 		 */
4162 		off_reg.type = SCALAR_VALUE;
4163 		__mark_reg_known(&off_reg, insn->imm);
4164 		src_reg = &off_reg;
4165 		if (ptr_reg) /* pointer += K */
4166 			return adjust_ptr_min_max_vals(env, insn,
4167 						       ptr_reg, src_reg);
4168 	}
4169 
4170 	/* Got here implies adding two SCALAR_VALUEs */
4171 	if (WARN_ON_ONCE(ptr_reg)) {
4172 		print_verifier_state(env, state);
4173 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4174 		return -EINVAL;
4175 	}
4176 	if (WARN_ON(!src_reg)) {
4177 		print_verifier_state(env, state);
4178 		verbose(env, "verifier internal error: no src_reg\n");
4179 		return -EINVAL;
4180 	}
4181 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4182 }
4183 
4184 /* check validity of 32-bit and 64-bit arithmetic operations */
4185 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4186 {
4187 	struct bpf_reg_state *regs = cur_regs(env);
4188 	u8 opcode = BPF_OP(insn->code);
4189 	int err;
4190 
4191 	if (opcode == BPF_END || opcode == BPF_NEG) {
4192 		if (opcode == BPF_NEG) {
4193 			if (BPF_SRC(insn->code) != 0 ||
4194 			    insn->src_reg != BPF_REG_0 ||
4195 			    insn->off != 0 || insn->imm != 0) {
4196 				verbose(env, "BPF_NEG uses reserved fields\n");
4197 				return -EINVAL;
4198 			}
4199 		} else {
4200 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4201 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4202 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4203 				verbose(env, "BPF_END uses reserved fields\n");
4204 				return -EINVAL;
4205 			}
4206 		}
4207 
4208 		/* check src operand */
4209 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4210 		if (err)
4211 			return err;
4212 
4213 		if (is_pointer_value(env, insn->dst_reg)) {
4214 			verbose(env, "R%d pointer arithmetic prohibited\n",
4215 				insn->dst_reg);
4216 			return -EACCES;
4217 		}
4218 
4219 		/* check dest operand */
4220 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4221 		if (err)
4222 			return err;
4223 
4224 	} else if (opcode == BPF_MOV) {
4225 
4226 		if (BPF_SRC(insn->code) == BPF_X) {
4227 			if (insn->imm != 0 || insn->off != 0) {
4228 				verbose(env, "BPF_MOV uses reserved fields\n");
4229 				return -EINVAL;
4230 			}
4231 
4232 			/* check src operand */
4233 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4234 			if (err)
4235 				return err;
4236 		} else {
4237 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4238 				verbose(env, "BPF_MOV uses reserved fields\n");
4239 				return -EINVAL;
4240 			}
4241 		}
4242 
4243 		/* check dest operand, mark as required later */
4244 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4245 		if (err)
4246 			return err;
4247 
4248 		if (BPF_SRC(insn->code) == BPF_X) {
4249 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4250 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4251 
4252 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4253 				/* case: R1 = R2
4254 				 * copy register state to dest reg
4255 				 */
4256 				*dst_reg = *src_reg;
4257 				dst_reg->live |= REG_LIVE_WRITTEN;
4258 			} else {
4259 				/* R1 = (u32) R2 */
4260 				if (is_pointer_value(env, insn->src_reg)) {
4261 					verbose(env,
4262 						"R%d partial copy of pointer\n",
4263 						insn->src_reg);
4264 					return -EACCES;
4265 				} else if (src_reg->type == SCALAR_VALUE) {
4266 					*dst_reg = *src_reg;
4267 					dst_reg->live |= REG_LIVE_WRITTEN;
4268 				} else {
4269 					mark_reg_unknown(env, regs,
4270 							 insn->dst_reg);
4271 				}
4272 				coerce_reg_to_size(dst_reg, 4);
4273 			}
4274 		} else {
4275 			/* case: R = imm
4276 			 * remember the value we stored into this reg
4277 			 */
4278 			/* clear any state __mark_reg_known doesn't set */
4279 			mark_reg_unknown(env, regs, insn->dst_reg);
4280 			regs[insn->dst_reg].type = SCALAR_VALUE;
4281 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4282 				__mark_reg_known(regs + insn->dst_reg,
4283 						 insn->imm);
4284 			} else {
4285 				__mark_reg_known(regs + insn->dst_reg,
4286 						 (u32)insn->imm);
4287 			}
4288 		}
4289 
4290 	} else if (opcode > BPF_END) {
4291 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4292 		return -EINVAL;
4293 
4294 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4295 
4296 		if (BPF_SRC(insn->code) == BPF_X) {
4297 			if (insn->imm != 0 || insn->off != 0) {
4298 				verbose(env, "BPF_ALU uses reserved fields\n");
4299 				return -EINVAL;
4300 			}
4301 			/* check src1 operand */
4302 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4303 			if (err)
4304 				return err;
4305 		} else {
4306 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4307 				verbose(env, "BPF_ALU uses reserved fields\n");
4308 				return -EINVAL;
4309 			}
4310 		}
4311 
4312 		/* check src2 operand */
4313 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4314 		if (err)
4315 			return err;
4316 
4317 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4318 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4319 			verbose(env, "div by zero\n");
4320 			return -EINVAL;
4321 		}
4322 
4323 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4324 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4325 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4326 
4327 			if (insn->imm < 0 || insn->imm >= size) {
4328 				verbose(env, "invalid shift %d\n", insn->imm);
4329 				return -EINVAL;
4330 			}
4331 		}
4332 
4333 		/* check dest operand */
4334 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4335 		if (err)
4336 			return err;
4337 
4338 		return adjust_reg_min_max_vals(env, insn);
4339 	}
4340 
4341 	return 0;
4342 }
4343 
4344 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4345 				     struct bpf_reg_state *dst_reg,
4346 				     enum bpf_reg_type type, u16 new_range)
4347 {
4348 	struct bpf_reg_state *reg;
4349 	int i;
4350 
4351 	for (i = 0; i < MAX_BPF_REG; i++) {
4352 		reg = &state->regs[i];
4353 		if (reg->type == type && reg->id == dst_reg->id)
4354 			/* keep the maximum range already checked */
4355 			reg->range = max(reg->range, new_range);
4356 	}
4357 
4358 	bpf_for_each_spilled_reg(i, state, reg) {
4359 		if (!reg)
4360 			continue;
4361 		if (reg->type == type && reg->id == dst_reg->id)
4362 			reg->range = max(reg->range, new_range);
4363 	}
4364 }
4365 
4366 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4367 				   struct bpf_reg_state *dst_reg,
4368 				   enum bpf_reg_type type,
4369 				   bool range_right_open)
4370 {
4371 	u16 new_range;
4372 	int i;
4373 
4374 	if (dst_reg->off < 0 ||
4375 	    (dst_reg->off == 0 && range_right_open))
4376 		/* This doesn't give us any range */
4377 		return;
4378 
4379 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4380 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4381 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4382 		 * than pkt_end, but that's because it's also less than pkt.
4383 		 */
4384 		return;
4385 
4386 	new_range = dst_reg->off;
4387 	if (range_right_open)
4388 		new_range--;
4389 
4390 	/* Examples for register markings:
4391 	 *
4392 	 * pkt_data in dst register:
4393 	 *
4394 	 *   r2 = r3;
4395 	 *   r2 += 8;
4396 	 *   if (r2 > pkt_end) goto <handle exception>
4397 	 *   <access okay>
4398 	 *
4399 	 *   r2 = r3;
4400 	 *   r2 += 8;
4401 	 *   if (r2 < pkt_end) goto <access okay>
4402 	 *   <handle exception>
4403 	 *
4404 	 *   Where:
4405 	 *     r2 == dst_reg, pkt_end == src_reg
4406 	 *     r2=pkt(id=n,off=8,r=0)
4407 	 *     r3=pkt(id=n,off=0,r=0)
4408 	 *
4409 	 * pkt_data in src register:
4410 	 *
4411 	 *   r2 = r3;
4412 	 *   r2 += 8;
4413 	 *   if (pkt_end >= r2) goto <access okay>
4414 	 *   <handle exception>
4415 	 *
4416 	 *   r2 = r3;
4417 	 *   r2 += 8;
4418 	 *   if (pkt_end <= r2) goto <handle exception>
4419 	 *   <access okay>
4420 	 *
4421 	 *   Where:
4422 	 *     pkt_end == dst_reg, r2 == src_reg
4423 	 *     r2=pkt(id=n,off=8,r=0)
4424 	 *     r3=pkt(id=n,off=0,r=0)
4425 	 *
4426 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4427 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4428 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4429 	 * the check.
4430 	 */
4431 
4432 	/* If our ids match, then we must have the same max_value.  And we
4433 	 * don't care about the other reg's fixed offset, since if it's too big
4434 	 * the range won't allow anything.
4435 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4436 	 */
4437 	for (i = 0; i <= vstate->curframe; i++)
4438 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4439 					 new_range);
4440 }
4441 
4442 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4443  * and return:
4444  *  1 - branch will be taken and "goto target" will be executed
4445  *  0 - branch will not be taken and fall-through to next insn
4446  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4447  */
4448 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4449 			   bool is_jmp32)
4450 {
4451 	struct bpf_reg_state reg_lo;
4452 	s64 sval;
4453 
4454 	if (__is_pointer_value(false, reg))
4455 		return -1;
4456 
4457 	if (is_jmp32) {
4458 		reg_lo = *reg;
4459 		reg = &reg_lo;
4460 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4461 		 * could truncate high bits and update umin/umax according to
4462 		 * information of low bits.
4463 		 */
4464 		coerce_reg_to_size(reg, 4);
4465 		/* smin/smax need special handling. For example, after coerce,
4466 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4467 		 * used as operand to JMP32. It is a negative number from s32's
4468 		 * point of view, while it is a positive number when seen as
4469 		 * s64. The smin/smax are kept as s64, therefore, when used with
4470 		 * JMP32, they need to be transformed into s32, then sign
4471 		 * extended back to s64.
4472 		 *
4473 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4474 		 * different sign bit, then min/max relationship doesn't
4475 		 * maintain after casting into s32, for this case, set smin/smax
4476 		 * to safest range.
4477 		 */
4478 		if ((reg->umax_value ^ reg->umin_value) &
4479 		    (1ULL << 31)) {
4480 			reg->smin_value = S32_MIN;
4481 			reg->smax_value = S32_MAX;
4482 		}
4483 		reg->smin_value = (s64)(s32)reg->smin_value;
4484 		reg->smax_value = (s64)(s32)reg->smax_value;
4485 
4486 		val = (u32)val;
4487 		sval = (s64)(s32)val;
4488 	} else {
4489 		sval = (s64)val;
4490 	}
4491 
4492 	switch (opcode) {
4493 	case BPF_JEQ:
4494 		if (tnum_is_const(reg->var_off))
4495 			return !!tnum_equals_const(reg->var_off, val);
4496 		break;
4497 	case BPF_JNE:
4498 		if (tnum_is_const(reg->var_off))
4499 			return !tnum_equals_const(reg->var_off, val);
4500 		break;
4501 	case BPF_JSET:
4502 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4503 			return 1;
4504 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4505 			return 0;
4506 		break;
4507 	case BPF_JGT:
4508 		if (reg->umin_value > val)
4509 			return 1;
4510 		else if (reg->umax_value <= val)
4511 			return 0;
4512 		break;
4513 	case BPF_JSGT:
4514 		if (reg->smin_value > sval)
4515 			return 1;
4516 		else if (reg->smax_value < sval)
4517 			return 0;
4518 		break;
4519 	case BPF_JLT:
4520 		if (reg->umax_value < val)
4521 			return 1;
4522 		else if (reg->umin_value >= val)
4523 			return 0;
4524 		break;
4525 	case BPF_JSLT:
4526 		if (reg->smax_value < sval)
4527 			return 1;
4528 		else if (reg->smin_value >= sval)
4529 			return 0;
4530 		break;
4531 	case BPF_JGE:
4532 		if (reg->umin_value >= val)
4533 			return 1;
4534 		else if (reg->umax_value < val)
4535 			return 0;
4536 		break;
4537 	case BPF_JSGE:
4538 		if (reg->smin_value >= sval)
4539 			return 1;
4540 		else if (reg->smax_value < sval)
4541 			return 0;
4542 		break;
4543 	case BPF_JLE:
4544 		if (reg->umax_value <= val)
4545 			return 1;
4546 		else if (reg->umin_value > val)
4547 			return 0;
4548 		break;
4549 	case BPF_JSLE:
4550 		if (reg->smax_value <= sval)
4551 			return 1;
4552 		else if (reg->smin_value > sval)
4553 			return 0;
4554 		break;
4555 	}
4556 
4557 	return -1;
4558 }
4559 
4560 /* Generate min value of the high 32-bit from TNUM info. */
4561 static u64 gen_hi_min(struct tnum var)
4562 {
4563 	return var.value & ~0xffffffffULL;
4564 }
4565 
4566 /* Generate max value of the high 32-bit from TNUM info. */
4567 static u64 gen_hi_max(struct tnum var)
4568 {
4569 	return (var.value | var.mask) & ~0xffffffffULL;
4570 }
4571 
4572 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4573  * are with the same signedness.
4574  */
4575 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4576 {
4577 	return ((s32)sval >= 0 &&
4578 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4579 	       ((s32)sval < 0 &&
4580 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4581 }
4582 
4583 /* Adjusts the register min/max values in the case that the dst_reg is the
4584  * variable register that we are working on, and src_reg is a constant or we're
4585  * simply doing a BPF_K check.
4586  * In JEQ/JNE cases we also adjust the var_off values.
4587  */
4588 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4589 			    struct bpf_reg_state *false_reg, u64 val,
4590 			    u8 opcode, bool is_jmp32)
4591 {
4592 	s64 sval;
4593 
4594 	/* If the dst_reg is a pointer, we can't learn anything about its
4595 	 * variable offset from the compare (unless src_reg were a pointer into
4596 	 * the same object, but we don't bother with that.
4597 	 * Since false_reg and true_reg have the same type by construction, we
4598 	 * only need to check one of them for pointerness.
4599 	 */
4600 	if (__is_pointer_value(false, false_reg))
4601 		return;
4602 
4603 	val = is_jmp32 ? (u32)val : val;
4604 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4605 
4606 	switch (opcode) {
4607 	case BPF_JEQ:
4608 	case BPF_JNE:
4609 	{
4610 		struct bpf_reg_state *reg =
4611 			opcode == BPF_JEQ ? true_reg : false_reg;
4612 
4613 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4614 		 * if it is true we know the value for sure. Likewise for
4615 		 * BPF_JNE.
4616 		 */
4617 		if (is_jmp32) {
4618 			u64 old_v = reg->var_off.value;
4619 			u64 hi_mask = ~0xffffffffULL;
4620 
4621 			reg->var_off.value = (old_v & hi_mask) | val;
4622 			reg->var_off.mask &= hi_mask;
4623 		} else {
4624 			__mark_reg_known(reg, val);
4625 		}
4626 		break;
4627 	}
4628 	case BPF_JSET:
4629 		false_reg->var_off = tnum_and(false_reg->var_off,
4630 					      tnum_const(~val));
4631 		if (is_power_of_2(val))
4632 			true_reg->var_off = tnum_or(true_reg->var_off,
4633 						    tnum_const(val));
4634 		break;
4635 	case BPF_JGE:
4636 	case BPF_JGT:
4637 	{
4638 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4639 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4640 
4641 		if (is_jmp32) {
4642 			false_umax += gen_hi_max(false_reg->var_off);
4643 			true_umin += gen_hi_min(true_reg->var_off);
4644 		}
4645 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4646 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4647 		break;
4648 	}
4649 	case BPF_JSGE:
4650 	case BPF_JSGT:
4651 	{
4652 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4653 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4654 
4655 		/* If the full s64 was not sign-extended from s32 then don't
4656 		 * deduct further info.
4657 		 */
4658 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4659 			break;
4660 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4661 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4662 		break;
4663 	}
4664 	case BPF_JLE:
4665 	case BPF_JLT:
4666 	{
4667 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4668 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4669 
4670 		if (is_jmp32) {
4671 			false_umin += gen_hi_min(false_reg->var_off);
4672 			true_umax += gen_hi_max(true_reg->var_off);
4673 		}
4674 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4675 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4676 		break;
4677 	}
4678 	case BPF_JSLE:
4679 	case BPF_JSLT:
4680 	{
4681 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4682 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4683 
4684 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4685 			break;
4686 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4687 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4688 		break;
4689 	}
4690 	default:
4691 		break;
4692 	}
4693 
4694 	__reg_deduce_bounds(false_reg);
4695 	__reg_deduce_bounds(true_reg);
4696 	/* We might have learned some bits from the bounds. */
4697 	__reg_bound_offset(false_reg);
4698 	__reg_bound_offset(true_reg);
4699 	/* Intersecting with the old var_off might have improved our bounds
4700 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4701 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4702 	 */
4703 	__update_reg_bounds(false_reg);
4704 	__update_reg_bounds(true_reg);
4705 }
4706 
4707 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4708  * the variable reg.
