xref: /openbmc/linux/kernel/bpf/verifier.c (revision 4f57332d6a551185ba729617f04455e83fbe4e41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 	struct bpf_map_value_off_desc *kptr_off_desc;
266 	u8 uninit_dynptr_regno;
267 };
268 
269 struct btf *btf_vmlinux;
270 
271 static DEFINE_MUTEX(bpf_verifier_lock);
272 
273 static const struct bpf_line_info *
274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 	const struct bpf_line_info *linfo;
277 	const struct bpf_prog *prog;
278 	u32 i, nr_linfo;
279 
280 	prog = env->prog;
281 	nr_linfo = prog->aux->nr_linfo;
282 
283 	if (!nr_linfo || insn_off >= prog->len)
284 		return NULL;
285 
286 	linfo = prog->aux->linfo;
287 	for (i = 1; i < nr_linfo; i++)
288 		if (insn_off < linfo[i].insn_off)
289 			break;
290 
291 	return &linfo[i - 1];
292 }
293 
294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 		       va_list args)
296 {
297 	unsigned int n;
298 
299 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300 
301 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 		  "verifier log line truncated - local buffer too short\n");
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306 
307 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 		return;
309 	}
310 
311 	n = min(log->len_total - log->len_used - 1, n);
312 	log->kbuf[n] = '\0';
313 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 		log->len_used += n;
315 	else
316 		log->ubuf = NULL;
317 }
318 
319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 	char zero = 0;
322 
323 	if (!bpf_verifier_log_needed(log))
324 		return;
325 
326 	log->len_used = new_pos;
327 	if (put_user(zero, log->ubuf + new_pos))
328 		log->ubuf = NULL;
329 }
330 
331 /* log_level controls verbosity level of eBPF verifier.
332  * bpf_verifier_log_write() is used to dump the verification trace to the log,
333  * so the user can figure out what's wrong with the program
334  */
335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 					   const char *fmt, ...)
337 {
338 	va_list args;
339 
340 	if (!bpf_verifier_log_needed(&env->log))
341 		return;
342 
343 	va_start(args, fmt);
344 	bpf_verifier_vlog(&env->log, fmt, args);
345 	va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348 
349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 	struct bpf_verifier_env *env = private_data;
352 	va_list args;
353 
354 	if (!bpf_verifier_log_needed(&env->log))
355 		return;
356 
357 	va_start(args, fmt);
358 	bpf_verifier_vlog(&env->log, fmt, args);
359 	va_end(args);
360 }
361 
362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 			    const char *fmt, ...)
364 {
365 	va_list args;
366 
367 	if (!bpf_verifier_log_needed(log))
368 		return;
369 
370 	va_start(args, fmt);
371 	bpf_verifier_vlog(log, fmt, args);
372 	va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375 
376 static const char *ltrim(const char *s)
377 {
378 	while (isspace(*s))
379 		s++;
380 
381 	return s;
382 }
383 
384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 					 u32 insn_off,
386 					 const char *prefix_fmt, ...)
387 {
388 	const struct bpf_line_info *linfo;
389 
390 	if (!bpf_verifier_log_needed(&env->log))
391 		return;
392 
393 	linfo = find_linfo(env, insn_off);
394 	if (!linfo || linfo == env->prev_linfo)
395 		return;
396 
397 	if (prefix_fmt) {
398 		va_list args;
399 
400 		va_start(args, prefix_fmt);
401 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 		va_end(args);
403 	}
404 
405 	verbose(env, "%s\n",
406 		ltrim(btf_name_by_offset(env->prog->aux->btf,
407 					 linfo->line_off)));
408 
409 	env->prev_linfo = linfo;
410 }
411 
412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 				   struct bpf_reg_state *reg,
414 				   struct tnum *range, const char *ctx,
415 				   const char *reg_name)
416 {
417 	char tn_buf[48];
418 
419 	verbose(env, "At %s the register %s ", ctx, reg_name);
420 	if (!tnum_is_unknown(reg->var_off)) {
421 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 		verbose(env, "has value %s", tn_buf);
423 	} else {
424 		verbose(env, "has unknown scalar value");
425 	}
426 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 	verbose(env, " should have been in %s\n", tn_buf);
428 }
429 
430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 	type = base_type(type);
433 	return type == PTR_TO_PACKET ||
434 	       type == PTR_TO_PACKET_META;
435 }
436 
437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 	return type == PTR_TO_SOCKET ||
440 		type == PTR_TO_SOCK_COMMON ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_XDP_SOCK;
443 }
444 
445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 	return type == PTR_TO_SOCKET ||
448 		type == PTR_TO_TCP_SOCK ||
449 		type == PTR_TO_MAP_VALUE ||
450 		type == PTR_TO_MAP_KEY ||
451 		type == PTR_TO_SOCK_COMMON;
452 }
453 
454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455 {
456 	return reg->type == PTR_TO_MAP_VALUE &&
457 		map_value_has_spin_lock(reg->map_ptr);
458 }
459 
460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461 {
462 	type = base_type(type);
463 	return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK ||
464 		type == PTR_TO_MEM || type == PTR_TO_BTF_ID;
465 }
466 
467 static bool type_is_rdonly_mem(u32 type)
468 {
469 	return type & MEM_RDONLY;
470 }
471 
472 static bool type_may_be_null(u32 type)
473 {
474 	return type & PTR_MAYBE_NULL;
475 }
476 
477 static bool is_acquire_function(enum bpf_func_id func_id,
478 				const struct bpf_map *map)
479 {
480 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481 
482 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 	    func_id == BPF_FUNC_sk_lookup_udp ||
484 	    func_id == BPF_FUNC_skc_lookup_tcp ||
485 	    func_id == BPF_FUNC_ringbuf_reserve ||
486 	    func_id == BPF_FUNC_kptr_xchg)
487 		return true;
488 
489 	if (func_id == BPF_FUNC_map_lookup_elem &&
490 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
491 	     map_type == BPF_MAP_TYPE_SOCKHASH))
492 		return true;
493 
494 	return false;
495 }
496 
497 static bool is_ptr_cast_function(enum bpf_func_id func_id)
498 {
499 	return func_id == BPF_FUNC_tcp_sock ||
500 		func_id == BPF_FUNC_sk_fullsock ||
501 		func_id == BPF_FUNC_skc_to_tcp_sock ||
502 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
503 		func_id == BPF_FUNC_skc_to_udp6_sock ||
504 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
505 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
506 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
507 }
508 
509 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_dynptr_data;
512 }
513 
514 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
515 					const struct bpf_map *map)
516 {
517 	int ref_obj_uses = 0;
518 
519 	if (is_ptr_cast_function(func_id))
520 		ref_obj_uses++;
521 	if (is_acquire_function(func_id, map))
522 		ref_obj_uses++;
523 	if (is_dynptr_ref_function(func_id))
524 		ref_obj_uses++;
525 
526 	return ref_obj_uses > 1;
527 }
528 
529 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
530 {
531 	return BPF_CLASS(insn->code) == BPF_STX &&
532 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
533 	       insn->imm == BPF_CMPXCHG;
534 }
535 
536 /* string representation of 'enum bpf_reg_type'
537  *
538  * Note that reg_type_str() can not appear more than once in a single verbose()
539  * statement.
540  */
541 static const char *reg_type_str(struct bpf_verifier_env *env,
542 				enum bpf_reg_type type)
543 {
544 	char postfix[16] = {0}, prefix[32] = {0};
545 	static const char * const str[] = {
546 		[NOT_INIT]		= "?",
547 		[SCALAR_VALUE]		= "scalar",
548 		[PTR_TO_CTX]		= "ctx",
549 		[CONST_PTR_TO_MAP]	= "map_ptr",
550 		[PTR_TO_MAP_VALUE]	= "map_value",
551 		[PTR_TO_STACK]		= "fp",
552 		[PTR_TO_PACKET]		= "pkt",
553 		[PTR_TO_PACKET_META]	= "pkt_meta",
554 		[PTR_TO_PACKET_END]	= "pkt_end",
555 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
556 		[PTR_TO_SOCKET]		= "sock",
557 		[PTR_TO_SOCK_COMMON]	= "sock_common",
558 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
559 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
560 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
561 		[PTR_TO_BTF_ID]		= "ptr_",
562 		[PTR_TO_MEM]		= "mem",
563 		[PTR_TO_BUF]		= "buf",
564 		[PTR_TO_FUNC]		= "func",
565 		[PTR_TO_MAP_KEY]	= "map_key",
566 		[PTR_TO_DYNPTR]		= "dynptr_ptr",
567 	};
568 
569 	if (type & PTR_MAYBE_NULL) {
570 		if (base_type(type) == PTR_TO_BTF_ID)
571 			strncpy(postfix, "or_null_", 16);
572 		else
573 			strncpy(postfix, "_or_null", 16);
574 	}
575 
576 	if (type & MEM_RDONLY)
577 		strncpy(prefix, "rdonly_", 32);
578 	if (type & MEM_ALLOC)
579 		strncpy(prefix, "alloc_", 32);
580 	if (type & MEM_USER)
581 		strncpy(prefix, "user_", 32);
582 	if (type & MEM_PERCPU)
583 		strncpy(prefix, "percpu_", 32);
584 	if (type & PTR_UNTRUSTED)
585 		strncpy(prefix, "untrusted_", 32);
586 
587 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
588 		 prefix, str[base_type(type)], postfix);
589 	return env->type_str_buf;
590 }
591 
592 static char slot_type_char[] = {
593 	[STACK_INVALID]	= '?',
594 	[STACK_SPILL]	= 'r',
595 	[STACK_MISC]	= 'm',
596 	[STACK_ZERO]	= '0',
597 	[STACK_DYNPTR]	= 'd',
598 };
599 
600 static void print_liveness(struct bpf_verifier_env *env,
601 			   enum bpf_reg_liveness live)
602 {
603 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
604 	    verbose(env, "_");
605 	if (live & REG_LIVE_READ)
606 		verbose(env, "r");
607 	if (live & REG_LIVE_WRITTEN)
608 		verbose(env, "w");
609 	if (live & REG_LIVE_DONE)
610 		verbose(env, "D");
611 }
612 
613 static int get_spi(s32 off)
614 {
615 	return (-off - 1) / BPF_REG_SIZE;
616 }
617 
618 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
619 {
620 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
621 
622 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
623 	 * within [0, allocated_stack).
624 	 *
625 	 * Please note that the spi grows downwards. For example, a dynptr
626 	 * takes the size of two stack slots; the first slot will be at
627 	 * spi and the second slot will be at spi - 1.
628 	 */
629 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
630 }
631 
632 static struct bpf_func_state *func(struct bpf_verifier_env *env,
633 				   const struct bpf_reg_state *reg)
634 {
635 	struct bpf_verifier_state *cur = env->cur_state;
636 
637 	return cur->frame[reg->frameno];
638 }
639 
640 static const char *kernel_type_name(const struct btf* btf, u32 id)
641 {
642 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
643 }
644 
645 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
646 {
647 	env->scratched_regs |= 1U << regno;
648 }
649 
650 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
651 {
652 	env->scratched_stack_slots |= 1ULL << spi;
653 }
654 
655 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
656 {
657 	return (env->scratched_regs >> regno) & 1;
658 }
659 
660 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
661 {
662 	return (env->scratched_stack_slots >> regno) & 1;
663 }
664 
665 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
666 {
667 	return env->scratched_regs || env->scratched_stack_slots;
668 }
669 
670 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
671 {
672 	env->scratched_regs = 0U;
673 	env->scratched_stack_slots = 0ULL;
674 }
675 
676 /* Used for printing the entire verifier state. */
677 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
678 {
679 	env->scratched_regs = ~0U;
680 	env->scratched_stack_slots = ~0ULL;
681 }
682 
683 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
684 {
685 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
686 	case DYNPTR_TYPE_LOCAL:
687 		return BPF_DYNPTR_TYPE_LOCAL;
688 	case DYNPTR_TYPE_RINGBUF:
689 		return BPF_DYNPTR_TYPE_RINGBUF;
690 	default:
691 		return BPF_DYNPTR_TYPE_INVALID;
692 	}
693 }
694 
695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
696 {
697 	return type == BPF_DYNPTR_TYPE_RINGBUF;
698 }
699 
700 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
701 				   enum bpf_arg_type arg_type, int insn_idx)
702 {
703 	struct bpf_func_state *state = func(env, reg);
704 	enum bpf_dynptr_type type;
705 	int spi, i, id;
706 
707 	spi = get_spi(reg->off);
708 
709 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
710 		return -EINVAL;
711 
712 	for (i = 0; i < BPF_REG_SIZE; i++) {
713 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
714 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
715 	}
716 
717 	type = arg_to_dynptr_type(arg_type);
718 	if (type == BPF_DYNPTR_TYPE_INVALID)
719 		return -EINVAL;
720 
721 	state->stack[spi].spilled_ptr.dynptr.first_slot = true;
722 	state->stack[spi].spilled_ptr.dynptr.type = type;
723 	state->stack[spi - 1].spilled_ptr.dynptr.type = type;
724 
725 	if (dynptr_type_refcounted(type)) {
726 		/* The id is used to track proper releasing */
727 		id = acquire_reference_state(env, insn_idx);
728 		if (id < 0)
729 			return id;
730 
731 		state->stack[spi].spilled_ptr.id = id;
732 		state->stack[spi - 1].spilled_ptr.id = id;
733 	}
734 
735 	return 0;
736 }
737 
738 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
739 {
740 	struct bpf_func_state *state = func(env, reg);
741 	int spi, i;
742 
743 	spi = get_spi(reg->off);
744 
745 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
746 		return -EINVAL;
747 
748 	for (i = 0; i < BPF_REG_SIZE; i++) {
749 		state->stack[spi].slot_type[i] = STACK_INVALID;
750 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
751 	}
752 
753 	/* Invalidate any slices associated with this dynptr */
754 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
755 		release_reference(env, state->stack[spi].spilled_ptr.id);
756 		state->stack[spi].spilled_ptr.id = 0;
757 		state->stack[spi - 1].spilled_ptr.id = 0;
758 	}
759 
760 	state->stack[spi].spilled_ptr.dynptr.first_slot = false;
761 	state->stack[spi].spilled_ptr.dynptr.type = 0;
762 	state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
763 
764 	return 0;
765 }
766 
767 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
768 {
769 	struct bpf_func_state *state = func(env, reg);
770 	int spi = get_spi(reg->off);
771 	int i;
772 
773 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
774 		return true;
775 
776 	for (i = 0; i < BPF_REG_SIZE; i++) {
777 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
778 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
779 			return false;
780 	}
781 
782 	return true;
783 }
784 
785 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
786 			      struct bpf_reg_state *reg)
787 {
788 	struct bpf_func_state *state = func(env, reg);
789 	int spi = get_spi(reg->off);
790 	int i;
791 
792 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
793 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
794 		return false;
795 
796 	for (i = 0; i < BPF_REG_SIZE; i++) {
797 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
798 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
799 			return false;
800 	}
801 
802 	return true;
803 }
804 
805 bool is_dynptr_type_expected(struct bpf_verifier_env *env,
806 			     struct bpf_reg_state *reg,
807 			     enum bpf_arg_type arg_type)
808 {
809 	struct bpf_func_state *state = func(env, reg);
810 	enum bpf_dynptr_type dynptr_type;
811 	int spi = get_spi(reg->off);
812 
813 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
814 	if (arg_type == ARG_PTR_TO_DYNPTR)
815 		return true;
816 
817 	dynptr_type = arg_to_dynptr_type(arg_type);
818 
819 	return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
820 }
821 
822 /* The reg state of a pointer or a bounded scalar was saved when
823  * it was spilled to the stack.
824  */
825 static bool is_spilled_reg(const struct bpf_stack_state *stack)
826 {
827 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
828 }
829 
830 static void scrub_spilled_slot(u8 *stype)
831 {
832 	if (*stype != STACK_INVALID)
833 		*stype = STACK_MISC;
834 }
835 
836 static void print_verifier_state(struct bpf_verifier_env *env,
837 				 const struct bpf_func_state *state,
838 				 bool print_all)
839 {
840 	const struct bpf_reg_state *reg;
841 	enum bpf_reg_type t;
842 	int i;
843 
844 	if (state->frameno)
845 		verbose(env, " frame%d:", state->frameno);
846 	for (i = 0; i < MAX_BPF_REG; i++) {
847 		reg = &state->regs[i];
848 		t = reg->type;
849 		if (t == NOT_INIT)
850 			continue;
851 		if (!print_all && !reg_scratched(env, i))
852 			continue;
853 		verbose(env, " R%d", i);
854 		print_liveness(env, reg->live);
855 		verbose(env, "=");
856 		if (t == SCALAR_VALUE && reg->precise)
857 			verbose(env, "P");
858 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
859 		    tnum_is_const(reg->var_off)) {
860 			/* reg->off should be 0 for SCALAR_VALUE */
861 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
862 			verbose(env, "%lld", reg->var_off.value + reg->off);
863 		} else {
864 			const char *sep = "";
865 
866 			verbose(env, "%s", reg_type_str(env, t));
867 			if (base_type(t) == PTR_TO_BTF_ID)
868 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
869 			verbose(env, "(");
870 /*
871  * _a stands for append, was shortened to avoid multiline statements below.
872  * This macro is used to output a comma separated list of attributes.
873  */
874 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
875 
876 			if (reg->id)
877 				verbose_a("id=%d", reg->id);
878 			if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
879 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
880 			if (t != SCALAR_VALUE)
881 				verbose_a("off=%d", reg->off);
882 			if (type_is_pkt_pointer(t))
883 				verbose_a("r=%d", reg->range);
884 			else if (base_type(t) == CONST_PTR_TO_MAP ||
885 				 base_type(t) == PTR_TO_MAP_KEY ||
886 				 base_type(t) == PTR_TO_MAP_VALUE)
887 				verbose_a("ks=%d,vs=%d",
888 					  reg->map_ptr->key_size,
889 					  reg->map_ptr->value_size);
890 			if (tnum_is_const(reg->var_off)) {
891 				/* Typically an immediate SCALAR_VALUE, but
892 				 * could be a pointer whose offset is too big
893 				 * for reg->off
894 				 */
895 				verbose_a("imm=%llx", reg->var_off.value);
896 			} else {
897 				if (reg->smin_value != reg->umin_value &&
898 				    reg->smin_value != S64_MIN)
899 					verbose_a("smin=%lld", (long long)reg->smin_value);
900 				if (reg->smax_value != reg->umax_value &&
901 				    reg->smax_value != S64_MAX)
902 					verbose_a("smax=%lld", (long long)reg->smax_value);
903 				if (reg->umin_value != 0)
904 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
905 				if (reg->umax_value != U64_MAX)
906 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
907 				if (!tnum_is_unknown(reg->var_off)) {
908 					char tn_buf[48];
909 
910 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
911 					verbose_a("var_off=%s", tn_buf);
912 				}
913 				if (reg->s32_min_value != reg->smin_value &&
914 				    reg->s32_min_value != S32_MIN)
915 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
916 				if (reg->s32_max_value != reg->smax_value &&
917 				    reg->s32_max_value != S32_MAX)
918 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
919 				if (reg->u32_min_value != reg->umin_value &&
920 				    reg->u32_min_value != U32_MIN)
921 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
922 				if (reg->u32_max_value != reg->umax_value &&
923 				    reg->u32_max_value != U32_MAX)
924 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
925 			}
926 #undef verbose_a
927 
928 			verbose(env, ")");
929 		}
930 	}
931 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
932 		char types_buf[BPF_REG_SIZE + 1];
933 		bool valid = false;
934 		int j;
935 
936 		for (j = 0; j < BPF_REG_SIZE; j++) {
937 			if (state->stack[i].slot_type[j] != STACK_INVALID)
938 				valid = true;
939 			types_buf[j] = slot_type_char[
940 					state->stack[i].slot_type[j]];
941 		}
942 		types_buf[BPF_REG_SIZE] = 0;
943 		if (!valid)
944 			continue;
945 		if (!print_all && !stack_slot_scratched(env, i))
946 			continue;
947 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
948 		print_liveness(env, state->stack[i].spilled_ptr.live);
949 		if (is_spilled_reg(&state->stack[i])) {
950 			reg = &state->stack[i].spilled_ptr;
951 			t = reg->type;
952 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
953 			if (t == SCALAR_VALUE && reg->precise)
954 				verbose(env, "P");
955 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
956 				verbose(env, "%lld", reg->var_off.value + reg->off);
957 		} else {
958 			verbose(env, "=%s", types_buf);
959 		}
960 	}
961 	if (state->acquired_refs && state->refs[0].id) {
962 		verbose(env, " refs=%d", state->refs[0].id);
963 		for (i = 1; i < state->acquired_refs; i++)
964 			if (state->refs[i].id)
965 				verbose(env, ",%d", state->refs[i].id);
966 	}
967 	if (state->in_callback_fn)
968 		verbose(env, " cb");
969 	if (state->in_async_callback_fn)
970 		verbose(env, " async_cb");
971 	verbose(env, "\n");
972 	mark_verifier_state_clean(env);
973 }
974 
975 static inline u32 vlog_alignment(u32 pos)
976 {
977 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
978 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
979 }
980 
981 static void print_insn_state(struct bpf_verifier_env *env,
982 			     const struct bpf_func_state *state)
983 {
984 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
985 		/* remove new line character */
986 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
987 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
988 	} else {
989 		verbose(env, "%d:", env->insn_idx);
990 	}
991 	print_verifier_state(env, state, false);
992 }
993 
994 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
995  * small to hold src. This is different from krealloc since we don't want to preserve
996  * the contents of dst.
997  *
998  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
999  * not be allocated.
1000  */
1001 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1002 {
1003 	size_t bytes;
1004 
1005 	if (ZERO_OR_NULL_PTR(src))
1006 		goto out;
1007 
1008 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1009 		return NULL;
1010 
1011 	if (ksize(dst) < bytes) {
1012 		kfree(dst);
1013 		dst = kmalloc_track_caller(bytes, flags);
1014 		if (!dst)
1015 			return NULL;
1016 	}
1017 
1018 	memcpy(dst, src, bytes);
1019 out:
1020 	return dst ? dst : ZERO_SIZE_PTR;
1021 }
1022 
1023 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1024  * small to hold new_n items. new items are zeroed out if the array grows.
1025  *
1026  * Contrary to krealloc_array, does not free arr if new_n is zero.
1027  */
1028 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1029 {
1030 	void *new_arr;
1031 
1032 	if (!new_n || old_n == new_n)
1033 		goto out;
1034 
1035 	new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1036 	if (!new_arr) {
1037 		kfree(arr);
1038 		return NULL;
1039 	}
1040 	arr = new_arr;
1041 
1042 	if (new_n > old_n)
1043 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1044 
1045 out:
1046 	return arr ? arr : ZERO_SIZE_PTR;
1047 }
1048 
1049 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1050 {
1051 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1052 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1053 	if (!dst->refs)
1054 		return -ENOMEM;
1055 
1056 	dst->acquired_refs = src->acquired_refs;
1057 	return 0;
1058 }
1059 
1060 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1061 {
1062 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1063 
1064 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1065 				GFP_KERNEL);
1066 	if (!dst->stack)
1067 		return -ENOMEM;
1068 
1069 	dst->allocated_stack = src->allocated_stack;
1070 	return 0;
1071 }
1072 
1073 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1074 {
1075 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1076 				    sizeof(struct bpf_reference_state));
1077 	if (!state->refs)
1078 		return -ENOMEM;
1079 
1080 	state->acquired_refs = n;
1081 	return 0;
1082 }
1083 
1084 static int grow_stack_state(struct bpf_func_state *state, int size)
1085 {
1086 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1087 
1088 	if (old_n >= n)
1089 		return 0;
1090 
1091 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1092 	if (!state->stack)
1093 		return -ENOMEM;
1094 
1095 	state->allocated_stack = size;
1096 	return 0;
1097 }
1098 
1099 /* Acquire a pointer id from the env and update the state->refs to include
1100  * this new pointer reference.
1101  * On success, returns a valid pointer id to associate with the register
1102  * On failure, returns a negative errno.
1103  */
1104 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1105 {
1106 	struct bpf_func_state *state = cur_func(env);
1107 	int new_ofs = state->acquired_refs;
1108 	int id, err;
1109 
1110 	err = resize_reference_state(state, state->acquired_refs + 1);
1111 	if (err)
1112 		return err;
1113 	id = ++env->id_gen;
1114 	state->refs[new_ofs].id = id;
1115 	state->refs[new_ofs].insn_idx = insn_idx;
1116 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1117 
1118 	return id;
1119 }
1120 
1121 /* release function corresponding to acquire_reference_state(). Idempotent. */
1122 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1123 {
1124 	int i, last_idx;
1125 
1126 	last_idx = state->acquired_refs - 1;
1127 	for (i = 0; i < state->acquired_refs; i++) {
1128 		if (state->refs[i].id == ptr_id) {
1129 			/* Cannot release caller references in callbacks */
1130 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1131 				return -EINVAL;
1132 			if (last_idx && i != last_idx)
1133 				memcpy(&state->refs[i], &state->refs[last_idx],
1134 				       sizeof(*state->refs));
1135 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1136 			state->acquired_refs--;
1137 			return 0;
1138 		}
1139 	}
1140 	return -EINVAL;
1141 }
1142 
1143 static void free_func_state(struct bpf_func_state *state)
1144 {
1145 	if (!state)
1146 		return;
1147 	kfree(state->refs);
1148 	kfree(state->stack);
1149 	kfree(state);
1150 }
1151 
1152 static void clear_jmp_history(struct bpf_verifier_state *state)
1153 {
1154 	kfree(state->jmp_history);
1155 	state->jmp_history = NULL;
1156 	state->jmp_history_cnt = 0;
1157 }
1158 
1159 static void free_verifier_state(struct bpf_verifier_state *state,
1160 				bool free_self)
1161 {
1162 	int i;
1163 
1164 	for (i = 0; i <= state->curframe; i++) {
1165 		free_func_state(state->frame[i]);
1166 		state->frame[i] = NULL;
1167 	}
1168 	clear_jmp_history(state);
1169 	if (free_self)
1170 		kfree(state);
1171 }
1172 
1173 /* copy verifier state from src to dst growing dst stack space
1174  * when necessary to accommodate larger src stack
1175  */
1176 static int copy_func_state(struct bpf_func_state *dst,
1177 			   const struct bpf_func_state *src)
1178 {
1179 	int err;
1180 
1181 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1182 	err = copy_reference_state(dst, src);
1183 	if (err)
1184 		return err;
1185 	return copy_stack_state(dst, src);
1186 }
1187 
1188 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1189 			       const struct bpf_verifier_state *src)
1190 {
1191 	struct bpf_func_state *dst;
1192 	int i, err;
1193 
1194 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1195 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1196 					    GFP_USER);
1197 	if (!dst_state->jmp_history)
1198 		return -ENOMEM;
1199 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1200 
1201 	/* if dst has more stack frames then src frame, free them */
1202 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1203 		free_func_state(dst_state->frame[i]);
1204 		dst_state->frame[i] = NULL;
1205 	}
1206 	dst_state->speculative = src->speculative;
1207 	dst_state->curframe = src->curframe;
1208 	dst_state->active_spin_lock = src->active_spin_lock;
1209 	dst_state->branches = src->branches;
1210 	dst_state->parent = src->parent;
1211 	dst_state->first_insn_idx = src->first_insn_idx;
1212 	dst_state->last_insn_idx = src->last_insn_idx;
1213 	for (i = 0; i <= src->curframe; i++) {
1214 		dst = dst_state->frame[i];
1215 		if (!dst) {
1216 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1217 			if (!dst)
1218 				return -ENOMEM;
1219 			dst_state->frame[i] = dst;
1220 		}
1221 		err = copy_func_state(dst, src->frame[i]);
1222 		if (err)
1223 			return err;
1224 	}
1225 	return 0;
1226 }
1227 
1228 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1229 {
1230 	while (st) {
1231 		u32 br = --st->branches;
1232 
1233 		/* WARN_ON(br > 1) technically makes sense here,
1234 		 * but see comment in push_stack(), hence:
1235 		 */
1236 		WARN_ONCE((int)br < 0,
1237 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1238 			  br);
1239 		if (br)
1240 			break;
1241 		st = st->parent;
1242 	}
1243 }
1244 
1245 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1246 		     int *insn_idx, bool pop_log)
1247 {
1248 	struct bpf_verifier_state *cur = env->cur_state;
1249 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1250 	int err;
1251 
1252 	if (env->head == NULL)
1253 		return -ENOENT;
1254 
1255 	if (cur) {
1256 		err = copy_verifier_state(cur, &head->st);
1257 		if (err)
1258 			return err;
1259 	}
1260 	if (pop_log)
1261 		bpf_vlog_reset(&env->log, head->log_pos);
1262 	if (insn_idx)
1263 		*insn_idx = head->insn_idx;
1264 	if (prev_insn_idx)
1265 		*prev_insn_idx = head->prev_insn_idx;
1266 	elem = head->next;
1267 	free_verifier_state(&head->st, false);
1268 	kfree(head);
1269 	env->head = elem;
1270 	env->stack_size--;
1271 	return 0;
1272 }
1273 
1274 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1275 					     int insn_idx, int prev_insn_idx,
1276 					     bool speculative)
1277 {
1278 	struct bpf_verifier_state *cur = env->cur_state;
1279 	struct bpf_verifier_stack_elem *elem;
1280 	int err;
1281 
1282 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1283 	if (!elem)
1284 		goto err;
1285 
1286 	elem->insn_idx = insn_idx;
1287 	elem->prev_insn_idx = prev_insn_idx;
1288 	elem->next = env->head;
1289 	elem->log_pos = env->log.len_used;
1290 	env->head = elem;
1291 	env->stack_size++;
1292 	err = copy_verifier_state(&elem->st, cur);
1293 	if (err)
1294 		goto err;
1295 	elem->st.speculative |= speculative;
1296 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1297 		verbose(env, "The sequence of %d jumps is too complex.\n",
1298 			env->stack_size);
1299 		goto err;
1300 	}
1301 	if (elem->st.parent) {
1302 		++elem->st.parent->branches;
1303 		/* WARN_ON(branches > 2) technically makes sense here,
1304 		 * but
1305 		 * 1. speculative states will bump 'branches' for non-branch
1306 		 * instructions
1307 		 * 2. is_state_visited() heuristics may decide not to create
1308 		 * a new state for a sequence of branches and all such current
1309 		 * and cloned states will be pointing to a single parent state
1310 		 * which might have large 'branches' count.
1311 		 */
1312 	}
1313 	return &elem->st;
1314 err:
1315 	free_verifier_state(env->cur_state, true);
1316 	env->cur_state = NULL;
1317 	/* pop all elements and return */
1318 	while (!pop_stack(env, NULL, NULL, false));
1319 	return NULL;
1320 }
1321 
1322 #define CALLER_SAVED_REGS 6
1323 static const int caller_saved[CALLER_SAVED_REGS] = {
1324 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1325 };
1326 
1327 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1328 				struct bpf_reg_state *reg);
1329 
1330 /* This helper doesn't clear reg->id */
1331 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1332 {
1333 	reg->var_off = tnum_const(imm);
1334 	reg->smin_value = (s64)imm;
1335 	reg->smax_value = (s64)imm;
1336 	reg->umin_value = imm;
1337 	reg->umax_value = imm;
1338 
1339 	reg->s32_min_value = (s32)imm;
1340 	reg->s32_max_value = (s32)imm;
1341 	reg->u32_min_value = (u32)imm;
1342 	reg->u32_max_value = (u32)imm;
1343 }
1344 
1345 /* Mark the unknown part of a register (variable offset or scalar value) as
1346  * known to have the value @imm.
1347  */
1348 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1349 {
1350 	/* Clear id, off, and union(map_ptr, range) */
1351 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1352 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1353 	___mark_reg_known(reg, imm);
1354 }
1355 
1356 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1357 {
1358 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1359 	reg->s32_min_value = (s32)imm;
1360 	reg->s32_max_value = (s32)imm;
1361 	reg->u32_min_value = (u32)imm;
1362 	reg->u32_max_value = (u32)imm;
1363 }
1364 
1365 /* Mark the 'variable offset' part of a register as zero.  This should be
1366  * used only on registers holding a pointer type.
1367  */
1368 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1369 {
1370 	__mark_reg_known(reg, 0);
1371 }
1372 
1373 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1374 {
1375 	__mark_reg_known(reg, 0);
1376 	reg->type = SCALAR_VALUE;
1377 }
1378 
1379 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1380 				struct bpf_reg_state *regs, u32 regno)
1381 {
1382 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1383 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1384 		/* Something bad happened, let's kill all regs */
1385 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1386 			__mark_reg_not_init(env, regs + regno);
1387 		return;
1388 	}
1389 	__mark_reg_known_zero(regs + regno);
1390 }
1391 
1392 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1393 {
1394 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1395 		const struct bpf_map *map = reg->map_ptr;
1396 
1397 		if (map->inner_map_meta) {
1398 			reg->type = CONST_PTR_TO_MAP;
1399 			reg->map_ptr = map->inner_map_meta;
1400 			/* transfer reg's id which is unique for every map_lookup_elem
1401 			 * as UID of the inner map.
1402 			 */
1403 			if (map_value_has_timer(map->inner_map_meta))
1404 				reg->map_uid = reg->id;
1405 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1406 			reg->type = PTR_TO_XDP_SOCK;
1407 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1408 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1409 			reg->type = PTR_TO_SOCKET;
1410 		} else {
1411 			reg->type = PTR_TO_MAP_VALUE;
1412 		}
1413 		return;
1414 	}
1415 
1416 	reg->type &= ~PTR_MAYBE_NULL;
1417 }
1418 
1419 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1420 {
1421 	return type_is_pkt_pointer(reg->type);
1422 }
1423 
1424 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1425 {
1426 	return reg_is_pkt_pointer(reg) ||
1427 	       reg->type == PTR_TO_PACKET_END;
1428 }
1429 
1430 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1431 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1432 				    enum bpf_reg_type which)
1433 {
1434 	/* The register can already have a range from prior markings.
1435 	 * This is fine as long as it hasn't been advanced from its
1436 	 * origin.
1437 	 */
1438 	return reg->type == which &&
1439 	       reg->id == 0 &&
1440 	       reg->off == 0 &&
1441 	       tnum_equals_const(reg->var_off, 0);
1442 }
1443 
1444 /* Reset the min/max bounds of a register */
1445 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1446 {
1447 	reg->smin_value = S64_MIN;
1448 	reg->smax_value = S64_MAX;
1449 	reg->umin_value = 0;
1450 	reg->umax_value = U64_MAX;
1451 
1452 	reg->s32_min_value = S32_MIN;
1453 	reg->s32_max_value = S32_MAX;
1454 	reg->u32_min_value = 0;
1455 	reg->u32_max_value = U32_MAX;
1456 }
1457 
1458 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1459 {
1460 	reg->smin_value = S64_MIN;
1461 	reg->smax_value = S64_MAX;
1462 	reg->umin_value = 0;
1463 	reg->umax_value = U64_MAX;
1464 }
1465 
1466 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1467 {
1468 	reg->s32_min_value = S32_MIN;
1469 	reg->s32_max_value = S32_MAX;
1470 	reg->u32_min_value = 0;
1471 	reg->u32_max_value = U32_MAX;
1472 }
1473 
1474 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1475 {
1476 	struct tnum var32_off = tnum_subreg(reg->var_off);
1477 
1478 	/* min signed is max(sign bit) | min(other bits) */
1479 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1480 			var32_off.value | (var32_off.mask & S32_MIN));
1481 	/* max signed is min(sign bit) | max(other bits) */
1482 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1483 			var32_off.value | (var32_off.mask & S32_MAX));
1484 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1485 	reg->u32_max_value = min(reg->u32_max_value,
1486 				 (u32)(var32_off.value | var32_off.mask));
1487 }
1488 
1489 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1490 {
1491 	/* min signed is max(sign bit) | min(other bits) */
1492 	reg->smin_value = max_t(s64, reg->smin_value,
1493 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1494 	/* max signed is min(sign bit) | max(other bits) */
1495 	reg->smax_value = min_t(s64, reg->smax_value,
1496 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1497 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1498 	reg->umax_value = min(reg->umax_value,
1499 			      reg->var_off.value | reg->var_off.mask);
1500 }
1501 
1502 static void __update_reg_bounds(struct bpf_reg_state *reg)
1503 {
1504 	__update_reg32_bounds(reg);
1505 	__update_reg64_bounds(reg);
1506 }
1507 
1508 /* Uses signed min/max values to inform unsigned, and vice-versa */
1509 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1510 {
1511 	/* Learn sign from signed bounds.
1512 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1513 	 * are the same, so combine.  This works even in the negative case, e.g.
1514 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1515 	 */
1516 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1517 		reg->s32_min_value = reg->u32_min_value =
1518 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1519 		reg->s32_max_value = reg->u32_max_value =
1520 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1521 		return;
1522 	}
1523 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1524 	 * boundary, so we must be careful.
1525 	 */
1526 	if ((s32)reg->u32_max_value >= 0) {
1527 		/* Positive.  We can't learn anything from the smin, but smax
1528 		 * is positive, hence safe.
1529 		 */
1530 		reg->s32_min_value = reg->u32_min_value;
1531 		reg->s32_max_value = reg->u32_max_value =
1532 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1533 	} else if ((s32)reg->u32_min_value < 0) {
1534 		/* Negative.  We can't learn anything from the smax, but smin
1535 		 * is negative, hence safe.
1536 		 */
1537 		reg->s32_min_value = reg->u32_min_value =
1538 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1539 		reg->s32_max_value = reg->u32_max_value;
1540 	}
1541 }
1542 
1543 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1544 {
1545 	/* Learn sign from signed bounds.
1546 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1547 	 * are the same, so combine.  This works even in the negative case, e.g.
1548 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1549 	 */
1550 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1551 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1552 							  reg->umin_value);
1553 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1554 							  reg->umax_value);
1555 		return;
1556 	}
1557 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1558 	 * boundary, so we must be careful.
1559 	 */
1560 	if ((s64)reg->umax_value >= 0) {
1561 		/* Positive.  We can't learn anything from the smin, but smax
1562 		 * is positive, hence safe.
1563 		 */
1564 		reg->smin_value = reg->umin_value;
1565 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1566 							  reg->umax_value);
1567 	} else if ((s64)reg->umin_value < 0) {
1568 		/* Negative.  We can't learn anything from the smax, but smin
1569 		 * is negative, hence safe.
1570 		 */
1571 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1572 							  reg->umin_value);
1573 		reg->smax_value = reg->umax_value;
1574 	}
1575 }
1576 
1577 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1578 {
1579 	__reg32_deduce_bounds(reg);
1580 	__reg64_deduce_bounds(reg);
1581 }
1582 
1583 /* Attempts to improve var_off based on unsigned min/max information */
1584 static void __reg_bound_offset(struct bpf_reg_state *reg)
1585 {
1586 	struct tnum var64_off = tnum_intersect(reg->var_off,
1587 					       tnum_range(reg->umin_value,
1588 							  reg->umax_value));
1589 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1590 						tnum_range(reg->u32_min_value,
1591 							   reg->u32_max_value));
1592 
1593 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1594 }
1595 
1596 static void reg_bounds_sync(struct bpf_reg_state *reg)
1597 {
1598 	/* We might have learned new bounds from the var_off. */
1599 	__update_reg_bounds(reg);
1600 	/* We might have learned something about the sign bit. */
1601 	__reg_deduce_bounds(reg);
1602 	/* We might have learned some bits from the bounds. */
1603 	__reg_bound_offset(reg);
1604 	/* Intersecting with the old var_off might have improved our bounds
1605 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1606 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1607 	 */
1608 	__update_reg_bounds(reg);
1609 }
1610 
1611 static bool __reg32_bound_s64(s32 a)
1612 {
1613 	return a >= 0 && a <= S32_MAX;
1614 }
1615 
1616 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1617 {
1618 	reg->umin_value = reg->u32_min_value;
1619 	reg->umax_value = reg->u32_max_value;
1620 
1621 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1622 	 * be positive otherwise set to worse case bounds and refine later
1623 	 * from tnum.
1624 	 */
1625 	if (__reg32_bound_s64(reg->s32_min_value) &&
1626 	    __reg32_bound_s64(reg->s32_max_value)) {
1627 		reg->smin_value = reg->s32_min_value;
1628 		reg->smax_value = reg->s32_max_value;
1629 	} else {
1630 		reg->smin_value = 0;
1631 		reg->smax_value = U32_MAX;
1632 	}
1633 }
1634 
1635 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1636 {
1637 	/* special case when 64-bit register has upper 32-bit register
1638 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1639 	 * allowing us to use 32-bit bounds directly,
1640 	 */
1641 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1642 		__reg_assign_32_into_64(reg);
1643 	} else {
1644 		/* Otherwise the best we can do is push lower 32bit known and
1645 		 * unknown bits into register (var_off set from jmp logic)
1646 		 * then learn as much as possible from the 64-bit tnum
1647 		 * known and unknown bits. The previous smin/smax bounds are
1648 		 * invalid here because of jmp32 compare so mark them unknown
1649 		 * so they do not impact tnum bounds calculation.
1650 		 */
1651 		__mark_reg64_unbounded(reg);
1652 	}
1653 	reg_bounds_sync(reg);
1654 }
1655 
1656 static bool __reg64_bound_s32(s64 a)
1657 {
1658 	return a >= S32_MIN && a <= S32_MAX;
1659 }
1660 
1661 static bool __reg64_bound_u32(u64 a)
1662 {
1663 	return a >= U32_MIN && a <= U32_MAX;
1664 }
1665 
1666 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1667 {
1668 	__mark_reg32_unbounded(reg);
1669 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1670 		reg->s32_min_value = (s32)reg->smin_value;
1671 		reg->s32_max_value = (s32)reg->smax_value;
1672 	}
1673 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1674 		reg->u32_min_value = (u32)reg->umin_value;
1675 		reg->u32_max_value = (u32)reg->umax_value;
1676 	}
1677 	reg_bounds_sync(reg);
1678 }
1679 
1680 /* Mark a register as having a completely unknown (scalar) value. */
1681 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1682 			       struct bpf_reg_state *reg)
1683 {
1684 	/*
1685 	 * Clear type, id, off, and union(map_ptr, range) and
1686 	 * padding between 'type' and union
1687 	 */
1688 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1689 	reg->type = SCALAR_VALUE;
1690 	reg->var_off = tnum_unknown;
1691 	reg->frameno = 0;
1692 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1693 	__mark_reg_unbounded(reg);
1694 }
1695 
1696 static void mark_reg_unknown(struct bpf_verifier_env *env,
1697 			     struct bpf_reg_state *regs, u32 regno)
1698 {
1699 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1700 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1701 		/* Something bad happened, let's kill all regs except FP */
1702 		for (regno = 0; regno < BPF_REG_FP; regno++)
1703 			__mark_reg_not_init(env, regs + regno);
1704 		return;
1705 	}
1706 	__mark_reg_unknown(env, regs + regno);
1707 }
1708 
1709 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1710 				struct bpf_reg_state *reg)
1711 {
1712 	__mark_reg_unknown(env, reg);
1713 	reg->type = NOT_INIT;
1714 }
1715 
1716 static void mark_reg_not_init(struct bpf_verifier_env *env,
1717 			      struct bpf_reg_state *regs, u32 regno)
1718 {
1719 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1720 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1721 		/* Something bad happened, let's kill all regs except FP */
1722 		for (regno = 0; regno < BPF_REG_FP; regno++)
1723 			__mark_reg_not_init(env, regs + regno);
1724 		return;
1725 	}
1726 	__mark_reg_not_init(env, regs + regno);
1727 }
1728 
1729 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1730 			    struct bpf_reg_state *regs, u32 regno,
1731 			    enum bpf_reg_type reg_type,
1732 			    struct btf *btf, u32 btf_id,
1733 			    enum bpf_type_flag flag)
1734 {
1735 	if (reg_type == SCALAR_VALUE) {
1736 		mark_reg_unknown(env, regs, regno);
1737 		return;
1738 	}
1739 	mark_reg_known_zero(env, regs, regno);
1740 	regs[regno].type = PTR_TO_BTF_ID | flag;
1741 	regs[regno].btf = btf;
1742 	regs[regno].btf_id = btf_id;
1743 }
1744 
1745 #define DEF_NOT_SUBREG	(0)
1746 static void init_reg_state(struct bpf_verifier_env *env,
1747 			   struct bpf_func_state *state)
1748 {
1749 	struct bpf_reg_state *regs = state->regs;
1750 	int i;
1751 
1752 	for (i = 0; i < MAX_BPF_REG; i++) {
1753 		mark_reg_not_init(env, regs, i);
1754 		regs[i].live = REG_LIVE_NONE;
1755 		regs[i].parent = NULL;
1756 		regs[i].subreg_def = DEF_NOT_SUBREG;
1757 	}
1758 
1759 	/* frame pointer */
1760 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1761 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1762 	regs[BPF_REG_FP].frameno = state->frameno;
1763 }
1764 
1765 #define BPF_MAIN_FUNC (-1)
1766 static void init_func_state(struct bpf_verifier_env *env,
1767 			    struct bpf_func_state *state,
1768 			    int callsite, int frameno, int subprogno)
1769 {
1770 	state->callsite = callsite;
1771 	state->frameno = frameno;
1772 	state->subprogno = subprogno;
1773 	state->callback_ret_range = tnum_range(0, 0);
1774 	init_reg_state(env, state);
1775 	mark_verifier_state_scratched(env);
1776 }
1777 
1778 /* Similar to push_stack(), but for async callbacks */
1779 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1780 						int insn_idx, int prev_insn_idx,
1781 						int subprog)
1782 {
1783 	struct bpf_verifier_stack_elem *elem;
1784 	struct bpf_func_state *frame;
1785 
1786 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1787 	if (!elem)
1788 		goto err;
1789 
1790 	elem->insn_idx = insn_idx;
1791 	elem->prev_insn_idx = prev_insn_idx;
1792 	elem->next = env->head;
1793 	elem->log_pos = env->log.len_used;
1794 	env->head = elem;
1795 	env->stack_size++;
1796 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1797 		verbose(env,
1798 			"The sequence of %d jumps is too complex for async cb.\n",
1799 			env->stack_size);
1800 		goto err;
1801 	}
1802 	/* Unlike push_stack() do not copy_verifier_state().
1803 	 * The caller state doesn't matter.
1804 	 * This is async callback. It starts in a fresh stack.
1805 	 * Initialize it similar to do_check_common().
1806 	 */
1807 	elem->st.branches = 1;
1808 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1809 	if (!frame)
1810 		goto err;
1811 	init_func_state(env, frame,
1812 			BPF_MAIN_FUNC /* callsite */,
1813 			0 /* frameno within this callchain */,
1814 			subprog /* subprog number within this prog */);
1815 	elem->st.frame[0] = frame;
1816 	return &elem->st;
1817 err:
1818 	free_verifier_state(env->cur_state, true);
1819 	env->cur_state = NULL;
1820 	/* pop all elements and return */
1821 	while (!pop_stack(env, NULL, NULL, false));
1822 	return NULL;
1823 }
1824 
1825 
1826 enum reg_arg_type {
1827 	SRC_OP,		/* register is used as source operand */
1828 	DST_OP,		/* register is used as destination operand */
1829 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1830 };
1831 
1832 static int cmp_subprogs(const void *a, const void *b)
1833 {
1834 	return ((struct bpf_subprog_info *)a)->start -
1835 	       ((struct bpf_subprog_info *)b)->start;
1836 }
1837 
1838 static int find_subprog(struct bpf_verifier_env *env, int off)
1839 {
1840 	struct bpf_subprog_info *p;
1841 
1842 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1843 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1844 	if (!p)
1845 		return -ENOENT;
1846 	return p - env->subprog_info;
1847 
1848 }
1849 
1850 static int add_subprog(struct bpf_verifier_env *env, int off)
1851 {
1852 	int insn_cnt = env->prog->len;
1853 	int ret;
1854 
1855 	if (off >= insn_cnt || off < 0) {
1856 		verbose(env, "call to invalid destination\n");
1857 		return -EINVAL;
1858 	}
1859 	ret = find_subprog(env, off);
1860 	if (ret >= 0)
1861 		return ret;
1862 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1863 		verbose(env, "too many subprograms\n");
1864 		return -E2BIG;
1865 	}
1866 	/* determine subprog starts. The end is one before the next starts */
1867 	env->subprog_info[env->subprog_cnt++].start = off;
1868 	sort(env->subprog_info, env->subprog_cnt,
1869 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1870 	return env->subprog_cnt - 1;
1871 }
1872 
1873 #define MAX_KFUNC_DESCS 256
1874 #define MAX_KFUNC_BTFS	256
1875 
1876 struct bpf_kfunc_desc {
1877 	struct btf_func_model func_model;
1878 	u32 func_id;
1879 	s32 imm;
1880 	u16 offset;
1881 };
1882 
1883 struct bpf_kfunc_btf {
1884 	struct btf *btf;
1885 	struct module *module;
1886 	u16 offset;
1887 };
1888 
1889 struct bpf_kfunc_desc_tab {
1890 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1891 	u32 nr_descs;
1892 };
1893 
1894 struct bpf_kfunc_btf_tab {
1895 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1896 	u32 nr_descs;
1897 };
1898 
1899 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1900 {
1901 	const struct bpf_kfunc_desc *d0 = a;
1902 	const struct bpf_kfunc_desc *d1 = b;
1903 
1904 	/* func_id is not greater than BTF_MAX_TYPE */
1905 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1906 }
1907 
1908 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1909 {
1910 	const struct bpf_kfunc_btf *d0 = a;
1911 	const struct bpf_kfunc_btf *d1 = b;
1912 
1913 	return d0->offset - d1->offset;
1914 }
1915 
1916 static const struct bpf_kfunc_desc *
1917 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1918 {
1919 	struct bpf_kfunc_desc desc = {
1920 		.func_id = func_id,
1921 		.offset = offset,
1922 	};
1923 	struct bpf_kfunc_desc_tab *tab;
1924 
1925 	tab = prog->aux->kfunc_tab;
1926 	return bsearch(&desc, tab->descs, tab->nr_descs,
1927 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1928 }
1929 
1930 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1931 					 s16 offset)
1932 {
1933 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1934 	struct bpf_kfunc_btf_tab *tab;
1935 	struct bpf_kfunc_btf *b;
1936 	struct module *mod;
1937 	struct btf *btf;
1938 	int btf_fd;
1939 
1940 	tab = env->prog->aux->kfunc_btf_tab;
1941 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1942 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1943 	if (!b) {
1944 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1945 			verbose(env, "too many different module BTFs\n");
1946 			return ERR_PTR(-E2BIG);
1947 		}
1948 
1949 		if (bpfptr_is_null(env->fd_array)) {
1950 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1951 			return ERR_PTR(-EPROTO);
1952 		}
1953 
1954 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1955 					    offset * sizeof(btf_fd),
1956 					    sizeof(btf_fd)))
1957 			return ERR_PTR(-EFAULT);
1958 
1959 		btf = btf_get_by_fd(btf_fd);
1960 		if (IS_ERR(btf)) {
1961 			verbose(env, "invalid module BTF fd specified\n");
1962 			return btf;
1963 		}
1964 
1965 		if (!btf_is_module(btf)) {
1966 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1967 			btf_put(btf);
1968 			return ERR_PTR(-EINVAL);
1969 		}
1970 
1971 		mod = btf_try_get_module(btf);
1972 		if (!mod) {
1973 			btf_put(btf);
1974 			return ERR_PTR(-ENXIO);
1975 		}
1976 
1977 		b = &tab->descs[tab->nr_descs++];
1978 		b->btf = btf;
1979 		b->module = mod;
1980 		b->offset = offset;
1981 
1982 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1983 		     kfunc_btf_cmp_by_off, NULL);
1984 	}
1985 	return b->btf;
1986 }
1987 
1988 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1989 {
1990 	if (!tab)
1991 		return;
1992 
1993 	while (tab->nr_descs--) {
1994 		module_put(tab->descs[tab->nr_descs].module);
1995 		btf_put(tab->descs[tab->nr_descs].btf);
1996 	}
1997 	kfree(tab);
1998 }
1999 
2000 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2001 {
2002 	if (offset) {
2003 		if (offset < 0) {
2004 			/* In the future, this can be allowed to increase limit
2005 			 * of fd index into fd_array, interpreted as u16.
2006 			 */
2007 			verbose(env, "negative offset disallowed for kernel module function call\n");
2008 			return ERR_PTR(-EINVAL);
2009 		}
2010 
2011 		return __find_kfunc_desc_btf(env, offset);
2012 	}
2013 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2014 }
2015 
2016 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2017 {
2018 	const struct btf_type *func, *func_proto;
2019 	struct bpf_kfunc_btf_tab *btf_tab;
2020 	struct bpf_kfunc_desc_tab *tab;
2021 	struct bpf_prog_aux *prog_aux;
2022 	struct bpf_kfunc_desc *desc;
2023 	const char *func_name;
2024 	struct btf *desc_btf;
2025 	unsigned long call_imm;
2026 	unsigned long addr;
2027 	int err;
2028 
2029 	prog_aux = env->prog->aux;
2030 	tab = prog_aux->kfunc_tab;
2031 	btf_tab = prog_aux->kfunc_btf_tab;
2032 	if (!tab) {
2033 		if (!btf_vmlinux) {
2034 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2035 			return -ENOTSUPP;
2036 		}
2037 
2038 		if (!env->prog->jit_requested) {
2039 			verbose(env, "JIT is required for calling kernel function\n");
2040 			return -ENOTSUPP;
2041 		}
2042 
2043 		if (!bpf_jit_supports_kfunc_call()) {
2044 			verbose(env, "JIT does not support calling kernel function\n");
2045 			return -ENOTSUPP;
2046 		}
2047 
2048 		if (!env->prog->gpl_compatible) {
2049 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2050 			return -EINVAL;
2051 		}
2052 
2053 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2054 		if (!tab)
2055 			return -ENOMEM;
2056 		prog_aux->kfunc_tab = tab;
2057 	}
2058 
2059 	/* func_id == 0 is always invalid, but instead of returning an error, be
2060 	 * conservative and wait until the code elimination pass before returning
2061 	 * error, so that invalid calls that get pruned out can be in BPF programs
2062 	 * loaded from userspace.  It is also required that offset be untouched
2063 	 * for such calls.
2064 	 */
2065 	if (!func_id && !offset)
2066 		return 0;
2067 
2068 	if (!btf_tab && offset) {
2069 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2070 		if (!btf_tab)
2071 			return -ENOMEM;
2072 		prog_aux->kfunc_btf_tab = btf_tab;
2073 	}
2074 
2075 	desc_btf = find_kfunc_desc_btf(env, offset);
2076 	if (IS_ERR(desc_btf)) {
2077 		verbose(env, "failed to find BTF for kernel function\n");
2078 		return PTR_ERR(desc_btf);
2079 	}
2080 
2081 	if (find_kfunc_desc(env->prog, func_id, offset))
2082 		return 0;
2083 
2084 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2085 		verbose(env, "too many different kernel function calls\n");
2086 		return -E2BIG;
2087 	}
2088 
2089 	func = btf_type_by_id(desc_btf, func_id);
2090 	if (!func || !btf_type_is_func(func)) {
2091 		verbose(env, "kernel btf_id %u is not a function\n",
2092 			func_id);
2093 		return -EINVAL;
2094 	}
2095 	func_proto = btf_type_by_id(desc_btf, func->type);
2096 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2097 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2098 			func_id);
2099 		return -EINVAL;
2100 	}
2101 
2102 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2103 	addr = kallsyms_lookup_name(func_name);
2104 	if (!addr) {
2105 		verbose(env, "cannot find address for kernel function %s\n",
2106 			func_name);
2107 		return -EINVAL;
2108 	}
2109 
2110 	call_imm = BPF_CALL_IMM(addr);
2111 	/* Check whether or not the relative offset overflows desc->imm */
2112 	if ((unsigned long)(s32)call_imm != call_imm) {
2113 		verbose(env, "address of kernel function %s is out of range\n",
2114 			func_name);
2115 		return -EINVAL;
2116 	}
2117 
2118 	desc = &tab->descs[tab->nr_descs++];
2119 	desc->func_id = func_id;
2120 	desc->imm = call_imm;
2121 	desc->offset = offset;
2122 	err = btf_distill_func_proto(&env->log, desc_btf,
2123 				     func_proto, func_name,
2124 				     &desc->func_model);
2125 	if (!err)
2126 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2127 		     kfunc_desc_cmp_by_id_off, NULL);
2128 	return err;
2129 }
2130 
2131 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2132 {
2133 	const struct bpf_kfunc_desc *d0 = a;
2134 	const struct bpf_kfunc_desc *d1 = b;
2135 
2136 	if (d0->imm > d1->imm)
2137 		return 1;
2138 	else if (d0->imm < d1->imm)
2139 		return -1;
2140 	return 0;
2141 }
2142 
2143 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2144 {
2145 	struct bpf_kfunc_desc_tab *tab;
2146 
2147 	tab = prog->aux->kfunc_tab;
2148 	if (!tab)
2149 		return;
2150 
2151 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2152 	     kfunc_desc_cmp_by_imm, NULL);
2153 }
2154 
2155 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2156 {
2157 	return !!prog->aux->kfunc_tab;
2158 }
2159 
2160 const struct btf_func_model *
2161 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2162 			 const struct bpf_insn *insn)
2163 {
2164 	const struct bpf_kfunc_desc desc = {
2165 		.imm = insn->imm,
2166 	};
2167 	const struct bpf_kfunc_desc *res;
2168 	struct bpf_kfunc_desc_tab *tab;
2169 
2170 	tab = prog->aux->kfunc_tab;
2171 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2172 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2173 
2174 	return res ? &res->func_model : NULL;
2175 }
2176 
2177 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2178 {
2179 	struct bpf_subprog_info *subprog = env->subprog_info;
2180 	struct bpf_insn *insn = env->prog->insnsi;
2181 	int i, ret, insn_cnt = env->prog->len;
2182 
2183 	/* Add entry function. */
2184 	ret = add_subprog(env, 0);
2185 	if (ret)
2186 		return ret;
2187 
2188 	for (i = 0; i < insn_cnt; i++, insn++) {
2189 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2190 		    !bpf_pseudo_kfunc_call(insn))
2191 			continue;
2192 
2193 		if (!env->bpf_capable) {
2194 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2195 			return -EPERM;
2196 		}
2197 
2198 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2199 			ret = add_subprog(env, i + insn->imm + 1);
2200 		else
2201 			ret = add_kfunc_call(env, insn->imm, insn->off);
2202 
2203 		if (ret < 0)
2204 			return ret;
2205 	}
2206 
2207 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2208 	 * logic. 'subprog_cnt' should not be increased.
2209 	 */
2210 	subprog[env->subprog_cnt].start = insn_cnt;
2211 
2212 	if (env->log.level & BPF_LOG_LEVEL2)
2213 		for (i = 0; i < env->subprog_cnt; i++)
2214 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2215 
2216 	return 0;
2217 }
2218 
2219 static int check_subprogs(struct bpf_verifier_env *env)
2220 {
2221 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2222 	struct bpf_subprog_info *subprog = env->subprog_info;
2223 	struct bpf_insn *insn = env->prog->insnsi;
2224 	int insn_cnt = env->prog->len;
2225 
2226 	/* now check that all jumps are within the same subprog */
2227 	subprog_start = subprog[cur_subprog].start;
2228 	subprog_end = subprog[cur_subprog + 1].start;
2229 	for (i = 0; i < insn_cnt; i++) {
2230 		u8 code = insn[i].code;
2231 
2232 		if (code == (BPF_JMP | BPF_CALL) &&
2233 		    insn[i].imm == BPF_FUNC_tail_call &&
2234 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2235 			subprog[cur_subprog].has_tail_call = true;
2236 		if (BPF_CLASS(code) == BPF_LD &&
2237 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2238 			subprog[cur_subprog].has_ld_abs = true;
2239 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2240 			goto next;
2241 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2242 			goto next;
2243 		off = i + insn[i].off + 1;
2244 		if (off < subprog_start || off >= subprog_end) {
2245 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2246 			return -EINVAL;
2247 		}
2248 next:
2249 		if (i == subprog_end - 1) {
2250 			/* to avoid fall-through from one subprog into another
2251 			 * the last insn of the subprog should be either exit
2252 			 * or unconditional jump back
2253 			 */
2254 			if (code != (BPF_JMP | BPF_EXIT) &&
2255 			    code != (BPF_JMP | BPF_JA)) {
2256 				verbose(env, "last insn is not an exit or jmp\n");
2257 				return -EINVAL;
2258 			}
2259 			subprog_start = subprog_end;
2260 			cur_subprog++;
2261 			if (cur_subprog < env->subprog_cnt)
2262 				subprog_end = subprog[cur_subprog + 1].start;
2263 		}
2264 	}
2265 	return 0;
2266 }
2267 
2268 /* Parentage chain of this register (or stack slot) should take care of all
2269  * issues like callee-saved registers, stack slot allocation time, etc.
