1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 /* bpf_check() is a static code analyzer that walks eBPF program 25 * instruction by instruction and updates register/stack state. 26 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 27 * 28 * The first pass is depth-first-search to check that the program is a DAG. 29 * It rejects the following programs: 30 * - larger than BPF_MAXINSNS insns 31 * - if loop is present (detected via back-edge) 32 * - unreachable insns exist (shouldn't be a forest. program = one function) 33 * - out of bounds or malformed jumps 34 * The second pass is all possible path descent from the 1st insn. 35 * Since it's analyzing all pathes through the program, the length of the 36 * analysis is limited to 64k insn, which may be hit even if total number of 37 * insn is less then 4K, but there are too many branches that change stack/regs. 38 * Number of 'branches to be analyzed' is limited to 1k 39 * 40 * On entry to each instruction, each register has a type, and the instruction 41 * changes the types of the registers depending on instruction semantics. 42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 43 * copied to R1. 44 * 45 * All registers are 64-bit. 46 * R0 - return register 47 * R1-R5 argument passing registers 48 * R6-R9 callee saved registers 49 * R10 - frame pointer read-only 50 * 51 * At the start of BPF program the register R1 contains a pointer to bpf_context 52 * and has type PTR_TO_CTX. 53 * 54 * Verifier tracks arithmetic operations on pointers in case: 55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 57 * 1st insn copies R10 (which has FRAME_PTR) type into R1 58 * and 2nd arithmetic instruction is pattern matched to recognize 59 * that it wants to construct a pointer to some element within stack. 60 * So after 2nd insn, the register R1 has type PTR_TO_STACK 61 * (and -20 constant is saved for further stack bounds checking). 62 * Meaning that this reg is a pointer to stack plus known immediate constant. 63 * 64 * Most of the time the registers have UNKNOWN_VALUE type, which 65 * means the register has some value, but it's not a valid pointer. 66 * (like pointer plus pointer becomes UNKNOWN_VALUE type) 67 * 68 * When verifier sees load or store instructions the type of base register 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer 70 * types recognized by check_mem_access() function. 71 * 72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 73 * and the range of [ptr, ptr + map's value_size) is accessible. 74 * 75 * registers used to pass values to function calls are checked against 76 * function argument constraints. 77 * 78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 79 * It means that the register type passed to this function must be 80 * PTR_TO_STACK and it will be used inside the function as 81 * 'pointer to map element key' 82 * 83 * For example the argument constraints for bpf_map_lookup_elem(): 84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 85 * .arg1_type = ARG_CONST_MAP_PTR, 86 * .arg2_type = ARG_PTR_TO_MAP_KEY, 87 * 88 * ret_type says that this function returns 'pointer to map elem value or null' 89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 90 * 2nd argument should be a pointer to stack, which will be used inside 91 * the helper function as a pointer to map element key. 92 * 93 * On the kernel side the helper function looks like: 94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 95 * { 96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 97 * void *key = (void *) (unsigned long) r2; 98 * void *value; 99 * 100 * here kernel can access 'key' and 'map' pointers safely, knowing that 101 * [key, key + map->key_size) bytes are valid and were initialized on 102 * the stack of eBPF program. 103 * } 104 * 105 * Corresponding eBPF program may look like: 106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 110 * here verifier looks at prototype of map_lookup_elem() and sees: 111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 113 * 114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 116 * and were initialized prior to this call. 117 * If it's ok, then verifier allows this BPF_CALL insn and looks at 118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 120 * returns ether pointer to map value or NULL. 121 * 122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 123 * insn, the register holding that pointer in the true branch changes state to 124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 125 * branch. See check_cond_jmp_op(). 126 * 127 * After the call R0 is set to return type of the function and registers R1-R5 128 * are set to NOT_INIT to indicate that they are no longer readable. 129 */ 130 131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 132 struct bpf_verifier_stack_elem { 133 /* verifer state is 'st' 134 * before processing instruction 'insn_idx' 135 * and after processing instruction 'prev_insn_idx' 136 */ 137 struct bpf_verifier_state st; 138 int insn_idx; 139 int prev_insn_idx; 140 struct bpf_verifier_stack_elem *next; 141 }; 142 143 #define BPF_COMPLEXITY_LIMIT_INSNS 98304 144 #define BPF_COMPLEXITY_LIMIT_STACK 1024 145 146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 147 148 struct bpf_call_arg_meta { 149 struct bpf_map *map_ptr; 150 bool raw_mode; 151 bool pkt_access; 152 int regno; 153 int access_size; 154 }; 155 156 /* verbose verifier prints what it's seeing 157 * bpf_check() is called under lock, so no race to access these global vars 158 */ 159 static u32 log_level, log_size, log_len; 160 static char *log_buf; 161 162 static DEFINE_MUTEX(bpf_verifier_lock); 163 164 /* log_level controls verbosity level of eBPF verifier. 165 * verbose() is used to dump the verification trace to the log, so the user 166 * can figure out what's wrong with the program 167 */ 168 static __printf(1, 2) void verbose(const char *fmt, ...) 169 { 170 va_list args; 171 172 if (log_level == 0 || log_len >= log_size - 1) 173 return; 174 175 va_start(args, fmt); 176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); 177 va_end(args); 178 } 179 180 /* string representation of 'enum bpf_reg_type' */ 181 static const char * const reg_type_str[] = { 182 [NOT_INIT] = "?", 183 [UNKNOWN_VALUE] = "inv", 184 [PTR_TO_CTX] = "ctx", 185 [CONST_PTR_TO_MAP] = "map_ptr", 186 [PTR_TO_MAP_VALUE] = "map_value", 187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj", 189 [FRAME_PTR] = "fp", 190 [PTR_TO_STACK] = "fp", 191 [CONST_IMM] = "imm", 192 [PTR_TO_PACKET] = "pkt", 193 [PTR_TO_PACKET_END] = "pkt_end", 194 }; 195 196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x) 197 static const char * const func_id_str[] = { 198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN) 199 }; 200 #undef __BPF_FUNC_STR_FN 201 202 static const char *func_id_name(int id) 203 { 204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID); 205 206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id]) 207 return func_id_str[id]; 208 else 209 return "unknown"; 210 } 211 212 static void print_verifier_state(struct bpf_verifier_state *state) 213 { 214 struct bpf_reg_state *reg; 215 enum bpf_reg_type t; 216 int i; 217 218 for (i = 0; i < MAX_BPF_REG; i++) { 219 reg = &state->regs[i]; 220 t = reg->type; 221 if (t == NOT_INIT) 222 continue; 223 verbose(" R%d=%s", i, reg_type_str[t]); 224 if (t == CONST_IMM || t == PTR_TO_STACK) 225 verbose("%lld", reg->imm); 226 else if (t == PTR_TO_PACKET) 227 verbose("(id=%d,off=%d,r=%d)", 228 reg->id, reg->off, reg->range); 229 else if (t == UNKNOWN_VALUE && reg->imm) 230 verbose("%lld", reg->imm); 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE || 232 t == PTR_TO_MAP_VALUE_OR_NULL || 233 t == PTR_TO_MAP_VALUE_ADJ) 234 verbose("(ks=%d,vs=%d,id=%u)", 235 reg->map_ptr->key_size, 236 reg->map_ptr->value_size, 237 reg->id); 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE) 239 verbose(",min_value=%lld", 240 (long long)reg->min_value); 241 if (reg->max_value != BPF_REGISTER_MAX_RANGE) 242 verbose(",max_value=%llu", 243 (unsigned long long)reg->max_value); 244 if (reg->min_align) 245 verbose(",min_align=%u", reg->min_align); 246 if (reg->aux_off) 247 verbose(",aux_off=%u", reg->aux_off); 248 if (reg->aux_off_align) 249 verbose(",aux_off_align=%u", reg->aux_off_align); 250 } 251 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 252 if (state->stack_slot_type[i] == STACK_SPILL) 253 verbose(" fp%d=%s", -MAX_BPF_STACK + i, 254 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]); 255 } 256 verbose("\n"); 257 } 258 259 static const char *const bpf_class_string[] = { 260 [BPF_LD] = "ld", 261 [BPF_LDX] = "ldx", 262 [BPF_ST] = "st", 263 [BPF_STX] = "stx", 264 [BPF_ALU] = "alu", 265 [BPF_JMP] = "jmp", 266 [BPF_RET] = "BUG", 267 [BPF_ALU64] = "alu64", 268 }; 269 270 static const char *const bpf_alu_string[16] = { 271 [BPF_ADD >> 4] = "+=", 272 [BPF_SUB >> 4] = "-=", 273 [BPF_MUL >> 4] = "*=", 274 [BPF_DIV >> 4] = "/=", 275 [BPF_OR >> 4] = "|=", 276 [BPF_AND >> 4] = "&=", 277 [BPF_LSH >> 4] = "<<=", 278 [BPF_RSH >> 4] = ">>=", 279 [BPF_NEG >> 4] = "neg", 280 [BPF_MOD >> 4] = "%=", 281 [BPF_XOR >> 4] = "^=", 282 [BPF_MOV >> 4] = "=", 283 [BPF_ARSH >> 4] = "s>>=", 284 [BPF_END >> 4] = "endian", 285 }; 286 287 static const char *const bpf_ldst_string[] = { 288 [BPF_W >> 3] = "u32", 289 [BPF_H >> 3] = "u16", 290 [BPF_B >> 3] = "u8", 291 [BPF_DW >> 3] = "u64", 292 }; 293 294 static const char *const bpf_jmp_string[16] = { 295 [BPF_JA >> 4] = "jmp", 296 [BPF_JEQ >> 4] = "==", 297 [BPF_JGT >> 4] = ">", 298 [BPF_JGE >> 4] = ">=", 299 [BPF_JSET >> 4] = "&", 300 [BPF_JNE >> 4] = "!=", 301 [BPF_JSGT >> 4] = "s>", 302 [BPF_JSGE >> 4] = "s>=", 303 [BPF_CALL >> 4] = "call", 304 [BPF_EXIT >> 4] = "exit", 305 }; 306 307 static void print_bpf_insn(const struct bpf_verifier_env *env, 308 const struct bpf_insn *insn) 309 { 310 u8 class = BPF_CLASS(insn->code); 311 312 if (class == BPF_ALU || class == BPF_ALU64) { 313 if (BPF_SRC(insn->code) == BPF_X) 314 verbose("(%02x) %sr%d %s %sr%d\n", 315 insn->code, class == BPF_ALU ? "(u32) " : "", 316 insn->dst_reg, 317 bpf_alu_string[BPF_OP(insn->code) >> 4], 318 class == BPF_ALU ? "(u32) " : "", 319 insn->src_reg); 320 else 321 verbose("(%02x) %sr%d %s %s%d\n", 322 insn->code, class == BPF_ALU ? "(u32) " : "", 323 insn->dst_reg, 324 bpf_alu_string[BPF_OP(insn->code) >> 4], 325 class == BPF_ALU ? "(u32) " : "", 326 insn->imm); 327 } else if (class == BPF_STX) { 328 if (BPF_MODE(insn->code) == BPF_MEM) 329 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", 330 insn->code, 331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 332 insn->dst_reg, 333 insn->off, insn->src_reg); 334 else if (BPF_MODE(insn->code) == BPF_XADD) 335 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", 336 insn->code, 337 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 338 insn->dst_reg, insn->off, 339 insn->src_reg); 340 else 341 verbose("BUG_%02x\n", insn->code); 342 } else if (class == BPF_ST) { 343 if (BPF_MODE(insn->code) != BPF_MEM) { 344 verbose("BUG_st_%02x\n", insn->code); 345 return; 346 } 347 verbose("(%02x) *(%s *)(r%d %+d) = %d\n", 348 insn->code, 349 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 350 insn->dst_reg, 351 insn->off, insn->imm); 352 } else if (class == BPF_LDX) { 353 if (BPF_MODE(insn->code) != BPF_MEM) { 354 verbose("BUG_ldx_%02x\n", insn->code); 355 return; 356 } 357 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", 358 insn->code, insn->dst_reg, 359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 360 insn->src_reg, insn->off); 361 } else if (class == BPF_LD) { 362 if (BPF_MODE(insn->code) == BPF_ABS) { 363 verbose("(%02x) r0 = *(%s *)skb[%d]\n", 364 insn->code, 365 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 366 insn->imm); 367 } else if (BPF_MODE(insn->code) == BPF_IND) { 368 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", 369 insn->code, 370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 371 insn->src_reg, insn->imm); 372 } else if (BPF_MODE(insn->code) == BPF_IMM && 373 BPF_SIZE(insn->code) == BPF_DW) { 374 /* At this point, we already made sure that the second 375 * part of the ldimm64 insn is accessible. 