4709  */
4710 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4711 				struct bpf_reg_state *false_reg, u64 val,
4712 				u8 opcode, bool is_jmp32)
4713 {
4714 	s64 sval;
4715 
4716 	if (__is_pointer_value(false, false_reg))
4717 		return;
4718 
4719 	val = is_jmp32 ? (u32)val : val;
4720 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4721 
4722 	switch (opcode) {
4723 	case BPF_JEQ:
4724 	case BPF_JNE:
4725 	{
4726 		struct bpf_reg_state *reg =
4727 			opcode == BPF_JEQ ? true_reg : false_reg;
4728 
4729 		if (is_jmp32) {
4730 			u64 old_v = reg->var_off.value;
4731 			u64 hi_mask = ~0xffffffffULL;
4732 
4733 			reg->var_off.value = (old_v & hi_mask) | val;
4734 			reg->var_off.mask &= hi_mask;
4735 		} else {
4736 			__mark_reg_known(reg, val);
4737 		}
4738 		break;
4739 	}
4740 	case BPF_JSET:
4741 		false_reg->var_off = tnum_and(false_reg->var_off,
4742 					      tnum_const(~val));
4743 		if (is_power_of_2(val))
4744 			true_reg->var_off = tnum_or(true_reg->var_off,
4745 						    tnum_const(val));
4746 		break;
4747 	case BPF_JGE:
4748 	case BPF_JGT:
4749 	{
4750 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4751 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4752 
4753 		if (is_jmp32) {
4754 			false_umin += gen_hi_min(false_reg->var_off);
4755 			true_umax += gen_hi_max(true_reg->var_off);
4756 		}
4757 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4758 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4759 		break;
4760 	}
4761 	case BPF_JSGE:
4762 	case BPF_JSGT:
4763 	{
4764 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4765 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4766 
4767 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4768 			break;
4769 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4770 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4771 		break;
4772 	}
4773 	case BPF_JLE:
4774 	case BPF_JLT:
4775 	{
4776 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4777 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4778 
4779 		if (is_jmp32) {
4780 			false_umax += gen_hi_max(false_reg->var_off);
4781 			true_umin += gen_hi_min(true_reg->var_off);
4782 		}
4783 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4784 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4785 		break;
4786 	}
4787 	case BPF_JSLE:
4788 	case BPF_JSLT:
4789 	{
4790 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4791 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4792 
4793 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4794 			break;
4795 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4796 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4797 		break;
4798 	}
4799 	default:
4800 		break;
4801 	}
4802 
4803 	__reg_deduce_bounds(false_reg);
4804 	__reg_deduce_bounds(true_reg);
4805 	/* We might have learned some bits from the bounds. */
4806 	__reg_bound_offset(false_reg);
4807 	__reg_bound_offset(true_reg);
4808 	/* Intersecting with the old var_off might have improved our bounds
4809 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4810 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4811 	 */
4812 	__update_reg_bounds(false_reg);
4813 	__update_reg_bounds(true_reg);
4814 }
4815 
4816 /* Regs are known to be equal, so intersect their min/max/var_off */
4817 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4818 				  struct bpf_reg_state *dst_reg)
4819 {
4820 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4821 							dst_reg->umin_value);
4822 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4823 							dst_reg->umax_value);
4824 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4825 							dst_reg->smin_value);
4826 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4827 							dst_reg->smax_value);
4828 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4829 							     dst_reg->var_off);
4830 	/* We might have learned new bounds from the var_off. */
4831 	__update_reg_bounds(src_reg);
4832 	__update_reg_bounds(dst_reg);
4833 	/* We might have learned something about the sign bit. */
4834 	__reg_deduce_bounds(src_reg);
4835 	__reg_deduce_bounds(dst_reg);
4836 	/* We might have learned some bits from the bounds. */
4837 	__reg_bound_offset(src_reg);
4838 	__reg_bound_offset(dst_reg);
4839 	/* Intersecting with the old var_off might have improved our bounds
4840 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4841 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4842 	 */
4843 	__update_reg_bounds(src_reg);
4844 	__update_reg_bounds(dst_reg);
4845 }
4846 
4847 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4848 				struct bpf_reg_state *true_dst,
4849 				struct bpf_reg_state *false_src,
4850 				struct bpf_reg_state *false_dst,
4851 				u8 opcode)
4852 {
4853 	switch (opcode) {
4854 	case BPF_JEQ:
4855 		__reg_combine_min_max(true_src, true_dst);
4856 		break;
4857 	case BPF_JNE:
4858 		__reg_combine_min_max(false_src, false_dst);
4859 		break;
4860 	}
4861 }
4862 
4863 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4864 				 struct bpf_reg_state *reg, u32 id,
4865 				 bool is_null)
4866 {
4867 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4868 		/* Old offset (both fixed and variable parts) should
4869 		 * have been known-zero, because we don't allow pointer
4870 		 * arithmetic on pointers that might be NULL.
4871 		 */
4872 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4873 				 !tnum_equals_const(reg->var_off, 0) ||
4874 				 reg->off)) {
4875 			__mark_reg_known_zero(reg);
4876 			reg->off = 0;
4877 		}
4878 		if (is_null) {
4879 			reg->type = SCALAR_VALUE;
4880 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4881 			if (reg->map_ptr->inner_map_meta) {
4882 				reg->type = CONST_PTR_TO_MAP;
4883 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4884 			} else {
4885 				reg->type = PTR_TO_MAP_VALUE;
4886 			}
4887 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4888 			reg->type = PTR_TO_SOCKET;
4889 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4890 			reg->type = PTR_TO_SOCK_COMMON;
4891 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4892 			reg->type = PTR_TO_TCP_SOCK;
4893 		}
4894 		if (is_null) {
4895 			/* We don't need id and ref_obj_id from this point
4896 			 * onwards anymore, thus we should better reset it,
4897 			 * so that state pruning has chances to take effect.
4898 			 */
4899 			reg->id = 0;
4900 			reg->ref_obj_id = 0;
4901 		} else if (!reg_may_point_to_spin_lock(reg)) {
4902 			/* For not-NULL ptr, reg->ref_obj_id will be reset
4903 			 * in release_reg_references().
4904 			 *
4905 			 * reg->id is still used by spin_lock ptr. Other
4906 			 * than spin_lock ptr type, reg->id can be reset.
4907 			 */
4908 			reg->id = 0;
4909 		}
4910 	}
4911 }
4912 
4913 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
4914 				    bool is_null)
4915 {
4916 	struct bpf_reg_state *reg;
4917 	int i;
4918 
4919 	for (i = 0; i < MAX_BPF_REG; i++)
4920 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
4921 
4922 	bpf_for_each_spilled_reg(i, state, reg) {
4923 		if (!reg)
4924 			continue;
4925 		mark_ptr_or_null_reg(state, reg, id, is_null);
4926 	}
4927 }
4928 
4929 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4930  * be folded together at some point.
4931  */
4932 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4933 				  bool is_null)
4934 {
4935 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4936 	struct bpf_reg_state *regs = state->regs;
4937 	u32 ref_obj_id = regs[regno].ref_obj_id;
4938 	u32 id = regs[regno].id;
4939 	int i;
4940 
4941 	if (ref_obj_id && ref_obj_id == id && is_null)
4942 		/* regs[regno] is in the " == NULL" branch.
4943 		 * No one could have freed the reference state before
4944 		 * doing the NULL check.
4945 		 */
4946 		WARN_ON_ONCE(release_reference_state(state, id));
4947 
4948 	for (i = 0; i <= vstate->curframe; i++)
4949 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
4950 }
4951 
4952 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4953 				   struct bpf_reg_state *dst_reg,
4954 				   struct bpf_reg_state *src_reg,
4955 				   struct bpf_verifier_state *this_branch,
4956 				   struct bpf_verifier_state *other_branch)
4957 {
4958 	if (BPF_SRC(insn->code) != BPF_X)
4959 		return false;
4960 
4961 	/* Pointers are always 64-bit. */
4962 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4963 		return false;
4964 
4965 	switch (BPF_OP(insn->code)) {
4966 	case BPF_JGT:
4967 		if ((dst_reg->type == PTR_TO_PACKET &&
4968 		     src_reg->type == PTR_TO_PACKET_END) ||
4969 		    (dst_reg->type == PTR_TO_PACKET_META &&
4970 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4971 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4972 			find_good_pkt_pointers(this_branch, dst_reg,
4973 					       dst_reg->type, false);
4974 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4975 			    src_reg->type == PTR_TO_PACKET) ||
4976 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4977 			    src_reg->type == PTR_TO_PACKET_META)) {
4978 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4979 			find_good_pkt_pointers(other_branch, src_reg,
4980 					       src_reg->type, true);
4981 		} else {
4982 			return false;
4983 		}
4984 		break;
4985 	case BPF_JLT:
4986 		if ((dst_reg->type == PTR_TO_PACKET &&
4987 		     src_reg->type == PTR_TO_PACKET_END) ||
4988 		    (dst_reg->type == PTR_TO_PACKET_META &&
4989 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4990 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4991 			find_good_pkt_pointers(other_branch, dst_reg,
4992 					       dst_reg->type, true);
4993 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4994 			    src_reg->type == PTR_TO_PACKET) ||
4995 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4996 			    src_reg->type == PTR_TO_PACKET_META)) {
4997 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4998 			find_good_pkt_pointers(this_branch, src_reg,
4999 					       src_reg->type, false);
5000 		} else {
5001 			return false;
5002 		}
5003 		break;
5004 	case BPF_JGE:
5005 		if ((dst_reg->type == PTR_TO_PACKET &&
5006 		     src_reg->type == PTR_TO_PACKET_END) ||
5007 		    (dst_reg->type == PTR_TO_PACKET_META &&
5008 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5009 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5010 			find_good_pkt_pointers(this_branch, dst_reg,
5011 					       dst_reg->type, true);
5012 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5013 			    src_reg->type == PTR_TO_PACKET) ||
5014 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5015 			    src_reg->type == PTR_TO_PACKET_META)) {
5016 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5017 			find_good_pkt_pointers(other_branch, src_reg,
5018 					       src_reg->type, false);
5019 		} else {
5020 			return false;
5021 		}
5022 		break;
5023 	case BPF_JLE:
5024 		if ((dst_reg->type == PTR_TO_PACKET &&
5025 		     src_reg->type == PTR_TO_PACKET_END) ||
5026 		    (dst_reg->type == PTR_TO_PACKET_META &&
5027 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5028 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5029 			find_good_pkt_pointers(other_branch, dst_reg,
5030 					       dst_reg->type, false);
5031 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5032 			    src_reg->type == PTR_TO_PACKET) ||
5033 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5034 			    src_reg->type == PTR_TO_PACKET_META)) {
5035 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5036 			find_good_pkt_pointers(this_branch, src_reg,
5037 					       src_reg->type, true);
5038 		} else {
5039 			return false;
5040 		}
5041 		break;
5042 	default:
5043 		return false;
5044 	}
5045 
5046 	return true;
5047 }
5048 
5049 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5050 			     struct bpf_insn *insn, int *insn_idx)
5051 {
5052 	struct bpf_verifier_state *this_branch = env->cur_state;
5053 	struct bpf_verifier_state *other_branch;
5054 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5055 	struct bpf_reg_state *dst_reg, *other_branch_regs;
5056 	u8 opcode = BPF_OP(insn->code);
5057 	bool is_jmp32;
5058 	int err;
5059 
5060 	/* Only conditional jumps are expected to reach here. */
5061 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5062 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5063 		return -EINVAL;
5064 	}
5065 
5066 	if (BPF_SRC(insn->code) == BPF_X) {
5067 		if (insn->imm != 0) {
5068 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5069 			return -EINVAL;
5070 		}
5071 
5072 		/* check src1 operand */
5073 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5074 		if (err)
5075 			return err;
5076 
5077 		if (is_pointer_value(env, insn->src_reg)) {
5078 			verbose(env, "R%d pointer comparison prohibited\n",
5079 				insn->src_reg);
5080 			return -EACCES;
5081 		}
5082 	} else {
5083 		if (insn->src_reg != BPF_REG_0) {
5084 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5085 			return -EINVAL;
5086 		}
5087 	}
5088 
5089 	/* check src2 operand */
5090 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5091 	if (err)
5092 		return err;
5093 
5094 	dst_reg = &regs[insn->dst_reg];
5095 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5096 
5097 	if (BPF_SRC(insn->code) == BPF_K) {
5098 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5099 					   is_jmp32);
5100 
5101 		if (pred == 1) {
5102 			 /* only follow the goto, ignore fall-through */
5103 			*insn_idx += insn->off;
5104 			return 0;
5105 		} else if (pred == 0) {
5106 			/* only follow fall-through branch, since
5107 			 * that's where the program will go
5108 			 */
5109 			return 0;
5110 		}
5111 	}
5112 
5113 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5114 				  false);
5115 	if (!other_branch)
5116 		return -EFAULT;
5117 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5118 
5119 	/* detect if we are comparing against a constant value so we can adjust
5120 	 * our min/max values for our dst register.
5121 	 * this is only legit if both are scalars (or pointers to the same
5122 	 * object, I suppose, but we don't support that right now), because
5123 	 * otherwise the different base pointers mean the offsets aren't
5124 	 * comparable.
5125 	 */
5126 	if (BPF_SRC(insn->code) == BPF_X) {
5127 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5128 		struct bpf_reg_state lo_reg0 = *dst_reg;
5129 		struct bpf_reg_state lo_reg1 = *src_reg;
5130 		struct bpf_reg_state *src_lo, *dst_lo;
5131 
5132 		dst_lo = &lo_reg0;
5133 		src_lo = &lo_reg1;
5134 		coerce_reg_to_size(dst_lo, 4);
5135 		coerce_reg_to_size(src_lo, 4);
5136 
5137 		if (dst_reg->type == SCALAR_VALUE &&
5138 		    src_reg->type == SCALAR_VALUE) {
5139 			if (tnum_is_const(src_reg->var_off) ||
5140 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5141 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5142 						dst_reg,
5143 						is_jmp32
5144 						? src_lo->var_off.value
5145 						: src_reg->var_off.value,
5146 						opcode, is_jmp32);
5147 			else if (tnum_is_const(dst_reg->var_off) ||
5148 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5149 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5150 						    src_reg,
5151 						    is_jmp32
5152 						    ? dst_lo->var_off.value
5153 						    : dst_reg->var_off.value,
5154 						    opcode, is_jmp32);
5155 			else if (!is_jmp32 &&
5156 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5157 				/* Comparing for equality, we can combine knowledge */
5158 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5159 						    &other_branch_regs[insn->dst_reg],
5160 						    src_reg, dst_reg, opcode);
5161 		}
5162 	} else if (dst_reg->type == SCALAR_VALUE) {
5163 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5164 					dst_reg, insn->imm, opcode, is_jmp32);
5165 	}
5166 
5167 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5168 	 * NOTE: these optimizations below are related with pointer comparison
5169 	 *       which will never be JMP32.
5170 	 */
5171 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5172 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5173 	    reg_type_may_be_null(dst_reg->type)) {
5174 		/* Mark all identical registers in each branch as either
5175 		 * safe or unknown depending R == 0 or R != 0 conditional.