2270  */
2271 static int mark_reg_read(struct bpf_verifier_env *env,
2272 			 const struct bpf_reg_state *state,
2273 			 struct bpf_reg_state *parent, u8 flag)
2274 {
2275 	bool writes = parent == state->parent; /* Observe write marks */
2276 	int cnt = 0;
2277 
2278 	while (parent) {
2279 		/* if read wasn't screened by an earlier write ... */
2280 		if (writes && state->live & REG_LIVE_WRITTEN)
2281 			break;
2282 		if (parent->live & REG_LIVE_DONE) {
2283 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2284 				reg_type_str(env, parent->type),
2285 				parent->var_off.value, parent->off);
2286 			return -EFAULT;
2287 		}
2288 		/* The first condition is more likely to be true than the
2289 		 * second, checked it first.
2290 		 */
2291 		if ((parent->live & REG_LIVE_READ) == flag ||
2292 		    parent->live & REG_LIVE_READ64)
2293 			/* The parentage chain never changes and
2294 			 * this parent was already marked as LIVE_READ.
2295 			 * There is no need to keep walking the chain again and
2296 			 * keep re-marking all parents as LIVE_READ.
2297 			 * This case happens when the same register is read
2298 			 * multiple times without writes into it in-between.
2299 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2300 			 * then no need to set the weak REG_LIVE_READ32.
2301 			 */
2302 			break;
2303 		/* ... then we depend on parent's value */
2304 		parent->live |= flag;
2305 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2306 		if (flag == REG_LIVE_READ64)
2307 			parent->live &= ~REG_LIVE_READ32;
2308 		state = parent;
2309 		parent = state->parent;
2310 		writes = true;
2311 		cnt++;
2312 	}
2313 
2314 	if (env->longest_mark_read_walk < cnt)
2315 		env->longest_mark_read_walk = cnt;
2316 	return 0;
2317 }
2318 
2319 /* This function is supposed to be used by the following 32-bit optimization
2320  * code only. It returns TRUE if the source or destination register operates
2321  * on 64-bit, otherwise return FALSE.
2322  */
2323 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2324 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2325 {
2326 	u8 code, class, op;
2327 
2328 	code = insn->code;
2329 	class = BPF_CLASS(code);
2330 	op = BPF_OP(code);
2331 	if (class == BPF_JMP) {
2332 		/* BPF_EXIT for "main" will reach here. Return TRUE
2333 		 * conservatively.
2334 		 */
2335 		if (op == BPF_EXIT)
2336 			return true;
2337 		if (op == BPF_CALL) {
2338 			/* BPF to BPF call will reach here because of marking
2339 			 * caller saved clobber with DST_OP_NO_MARK for which we
2340 			 * don't care the register def because they are anyway
2341 			 * marked as NOT_INIT already.
2342 			 */
2343 			if (insn->src_reg == BPF_PSEUDO_CALL)
2344 				return false;
2345 			/* Helper call will reach here because of arg type
2346 			 * check, conservatively return TRUE.
2347 			 */
2348 			if (t == SRC_OP)
2349 				return true;
2350 
2351 			return false;
2352 		}
2353 	}
2354 
2355 	if (class == BPF_ALU64 || class == BPF_JMP ||
2356 	    /* BPF_END always use BPF_ALU class. */
2357 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2358 		return true;
2359 
2360 	if (class == BPF_ALU || class == BPF_JMP32)
2361 		return false;
2362 
2363 	if (class == BPF_LDX) {
2364 		if (t != SRC_OP)
2365 			return BPF_SIZE(code) == BPF_DW;
2366 		/* LDX source must be ptr. */
2367 		return true;
2368 	}
2369 
2370 	if (class == BPF_STX) {
2371 		/* BPF_STX (including atomic variants) has multiple source
2372 		 * operands, one of which is a ptr. Check whether the caller is
2373 		 * asking about it.
2374 		 */
2375 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2376 			return true;
2377 		return BPF_SIZE(code) == BPF_DW;
2378 	}
2379 
2380 	if (class == BPF_LD) {
2381 		u8 mode = BPF_MODE(code);
2382 
2383 		/* LD_IMM64 */
2384 		if (mode == BPF_IMM)
2385 			return true;
2386 
2387 		/* Both LD_IND and LD_ABS return 32-bit data. */
2388 		if (t != SRC_OP)
2389 			return  false;
2390 
2391 		/* Implicit ctx ptr. */
2392 		if (regno == BPF_REG_6)
2393 			return true;
2394 
2395 		/* Explicit source could be any width. */
2396 		return true;
2397 	}
2398 
2399 	if (class == BPF_ST)
2400 		/* The only source register for BPF_ST is a ptr. */
2401 		return true;
2402 
2403 	/* Conservatively return true at default. */
2404 	return true;
2405 }
2406 
2407 /* Return the regno defined by the insn, or -1. */
2408 static int insn_def_regno(const struct bpf_insn *insn)
2409 {
2410 	switch (BPF_CLASS(insn->code)) {
2411 	case BPF_JMP:
2412 	case BPF_JMP32:
2413 	case BPF_ST:
2414 		return -1;
2415 	case BPF_STX:
2416 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2417 		    (insn->imm & BPF_FETCH)) {
2418 			if (insn->imm == BPF_CMPXCHG)
2419 				return BPF_REG_0;
2420 			else
2421 				return insn->src_reg;
2422 		} else {
2423 			return -1;
2424 		}
2425 	default:
2426 		return insn->dst_reg;
2427 	}
2428 }
2429 
2430 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2431 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2432 {
2433 	int dst_reg = insn_def_regno(insn);
2434 
2435 	if (dst_reg == -1)
2436 		return false;
2437 
2438 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2439 }
2440 
2441 static void mark_insn_zext(struct bpf_verifier_env *env,
2442 			   struct bpf_reg_state *reg)
2443 {
2444 	s32 def_idx = reg->subreg_def;
2445 
2446 	if (def_idx == DEF_NOT_SUBREG)
2447 		return;
2448 
2449 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2450 	/* The dst will be zero extended, so won't be sub-register anymore. */
2451 	reg->subreg_def = DEF_NOT_SUBREG;
2452 }
2453 
2454 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2455 			 enum reg_arg_type t)
2456 {
2457 	struct bpf_verifier_state *vstate = env->cur_state;
2458 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2459 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2460 	struct bpf_reg_state *reg, *regs = state->regs;
2461 	bool rw64;
2462 
2463 	if (regno >= MAX_BPF_REG) {
2464 		verbose(env, "R%d is invalid\n", regno);
2465 		return -EINVAL;
2466 	}
2467 
2468 	mark_reg_scratched(env, regno);
2469 
2470 	reg = &regs[regno];
2471 	rw64 = is_reg64(env, insn, regno, reg, t);
2472 	if (t == SRC_OP) {
2473 		/* check whether register used as source operand can be read */
2474 		if (reg->type == NOT_INIT) {
2475 			verbose(env, "R%d !read_ok\n", regno);
2476 			return -EACCES;
2477 		}
2478 		/* We don't need to worry about FP liveness because it's read-only */
2479 		if (regno == BPF_REG_FP)
2480 			return 0;
2481 
2482 		if (rw64)
2483 			mark_insn_zext(env, reg);
2484 
2485 		return mark_reg_read(env, reg, reg->parent,
2486 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2487 	} else {
2488 		/* check whether register used as dest operand can be written to */
2489 		if (regno == BPF_REG_FP) {
2490 			verbose(env, "frame pointer is read only\n");
2491 			return -EACCES;
2492 		}
2493 		reg->live |= REG_LIVE_WRITTEN;
2494 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2495 		if (t == DST_OP)
2496 			mark_reg_unknown(env, regs, regno);
2497 	}
2498 	return 0;
2499 }
2500 
2501 /* for any branch, call, exit record the history of jmps in the given state */
2502 static int push_jmp_history(struct bpf_verifier_env *env,
2503 			    struct bpf_verifier_state *cur)
2504 {
2505 	u32 cnt = cur->jmp_history_cnt;
2506 	struct bpf_idx_pair *p;
2507 
2508 	cnt++;
2509 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2510 	if (!p)
2511 		return -ENOMEM;
2512 	p[cnt - 1].idx = env->insn_idx;
2513 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2514 	cur->jmp_history = p;
2515 	cur->jmp_history_cnt = cnt;
2516 	return 0;
2517 }
2518 
2519 /* Backtrack one insn at a time. If idx is not at the top of recorded
2520  * history then previous instruction came from straight line execution.
2521  */
2522 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2523 			     u32 *history)
2524 {
2525 	u32 cnt = *history;
2526 
2527 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2528 		i = st->jmp_history[cnt - 1].prev_idx;
2529 		(*history)--;
2530 	} else {
2531 		i--;
2532 	}
2533 	return i;
2534 }
2535 
2536 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2537 {
2538 	const struct btf_type *func;
2539 	struct btf *desc_btf;
2540 
2541 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2542 		return NULL;
2543 
2544 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2545 	if (IS_ERR(desc_btf))
2546 		return "<error>";
2547 
2548 	func = btf_type_by_id(desc_btf, insn->imm);
2549 	return btf_name_by_offset(desc_btf, func->name_off);
2550 }
2551 
2552 /* For given verifier state backtrack_insn() is called from the last insn to
2553  * the first insn. Its purpose is to compute a bitmask of registers and
2554  * stack slots that needs precision in the parent verifier state.
2555  */
2556 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2557 			  u32 *reg_mask, u64 *stack_mask)
2558 {
2559 	const struct bpf_insn_cbs cbs = {
2560 		.cb_call	= disasm_kfunc_name,
2561 		.cb_print	= verbose,
2562 		.private_data	= env,
2563 	};
2564 	struct bpf_insn *insn = env->prog->insnsi + idx;
2565 	u8 class = BPF_CLASS(insn->code);
2566 	u8 opcode = BPF_OP(insn->code);
2567 	u8 mode = BPF_MODE(insn->code);
2568 	u32 dreg = 1u << insn->dst_reg;
2569 	u32 sreg = 1u << insn->src_reg;
2570 	u32 spi;
2571 
2572 	if (insn->code == 0)
2573 		return 0;
2574 	if (env->log.level & BPF_LOG_LEVEL2) {
2575 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2576 		verbose(env, "%d: ", idx);
2577 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2578 	}
2579 
2580 	if (class == BPF_ALU || class == BPF_ALU64) {
2581 		if (!(*reg_mask & dreg))
2582 			return 0;
2583 		if (opcode == BPF_MOV) {
2584 			if (BPF_SRC(insn->code) == BPF_X) {
2585 				/* dreg = sreg
2586 				 * dreg needs precision after this insn
2587 				 * sreg needs precision before this insn
2588 				 */
2589 				*reg_mask &= ~dreg;
2590 				*reg_mask |= sreg;
2591 			} else {
2592 				/* dreg = K
2593 				 * dreg needs precision after this insn.
2594 				 * Corresponding register is already marked
2595 				 * as precise=true in this verifier state.
2596 				 * No further markings in parent are necessary
2597 				 */
2598 				*reg_mask &= ~dreg;
2599 			}
2600 		} else {
2601 			if (BPF_SRC(insn->code) == BPF_X) {
2602 				/* dreg += sreg
2603 				 * both dreg and sreg need precision
2604 				 * before this insn
2605 				 */
2606 				*reg_mask |= sreg;
2607 			} /* else dreg += K
2608 			   * dreg still needs precision before this insn
2609 			   */
2610 		}
2611 	} else if (class == BPF_LDX) {
2612 		if (!(*reg_mask & dreg))
2613 			return 0;
2614 		*reg_mask &= ~dreg;
2615 
2616 		/* scalars can only be spilled into stack w/o losing precision.
2617 		 * Load from any other memory can be zero extended.
2618 		 * The desire to keep that precision is already indicated
2619 		 * by 'precise' mark in corresponding register of this state.
2620 		 * No further tracking necessary.
2621 		 */
2622 		if (insn->src_reg != BPF_REG_FP)
2623 			return 0;
2624 
2625 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2626 		 * that [fp - off] slot contains scalar that needs to be
2627 		 * tracked with precision
2628 		 */
2629 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2630 		if (spi >= 64) {
2631 			verbose(env, "BUG spi %d\n", spi);
2632 			WARN_ONCE(1, "verifier backtracking bug");
2633 			return -EFAULT;
2634 		}
2635 		*stack_mask |= 1ull << spi;
2636 	} else if (class == BPF_STX || class == BPF_ST) {
2637 		if (*reg_mask & dreg)
2638 			/* stx & st shouldn't be using _scalar_ dst_reg
2639 			 * to access memory. It means backtracking
2640 			 * encountered a case of pointer subtraction.
2641 			 */
2642 			return -ENOTSUPP;
2643 		/* scalars can only be spilled into stack */
2644 		if (insn->dst_reg != BPF_REG_FP)
2645 			return 0;
2646 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2647 		if (spi >= 64) {
2648 			verbose(env, "BUG spi %d\n", spi);
2649 			WARN_ONCE(1, "verifier backtracking bug");
2650 			return -EFAULT;
2651 		}
2652 		if (!(*stack_mask & (1ull << spi)))
2653 			return 0;
2654 		*stack_mask &= ~(1ull << spi);
2655 		if (class == BPF_STX)
2656 			*reg_mask |= sreg;
2657 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2658 		if (opcode == BPF_CALL) {
2659 			if (insn->src_reg == BPF_PSEUDO_CALL)
2660 				return -ENOTSUPP;
2661 			/* regular helper call sets R0 */
2662 			*reg_mask &= ~1;
2663 			if (*reg_mask & 0x3f) {
2664 				/* if backtracing was looking for registers R1-R5
2665 				 * they should have been found already.
2666 				 */
2667 				verbose(env, "BUG regs %x\n", *reg_mask);
2668 				WARN_ONCE(1, "verifier backtracking bug");
2669 				return -EFAULT;
2670 			}
2671 		} else if (opcode == BPF_EXIT) {
2672 			return -ENOTSUPP;
2673 		}
2674 	} else if (class == BPF_LD) {
2675 		if (!(*reg_mask & dreg))
2676 			return 0;
2677 		*reg_mask &= ~dreg;
2678 		/* It's ld_imm64 or ld_abs or ld_ind.
2679 		 * For ld_imm64 no further tracking of precision
2680 		 * into parent is necessary
2681 		 */
2682 		if (mode == BPF_IND || mode == BPF_ABS)
2683 			/* to be analyzed */
2684 			return -ENOTSUPP;
2685 	}
2686 	return 0;
2687 }
2688 
2689 /* the scalar precision tracking algorithm:
2690  * . at the start all registers have precise=false.
2691  * . scalar ranges are tracked as normal through alu and jmp insns.
2692  * . once precise value of the scalar register is used in:
2693  *   .  ptr + scalar alu
2694  *   . if (scalar cond K|scalar)
2695  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2696  *   backtrack through the verifier states and mark all registers and
2697  *   stack slots with spilled constants that these scalar regisers
2698  *   should be precise.
2699  * . during state pruning two registers (or spilled stack slots)
2700  *   are equivalent if both are not precise.
2701  *
2702  * Note the verifier cannot simply walk register parentage chain,
2703  * since many different registers and stack slots could have been
2704  * used to compute single precise scalar.
2705  *
2706  * The approach of starting with precise=true for all registers and then
2707  * backtrack to mark a register as not precise when the verifier detects
2708  * that program doesn't care about specific value (e.g., when helper
2709  * takes register as ARG_ANYTHING parameter) is not safe.
2710  *
2711  * It's ok to walk single parentage chain of the verifier states.
2712  * It's possible that this backtracking will go all the way till 1st insn.
2713  * All other branches will be explored for needing precision later.
2714  *
2715  * The backtracking needs to deal with cases like:
2716  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2717  * r9 -= r8
2718  * r5 = r9
2719  * if r5 > 0x79f goto pc+7
2720  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2721  * r5 += 1
2722  * ...
2723  * call bpf_perf_event_output#25
2724  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2725  *
2726  * and this case:
2727  * r6 = 1
2728  * call foo // uses callee's r6 inside to compute r0
2729  * r0 += r6
2730  * if r0 == 0 goto
2731  *
2732  * to track above reg_mask/stack_mask needs to be independent for each frame.
2733  *
2734  * Also if parent's curframe > frame where backtracking started,
2735  * the verifier need to mark registers in both frames, otherwise callees
2736  * may incorrectly prune callers. This is similar to
2737  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2738  *
2739  * For now backtracking falls back into conservative marking.
2740  */
2741 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2742 				     struct bpf_verifier_state *st)
2743 {
2744 	struct bpf_func_state *func;
2745 	struct bpf_reg_state *reg;
2746 	int i, j;
2747 
2748 	/* big hammer: mark all scalars precise in this path.
2749 	 * pop_stack may still get !precise scalars.
2750 	 */
2751 	for (; st; st = st->parent)
2752 		for (i = 0; i <= st->curframe; i++) {
2753 			func = st->frame[i];
2754 			for (j = 0; j < BPF_REG_FP; j++) {
2755 				reg = &func->regs[j];
2756 				if (reg->type != SCALAR_VALUE)
2757 					continue;
2758 				reg->precise = true;
2759 			}
2760 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2761 				if (!is_spilled_reg(&func->stack[j]))
2762 					continue;
2763 				reg = &func->stack[j].spilled_ptr;
2764 				if (reg->type != SCALAR_VALUE)
2765 					continue;
2766 				reg->precise = true;
2767 			}
2768 		}
2769 }
2770 
2771 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2772 				  int spi)
2773 {
2774 	struct bpf_verifier_state *st = env->cur_state;
2775 	int first_idx = st->first_insn_idx;
2776 	int last_idx = env->insn_idx;
2777 	struct bpf_func_state *func;
2778 	struct bpf_reg_state *reg;
2779 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2780 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2781 	bool skip_first = true;
2782 	bool new_marks = false;
2783 	int i, err;
2784 
2785 	if (!env->bpf_capable)
2786 		return 0;
2787 
2788 	func = st->frame[st->curframe];
2789 	if (regno >= 0) {
2790 		reg = &func->regs[regno];
2791 		if (reg->type != SCALAR_VALUE) {
2792 			WARN_ONCE(1, "backtracing misuse");
2793 			return -EFAULT;
2794 		}
2795 		if (!reg->precise)
2796 			new_marks = true;
2797 		else
2798 			reg_mask = 0;
2799 		reg->precise = true;
2800 	}
2801 
2802 	while (spi >= 0) {
2803 		if (!is_spilled_reg(&func->stack[spi])) {
2804 			stack_mask = 0;
2805 			break;
2806 		}
2807 		reg = &func->stack[spi].spilled_ptr;
2808 		if (reg->type != SCALAR_VALUE) {
2809 			stack_mask = 0;
2810 			break;
2811 		}
2812 		if (!reg->precise)
2813 			new_marks = true;
2814 		else
2815 			stack_mask = 0;
2816 		reg->precise = true;
2817 		break;
2818 	}
2819 
2820 	if (!new_marks)
2821 		return 0;
2822 	if (!reg_mask && !stack_mask)
2823 		return 0;
2824 	for (;;) {
2825 		DECLARE_BITMAP(mask, 64);
2826 		u32 history = st->jmp_history_cnt;
2827 
2828 		if (env->log.level & BPF_LOG_LEVEL2)
2829 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2830 		for (i = last_idx;;) {
2831 			if (skip_first) {
2832 				err = 0;
2833 				skip_first = false;
2834 			} else {
2835 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2836 			}
2837 			if (err == -ENOTSUPP) {
2838 				mark_all_scalars_precise(env, st);
2839 				return 0;
2840 			} else if (err) {
2841 				return err;
2842 			}
2843 			if (!reg_mask && !stack_mask)
2844 				/* Found assignment(s) into tracked register in this state.
2845 				 * Since this state is already marked, just return.
2846 				 * Nothing to be tracked further in the parent state.
2847 				 */
2848 				return 0;
2849 			if (i == first_idx)
2850 				break;
2851 			i = get_prev_insn_idx(st, i, &history);
2852 			if (i >= env->prog->len) {
2853 				/* This can happen if backtracking reached insn 0
2854 				 * and there are still reg_mask or stack_mask
2855 				 * to backtrack.
2856 				 * It means the backtracking missed the spot where
2857 				 * particular register was initialized with a constant.
2858 				 */
2859 				verbose(env, "BUG backtracking idx %d\n", i);
2860 				WARN_ONCE(1, "verifier backtracking bug");
2861 				return -EFAULT;
2862 			}
2863 		}
2864 		st = st->parent;
2865 		if (!st)
2866 			break;
2867 
2868 		new_marks = false;
2869 		func = st->frame[st->curframe];
2870 		bitmap_from_u64(mask, reg_mask);
2871 		for_each_set_bit(i, mask, 32) {
2872 			reg = &func->regs[i];
2873 			if (reg->type != SCALAR_VALUE) {
2874 				reg_mask &= ~(1u << i);
2875 				continue;
2876 			}
2877 			if (!reg->precise)
2878 				new_marks = true;
2879 			reg->precise = true;
2880 		}
2881 
2882 		bitmap_from_u64(mask, stack_mask);
2883 		for_each_set_bit(i, mask, 64) {
2884 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2885 				/* the sequence of instructions:
2886 				 * 2: (bf) r3 = r10
2887 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2888 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2889 				 * doesn't contain jmps. It's backtracked
2890 				 * as a single block.
2891 				 * During backtracking insn 3 is not recognized as
2892 				 * stack access, so at the end of backtracking
2893 				 * stack slot fp-8 is still marked in stack_mask.
2894 				 * However the parent state may not have accessed
2895 				 * fp-8 and it's "unallocated" stack space.
2896 				 * In such case fallback to conservative.
2897 				 */
2898 				mark_all_scalars_precise(env, st);
2899 				return 0;
2900 			}
2901 
2902 			if (!is_spilled_reg(&func->stack[i])) {
2903 				stack_mask &= ~(1ull << i);
2904 				continue;
2905 			}
2906 			reg = &func->stack[i].spilled_ptr;
2907 			if (reg->type != SCALAR_VALUE) {
2908 				stack_mask &= ~(1ull << i);
2909 				continue;
2910 			}
2911 			if (!reg->precise)
2912 				new_marks = true;
2913 			reg->precise = true;
2914 		}
2915 		if (env->log.level & BPF_LOG_LEVEL2) {
2916 			verbose(env, "parent %s regs=%x stack=%llx marks:",
2917 				new_marks ? "didn't have" : "already had",
2918 				reg_mask, stack_mask);
2919 			print_verifier_state(env, func, true);
2920 		}
2921 
2922 		if (!reg_mask && !stack_mask)
2923 			break;
2924 		if (!new_marks)
2925 			break;
2926 
2927 		last_idx = st->last_insn_idx;
2928 		first_idx = st->first_insn_idx;
2929 	}
2930 	return 0;
2931 }
2932 
2933 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2934 {
2935 	return __mark_chain_precision(env, regno, -1);
2936 }
2937 
2938 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2939 {
2940 	return __mark_chain_precision(env, -1, spi);
2941 }
2942 
2943 static bool is_spillable_regtype(enum bpf_reg_type type)
2944 {
2945 	switch (base_type(type)) {
2946 	case PTR_TO_MAP_VALUE:
2947 	case PTR_TO_STACK:
2948 	case PTR_TO_CTX:
2949 	case PTR_TO_PACKET:
2950 	case PTR_TO_PACKET_META:
2951 	case PTR_TO_PACKET_END:
2952 	case PTR_TO_FLOW_KEYS:
2953 	case CONST_PTR_TO_MAP:
2954 	case PTR_TO_SOCKET:
2955 	case PTR_TO_SOCK_COMMON:
2956 	case PTR_TO_TCP_SOCK:
2957 	case PTR_TO_XDP_SOCK:
2958 	case PTR_TO_BTF_ID:
2959 	case PTR_TO_BUF:
2960 	case PTR_TO_MEM:
2961 	case PTR_TO_FUNC:
2962 	case PTR_TO_MAP_KEY:
2963 		return true;
2964 	default:
2965 		return false;
2966 	}
2967 }
2968 
2969 /* Does this register contain a constant zero? */
2970 static bool register_is_null(struct bpf_reg_state *reg)
2971 {
2972 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2973 }
2974 
2975 static bool register_is_const(struct bpf_reg_state *reg)
2976 {
2977 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2978 }
2979 
2980 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2981 {
2982 	return tnum_is_unknown(reg->var_off) &&
2983 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2984 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2985 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2986 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2987 }
2988 
2989 static bool register_is_bounded(struct bpf_reg_state *reg)
2990 {
2991 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2992 }
2993 
2994 static bool __is_pointer_value(bool allow_ptr_leaks,
2995 			       const struct bpf_reg_state *reg)
2996 {
2997 	if (allow_ptr_leaks)
2998 		return false;
2999 
3000 	return reg->type != SCALAR_VALUE;
3001 }
3002 
3003 static void save_register_state(struct bpf_func_state *state,
3004 				int spi, struct bpf_reg_state *reg,
3005 				int size)
3006 {
3007 	int i;
3008 
3009 	state->stack[spi].spilled_ptr = *reg;
3010 	if (size == BPF_REG_SIZE)
3011 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3012 
3013 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3014 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3015 
3016 	/* size < 8 bytes spill */
3017 	for (; i; i--)
3018 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3019 }
3020 
3021 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3022  * stack boundary and alignment are checked in check_mem_access()
3023  */
3024 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3025 				       /* stack frame we're writing to */
3026 				       struct bpf_func_state *state,
3027 				       int off, int size, int value_regno,
3028 				       int insn_idx)
3029 {
3030 	struct bpf_func_state *cur; /* state of the current function */
3031 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3032 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3033 	struct bpf_reg_state *reg = NULL;
3034 
3035 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3036 	if (err)
3037 		return err;
3038 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3039 	 * so it's aligned access and [off, off + size) are within stack limits
3040 	 */
3041 	if (!env->allow_ptr_leaks &&
3042 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3043 	    size != BPF_REG_SIZE) {
3044 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3045 		return -EACCES;
3046 	}
3047 
3048 	cur = env->cur_state->frame[env->cur_state->curframe];
3049 	if (value_regno >= 0)
3050 		reg = &cur->regs[value_regno];
3051 	if (!env->bypass_spec_v4) {
3052 		bool sanitize = reg && is_spillable_regtype(reg->type);
3053 
3054 		for (i = 0; i < size; i++) {
3055 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3056 				sanitize = true;
3057 				break;
3058 			}
3059 		}
3060 
3061 		if (sanitize)
3062 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3063 	}
3064 
3065 	mark_stack_slot_scratched(env, spi);
3066 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3067 	    !register_is_null(reg) && env->bpf_capable) {
3068 		if (dst_reg != BPF_REG_FP) {
3069 			/* The backtracking logic can only recognize explicit
3070 			 * stack slot address like [fp - 8]. Other spill of
3071 			 * scalar via different register has to be conservative.
3072 			 * Backtrack from here and mark all registers as precise
3073 			 * that contributed into 'reg' being a constant.
3074 			 */
3075 			err = mark_chain_precision(env, value_regno);
3076 			if (err)
3077 				return err;
3078 		}
3079 		save_register_state(state, spi, reg, size);
3080 	} else if (reg && is_spillable_regtype(reg->type)) {
3081 		/* register containing pointer is being spilled into stack */
3082 		if (size != BPF_REG_SIZE) {
3083 			verbose_linfo(env, insn_idx, "; ");
3084 			verbose(env, "invalid size of register spill\n");
3085 			return -EACCES;
3086 		}
3087 		if (state != cur && reg->type == PTR_TO_STACK) {
3088 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3089 			return -EINVAL;
3090 		}
3091 		save_register_state(state, spi, reg, size);
3092 	} else {
3093 		u8 type = STACK_MISC;
3094 
3095 		/* regular write of data into stack destroys any spilled ptr */
3096 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3097 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3098 		if (is_spilled_reg(&state->stack[spi]))
3099 			for (i = 0; i < BPF_REG_SIZE; i++)
3100 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3101 
3102 		/* only mark the slot as written if all 8 bytes were written
3103 		 * otherwise read propagation may incorrectly stop too soon
3104 		 * when stack slots are partially written.
3105 		 * This heuristic means that read propagation will be
3106 		 * conservative, since it will add reg_live_read marks
3107 		 * to stack slots all the way to first state when programs
3108 		 * writes+reads less than 8 bytes
3109 		 */
3110 		if (size == BPF_REG_SIZE)
3111 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3112 
3113 		/* when we zero initialize stack slots mark them as such */
3114 		if (reg && register_is_null(reg)) {
3115 			/* backtracking doesn't work for STACK_ZERO yet. */
3116 			err = mark_chain_precision(env, value_regno);
3117 			if (err)
3118 				return err;
3119 			type = STACK_ZERO;
3120 		}
3121 
3122 		/* Mark slots affected by this stack write. */
3123 		for (i = 0; i < size; i++)
3124 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3125 				type;
3126 	}
3127 	return 0;
3128 }
3129 
3130 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3131  * known to contain a variable offset.
3132  * This function checks whether the write is permitted and conservatively
3133  * tracks the effects of the write, considering that each stack slot in the
3134  * dynamic range is potentially written to.
3135  *
3136  * 'off' includes 'regno->off'.
3137  * 'value_regno' can be -1, meaning that an unknown value is being written to
3138  * the stack.
3139  *
3140  * Spilled pointers in range are not marked as written because we don't know
3141  * what's going to be actually written. This means that read propagation for
3142  * future reads cannot be terminated by this write.
3143  *
3144  * For privileged programs, uninitialized stack slots are considered
3145  * initialized by this write (even though we don't know exactly what offsets
3146  * are going to be written to). The idea is that we don't want the verifier to
3147  * reject future reads that access slots written to through variable offsets.
3148  */
3149 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3150 				     /* func where register points to */
3151 				     struct bpf_func_state *state,
3152 				     int ptr_regno, int off, int size,
3153 				     int value_regno, int insn_idx)
3154 {
3155 	struct bpf_func_state *cur; /* state of the current function */
3156 	int min_off, max_off;
3157 	int i, err;
3158 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3159 	bool writing_zero = false;
3160 	/* set if the fact that we're writing a zero is used to let any
3161 	 * stack slots remain STACK_ZERO
3162 	 */
3163 	bool zero_used = false;
3164 
3165 	cur = env->cur_state->frame[env->cur_state->curframe];
3166 	ptr_reg = &cur->regs[ptr_regno];
3167 	min_off = ptr_reg->smin_value + off;
3168 	max_off = ptr_reg->smax_value + off + size;
3169 	if (value_regno >= 0)
3170 		value_reg = &cur->regs[value_regno];
3171 	if (value_reg && register_is_null(value_reg))
3172 		writing_zero = true;
3173 
3174 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3175 	if (err)
3176 		return err;
3177 
3178 
3179 	/* Variable offset writes destroy any spilled pointers in range. */
3180 	for (i = min_off; i < max_off; i++) {
3181 		u8 new_type, *stype;
3182 		int slot, spi;
3183 
3184 		slot = -i - 1;
3185 		spi = slot / BPF_REG_SIZE;
3186 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3187 		mark_stack_slot_scratched(env, spi);
3188 
3189 		if (!env->allow_ptr_leaks
3190 				&& *stype != NOT_INIT
3191 				&& *stype != SCALAR_VALUE) {
3192 			/* Reject the write if there's are spilled pointers in
3193 			 * range. If we didn't reject here, the ptr status
3194 			 * would be erased below (even though not all slots are
3195 			 * actually overwritten), possibly opening the door to
3196 			 * leaks.
3197 			 */
3198 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3199 				insn_idx, i);
3200 			return -EINVAL;
3201 		}
3202 
3203 		/* Erase all spilled pointers. */
3204 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3205 
3206 		/* Update the slot type. */
3207 		new_type = STACK_MISC;
3208 		if (writing_zero && *stype == STACK_ZERO) {
3209 			new_type = STACK_ZERO;
3210 			zero_used = true;
3211 		}
3212 		/* If the slot is STACK_INVALID, we check whether it's OK to
3213 		 * pretend that it will be initialized by this write. The slot
3214 		 * might not actually be written to, and so if we mark it as
3215 		 * initialized future reads might leak uninitialized memory.
3216 		 * For privileged programs, we will accept such reads to slots
3217 		 * that may or may not be written because, if we're reject
3218 		 * them, the error would be too confusing.
3219 		 */
3220 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3221 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3222 					insn_idx, i);
3223 			return -EINVAL;
3224 		}
3225 		*stype = new_type;
3226 	}
3227 	if (zero_used) {
3228 		/* backtracking doesn't work for STACK_ZERO yet. */
3229 		err = mark_chain_precision(env, value_regno);
3230 		if (err)
3231 			return err;
3232 	}
3233 	return 0;
3234 }
3235 
3236 /* When register 'dst_regno' is assigned some values from stack[min_off,
3237  * max_off), we set the register's type according to the types of the
3238  * respective stack slots. If all the stack values are known to be zeros, then
3239  * so is the destination reg. Otherwise, the register is considered to be
3240  * SCALAR. This function does not deal with register filling; the caller must
3241  * ensure that all spilled registers in the stack range have been marked as
3242  * read.
3243  */
3244 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3245 				/* func where src register points to */
3246 				struct bpf_func_state *ptr_state,
3247 				int min_off, int max_off, int dst_regno)
3248 {
3249 	struct bpf_verifier_state *vstate = env->cur_state;
3250 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3251 	int i, slot, spi;
3252 	u8 *stype;
3253 	int zeros = 0;
3254 
3255 	for (i = min_off; i < max_off; i++) {
3256 		slot = -i - 1;
3257 		spi = slot / BPF_REG_SIZE;
3258 		stype = ptr_state->stack[spi].slot_type;
3259 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3260 			break;
3261 		zeros++;
3262 	}
3263 	if (zeros == max_off - min_off) {
3264 		/* any access_size read into register is zero extended,
3265 		 * so the whole register == const_zero
3266 		 */
3267 		__mark_reg_const_zero(&state->regs[dst_regno]);
3268 		/* backtracking doesn't support STACK_ZERO yet,
3269 		 * so mark it precise here, so that later
3270 		 * backtracking can stop here.
3271 		 * Backtracking may not need this if this register
3272 		 * doesn't participate in pointer adjustment.
3273 		 * Forward propagation of precise flag is not
3274 		 * necessary either. This mark is only to stop
3275 		 * backtracking. Any register that contributed
3276 		 * to const 0 was marked precise before spill.
3277 		 */
3278 		state->regs[dst_regno].precise = true;
3279 	} else {
3280 		/* have read misc data from the stack */
3281 		mark_reg_unknown(env, state->regs, dst_regno);
3282 	}
3283 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3284 }
3285 
3286 /* Read the stack at 'off' and put the results into the register indicated by
3287  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3288  * spilled reg.
3289  *
3290  * 'dst_regno' can be -1, meaning that the read value is not going to a
3291  * register.
3292  *
3293  * The access is assumed to be within the current stack bounds.
3294  */
3295 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3296 				      /* func where src register points to */
3297 				      struct bpf_func_state *reg_state,
3298 				      int off, int size, int dst_regno)
3299 {
3300 	struct bpf_verifier_state *vstate = env->cur_state;
3301 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3302 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3303 	struct bpf_reg_state *reg;
3304 	u8 *stype, type;
3305 
3306 	stype = reg_state->stack[spi].slot_type;
3307 	reg = &reg_state->stack[spi].spilled_ptr;
3308 
3309 	if (is_spilled_reg(&reg_state->stack[spi])) {
3310 		u8 spill_size = 1;
3311 
3312 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3313 			spill_size++;
3314 
3315 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3316 			if (reg->type != SCALAR_VALUE) {
3317 				verbose_linfo(env, env->insn_idx, "; ");
3318 				verbose(env, "invalid size of register fill\n");
3319 				return -EACCES;
3320 			}
3321 
3322 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3323 			if (dst_regno < 0)
3324 				return 0;
3325 
3326 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3327 				/* The earlier check_reg_arg() has decided the
3328 				 * subreg_def for this insn.  Save it first.
3329 				 */
3330 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3331 
3332 				state->regs[dst_regno] = *reg;
3333 				state->regs[dst_regno].subreg_def = subreg_def;
3334 			} else {
3335 				for (i = 0; i < size; i++) {
3336 					type = stype[(slot - i) % BPF_REG_SIZE];
3337 					if (type == STACK_SPILL)
3338 						continue;
3339 					if (type == STACK_MISC)
3340 						continue;
3341 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3342 						off, i, size);
3343 					return -EACCES;
3344 				}
3345 				mark_reg_unknown(env, state->regs, dst_regno);
3346 			}
3347 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3348 			return 0;
3349 		}
3350 
3351 		if (dst_regno >= 0) {
3352 			/* restore register state from stack */
3353 			state->regs[dst_regno] = *reg;
3354 			/* mark reg as written since spilled pointer state likely
3355 			 * has its liveness marks cleared by is_state_visited()
3356 			 * which resets stack/reg liveness for state transitions
3357 			 */
3358 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3359 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3360 			/* If dst_regno==-1, the caller is asking us whether
3361 			 * it is acceptable to use this value as a SCALAR_VALUE
3362 			 * (e.g. for XADD).
3363 			 * We must not allow unprivileged callers to do that
3364 			 * with spilled pointers.
3365 			 */
3366 			verbose(env, "leaking pointer from stack off %d\n",
3367 				off);
3368 			return -EACCES;
3369 		}
3370 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3371 	} else {
3372 		for (i = 0; i < size; i++) {
3373 			type = stype[(slot - i) % BPF_REG_SIZE];
3374 			if (type == STACK_MISC)
3375 				continue;
3376 			if (type == STACK_ZERO)
3377 				continue;
3378 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3379 				off, i, size);
3380 			return -EACCES;
3381 		}
3382 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3383 		if (dst_regno >= 0)
3384 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3385 	}
3386 	return 0;
3387 }
3388 
3389 enum bpf_access_src {
3390 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3391 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3392 };
3393 
3394 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3395 					 int regno, int off, int access_size,
3396 					 bool zero_size_allowed,
3397 					 enum bpf_access_src type,
3398 					 struct bpf_call_arg_meta *meta);
3399 
3400 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3401 {
3402 	return cur_regs(env) + regno;
3403 }
3404 
3405 /* Read the stack at 'ptr_regno + off' and put the result into the register
3406  * 'dst_regno'.
3407  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3408  * but not its variable offset.
3409  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3410  *
3411  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3412  * filling registers (i.e. reads of spilled register cannot be detected when
3413  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3414  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3415  * offset; for a fixed offset check_stack_read_fixed_off should be used
3416  * instead.
3417  */
3418 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3419 				    int ptr_regno, int off, int size, int dst_regno)
3420 {
3421 	/* The state of the source register. */
3422 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3423 	struct bpf_func_state *ptr_state = func(env, reg);
3424 	int err;
3425 	int min_off, max_off;
3426 
3427 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3428 	 */
3429 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3430 					    false, ACCESS_DIRECT, NULL);
3431 	if (err)
3432 		return err;
3433 
3434 	min_off = reg->smin_value + off;
3435 	max_off = reg->smax_value + off;
3436 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3437 	return 0;
3438 }
3439 
3440 /* check_stack_read dispatches to check_stack_read_fixed_off or
3441  * check_stack_read_var_off.
3442  *
3443  * The caller must ensure that the offset falls within the allocated stack
3444  * bounds.
3445  *
3446  * 'dst_regno' is a register which will receive the value from the stack. It
3447  * can be -1, meaning that the read value is not going to a register.
3448  */
3449 static int check_stack_read(struct bpf_verifier_env *env,
3450 			    int ptr_regno, int off, int size,
3451 			    int dst_regno)
3452 {
3453 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3454 	struct bpf_func_state *state = func(env, reg);
3455 	int err;
3456 	/* Some accesses are only permitted with a static offset. */
3457 	bool var_off = !tnum_is_const(reg->var_off);
3458 
3459 	/* The offset is required to be static when reads don't go to a
3460 	 * register, in order to not leak pointers (see
3461 	 * check_stack_read_fixed_off).
3462 	 */
3463 	if (dst_regno < 0 && var_off) {
3464 		char tn_buf[48];
3465 
3466 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3467 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3468 			tn_buf, off, size);
3469 		return -EACCES;
3470 	}
3471 	/* Variable offset is prohibited for unprivileged mode for simplicity
3472 	 * since it requires corresponding support in Spectre masking for stack
3473 	 * ALU. See also retrieve_ptr_limit().
3474 	 */
3475 	if (!env->bypass_spec_v1 && var_off) {
3476 		char tn_buf[48];
3477 
3478 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3479 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3480 				ptr_regno, tn_buf);
3481 		return -EACCES;
3482 	}
3483 
3484 	if (!var_off) {
3485 		off += reg->var_off.value;
3486 		err = check_stack_read_fixed_off(env, state, off, size,
3487 						 dst_regno);
3488 	} else {
3489 		/* Variable offset stack reads need more conservative handling
3490 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3491 		 * branch.
3492 		 */
3493 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3494 					       dst_regno);
3495 	}
3496 	return err;
3497 }
3498 
3499 
3500 /* check_stack_write dispatches to check_stack_write_fixed_off or
3501  * check_stack_write_var_off.
3502  *
3503  * 'ptr_regno' is the register used as a pointer into the stack.
3504  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3505  * 'value_regno' is the register whose value we're writing to the stack. It can
3506  * be -1, meaning that we're not writing from a register.
3507  *
3508  * The caller must ensure that the offset falls within the maximum stack size.
3509  */
3510 static int check_stack_write(struct bpf_verifier_env *env,
3511 			     int ptr_regno, int off, int size,
3512 			     int value_regno, int insn_idx)
3513 {
3514 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3515 	struct bpf_func_state *state = func(env, reg);
3516 	int err;
3517 
3518 	if (tnum_is_const(reg->var_off)) {
3519 		off += reg->var_off.value;
3520 		err = check_stack_write_fixed_off(env, state, off, size,
3521 						  value_regno, insn_idx);
3522 	} else {
3523 		/* Variable offset stack reads need more conservative handling
3524 		 * than fixed offset ones.
3525 		 */
3526 		err = check_stack_write_var_off(env, state,
3527 						ptr_regno, off, size,
3528 						value_regno, insn_idx);
3529 	}
3530 	return err;
3531 }
3532 
3533 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3534 				 int off, int size, enum bpf_access_type type)
3535 {
3536 	struct bpf_reg_state *regs = cur_regs(env);
3537 	struct bpf_map *map = regs[regno].map_ptr;
3538 	u32 cap = bpf_map_flags_to_cap(map);
3539 
3540 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3541 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3542 			map->value_size, off, size);
3543 		return -EACCES;
3544 	}
3545 
3546 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3547 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3548 			map->value_size, off, size);
3549 		return -EACCES;
3550 	}
3551 
3552 	return 0;
3553 }
3554 
3555 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3556 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3557 			      int off, int size, u32 mem_size,
3558 			      bool zero_size_allowed)
3559 {
3560 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3561 	struct bpf_reg_state *reg;
3562 
3563 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3564 		return 0;
3565 
3566 	reg = &cur_regs(env)[regno];
3567 	switch (reg->type) {
3568 	case PTR_TO_MAP_KEY:
3569 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3570 			mem_size, off, size);
3571 		break;
3572 	case PTR_TO_MAP_VALUE:
3573 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3574 			mem_size, off, size);
3575 		break;
3576 	case PTR_TO_PACKET:
3577 	case PTR_TO_PACKET_META:
3578 	case PTR_TO_PACKET_END:
3579 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3580 			off, size, regno, reg->id, off, mem_size);
3581 		break;
3582 	case PTR_TO_MEM:
3583 	default:
3584 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3585 			mem_size, off, size);
3586 	}
3587 
3588 	return -EACCES;
3589 }
3590 
3591 /* check read/write into a memory region with possible variable offset */
3592 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3593 				   int off, int size, u32 mem_size,
3594 				   bool zero_size_allowed)
3595 {
3596 	struct bpf_verifier_state *vstate = env->cur_state;
3597 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3598 	struct bpf_reg_state *reg = &state->regs[regno];
3599 	int err;
3600 
3601 	/* We may have adjusted the register pointing to memory region, so we
3602 	 * need to try adding each of min_value and max_value to off
3603 	 * to make sure our theoretical access will be safe.
3604 	 *
3605 	 * The minimum value is only important with signed
3606 	 * comparisons where we can't assume the floor of a
3607 	 * value is 0.  If we are using signed variables for our
3608 	 * index'es we need to make sure that whatever we use
3609 	 * will have a set floor within our range.
3610 	 */
3611 	if (reg->smin_value < 0 &&
3612 	    (reg->smin_value == S64_MIN ||
3613 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3614 	      reg->smin_value + off < 0)) {
3615 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3616 			regno);
3617 		return -EACCES;
3618 	}
3619 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3620 				 mem_size, zero_size_allowed);
3621 	if (err) {
3622 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3623 			regno);
3624 		return err;
3625 	}
3626 
3627 	/* If we haven't set a max value then we need to bail since we can't be
3628 	 * sure we won't do bad things.
3629 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3630 	 */
3631 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3632 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3633 			regno);
3634 		return -EACCES;
3635 	}
3636 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3637 				 mem_size, zero_size_allowed);
3638 	if (err) {
3639 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3640 			regno);
3641 		return err;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3648 			       const struct bpf_reg_state *reg, int regno,
3649 			       bool fixed_off_ok)
3650 {
3651 	/* Access to this pointer-typed register or passing it to a helper
3652 	 * is only allowed in its original, unmodified form.
3653 	 */
3654 
3655 	if (reg->off < 0) {
3656 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3657 			reg_type_str(env, reg->type), regno, reg->off);
3658 		return -EACCES;
3659 	}
3660 
3661 	if (!fixed_off_ok && reg->off) {
3662 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3663 			reg_type_str(env, reg->type), regno, reg->off);
3664 		return -EACCES;
3665 	}
3666 
3667 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3668 		char tn_buf[48];
3669 
3670 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3671 		verbose(env, "variable %s access var_off=%s disallowed\n",
3672 			reg_type_str(env, reg->type), tn_buf);
3673 		return -EACCES;
3674 	}
3675 
3676 	return 0;
3677 }
3678 
3679 int check_ptr_off_reg(struct bpf_verifier_env *env,
3680 		      const struct bpf_reg_state *reg, int regno)
3681 {
3682 	return __check_ptr_off_reg(env, reg, regno, false);
3683 }
3684 
3685 static int map_kptr_match_type(struct bpf_verifier_env *env,
3686 			       struct bpf_map_value_off_desc *off_desc,
3687 			       struct bpf_reg_state *reg, u32 regno)
3688 {
3689 	const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3690 	int perm_flags = PTR_MAYBE_NULL;
3691 	const char *reg_name = "";
3692 
3693 	/* Only unreferenced case accepts untrusted pointers */
3694 	if (off_desc->type == BPF_KPTR_UNREF)
3695 		perm_flags |= PTR_UNTRUSTED;
3696 
3697 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3698 		goto bad_type;
3699 
3700 	if (!btf_is_kernel(reg->btf)) {
3701 		verbose(env, "R%d must point to kernel BTF\n", regno);
3702 		return -EINVAL;
3703 	}
3704 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3705 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3706 
3707 	/* For ref_ptr case, release function check should ensure we get one
3708 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3709 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3710 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3711 	 * reg->off and reg->ref_obj_id are not needed here.
3712 	 */
3713 	if (__check_ptr_off_reg(env, reg, regno, true))
3714 		return -EACCES;
3715 
3716 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3717 	 * we also need to take into account the reg->off.
3718 	 *
3719 	 * We want to support cases like:
3720 	 *
3721 	 * struct foo {
3722 	 *         struct bar br;
3723 	 *         struct baz bz;
3724 	 * };
3725 	 *
3726 	 * struct foo *v;
3727 	 * v = func();	      // PTR_TO_BTF_ID
3728 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3729 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3730 	 *                    // first member type of struct after comparison fails
3731 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3732 	 *                    // to match type
3733 	 *
3734 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3735 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3736 	 * the struct to match type against first member of struct, i.e. reject
3737 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3738 	 * strict mode to true for type match.
3739 	 */
3740 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3741 				  off_desc->kptr.btf, off_desc->kptr.btf_id,
3742 				  off_desc->type == BPF_KPTR_REF))
3743 		goto bad_type;
3744 	return 0;
3745 bad_type:
3746 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3747 		reg_type_str(env, reg->type), reg_name);
3748 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3749 	if (off_desc->type == BPF_KPTR_UNREF)
3750 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3751 			targ_name);
3752 	else
3753 		verbose(env, "\n");
3754 	return -EINVAL;
3755 }
3756 
3757 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3758 				 int value_regno, int insn_idx,
3759 				 struct bpf_map_value_off_desc *off_desc)
3760 {
3761 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3762 	int class = BPF_CLASS(insn->code);
3763 	struct bpf_reg_state *val_reg;
3764 
3765 	/* Things we already checked for in check_map_access and caller:
3766 	 *  - Reject cases where variable offset may touch kptr
3767 	 *  - size of access (must be BPF_DW)
3768 	 *  - tnum_is_const(reg->var_off)
3769 	 *  - off_desc->offset == off + reg->var_off.value
3770 	 */
3771 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3772 	if (BPF_MODE(insn->code) != BPF_MEM) {
3773 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3774 		return -EACCES;
3775 	}
3776 
3777 	/* We only allow loading referenced kptr, since it will be marked as
3778 	 * untrusted, similar to unreferenced kptr.
3779 	 */
3780 	if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
3781 		verbose(env, "store to referenced kptr disallowed\n");
3782 		return -EACCES;
3783 	}
3784 
3785 	if (class == BPF_LDX) {
3786 		val_reg = reg_state(env, value_regno);
3787 		/* We can simply mark the value_regno receiving the pointer
3788 		 * value from map as PTR_TO_BTF_ID, with the correct type.
3789 		 */
3790 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
3791 				off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3792 		/* For mark_ptr_or_null_reg */
3793 		val_reg->id = ++env->id_gen;
3794 	} else if (class == BPF_STX) {
3795 		val_reg = reg_state(env, value_regno);
3796 		if (!register_is_null(val_reg) &&
3797 		    map_kptr_match_type(env, off_desc, val_reg, value_regno))
3798 			return -EACCES;
3799 	} else if (class == BPF_ST) {
3800 		if (insn->imm) {
3801 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3802 				off_desc->offset);
3803 			return -EACCES;
3804 		}
3805 	} else {
3806 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3807 		return -EACCES;
3808 	}
3809 	return 0;
3810 }
3811 
3812 /* check read/write into a map element with possible variable offset */
3813 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3814 			    int off, int size, bool zero_size_allowed,
3815 			    enum bpf_access_src src)
3816 {
3817 	struct bpf_verifier_state *vstate = env->cur_state;
3818 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3819 	struct bpf_reg_state *reg = &state->regs[regno];
3820 	struct bpf_map *map = reg->map_ptr;
3821 	int err;
3822 
3823 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3824 				      zero_size_allowed);
3825 	if (err)
3826 		return err;
3827 
3828 	if (map_value_has_spin_lock(map)) {
3829 		u32 lock = map->spin_lock_off;
3830 
3831 		/* if any part of struct bpf_spin_lock can be touched by
3832 		 * load/store reject this program.
3833 		 * To check that [x1, x2) overlaps with [y1, y2)
3834 		 * it is sufficient to check x1 < y2 && y1 < x2.
3835 		 */
3836 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3837 		     lock < reg->umax_value + off + size) {
3838 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3839 			return -EACCES;
3840 		}
3841 	}
3842 	if (map_value_has_timer(map)) {
3843 		u32 t = map->timer_off;
3844 
3845 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3846 		     t < reg->umax_value + off + size) {
3847 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3848 			return -EACCES;
3849 		}
3850 	}
3851 	if (map_value_has_kptrs(map)) {
3852 		struct bpf_map_value_off *tab = map->kptr_off_tab;
3853 		int i;
3854 
3855 		for (i = 0; i < tab->nr_off; i++) {
3856 			u32 p = tab->off[i].offset;
3857 
3858 			if (reg->smin_value + off < p + sizeof(u64) &&
3859 			    p < reg->umax_value + off + size) {
3860 				if (src != ACCESS_DIRECT) {
3861 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
3862 					return -EACCES;
3863 				}
3864 				if (!tnum_is_const(reg->var_off)) {
3865 					verbose(env, "kptr access cannot have variable offset\n");
3866 					return -EACCES;
3867 				}
3868 				if (p != off + reg->var_off.value) {
3869 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3870 						p, off + reg->var_off.value);
3871 					return -EACCES;
3872 				}
3873 				if (size != bpf_size_to_bytes(BPF_DW)) {
3874 					verbose(env, "kptr access size must be BPF_DW\n");
3875 					return -EACCES;
3876 				}
3877 				break;
3878 			}
3879 		}
3880 	}
3881 	return err;
3882 }
3883 
3884 #define MAX_PACKET_OFF 0xffff
3885 
3886 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3887 				       const struct bpf_call_arg_meta *meta,
3888 				       enum bpf_access_type t)
3889 {
3890 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3891 
3892 	switch (prog_type) {
3893 	/* Program types only with direct read access go here! */
3894 	case BPF_PROG_TYPE_LWT_IN:
3895 	case BPF_PROG_TYPE_LWT_OUT:
3896 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3897 	case BPF_PROG_TYPE_SK_REUSEPORT:
3898 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3899 	case BPF_PROG_TYPE_CGROUP_SKB:
3900 		if (t == BPF_WRITE)
3901 			return false;
3902 		fallthrough;
3903 
3904 	/* Program types with direct read + write access go here! */
3905 	case BPF_PROG_TYPE_SCHED_CLS:
3906 	case BPF_PROG_TYPE_SCHED_ACT:
3907 	case BPF_PROG_TYPE_XDP:
3908 	case BPF_PROG_TYPE_LWT_XMIT:
3909 	case BPF_PROG_TYPE_SK_SKB:
3910 	case BPF_PROG_TYPE_SK_MSG:
3911 		if (meta)
3912 			return meta->pkt_access;
3913 
3914 		env->seen_direct_write = true;
3915 		return true;
3916 
3917 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3918 		if (t == BPF_WRITE)
3919 			env->seen_direct_write = true;
3920 
3921 		return true;
3922 
3923 	default:
3924 		return false;
3925 	}
3926 }
3927 
3928 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3929 			       int size, bool zero_size_allowed)
3930 {
3931 	struct bpf_reg_state *regs = cur_regs(env);
3932 	struct bpf_reg_state *reg = &regs[regno];
3933 	int err;
3934 
3935 	/* We may have added a variable offset to the packet pointer; but any
3936 	 * reg->range we have comes after that.  We are only checking the fixed
3937 	 * offset.
3938 	 */
3939 
3940 	/* We don't allow negative numbers, because we aren't tracking enough
3941 	 * detail to prove they're safe.
3942 	 */
3943 	if (reg->smin_value < 0) {
3944 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3945 			regno);
3946 		return -EACCES;
3947 	}
3948 
3949 	err = reg->range < 0 ? -EINVAL :
3950 	      __check_mem_access(env, regno, off, size, reg->range,
3951 				 zero_size_allowed);
3952 	if (err) {
3953 		verbose(env, "R%d offset is outside of the packet\n", regno);
3954 		return err;
3955 	}
3956 
3957 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3958 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3959 	 * otherwise find_good_pkt_pointers would have refused to set range info
3960 	 * that __check_mem_access would have rejected this pkt access.
3961 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3962 	 */
3963 	env->prog->aux->max_pkt_offset =
3964 		max_t(u32, env->prog->aux->max_pkt_offset,
3965 		      off + reg->umax_value + size - 1);
3966 
3967 	return err;
3968 }
3969 
3970 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3971 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3972 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3973 			    struct btf **btf, u32 *btf_id)
3974 {
3975 	struct bpf_insn_access_aux info = {
3976 		.reg_type = *reg_type,
3977 		.log = &env->log,
3978 	};
3979 
3980 	if (env->ops->is_valid_access &&
3981 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3982 		/* A non zero info.ctx_field_size indicates that this field is a
3983 		 * candidate for later verifier transformation to load the whole
3984 		 * field and then apply a mask when accessed with a narrower
3985 		 * access than actual ctx access size. A zero info.ctx_field_size
3986 		 * will only allow for whole field access and rejects any other
3987 		 * type of narrower access.
3988 		 */
3989 		*reg_type = info.reg_type;
3990 
3991 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3992 			*btf = info.btf;
3993 			*btf_id = info.btf_id;
3994 		} else {
3995 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3996 		}
3997 		/* remember the offset of last byte accessed in ctx */
3998 		if (env->prog->aux->max_ctx_offset < off + size)
3999 			env->prog->aux->max_ctx_offset = off + size;
4000 		return 0;
4001 	}
4002 
4003 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4004 	return -EACCES;
4005 }
4006 
4007 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4008 				  int size)
4009 {
4010 	if (size < 0 || off < 0 ||
4011 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4012 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4013 			off, size);
4014 		return -EACCES;
4015 	}
4016 	return 0;
4017 }
4018 
4019 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4020 			     u32 regno, int off, int size,
4021 			     enum bpf_access_type t)
4022 {
4023 	struct bpf_reg_state *regs = cur_regs(env);
4024 	struct bpf_reg_state *reg = &regs[regno];
4025 	struct bpf_insn_access_aux info = {};
4026 	bool valid;
4027 
4028 	if (reg->smin_value < 0) {
4029 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4030 			regno);
4031 		return -EACCES;
4032 	}
4033 
4034 	switch (reg->type) {
4035 	case PTR_TO_SOCK_COMMON:
4036 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4037 		break;
4038 	case PTR_TO_SOCKET:
4039 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4040 		break;
4041 	case PTR_TO_TCP_SOCK:
4042 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4043 		break;
4044 	case PTR_TO_XDP_SOCK:
4045 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4046 		break;
4047 	default:
4048 		valid = false;
4049 	}
4050 
4051 
4052 	if (valid) {
4053 		env->insn_aux_data[insn_idx].ctx_field_size =
4054 			info.ctx_field_size;
4055 		return 0;
4056 	}
4057 
4058 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4059 		regno, reg_type_str(env, reg->type), off, size);
4060 
4061 	return -EACCES;
4062 }
4063 
4064 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4065 {
4066 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4067 }
4068 
4069 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4070 {
4071 	const struct bpf_reg_state *reg = reg_state(env, regno);
4072 
4073 	return reg->type == PTR_TO_CTX;
4074 }
4075 
4076 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4077 {
4078 	const struct bpf_reg_state *reg = reg_state(env, regno);
4079 
4080 	return type_is_sk_pointer(reg->type);
4081 }
4082 
4083 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4084 {
4085 	const struct bpf_reg_state *reg = reg_state(env, regno);
4086 
4087 	return type_is_pkt_pointer(reg->type);
4088 }
4089 
4090 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4091 {
4092 	const struct bpf_reg_state *reg = reg_state(env, regno);
4093 
4094 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4095 	return reg->type == PTR_TO_FLOW_KEYS;
4096 }
4097 
4098 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4099 				   const struct bpf_reg_state *reg,
4100 				   int off, int size, bool strict)
4101 {
4102 	struct tnum reg_off;
4103 	int ip_align;
4104 
4105 	/* Byte size accesses are always allowed. */
4106 	if (!strict || size == 1)
4107 		return 0;
4108 
4109 	/* For platforms that do not have a Kconfig enabling
4110 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4111 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4112 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4113 	 * to this code only in strict mode where we want to emulate
4114 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4115 	 * unconditional IP align value of '2'.
4116 	 */
4117 	ip_align = 2;
4118 
4119 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4120 	if (!tnum_is_aligned(reg_off, size)) {
4121 		char tn_buf[48];
4122 
4123 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4124 		verbose(env,
4125 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4126 			ip_align, tn_buf, reg->off, off, size);
4127 		return -EACCES;
4128 	}
4129 
4130 	return 0;
4131 }
4132 
4133 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4134 				       const struct bpf_reg_state *reg,
4135 				       const char *pointer_desc,
4136 				       int off, int size, bool strict)
4137 {
4138 	struct tnum reg_off;
4139 
4140 	/* Byte size accesses are always allowed. */
4141 	if (!strict || size == 1)
4142 		return 0;
4143 
4144 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4145 	if (!tnum_is_aligned(reg_off, size)) {
4146 		char tn_buf[48];
4147 
4148 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4149 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4150 			pointer_desc, tn_buf, reg->off, off, size);
4151 		return -EACCES;
4152 	}
4153 
4154 	return 0;
4155 }
4156 
4157 static int check_ptr_alignment(struct bpf_verifier_env *env,
4158 			       const struct bpf_reg_state *reg, int off,
4159 			       int size, bool strict_alignment_once)
4160 {
4161 	bool strict = env->strict_alignment || strict_alignment_once;
4162 	const char *pointer_desc = "";
4163 
4164 	switch (reg->type) {
4165 	case PTR_TO_PACKET:
4166 	case PTR_TO_PACKET_META:
4167 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4168 		 * right in front, treat it the very same way.
4169 		 */
4170 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4171 	case PTR_TO_FLOW_KEYS:
4172 		pointer_desc = "flow keys ";
4173 		break;
4174 	case PTR_TO_MAP_KEY:
4175 		pointer_desc = "key ";
4176 		break;
4177 	case PTR_TO_MAP_VALUE:
4178 		pointer_desc = "value ";
4179 		break;
4180 	case PTR_TO_CTX:
4181 		pointer_desc = "context ";
4182 		break;
4183 	case PTR_TO_STACK:
4184 		pointer_desc = "stack ";
4185 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4186 		 * and check_stack_read_fixed_off() relies on stack accesses being
4187 		 * aligned.