376 */ 377 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 378 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD; 379 380 if (map_ptr && !env->allow_ptr_leaks) 381 imm = 0; 382 383 verbose("(%02x) r%d = 0x%llx\n", insn->code, 384 insn->dst_reg, (unsigned long long)imm); 385 } else { 386 verbose("BUG_ld_%02x\n", insn->code); 387 return; 388 } 389 } else if (class == BPF_JMP) { 390 u8 opcode = BPF_OP(insn->code); 391 392 if (opcode == BPF_CALL) { 393 verbose("(%02x) call %s#%d\n", insn->code, 394 func_id_name(insn->imm), insn->imm); 395 } else if (insn->code == (BPF_JMP | BPF_JA)) { 396 verbose("(%02x) goto pc%+d\n", 397 insn->code, insn->off); 398 } else if (insn->code == (BPF_JMP | BPF_EXIT)) { 399 verbose("(%02x) exit\n", insn->code); 400 } else if (BPF_SRC(insn->code) == BPF_X) { 401 verbose("(%02x) if r%d %s r%d goto pc%+d\n", 402 insn->code, insn->dst_reg, 403 bpf_jmp_string[BPF_OP(insn->code) >> 4], 404 insn->src_reg, insn->off); 405 } else { 406 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", 407 insn->code, insn->dst_reg, 408 bpf_jmp_string[BPF_OP(insn->code) >> 4], 409 insn->imm, insn->off); 410 } 411 } else { 412 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); 413 } 414 } 415 416 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx) 417 { 418 struct bpf_verifier_stack_elem *elem; 419 int insn_idx; 420 421 if (env->head == NULL) 422 return -1; 423 424 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); 425 insn_idx = env->head->insn_idx; 426 if (prev_insn_idx) 427 *prev_insn_idx = env->head->prev_insn_idx; 428 elem = env->head->next; 429 kfree(env->head); 430 env->head = elem; 431 env->stack_size--; 432 return insn_idx; 433 } 434 435 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 436 int insn_idx, int prev_insn_idx) 437 { 438 struct bpf_verifier_stack_elem *elem; 439 440 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 441 if (!elem) 442 goto err; 443 444 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); 445 elem->insn_idx = insn_idx; 446 elem->prev_insn_idx = prev_insn_idx; 447 elem->next = env->head; 448 env->head = elem; 449 env->stack_size++; 450 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 451 verbose("BPF program is too complex\n"); 452 goto err; 453 } 454 return &elem->st; 455 err: 456 /* pop all elements and return */ 457 while (pop_stack(env, NULL) >= 0); 458 return NULL; 459 } 460 461 #define CALLER_SAVED_REGS 6 462 static const int caller_saved[CALLER_SAVED_REGS] = { 463 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 464 }; 465 466 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno) 467 { 468 BUG_ON(regno >= MAX_BPF_REG); 469 470 memset(®s[regno], 0, sizeof(regs[regno])); 471 regs[regno].type = NOT_INIT; 472 regs[regno].min_value = BPF_REGISTER_MIN_RANGE; 473 regs[regno].max_value = BPF_REGISTER_MAX_RANGE; 474 } 475 476 static void init_reg_state(struct bpf_reg_state *regs) 477 { 478 int i; 479 480 for (i = 0; i < MAX_BPF_REG; i++) 481 mark_reg_not_init(regs, i); 482 483 /* frame pointer */ 484 regs[BPF_REG_FP].type = FRAME_PTR; 485 486 /* 1st arg to a function */ 487 regs[BPF_REG_1].type = PTR_TO_CTX; 488 } 489 490 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno) 491 { 492 regs[regno].type = UNKNOWN_VALUE; 493 regs[regno].id = 0; 494 regs[regno].imm = 0; 495 } 496 497 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno) 498 { 499 BUG_ON(regno >= MAX_BPF_REG); 500 __mark_reg_unknown_value(regs, regno); 501 } 502 503 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno) 504 { 505 regs[regno].min_value = BPF_REGISTER_MIN_RANGE; 506 regs[regno].max_value = BPF_REGISTER_MAX_RANGE; 507 regs[regno].min_align = 0; 508 } 509 510 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs, 511 u32 regno) 512 { 513 mark_reg_unknown_value(regs, regno); 514 reset_reg_range_values(regs, regno); 515 } 516 517 enum reg_arg_type { 518 SRC_OP, /* register is used as source operand */ 519 DST_OP, /* register is used as destination operand */ 520 DST_OP_NO_MARK /* same as above, check only, don't mark */ 521 }; 522 523 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno, 524 enum reg_arg_type t) 525 { 526 if (regno >= MAX_BPF_REG) { 527 verbose("R%d is invalid\n", regno); 528 return -EINVAL; 529 } 530 531 if (t == SRC_OP) { 532 /* check whether register used as source operand can be read */ 533 if (regs[regno].type == NOT_INIT) { 534 verbose("R%d !read_ok\n", regno); 535 return -EACCES; 536 } 537 } else { 538 /* check whether register used as dest operand can be written to */ 539 if (regno == BPF_REG_FP) { 540 verbose("frame pointer is read only\n"); 541 return -EACCES; 542 } 543 if (t == DST_OP) 544 mark_reg_unknown_value(regs, regno); 545 } 546 return 0; 547 } 548 549 static bool is_spillable_regtype(enum bpf_reg_type type) 550 { 551 switch (type) { 552 case PTR_TO_MAP_VALUE: 553 case PTR_TO_MAP_VALUE_OR_NULL: 554 case PTR_TO_MAP_VALUE_ADJ: 555 case PTR_TO_STACK: 556 case PTR_TO_CTX: 557 case PTR_TO_PACKET: 558 case PTR_TO_PACKET_END: 559 case FRAME_PTR: 560 case CONST_PTR_TO_MAP: 561 return true; 562 default: 563 return false; 564 } 565 } 566 567 /* check_stack_read/write functions track spill/fill of registers, 568 * stack boundary and alignment are checked in check_mem_access() 569 */ 570 static int check_stack_write(struct bpf_verifier_state *state, int off, 571 int size, int value_regno) 572 { 573 int i; 574 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 575 * so it's aligned access and [off, off + size) are within stack limits 576 */ 577 578 if (value_regno >= 0 && 579 is_spillable_regtype(state->regs[value_regno].type)) { 580 581 /* register containing pointer is being spilled into stack */ 582 if (size != BPF_REG_SIZE) { 583 verbose("invalid size of register spill\n"); 584 return -EACCES; 585 } 586 587 /* save register state */ 588 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = 589 state->regs[value_regno]; 590 591 for (i = 0; i < BPF_REG_SIZE; i++) 592 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; 593 } else { 594 /* regular write of data into stack */ 595 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = 596 (struct bpf_reg_state) {}; 597 598 for (i = 0; i < size; i++) 599 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; 600 } 601 return 0; 602 } 603 604 static int check_stack_read(struct bpf_verifier_state *state, int off, int size, 605 int value_regno) 606 { 607 u8 *slot_type; 608 int i; 609 610 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; 611 612 if (slot_type[0] == STACK_SPILL) { 613 if (size != BPF_REG_SIZE) { 614 verbose("invalid size of register spill\n"); 615 return -EACCES; 616 } 617 for (i = 1; i < BPF_REG_SIZE; i++) { 618 if (slot_type[i] != STACK_SPILL) { 619 verbose("corrupted spill memory\n"); 620 return -EACCES; 621 } 622 } 623 624 if (value_regno >= 0) 625 /* restore register state from stack */ 626 state->regs[value_regno] = 627 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE]; 628 return 0; 629 } else { 630 for (i = 0; i < size; i++) { 631 if (slot_type[i] != STACK_MISC) { 632 verbose("invalid read from stack off %d+%d size %d\n", 633 off, i, size); 634 return -EACCES; 635 } 636 } 637 if (value_regno >= 0) 638 /* have read misc data from the stack */ 639 mark_reg_unknown_value_and_range(state->regs, 640 value_regno); 641 return 0; 642 } 643 } 644 645 /* check read/write into map element returned by bpf_map_lookup_elem() */ 646 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 647 int size) 648 { 649 struct bpf_map *map = env->cur_state.regs[regno].map_ptr; 650 651 if (off < 0 || size <= 0 || off + size > map->value_size) { 652 verbose("invalid access to map value, value_size=%d off=%d size=%d\n", 653 map->value_size, off, size); 654 return -EACCES; 655 } 656 return 0; 657 } 658 659 /* check read/write into an adjusted map element */ 660 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno, 661 int off, int size) 662 { 663 struct bpf_verifier_state *state = &env->cur_state; 664 struct bpf_reg_state *reg = &state->regs[regno]; 665 int err; 666 667 /* We adjusted the register to this map value, so we 668 * need to change off and size to min_value and max_value 669 * respectively to make sure our theoretical access will be 670 * safe. 671 */ 672 if (log_level) 673 print_verifier_state(state); 674 env->varlen_map_value_access = true; 675 /* The minimum value is only important with signed 676 * comparisons where we can't assume the floor of a 677 * value is 0. If we are using signed variables for our 678 * index'es we need to make sure that whatever we use 679 * will have a set floor within our range. 680 */ 681 if (reg->min_value < 0) { 682 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 683 regno); 684 return -EACCES; 685 } 686 err = check_map_access(env, regno, reg->min_value + off, size); 687 if (err) { 688 verbose("R%d min value is outside of the array range\n", 689 regno); 690 return err; 691 } 692 693 /* If we haven't set a max value then we need to bail 694 * since we can't be sure we won't do bad things. 