5176 		 */
5177 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5178 				      opcode == BPF_JNE);
5179 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5180 				      opcode == BPF_JEQ);
5181 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5182 					   this_branch, other_branch) &&
5183 		   is_pointer_value(env, insn->dst_reg)) {
5184 		verbose(env, "R%d pointer comparison prohibited\n",
5185 			insn->dst_reg);
5186 		return -EACCES;
5187 	}
5188 	if (env->log.level & BPF_LOG_LEVEL)
5189 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5190 	return 0;
5191 }
5192 
5193 /* verify BPF_LD_IMM64 instruction */
5194 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5195 {
5196 	struct bpf_insn_aux_data *aux = cur_aux(env);
5197 	struct bpf_reg_state *regs = cur_regs(env);
5198 	struct bpf_map *map;
5199 	int err;
5200 
5201 	if (BPF_SIZE(insn->code) != BPF_DW) {
5202 		verbose(env, "invalid BPF_LD_IMM insn\n");
5203 		return -EINVAL;
5204 	}
5205 	if (insn->off != 0) {
5206 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5207 		return -EINVAL;
5208 	}
5209 
5210 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5211 	if (err)
5212 		return err;
5213 
5214 	if (insn->src_reg == 0) {
5215 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5216 
5217 		regs[insn->dst_reg].type = SCALAR_VALUE;
5218 		__mark_reg_known(&regs[insn->dst_reg], imm);
5219 		return 0;
5220 	}
5221 
5222 	map = env->used_maps[aux->map_index];
5223 	mark_reg_known_zero(env, regs, insn->dst_reg);
5224 	regs[insn->dst_reg].map_ptr = map;
5225 
5226 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5227 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5228 		regs[insn->dst_reg].off = aux->map_off;
5229 		if (map_value_has_spin_lock(map))
5230 			regs[insn->dst_reg].id = ++env->id_gen;
5231 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5232 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5233 	} else {
5234 		verbose(env, "bpf verifier is misconfigured\n");
5235 		return -EINVAL;
5236 	}
5237 
5238 	return 0;
5239 }
5240 
5241 static bool may_access_skb(enum bpf_prog_type type)
5242 {
5243 	switch (type) {
5244 	case BPF_PROG_TYPE_SOCKET_FILTER:
5245 	case BPF_PROG_TYPE_SCHED_CLS:
5246 	case BPF_PROG_TYPE_SCHED_ACT:
5247 		return true;
5248 	default:
5249 		return false;
5250 	}
5251 }
5252 
5253 /* verify safety of LD_ABS|LD_IND instructions:
5254  * - they can only appear in the programs where ctx == skb
5255  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5256  *   preserve R6-R9, and store return value into R0
5257  *
5258  * Implicit input:
5259  *   ctx == skb == R6 == CTX
5260  *
5261  * Explicit input:
5262  *   SRC == any register
5263  *   IMM == 32-bit immediate
5264  *
5265  * Output:
5266  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5267  */
5268 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5269 {
5270 	struct bpf_reg_state *regs = cur_regs(env);
5271 	u8 mode = BPF_MODE(insn->code);
5272 	int i, err;
5273 
5274 	if (!may_access_skb(env->prog->type)) {
5275 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5276 		return -EINVAL;
5277 	}
5278 
5279 	if (!env->ops->gen_ld_abs) {
5280 		verbose(env, "bpf verifier is misconfigured\n");
5281 		return -EINVAL;
5282 	}
5283 
5284 	if (env->subprog_cnt > 1) {
5285 		/* when program has LD_ABS insn JITs and interpreter assume
5286 		 * that r1 == ctx == skb which is not the case for callees
5287 		 * that can have arbitrary arguments. It's problematic
5288 		 * for main prog as well since JITs would need to analyze
5289 		 * all functions in order to make proper register save/restore
5290 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5291 		 */
5292 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5293 		return -EINVAL;
5294 	}
5295 
5296 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5297 	    BPF_SIZE(insn->code) == BPF_DW ||
5298 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5299 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5300 		return -EINVAL;
5301 	}
5302 
5303 	/* check whether implicit source operand (register R6) is readable */
5304 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5305 	if (err)
5306 		return err;
5307 
5308 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5309 	 * gen_ld_abs() may terminate the program at runtime, leading to
5310 	 * reference leak.
5311 	 */
5312 	err = check_reference_leak(env);
5313 	if (err) {
5314 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5315 		return err;
5316 	}
5317 
5318 	if (env->cur_state->active_spin_lock) {
5319 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5320 		return -EINVAL;
5321 	}
5322 
5323 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5324 		verbose(env,
5325 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5326 		return -EINVAL;
5327 	}
5328 
5329 	if (mode == BPF_IND) {
5330 		/* check explicit source operand */
5331 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5332 		if (err)
5333 			return err;
5334 	}
5335 
5336 	/* reset caller saved regs to unreadable */
5337 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5338 		mark_reg_not_init(env, regs, caller_saved[i]);
5339 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5340 	}
5341 
5342 	/* mark destination R0 register as readable, since it contains
5343 	 * the value fetched from the packet.
5344 	 * Already marked as written above.
5345 	 */
5346 	mark_reg_unknown(env, regs, BPF_REG_0);
5347 	return 0;
5348 }
5349 
5350 static int check_return_code(struct bpf_verifier_env *env)
5351 {
5352 	struct bpf_reg_state *reg;
5353 	struct tnum range = tnum_range(0, 1);
5354 
5355 	switch (env->prog->type) {
5356 	case BPF_PROG_TYPE_CGROUP_SKB:
5357 	case BPF_PROG_TYPE_CGROUP_SOCK:
5358 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5359 	case BPF_PROG_TYPE_SOCK_OPS:
5360 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5361 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
5362 		break;
5363 	default:
5364 		return 0;
5365 	}
5366 
5367 	reg = cur_regs(env) + BPF_REG_0;
5368 	if (reg->type != SCALAR_VALUE) {
5369 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5370 			reg_type_str[reg->type]);
5371 		return -EINVAL;
5372 	}
5373 
5374 	if (!tnum_in(range, reg->var_off)) {
5375 		verbose(env, "At program exit the register R0 ");
5376 		if (!tnum_is_unknown(reg->var_off)) {
5377 			char tn_buf[48];
5378 
5379 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5380 			verbose(env, "has value %s", tn_buf);
5381 		} else {
5382 			verbose(env, "has unknown scalar value");
5383 		}
5384 		verbose(env, " should have been 0 or 1\n");
5385 		return -EINVAL;
5386 	}
5387 	return 0;
5388 }
5389 
5390 /* non-recursive DFS pseudo code
5391  * 1  procedure DFS-iterative(G,v):
5392  * 2      label v as discovered
5393  * 3      let S be a stack
5394  * 4      S.push(v)
5395  * 5      while S is not empty
5396  * 6            t <- S.pop()
5397  * 7            if t is what we're looking for:
5398  * 8                return t
5399  * 9            for all edges e in G.adjacentEdges(t) do
5400  * 10               if edge e is already labelled
5401  * 11                   continue with the next edge
5402  * 12               w <- G.adjacentVertex(t,e)
5403  * 13               if vertex w is not discovered and not explored
5404  * 14                   label e as tree-edge
5405  * 15                   label w as discovered
5406  * 16                   S.push(w)
5407  * 17                   continue at 5
5408  * 18               else if vertex w is discovered
5409  * 19                   label e as back-edge
5410  * 20               else
5411  * 21                   // vertex w is explored
5412  * 22                   label e as forward- or cross-edge
5413  * 23           label t as explored
5414  * 24           S.pop()
5415  *
5416  * convention:
5417  * 0x10 - discovered
5418  * 0x11 - discovered and fall-through edge labelled
5419  * 0x12 - discovered and fall-through and branch edges labelled
5420  * 0x20 - explored
5421  */
5422 
5423 enum {
5424 	DISCOVERED = 0x10,
5425 	EXPLORED = 0x20,
5426 	FALLTHROUGH = 1,
5427 	BRANCH = 2,
5428 };
5429 
5430 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5431 
5432 /* t, w, e - match pseudo-code above:
5433  * t - index of current instruction
5434  * w - next instruction
5435  * e - edge
5436  */
5437 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5438 {
5439 	int *insn_stack = env->cfg.insn_stack;
5440 	int *insn_state = env->cfg.insn_state;
5441 
5442 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5443 		return 0;
5444 
5445 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5446 		return 0;
5447 
5448 	if (w < 0 || w >= env->prog->len) {
5449 		verbose_linfo(env, t, "%d: ", t);
5450 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5451 		return -EINVAL;
5452 	}
5453 
5454 	if (e == BRANCH)
5455 		/* mark branch target for state pruning */
5456 		env->explored_states[w] = STATE_LIST_MARK;
5457 
5458 	if (insn_state[w] == 0) {
5459 		/* tree-edge */
5460 		insn_state[t] = DISCOVERED | e;
5461 		insn_state[w] = DISCOVERED;
5462 		if (env->cfg.cur_stack >= env->prog->len)
5463 			return -E2BIG;
5464 		insn_stack[env->cfg.cur_stack++] = w;
5465 		return 1;
5466 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5467 		verbose_linfo(env, t, "%d: ", t);
5468 		verbose_linfo(env, w, "%d: ", w);
5469 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5470 		return -EINVAL;
5471 	} else if (insn_state[w] == EXPLORED) {
5472 		/* forward- or cross-edge */
5473 		insn_state[t] = DISCOVERED | e;
5474 	} else {
5475 		verbose(env, "insn state internal bug\n");
5476 		return -EFAULT;
5477 	}
5478 	return 0;
5479 }
5480 
5481 /* non-recursive depth-first-search to detect loops in BPF program
5482  * loop == back-edge in directed graph
5483  */
5484 static int check_cfg(struct bpf_verifier_env *env)
5485 {
5486 	struct bpf_insn *insns = env->prog->insnsi;
5487 	int insn_cnt = env->prog->len;
5488 	int *insn_stack, *insn_state;
5489 	int ret = 0;
5490 	int i, t;
5491 
5492 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5493 	if (!insn_state)
5494 		return -ENOMEM;
5495 
5496 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5497 	if (!insn_stack) {
5498 		kvfree(insn_state);
5499 		return -ENOMEM;
5500 	}
5501 
5502 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5503 	insn_stack[0] = 0; /* 0 is the first instruction */
5504 	env->cfg.cur_stack = 1;
5505 
5506 peek_stack:
5507 	if (env->cfg.cur_stack == 0)
5508 		goto check_state;
5509 	t = insn_stack[env->cfg.cur_stack - 1];
5510 
5511 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5512 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5513 		u8 opcode = BPF_OP(insns[t].code);
5514 
5515 		if (opcode == BPF_EXIT) {
5516 			goto mark_explored;
5517 		} else if (opcode == BPF_CALL) {
5518 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5519 			if (ret == 1)
5520 				goto peek_stack;
5521 			else if (ret < 0)
5522 				goto err_free;
5523 			if (t + 1 < insn_cnt)
5524 				env->explored_states[t + 1] = STATE_LIST_MARK;
5525 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5526 				env->explored_states[t] = STATE_LIST_MARK;
5527 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5528 				if (ret == 1)
5529 					goto peek_stack;
5530 				else if (ret < 0)
5531 					goto err_free;
5532 			}
5533 		} else if (opcode == BPF_JA) {
5534 			if (BPF_SRC(insns[t].code) != BPF_K) {
5535 				ret = -EINVAL;
5536 				goto err_free;
5537 			}
5538 			/* unconditional jump with single edge */
5539 			ret = push_insn(t, t + insns[t].off + 1,
5540 					FALLTHROUGH, env);
5541 			if (ret == 1)
5542 				goto peek_stack;
5543 			else if (ret < 0)
5544 				goto err_free;
5545 			/* tell verifier to check for equivalent states
5546 			 * after every call and jump
5547 			 */
5548 			if (t + 1 < insn_cnt)
5549 				env->explored_states[t + 1] = STATE_LIST_MARK;
5550 		} else {
5551 			/* conditional jump with two edges */
5552 			env->explored_states[t] = STATE_LIST_MARK;
5553 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5554 			if (ret == 1)
5555 				goto peek_stack;
5556 			else if (ret < 0)
5557 				goto err_free;
5558 
5559 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5560 			if (ret == 1)
5561 				goto peek_stack;
5562 			else if (ret < 0)
5563 				goto err_free;
5564 		}
5565 	} else {
5566 		/* all other non-branch instructions with single
5567 		 * fall-through edge
5568 		 */
5569 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5570 		if (ret == 1)
5571 			goto peek_stack;
5572 		else if (ret < 0)
5573 			goto err_free;
5574 	}
5575 
5576 mark_explored:
5577 	insn_state[t] = EXPLORED;
5578 	if (env->cfg.cur_stack-- <= 0) {
5579 		verbose(env, "pop stack internal bug\n");
5580 		ret = -EFAULT;
5581 		goto err_free;
5582 	}
5583 	goto peek_stack;
5584 
5585 check_state:
5586 	for (i = 0; i < insn_cnt; i++) {
5587 		if (insn_state[i] != EXPLORED) {
5588 			verbose(env, "unreachable insn %d\n", i);
5589 			ret = -EINVAL;
5590 			goto err_free;
5591 		}
5592 	}
5593 	ret = 0; /* cfg looks good */
5594 
5595 err_free:
5596 	kvfree(insn_state);
5597 	kvfree(insn_stack);
5598 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
5599 	return ret;
5600 }
5601 
5602 /* The minimum supported BTF func info size */
5603 #define MIN_BPF_FUNCINFO_SIZE	8
5604 #define MAX_FUNCINFO_REC_SIZE	252
5605 
5606 static int check_btf_func(struct bpf_verifier_env *env,
5607 			  const union bpf_attr *attr,
5608 			  union bpf_attr __user *uattr)
5609 {
5610 	u32 i, nfuncs, urec_size, min_size;
5611 	u32 krec_size = sizeof(struct bpf_func_info);
5612 	struct bpf_func_info *krecord;
5613 	const struct btf_type *type;
5614 	struct bpf_prog *prog;
5615 	const struct btf *btf;
5616 	void __user *urecord;
5617 	u32 prev_offset = 0;
5618 	int ret = 0;
5619 
5620 	nfuncs = attr->func_info_cnt;
5621 	if (!nfuncs)
5622 		return 0;
5623 
5624 	if (nfuncs != env->subprog_cnt) {
5625 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5626 		return -EINVAL;
5627 	}
5628 
5629 	urec_size = attr->func_info_rec_size;
5630 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5631 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5632 	    urec_size % sizeof(u32)) {
5633 		verbose(env, "invalid func info rec size %u\n", urec_size);
5634 		return -EINVAL;
5635 	}
5636 
5637 	prog = env->prog;
5638 	btf = prog->aux->btf;
5639 
5640 	urecord = u64_to_user_ptr(attr->func_info);
5641 	min_size = min_t(u32, krec_size, urec_size);
5642 
5643 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5644 	if (!krecord)
5645 		return -ENOMEM;
5646 
5647 	for (i = 0; i < nfuncs; i++) {
5648 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5649 		if (ret) {
5650 			if (ret == -E2BIG) {
5651 				verbose(env, "nonzero tailing record in func info");
5652 				/* set the size kernel expects so loader can zero
5653 				 * out the rest of the record.
5654 				 */
5655 				if (put_user(min_size, &uattr->func_info_rec_size))
5656 					ret = -EFAULT;
5657 			}
5658 			goto err_free;
5659 		}
5660 
5661 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5662 			ret = -EFAULT;
5663 			goto err_free;
5664 		}
5665 
5666 		/* check insn_off */
5667 		if (i == 0) {
5668 			if (krecord[i].insn_off) {
5669 				verbose(env,
5670 					"nonzero insn_off %u for the first func info record",
5671 					krecord[i].insn_off);
5672 				ret = -EINVAL;
5673 				goto err_free;
5674 			}
5675 		} else if (krecord[i].insn_off <= prev_offset) {
5676 			verbose(env,
5677 				"same or smaller insn offset (%u) than previous func info record (%u)",
5678 				krecord[i].insn_off, prev_offset);
5679 			ret = -EINVAL;
5680 			goto err_free;
5681 		}
5682 
5683 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5684 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5685 			ret = -EINVAL;
5686 			goto err_free;
5687 		}
5688 
5689 		/* check type_id */
5690 		type = btf_type_by_id(btf, krecord[i].type_id);
5691 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5692 			verbose(env, "invalid type id %d in func info",
5693 				krecord[i].type_id);
5694 			ret = -EINVAL;
5695 			goto err_free;
5696 		}
5697 
5698 		prev_offset = krecord[i].insn_off;
5699 		urecord += urec_size;
5700 	}
5701 
5702 	prog->aux->func_info = krecord;
5703 	prog->aux->func_info_cnt = nfuncs;
5704 	return 0;
5705 
5706 err_free:
5707 	kvfree(krecord);
5708 	return ret;
5709 }
5710 
5711 static void adjust_btf_func(struct bpf_verifier_env *env)
5712 {
5713 	int i;
5714 
5715 	if (!env->prog->aux->func_info)
5716 		return;
5717 
5718 	for (i = 0; i < env->subprog_cnt; i++)
5719 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5720 }
5721 
5722 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5723 		sizeof(((struct bpf_line_info *)(0))->line_col))
5724 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5725 
5726 static int check_btf_line(struct bpf_verifier_env *env,
5727 			  const union bpf_attr *attr,
5728 			  union bpf_attr __user *uattr)
5729 {
5730 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5731 	struct bpf_subprog_info *sub;
5732 	struct bpf_line_info *linfo;
5733 	struct bpf_prog *prog;
5734 	const struct btf *btf;
5735 	void __user *ulinfo;
5736 	int err;
5737 
5738 	nr_linfo = attr->line_info_cnt;
5739 	if (!nr_linfo)
5740 		return 0;
5741 
5742 	rec_size = attr->line_info_rec_size;
5743 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5744 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5745 	    rec_size & (sizeof(u32) - 1))
5746 		return -EINVAL;
5747 
5748 	/* Need to zero it in case the userspace may
5749 	 * pass in a smaller bpf_line_info object.