4188 		 */
4189 		strict = true;
4190 		break;
4191 	case PTR_TO_SOCKET:
4192 		pointer_desc = "sock ";
4193 		break;
4194 	case PTR_TO_SOCK_COMMON:
4195 		pointer_desc = "sock_common ";
4196 		break;
4197 	case PTR_TO_TCP_SOCK:
4198 		pointer_desc = "tcp_sock ";
4199 		break;
4200 	case PTR_TO_XDP_SOCK:
4201 		pointer_desc = "xdp_sock ";
4202 		break;
4203 	default:
4204 		break;
4205 	}
4206 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4207 					   strict);
4208 }
4209 
4210 static int update_stack_depth(struct bpf_verifier_env *env,
4211 			      const struct bpf_func_state *func,
4212 			      int off)
4213 {
4214 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4215 
4216 	if (stack >= -off)
4217 		return 0;
4218 
4219 	/* update known max for given subprogram */
4220 	env->subprog_info[func->subprogno].stack_depth = -off;
4221 	return 0;
4222 }
4223 
4224 /* starting from main bpf function walk all instructions of the function
4225  * and recursively walk all callees that given function can call.
4226  * Ignore jump and exit insns.
4227  * Since recursion is prevented by check_cfg() this algorithm
4228  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4229  */
4230 static int check_max_stack_depth(struct bpf_verifier_env *env)
4231 {
4232 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4233 	struct bpf_subprog_info *subprog = env->subprog_info;
4234 	struct bpf_insn *insn = env->prog->insnsi;
4235 	bool tail_call_reachable = false;
4236 	int ret_insn[MAX_CALL_FRAMES];
4237 	int ret_prog[MAX_CALL_FRAMES];
4238 	int j;
4239 
4240 process_func:
4241 	/* protect against potential stack overflow that might happen when
4242 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4243 	 * depth for such case down to 256 so that the worst case scenario
4244 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4245 	 * 8k).
4246 	 *
4247 	 * To get the idea what might happen, see an example:
4248 	 * func1 -> sub rsp, 128
4249 	 *  subfunc1 -> sub rsp, 256
4250 	 *  tailcall1 -> add rsp, 256
4251 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4252 	 *   subfunc2 -> sub rsp, 64
4253 	 *   subfunc22 -> sub rsp, 128
4254 	 *   tailcall2 -> add rsp, 128
4255 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4256 	 *
4257 	 * tailcall will unwind the current stack frame but it will not get rid
4258 	 * of caller's stack as shown on the example above.
4259 	 */
4260 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4261 		verbose(env,
4262 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4263 			depth);
4264 		return -EACCES;
4265 	}
4266 	/* round up to 32-bytes, since this is granularity
4267 	 * of interpreter stack size
4268 	 */
4269 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4270 	if (depth > MAX_BPF_STACK) {
4271 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4272 			frame + 1, depth);
4273 		return -EACCES;
4274 	}
4275 continue_func:
4276 	subprog_end = subprog[idx + 1].start;
4277 	for (; i < subprog_end; i++) {
4278 		int next_insn;
4279 
4280 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4281 			continue;
4282 		/* remember insn and function to return to */
4283 		ret_insn[frame] = i + 1;
4284 		ret_prog[frame] = idx;
4285 
4286 		/* find the callee */
4287 		next_insn = i + insn[i].imm + 1;
4288 		idx = find_subprog(env, next_insn);
4289 		if (idx < 0) {
4290 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4291 				  next_insn);
4292 			return -EFAULT;
4293 		}
4294 		if (subprog[idx].is_async_cb) {
4295 			if (subprog[idx].has_tail_call) {
4296 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4297 				return -EFAULT;
4298 			}
4299 			 /* async callbacks don't increase bpf prog stack size */
4300 			continue;
4301 		}
4302 		i = next_insn;
4303 
4304 		if (subprog[idx].has_tail_call)
4305 			tail_call_reachable = true;
4306 
4307 		frame++;
4308 		if (frame >= MAX_CALL_FRAMES) {
4309 			verbose(env, "the call stack of %d frames is too deep !\n",
4310 				frame);
4311 			return -E2BIG;
4312 		}
4313 		goto process_func;
4314 	}
4315 	/* if tail call got detected across bpf2bpf calls then mark each of the
4316 	 * currently present subprog frames as tail call reachable subprogs;
4317 	 * this info will be utilized by JIT so that we will be preserving the
4318 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4319 	 */
4320 	if (tail_call_reachable)
4321 		for (j = 0; j < frame; j++)
4322 			subprog[ret_prog[j]].tail_call_reachable = true;
4323 	if (subprog[0].tail_call_reachable)
4324 		env->prog->aux->tail_call_reachable = true;
4325 
4326 	/* end of for() loop means the last insn of the 'subprog'
4327 	 * was reached. Doesn't matter whether it was JA or EXIT
4328 	 */
4329 	if (frame == 0)
4330 		return 0;
4331 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4332 	frame--;
4333 	i = ret_insn[frame];
4334 	idx = ret_prog[frame];
4335 	goto continue_func;
4336 }
4337 
4338 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4339 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4340 				  const struct bpf_insn *insn, int idx)
4341 {
4342 	int start = idx + insn->imm + 1, subprog;
4343 
4344 	subprog = find_subprog(env, start);
4345 	if (subprog < 0) {
4346 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4347 			  start);
4348 		return -EFAULT;
4349 	}
4350 	return env->subprog_info[subprog].stack_depth;
4351 }
4352 #endif
4353 
4354 static int __check_buffer_access(struct bpf_verifier_env *env,
4355 				 const char *buf_info,
4356 				 const struct bpf_reg_state *reg,
4357 				 int regno, int off, int size)
4358 {
4359 	if (off < 0) {
4360 		verbose(env,
4361 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4362 			regno, buf_info, off, size);
4363 		return -EACCES;
4364 	}
4365 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4366 		char tn_buf[48];
4367 
4368 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4369 		verbose(env,
4370 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4371 			regno, off, tn_buf);
4372 		return -EACCES;
4373 	}
4374 
4375 	return 0;
4376 }
4377 
4378 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4379 				  const struct bpf_reg_state *reg,
4380 				  int regno, int off, int size)
4381 {
4382 	int err;
4383 
4384 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4385 	if (err)
4386 		return err;
4387 
4388 	if (off + size > env->prog->aux->max_tp_access)
4389 		env->prog->aux->max_tp_access = off + size;
4390 
4391 	return 0;
4392 }
4393 
4394 static int check_buffer_access(struct bpf_verifier_env *env,
4395 			       const struct bpf_reg_state *reg,
4396 			       int regno, int off, int size,
4397 			       bool zero_size_allowed,
4398 			       u32 *max_access)
4399 {
4400 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4401 	int err;
4402 
4403 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4404 	if (err)
4405 		return err;
4406 
4407 	if (off + size > *max_access)
4408 		*max_access = off + size;
4409 
4410 	return 0;
4411 }
4412 
4413 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4414 static void zext_32_to_64(struct bpf_reg_state *reg)
4415 {
4416 	reg->var_off = tnum_subreg(reg->var_off);
4417 	__reg_assign_32_into_64(reg);
4418 }
4419 
4420 /* truncate register to smaller size (in bytes)
4421  * must be called with size < BPF_REG_SIZE
4422  */
4423 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4424 {
4425 	u64 mask;
4426 
4427 	/* clear high bits in bit representation */
4428 	reg->var_off = tnum_cast(reg->var_off, size);
4429 
4430 	/* fix arithmetic bounds */
4431 	mask = ((u64)1 << (size * 8)) - 1;
4432 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4433 		reg->umin_value &= mask;
4434 		reg->umax_value &= mask;
4435 	} else {
4436 		reg->umin_value = 0;
4437 		reg->umax_value = mask;
4438 	}
4439 	reg->smin_value = reg->umin_value;
4440 	reg->smax_value = reg->umax_value;
4441 
4442 	/* If size is smaller than 32bit register the 32bit register
4443 	 * values are also truncated so we push 64-bit bounds into
4444 	 * 32-bit bounds. Above were truncated < 32-bits already.
4445 	 */
4446 	if (size >= 4)
4447 		return;
4448 	__reg_combine_64_into_32(reg);
4449 }
4450 
4451 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4452 {
4453 	/* A map is considered read-only if the following condition are true:
4454 	 *
4455 	 * 1) BPF program side cannot change any of the map content. The
4456 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4457 	 *    and was set at map creation time.
4458 	 * 2) The map value(s) have been initialized from user space by a
4459 	 *    loader and then "frozen", such that no new map update/delete
4460 	 *    operations from syscall side are possible for the rest of
4461 	 *    the map's lifetime from that point onwards.
4462 	 * 3) Any parallel/pending map update/delete operations from syscall
4463 	 *    side have been completed. Only after that point, it's safe to
4464 	 *    assume that map value(s) are immutable.
4465 	 */
4466 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4467 	       READ_ONCE(map->frozen) &&
4468 	       !bpf_map_write_active(map);
4469 }
4470 
4471 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4472 {
4473 	void *ptr;
4474 	u64 addr;
4475 	int err;
4476 
4477 	err = map->ops->map_direct_value_addr(map, &addr, off);
4478 	if (err)
4479 		return err;
4480 	ptr = (void *)(long)addr + off;
4481 
4482 	switch (size) {
4483 	case sizeof(u8):
4484 		*val = (u64)*(u8 *)ptr;
4485 		break;
4486 	case sizeof(u16):
4487 		*val = (u64)*(u16 *)ptr;
4488 		break;
4489 	case sizeof(u32):
4490 		*val = (u64)*(u32 *)ptr;
4491 		break;
4492 	case sizeof(u64):
4493 		*val = *(u64 *)ptr;
4494 		break;
4495 	default:
4496 		return -EINVAL;
4497 	}
4498 	return 0;
4499 }
4500 
4501 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4502 				   struct bpf_reg_state *regs,
4503 				   int regno, int off, int size,
4504 				   enum bpf_access_type atype,
4505 				   int value_regno)
4506 {
4507 	struct bpf_reg_state *reg = regs + regno;
4508 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4509 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4510 	enum bpf_type_flag flag = 0;
4511 	u32 btf_id;
4512 	int ret;
4513 
4514 	if (off < 0) {
4515 		verbose(env,
4516 			"R%d is ptr_%s invalid negative access: off=%d\n",
4517 			regno, tname, off);
4518 		return -EACCES;
4519 	}
4520 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4521 		char tn_buf[48];
4522 
4523 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4524 		verbose(env,
4525 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4526 			regno, tname, off, tn_buf);
4527 		return -EACCES;
4528 	}
4529 
4530 	if (reg->type & MEM_USER) {
4531 		verbose(env,
4532 			"R%d is ptr_%s access user memory: off=%d\n",
4533 			regno, tname, off);
4534 		return -EACCES;
4535 	}
4536 
4537 	if (reg->type & MEM_PERCPU) {
4538 		verbose(env,
4539 			"R%d is ptr_%s access percpu memory: off=%d\n",
4540 			regno, tname, off);
4541 		return -EACCES;
4542 	}
4543 
4544 	if (env->ops->btf_struct_access) {
4545 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4546 						  off, size, atype, &btf_id, &flag);
4547 	} else {
4548 		if (atype != BPF_READ) {
4549 			verbose(env, "only read is supported\n");
4550 			return -EACCES;
4551 		}
4552 
4553 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4554 					atype, &btf_id, &flag);
4555 	}
4556 
4557 	if (ret < 0)
4558 		return ret;
4559 
4560 	/* If this is an untrusted pointer, all pointers formed by walking it
4561 	 * also inherit the untrusted flag.
4562 	 */
4563 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4564 		flag |= PTR_UNTRUSTED;
4565 
4566 	if (atype == BPF_READ && value_regno >= 0)
4567 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4568 
4569 	return 0;
4570 }
4571 
4572 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4573 				   struct bpf_reg_state *regs,
4574 				   int regno, int off, int size,
4575 				   enum bpf_access_type atype,
4576 				   int value_regno)
4577 {
4578 	struct bpf_reg_state *reg = regs + regno;
4579 	struct bpf_map *map = reg->map_ptr;
4580 	enum bpf_type_flag flag = 0;
4581 	const struct btf_type *t;
4582 	const char *tname;
4583 	u32 btf_id;
4584 	int ret;
4585 
4586 	if (!btf_vmlinux) {
4587 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4588 		return -ENOTSUPP;
4589 	}
4590 
4591 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4592 		verbose(env, "map_ptr access not supported for map type %d\n",
4593 			map->map_type);
4594 		return -ENOTSUPP;
4595 	}
4596 
4597 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4598 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4599 
4600 	if (!env->allow_ptr_to_map_access) {
4601 		verbose(env,
4602 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4603 			tname);
4604 		return -EPERM;
4605 	}
4606 
4607 	if (off < 0) {
4608 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4609 			regno, tname, off);
4610 		return -EACCES;
4611 	}
4612 
4613 	if (atype != BPF_READ) {
4614 		verbose(env, "only read from %s is supported\n", tname);
4615 		return -EACCES;
4616 	}
4617 
4618 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4619 	if (ret < 0)
4620 		return ret;
4621 
4622 	if (value_regno >= 0)
4623 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4624 
4625 	return 0;
4626 }
4627 
4628 /* Check that the stack access at the given offset is within bounds. The
4629  * maximum valid offset is -1.
4630  *
4631  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4632  * -state->allocated_stack for reads.
4633  */
4634 static int check_stack_slot_within_bounds(int off,
4635 					  struct bpf_func_state *state,
4636 					  enum bpf_access_type t)
4637 {
4638 	int min_valid_off;
4639 
4640 	if (t == BPF_WRITE)
4641 		min_valid_off = -MAX_BPF_STACK;
4642 	else
4643 		min_valid_off = -state->allocated_stack;
4644 
4645 	if (off < min_valid_off || off > -1)
4646 		return -EACCES;
4647 	return 0;
4648 }
4649 
4650 /* Check that the stack access at 'regno + off' falls within the maximum stack
4651  * bounds.
4652  *
4653  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4654  */
4655 static int check_stack_access_within_bounds(
4656 		struct bpf_verifier_env *env,
4657 		int regno, int off, int access_size,
4658 		enum bpf_access_src src, enum bpf_access_type type)
4659 {
4660 	struct bpf_reg_state *regs = cur_regs(env);
4661 	struct bpf_reg_state *reg = regs + regno;
4662 	struct bpf_func_state *state = func(env, reg);
4663 	int min_off, max_off;
4664 	int err;
4665 	char *err_extra;
4666 
4667 	if (src == ACCESS_HELPER)
4668 		/* We don't know if helpers are reading or writing (or both). */
4669 		err_extra = " indirect access to";
4670 	else if (type == BPF_READ)
4671 		err_extra = " read from";
4672 	else
4673 		err_extra = " write to";
4674 
4675 	if (tnum_is_const(reg->var_off)) {
4676 		min_off = reg->var_off.value + off;
4677 		if (access_size > 0)
4678 			max_off = min_off + access_size - 1;
4679 		else
4680 			max_off = min_off;
4681 	} else {
4682 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4683 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4684 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4685 				err_extra, regno);
4686 			return -EACCES;
4687 		}
4688 		min_off = reg->smin_value + off;
4689 		if (access_size > 0)
4690 			max_off = reg->smax_value + off + access_size - 1;
4691 		else
4692 			max_off = min_off;
4693 	}
4694 
4695 	err = check_stack_slot_within_bounds(min_off, state, type);
4696 	if (!err)
4697 		err = check_stack_slot_within_bounds(max_off, state, type);
4698 
4699 	if (err) {
4700 		if (tnum_is_const(reg->var_off)) {
4701 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4702 				err_extra, regno, off, access_size);
4703 		} else {
4704 			char tn_buf[48];
4705 
4706 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4707 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4708 				err_extra, regno, tn_buf, access_size);
4709 		}
4710 	}
4711 	return err;
4712 }
4713 
4714 /* check whether memory at (regno + off) is accessible for t = (read | write)
4715  * if t==write, value_regno is a register which value is stored into memory
4716  * if t==read, value_regno is a register which will receive the value from memory
4717  * if t==write && value_regno==-1, some unknown value is stored into memory
4718  * if t==read && value_regno==-1, don't care what we read from memory
4719  */
4720 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4721 			    int off, int bpf_size, enum bpf_access_type t,
4722 			    int value_regno, bool strict_alignment_once)
4723 {
4724 	struct bpf_reg_state *regs = cur_regs(env);
4725 	struct bpf_reg_state *reg = regs + regno;
4726 	struct bpf_func_state *state;
4727 	int size, err = 0;
4728 
4729 	size = bpf_size_to_bytes(bpf_size);
4730 	if (size < 0)
4731 		return size;
4732 
4733 	/* alignment checks will add in reg->off themselves */
4734 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4735 	if (err)
4736 		return err;
4737 
4738 	/* for access checks, reg->off is just part of off */
4739 	off += reg->off;
4740 
4741 	if (reg->type == PTR_TO_MAP_KEY) {
4742 		if (t == BPF_WRITE) {
4743 			verbose(env, "write to change key R%d not allowed\n", regno);
4744 			return -EACCES;
4745 		}
4746 
4747 		err = check_mem_region_access(env, regno, off, size,
4748 					      reg->map_ptr->key_size, false);
4749 		if (err)
4750 			return err;
4751 		if (value_regno >= 0)
4752 			mark_reg_unknown(env, regs, value_regno);
4753 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4754 		struct bpf_map_value_off_desc *kptr_off_desc = NULL;
4755 
4756 		if (t == BPF_WRITE && value_regno >= 0 &&
4757 		    is_pointer_value(env, value_regno)) {
4758 			verbose(env, "R%d leaks addr into map\n", value_regno);
4759 			return -EACCES;
4760 		}
4761 		err = check_map_access_type(env, regno, off, size, t);
4762 		if (err)
4763 			return err;
4764 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4765 		if (err)
4766 			return err;
4767 		if (tnum_is_const(reg->var_off))
4768 			kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
4769 								  off + reg->var_off.value);
4770 		if (kptr_off_desc) {
4771 			err = check_map_kptr_access(env, regno, value_regno, insn_idx,
4772 						    kptr_off_desc);
4773 		} else if (t == BPF_READ && value_regno >= 0) {
4774 			struct bpf_map *map = reg->map_ptr;
4775 
4776 			/* if map is read-only, track its contents as scalars */
4777 			if (tnum_is_const(reg->var_off) &&
4778 			    bpf_map_is_rdonly(map) &&
4779 			    map->ops->map_direct_value_addr) {
4780 				int map_off = off + reg->var_off.value;
4781 				u64 val = 0;
4782 
4783 				err = bpf_map_direct_read(map, map_off, size,
4784 							  &val);
4785 				if (err)
4786 					return err;
4787 
4788 				regs[value_regno].type = SCALAR_VALUE;
4789 				__mark_reg_known(&regs[value_regno], val);
4790 			} else {
4791 				mark_reg_unknown(env, regs, value_regno);
4792 			}
4793 		}
4794 	} else if (base_type(reg->type) == PTR_TO_MEM) {
4795 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4796 
4797 		if (type_may_be_null(reg->type)) {
4798 			verbose(env, "R%d invalid mem access '%s'\n", regno,
4799 				reg_type_str(env, reg->type));
4800 			return -EACCES;
4801 		}
4802 
4803 		if (t == BPF_WRITE && rdonly_mem) {
4804 			verbose(env, "R%d cannot write into %s\n",
4805 				regno, reg_type_str(env, reg->type));
4806 			return -EACCES;
4807 		}
4808 
4809 		if (t == BPF_WRITE && value_regno >= 0 &&
4810 		    is_pointer_value(env, value_regno)) {
4811 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4812 			return -EACCES;
4813 		}
4814 
4815 		err = check_mem_region_access(env, regno, off, size,
4816 					      reg->mem_size, false);
4817 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4818 			mark_reg_unknown(env, regs, value_regno);
4819 	} else if (reg->type == PTR_TO_CTX) {
4820 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4821 		struct btf *btf = NULL;
4822 		u32 btf_id = 0;
4823 
4824 		if (t == BPF_WRITE && value_regno >= 0 &&
4825 		    is_pointer_value(env, value_regno)) {
4826 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4827 			return -EACCES;
4828 		}
4829 
4830 		err = check_ptr_off_reg(env, reg, regno);
4831 		if (err < 0)
4832 			return err;
4833 
4834 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
4835 				       &btf_id);
4836 		if (err)
4837 			verbose_linfo(env, insn_idx, "; ");
4838 		if (!err && t == BPF_READ && value_regno >= 0) {
4839 			/* ctx access returns either a scalar, or a
4840 			 * PTR_TO_PACKET[_META,_END]. In the latter
4841 			 * case, we know the offset is zero.
4842 			 */
4843 			if (reg_type == SCALAR_VALUE) {
4844 				mark_reg_unknown(env, regs, value_regno);
4845 			} else {
4846 				mark_reg_known_zero(env, regs,
4847 						    value_regno);
4848 				if (type_may_be_null(reg_type))
4849 					regs[value_regno].id = ++env->id_gen;
4850 				/* A load of ctx field could have different
4851 				 * actual load size with the one encoded in the
4852 				 * insn. When the dst is PTR, it is for sure not
4853 				 * a sub-register.
4854 				 */
4855 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4856 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
4857 					regs[value_regno].btf = btf;
4858 					regs[value_regno].btf_id = btf_id;
4859 				}
4860 			}
4861 			regs[value_regno].type = reg_type;
4862 		}
4863 
4864 	} else if (reg->type == PTR_TO_STACK) {
4865 		/* Basic bounds checks. */
4866 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4867 		if (err)
4868 			return err;
4869 
4870 		state = func(env, reg);
4871 		err = update_stack_depth(env, state, off);
4872 		if (err)
4873 			return err;
4874 
4875 		if (t == BPF_READ)
4876 			err = check_stack_read(env, regno, off, size,
4877 					       value_regno);
4878 		else
4879 			err = check_stack_write(env, regno, off, size,
4880 						value_regno, insn_idx);
4881 	} else if (reg_is_pkt_pointer(reg)) {
4882 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4883 			verbose(env, "cannot write into packet\n");
4884 			return -EACCES;
4885 		}
4886 		if (t == BPF_WRITE && value_regno >= 0 &&
4887 		    is_pointer_value(env, value_regno)) {
4888 			verbose(env, "R%d leaks addr into packet\n",
4889 				value_regno);
4890 			return -EACCES;
4891 		}
4892 		err = check_packet_access(env, regno, off, size, false);
4893 		if (!err && t == BPF_READ && value_regno >= 0)
4894 			mark_reg_unknown(env, regs, value_regno);
4895 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4896 		if (t == BPF_WRITE && value_regno >= 0 &&
4897 		    is_pointer_value(env, value_regno)) {
4898 			verbose(env, "R%d leaks addr into flow keys\n",
4899 				value_regno);
4900 			return -EACCES;
4901 		}
4902 
4903 		err = check_flow_keys_access(env, off, size);
4904 		if (!err && t == BPF_READ && value_regno >= 0)
4905 			mark_reg_unknown(env, regs, value_regno);
4906 	} else if (type_is_sk_pointer(reg->type)) {
4907 		if (t == BPF_WRITE) {
4908 			verbose(env, "R%d cannot write into %s\n",
4909 				regno, reg_type_str(env, reg->type));
4910 			return -EACCES;
4911 		}
4912 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4913 		if (!err && value_regno >= 0)
4914 			mark_reg_unknown(env, regs, value_regno);
4915 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4916 		err = check_tp_buffer_access(env, reg, regno, off, size);
4917 		if (!err && t == BPF_READ && value_regno >= 0)
4918 			mark_reg_unknown(env, regs, value_regno);
4919 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4920 		   !type_may_be_null(reg->type)) {
4921 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4922 					      value_regno);
4923 	} else if (reg->type == CONST_PTR_TO_MAP) {
4924 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4925 					      value_regno);
4926 	} else if (base_type(reg->type) == PTR_TO_BUF) {
4927 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4928 		u32 *max_access;
4929 
4930 		if (rdonly_mem) {
4931 			if (t == BPF_WRITE) {
4932 				verbose(env, "R%d cannot write into %s\n",
4933 					regno, reg_type_str(env, reg->type));
4934 				return -EACCES;
4935 			}
4936 			max_access = &env->prog->aux->max_rdonly_access;
4937 		} else {
4938 			max_access = &env->prog->aux->max_rdwr_access;
4939 		}
4940 
4941 		err = check_buffer_access(env, reg, regno, off, size, false,
4942 					  max_access);
4943 
4944 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4945 			mark_reg_unknown(env, regs, value_regno);
4946 	} else {
4947 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4948 			reg_type_str(env, reg->type));
4949 		return -EACCES;
4950 	}
4951 
4952 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4953 	    regs[value_regno].type == SCALAR_VALUE) {
4954 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4955 		coerce_reg_to_size(&regs[value_regno], size);
4956 	}
4957 	return err;
4958 }
4959 
4960 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4961 {
4962 	int load_reg;
4963 	int err;
4964 
4965 	switch (insn->imm) {
4966 	case BPF_ADD:
4967 	case BPF_ADD | BPF_FETCH:
4968 	case BPF_AND:
4969 	case BPF_AND | BPF_FETCH:
4970 	case BPF_OR:
4971 	case BPF_OR | BPF_FETCH:
4972 	case BPF_XOR:
4973 	case BPF_XOR | BPF_FETCH:
4974 	case BPF_XCHG:
4975 	case BPF_CMPXCHG:
4976 		break;
4977 	default:
4978 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4979 		return -EINVAL;
4980 	}
4981 
4982 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4983 		verbose(env, "invalid atomic operand size\n");
4984 		return -EINVAL;
4985 	}
4986 
4987 	/* check src1 operand */
4988 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4989 	if (err)
4990 		return err;
4991 
4992 	/* check src2 operand */
4993 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4994 	if (err)
4995 		return err;
4996 
4997 	if (insn->imm == BPF_CMPXCHG) {
4998 		/* Check comparison of R0 with memory location */
4999 		const u32 aux_reg = BPF_REG_0;
5000 
5001 		err = check_reg_arg(env, aux_reg, SRC_OP);
5002 		if (err)
5003 			return err;
5004 
5005 		if (is_pointer_value(env, aux_reg)) {
5006 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5007 			return -EACCES;
5008 		}
5009 	}
5010 
5011 	if (is_pointer_value(env, insn->src_reg)) {
5012 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5013 		return -EACCES;
5014 	}
5015 
5016 	if (is_ctx_reg(env, insn->dst_reg) ||
5017 	    is_pkt_reg(env, insn->dst_reg) ||
5018 	    is_flow_key_reg(env, insn->dst_reg) ||
5019 	    is_sk_reg(env, insn->dst_reg)) {
5020 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5021 			insn->dst_reg,
5022 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5023 		return -EACCES;
5024 	}
5025 
5026 	if (insn->imm & BPF_FETCH) {
5027 		if (insn->imm == BPF_CMPXCHG)
5028 			load_reg = BPF_REG_0;
5029 		else
5030 			load_reg = insn->src_reg;
5031 
5032 		/* check and record load of old value */
5033 		err = check_reg_arg(env, load_reg, DST_OP);
5034 		if (err)
5035 			return err;
5036 	} else {
5037 		/* This instruction accesses a memory location but doesn't
5038 		 * actually load it into a register.
5039 		 */
5040 		load_reg = -1;
5041 	}
5042 
5043 	/* Check whether we can read the memory, with second call for fetch
5044 	 * case to simulate the register fill.
5045 	 */
5046 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5047 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5048 	if (!err && load_reg >= 0)
5049 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5050 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5051 				       true);
5052 	if (err)
5053 		return err;
5054 
5055 	/* Check whether we can write into the same memory. */
5056 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5057 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5058 	if (err)
5059 		return err;
5060 
5061 	return 0;
5062 }
5063 
5064 /* When register 'regno' is used to read the stack (either directly or through
5065  * a helper function) make sure that it's within stack boundary and, depending
5066  * on the access type, that all elements of the stack are initialized.
5067  *
5068  * 'off' includes 'regno->off', but not its dynamic part (if any).
5069  *
5070  * All registers that have been spilled on the stack in the slots within the
5071  * read offsets are marked as read.
5072  */
5073 static int check_stack_range_initialized(
5074 		struct bpf_verifier_env *env, int regno, int off,
5075 		int access_size, bool zero_size_allowed,
5076 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5077 {
5078 	struct bpf_reg_state *reg = reg_state(env, regno);
5079 	struct bpf_func_state *state = func(env, reg);
5080 	int err, min_off, max_off, i, j, slot, spi;
5081 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5082 	enum bpf_access_type bounds_check_type;
5083 	/* Some accesses can write anything into the stack, others are
5084 	 * read-only.
5085 	 */
5086 	bool clobber = false;
5087 
5088 	if (access_size == 0 && !zero_size_allowed) {
5089 		verbose(env, "invalid zero-sized read\n");
5090 		return -EACCES;
5091 	}
5092 
5093 	if (type == ACCESS_HELPER) {
5094 		/* The bounds checks for writes are more permissive than for
5095 		 * reads. However, if raw_mode is not set, we'll do extra
5096 		 * checks below.
5097 		 */
5098 		bounds_check_type = BPF_WRITE;
5099 		clobber = true;
5100 	} else {
5101 		bounds_check_type = BPF_READ;
5102 	}
5103 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5104 					       type, bounds_check_type);
5105 	if (err)
5106 		return err;
5107 
5108 
5109 	if (tnum_is_const(reg->var_off)) {
5110 		min_off = max_off = reg->var_off.value + off;
5111 	} else {
5112 		/* Variable offset is prohibited for unprivileged mode for
5113 		 * simplicity since it requires corresponding support in
5114 		 * Spectre masking for stack ALU.
5115 		 * See also retrieve_ptr_limit().
5116 		 */
5117 		if (!env->bypass_spec_v1) {
5118 			char tn_buf[48];
5119 
5120 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5121 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5122 				regno, err_extra, tn_buf);
5123 			return -EACCES;
5124 		}
5125 		/* Only initialized buffer on stack is allowed to be accessed
5126 		 * with variable offset. With uninitialized buffer it's hard to
5127 		 * guarantee that whole memory is marked as initialized on
5128 		 * helper return since specific bounds are unknown what may
5129 		 * cause uninitialized stack leaking.
5130 		 */
5131 		if (meta && meta->raw_mode)
5132 			meta = NULL;
5133 
5134 		min_off = reg->smin_value + off;
5135 		max_off = reg->smax_value + off;
5136 	}
5137 
5138 	if (meta && meta->raw_mode) {
5139 		meta->access_size = access_size;
5140 		meta->regno = regno;
5141 		return 0;
5142 	}
5143 
5144 	for (i = min_off; i < max_off + access_size; i++) {
5145 		u8 *stype;
5146 
5147 		slot = -i - 1;
5148 		spi = slot / BPF_REG_SIZE;
5149 		if (state->allocated_stack <= slot)
5150 			goto err;
5151 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5152 		if (*stype == STACK_MISC)
5153 			goto mark;
5154 		if (*stype == STACK_ZERO) {
5155 			if (clobber) {
5156 				/* helper can write anything into the stack */
5157 				*stype = STACK_MISC;
5158 			}
5159 			goto mark;
5160 		}
5161 
5162 		if (is_spilled_reg(&state->stack[spi]) &&
5163 		    base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID)
5164 			goto mark;
5165 
5166 		if (is_spilled_reg(&state->stack[spi]) &&
5167 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5168 		     env->allow_ptr_leaks)) {
5169 			if (clobber) {
5170 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5171 				for (j = 0; j < BPF_REG_SIZE; j++)
5172 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5173 			}
5174 			goto mark;
5175 		}
5176 
5177 err:
5178 		if (tnum_is_const(reg->var_off)) {
5179 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5180 				err_extra, regno, min_off, i - min_off, access_size);
5181 		} else {
5182 			char tn_buf[48];
5183 
5184 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5185 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5186 				err_extra, regno, tn_buf, i - min_off, access_size);
5187 		}
5188 		return -EACCES;
5189 mark:
5190 		/* reading any byte out of 8-byte 'spill_slot' will cause
5191 		 * the whole slot to be marked as 'read'
5192 		 */
5193 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5194 			      state->stack[spi].spilled_ptr.parent,
5195 			      REG_LIVE_READ64);
5196 	}
5197 	return update_stack_depth(env, state, min_off);
5198 }
5199 
5200 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5201 				   int access_size, bool zero_size_allowed,
5202 				   struct bpf_call_arg_meta *meta)
5203 {
5204 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5205 	u32 *max_access;
5206 
5207 	switch (base_type(reg->type)) {
5208 	case PTR_TO_PACKET:
5209 	case PTR_TO_PACKET_META:
5210 		return check_packet_access(env, regno, reg->off, access_size,
5211 					   zero_size_allowed);
5212 	case PTR_TO_MAP_KEY:
5213 		if (meta && meta->raw_mode) {
5214 			verbose(env, "R%d cannot write into %s\n", regno,
5215 				reg_type_str(env, reg->type));
5216 			return -EACCES;
5217 		}
5218 		return check_mem_region_access(env, regno, reg->off, access_size,
5219 					       reg->map_ptr->key_size, false);
5220 	case PTR_TO_MAP_VALUE:
5221 		if (check_map_access_type(env, regno, reg->off, access_size,
5222 					  meta && meta->raw_mode ? BPF_WRITE :
5223 					  BPF_READ))
5224 			return -EACCES;
5225 		return check_map_access(env, regno, reg->off, access_size,
5226 					zero_size_allowed, ACCESS_HELPER);
5227 	case PTR_TO_MEM:
5228 		if (type_is_rdonly_mem(reg->type)) {
5229 			if (meta && meta->raw_mode) {
5230 				verbose(env, "R%d cannot write into %s\n", regno,
5231 					reg_type_str(env, reg->type));
5232 				return -EACCES;
5233 			}
5234 		}
5235 		return check_mem_region_access(env, regno, reg->off,
5236 					       access_size, reg->mem_size,
5237 					       zero_size_allowed);
5238 	case PTR_TO_BUF:
5239 		if (type_is_rdonly_mem(reg->type)) {
5240 			if (meta && meta->raw_mode) {
5241 				verbose(env, "R%d cannot write into %s\n", regno,
5242 					reg_type_str(env, reg->type));
5243 				return -EACCES;
5244 			}
5245 
5246 			max_access = &env->prog->aux->max_rdonly_access;
5247 		} else {
5248 			max_access = &env->prog->aux->max_rdwr_access;
5249 		}
5250 		return check_buffer_access(env, reg, regno, reg->off,
5251 					   access_size, zero_size_allowed,
5252 					   max_access);
5253 	case PTR_TO_STACK:
5254 		return check_stack_range_initialized(
5255 				env,
5256 				regno, reg->off, access_size,
5257 				zero_size_allowed, ACCESS_HELPER, meta);
5258 	case PTR_TO_CTX:
5259 		/* in case the function doesn't know how to access the context,
5260 		 * (because we are in a program of type SYSCALL for example), we
5261 		 * can not statically check its size.
5262 		 * Dynamically check it now.
5263 		 */
5264 		if (!env->ops->convert_ctx_access) {
5265 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5266 			int offset = access_size - 1;
5267 
5268 			/* Allow zero-byte read from PTR_TO_CTX */
5269 			if (access_size == 0)
5270 				return zero_size_allowed ? 0 : -EACCES;
5271 
5272 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5273 						atype, -1, false);
5274 		}
5275 
5276 		fallthrough;
5277 	default: /* scalar_value or invalid ptr */
5278 		/* Allow zero-byte read from NULL, regardless of pointer type */
5279 		if (zero_size_allowed && access_size == 0 &&
5280 		    register_is_null(reg))
5281 			return 0;
5282 
5283 		verbose(env, "R%d type=%s ", regno,
5284 			reg_type_str(env, reg->type));
5285 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5286 		return -EACCES;
5287 	}
5288 }
5289 
5290 static int check_mem_size_reg(struct bpf_verifier_env *env,
5291 			      struct bpf_reg_state *reg, u32 regno,
5292 			      bool zero_size_allowed,
5293 			      struct bpf_call_arg_meta *meta)
5294 {
5295 	int err;
5296 
5297 	/* This is used to refine r0 return value bounds for helpers
5298 	 * that enforce this value as an upper bound on return values.
5299 	 * See do_refine_retval_range() for helpers that can refine
5300 	 * the return value. C type of helper is u32 so we pull register
5301 	 * bound from umax_value however, if negative verifier errors
5302 	 * out. Only upper bounds can be learned because retval is an
5303 	 * int type and negative retvals are allowed.
5304 	 */
5305 	meta->msize_max_value = reg->umax_value;
5306 
5307 	/* The register is SCALAR_VALUE; the access check
5308 	 * happens using its boundaries.
5309 	 */
5310 	if (!tnum_is_const(reg->var_off))
5311 		/* For unprivileged variable accesses, disable raw
5312 		 * mode so that the program is required to
5313 		 * initialize all the memory that the helper could
5314 		 * just partially fill up.
5315 		 */
5316 		meta = NULL;
5317 
5318 	if (reg->smin_value < 0) {
5319 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5320 			regno);
5321 		return -EACCES;
5322 	}
5323 
5324 	if (reg->umin_value == 0) {
5325 		err = check_helper_mem_access(env, regno - 1, 0,
5326 					      zero_size_allowed,
5327 					      meta);
5328 		if (err)
5329 			return err;
5330 	}
5331 
5332 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5333 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5334 			regno);
5335 		return -EACCES;
5336 	}
5337 	err = check_helper_mem_access(env, regno - 1,
5338 				      reg->umax_value,
5339 				      zero_size_allowed, meta);
5340 	if (!err)
5341 		err = mark_chain_precision(env, regno);
5342 	return err;
5343 }
5344 
5345 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5346 		   u32 regno, u32 mem_size)
5347 {
5348 	bool may_be_null = type_may_be_null(reg->type);
5349 	struct bpf_reg_state saved_reg;
5350 	struct bpf_call_arg_meta meta;
5351 	int err;
5352 
5353 	if (register_is_null(reg))
5354 		return 0;
5355 
5356 	memset(&meta, 0, sizeof(meta));
5357 	/* Assuming that the register contains a value check if the memory
5358 	 * access is safe. Temporarily save and restore the register's state as
5359 	 * the conversion shouldn't be visible to a caller.
5360 	 */
5361 	if (may_be_null) {
5362 		saved_reg = *reg;
5363 		mark_ptr_not_null_reg(reg);
5364 	}
5365 
5366 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5367 	/* Check access for BPF_WRITE */
5368 	meta.raw_mode = true;
5369 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5370 
5371 	if (may_be_null)
5372 		*reg = saved_reg;
5373 
5374 	return err;
5375 }
5376 
5377 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5378 			     u32 regno)
5379 {
5380 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5381 	bool may_be_null = type_may_be_null(mem_reg->type);
5382 	struct bpf_reg_state saved_reg;
5383 	struct bpf_call_arg_meta meta;
5384 	int err;
5385 
5386 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5387 
5388 	memset(&meta, 0, sizeof(meta));
5389 
5390 	if (may_be_null) {
5391 		saved_reg = *mem_reg;
5392 		mark_ptr_not_null_reg(mem_reg);
5393 	}
5394 
5395 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5396 	/* Check access for BPF_WRITE */
5397 	meta.raw_mode = true;
5398 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5399 
5400 	if (may_be_null)
5401 		*mem_reg = saved_reg;
5402 	return err;
5403 }
5404 
5405 /* Implementation details:
5406  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5407  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5408  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5409  * value_or_null->value transition, since the verifier only cares about
5410  * the range of access to valid map value pointer and doesn't care about actual
5411  * address of the map element.
5412  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5413  * reg->id > 0 after value_or_null->value transition. By doing so
5414  * two bpf_map_lookups will be considered two different pointers that
5415  * point to different bpf_spin_locks.
5416  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5417  * dead-locks.
5418  * Since only one bpf_spin_lock is allowed the checks are simpler than
5419  * reg_is_refcounted() logic. The verifier needs to remember only
5420  * one spin_lock instead of array of acquired_refs.
5421  * cur_state->active_spin_lock remembers which map value element got locked
5422  * and clears it after bpf_spin_unlock.
5423  */
5424 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5425 			     bool is_lock)
5426 {
5427 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5428 	struct bpf_verifier_state *cur = env->cur_state;
5429 	bool is_const = tnum_is_const(reg->var_off);
5430 	struct bpf_map *map = reg->map_ptr;
5431 	u64 val = reg->var_off.value;
5432 
5433 	if (!is_const) {
5434 		verbose(env,
5435 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5436 			regno);
5437 		return -EINVAL;
5438 	}
5439 	if (!map->btf) {
5440 		verbose(env,
5441 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5442 			map->name);
5443 		return -EINVAL;
5444 	}
5445 	if (!map_value_has_spin_lock(map)) {
5446 		if (map->spin_lock_off == -E2BIG)
5447 			verbose(env,
5448 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
5449 				map->name);
5450 		else if (map->spin_lock_off == -ENOENT)
5451 			verbose(env,
5452 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
5453 				map->name);
5454 		else
5455 			verbose(env,
5456 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5457 				map->name);
5458 		return -EINVAL;
5459 	}
5460 	if (map->spin_lock_off != val + reg->off) {
5461 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5462 			val + reg->off);
5463 		return -EINVAL;
5464 	}
5465 	if (is_lock) {
5466 		if (cur->active_spin_lock) {
5467 			verbose(env,
5468 				"Locking two bpf_spin_locks are not allowed\n");
5469 			return -EINVAL;
5470 		}
5471 		cur->active_spin_lock = reg->id;
5472 	} else {
5473 		if (!cur->active_spin_lock) {
5474 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5475 			return -EINVAL;
5476 		}
5477 		if (cur->active_spin_lock != reg->id) {
5478 			verbose(env, "bpf_spin_unlock of different lock\n");
5479 			return -EINVAL;
5480 		}
5481 		cur->active_spin_lock = 0;
5482 	}
5483 	return 0;
5484 }
5485 
5486 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5487 			      struct bpf_call_arg_meta *meta)
5488 {
5489 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5490 	bool is_const = tnum_is_const(reg->var_off);
5491 	struct bpf_map *map = reg->map_ptr;
5492 	u64 val = reg->var_off.value;
5493 
5494 	if (!is_const) {
5495 		verbose(env,
5496 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5497 			regno);
5498 		return -EINVAL;
5499 	}
5500 	if (!map->btf) {
5501 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5502 			map->name);
5503 		return -EINVAL;
5504 	}
5505 	if (!map_value_has_timer(map)) {
5506 		if (map->timer_off == -E2BIG)
5507 			verbose(env,
5508 				"map '%s' has more than one 'struct bpf_timer'\n",
5509 				map->name);
5510 		else if (map->timer_off == -ENOENT)
5511 			verbose(env,
5512 				"map '%s' doesn't have 'struct bpf_timer'\n",
5513 				map->name);
5514 		else
5515 			verbose(env,
5516 				"map '%s' is not a struct type or bpf_timer is mangled\n",
5517 				map->name);
5518 		return -EINVAL;
5519 	}
5520 	if (map->timer_off != val + reg->off) {
5521 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5522 			val + reg->off, map->timer_off);
5523 		return -EINVAL;
5524 	}
5525 	if (meta->map_ptr) {
5526 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5527 		return -EFAULT;
5528 	}
5529 	meta->map_uid = reg->map_uid;
5530 	meta->map_ptr = map;
5531 	return 0;
5532 }
5533 
5534 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5535 			     struct bpf_call_arg_meta *meta)
5536 {
5537 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5538 	struct bpf_map_value_off_desc *off_desc;
5539 	struct bpf_map *map_ptr = reg->map_ptr;
5540 	u32 kptr_off;
5541 	int ret;
5542 
5543 	if (!tnum_is_const(reg->var_off)) {
5544 		verbose(env,
5545 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5546 			regno);
5547 		return -EINVAL;
5548 	}
5549 	if (!map_ptr->btf) {
5550 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5551 			map_ptr->name);
5552 		return -EINVAL;
5553 	}
5554 	if (!map_value_has_kptrs(map_ptr)) {
5555 		ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
5556 		if (ret == -E2BIG)
5557 			verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5558 				BPF_MAP_VALUE_OFF_MAX);
5559 		else if (ret == -EEXIST)
5560 			verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5561 		else
5562 			verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5563 		return -EINVAL;
5564 	}
5565 
5566 	meta->map_ptr = map_ptr;
5567 	kptr_off = reg->off + reg->var_off.value;
5568 	off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5569 	if (!off_desc) {
5570 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5571 		return -EACCES;
5572 	}
5573 	if (off_desc->type != BPF_KPTR_REF) {
5574 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5575 		return -EACCES;
5576 	}
5577 	meta->kptr_off_desc = off_desc;
5578 	return 0;
5579 }
5580 
5581 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5582 {
5583 	return type == ARG_CONST_SIZE ||
5584 	       type == ARG_CONST_SIZE_OR_ZERO;
5585 }
5586 
5587 static bool arg_type_is_release(enum bpf_arg_type type)
5588 {
5589 	return type & OBJ_RELEASE;
5590 }
5591 
5592 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5593 {
5594 	return base_type(type) == ARG_PTR_TO_DYNPTR;
5595 }
5596 
5597 static int int_ptr_type_to_size(enum bpf_arg_type type)
5598 {
5599 	if (type == ARG_PTR_TO_INT)
5600 		return sizeof(u32);
5601 	else if (type == ARG_PTR_TO_LONG)
5602 		return sizeof(u64);
5603 
5604 	return -EINVAL;
5605 }
5606 
5607 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5608 				 const struct bpf_call_arg_meta *meta,
5609 				 enum bpf_arg_type *arg_type)
5610 {
5611 	if (!meta->map_ptr) {
5612 		/* kernel subsystem misconfigured verifier */
5613 		verbose(env, "invalid map_ptr to access map->type\n");
5614 		return -EACCES;
5615 	}
5616 
5617 	switch (meta->map_ptr->map_type) {
5618 	case BPF_MAP_TYPE_SOCKMAP:
5619 	case BPF_MAP_TYPE_SOCKHASH:
5620 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5621 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5622 		} else {
5623 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5624 			return -EINVAL;
5625 		}
5626 		break;
5627 	case BPF_MAP_TYPE_BLOOM_FILTER:
5628 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5629 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5630 		break;
5631 	default:
5632 		break;
5633 	}
5634 	return 0;
5635 }
5636 
5637 struct bpf_reg_types {
5638 	const enum bpf_reg_type types[10];
5639 	u32 *btf_id;
5640 };
5641 
5642 static const struct bpf_reg_types map_key_value_types = {
5643 	.types = {
5644 		PTR_TO_STACK,
5645 		PTR_TO_PACKET,
5646 		PTR_TO_PACKET_META,
5647 		PTR_TO_MAP_KEY,
5648 		PTR_TO_MAP_VALUE,
5649 	},
5650 };
5651 
5652 static const struct bpf_reg_types sock_types = {
5653 	.types = {
5654 		PTR_TO_SOCK_COMMON,
5655 		PTR_TO_SOCKET,
5656 		PTR_TO_TCP_SOCK,
5657 		PTR_TO_XDP_SOCK,
5658 	},
5659 };
5660 
5661 #ifdef CONFIG_NET
5662 static const struct bpf_reg_types btf_id_sock_common_types = {
5663 	.types = {
5664 		PTR_TO_SOCK_COMMON,
5665 		PTR_TO_SOCKET,
5666 		PTR_TO_TCP_SOCK,
5667 		PTR_TO_XDP_SOCK,
5668 		PTR_TO_BTF_ID,
5669 	},
5670 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5671 };
5672 #endif
5673 
5674 static const struct bpf_reg_types mem_types = {
5675 	.types = {
5676 		PTR_TO_STACK,
5677 		PTR_TO_PACKET,
5678 		PTR_TO_PACKET_META,
5679 		PTR_TO_MAP_KEY,
5680 		PTR_TO_MAP_VALUE,
5681 		PTR_TO_MEM,
5682 		PTR_TO_MEM | MEM_ALLOC,
5683 		PTR_TO_BUF,
5684 	},
5685 };
5686 
5687 static const struct bpf_reg_types int_ptr_types = {
5688 	.types = {
5689 		PTR_TO_STACK,
5690 		PTR_TO_PACKET,
5691 		PTR_TO_PACKET_META,
5692 		PTR_TO_MAP_KEY,
5693 		PTR_TO_MAP_VALUE,
5694 	},
5695 };
5696 
5697 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5698 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5699 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5700 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5701 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5702 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5703 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5704 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5705 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5706 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5707 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5708 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5709 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5710 static const struct bpf_reg_types dynptr_types = {
5711 	.types = {
5712 		PTR_TO_STACK,
5713 		PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5714 	}
5715 };
5716 
5717 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5718 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5719 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5720 	[ARG_CONST_SIZE]		= &scalar_types,
5721 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5722 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5723 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5724 	[ARG_PTR_TO_CTX]		= &context_types,
5725 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5726 #ifdef CONFIG_NET
5727 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5728 #endif
5729 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5730 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5731 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5732 	[ARG_PTR_TO_MEM]		= &mem_types,
5733 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5734 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5735 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5736 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5737 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5738 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5739 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5740 	[ARG_PTR_TO_TIMER]		= &timer_types,
5741 	[ARG_PTR_TO_KPTR]		= &kptr_types,
5742 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
5743 };
5744 
5745 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5746 			  enum bpf_arg_type arg_type,
5747 			  const u32 *arg_btf_id,
5748 			  struct bpf_call_arg_meta *meta)
5749 {
5750 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5751 	enum bpf_reg_type expected, type = reg->type;
5752 	const struct bpf_reg_types *compatible;
5753 	int i, j;
5754 
5755 	compatible = compatible_reg_types[base_type(arg_type)];
5756 	if (!compatible) {
5757 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5758 		return -EFAULT;
5759 	}
5760 
5761 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5762 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5763 	 *
5764 	 * Same for MAYBE_NULL:
5765 	 *
5766 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5767 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5768 	 *
5769 	 * Therefore we fold these flags depending on the arg_type before comparison.
5770 	 */
5771 	if (arg_type & MEM_RDONLY)
5772 		type &= ~MEM_RDONLY;
5773 	if (arg_type & PTR_MAYBE_NULL)
5774 		type &= ~PTR_MAYBE_NULL;
5775 
5776 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5777 		expected = compatible->types[i];
5778 		if (expected == NOT_INIT)
5779 			break;
5780 
5781 		if (type == expected)
5782 			goto found;
5783 	}
5784 
5785 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5786 	for (j = 0; j + 1 < i; j++)
5787 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5788 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5789 	return -EACCES;
5790 
5791 found:
5792 	if (reg->type == PTR_TO_BTF_ID) {
5793 		/* For bpf_sk_release, it needs to match against first member
5794 		 * 'struct sock_common', hence make an exception for it. This
5795 		 * allows bpf_sk_release to work for multiple socket types.
5796 		 */
5797 		bool strict_type_match = arg_type_is_release(arg_type) &&
5798 					 meta->func_id != BPF_FUNC_sk_release;
5799 
5800 		if (!arg_btf_id) {
5801 			if (!compatible->btf_id) {
5802 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5803 				return -EFAULT;
5804 			}
5805 			arg_btf_id = compatible->btf_id;
5806 		}
5807 
5808 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
5809 			if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
5810 				return -EACCES;
5811 		} else {
5812 			if (arg_btf_id == BPF_PTR_POISON) {
5813 				verbose(env, "verifier internal error:");
5814 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
5815 					regno);
5816 				return -EACCES;
5817 			}
5818 
5819 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5820 						  btf_vmlinux, *arg_btf_id,
5821 						  strict_type_match)) {
5822 				verbose(env, "R%d is of type %s but %s is expected\n",
5823 					regno, kernel_type_name(reg->btf, reg->btf_id),
5824 					kernel_type_name(btf_vmlinux, *arg_btf_id));
5825 				return -EACCES;
5826 			}
5827 		}
5828 	}
5829 
5830 	return 0;
5831 }
5832 
5833 int check_func_arg_reg_off(struct bpf_verifier_env *env,
5834 			   const struct bpf_reg_state *reg, int regno,
5835 			   enum bpf_arg_type arg_type)
5836 {
5837 	enum bpf_reg_type type = reg->type;
5838 	bool fixed_off_ok = false;
5839 
5840 	switch ((u32)type) {
5841 	/* Pointer types where reg offset is explicitly allowed: */
5842 	case PTR_TO_STACK:
5843 		if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
5844 			verbose(env, "cannot pass in dynptr at an offset\n");
5845 			return -EINVAL;
5846 		}
5847 		fallthrough;
5848 	case PTR_TO_PACKET:
5849 	case PTR_TO_PACKET_META:
5850 	case PTR_TO_MAP_KEY:
5851 	case PTR_TO_MAP_VALUE:
5852 	case PTR_TO_MEM:
5853 	case PTR_TO_MEM | MEM_RDONLY:
5854 	case PTR_TO_MEM | MEM_ALLOC:
5855 	case PTR_TO_BUF:
5856 	case PTR_TO_BUF | MEM_RDONLY:
5857 	case SCALAR_VALUE:
5858 		/* Some of the argument types nevertheless require a
5859 		 * zero register offset.
5860 		 */
5861 		if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
5862 			return 0;
5863 		break;
5864 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5865 	 * fixed offset.
5866 	 */
5867 	case PTR_TO_BTF_ID:
5868 		/* When referenced PTR_TO_BTF_ID is passed to release function,
5869 		 * it's fixed offset must be 0.	In the other cases, fixed offset
5870 		 * can be non-zero.
5871 		 */
5872 		if (arg_type_is_release(arg_type) && reg->off) {
5873 			verbose(env, "R%d must have zero offset when passed to release func\n",
5874 				regno);
5875 			return -EINVAL;
5876 		}
5877 		/* For arg is release pointer, fixed_off_ok must be false, but
5878 		 * we already checked and rejected reg->off != 0 above, so set
5879 		 * to true to allow fixed offset for all other cases.
5880 		 */
5881 		fixed_off_ok = true;
5882 		break;
5883 	default:
5884 		break;
5885 	}
5886 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5887 }
5888 
5889 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
5890 {
5891 	struct bpf_func_state *state = func(env, reg);
5892 	int spi = get_spi(reg->off);
5893 
5894 	return state->stack[spi].spilled_ptr.id;
5895 }
5896 
5897 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5898 			  struct bpf_call_arg_meta *meta,
5899 			  const struct bpf_func_proto *fn)
5900 {
5901 	u32 regno = BPF_REG_1 + arg;
5902 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5903 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5904 	enum bpf_reg_type type = reg->type;
5905 	u32 *arg_btf_id = NULL;
5906 	int err = 0;
5907 
5908 	if (arg_type == ARG_DONTCARE)
5909 		return 0;
5910 
5911 	err = check_reg_arg(env, regno, SRC_OP);
5912 	if (err)
5913 		return err;
5914 
5915 	if (arg_type == ARG_ANYTHING) {
5916 		if (is_pointer_value(env, regno)) {
5917 			verbose(env, "R%d leaks addr into helper function\n",
5918 				regno);
5919 			return -EACCES;
5920 		}
5921 		return 0;
5922 	}
5923 
5924 	if (type_is_pkt_pointer(type) &&
5925 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5926 		verbose(env, "helper access to the packet is not allowed\n");
5927 		return -EACCES;
5928 	}
5929 
5930 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
5931 		err = resolve_map_arg_type(env, meta, &arg_type);
5932 		if (err)
5933 			return err;
5934 	}
5935 
5936 	if (register_is_null(reg) && type_may_be_null(arg_type))
5937 		/* A NULL register has a SCALAR_VALUE type, so skip
5938 		 * type checking.
5939 		 */
5940 		goto skip_type_check;
5941 
5942 	/* arg_btf_id and arg_size are in a union. */
5943 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
5944 		arg_btf_id = fn->arg_btf_id[arg];
5945 
5946 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
5947 	if (err)
5948 		return err;
5949 
5950 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
5951 	if (err)
5952 		return err;
5953 
5954 skip_type_check:
5955 	if (arg_type_is_release(arg_type)) {
5956 		if (arg_type_is_dynptr(arg_type)) {
5957 			struct bpf_func_state *state = func(env, reg);
5958 			int spi = get_spi(reg->off);
5959 
5960 			if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
5961 			    !state->stack[spi].spilled_ptr.id) {
5962 				verbose(env, "arg %d is an unacquired reference\n", regno);
5963 				return -EINVAL;
5964 			}
5965 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
5966 			verbose(env, "R%d must be referenced when passed to release function\n",
5967 				regno);
5968 			return -EINVAL;
5969 		}
5970 		if (meta->release_regno) {
5971 			verbose(env, "verifier internal error: more than one release argument\n");
5972 			return -EFAULT;
5973 		}
5974 		meta->release_regno = regno;
5975 	}
5976 
5977 	if (reg->ref_obj_id) {
5978 		if (meta->ref_obj_id) {
5979 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5980 				regno, reg->ref_obj_id,
5981 				meta->ref_obj_id);
5982 			return -EFAULT;
5983 		}
5984 		meta->ref_obj_id = reg->ref_obj_id;
5985 	}
5986 
5987 	switch (base_type(arg_type)) {
5988 	case ARG_CONST_MAP_PTR:
5989 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5990 		if (meta->map_ptr) {
5991 			/* Use map_uid (which is unique id of inner map) to reject:
5992 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5993 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5994 			 * if (inner_map1 && inner_map2) {
5995 			 *     timer = bpf_map_lookup_elem(inner_map1);
5996 			 *     if (timer)
5997 			 *         // mismatch would have been allowed
5998 			 *         bpf_timer_init(timer, inner_map2);
5999 			 * }
6000 			 *
6001 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6002 			 */
6003 			if (meta->map_ptr != reg->map_ptr ||
6004 			    meta->map_uid != reg->map_uid) {
6005 				verbose(env,
6006 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6007 					meta->map_uid, reg->map_uid);
6008 				return -EINVAL;
6009 			}
6010 		}
6011 		meta->map_ptr = reg->map_ptr;
6012 		meta->map_uid = reg->map_uid;
6013 		break;
6014 	case ARG_PTR_TO_MAP_KEY:
6015 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6016 		 * check that [key, key + map->key_size) are within
6017 		 * stack limits and initialized
6018 		 */
6019 		if (!meta->map_ptr) {
6020 			/* in function declaration map_ptr must come before
6021 			 * map_key, so that it's verified and known before
6022 			 * we have to check map_key here. Otherwise it means
6023 			 * that kernel subsystem misconfigured verifier
6024 			 */
6025 			verbose(env, "invalid map_ptr to access map->key\n");
6026 			return -EACCES;
6027 		}
6028 		err = check_helper_mem_access(env, regno,
6029 					      meta->map_ptr->key_size, false,
6030 					      NULL);
6031 		break;
6032 	case ARG_PTR_TO_MAP_VALUE:
6033 		if (type_may_be_null(arg_type) && register_is_null(reg))
6034 			return 0;
6035 
6036 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6037 		 * check [value, value + map->value_size) validity
6038 		 */
6039 		if (!meta->map_ptr) {
6040 			/* kernel subsystem misconfigured verifier */
6041 			verbose(env, "invalid map_ptr to access map->value\n");
6042 			return -EACCES;
6043 		}
6044 		meta->raw_mode = arg_type & MEM_UNINIT;
6045 		err = check_helper_mem_access(env, regno,
6046 					      meta->map_ptr->value_size, false,
6047 					      meta);
6048 		break;
6049 	case ARG_PTR_TO_PERCPU_BTF_ID:
6050 		if (!reg->btf_id) {
6051 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6052 			return -EACCES;
6053 		}
6054 		meta->ret_btf = reg->btf;
6055 		meta->ret_btf_id = reg->btf_id;
6056 		break;
6057 	case ARG_PTR_TO_SPIN_LOCK:
6058 		if (meta->func_id == BPF_FUNC_spin_lock) {
6059 			if (process_spin_lock(env, regno, true))
6060 				return -EACCES;
6061 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6062 			if (process_spin_lock(env, regno, false))
6063 				return -EACCES;
6064 		} else {
6065 			verbose(env, "verifier internal error\n");
6066 			return -EFAULT;
6067 		}
6068 		break;
6069 	case ARG_PTR_TO_TIMER:
6070 		if (process_timer_func(env, regno, meta))
6071 			return -EACCES;
6072 		break;
6073 	case ARG_PTR_TO_FUNC:
6074 		meta->subprogno = reg->subprogno;
6075 		break;
6076 	case ARG_PTR_TO_MEM:
6077 		/* The access to this pointer is only checked when we hit the
6078 		 * next is_mem_size argument below.
6079 		 */
6080 		meta->raw_mode = arg_type & MEM_UNINIT;
6081 		if (arg_type & MEM_FIXED_SIZE) {
6082 			err = check_helper_mem_access(env, regno,
6083 						      fn->arg_size[arg], false,
6084 						      meta);
6085 		}
6086 		break;
6087 	case ARG_CONST_SIZE:
6088 		err = check_mem_size_reg(env, reg, regno, false, meta);
6089 		break;
6090 	case ARG_CONST_SIZE_OR_ZERO:
6091 		err = check_mem_size_reg(env, reg, regno, true, meta);
6092 		break;
6093 	case ARG_PTR_TO_DYNPTR:
6094 		/* We only need to check for initialized / uninitialized helper
6095 		 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6096 		 * assumption is that if it is, that a helper function
6097 		 * initialized the dynptr on behalf of the BPF program.