695 */ 696 if (reg->max_value == BPF_REGISTER_MAX_RANGE) { 697 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", 698 regno); 699 return -EACCES; 700 } 701 return check_map_access(env, regno, reg->max_value + off, size); 702 } 703 704 #define MAX_PACKET_OFF 0xffff 705 706 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 707 const struct bpf_call_arg_meta *meta, 708 enum bpf_access_type t) 709 { 710 switch (env->prog->type) { 711 case BPF_PROG_TYPE_LWT_IN: 712 case BPF_PROG_TYPE_LWT_OUT: 713 /* dst_input() and dst_output() can't write for now */ 714 if (t == BPF_WRITE) 715 return false; 716 /* fallthrough */ 717 case BPF_PROG_TYPE_SCHED_CLS: 718 case BPF_PROG_TYPE_SCHED_ACT: 719 case BPF_PROG_TYPE_XDP: 720 case BPF_PROG_TYPE_LWT_XMIT: 721 if (meta) 722 return meta->pkt_access; 723 724 env->seen_direct_write = true; 725 return true; 726 default: 727 return false; 728 } 729 } 730 731 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 732 int size) 733 { 734 struct bpf_reg_state *regs = env->cur_state.regs; 735 struct bpf_reg_state *reg = ®s[regno]; 736 737 off += reg->off; 738 if (off < 0 || size <= 0 || off + size > reg->range) { 739 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 740 off, size, regno, reg->id, reg->off, reg->range); 741 return -EACCES; 742 } 743 return 0; 744 } 745 746 /* check access to 'struct bpf_context' fields */ 747 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 748 enum bpf_access_type t, enum bpf_reg_type *reg_type) 749 { 750 struct bpf_insn_access_aux info = { 751 .reg_type = *reg_type, 752 }; 753 754 /* for analyzer ctx accesses are already validated and converted */ 755 if (env->analyzer_ops) 756 return 0; 757 758 if (env->prog->aux->ops->is_valid_access && 759 env->prog->aux->ops->is_valid_access(off, size, t, &info)) { 760 /* A non zero info.ctx_field_size indicates that this field is a 761 * candidate for later verifier transformation to load the whole 762 * field and then apply a mask when accessed with a narrower 763 * access than actual ctx access size. A zero info.ctx_field_size 764 * will only allow for whole field access and rejects any other 765 * type of narrower access. 766 */ 767 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 768 *reg_type = info.reg_type; 769 770 /* remember the offset of last byte accessed in ctx */ 771 if (env->prog->aux->max_ctx_offset < off + size) 772 env->prog->aux->max_ctx_offset = off + size; 773 return 0; 774 } 775 776 verbose("invalid bpf_context access off=%d size=%d\n", off, size); 777 return -EACCES; 778 } 779 780 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 781 { 782 if (env->allow_ptr_leaks) 783 return false; 784 785 switch (env->cur_state.regs[regno].type) { 786 case UNKNOWN_VALUE: 787 case CONST_IMM: 788 return false; 789 default: 790 return true; 791 } 792 } 793 794 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg, 795 int off, int size, bool strict) 796 { 797 int ip_align; 798 int reg_off; 799 800 /* Byte size accesses are always allowed. */ 801 if (!strict || size == 1) 802 return 0; 803 804 reg_off = reg->off; 805 if (reg->id) { 806 if (reg->aux_off_align % size) { 807 verbose("Packet access is only %u byte aligned, %d byte access not allowed\n", 808 reg->aux_off_align, size); 809 return -EACCES; 810 } 811 reg_off += reg->aux_off; 812 } 813 814 /* For platforms that do not have a Kconfig enabling 815 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 816 * NET_IP_ALIGN is universally set to '2'. And on platforms 817 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 818 * to this code only in strict mode where we want to emulate 819 * the NET_IP_ALIGN==2 checking. Therefore use an 820 * unconditional IP align value of '2'. 821 */ 822 ip_align = 2; 823 if ((ip_align + reg_off + off) % size != 0) { 824 verbose("misaligned packet access off %d+%d+%d size %d\n", 825 ip_align, reg_off, off, size); 826 return -EACCES; 827 } 828 829 return 0; 830 } 831 832 static int check_val_ptr_alignment(const struct bpf_reg_state *reg, 833 int size, bool strict) 834 { 835 if (strict && size != 1) { 836 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n"); 837 return -EACCES; 838 } 839 840 return 0; 841 } 842 843 static int check_ptr_alignment(struct bpf_verifier_env *env, 844 const struct bpf_reg_state *reg, 845 int off, int size) 846 { 847 bool strict = env->strict_alignment; 848 849 switch (reg->type) { 850 case PTR_TO_PACKET: 851 return check_pkt_ptr_alignment(reg, off, size, strict); 852 case PTR_TO_MAP_VALUE_ADJ: 853 return check_val_ptr_alignment(reg, size, strict); 854 default: 855 if (off % size != 0) { 856 verbose("misaligned access off %d size %d\n", 857 off, size); 858 return -EACCES; 859 } 860 861 return 0; 862 } 863 } 864 865 /* check whether memory at (regno + off) is accessible for t = (read | write) 866 * if t==write, value_regno is a register which value is stored into memory 867 * if t==read, value_regno is a register which will receive the value from memory 868 * if t==write && value_regno==-1, some unknown value is stored into memory 869 * if t==read && value_regno==-1, don't care what we read from memory 870 */ 871 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 872 int bpf_size, enum bpf_access_type t, 873 int value_regno) 874 { 875 struct bpf_verifier_state *state = &env->cur_state; 876 struct bpf_reg_state *reg = &state->regs[regno]; 877 int size, err = 0; 878 879 if (reg->type == PTR_TO_STACK) 880 off += reg->imm; 881 882 size = bpf_size_to_bytes(bpf_size); 883 if (size < 0) 884 return size; 885 886 err = check_ptr_alignment(env, reg, off, size); 887 if (err) 888 return err; 889 890 if (reg->type == PTR_TO_MAP_VALUE || 891 reg->type == PTR_TO_MAP_VALUE_ADJ) { 892 if (t == BPF_WRITE && value_regno >= 0 && 893 is_pointer_value(env, value_regno)) { 894 verbose("R%d leaks addr into map\n", value_regno); 895 return -EACCES; 896 } 897 898 if (reg->type == PTR_TO_MAP_VALUE_ADJ) 899 err = check_map_access_adj(env, regno, off, size); 900 else 901 err = check_map_access(env, regno, off, size); 902 if (!err && t == BPF_READ && value_regno >= 0) 903 mark_reg_unknown_value_and_range(state->regs, 904 value_regno); 905 906 } else if (reg->type == PTR_TO_CTX) { 907 enum bpf_reg_type reg_type = UNKNOWN_VALUE; 908 909 if (t == BPF_WRITE && value_regno >= 0 && 910 is_pointer_value(env, value_regno)) { 911 verbose("R%d leaks addr into ctx\n", value_regno); 912 return -EACCES; 913 } 914 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 915 if (!err && t == BPF_READ && value_regno >= 0) { 916 mark_reg_unknown_value_and_range(state->regs, 917 value_regno); 918 /* note that reg.[id|off|range] == 0 */ 919 state->regs[value_regno].type = reg_type; 920 state->regs[value_regno].aux_off = 0; 921 state->regs[value_regno].aux_off_align = 0; 922 } 923 924 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) { 925 if (off >= 0 || off < -MAX_BPF_STACK) { 926 verbose("invalid stack off=%d size=%d\n", off, size); 927 return -EACCES; 928 } 929 930 if (env->prog->aux->stack_depth < -off) 931 env->prog->aux->stack_depth = -off; 932 933 if (t == BPF_WRITE) { 934 if (!env->allow_ptr_leaks && 935 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL && 936 size != BPF_REG_SIZE) { 937 verbose("attempt to corrupt spilled pointer on stack\n"); 938 return -EACCES; 939 } 940 err = check_stack_write(state, off, size, value_regno); 941 } else { 942 err = check_stack_read(state, off, size, value_regno); 943 } 944 } else if (state->regs[regno].type == PTR_TO_PACKET) { 945 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 946 verbose("cannot write into packet\n"); 947 return -EACCES; 948 } 949 if (t == BPF_WRITE && value_regno >= 0 && 950 is_pointer_value(env, value_regno)) { 951 verbose("R%d leaks addr into packet\n", value_regno); 952 return -EACCES; 953 } 954 err = check_packet_access(env, regno, off, size); 955 if (!err && t == BPF_READ && value_regno >= 0) 956 mark_reg_unknown_value_and_range(state->regs, 957 value_regno); 958 } else { 959 verbose("R%d invalid mem access '%s'\n", 960 regno, reg_type_str[reg->type]); 961 return -EACCES; 962 } 963 964 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks && 965 state->regs[value_regno].type == UNKNOWN_VALUE) { 966 /* 1 or 2 byte load zero-extends, determine the number of 967 * zero upper bits. Not doing it fo 4 byte load, since 968 * such values cannot be added to ptr_to_packet anyway. 969 */ 970 state->regs[value_regno].imm = 64 - size * 8; 971 } 972 return err; 973 } 974 975 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 976 { 977 struct bpf_reg_state *regs = env->cur_state.regs; 978 int err; 979 980 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 981 insn->imm != 0) { 982 verbose("BPF_XADD uses reserved fields\n"); 983 return -EINVAL; 984 } 985 986 /* check src1 operand */ 987 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 988 if (err) 989 return err; 990 991 /* check src2 operand */ 992 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 993 if (err) 994 return err; 995 996 if (is_pointer_value(env, insn->src_reg)) { 997 verbose("R%d leaks addr into mem\n", insn->src_reg); 998 return -EACCES; 999 } 1000 1001 /* check whether atomic_add can read the memory */ 1002 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1003 BPF_SIZE(insn->code), BPF_READ, -1); 1004 if (err) 1005 return err; 1006 1007 /* check whether atomic_add can write into the same memory */ 1008 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1009 BPF_SIZE(insn->code), BPF_WRITE, -1); 1010 } 1011 1012 /* when register 'regno' is passed into function that will read 'access_size' 1013 * bytes from that pointer, make sure that it's within stack boundary 1014 * and all elements of stack are initialized 1015 */ 1016 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1017 int access_size, bool zero_size_allowed, 1018 struct bpf_call_arg_meta *meta) 1019 { 1020 struct bpf_verifier_state *state = &env->cur_state; 1021 struct bpf_reg_state *regs = state->regs; 1022 int off, i; 1023 1024 if (regs[regno].type != PTR_TO_STACK) { 1025 if (zero_size_allowed && access_size == 0 && 1026 regs[regno].type == CONST_IMM && 1027 regs[regno].imm == 0) 1028 return 0; 1029 1030 verbose("R%d type=%s expected=%s\n", regno, 1031 reg_type_str[regs[regno].type], 1032 reg_type_str[PTR_TO_STACK]); 1033 return -EACCES; 1034 } 1035 1036 off = regs[regno].imm; 1037 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1038 access_size <= 0) { 1039 verbose("invalid stack type R%d off=%d access_size=%d\n", 1040 regno, off, access_size); 1041 return -EACCES; 1042 } 1043 1044 if (env->prog->aux->stack_depth < -off) 1045 env->prog->aux->stack_depth = -off; 1046 1047 if (meta && meta->raw_mode) { 1048 meta->access_size = access_size; 1049 meta->regno = regno; 1050 return 0; 1051 } 1052 1053 for (i = 0; i < access_size; i++) { 1054 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { 1055 verbose("invalid indirect read from stack off %d+%d size %d\n", 1056 off, i, access_size); 1057 return -EACCES; 1058 } 1059 } 1060 return 0; 1061 } 1062 1063 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1064 int access_size, bool zero_size_allowed, 1065 struct bpf_call_arg_meta *meta) 1066 { 1067 struct bpf_reg_state *regs = env->cur_state.regs; 1068 1069 switch (regs[regno].type) { 1070 case PTR_TO_PACKET: 1071 return check_packet_access(env, regno, 0, access_size); 1072 case PTR_TO_MAP_VALUE: 1073 return check_map_access(env, regno, 0, access_size); 1074 case PTR_TO_MAP_VALUE_ADJ: 1075 return check_map_access_adj(env, regno, 0, access_size); 1076 default: /* const_imm|ptr_to_stack or invalid ptr */ 1077 return