5750 	 */
5751 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5752 			 GFP_KERNEL | __GFP_NOWARN);
5753 	if (!linfo)
5754 		return -ENOMEM;
5755 
5756 	prog = env->prog;
5757 	btf = prog->aux->btf;
5758 
5759 	s = 0;
5760 	sub = env->subprog_info;
5761 	ulinfo = u64_to_user_ptr(attr->line_info);
5762 	expected_size = sizeof(struct bpf_line_info);
5763 	ncopy = min_t(u32, expected_size, rec_size);
5764 	for (i = 0; i < nr_linfo; i++) {
5765 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5766 		if (err) {
5767 			if (err == -E2BIG) {
5768 				verbose(env, "nonzero tailing record in line_info");
5769 				if (put_user(expected_size,
5770 					     &uattr->line_info_rec_size))
5771 					err = -EFAULT;
5772 			}
5773 			goto err_free;
5774 		}
5775 
5776 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5777 			err = -EFAULT;
5778 			goto err_free;
5779 		}
5780 
5781 		/*
5782 		 * Check insn_off to ensure
5783 		 * 1) strictly increasing AND
5784 		 * 2) bounded by prog->len
5785 		 *
5786 		 * The linfo[0].insn_off == 0 check logically falls into
5787 		 * the later "missing bpf_line_info for func..." case
5788 		 * because the first linfo[0].insn_off must be the
5789 		 * first sub also and the first sub must have
5790 		 * subprog_info[0].start == 0.
5791 		 */
5792 		if ((i && linfo[i].insn_off <= prev_offset) ||
5793 		    linfo[i].insn_off >= prog->len) {
5794 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5795 				i, linfo[i].insn_off, prev_offset,
5796 				prog->len);
5797 			err = -EINVAL;
5798 			goto err_free;
5799 		}
5800 
5801 		if (!prog->insnsi[linfo[i].insn_off].code) {
5802 			verbose(env,
5803 				"Invalid insn code at line_info[%u].insn_off\n",
5804 				i);
5805 			err = -EINVAL;
5806 			goto err_free;
5807 		}
5808 
5809 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5810 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5811 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5812 			err = -EINVAL;
5813 			goto err_free;
5814 		}
5815 
5816 		if (s != env->subprog_cnt) {
5817 			if (linfo[i].insn_off == sub[s].start) {
5818 				sub[s].linfo_idx = i;
5819 				s++;
5820 			} else if (sub[s].start < linfo[i].insn_off) {
5821 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5822 				err = -EINVAL;
5823 				goto err_free;
5824 			}
5825 		}
5826 
5827 		prev_offset = linfo[i].insn_off;
5828 		ulinfo += rec_size;
5829 	}
5830 
5831 	if (s != env->subprog_cnt) {
5832 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5833 			env->subprog_cnt - s, s);
5834 		err = -EINVAL;
5835 		goto err_free;
5836 	}
5837 
5838 	prog->aux->linfo = linfo;
5839 	prog->aux->nr_linfo = nr_linfo;
5840 
5841 	return 0;
5842 
5843 err_free:
5844 	kvfree(linfo);
5845 	return err;
5846 }
5847 
5848 static int check_btf_info(struct bpf_verifier_env *env,
5849 			  const union bpf_attr *attr,
5850 			  union bpf_attr __user *uattr)
5851 {
5852 	struct btf *btf;
5853 	int err;
5854 
5855 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5856 		return 0;
5857 
5858 	btf = btf_get_by_fd(attr->prog_btf_fd);
5859 	if (IS_ERR(btf))
5860 		return PTR_ERR(btf);
5861 	env->prog->aux->btf = btf;
5862 
5863 	err = check_btf_func(env, attr, uattr);
5864 	if (err)
5865 		return err;
5866 
5867 	err = check_btf_line(env, attr, uattr);
5868 	if (err)
5869 		return err;
5870 
5871 	return 0;
5872 }
5873 
5874 /* check %cur's range satisfies %old's */
5875 static bool range_within(struct bpf_reg_state *old,
5876 			 struct bpf_reg_state *cur)
5877 {
5878 	return old->umin_value <= cur->umin_value &&
5879 	       old->umax_value >= cur->umax_value &&
5880 	       old->smin_value <= cur->smin_value &&
5881 	       old->smax_value >= cur->smax_value;
5882 }
5883 
5884 /* Maximum number of register states that can exist at once */
5885 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5886 struct idpair {
5887 	u32 old;
5888 	u32 cur;
5889 };
5890 
5891 /* If in the old state two registers had the same id, then they need to have
5892  * the same id in the new state as well.  But that id could be different from
5893  * the old state, so we need to track the mapping from old to new ids.
5894  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5895  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5896  * regs with a different old id could still have new id 9, we don't care about
5897  * that.
5898  * So we look through our idmap to see if this old id has been seen before.  If
5899  * so, we require the new id to match; otherwise, we add the id pair to the map.
5900  */
5901 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5902 {
5903 	unsigned int i;
5904 
5905 	for (i = 0; i < ID_MAP_SIZE; i++) {
5906 		if (!idmap[i].old) {
5907 			/* Reached an empty slot; haven't seen this id before */
5908 			idmap[i].old = old_id;
5909 			idmap[i].cur = cur_id;
5910 			return true;
5911 		}
5912 		if (idmap[i].old == old_id)
5913 			return idmap[i].cur == cur_id;
5914 	}
5915 	/* We ran out of idmap slots, which should be impossible */
5916 	WARN_ON_ONCE(1);
5917 	return false;
5918 }
5919 
5920 static void clean_func_state(struct bpf_verifier_env *env,
5921 			     struct bpf_func_state *st)
5922 {
5923 	enum bpf_reg_liveness live;
5924 	int i, j;
5925 
5926 	for (i = 0; i < BPF_REG_FP; i++) {
5927 		live = st->regs[i].live;
5928 		/* liveness must not touch this register anymore */
5929 		st->regs[i].live |= REG_LIVE_DONE;
5930 		if (!(live & REG_LIVE_READ))
5931 			/* since the register is unused, clear its state
5932 			 * to make further comparison simpler
5933 			 */
5934 			__mark_reg_not_init(&st->regs[i]);
5935 	}
5936 
5937 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5938 		live = st->stack[i].spilled_ptr.live;
5939 		/* liveness must not touch this stack slot anymore */
5940 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5941 		if (!(live & REG_LIVE_READ)) {
5942 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5943 			for (j = 0; j < BPF_REG_SIZE; j++)
5944 				st->stack[i].slot_type[j] = STACK_INVALID;
5945 		}
5946 	}
5947 }
5948 
5949 static void clean_verifier_state(struct bpf_verifier_env *env,
5950 				 struct bpf_verifier_state *st)
5951 {
5952 	int i;
5953 
5954 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5955 		/* all regs in this state in all frames were already marked */
5956 		return;
5957 
5958 	for (i = 0; i <= st->curframe; i++)
5959 		clean_func_state(env, st->frame[i]);
5960 }
5961 
5962 /* the parentage chains form a tree.
5963  * the verifier states are added to state lists at given insn and
5964  * pushed into state stack for future exploration.
5965  * when the verifier reaches bpf_exit insn some of the verifer states
5966  * stored in the state lists have their final liveness state already,
5967  * but a lot of states will get revised from liveness point of view when
5968  * the verifier explores other branches.
5969  * Example:
5970  * 1: r0 = 1
5971  * 2: if r1 == 100 goto pc+1
5972  * 3: r0 = 2
5973  * 4: exit
5974  * when the verifier reaches exit insn the register r0 in the state list of
5975  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5976  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5977  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5978  *
5979  * Since the verifier pushes the branch states as it sees them while exploring
5980  * the program the condition of walking the branch instruction for the second
5981  * time means that all states below this branch were already explored and
5982  * their final liveness markes are already propagated.
5983  * Hence when the verifier completes the search of state list in is_state_visited()
5984  * we can call this clean_live_states() function to mark all liveness states
5985  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5986  * will not be used.
5987  * This function also clears the registers and stack for states that !READ
5988  * to simplify state merging.
5989  *
5990  * Important note here that walking the same branch instruction in the callee
5991  * doesn't meant that the states are DONE. The verifier has to compare
5992  * the callsites
5993  */
5994 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5995 			      struct bpf_verifier_state *cur)
5996 {
5997 	struct bpf_verifier_state_list *sl;
5998 	int i;
5999 
6000 	sl = env->explored_states[insn];
6001 	if (!sl)
6002 		return;
6003 
6004 	while (sl != STATE_LIST_MARK) {
6005 		if (sl->state.curframe != cur->curframe)
6006 			goto next;
6007 		for (i = 0; i <= cur->curframe; i++)
6008 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6009 				goto next;
6010 		clean_verifier_state(env, &sl->state);
6011 next:
6012 		sl = sl->next;
6013 	}
6014 }
6015 
6016 /* Returns true if (rold safe implies rcur safe) */
6017 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6018 		    struct idpair *idmap)
6019 {
6020 	bool equal;
6021 
6022 	if (!(rold->live & REG_LIVE_READ))
6023 		/* explored state didn't use this */
6024 		return true;
6025 
6026 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6027 
6028 	if (rold->type == PTR_TO_STACK)
6029 		/* two stack pointers are equal only if they're pointing to
6030 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
6031 		 */
6032 		return equal && rold->frameno == rcur->frameno;
6033 
6034 	if (equal)
6035 		return true;
6036 
6037 	if (rold->type == NOT_INIT)
6038 		/* explored state can't have used this */
6039 		return true;
6040 	if (rcur->type == NOT_INIT)
6041 		return false;
6042 	switch (rold->type) {
6043 	case SCALAR_VALUE:
6044 		if (rcur->type == SCALAR_VALUE) {
6045 			/* new val must satisfy old val knowledge */
6046 			return range_within(rold, rcur) &&
6047 			       tnum_in(rold->var_off, rcur->var_off);
6048 		} else {
6049 			/* We're trying to use a pointer in place of a scalar.
6050 			 * Even if the scalar was unbounded, this could lead to
6051 			 * pointer leaks because scalars are allowed to leak
6052 			 * while pointers are not. We could make this safe in
6053 			 * special cases if root is calling us, but it's
6054 			 * probably not worth the hassle.
6055 			 */
6056 			return false;
6057 		}
6058 	case PTR_TO_MAP_VALUE:
6059 		/* If the new min/max/var_off satisfy the old ones and
6060 		 * everything else matches, we are OK.
6061 		 * 'id' is not compared, since it's only used for maps with
6062 		 * bpf_spin_lock inside map element and in such cases if
6063 		 * the rest of the prog is valid for one map element then
6064 		 * it's valid for all map elements regardless of the key
6065 		 * used in bpf_map_lookup()
6066 		 */
6067 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6068 		       range_within(rold, rcur) &&
6069 		       tnum_in(rold->var_off, rcur->var_off);
6070 	case PTR_TO_MAP_VALUE_OR_NULL:
6071 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6072 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6073 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6074 		 * checked, doing so could have affected others with the same
6075 		 * id, and we can't check for that because we lost the id when
6076 		 * we converted to a PTR_TO_MAP_VALUE.
6077 		 */
6078 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6079 			return false;
6080 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6081 			return false;
6082 		/* Check our ids match any regs they're supposed to */
6083 		return check_ids(rold->id, rcur->id, idmap);
6084 	case PTR_TO_PACKET_META:
6085 	case PTR_TO_PACKET:
6086 		if (rcur->type != rold->type)
6087 			return false;
6088 		/* We must have at least as much range as the old ptr
6089 		 * did, so that any accesses which were safe before are
6090 		 * still safe.  This is true even if old range < old off,
6091 		 * since someone could have accessed through (ptr - k), or
6092 		 * even done ptr -= k in a register, to get a safe access.
6093 		 */
6094 		if (rold->range > rcur->range)
6095 			return false;
6096 		/* If the offsets don't match, we can't trust our alignment;
6097 		 * nor can we be sure that we won't fall out of range.
6098 		 */
6099 		if (rold->off != rcur->off)
6100 			return false;
6101 		/* id relations must be preserved */
6102 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6103 			return false;
6104 		/* new val must satisfy old val knowledge */
6105 		return range_within(rold, rcur) &&
6106 		       tnum_in(rold->var_off, rcur->var_off);
6107 	case PTR_TO_CTX:
6108 	case CONST_PTR_TO_MAP:
6109 	case PTR_TO_PACKET_END:
6110 	case PTR_TO_FLOW_KEYS:
6111 	case PTR_TO_SOCKET:
6112 	case PTR_TO_SOCKET_OR_NULL:
6113 	case PTR_TO_SOCK_COMMON:
6114 	case PTR_TO_SOCK_COMMON_OR_NULL:
6115 	case PTR_TO_TCP_SOCK:
6116 	case PTR_TO_TCP_SOCK_OR_NULL:
6117 		/* Only valid matches are exact, which memcmp() above
6118 		 * would have accepted
6119 		 */
6120 	default:
6121 		/* Don't know what's going on, just say it's not safe */
6122 		return false;
6123 	}
6124 
6125 	/* Shouldn't get here; if we do, say it's not safe */
6126 	WARN_ON_ONCE(1);
6127 	return false;
6128 }
6129 
6130 static bool stacksafe(struct bpf_func_state *old,
6131 		      struct bpf_func_state *cur,
6132 		      struct idpair *idmap)
6133 {
6134 	int i, spi;
6135 
6136 	/* walk slots of the explored stack and ignore any additional
6137 	 * slots in the current stack, since explored(safe) state
6138 	 * didn't use them
6139 	 */
6140 	for (i = 0; i < old->allocated_stack; i++) {
6141 		spi = i / BPF_REG_SIZE;
6142 
6143 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6144 			i += BPF_REG_SIZE - 1;
6145 			/* explored state didn't use this */
6146 			continue;
6147 		}
6148 
6149 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6150 			continue;
6151 
6152 		/* explored stack has more populated slots than current stack
6153 		 * and these slots were used
6154 		 */
6155 		if (i >= cur->allocated_stack)
6156 			return false;
6157 
6158 		/* if old state was safe with misc data in the stack
6159 		 * it will be safe with zero-initialized stack.
6160 		 * The opposite is not true
6161 		 */
6162 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6163 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6164 			continue;
6165 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6166 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6167 			/* Ex: old explored (safe) state has STACK_SPILL in
6168 			 * this stack slot, but current has has STACK_MISC ->
6169 			 * this verifier states are not equivalent,
6170 			 * return false to continue verification of this path
6171 			 */
6172 			return false;
6173 		if (i % BPF_REG_SIZE)
6174 			continue;
6175 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6176 			continue;
6177 		if (!regsafe(&old->stack[spi].spilled_ptr,
6178 			     &cur->stack[spi].spilled_ptr,
6179 			     idmap))
6180 			/* when explored and current stack slot are both storing
6181 			 * spilled registers, check that stored pointers types
6182 			 * are the same as well.
6183 			 * Ex: explored safe path could have stored
6184 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6185 			 * but current path has stored:
6186 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6187 			 * such verifier states are not equivalent.
6188 			 * return false to continue verification of this path
6189 			 */
6190 			return false;
6191 	}
6192 	return true;
6193 }
6194 
6195 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6196 {
6197 	if (old->acquired_refs != cur->acquired_refs)
6198 		return false;
6199 	return !memcmp(old->refs, cur->refs,
6200 		       sizeof(*old->refs) * old->acquired_refs);
6201 }
6202 
6203 /* compare two verifier states
6204  *
6205  * all states stored in state_list are known to be valid, since
6206  * verifier reached 'bpf_exit' instruction through them
6207  *
6208  * this function is called when verifier exploring different branches of
6209  * execution popped from the state stack. If it sees an old state that has
6210  * more strict register state and more strict stack state then this execution
6211  * branch doesn't need to be explored further, since verifier already
6212  * concluded that more strict state leads to valid finish.
6213  *
6214  * Therefore two states are equivalent if register state is more conservative
6215  * and explored stack state is more conservative than the current one.
6216  * Example:
6217  *       explored                   current
6218  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6219  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6220  *
6221  * In other words if current stack state (one being explored) has more
6222  * valid slots than old one that already passed validation, it means
6223  * the verifier can stop exploring and conclude that current state is valid too
6224  *
6225  * Similarly with registers. If explored state has register type as invalid
6226  * whereas register type in current state is meaningful, it means that
6227  * the current state will reach 'bpf_exit' instruction safely
6228  */
6229 static bool func_states_equal(struct bpf_func_state *old,
6230 			      struct bpf_func_state *cur)
6231 {
6232 	struct idpair *idmap;
6233 	bool ret = false;
6234 	int i;
6235 
6236 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6237 	/* If we failed to allocate the idmap, just say it's not safe */
6238 	if (!idmap)
6239 		return false;
6240 
6241 	for (i = 0; i < MAX_BPF_REG; i++) {
6242 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6243 			goto out_free;
6244 	}
6245 
6246 	if (!stacksafe(old, cur, idmap))
6247 		goto out_free;
6248 
6249 	if (!refsafe(old, cur))
6250 		goto out_free;
6251 	ret = true;
6252 out_free:
6253 	kfree(idmap);
6254 	return ret;
6255 }
6256 
6257 static bool states_equal(struct bpf_verifier_env *env,
6258 			 struct bpf_verifier_state *old,
6259 			 struct bpf_verifier_state *cur)
6260 {
6261 	int i;
6262 
6263 	if (old->curframe != cur->curframe)
6264 		return false;
6265 
6266 	/* Verification state from speculative execution simulation
6267 	 * must never prune a non-speculative execution one.