6098 		 */
6099 		if (base_type(reg->type) == PTR_TO_DYNPTR)
6100 			break;
6101 		if (arg_type & MEM_UNINIT) {
6102 			if (!is_dynptr_reg_valid_uninit(env, reg)) {
6103 				verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6104 				return -EINVAL;
6105 			}
6106 
6107 			/* We only support one dynptr being uninitialized at the moment,
6108 			 * which is sufficient for the helper functions we have right now.
6109 			 */
6110 			if (meta->uninit_dynptr_regno) {
6111 				verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6112 				return -EFAULT;
6113 			}
6114 
6115 			meta->uninit_dynptr_regno = regno;
6116 		} else if (!is_dynptr_reg_valid_init(env, reg)) {
6117 			verbose(env,
6118 				"Expected an initialized dynptr as arg #%d\n",
6119 				arg + 1);
6120 			return -EINVAL;
6121 		} else if (!is_dynptr_type_expected(env, reg, arg_type)) {
6122 			const char *err_extra = "";
6123 
6124 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6125 			case DYNPTR_TYPE_LOCAL:
6126 				err_extra = "local";
6127 				break;
6128 			case DYNPTR_TYPE_RINGBUF:
6129 				err_extra = "ringbuf";
6130 				break;
6131 			default:
6132 				err_extra = "<unknown>";
6133 				break;
6134 			}
6135 			verbose(env,
6136 				"Expected a dynptr of type %s as arg #%d\n",
6137 				err_extra, arg + 1);
6138 			return -EINVAL;
6139 		}
6140 		break;
6141 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6142 		if (!tnum_is_const(reg->var_off)) {
6143 			verbose(env, "R%d is not a known constant'\n",
6144 				regno);
6145 			return -EACCES;
6146 		}
6147 		meta->mem_size = reg->var_off.value;
6148 		err = mark_chain_precision(env, regno);
6149 		if (err)
6150 			return err;
6151 		break;
6152 	case ARG_PTR_TO_INT:
6153 	case ARG_PTR_TO_LONG:
6154 	{
6155 		int size = int_ptr_type_to_size(arg_type);
6156 
6157 		err = check_helper_mem_access(env, regno, size, false, meta);
6158 		if (err)
6159 			return err;
6160 		err = check_ptr_alignment(env, reg, 0, size, true);
6161 		break;
6162 	}
6163 	case ARG_PTR_TO_CONST_STR:
6164 	{
6165 		struct bpf_map *map = reg->map_ptr;
6166 		int map_off;
6167 		u64 map_addr;
6168 		char *str_ptr;
6169 
6170 		if (!bpf_map_is_rdonly(map)) {
6171 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6172 			return -EACCES;
6173 		}
6174 
6175 		if (!tnum_is_const(reg->var_off)) {
6176 			verbose(env, "R%d is not a constant address'\n", regno);
6177 			return -EACCES;
6178 		}
6179 
6180 		if (!map->ops->map_direct_value_addr) {
6181 			verbose(env, "no direct value access support for this map type\n");
6182 			return -EACCES;
6183 		}
6184 
6185 		err = check_map_access(env, regno, reg->off,
6186 				       map->value_size - reg->off, false,
6187 				       ACCESS_HELPER);
6188 		if (err)
6189 			return err;
6190 
6191 		map_off = reg->off + reg->var_off.value;
6192 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6193 		if (err) {
6194 			verbose(env, "direct value access on string failed\n");
6195 			return err;
6196 		}
6197 
6198 		str_ptr = (char *)(long)(map_addr);
6199 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6200 			verbose(env, "string is not zero-terminated\n");
6201 			return -EINVAL;
6202 		}
6203 		break;
6204 	}
6205 	case ARG_PTR_TO_KPTR:
6206 		if (process_kptr_func(env, regno, meta))
6207 			return -EACCES;
6208 		break;
6209 	}
6210 
6211 	return err;
6212 }
6213 
6214 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6215 {
6216 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6217 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6218 
6219 	if (func_id != BPF_FUNC_map_update_elem)
6220 		return false;
6221 
6222 	/* It's not possible to get access to a locked struct sock in these
6223 	 * contexts, so updating is safe.
6224 	 */
6225 	switch (type) {
6226 	case BPF_PROG_TYPE_TRACING:
6227 		if (eatype == BPF_TRACE_ITER)
6228 			return true;
6229 		break;
6230 	case BPF_PROG_TYPE_SOCKET_FILTER:
6231 	case BPF_PROG_TYPE_SCHED_CLS:
6232 	case BPF_PROG_TYPE_SCHED_ACT:
6233 	case BPF_PROG_TYPE_XDP:
6234 	case BPF_PROG_TYPE_SK_REUSEPORT:
6235 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6236 	case BPF_PROG_TYPE_SK_LOOKUP:
6237 		return true;
6238 	default:
6239 		break;
6240 	}
6241 
6242 	verbose(env, "cannot update sockmap in this context\n");
6243 	return false;
6244 }
6245 
6246 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6247 {
6248 	return env->prog->jit_requested &&
6249 	       bpf_jit_supports_subprog_tailcalls();
6250 }
6251 
6252 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6253 					struct bpf_map *map, int func_id)
6254 {
6255 	if (!map)
6256 		return 0;
6257 
6258 	/* We need a two way check, first is from map perspective ... */
6259 	switch (map->map_type) {
6260 	case BPF_MAP_TYPE_PROG_ARRAY:
6261 		if (func_id != BPF_FUNC_tail_call)
6262 			goto error;
6263 		break;
6264 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6265 		if (func_id != BPF_FUNC_perf_event_read &&
6266 		    func_id != BPF_FUNC_perf_event_output &&
6267 		    func_id != BPF_FUNC_skb_output &&
6268 		    func_id != BPF_FUNC_perf_event_read_value &&
6269 		    func_id != BPF_FUNC_xdp_output)
6270 			goto error;
6271 		break;
6272 	case BPF_MAP_TYPE_RINGBUF:
6273 		if (func_id != BPF_FUNC_ringbuf_output &&
6274 		    func_id != BPF_FUNC_ringbuf_reserve &&
6275 		    func_id != BPF_FUNC_ringbuf_query &&
6276 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6277 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6278 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6279 			goto error;
6280 		break;
6281 	case BPF_MAP_TYPE_USER_RINGBUF:
6282 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6283 			goto error;
6284 		break;
6285 	case BPF_MAP_TYPE_STACK_TRACE:
6286 		if (func_id != BPF_FUNC_get_stackid)
6287 			goto error;
6288 		break;
6289 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6290 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6291 		    func_id != BPF_FUNC_current_task_under_cgroup)
6292 			goto error;
6293 		break;
6294 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6295 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6296 		if (func_id != BPF_FUNC_get_local_storage)
6297 			goto error;
6298 		break;
6299 	case BPF_MAP_TYPE_DEVMAP:
6300 	case BPF_MAP_TYPE_DEVMAP_HASH:
6301 		if (func_id != BPF_FUNC_redirect_map &&
6302 		    func_id != BPF_FUNC_map_lookup_elem)
6303 			goto error;
6304 		break;
6305 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6306 	 * appear.
6307 	 */
6308 	case BPF_MAP_TYPE_CPUMAP:
6309 		if (func_id != BPF_FUNC_redirect_map)
6310 			goto error;
6311 		break;
6312 	case BPF_MAP_TYPE_XSKMAP:
6313 		if (func_id != BPF_FUNC_redirect_map &&
6314 		    func_id != BPF_FUNC_map_lookup_elem)
6315 			goto error;
6316 		break;
6317 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6318 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6319 		if (func_id != BPF_FUNC_map_lookup_elem)
6320 			goto error;
6321 		break;
6322 	case BPF_MAP_TYPE_SOCKMAP:
6323 		if (func_id != BPF_FUNC_sk_redirect_map &&
6324 		    func_id != BPF_FUNC_sock_map_update &&
6325 		    func_id != BPF_FUNC_map_delete_elem &&
6326 		    func_id != BPF_FUNC_msg_redirect_map &&
6327 		    func_id != BPF_FUNC_sk_select_reuseport &&
6328 		    func_id != BPF_FUNC_map_lookup_elem &&
6329 		    !may_update_sockmap(env, func_id))
6330 			goto error;
6331 		break;
6332 	case BPF_MAP_TYPE_SOCKHASH:
6333 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6334 		    func_id != BPF_FUNC_sock_hash_update &&
6335 		    func_id != BPF_FUNC_map_delete_elem &&
6336 		    func_id != BPF_FUNC_msg_redirect_hash &&
6337 		    func_id != BPF_FUNC_sk_select_reuseport &&
6338 		    func_id != BPF_FUNC_map_lookup_elem &&
6339 		    !may_update_sockmap(env, func_id))
6340 			goto error;
6341 		break;
6342 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6343 		if (func_id != BPF_FUNC_sk_select_reuseport)
6344 			goto error;
6345 		break;
6346 	case BPF_MAP_TYPE_QUEUE:
6347 	case BPF_MAP_TYPE_STACK:
6348 		if (func_id != BPF_FUNC_map_peek_elem &&
6349 		    func_id != BPF_FUNC_map_pop_elem &&
6350 		    func_id != BPF_FUNC_map_push_elem)
6351 			goto error;
6352 		break;
6353 	case BPF_MAP_TYPE_SK_STORAGE:
6354 		if (func_id != BPF_FUNC_sk_storage_get &&
6355 		    func_id != BPF_FUNC_sk_storage_delete)
6356 			goto error;
6357 		break;
6358 	case BPF_MAP_TYPE_INODE_STORAGE:
6359 		if (func_id != BPF_FUNC_inode_storage_get &&
6360 		    func_id != BPF_FUNC_inode_storage_delete)
6361 			goto error;
6362 		break;
6363 	case BPF_MAP_TYPE_TASK_STORAGE:
6364 		if (func_id != BPF_FUNC_task_storage_get &&
6365 		    func_id != BPF_FUNC_task_storage_delete)
6366 			goto error;
6367 		break;
6368 	case BPF_MAP_TYPE_BLOOM_FILTER:
6369 		if (func_id != BPF_FUNC_map_peek_elem &&
6370 		    func_id != BPF_FUNC_map_push_elem)
6371 			goto error;
6372 		break;
6373 	default:
6374 		break;
6375 	}
6376 
6377 	/* ... and second from the function itself. */
6378 	switch (func_id) {
6379 	case BPF_FUNC_tail_call:
6380 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6381 			goto error;
6382 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6383 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6384 			return -EINVAL;
6385 		}
6386 		break;
6387 	case BPF_FUNC_perf_event_read:
6388 	case BPF_FUNC_perf_event_output:
6389 	case BPF_FUNC_perf_event_read_value:
6390 	case BPF_FUNC_skb_output:
6391 	case BPF_FUNC_xdp_output:
6392 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6393 			goto error;
6394 		break;
6395 	case BPF_FUNC_ringbuf_output:
6396 	case BPF_FUNC_ringbuf_reserve:
6397 	case BPF_FUNC_ringbuf_query:
6398 	case BPF_FUNC_ringbuf_reserve_dynptr:
6399 	case BPF_FUNC_ringbuf_submit_dynptr:
6400 	case BPF_FUNC_ringbuf_discard_dynptr:
6401 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6402 			goto error;
6403 		break;
6404 	case BPF_FUNC_user_ringbuf_drain:
6405 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6406 			goto error;
6407 		break;
6408 	case BPF_FUNC_get_stackid:
6409 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6410 			goto error;
6411 		break;
6412 	case BPF_FUNC_current_task_under_cgroup:
6413 	case BPF_FUNC_skb_under_cgroup:
6414 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6415 			goto error;
6416 		break;
6417 	case BPF_FUNC_redirect_map:
6418 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6419 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6420 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6421 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6422 			goto error;
6423 		break;
6424 	case BPF_FUNC_sk_redirect_map:
6425 	case BPF_FUNC_msg_redirect_map:
6426 	case BPF_FUNC_sock_map_update:
6427 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6428 			goto error;
6429 		break;
6430 	case BPF_FUNC_sk_redirect_hash:
6431 	case BPF_FUNC_msg_redirect_hash:
6432 	case BPF_FUNC_sock_hash_update:
6433 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6434 			goto error;
6435 		break;
6436 	case BPF_FUNC_get_local_storage:
6437 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6438 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6439 			goto error;
6440 		break;
6441 	case BPF_FUNC_sk_select_reuseport:
6442 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6443 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6444 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6445 			goto error;
6446 		break;
6447 	case BPF_FUNC_map_pop_elem:
6448 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6449 		    map->map_type != BPF_MAP_TYPE_STACK)
6450 			goto error;
6451 		break;
6452 	case BPF_FUNC_map_peek_elem:
6453 	case BPF_FUNC_map_push_elem:
6454 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6455 		    map->map_type != BPF_MAP_TYPE_STACK &&
6456 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6457 			goto error;
6458 		break;
6459 	case BPF_FUNC_map_lookup_percpu_elem:
6460 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6461 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6462 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6463 			goto error;
6464 		break;
6465 	case BPF_FUNC_sk_storage_get:
6466 	case BPF_FUNC_sk_storage_delete:
6467 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6468 			goto error;
6469 		break;
6470 	case BPF_FUNC_inode_storage_get:
6471 	case BPF_FUNC_inode_storage_delete:
6472 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6473 			goto error;
6474 		break;
6475 	case BPF_FUNC_task_storage_get:
6476 	case BPF_FUNC_task_storage_delete:
6477 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6478 			goto error;
6479 		break;
6480 	default:
6481 		break;
6482 	}
6483 
6484 	return 0;
6485 error:
6486 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6487 		map->map_type, func_id_name(func_id), func_id);
6488 	return -EINVAL;
6489 }
6490 
6491 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6492 {
6493 	int count = 0;
6494 
6495 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6496 		count++;
6497 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6498 		count++;
6499 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6500 		count++;
6501 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6502 		count++;
6503 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6504 		count++;
6505 
6506 	/* We only support one arg being in raw mode at the moment,
6507 	 * which is sufficient for the helper functions we have
6508 	 * right now.
6509 	 */
6510 	return count <= 1;
6511 }
6512 
6513 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6514 {
6515 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6516 	bool has_size = fn->arg_size[arg] != 0;
6517 	bool is_next_size = false;
6518 
6519 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6520 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6521 
6522 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6523 		return is_next_size;
6524 
6525 	return has_size == is_next_size || is_next_size == is_fixed;
6526 }
6527 
6528 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6529 {
6530 	/* bpf_xxx(..., buf, len) call will access 'len'
6531 	 * bytes from memory 'buf'. Both arg types need
6532 	 * to be paired, so make sure there's no buggy
6533 	 * helper function specification.
6534 	 */
6535 	if (arg_type_is_mem_size(fn->arg1_type) ||
6536 	    check_args_pair_invalid(fn, 0) ||
6537 	    check_args_pair_invalid(fn, 1) ||
6538 	    check_args_pair_invalid(fn, 2) ||
6539 	    check_args_pair_invalid(fn, 3) ||
6540 	    check_args_pair_invalid(fn, 4))
6541 		return false;
6542 
6543 	return true;
6544 }
6545 
6546 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6547 {
6548 	int i;
6549 
6550 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6551 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6552 			return false;
6553 
6554 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6555 		    /* arg_btf_id and arg_size are in a union. */
6556 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6557 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6558 			return false;
6559 	}
6560 
6561 	return true;
6562 }
6563 
6564 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
6565 {
6566 	return check_raw_mode_ok(fn) &&
6567 	       check_arg_pair_ok(fn) &&
6568 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
6569 }
6570 
6571 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6572  * are now invalid, so turn them into unknown SCALAR_VALUE.
6573  */
6574 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6575 {
6576 	struct bpf_func_state *state;
6577 	struct bpf_reg_state *reg;
6578 
6579 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6580 		if (reg_is_pkt_pointer_any(reg))
6581 			__mark_reg_unknown(env, reg);
6582 	}));
6583 }
6584 
6585 enum {
6586 	AT_PKT_END = -1,
6587 	BEYOND_PKT_END = -2,
6588 };
6589 
6590 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6591 {
6592 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6593 	struct bpf_reg_state *reg = &state->regs[regn];
6594 
6595 	if (reg->type != PTR_TO_PACKET)
6596 		/* PTR_TO_PACKET_META is not supported yet */
6597 		return;
6598 
6599 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6600 	 * How far beyond pkt_end it goes is unknown.
6601 	 * if (!range_open) it's the case of pkt >= pkt_end
6602 	 * if (range_open) it's the case of pkt > pkt_end
6603 	 * hence this pointer is at least 1 byte bigger than pkt_end
6604 	 */
6605 	if (range_open)
6606 		reg->range = BEYOND_PKT_END;
6607 	else
6608 		reg->range = AT_PKT_END;
6609 }
6610 
6611 /* The pointer with the specified id has released its reference to kernel
6612  * resources. Identify all copies of the same pointer and clear the reference.
6613  */
6614 static int release_reference(struct bpf_verifier_env *env,
6615 			     int ref_obj_id)
6616 {
6617 	struct bpf_func_state *state;
6618 	struct bpf_reg_state *reg;
6619 	int err;
6620 
6621 	err = release_reference_state(cur_func(env), ref_obj_id);
6622 	if (err)
6623 		return err;
6624 
6625 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6626 		if (reg->ref_obj_id == ref_obj_id) {
6627 			if (!env->allow_ptr_leaks)
6628 				__mark_reg_not_init(env, reg);
6629 			else
6630 				__mark_reg_unknown(env, reg);
6631 		}
6632 	}));
6633 
6634 	return 0;
6635 }
6636 
6637 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6638 				    struct bpf_reg_state *regs)
6639 {
6640 	int i;
6641 
6642 	/* after the call registers r0 - r5 were scratched */
6643 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6644 		mark_reg_not_init(env, regs, caller_saved[i]);
6645 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6646 	}
6647 }
6648 
6649 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6650 				   struct bpf_func_state *caller,
6651 				   struct bpf_func_state *callee,
6652 				   int insn_idx);
6653 
6654 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6655 			     int *insn_idx, int subprog,
6656 			     set_callee_state_fn set_callee_state_cb)
6657 {
6658 	struct bpf_verifier_state *state = env->cur_state;
6659 	struct bpf_func_info_aux *func_info_aux;
6660 	struct bpf_func_state *caller, *callee;
6661 	int err;
6662 	bool is_global = false;
6663 
6664 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6665 		verbose(env, "the call stack of %d frames is too deep\n",
6666 			state->curframe + 2);
6667 		return -E2BIG;
6668 	}
6669 
6670 	caller = state->frame[state->curframe];
6671 	if (state->frame[state->curframe + 1]) {
6672 		verbose(env, "verifier bug. Frame %d already allocated\n",
6673 			state->curframe + 1);
6674 		return -EFAULT;
6675 	}
6676 
6677 	func_info_aux = env->prog->aux->func_info_aux;
6678 	if (func_info_aux)
6679 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6680 	err = btf_check_subprog_call(env, subprog, caller->regs);
6681 	if (err == -EFAULT)
6682 		return err;
6683 	if (is_global) {
6684 		if (err) {
6685 			verbose(env, "Caller passes invalid args into func#%d\n",
6686 				subprog);
6687 			return err;
6688 		} else {
6689 			if (env->log.level & BPF_LOG_LEVEL)
6690 				verbose(env,
6691 					"Func#%d is global and valid. Skipping.\n",
6692 					subprog);
6693 			clear_caller_saved_regs(env, caller->regs);
6694 
6695 			/* All global functions return a 64-bit SCALAR_VALUE */
6696 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6697 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6698 
6699 			/* continue with next insn after call */
6700 			return 0;
6701 		}
6702 	}
6703 
6704 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6705 	    insn->src_reg == 0 &&
6706 	    insn->imm == BPF_FUNC_timer_set_callback) {
6707 		struct bpf_verifier_state *async_cb;
6708 
6709 		/* there is no real recursion here. timer callbacks are async */
6710 		env->subprog_info[subprog].is_async_cb = true;
6711 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6712 					 *insn_idx, subprog);
6713 		if (!async_cb)
6714 			return -EFAULT;
6715 		callee = async_cb->frame[0];
6716 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6717 
6718 		/* Convert bpf_timer_set_callback() args into timer callback args */
6719 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6720 		if (err)
6721 			return err;
6722 
6723 		clear_caller_saved_regs(env, caller->regs);
6724 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6725 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6726 		/* continue with next insn after call */
6727 		return 0;
6728 	}
6729 
6730 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6731 	if (!callee)
6732 		return -ENOMEM;
6733 	state->frame[state->curframe + 1] = callee;
6734 
6735 	/* callee cannot access r0, r6 - r9 for reading and has to write
6736 	 * into its own stack before reading from it.
6737 	 * callee can read/write into caller's stack
6738 	 */
6739 	init_func_state(env, callee,
6740 			/* remember the callsite, it will be used by bpf_exit */
6741 			*insn_idx /* callsite */,
6742 			state->curframe + 1 /* frameno within this callchain */,
6743 			subprog /* subprog number within this prog */);
6744 
6745 	/* Transfer references to the callee */
6746 	err = copy_reference_state(callee, caller);
6747 	if (err)
6748 		goto err_out;
6749 
6750 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6751 	if (err)
6752 		goto err_out;
6753 
6754 	clear_caller_saved_regs(env, caller->regs);
6755 
6756 	/* only increment it after check_reg_arg() finished */
6757 	state->curframe++;
6758 
6759 	/* and go analyze first insn of the callee */
6760 	*insn_idx = env->subprog_info[subprog].start - 1;
6761 
6762 	if (env->log.level & BPF_LOG_LEVEL) {
6763 		verbose(env, "caller:\n");
6764 		print_verifier_state(env, caller, true);
6765 		verbose(env, "callee:\n");
6766 		print_verifier_state(env, callee, true);
6767 	}
6768 	return 0;
6769 
6770 err_out:
6771 	free_func_state(callee);
6772 	state->frame[state->curframe + 1] = NULL;
6773 	return err;
6774 }
6775 
6776 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6777 				   struct bpf_func_state *caller,
6778 				   struct bpf_func_state *callee)
6779 {
6780 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6781 	 *      void *callback_ctx, u64 flags);
6782 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6783 	 *      void *callback_ctx);
6784 	 */
6785 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6786 
6787 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6788 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6789 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6790 
6791 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6792 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6793 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6794 
6795 	/* pointer to stack or null */
6796 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6797 
6798 	/* unused */
6799 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6800 	return 0;
6801 }
6802 
6803 static int set_callee_state(struct bpf_verifier_env *env,
6804 			    struct bpf_func_state *caller,
6805 			    struct bpf_func_state *callee, int insn_idx)
6806 {
6807 	int i;
6808 
6809 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6810 	 * pointers, which connects us up to the liveness chain
6811 	 */
6812 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6813 		callee->regs[i] = caller->regs[i];
6814 	return 0;
6815 }
6816 
6817 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6818 			   int *insn_idx)
6819 {
6820 	int subprog, target_insn;
6821 
6822 	target_insn = *insn_idx + insn->imm + 1;
6823 	subprog = find_subprog(env, target_insn);
6824 	if (subprog < 0) {
6825 		verbose(env, "verifier bug. No program starts at insn %d\n",
6826 			target_insn);
6827 		return -EFAULT;
6828 	}
6829 
6830 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6831 }
6832 
6833 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6834 				       struct bpf_func_state *caller,
6835 				       struct bpf_func_state *callee,
6836 				       int insn_idx)
6837 {
6838 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6839 	struct bpf_map *map;
6840 	int err;
6841 
6842 	if (bpf_map_ptr_poisoned(insn_aux)) {
6843 		verbose(env, "tail_call abusing map_ptr\n");
6844 		return -EINVAL;
6845 	}
6846 
6847 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6848 	if (!map->ops->map_set_for_each_callback_args ||
6849 	    !map->ops->map_for_each_callback) {
6850 		verbose(env, "callback function not allowed for map\n");
6851 		return -ENOTSUPP;
6852 	}
6853 
6854 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6855 	if (err)
6856 		return err;
6857 
6858 	callee->in_callback_fn = true;
6859 	callee->callback_ret_range = tnum_range(0, 1);
6860 	return 0;
6861 }
6862 
6863 static int set_loop_callback_state(struct bpf_verifier_env *env,
6864 				   struct bpf_func_state *caller,
6865 				   struct bpf_func_state *callee,
6866 				   int insn_idx)
6867 {
6868 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6869 	 *	    u64 flags);
6870 	 * callback_fn(u32 index, void *callback_ctx);
6871 	 */
6872 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6873 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6874 
6875 	/* unused */
6876 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6877 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6878 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6879 
6880 	callee->in_callback_fn = true;
6881 	callee->callback_ret_range = tnum_range(0, 1);
6882 	return 0;
6883 }
6884 
6885 static int set_timer_callback_state(struct bpf_verifier_env *env,
6886 				    struct bpf_func_state *caller,
6887 				    struct bpf_func_state *callee,
6888 				    int insn_idx)
6889 {
6890 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6891 
6892 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6893 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6894 	 */
6895 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6896 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6897 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6898 
6899 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6900 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6901 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6902 
6903 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6904 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6905 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6906 
6907 	/* unused */
6908 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6909 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6910 	callee->in_async_callback_fn = true;
6911 	callee->callback_ret_range = tnum_range(0, 1);
6912 	return 0;
6913 }
6914 
6915 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6916 				       struct bpf_func_state *caller,
6917 				       struct bpf_func_state *callee,
6918 				       int insn_idx)
6919 {
6920 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6921 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6922 	 * (callback_fn)(struct task_struct *task,
6923 	 *               struct vm_area_struct *vma, void *callback_ctx);
6924 	 */
6925 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6926 
6927 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6928 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6929 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6930 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6931 
6932 	/* pointer to stack or null */
6933 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6934 
6935 	/* unused */
6936 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6937 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6938 	callee->in_callback_fn = true;
6939 	callee->callback_ret_range = tnum_range(0, 1);
6940 	return 0;
6941 }
6942 
6943 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
6944 					   struct bpf_func_state *caller,
6945 					   struct bpf_func_state *callee,
6946 					   int insn_idx)
6947 {
6948 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
6949 	 *			  callback_ctx, u64 flags);
6950 	 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
6951 	 */
6952 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
6953 	callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
6954 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6955 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6956 
6957 	/* unused */
6958 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6959 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6960 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6961 
6962 	callee->in_callback_fn = true;
6963 	callee->callback_ret_range = tnum_range(0, 1);
6964 	return 0;
6965 }
6966 
6967 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6968 {
6969 	struct bpf_verifier_state *state = env->cur_state;
6970 	struct bpf_func_state *caller, *callee;
6971 	struct bpf_reg_state *r0;
6972 	int err;
6973 
6974 	callee = state->frame[state->curframe];
6975 	r0 = &callee->regs[BPF_REG_0];
6976 	if (r0->type == PTR_TO_STACK) {
6977 		/* technically it's ok to return caller's stack pointer
6978 		 * (or caller's caller's pointer) back to the caller,
6979 		 * since these pointers are valid. Only current stack
6980 		 * pointer will be invalid as soon as function exits,
6981 		 * but let's be conservative
6982 		 */
6983 		verbose(env, "cannot return stack pointer to the caller\n");
6984 		return -EINVAL;
6985 	}
6986 
6987 	caller = state->frame[state->curframe - 1];
6988 	if (callee->in_callback_fn) {
6989 		/* enforce R0 return value range [0, 1]. */
6990 		struct tnum range = callee->callback_ret_range;
6991 
6992 		if (r0->type != SCALAR_VALUE) {
6993 			verbose(env, "R0 not a scalar value\n");
6994 			return -EACCES;
6995 		}
6996 		if (!tnum_in(range, r0->var_off)) {
6997 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6998 			return -EINVAL;
6999 		}
7000 	} else {
7001 		/* return to the caller whatever r0 had in the callee */
7002 		caller->regs[BPF_REG_0] = *r0;
7003 	}
7004 
7005 	/* callback_fn frame should have released its own additions to parent's
7006 	 * reference state at this point, or check_reference_leak would
7007 	 * complain, hence it must be the same as the caller. There is no need
7008 	 * to copy it back.
7009 	 */
7010 	if (!callee->in_callback_fn) {
7011 		/* Transfer references to the caller */
7012 		err = copy_reference_state(caller, callee);
7013 		if (err)
7014 			return err;
7015 	}
7016 
7017 	*insn_idx = callee->callsite + 1;
7018 	if (env->log.level & BPF_LOG_LEVEL) {
7019 		verbose(env, "returning from callee:\n");
7020 		print_verifier_state(env, callee, true);
7021 		verbose(env, "to caller at %d:\n", *insn_idx);
7022 		print_verifier_state(env, caller, true);
7023 	}
7024 	/* clear everything in the callee */
7025 	free_func_state(callee);
7026 	state->frame[state->curframe--] = NULL;
7027 	return 0;
7028 }
7029 
7030 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7031 				   int func_id,
7032 				   struct bpf_call_arg_meta *meta)
7033 {
7034 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7035 
7036 	if (ret_type != RET_INTEGER ||
7037 	    (func_id != BPF_FUNC_get_stack &&
7038 	     func_id != BPF_FUNC_get_task_stack &&
7039 	     func_id != BPF_FUNC_probe_read_str &&
7040 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7041 	     func_id != BPF_FUNC_probe_read_user_str))
7042 		return;
7043 
7044 	ret_reg->smax_value = meta->msize_max_value;
7045 	ret_reg->s32_max_value = meta->msize_max_value;
7046 	ret_reg->smin_value = -MAX_ERRNO;
7047 	ret_reg->s32_min_value = -MAX_ERRNO;
7048 	reg_bounds_sync(ret_reg);
7049 }
7050 
7051 static int
7052 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7053 		int func_id, int insn_idx)
7054 {
7055 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7056 	struct bpf_map *map = meta->map_ptr;
7057 
7058 	if (func_id != BPF_FUNC_tail_call &&
7059 	    func_id != BPF_FUNC_map_lookup_elem &&
7060 	    func_id != BPF_FUNC_map_update_elem &&
7061 	    func_id != BPF_FUNC_map_delete_elem &&
7062 	    func_id != BPF_FUNC_map_push_elem &&
7063 	    func_id != BPF_FUNC_map_pop_elem &&
7064 	    func_id != BPF_FUNC_map_peek_elem &&
7065 	    func_id != BPF_FUNC_for_each_map_elem &&
7066 	    func_id != BPF_FUNC_redirect_map &&
7067 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7068 		return 0;
7069 
7070 	if (map == NULL) {
7071 		verbose(env, "kernel subsystem misconfigured verifier\n");
7072 		return -EINVAL;
7073 	}
7074 
7075 	/* In case of read-only, some additional restrictions
7076 	 * need to be applied in order to prevent altering the
7077 	 * state of the map from program side.
7078 	 */
7079 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7080 	    (func_id == BPF_FUNC_map_delete_elem ||
7081 	     func_id == BPF_FUNC_map_update_elem ||
7082 	     func_id == BPF_FUNC_map_push_elem ||
7083 	     func_id == BPF_FUNC_map_pop_elem)) {
7084 		verbose(env, "write into map forbidden\n");
7085 		return -EACCES;
7086 	}
7087 
7088 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7089 		bpf_map_ptr_store(aux, meta->map_ptr,
7090 				  !meta->map_ptr->bypass_spec_v1);
7091 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7092 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7093 				  !meta->map_ptr->bypass_spec_v1);
7094 	return 0;
7095 }
7096 
7097 static int
7098 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7099 		int func_id, int insn_idx)
7100 {
7101 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7102 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7103 	struct bpf_map *map = meta->map_ptr;
7104 	u64 val, max;
7105 	int err;
7106 
7107 	if (func_id != BPF_FUNC_tail_call)
7108 		return 0;
7109 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7110 		verbose(env, "kernel subsystem misconfigured verifier\n");
7111 		return -EINVAL;
7112 	}
7113 
7114 	reg = &regs[BPF_REG_3];
7115 	val = reg->var_off.value;
7116 	max = map->max_entries;
7117 
7118 	if (!(register_is_const(reg) && val < max)) {
7119 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7120 		return 0;
7121 	}
7122 
7123 	err = mark_chain_precision(env, BPF_REG_3);
7124 	if (err)
7125 		return err;
7126 	if (bpf_map_key_unseen(aux))
7127 		bpf_map_key_store(aux, val);
7128 	else if (!bpf_map_key_poisoned(aux) &&
7129 		  bpf_map_key_immediate(aux) != val)
7130 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7131 	return 0;
7132 }
7133 
7134 static int check_reference_leak(struct bpf_verifier_env *env)
7135 {
7136 	struct bpf_func_state *state = cur_func(env);
7137 	bool refs_lingering = false;
7138 	int i;
7139 
7140 	if (state->frameno && !state->in_callback_fn)
7141 		return 0;
7142 
7143 	for (i = 0; i < state->acquired_refs; i++) {
7144 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7145 			continue;
7146 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7147 			state->refs[i].id, state->refs[i].insn_idx);
7148 		refs_lingering = true;
7149 	}
7150 	return refs_lingering ? -EINVAL : 0;
7151 }
7152 
7153 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7154 				   struct bpf_reg_state *regs)
7155 {
7156 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7157 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7158 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7159 	int err, fmt_map_off, num_args;
7160 	u64 fmt_addr;
7161 	char *fmt;
7162 
7163 	/* data must be an array of u64 */
7164 	if (data_len_reg->var_off.value % 8)
7165 		return -EINVAL;
7166 	num_args = data_len_reg->var_off.value / 8;
7167 
7168 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7169 	 * and map_direct_value_addr is set.
7170 	 */
7171 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7172 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7173 						  fmt_map_off);
7174 	if (err) {
7175 		verbose(env, "verifier bug\n");
7176 		return -EFAULT;
7177 	}
7178 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7179 
7180 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7181 	 * can focus on validating the format specifiers.
7182 	 */
7183 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7184 	if (err < 0)
7185 		verbose(env, "Invalid format string\n");
7186 
7187 	return err;
7188 }
7189 
7190 static int check_get_func_ip(struct bpf_verifier_env *env)
7191 {
7192 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7193 	int func_id = BPF_FUNC_get_func_ip;
7194 
7195 	if (type == BPF_PROG_TYPE_TRACING) {
7196 		if (!bpf_prog_has_trampoline(env->prog)) {
7197 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7198 				func_id_name(func_id), func_id);
7199 			return -ENOTSUPP;
7200 		}
7201 		return 0;
7202 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7203 		return 0;
7204 	}
7205 
7206 	verbose(env, "func %s#%d not supported for program type %d\n",
7207 		func_id_name(func_id), func_id, type);
7208 	return -ENOTSUPP;
7209 }
7210 
7211 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7212 {
7213 	return &env->insn_aux_data[env->insn_idx];
7214 }
7215 
7216 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7217 {
7218 	struct bpf_reg_state *regs = cur_regs(env);
7219 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7220 	bool reg_is_null = register_is_null(reg);
7221 
7222 	if (reg_is_null)
7223 		mark_chain_precision(env, BPF_REG_4);
7224 
7225 	return reg_is_null;
7226 }
7227 
7228 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7229 {
7230 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7231 
7232 	if (!state->initialized) {
7233 		state->initialized = 1;
7234 		state->fit_for_inline = loop_flag_is_zero(env);
7235 		state->callback_subprogno = subprogno;
7236 		return;
7237 	}
7238 
7239 	if (!state->fit_for_inline)
7240 		return;
7241 
7242 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7243 				 state->callback_subprogno == subprogno);
7244 }
7245 
7246 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7247 			     int *insn_idx_p)
7248 {
7249 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7250 	const struct bpf_func_proto *fn = NULL;
7251 	enum bpf_return_type ret_type;
7252 	enum bpf_type_flag ret_flag;
7253 	struct bpf_reg_state *regs;
7254 	struct bpf_call_arg_meta meta;
7255 	int insn_idx = *insn_idx_p;
7256 	bool changes_data;
7257 	int i, err, func_id;
7258 
7259 	/* find function prototype */
7260 	func_id = insn->imm;
7261 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7262 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7263 			func_id);
7264 		return -EINVAL;
7265 	}
7266 
7267 	if (env->ops->get_func_proto)
7268 		fn = env->ops->get_func_proto(func_id, env->prog);
7269 	if (!fn) {
7270 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7271 			func_id);
7272 		return -EINVAL;
7273 	}
7274 
7275 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7276 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7277 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7278 		return -EINVAL;
7279 	}
7280 
7281 	if (fn->allowed && !fn->allowed(env->prog)) {
7282 		verbose(env, "helper call is not allowed in probe\n");
7283 		return -EINVAL;
7284 	}
7285 
7286 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7287 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7288 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7289 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7290 			func_id_name(func_id), func_id);
7291 		return -EINVAL;
7292 	}
7293 
7294 	memset(&meta, 0, sizeof(meta));
7295 	meta.pkt_access = fn->pkt_access;
7296 
7297 	err = check_func_proto(fn, func_id);
7298 	if (err) {
7299 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7300 			func_id_name(func_id), func_id);
7301 		return err;
7302 	}
7303 
7304 	meta.func_id = func_id;
7305 	/* check args */
7306 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7307 		err = check_func_arg(env, i, &meta, fn);
7308 		if (err)
7309 			return err;
7310 	}
7311 
7312 	err = record_func_map(env, &meta, func_id, insn_idx);
7313 	if (err)
7314 		return err;
7315 
7316 	err = record_func_key(env, &meta, func_id, insn_idx);
7317 	if (err)
7318 		return err;
7319 
7320 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7321 	 * is inferred from register state.
7322 	 */
7323 	for (i = 0; i < meta.access_size; i++) {
7324 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7325 				       BPF_WRITE, -1, false);
7326 		if (err)
7327 			return err;
7328 	}
7329 
7330 	regs = cur_regs(env);
7331 
7332 	if (meta.uninit_dynptr_regno) {
7333 		/* we write BPF_DW bits (8 bytes) at a time */
7334 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7335 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7336 					       i, BPF_DW, BPF_WRITE, -1, false);
7337 			if (err)
7338 				return err;
7339 		}
7340 
7341 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7342 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7343 					      insn_idx);
7344 		if (err)
7345 			return err;
7346 	}
7347 
7348 	if (meta.release_regno) {
7349 		err = -EINVAL;
7350 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7351 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7352 		else if (meta.ref_obj_id)
7353 			err = release_reference(env, meta.ref_obj_id);
7354 		/* meta.ref_obj_id can only be 0 if register that is meant to be
7355 		 * released is NULL, which must be > R0.
7356 		 */
7357 		else if (register_is_null(&regs[meta.release_regno]))
7358 			err = 0;
7359 		if (err) {
7360 			verbose(env, "func %s#%d reference has not been acquired before\n",
7361 				func_id_name(func_id), func_id);
7362 			return err;
7363 		}
7364 	}
7365 
7366 	switch (func_id) {
7367 	case BPF_FUNC_tail_call:
7368 		err = check_reference_leak(env);
7369 		if (err) {
7370 			verbose(env, "tail_call would lead to reference leak\n");
7371 			return err;
7372 		}
7373 		break;
7374 	case BPF_FUNC_get_local_storage:
7375 		/* check that flags argument in get_local_storage(map, flags) is 0,
7376 		 * this is required because get_local_storage() can't return an error.
7377 		 */
7378 		if (!register_is_null(&regs[BPF_REG_2])) {
7379 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7380 			return -EINVAL;
7381 		}
7382 		break;
7383 	case BPF_FUNC_for_each_map_elem:
7384 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7385 					set_map_elem_callback_state);
7386 		break;
7387 	case BPF_FUNC_timer_set_callback:
7388 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7389 					set_timer_callback_state);
7390 		break;
7391 	case BPF_FUNC_find_vma:
7392 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7393 					set_find_vma_callback_state);
7394 		break;
7395 	case BPF_FUNC_snprintf:
7396 		err = check_bpf_snprintf_call(env, regs);
7397 		break;
7398 	case BPF_FUNC_loop:
7399 		update_loop_inline_state(env, meta.subprogno);
7400 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7401 					set_loop_callback_state);
7402 		break;
7403 	case BPF_FUNC_dynptr_from_mem:
7404 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7405 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7406 				reg_type_str(env, regs[BPF_REG_1].type));
7407 			return -EACCES;
7408 		}
7409 		break;
7410 	case BPF_FUNC_set_retval:
7411 		if (prog_type == BPF_PROG_TYPE_LSM &&
7412 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7413 			if (!env->prog->aux->attach_func_proto->type) {
7414 				/* Make sure programs that attach to void
7415 				 * hooks don't try to modify return value.
7416 				 */
7417 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7418 				return -EINVAL;
7419 			}
7420 		}
7421 		break;
7422 	case BPF_FUNC_dynptr_data:
7423 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7424 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7425 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7426 
7427 				if (meta.ref_obj_id) {
7428 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7429 					return -EFAULT;
7430 				}
7431 
7432 				if (base_type(reg->type) != PTR_TO_DYNPTR)
7433 					/* Find the id of the dynptr we're
7434 					 * tracking the reference of
7435 					 */
7436 					meta.ref_obj_id = stack_slot_get_id(env, reg);
7437 				break;
7438 			}
7439 		}
7440 		if (i == MAX_BPF_FUNC_REG_ARGS) {
7441 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7442 			return -EFAULT;
7443 		}
7444 		break;
7445 	case BPF_FUNC_user_ringbuf_drain:
7446 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7447 					set_user_ringbuf_callback_state);
7448 		break;
7449 	}
7450 
7451 	if (err)
7452 		return err;
7453 
7454 	/* reset caller saved regs */
7455 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7456 		mark_reg_not_init(env, regs, caller_saved[i]);
7457 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7458 	}
7459 
7460 	/* helper call returns 64-bit value. */
7461 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7462 
7463 	/* update return register (already marked as written above) */
7464 	ret_type = fn->ret_type;
7465 	ret_flag = type_flag(ret_type);
7466 
7467 	switch (base_type(ret_type)) {
7468 	case RET_INTEGER:
7469 		/* sets type to SCALAR_VALUE */
7470 		mark_reg_unknown(env, regs, BPF_REG_0);
7471 		break;
7472 	case RET_VOID:
7473 		regs[BPF_REG_0].type = NOT_INIT;
7474 		break;
7475 	case RET_PTR_TO_MAP_VALUE:
7476 		/* There is no offset yet applied, variable or fixed */
7477 		mark_reg_known_zero(env, regs, BPF_REG_0);
7478 		/* remember map_ptr, so that check_map_access()
7479 		 * can check 'value_size' boundary of memory access
7480 		 * to map element returned from bpf_map_lookup_elem()
7481 		 */
7482 		if (meta.map_ptr == NULL) {
7483 			verbose(env,
7484 				"kernel subsystem misconfigured verifier\n");
7485 			return -EINVAL;
7486 		}
7487 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7488 		regs[BPF_REG_0].map_uid = meta.map_uid;
7489 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7490 		if (!type_may_be_null(ret_type) &&
7491 		    map_value_has_spin_lock(meta.map_ptr)) {
7492 			regs[BPF_REG_0].id = ++env->id_gen;
7493 		}
7494 		break;
7495 	case RET_PTR_TO_SOCKET:
7496 		mark_reg_known_zero(env, regs, BPF_REG_0);
7497 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7498 		break;
7499 	case RET_PTR_TO_SOCK_COMMON:
7500 		mark_reg_known_zero(env, regs, BPF_REG_0);
7501 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7502 		break;
7503 	case RET_PTR_TO_TCP_SOCK:
7504 		mark_reg_known_zero(env, regs, BPF_REG_0);
7505 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7506 		break;
7507 	case RET_PTR_TO_ALLOC_MEM:
7508 		mark_reg_known_zero(env, regs, BPF_REG_0);
7509 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7510 		regs[BPF_REG_0].mem_size = meta.mem_size;
7511 		break;
7512 	case RET_PTR_TO_MEM_OR_BTF_ID:
7513 	{
7514 		const struct btf_type *t;
7515 
7516 		mark_reg_known_zero(env, regs, BPF_REG_0);
7517 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7518 		if (!btf_type_is_struct(t)) {
7519 			u32 tsize;
7520 			const struct btf_type *ret;
7521 			const char *tname;
7522 
7523 			/* resolve the type size of ksym. */
7524 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7525 			if (IS_ERR(ret)) {
7526 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7527 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7528 					tname, PTR_ERR(ret));
7529 				return -EINVAL;
7530 			}
7531 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7532 			regs[BPF_REG_0].mem_size = tsize;
7533 		} else {
7534 			/* MEM_RDONLY may be carried from ret_flag, but it
7535 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7536 			 * it will confuse the check of PTR_TO_BTF_ID in
7537 			 * check_mem_access().
7538 			 */
7539 			ret_flag &= ~MEM_RDONLY;
7540 
7541 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7542 			regs[BPF_REG_0].btf = meta.ret_btf;
7543 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7544 		}
7545 		break;
7546 	}
7547 	case RET_PTR_TO_BTF_ID:
7548 	{
7549 		struct btf *ret_btf;
7550 		int ret_btf_id;
7551 
7552 		mark_reg_known_zero(env, regs, BPF_REG_0);
7553 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7554 		if (func_id == BPF_FUNC_kptr_xchg) {
7555 			ret_btf = meta.kptr_off_desc->kptr.btf;
7556 			ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7557 		} else {
7558 			if (fn->ret_btf_id == BPF_PTR_POISON) {
7559 				verbose(env, "verifier internal error:");
7560 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7561 					func_id_name(func_id));
7562 				return -EINVAL;
7563 			}
7564 			ret_btf = btf_vmlinux;
7565 			ret_btf_id = *fn->ret_btf_id;
7566 		}
7567 		if (ret_btf_id == 0) {
7568 			verbose(env, "invalid return type %u of func %s#%d\n",
7569 				base_type(ret_type), func_id_name(func_id),
7570 				func_id);
7571 			return -EINVAL;
7572 		}
7573 		regs[BPF_REG_0].btf = ret_btf;
7574 		regs[BPF_REG_0].btf_id = ret_btf_id;
7575 		break;
7576 	}
7577 	default:
7578 		verbose(env, "unknown return type %u of func %s#%d\n",
7579 			base_type(ret_type), func_id_name(func_id), func_id);
7580 		return -EINVAL;
7581 	}
7582 
7583 	if (type_may_be_null(regs[BPF_REG_0].type))
7584 		regs[BPF_REG_0].id = ++env->id_gen;
7585 
7586 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7587 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7588 			func_id_name(func_id), func_id);
7589 		return -EFAULT;
7590 	}
7591 
7592 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
7593 		/* For release_reference() */
7594 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7595 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7596 		int id = acquire_reference_state(env, insn_idx);
7597 
7598 		if (id < 0)
7599 			return id;
7600 		/* For mark_ptr_or_null_reg() */
7601 		regs[BPF_REG_0].id = id;
7602 		/* For release_reference() */
7603 		regs[BPF_REG_0].ref_obj_id = id;
7604 	}
7605 
7606 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7607 
7608 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7609 	if (err)
7610 		return err;
7611 
7612 	if ((func_id == BPF_FUNC_get_stack ||
7613 	     func_id == BPF_FUNC_get_task_stack) &&
7614 	    !env->prog->has_callchain_buf) {
7615 		const char *err_str;
7616 
7617 #ifdef CONFIG_PERF_EVENTS
7618 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7619 		err_str = "cannot get callchain buffer for func %s#%d\n";
7620 #else
7621 		err = -ENOTSUPP;
7622 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7623 #endif
7624 		if (err) {
7625 			verbose(env, err_str, func_id_name(func_id), func_id);
7626 			return err;
7627 		}
7628 
7629 		env->prog->has_callchain_buf = true;
7630 	}
7631 
7632 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7633 		env->prog->call_get_stack = true;
7634 
7635 	if (func_id == BPF_FUNC_get_func_ip) {
7636 		if (check_get_func_ip(env))
7637 			return -ENOTSUPP;
7638 		env->prog->call_get_func_ip = true;
7639 	}
7640 
7641 	if (changes_data)
7642 		clear_all_pkt_pointers(env);
7643 	return 0;
7644 }
7645 
7646 /* mark_btf_func_reg_size() is used when the reg size is determined by
7647  * the BTF func_proto's return value size and argument.
7648  */
7649 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7650 				   size_t reg_size)
7651 {
7652 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7653 
7654 	if (regno == BPF_REG_0) {
7655 		/* Function return value */
7656 		reg->live |= REG_LIVE_WRITTEN;
7657 		reg->subreg_def = reg_size == sizeof(u64) ?
7658 			DEF_NOT_SUBREG : env->insn_idx + 1;
7659 	} else {
7660 		/* Function argument */
7661 		if (reg_size == sizeof(u64)) {
7662 			mark_insn_zext(env, reg);
7663 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7664 		} else {
7665 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7666 		}
7667 	}
7668 }
7669 
7670 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7671 			    int *insn_idx_p)
7672 {
7673 	const struct btf_type *t, *func, *func_proto, *ptr_type;
7674 	struct bpf_reg_state *regs = cur_regs(env);
7675 	struct bpf_kfunc_arg_meta meta = { 0 };
7676 	const char *func_name, *ptr_type_name;
7677 	u32 i, nargs, func_id, ptr_type_id;
7678 	int err, insn_idx = *insn_idx_p;
7679 	const struct btf_param *args;
7680 	struct btf *desc_btf;
7681 	u32 *kfunc_flags;
7682 	bool acq;
7683 
7684 	/* skip for now, but return error when we find this in fixup_kfunc_call */
7685 	if (!insn->imm)
7686 		return 0;
7687 
7688 	desc_btf = find_kfunc_desc_btf(env, insn->off);
7689 	if (IS_ERR(desc_btf))
7690 		return PTR_ERR(desc_btf);
7691 
7692 	func_id = insn->imm;
7693 	func = btf_type_by_id(desc_btf, func_id);
7694 	func_name = btf_name_by_offset(desc_btf, func->name_off);
7695 	func_proto = btf_type_by_id(desc_btf, func->type);
7696 
7697 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
7698 	if (!kfunc_flags) {
7699 		verbose(env, "calling kernel function %s is not allowed\n",
7700 			func_name);
7701 		return -EACCES;
7702 	}
7703 	if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) {
7704 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n");
7705 		return -EACCES;
7706 	}
7707 
7708 	acq = *kfunc_flags & KF_ACQUIRE;
7709 
7710 	meta.flags = *kfunc_flags;
7711 
7712 	/* Check the arguments */
7713 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta);
7714 	if (err < 0)
7715 		return err;
7716 	/* In case of release function, we get register number of refcounted
7717 	 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7718 	 */
7719 	if (err) {
7720 		err = release_reference(env, regs[err].ref_obj_id);
7721 		if (err) {
7722 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7723 				func_name, func_id);
7724 			return err;
7725 		}
7726 	}
7727 
7728 	for (i = 0; i < CALLER_SAVED_REGS; i++)
7729 		mark_reg_not_init(env, regs, caller_saved[i]);
7730 
7731 	/* Check return type */
7732 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
7733 
7734 	if (acq && !btf_type_is_struct_ptr(desc_btf, t)) {
7735 		verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7736 		return -EINVAL;
7737 	}
7738 
7739 	if (btf_type_is_scalar(t)) {
7740 		mark_reg_unknown(env, regs, BPF_REG_0);
7741 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7742 	} else if (btf_type_is_ptr(t)) {
7743 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
7744 						   &ptr_type_id);
7745 		if (!btf_type_is_struct(ptr_type)) {
7746 			if (!meta.r0_size) {
7747 				ptr_type_name = btf_name_by_offset(desc_btf,
7748 								   ptr_type->name_off);
7749 				verbose(env,
7750 					"kernel function %s returns pointer type %s %s is not supported\n",
7751 					func_name,
7752 					btf_type_str(ptr_type),
7753 					ptr_type_name);
7754 				return -EINVAL;
7755 			}
7756 
7757 			mark_reg_known_zero(env, regs, BPF_REG_0);
7758 			regs[BPF_REG_0].type = PTR_TO_MEM;
7759 			regs[BPF_REG_0].mem_size = meta.r0_size;
7760 
7761 			if (meta.r0_rdonly)
7762 				regs[BPF_REG_0].type |= MEM_RDONLY;
7763 
7764 			/* Ensures we don't access the memory after a release_reference() */
7765 			if (meta.ref_obj_id)
7766 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7767 		} else {
7768 			mark_reg_known_zero(env, regs, BPF_REG_0);
7769 			regs[BPF_REG_0].btf = desc_btf;
7770 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7771 			regs[BPF_REG_0].btf_id = ptr_type_id;
7772 		}
7773 		if (*kfunc_flags & KF_RET_NULL) {
7774 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7775 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7776 			regs[BPF_REG_0].id = ++env->id_gen;
7777 		}
7778 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
7779 		if (acq) {
7780 			int id = acquire_reference_state(env, insn_idx);
7781 
7782 			if (id < 0)
7783 				return id;
7784 			regs[BPF_REG_0].id = id;
7785 			regs[BPF_REG_0].ref_obj_id = id;
7786 		}
7787 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7788 
7789 	nargs = btf_type_vlen(func_proto);
7790 	args = (const struct btf_param *)(func_proto + 1);
7791 	for (i = 0; i < nargs; i++) {
7792 		u32 regno = i + 1;
7793 
7794 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
7795 		if (btf_type_is_ptr(t))
7796 			mark_btf_func_reg_size(env, regno, sizeof(void *));
7797 		else
7798 			/* scalar. ensured by btf_check_kfunc_arg_match() */
7799 			mark_btf_func_reg_size(env, regno, t->size);
7800 	}
7801 
7802 	return 0;
7803 }
7804 
7805 static bool signed_add_overflows(s64 a, s64 b)
7806 {
7807 	/* Do the add in u64, where overflow is well-defined */
7808 	s64 res = (s64)((u64)a + (u64)b);
7809 
7810 	if (b < 0)
7811 		return res > a;
7812 	return res < a;
7813 }
7814 
7815 static bool signed_add32_overflows(s32 a, s32 b)
7816 {
7817 	/* Do the add in u32, where overflow is well-defined */
7818 	s32 res = (s32)((u32)a + (u32)b);
7819 
7820 	if (b < 0)
7821 		return res > a;
7822 	return res < a;
7823 }
7824 
7825 static bool signed_sub_overflows(s64 a, s64 b)
7826 {
7827 	/* Do the sub in u64, where overflow is well-defined */
7828 	s64 res = (s64)((u64)a - (u64)b);
7829 
7830 	if (b < 0)
7831 		return res < a;
7832 	return res > a;
7833 }
7834 
7835 static bool signed_sub32_overflows(s32 a, s32 b)
7836 {
7837 	/* Do the sub in u32, where overflow is well-defined */
7838 	s32 res = (s32)((u32)a - (u32)b);
7839 
7840 	if (b < 0)
7841 		return res < a;
7842 	return res > a;
7843 }
7844 
7845 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7846 				  const struct bpf_reg_state *reg,
7847 				  enum bpf_reg_type type)
7848 {
7849 	bool known = tnum_is_const(reg->var_off);
7850 	s64 val = reg->var_off.value;
7851 	s64 smin = reg->smin_value;
7852 
7853 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7854 		verbose(env, "math between %s pointer and %lld is not allowed\n",
7855 			reg_type_str(env, type), val);
7856 		return false;
7857 	}
7858 
7859 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7860 		verbose(env, "%s pointer offset %d is not allowed\n",
7861 			reg_type_str(env, type), reg->off);
7862 		return false;
7863 	}
7864 
7865 	if (smin == S64_MIN) {
7866 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
7867 			reg_type_str(env, type));
7868 		return false;
7869 	}
7870 
7871 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7872 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
7873 			smin, reg_type_str(env, type));
7874 		return false;
7875 	}
7876 
7877 	return true;
7878 }
7879 
7880 enum {
7881 	REASON_BOUNDS	= -1,
7882 	REASON_TYPE	= -2,
7883 	REASON_PATHS	= -3,
7884 	REASON_LIMIT	= -4,
7885 	REASON_STACK	= -5,
7886 };
7887 
7888 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
7889 			      u32 *alu_limit, bool mask_to_left)
7890 {
7891 	u32 max = 0, ptr_limit = 0;
7892 
7893 	switch (ptr_reg->type) {
7894 	case PTR_TO_STACK:
7895 		/* Offset 0 is out-of-bounds, but acceptable start for the
7896 		 * left direction, see BPF_REG_FP. Also, unknown scalar
7897 		 * offset where we would need to deal with min/max bounds is
7898 		 * currently prohibited for unprivileged.
7899 		 */
7900 		max = MAX_BPF_STACK + mask_to_left;
7901 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
7902 		break;
7903 	case PTR_TO_MAP_VALUE:
7904 		max = ptr_reg->map_ptr->value_size;
7905 		ptr_limit = (mask_to_left ?
7906 			     ptr_reg->smin_value :
7907 			     ptr_reg->umax_value) + ptr_reg->off;
7908 		break;
7909 	default:
7910 		return REASON_TYPE;
7911 	}
7912 
7913 	if (ptr_limit >= max)
7914 		return REASON_LIMIT;
7915 	*alu_limit = ptr_limit;
7916 	return 0;
7917 }
7918 
7919 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7920 				    const struct bpf_insn *insn)
7921 {
7922 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7923 }
7924 
7925 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7926 				       u32 alu_state, u32 alu_limit)
7927 {
7928 	/* If we arrived here from different branches with different
7929 	 * state or limits to sanitize, then this won't work.
7930 	 */
7931 	if (aux->alu_state &&
7932 	    (aux->alu_state != alu_state ||
7933 	     aux->alu_limit != alu_limit))
7934 		return REASON_PATHS;
7935 
7936 	/* Corresponding fixup done in do_misc_fixups(). */
7937 	aux->alu_state = alu_state;
7938 	aux->alu_limit = alu_limit;
7939 	return 0;
7940 }
7941 
7942 static int sanitize_val_alu(struct bpf_verifier_env *env,
7943 			    struct bpf_insn *insn)
7944 {
7945 	struct bpf_insn_aux_data *aux = cur_aux(env);
7946 
7947 	if (can_skip_alu_sanitation(env, insn))
7948 		return 0;
7949 
7950 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7951 }
7952 
7953 static bool sanitize_needed(u8 opcode)
7954 {
7955 	return opcode == BPF_ADD || opcode == BPF_SUB;
7956 }
7957 
7958 struct bpf_sanitize_info {
7959 	struct bpf_insn_aux_data aux;
7960 	bool mask_to_left;
7961 };
7962 
7963 static struct bpf_verifier_state *
7964 sanitize_speculative_path(struct bpf_verifier_env *env,
7965 			  const struct bpf_insn *insn,
7966 			  u32 next_idx, u32 curr_idx)
7967 {
7968 	struct bpf_verifier_state *branch;
7969 	struct bpf_reg_state *regs;
7970 
7971 	branch = push_stack(env, next_idx, curr_idx, true);
7972 	if (branch && insn) {
7973 		regs = branch->frame[branch->curframe]->regs;
7974 		if (BPF_SRC(insn->code) == BPF_K) {
7975 			mark_reg_unknown(env, regs, insn->dst_reg);
7976 		} else if (BPF_SRC(insn->code) == BPF_X) {
7977 			mark_reg_unknown(env, regs, insn->dst_reg);
7978 			mark_reg_unknown(env, regs, insn->src_reg);
7979 		}
7980 	}
7981 	return branch;
7982 }
7983 
7984 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7985 			    struct bpf_insn *insn,
7986 			    const struct bpf_reg_state *ptr_reg,
7987 			    const struct bpf_reg_state *off_reg,
7988 			    struct bpf_reg_state *dst_reg,
7989 			    struct bpf_sanitize_info *info,
7990 			    const bool commit_window)
7991 {
7992 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7993 	struct bpf_verifier_state *vstate = env->cur_state;
7994 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7995 	bool off_is_neg = off_reg->smin_value < 0;
7996 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7997 	u8 opcode = BPF_OP(insn->code);
7998 	u32 alu_state, alu_limit;
7999 	struct bpf_reg_state tmp;
8000 	bool ret;
8001 	int err;
8002 
8003 	if (can_skip_alu_sanitation(env, insn))
8004 		return 0;
8005 
8006 	/* We already marked aux for masking from non-speculative
8007 	 * paths, thus we got here in the first place. We only care
8008 	 * to explore bad access from here.
8009 	 */
8010 	if (vstate->speculative)
8011 		goto do_sim;
8012 
8013 	if (!commit_window) {
8014 		if (!tnum_is_const(off_reg->var_off) &&
8015 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
8016 			return REASON_BOUNDS;
8017 
8018 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
8019 				     (opcode == BPF_SUB && !off_is_neg);
8020 	}
8021 
8022 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
8023 	if (err < 0)
8024 		return err;
8025 
8026 	if (commit_window) {
8027 		/* In commit phase we narrow the masking window based on
8028 		 * the observed pointer move after the simulated operation.