check_stack_boundary(env, regno, access_size, 1078 zero_size_allowed, meta); 1079 } 1080 } 1081 1082 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1083 enum bpf_arg_type arg_type, 1084 struct bpf_call_arg_meta *meta) 1085 { 1086 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1087 enum bpf_reg_type expected_type, type = reg->type; 1088 int err = 0; 1089 1090 if (arg_type == ARG_DONTCARE) 1091 return 0; 1092 1093 if (type == NOT_INIT) { 1094 verbose("R%d !read_ok\n", regno); 1095 return -EACCES; 1096 } 1097 1098 if (arg_type == ARG_ANYTHING) { 1099 if (is_pointer_value(env, regno)) { 1100 verbose("R%d leaks addr into helper function\n", regno); 1101 return -EACCES; 1102 } 1103 return 0; 1104 } 1105 1106 if (type == PTR_TO_PACKET && 1107 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1108 verbose("helper access to the packet is not allowed\n"); 1109 return -EACCES; 1110 } 1111 1112 if (arg_type == ARG_PTR_TO_MAP_KEY || 1113 arg_type == ARG_PTR_TO_MAP_VALUE) { 1114 expected_type = PTR_TO_STACK; 1115 if (type != PTR_TO_PACKET && type != expected_type) 1116 goto err_type; 1117 } else if (arg_type == ARG_CONST_SIZE || 1118 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1119 expected_type = CONST_IMM; 1120 /* One exception. Allow UNKNOWN_VALUE registers when the 1121 * boundaries are known and don't cause unsafe memory accesses 1122 */ 1123 if (type != UNKNOWN_VALUE && type != expected_type) 1124 goto err_type; 1125 } else if (arg_type == ARG_CONST_MAP_PTR) { 1126 expected_type = CONST_PTR_TO_MAP; 1127 if (type != expected_type) 1128 goto err_type; 1129 } else if (arg_type == ARG_PTR_TO_CTX) { 1130 expected_type = PTR_TO_CTX; 1131 if (type != expected_type) 1132 goto err_type; 1133 } else if (arg_type == ARG_PTR_TO_MEM || 1134 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1135 expected_type = PTR_TO_STACK; 1136 /* One exception here. In case function allows for NULL to be 1137 * passed in as argument, it's a CONST_IMM type. Final test 1138 * happens during stack boundary checking. 1139 */ 1140 if (type == CONST_IMM && reg->imm == 0) 1141 /* final test in check_stack_boundary() */; 1142 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE && 1143 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type) 1144 goto err_type; 1145 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1146 } else { 1147 verbose("unsupported arg_type %d\n", arg_type); 1148 return -EFAULT; 1149 } 1150 1151 if (arg_type == ARG_CONST_MAP_PTR) { 1152 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1153 meta->map_ptr = reg->map_ptr; 1154 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1155 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1156 * check that [key, key + map->key_size) are within 1157 * stack limits and initialized 1158 */ 1159 if (!meta->map_ptr) { 1160 /* in function declaration map_ptr must come before 1161 * map_key, so that it's verified and known before 1162 * we have to check map_key here. Otherwise it means 1163 * that kernel subsystem misconfigured verifier 1164 */ 1165 verbose("invalid map_ptr to access map->key\n"); 1166 return -EACCES; 1167 } 1168 if (type == PTR_TO_PACKET) 1169 err = check_packet_access(env, regno, 0, 1170 meta->map_ptr->key_size); 1171 else 1172 err = check_stack_boundary(env, regno, 1173 meta->map_ptr->key_size, 1174 false, NULL); 1175 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1176 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1177 * check [value, value + map->value_size) validity 1178 */ 1179 if (!meta->map_ptr) { 1180 /* kernel subsystem misconfigured verifier */ 1181 verbose("invalid map_ptr to access map->value\n"); 1182 return -EACCES; 1183 } 1184 if (type == PTR_TO_PACKET) 1185 err = check_packet_access(env, regno, 0, 1186 meta->map_ptr->value_size); 1187 else 1188 err = check_stack_boundary(env, regno, 1189 meta->map_ptr->value_size, 1190 false, NULL); 1191 } else if (arg_type == ARG_CONST_SIZE || 1192 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1193 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1194 1195 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1196 * from stack pointer 'buf'. Check it 1197 * note: regno == len, regno - 1 == buf 1198 */ 1199 if (regno == 0) { 1200 /* kernel subsystem misconfigured verifier */ 1201 verbose("ARG_CONST_SIZE cannot be first argument\n"); 1202 return -EACCES; 1203 } 1204 1205 /* If the register is UNKNOWN_VALUE, the access check happens 1206 * using its boundaries. Otherwise, just use its imm 1207 */ 1208 if (type == UNKNOWN_VALUE) { 1209 /* For unprivileged variable accesses, disable raw 1210 * mode so that the program is required to 1211 * initialize all the memory that the helper could 1212 * just partially fill up. 1213 */ 1214 meta = NULL; 1215 1216 if (reg->min_value < 0) { 1217 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n", 1218 regno); 1219 return -EACCES; 1220 } 1221 1222 if (reg->min_value == 0) { 1223 err = check_helper_mem_access(env, regno - 1, 0, 1224 zero_size_allowed, 1225 meta); 1226 if (err) 1227 return err; 1228 } 1229 1230 if (reg->max_value == BPF_REGISTER_MAX_RANGE) { 1231 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1232 regno); 1233 return -EACCES; 1234 } 1235 err = check_helper_mem_access(env, regno - 1, 1236 reg->max_value, 1237 zero_size_allowed, meta); 1238 if (err) 1239 return err; 1240 } else { 1241 /* register is CONST_IMM */ 1242 err = check_helper_mem_access(env, regno - 1, reg->imm, 1243 zero_size_allowed, meta); 1244 } 1245 } 1246 1247 return err; 1248 err_type: 1249 verbose("R%d type=%s expected=%s\n", regno, 1250 reg_type_str[type], reg_type_str[expected_type]); 1251 return -EACCES; 1252 } 1253 1254 static int check_map_func_compatibility(struct bpf_map *map, int func_id) 1255 { 1256 if (!map) 1257 return 0; 1258 1259 /* We need a two way check, first is from map perspective ... */ 1260 switch (map->map_type) { 1261 case BPF_MAP_TYPE_PROG_ARRAY: 1262 if (func_id != BPF_FUNC_tail_call) 1263 goto error; 1264 break; 1265 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1266 if (func_id != BPF_FUNC_perf_event_read && 1267 func_id != BPF_FUNC_perf_event_output) 1268 goto error; 1269 break; 1270 case BPF_MAP_TYPE_STACK_TRACE: 1271 if (func_id != BPF_FUNC_get_stackid) 1272 goto error; 1273 break; 1274 case BPF_MAP_TYPE_CGROUP_ARRAY: 1275 if (func_id != BPF_FUNC_skb_under_cgroup && 1276 func_id != BPF_FUNC_current_task_under_cgroup) 1277 goto error; 1278 break; 1279 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1280 case BPF_MAP_TYPE_HASH_OF_MAPS: 1281 if (func_id != BPF_FUNC_map_lookup_elem) 1282 goto error; 1283 default: 1284 break; 1285 } 1286 1287 /* ... and second from the function itself. */ 1288 switch (func_id) { 1289 case BPF_FUNC_tail_call: 1290 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1291 goto error; 1292 break; 1293 case BPF_FUNC_perf_event_read: 1294 case BPF_FUNC_perf_event_output: 1295 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1296 goto error; 1297 break; 1298 case BPF_FUNC_get_stackid: 1299 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1300 goto error; 1301 break; 1302 case BPF_FUNC_current_task_under_cgroup: 1303 case BPF_FUNC_skb_under_cgroup: 1304 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1305 goto error; 1306 break; 1307 default: 1308 break; 1309 } 1310 1311 return 0; 1312 error: 1313 verbose("cannot pass map_type %d into func %s#%d\n", 1314 map->map_type, func_id_name(func_id), func_id); 1315 return -EINVAL; 1316 } 1317 1318 static int check_raw_mode(const struct bpf_func_proto *fn) 1319 { 1320 int count = 0; 1321 1322 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1323 count++; 1324 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1325 count++; 1326 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1327 count++; 1328 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1329 count++; 1330 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1331 count++; 1332 1333 return count > 1 ? -EINVAL : 0; 1334 } 1335 1336 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1337 { 1338 struct bpf_verifier_state *state = &env->cur_state; 1339 struct bpf_reg_state *regs = state->regs, *reg; 1340 int i; 1341 1342 for (i = 0; i < MAX_BPF_REG; i++) 1343 if (regs[i].type == PTR_TO_PACKET || 1344 regs[i].type == PTR_TO_PACKET_END) 1345 mark_reg_unknown_value(regs, i); 1346 1347 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 1348 if (state->stack_slot_type[i] != STACK_SPILL) 1349 continue; 1350 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 1351 if (reg->type != PTR_TO_PACKET && 1352 reg->type != PTR_TO_PACKET_END) 1353 continue; 1354 __mark_reg_unknown_value(state->spilled_regs, 1355 i / BPF_REG_SIZE); 1356 } 1357 } 1358 1359 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1360 { 1361 struct bpf_verifier_state *state = &env->cur_state; 1362 const struct bpf_func_proto *fn = NULL; 1363 struct bpf_reg_state *regs = state->regs; 1364 struct bpf_call_arg_meta meta; 1365 bool changes_data; 1366 int i, err; 1367 1368 /* find function prototype */ 1369 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1370 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id); 1371 return -EINVAL; 1372 } 1373 1374 if (env->prog->aux->ops->get_func_proto) 1375 fn = env->prog->aux->ops->get_func_proto(func_id); 1376 1377 if (!fn) { 1378 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id); 1379 return -EINVAL; 1380 } 1381 1382 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1383 if (!env->prog->gpl_compatible && fn->gpl_only) { 1384 verbose("cannot call GPL only function from proprietary program\n"); 1385 return -EINVAL; 1386 } 1387 1388 changes_data = bpf_helper_changes_pkt_data(fn->func); 1389 1390 memset(&meta, 0, sizeof(meta)); 1391 meta.pkt_access = fn->pkt_access; 1392 1393 /* We only support one arg being in raw mode at the moment, which 1394 * is sufficient for the helper functions we have right now. 1395 */ 1396 err = check_raw_mode(fn); 1397 if (err) { 1398 verbose("kernel subsystem misconfigured func %s#%d\n", 1399 func_id_name(func_id), func_id); 1400 return err; 1401 } 1402 1403 /* check args */ 1404 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1405 if (err) 1406 return err; 1407 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1408 if (err) 1409 return err; 1410 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1411 if (err) 1412 return err; 1413 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1414 if (err) 1415 return err; 1416 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1417 if (err) 1418 return err; 1419 1420 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1421 * is inferred from register state. 