6268 	 */
6269 	if (old->speculative && !cur->speculative)
6270 		return false;
6271 
6272 	if (old->active_spin_lock != cur->active_spin_lock)
6273 		return false;
6274 
6275 	/* for states to be equal callsites have to be the same
6276 	 * and all frame states need to be equivalent
6277 	 */
6278 	for (i = 0; i <= old->curframe; i++) {
6279 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6280 			return false;
6281 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6282 			return false;
6283 	}
6284 	return true;
6285 }
6286 
6287 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6288 				  struct bpf_reg_state *reg,
6289 				  struct bpf_reg_state *parent_reg)
6290 {
6291 	int err;
6292 
6293 	if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ))
6294 		return 0;
6295 
6296 	err = mark_reg_read(env, reg, parent_reg);
6297 	if (err)
6298 		return err;
6299 
6300 	return 0;
6301 }
6302 
6303 /* A write screens off any subsequent reads; but write marks come from the
6304  * straight-line code between a state and its parent.  When we arrive at an
6305  * equivalent state (jump target or such) we didn't arrive by the straight-line
6306  * code, so read marks in the state must propagate to the parent regardless
6307  * of the state's write marks. That's what 'parent == state->parent' comparison
6308  * in mark_reg_read() is for.
6309  */
6310 static int propagate_liveness(struct bpf_verifier_env *env,
6311 			      const struct bpf_verifier_state *vstate,
6312 			      struct bpf_verifier_state *vparent)
6313 {
6314 	struct bpf_reg_state *state_reg, *parent_reg;
6315 	struct bpf_func_state *state, *parent;
6316 	int i, frame, err = 0;
6317 
6318 	if (vparent->curframe != vstate->curframe) {
6319 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6320 		     vparent->curframe, vstate->curframe);
6321 		return -EFAULT;
6322 	}
6323 	/* Propagate read liveness of registers... */
6324 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6325 	for (frame = 0; frame <= vstate->curframe; frame++) {
6326 		parent = vparent->frame[frame];
6327 		state = vstate->frame[frame];
6328 		parent_reg = parent->regs;
6329 		state_reg = state->regs;
6330 		/* We don't need to worry about FP liveness, it's read-only */
6331 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6332 			err = propagate_liveness_reg(env, &state_reg[i],
6333 						     &parent_reg[i]);
6334 			if (err)
6335 				return err;
6336 		}
6337 
6338 		/* Propagate stack slots. */
6339 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6340 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6341 			parent_reg = &parent->stack[i].spilled_ptr;
6342 			state_reg = &state->stack[i].spilled_ptr;
6343 			err = propagate_liveness_reg(env, state_reg,
6344 						     parent_reg);
6345 			if (err)
6346 				return err;
6347 		}
6348 	}
6349 	return err;
6350 }
6351 
6352 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6353 {
6354 	struct bpf_verifier_state_list *new_sl;
6355 	struct bpf_verifier_state_list *sl, **pprev;
6356 	struct bpf_verifier_state *cur = env->cur_state, *new;
6357 	int i, j, err, states_cnt = 0;
6358 
6359 	pprev = &env->explored_states[insn_idx];
6360 	sl = *pprev;
6361 
6362 	if (!sl)
6363 		/* this 'insn_idx' instruction wasn't marked, so we will not
6364 		 * be doing state search here
6365 		 */
6366 		return 0;
6367 
6368 	clean_live_states(env, insn_idx, cur);
6369 
6370 	while (sl != STATE_LIST_MARK) {
6371 		if (states_equal(env, &sl->state, cur)) {
6372 			sl->hit_cnt++;
6373 			/* reached equivalent register/stack state,
6374 			 * prune the search.
6375 			 * Registers read by the continuation are read by us.
6376 			 * If we have any write marks in env->cur_state, they
6377 			 * will prevent corresponding reads in the continuation
6378 			 * from reaching our parent (an explored_state).  Our
6379 			 * own state will get the read marks recorded, but
6380 			 * they'll be immediately forgotten as we're pruning
6381 			 * this state and will pop a new one.
6382 			 */
6383 			err = propagate_liveness(env, &sl->state, cur);
6384 			if (err)
6385 				return err;
6386 			return 1;
6387 		}
6388 		states_cnt++;
6389 		sl->miss_cnt++;
6390 		/* heuristic to determine whether this state is beneficial
6391 		 * to keep checking from state equivalence point of view.
6392 		 * Higher numbers increase max_states_per_insn and verification time,
6393 		 * but do not meaningfully decrease insn_processed.
6394 		 */
6395 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6396 			/* the state is unlikely to be useful. Remove it to
6397 			 * speed up verification
6398 			 */
6399 			*pprev = sl->next;
6400 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6401 				free_verifier_state(&sl->state, false);
6402 				kfree(sl);
6403 				env->peak_states--;
6404 			} else {
6405 				/* cannot free this state, since parentage chain may
6406 				 * walk it later. Add it for free_list instead to
6407 				 * be freed at the end of verification
6408 				 */
6409 				sl->next = env->free_list;
6410 				env->free_list = sl;
6411 			}
6412 			sl = *pprev;
6413 			continue;
6414 		}
6415 		pprev = &sl->next;
6416 		sl = *pprev;
6417 	}
6418 
6419 	if (env->max_states_per_insn < states_cnt)
6420 		env->max_states_per_insn = states_cnt;
6421 
6422 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6423 		return 0;
6424 
6425 	/* there were no equivalent states, remember current one.
6426 	 * technically the current state is not proven to be safe yet,
6427 	 * but it will either reach outer most bpf_exit (which means it's safe)
6428 	 * or it will be rejected. Since there are no loops, we won't be
6429 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6430 	 * again on the way to bpf_exit
6431 	 */
6432 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6433 	if (!new_sl)
6434 		return -ENOMEM;
6435 	env->total_states++;
6436 	env->peak_states++;
6437 
6438 	/* add new state to the head of linked list */
6439 	new = &new_sl->state;
6440 	err = copy_verifier_state(new, cur);
6441 	if (err) {
6442 		free_verifier_state(new, false);
6443 		kfree(new_sl);
6444 		return err;
6445 	}
6446 	new_sl->next = env->explored_states[insn_idx];
6447 	env->explored_states[insn_idx] = new_sl;
6448 	/* connect new state to parentage chain. Current frame needs all
6449 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6450 	 * to the stack implicitly by JITs) so in callers' frames connect just
6451 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6452 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6453 	 * from callee with its full parentage chain, anyway.
6454 	 */
6455 	for (j = 0; j <= cur->curframe; j++)
6456 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6457 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6458 	/* clear write marks in current state: the writes we did are not writes
6459 	 * our child did, so they don't screen off its reads from us.
6460 	 * (There are no read marks in current state, because reads always mark
6461 	 * their parent and current state never has children yet.  Only
6462 	 * explored_states can get read marks.)
6463 	 */
6464 	for (i = 0; i < BPF_REG_FP; i++)
6465 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6466 
6467 	/* all stack frames are accessible from callee, clear them all */
6468 	for (j = 0; j <= cur->curframe; j++) {
6469 		struct bpf_func_state *frame = cur->frame[j];
6470 		struct bpf_func_state *newframe = new->frame[j];
6471 
6472 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6473 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6474 			frame->stack[i].spilled_ptr.parent =
6475 						&newframe->stack[i].spilled_ptr;
6476 		}
6477 	}
6478 	return 0;
6479 }
6480 
6481 /* Return true if it's OK to have the same insn return a different type. */
6482 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6483 {
6484 	switch (type) {
6485 	case PTR_TO_CTX:
6486 	case PTR_TO_SOCKET:
6487 	case PTR_TO_SOCKET_OR_NULL:
6488 	case PTR_TO_SOCK_COMMON:
6489 	case PTR_TO_SOCK_COMMON_OR_NULL:
6490 	case PTR_TO_TCP_SOCK:
6491 	case PTR_TO_TCP_SOCK_OR_NULL:
6492 		return false;
6493 	default:
6494 		return true;
6495 	}
6496 }
6497 
6498 /* If an instruction was previously used with particular pointer types, then we
6499  * need to be careful to avoid cases such as the below, where it may be ok
6500  * for one branch accessing the pointer, but not ok for the other branch:
6501  *
6502  * R1 = sock_ptr
6503  * goto X;
6504  * ...
6505  * R1 = some_other_valid_ptr;
6506  * goto X;
6507  * ...
6508  * R2 = *(u32 *)(R1 + 0);
6509  */
6510 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6511 {
6512 	return src != prev && (!reg_type_mismatch_ok(src) ||
6513 			       !reg_type_mismatch_ok(prev));
6514 }
6515 
6516 static int do_check(struct bpf_verifier_env *env)
6517 {
6518 	struct bpf_verifier_state *state;
6519 	struct bpf_insn *insns = env->prog->insnsi;
6520 	struct bpf_reg_state *regs;
6521 	int insn_cnt = env->prog->len;
6522 	bool do_print_state = false;
6523 
6524 	env->prev_linfo = NULL;
6525 
6526 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6527 	if (!state)
6528 		return -ENOMEM;
6529 	state->curframe = 0;
6530 	state->speculative = false;
6531 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6532 	if (!state->frame[0]) {
6533 		kfree(state);
6534 		return -ENOMEM;
6535 	}
6536 	env->cur_state = state;
6537 	init_func_state(env, state->frame[0],
6538 			BPF_MAIN_FUNC /* callsite */,
6539 			0 /* frameno */,
6540 			0 /* subprogno, zero == main subprog */);
6541 
6542 	for (;;) {
6543 		struct bpf_insn *insn;
6544 		u8 class;
6545 		int err;
6546 
6547 		if (env->insn_idx >= insn_cnt) {
6548 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6549 				env->insn_idx, insn_cnt);
6550 			return -EFAULT;
6551 		}
6552 
6553 		insn = &insns[env->insn_idx];
6554 		class = BPF_CLASS(insn->code);
6555 
6556 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6557 			verbose(env,
6558 				"BPF program is too large. Processed %d insn\n",
6559 				env->insn_processed);
6560 			return -E2BIG;
6561 		}
6562 
6563 		err = is_state_visited(env, env->insn_idx);
6564 		if (err < 0)
6565 			return err;
6566 		if (err == 1) {
6567 			/* found equivalent state, can prune the search */
6568 			if (env->log.level & BPF_LOG_LEVEL) {
6569 				if (do_print_state)
6570 					verbose(env, "\nfrom %d to %d%s: safe\n",
6571 						env->prev_insn_idx, env->insn_idx,
6572 						env->cur_state->speculative ?
6573 						" (speculative execution)" : "");
6574 				else
6575 					verbose(env, "%d: safe\n", env->insn_idx);
6576 			}
6577 			goto process_bpf_exit;
6578 		}
6579 
6580 		if (signal_pending(current))
6581 			return -EAGAIN;
6582 
6583 		if (need_resched())
6584 			cond_resched();
6585 
6586 		if (env->log.level & BPF_LOG_LEVEL2 ||
6587 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6588 			if (env->log.level & BPF_LOG_LEVEL2)
6589 				verbose(env, "%d:", env->insn_idx);
6590 			else
6591 				verbose(env, "\nfrom %d to %d%s:",
6592 					env->prev_insn_idx, env->insn_idx,
6593 					env->cur_state->speculative ?
6594 					" (speculative execution)" : "");
6595 			print_verifier_state(env, state->frame[state->curframe]);
6596 			do_print_state = false;
6597 		}
6598 
6599 		if (env->log.level & BPF_LOG_LEVEL) {
6600 			const struct bpf_insn_cbs cbs = {
6601 				.cb_print	= verbose,
6602 				.private_data	= env,
6603 			};
6604 
6605 			verbose_linfo(env, env->insn_idx, "; ");
6606 			verbose(env, "%d: ", env->insn_idx);
6607 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6608 		}
6609 
6610 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6611 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6612 							   env->prev_insn_idx);
6613 			if (err)
6614 				return err;
6615 		}
6616 
6617 		regs = cur_regs(env);
6618 		env->insn_aux_data[env->insn_idx].seen = true;
6619 
6620 		if (class == BPF_ALU || class == BPF_ALU64) {
6621 			err = check_alu_op(env, insn);
6622 			if (err)
6623 				return err;
6624 
6625 		} else if (class == BPF_LDX) {
6626 			enum bpf_reg_type *prev_src_type, src_reg_type;
6627 
6628 			/* check for reserved fields is already done */
6629 
6630 			/* check src operand */
6631 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6632 			if (err)
6633 				return err;
6634 
6635 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6636 			if (err)
6637 				return err;
6638 
6639 			src_reg_type = regs[insn->src_reg].type;
6640 
6641 			/* check that memory (src_reg + off) is readable,
6642 			 * the state of dst_reg will be updated by this func
6643 			 */
6644 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6645 					       insn->off, BPF_SIZE(insn->code),
6646 					       BPF_READ, insn->dst_reg, false);
6647 			if (err)
6648 				return err;
6649 
6650 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6651 
6652 			if (*prev_src_type == NOT_INIT) {
6653 				/* saw a valid insn
6654 				 * dst_reg = *(u32 *)(src_reg + off)
6655 				 * save type to validate intersecting paths
6656 				 */
6657 				*prev_src_type = src_reg_type;
6658 
6659 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6660 				/* ABuser program is trying to use the same insn
6661 				 * dst_reg = *(u32*) (src_reg + off)
6662 				 * with different pointer types:
6663 				 * src_reg == ctx in one branch and
6664 				 * src_reg == stack|map in some other branch.
6665 				 * Reject it.
6666 				 */
6667 				verbose(env, "same insn cannot be used with different pointers\n");
6668 				return -EINVAL;
6669 			}
6670 
6671 		} else if (class == BPF_STX) {
6672 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6673 
6674 			if (BPF_MODE(insn->code) == BPF_XADD) {
6675 				err = check_xadd(env, env->insn_idx, insn);
6676 				if (err)
6677 					return err;
6678 				env->insn_idx++;
6679 				continue;
6680 			}
6681 
6682 			/* check src1 operand */
6683 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6684 			if (err)
6685 				return err;
6686 			/* check src2 operand */
6687 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6688 			if (err)
6689 				return err;
6690 
6691 			dst_reg_type = regs[insn->dst_reg].type;
6692 
6693 			/* check that memory (dst_reg + off) is writeable */
6694 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6695 					       insn->off, BPF_SIZE(insn->code),
6696 					       BPF_WRITE, insn->src_reg, false);
6697 			if (err)
6698 				return err;
6699 
6700 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6701 
6702 			if (*prev_dst_type == NOT_INIT) {
6703 				*prev_dst_type = dst_reg_type;
6704 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6705 				verbose(env, "same insn cannot be used with different pointers\n");
6706 				return -EINVAL;
6707 			}
6708 
6709 		} else if (class == BPF_ST) {
6710 			if (BPF_MODE(insn->code) != BPF_MEM ||
6711 			    insn->src_reg != BPF_REG_0) {
6712 				verbose(env, "BPF_ST uses reserved fields\n");
6713 				return -EINVAL;
6714 			}
6715 			/* check src operand */
6716 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6717 			if (err)
6718 				return err;
6719 
6720 			if (is_ctx_reg(env, insn->dst_reg)) {
6721 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6722 					insn->dst_reg,
6723 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6724 				return -EACCES;
6725 			}
6726 
6727 			/* check that memory (dst_reg + off) is writeable */
6728 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6729 					       insn->off, BPF_SIZE(insn->code),
6730 					       BPF_WRITE, -1, false);
6731 			if (err)
6732 				return err;
6733 
6734 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6735 			u8 opcode = BPF_OP(insn->code);
6736 
6737 			if (opcode == BPF_CALL) {
6738 				if (BPF_SRC(insn->code) != BPF_K ||
6739 				    insn->off != 0 ||
6740 				    (insn->src_reg != BPF_REG_0 &&
6741 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6742 				    insn->dst_reg != BPF_REG_0 ||
6743 				    class == BPF_JMP32) {
6744 					verbose(env, "BPF_CALL uses reserved fields\n");
6745 					return -EINVAL;
6746 				}
6747 
6748 				if (env->cur_state->active_spin_lock &&
6749 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6750 				     insn->imm != BPF_FUNC_spin_unlock)) {
6751 					verbose(env, "function calls are not allowed while holding a lock\n");
6752 					return -EINVAL;
6753 				}
6754 				if (insn->src_reg == BPF_PSEUDO_CALL)
6755 					err = check_func_call(env, insn, &env->insn_idx);
6756 				else
6757 					err = check_helper_call(env, insn->imm, env->insn_idx);
6758 				if (err)
6759 					return err;
6760 
6761 			} else if (opcode == BPF_JA) {
6762 				if (BPF_SRC(insn->code) != BPF_K ||
6763 				    insn->imm != 0 ||
6764 				    insn->src_reg != BPF_REG_0 ||
6765 				    insn->dst_reg != BPF_REG_0 ||
6766 				    class == BPF_JMP32) {
6767 					verbose(env, "BPF_JA uses reserved fields\n");
6768 					return -EINVAL;
6769 				}
6770 
6771 				env->insn_idx += insn->off + 1;
6772 				continue;
6773 
6774 			} else if (opcode == BPF_EXIT) {
6775 				if (BPF_SRC(insn->code) != BPF_K ||
6776 				    insn->imm != 0 ||
6777 				    insn->src_reg != BPF_REG_0 ||
6778 				    insn->dst_reg != BPF_REG_0 ||
6779 				    class == BPF_JMP32) {
6780 					verbose(env, "BPF_EXIT uses reserved fields\n");
6781 					return -EINVAL;
6782 				}
6783 
6784 				if (env->cur_state->active_spin_lock) {
6785 					verbose(env, "bpf_spin_unlock is missing\n");
6786 					return -EINVAL;
6787 				}
6788 
6789 				if (state->curframe) {
6790 					/* exit from nested function */
6791 					env->prev_insn_idx = env->insn_idx;
6792 					err = prepare_func_exit(env, &env->insn_idx);
6793 					if (err)
6794 						return err;
6795 					do_print_state = true;
6796 					continue;
6797 				}
6798 
6799 				err = check_reference_leak(env);
6800 				if (err)
6801 					return err;
6802 
6803 				/* eBPF calling convetion is such that R0 is used
6804 				 * to return the value from eBPF program.