8029 		 */
8030 		alu_state = info->aux.alu_state;
8031 		alu_limit = abs(info->aux.alu_limit - alu_limit);
8032 	} else {
8033 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
8034 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
8035 		alu_state |= ptr_is_dst_reg ?
8036 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
8037 
8038 		/* Limit pruning on unknown scalars to enable deep search for
8039 		 * potential masking differences from other program paths.
8040 		 */
8041 		if (!off_is_imm)
8042 			env->explore_alu_limits = true;
8043 	}
8044 
8045 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
8046 	if (err < 0)
8047 		return err;
8048 do_sim:
8049 	/* If we're in commit phase, we're done here given we already
8050 	 * pushed the truncated dst_reg into the speculative verification
8051 	 * stack.
8052 	 *
8053 	 * Also, when register is a known constant, we rewrite register-based
8054 	 * operation to immediate-based, and thus do not need masking (and as
8055 	 * a consequence, do not need to simulate the zero-truncation either).
8056 	 */
8057 	if (commit_window || off_is_imm)
8058 		return 0;
8059 
8060 	/* Simulate and find potential out-of-bounds access under
8061 	 * speculative execution from truncation as a result of
8062 	 * masking when off was not within expected range. If off
8063 	 * sits in dst, then we temporarily need to move ptr there
8064 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
8065 	 * for cases where we use K-based arithmetic in one direction
8066 	 * and truncated reg-based in the other in order to explore
8067 	 * bad access.
8068 	 */
8069 	if (!ptr_is_dst_reg) {
8070 		tmp = *dst_reg;
8071 		*dst_reg = *ptr_reg;
8072 	}
8073 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
8074 					env->insn_idx);
8075 	if (!ptr_is_dst_reg && ret)
8076 		*dst_reg = tmp;
8077 	return !ret ? REASON_STACK : 0;
8078 }
8079 
8080 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
8081 {
8082 	struct bpf_verifier_state *vstate = env->cur_state;
8083 
8084 	/* If we simulate paths under speculation, we don't update the
8085 	 * insn as 'seen' such that when we verify unreachable paths in
8086 	 * the non-speculative domain, sanitize_dead_code() can still
8087 	 * rewrite/sanitize them.
8088 	 */
8089 	if (!vstate->speculative)
8090 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8091 }
8092 
8093 static int sanitize_err(struct bpf_verifier_env *env,
8094 			const struct bpf_insn *insn, int reason,
8095 			const struct bpf_reg_state *off_reg,
8096 			const struct bpf_reg_state *dst_reg)
8097 {
8098 	static const char *err = "pointer arithmetic with it prohibited for !root";
8099 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
8100 	u32 dst = insn->dst_reg, src = insn->src_reg;
8101 
8102 	switch (reason) {
8103 	case REASON_BOUNDS:
8104 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
8105 			off_reg == dst_reg ? dst : src, err);
8106 		break;
8107 	case REASON_TYPE:
8108 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
8109 			off_reg == dst_reg ? src : dst, err);
8110 		break;
8111 	case REASON_PATHS:
8112 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
8113 			dst, op, err);
8114 		break;
8115 	case REASON_LIMIT:
8116 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
8117 			dst, op, err);
8118 		break;
8119 	case REASON_STACK:
8120 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
8121 			dst, err);
8122 		break;
8123 	default:
8124 		verbose(env, "verifier internal error: unknown reason (%d)\n",
8125 			reason);
8126 		break;
8127 	}
8128 
8129 	return -EACCES;
8130 }
8131 
8132 /* check that stack access falls within stack limits and that 'reg' doesn't
8133  * have a variable offset.
8134  *
8135  * Variable offset is prohibited for unprivileged mode for simplicity since it
8136  * requires corresponding support in Spectre masking for stack ALU.  See also
8137  * retrieve_ptr_limit().
8138  *
8139  *
8140  * 'off' includes 'reg->off'.
8141  */
8142 static int check_stack_access_for_ptr_arithmetic(
8143 				struct bpf_verifier_env *env,
8144 				int regno,
8145 				const struct bpf_reg_state *reg,
8146 				int off)
8147 {
8148 	if (!tnum_is_const(reg->var_off)) {
8149 		char tn_buf[48];
8150 
8151 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8152 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8153 			regno, tn_buf, off);
8154 		return -EACCES;
8155 	}
8156 
8157 	if (off >= 0 || off < -MAX_BPF_STACK) {
8158 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
8159 			"prohibited for !root; off=%d\n", regno, off);
8160 		return -EACCES;
8161 	}
8162 
8163 	return 0;
8164 }
8165 
8166 static int sanitize_check_bounds(struct bpf_verifier_env *env,
8167 				 const struct bpf_insn *insn,
8168 				 const struct bpf_reg_state *dst_reg)
8169 {
8170 	u32 dst = insn->dst_reg;
8171 
8172 	/* For unprivileged we require that resulting offset must be in bounds
8173 	 * in order to be able to sanitize access later on.
8174 	 */
8175 	if (env->bypass_spec_v1)
8176 		return 0;
8177 
8178 	switch (dst_reg->type) {
8179 	case PTR_TO_STACK:
8180 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8181 					dst_reg->off + dst_reg->var_off.value))
8182 			return -EACCES;
8183 		break;
8184 	case PTR_TO_MAP_VALUE:
8185 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
8186 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8187 				"prohibited for !root\n", dst);
8188 			return -EACCES;
8189 		}
8190 		break;
8191 	default:
8192 		break;
8193 	}
8194 
8195 	return 0;
8196 }
8197 
8198 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
8199  * Caller should also handle BPF_MOV case separately.
8200  * If we return -EACCES, caller may want to try again treating pointer as a
8201  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
8202  */
8203 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8204 				   struct bpf_insn *insn,
8205 				   const struct bpf_reg_state *ptr_reg,
8206 				   const struct bpf_reg_state *off_reg)
8207 {
8208 	struct bpf_verifier_state *vstate = env->cur_state;
8209 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8210 	struct bpf_reg_state *regs = state->regs, *dst_reg;
8211 	bool known = tnum_is_const(off_reg->var_off);
8212 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8213 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8214 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8215 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
8216 	struct bpf_sanitize_info info = {};
8217 	u8 opcode = BPF_OP(insn->code);
8218 	u32 dst = insn->dst_reg;
8219 	int ret;
8220 
8221 	dst_reg = &regs[dst];
8222 
8223 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8224 	    smin_val > smax_val || umin_val > umax_val) {
8225 		/* Taint dst register if offset had invalid bounds derived from
8226 		 * e.g. dead branches.
8227 		 */
8228 		__mark_reg_unknown(env, dst_reg);
8229 		return 0;
8230 	}
8231 
8232 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
8233 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
8234 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8235 			__mark_reg_unknown(env, dst_reg);
8236 			return 0;
8237 		}
8238 
8239 		verbose(env,
8240 			"R%d 32-bit pointer arithmetic prohibited\n",
8241 			dst);
8242 		return -EACCES;
8243 	}
8244 
8245 	if (ptr_reg->type & PTR_MAYBE_NULL) {
8246 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
8247 			dst, reg_type_str(env, ptr_reg->type));
8248 		return -EACCES;
8249 	}
8250 
8251 	switch (base_type(ptr_reg->type)) {
8252 	case CONST_PTR_TO_MAP:
8253 		/* smin_val represents the known value */
8254 		if (known && smin_val == 0 && opcode == BPF_ADD)
8255 			break;
8256 		fallthrough;
8257 	case PTR_TO_PACKET_END:
8258 	case PTR_TO_SOCKET:
8259 	case PTR_TO_SOCK_COMMON:
8260 	case PTR_TO_TCP_SOCK:
8261 	case PTR_TO_XDP_SOCK:
8262 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
8263 			dst, reg_type_str(env, ptr_reg->type));
8264 		return -EACCES;
8265 	default:
8266 		break;
8267 	}
8268 
8269 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8270 	 * The id may be overwritten later if we create a new variable offset.
8271 	 */
8272 	dst_reg->type = ptr_reg->type;
8273 	dst_reg->id = ptr_reg->id;
8274 
8275 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8276 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8277 		return -EINVAL;
8278 
8279 	/* pointer types do not carry 32-bit bounds at the moment. */
8280 	__mark_reg32_unbounded(dst_reg);
8281 
8282 	if (sanitize_needed(opcode)) {
8283 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
8284 				       &info, false);
8285 		if (ret < 0)
8286 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8287 	}
8288 
8289 	switch (opcode) {
8290 	case BPF_ADD:
8291 		/* We can take a fixed offset as long as it doesn't overflow
8292 		 * the s32 'off' field
8293 		 */
8294 		if (known && (ptr_reg->off + smin_val ==
8295 			      (s64)(s32)(ptr_reg->off + smin_val))) {
8296 			/* pointer += K.  Accumulate it into fixed offset */
8297 			dst_reg->smin_value = smin_ptr;
8298 			dst_reg->smax_value = smax_ptr;
8299 			dst_reg->umin_value = umin_ptr;
8300 			dst_reg->umax_value = umax_ptr;
8301 			dst_reg->var_off = ptr_reg->var_off;
8302 			dst_reg->off = ptr_reg->off + smin_val;
8303 			dst_reg->raw = ptr_reg->raw;
8304 			break;
8305 		}
8306 		/* A new variable offset is created.  Note that off_reg->off
8307 		 * == 0, since it's a scalar.
8308 		 * dst_reg gets the pointer type and since some positive
8309 		 * integer value was added to the pointer, give it a new 'id'
8310 		 * if it's a PTR_TO_PACKET.
8311 		 * this creates a new 'base' pointer, off_reg (variable) gets
8312 		 * added into the variable offset, and we copy the fixed offset
8313 		 * from ptr_reg.
8314 		 */
8315 		if (signed_add_overflows(smin_ptr, smin_val) ||
8316 		    signed_add_overflows(smax_ptr, smax_val)) {
8317 			dst_reg->smin_value = S64_MIN;
8318 			dst_reg->smax_value = S64_MAX;
8319 		} else {
8320 			dst_reg->smin_value = smin_ptr + smin_val;
8321 			dst_reg->smax_value = smax_ptr + smax_val;
8322 		}
8323 		if (umin_ptr + umin_val < umin_ptr ||
8324 		    umax_ptr + umax_val < umax_ptr) {
8325 			dst_reg->umin_value = 0;
8326 			dst_reg->umax_value = U64_MAX;
8327 		} else {
8328 			dst_reg->umin_value = umin_ptr + umin_val;
8329 			dst_reg->umax_value = umax_ptr + umax_val;
8330 		}
8331 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8332 		dst_reg->off = ptr_reg->off;
8333 		dst_reg->raw = ptr_reg->raw;
8334 		if (reg_is_pkt_pointer(ptr_reg)) {
8335 			dst_reg->id = ++env->id_gen;
8336 			/* something was added to pkt_ptr, set range to zero */
8337 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8338 		}
8339 		break;
8340 	case BPF_SUB:
8341 		if (dst_reg == off_reg) {
8342 			/* scalar -= pointer.  Creates an unknown scalar */
8343 			verbose(env, "R%d tried to subtract pointer from scalar\n",
8344 				dst);
8345 			return -EACCES;
8346 		}
8347 		/* We don't allow subtraction from FP, because (according to
8348 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
8349 		 * be able to deal with it.
8350 		 */
8351 		if (ptr_reg->type == PTR_TO_STACK) {
8352 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
8353 				dst);
8354 			return -EACCES;
8355 		}
8356 		if (known && (ptr_reg->off - smin_val ==
8357 			      (s64)(s32)(ptr_reg->off - smin_val))) {
8358 			/* pointer -= K.  Subtract it from fixed offset */
8359 			dst_reg->smin_value = smin_ptr;
8360 			dst_reg->smax_value = smax_ptr;
8361 			dst_reg->umin_value = umin_ptr;
8362 			dst_reg->umax_value = umax_ptr;
8363 			dst_reg->var_off = ptr_reg->var_off;
8364 			dst_reg->id = ptr_reg->id;
8365 			dst_reg->off = ptr_reg->off - smin_val;
8366 			dst_reg->raw = ptr_reg->raw;
8367 			break;
8368 		}
8369 		/* A new variable offset is created.  If the subtrahend is known
8370 		 * nonnegative, then any reg->range we had before is still good.
8371 		 */
8372 		if (signed_sub_overflows(smin_ptr, smax_val) ||
8373 		    signed_sub_overflows(smax_ptr, smin_val)) {
8374 			/* Overflow possible, we know nothing */
8375 			dst_reg->smin_value = S64_MIN;
8376 			dst_reg->smax_value = S64_MAX;
8377 		} else {
8378 			dst_reg->smin_value = smin_ptr - smax_val;
8379 			dst_reg->smax_value = smax_ptr - smin_val;
8380 		}
8381 		if (umin_ptr < umax_val) {
8382 			/* Overflow possible, we know nothing */
8383 			dst_reg->umin_value = 0;
8384 			dst_reg->umax_value = U64_MAX;
8385 		} else {
8386 			/* Cannot overflow (as long as bounds are consistent) */
8387 			dst_reg->umin_value = umin_ptr - umax_val;
8388 			dst_reg->umax_value = umax_ptr - umin_val;
8389 		}
8390 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8391 		dst_reg->off = ptr_reg->off;
8392 		dst_reg->raw = ptr_reg->raw;
8393 		if (reg_is_pkt_pointer(ptr_reg)) {
8394 			dst_reg->id = ++env->id_gen;
8395 			/* something was added to pkt_ptr, set range to zero */
8396 			if (smin_val < 0)
8397 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8398 		}
8399 		break;
8400 	case BPF_AND:
8401 	case BPF_OR:
8402 	case BPF_XOR:
8403 		/* bitwise ops on pointers are troublesome, prohibit. */
8404 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8405 			dst, bpf_alu_string[opcode >> 4]);
8406 		return -EACCES;
8407 	default:
8408 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
8409 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8410 			dst, bpf_alu_string[opcode >> 4]);
8411 		return -EACCES;
8412 	}
8413 
8414 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8415 		return -EINVAL;
8416 	reg_bounds_sync(dst_reg);
8417 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8418 		return -EACCES;
8419 	if (sanitize_needed(opcode)) {
8420 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
8421 				       &info, true);
8422 		if (ret < 0)
8423 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8424 	}
8425 
8426 	return 0;
8427 }
8428 
8429 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8430 				 struct bpf_reg_state *src_reg)
8431 {
8432 	s32 smin_val = src_reg->s32_min_value;
8433 	s32 smax_val = src_reg->s32_max_value;
8434 	u32 umin_val = src_reg->u32_min_value;
8435 	u32 umax_val = src_reg->u32_max_value;
8436 
8437 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8438 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8439 		dst_reg->s32_min_value = S32_MIN;
8440 		dst_reg->s32_max_value = S32_MAX;
8441 	} else {
8442 		dst_reg->s32_min_value += smin_val;
8443 		dst_reg->s32_max_value += smax_val;
8444 	}
8445 	if (dst_reg->u32_min_value + umin_val < umin_val ||
8446 	    dst_reg->u32_max_value + umax_val < umax_val) {
8447 		dst_reg->u32_min_value = 0;
8448 		dst_reg->u32_max_value = U32_MAX;
8449 	} else {
8450 		dst_reg->u32_min_value += umin_val;
8451 		dst_reg->u32_max_value += umax_val;
8452 	}
8453 }
8454 
8455 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8456 			       struct bpf_reg_state *src_reg)
8457 {
8458 	s64 smin_val = src_reg->smin_value;
8459 	s64 smax_val = src_reg->smax_value;
8460 	u64 umin_val = src_reg->umin_value;
8461 	u64 umax_val = src_reg->umax_value;
8462 
8463 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8464 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
8465 		dst_reg->smin_value = S64_MIN;
8466 		dst_reg->smax_value = S64_MAX;
8467 	} else {
8468 		dst_reg->smin_value += smin_val;
8469 		dst_reg->smax_value += smax_val;
8470 	}
8471 	if (dst_reg->umin_value + umin_val < umin_val ||
8472 	    dst_reg->umax_value + umax_val < umax_val) {
8473 		dst_reg->umin_value = 0;
8474 		dst_reg->umax_value = U64_MAX;
8475 	} else {
8476 		dst_reg->umin_value += umin_val;
8477 		dst_reg->umax_value += umax_val;
8478 	}
8479 }
8480 
8481 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8482 				 struct bpf_reg_state *src_reg)
8483 {
8484 	s32 smin_val = src_reg->s32_min_value;
8485 	s32 smax_val = src_reg->s32_max_value;
8486 	u32 umin_val = src_reg->u32_min_value;
8487 	u32 umax_val = src_reg->u32_max_value;
8488 
8489 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8490 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8491 		/* Overflow possible, we know nothing */
8492 		dst_reg->s32_min_value = S32_MIN;
8493 		dst_reg->s32_max_value = S32_MAX;
8494 	} else {
8495 		dst_reg->s32_min_value -= smax_val;
8496 		dst_reg->s32_max_value -= smin_val;
8497 	}
8498 	if (dst_reg->u32_min_value < umax_val) {
8499 		/* Overflow possible, we know nothing */
8500 		dst_reg->u32_min_value = 0;
8501 		dst_reg->u32_max_value = U32_MAX;
8502 	} else {
8503 		/* Cannot overflow (as long as bounds are consistent) */
8504 		dst_reg->u32_min_value -= umax_val;
8505 		dst_reg->u32_max_value -= umin_val;
8506 	}
8507 }
8508 
8509 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8510 			       struct bpf_reg_state *src_reg)
8511 {
8512 	s64 smin_val = src_reg->smin_value;
8513 	s64 smax_val = src_reg->smax_value;
8514 	u64 umin_val = src_reg->umin_value;
8515 	u64 umax_val = src_reg->umax_value;
8516 
8517 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8518 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8519 		/* Overflow possible, we know nothing */
8520 		dst_reg->smin_value = S64_MIN;
8521 		dst_reg->smax_value = S64_MAX;
8522 	} else {
8523 		dst_reg->smin_value -= smax_val;
8524 		dst_reg->smax_value -= smin_val;
8525 	}
8526 	if (dst_reg->umin_value < umax_val) {
8527 		/* Overflow possible, we know nothing */
8528 		dst_reg->umin_value = 0;
8529 		dst_reg->umax_value = U64_MAX;
8530 	} else {
8531 		/* Cannot overflow (as long as bounds are consistent) */
8532 		dst_reg->umin_value -= umax_val;
8533 		dst_reg->umax_value -= umin_val;
8534 	}
8535 }
8536 
8537 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8538 				 struct bpf_reg_state *src_reg)
8539 {
8540 	s32 smin_val = src_reg->s32_min_value;
8541 	u32 umin_val = src_reg->u32_min_value;
8542 	u32 umax_val = src_reg->u32_max_value;
8543 
8544 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8545 		/* Ain't nobody got time to multiply that sign */
8546 		__mark_reg32_unbounded(dst_reg);
8547 		return;
8548 	}
8549 	/* Both values are positive, so we can work with unsigned and
8550 	 * copy the result to signed (unless it exceeds S32_MAX).
8551 	 */
8552 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8553 		/* Potential overflow, we know nothing */
8554 		__mark_reg32_unbounded(dst_reg);
8555 		return;
8556 	}
8557 	dst_reg->u32_min_value *= umin_val;
8558 	dst_reg->u32_max_value *= umax_val;
8559 	if (dst_reg->u32_max_value > S32_MAX) {
8560 		/* Overflow possible, we know nothing */
8561 		dst_reg->s32_min_value = S32_MIN;
8562 		dst_reg->s32_max_value = S32_MAX;
8563 	} else {
8564 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8565 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8566 	}
8567 }
8568 
8569 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8570 			       struct bpf_reg_state *src_reg)
8571 {
8572 	s64 smin_val = src_reg->smin_value;
8573 	u64 umin_val = src_reg->umin_value;
8574 	u64 umax_val = src_reg->umax_value;
8575 
8576 	if (smin_val < 0 || dst_reg->smin_value < 0) {
8577 		/* Ain't nobody got time to multiply that sign */
8578 		__mark_reg64_unbounded(dst_reg);
8579 		return;
8580 	}
8581 	/* Both values are positive, so we can work with unsigned and
8582 	 * copy the result to signed (unless it exceeds S64_MAX).
8583 	 */
8584 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8585 		/* Potential overflow, we know nothing */
8586 		__mark_reg64_unbounded(dst_reg);
8587 		return;
8588 	}
8589 	dst_reg->umin_value *= umin_val;
8590 	dst_reg->umax_value *= umax_val;
8591 	if (dst_reg->umax_value > S64_MAX) {
8592 		/* Overflow possible, we know nothing */
8593 		dst_reg->smin_value = S64_MIN;
8594 		dst_reg->smax_value = S64_MAX;
8595 	} else {
8596 		dst_reg->smin_value = dst_reg->umin_value;
8597 		dst_reg->smax_value = dst_reg->umax_value;
8598 	}
8599 }
8600 
8601 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8602 				 struct bpf_reg_state *src_reg)
8603 {
8604 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8605 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8606 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8607 	s32 smin_val = src_reg->s32_min_value;
8608 	u32 umax_val = src_reg->u32_max_value;
8609 
8610 	if (src_known && dst_known) {
8611 		__mark_reg32_known(dst_reg, var32_off.value);
8612 		return;
8613 	}
8614 
8615 	/* We get our minimum from the var_off, since that's inherently
8616 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8617 	 */
8618 	dst_reg->u32_min_value = var32_off.value;
8619 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8620 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8621 		/* Lose signed bounds when ANDing negative numbers,
8622 		 * ain't nobody got time for that.
8623 		 */
8624 		dst_reg->s32_min_value = S32_MIN;
8625 		dst_reg->s32_max_value = S32_MAX;
8626 	} else {
8627 		/* ANDing two positives gives a positive, so safe to
8628 		 * cast result into s64.
8629 		 */
8630 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8631 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8632 	}
8633 }
8634 
8635 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8636 			       struct bpf_reg_state *src_reg)
8637 {
8638 	bool src_known = tnum_is_const(src_reg->var_off);
8639 	bool dst_known = tnum_is_const(dst_reg->var_off);
8640 	s64 smin_val = src_reg->smin_value;
8641 	u64 umax_val = src_reg->umax_value;
8642 
8643 	if (src_known && dst_known) {
8644 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8645 		return;
8646 	}
8647 
8648 	/* We get our minimum from the var_off, since that's inherently
8649 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8650 	 */
8651 	dst_reg->umin_value = dst_reg->var_off.value;
8652 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8653 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8654 		/* Lose signed bounds when ANDing negative numbers,
8655 		 * ain't nobody got time for that.
8656 		 */
8657 		dst_reg->smin_value = S64_MIN;
8658 		dst_reg->smax_value = S64_MAX;
8659 	} else {
8660 		/* ANDing two positives gives a positive, so safe to
8661 		 * cast result into s64.
8662 		 */
8663 		dst_reg->smin_value = dst_reg->umin_value;
8664 		dst_reg->smax_value = dst_reg->umax_value;
8665 	}
8666 	/* We may learn something more from the var_off */
8667 	__update_reg_bounds(dst_reg);
8668 }
8669 
8670 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8671 				struct bpf_reg_state *src_reg)
8672 {
8673 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8674 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8675 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8676 	s32 smin_val = src_reg->s32_min_value;
8677 	u32 umin_val = src_reg->u32_min_value;
8678 
8679 	if (src_known && dst_known) {
8680 		__mark_reg32_known(dst_reg, var32_off.value);
8681 		return;
8682 	}
8683 
8684 	/* We get our maximum from the var_off, and our minimum is the
8685 	 * maximum of the operands' minima
8686 	 */
8687 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8688 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8689 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8690 		/* Lose signed bounds when ORing negative numbers,
8691 		 * ain't nobody got time for that.
8692 		 */
8693 		dst_reg->s32_min_value = S32_MIN;
8694 		dst_reg->s32_max_value = S32_MAX;
8695 	} else {
8696 		/* ORing two positives gives a positive, so safe to
8697 		 * cast result into s64.
8698 		 */
8699 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8700 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8701 	}
8702 }
8703 
8704 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8705 			      struct bpf_reg_state *src_reg)
8706 {
8707 	bool src_known = tnum_is_const(src_reg->var_off);
8708 	bool dst_known = tnum_is_const(dst_reg->var_off);
8709 	s64 smin_val = src_reg->smin_value;
8710 	u64 umin_val = src_reg->umin_value;
8711 
8712 	if (src_known && dst_known) {
8713 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8714 		return;
8715 	}
8716 
8717 	/* We get our maximum from the var_off, and our minimum is the
8718 	 * maximum of the operands' minima
8719 	 */
8720 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8721 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8722 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8723 		/* Lose signed bounds when ORing negative numbers,
8724 		 * ain't nobody got time for that.
8725 		 */
8726 		dst_reg->smin_value = S64_MIN;
8727 		dst_reg->smax_value = S64_MAX;
8728 	} else {
8729 		/* ORing two positives gives a positive, so safe to
8730 		 * cast result into s64.
8731 		 */
8732 		dst_reg->smin_value = dst_reg->umin_value;
8733 		dst_reg->smax_value = dst_reg->umax_value;
8734 	}
8735 	/* We may learn something more from the var_off */
8736 	__update_reg_bounds(dst_reg);
8737 }
8738 
8739 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8740 				 struct bpf_reg_state *src_reg)
8741 {
8742 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8743 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8744 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8745 	s32 smin_val = src_reg->s32_min_value;
8746 
8747 	if (src_known && dst_known) {
8748 		__mark_reg32_known(dst_reg, var32_off.value);
8749 		return;
8750 	}
8751 
8752 	/* We get both minimum and maximum from the var32_off. */
8753 	dst_reg->u32_min_value = var32_off.value;
8754 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8755 
8756 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8757 		/* XORing two positive sign numbers gives a positive,
8758 		 * so safe to cast u32 result into s32.
8759 		 */
8760 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8761 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8762 	} else {
8763 		dst_reg->s32_min_value = S32_MIN;
8764 		dst_reg->s32_max_value = S32_MAX;
8765 	}
8766 }
8767 
8768 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8769 			       struct bpf_reg_state *src_reg)
8770 {
8771 	bool src_known = tnum_is_const(src_reg->var_off);
8772 	bool dst_known = tnum_is_const(dst_reg->var_off);
8773 	s64 smin_val = src_reg->smin_value;
8774 
8775 	if (src_known && dst_known) {
8776 		/* dst_reg->var_off.value has been updated earlier */
8777 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8778 		return;
8779 	}
8780 
8781 	/* We get both minimum and maximum from the var_off. */
8782 	dst_reg->umin_value = dst_reg->var_off.value;
8783 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8784 
8785 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8786 		/* XORing two positive sign numbers gives a positive,
8787 		 * so safe to cast u64 result into s64.
8788 		 */
8789 		dst_reg->smin_value = dst_reg->umin_value;
8790 		dst_reg->smax_value = dst_reg->umax_value;
8791 	} else {
8792 		dst_reg->smin_value = S64_MIN;
8793 		dst_reg->smax_value = S64_MAX;
8794 	}
8795 
8796 	__update_reg_bounds(dst_reg);
8797 }
8798 
8799 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8800 				   u64 umin_val, u64 umax_val)
8801 {
8802 	/* We lose all sign bit information (except what we can pick
8803 	 * up from var_off)
8804 	 */
8805 	dst_reg->s32_min_value = S32_MIN;
8806 	dst_reg->s32_max_value = S32_MAX;
8807 	/* If we might shift our top bit out, then we know nothing */
8808 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8809 		dst_reg->u32_min_value = 0;
8810 		dst_reg->u32_max_value = U32_MAX;
8811 	} else {
8812 		dst_reg->u32_min_value <<= umin_val;
8813 		dst_reg->u32_max_value <<= umax_val;
8814 	}
8815 }
8816 
8817 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8818 				 struct bpf_reg_state *src_reg)
8819 {
8820 	u32 umax_val = src_reg->u32_max_value;
8821 	u32 umin_val = src_reg->u32_min_value;
8822 	/* u32 alu operation will zext upper bits */
8823 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8824 
8825 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8826 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8827 	/* Not required but being careful mark reg64 bounds as unknown so
8828 	 * that we are forced to pick them up from tnum and zext later and
8829 	 * if some path skips this step we are still safe.
8830 	 */
8831 	__mark_reg64_unbounded(dst_reg);
8832 	__update_reg32_bounds(dst_reg);
8833 }
8834 
8835 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8836 				   u64 umin_val, u64 umax_val)
8837 {
8838 	/* Special case <<32 because it is a common compiler pattern to sign
8839 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8840 	 * positive we know this shift will also be positive so we can track
8841 	 * bounds correctly. Otherwise we lose all sign bit information except
8842 	 * what we can pick up from var_off. Perhaps we can generalize this
8843 	 * later to shifts of any length.
8844 	 */
8845 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8846 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8847 	else
8848 		dst_reg->smax_value = S64_MAX;
8849 
8850 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8851 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8852 	else
8853 		dst_reg->smin_value = S64_MIN;
8854 
8855 	/* If we might shift our top bit out, then we know nothing */
8856 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8857 		dst_reg->umin_value = 0;
8858 		dst_reg->umax_value = U64_MAX;
8859 	} else {
8860 		dst_reg->umin_value <<= umin_val;
8861 		dst_reg->umax_value <<= umax_val;
8862 	}
8863 }
8864 
8865 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8866 			       struct bpf_reg_state *src_reg)
8867 {
8868 	u64 umax_val = src_reg->umax_value;
8869 	u64 umin_val = src_reg->umin_value;
8870 
8871 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
8872 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8873 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8874 
8875 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8876 	/* We may learn something more from the var_off */
8877 	__update_reg_bounds(dst_reg);
8878 }
8879 
8880 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8881 				 struct bpf_reg_state *src_reg)
8882 {
8883 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8884 	u32 umax_val = src_reg->u32_max_value;
8885 	u32 umin_val = src_reg->u32_min_value;
8886 
8887 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8888 	 * be negative, then either:
8889 	 * 1) src_reg might be zero, so the sign bit of the result is
8890 	 *    unknown, so we lose our signed bounds
8891 	 * 2) it's known negative, thus the unsigned bounds capture the
8892 	 *    signed bounds
8893 	 * 3) the signed bounds cross zero, so they tell us nothing
8894 	 *    about the result
8895 	 * If the value in dst_reg is known nonnegative, then again the
8896 	 * unsigned bounds capture the signed bounds.
8897 	 * Thus, in all cases it suffices to blow away our signed bounds
8898 	 * and rely on inferring new ones from the unsigned bounds and
8899 	 * var_off of the result.
8900 	 */
8901 	dst_reg->s32_min_value = S32_MIN;
8902 	dst_reg->s32_max_value = S32_MAX;
8903 
8904 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
8905 	dst_reg->u32_min_value >>= umax_val;
8906 	dst_reg->u32_max_value >>= umin_val;
8907 
8908 	__mark_reg64_unbounded(dst_reg);
8909 	__update_reg32_bounds(dst_reg);
8910 }
8911 
8912 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8913 			       struct bpf_reg_state *src_reg)
8914 {
8915 	u64 umax_val = src_reg->umax_value;
8916 	u64 umin_val = src_reg->umin_value;
8917 
8918 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8919 	 * be negative, then either:
8920 	 * 1) src_reg might be zero, so the sign bit of the result is
8921 	 *    unknown, so we lose our signed bounds
8922 	 * 2) it's known negative, thus the unsigned bounds capture the
8923 	 *    signed bounds
8924 	 * 3) the signed bounds cross zero, so they tell us nothing
8925 	 *    about the result
8926 	 * If the value in dst_reg is known nonnegative, then again the
8927 	 * unsigned bounds capture the signed bounds.
8928 	 * Thus, in all cases it suffices to blow away our signed bounds
8929 	 * and rely on inferring new ones from the unsigned bounds and
8930 	 * var_off of the result.
8931 	 */
8932 	dst_reg->smin_value = S64_MIN;
8933 	dst_reg->smax_value = S64_MAX;
8934 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8935 	dst_reg->umin_value >>= umax_val;
8936 	dst_reg->umax_value >>= umin_val;
8937 
8938 	/* Its not easy to operate on alu32 bounds here because it depends
8939 	 * on bits being shifted in. Take easy way out and mark unbounded
8940 	 * so we can recalculate later from tnum.
8941 	 */
8942 	__mark_reg32_unbounded(dst_reg);
8943 	__update_reg_bounds(dst_reg);
8944 }
8945 
8946 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8947 				  struct bpf_reg_state *src_reg)
8948 {
8949 	u64 umin_val = src_reg->u32_min_value;
8950 
8951 	/* Upon reaching here, src_known is true and
8952 	 * umax_val is equal to umin_val.
8953 	 */
8954 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8955 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8956 
8957 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8958 
8959 	/* blow away the dst_reg umin_value/umax_value and rely on
8960 	 * dst_reg var_off to refine the result.
8961 	 */
8962 	dst_reg->u32_min_value = 0;
8963 	dst_reg->u32_max_value = U32_MAX;
8964 
8965 	__mark_reg64_unbounded(dst_reg);
8966 	__update_reg32_bounds(dst_reg);
8967 }
8968 
8969 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8970 				struct bpf_reg_state *src_reg)
8971 {
8972 	u64 umin_val = src_reg->umin_value;
8973 
8974 	/* Upon reaching here, src_known is true and umax_val is equal
8975 	 * to umin_val.
8976 	 */
8977 	dst_reg->smin_value >>= umin_val;
8978 	dst_reg->smax_value >>= umin_val;
8979 
8980 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8981 
8982 	/* blow away the dst_reg umin_value/umax_value and rely on
8983 	 * dst_reg var_off to refine the result.
8984 	 */
8985 	dst_reg->umin_value = 0;
8986 	dst_reg->umax_value = U64_MAX;
8987 
8988 	/* Its not easy to operate on alu32 bounds here because it depends
8989 	 * on bits being shifted in from upper 32-bits. Take easy way out
8990 	 * and mark unbounded so we can recalculate later from tnum.
8991 	 */
8992 	__mark_reg32_unbounded(dst_reg);
8993 	__update_reg_bounds(dst_reg);
8994 }
8995 
8996 /* WARNING: This function does calculations on 64-bit values, but the actual
8997  * execution may occur on 32-bit values. Therefore, things like bitshifts
8998  * need extra checks in the 32-bit case.
8999  */
9000 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
9001 				      struct bpf_insn *insn,
9002 				      struct bpf_reg_state *dst_reg,
9003 				      struct bpf_reg_state src_reg)
9004 {
9005 	struct bpf_reg_state *regs = cur_regs(env);
9006 	u8 opcode = BPF_OP(insn->code);
9007 	bool src_known;
9008 	s64 smin_val, smax_val;
9009 	u64 umin_val, umax_val;
9010 	s32 s32_min_val, s32_max_val;
9011 	u32 u32_min_val, u32_max_val;
9012 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
9013 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
9014 	int ret;
9015 
9016 	smin_val = src_reg.smin_value;
9017 	smax_val = src_reg.smax_value;
9018 	umin_val = src_reg.umin_value;
9019 	umax_val = src_reg.umax_value;
9020 
9021 	s32_min_val = src_reg.s32_min_value;
9022 	s32_max_val = src_reg.s32_max_value;
9023 	u32_min_val = src_reg.u32_min_value;
9024 	u32_max_val = src_reg.u32_max_value;
9025 
9026 	if (alu32) {
9027 		src_known = tnum_subreg_is_const(src_reg.var_off);
9028 		if ((src_known &&
9029 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
9030 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
9031 			/* Taint dst register if offset had invalid bounds
9032 			 * derived from e.g. dead branches.
9033 			 */
9034 			__mark_reg_unknown(env, dst_reg);
9035 			return 0;
9036 		}
9037 	} else {
9038 		src_known = tnum_is_const(src_reg.var_off);
9039 		if ((src_known &&
9040 		     (smin_val != smax_val || umin_val != umax_val)) ||
9041 		    smin_val > smax_val || umin_val > umax_val) {
9042 			/* Taint dst register if offset had invalid bounds
9043 			 * derived from e.g. dead branches.
9044 			 */
9045 			__mark_reg_unknown(env, dst_reg);
9046 			return 0;
9047 		}
9048 	}
9049 
9050 	if (!src_known &&
9051 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
9052 		__mark_reg_unknown(env, dst_reg);
9053 		return 0;
9054 	}
9055 
9056 	if (sanitize_needed(opcode)) {
9057 		ret = sanitize_val_alu(env, insn);
9058 		if (ret < 0)
9059 			return sanitize_err(env, insn, ret, NULL, NULL);
9060 	}
9061 
9062 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
9063 	 * There are two classes of instructions: The first class we track both
9064 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
9065 	 * greatest amount of precision when alu operations are mixed with jmp32
9066 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
9067 	 * and BPF_OR. This is possible because these ops have fairly easy to
9068 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
9069 	 * See alu32 verifier tests for examples. The second class of
9070 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
9071 	 * with regards to tracking sign/unsigned bounds because the bits may
9072 	 * cross subreg boundaries in the alu64 case. When this happens we mark
9073 	 * the reg unbounded in the subreg bound space and use the resulting
9074 	 * tnum to calculate an approximation of the sign/unsigned bounds.
9075 	 */
9076 	switch (opcode) {
9077 	case BPF_ADD:
9078 		scalar32_min_max_add(dst_reg, &src_reg);
9079 		scalar_min_max_add(dst_reg, &src_reg);
9080 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
9081 		break;
9082 	case BPF_SUB:
9083 		scalar32_min_max_sub(dst_reg, &src_reg);
9084 		scalar_min_max_sub(dst_reg, &src_reg);
9085 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
9086 		break;
9087 	case BPF_MUL:
9088 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
9089 		scalar32_min_max_mul(dst_reg, &src_reg);
9090 		scalar_min_max_mul(dst_reg, &src_reg);
9091 		break;
9092 	case BPF_AND:
9093 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
9094 		scalar32_min_max_and(dst_reg, &src_reg);
9095 		scalar_min_max_and(dst_reg, &src_reg);
9096 		break;
9097 	case BPF_OR:
9098 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
9099 		scalar32_min_max_or(dst_reg, &src_reg);
9100 		scalar_min_max_or(dst_reg, &src_reg);
9101 		break;
9102 	case BPF_XOR:
9103 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
9104 		scalar32_min_max_xor(dst_reg, &src_reg);
9105 		scalar_min_max_xor(dst_reg, &src_reg);
9106 		break;
9107 	case BPF_LSH:
9108 		if (umax_val >= insn_bitness) {
9109 			/* Shifts greater than 31 or 63 are undefined.
9110 			 * This includes shifts by a negative number.
9111 			 */
9112 			mark_reg_unknown(env, regs, insn->dst_reg);
9113 			break;
9114 		}
9115 		if (alu32)
9116 			scalar32_min_max_lsh(dst_reg, &src_reg);
9117 		else
9118 			scalar_min_max_lsh(dst_reg, &src_reg);
9119 		break;
9120 	case BPF_RSH:
9121 		if (umax_val >= insn_bitness) {
9122 			/* Shifts greater than 31 or 63 are undefined.
9123 			 * This includes shifts by a negative number.
9124 			 */
9125 			mark_reg_unknown(env, regs, insn->dst_reg);
9126 			break;
9127 		}
9128 		if (alu32)
9129 			scalar32_min_max_rsh(dst_reg, &src_reg);
9130 		else
9131 			scalar_min_max_rsh(dst_reg, &src_reg);
9132 		break;
9133 	case BPF_ARSH:
9134 		if (umax_val >= insn_bitness) {
9135 			/* Shifts greater than 31 or 63 are undefined.
9136 			 * This includes shifts by a negative number.
9137 			 */
9138 			mark_reg_unknown(env, regs, insn->dst_reg);
9139 			break;
9140 		}
9141 		if (alu32)
9142 			scalar32_min_max_arsh(dst_reg, &src_reg);
9143 		else
9144 			scalar_min_max_arsh(dst_reg, &src_reg);
9145 		break;
9146 	default:
9147 		mark_reg_unknown(env, regs, insn->dst_reg);
9148 		break;
9149 	}
9150 
9151 	/* ALU32 ops are zero extended into 64bit register */
9152 	if (alu32)
9153 		zext_32_to_64(dst_reg);
9154 	reg_bounds_sync(dst_reg);
9155 	return 0;
9156 }
9157 
9158 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9159  * and var_off.
9160  */
9161 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9162 				   struct bpf_insn *insn)
9163 {
9164 	struct bpf_verifier_state *vstate = env->cur_state;
9165 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9166 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
9167 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9168 	u8 opcode = BPF_OP(insn->code);
9169 	int err;
9170 
9171 	dst_reg = &regs[insn->dst_reg];
9172 	src_reg = NULL;
9173 	if (dst_reg->type != SCALAR_VALUE)
9174 		ptr_reg = dst_reg;
9175 	else
9176 		/* Make sure ID is cleared otherwise dst_reg min/max could be
9177 		 * incorrectly propagated into other registers by find_equal_scalars()
9178 		 */
9179 		dst_reg->id = 0;
9180 	if (BPF_SRC(insn->code) == BPF_X) {
9181 		src_reg = &regs[insn->src_reg];
9182 		if (src_reg->type != SCALAR_VALUE) {
9183 			if (dst_reg->type != SCALAR_VALUE) {
9184 				/* Combining two pointers by any ALU op yields
9185 				 * an arbitrary scalar. Disallow all math except
9186 				 * pointer subtraction
9187 				 */
9188 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9189 					mark_reg_unknown(env, regs, insn->dst_reg);
9190 					return 0;
9191 				}
9192 				verbose(env, "R%d pointer %s pointer prohibited\n",
9193 					insn->dst_reg,
9194 					bpf_alu_string[opcode >> 4]);
9195 				return -EACCES;
9196 			} else {
9197 				/* scalar += pointer
9198 				 * This is legal, but we have to reverse our
9199 				 * src/dest handling in computing the range
9200 				 */
9201 				err = mark_chain_precision(env, insn->dst_reg);
9202 				if (err)
9203 					return err;
9204 				return adjust_ptr_min_max_vals(env, insn,
9205 							       src_reg, dst_reg);
9206 			}
9207 		} else if (ptr_reg) {
9208 			/* pointer += scalar */
9209 			err = mark_chain_precision(env, insn->src_reg);
9210 			if (err)
9211 				return err;
9212 			return adjust_ptr_min_max_vals(env, insn,
9213 						       dst_reg, src_reg);
9214 		}
9215 	} else {
9216 		/* Pretend the src is a reg with a known value, since we only
9217 		 * need to be able to read from this state.
9218 		 */
9219 		off_reg.type = SCALAR_VALUE;
9220 		__mark_reg_known(&off_reg, insn->imm);
9221 		src_reg = &off_reg;
9222 		if (ptr_reg) /* pointer += K */
9223 			return adjust_ptr_min_max_vals(env, insn,
9224 						       ptr_reg, src_reg);
9225 	}
9226 
9227 	/* Got here implies adding two SCALAR_VALUEs */
9228 	if (WARN_ON_ONCE(ptr_reg)) {
9229 		print_verifier_state(env, state, true);
9230 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
9231 		return -EINVAL;
9232 	}
9233 	if (WARN_ON(!src_reg)) {
9234 		print_verifier_state(env, state, true);
9235 		verbose(env, "verifier internal error: no src_reg\n");
9236 		return -EINVAL;
9237 	}
9238 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
9239 }
9240 
9241 /* check validity of 32-bit and 64-bit arithmetic operations */
9242 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
9243 {
9244 	struct bpf_reg_state *regs = cur_regs(env);
9245 	u8 opcode = BPF_OP(insn->code);
9246 	int err;
9247 
9248 	if (opcode == BPF_END || opcode == BPF_NEG) {
9249 		if (opcode == BPF_NEG) {
9250 			if (BPF_SRC(insn->code) != BPF_K ||
9251 			    insn->src_reg != BPF_REG_0 ||
9252 			    insn->off != 0 || insn->imm != 0) {
9253 				verbose(env, "BPF_NEG uses reserved fields\n");
9254 				return -EINVAL;
9255 			}
9256 		} else {
9257 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
9258 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9259 			    BPF_CLASS(insn->code) == BPF_ALU64) {
9260 				verbose(env, "BPF_END uses reserved fields\n");
9261 				return -EINVAL;
9262 			}
9263 		}
9264 
9265 		/* check src operand */
9266 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9267 		if (err)
9268 			return err;
9269 
9270 		if (is_pointer_value(env, insn->dst_reg)) {
9271 			verbose(env, "R%d pointer arithmetic prohibited\n",
9272 				insn->dst_reg);
9273 			return -EACCES;
9274 		}
9275 
9276 		/* check dest operand */
9277 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
9278 		if (err)
9279 			return err;
9280 
9281 	} else if (opcode == BPF_MOV) {
9282 
9283 		if (BPF_SRC(insn->code) == BPF_X) {
9284 			if (insn->imm != 0 || insn->off != 0) {
9285 				verbose(env, "BPF_MOV uses reserved fields\n");
9286 				return -EINVAL;
9287 			}
9288 
9289 			/* check src operand */
9290 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9291 			if (err)
9292 				return err;
9293 		} else {
9294 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9295 				verbose(env, "BPF_MOV uses reserved fields\n");
9296 				return -EINVAL;
9297 			}
9298 		}
9299 
9300 		/* check dest operand, mark as required later */
9301 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9302 		if (err)
9303 			return err;
9304 
9305 		if (BPF_SRC(insn->code) == BPF_X) {
9306 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
9307 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9308 
9309 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9310 				/* case: R1 = R2
9311 				 * copy register state to dest reg
9312 				 */
9313 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9314 					/* Assign src and dst registers the same ID
9315 					 * that will be used by find_equal_scalars()
9316 					 * to propagate min/max range.
9317 					 */
9318 					src_reg->id = ++env->id_gen;
9319 				*dst_reg = *src_reg;
9320 				dst_reg->live |= REG_LIVE_WRITTEN;
9321 				dst_reg->subreg_def = DEF_NOT_SUBREG;
9322 			} else {
9323 				/* R1 = (u32) R2 */
9324 				if (is_pointer_value(env, insn->src_reg)) {
9325 					verbose(env,
9326 						"R%d partial copy of pointer\n",
9327 						insn->src_reg);
9328 					return -EACCES;
9329 				} else if (src_reg->type == SCALAR_VALUE) {
9330 					*dst_reg = *src_reg;
9331 					/* Make sure ID is cleared otherwise
9332 					 * dst_reg min/max could be incorrectly
9333 					 * propagated into src_reg by find_equal_scalars()
9334 					 */
9335 					dst_reg->id = 0;
9336 					dst_reg->live |= REG_LIVE_WRITTEN;
9337 					dst_reg->subreg_def = env->insn_idx + 1;
9338 				} else {
9339 					mark_reg_unknown(env, regs,
9340 							 insn->dst_reg);
9341 				}
9342 				zext_32_to_64(dst_reg);
9343 				reg_bounds_sync(dst_reg);
9344 			}
9345 		} else {
9346 			/* case: R = imm
9347 			 * remember the value we stored into this reg
9348 			 */
9349 			/* clear any state __mark_reg_known doesn't set */
9350 			mark_reg_unknown(env, regs, insn->dst_reg);
9351 			regs[insn->dst_reg].type = SCALAR_VALUE;
9352 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9353 				__mark_reg_known(regs + insn->dst_reg,
9354 						 insn->imm);
9355 			} else {
9356 				__mark_reg_known(regs + insn->dst_reg,
9357 						 (u32)insn->imm);
9358 			}
9359 		}
9360 
9361 	} else if (opcode > BPF_END) {
9362 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
9363 		return -EINVAL;
9364 
9365 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
9366 
9367 		if (BPF_SRC(insn->code) == BPF_X) {
9368 			if (insn->imm != 0 || insn->off != 0) {
9369 				verbose(env, "BPF_ALU uses reserved fields\n");
9370 				return -EINVAL;
9371 			}
9372 			/* check src1 operand */
9373 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9374 			if (err)
9375 				return err;
9376 		} else {
9377 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9378 				verbose(env, "BPF_ALU uses reserved fields\n");
9379 				return -EINVAL;
9380 			}
9381 		}
9382 
9383 		/* check src2 operand */
9384 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9385 		if (err)
9386 			return err;
9387 
9388 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9389 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
9390 			verbose(env, "div by zero\n");
9391 			return -EINVAL;
9392 		}
9393 
9394 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9395 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9396 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9397 
9398 			if (insn->imm < 0 || insn->imm >= size) {
9399 				verbose(env, "invalid shift %d\n", insn->imm);
9400 				return -EINVAL;
9401 			}
9402 		}
9403 
9404 		/* check dest operand */
9405 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9406 		if (err)
9407 			return err;
9408 
9409 		return adjust_reg_min_max_vals(env, insn);
9410 	}
9411 
9412 	return 0;
9413 }
9414 
9415 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
9416 				   struct bpf_reg_state *dst_reg,
9417 				   enum bpf_reg_type type,
9418 				   bool range_right_open)
9419 {
9420 	struct bpf_func_state *state;
9421 	struct bpf_reg_state *reg;
9422 	int new_range;
9423 
9424 	if (dst_reg->off < 0 ||
9425 	    (dst_reg->off == 0 && range_right_open))
9426 		/* This doesn't give us any range */
9427 		return;
9428 
9429 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
9430 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
9431 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
9432 		 * than pkt_end, but that's because it's also less than pkt.
9433 		 */
9434 		return;
9435 
9436 	new_range = dst_reg->off;
9437 	if (range_right_open)
9438 		new_range++;
9439 
9440 	/* Examples for register markings:
9441 	 *
9442 	 * pkt_data in dst register:
9443 	 *
9444 	 *   r2 = r3;
9445 	 *   r2 += 8;
9446 	 *   if (r2 > pkt_end) goto <handle exception>
9447 	 *   <access okay>
9448 	 *
9449 	 *   r2 = r3;
9450 	 *   r2 += 8;
9451 	 *   if (r2 < pkt_end) goto <access okay>
9452 	 *   <handle exception>
9453 	 *
9454 	 *   Where:
9455 	 *     r2 == dst_reg, pkt_end == src_reg
9456 	 *     r2=pkt(id=n,off=8,r=0)
9457 	 *     r3=pkt(id=n,off=0,r=0)
9458 	 *
9459 	 * pkt_data in src register:
9460 	 *
9461 	 *   r2 = r3;
9462 	 *   r2 += 8;
9463 	 *   if (pkt_end >= r2) goto <access okay>
9464 	 *   <handle exception>
9465 	 *
9466 	 *   r2 = r3;
9467 	 *   r2 += 8;
9468 	 *   if (pkt_end <= r2) goto <handle exception>
9469 	 *   <access okay>
9470 	 *
9471 	 *   Where:
9472 	 *     pkt_end == dst_reg, r2 == src_reg
9473 	 *     r2=pkt(id=n,off=8,r=0)
9474 	 *     r3=pkt(id=n,off=0,r=0)
9475 	 *
9476 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9477 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9478 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
9479 	 * the check.
9480 	 */
9481 
9482 	/* If our ids match, then we must have the same max_value.  And we
9483 	 * don't care about the other reg's fixed offset, since if it's too big
9484 	 * the range won't allow anything.
9485 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9486 	 */
9487 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9488 		if (reg->type == type && reg->id == dst_reg->id)
9489 			/* keep the maximum range already checked */
9490 			reg->range = max(reg->range, new_range);
9491 	}));
9492 }
9493 
9494 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9495 {
9496 	struct tnum subreg = tnum_subreg(reg->var_off);
9497 	s32 sval = (s32)val;
9498 
9499 	switch (opcode) {
9500 	case BPF_JEQ:
9501 		if (tnum_is_const(subreg))
9502 			return !!tnum_equals_const(subreg, val);
9503 		break;
9504 	case BPF_JNE:
9505 		if (tnum_is_const(subreg))
9506 			return !tnum_equals_const(subreg, val);
9507 		break;
9508 	case BPF_JSET:
9509 		if ((~subreg.mask & subreg.value) & val)
9510 			return 1;
9511 		if (!((subreg.mask | subreg.value) & val))
9512 			return 0;
9513 		break;
9514 	case BPF_JGT:
9515 		if (reg->u32_min_value > val)
9516 			return 1;
9517 		else if (reg->u32_max_value <= val)
9518 			return 0;
9519 		break;
9520 	case BPF_JSGT:
9521 		if (reg->s32_min_value > sval)
9522 			return 1;
9523 		else if (reg->s32_max_value <= sval)
9524 			return 0;
9525 		break;
9526 	case BPF_JLT:
9527 		if (reg->u32_max_value < val)
9528 			return 1;
9529 		else if (reg->u32_min_value >= val)
9530 			return 0;
9531 		break;
9532 	case BPF_JSLT:
9533 		if (reg->s32_max_value < sval)
9534 			return 1;
9535 		else if (reg->s32_min_value >= sval)
9536 			return 0;
9537 		break;
9538 	case BPF_JGE:
9539 		if (reg->u32_min_value >= val)
9540 			return 1;
9541 		else if (reg->u32_max_value < val)
9542 			return 0;
9543 		break;
9544 	case BPF_JSGE:
9545 		if (reg->s32_min_value >= sval)
9546 			return 1;
9547 		else if (reg->s32_max_value < sval)
9548 			return 0;
9549 		break;
9550 	case BPF_JLE:
9551 		if (reg->u32_max_value <= val)
9552 			return 1;
9553 		else if (reg->u32_min_value > val)
9554 			return 0;
9555 		break;
9556 	case BPF_JSLE:
9557 		if (reg->s32_max_value <= sval)
9558 			return 1;
9559 		else if (reg->s32_min_value > sval)
9560 			return 0;
9561 		break;
9562 	}
9563 
9564 	return -1;
9565 }
9566 
9567 
9568 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9569 {
9570 	s64 sval = (s64)val;
9571 
9572 	switch (opcode) {
9573 	case BPF_JEQ:
9574 		if (tnum_is_const(reg->var_off))
9575 			return !!tnum_equals_const(reg->var_off, val);
9576 		break;
9577 	case BPF_JNE:
9578 		if (tnum_is_const(reg->var_off))
9579 			return !tnum_equals_const(reg->var_off, val);
9580 		break;
9581 	case BPF_JSET:
9582 		if ((~reg->var_off.mask & reg->var_off.value) & val)
9583 			return 1;
9584 		if (!((reg->var_off.mask | reg->var_off.value) & val))
9585 			return 0;
9586 		break;
9587 	case BPF_JGT:
9588 		if (reg->umin_value > val)
9589 			return 1;
9590 		else if (reg->umax_value <= val)
9591 			return 0;
9592 		break;
9593 	case BPF_JSGT:
9594 		if (reg->smin_value > sval)
9595 			return 1;
9596 		else if (reg->smax_value <= sval)
9597 			return 0;
9598 		break;
9599 	case BPF_JLT:
9600 		if (reg->umax_value < val)
9601 			return 1;
9602 		else if (reg->umin_value >= val)
9603 			return 0;
9604 		break;
9605 	case BPF_JSLT:
9606 		if (reg->smax_value < sval)
9607 			return 1;
9608 		else if (reg->smin_value >= sval)
9609 			return 0;
9610 		break;
9611 	case BPF_JGE:
9612 		if (reg->umin_value >= val)
9613 			return 1;
9614 		else if (reg->umax_value < val)
9615 			return 0;
9616 		break;
9617 	case BPF_JSGE:
9618 		if (reg->smin_value >= sval)
9619 			return 1;
9620 		else if (reg->smax_value < sval)
9621 			return 0;
9622 		break;
9623 	case BPF_JLE:
9624 		if (reg->umax_value <= val)
9625 			return 1;
9626 		else if (reg->umin_value > val)
9627 			return 0;
9628 		break;
9629 	case BPF_JSLE:
9630 		if (reg->smax_value <= sval)
9631 			return 1;
9632 		else if (reg->smin_value > sval)
9633 			return 0;
9634 		break;
9635 	}
9636 
9637 	return -1;
9638 }
9639 
9640 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9641  * and return:
9642  *  1 - branch will be taken and "goto target" will be executed
9643  *  0 - branch will not be taken and fall-through to next insn
9644  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9645  *      range [0,10]
9646  */
9647 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9648 			   bool is_jmp32)
9649 {
9650 	if (__is_pointer_value(false, reg)) {
9651 		if (!reg_type_not_null(reg->type))
9652 			return -1;
9653 
9654 		/* If pointer is valid tests against zero will fail so we can
9655 		 * use this to direct branch taken.
9656 		 */
9657 		if (val != 0)
9658 			return -1;
9659 
9660 		switch (opcode) {
9661 		case BPF_JEQ:
9662 			return 0;
9663 		case BPF_JNE:
9664 			return 1;
9665 		default:
9666 			return -1;
9667 		}
9668 	}
9669 
9670 	if (is_jmp32)
9671 		return is_branch32_taken(reg, val, opcode);
9672 	return is_branch64_taken(reg, val, opcode);
9673 }
9674 
9675 static int flip_opcode(u32 opcode)
9676 {
9677 	/* How can we transform "a <op> b" into "b <op> a"? */
9678 	static const u8 opcode_flip[16] = {
9679 		/* these stay the same */
9680 		[BPF_JEQ  >> 4] = BPF_JEQ,
9681 		[BPF_JNE  >> 4] = BPF_JNE,
9682 		[BPF_JSET >> 4] = BPF_JSET,
9683 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
9684 		[BPF_JGE  >> 4] = BPF_JLE,
9685 		[BPF_JGT  >> 4] = BPF_JLT,
9686 		[BPF_JLE  >> 4] = BPF_JGE,
9687 		[BPF_JLT  >> 4] = BPF_JGT,
9688 		[BPF_JSGE >> 4] = BPF_JSLE,
9689 		[BPF_JSGT >> 4] = BPF_JSLT,
9690 		[BPF_JSLE >> 4] = BPF_JSGE,
9691 		[BPF_JSLT >> 4] = BPF_JSGT
9692 	};
9693 	return opcode_flip[opcode >> 4];
9694 }
9695 
9696 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9697 				   struct bpf_reg_state *src_reg,
9698 				   u8 opcode)
9699 {
9700 	struct bpf_reg_state *pkt;
9701 
9702 	if (src_reg->type == PTR_TO_PACKET_END) {
9703 		pkt = dst_reg;
9704 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
9705 		pkt = src_reg;
9706 		opcode = flip_opcode(opcode);
9707 	} else {
9708 		return -1;
9709 	}
9710 
9711 	if (pkt->range >= 0)
9712 		return -1;
9713 
9714 	switch (opcode) {
9715 	case BPF_JLE:
9716 		/* pkt <= pkt_end */
9717 		fallthrough;
9718 	case BPF_JGT:
9719 		/* pkt > pkt_end */
9720 		if (pkt->range == BEYOND_PKT_END)
9721 			/* pkt has at last one extra byte beyond pkt_end */
9722 			return opcode == BPF_JGT;
9723 		break;
9724 	case BPF_JLT:
9725 		/* pkt < pkt_end */
9726 		fallthrough;
9727 	case BPF_JGE:
9728 		/* pkt >= pkt_end */
9729 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9730 			return opcode == BPF_JGE;
9731 		break;
9732 	}
9733 	return -1;
9734 }
9735 
9736 /* Adjusts the register min/max values in the case that the dst_reg is the
9737  * variable register that we are working on, and src_reg is a constant or we're
9738  * simply doing a BPF_K check.
9739  * In JEQ/JNE cases we also adjust the var_off values.
9740  */
9741 static void reg_set_min_max(struct bpf_reg_state *true_reg,
9742 			    struct bpf_reg_state *false_reg,
9743 			    u64 val, u32 val32,
9744 			    u8 opcode, bool is_jmp32)
9745 {
9746 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
9747 	struct tnum false_64off = false_reg->var_off;
9748 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
9749 	struct tnum true_64off = true_reg->var_off;
9750 	s64 sval = (s64)val;
9751 	s32 sval32 = (s32)val32;
9752 
9753 	/* If the dst_reg is a pointer, we can't learn anything about its
9754 	 * variable offset from the compare (unless src_reg were a pointer into
9755 	 * the same object, but we don't bother with that.
9756 	 * Since false_reg and true_reg have the same type by construction, we
9757 	 * only need to check one of them for pointerness.
9758 	 */
9759 	if (__is_pointer_value(false, false_reg))
9760 		return;
9761 
9762 	switch (opcode) {
9763 	/* JEQ/JNE comparison doesn't change the register equivalence.
9764 	 *
9765 	 * r1 = r2;
9766 	 * if (r1 == 42) goto label;
9767 	 * ...
9768 	 * label: // here both r1 and r2 are known to be 42.
9769 	 *
9770 	 * Hence when marking register as known preserve it's ID.