1422 */ 1423 for (i = 0; i < meta.access_size; i++) { 1424 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1425 if (err) 1426 return err; 1427 } 1428 1429 /* reset caller saved regs */ 1430 for (i = 0; i < CALLER_SAVED_REGS; i++) 1431 mark_reg_not_init(regs, caller_saved[i]); 1432 1433 /* update return register */ 1434 if (fn->ret_type == RET_INTEGER) { 1435 regs[BPF_REG_0].type = UNKNOWN_VALUE; 1436 } else if (fn->ret_type == RET_VOID) { 1437 regs[BPF_REG_0].type = NOT_INIT; 1438 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1439 struct bpf_insn_aux_data *insn_aux; 1440 1441 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1442 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0; 1443 /* remember map_ptr, so that check_map_access() 1444 * can check 'value_size' boundary of memory access 1445 * to map element returned from bpf_map_lookup_elem() 1446 */ 1447 if (meta.map_ptr == NULL) { 1448 verbose("kernel subsystem misconfigured verifier\n"); 1449 return -EINVAL; 1450 } 1451 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1452 regs[BPF_REG_0].id = ++env->id_gen; 1453 insn_aux = &env->insn_aux_data[insn_idx]; 1454 if (!insn_aux->map_ptr) 1455 insn_aux->map_ptr = meta.map_ptr; 1456 else if (insn_aux->map_ptr != meta.map_ptr) 1457 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1458 } else { 1459 verbose("unknown return type %d of func %s#%d\n", 1460 fn->ret_type, func_id_name(func_id), func_id); 1461 return -EINVAL; 1462 } 1463 1464 err = check_map_func_compatibility(meta.map_ptr, func_id); 1465 if (err) 1466 return err; 1467 1468 if (changes_data) 1469 clear_all_pkt_pointers(env); 1470 return 0; 1471 } 1472 1473 static int check_packet_ptr_add(struct bpf_verifier_env *env, 1474 struct bpf_insn *insn) 1475 { 1476 struct bpf_reg_state *regs = env->cur_state.regs; 1477 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; 1478 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 1479 struct bpf_reg_state tmp_reg; 1480 s32 imm; 1481 1482 if (BPF_SRC(insn->code) == BPF_K) { 1483 /* pkt_ptr += imm */ 1484 imm = insn->imm; 1485 1486 add_imm: 1487 if (imm < 0) { 1488 verbose("addition of negative constant to packet pointer is not allowed\n"); 1489 return -EACCES; 1490 } 1491 if (imm >= MAX_PACKET_OFF || 1492 imm + dst_reg->off >= MAX_PACKET_OFF) { 1493 verbose("constant %d is too large to add to packet pointer\n", 1494 imm); 1495 return -EACCES; 1496 } 1497 /* a constant was added to pkt_ptr. 1498 * Remember it while keeping the same 'id' 1499 */ 1500 dst_reg->off += imm; 1501 } else { 1502 bool had_id; 1503 1504 if (src_reg->type == PTR_TO_PACKET) { 1505 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */ 1506 tmp_reg = *dst_reg; /* save r7 state */ 1507 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */ 1508 src_reg = &tmp_reg; /* pretend it's src_reg state */ 1509 /* if the checks below reject it, the copy won't matter, 1510 * since we're rejecting the whole program. If all ok, 1511 * then imm22 state will be added to r7 1512 * and r7 will be pkt(id=0,off=22,r=62) while 1513 * r6 will stay as pkt(id=0,off=0,r=62) 1514 */ 1515 } 1516 1517 if (src_reg->type == CONST_IMM) { 1518 /* pkt_ptr += reg where reg is known constant */ 1519 imm = src_reg->imm; 1520 goto add_imm; 1521 } 1522 /* disallow pkt_ptr += reg 1523 * if reg is not uknown_value with guaranteed zero upper bits 1524 * otherwise pkt_ptr may overflow and addition will become 1525 * subtraction which is not allowed 1526 */ 1527 if (src_reg->type != UNKNOWN_VALUE) { 1528 verbose("cannot add '%s' to ptr_to_packet\n", 1529 reg_type_str[src_reg->type]); 1530 return -EACCES; 1531 } 1532 if (src_reg->imm < 48) { 1533 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n", 1534 src_reg->imm); 1535 return -EACCES; 1536 } 1537 1538 had_id = (dst_reg->id != 0); 1539 1540 /* dst_reg stays as pkt_ptr type and since some positive 1541 * integer value was added to the pointer, increment its 'id' 1542 */ 1543 dst_reg->id = ++env->id_gen; 1544 1545 /* something was added to pkt_ptr, set range to zero */ 1546 dst_reg->aux_off += dst_reg->off; 1547 dst_reg->off = 0; 1548 dst_reg->range = 0; 1549 if (had_id) 1550 dst_reg->aux_off_align = min(dst_reg->aux_off_align, 1551 src_reg->min_align); 1552 else 1553 dst_reg->aux_off_align = src_reg->min_align; 1554 } 1555 return 0; 1556 } 1557 1558 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn) 1559 { 1560 struct bpf_reg_state *regs = env->cur_state.regs; 1561 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; 1562 u8 opcode = BPF_OP(insn->code); 1563 s64 imm_log2; 1564 1565 /* for type == UNKNOWN_VALUE: 1566 * imm > 0 -> number of zero upper bits 1567 * imm == 0 -> don't track which is the same as all bits can be non-zero 1568 */ 1569 1570 if (BPF_SRC(insn->code) == BPF_X) { 1571 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 1572 1573 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 && 1574 dst_reg->imm && opcode == BPF_ADD) { 1575 /* dreg += sreg 1576 * where both have zero upper bits. Adding them 1577 * can only result making one more bit non-zero 1578 * in the larger value. 1579 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47) 1580 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47) 1581 */ 1582 dst_reg->imm = min(dst_reg->imm, src_reg->imm); 1583 dst_reg->imm--; 1584 return 0; 1585 } 1586 if (src_reg->type == CONST_IMM && src_reg->imm > 0 && 1587 dst_reg->imm && opcode == BPF_ADD) { 1588 /* dreg += sreg 1589 * where dreg has zero upper bits and sreg is const. 1590 * Adding them can only result making one more bit 1591 * non-zero in the larger value. 1592 */ 1593 imm_log2 = __ilog2_u64((long long)src_reg->imm); 1594 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2); 1595 dst_reg->imm--; 1596 return 0; 1597 } 1598 /* all other cases non supported yet, just mark dst_reg */ 1599 dst_reg->imm = 0; 1600 return 0; 1601 } 1602 1603 /* sign extend 32-bit imm into 64-bit to make sure that 1604 * negative values occupy bit 63. Note ilog2() would have 1605 * been incorrect, since sizeof(insn->imm) == 4 1606 */ 1607 imm_log2 = __ilog2_u64((long long)insn->imm); 1608 1609 if (dst_reg->imm && opcode == BPF_LSH) { 1610 /* reg <<= imm 1611 * if reg was a result of 2 byte load, then its imm == 48 1612 * which means that upper 48 bits are zero and shifting this reg 1613 * left by 4 would mean that upper 44 bits are still zero 1614 */ 1615 dst_reg->imm -= insn->imm; 1616 } else if (dst_reg->imm && opcode == BPF_MUL) { 1617 /* reg *= imm 1618 * if multiplying by 14 subtract 4 1619 * This is conservative calculation of upper zero bits. 1620 * It's not trying to special case insn->imm == 1 or 0 cases 1621 */ 1622 dst_reg->imm -= imm_log2 + 1; 1623 } else if (opcode == BPF_AND) { 1624 /* reg &= imm */ 1625 dst_reg->imm = 63 - imm_log2; 1626 } else if (dst_reg->imm && opcode == BPF_ADD) { 1627 /* reg += imm */ 1628 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2); 1629 dst_reg->imm--; 1630 } else if (opcode == BPF_RSH) { 1631 /* reg >>= imm 1632 * which means that after right shift, upper bits will be zero 1633 * note that verifier already checked that 1634 * 0 <= imm < 64 for shift insn 1635 */ 1636 dst_reg->imm += insn->imm; 1637 if (unlikely(dst_reg->imm > 64)) 1638 /* some dumb code did: 1639 * r2 = *(u32 *)mem; 1640 * r2 >>= 32; 1641 * and all bits are zero now */ 1642 dst_reg->imm = 64; 1643 } else { 1644 /* all other alu ops, means that we don't know what will 1645 * happen to the value, mark it with unknown number of zero bits 1646 */ 1647 dst_reg->imm = 0; 1648 } 1649 1650 if (dst_reg->imm < 0) { 1651 /* all 64 bits of the register can contain non-zero bits 1652 * and such value cannot be added to ptr_to_packet, since it 1653 * may overflow, mark it as unknown to avoid further eval 1654 */ 1655 dst_reg->imm = 0; 1656 } 1657 return 0; 1658 } 1659 1660 static int evaluate_reg_imm_alu_unknown(struct bpf_verifier_env *env, 1661 struct bpf_insn *insn) 1662 { 1663 struct bpf_reg_state *regs = env->cur_state.regs; 1664 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; 1665 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 1666 u8 opcode = BPF_OP(insn->code); 1667 s64 imm_log2 = __ilog2_u64((long long)dst_reg->imm); 1668 1669 /* BPF_X code with src_reg->type UNKNOWN_VALUE here. */ 1670 if (src_reg->imm > 0 && dst_reg->imm) { 1671 switch (opcode) { 1672 case BPF_ADD: 1673 /* dreg += sreg 1674 * where both have zero upper bits. Adding them 1675 * can only result making one more bit non-zero 1676 * in the larger value. 1677 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47) 1678 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47) 1679 */ 1680 dst_reg->imm = min(src_reg->imm, 63 - imm_log2); 1681 dst_reg->imm--; 1682 break; 1683 case BPF_AND: 1684 /* dreg &= sreg 1685 * AND can not extend zero bits only shrink 1686 * Ex. 0x00..00ffffff 1687 * & 0x0f..ffffffff 1688 * ---------------- 1689 * 0x00..00ffffff 1690 */ 1691 dst_reg->imm = max(src_reg->imm, 63 - imm_log2); 1692 break; 1693 case BPF_OR: 1694 /* dreg |= sreg 1695 * OR can only extend zero bits 1696 * Ex. 0x00..00ffffff 1697 * | 0x0f..ffffffff 1698 * ---------------- 1699 * 0x0f..00ffffff 1700 */ 1701 dst_reg->imm = min(src_reg->imm, 63 - imm_log2); 1702 break; 1703 case BPF_SUB: 1704 case BPF_MUL: 1705 case BPF_RSH: 1706 case BPF_LSH: 1707 /* These may be flushed out later */ 1708 default: 1709 mark_reg_unknown_value(regs, insn->dst_reg); 1710 } 1711 } else { 1712 mark_reg_unknown_value(regs, insn->dst_reg); 1713 } 1714 1715 dst_reg->type = UNKNOWN_VALUE; 1716 return 0; 1717 } 1718 1719 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env, 1720 struct bpf_insn *insn) 1721 { 1722 struct bpf_reg_state *regs = env->cur_state.regs; 1723 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; 1724 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 1725 u8 opcode = BPF_OP(insn->code); 1726 u64 dst_imm = dst_reg->imm; 1727 1728 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == UNKNOWN_VALUE) 1729 return evaluate_reg_imm_alu_unknown(env, insn); 1730 1731 /* dst_reg->type == CONST_IMM here. Simulate execution of insns 1732 * containing ALU ops. Don't care about overflow or negative 1733 * values, just add/sub/... them; registers are in u64. 