6805 				 * Make sure that it's readable at this time
6806 				 * of bpf_exit, which means that program wrote
6807 				 * something into it earlier
6808 				 */
6809 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6810 				if (err)
6811 					return err;
6812 
6813 				if (is_pointer_value(env, BPF_REG_0)) {
6814 					verbose(env, "R0 leaks addr as return value\n");
6815 					return -EACCES;
6816 				}
6817 
6818 				err = check_return_code(env);
6819 				if (err)
6820 					return err;
6821 process_bpf_exit:
6822 				err = pop_stack(env, &env->prev_insn_idx,
6823 						&env->insn_idx);
6824 				if (err < 0) {
6825 					if (err != -ENOENT)
6826 						return err;
6827 					break;
6828 				} else {
6829 					do_print_state = true;
6830 					continue;
6831 				}
6832 			} else {
6833 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6834 				if (err)
6835 					return err;
6836 			}
6837 		} else if (class == BPF_LD) {
6838 			u8 mode = BPF_MODE(insn->code);
6839 
6840 			if (mode == BPF_ABS || mode == BPF_IND) {
6841 				err = check_ld_abs(env, insn);
6842 				if (err)
6843 					return err;
6844 
6845 			} else if (mode == BPF_IMM) {
6846 				err = check_ld_imm(env, insn);
6847 				if (err)
6848 					return err;
6849 
6850 				env->insn_idx++;
6851 				env->insn_aux_data[env->insn_idx].seen = true;
6852 			} else {
6853 				verbose(env, "invalid BPF_LD mode\n");
6854 				return -EINVAL;
6855 			}
6856 		} else {
6857 			verbose(env, "unknown insn class %d\n", class);
6858 			return -EINVAL;
6859 		}
6860 
6861 		env->insn_idx++;
6862 	}
6863 
6864 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6865 	return 0;
6866 }
6867 
6868 static int check_map_prealloc(struct bpf_map *map)
6869 {
6870 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6871 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6872 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6873 		!(map->map_flags & BPF_F_NO_PREALLOC);
6874 }
6875 
6876 static bool is_tracing_prog_type(enum bpf_prog_type type)
6877 {
6878 	switch (type) {
6879 	case BPF_PROG_TYPE_KPROBE:
6880 	case BPF_PROG_TYPE_TRACEPOINT:
6881 	case BPF_PROG_TYPE_PERF_EVENT:
6882 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6883 		return true;
6884 	default:
6885 		return false;
6886 	}
6887 }
6888 
6889 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6890 					struct bpf_map *map,
6891 					struct bpf_prog *prog)
6892 
6893 {
6894 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6895 	 * preallocated hash maps, since doing memory allocation
6896 	 * in overflow_handler can crash depending on where nmi got
6897 	 * triggered.
6898 	 */
6899 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6900 		if (!check_map_prealloc(map)) {
6901 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6902 			return -EINVAL;
6903 		}
6904 		if (map->inner_map_meta &&
6905 		    !check_map_prealloc(map->inner_map_meta)) {
6906 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6907 			return -EINVAL;
6908 		}
6909 	}
6910 
6911 	if ((is_tracing_prog_type(prog->type) ||
6912 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6913 	    map_value_has_spin_lock(map)) {
6914 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6915 		return -EINVAL;
6916 	}
6917 
6918 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6919 	    !bpf_offload_prog_map_match(prog, map)) {
6920 		verbose(env, "offload device mismatch between prog and map\n");
6921 		return -EINVAL;
6922 	}
6923 
6924 	return 0;
6925 }
6926 
6927 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6928 {
6929 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6930 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6931 }
6932 
6933 /* look for pseudo eBPF instructions that access map FDs and
6934  * replace them with actual map pointers
6935  */
6936 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6937 {
6938 	struct bpf_insn *insn = env->prog->insnsi;
6939 	int insn_cnt = env->prog->len;
6940 	int i, j, err;
6941 
6942 	err = bpf_prog_calc_tag(env->prog);
6943 	if (err)
6944 		return err;
6945 
6946 	for (i = 0; i < insn_cnt; i++, insn++) {
6947 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6948 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6949 			verbose(env, "BPF_LDX uses reserved fields\n");
6950 			return -EINVAL;
6951 		}
6952 
6953 		if (BPF_CLASS(insn->code) == BPF_STX &&
6954 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6955 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6956 			verbose(env, "BPF_STX uses reserved fields\n");
6957 			return -EINVAL;
6958 		}
6959 
6960 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6961 			struct bpf_insn_aux_data *aux;
6962 			struct bpf_map *map;
6963 			struct fd f;
6964 			u64 addr;
6965 
6966 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6967 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6968 			    insn[1].off != 0) {
6969 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6970 				return -EINVAL;
6971 			}
6972 
6973 			if (insn[0].src_reg == 0)
6974 				/* valid generic load 64-bit imm */
6975 				goto next_insn;
6976 
6977 			/* In final convert_pseudo_ld_imm64() step, this is
6978 			 * converted into regular 64-bit imm load insn.
6979 			 */
6980 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6981 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6982 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6983 			     insn[1].imm != 0)) {
6984 				verbose(env,
6985 					"unrecognized bpf_ld_imm64 insn\n");
6986 				return -EINVAL;
6987 			}
6988 
6989 			f = fdget(insn[0].imm);
6990 			map = __bpf_map_get(f);
6991 			if (IS_ERR(map)) {
6992 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
6993 					insn[0].imm);
6994 				return PTR_ERR(map);
6995 			}
6996 
6997 			err = check_map_prog_compatibility(env, map, env->prog);
6998 			if (err) {
6999 				fdput(f);
7000 				return err;
7001 			}
7002 
7003 			aux = &env->insn_aux_data[i];
7004 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7005 				addr = (unsigned long)map;
7006 			} else {
7007 				u32 off = insn[1].imm;
7008 
7009 				if (off >= BPF_MAX_VAR_OFF) {
7010 					verbose(env, "direct value offset of %u is not allowed\n", off);
7011 					fdput(f);
7012 					return -EINVAL;
7013 				}
7014 
7015 				if (!map->ops->map_direct_value_addr) {
7016 					verbose(env, "no direct value access support for this map type\n");
7017 					fdput(f);
7018 					return -EINVAL;
7019 				}
7020 
7021 				err = map->ops->map_direct_value_addr(map, &addr, off);
7022 				if (err) {
7023 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7024 						map->value_size, off);
7025 					fdput(f);
7026 					return err;
7027 				}
7028 
7029 				aux->map_off = off;
7030 				addr += off;
7031 			}
7032 
7033 			insn[0].imm = (u32)addr;
7034 			insn[1].imm = addr >> 32;
7035 
7036 			/* check whether we recorded this map already */
7037 			for (j = 0; j < env->used_map_cnt; j++) {
7038 				if (env->used_maps[j] == map) {
7039 					aux->map_index = j;
7040 					fdput(f);
7041 					goto next_insn;
7042 				}
7043 			}
7044 
7045 			if (env->used_map_cnt >= MAX_USED_MAPS) {
7046 				fdput(f);
7047 				return -E2BIG;
7048 			}
7049 
7050 			/* hold the map. If the program is rejected by verifier,
7051 			 * the map will be released by release_maps() or it
7052 			 * will be used by the valid program until it's unloaded
7053 			 * and all maps are released in free_used_maps()
7054 			 */
7055 			map = bpf_map_inc(map, false);
7056 			if (IS_ERR(map)) {
7057 				fdput(f);
7058 				return PTR_ERR(map);
7059 			}
7060 
7061 			aux->map_index = env->used_map_cnt;
7062 			env->used_maps[env->used_map_cnt++] = map;
7063 
7064 			if (bpf_map_is_cgroup_storage(map) &&
7065 			    bpf_cgroup_storage_assign(env->prog, map)) {
7066 				verbose(env, "only one cgroup storage of each type is allowed\n");
7067 				fdput(f);
7068 				return -EBUSY;
7069 			}
7070 
7071 			fdput(f);
7072 next_insn:
7073 			insn++;
7074 			i++;
7075 			continue;
7076 		}
7077 
7078 		/* Basic sanity check before we invest more work here. */
7079 		if (!bpf_opcode_in_insntable(insn->code)) {
7080 			verbose(env, "unknown opcode %02x\n", insn->code);
7081 			return -EINVAL;
7082 		}
7083 	}
7084 
7085 	/* now all pseudo BPF_LD_IMM64 instructions load valid
7086 	 * 'struct bpf_map *' into a register instead of user map_fd.
7087 	 * These pointers will be used later by verifier to validate map access.
7088 	 */
7089 	return 0;
7090 }
7091 
7092 /* drop refcnt of maps used by the rejected program */
7093 static void release_maps(struct bpf_verifier_env *env)
7094 {
7095 	enum bpf_cgroup_storage_type stype;
7096 	int i;
7097 
7098 	for_each_cgroup_storage_type(stype) {
7099 		if (!env->prog->aux->cgroup_storage[stype])
7100 			continue;
7101 		bpf_cgroup_storage_release(env->prog,
7102 			env->prog->aux->cgroup_storage[stype]);
7103 	}
7104 
7105 	for (i = 0; i < env->used_map_cnt; i++)
7106 		bpf_map_put(env->used_maps[i]);
7107 }
7108 
7109 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7110 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7111 {
7112 	struct bpf_insn *insn = env->prog->insnsi;
7113 	int insn_cnt = env->prog->len;
7114 	int i;
7115 
7116 	for (i = 0; i < insn_cnt; i++, insn++)
7117 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7118 			insn->src_reg = 0;
7119 }
7120 
7121 /* single env->prog->insni[off] instruction was replaced with the range
7122  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
7123  * [0, off) and [off, end) to new locations, so the patched range stays zero
7124  */
7125 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7126 				u32 off, u32 cnt)
7127 {
7128 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7129 	int i;
7130 
7131 	if (cnt == 1)
7132 		return 0;
7133 	new_data = vzalloc(array_size(prog_len,
7134 				      sizeof(struct bpf_insn_aux_data)));
7135 	if (!new_data)
7136 		return -ENOMEM;
7137 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7138 	memcpy(new_data + off + cnt - 1, old_data + off,
7139 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7140 	for (i = off; i < off + cnt - 1; i++)
7141 		new_data[i].seen = true;
7142 	env->insn_aux_data = new_data;
7143 	vfree(old_data);
7144 	return 0;
7145 }
7146 
7147 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7148 {
7149 	int i;
7150 
7151 	if (len == 1)
7152 		return;
7153 	/* NOTE: fake 'exit' subprog should be updated as well. */
7154 	for (i = 0; i <= env->subprog_cnt; i++) {
7155 		if (env->subprog_info[i].start <= off)
7156 			continue;
7157 		env->subprog_info[i].start += len - 1;
7158 	}
7159 }
7160 
7161 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7162 					    const struct bpf_insn *patch, u32 len)
7163 {
7164 	struct bpf_prog *new_prog;
7165 
7166 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7167 	if (IS_ERR(new_prog)) {
7168 		if (PTR_ERR(new_prog) == -ERANGE)
7169 			verbose(env,
7170 				"insn %d cannot be patched due to 16-bit range\n",
7171 				env->insn_aux_data[off].orig_idx);
7172 		return NULL;
7173 	}
7174 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
7175 		return NULL;
7176 	adjust_subprog_starts(env, off, len);
7177 	return new_prog;
7178 }
7179 
7180 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7181 					      u32 off, u32 cnt)
7182 {
7183 	int i, j;
7184 
7185 	/* find first prog starting at or after off (first to remove) */
7186 	for (i = 0; i < env->subprog_cnt; i++)
7187 		if (env->subprog_info[i].start >= off)
7188 			break;
7189 	/* find first prog starting at or after off + cnt (first to stay) */
7190 	for (j = i; j < env->subprog_cnt; j++)
7191 		if (env->subprog_info[j].start >= off + cnt)
7192 			break;
7193 	/* if j doesn't start exactly at off + cnt, we are just removing
7194 	 * the front of previous prog
7195 	 */
7196 	if (env->subprog_info[j].start != off + cnt)
7197 		j--;
7198 
7199 	if (j > i) {
7200 		struct bpf_prog_aux *aux = env->prog->aux;
7201 		int move;
7202 
7203 		/* move fake 'exit' subprog as well */
7204 		move = env->subprog_cnt + 1 - j;
7205 
7206 		memmove(env->subprog_info + i,
7207 			env->subprog_info + j,
7208 			sizeof(*env->subprog_info) * move);
7209 		env->subprog_cnt -= j - i;
7210 
7211 		/* remove func_info */
7212 		if (aux->func_info) {
7213 			move = aux->func_info_cnt - j;
7214 
7215 			memmove(aux->func_info + i,
7216 				aux->func_info + j,
7217 				sizeof(*aux->func_info) * move);
7218 			aux->func_info_cnt -= j - i;
7219 			/* func_info->insn_off is set after all code rewrites,
7220 			 * in adjust_btf_func() - no need to adjust
7221 			 */
7222 		}
7223 	} else {
7224 		/* convert i from "first prog to remove" to "first to adjust" */
7225 		if (env->subprog_info[i].start == off)
7226 			i++;
7227 	}
7228 
7229 	/* update fake 'exit' subprog as well */
7230 	for (; i <= env->subprog_cnt; i++)
7231 		env->subprog_info[i].start -= cnt;
7232 
7233 	return 0;
7234 }
7235 
7236 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7237 				      u32 cnt)
7238 {
7239 	struct bpf_prog *prog = env->prog;
7240 	u32 i, l_off, l_cnt, nr_linfo;
7241 	struct bpf_line_info *linfo;
7242 
7243 	nr_linfo = prog->aux->nr_linfo;
7244 	if (!nr_linfo)
7245 		return 0;
7246 
7247 	linfo = prog->aux->linfo;
7248 
7249 	/* find first line info to remove, count lines to be removed */
7250 	for (i = 0; i < nr_linfo; i++)
7251 		if (linfo[i].insn_off >= off)
7252 			break;
7253 
7254 	l_off = i;
7255 	l_cnt = 0;
7256 	for (; i < nr_linfo; i++)
7257 		if (linfo[i].insn_off < off + cnt)
7258 			l_cnt++;
7259 		else
7260 			break;
7261 
7262 	/* First live insn doesn't match first live linfo, it needs to "inherit"
7263 	 * last removed linfo.  prog is already modified, so prog->len == off
7264 	 * means no live instructions after (tail of the program was removed).