9771 	 */
9772 	case BPF_JEQ:
9773 		if (is_jmp32) {
9774 			__mark_reg32_known(true_reg, val32);
9775 			true_32off = tnum_subreg(true_reg->var_off);
9776 		} else {
9777 			___mark_reg_known(true_reg, val);
9778 			true_64off = true_reg->var_off;
9779 		}
9780 		break;
9781 	case BPF_JNE:
9782 		if (is_jmp32) {
9783 			__mark_reg32_known(false_reg, val32);
9784 			false_32off = tnum_subreg(false_reg->var_off);
9785 		} else {
9786 			___mark_reg_known(false_reg, val);
9787 			false_64off = false_reg->var_off;
9788 		}
9789 		break;
9790 	case BPF_JSET:
9791 		if (is_jmp32) {
9792 			false_32off = tnum_and(false_32off, tnum_const(~val32));
9793 			if (is_power_of_2(val32))
9794 				true_32off = tnum_or(true_32off,
9795 						     tnum_const(val32));
9796 		} else {
9797 			false_64off = tnum_and(false_64off, tnum_const(~val));
9798 			if (is_power_of_2(val))
9799 				true_64off = tnum_or(true_64off,
9800 						     tnum_const(val));
9801 		}
9802 		break;
9803 	case BPF_JGE:
9804 	case BPF_JGT:
9805 	{
9806 		if (is_jmp32) {
9807 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
9808 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9809 
9810 			false_reg->u32_max_value = min(false_reg->u32_max_value,
9811 						       false_umax);
9812 			true_reg->u32_min_value = max(true_reg->u32_min_value,
9813 						      true_umin);
9814 		} else {
9815 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
9816 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9817 
9818 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
9819 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
9820 		}
9821 		break;
9822 	}
9823 	case BPF_JSGE:
9824 	case BPF_JSGT:
9825 	{
9826 		if (is_jmp32) {
9827 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
9828 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
9829 
9830 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9831 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9832 		} else {
9833 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
9834 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9835 
9836 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
9837 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
9838 		}
9839 		break;
9840 	}
9841 	case BPF_JLE:
9842 	case BPF_JLT:
9843 	{
9844 		if (is_jmp32) {
9845 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
9846 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9847 
9848 			false_reg->u32_min_value = max(false_reg->u32_min_value,
9849 						       false_umin);
9850 			true_reg->u32_max_value = min(true_reg->u32_max_value,
9851 						      true_umax);
9852 		} else {
9853 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
9854 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9855 
9856 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
9857 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
9858 		}
9859 		break;
9860 	}
9861 	case BPF_JSLE:
9862 	case BPF_JSLT:
9863 	{
9864 		if (is_jmp32) {
9865 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
9866 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
9867 
9868 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9869 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9870 		} else {
9871 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
9872 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9873 
9874 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
9875 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
9876 		}
9877 		break;
9878 	}
9879 	default:
9880 		return;
9881 	}
9882 
9883 	if (is_jmp32) {
9884 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9885 					     tnum_subreg(false_32off));
9886 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9887 					    tnum_subreg(true_32off));
9888 		__reg_combine_32_into_64(false_reg);
9889 		__reg_combine_32_into_64(true_reg);
9890 	} else {
9891 		false_reg->var_off = false_64off;
9892 		true_reg->var_off = true_64off;
9893 		__reg_combine_64_into_32(false_reg);
9894 		__reg_combine_64_into_32(true_reg);
9895 	}
9896 }
9897 
9898 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9899  * the variable reg.
9900  */
9901 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9902 				struct bpf_reg_state *false_reg,
9903 				u64 val, u32 val32,
9904 				u8 opcode, bool is_jmp32)
9905 {
9906 	opcode = flip_opcode(opcode);
9907 	/* This uses zero as "not present in table"; luckily the zero opcode,
9908 	 * BPF_JA, can't get here.
9909 	 */
9910 	if (opcode)
9911 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9912 }
9913 
9914 /* Regs are known to be equal, so intersect their min/max/var_off */
9915 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9916 				  struct bpf_reg_state *dst_reg)
9917 {
9918 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9919 							dst_reg->umin_value);
9920 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9921 							dst_reg->umax_value);
9922 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9923 							dst_reg->smin_value);
9924 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9925 							dst_reg->smax_value);
9926 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9927 							     dst_reg->var_off);
9928 	reg_bounds_sync(src_reg);
9929 	reg_bounds_sync(dst_reg);
9930 }
9931 
9932 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9933 				struct bpf_reg_state *true_dst,
9934 				struct bpf_reg_state *false_src,
9935 				struct bpf_reg_state *false_dst,
9936 				u8 opcode)
9937 {
9938 	switch (opcode) {
9939 	case BPF_JEQ:
9940 		__reg_combine_min_max(true_src, true_dst);
9941 		break;
9942 	case BPF_JNE:
9943 		__reg_combine_min_max(false_src, false_dst);
9944 		break;
9945 	}
9946 }
9947 
9948 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9949 				 struct bpf_reg_state *reg, u32 id,
9950 				 bool is_null)
9951 {
9952 	if (type_may_be_null(reg->type) && reg->id == id &&
9953 	    !WARN_ON_ONCE(!reg->id)) {
9954 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9955 				 !tnum_equals_const(reg->var_off, 0) ||
9956 				 reg->off)) {
9957 			/* Old offset (both fixed and variable parts) should
9958 			 * have been known-zero, because we don't allow pointer
9959 			 * arithmetic on pointers that might be NULL. If we
9960 			 * see this happening, don't convert the register.
9961 			 */
9962 			return;
9963 		}
9964 		if (is_null) {
9965 			reg->type = SCALAR_VALUE;
9966 			/* We don't need id and ref_obj_id from this point
9967 			 * onwards anymore, thus we should better reset it,
9968 			 * so that state pruning has chances to take effect.
9969 			 */
9970 			reg->id = 0;
9971 			reg->ref_obj_id = 0;
9972 
9973 			return;
9974 		}
9975 
9976 		mark_ptr_not_null_reg(reg);
9977 
9978 		if (!reg_may_point_to_spin_lock(reg)) {
9979 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9980 			 * in release_reference().
9981 			 *
9982 			 * reg->id is still used by spin_lock ptr. Other
9983 			 * than spin_lock ptr type, reg->id can be reset.
9984 			 */
9985 			reg->id = 0;
9986 		}
9987 	}
9988 }
9989 
9990 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9991  * be folded together at some point.
9992  */
9993 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9994 				  bool is_null)
9995 {
9996 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9997 	struct bpf_reg_state *regs = state->regs, *reg;
9998 	u32 ref_obj_id = regs[regno].ref_obj_id;
9999 	u32 id = regs[regno].id;
10000 
10001 	if (ref_obj_id && ref_obj_id == id && is_null)
10002 		/* regs[regno] is in the " == NULL" branch.
10003 		 * No one could have freed the reference state before
10004 		 * doing the NULL check.
10005 		 */
10006 		WARN_ON_ONCE(release_reference_state(state, id));
10007 
10008 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10009 		mark_ptr_or_null_reg(state, reg, id, is_null);
10010 	}));
10011 }
10012 
10013 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
10014 				   struct bpf_reg_state *dst_reg,
10015 				   struct bpf_reg_state *src_reg,
10016 				   struct bpf_verifier_state *this_branch,
10017 				   struct bpf_verifier_state *other_branch)
10018 {
10019 	if (BPF_SRC(insn->code) != BPF_X)
10020 		return false;
10021 
10022 	/* Pointers are always 64-bit. */
10023 	if (BPF_CLASS(insn->code) == BPF_JMP32)
10024 		return false;
10025 
10026 	switch (BPF_OP(insn->code)) {
10027 	case BPF_JGT:
10028 		if ((dst_reg->type == PTR_TO_PACKET &&
10029 		     src_reg->type == PTR_TO_PACKET_END) ||
10030 		    (dst_reg->type == PTR_TO_PACKET_META &&
10031 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10032 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
10033 			find_good_pkt_pointers(this_branch, dst_reg,
10034 					       dst_reg->type, false);
10035 			mark_pkt_end(other_branch, insn->dst_reg, true);
10036 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10037 			    src_reg->type == PTR_TO_PACKET) ||
10038 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10039 			    src_reg->type == PTR_TO_PACKET_META)) {
10040 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
10041 			find_good_pkt_pointers(other_branch, src_reg,
10042 					       src_reg->type, true);
10043 			mark_pkt_end(this_branch, insn->src_reg, false);
10044 		} else {
10045 			return false;
10046 		}
10047 		break;
10048 	case BPF_JLT:
10049 		if ((dst_reg->type == PTR_TO_PACKET &&
10050 		     src_reg->type == PTR_TO_PACKET_END) ||
10051 		    (dst_reg->type == PTR_TO_PACKET_META &&
10052 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10053 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
10054 			find_good_pkt_pointers(other_branch, dst_reg,
10055 					       dst_reg->type, true);
10056 			mark_pkt_end(this_branch, insn->dst_reg, false);
10057 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10058 			    src_reg->type == PTR_TO_PACKET) ||
10059 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10060 			    src_reg->type == PTR_TO_PACKET_META)) {
10061 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
10062 			find_good_pkt_pointers(this_branch, src_reg,
10063 					       src_reg->type, false);
10064 			mark_pkt_end(other_branch, insn->src_reg, true);
10065 		} else {
10066 			return false;
10067 		}
10068 		break;
10069 	case BPF_JGE:
10070 		if ((dst_reg->type == PTR_TO_PACKET &&
10071 		     src_reg->type == PTR_TO_PACKET_END) ||
10072 		    (dst_reg->type == PTR_TO_PACKET_META &&
10073 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10074 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
10075 			find_good_pkt_pointers(this_branch, dst_reg,
10076 					       dst_reg->type, true);
10077 			mark_pkt_end(other_branch, insn->dst_reg, false);
10078 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10079 			    src_reg->type == PTR_TO_PACKET) ||
10080 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10081 			    src_reg->type == PTR_TO_PACKET_META)) {
10082 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
10083 			find_good_pkt_pointers(other_branch, src_reg,
10084 					       src_reg->type, false);
10085 			mark_pkt_end(this_branch, insn->src_reg, true);
10086 		} else {
10087 			return false;
10088 		}
10089 		break;
10090 	case BPF_JLE:
10091 		if ((dst_reg->type == PTR_TO_PACKET &&
10092 		     src_reg->type == PTR_TO_PACKET_END) ||
10093 		    (dst_reg->type == PTR_TO_PACKET_META &&
10094 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10095 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
10096 			find_good_pkt_pointers(other_branch, dst_reg,
10097 					       dst_reg->type, false);
10098 			mark_pkt_end(this_branch, insn->dst_reg, true);
10099 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10100 			    src_reg->type == PTR_TO_PACKET) ||
10101 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10102 			    src_reg->type == PTR_TO_PACKET_META)) {
10103 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
10104 			find_good_pkt_pointers(this_branch, src_reg,
10105 					       src_reg->type, true);
10106 			mark_pkt_end(other_branch, insn->src_reg, false);
10107 		} else {
10108 			return false;
10109 		}
10110 		break;
10111 	default:
10112 		return false;
10113 	}
10114 
10115 	return true;
10116 }
10117 
10118 static void find_equal_scalars(struct bpf_verifier_state *vstate,
10119 			       struct bpf_reg_state *known_reg)
10120 {
10121 	struct bpf_func_state *state;
10122 	struct bpf_reg_state *reg;
10123 
10124 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10125 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10126 			*reg = *known_reg;
10127 	}));
10128 }
10129 
10130 static int check_cond_jmp_op(struct bpf_verifier_env *env,
10131 			     struct bpf_insn *insn, int *insn_idx)
10132 {
10133 	struct bpf_verifier_state *this_branch = env->cur_state;
10134 	struct bpf_verifier_state *other_branch;
10135 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
10136 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
10137 	u8 opcode = BPF_OP(insn->code);
10138 	bool is_jmp32;
10139 	int pred = -1;
10140 	int err;
10141 
10142 	/* Only conditional jumps are expected to reach here. */
10143 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
10144 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
10145 		return -EINVAL;
10146 	}
10147 
10148 	if (BPF_SRC(insn->code) == BPF_X) {
10149 		if (insn->imm != 0) {
10150 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10151 			return -EINVAL;
10152 		}
10153 
10154 		/* check src1 operand */
10155 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10156 		if (err)
10157 			return err;
10158 
10159 		if (is_pointer_value(env, insn->src_reg)) {
10160 			verbose(env, "R%d pointer comparison prohibited\n",
10161 				insn->src_reg);
10162 			return -EACCES;
10163 		}
10164 		src_reg = &regs[insn->src_reg];
10165 	} else {
10166 		if (insn->src_reg != BPF_REG_0) {
10167 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10168 			return -EINVAL;
10169 		}
10170 	}
10171 
10172 	/* check src2 operand */
10173 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10174 	if (err)
10175 		return err;
10176 
10177 	dst_reg = &regs[insn->dst_reg];
10178 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
10179 
10180 	if (BPF_SRC(insn->code) == BPF_K) {
10181 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10182 	} else if (src_reg->type == SCALAR_VALUE &&
10183 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10184 		pred = is_branch_taken(dst_reg,
10185 				       tnum_subreg(src_reg->var_off).value,
10186 				       opcode,
10187 				       is_jmp32);
10188 	} else if (src_reg->type == SCALAR_VALUE &&
10189 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10190 		pred = is_branch_taken(dst_reg,
10191 				       src_reg->var_off.value,
10192 				       opcode,
10193 				       is_jmp32);
10194 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
10195 		   reg_is_pkt_pointer_any(src_reg) &&
10196 		   !is_jmp32) {
10197 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
10198 	}
10199 
10200 	if (pred >= 0) {
10201 		/* If we get here with a dst_reg pointer type it is because
10202 		 * above is_branch_taken() special cased the 0 comparison.
10203 		 */
10204 		if (!__is_pointer_value(false, dst_reg))
10205 			err = mark_chain_precision(env, insn->dst_reg);
10206 		if (BPF_SRC(insn->code) == BPF_X && !err &&
10207 		    !__is_pointer_value(false, src_reg))
10208 			err = mark_chain_precision(env, insn->src_reg);
10209 		if (err)
10210 			return err;
10211 	}
10212 
10213 	if (pred == 1) {
10214 		/* Only follow the goto, ignore fall-through. If needed, push
10215 		 * the fall-through branch for simulation under speculative
10216 		 * execution.
10217 		 */
10218 		if (!env->bypass_spec_v1 &&
10219 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
10220 					       *insn_idx))
10221 			return -EFAULT;
10222 		*insn_idx += insn->off;
10223 		return 0;
10224 	} else if (pred == 0) {
10225 		/* Only follow the fall-through branch, since that's where the
10226 		 * program will go. If needed, push the goto branch for
10227 		 * simulation under speculative execution.
10228 		 */
10229 		if (!env->bypass_spec_v1 &&
10230 		    !sanitize_speculative_path(env, insn,
10231 					       *insn_idx + insn->off + 1,
10232 					       *insn_idx))
10233 			return -EFAULT;
10234 		return 0;
10235 	}
10236 
10237 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10238 				  false);
10239 	if (!other_branch)
10240 		return -EFAULT;
10241 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
10242 
10243 	/* detect if we are comparing against a constant value so we can adjust
10244 	 * our min/max values for our dst register.
10245 	 * this is only legit if both are scalars (or pointers to the same
10246 	 * object, I suppose, but we don't support that right now), because
10247 	 * otherwise the different base pointers mean the offsets aren't
10248 	 * comparable.
10249 	 */
10250 	if (BPF_SRC(insn->code) == BPF_X) {
10251 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
10252 
10253 		if (dst_reg->type == SCALAR_VALUE &&
10254 		    src_reg->type == SCALAR_VALUE) {
10255 			if (tnum_is_const(src_reg->var_off) ||
10256 			    (is_jmp32 &&
10257 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
10258 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
10259 						dst_reg,
10260 						src_reg->var_off.value,
10261 						tnum_subreg(src_reg->var_off).value,
10262 						opcode, is_jmp32);
10263 			else if (tnum_is_const(dst_reg->var_off) ||
10264 				 (is_jmp32 &&
10265 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
10266 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
10267 						    src_reg,
10268 						    dst_reg->var_off.value,
10269 						    tnum_subreg(dst_reg->var_off).value,
10270 						    opcode, is_jmp32);
10271 			else if (!is_jmp32 &&
10272 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
10273 				/* Comparing for equality, we can combine knowledge */
10274 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
10275 						    &other_branch_regs[insn->dst_reg],
10276 						    src_reg, dst_reg, opcode);
10277 			if (src_reg->id &&
10278 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
10279 				find_equal_scalars(this_branch, src_reg);
10280 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10281 			}
10282 
10283 		}
10284 	} else if (dst_reg->type == SCALAR_VALUE) {
10285 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
10286 					dst_reg, insn->imm, (u32)insn->imm,
10287 					opcode, is_jmp32);
10288 	}
10289 
10290 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10291 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
10292 		find_equal_scalars(this_branch, dst_reg);
10293 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10294 	}
10295 
10296 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10297 	 * NOTE: these optimizations below are related with pointer comparison
10298 	 *       which will never be JMP32.
10299 	 */
10300 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
10301 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
10302 	    type_may_be_null(dst_reg->type)) {
10303 		/* Mark all identical registers in each branch as either
10304 		 * safe or unknown depending R == 0 or R != 0 conditional.
10305 		 */
10306 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10307 				      opcode == BPF_JNE);
10308 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10309 				      opcode == BPF_JEQ);
10310 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
10311 					   this_branch, other_branch) &&
10312 		   is_pointer_value(env, insn->dst_reg)) {
10313 		verbose(env, "R%d pointer comparison prohibited\n",
10314 			insn->dst_reg);
10315 		return -EACCES;
10316 	}
10317 	if (env->log.level & BPF_LOG_LEVEL)
10318 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
10319 	return 0;
10320 }
10321 
10322 /* verify BPF_LD_IMM64 instruction */
10323 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
10324 {
10325 	struct bpf_insn_aux_data *aux = cur_aux(env);
10326 	struct bpf_reg_state *regs = cur_regs(env);
10327 	struct bpf_reg_state *dst_reg;
10328 	struct bpf_map *map;
10329 	int err;
10330 
10331 	if (BPF_SIZE(insn->code) != BPF_DW) {
10332 		verbose(env, "invalid BPF_LD_IMM insn\n");
10333 		return -EINVAL;
10334 	}
10335 	if (insn->off != 0) {
10336 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
10337 		return -EINVAL;
10338 	}
10339 
10340 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
10341 	if (err)
10342 		return err;
10343 
10344 	dst_reg = &regs[insn->dst_reg];
10345 	if (insn->src_reg == 0) {
10346 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10347 
10348 		dst_reg->type = SCALAR_VALUE;
10349 		__mark_reg_known(&regs[insn->dst_reg], imm);
10350 		return 0;
10351 	}
10352 
10353 	/* All special src_reg cases are listed below. From this point onwards
10354 	 * we either succeed and assign a corresponding dst_reg->type after
10355 	 * zeroing the offset, or fail and reject the program.
10356 	 */
10357 	mark_reg_known_zero(env, regs, insn->dst_reg);
10358 
10359 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
10360 		dst_reg->type = aux->btf_var.reg_type;
10361 		switch (base_type(dst_reg->type)) {
10362 		case PTR_TO_MEM:
10363 			dst_reg->mem_size = aux->btf_var.mem_size;
10364 			break;
10365 		case PTR_TO_BTF_ID:
10366 			dst_reg->btf = aux->btf_var.btf;
10367 			dst_reg->btf_id = aux->btf_var.btf_id;
10368 			break;
10369 		default:
10370 			verbose(env, "bpf verifier is misconfigured\n");
10371 			return -EFAULT;
10372 		}
10373 		return 0;
10374 	}
10375 
10376 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
10377 		struct bpf_prog_aux *aux = env->prog->aux;
10378 		u32 subprogno = find_subprog(env,
10379 					     env->insn_idx + insn->imm + 1);
10380 
10381 		if (!aux->func_info) {
10382 			verbose(env, "missing btf func_info\n");
10383 			return -EINVAL;
10384 		}
10385 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10386 			verbose(env, "callback function not static\n");
10387 			return -EINVAL;
10388 		}
10389 
10390 		dst_reg->type = PTR_TO_FUNC;
10391 		dst_reg->subprogno = subprogno;
10392 		return 0;
10393 	}
10394 
10395 	map = env->used_maps[aux->map_index];
10396 	dst_reg->map_ptr = map;
10397 
10398 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10399 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
10400 		dst_reg->type = PTR_TO_MAP_VALUE;
10401 		dst_reg->off = aux->map_off;
10402 		if (map_value_has_spin_lock(map))
10403 			dst_reg->id = ++env->id_gen;
10404 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10405 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10406 		dst_reg->type = CONST_PTR_TO_MAP;
10407 	} else {
10408 		verbose(env, "bpf verifier is misconfigured\n");
10409 		return -EINVAL;
10410 	}
10411 
10412 	return 0;
10413 }
10414 
10415 static bool may_access_skb(enum bpf_prog_type type)
10416 {
10417 	switch (type) {
10418 	case BPF_PROG_TYPE_SOCKET_FILTER:
10419 	case BPF_PROG_TYPE_SCHED_CLS:
10420 	case BPF_PROG_TYPE_SCHED_ACT:
10421 		return true;
10422 	default:
10423 		return false;
10424 	}
10425 }
10426 
10427 /* verify safety of LD_ABS|LD_IND instructions:
10428  * - they can only appear in the programs where ctx == skb
10429  * - since they are wrappers of function calls, they scratch R1-R5 registers,
10430  *   preserve R6-R9, and store return value into R0
10431  *
10432  * Implicit input:
10433  *   ctx == skb == R6 == CTX
10434  *
10435  * Explicit input:
10436  *   SRC == any register
10437  *   IMM == 32-bit immediate
10438  *
10439  * Output:
10440  *   R0 - 8/16/32-bit skb data converted to cpu endianness
10441  */
10442 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10443 {
10444 	struct bpf_reg_state *regs = cur_regs(env);
10445 	static const int ctx_reg = BPF_REG_6;
10446 	u8 mode = BPF_MODE(insn->code);
10447 	int i, err;
10448 
10449 	if (!may_access_skb(resolve_prog_type(env->prog))) {
10450 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10451 		return -EINVAL;
10452 	}
10453 
10454 	if (!env->ops->gen_ld_abs) {
10455 		verbose(env, "bpf verifier is misconfigured\n");
10456 		return -EINVAL;
10457 	}
10458 
10459 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10460 	    BPF_SIZE(insn->code) == BPF_DW ||
10461 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10462 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10463 		return -EINVAL;
10464 	}
10465 
10466 	/* check whether implicit source operand (register R6) is readable */
10467 	err = check_reg_arg(env, ctx_reg, SRC_OP);
10468 	if (err)
10469 		return err;
10470 
10471 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10472 	 * gen_ld_abs() may terminate the program at runtime, leading to
10473 	 * reference leak.
10474 	 */
10475 	err = check_reference_leak(env);
10476 	if (err) {
10477 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10478 		return err;
10479 	}
10480 
10481 	if (env->cur_state->active_spin_lock) {
10482 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10483 		return -EINVAL;
10484 	}
10485 
10486 	if (regs[ctx_reg].type != PTR_TO_CTX) {
10487 		verbose(env,
10488 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10489 		return -EINVAL;
10490 	}
10491 
10492 	if (mode == BPF_IND) {
10493 		/* check explicit source operand */
10494 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10495 		if (err)
10496 			return err;
10497 	}
10498 
10499 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
10500 	if (err < 0)
10501 		return err;
10502 
10503 	/* reset caller saved regs to unreadable */
10504 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10505 		mark_reg_not_init(env, regs, caller_saved[i]);
10506 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10507 	}
10508 
10509 	/* mark destination R0 register as readable, since it contains
10510 	 * the value fetched from the packet.
10511 	 * Already marked as written above.
10512 	 */
10513 	mark_reg_unknown(env, regs, BPF_REG_0);
10514 	/* ld_abs load up to 32-bit skb data. */
10515 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10516 	return 0;
10517 }
10518 
10519 static int check_return_code(struct bpf_verifier_env *env)
10520 {
10521 	struct tnum enforce_attach_type_range = tnum_unknown;
10522 	const struct bpf_prog *prog = env->prog;
10523 	struct bpf_reg_state *reg;
10524 	struct tnum range = tnum_range(0, 1);
10525 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10526 	int err;
10527 	struct bpf_func_state *frame = env->cur_state->frame[0];
10528 	const bool is_subprog = frame->subprogno;
10529 
10530 	/* LSM and struct_ops func-ptr's return type could be "void" */
10531 	if (!is_subprog) {
10532 		switch (prog_type) {
10533 		case BPF_PROG_TYPE_LSM:
10534 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
10535 				/* See below, can be 0 or 0-1 depending on hook. */
10536 				break;
10537 			fallthrough;
10538 		case BPF_PROG_TYPE_STRUCT_OPS:
10539 			if (!prog->aux->attach_func_proto->type)
10540 				return 0;
10541 			break;
10542 		default:
10543 			break;
10544 		}
10545 	}
10546 
10547 	/* eBPF calling convention is such that R0 is used
10548 	 * to return the value from eBPF program.
10549 	 * Make sure that it's readable at this time
10550 	 * of bpf_exit, which means that program wrote
10551 	 * something into it earlier
10552 	 */
10553 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10554 	if (err)
10555 		return err;
10556 
10557 	if (is_pointer_value(env, BPF_REG_0)) {
10558 		verbose(env, "R0 leaks addr as return value\n");
10559 		return -EACCES;
10560 	}
10561 
10562 	reg = cur_regs(env) + BPF_REG_0;
10563 
10564 	if (frame->in_async_callback_fn) {
10565 		/* enforce return zero from async callbacks like timer */
10566 		if (reg->type != SCALAR_VALUE) {
10567 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10568 				reg_type_str(env, reg->type));
10569 			return -EINVAL;
10570 		}
10571 
10572 		if (!tnum_in(tnum_const(0), reg->var_off)) {
10573 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10574 			return -EINVAL;
10575 		}
10576 		return 0;
10577 	}
10578 
10579 	if (is_subprog) {
10580 		if (reg->type != SCALAR_VALUE) {
10581 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10582 				reg_type_str(env, reg->type));
10583 			return -EINVAL;
10584 		}
10585 		return 0;
10586 	}
10587 
10588 	switch (prog_type) {
10589 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10590 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10591 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10592 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10593 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10594 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10595 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10596 			range = tnum_range(1, 1);
10597 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10598 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10599 			range = tnum_range(0, 3);
10600 		break;
10601 	case BPF_PROG_TYPE_CGROUP_SKB:
10602 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10603 			range = tnum_range(0, 3);
10604 			enforce_attach_type_range = tnum_range(2, 3);
10605 		}
10606 		break;
10607 	case BPF_PROG_TYPE_CGROUP_SOCK:
10608 	case BPF_PROG_TYPE_SOCK_OPS:
10609 	case BPF_PROG_TYPE_CGROUP_DEVICE:
10610 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
10611 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10612 		break;
10613 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10614 		if (!env->prog->aux->attach_btf_id)
10615 			return 0;
10616 		range = tnum_const(0);
10617 		break;
10618 	case BPF_PROG_TYPE_TRACING:
10619 		switch (env->prog->expected_attach_type) {
10620 		case BPF_TRACE_FENTRY:
10621 		case BPF_TRACE_FEXIT:
10622 			range = tnum_const(0);
10623 			break;
10624 		case BPF_TRACE_RAW_TP:
10625 		case BPF_MODIFY_RETURN:
10626 			return 0;
10627 		case BPF_TRACE_ITER:
10628 			break;
10629 		default:
10630 			return -ENOTSUPP;
10631 		}
10632 		break;
10633 	case BPF_PROG_TYPE_SK_LOOKUP:
10634 		range = tnum_range(SK_DROP, SK_PASS);
10635 		break;
10636 
10637 	case BPF_PROG_TYPE_LSM:
10638 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10639 			/* Regular BPF_PROG_TYPE_LSM programs can return
10640 			 * any value.
10641 			 */
10642 			return 0;
10643 		}
10644 		if (!env->prog->aux->attach_func_proto->type) {
10645 			/* Make sure programs that attach to void
10646 			 * hooks don't try to modify return value.
10647 			 */
10648 			range = tnum_range(1, 1);
10649 		}
10650 		break;
10651 
10652 	case BPF_PROG_TYPE_EXT:
10653 		/* freplace program can return anything as its return value
10654 		 * depends on the to-be-replaced kernel func or bpf program.
10655 		 */
10656 	default:
10657 		return 0;
10658 	}
10659 
10660 	if (reg->type != SCALAR_VALUE) {
10661 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10662 			reg_type_str(env, reg->type));
10663 		return -EINVAL;
10664 	}
10665 
10666 	if (!tnum_in(range, reg->var_off)) {
10667 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10668 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
10669 		    prog_type == BPF_PROG_TYPE_LSM &&
10670 		    !prog->aux->attach_func_proto->type)
10671 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10672 		return -EINVAL;
10673 	}
10674 
10675 	if (!tnum_is_unknown(enforce_attach_type_range) &&
10676 	    tnum_in(enforce_attach_type_range, reg->var_off))
10677 		env->prog->enforce_expected_attach_type = 1;
10678 	return 0;
10679 }
10680 
10681 /* non-recursive DFS pseudo code
10682  * 1  procedure DFS-iterative(G,v):
10683  * 2      label v as discovered
10684  * 3      let S be a stack
10685  * 4      S.push(v)
10686  * 5      while S is not empty
10687  * 6            t <- S.pop()
10688  * 7            if t is what we're looking for:
10689  * 8                return t
10690  * 9            for all edges e in G.adjacentEdges(t) do
10691  * 10               if edge e is already labelled
10692  * 11                   continue with the next edge
10693  * 12               w <- G.adjacentVertex(t,e)
10694  * 13               if vertex w is not discovered and not explored
10695  * 14                   label e as tree-edge
10696  * 15                   label w as discovered
10697  * 16                   S.push(w)
10698  * 17                   continue at 5
10699  * 18               else if vertex w is discovered
10700  * 19                   label e as back-edge
10701  * 20               else
10702  * 21                   // vertex w is explored
10703  * 22                   label e as forward- or cross-edge
10704  * 23           label t as explored
10705  * 24           S.pop()
10706  *
10707  * convention:
10708  * 0x10 - discovered
10709  * 0x11 - discovered and fall-through edge labelled
10710  * 0x12 - discovered and fall-through and branch edges labelled
10711  * 0x20 - explored
10712  */
10713 
10714 enum {
10715 	DISCOVERED = 0x10,
10716 	EXPLORED = 0x20,
10717 	FALLTHROUGH = 1,
10718 	BRANCH = 2,
10719 };
10720 
10721 static u32 state_htab_size(struct bpf_verifier_env *env)
10722 {
10723 	return env->prog->len;
10724 }
10725 
10726 static struct bpf_verifier_state_list **explored_state(
10727 					struct bpf_verifier_env *env,
10728 					int idx)
10729 {
10730 	struct bpf_verifier_state *cur = env->cur_state;
10731 	struct bpf_func_state *state = cur->frame[cur->curframe];
10732 
10733 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
10734 }
10735 
10736 static void init_explored_state(struct bpf_verifier_env *env, int idx)
10737 {
10738 	env->insn_aux_data[idx].prune_point = true;
10739 }
10740 
10741 enum {
10742 	DONE_EXPLORING = 0,
10743 	KEEP_EXPLORING = 1,
10744 };
10745 
10746 /* t, w, e - match pseudo-code above:
10747  * t - index of current instruction
10748  * w - next instruction
10749  * e - edge
10750  */
10751 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10752 		     bool loop_ok)
10753 {
10754 	int *insn_stack = env->cfg.insn_stack;
10755 	int *insn_state = env->cfg.insn_state;
10756 
10757 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
10758 		return DONE_EXPLORING;
10759 
10760 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
10761 		return DONE_EXPLORING;
10762 
10763 	if (w < 0 || w >= env->prog->len) {
10764 		verbose_linfo(env, t, "%d: ", t);
10765 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
10766 		return -EINVAL;
10767 	}
10768 
10769 	if (e == BRANCH)
10770 		/* mark branch target for state pruning */
10771 		init_explored_state(env, w);
10772 
10773 	if (insn_state[w] == 0) {
10774 		/* tree-edge */
10775 		insn_state[t] = DISCOVERED | e;
10776 		insn_state[w] = DISCOVERED;
10777 		if (env->cfg.cur_stack >= env->prog->len)
10778 			return -E2BIG;
10779 		insn_stack[env->cfg.cur_stack++] = w;
10780 		return KEEP_EXPLORING;
10781 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
10782 		if (loop_ok && env->bpf_capable)
10783 			return DONE_EXPLORING;
10784 		verbose_linfo(env, t, "%d: ", t);
10785 		verbose_linfo(env, w, "%d: ", w);
10786 		verbose(env, "back-edge from insn %d to %d\n", t, w);
10787 		return -EINVAL;
10788 	} else if (insn_state[w] == EXPLORED) {
10789 		/* forward- or cross-edge */
10790 		insn_state[t] = DISCOVERED | e;
10791 	} else {
10792 		verbose(env, "insn state internal bug\n");
10793 		return -EFAULT;
10794 	}
10795 	return DONE_EXPLORING;
10796 }
10797 
10798 static int visit_func_call_insn(int t, int insn_cnt,
10799 				struct bpf_insn *insns,
10800 				struct bpf_verifier_env *env,
10801 				bool visit_callee)
10802 {
10803 	int ret;
10804 
10805 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10806 	if (ret)
10807 		return ret;
10808 
10809 	if (t + 1 < insn_cnt)
10810 		init_explored_state(env, t + 1);
10811 	if (visit_callee) {
10812 		init_explored_state(env, t);
10813 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10814 				/* It's ok to allow recursion from CFG point of
10815 				 * view. __check_func_call() will do the actual
10816 				 * check.
10817 				 */
10818 				bpf_pseudo_func(insns + t));
10819 	}
10820 	return ret;
10821 }
10822 
10823 /* Visits the instruction at index t and returns one of the following:
10824  *  < 0 - an error occurred
10825  *  DONE_EXPLORING - the instruction was fully explored
10826  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
10827  */
10828 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10829 {
10830 	struct bpf_insn *insns = env->prog->insnsi;
10831 	int ret;
10832 
10833 	if (bpf_pseudo_func(insns + t))
10834 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
10835 
10836 	/* All non-branch instructions have a single fall-through edge. */
10837 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10838 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
10839 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
10840 
10841 	switch (BPF_OP(insns[t].code)) {
10842 	case BPF_EXIT:
10843 		return DONE_EXPLORING;
10844 
10845 	case BPF_CALL:
10846 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
10847 			/* Mark this call insn to trigger is_state_visited() check
10848 			 * before call itself is processed by __check_func_call().
10849 			 * Otherwise new async state will be pushed for further
10850 			 * exploration.
10851 			 */
10852 			init_explored_state(env, t);
10853 		return visit_func_call_insn(t, insn_cnt, insns, env,
10854 					    insns[t].src_reg == BPF_PSEUDO_CALL);
10855 
10856 	case BPF_JA:
10857 		if (BPF_SRC(insns[t].code) != BPF_K)
10858 			return -EINVAL;
10859 
10860 		/* unconditional jump with single edge */
10861 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10862 				true);
10863 		if (ret)
10864 			return ret;
10865 
10866 		/* unconditional jmp is not a good pruning point,
10867 		 * but it's marked, since backtracking needs
10868 		 * to record jmp history in is_state_visited().
10869 		 */
10870 		init_explored_state(env, t + insns[t].off + 1);
10871 		/* tell verifier to check for equivalent states
10872 		 * after every call and jump
10873 		 */
10874 		if (t + 1 < insn_cnt)
10875 			init_explored_state(env, t + 1);
10876 
10877 		return ret;
10878 
10879 	default:
10880 		/* conditional jump with two edges */
10881 		init_explored_state(env, t);
10882 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10883 		if (ret)
10884 			return ret;
10885 
10886 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10887 	}
10888 }
10889 
10890 /* non-recursive depth-first-search to detect loops in BPF program
10891  * loop == back-edge in directed graph
10892  */
10893 static int check_cfg(struct bpf_verifier_env *env)
10894 {
10895 	int insn_cnt = env->prog->len;
10896 	int *insn_stack, *insn_state;
10897 	int ret = 0;
10898 	int i;
10899 
10900 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10901 	if (!insn_state)
10902 		return -ENOMEM;
10903 
10904 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10905 	if (!insn_stack) {
10906 		kvfree(insn_state);
10907 		return -ENOMEM;
10908 	}
10909 
10910 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10911 	insn_stack[0] = 0; /* 0 is the first instruction */
10912 	env->cfg.cur_stack = 1;
10913 
10914 	while (env->cfg.cur_stack > 0) {
10915 		int t = insn_stack[env->cfg.cur_stack - 1];
10916 
10917 		ret = visit_insn(t, insn_cnt, env);
10918 		switch (ret) {
10919 		case DONE_EXPLORING:
10920 			insn_state[t] = EXPLORED;
10921 			env->cfg.cur_stack--;
10922 			break;
10923 		case KEEP_EXPLORING:
10924 			break;
10925 		default:
10926 			if (ret > 0) {
10927 				verbose(env, "visit_insn internal bug\n");
10928 				ret = -EFAULT;
10929 			}
10930 			goto err_free;
10931 		}
10932 	}
10933 
10934 	if (env->cfg.cur_stack < 0) {
10935 		verbose(env, "pop stack internal bug\n");
10936 		ret = -EFAULT;
10937 		goto err_free;
10938 	}
10939 
10940 	for (i = 0; i < insn_cnt; i++) {
10941 		if (insn_state[i] != EXPLORED) {
10942 			verbose(env, "unreachable insn %d\n", i);
10943 			ret = -EINVAL;
10944 			goto err_free;
10945 		}
10946 	}
10947 	ret = 0; /* cfg looks good */
10948 
10949 err_free:
10950 	kvfree(insn_state);
10951 	kvfree(insn_stack);
10952 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
10953 	return ret;
10954 }
10955 
10956 static int check_abnormal_return(struct bpf_verifier_env *env)
10957 {
10958 	int i;
10959 
10960 	for (i = 1; i < env->subprog_cnt; i++) {
10961 		if (env->subprog_info[i].has_ld_abs) {
10962 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10963 			return -EINVAL;
10964 		}
10965 		if (env->subprog_info[i].has_tail_call) {
10966 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10967 			return -EINVAL;
10968 		}
10969 	}
10970 	return 0;
10971 }
10972 
10973 /* The minimum supported BTF func info size */
10974 #define MIN_BPF_FUNCINFO_SIZE	8
10975 #define MAX_FUNCINFO_REC_SIZE	252
10976 
10977 static int check_btf_func(struct bpf_verifier_env *env,
10978 			  const union bpf_attr *attr,
10979 			  bpfptr_t uattr)
10980 {
10981 	const struct btf_type *type, *func_proto, *ret_type;
10982 	u32 i, nfuncs, urec_size, min_size;
10983 	u32 krec_size = sizeof(struct bpf_func_info);
10984 	struct bpf_func_info *krecord;
10985 	struct bpf_func_info_aux *info_aux = NULL;
10986 	struct bpf_prog *prog;
10987 	const struct btf *btf;
10988 	bpfptr_t urecord;
10989 	u32 prev_offset = 0;
10990 	bool scalar_return;
10991 	int ret = -ENOMEM;
10992 
10993 	nfuncs = attr->func_info_cnt;
10994 	if (!nfuncs) {
10995 		if (check_abnormal_return(env))
10996 			return -EINVAL;
10997 		return 0;
10998 	}
10999 
11000 	if (nfuncs != env->subprog_cnt) {
11001 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
11002 		return -EINVAL;
11003 	}
11004 
11005 	urec_size = attr->func_info_rec_size;
11006 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
11007 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
11008 	    urec_size % sizeof(u32)) {
11009 		verbose(env, "invalid func info rec size %u\n", urec_size);
11010 		return -EINVAL;
11011 	}
11012 
11013 	prog = env->prog;
11014 	btf = prog->aux->btf;
11015 
11016 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
11017 	min_size = min_t(u32, krec_size, urec_size);
11018 
11019 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
11020 	if (!krecord)
11021 		return -ENOMEM;
11022 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
11023 	if (!info_aux)
11024 		goto err_free;
11025 
11026 	for (i = 0; i < nfuncs; i++) {
11027 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
11028 		if (ret) {
11029 			if (ret == -E2BIG) {
11030 				verbose(env, "nonzero tailing record in func info");
11031 				/* set the size kernel expects so loader can zero
11032 				 * out the rest of the record.
11033 				 */
11034 				if (copy_to_bpfptr_offset(uattr,
11035 							  offsetof(union bpf_attr, func_info_rec_size),
11036 							  &min_size, sizeof(min_size)))
11037 					ret = -EFAULT;
11038 			}
11039 			goto err_free;
11040 		}
11041 
11042 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
11043 			ret = -EFAULT;
11044 			goto err_free;
11045 		}
11046 
11047 		/* check insn_off */
11048 		ret = -EINVAL;
11049 		if (i == 0) {
11050 			if (krecord[i].insn_off) {
11051 				verbose(env,
11052 					"nonzero insn_off %u for the first func info record",
11053 					krecord[i].insn_off);
11054 				goto err_free;
11055 			}
11056 		} else if (krecord[i].insn_off <= prev_offset) {
11057 			verbose(env,
11058 				"same or smaller insn offset (%u) than previous func info record (%u)",
11059 				krecord[i].insn_off, prev_offset);
11060 			goto err_free;
11061 		}
11062 
11063 		if (env->subprog_info[i].start != krecord[i].insn_off) {
11064 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
11065 			goto err_free;
11066 		}
11067 
11068 		/* check type_id */
11069 		type = btf_type_by_id(btf, krecord[i].type_id);
11070 		if (!type || !btf_type_is_func(type)) {
11071 			verbose(env, "invalid type id %d in func info",
11072 				krecord[i].type_id);
11073 			goto err_free;
11074 		}
11075 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
11076 
11077 		func_proto = btf_type_by_id(btf, type->type);
11078 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
11079 			/* btf_func_check() already verified it during BTF load */
11080 			goto err_free;
11081 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
11082 		scalar_return =
11083 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
11084 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
11085 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
11086 			goto err_free;
11087 		}
11088 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
11089 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
11090 			goto err_free;
11091 		}
11092 
11093 		prev_offset = krecord[i].insn_off;
11094 		bpfptr_add(&urecord, urec_size);
11095 	}
11096 
11097 	prog->aux->func_info = krecord;
11098 	prog->aux->func_info_cnt = nfuncs;
11099 	prog->aux->func_info_aux = info_aux;
11100 	return 0;
11101 
11102 err_free:
11103 	kvfree(krecord);
11104 	kfree(info_aux);
11105 	return ret;
11106 }
11107 
11108 static void adjust_btf_func(struct bpf_verifier_env *env)
11109 {
11110 	struct bpf_prog_aux *aux = env->prog->aux;
11111 	int i;
11112 
11113 	if (!aux->func_info)
11114 		return;
11115 
11116 	for (i = 0; i < env->subprog_cnt; i++)
11117 		aux->func_info[i].insn_off = env->subprog_info[i].start;
11118 }
11119 
11120 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
11121 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
11122 
11123 static int check_btf_line(struct bpf_verifier_env *env,
11124 			  const union bpf_attr *attr,
11125 			  bpfptr_t uattr)
11126 {
11127 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11128 	struct bpf_subprog_info *sub;
11129 	struct bpf_line_info *linfo;
11130 	struct bpf_prog *prog;
11131 	const struct btf *btf;
11132 	bpfptr_t ulinfo;
11133 	int err;
11134 
11135 	nr_linfo = attr->line_info_cnt;
11136 	if (!nr_linfo)
11137 		return 0;
11138 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11139 		return -EINVAL;
11140 
11141 	rec_size = attr->line_info_rec_size;
11142 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11143 	    rec_size > MAX_LINEINFO_REC_SIZE ||
11144 	    rec_size & (sizeof(u32) - 1))
11145 		return -EINVAL;
11146 
11147 	/* Need to zero it in case the userspace may
11148 	 * pass in a smaller bpf_line_info object.
11149 	 */
11150 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11151 			 GFP_KERNEL | __GFP_NOWARN);
11152 	if (!linfo)
11153 		return -ENOMEM;
11154 
11155 	prog = env->prog;
11156 	btf = prog->aux->btf;
11157 
11158 	s = 0;
11159 	sub = env->subprog_info;
11160 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
11161 	expected_size = sizeof(struct bpf_line_info);
11162 	ncopy = min_t(u32, expected_size, rec_size);
11163 	for (i = 0; i < nr_linfo; i++) {
11164 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11165 		if (err) {
11166 			if (err == -E2BIG) {
11167 				verbose(env, "nonzero tailing record in line_info");
11168 				if (copy_to_bpfptr_offset(uattr,
11169 							  offsetof(union bpf_attr, line_info_rec_size),
11170 							  &expected_size, sizeof(expected_size)))
11171 					err = -EFAULT;
11172 			}
11173 			goto err_free;
11174 		}
11175 
11176 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
11177 			err = -EFAULT;
11178 			goto err_free;
11179 		}
11180 
11181 		/*
11182 		 * Check insn_off to ensure
11183 		 * 1) strictly increasing AND
11184 		 * 2) bounded by prog->len
11185 		 *
11186 		 * The linfo[0].insn_off == 0 check logically falls into
11187 		 * the later "missing bpf_line_info for func..." case
11188 		 * because the first linfo[0].insn_off must be the
11189 		 * first sub also and the first sub must have
11190 		 * subprog_info[0].start == 0.
11191 		 */
11192 		if ((i && linfo[i].insn_off <= prev_offset) ||
11193 		    linfo[i].insn_off >= prog->len) {
11194 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11195 				i, linfo[i].insn_off, prev_offset,
11196 				prog->len);
11197 			err = -EINVAL;
11198 			goto err_free;
11199 		}
11200 
11201 		if (!prog->insnsi[linfo[i].insn_off].code) {
11202 			verbose(env,
11203 				"Invalid insn code at line_info[%u].insn_off\n",
11204 				i);
11205 			err = -EINVAL;
11206 			goto err_free;
11207 		}
11208 
11209 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11210 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
11211 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11212 			err = -EINVAL;
11213 			goto err_free;
11214 		}
11215 
11216 		if (s != env->subprog_cnt) {
11217 			if (linfo[i].insn_off == sub[s].start) {
11218 				sub[s].linfo_idx = i;
11219 				s++;
11220 			} else if (sub[s].start < linfo[i].insn_off) {
11221 				verbose(env, "missing bpf_line_info for func#%u\n", s);
11222 				err = -EINVAL;
11223 				goto err_free;
11224 			}
11225 		}
11226 
11227 		prev_offset = linfo[i].insn_off;
11228 		bpfptr_add(&ulinfo, rec_size);
11229 	}
11230 
11231 	if (s != env->subprog_cnt) {
11232 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11233 			env->subprog_cnt - s, s);
11234 		err = -EINVAL;
11235 		goto err_free;
11236 	}
11237 
11238 	prog->aux->linfo = linfo;
11239 	prog->aux->nr_linfo = nr_linfo;
11240 
11241 	return 0;
11242 
11243 err_free:
11244 	kvfree(linfo);
11245 	return err;
11246 }
11247 
11248 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
11249 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
11250 
11251 static int check_core_relo(struct bpf_verifier_env *env,
11252 			   const union bpf_attr *attr,
11253 			   bpfptr_t uattr)
11254 {
11255 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11256 	struct bpf_core_relo core_relo = {};
11257 	struct bpf_prog *prog = env->prog;
11258 	const struct btf *btf = prog->aux->btf;
11259 	struct bpf_core_ctx ctx = {
11260 		.log = &env->log,
11261 		.btf = btf,
11262 	};
11263 	bpfptr_t u_core_relo;
11264 	int err;
11265 
11266 	nr_core_relo = attr->core_relo_cnt;
11267 	if (!nr_core_relo)
11268 		return 0;
11269 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11270 		return -EINVAL;
11271 
11272 	rec_size = attr->core_relo_rec_size;
11273 	if (rec_size < MIN_CORE_RELO_SIZE ||
11274 	    rec_size > MAX_CORE_RELO_SIZE ||
11275 	    rec_size % sizeof(u32))
11276 		return -EINVAL;
11277 
11278 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11279 	expected_size = sizeof(struct bpf_core_relo);
11280 	ncopy = min_t(u32, expected_size, rec_size);
11281 
11282 	/* Unlike func_info and line_info, copy and apply each CO-RE
11283 	 * relocation record one at a time.
11284 	 */
11285 	for (i = 0; i < nr_core_relo; i++) {
11286 		/* future proofing when sizeof(bpf_core_relo) changes */
11287 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11288 		if (err) {
11289 			if (err == -E2BIG) {
11290 				verbose(env, "nonzero tailing record in core_relo");
11291 				if (copy_to_bpfptr_offset(uattr,
11292 							  offsetof(union bpf_attr, core_relo_rec_size),
11293 							  &expected_size, sizeof(expected_size)))
11294 					err = -EFAULT;
11295 			}
11296 			break;
11297 		}
11298 
11299 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11300 			err = -EFAULT;
11301 			break;
11302 		}
11303 
11304 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11305 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11306 				i, core_relo.insn_off, prog->len);
11307 			err = -EINVAL;
11308 			break;
11309 		}
11310 
11311 		err = bpf_core_apply(&ctx, &core_relo, i,
11312 				     &prog->insnsi[core_relo.insn_off / 8]);
11313 		if (err)
11314 			break;
11315 		bpfptr_add(&u_core_relo, rec_size);
11316 	}
11317 	return err;
11318 }
11319 
11320 static int check_btf_info(struct bpf_verifier_env *env,
11321 			  const union bpf_attr *attr,
11322 			  bpfptr_t uattr)
11323 {
11324 	struct btf *btf;
11325 	int err;
11326 
11327 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
11328 		if (check_abnormal_return(env))
11329 			return -EINVAL;
11330 		return 0;
11331 	}
11332 
11333 	btf = btf_get_by_fd(attr->prog_btf_fd);
11334 	if (IS_ERR(btf))
11335 		return PTR_ERR(btf);
11336 	if (btf_is_kernel(btf)) {
11337 		btf_put(btf);
11338 		return -EACCES;
11339 	}
11340 	env->prog->aux->btf = btf;
11341 
11342 	err = check_btf_func(env, attr, uattr);
11343 	if (err)
11344 		return err;
11345 
11346 	err = check_btf_line(env, attr, uattr);
11347 	if (err)
11348 		return err;
11349 
11350 	err = check_core_relo(env, attr, uattr);
11351 	if (err)
11352 		return err;
11353 
11354 	return 0;
11355 }
11356 
11357 /* check %cur's range satisfies %old's */
11358 static bool range_within(struct bpf_reg_state *old,
11359 			 struct bpf_reg_state *cur)
11360 {
11361 	return old->umin_value <= cur->umin_value &&
11362 	       old->umax_value >= cur->umax_value &&
11363 	       old->smin_value <= cur->smin_value &&
11364 	       old->smax_value >= cur->smax_value &&
11365 	       old->u32_min_value <= cur->u32_min_value &&
11366 	       old->u32_max_value >= cur->u32_max_value &&
11367 	       old->s32_min_value <= cur->s32_min_value &&
11368 	       old->s32_max_value >= cur->s32_max_value;
11369 }
11370 
11371 /* If in the old state two registers had the same id, then they need to have
11372  * the same id in the new state as well.  But that id could be different from
11373  * the old state, so we need to track the mapping from old to new ids.
11374  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11375  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
11376  * regs with a different old id could still have new id 9, we don't care about
11377  * that.
11378  * So we look through our idmap to see if this old id has been seen before.  If
11379  * so, we require the new id to match; otherwise, we add the id pair to the map.
11380  */
11381 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
11382 {
11383 	unsigned int i;
11384 
11385 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
11386 		if (!idmap[i].old) {
11387 			/* Reached an empty slot; haven't seen this id before */
11388 			idmap[i].old = old_id;
11389 			idmap[i].cur = cur_id;
11390 			return true;
11391 		}
11392 		if (idmap[i].old == old_id)
11393 			return idmap[i].cur == cur_id;
11394 	}
11395 	/* We ran out of idmap slots, which should be impossible */
11396 	WARN_ON_ONCE(1);
11397 	return false;
11398 }
11399 
11400 static void clean_func_state(struct bpf_verifier_env *env,
11401 			     struct bpf_func_state *st)
11402 {
11403 	enum bpf_reg_liveness live;
11404 	int i, j;
11405 
11406 	for (i = 0; i < BPF_REG_FP; i++) {
11407 		live = st->regs[i].live;
11408 		/* liveness must not touch this register anymore */
11409 		st->regs[i].live |= REG_LIVE_DONE;
11410 		if (!(live & REG_LIVE_READ))
11411 			/* since the register is unused, clear its state
11412 			 * to make further comparison simpler
11413 			 */
11414 			__mark_reg_not_init(env, &st->regs[i]);
11415 	}
11416 
11417 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11418 		live = st->stack[i].spilled_ptr.live;
11419 		/* liveness must not touch this stack slot anymore */
11420 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11421 		if (!(live & REG_LIVE_READ)) {
11422 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
11423 			for (j = 0; j < BPF_REG_SIZE; j++)
11424 				st->stack[i].slot_type[j] = STACK_INVALID;
11425 		}
11426 	}
11427 }
11428 
11429 static void clean_verifier_state(struct bpf_verifier_env *env,
11430 				 struct bpf_verifier_state *st)
11431 {
11432 	int i;
11433 
11434 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11435 		/* all regs in this state in all frames were already marked */
11436 		return;
11437 
11438 	for (i = 0; i <= st->curframe; i++)
11439 		clean_func_state(env, st->frame[i]);
11440 }
11441 
11442 /* the parentage chains form a tree.
11443  * the verifier states are added to state lists at given insn and
11444  * pushed into state stack for future exploration.
11445  * when the verifier reaches bpf_exit insn some of the verifer states
11446  * stored in the state lists have their final liveness state already,
11447  * but a lot of states will get revised from liveness point of view when
11448  * the verifier explores other branches.
11449  * Example:
11450  * 1: r0 = 1
11451  * 2: if r1 == 100 goto pc+1
11452  * 3: r0 = 2
11453  * 4: exit
11454  * when the verifier reaches exit insn the register r0 in the state list of
11455  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11456  * of insn 2 and goes exploring further. At the insn 4 it will walk the
11457  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11458  *
11459  * Since the verifier pushes the branch states as it sees them while exploring
11460  * the program the condition of walking the branch instruction for the second
11461  * time means that all states below this branch were already explored and
11462  * their final liveness marks are already propagated.
11463  * Hence when the verifier completes the search of state list in is_state_visited()
11464  * we can call this clean_live_states() function to mark all liveness states
11465  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11466  * will not be used.
11467  * This function also clears the registers and stack for states that !READ
11468  * to simplify state merging.
11469  *
11470  * Important note here that walking the same branch instruction in the callee
11471  * doesn't meant that the states are DONE. The verifier has to compare
11472  * the callsites
11473  */
11474 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11475 			      struct bpf_verifier_state *cur)
11476 {
11477 	struct bpf_verifier_state_list *sl;
11478 	int i;
11479 
11480 	sl = *explored_state(env, insn);
11481 	while (sl) {
11482 		if (sl->state.branches)
11483 			goto next;
11484 		if (sl->state.insn_idx != insn ||
11485 		    sl->state.curframe != cur->curframe)
11486 			goto next;
11487 		for (i = 0; i <= cur->curframe; i++)
11488 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11489 				goto next;
11490 		clean_verifier_state(env, &sl->state);
11491 next:
11492 		sl = sl->next;
11493 	}
11494 }
11495 
11496 /* Returns true if (rold safe implies rcur safe) */
11497 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11498 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11499 {
11500 	bool equal;
11501 
11502 	if (!(rold->live & REG_LIVE_READ))
11503 		/* explored state didn't use this */
11504 		return true;
11505 
11506 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11507 
11508 	if (rold->type == PTR_TO_STACK)
11509 		/* two stack pointers are equal only if they're pointing to
11510 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
11511 		 */
11512 		return equal && rold->frameno == rcur->frameno;
11513 
11514 	if (equal)
11515 		return true;
11516 
11517 	if (rold->type == NOT_INIT)
11518 		/* explored state can't have used this */
11519 		return true;
11520 	if (rcur->type == NOT_INIT)
11521 		return false;
11522 	switch (base_type(rold->type)) {
11523 	case SCALAR_VALUE:
11524 		if (env->explore_alu_limits)
11525 			return false;
11526 		if (rcur->type == SCALAR_VALUE) {
11527 			if (!rold->precise && !rcur->precise)
11528 				return true;
11529 			/* new val must satisfy old val knowledge */
11530 			return range_within(rold, rcur) &&
11531 			       tnum_in(rold->var_off, rcur->var_off);
11532 		} else {
11533 			/* We're trying to use a pointer in place of a scalar.
11534 			 * Even if the scalar was unbounded, this could lead to
11535 			 * pointer leaks because scalars are allowed to leak
11536 			 * while pointers are not. We could make this safe in
11537 			 * special cases if root is calling us, but it's
11538 			 * probably not worth the hassle.
11539 			 */
11540 			return false;
11541 		}
11542 	case PTR_TO_MAP_KEY:
11543 	case PTR_TO_MAP_VALUE:
11544 		/* a PTR_TO_MAP_VALUE could be safe to use as a
11545 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11546 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11547 		 * checked, doing so could have affected others with the same
11548 		 * id, and we can't check for that because we lost the id when
11549 		 * we converted to a PTR_TO_MAP_VALUE.
11550 		 */
11551 		if (type_may_be_null(rold->type)) {
11552 			if (!type_may_be_null(rcur->type))
11553 				return false;
11554 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11555 				return false;
11556 			/* Check our ids match any regs they're supposed to */
11557 			return check_ids(rold->id, rcur->id, idmap);
11558 		}
11559 
11560 		/* If the new min/max/var_off satisfy the old ones and
11561 		 * everything else matches, we are OK.
11562 		 * 'id' is not compared, since it's only used for maps with
11563 		 * bpf_spin_lock inside map element and in such cases if
11564 		 * the rest of the prog is valid for one map element then
11565 		 * it's valid for all map elements regardless of the key
11566 		 * used in bpf_map_lookup()
11567 		 */
11568 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11569 		       range_within(rold, rcur) &&
11570 		       tnum_in(rold->var_off, rcur->var_off);
11571 	case PTR_TO_PACKET_META:
11572 	case PTR_TO_PACKET:
11573 		if (rcur->type != rold->type)
11574 			return false;
11575 		/* We must have at least as much range as the old ptr
11576 		 * did, so that any accesses which were safe before are
11577 		 * still safe.  This is true even if old range < old off,
11578 		 * since someone could have accessed through (ptr - k), or
11579 		 * even done ptr -= k in a register, to get a safe access.
11580 		 */
11581 		if (rold->range > rcur->range)
11582 			return false;
11583 		/* If the offsets don't match, we can't trust our alignment;
11584 		 * nor can we be sure that we won't fall out of range.
11585 		 */
11586 		if (rold->off != rcur->off)
11587 			return false;
11588 		/* id relations must be preserved */
11589 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11590 			return false;
11591 		/* new val must satisfy old val knowledge */
11592 		return range_within(rold, rcur) &&
11593 		       tnum_in(rold->var_off, rcur->var_off);
11594 	case PTR_TO_CTX:
11595 	case CONST_PTR_TO_MAP:
11596 	case PTR_TO_PACKET_END:
11597 	case PTR_TO_FLOW_KEYS:
11598 	case PTR_TO_SOCKET:
11599 	case PTR_TO_SOCK_COMMON:
11600 	case PTR_TO_TCP_SOCK:
11601 	case PTR_TO_XDP_SOCK:
11602 		/* Only valid matches are exact, which memcmp() above
11603 		 * would have accepted
11604 		 */
11605 	default:
11606 		/* Don't know what's going on, just say it's not safe */
11607 		return false;
11608 	}
11609 
11610 	/* Shouldn't get here; if we do, say it's not safe */
11611 	WARN_ON_ONCE(1);
11612 	return false;
11613 }
11614 
11615 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11616 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11617 {
11618 	int i, spi;
11619 
11620 	/* walk slots of the explored stack and ignore any additional
11621 	 * slots in the current stack, since explored(safe) state
11622 	 * didn't use them
11623 	 */
11624 	for (i = 0; i < old->allocated_stack; i++) {
11625 		spi = i / BPF_REG_SIZE;
11626 
11627 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11628 			i += BPF_REG_SIZE - 1;
11629 			/* explored state didn't use this */
11630 			continue;
11631 		}
11632 
11633 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11634 			continue;
11635 
11636 		/* explored stack has more populated slots than current stack
11637 		 * and these slots were used
11638 		 */
11639 		if (i >= cur->allocated_stack)
11640 			return false;
11641 
11642 		/* if old state was safe with misc data in the stack
11643 		 * it will be safe with zero-initialized stack.
11644 		 * The opposite is not true
11645 		 */
11646 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11647 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11648 			continue;
11649 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11650 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11651 			/* Ex: old explored (safe) state has STACK_SPILL in
11652 			 * this stack slot, but current has STACK_MISC ->
11653 			 * this verifier states are not equivalent,
11654 			 * return false to continue verification of this path
11655 			 */
11656 			return false;
11657 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11658 			continue;
11659 		if (!is_spilled_reg(&old->stack[spi]))
11660 			continue;
11661 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
11662 			     &cur->stack[spi].spilled_ptr, idmap))
11663 			/* when explored and current stack slot are both storing
11664 			 * spilled registers, check that stored pointers types
11665 			 * are the same as well.