1734 */ 1735 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) { 1736 dst_imm += insn->imm; 1737 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X && 1738 src_reg->type == CONST_IMM) { 1739 dst_imm += src_reg->imm; 1740 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) { 1741 dst_imm -= insn->imm; 1742 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X && 1743 src_reg->type == CONST_IMM) { 1744 dst_imm -= src_reg->imm; 1745 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) { 1746 dst_imm *= insn->imm; 1747 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X && 1748 src_reg->type == CONST_IMM) { 1749 dst_imm *= src_reg->imm; 1750 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) { 1751 dst_imm |= insn->imm; 1752 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X && 1753 src_reg->type == CONST_IMM) { 1754 dst_imm |= src_reg->imm; 1755 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) { 1756 dst_imm &= insn->imm; 1757 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X && 1758 src_reg->type == CONST_IMM) { 1759 dst_imm &= src_reg->imm; 1760 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) { 1761 dst_imm >>= insn->imm; 1762 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X && 1763 src_reg->type == CONST_IMM) { 1764 dst_imm >>= src_reg->imm; 1765 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) { 1766 dst_imm <<= insn->imm; 1767 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X && 1768 src_reg->type == CONST_IMM) { 1769 dst_imm <<= src_reg->imm; 1770 } else { 1771 mark_reg_unknown_value(regs, insn->dst_reg); 1772 goto out; 1773 } 1774 1775 dst_reg->imm = dst_imm; 1776 out: 1777 return 0; 1778 } 1779 1780 static void check_reg_overflow(struct bpf_reg_state *reg) 1781 { 1782 if (reg->max_value > BPF_REGISTER_MAX_RANGE) 1783 reg->max_value = BPF_REGISTER_MAX_RANGE; 1784 if (reg->min_value < BPF_REGISTER_MIN_RANGE || 1785 reg->min_value > BPF_REGISTER_MAX_RANGE) 1786 reg->min_value = BPF_REGISTER_MIN_RANGE; 1787 } 1788 1789 static u32 calc_align(u32 imm) 1790 { 1791 if (!imm) 1792 return 1U << 31; 1793 return imm - ((imm - 1) & imm); 1794 } 1795 1796 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env, 1797 struct bpf_insn *insn) 1798 { 1799 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1800 s64 min_val = BPF_REGISTER_MIN_RANGE; 1801 u64 max_val = BPF_REGISTER_MAX_RANGE; 1802 u8 opcode = BPF_OP(insn->code); 1803 u32 dst_align, src_align; 1804 1805 dst_reg = ®s[insn->dst_reg]; 1806 src_align = 0; 1807 if (BPF_SRC(insn->code) == BPF_X) { 1808 check_reg_overflow(®s[insn->src_reg]); 1809 min_val = regs[insn->src_reg].min_value; 1810 max_val = regs[insn->src_reg].max_value; 1811 1812 /* If the source register is a random pointer then the 1813 * min_value/max_value values represent the range of the known 1814 * accesses into that value, not the actual min/max value of the 1815 * register itself. In this case we have to reset the reg range 1816 * values so we know it is not safe to look at. 1817 */ 1818 if (regs[insn->src_reg].type != CONST_IMM && 1819 regs[insn->src_reg].type != UNKNOWN_VALUE) { 1820 min_val = BPF_REGISTER_MIN_RANGE; 1821 max_val = BPF_REGISTER_MAX_RANGE; 1822 src_align = 0; 1823 } else { 1824 src_align = regs[insn->src_reg].min_align; 1825 } 1826 } else if (insn->imm < BPF_REGISTER_MAX_RANGE && 1827 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) { 1828 min_val = max_val = insn->imm; 1829 src_align = calc_align(insn->imm); 1830 } 1831 1832 dst_align = dst_reg->min_align; 1833 1834 /* We don't know anything about what was done to this register, mark it 1835 * as unknown. 1836 */ 1837 if (min_val == BPF_REGISTER_MIN_RANGE && 1838 max_val == BPF_REGISTER_MAX_RANGE) { 1839 reset_reg_range_values(regs, insn->dst_reg); 1840 return; 1841 } 1842 1843 /* If one of our values was at the end of our ranges then we can't just 1844 * do our normal operations to the register, we need to set the values 1845 * to the min/max since they are undefined. 1846 */ 1847 if (min_val == BPF_REGISTER_MIN_RANGE) 1848 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1849 if (max_val == BPF_REGISTER_MAX_RANGE) 1850 dst_reg->max_value = BPF_REGISTER_MAX_RANGE; 1851 1852 switch (opcode) { 1853 case BPF_ADD: 1854 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1855 dst_reg->min_value += min_val; 1856 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1857 dst_reg->max_value += max_val; 1858 dst_reg->min_align = min(src_align, dst_align); 1859 break; 1860 case BPF_SUB: 1861 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1862 dst_reg->min_value -= min_val; 1863 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1864 dst_reg->max_value -= max_val; 1865 dst_reg->min_align = min(src_align, dst_align); 1866 break; 1867 case BPF_MUL: 1868 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1869 dst_reg->min_value *= min_val; 1870 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1871 dst_reg->max_value *= max_val; 1872 dst_reg->min_align = max(src_align, dst_align); 1873 break; 1874 case BPF_AND: 1875 /* Disallow AND'ing of negative numbers, ain't nobody got time 1876 * for that. Otherwise the minimum is 0 and the max is the max 1877 * value we could AND against. 1878 */ 1879 if (min_val < 0) 1880 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1881 else 1882 dst_reg->min_value = 0; 1883 dst_reg->max_value = max_val; 1884 dst_reg->min_align = max(src_align, dst_align); 1885 break; 1886 case BPF_LSH: 1887 /* Gotta have special overflow logic here, if we're shifting 1888 * more than MAX_RANGE then just assume we have an invalid 1889 * range. 1890 */ 1891 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) { 1892 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1893 dst_reg->min_align = 1; 1894 } else { 1895 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1896 dst_reg->min_value <<= min_val; 1897 if (!dst_reg->min_align) 1898 dst_reg->min_align = 1; 1899 dst_reg->min_align <<= min_val; 1900 } 1901 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE)) 1902 dst_reg->max_value = BPF_REGISTER_MAX_RANGE; 1903 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1904 dst_reg->max_value <<= max_val; 1905 break; 1906 case BPF_RSH: 1907 /* RSH by a negative number is undefined, and the BPF_RSH is an 1908 * unsigned shift, so make the appropriate casts. 1909 */ 1910 if (min_val < 0 || dst_reg->min_value < 0) { 1911 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1912 } else { 1913 dst_reg->min_value = 1914 (u64)(dst_reg->min_value) >> min_val; 1915 } 1916 if (min_val < 0) { 1917 dst_reg->min_align = 1; 1918 } else { 1919 dst_reg->min_align >>= (u64) min_val; 1920 if (!dst_reg->min_align) 1921 dst_reg->min_align = 1; 1922 } 1923 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1924 dst_reg->max_value >>= max_val; 1925 break; 1926 default: 1927 reset_reg_range_values(regs, insn->dst_reg); 1928 break; 1929 } 1930 1931 check_reg_overflow(dst_reg); 1932 } 1933 1934 /* check validity of 32-bit and 64-bit arithmetic operations */ 1935 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 1936 { 1937 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1938 u8 opcode = BPF_OP(insn->code); 1939 int err; 1940 1941 if (opcode == BPF_END || opcode == BPF_NEG) { 1942 if (opcode == BPF_NEG) { 1943 if (BPF_SRC(insn->code) != 0 || 1944 insn->src_reg != BPF_REG_0 || 1945 insn->off != 0 || insn->imm != 0) { 1946 verbose("BPF_NEG uses reserved fields\n"); 1947 return -EINVAL; 1948 } 1949 } else { 1950 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 1951 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) { 1952 verbose("BPF_END uses reserved fields\n"); 1953 return -EINVAL; 1954 } 1955 } 1956 1957 /* check src operand */ 1958 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 1959 if (err) 1960 return err; 1961 1962 if (is_pointer_value(env, insn->dst_reg)) { 1963 verbose("R%d pointer arithmetic prohibited\n", 1964 insn->dst_reg); 1965 return -EACCES; 1966 } 1967 1968 /* check dest operand */ 1969 err = check_reg_arg(regs, insn->dst_reg, DST_OP); 1970 if (err) 1971 return err; 1972 1973 } else if (opcode == BPF_MOV) { 1974 1975 if (BPF_SRC(insn->code) == BPF_X) { 1976 if (insn->imm != 0 || insn->off != 0) { 1977 verbose("BPF_MOV uses reserved fields\n"); 1978 return -EINVAL; 1979 } 1980 1981 /* check src operand */ 1982 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 1983 if (err) 1984 return err; 1985 } else { 1986 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 1987 verbose("BPF_MOV uses reserved fields\n"); 1988 return -EINVAL; 1989 } 1990 } 1991 1992 /* check dest operand */ 1993 err = check_reg_arg(regs, insn->dst_reg, DST_OP); 1994 if (err) 1995 return err; 1996 1997 /* we are setting our register to something new, we need to 1998 * reset its range values. 1999 */ 2000 reset_reg_range_values(regs, insn->dst_reg); 2001 2002 if (BPF_SRC(insn->code) == BPF_X) { 2003 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2004 /* case: R1 = R2 2005 * copy register state to dest reg 2006 */ 2007 regs[insn->dst_reg] = regs[insn->src_reg]; 2008 } else { 2009 if (is_pointer_value(env, insn->src_reg)) { 2010 verbose("R%d partial copy of pointer\n", 2011 insn->src_reg); 2012 return -EACCES; 2013 } 2014 mark_reg_unknown_value(regs, insn->dst_reg); 2015 } 2016 } else { 2017 /* case: R = imm 2018 * remember the value we stored into this reg 2019 */ 2020 regs[insn->dst_reg].type = CONST_IMM; 2021 regs[insn->dst_reg].imm = insn->imm; 2022 regs[insn->dst_reg].id = 0; 2023 regs[insn->dst_reg].max_value = insn->imm; 2024 regs[insn->dst_reg].min_value = insn->imm; 2025 regs[insn->dst_reg].min_align = calc_align(insn->imm); 2026 } 2027 2028 } else if (opcode > BPF_END) { 2029 verbose("invalid BPF_ALU opcode %x\n", opcode); 2030 return -EINVAL; 2031 2032 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2033 2034 if (BPF_SRC(insn->code) == BPF_X) { 2035 if (insn->imm != 0 || insn->off != 0) { 2036 verbose("BPF_ALU uses reserved fields\n"); 2037 return -EINVAL; 2038 } 2039 /* check src1 operand */ 2040 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 2041 if (err) 2042 return err; 2043 } else { 2044 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2045 verbose("BPF_ALU uses reserved fields\n"); 2046 return -EINVAL; 2047 } 2048 } 2049 2050 /* check src2 operand */ 2051 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 2052 if (err) 2053 return err; 2054 2055 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2056 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 2057 verbose("div by zero\n"); 2058 return -EINVAL; 2059 } 2060 2061 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2062 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2063 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2064 2065 if (insn->imm < 0 || insn->imm >= size) { 2066 verbose("invalid shift %d\n", insn->imm); 2067 return -EINVAL; 2068 } 2069 } 2070 2071 /* check dest operand */ 2072 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); 2073 if (err) 2074 return err; 2075 2076 dst_reg = ®s[insn->dst_reg]; 2077 2078 /* first we want to adjust our ranges. */ 2079 adjust_reg_min_max_vals(env, insn); 2080 2081 /* pattern match 'bpf_add Rx, imm' instruction */ 2082 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && 2083 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) { 2084 dst_reg->type = PTR_TO_STACK; 2085 dst_reg->imm = insn->imm; 2086 return 0; 2087 } else if (opcode == BPF_ADD && 2088 BPF_CLASS(insn->code) == BPF_ALU64 && 2089 dst_reg->type == PTR_TO_STACK && 2090 ((BPF_SRC(insn->code) == BPF_X && 2091 regs[insn->src_reg].type == CONST_IMM) || 2092 BPF_SRC(insn->code) == BPF_K)) { 2093 if (BPF_SRC(insn->code) == BPF_X) 2094 dst_reg->imm += regs[insn->src_reg].imm; 2095 else 2096 dst_reg->imm += insn->imm; 2097 return 0; 2098 } else if (opcode == BPF_ADD && 2099 BPF_CLASS(insn->code) == BPF_ALU64 && 2100 (dst_reg->type == PTR_TO_PACKET || 2101 (BPF_SRC(insn->code) == BPF_X && 2102 regs[insn->src_reg].type == PTR_TO_PACKET))) { 2103 /* ptr_to_packet += K|X */ 2104 return check_packet_ptr_add(env, insn); 2105 } else if (BPF_CLASS(insn->code) == BPF_ALU64 && 2106 dst_reg->type == UNKNOWN_VALUE && 2107 env->allow_ptr_leaks) { 2108 /* unknown += K|X */ 2109 return evaluate_reg_alu(env, insn); 2110 } else if (BPF_CLASS(insn->code) == BPF_ALU64 && 2111 dst_reg->type == CONST_IMM && 2112 env->allow_ptr_leaks) { 2113 /* reg_imm += K|X */ 2114 return evaluate_reg_imm_alu(env, insn); 2115 } else if (is_pointer_value(env, insn->dst_reg)) { 2116 verbose("R%d pointer arithmetic prohibited\n", 2117 insn->dst_reg); 2118 return -EACCES; 2119 } else if (BPF_SRC(insn->code) == BPF_X && 2120 is_pointer_value(env, insn->src_reg)) { 2121 verbose("R%d pointer arithmetic prohibited\n", 2122 insn->src_reg); 2123 return -EACCES; 2124 } 2125 2126 /* If we did pointer math on a map value then just set it to our 2127 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or 2128 * loads to this register appropriately, otherwise just mark the 2129 * register as unknown. 