7265 	 */
7266 	if (prog->len != off && l_cnt &&
7267 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7268 		l_cnt--;
7269 		linfo[--i].insn_off = off + cnt;
7270 	}
7271 
7272 	/* remove the line info which refer to the removed instructions */
7273 	if (l_cnt) {
7274 		memmove(linfo + l_off, linfo + i,
7275 			sizeof(*linfo) * (nr_linfo - i));
7276 
7277 		prog->aux->nr_linfo -= l_cnt;
7278 		nr_linfo = prog->aux->nr_linfo;
7279 	}
7280 
7281 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
7282 	for (i = l_off; i < nr_linfo; i++)
7283 		linfo[i].insn_off -= cnt;
7284 
7285 	/* fix up all subprogs (incl. 'exit') which start >= off */
7286 	for (i = 0; i <= env->subprog_cnt; i++)
7287 		if (env->subprog_info[i].linfo_idx > l_off) {
7288 			/* program may have started in the removed region but
7289 			 * may not be fully removed
7290 			 */
7291 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7292 				env->subprog_info[i].linfo_idx -= l_cnt;
7293 			else
7294 				env->subprog_info[i].linfo_idx = l_off;
7295 		}
7296 
7297 	return 0;
7298 }
7299 
7300 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7301 {
7302 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7303 	unsigned int orig_prog_len = env->prog->len;
7304 	int err;
7305 
7306 	if (bpf_prog_is_dev_bound(env->prog->aux))
7307 		bpf_prog_offload_remove_insns(env, off, cnt);
7308 
7309 	err = bpf_remove_insns(env->prog, off, cnt);
7310 	if (err)
7311 		return err;
7312 
7313 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7314 	if (err)
7315 		return err;
7316 
7317 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7318 	if (err)
7319 		return err;
7320 
7321 	memmove(aux_data + off,	aux_data + off + cnt,
7322 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7323 
7324 	return 0;
7325 }
7326 
7327 /* The verifier does more data flow analysis than llvm and will not
7328  * explore branches that are dead at run time. Malicious programs can
7329  * have dead code too. Therefore replace all dead at-run-time code
7330  * with 'ja -1'.
7331  *
7332  * Just nops are not optimal, e.g. if they would sit at the end of the
7333  * program and through another bug we would manage to jump there, then
7334  * we'd execute beyond program memory otherwise. Returning exception
7335  * code also wouldn't work since we can have subprogs where the dead
7336  * code could be located.
7337  */
7338 static void sanitize_dead_code(struct bpf_verifier_env *env)
7339 {
7340 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7341 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7342 	struct bpf_insn *insn = env->prog->insnsi;
7343 	const int insn_cnt = env->prog->len;
7344 	int i;
7345 
7346 	for (i = 0; i < insn_cnt; i++) {
7347 		if (aux_data[i].seen)
7348 			continue;
7349 		memcpy(insn + i, &trap, sizeof(trap));
7350 	}
7351 }
7352 
7353 static bool insn_is_cond_jump(u8 code)
7354 {
7355 	u8 op;
7356 
7357 	if (BPF_CLASS(code) == BPF_JMP32)
7358 		return true;
7359 
7360 	if (BPF_CLASS(code) != BPF_JMP)
7361 		return false;
7362 
7363 	op = BPF_OP(code);
7364 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7365 }
7366 
7367 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7368 {
7369 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7370 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7371 	struct bpf_insn *insn = env->prog->insnsi;
7372 	const int insn_cnt = env->prog->len;
7373 	int i;
7374 
7375 	for (i = 0; i < insn_cnt; i++, insn++) {
7376 		if (!insn_is_cond_jump(insn->code))
7377 			continue;
7378 
7379 		if (!aux_data[i + 1].seen)
7380 			ja.off = insn->off;
7381 		else if (!aux_data[i + 1 + insn->off].seen)
7382 			ja.off = 0;
7383 		else
7384 			continue;
7385 
7386 		if (bpf_prog_is_dev_bound(env->prog->aux))
7387 			bpf_prog_offload_replace_insn(env, i, &ja);
7388 
7389 		memcpy(insn, &ja, sizeof(ja));
7390 	}
7391 }
7392 
7393 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7394 {
7395 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7396 	int insn_cnt = env->prog->len;
7397 	int i, err;
7398 
7399 	for (i = 0; i < insn_cnt; i++) {
7400 		int j;
7401 
7402 		j = 0;
7403 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7404 			j++;
7405 		if (!j)
7406 			continue;
7407 
7408 		err = verifier_remove_insns(env, i, j);
7409 		if (err)
7410 			return err;
7411 		insn_cnt = env->prog->len;
7412 	}
7413 
7414 	return 0;
7415 }
7416 
7417 static int opt_remove_nops(struct bpf_verifier_env *env)
7418 {
7419 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7420 	struct bpf_insn *insn = env->prog->insnsi;
7421 	int insn_cnt = env->prog->len;
7422 	int i, err;
7423 
7424 	for (i = 0; i < insn_cnt; i++) {
7425 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7426 			continue;
7427 
7428 		err = verifier_remove_insns(env, i, 1);
7429 		if (err)
7430 			return err;
7431 		insn_cnt--;
7432 		i--;
7433 	}
7434 
7435 	return 0;
7436 }
7437 
7438 /* convert load instructions that access fields of a context type into a
7439  * sequence of instructions that access fields of the underlying structure:
7440  *     struct __sk_buff    -> struct sk_buff
7441  *     struct bpf_sock_ops -> struct sock
7442  */
7443 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7444 {
7445 	const struct bpf_verifier_ops *ops = env->ops;
7446 	int i, cnt, size, ctx_field_size, delta = 0;
7447 	const int insn_cnt = env->prog->len;
7448 	struct bpf_insn insn_buf[16], *insn;
7449 	u32 target_size, size_default, off;
7450 	struct bpf_prog *new_prog;
7451 	enum bpf_access_type type;
7452 	bool is_narrower_load;
7453 
7454 	if (ops->gen_prologue || env->seen_direct_write) {
7455 		if (!ops->gen_prologue) {
7456 			verbose(env, "bpf verifier is misconfigured\n");
7457 			return -EINVAL;
7458 		}
7459 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7460 					env->prog);
7461 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7462 			verbose(env, "bpf verifier is misconfigured\n");
7463 			return -EINVAL;
7464 		} else if (cnt) {
7465 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7466 			if (!new_prog)
7467 				return -ENOMEM;
7468 
7469 			env->prog = new_prog;
7470 			delta += cnt - 1;
7471 		}
7472 	}
7473 
7474 	if (bpf_prog_is_dev_bound(env->prog->aux))
7475 		return 0;
7476 
7477 	insn = env->prog->insnsi + delta;
7478 
7479 	for (i = 0; i < insn_cnt; i++, insn++) {
7480 		bpf_convert_ctx_access_t convert_ctx_access;
7481 
7482 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7483 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7484 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7485 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7486 			type = BPF_READ;
7487 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7488 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7489 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7490 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7491 			type = BPF_WRITE;
7492 		else
7493 			continue;
7494 
7495 		if (type == BPF_WRITE &&
7496 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7497 			struct bpf_insn patch[] = {
7498 				/* Sanitize suspicious stack slot with zero.
7499 				 * There are no memory dependencies for this store,
7500 				 * since it's only using frame pointer and immediate
7501 				 * constant of zero
7502 				 */
7503 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7504 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7505 					   0),
7506 				/* the original STX instruction will immediately
7507 				 * overwrite the same stack slot with appropriate value
7508 				 */
7509 				*insn,
7510 			};
7511 
7512 			cnt = ARRAY_SIZE(patch);
7513 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7514 			if (!new_prog)
7515 				return -ENOMEM;
7516 
7517 			delta    += cnt - 1;
7518 			env->prog = new_prog;
7519 			insn      = new_prog->insnsi + i + delta;
7520 			continue;
7521 		}
7522 
7523 		switch (env->insn_aux_data[i + delta].ptr_type) {
7524 		case PTR_TO_CTX:
7525 			if (!ops->convert_ctx_access)
7526 				continue;
7527 			convert_ctx_access = ops->convert_ctx_access;
7528 			break;
7529 		case PTR_TO_SOCKET:
7530 		case PTR_TO_SOCK_COMMON:
7531 			convert_ctx_access = bpf_sock_convert_ctx_access;
7532 			break;
7533 		case PTR_TO_TCP_SOCK:
7534 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7535 			break;
7536 		default:
7537 			continue;
7538 		}
7539 
7540 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7541 		size = BPF_LDST_BYTES(insn);
7542 
7543 		/* If the read access is a narrower load of the field,
7544 		 * convert to a 4/8-byte load, to minimum program type specific
7545 		 * convert_ctx_access changes. If conversion is successful,
7546 		 * we will apply proper mask to the result.
7547 		 */
7548 		is_narrower_load = size < ctx_field_size;
7549 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7550 		off = insn->off;
7551 		if (is_narrower_load) {
7552 			u8 size_code;
7553 
7554 			if (type == BPF_WRITE) {
7555 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7556 				return -EINVAL;
7557 			}
7558 
7559 			size_code = BPF_H;
7560 			if (ctx_field_size == 4)
7561 				size_code = BPF_W;
7562 			else if (ctx_field_size == 8)
7563 				size_code = BPF_DW;
7564 
7565 			insn->off = off & ~(size_default - 1);
7566 			insn->code = BPF_LDX | BPF_MEM | size_code;
7567 		}
7568 
7569 		target_size = 0;
7570 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7571 					 &target_size);
7572 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7573 		    (ctx_field_size && !target_size)) {
7574 			verbose(env, "bpf verifier is misconfigured\n");
7575 			return -EINVAL;
7576 		}
7577 
7578 		if (is_narrower_load && size < target_size) {
7579 			u8 shift = (off & (size_default - 1)) * 8;
7580 
7581 			if (ctx_field_size <= 4) {
7582 				if (shift)
7583 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7584 									insn->dst_reg,
7585 									shift);
7586 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7587 								(1 << size * 8) - 1);
7588 			} else {
7589 				if (shift)
7590 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7591 									insn->dst_reg,
7592 									shift);
7593 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7594 								(1ULL << size * 8) - 1);
7595 			}
7596 		}
7597 
7598 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7599 		if (!new_prog)
7600 			return -ENOMEM;
7601 
7602 		delta += cnt - 1;
7603 
7604 		/* keep walking new program and skip insns we just inserted */
7605 		env->prog = new_prog;
7606 		insn      = new_prog->insnsi + i + delta;
7607 	}
7608 
7609 	return 0;
7610 }
7611 
7612 static int jit_subprogs(struct bpf_verifier_env *env)
7613 {
7614 	struct bpf_prog *prog = env->prog, **func, *tmp;
7615 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7616 	struct bpf_insn *insn;
7617 	void *old_bpf_func;
7618 	int err;
7619 
7620 	if (env->subprog_cnt <= 1)
7621 		return 0;
7622 
7623 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7624 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7625 		    insn->src_reg != BPF_PSEUDO_CALL)
7626 			continue;
7627 		/* Upon error here we cannot fall back to interpreter but
7628 		 * need a hard reject of the program. Thus -EFAULT is
7629 		 * propagated in any case.
7630 		 */
7631 		subprog = find_subprog(env, i + insn->imm + 1);
7632 		if (subprog < 0) {
7633 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7634 				  i + insn->imm + 1);
7635 			return -EFAULT;
7636 		}
7637 		/* temporarily remember subprog id inside insn instead of
7638 		 * aux_data, since next loop will split up all insns into funcs
7639 		 */
7640 		insn->off = subprog;
7641 		/* remember original imm in case JIT fails and fallback
7642 		 * to interpreter will be needed
7643 		 */
7644 		env->insn_aux_data[i].call_imm = insn->imm;
7645 		/* point imm to __bpf_call_base+1 from JITs point of view */
7646 		insn->imm = 1;
7647 	}
7648 
7649 	err = bpf_prog_alloc_jited_linfo(prog);
7650 	if (err)
7651 		goto out_undo_insn;
7652 
7653 	err = -ENOMEM;
7654 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7655 	if (!func)
7656 		goto out_undo_insn;
7657 
7658 	for (i = 0; i < env->subprog_cnt; i++) {
7659 		subprog_start = subprog_end;
7660 		subprog_end = env->subprog_info[i + 1].start;
7661 
7662 		len = subprog_end - subprog_start;
7663 		/* BPF_PROG_RUN doesn't call subprogs directly,
7664 		 * hence main prog stats include the runtime of subprogs.
7665 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7666 		 * func[i]->aux->stats will never be accessed and stays NULL
7667 		 */
7668 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7669 		if (!func[i])
7670 			goto out_free;
7671 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7672 		       len * sizeof(struct bpf_insn));
7673 		func[i]->type = prog->type;
7674 		func[i]->len = len;
7675 		if (bpf_prog_calc_tag(func[i]))
7676 			goto out_free;
7677 		func[i]->is_func = 1;
7678 		func[i]->aux->func_idx = i;
7679 		/* the btf and func_info will be freed only at prog->aux */
7680 		func[i]->aux->btf = prog->aux->btf;
7681 		func[i]->aux->func_info = prog->aux->func_info;
7682 
7683 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7684 		 * Long term would need debug info to populate names
7685 		 */
7686 		func[i]->aux->name[0] = 'F';
7687 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7688 		func[i]->jit_requested = 1;
7689 		func[i]->aux->linfo = prog->aux->linfo;
7690 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7691 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7692 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7693 		func[i] = bpf_int_jit_compile(func[i]);
7694 		if (!func[i]->jited) {
7695 			err = -ENOTSUPP;
7696 			goto out_free;
7697 		}
7698 		cond_resched();
7699 	}
7700 	/* at this point all bpf functions were successfully JITed
7701 	 * now populate all bpf_calls with correct addresses and
7702 	 * run last pass of JIT
7703 	 */
7704 	for (i = 0; i < env->subprog_cnt; i++) {
7705 		insn = func[i]->insnsi;
7706 		for (j = 0; j < func[i]->len; j++, insn++) {
7707 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7708 			    insn->src_reg != BPF_PSEUDO_CALL)
7709 				continue;
7710 			subprog = insn->off;
7711 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7712 				    __bpf_call_base;
7713 		}
7714 
7715 		/* we use the aux data to keep a list of the start addresses
7716 		 * of the JITed images for each function in the program
7717 		 *
7718 		 * for some architectures, such as powerpc64, the imm field
7719 		 * might not be large enough to hold the offset of the start
7720 		 * address of the callee's JITed image from __bpf_call_base
7721 		 *
7722 		 * in such cases, we can lookup the start address of a callee
7723 		 * by using its subprog id, available from the off field of
7724 		 * the call instruction, as an index for this list
7725 		 */
7726 		func[i]->aux->func = func;
7727 		func[i]->aux->func_cnt = env->subprog_cnt;
7728 	}
7729 	for (i = 0; i < env->subprog_cnt; i++) {
7730 		old_bpf_func = func[i]->bpf_func;
7731 		tmp = bpf_int_jit_compile(func[i]);
7732 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7733 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7734 			err = -ENOTSUPP;
7735 			goto out_free;
7736 		}
7737 		cond_resched();
7738 	}
7739 
7740 	/* finally lock prog and jit images for all functions and
7741 	 * populate kallsysm
7742 	 */
7743 	for (i = 0; i < env->subprog_cnt; i++) {
7744 		bpf_prog_lock_ro(func[i]);
7745 		bpf_prog_kallsyms_add(func[i]);
7746 	}
7747 
7748 	/* Last step: make now unused interpreter insns from main
7749 	 * prog consistent for later dump requests, so they can
7750 	 * later look the same as if they were interpreted only.