11666 			 * Ex: explored safe path could have stored
11667 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11668 			 * but current path has stored:
11669 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11670 			 * such verifier states are not equivalent.
11671 			 * return false to continue verification of this path
11672 			 */
11673 			return false;
11674 	}
11675 	return true;
11676 }
11677 
11678 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11679 {
11680 	if (old->acquired_refs != cur->acquired_refs)
11681 		return false;
11682 	return !memcmp(old->refs, cur->refs,
11683 		       sizeof(*old->refs) * old->acquired_refs);
11684 }
11685 
11686 /* compare two verifier states
11687  *
11688  * all states stored in state_list are known to be valid, since
11689  * verifier reached 'bpf_exit' instruction through them
11690  *
11691  * this function is called when verifier exploring different branches of
11692  * execution popped from the state stack. If it sees an old state that has
11693  * more strict register state and more strict stack state then this execution
11694  * branch doesn't need to be explored further, since verifier already
11695  * concluded that more strict state leads to valid finish.
11696  *
11697  * Therefore two states are equivalent if register state is more conservative
11698  * and explored stack state is more conservative than the current one.
11699  * Example:
11700  *       explored                   current
11701  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11702  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11703  *
11704  * In other words if current stack state (one being explored) has more
11705  * valid slots than old one that already passed validation, it means
11706  * the verifier can stop exploring and conclude that current state is valid too
11707  *
11708  * Similarly with registers. If explored state has register type as invalid
11709  * whereas register type in current state is meaningful, it means that
11710  * the current state will reach 'bpf_exit' instruction safely
11711  */
11712 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
11713 			      struct bpf_func_state *cur)
11714 {
11715 	int i;
11716 
11717 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11718 	for (i = 0; i < MAX_BPF_REG; i++)
11719 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
11720 			     env->idmap_scratch))
11721 			return false;
11722 
11723 	if (!stacksafe(env, old, cur, env->idmap_scratch))
11724 		return false;
11725 
11726 	if (!refsafe(old, cur))
11727 		return false;
11728 
11729 	return true;
11730 }
11731 
11732 static bool states_equal(struct bpf_verifier_env *env,
11733 			 struct bpf_verifier_state *old,
11734 			 struct bpf_verifier_state *cur)
11735 {
11736 	int i;
11737 
11738 	if (old->curframe != cur->curframe)
11739 		return false;
11740 
11741 	/* Verification state from speculative execution simulation
11742 	 * must never prune a non-speculative execution one.
11743 	 */
11744 	if (old->speculative && !cur->speculative)
11745 		return false;
11746 
11747 	if (old->active_spin_lock != cur->active_spin_lock)
11748 		return false;
11749 
11750 	/* for states to be equal callsites have to be the same
11751 	 * and all frame states need to be equivalent
11752 	 */
11753 	for (i = 0; i <= old->curframe; i++) {
11754 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
11755 			return false;
11756 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
11757 			return false;
11758 	}
11759 	return true;
11760 }
11761 
11762 /* Return 0 if no propagation happened. Return negative error code if error
11763  * happened. Otherwise, return the propagated bit.
11764  */
11765 static int propagate_liveness_reg(struct bpf_verifier_env *env,
11766 				  struct bpf_reg_state *reg,
11767 				  struct bpf_reg_state *parent_reg)
11768 {
11769 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11770 	u8 flag = reg->live & REG_LIVE_READ;
11771 	int err;
11772 
11773 	/* When comes here, read flags of PARENT_REG or REG could be any of
11774 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11775 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11776 	 */
11777 	if (parent_flag == REG_LIVE_READ64 ||
11778 	    /* Or if there is no read flag from REG. */
11779 	    !flag ||
11780 	    /* Or if the read flag from REG is the same as PARENT_REG. */
11781 	    parent_flag == flag)
11782 		return 0;
11783 
11784 	err = mark_reg_read(env, reg, parent_reg, flag);
11785 	if (err)
11786 		return err;
11787 
11788 	return flag;
11789 }
11790 
11791 /* A write screens off any subsequent reads; but write marks come from the
11792  * straight-line code between a state and its parent.  When we arrive at an
11793  * equivalent state (jump target or such) we didn't arrive by the straight-line
11794  * code, so read marks in the state must propagate to the parent regardless
11795  * of the state's write marks. That's what 'parent == state->parent' comparison
11796  * in mark_reg_read() is for.
11797  */
11798 static int propagate_liveness(struct bpf_verifier_env *env,
11799 			      const struct bpf_verifier_state *vstate,
11800 			      struct bpf_verifier_state *vparent)
11801 {
11802 	struct bpf_reg_state *state_reg, *parent_reg;
11803 	struct bpf_func_state *state, *parent;
11804 	int i, frame, err = 0;
11805 
11806 	if (vparent->curframe != vstate->curframe) {
11807 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
11808 		     vparent->curframe, vstate->curframe);
11809 		return -EFAULT;
11810 	}
11811 	/* Propagate read liveness of registers... */
11812 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
11813 	for (frame = 0; frame <= vstate->curframe; frame++) {
11814 		parent = vparent->frame[frame];
11815 		state = vstate->frame[frame];
11816 		parent_reg = parent->regs;
11817 		state_reg = state->regs;
11818 		/* We don't need to worry about FP liveness, it's read-only */
11819 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
11820 			err = propagate_liveness_reg(env, &state_reg[i],
11821 						     &parent_reg[i]);
11822 			if (err < 0)
11823 				return err;
11824 			if (err == REG_LIVE_READ64)
11825 				mark_insn_zext(env, &parent_reg[i]);
11826 		}
11827 
11828 		/* Propagate stack slots. */
11829 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11830 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
11831 			parent_reg = &parent->stack[i].spilled_ptr;
11832 			state_reg = &state->stack[i].spilled_ptr;
11833 			err = propagate_liveness_reg(env, state_reg,
11834 						     parent_reg);
11835 			if (err < 0)
11836 				return err;
11837 		}
11838 	}
11839 	return 0;
11840 }
11841 
11842 /* find precise scalars in the previous equivalent state and
11843  * propagate them into the current state
11844  */
11845 static int propagate_precision(struct bpf_verifier_env *env,
11846 			       const struct bpf_verifier_state *old)
11847 {
11848 	struct bpf_reg_state *state_reg;
11849 	struct bpf_func_state *state;
11850 	int i, err = 0;
11851 
11852 	state = old->frame[old->curframe];
11853 	state_reg = state->regs;
11854 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11855 		if (state_reg->type != SCALAR_VALUE ||
11856 		    !state_reg->precise)
11857 			continue;
11858 		if (env->log.level & BPF_LOG_LEVEL2)
11859 			verbose(env, "propagating r%d\n", i);
11860 		err = mark_chain_precision(env, i);
11861 		if (err < 0)
11862 			return err;
11863 	}
11864 
11865 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
11866 		if (!is_spilled_reg(&state->stack[i]))
11867 			continue;
11868 		state_reg = &state->stack[i].spilled_ptr;
11869 		if (state_reg->type != SCALAR_VALUE ||
11870 		    !state_reg->precise)
11871 			continue;
11872 		if (env->log.level & BPF_LOG_LEVEL2)
11873 			verbose(env, "propagating fp%d\n",
11874 				(-i - 1) * BPF_REG_SIZE);
11875 		err = mark_chain_precision_stack(env, i);
11876 		if (err < 0)
11877 			return err;
11878 	}
11879 	return 0;
11880 }
11881 
11882 static bool states_maybe_looping(struct bpf_verifier_state *old,
11883 				 struct bpf_verifier_state *cur)
11884 {
11885 	struct bpf_func_state *fold, *fcur;
11886 	int i, fr = cur->curframe;
11887 
11888 	if (old->curframe != fr)
11889 		return false;
11890 
11891 	fold = old->frame[fr];
11892 	fcur = cur->frame[fr];
11893 	for (i = 0; i < MAX_BPF_REG; i++)
11894 		if (memcmp(&fold->regs[i], &fcur->regs[i],
11895 			   offsetof(struct bpf_reg_state, parent)))
11896 			return false;
11897 	return true;
11898 }
11899 
11900 
11901 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11902 {
11903 	struct bpf_verifier_state_list *new_sl;
11904 	struct bpf_verifier_state_list *sl, **pprev;
11905 	struct bpf_verifier_state *cur = env->cur_state, *new;
11906 	int i, j, err, states_cnt = 0;
11907 	bool add_new_state = env->test_state_freq ? true : false;
11908 
11909 	cur->last_insn_idx = env->prev_insn_idx;
11910 	if (!env->insn_aux_data[insn_idx].prune_point)
11911 		/* this 'insn_idx' instruction wasn't marked, so we will not
11912 		 * be doing state search here
11913 		 */
11914 		return 0;
11915 
11916 	/* bpf progs typically have pruning point every 4 instructions
11917 	 * http://vger.kernel.org/bpfconf2019.html#session-1
11918 	 * Do not add new state for future pruning if the verifier hasn't seen
11919 	 * at least 2 jumps and at least 8 instructions.
11920 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11921 	 * In tests that amounts to up to 50% reduction into total verifier
11922 	 * memory consumption and 20% verifier time speedup.
11923 	 */
11924 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11925 	    env->insn_processed - env->prev_insn_processed >= 8)
11926 		add_new_state = true;
11927 
11928 	pprev = explored_state(env, insn_idx);
11929 	sl = *pprev;
11930 
11931 	clean_live_states(env, insn_idx, cur);
11932 
11933 	while (sl) {
11934 		states_cnt++;
11935 		if (sl->state.insn_idx != insn_idx)
11936 			goto next;
11937 
11938 		if (sl->state.branches) {
11939 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11940 
11941 			if (frame->in_async_callback_fn &&
11942 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11943 				/* Different async_entry_cnt means that the verifier is
11944 				 * processing another entry into async callback.
11945 				 * Seeing the same state is not an indication of infinite
11946 				 * loop or infinite recursion.
11947 				 * But finding the same state doesn't mean that it's safe
11948 				 * to stop processing the current state. The previous state
11949 				 * hasn't yet reached bpf_exit, since state.branches > 0.
11950 				 * Checking in_async_callback_fn alone is not enough either.
11951 				 * Since the verifier still needs to catch infinite loops
11952 				 * inside async callbacks.
11953 				 */
11954 			} else if (states_maybe_looping(&sl->state, cur) &&
11955 				   states_equal(env, &sl->state, cur)) {
11956 				verbose_linfo(env, insn_idx, "; ");
11957 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11958 				return -EINVAL;
11959 			}
11960 			/* if the verifier is processing a loop, avoid adding new state
11961 			 * too often, since different loop iterations have distinct
11962 			 * states and may not help future pruning.
11963 			 * This threshold shouldn't be too low to make sure that
11964 			 * a loop with large bound will be rejected quickly.
11965 			 * The most abusive loop will be:
11966 			 * r1 += 1
11967 			 * if r1 < 1000000 goto pc-2
11968 			 * 1M insn_procssed limit / 100 == 10k peak states.
11969 			 * This threshold shouldn't be too high either, since states
11970 			 * at the end of the loop are likely to be useful in pruning.
11971 			 */
11972 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11973 			    env->insn_processed - env->prev_insn_processed < 100)
11974 				add_new_state = false;
11975 			goto miss;
11976 		}
11977 		if (states_equal(env, &sl->state, cur)) {
11978 			sl->hit_cnt++;
11979 			/* reached equivalent register/stack state,
11980 			 * prune the search.
11981 			 * Registers read by the continuation are read by us.
11982 			 * If we have any write marks in env->cur_state, they
11983 			 * will prevent corresponding reads in the continuation
11984 			 * from reaching our parent (an explored_state).  Our
11985 			 * own state will get the read marks recorded, but
11986 			 * they'll be immediately forgotten as we're pruning
11987 			 * this state and will pop a new one.
11988 			 */
11989 			err = propagate_liveness(env, &sl->state, cur);
11990 
11991 			/* if previous state reached the exit with precision and
11992 			 * current state is equivalent to it (except precsion marks)
11993 			 * the precision needs to be propagated back in
11994 			 * the current state.
11995 			 */
11996 			err = err ? : push_jmp_history(env, cur);
11997 			err = err ? : propagate_precision(env, &sl->state);
11998 			if (err)
11999 				return err;
12000 			return 1;
12001 		}
12002 miss:
12003 		/* when new state is not going to be added do not increase miss count.
12004 		 * Otherwise several loop iterations will remove the state
12005 		 * recorded earlier. The goal of these heuristics is to have
12006 		 * states from some iterations of the loop (some in the beginning
12007 		 * and some at the end) to help pruning.
12008 		 */
12009 		if (add_new_state)
12010 			sl->miss_cnt++;
12011 		/* heuristic to determine whether this state is beneficial
12012 		 * to keep checking from state equivalence point of view.
12013 		 * Higher numbers increase max_states_per_insn and verification time,
12014 		 * but do not meaningfully decrease insn_processed.
12015 		 */
12016 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
12017 			/* the state is unlikely to be useful. Remove it to
12018 			 * speed up verification
12019 			 */
12020 			*pprev = sl->next;
12021 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
12022 				u32 br = sl->state.branches;
12023 
12024 				WARN_ONCE(br,
12025 					  "BUG live_done but branches_to_explore %d\n",
12026 					  br);
12027 				free_verifier_state(&sl->state, false);
12028 				kfree(sl);
12029 				env->peak_states--;
12030 			} else {
12031 				/* cannot free this state, since parentage chain may
12032 				 * walk it later. Add it for free_list instead to
12033 				 * be freed at the end of verification
12034 				 */
12035 				sl->next = env->free_list;
12036 				env->free_list = sl;
12037 			}
12038 			sl = *pprev;
12039 			continue;
12040 		}
12041 next:
12042 		pprev = &sl->next;
12043 		sl = *pprev;
12044 	}
12045 
12046 	if (env->max_states_per_insn < states_cnt)
12047 		env->max_states_per_insn = states_cnt;
12048 
12049 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
12050 		return push_jmp_history(env, cur);
12051 
12052 	if (!add_new_state)
12053 		return push_jmp_history(env, cur);
12054 
12055 	/* There were no equivalent states, remember the current one.
12056 	 * Technically the current state is not proven to be safe yet,
12057 	 * but it will either reach outer most bpf_exit (which means it's safe)
12058 	 * or it will be rejected. When there are no loops the verifier won't be
12059 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
12060 	 * again on the way to bpf_exit.
12061 	 * When looping the sl->state.branches will be > 0 and this state
12062 	 * will not be considered for equivalence until branches == 0.
12063 	 */
12064 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
12065 	if (!new_sl)
12066 		return -ENOMEM;
12067 	env->total_states++;
12068 	env->peak_states++;
12069 	env->prev_jmps_processed = env->jmps_processed;
12070 	env->prev_insn_processed = env->insn_processed;
12071 
12072 	/* add new state to the head of linked list */
12073 	new = &new_sl->state;
12074 	err = copy_verifier_state(new, cur);
12075 	if (err) {
12076 		free_verifier_state(new, false);
12077 		kfree(new_sl);
12078 		return err;
12079 	}
12080 	new->insn_idx = insn_idx;
12081 	WARN_ONCE(new->branches != 1,
12082 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
12083 
12084 	cur->parent = new;
12085 	cur->first_insn_idx = insn_idx;
12086 	clear_jmp_history(cur);
12087 	new_sl->next = *explored_state(env, insn_idx);
12088 	*explored_state(env, insn_idx) = new_sl;
12089 	/* connect new state to parentage chain. Current frame needs all
12090 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
12091 	 * to the stack implicitly by JITs) so in callers' frames connect just
12092 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12093 	 * the state of the call instruction (with WRITTEN set), and r0 comes
12094 	 * from callee with its full parentage chain, anyway.
12095 	 */
12096 	/* clear write marks in current state: the writes we did are not writes
12097 	 * our child did, so they don't screen off its reads from us.
12098 	 * (There are no read marks in current state, because reads always mark
12099 	 * their parent and current state never has children yet.  Only
12100 	 * explored_states can get read marks.)
12101 	 */
12102 	for (j = 0; j <= cur->curframe; j++) {
12103 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12104 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12105 		for (i = 0; i < BPF_REG_FP; i++)
12106 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12107 	}
12108 
12109 	/* all stack frames are accessible from callee, clear them all */
12110 	for (j = 0; j <= cur->curframe; j++) {
12111 		struct bpf_func_state *frame = cur->frame[j];
12112 		struct bpf_func_state *newframe = new->frame[j];
12113 
12114 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
12115 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
12116 			frame->stack[i].spilled_ptr.parent =
12117 						&newframe->stack[i].spilled_ptr;
12118 		}
12119 	}
12120 	return 0;
12121 }
12122 
12123 /* Return true if it's OK to have the same insn return a different type. */
12124 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12125 {
12126 	switch (base_type(type)) {
12127 	case PTR_TO_CTX:
12128 	case PTR_TO_SOCKET:
12129 	case PTR_TO_SOCK_COMMON:
12130 	case PTR_TO_TCP_SOCK:
12131 	case PTR_TO_XDP_SOCK:
12132 	case PTR_TO_BTF_ID:
12133 		return false;
12134 	default:
12135 		return true;
12136 	}
12137 }
12138 
12139 /* If an instruction was previously used with particular pointer types, then we
12140  * need to be careful to avoid cases such as the below, where it may be ok
12141  * for one branch accessing the pointer, but not ok for the other branch:
12142  *
12143  * R1 = sock_ptr
12144  * goto X;
12145  * ...
12146  * R1 = some_other_valid_ptr;
12147  * goto X;
12148  * ...
12149  * R2 = *(u32 *)(R1 + 0);
12150  */
12151 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12152 {
12153 	return src != prev && (!reg_type_mismatch_ok(src) ||
12154 			       !reg_type_mismatch_ok(prev));
12155 }
12156 
12157 static int do_check(struct bpf_verifier_env *env)
12158 {
12159 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12160 	struct bpf_verifier_state *state = env->cur_state;
12161 	struct bpf_insn *insns = env->prog->insnsi;
12162 	struct bpf_reg_state *regs;
12163 	int insn_cnt = env->prog->len;
12164 	bool do_print_state = false;
12165 	int prev_insn_idx = -1;
12166 
12167 	for (;;) {
12168 		struct bpf_insn *insn;
12169 		u8 class;
12170 		int err;
12171 
12172 		env->prev_insn_idx = prev_insn_idx;
12173 		if (env->insn_idx >= insn_cnt) {
12174 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
12175 				env->insn_idx, insn_cnt);
12176 			return -EFAULT;
12177 		}
12178 
12179 		insn = &insns[env->insn_idx];
12180 		class = BPF_CLASS(insn->code);
12181 
12182 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
12183 			verbose(env,
12184 				"BPF program is too large. Processed %d insn\n",
12185 				env->insn_processed);
12186 			return -E2BIG;
12187 		}
12188 
12189 		err = is_state_visited(env, env->insn_idx);
12190 		if (err < 0)
12191 			return err;
12192 		if (err == 1) {
12193 			/* found equivalent state, can prune the search */
12194 			if (env->log.level & BPF_LOG_LEVEL) {
12195 				if (do_print_state)
12196 					verbose(env, "\nfrom %d to %d%s: safe\n",
12197 						env->prev_insn_idx, env->insn_idx,
12198 						env->cur_state->speculative ?
12199 						" (speculative execution)" : "");
12200 				else
12201 					verbose(env, "%d: safe\n", env->insn_idx);
12202 			}
12203 			goto process_bpf_exit;
12204 		}
12205 
12206 		if (signal_pending(current))
12207 			return -EAGAIN;
12208 
12209 		if (need_resched())
12210 			cond_resched();
12211 
12212 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12213 			verbose(env, "\nfrom %d to %d%s:",
12214 				env->prev_insn_idx, env->insn_idx,
12215 				env->cur_state->speculative ?
12216 				" (speculative execution)" : "");
12217 			print_verifier_state(env, state->frame[state->curframe], true);
12218 			do_print_state = false;
12219 		}
12220 
12221 		if (env->log.level & BPF_LOG_LEVEL) {
12222 			const struct bpf_insn_cbs cbs = {
12223 				.cb_call	= disasm_kfunc_name,
12224 				.cb_print	= verbose,
12225 				.private_data	= env,
12226 			};
12227 
12228 			if (verifier_state_scratched(env))
12229 				print_insn_state(env, state->frame[state->curframe]);
12230 
12231 			verbose_linfo(env, env->insn_idx, "; ");
12232 			env->prev_log_len = env->log.len_used;
12233 			verbose(env, "%d: ", env->insn_idx);
12234 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12235 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12236 			env->prev_log_len = env->log.len_used;
12237 		}
12238 
12239 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
12240 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12241 							   env->prev_insn_idx);
12242 			if (err)
12243 				return err;
12244 		}
12245 
12246 		regs = cur_regs(env);
12247 		sanitize_mark_insn_seen(env);
12248 		prev_insn_idx = env->insn_idx;
12249 
12250 		if (class == BPF_ALU || class == BPF_ALU64) {
12251 			err = check_alu_op(env, insn);
12252 			if (err)
12253 				return err;
12254 
12255 		} else if (class == BPF_LDX) {
12256 			enum bpf_reg_type *prev_src_type, src_reg_type;
12257 
12258 			/* check for reserved fields is already done */
12259 
12260 			/* check src operand */
12261 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12262 			if (err)
12263 				return err;
12264 
12265 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12266 			if (err)
12267 				return err;
12268 
12269 			src_reg_type = regs[insn->src_reg].type;
12270 
12271 			/* check that memory (src_reg + off) is readable,
12272 			 * the state of dst_reg will be updated by this func
12273 			 */
12274 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
12275 					       insn->off, BPF_SIZE(insn->code),
12276 					       BPF_READ, insn->dst_reg, false);
12277 			if (err)
12278 				return err;
12279 
12280 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12281 
12282 			if (*prev_src_type == NOT_INIT) {
12283 				/* saw a valid insn
12284 				 * dst_reg = *(u32 *)(src_reg + off)
12285 				 * save type to validate intersecting paths
12286 				 */
12287 				*prev_src_type = src_reg_type;
12288 
12289 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
12290 				/* ABuser program is trying to use the same insn
12291 				 * dst_reg = *(u32*) (src_reg + off)
12292 				 * with different pointer types:
12293 				 * src_reg == ctx in one branch and
12294 				 * src_reg == stack|map in some other branch.
12295 				 * Reject it.
12296 				 */
12297 				verbose(env, "same insn cannot be used with different pointers\n");
12298 				return -EINVAL;
12299 			}
12300 
12301 		} else if (class == BPF_STX) {
12302 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
12303 
12304 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12305 				err = check_atomic(env, env->insn_idx, insn);
12306 				if (err)
12307 					return err;
12308 				env->insn_idx++;
12309 				continue;
12310 			}
12311 
12312 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12313 				verbose(env, "BPF_STX uses reserved fields\n");
12314 				return -EINVAL;
12315 			}
12316 
12317 			/* check src1 operand */
12318 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12319 			if (err)
12320 				return err;
12321 			/* check src2 operand */
12322 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12323 			if (err)
12324 				return err;
12325 
12326 			dst_reg_type = regs[insn->dst_reg].type;
12327 
12328 			/* check that memory (dst_reg + off) is writeable */
12329 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12330 					       insn->off, BPF_SIZE(insn->code),
12331 					       BPF_WRITE, insn->src_reg, false);
12332 			if (err)
12333 				return err;
12334 
12335 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12336 
12337 			if (*prev_dst_type == NOT_INIT) {
12338 				*prev_dst_type = dst_reg_type;
12339 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
12340 				verbose(env, "same insn cannot be used with different pointers\n");
12341 				return -EINVAL;
12342 			}
12343 
12344 		} else if (class == BPF_ST) {
12345 			if (BPF_MODE(insn->code) != BPF_MEM ||
12346 			    insn->src_reg != BPF_REG_0) {
12347 				verbose(env, "BPF_ST uses reserved fields\n");
12348 				return -EINVAL;
12349 			}
12350 			/* check src operand */
12351 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12352 			if (err)
12353 				return err;
12354 
12355 			if (is_ctx_reg(env, insn->dst_reg)) {
12356 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
12357 					insn->dst_reg,
12358 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
12359 				return -EACCES;
12360 			}
12361 
12362 			/* check that memory (dst_reg + off) is writeable */
12363 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12364 					       insn->off, BPF_SIZE(insn->code),
12365 					       BPF_WRITE, -1, false);
12366 			if (err)
12367 				return err;
12368 
12369 		} else if (class == BPF_JMP || class == BPF_JMP32) {
12370 			u8 opcode = BPF_OP(insn->code);
12371 
12372 			env->jmps_processed++;
12373 			if (opcode == BPF_CALL) {
12374 				if (BPF_SRC(insn->code) != BPF_K ||
12375 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12376 				     && insn->off != 0) ||
12377 				    (insn->src_reg != BPF_REG_0 &&
12378 				     insn->src_reg != BPF_PSEUDO_CALL &&
12379 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
12380 				    insn->dst_reg != BPF_REG_0 ||
12381 				    class == BPF_JMP32) {
12382 					verbose(env, "BPF_CALL uses reserved fields\n");
12383 					return -EINVAL;
12384 				}
12385 
12386 				if (env->cur_state->active_spin_lock &&
12387 				    (insn->src_reg == BPF_PSEUDO_CALL ||
12388 				     insn->imm != BPF_FUNC_spin_unlock)) {
12389 					verbose(env, "function calls are not allowed while holding a lock\n");
12390 					return -EINVAL;
12391 				}
12392 				if (insn->src_reg == BPF_PSEUDO_CALL)
12393 					err = check_func_call(env, insn, &env->insn_idx);
12394 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
12395 					err = check_kfunc_call(env, insn, &env->insn_idx);
12396 				else
12397 					err = check_helper_call(env, insn, &env->insn_idx);
12398 				if (err)
12399 					return err;
12400 			} else if (opcode == BPF_JA) {
12401 				if (BPF_SRC(insn->code) != BPF_K ||
12402 				    insn->imm != 0 ||
12403 				    insn->src_reg != BPF_REG_0 ||
12404 				    insn->dst_reg != BPF_REG_0 ||
12405 				    class == BPF_JMP32) {
12406 					verbose(env, "BPF_JA uses reserved fields\n");
12407 					return -EINVAL;
12408 				}
12409 
12410 				env->insn_idx += insn->off + 1;
12411 				continue;
12412 
12413 			} else if (opcode == BPF_EXIT) {
12414 				if (BPF_SRC(insn->code) != BPF_K ||
12415 				    insn->imm != 0 ||
12416 				    insn->src_reg != BPF_REG_0 ||
12417 				    insn->dst_reg != BPF_REG_0 ||
12418 				    class == BPF_JMP32) {
12419 					verbose(env, "BPF_EXIT uses reserved fields\n");
12420 					return -EINVAL;
12421 				}
12422 
12423 				if (env->cur_state->active_spin_lock) {
12424 					verbose(env, "bpf_spin_unlock is missing\n");
12425 					return -EINVAL;
12426 				}
12427 
12428 				/* We must do check_reference_leak here before
12429 				 * prepare_func_exit to handle the case when
12430 				 * state->curframe > 0, it may be a callback
12431 				 * function, for which reference_state must
12432 				 * match caller reference state when it exits.
12433 				 */
12434 				err = check_reference_leak(env);
12435 				if (err)
12436 					return err;
12437 
12438 				if (state->curframe) {
12439 					/* exit from nested function */
12440 					err = prepare_func_exit(env, &env->insn_idx);
12441 					if (err)
12442 						return err;
12443 					do_print_state = true;
12444 					continue;
12445 				}
12446 
12447 				err = check_return_code(env);
12448 				if (err)
12449 					return err;
12450 process_bpf_exit:
12451 				mark_verifier_state_scratched(env);
12452 				update_branch_counts(env, env->cur_state);
12453 				err = pop_stack(env, &prev_insn_idx,
12454 						&env->insn_idx, pop_log);
12455 				if (err < 0) {
12456 					if (err != -ENOENT)
12457 						return err;
12458 					break;
12459 				} else {
12460 					do_print_state = true;
12461 					continue;
12462 				}
12463 			} else {
12464 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
12465 				if (err)
12466 					return err;
12467 			}
12468 		} else if (class == BPF_LD) {
12469 			u8 mode = BPF_MODE(insn->code);
12470 
12471 			if (mode == BPF_ABS || mode == BPF_IND) {
12472 				err = check_ld_abs(env, insn);
12473 				if (err)
12474 					return err;
12475 
12476 			} else if (mode == BPF_IMM) {
12477 				err = check_ld_imm(env, insn);
12478 				if (err)
12479 					return err;
12480 
12481 				env->insn_idx++;
12482 				sanitize_mark_insn_seen(env);
12483 			} else {
12484 				verbose(env, "invalid BPF_LD mode\n");
12485 				return -EINVAL;
12486 			}
12487 		} else {
12488 			verbose(env, "unknown insn class %d\n", class);
12489 			return -EINVAL;
12490 		}
12491 
12492 		env->insn_idx++;
12493 	}
12494 
12495 	return 0;
12496 }
12497 
12498 static int find_btf_percpu_datasec(struct btf *btf)
12499 {
12500 	const struct btf_type *t;
12501 	const char *tname;
12502 	int i, n;
12503 
12504 	/*
12505 	 * Both vmlinux and module each have their own ".data..percpu"
12506 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12507 	 * types to look at only module's own BTF types.
12508 	 */
12509 	n = btf_nr_types(btf);
12510 	if (btf_is_module(btf))
12511 		i = btf_nr_types(btf_vmlinux);
12512 	else
12513 		i = 1;
12514 
12515 	for(; i < n; i++) {
12516 		t = btf_type_by_id(btf, i);
12517 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12518 			continue;
12519 
12520 		tname = btf_name_by_offset(btf, t->name_off);
12521 		if (!strcmp(tname, ".data..percpu"))
12522 			return i;
12523 	}
12524 
12525 	return -ENOENT;
12526 }
12527 
12528 /* replace pseudo btf_id with kernel symbol address */
12529 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12530 			       struct bpf_insn *insn,
12531 			       struct bpf_insn_aux_data *aux)
12532 {
12533 	const struct btf_var_secinfo *vsi;
12534 	const struct btf_type *datasec;
12535 	struct btf_mod_pair *btf_mod;
12536 	const struct btf_type *t;
12537 	const char *sym_name;
12538 	bool percpu = false;
12539 	u32 type, id = insn->imm;
12540 	struct btf *btf;
12541 	s32 datasec_id;
12542 	u64 addr;
12543 	int i, btf_fd, err;
12544 
12545 	btf_fd = insn[1].imm;
12546 	if (btf_fd) {
12547 		btf = btf_get_by_fd(btf_fd);
12548 		if (IS_ERR(btf)) {
12549 			verbose(env, "invalid module BTF object FD specified.\n");
12550 			return -EINVAL;
12551 		}
12552 	} else {
12553 		if (!btf_vmlinux) {
12554 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12555 			return -EINVAL;
12556 		}
12557 		btf = btf_vmlinux;
12558 		btf_get(btf);
12559 	}
12560 
12561 	t = btf_type_by_id(btf, id);
12562 	if (!t) {
12563 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12564 		err = -ENOENT;
12565 		goto err_put;
12566 	}
12567 
12568 	if (!btf_type_is_var(t)) {
12569 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12570 		err = -EINVAL;
12571 		goto err_put;
12572 	}
12573 
12574 	sym_name = btf_name_by_offset(btf, t->name_off);
12575 	addr = kallsyms_lookup_name(sym_name);
12576 	if (!addr) {
12577 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12578 			sym_name);
12579 		err = -ENOENT;
12580 		goto err_put;
12581 	}
12582 
12583 	datasec_id = find_btf_percpu_datasec(btf);
12584 	if (datasec_id > 0) {
12585 		datasec = btf_type_by_id(btf, datasec_id);
12586 		for_each_vsi(i, datasec, vsi) {
12587 			if (vsi->type == id) {
12588 				percpu = true;
12589 				break;
12590 			}
12591 		}
12592 	}
12593 
12594 	insn[0].imm = (u32)addr;
12595 	insn[1].imm = addr >> 32;
12596 
12597 	type = t->type;
12598 	t = btf_type_skip_modifiers(btf, type, NULL);
12599 	if (percpu) {
12600 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12601 		aux->btf_var.btf = btf;
12602 		aux->btf_var.btf_id = type;
12603 	} else if (!btf_type_is_struct(t)) {
12604 		const struct btf_type *ret;
12605 		const char *tname;
12606 		u32 tsize;
12607 
12608 		/* resolve the type size of ksym. */
12609 		ret = btf_resolve_size(btf, t, &tsize);
12610 		if (IS_ERR(ret)) {
12611 			tname = btf_name_by_offset(btf, t->name_off);
12612 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12613 				tname, PTR_ERR(ret));
12614 			err = -EINVAL;
12615 			goto err_put;
12616 		}
12617 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12618 		aux->btf_var.mem_size = tsize;
12619 	} else {
12620 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
12621 		aux->btf_var.btf = btf;
12622 		aux->btf_var.btf_id = type;
12623 	}
12624 
12625 	/* check whether we recorded this BTF (and maybe module) already */
12626 	for (i = 0; i < env->used_btf_cnt; i++) {
12627 		if (env->used_btfs[i].btf == btf) {
12628 			btf_put(btf);
12629 			return 0;
12630 		}
12631 	}
12632 
12633 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
12634 		err = -E2BIG;
12635 		goto err_put;
12636 	}
12637 
12638 	btf_mod = &env->used_btfs[env->used_btf_cnt];
12639 	btf_mod->btf = btf;
12640 	btf_mod->module = NULL;
12641 
12642 	/* if we reference variables from kernel module, bump its refcount */
12643 	if (btf_is_module(btf)) {
12644 		btf_mod->module = btf_try_get_module(btf);
12645 		if (!btf_mod->module) {
12646 			err = -ENXIO;
12647 			goto err_put;
12648 		}
12649 	}
12650 
12651 	env->used_btf_cnt++;
12652 
12653 	return 0;
12654 err_put:
12655 	btf_put(btf);
12656 	return err;
12657 }
12658 
12659 static bool is_tracing_prog_type(enum bpf_prog_type type)
12660 {
12661 	switch (type) {
12662 	case BPF_PROG_TYPE_KPROBE:
12663 	case BPF_PROG_TYPE_TRACEPOINT:
12664 	case BPF_PROG_TYPE_PERF_EVENT:
12665 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12666 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
12667 		return true;
12668 	default:
12669 		return false;
12670 	}
12671 }
12672 
12673 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12674 					struct bpf_map *map,
12675 					struct bpf_prog *prog)
12676 
12677 {
12678 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12679 
12680 	if (map_value_has_spin_lock(map)) {
12681 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12682 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12683 			return -EINVAL;
12684 		}
12685 
12686 		if (is_tracing_prog_type(prog_type)) {
12687 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12688 			return -EINVAL;
12689 		}
12690 
12691 		if (prog->aux->sleepable) {
12692 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12693 			return -EINVAL;
12694 		}
12695 	}
12696 
12697 	if (map_value_has_timer(map)) {
12698 		if (is_tracing_prog_type(prog_type)) {
12699 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
12700 			return -EINVAL;
12701 		}
12702 	}
12703 
12704 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
12705 	    !bpf_offload_prog_map_match(prog, map)) {
12706 		verbose(env, "offload device mismatch between prog and map\n");
12707 		return -EINVAL;
12708 	}
12709 
12710 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12711 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12712 		return -EINVAL;
12713 	}
12714 
12715 	if (prog->aux->sleepable)
12716 		switch (map->map_type) {
12717 		case BPF_MAP_TYPE_HASH:
12718 		case BPF_MAP_TYPE_LRU_HASH:
12719 		case BPF_MAP_TYPE_ARRAY:
12720 		case BPF_MAP_TYPE_PERCPU_HASH:
12721 		case BPF_MAP_TYPE_PERCPU_ARRAY:
12722 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12723 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12724 		case BPF_MAP_TYPE_HASH_OF_MAPS:
12725 		case BPF_MAP_TYPE_RINGBUF:
12726 		case BPF_MAP_TYPE_USER_RINGBUF:
12727 		case BPF_MAP_TYPE_INODE_STORAGE:
12728 		case BPF_MAP_TYPE_SK_STORAGE:
12729 		case BPF_MAP_TYPE_TASK_STORAGE:
12730 			break;
12731 		default:
12732 			verbose(env,
12733 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
12734 			return -EINVAL;
12735 		}
12736 
12737 	return 0;
12738 }
12739 
12740 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12741 {
12742 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12743 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12744 }
12745 
12746 /* find and rewrite pseudo imm in ld_imm64 instructions:
12747  *
12748  * 1. if it accesses map FD, replace it with actual map pointer.
12749  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12750  *
12751  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
12752  */
12753 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
12754 {
12755 	struct bpf_insn *insn = env->prog->insnsi;
12756 	int insn_cnt = env->prog->len;
12757 	int i, j, err;
12758 
12759 	err = bpf_prog_calc_tag(env->prog);
12760 	if (err)
12761 		return err;
12762 
12763 	for (i = 0; i < insn_cnt; i++, insn++) {
12764 		if (BPF_CLASS(insn->code) == BPF_LDX &&
12765 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
12766 			verbose(env, "BPF_LDX uses reserved fields\n");
12767 			return -EINVAL;
12768 		}
12769 
12770 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
12771 			struct bpf_insn_aux_data *aux;
12772 			struct bpf_map *map;
12773 			struct fd f;
12774 			u64 addr;
12775 			u32 fd;
12776 
12777 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
12778 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12779 			    insn[1].off != 0) {
12780 				verbose(env, "invalid bpf_ld_imm64 insn\n");
12781 				return -EINVAL;
12782 			}
12783 
12784 			if (insn[0].src_reg == 0)
12785 				/* valid generic load 64-bit imm */
12786 				goto next_insn;
12787 
12788 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12789 				aux = &env->insn_aux_data[i];
12790 				err = check_pseudo_btf_id(env, insn, aux);
12791 				if (err)
12792 					return err;
12793 				goto next_insn;
12794 			}
12795 
12796 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12797 				aux = &env->insn_aux_data[i];
12798 				aux->ptr_type = PTR_TO_FUNC;
12799 				goto next_insn;
12800 			}
12801 
12802 			/* In final convert_pseudo_ld_imm64() step, this is
12803 			 * converted into regular 64-bit imm load insn.
12804 			 */
12805 			switch (insn[0].src_reg) {
12806 			case BPF_PSEUDO_MAP_VALUE:
12807 			case BPF_PSEUDO_MAP_IDX_VALUE:
12808 				break;
12809 			case BPF_PSEUDO_MAP_FD:
12810 			case BPF_PSEUDO_MAP_IDX:
12811 				if (insn[1].imm == 0)
12812 					break;
12813 				fallthrough;
12814 			default:
12815 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
12816 				return -EINVAL;
12817 			}
12818 
12819 			switch (insn[0].src_reg) {
12820 			case BPF_PSEUDO_MAP_IDX_VALUE:
12821 			case BPF_PSEUDO_MAP_IDX:
12822 				if (bpfptr_is_null(env->fd_array)) {
12823 					verbose(env, "fd_idx without fd_array is invalid\n");
12824 					return -EPROTO;
12825 				}
12826 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
12827 							    insn[0].imm * sizeof(fd),
12828 							    sizeof(fd)))
12829 					return -EFAULT;
12830 				break;
12831 			default:
12832 				fd = insn[0].imm;
12833 				break;
12834 			}
12835 
12836 			f = fdget(fd);
12837 			map = __bpf_map_get(f);
12838 			if (IS_ERR(map)) {
12839 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
12840 					insn[0].imm);
12841 				return PTR_ERR(map);
12842 			}
12843 
12844 			err = check_map_prog_compatibility(env, map, env->prog);
12845 			if (err) {
12846 				fdput(f);
12847 				return err;
12848 			}
12849 
12850 			aux = &env->insn_aux_data[i];
12851 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12852 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12853 				addr = (unsigned long)map;
12854 			} else {
12855 				u32 off = insn[1].imm;
12856 
12857 				if (off >= BPF_MAX_VAR_OFF) {
12858 					verbose(env, "direct value offset of %u is not allowed\n", off);
12859 					fdput(f);
12860 					return -EINVAL;
12861 				}
12862 
12863 				if (!map->ops->map_direct_value_addr) {
12864 					verbose(env, "no direct value access support for this map type\n");
12865 					fdput(f);
12866 					return -EINVAL;
12867 				}
12868 
12869 				err = map->ops->map_direct_value_addr(map, &addr, off);
12870 				if (err) {
12871 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12872 						map->value_size, off);
12873 					fdput(f);
12874 					return err;
12875 				}
12876 
12877 				aux->map_off = off;
12878 				addr += off;
12879 			}
12880 
12881 			insn[0].imm = (u32)addr;
12882 			insn[1].imm = addr >> 32;
12883 
12884 			/* check whether we recorded this map already */
12885 			for (j = 0; j < env->used_map_cnt; j++) {
12886 				if (env->used_maps[j] == map) {
12887 					aux->map_index = j;
12888 					fdput(f);
12889 					goto next_insn;
12890 				}
12891 			}
12892 
12893 			if (env->used_map_cnt >= MAX_USED_MAPS) {
12894 				fdput(f);
12895 				return -E2BIG;
12896 			}
12897 
12898 			/* hold the map. If the program is rejected by verifier,
12899 			 * the map will be released by release_maps() or it
12900 			 * will be used by the valid program until it's unloaded
12901 			 * and all maps are released in free_used_maps()
12902 			 */
12903 			bpf_map_inc(map);
12904 
12905 			aux->map_index = env->used_map_cnt;
12906 			env->used_maps[env->used_map_cnt++] = map;
12907 
12908 			if (bpf_map_is_cgroup_storage(map) &&
12909 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
12910 				verbose(env, "only one cgroup storage of each type is allowed\n");
12911 				fdput(f);
12912 				return -EBUSY;
12913 			}
12914 
12915 			fdput(f);
12916 next_insn:
12917 			insn++;
12918 			i++;
12919 			continue;
12920 		}
12921 
12922 		/* Basic sanity check before we invest more work here. */
12923 		if (!bpf_opcode_in_insntable(insn->code)) {
12924 			verbose(env, "unknown opcode %02x\n", insn->code);
12925 			return -EINVAL;
12926 		}
12927 	}
12928 
12929 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12930 	 * 'struct bpf_map *' into a register instead of user map_fd.
12931 	 * These pointers will be used later by verifier to validate map access.
12932 	 */
12933 	return 0;
12934 }
12935 
12936 /* drop refcnt of maps used by the rejected program */
12937 static void release_maps(struct bpf_verifier_env *env)
12938 {
12939 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12940 			     env->used_map_cnt);
12941 }
12942 
12943 /* drop refcnt of maps used by the rejected program */
12944 static void release_btfs(struct bpf_verifier_env *env)
12945 {
12946 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12947 			     env->used_btf_cnt);
12948 }
12949 
12950 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12951 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12952 {
12953 	struct bpf_insn *insn = env->prog->insnsi;
12954 	int insn_cnt = env->prog->len;
12955 	int i;
12956 
12957 	for (i = 0; i < insn_cnt; i++, insn++) {
12958 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12959 			continue;
12960 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12961 			continue;
12962 		insn->src_reg = 0;
12963 	}
12964 }
12965 
12966 /* single env->prog->insni[off] instruction was replaced with the range
12967  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12968  * [0, off) and [off, end) to new locations, so the patched range stays zero
12969  */
12970 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12971 				 struct bpf_insn_aux_data *new_data,
12972 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12973 {
12974 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12975 	struct bpf_insn *insn = new_prog->insnsi;
12976 	u32 old_seen = old_data[off].seen;
12977 	u32 prog_len;
12978 	int i;
12979 
12980 	/* aux info at OFF always needs adjustment, no matter fast path
12981 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12982 	 * original insn at old prog.
12983 	 */
12984 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12985 
12986 	if (cnt == 1)
12987 		return;
12988 	prog_len = new_prog->len;
12989 
12990 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12991 	memcpy(new_data + off + cnt - 1, old_data + off,
12992 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12993 	for (i = off; i < off + cnt - 1; i++) {
12994 		/* Expand insni[off]'s seen count to the patched range. */
12995 		new_data[i].seen = old_seen;
12996 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12997 	}
12998 	env->insn_aux_data = new_data;
12999 	vfree(old_data);
13000 }
13001 
13002 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
13003 {
13004 	int i;
13005 
13006 	if (len == 1)
13007 		return;
13008 	/* NOTE: fake 'exit' subprog should be updated as well. */
13009 	for (i = 0; i <= env->subprog_cnt; i++) {
13010 		if (env->subprog_info[i].start <= off)
13011 			continue;
13012 		env->subprog_info[i].start += len - 1;
13013 	}
13014 }
13015 
13016 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
13017 {
13018 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
13019 	int i, sz = prog->aux->size_poke_tab;
13020 	struct bpf_jit_poke_descriptor *desc;
13021 
13022 	for (i = 0; i < sz; i++) {
13023 		desc = &tab[i];
13024 		if (desc->insn_idx <= off)
13025 			continue;
13026 		desc->insn_idx += len - 1;
13027 	}
13028 }
13029 
13030 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
13031 					    const struct bpf_insn *patch, u32 len)
13032 {
13033 	struct bpf_prog *new_prog;
13034 	struct bpf_insn_aux_data *new_data = NULL;
13035 
13036 	if (len > 1) {
13037 		new_data = vzalloc(array_size(env->prog->len + len - 1,
13038 					      sizeof(struct bpf_insn_aux_data)));
13039 		if (!new_data)
13040 			return NULL;
13041 	}
13042 
13043 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
13044 	if (IS_ERR(new_prog)) {
13045 		if (PTR_ERR(new_prog) == -ERANGE)
13046 			verbose(env,
13047 				"insn %d cannot be patched due to 16-bit range\n",
13048 				env->insn_aux_data[off].orig_idx);
13049 		vfree(new_data);
13050 		return NULL;
13051 	}
13052 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
13053 	adjust_subprog_starts(env, off, len);
13054 	adjust_poke_descs(new_prog, off, len);
13055 	return new_prog;
13056 }
13057 
13058 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13059 					      u32 off, u32 cnt)
13060 {
13061 	int i, j;
13062 
13063 	/* find first prog starting at or after off (first to remove) */
13064 	for (i = 0; i < env->subprog_cnt; i++)
13065 		if (env->subprog_info[i].start >= off)
13066 			break;
13067 	/* find first prog starting at or after off + cnt (first to stay) */
13068 	for (j = i; j < env->subprog_cnt; j++)
13069 		if (env->subprog_info[j].start >= off + cnt)
13070 			break;
13071 	/* if j doesn't start exactly at off + cnt, we are just removing
13072 	 * the front of previous prog
13073 	 */
13074 	if (env->subprog_info[j].start != off + cnt)
13075 		j--;
13076 
13077 	if (j > i) {
13078 		struct bpf_prog_aux *aux = env->prog->aux;
13079 		int move;
13080 
13081 		/* move fake 'exit' subprog as well */
13082 		move = env->subprog_cnt + 1 - j;
13083 
13084 		memmove(env->subprog_info + i,
13085 			env->subprog_info + j,
13086 			sizeof(*env->subprog_info) * move);
13087 		env->subprog_cnt -= j - i;
13088 
13089 		/* remove func_info */
13090 		if (aux->func_info) {
13091 			move = aux->func_info_cnt - j;
13092 
13093 			memmove(aux->func_info + i,
13094 				aux->func_info + j,
13095 				sizeof(*aux->func_info) * move);
13096 			aux->func_info_cnt -= j - i;
13097 			/* func_info->insn_off is set after all code rewrites,
13098 			 * in adjust_btf_func() - no need to adjust
13099 			 */
13100 		}
13101 	} else {
13102 		/* convert i from "first prog to remove" to "first to adjust" */
13103 		if (env->subprog_info[i].start == off)
13104 			i++;
13105 	}
13106 
13107 	/* update fake 'exit' subprog as well */
13108 	for (; i <= env->subprog_cnt; i++)
13109 		env->subprog_info[i].start -= cnt;
13110 
13111 	return 0;
13112 }
13113 
13114 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13115 				      u32 cnt)
13116 {
13117 	struct bpf_prog *prog = env->prog;
13118 	u32 i, l_off, l_cnt, nr_linfo;
13119 	struct bpf_line_info *linfo;
13120 
13121 	nr_linfo = prog->aux->nr_linfo;
13122 	if (!nr_linfo)
13123 		return 0;
13124 
13125 	linfo = prog->aux->linfo;
13126 
13127 	/* find first line info to remove, count lines to be removed */
13128 	for (i = 0; i < nr_linfo; i++)
13129 		if (linfo[i].insn_off >= off)
13130 			break;
13131 
13132 	l_off = i;
13133 	l_cnt = 0;
13134 	for (; i < nr_linfo; i++)
13135 		if (linfo[i].insn_off < off + cnt)
13136 			l_cnt++;
13137 		else
13138 			break;
13139 
13140 	/* First live insn doesn't match first live linfo, it needs to "inherit"
13141 	 * last removed linfo.  prog is already modified, so prog->len == off
13142 	 * means no live instructions after (tail of the program was removed).
13143 	 */
13144 	if (prog->len != off && l_cnt &&
13145 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13146 		l_cnt--;
13147 		linfo[--i].insn_off = off + cnt;
13148 	}
13149 
13150 	/* remove the line info which refer to the removed instructions */
13151 	if (l_cnt) {
13152 		memmove(linfo + l_off, linfo + i,
13153 			sizeof(*linfo) * (nr_linfo - i));
13154 
13155 		prog->aux->nr_linfo -= l_cnt;
13156 		nr_linfo = prog->aux->nr_linfo;
13157 	}
13158 
13159 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
13160 	for (i = l_off; i < nr_linfo; i++)
13161 		linfo[i].insn_off -= cnt;
13162 
13163 	/* fix up all subprogs (incl. 'exit') which start >= off */
13164 	for (i = 0; i <= env->subprog_cnt; i++)
13165 		if (env->subprog_info[i].linfo_idx > l_off) {
13166 			/* program may have started in the removed region but
13167 			 * may not be fully removed
13168 			 */
13169 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13170 				env->subprog_info[i].linfo_idx -= l_cnt;
13171 			else
13172 				env->subprog_info[i].linfo_idx = l_off;
13173 		}
13174 
13175 	return 0;
13176 }
13177 
13178 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13179 {
13180 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13181 	unsigned int orig_prog_len = env->prog->len;
13182 	int err;
13183 
13184 	if (bpf_prog_is_dev_bound(env->prog->aux))
13185 		bpf_prog_offload_remove_insns(env, off, cnt);
13186 
13187 	err = bpf_remove_insns(env->prog, off, cnt);
13188 	if (err)
13189 		return err;
13190 
13191 	err = adjust_subprog_starts_after_remove(env, off, cnt);
13192 	if (err)
13193 		return err;
13194 
13195 	err = bpf_adj_linfo_after_remove(env, off, cnt);
13196 	if (err)
13197 		return err;
13198 
13199 	memmove(aux_data + off,	aux_data + off + cnt,
13200 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
13201 
13202 	return 0;
13203 }
13204 
13205 /* The verifier does more data flow analysis than llvm and will not
13206  * explore branches that are dead at run time. Malicious programs can
13207  * have dead code too. Therefore replace all dead at-run-time code
13208  * with 'ja -1'.
13209  *
13210  * Just nops are not optimal, e.g. if they would sit at the end of the
13211  * program and through another bug we would manage to jump there, then
13212  * we'd execute beyond program memory otherwise. Returning exception
13213  * code also wouldn't work since we can have subprogs where the dead
13214  * code could be located.
13215  */
13216 static void sanitize_dead_code(struct bpf_verifier_env *env)
13217 {
13218 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13219 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
13220 	struct bpf_insn *insn = env->prog->insnsi;
13221 	const int insn_cnt = env->prog->len;
13222 	int i;
13223 
13224 	for (i = 0; i < insn_cnt; i++) {
13225 		if (aux_data[i].seen)
13226 			continue;
13227 		memcpy(insn + i, &trap, sizeof(trap));
13228 		aux_data[i].zext_dst = false;
13229 	}
13230 }
13231 
13232 static bool insn_is_cond_jump(u8 code)
13233 {
13234 	u8 op;
13235 
13236 	if (BPF_CLASS(code) == BPF_JMP32)
13237 		return true;
13238 
13239 	if (BPF_CLASS(code) != BPF_JMP)
13240 		return false;
13241 
13242 	op = BPF_OP(code);
13243 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13244 }
13245 
13246 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13247 {
13248 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13249 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13250 	struct bpf_insn *insn = env->prog->insnsi;
13251 	const int insn_cnt = env->prog->len;
13252 	int i;
13253 
13254 	for (i = 0; i < insn_cnt; i++, insn++) {
13255 		if (!insn_is_cond_jump(insn->code))
13256 			continue;
13257 
13258 		if (!aux_data[i + 1].seen)
13259 			ja.off = insn->off;
13260 		else if (!aux_data[i + 1 + insn->off].seen)
13261 			ja.off = 0;
13262 		else
13263 			continue;
13264 
13265 		if (bpf_prog_is_dev_bound(env->prog->aux))
13266 			bpf_prog_offload_replace_insn(env, i, &ja);
13267 
13268 		memcpy(insn, &ja, sizeof(ja));
13269 	}
13270 }
13271 
13272 static int opt_remove_dead_code(struct bpf_verifier_env *env)
13273 {
13274 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13275 	int insn_cnt = env->prog->len;
13276 	int i, err;
13277 
13278 	for (i = 0; i < insn_cnt; i++) {
13279 		int j;
13280 
13281 		j = 0;
13282 		while (i + j < insn_cnt && !aux_data[i + j].seen)
13283 			j++;
13284 		if (!j)
13285 			continue;
13286 
13287 		err = verifier_remove_insns(env, i, j);
13288 		if (err)
13289 			return err;
13290 		insn_cnt = env->prog->len;
13291 	}
13292 
13293 	return 0;
13294 }
13295 
13296 static int opt_remove_nops(struct bpf_verifier_env *env)
13297 {
13298 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13299 	struct bpf_insn *insn = env->prog->insnsi;
13300 	int insn_cnt = env->prog->len;
13301 	int i, err;
13302 
13303 	for (i = 0; i < insn_cnt; i++) {
13304 		if (memcmp(&insn[i], &ja, sizeof(ja)))
13305 			continue;
13306 
13307 		err = verifier_remove_insns(env, i, 1);
13308 		if (err)
13309 			return err;
13310 		insn_cnt--;
13311 		i--;
13312 	}
13313 
13314 	return 0;
13315 }
13316 
13317 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13318 					 const union bpf_attr *attr)
13319 {
13320 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
13321 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
13322 	int i, patch_len, delta = 0, len = env->prog->len;
13323 	struct bpf_insn *insns = env->prog->insnsi;
13324 	struct bpf_prog *new_prog;
13325 	bool rnd_hi32;
13326 
13327 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
13328 	zext_patch[1] = BPF_ZEXT_REG(0);
13329 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13330 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13331 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
13332 	for (i = 0; i < len; i++) {
13333 		int adj_idx = i + delta;
13334 		struct bpf_insn insn;
13335 		int load_reg;
13336 
13337 		insn = insns[adj_idx];
13338 		load_reg = insn_def_regno(&insn);
13339 		if (!aux[adj_idx].zext_dst) {
13340 			u8 code, class;
13341 			u32 imm_rnd;
13342 
13343 			if (!rnd_hi32)
13344 				continue;
13345 
13346 			code = insn.code;
13347 			class = BPF_CLASS(code);
13348 			if (load_reg == -1)
13349 				continue;
13350 
13351 			/* NOTE: arg "reg" (the fourth one) is only used for
13352 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
13353 			 *       here.
13354 			 */
13355 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
13356 				if (class == BPF_LD &&
13357 				    BPF_MODE(code) == BPF_IMM)
13358 					i++;
13359 				continue;
13360 			}
13361 
13362 			/* ctx load could be transformed into wider load. */
13363 			if (class == BPF_LDX &&
13364 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
13365 				continue;
13366 
13367 			imm_rnd = get_random_u32();
13368 			rnd_hi32_patch[0] = insn;
13369 			rnd_hi32_patch[1].imm = imm_rnd;
13370 			rnd_hi32_patch[3].dst_reg = load_reg;
13371 			patch = rnd_hi32_patch;
13372 			patch_len = 4;
13373 			goto apply_patch_buffer;
13374 		}
13375 
13376 		/* Add in an zero-extend instruction if a) the JIT has requested
13377 		 * it or b) it's a CMPXCHG.
13378 		 *
13379 		 * The latter is because: BPF_CMPXCHG always loads a value into
13380 		 * R0, therefore always zero-extends. However some archs'
13381 		 * equivalent instruction only does this load when the
13382 		 * comparison is successful. This detail of CMPXCHG is
13383 		 * orthogonal to the general zero-extension behaviour of the
13384 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
13385 		 */
13386 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13387 			continue;
13388 
13389 		if (WARN_ON(load_reg == -1)) {
13390 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13391 			return -EFAULT;
13392 		}
13393 
13394 		zext_patch[0] = insn;
13395 		zext_patch[1].dst_reg = load_reg;
13396 		zext_patch[1].src_reg = load_reg;
13397 		patch = zext_patch;
13398 		patch_len = 2;
13399 apply_patch_buffer:
13400 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13401 		if (!new_prog)
13402 			return -ENOMEM;
13403 		env->prog = new_prog;
13404 		insns = new_prog->insnsi;
13405 		aux = env->insn_aux_data;
13406 		delta += patch_len - 1;
13407 	}
13408 
13409 	return 0;
13410 }
13411 
13412 /* convert load instructions that access fields of a context type into a
13413  * sequence of instructions that access fields of the underlying structure:
13414  *     struct __sk_buff    -> struct sk_buff
13415  *     struct bpf_sock_ops -> struct sock
13416  */
13417 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13418 {
13419 	const struct bpf_verifier_ops *ops = env->ops;
13420 	int i, cnt, size, ctx_field_size, delta = 0;
13421 	const int insn_cnt = env->prog->len;
13422 	struct bpf_insn insn_buf[16], *insn;
13423 	u32 target_size, size_default, off;
13424 	struct bpf_prog *new_prog;
13425 	enum bpf_access_type type;
13426 	bool is_narrower_load;
13427 
13428 	if (ops->gen_prologue || env->seen_direct_write) {
13429 		if (!ops->gen_prologue) {
13430 			verbose(env, "bpf verifier is misconfigured\n");
13431 			return -EINVAL;
13432 		}
13433 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13434 					env->prog);
13435 		if (cnt >= ARRAY_SIZE(insn_buf)) {
13436 			verbose(env, "bpf verifier is misconfigured\n");
13437 			return -EINVAL;
13438 		} else if (cnt) {
13439 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13440 			if (!new_prog)
13441 				return -ENOMEM;
13442 
13443 			env->prog = new_prog;
13444 			delta += cnt - 1;
13445 		}
13446 	}
13447 
13448 	if (bpf_prog_is_dev_bound(env->prog->aux))
13449 		return 0;
13450 
13451 	insn = env->prog->insnsi + delta;
13452 
13453 	for (i = 0; i < insn_cnt; i++, insn++) {
13454 		bpf_convert_ctx_access_t convert_ctx_access;
13455 		bool ctx_access;
13456 
13457 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13458 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13459 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13460 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13461 			type = BPF_READ;
13462 			ctx_access = true;
13463 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13464 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13465 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13466 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13467 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13468 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13469 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13470 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13471 			type = BPF_WRITE;
13472 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13473 		} else {
13474 			continue;
13475 		}
13476 
13477 		if (type == BPF_WRITE &&
13478 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
13479 			struct bpf_insn patch[] = {
13480 				*insn,
13481 				BPF_ST_NOSPEC(),
13482 			};
13483 
13484 			cnt = ARRAY_SIZE(patch);
13485 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13486 			if (!new_prog)
13487 				return -ENOMEM;
13488 
13489 			delta    += cnt - 1;
13490 			env->prog = new_prog;
13491 			insn      = new_prog->insnsi + i + delta;
13492 			continue;
13493 		}
13494 
13495 		if (!ctx_access)
13496 			continue;
13497 
13498 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13499 		case PTR_TO_CTX:
13500 			if (!ops->convert_ctx_access)
13501 				continue;
13502 			convert_ctx_access = ops->convert_ctx_access;
13503 			break;
13504 		case PTR_TO_SOCKET:
13505 		case PTR_TO_SOCK_COMMON:
13506 			convert_ctx_access = bpf_sock_convert_ctx_access;
13507 			break;
13508 		case PTR_TO_TCP_SOCK:
13509 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13510 			break;
13511 		case PTR_TO_XDP_SOCK:
13512 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13513 			break;
13514 		case PTR_TO_BTF_ID:
13515 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13516 			if (type == BPF_READ) {
13517 				insn->code = BPF_LDX | BPF_PROBE_MEM |
13518 					BPF_SIZE((insn)->code);
13519 				env->prog->aux->num_exentries++;
13520 			}
13521 			continue;
13522 		default:
13523 			continue;
13524 		}
13525 
13526 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13527 		size = BPF_LDST_BYTES(insn);
13528 
13529 		/* If the read access is a narrower load of the field,
13530 		 * convert to a 4/8-byte load, to minimum program type specific
13531 		 * convert_ctx_access changes. If conversion is successful,
13532 		 * we will apply proper mask to the result.