2130 */ 2131 if (env->allow_ptr_leaks && 2132 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD && 2133 (dst_reg->type == PTR_TO_MAP_VALUE || 2134 dst_reg->type == PTR_TO_MAP_VALUE_ADJ)) 2135 dst_reg->type = PTR_TO_MAP_VALUE_ADJ; 2136 else 2137 mark_reg_unknown_value(regs, insn->dst_reg); 2138 } 2139 2140 return 0; 2141 } 2142 2143 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 2144 struct bpf_reg_state *dst_reg) 2145 { 2146 struct bpf_reg_state *regs = state->regs, *reg; 2147 int i; 2148 2149 /* LLVM can generate two kind of checks: 2150 * 2151 * Type 1: 2152 * 2153 * r2 = r3; 2154 * r2 += 8; 2155 * if (r2 > pkt_end) goto <handle exception> 2156 * <access okay> 2157 * 2158 * Where: 2159 * r2 == dst_reg, pkt_end == src_reg 2160 * r2=pkt(id=n,off=8,r=0) 2161 * r3=pkt(id=n,off=0,r=0) 2162 * 2163 * Type 2: 2164 * 2165 * r2 = r3; 2166 * r2 += 8; 2167 * if (pkt_end >= r2) goto <access okay> 2168 * <handle exception> 2169 * 2170 * Where: 2171 * pkt_end == dst_reg, r2 == src_reg 2172 * r2=pkt(id=n,off=8,r=0) 2173 * r3=pkt(id=n,off=0,r=0) 2174 * 2175 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2176 * so that range of bytes [r3, r3 + 8) is safe to access. 2177 */ 2178 2179 for (i = 0; i < MAX_BPF_REG; i++) 2180 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id) 2181 /* keep the maximum range already checked */ 2182 regs[i].range = max(regs[i].range, dst_reg->off); 2183 2184 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2185 if (state->stack_slot_type[i] != STACK_SPILL) 2186 continue; 2187 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 2188 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id) 2189 reg->range = max(reg->range, dst_reg->off); 2190 } 2191 } 2192 2193 /* Adjusts the register min/max values in the case that the dst_reg is the 2194 * variable register that we are working on, and src_reg is a constant or we're 2195 * simply doing a BPF_K check. 2196 */ 2197 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2198 struct bpf_reg_state *false_reg, u64 val, 2199 u8 opcode) 2200 { 2201 switch (opcode) { 2202 case BPF_JEQ: 2203 /* If this is false then we know nothing Jon Snow, but if it is 2204 * true then we know for sure. 2205 */ 2206 true_reg->max_value = true_reg->min_value = val; 2207 break; 2208 case BPF_JNE: 2209 /* If this is true we know nothing Jon Snow, but if it is false 2210 * we know the value for sure; 2211 */ 2212 false_reg->max_value = false_reg->min_value = val; 2213 break; 2214 case BPF_JGT: 2215 /* Unsigned comparison, the minimum value is 0. */ 2216 false_reg->min_value = 0; 2217 /* fallthrough */ 2218 case BPF_JSGT: 2219 /* If this is false then we know the maximum val is val, 2220 * otherwise we know the min val is val+1. 2221 */ 2222 false_reg->max_value = val; 2223 true_reg->min_value = val + 1; 2224 break; 2225 case BPF_JGE: 2226 /* Unsigned comparison, the minimum value is 0. */ 2227 false_reg->min_value = 0; 2228 /* fallthrough */ 2229 case BPF_JSGE: 2230 /* If this is false then we know the maximum value is val - 1, 2231 * otherwise we know the mimimum value is val. 2232 */ 2233 false_reg->max_value = val - 1; 2234 true_reg->min_value = val; 2235 break; 2236 default: 2237 break; 2238 } 2239 2240 check_reg_overflow(false_reg); 2241 check_reg_overflow(true_reg); 2242 } 2243 2244 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg 2245 * is the variable reg. 2246 */ 2247 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2248 struct bpf_reg_state *false_reg, u64 val, 2249 u8 opcode) 2250 { 2251 switch (opcode) { 2252 case BPF_JEQ: 2253 /* If this is false then we know nothing Jon Snow, but if it is 2254 * true then we know for sure. 2255 */ 2256 true_reg->max_value = true_reg->min_value = val; 2257 break; 2258 case BPF_JNE: 2259 /* If this is true we know nothing Jon Snow, but if it is false 2260 * we know the value for sure; 2261 */ 2262 false_reg->max_value = false_reg->min_value = val; 2263 break; 2264 case BPF_JGT: 2265 /* Unsigned comparison, the minimum value is 0. */ 2266 true_reg->min_value = 0; 2267 /* fallthrough */ 2268 case BPF_JSGT: 2269 /* 2270 * If this is false, then the val is <= the register, if it is 2271 * true the register <= to the val. 2272 */ 2273 false_reg->min_value = val; 2274 true_reg->max_value = val - 1; 2275 break; 2276 case BPF_JGE: 2277 /* Unsigned comparison, the minimum value is 0. */ 2278 true_reg->min_value = 0; 2279 /* fallthrough */ 2280 case BPF_JSGE: 2281 /* If this is false then constant < register, if it is true then 2282 * the register < constant. 2283 */ 2284 false_reg->min_value = val + 1; 2285 true_reg->max_value = val; 2286 break; 2287 default: 2288 break; 2289 } 2290 2291 check_reg_overflow(false_reg); 2292 check_reg_overflow(true_reg); 2293 } 2294 2295 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2296 enum bpf_reg_type type) 2297 { 2298 struct bpf_reg_state *reg = ®s[regno]; 2299 2300 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2301 if (type == UNKNOWN_VALUE) { 2302 __mark_reg_unknown_value(regs, regno); 2303 } else if (reg->map_ptr->inner_map_meta) { 2304 reg->type = CONST_PTR_TO_MAP; 2305 reg->map_ptr = reg->map_ptr->inner_map_meta; 2306 } else { 2307 reg->type = type; 2308 } 2309 /* We don't need id from this point onwards anymore, thus we 2310 * should better reset it, so that state pruning has chances 2311 * to take effect. 2312 */ 2313 reg->id = 0; 2314 } 2315 } 2316 2317 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2318 * be folded together at some point. 2319 */ 2320 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2321 enum bpf_reg_type type) 2322 { 2323 struct bpf_reg_state *regs = state->regs; 2324 u32 id = regs[regno].id; 2325 int i; 2326 2327 for (i = 0; i < MAX_BPF_REG; i++) 2328 mark_map_reg(regs, i, id, type); 2329 2330 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2331 if (state->stack_slot_type[i] != STACK_SPILL) 2332 continue; 2333 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type); 2334 } 2335 } 2336 2337 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2338 struct bpf_insn *insn, int *insn_idx) 2339 { 2340 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state; 2341 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2342 u8 opcode = BPF_OP(insn->code); 2343 int err; 2344 2345 if (opcode > BPF_EXIT) { 2346 verbose("invalid BPF_JMP opcode %x\n", opcode); 2347 return -EINVAL; 2348 } 2349 2350 if (BPF_SRC(insn->code) == BPF_X) { 2351 if (insn->imm != 0) { 2352 verbose("BPF_JMP uses reserved fields\n"); 2353 return -EINVAL; 2354 } 2355 2356 /* check src1 operand */ 2357 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 2358 if (err) 2359 return err; 2360 2361 if (is_pointer_value(env, insn->src_reg)) { 2362 verbose("R%d pointer comparison prohibited\n", 2363 insn->src_reg); 2364 return -EACCES; 2365 } 2366 } else { 2367 if (insn->src_reg != BPF_REG_0) { 2368 verbose("BPF_JMP uses reserved fields\n"); 2369 return -EINVAL; 2370 } 2371 } 2372 2373 /* check src2 operand */ 2374 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 2375 if (err) 2376 return err; 2377 2378 dst_reg = ®s[insn->dst_reg]; 2379 2380 /* detect if R == 0 where R was initialized to zero earlier */ 2381 if (BPF_SRC(insn->code) == BPF_K && 2382 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2383 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) { 2384 if (opcode == BPF_JEQ) { 2385 /* if (imm == imm) goto pc+off; 2386 * only follow the goto, ignore fall-through 2387 */ 2388 *insn_idx += insn->off; 2389 return 0; 2390 } else { 2391 /* if (imm != imm) goto pc+off; 2392 * only follow fall-through branch, since 2393 * that's where the program will go 2394 */ 2395 return 0; 2396 } 2397 } 2398 2399 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 2400 if (!other_branch) 2401 return -EFAULT; 2402 2403 /* detect if we are comparing against a constant value so we can adjust 2404 * our min/max values for our dst register. 2405 */ 2406 if (BPF_SRC(insn->code) == BPF_X) { 2407 if (regs[insn->src_reg].type == CONST_IMM) 2408 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2409 dst_reg, regs[insn->src_reg].imm, 2410 opcode); 2411 else if (dst_reg->type == CONST_IMM) 2412 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 2413 ®s[insn->src_reg], dst_reg->imm, 2414 opcode); 2415 } else { 2416 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2417 dst_reg, insn->imm, opcode); 2418 } 2419 2420 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 2421 if (BPF_SRC(insn->code) == BPF_K && 2422 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2423 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2424 /* Mark all identical map registers in each branch as either 2425 * safe or unknown depending R == 0 or R != 0 conditional. 