7751 	 */
7752 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7753 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7754 		    insn->src_reg != BPF_PSEUDO_CALL)
7755 			continue;
7756 		insn->off = env->insn_aux_data[i].call_imm;
7757 		subprog = find_subprog(env, i + insn->off + 1);
7758 		insn->imm = subprog;
7759 	}
7760 
7761 	prog->jited = 1;
7762 	prog->bpf_func = func[0]->bpf_func;
7763 	prog->aux->func = func;
7764 	prog->aux->func_cnt = env->subprog_cnt;
7765 	bpf_prog_free_unused_jited_linfo(prog);
7766 	return 0;
7767 out_free:
7768 	for (i = 0; i < env->subprog_cnt; i++)
7769 		if (func[i])
7770 			bpf_jit_free(func[i]);
7771 	kfree(func);
7772 out_undo_insn:
7773 	/* cleanup main prog to be interpreted */
7774 	prog->jit_requested = 0;
7775 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7776 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7777 		    insn->src_reg != BPF_PSEUDO_CALL)
7778 			continue;
7779 		insn->off = 0;
7780 		insn->imm = env->insn_aux_data[i].call_imm;
7781 	}
7782 	bpf_prog_free_jited_linfo(prog);
7783 	return err;
7784 }
7785 
7786 static int fixup_call_args(struct bpf_verifier_env *env)
7787 {
7788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7789 	struct bpf_prog *prog = env->prog;
7790 	struct bpf_insn *insn = prog->insnsi;
7791 	int i, depth;
7792 #endif
7793 	int err = 0;
7794 
7795 	if (env->prog->jit_requested &&
7796 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7797 		err = jit_subprogs(env);
7798 		if (err == 0)
7799 			return 0;
7800 		if (err == -EFAULT)
7801 			return err;
7802 	}
7803 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7804 	for (i = 0; i < prog->len; i++, insn++) {
7805 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7806 		    insn->src_reg != BPF_PSEUDO_CALL)
7807 			continue;
7808 		depth = get_callee_stack_depth(env, insn, i);
7809 		if (depth < 0)
7810 			return depth;
7811 		bpf_patch_call_args(insn, depth);
7812 	}
7813 	err = 0;
7814 #endif
7815 	return err;
7816 }
7817 
7818 /* fixup insn->imm field of bpf_call instructions
7819  * and inline eligible helpers as explicit sequence of BPF instructions
7820  *
7821  * this function is called after eBPF program passed verification
7822  */
7823 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7824 {
7825 	struct bpf_prog *prog = env->prog;
7826 	struct bpf_insn *insn = prog->insnsi;
7827 	const struct bpf_func_proto *fn;
7828 	const int insn_cnt = prog->len;
7829 	const struct bpf_map_ops *ops;
7830 	struct bpf_insn_aux_data *aux;
7831 	struct bpf_insn insn_buf[16];
7832 	struct bpf_prog *new_prog;
7833 	struct bpf_map *map_ptr;
7834 	int i, cnt, delta = 0;
7835 
7836 	for (i = 0; i < insn_cnt; i++, insn++) {
7837 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7838 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7839 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7840 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7841 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7842 			struct bpf_insn mask_and_div[] = {
7843 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7844 				/* Rx div 0 -> 0 */
7845 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7846 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7847 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7848 				*insn,
7849 			};
7850 			struct bpf_insn mask_and_mod[] = {
7851 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7852 				/* Rx mod 0 -> Rx */
7853 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7854 				*insn,
7855 			};
7856 			struct bpf_insn *patchlet;
7857 
7858 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7859 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7860 				patchlet = mask_and_div + (is64 ? 1 : 0);
7861 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7862 			} else {
7863 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7864 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7865 			}
7866 
7867 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7868 			if (!new_prog)
7869 				return -ENOMEM;
7870 
7871 			delta    += cnt - 1;
7872 			env->prog = prog = new_prog;
7873 			insn      = new_prog->insnsi + i + delta;
7874 			continue;
7875 		}
7876 
7877 		if (BPF_CLASS(insn->code) == BPF_LD &&
7878 		    (BPF_MODE(insn->code) == BPF_ABS ||
7879 		     BPF_MODE(insn->code) == BPF_IND)) {
7880 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7881 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7882 				verbose(env, "bpf verifier is misconfigured\n");
7883 				return -EINVAL;
7884 			}
7885 
7886 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7887 			if (!new_prog)
7888 				return -ENOMEM;
7889 
7890 			delta    += cnt - 1;
7891 			env->prog = prog = new_prog;
7892 			insn      = new_prog->insnsi + i + delta;
7893 			continue;
7894 		}
7895 
7896 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7897 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7898 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7899 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7900 			struct bpf_insn insn_buf[16];
7901 			struct bpf_insn *patch = &insn_buf[0];
7902 			bool issrc, isneg;
7903 			u32 off_reg;
7904 
7905 			aux = &env->insn_aux_data[i + delta];
7906 			if (!aux->alu_state ||
7907 			    aux->alu_state == BPF_ALU_NON_POINTER)
7908 				continue;
7909 
7910 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7911 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7912 				BPF_ALU_SANITIZE_SRC;
7913 
7914 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7915 			if (isneg)
7916 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7917 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7918 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7919 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7920 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7921 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7922 			if (issrc) {
7923 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7924 							 off_reg);
7925 				insn->src_reg = BPF_REG_AX;
7926 			} else {
7927 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7928 							 BPF_REG_AX);
7929 			}
7930 			if (isneg)
7931 				insn->code = insn->code == code_add ?
7932 					     code_sub : code_add;
7933 			*patch++ = *insn;
7934 			if (issrc && isneg)
7935 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7936 			cnt = patch - insn_buf;
7937 
7938 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7939 			if (!new_prog)
7940 				return -ENOMEM;
7941 
7942 			delta    += cnt - 1;
7943 			env->prog = prog = new_prog;
7944 			insn      = new_prog->insnsi + i + delta;
7945 			continue;
7946 		}
7947 
7948 		if (insn->code != (BPF_JMP | BPF_CALL))
7949 			continue;
7950 		if (insn->src_reg == BPF_PSEUDO_CALL)
7951 			continue;
7952 
7953 		if (insn->imm == BPF_FUNC_get_route_realm)
7954 			prog->dst_needed = 1;
7955 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7956 			bpf_user_rnd_init_once();
7957 		if (insn->imm == BPF_FUNC_override_return)
7958 			prog->kprobe_override = 1;
7959 		if (insn->imm == BPF_FUNC_tail_call) {
7960 			/* If we tail call into other programs, we
7961 			 * cannot make any assumptions since they can
7962 			 * be replaced dynamically during runtime in
7963 			 * the program array.
7964 			 */
7965 			prog->cb_access = 1;
7966 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7967 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7968 
7969 			/* mark bpf_tail_call as different opcode to avoid
7970 			 * conditional branch in the interpeter for every normal
7971 			 * call and to prevent accidental JITing by JIT compiler
7972 			 * that doesn't support bpf_tail_call yet
7973 			 */
7974 			insn->imm = 0;
7975 			insn->code = BPF_JMP | BPF_TAIL_CALL;
7976 
7977 			aux = &env->insn_aux_data[i + delta];
7978 			if (!bpf_map_ptr_unpriv(aux))
7979 				continue;
7980 
7981 			/* instead of changing every JIT dealing with tail_call
7982 			 * emit two extra insns:
7983 			 * if (index >= max_entries) goto out;
7984 			 * index &= array->index_mask;
7985 			 * to avoid out-of-bounds cpu speculation
7986 			 */
7987 			if (bpf_map_ptr_poisoned(aux)) {
7988 				verbose(env, "tail_call abusing map_ptr\n");
7989 				return -EINVAL;
7990 			}
7991 
7992 			map_ptr = BPF_MAP_PTR(aux->map_state);
7993 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7994 						  map_ptr->max_entries, 2);
7995 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7996 						    container_of(map_ptr,
7997 								 struct bpf_array,
7998 								 map)->index_mask);
7999 			insn_buf[2] = *insn;
8000 			cnt = 3;
8001 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8002 			if (!new_prog)
8003 				return -ENOMEM;
8004 
8005 			delta    += cnt - 1;
8006 			env->prog = prog = new_prog;
8007 			insn      = new_prog->insnsi + i + delta;
8008 			continue;
8009 		}
8010 
8011 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8012 		 * and other inlining handlers are currently limited to 64 bit
8013 		 * only.
8014 		 */
8015 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
8016 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
8017 		     insn->imm == BPF_FUNC_map_update_elem ||
8018 		     insn->imm == BPF_FUNC_map_delete_elem ||
8019 		     insn->imm == BPF_FUNC_map_push_elem   ||
8020 		     insn->imm == BPF_FUNC_map_pop_elem    ||
8021 		     insn->imm == BPF_FUNC_map_peek_elem)) {
8022 			aux = &env->insn_aux_data[i + delta];
8023 			if (bpf_map_ptr_poisoned(aux))
8024 				goto patch_call_imm;
8025 
8026 			map_ptr = BPF_MAP_PTR(aux->map_state);
8027 			ops = map_ptr->ops;
8028 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
8029 			    ops->map_gen_lookup) {
8030 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8031 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8032 					verbose(env, "bpf verifier is misconfigured\n");
8033 					return -EINVAL;
8034 				}
8035 
8036 				new_prog = bpf_patch_insn_data(env, i + delta,
8037 							       insn_buf, cnt);
8038 				if (!new_prog)
8039 					return -ENOMEM;
8040 
8041 				delta    += cnt - 1;
8042 				env->prog = prog = new_prog;
8043 				insn      = new_prog->insnsi + i + delta;
8044 				continue;
8045 			}
8046 
8047 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8048 				     (void *(*)(struct bpf_map *map, void *key))NULL));
8049 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8050 				     (int (*)(struct bpf_map *map, void *key))NULL));
8051 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8052 				     (int (*)(struct bpf_map *map, void *key, void *value,
8053 					      u64 flags))NULL));
8054 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8055 				     (int (*)(struct bpf_map *map, void *value,
8056 					      u64 flags))NULL));
8057 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8058 				     (int (*)(struct bpf_map *map, void *value))NULL));
8059 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8060 				     (int (*)(struct bpf_map *map, void *value))NULL));
8061 
8062 			switch (insn->imm) {
8063 			case BPF_FUNC_map_lookup_elem:
8064 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8065 					    __bpf_call_base;
8066 				continue;
8067 			case BPF_FUNC_map_update_elem:
8068 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8069 					    __bpf_call_base;
8070 				continue;
8071 			case BPF_FUNC_map_delete_elem:
8072 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8073 					    __bpf_call_base;
8074 				continue;
8075 			case BPF_FUNC_map_push_elem:
8076 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8077 					    __bpf_call_base;
8078 				continue;
8079 			case BPF_FUNC_map_pop_elem:
8080 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8081 					    __bpf_call_base;
8082 				continue;
8083 			case BPF_FUNC_map_peek_elem:
8084 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8085 					    __bpf_call_base;
8086 				continue;
8087 			}
8088 
8089 			goto patch_call_imm;
8090 		}
8091 
8092 patch_call_imm:
8093 		fn = env->ops->get_func_proto(insn->imm, env->prog);
8094 		/* all functions that have prototype and verifier allowed
8095 		 * programs to call them, must be real in-kernel functions
8096 		 */
8097 		if (!fn->func) {
8098 			verbose(env,
8099 				"kernel subsystem misconfigured func %s#%d\n",
8100 				func_id_name(insn->imm), insn->imm);
8101 			return -EFAULT;
8102 		}
8103 		insn->imm = fn->func - __bpf_call_base;
8104 	}
8105 
8106 	return 0;
8107 }
8108 
8109 static void free_states(struct bpf_verifier_env *env)
8110 {
8111 	struct bpf_verifier_state_list *sl, *sln;
8112 	int i;
8113 
8114 	sl = env->free_list;
8115 	while (sl) {
8116 		sln = sl->next;
8117 		free_verifier_state(&sl->state, false);
8118 		kfree(sl);
8119 		sl = sln;
8120 	}
8121 
8122 	if (!env->explored_states)
8123 		return;
8124 
8125 	for (i = 0; i < env->prog->len; i++) {
8126 		sl = env->explored_states[i];
8127 
8128 		if (sl)
8129 			while (sl != STATE_LIST_MARK) {
8130 				sln = sl->next;
8131 				free_verifier_state(&sl->state, false);
8132 				kfree(sl);
8133 				sl = sln;
8134 			}
8135 	}
8136 
8137 	kvfree(env->explored_states);
8138 }
8139 
8140 static void print_verification_stats(struct bpf_verifier_env *env)
8141 {
8142 	int i;
8143 
8144 	if (env->log.level & BPF_LOG_STATS) {
8145 		verbose(env, "verification time %lld usec\n",
8146 			div_u64(env->verification_time, 1000));
8147 		verbose(env, "stack depth ");
8148 		for (i = 0; i < env->subprog_cnt; i++) {
8149 			u32 depth = env->subprog_info[i].stack_depth;
8150 
8151 			verbose(env, "%d", depth);
8152 			if (i + 1 < env->subprog_cnt)
8153 				verbose(env, "+");
8154 		}
8155 		verbose(env, "\n");
8156 	}
8157 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8158 		"total_states %d peak_states %d mark_read %d\n",
8159 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8160 		env->max_states_per_insn, env->total_states,
8161 		env->peak_states, env->longest_mark_read_walk);
8162 }
8163 
8164 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8165 	      union bpf_attr __user *uattr)
8166 {
8167 	u64 start_time = ktime_get_ns();
8168 	struct bpf_verifier_env *env;
8169 	struct bpf_verifier_log *log;
8170 	int i, len, ret = -EINVAL;
8171 	bool is_priv;
8172 
8173 	/* no program is valid */
8174 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8175 		return -EINVAL;
8176 
8177 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
8178 	 * allocate/free it every time bpf_check() is called
8179 	 */
8180 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8181 	if (!env)
8182 		return -ENOMEM;
8183 	log = &env->log;
8184 
8185 	len = (*prog)->len;
8186 	env->insn_aux_data =
8187 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8188 	ret = -ENOMEM;
8189 	if (!env->insn_aux_data)
8190 		goto err_free_env;
8191 	for (i = 0; i < len; i++)
8192 		env->insn_aux_data[i].orig_idx = i;
8193 	env->prog = *prog;
8194 	env->ops = bpf_verifier_ops[env->prog->type];
8195 	is_priv = capable(CAP_SYS_ADMIN);
8196 
8197 	/* grab the mutex to protect few globals used by verifier */
8198 	if (!is_priv)
8199 		mutex_lock(&bpf_verifier_lock);
8200 
8201 	if (attr->log_level || attr->log_buf || attr->log_size) {
8202 		/* user requested verbose verifier output
8203 		 * and supplied buffer to store the verification trace
8204 		 */
8205 		log->level = attr->log_level;
8206 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8207 		log->len_total = attr->log_size;
8208 
8209 		ret = -EINVAL;
8210 		/* log attributes have to be sane */
8211 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8212 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8213 			goto err_unlock;
8214 	}
8215 
8216 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8217 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8218 		env->strict_alignment = true;
8219 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8220 		env->strict_alignment = false;
8221 
8222 	env->allow_ptr_leaks = is_priv;
8223 
8224 	ret = replace_map_fd_with_map_ptr(env);
8225 	if (ret < 0)
8226 		goto skip_full_check;
8227 
8228 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
8229 		ret = bpf_prog_offload_verifier_prep(env->prog);
8230 		if (ret)
8231 			goto skip_full_check;
8232 	}
8233 
8234 	env->explored_states = kvcalloc(env->prog->len,
8235 				       sizeof(struct bpf_verifier_state_list *),
8236 				       GFP_USER);
8237 	ret = -ENOMEM;
8238 	if (!env->explored_states)
8239 		goto skip_full_check;
8240 
8241 	ret = check_subprogs(env);
8242 	if (ret < 0)
8243 		goto skip_full_check;
8244 
8245 	ret = check_btf_info(env, attr, uattr);
8246 	if (ret < 0)
8247 		goto skip_full_check;
8248 
8249 	ret = check_cfg(env);
8250 	if (ret < 0)
8251 		goto skip_full_check;
8252 
8253 	ret = do_check(env);
8254 	if (env->cur_state) {
8255 		free_verifier_state(env->cur_state, true);
8256 		env->cur_state = NULL;
8257 	}
8258 
8259 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8260 		ret = bpf_prog_offload_finalize(env);
8261 
8262 skip_full_check:
8263 	while (!pop_stack(env, NULL, NULL));
8264 	free_states(env);
8265 
8266 	if (ret == 0)
8267 		ret = check_max_stack_depth(env);
8268 
8269 	/* instruction rewrites happen after this point */
8270 	if (is_priv) {
8271 		if (ret == 0)
8272 			opt_hard_wire_dead_code_branches(env);
8273 		if (ret == 0)
8274 			ret = opt_remove_dead_code(env);
8275 		if (ret == 0)
8276 			ret = opt_remove_nops(env);
8277 	} else {
8278 		if (ret == 0)
8279 			sanitize_dead_code(env);
8280 	}
8281 
8282 	if (ret == 0)
8283 		/* program is valid, convert *(u32*)(ctx + off) accesses */
8284 		ret = convert_ctx_accesses(env);
8285 
8286 	if (ret == 0)
8287 		ret = fixup_bpf_calls(env);
8288 
8289 	if (ret == 0)
8290 		ret = fixup_call_args(env);
8291 
8292 	env->verification_time = ktime_get_ns() - start_time;
8293 	print_verification_stats(env);
8294 
8295 	if (log->level && bpf_verifier_log_full(log))
8296 		ret = -ENOSPC;
8297 	if (log->level && !log->ubuf) {
8298 		ret = -EFAULT;
8299 		goto err_release_maps;
8300 	}
8301 
8302 	if (ret == 0 && env->used_map_cnt) {
8303 		/* if program passed verifier, update used_maps in bpf_prog_info */
8304 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8305 							  sizeof(env->used_maps[0]),
8306 							  GFP_KERNEL);
8307 
8308 		if (!env->prog->aux->used_maps) {
8309 			ret = -ENOMEM;
8310 			goto err_release_maps;
8311 		}
8312 
8313 		memcpy(env->prog->aux->used_maps, env->used_maps,
8314 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
8315 		env->prog->aux->used_map_cnt = env->used_map_cnt;
8316 
8317 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
8318 		 * bpf_ld_imm64 instructions
8319 		 */
8320 		convert_pseudo_ld_imm64(env);
8321 	}
8322 
8323 	if (ret == 0)
8324 		adjust_btf_func(env);
8325 
8326 err_release_maps:
8327 	if (!env->prog->aux->used_maps)
8328 		/* if we didn't copy map pointers into bpf_prog_info, release
8329 		 * them now. Otherwise free_used_maps() will release them.
8330 		 */
8331 		release_maps(env);
8332 	*prog = env->prog;
8333 err_unlock:
8334 	if (!is_priv)
8335 		mutex_unlock(&bpf_verifier_lock);
8336 	vfree(env->insn_aux_data);
8337 err_free_env:
8338 	kfree(env);
8339 	return ret;
8340 }
8341