13533 		 */
13534 		is_narrower_load = size < ctx_field_size;
13535 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13536 		off = insn->off;
13537 		if (is_narrower_load) {
13538 			u8 size_code;
13539 
13540 			if (type == BPF_WRITE) {
13541 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13542 				return -EINVAL;
13543 			}
13544 
13545 			size_code = BPF_H;
13546 			if (ctx_field_size == 4)
13547 				size_code = BPF_W;
13548 			else if (ctx_field_size == 8)
13549 				size_code = BPF_DW;
13550 
13551 			insn->off = off & ~(size_default - 1);
13552 			insn->code = BPF_LDX | BPF_MEM | size_code;
13553 		}
13554 
13555 		target_size = 0;
13556 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13557 					 &target_size);
13558 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13559 		    (ctx_field_size && !target_size)) {
13560 			verbose(env, "bpf verifier is misconfigured\n");
13561 			return -EINVAL;
13562 		}
13563 
13564 		if (is_narrower_load && size < target_size) {
13565 			u8 shift = bpf_ctx_narrow_access_offset(
13566 				off, size, size_default) * 8;
13567 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13568 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13569 				return -EINVAL;
13570 			}
13571 			if (ctx_field_size <= 4) {
13572 				if (shift)
13573 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13574 									insn->dst_reg,
13575 									shift);
13576 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13577 								(1 << size * 8) - 1);
13578 			} else {
13579 				if (shift)
13580 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13581 									insn->dst_reg,
13582 									shift);
13583 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
13584 								(1ULL << size * 8) - 1);
13585 			}
13586 		}
13587 
13588 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13589 		if (!new_prog)
13590 			return -ENOMEM;
13591 
13592 		delta += cnt - 1;
13593 
13594 		/* keep walking new program and skip insns we just inserted */
13595 		env->prog = new_prog;
13596 		insn      = new_prog->insnsi + i + delta;
13597 	}
13598 
13599 	return 0;
13600 }
13601 
13602 static int jit_subprogs(struct bpf_verifier_env *env)
13603 {
13604 	struct bpf_prog *prog = env->prog, **func, *tmp;
13605 	int i, j, subprog_start, subprog_end = 0, len, subprog;
13606 	struct bpf_map *map_ptr;
13607 	struct bpf_insn *insn;
13608 	void *old_bpf_func;
13609 	int err, num_exentries;
13610 
13611 	if (env->subprog_cnt <= 1)
13612 		return 0;
13613 
13614 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13615 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13616 			continue;
13617 
13618 		/* Upon error here we cannot fall back to interpreter but
13619 		 * need a hard reject of the program. Thus -EFAULT is
13620 		 * propagated in any case.
13621 		 */
13622 		subprog = find_subprog(env, i + insn->imm + 1);
13623 		if (subprog < 0) {
13624 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13625 				  i + insn->imm + 1);
13626 			return -EFAULT;
13627 		}
13628 		/* temporarily remember subprog id inside insn instead of
13629 		 * aux_data, since next loop will split up all insns into funcs
13630 		 */
13631 		insn->off = subprog;
13632 		/* remember original imm in case JIT fails and fallback
13633 		 * to interpreter will be needed
13634 		 */
13635 		env->insn_aux_data[i].call_imm = insn->imm;
13636 		/* point imm to __bpf_call_base+1 from JITs point of view */
13637 		insn->imm = 1;
13638 		if (bpf_pseudo_func(insn))
13639 			/* jit (e.g. x86_64) may emit fewer instructions
13640 			 * if it learns a u32 imm is the same as a u64 imm.
13641 			 * Force a non zero here.
13642 			 */
13643 			insn[1].imm = 1;
13644 	}
13645 
13646 	err = bpf_prog_alloc_jited_linfo(prog);
13647 	if (err)
13648 		goto out_undo_insn;
13649 
13650 	err = -ENOMEM;
13651 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13652 	if (!func)
13653 		goto out_undo_insn;
13654 
13655 	for (i = 0; i < env->subprog_cnt; i++) {
13656 		subprog_start = subprog_end;
13657 		subprog_end = env->subprog_info[i + 1].start;
13658 
13659 		len = subprog_end - subprog_start;
13660 		/* bpf_prog_run() doesn't call subprogs directly,
13661 		 * hence main prog stats include the runtime of subprogs.
13662 		 * subprogs don't have IDs and not reachable via prog_get_next_id
13663 		 * func[i]->stats will never be accessed and stays NULL
13664 		 */
13665 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13666 		if (!func[i])
13667 			goto out_free;
13668 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13669 		       len * sizeof(struct bpf_insn));
13670 		func[i]->type = prog->type;
13671 		func[i]->len = len;
13672 		if (bpf_prog_calc_tag(func[i]))
13673 			goto out_free;
13674 		func[i]->is_func = 1;
13675 		func[i]->aux->func_idx = i;
13676 		/* Below members will be freed only at prog->aux */
13677 		func[i]->aux->btf = prog->aux->btf;
13678 		func[i]->aux->func_info = prog->aux->func_info;
13679 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
13680 		func[i]->aux->poke_tab = prog->aux->poke_tab;
13681 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13682 
13683 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
13684 			struct bpf_jit_poke_descriptor *poke;
13685 
13686 			poke = &prog->aux->poke_tab[j];
13687 			if (poke->insn_idx < subprog_end &&
13688 			    poke->insn_idx >= subprog_start)
13689 				poke->aux = func[i]->aux;
13690 		}
13691 
13692 		func[i]->aux->name[0] = 'F';
13693 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13694 		func[i]->jit_requested = 1;
13695 		func[i]->blinding_requested = prog->blinding_requested;
13696 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13697 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
13698 		func[i]->aux->linfo = prog->aux->linfo;
13699 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13700 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13701 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
13702 		num_exentries = 0;
13703 		insn = func[i]->insnsi;
13704 		for (j = 0; j < func[i]->len; j++, insn++) {
13705 			if (BPF_CLASS(insn->code) == BPF_LDX &&
13706 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
13707 				num_exentries++;
13708 		}
13709 		func[i]->aux->num_exentries = num_exentries;
13710 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
13711 		func[i] = bpf_int_jit_compile(func[i]);
13712 		if (!func[i]->jited) {
13713 			err = -ENOTSUPP;
13714 			goto out_free;
13715 		}
13716 		cond_resched();
13717 	}
13718 
13719 	/* at this point all bpf functions were successfully JITed
13720 	 * now populate all bpf_calls with correct addresses and
13721 	 * run last pass of JIT
13722 	 */
13723 	for (i = 0; i < env->subprog_cnt; i++) {
13724 		insn = func[i]->insnsi;
13725 		for (j = 0; j < func[i]->len; j++, insn++) {
13726 			if (bpf_pseudo_func(insn)) {
13727 				subprog = insn->off;
13728 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13729 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13730 				continue;
13731 			}
13732 			if (!bpf_pseudo_call(insn))
13733 				continue;
13734 			subprog = insn->off;
13735 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
13736 		}
13737 
13738 		/* we use the aux data to keep a list of the start addresses
13739 		 * of the JITed images for each function in the program
13740 		 *
13741 		 * for some architectures, such as powerpc64, the imm field
13742 		 * might not be large enough to hold the offset of the start
13743 		 * address of the callee's JITed image from __bpf_call_base
13744 		 *
13745 		 * in such cases, we can lookup the start address of a callee
13746 		 * by using its subprog id, available from the off field of
13747 		 * the call instruction, as an index for this list
13748 		 */
13749 		func[i]->aux->func = func;
13750 		func[i]->aux->func_cnt = env->subprog_cnt;
13751 	}
13752 	for (i = 0; i < env->subprog_cnt; i++) {
13753 		old_bpf_func = func[i]->bpf_func;
13754 		tmp = bpf_int_jit_compile(func[i]);
13755 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13756 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
13757 			err = -ENOTSUPP;
13758 			goto out_free;
13759 		}
13760 		cond_resched();
13761 	}
13762 
13763 	/* finally lock prog and jit images for all functions and
13764 	 * populate kallsysm
13765 	 */
13766 	for (i = 0; i < env->subprog_cnt; i++) {
13767 		bpf_prog_lock_ro(func[i]);
13768 		bpf_prog_kallsyms_add(func[i]);
13769 	}
13770 
13771 	/* Last step: make now unused interpreter insns from main
13772 	 * prog consistent for later dump requests, so they can
13773 	 * later look the same as if they were interpreted only.
13774 	 */
13775 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13776 		if (bpf_pseudo_func(insn)) {
13777 			insn[0].imm = env->insn_aux_data[i].call_imm;
13778 			insn[1].imm = insn->off;
13779 			insn->off = 0;
13780 			continue;
13781 		}
13782 		if (!bpf_pseudo_call(insn))
13783 			continue;
13784 		insn->off = env->insn_aux_data[i].call_imm;
13785 		subprog = find_subprog(env, i + insn->off + 1);
13786 		insn->imm = subprog;
13787 	}
13788 
13789 	prog->jited = 1;
13790 	prog->bpf_func = func[0]->bpf_func;
13791 	prog->jited_len = func[0]->jited_len;
13792 	prog->aux->func = func;
13793 	prog->aux->func_cnt = env->subprog_cnt;
13794 	bpf_prog_jit_attempt_done(prog);
13795 	return 0;
13796 out_free:
13797 	/* We failed JIT'ing, so at this point we need to unregister poke
13798 	 * descriptors from subprogs, so that kernel is not attempting to
13799 	 * patch it anymore as we're freeing the subprog JIT memory.
13800 	 */
13801 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13802 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13803 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13804 	}
13805 	/* At this point we're guaranteed that poke descriptors are not
13806 	 * live anymore. We can just unlink its descriptor table as it's
13807 	 * released with the main prog.
13808 	 */
13809 	for (i = 0; i < env->subprog_cnt; i++) {
13810 		if (!func[i])
13811 			continue;
13812 		func[i]->aux->poke_tab = NULL;
13813 		bpf_jit_free(func[i]);
13814 	}
13815 	kfree(func);
13816 out_undo_insn:
13817 	/* cleanup main prog to be interpreted */
13818 	prog->jit_requested = 0;
13819 	prog->blinding_requested = 0;
13820 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13821 		if (!bpf_pseudo_call(insn))
13822 			continue;
13823 		insn->off = 0;
13824 		insn->imm = env->insn_aux_data[i].call_imm;
13825 	}
13826 	bpf_prog_jit_attempt_done(prog);
13827 	return err;
13828 }
13829 
13830 static int fixup_call_args(struct bpf_verifier_env *env)
13831 {
13832 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13833 	struct bpf_prog *prog = env->prog;
13834 	struct bpf_insn *insn = prog->insnsi;
13835 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13836 	int i, depth;
13837 #endif
13838 	int err = 0;
13839 
13840 	if (env->prog->jit_requested &&
13841 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
13842 		err = jit_subprogs(env);
13843 		if (err == 0)
13844 			return 0;
13845 		if (err == -EFAULT)
13846 			return err;
13847 	}
13848 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13849 	if (has_kfunc_call) {
13850 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13851 		return -EINVAL;
13852 	}
13853 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13854 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
13855 		 * have to be rejected, since interpreter doesn't support them yet.
13856 		 */
13857 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13858 		return -EINVAL;
13859 	}
13860 	for (i = 0; i < prog->len; i++, insn++) {
13861 		if (bpf_pseudo_func(insn)) {
13862 			/* When JIT fails the progs with callback calls
13863 			 * have to be rejected, since interpreter doesn't support them yet.
13864 			 */
13865 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
13866 			return -EINVAL;
13867 		}
13868 
13869 		if (!bpf_pseudo_call(insn))
13870 			continue;
13871 		depth = get_callee_stack_depth(env, insn, i);
13872 		if (depth < 0)
13873 			return depth;
13874 		bpf_patch_call_args(insn, depth);
13875 	}
13876 	err = 0;
13877 #endif
13878 	return err;
13879 }
13880 
13881 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13882 			    struct bpf_insn *insn)
13883 {
13884 	const struct bpf_kfunc_desc *desc;
13885 
13886 	if (!insn->imm) {
13887 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13888 		return -EINVAL;
13889 	}
13890 
13891 	/* insn->imm has the btf func_id. Replace it with
13892 	 * an address (relative to __bpf_base_call).
13893 	 */
13894 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13895 	if (!desc) {
13896 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13897 			insn->imm);
13898 		return -EFAULT;
13899 	}
13900 
13901 	insn->imm = desc->imm;
13902 
13903 	return 0;
13904 }
13905 
13906 /* Do various post-verification rewrites in a single program pass.
13907  * These rewrites simplify JIT and interpreter implementations.
13908  */
13909 static int do_misc_fixups(struct bpf_verifier_env *env)
13910 {
13911 	struct bpf_prog *prog = env->prog;
13912 	enum bpf_attach_type eatype = prog->expected_attach_type;
13913 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13914 	struct bpf_insn *insn = prog->insnsi;
13915 	const struct bpf_func_proto *fn;
13916 	const int insn_cnt = prog->len;
13917 	const struct bpf_map_ops *ops;
13918 	struct bpf_insn_aux_data *aux;
13919 	struct bpf_insn insn_buf[16];
13920 	struct bpf_prog *new_prog;
13921 	struct bpf_map *map_ptr;
13922 	int i, ret, cnt, delta = 0;
13923 
13924 	for (i = 0; i < insn_cnt; i++, insn++) {
13925 		/* Make divide-by-zero exceptions impossible. */
13926 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13927 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13928 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13929 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13930 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13931 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13932 			struct bpf_insn *patchlet;
13933 			struct bpf_insn chk_and_div[] = {
13934 				/* [R,W]x div 0 -> 0 */
13935 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13936 					     BPF_JNE | BPF_K, insn->src_reg,
13937 					     0, 2, 0),
13938 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13939 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13940 				*insn,
13941 			};
13942 			struct bpf_insn chk_and_mod[] = {
13943 				/* [R,W]x mod 0 -> [R,W]x */
13944 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13945 					     BPF_JEQ | BPF_K, insn->src_reg,
13946 					     0, 1 + (is64 ? 0 : 1), 0),
13947 				*insn,
13948 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13949 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13950 			};
13951 
13952 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13953 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13954 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13955 
13956 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13957 			if (!new_prog)
13958 				return -ENOMEM;
13959 
13960 			delta    += cnt - 1;
13961 			env->prog = prog = new_prog;
13962 			insn      = new_prog->insnsi + i + delta;
13963 			continue;
13964 		}
13965 
13966 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13967 		if (BPF_CLASS(insn->code) == BPF_LD &&
13968 		    (BPF_MODE(insn->code) == BPF_ABS ||
13969 		     BPF_MODE(insn->code) == BPF_IND)) {
13970 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13971 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13972 				verbose(env, "bpf verifier is misconfigured\n");
13973 				return -EINVAL;
13974 			}
13975 
13976 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13977 			if (!new_prog)
13978 				return -ENOMEM;
13979 
13980 			delta    += cnt - 1;
13981 			env->prog = prog = new_prog;
13982 			insn      = new_prog->insnsi + i + delta;
13983 			continue;
13984 		}
13985 
13986 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13987 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13988 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13989 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13990 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13991 			struct bpf_insn *patch = &insn_buf[0];
13992 			bool issrc, isneg, isimm;
13993 			u32 off_reg;
13994 
13995 			aux = &env->insn_aux_data[i + delta];
13996 			if (!aux->alu_state ||
13997 			    aux->alu_state == BPF_ALU_NON_POINTER)
13998 				continue;
13999 
14000 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
14001 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
14002 				BPF_ALU_SANITIZE_SRC;
14003 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
14004 
14005 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
14006 			if (isimm) {
14007 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14008 			} else {
14009 				if (isneg)
14010 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14011 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14012 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
14013 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
14014 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
14015 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
14016 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
14017 			}
14018 			if (!issrc)
14019 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
14020 			insn->src_reg = BPF_REG_AX;
14021 			if (isneg)
14022 				insn->code = insn->code == code_add ?
14023 					     code_sub : code_add;
14024 			*patch++ = *insn;
14025 			if (issrc && isneg && !isimm)
14026 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14027 			cnt = patch - insn_buf;
14028 
14029 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14030 			if (!new_prog)
14031 				return -ENOMEM;
14032 
14033 			delta    += cnt - 1;
14034 			env->prog = prog = new_prog;
14035 			insn      = new_prog->insnsi + i + delta;
14036 			continue;
14037 		}
14038 
14039 		if (insn->code != (BPF_JMP | BPF_CALL))
14040 			continue;
14041 		if (insn->src_reg == BPF_PSEUDO_CALL)
14042 			continue;
14043 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14044 			ret = fixup_kfunc_call(env, insn);
14045 			if (ret)
14046 				return ret;
14047 			continue;
14048 		}
14049 
14050 		if (insn->imm == BPF_FUNC_get_route_realm)
14051 			prog->dst_needed = 1;
14052 		if (insn->imm == BPF_FUNC_get_prandom_u32)
14053 			bpf_user_rnd_init_once();
14054 		if (insn->imm == BPF_FUNC_override_return)
14055 			prog->kprobe_override = 1;
14056 		if (insn->imm == BPF_FUNC_tail_call) {
14057 			/* If we tail call into other programs, we
14058 			 * cannot make any assumptions since they can
14059 			 * be replaced dynamically during runtime in
14060 			 * the program array.
14061 			 */
14062 			prog->cb_access = 1;
14063 			if (!allow_tail_call_in_subprogs(env))
14064 				prog->aux->stack_depth = MAX_BPF_STACK;
14065 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
14066 
14067 			/* mark bpf_tail_call as different opcode to avoid
14068 			 * conditional branch in the interpreter for every normal
14069 			 * call and to prevent accidental JITing by JIT compiler
14070 			 * that doesn't support bpf_tail_call yet
14071 			 */
14072 			insn->imm = 0;
14073 			insn->code = BPF_JMP | BPF_TAIL_CALL;
14074 
14075 			aux = &env->insn_aux_data[i + delta];
14076 			if (env->bpf_capable && !prog->blinding_requested &&
14077 			    prog->jit_requested &&
14078 			    !bpf_map_key_poisoned(aux) &&
14079 			    !bpf_map_ptr_poisoned(aux) &&
14080 			    !bpf_map_ptr_unpriv(aux)) {
14081 				struct bpf_jit_poke_descriptor desc = {
14082 					.reason = BPF_POKE_REASON_TAIL_CALL,
14083 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14084 					.tail_call.key = bpf_map_key_immediate(aux),
14085 					.insn_idx = i + delta,
14086 				};
14087 
14088 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
14089 				if (ret < 0) {
14090 					verbose(env, "adding tail call poke descriptor failed\n");
14091 					return ret;
14092 				}
14093 
14094 				insn->imm = ret + 1;
14095 				continue;
14096 			}
14097 
14098 			if (!bpf_map_ptr_unpriv(aux))
14099 				continue;
14100 
14101 			/* instead of changing every JIT dealing with tail_call
14102 			 * emit two extra insns:
14103 			 * if (index >= max_entries) goto out;
14104 			 * index &= array->index_mask;
14105 			 * to avoid out-of-bounds cpu speculation
14106 			 */
14107 			if (bpf_map_ptr_poisoned(aux)) {
14108 				verbose(env, "tail_call abusing map_ptr\n");
14109 				return -EINVAL;
14110 			}
14111 
14112 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14113 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14114 						  map_ptr->max_entries, 2);
14115 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14116 						    container_of(map_ptr,
14117 								 struct bpf_array,
14118 								 map)->index_mask);
14119 			insn_buf[2] = *insn;
14120 			cnt = 3;
14121 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14122 			if (!new_prog)
14123 				return -ENOMEM;
14124 
14125 			delta    += cnt - 1;
14126 			env->prog = prog = new_prog;
14127 			insn      = new_prog->insnsi + i + delta;
14128 			continue;
14129 		}
14130 
14131 		if (insn->imm == BPF_FUNC_timer_set_callback) {
14132 			/* The verifier will process callback_fn as many times as necessary
14133 			 * with different maps and the register states prepared by
14134 			 * set_timer_callback_state will be accurate.
14135 			 *
14136 			 * The following use case is valid:
14137 			 *   map1 is shared by prog1, prog2, prog3.
14138 			 *   prog1 calls bpf_timer_init for some map1 elements
14139 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
14140 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
14141 			 *   prog3 calls bpf_timer_start for some map1 elements.
14142 			 *     Those that were not both bpf_timer_init-ed and
14143 			 *     bpf_timer_set_callback-ed will return -EINVAL.
14144 			 */
14145 			struct bpf_insn ld_addrs[2] = {
14146 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14147 			};
14148 
14149 			insn_buf[0] = ld_addrs[0];
14150 			insn_buf[1] = ld_addrs[1];
14151 			insn_buf[2] = *insn;
14152 			cnt = 3;
14153 
14154 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14155 			if (!new_prog)
14156 				return -ENOMEM;
14157 
14158 			delta    += cnt - 1;
14159 			env->prog = prog = new_prog;
14160 			insn      = new_prog->insnsi + i + delta;
14161 			goto patch_call_imm;
14162 		}
14163 
14164 		if (insn->imm == BPF_FUNC_task_storage_get ||
14165 		    insn->imm == BPF_FUNC_sk_storage_get ||
14166 		    insn->imm == BPF_FUNC_inode_storage_get) {
14167 			if (env->prog->aux->sleepable)
14168 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
14169 			else
14170 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
14171 			insn_buf[1] = *insn;
14172 			cnt = 2;
14173 
14174 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14175 			if (!new_prog)
14176 				return -ENOMEM;
14177 
14178 			delta += cnt - 1;
14179 			env->prog = prog = new_prog;
14180 			insn = new_prog->insnsi + i + delta;
14181 			goto patch_call_imm;
14182 		}
14183 
14184 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
14185 		 * and other inlining handlers are currently limited to 64 bit
14186 		 * only.
14187 		 */
14188 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14189 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
14190 		     insn->imm == BPF_FUNC_map_update_elem ||
14191 		     insn->imm == BPF_FUNC_map_delete_elem ||
14192 		     insn->imm == BPF_FUNC_map_push_elem   ||
14193 		     insn->imm == BPF_FUNC_map_pop_elem    ||
14194 		     insn->imm == BPF_FUNC_map_peek_elem   ||
14195 		     insn->imm == BPF_FUNC_redirect_map    ||
14196 		     insn->imm == BPF_FUNC_for_each_map_elem ||
14197 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
14198 			aux = &env->insn_aux_data[i + delta];
14199 			if (bpf_map_ptr_poisoned(aux))
14200 				goto patch_call_imm;
14201 
14202 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14203 			ops = map_ptr->ops;
14204 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
14205 			    ops->map_gen_lookup) {
14206 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
14207 				if (cnt == -EOPNOTSUPP)
14208 					goto patch_map_ops_generic;
14209 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14210 					verbose(env, "bpf verifier is misconfigured\n");
14211 					return -EINVAL;
14212 				}
14213 
14214 				new_prog = bpf_patch_insn_data(env, i + delta,
14215 							       insn_buf, cnt);
14216 				if (!new_prog)
14217 					return -ENOMEM;
14218 
14219 				delta    += cnt - 1;
14220 				env->prog = prog = new_prog;
14221 				insn      = new_prog->insnsi + i + delta;
14222 				continue;
14223 			}
14224 
14225 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14226 				     (void *(*)(struct bpf_map *map, void *key))NULL));
14227 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14228 				     (int (*)(struct bpf_map *map, void *key))NULL));
14229 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14230 				     (int (*)(struct bpf_map *map, void *key, void *value,
14231 					      u64 flags))NULL));
14232 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14233 				     (int (*)(struct bpf_map *map, void *value,
14234 					      u64 flags))NULL));
14235 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14236 				     (int (*)(struct bpf_map *map, void *value))NULL));
14237 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14238 				     (int (*)(struct bpf_map *map, void *value))NULL));
14239 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
14240 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
14241 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14242 				     (int (*)(struct bpf_map *map,
14243 					      bpf_callback_t callback_fn,
14244 					      void *callback_ctx,
14245 					      u64 flags))NULL));
14246 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14247 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
14248 
14249 patch_map_ops_generic:
14250 			switch (insn->imm) {
14251 			case BPF_FUNC_map_lookup_elem:
14252 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
14253 				continue;
14254 			case BPF_FUNC_map_update_elem:
14255 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
14256 				continue;
14257 			case BPF_FUNC_map_delete_elem:
14258 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
14259 				continue;
14260 			case BPF_FUNC_map_push_elem:
14261 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
14262 				continue;
14263 			case BPF_FUNC_map_pop_elem:
14264 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
14265 				continue;
14266 			case BPF_FUNC_map_peek_elem:
14267 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
14268 				continue;
14269 			case BPF_FUNC_redirect_map:
14270 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
14271 				continue;
14272 			case BPF_FUNC_for_each_map_elem:
14273 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
14274 				continue;
14275 			case BPF_FUNC_map_lookup_percpu_elem:
14276 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14277 				continue;
14278 			}
14279 
14280 			goto patch_call_imm;
14281 		}
14282 
14283 		/* Implement bpf_jiffies64 inline. */
14284 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14285 		    insn->imm == BPF_FUNC_jiffies64) {
14286 			struct bpf_insn ld_jiffies_addr[2] = {
14287 				BPF_LD_IMM64(BPF_REG_0,
14288 					     (unsigned long)&jiffies),
14289 			};
14290 
14291 			insn_buf[0] = ld_jiffies_addr[0];
14292 			insn_buf[1] = ld_jiffies_addr[1];
14293 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14294 						  BPF_REG_0, 0);
14295 			cnt = 3;
14296 
14297 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14298 						       cnt);
14299 			if (!new_prog)
14300 				return -ENOMEM;
14301 
14302 			delta    += cnt - 1;
14303 			env->prog = prog = new_prog;
14304 			insn      = new_prog->insnsi + i + delta;
14305 			continue;
14306 		}
14307 
14308 		/* Implement bpf_get_func_arg inline. */
14309 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14310 		    insn->imm == BPF_FUNC_get_func_arg) {
14311 			/* Load nr_args from ctx - 8 */
14312 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14313 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14314 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14315 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14316 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14317 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14318 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14319 			insn_buf[7] = BPF_JMP_A(1);
14320 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14321 			cnt = 9;
14322 
14323 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14324 			if (!new_prog)
14325 				return -ENOMEM;
14326 
14327 			delta    += cnt - 1;
14328 			env->prog = prog = new_prog;
14329 			insn      = new_prog->insnsi + i + delta;
14330 			continue;
14331 		}
14332 
14333 		/* Implement bpf_get_func_ret inline. */
14334 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14335 		    insn->imm == BPF_FUNC_get_func_ret) {
14336 			if (eatype == BPF_TRACE_FEXIT ||
14337 			    eatype == BPF_MODIFY_RETURN) {
14338 				/* Load nr_args from ctx - 8 */
14339 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14340 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14341 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14342 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14343 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14344 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14345 				cnt = 6;
14346 			} else {
14347 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14348 				cnt = 1;
14349 			}
14350 
14351 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14352 			if (!new_prog)
14353 				return -ENOMEM;
14354 
14355 			delta    += cnt - 1;
14356 			env->prog = prog = new_prog;
14357 			insn      = new_prog->insnsi + i + delta;
14358 			continue;
14359 		}
14360 
14361 		/* Implement get_func_arg_cnt inline. */
14362 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14363 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
14364 			/* Load nr_args from ctx - 8 */
14365 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14366 
14367 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14368 			if (!new_prog)
14369 				return -ENOMEM;
14370 
14371 			env->prog = prog = new_prog;
14372 			insn      = new_prog->insnsi + i + delta;
14373 			continue;
14374 		}
14375 
14376 		/* Implement bpf_get_func_ip inline. */
14377 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14378 		    insn->imm == BPF_FUNC_get_func_ip) {
14379 			/* Load IP address from ctx - 16 */
14380 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
14381 
14382 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14383 			if (!new_prog)
14384 				return -ENOMEM;
14385 
14386 			env->prog = prog = new_prog;
14387 			insn      = new_prog->insnsi + i + delta;
14388 			continue;
14389 		}
14390 
14391 patch_call_imm:
14392 		fn = env->ops->get_func_proto(insn->imm, env->prog);
14393 		/* all functions that have prototype and verifier allowed
14394 		 * programs to call them, must be real in-kernel functions
14395 		 */
14396 		if (!fn->func) {
14397 			verbose(env,
14398 				"kernel subsystem misconfigured func %s#%d\n",
14399 				func_id_name(insn->imm), insn->imm);
14400 			return -EFAULT;
14401 		}
14402 		insn->imm = fn->func - __bpf_call_base;
14403 	}
14404 
14405 	/* Since poke tab is now finalized, publish aux to tracker. */
14406 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
14407 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
14408 		if (!map_ptr->ops->map_poke_track ||
14409 		    !map_ptr->ops->map_poke_untrack ||
14410 		    !map_ptr->ops->map_poke_run) {
14411 			verbose(env, "bpf verifier is misconfigured\n");
14412 			return -EINVAL;
14413 		}
14414 
14415 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14416 		if (ret < 0) {
14417 			verbose(env, "tracking tail call prog failed\n");
14418 			return ret;
14419 		}
14420 	}
14421 
14422 	sort_kfunc_descs_by_imm(env->prog);
14423 
14424 	return 0;
14425 }
14426 
14427 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14428 					int position,
14429 					s32 stack_base,
14430 					u32 callback_subprogno,
14431 					u32 *cnt)
14432 {
14433 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14434 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14435 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14436 	int reg_loop_max = BPF_REG_6;
14437 	int reg_loop_cnt = BPF_REG_7;
14438 	int reg_loop_ctx = BPF_REG_8;
14439 
14440 	struct bpf_prog *new_prog;
14441 	u32 callback_start;
14442 	u32 call_insn_offset;
14443 	s32 callback_offset;
14444 
14445 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
14446 	 * be careful to modify this code in sync.
14447 	 */
14448 	struct bpf_insn insn_buf[] = {
14449 		/* Return error and jump to the end of the patch if
14450 		 * expected number of iterations is too big.
14451 		 */
14452 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14453 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14454 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14455 		/* spill R6, R7, R8 to use these as loop vars */
14456 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14457 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14458 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14459 		/* initialize loop vars */
14460 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14461 		BPF_MOV32_IMM(reg_loop_cnt, 0),
14462 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14463 		/* loop header,
14464 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
14465 		 */
14466 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14467 		/* callback call,
14468 		 * correct callback offset would be set after patching
14469 		 */
14470 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14471 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14472 		BPF_CALL_REL(0),
14473 		/* increment loop counter */
14474 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14475 		/* jump to loop header if callback returned 0 */
14476 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14477 		/* return value of bpf_loop,
14478 		 * set R0 to the number of iterations
14479 		 */
14480 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14481 		/* restore original values of R6, R7, R8 */
14482 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14483 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14484 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14485 	};
14486 
14487 	*cnt = ARRAY_SIZE(insn_buf);
14488 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14489 	if (!new_prog)
14490 		return new_prog;
14491 
14492 	/* callback start is known only after patching */
14493 	callback_start = env->subprog_info[callback_subprogno].start;
14494 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14495 	call_insn_offset = position + 12;
14496 	callback_offset = callback_start - call_insn_offset - 1;
14497 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
14498 
14499 	return new_prog;
14500 }
14501 
14502 static bool is_bpf_loop_call(struct bpf_insn *insn)
14503 {
14504 	return insn->code == (BPF_JMP | BPF_CALL) &&
14505 		insn->src_reg == 0 &&
14506 		insn->imm == BPF_FUNC_loop;
14507 }
14508 
14509 /* For all sub-programs in the program (including main) check
14510  * insn_aux_data to see if there are bpf_loop calls that require
14511  * inlining. If such calls are found the calls are replaced with a
14512  * sequence of instructions produced by `inline_bpf_loop` function and
14513  * subprog stack_depth is increased by the size of 3 registers.
14514  * This stack space is used to spill values of the R6, R7, R8.  These
14515  * registers are used to store the loop bound, counter and context
14516  * variables.
14517  */
14518 static int optimize_bpf_loop(struct bpf_verifier_env *env)
14519 {
14520 	struct bpf_subprog_info *subprogs = env->subprog_info;
14521 	int i, cur_subprog = 0, cnt, delta = 0;
14522 	struct bpf_insn *insn = env->prog->insnsi;
14523 	int insn_cnt = env->prog->len;
14524 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
14525 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14526 	u16 stack_depth_extra = 0;
14527 
14528 	for (i = 0; i < insn_cnt; i++, insn++) {
14529 		struct bpf_loop_inline_state *inline_state =
14530 			&env->insn_aux_data[i + delta].loop_inline_state;
14531 
14532 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14533 			struct bpf_prog *new_prog;
14534 
14535 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14536 			new_prog = inline_bpf_loop(env,
14537 						   i + delta,
14538 						   -(stack_depth + stack_depth_extra),
14539 						   inline_state->callback_subprogno,
14540 						   &cnt);
14541 			if (!new_prog)
14542 				return -ENOMEM;
14543 
14544 			delta     += cnt - 1;
14545 			env->prog  = new_prog;
14546 			insn       = new_prog->insnsi + i + delta;
14547 		}
14548 
14549 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14550 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
14551 			cur_subprog++;
14552 			stack_depth = subprogs[cur_subprog].stack_depth;
14553 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14554 			stack_depth_extra = 0;
14555 		}
14556 	}
14557 
14558 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14559 
14560 	return 0;
14561 }
14562 
14563 static void free_states(struct bpf_verifier_env *env)
14564 {
14565 	struct bpf_verifier_state_list *sl, *sln;
14566 	int i;
14567 
14568 	sl = env->free_list;
14569 	while (sl) {
14570 		sln = sl->next;
14571 		free_verifier_state(&sl->state, false);
14572 		kfree(sl);
14573 		sl = sln;
14574 	}
14575 	env->free_list = NULL;
14576 
14577 	if (!env->explored_states)
14578 		return;
14579 
14580 	for (i = 0; i < state_htab_size(env); i++) {
14581 		sl = env->explored_states[i];
14582 
14583 		while (sl) {
14584 			sln = sl->next;
14585 			free_verifier_state(&sl->state, false);
14586 			kfree(sl);
14587 			sl = sln;
14588 		}
14589 		env->explored_states[i] = NULL;
14590 	}
14591 }
14592 
14593 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14594 {
14595 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14596 	struct bpf_verifier_state *state;
14597 	struct bpf_reg_state *regs;
14598 	int ret, i;
14599 
14600 	env->prev_linfo = NULL;
14601 	env->pass_cnt++;
14602 
14603 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14604 	if (!state)
14605 		return -ENOMEM;
14606 	state->curframe = 0;
14607 	state->speculative = false;
14608 	state->branches = 1;
14609 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14610 	if (!state->frame[0]) {
14611 		kfree(state);
14612 		return -ENOMEM;
14613 	}
14614 	env->cur_state = state;
14615 	init_func_state(env, state->frame[0],
14616 			BPF_MAIN_FUNC /* callsite */,
14617 			0 /* frameno */,
14618 			subprog);
14619 
14620 	regs = state->frame[state->curframe]->regs;
14621 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14622 		ret = btf_prepare_func_args(env, subprog, regs);
14623 		if (ret)
14624 			goto out;
14625 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14626 			if (regs[i].type == PTR_TO_CTX)
14627 				mark_reg_known_zero(env, regs, i);
14628 			else if (regs[i].type == SCALAR_VALUE)
14629 				mark_reg_unknown(env, regs, i);
14630 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
14631 				const u32 mem_size = regs[i].mem_size;
14632 
14633 				mark_reg_known_zero(env, regs, i);
14634 				regs[i].mem_size = mem_size;
14635 				regs[i].id = ++env->id_gen;
14636 			}
14637 		}
14638 	} else {
14639 		/* 1st arg to a function */
14640 		regs[BPF_REG_1].type = PTR_TO_CTX;
14641 		mark_reg_known_zero(env, regs, BPF_REG_1);
14642 		ret = btf_check_subprog_arg_match(env, subprog, regs);
14643 		if (ret == -EFAULT)
14644 			/* unlikely verifier bug. abort.
14645 			 * ret == 0 and ret < 0 are sadly acceptable for
14646 			 * main() function due to backward compatibility.
14647 			 * Like socket filter program may be written as:
14648 			 * int bpf_prog(struct pt_regs *ctx)
14649 			 * and never dereference that ctx in the program.
14650 			 * 'struct pt_regs' is a type mismatch for socket
14651 			 * filter that should be using 'struct __sk_buff'.
14652 			 */
14653 			goto out;
14654 	}
14655 
14656 	ret = do_check(env);
14657 out:
14658 	/* check for NULL is necessary, since cur_state can be freed inside
14659 	 * do_check() under memory pressure.
14660 	 */
14661 	if (env->cur_state) {
14662 		free_verifier_state(env->cur_state, true);
14663 		env->cur_state = NULL;
14664 	}
14665 	while (!pop_stack(env, NULL, NULL, false));
14666 	if (!ret && pop_log)
14667 		bpf_vlog_reset(&env->log, 0);
14668 	free_states(env);
14669 	return ret;
14670 }
14671 
14672 /* Verify all global functions in a BPF program one by one based on their BTF.
14673  * All global functions must pass verification. Otherwise the whole program is rejected.
14674  * Consider:
14675  * int bar(int);
14676  * int foo(int f)
14677  * {
14678  *    return bar(f);
14679  * }
14680  * int bar(int b)
14681  * {
14682  *    ...
14683  * }
14684  * foo() will be verified first for R1=any_scalar_value. During verification it
14685  * will be assumed that bar() already verified successfully and call to bar()
14686  * from foo() will be checked for type match only. Later bar() will be verified
14687  * independently to check that it's safe for R1=any_scalar_value.
14688  */
14689 static int do_check_subprogs(struct bpf_verifier_env *env)
14690 {
14691 	struct bpf_prog_aux *aux = env->prog->aux;
14692 	int i, ret;
14693 
14694 	if (!aux->func_info)
14695 		return 0;
14696 
14697 	for (i = 1; i < env->subprog_cnt; i++) {
14698 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14699 			continue;
14700 		env->insn_idx = env->subprog_info[i].start;
14701 		WARN_ON_ONCE(env->insn_idx == 0);
14702 		ret = do_check_common(env, i);
14703 		if (ret) {
14704 			return ret;
14705 		} else if (env->log.level & BPF_LOG_LEVEL) {
14706 			verbose(env,
14707 				"Func#%d is safe for any args that match its prototype\n",
14708 				i);
14709 		}
14710 	}
14711 	return 0;
14712 }
14713 
14714 static int do_check_main(struct bpf_verifier_env *env)
14715 {
14716 	int ret;
14717 
14718 	env->insn_idx = 0;
14719 	ret = do_check_common(env, 0);
14720 	if (!ret)
14721 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14722 	return ret;
14723 }
14724 
14725 
14726 static void print_verification_stats(struct bpf_verifier_env *env)
14727 {
14728 	int i;
14729 
14730 	if (env->log.level & BPF_LOG_STATS) {
14731 		verbose(env, "verification time %lld usec\n",
14732 			div_u64(env->verification_time, 1000));
14733 		verbose(env, "stack depth ");
14734 		for (i = 0; i < env->subprog_cnt; i++) {
14735 			u32 depth = env->subprog_info[i].stack_depth;
14736 
14737 			verbose(env, "%d", depth);
14738 			if (i + 1 < env->subprog_cnt)
14739 				verbose(env, "+");
14740 		}
14741 		verbose(env, "\n");
14742 	}
14743 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14744 		"total_states %d peak_states %d mark_read %d\n",
14745 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14746 		env->max_states_per_insn, env->total_states,
14747 		env->peak_states, env->longest_mark_read_walk);
14748 }
14749 
14750 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14751 {
14752 	const struct btf_type *t, *func_proto;
14753 	const struct bpf_struct_ops *st_ops;
14754 	const struct btf_member *member;
14755 	struct bpf_prog *prog = env->prog;
14756 	u32 btf_id, member_idx;
14757 	const char *mname;
14758 
14759 	if (!prog->gpl_compatible) {
14760 		verbose(env, "struct ops programs must have a GPL compatible license\n");
14761 		return -EINVAL;
14762 	}
14763 
14764 	btf_id = prog->aux->attach_btf_id;
14765 	st_ops = bpf_struct_ops_find(btf_id);
14766 	if (!st_ops) {
14767 		verbose(env, "attach_btf_id %u is not a supported struct\n",
14768 			btf_id);
14769 		return -ENOTSUPP;
14770 	}
14771 
14772 	t = st_ops->type;
14773 	member_idx = prog->expected_attach_type;
14774 	if (member_idx >= btf_type_vlen(t)) {
14775 		verbose(env, "attach to invalid member idx %u of struct %s\n",
14776 			member_idx, st_ops->name);
14777 		return -EINVAL;
14778 	}
14779 
14780 	member = &btf_type_member(t)[member_idx];
14781 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14782 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14783 					       NULL);
14784 	if (!func_proto) {
14785 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14786 			mname, member_idx, st_ops->name);
14787 		return -EINVAL;
14788 	}
14789 
14790 	if (st_ops->check_member) {
14791 		int err = st_ops->check_member(t, member);
14792 
14793 		if (err) {
14794 			verbose(env, "attach to unsupported member %s of struct %s\n",
14795 				mname, st_ops->name);
14796 			return err;
14797 		}
14798 	}
14799 
14800 	prog->aux->attach_func_proto = func_proto;
14801 	prog->aux->attach_func_name = mname;
14802 	env->ops = st_ops->verifier_ops;
14803 
14804 	return 0;
14805 }
14806 #define SECURITY_PREFIX "security_"
14807 
14808 static int check_attach_modify_return(unsigned long addr, const char *func_name)
14809 {
14810 	if (within_error_injection_list(addr) ||
14811 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
14812 		return 0;
14813 
14814 	return -EINVAL;
14815 }
14816 
14817 /* list of non-sleepable functions that are otherwise on
14818  * ALLOW_ERROR_INJECTION list
14819  */
14820 BTF_SET_START(btf_non_sleepable_error_inject)
14821 /* Three functions below can be called from sleepable and non-sleepable context.
14822  * Assume non-sleepable from bpf safety point of view.
14823  */
14824 BTF_ID(func, __filemap_add_folio)
14825 BTF_ID(func, should_fail_alloc_page)
14826 BTF_ID(func, should_failslab)
14827 BTF_SET_END(btf_non_sleepable_error_inject)
14828 
14829 static int check_non_sleepable_error_inject(u32 btf_id)
14830 {
14831 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14832 }
14833 
14834 int bpf_check_attach_target(struct bpf_verifier_log *log,
14835 			    const struct bpf_prog *prog,
14836 			    const struct bpf_prog *tgt_prog,
14837 			    u32 btf_id,
14838 			    struct bpf_attach_target_info *tgt_info)
14839 {
14840 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
14841 	const char prefix[] = "btf_trace_";
14842 	int ret = 0, subprog = -1, i;
14843 	const struct btf_type *t;
14844 	bool conservative = true;
14845 	const char *tname;
14846 	struct btf *btf;
14847 	long addr = 0;
14848 
14849 	if (!btf_id) {
14850 		bpf_log(log, "Tracing programs must provide btf_id\n");
14851 		return -EINVAL;
14852 	}
14853 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
14854 	if (!btf) {
14855 		bpf_log(log,
14856 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14857 		return -EINVAL;
14858 	}
14859 	t = btf_type_by_id(btf, btf_id);
14860 	if (!t) {
14861 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
14862 		return -EINVAL;
14863 	}
14864 	tname = btf_name_by_offset(btf, t->name_off);
14865 	if (!tname) {
14866 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
14867 		return -EINVAL;
14868 	}
14869 	if (tgt_prog) {
14870 		struct bpf_prog_aux *aux = tgt_prog->aux;
14871 
14872 		for (i = 0; i < aux->func_info_cnt; i++)
14873 			if (aux->func_info[i].type_id == btf_id) {
14874 				subprog = i;
14875 				break;
14876 			}
14877 		if (subprog == -1) {
14878 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
14879 			return -EINVAL;
14880 		}
14881 		conservative = aux->func_info_aux[subprog].unreliable;
14882 		if (prog_extension) {
14883 			if (conservative) {
14884 				bpf_log(log,
14885 					"Cannot replace static functions\n");
14886 				return -EINVAL;
14887 			}
14888 			if (!prog->jit_requested) {
14889 				bpf_log(log,
14890 					"Extension programs should be JITed\n");
14891 				return -EINVAL;
14892 			}
14893 		}
14894 		if (!tgt_prog->jited) {
14895 			bpf_log(log, "Can attach to only JITed progs\n");
14896 			return -EINVAL;
14897 		}
14898 		if (tgt_prog->type == prog->type) {
14899 			/* Cannot fentry/fexit another fentry/fexit program.
14900 			 * Cannot attach program extension to another extension.
14901 			 * It's ok to attach fentry/fexit to extension program.
14902 			 */
14903 			bpf_log(log, "Cannot recursively attach\n");
14904 			return -EINVAL;
14905 		}
14906 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14907 		    prog_extension &&
14908 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14909 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14910 			/* Program extensions can extend all program types
14911 			 * except fentry/fexit. The reason is the following.
14912 			 * The fentry/fexit programs are used for performance
14913 			 * analysis, stats and can be attached to any program
14914 			 * type except themselves. When extension program is
14915 			 * replacing XDP function it is necessary to allow
14916 			 * performance analysis of all functions. Both original
14917 			 * XDP program and its program extension. Hence
14918 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14919 			 * allowed. If extending of fentry/fexit was allowed it
14920 			 * would be possible to create long call chain
14921 			 * fentry->extension->fentry->extension beyond
14922 			 * reasonable stack size. Hence extending fentry is not
14923 			 * allowed.
14924 			 */
14925 			bpf_log(log, "Cannot extend fentry/fexit\n");
14926 			return -EINVAL;
14927 		}
14928 	} else {
14929 		if (prog_extension) {
14930 			bpf_log(log, "Cannot replace kernel functions\n");
14931 			return -EINVAL;
14932 		}
14933 	}
14934 
14935 	switch (prog->expected_attach_type) {
14936 	case BPF_TRACE_RAW_TP:
14937 		if (tgt_prog) {
14938 			bpf_log(log,
14939 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14940 			return -EINVAL;
14941 		}
14942 		if (!btf_type_is_typedef(t)) {
14943 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
14944 				btf_id);
14945 			return -EINVAL;
14946 		}
14947 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
14948 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
14949 				btf_id, tname);
14950 			return -EINVAL;
14951 		}
14952 		tname += sizeof(prefix) - 1;
14953 		t = btf_type_by_id(btf, t->type);
14954 		if (!btf_type_is_ptr(t))
14955 			/* should never happen in valid vmlinux build */
14956 			return -EINVAL;
14957 		t = btf_type_by_id(btf, t->type);
14958 		if (!btf_type_is_func_proto(t))
14959 			/* should never happen in valid vmlinux build */
14960 			return -EINVAL;
14961 
14962 		break;
14963 	case BPF_TRACE_ITER:
14964 		if (!btf_type_is_func(t)) {
14965 			bpf_log(log, "attach_btf_id %u is not a function\n",
14966 				btf_id);
14967 			return -EINVAL;
14968 		}
14969 		t = btf_type_by_id(btf, t->type);
14970 		if (!btf_type_is_func_proto(t))
14971 			return -EINVAL;
14972 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14973 		if (ret)
14974 			return ret;
14975 		break;
14976 	default:
14977 		if (!prog_extension)
14978 			return -EINVAL;
14979 		fallthrough;
14980 	case BPF_MODIFY_RETURN:
14981 	case BPF_LSM_MAC:
14982 	case BPF_LSM_CGROUP:
14983 	case BPF_TRACE_FENTRY:
14984 	case BPF_TRACE_FEXIT:
14985 		if (!btf_type_is_func(t)) {
14986 			bpf_log(log, "attach_btf_id %u is not a function\n",
14987 				btf_id);
14988 			return -EINVAL;
14989 		}
14990 		if (prog_extension &&
14991 		    btf_check_type_match(log, prog, btf, t))
14992 			return -EINVAL;
14993 		t = btf_type_by_id(btf, t->type);
14994 		if (!btf_type_is_func_proto(t))
14995 			return -EINVAL;
14996 
14997 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14998 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14999 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
15000 			return -EINVAL;
15001 
15002 		if (tgt_prog && conservative)
15003 			t = NULL;
15004 
15005 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
15006 		if (ret < 0)
15007 			return ret;
15008 
15009 		if (tgt_prog) {
15010 			if (subprog == 0)
15011 				addr = (long) tgt_prog->bpf_func;
15012 			else
15013 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
15014 		} else {
15015 			addr = kallsyms_lookup_name(tname);
15016 			if (!addr) {
15017 				bpf_log(log,
15018 					"The address of function %s cannot be found\n",
15019 					tname);
15020 				return -ENOENT;
15021 			}
15022 		}
15023 
15024 		if (prog->aux->sleepable) {
15025 			ret = -EINVAL;
15026 			switch (prog->type) {
15027 			case BPF_PROG_TYPE_TRACING:
15028 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
15029 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
15030 				 */
15031 				if (!check_non_sleepable_error_inject(btf_id) &&
15032 				    within_error_injection_list(addr))
15033 					ret = 0;
15034 				break;
15035 			case BPF_PROG_TYPE_LSM:
15036 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
15037 				 * Only some of them are sleepable.
15038 				 */
15039 				if (bpf_lsm_is_sleepable_hook(btf_id))
15040 					ret = 0;
15041 				break;
15042 			default:
15043 				break;
15044 			}
15045 			if (ret) {
15046 				bpf_log(log, "%s is not sleepable\n", tname);
15047 				return ret;
15048 			}
15049 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
15050 			if (tgt_prog) {
15051 				bpf_log(log, "can't modify return codes of BPF programs\n");
15052 				return -EINVAL;
15053 			}
15054 			ret = check_attach_modify_return(addr, tname);
15055 			if (ret) {
15056 				bpf_log(log, "%s() is not modifiable\n", tname);
15057 				return ret;
15058 			}
15059 		}
15060 
15061 		break;
15062 	}
15063 	tgt_info->tgt_addr = addr;
15064 	tgt_info->tgt_name = tname;
15065 	tgt_info->tgt_type = t;
15066 	return 0;
15067 }
15068 
15069 BTF_SET_START(btf_id_deny)
15070 BTF_ID_UNUSED
15071 #ifdef CONFIG_SMP
15072 BTF_ID(func, migrate_disable)
15073 BTF_ID(func, migrate_enable)
15074 #endif
15075 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15076 BTF_ID(func, rcu_read_unlock_strict)
15077 #endif
15078 BTF_SET_END(btf_id_deny)
15079 
15080 static int check_attach_btf_id(struct bpf_verifier_env *env)
15081 {
15082 	struct bpf_prog *prog = env->prog;
15083 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
15084 	struct bpf_attach_target_info tgt_info = {};
15085 	u32 btf_id = prog->aux->attach_btf_id;
15086 	struct bpf_trampoline *tr;
15087 	int ret;
15088 	u64 key;
15089 
15090 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15091 		if (prog->aux->sleepable)
15092 			/* attach_btf_id checked to be zero already */
15093 			return 0;
15094 		verbose(env, "Syscall programs can only be sleepable\n");
15095 		return -EINVAL;
15096 	}
15097 
15098 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
15099 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15100 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
15101 		return -EINVAL;
15102 	}
15103 
15104 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15105 		return check_struct_ops_btf_id(env);
15106 
15107 	if (prog->type != BPF_PROG_TYPE_TRACING &&
15108 	    prog->type != BPF_PROG_TYPE_LSM &&
15109 	    prog->type != BPF_PROG_TYPE_EXT)
15110 		return 0;
15111 
15112 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15113 	if (ret)
15114 		return ret;
15115 
15116 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
15117 		/* to make freplace equivalent to their targets, they need to
15118 		 * inherit env->ops and expected_attach_type for the rest of the
15119 		 * verification
15120 		 */
15121 		env->ops = bpf_verifier_ops[tgt_prog->type];
15122 		prog->expected_attach_type = tgt_prog->expected_attach_type;
15123 	}
15124 
15125 	/* store info about the attachment target that will be used later */
15126 	prog->aux->attach_func_proto = tgt_info.tgt_type;
15127 	prog->aux->attach_func_name = tgt_info.tgt_name;
15128 
15129 	if (tgt_prog) {
15130 		prog->aux->saved_dst_prog_type = tgt_prog->type;
15131 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15132 	}
15133 
15134 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15135 		prog->aux->attach_btf_trace = true;
15136 		return 0;
15137 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15138 		if (!bpf_iter_prog_supported(prog))
15139 			return -EINVAL;
15140 		return 0;
15141 	}
15142 
15143 	if (prog->type == BPF_PROG_TYPE_LSM) {
15144 		ret = bpf_lsm_verify_prog(&env->log, prog);
15145 		if (ret < 0)
15146 			return ret;
15147 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
15148 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
15149 		return -EINVAL;
15150 	}
15151 
15152 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
15153 	tr = bpf_trampoline_get(key, &tgt_info);
15154 	if (!tr)
15155 		return -ENOMEM;
15156 
15157 	prog->aux->dst_trampoline = tr;
15158 	return 0;
15159 }
15160 
15161 struct btf *bpf_get_btf_vmlinux(void)
15162 {
15163 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15164 		mutex_lock(&bpf_verifier_lock);
15165 		if (!btf_vmlinux)
15166 			btf_vmlinux = btf_parse_vmlinux();
15167 		mutex_unlock(&bpf_verifier_lock);
15168 	}
15169 	return btf_vmlinux;
15170 }
15171 
15172 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
15173 {
15174 	u64 start_time = ktime_get_ns();
15175 	struct bpf_verifier_env *env;
15176 	struct bpf_verifier_log *log;
15177 	int i, len, ret = -EINVAL;
15178 	bool is_priv;
15179 
15180 	/* no program is valid */
15181 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15182 		return -EINVAL;
15183 
15184 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
15185 	 * allocate/free it every time bpf_check() is called
15186 	 */
15187 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
15188 	if (!env)
15189 		return -ENOMEM;
15190 	log = &env->log;
15191 
15192 	len = (*prog)->len;
15193 	env->insn_aux_data =
15194 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
15195 	ret = -ENOMEM;
15196 	if (!env->insn_aux_data)
15197 		goto err_free_env;
15198 	for (i = 0; i < len; i++)
15199 		env->insn_aux_data[i].orig_idx = i;
15200 	env->prog = *prog;
15201 	env->ops = bpf_verifier_ops[env->prog->type];
15202 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
15203 	is_priv = bpf_capable();
15204 
15205 	bpf_get_btf_vmlinux();
15206 
15207 	/* grab the mutex to protect few globals used by verifier */
15208 	if (!is_priv)
15209 		mutex_lock(&bpf_verifier_lock);
15210 
15211 	if (attr->log_level || attr->log_buf || attr->log_size) {
15212 		/* user requested verbose verifier output
15213 		 * and supplied buffer to store the verification trace
15214 		 */
15215 		log->level = attr->log_level;
15216 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15217 		log->len_total = attr->log_size;
15218 
15219 		/* log attributes have to be sane */
15220 		if (!bpf_verifier_log_attr_valid(log)) {
15221 			ret = -EINVAL;
15222 			goto err_unlock;
15223 		}
15224 	}
15225 
15226 	mark_verifier_state_clean(env);
15227 
15228 	if (IS_ERR(btf_vmlinux)) {
15229 		/* Either gcc or pahole or kernel are broken. */
15230 		verbose(env, "in-kernel BTF is malformed\n");
15231 		ret = PTR_ERR(btf_vmlinux);
15232 		goto skip_full_check;
15233 	}
15234 
15235 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15236 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
15237 		env->strict_alignment = true;
15238 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15239 		env->strict_alignment = false;
15240 
15241 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
15242 	env->allow_uninit_stack = bpf_allow_uninit_stack();
15243 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
15244 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
15245 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
15246 	env->bpf_capable = bpf_capable();
15247 
15248 	if (is_priv)
15249 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15250 
15251 	env->explored_states = kvcalloc(state_htab_size(env),
15252 				       sizeof(struct bpf_verifier_state_list *),
15253 				       GFP_USER);
15254 	ret = -ENOMEM;
15255 	if (!env->explored_states)
15256 		goto skip_full_check;
15257 
15258 	ret = add_subprog_and_kfunc(env);
15259 	if (ret < 0)
15260 		goto skip_full_check;
15261 
15262 	ret = check_subprogs(env);
15263 	if (ret < 0)
15264 		goto skip_full_check;
15265 
15266 	ret = check_btf_info(env, attr, uattr);
15267 	if (ret < 0)
15268 		goto skip_full_check;
15269 
15270 	ret = check_attach_btf_id(env);
15271 	if (ret)
15272 		goto skip_full_check;
15273 
15274 	ret = resolve_pseudo_ldimm64(env);
15275 	if (ret < 0)
15276 		goto skip_full_check;
15277 
15278 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
15279 		ret = bpf_prog_offload_verifier_prep(env->prog);
15280 		if (ret)
15281 			goto skip_full_check;
15282 	}
15283 
15284 	ret = check_cfg(env);
15285 	if (ret < 0)
15286 		goto skip_full_check;
15287 
15288 	ret = do_check_subprogs(env);
15289 	ret = ret ?: do_check_main(env);
15290 
15291 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15292 		ret = bpf_prog_offload_finalize(env);
15293 
15294 skip_full_check:
15295 	kvfree(env->explored_states);
15296 
15297 	if (ret == 0)
15298 		ret = check_max_stack_depth(env);
15299 
15300 	/* instruction rewrites happen after this point */
15301 	if (ret == 0)
15302 		ret = optimize_bpf_loop(env);
15303 
15304 	if (is_priv) {
15305 		if (ret == 0)
15306 			opt_hard_wire_dead_code_branches(env);
15307 		if (ret == 0)
15308 			ret = opt_remove_dead_code(env);
15309 		if (ret == 0)
15310 			ret = opt_remove_nops(env);
15311 	} else {
15312 		if (ret == 0)
15313 			sanitize_dead_code(env);
15314 	}
15315 
15316 	if (ret == 0)
15317 		/* program is valid, convert *(u32*)(ctx + off) accesses */
15318 		ret = convert_ctx_accesses(env);
15319 
15320 	if (ret == 0)
15321 		ret = do_misc_fixups(env);
15322 
15323 	/* do 32-bit optimization after insn patching has done so those patched
15324 	 * insns could be handled correctly.
15325 	 */
15326 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15327 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15328 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15329 								     : false;
15330 	}
15331 
15332 	if (ret == 0)
15333 		ret = fixup_call_args(env);
15334 
15335 	env->verification_time = ktime_get_ns() - start_time;
15336 	print_verification_stats(env);
15337 	env->prog->aux->verified_insns = env->insn_processed;
15338 
15339 	if (log->level && bpf_verifier_log_full(log))
15340 		ret = -ENOSPC;
15341 	if (log->level && !log->ubuf) {
15342 		ret = -EFAULT;
15343 		goto err_release_maps;
15344 	}
15345 
15346 	if (ret)
15347 		goto err_release_maps;
15348 
15349 	if (env->used_map_cnt) {
15350 		/* if program passed verifier, update used_maps in bpf_prog_info */
15351 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15352 							  sizeof(env->used_maps[0]),
15353 							  GFP_KERNEL);
15354 
15355 		if (!env->prog->aux->used_maps) {
15356 			ret = -ENOMEM;
15357 			goto err_release_maps;
15358 		}
15359 
15360 		memcpy(env->prog->aux->used_maps, env->used_maps,
15361 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
15362 		env->prog->aux->used_map_cnt = env->used_map_cnt;
15363 	}
15364 	if (env->used_btf_cnt) {
15365 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
15366 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15367 							  sizeof(env->used_btfs[0]),
15368 							  GFP_KERNEL);
15369 		if (!env->prog->aux->used_btfs) {
15370 			ret = -ENOMEM;
15371 			goto err_release_maps;
15372 		}
15373 
15374 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
15375 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15376 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15377 	}
15378 	if (env->used_map_cnt || env->used_btf_cnt) {
15379 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
15380 		 * bpf_ld_imm64 instructions
15381 		 */
15382 		convert_pseudo_ld_imm64(env);
15383 	}
15384 
15385 	adjust_btf_func(env);
15386 
15387 err_release_maps:
15388 	if (!env->prog->aux->used_maps)
15389 		/* if we didn't copy map pointers into bpf_prog_info, release
15390 		 * them now. Otherwise free_used_maps() will release them.
15391 		 */
15392 		release_maps(env);
15393 	if (!env->prog->aux->used_btfs)
15394 		release_btfs(env);
15395 
15396 	/* extension progs temporarily inherit the attach_type of their targets
15397 	   for verification purposes, so set it back to zero before returning
15398 	 */
15399 	if (env->prog->type == BPF_PROG_TYPE_EXT)
15400 		env->prog->expected_attach_type = 0;
15401 
15402 	*prog = env->prog;
15403 err_unlock:
15404 	if (!is_priv)
15405 		mutex_unlock(&bpf_verifier_lock);
15406 	vfree(env->insn_aux_data);
15407 err_free_env:
15408 	kfree(env);
15409 	return ret;
15410 }
15411