2426 */ 2427 mark_map_regs(this_branch, insn->dst_reg, 2428 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE); 2429 mark_map_regs(other_branch, insn->dst_reg, 2430 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE); 2431 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2432 dst_reg->type == PTR_TO_PACKET && 2433 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2434 find_good_pkt_pointers(this_branch, dst_reg); 2435 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2436 dst_reg->type == PTR_TO_PACKET_END && 2437 regs[insn->src_reg].type == PTR_TO_PACKET) { 2438 find_good_pkt_pointers(other_branch, ®s[insn->src_reg]); 2439 } else if (is_pointer_value(env, insn->dst_reg)) { 2440 verbose("R%d pointer comparison prohibited\n", insn->dst_reg); 2441 return -EACCES; 2442 } 2443 if (log_level) 2444 print_verifier_state(this_branch); 2445 return 0; 2446 } 2447 2448 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 2449 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 2450 { 2451 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 2452 2453 return (struct bpf_map *) (unsigned long) imm64; 2454 } 2455 2456 /* verify BPF_LD_IMM64 instruction */ 2457 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 2458 { 2459 struct bpf_reg_state *regs = env->cur_state.regs; 2460 int err; 2461 2462 if (BPF_SIZE(insn->code) != BPF_DW) { 2463 verbose("invalid BPF_LD_IMM insn\n"); 2464 return -EINVAL; 2465 } 2466 if (insn->off != 0) { 2467 verbose("BPF_LD_IMM64 uses reserved fields\n"); 2468 return -EINVAL; 2469 } 2470 2471 err = check_reg_arg(regs, insn->dst_reg, DST_OP); 2472 if (err) 2473 return err; 2474 2475 if (insn->src_reg == 0) { 2476 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 2477 2478 regs[insn->dst_reg].type = CONST_IMM; 2479 regs[insn->dst_reg].imm = imm; 2480 regs[insn->dst_reg].id = 0; 2481 return 0; 2482 } 2483 2484 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 2485 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 2486 2487 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 2488 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 2489 return 0; 2490 } 2491 2492 static bool may_access_skb(enum bpf_prog_type type) 2493 { 2494 switch (type) { 2495 case BPF_PROG_TYPE_SOCKET_FILTER: 2496 case BPF_PROG_TYPE_SCHED_CLS: 2497 case BPF_PROG_TYPE_SCHED_ACT: 2498 return true; 2499 default: 2500 return false; 2501 } 2502 } 2503 2504 /* verify safety of LD_ABS|LD_IND instructions: 2505 * - they can only appear in the programs where ctx == skb 2506 * - since they are wrappers of function calls, they scratch R1-R5 registers, 2507 * preserve R6-R9, and store return value into R0 2508 * 2509 * Implicit input: 2510 * ctx == skb == R6 == CTX 2511 * 2512 * Explicit input: 2513 * SRC == any register 2514 * IMM == 32-bit immediate 2515 * 2516 * Output: 2517 * R0 - 8/16/32-bit skb data converted to cpu endianness 2518 */ 2519 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 2520 { 2521 struct bpf_reg_state *regs = env->cur_state.regs; 2522 u8 mode = BPF_MODE(insn->code); 2523 int i, err; 2524 2525 if (!may_access_skb(env->prog->type)) { 2526 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 2527 return -EINVAL; 2528 } 2529 2530 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 2531 BPF_SIZE(insn->code) == BPF_DW || 2532 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 2533 verbose("BPF_LD_[ABS|IND] uses reserved fields\n"); 2534 return -EINVAL; 2535 } 2536 2537 /* check whether implicit source operand (register R6) is readable */ 2538 err = check_reg_arg(regs, BPF_REG_6, SRC_OP); 2539 if (err) 2540 return err; 2541 2542 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 2543 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 2544 return -EINVAL; 2545 } 2546 2547 if (mode == BPF_IND) { 2548 /* check explicit source operand */ 2549 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 2550 if (err) 2551 return err; 2552 } 2553 2554 /* reset caller saved regs to unreadable */ 2555 for (i = 0; i < CALLER_SAVED_REGS; i++) 2556 mark_reg_not_init(regs, caller_saved[i]); 2557 2558 /* mark destination R0 register as readable, since it contains 2559 * the value fetched from the packet 2560 */ 2561 regs[BPF_REG_0].type = UNKNOWN_VALUE; 2562 return 0; 2563 } 2564 2565 /* non-recursive DFS pseudo code 2566 * 1 procedure DFS-iterative(G,v): 2567 * 2 label v as discovered 2568 * 3 let S be a stack 2569 * 4 S.push(v) 2570 * 5 while S is not empty 2571 * 6 t <- S.pop() 2572 * 7 if t is what we're looking for: 2573 * 8 return t 2574 * 9 for all edges e in G.adjacentEdges(t) do 2575 * 10 if edge e is already labelled 2576 * 11 continue with the next edge 2577 * 12 w <- G.adjacentVertex(t,e) 2578 * 13 if vertex w is not discovered and not explored 2579 * 14 label e as tree-edge 2580 * 15 label w as discovered 2581 * 16 S.push(w) 2582 * 17 continue at 5 2583 * 18 else if vertex w is discovered 2584 * 19 label e as back-edge 2585 * 20 else 2586 * 21 // vertex w is explored 2587 * 22 label e as forward- or cross-edge 2588 * 23 label t as explored 2589 * 24 S.pop() 2590 * 2591 * convention: 2592 * 0x10 - discovered 2593 * 0x11 - discovered and fall-through edge labelled 2594 * 0x12 - discovered and fall-through and branch edges labelled 2595 * 0x20 - explored 2596 */ 2597 2598 enum { 2599 DISCOVERED = 0x10, 2600 EXPLORED = 0x20, 2601 FALLTHROUGH = 1, 2602 BRANCH = 2, 2603 }; 2604 2605 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 2606 2607 static int *insn_stack; /* stack of insns to process */ 2608 static int cur_stack; /* current stack index */ 2609 static int *insn_state; 2610 2611 /* t, w, e - match pseudo-code above: 2612 * t - index of current instruction 2613 * w - next instruction 2614 * e - edge 2615 */ 2616 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 2617 { 2618 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 2619 return 0; 2620 2621 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 2622 return 0; 2623 2624 if (w < 0 || w >= env->prog->len) { 2625 verbose("jump out of range from insn %d to %d\n", t, w); 2626 return -EINVAL; 2627 } 2628 2629 if (e == BRANCH) 2630 /* mark branch target for state pruning */ 2631 env->explored_states[w] = STATE_LIST_MARK; 2632 2633 if (insn_state[w] == 0) { 2634 /* tree-edge */ 2635 insn_state[t] = DISCOVERED | e; 2636 insn_state[w] = DISCOVERED; 2637 if (cur_stack >= env->prog->len) 2638 return -E2BIG; 2639 insn_stack[cur_stack++] = w; 2640 return 1; 2641 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 2642 verbose("back-edge from insn %d to %d\n", t, w); 2643 return -EINVAL; 2644 } else if (insn_state[w] == EXPLORED) { 2645 /* forward- or cross-edge */ 2646 insn_state[t] = DISCOVERED | e; 2647 } else { 2648 verbose("insn state internal bug\n"); 2649 return -EFAULT; 2650 } 2651 return 0; 2652 } 2653 2654 /* non-recursive depth-first-search to detect loops in BPF program 2655 * loop == back-edge in directed graph 2656 */ 2657 static int check_cfg(struct bpf_verifier_env *env) 2658 { 2659 struct bpf_insn *insns = env->prog->insnsi; 2660 int insn_cnt = env->prog->len; 2661 int ret = 0; 2662 int i, t; 2663 2664 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 2665 if (!insn_state) 2666 return -ENOMEM; 2667 2668 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 2669 if (!insn_stack) { 2670 kfree(insn_state); 2671 return -ENOMEM; 2672 } 2673 2674 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 2675 insn_stack[0] = 0; /* 0 is the first instruction */ 2676 cur_stack = 1; 2677 2678 peek_stack: 2679 if (cur_stack == 0) 2680 goto check_state; 2681 t = insn_stack[cur_stack - 1]; 2682 2683 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 2684 u8 opcode = BPF_OP(insns[t].code); 2685 2686 if (opcode == BPF_EXIT) { 2687 goto mark_explored; 2688 } else if (opcode == BPF_CALL) { 2689 ret = push_insn(t, t + 1, FALLTHROUGH, env); 2690 if (ret == 1) 2691 goto peek_stack; 2692 else if (ret < 0) 2693 goto err_free; 2694 if (t + 1 < insn_cnt) 2695 env->explored_states[t + 1] = STATE_LIST_MARK; 2696 } else if (opcode == BPF_JA) { 2697 if (BPF_SRC(insns[t].code) != BPF_K) { 2698 ret = -EINVAL; 2699 goto err_free; 2700 } 2701 /* unconditional jump with single edge */ 2702 ret = push_insn(t, t + insns[t].off + 1, 2703 FALLTHROUGH, env); 2704 if (ret == 1) 2705 goto peek_stack; 2706 else if (ret < 0) 2707 goto err_free; 2708 /* tell verifier to check for equivalent states 2709 * after every call and jump 2710 */ 2711 if (t + 1 < insn_cnt) 2712 env->explored_states[t + 1] = STATE_LIST_MARK; 2713 } else { 2714 /* conditional jump with two edges */ 2715 env->explored_states[t] = STATE_LIST_MARK; 2716 ret = push_insn(t, t + 1, FALLTHROUGH, env); 2717 if (ret == 1) 2718 goto peek_stack; 2719 else if (ret < 0) 2720 goto err_free; 2721 2722 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 2723 if (ret == 1) 2724 goto peek_stack; 2725 else if (ret < 0) 2726 goto err_free; 2727 } 2728 } else { 2729 /* all other non-branch instructions with single 2730 * fall-through edge 2731 */ 2732 ret = push_insn(t, t + 1, FALLTHROUGH, env); 2733 if (ret == 1) 2734 goto peek_stack; 2735 else if (ret < 0) 2736 goto err_free; 2737 } 2738 2739 mark_explored: 2740 insn_state[t] = EXPLORED; 2741 if (cur_stack-- <= 0) { 2742 verbose("pop stack internal bug\n"); 2743 ret = -EFAULT; 2744 goto err_free; 2745 } 2746 goto peek_stack; 2747 2748 check_state: 2749 for (i = 0; i < insn_cnt; i++) { 2750 if (insn_state[i] != EXPLORED) { 2751 verbose("unreachable insn %d\n", i); 2752 ret = -EINVAL; 2753 goto err_free; 2754 } 2755 } 2756 ret = 0; /* cfg looks good */ 2757 2758 err_free: 2759 kfree(insn_state); 2760 kfree(insn_stack); 2761 return ret; 2762 } 2763 2764 /* the following conditions reduce the number of explored insns 2765 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet 2766 */ 2767 static bool compare_ptrs_to_packet(struct bpf_verifier_env *env, 2768 struct bpf_reg_state *old, 2769 struct bpf_reg_state *cur) 2770 { 2771 if (old->id != cur->id) 2772 return false; 2773 2774 /* old ptr_to_packet is more conservative, since it allows smaller 2775 * range. Ex: 2776 * old(off=0,r=10) is equal to cur(off=0,r=20), because 2777 * old(off=0,r=10) means that with range=10 the verifier proceeded 2778 * further and found no issues with the program. Now we're in the same 2779 * spot with cur(off=0,r=20), so we're safe too, since anything further 2780 * will only be looking at most 10 bytes after this pointer. 2781 */ 2782 if (old->off == cur->off && old->range < cur->range) 2783 return true; 2784 2785 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0) 2786 * since both cannot be used for packet access and safe(old) 2787 * pointer has smaller off that could be used for further 2788 * 'if (ptr > data_end)' check 2789 * Ex: 2790 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean 2791 * that we cannot access the packet. 2792 * The safe range is: 2793 * [ptr, ptr + range - off) 2794 * so whenever off >=range, it means no safe bytes from this pointer. 2795 * When comparing old->off <= cur->off, it means that older code 2796 * went with smaller offset and that offset was later 2797 * used to figure out the safe range after 'if (ptr > data_end)' check 2798 * Say, 'old' state was explored like: 2799 * ... R3(off=0, r=0) 2800 * R4 = R3 + 20 2801 * ... now R4(off=20,r=0) <-- here 2802 * if (R4 > data_end) 2803 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access. 2804 * ... the code further went all the way to bpf_exit. 2805 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0). 2806 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier 2807 * goes further, such cur_R4 will give larger safe packet range after 2808 * 'if (R4 > data_end)' and all further insn were already good with r=20, 2809 * so they will be good with r=30 and we can prune the search. 2810 */ 2811 if (!env->strict_alignment && old->off <= cur->off && 2812 old->off >= old->range && cur->off >= cur->range) 2813 return true; 2814 2815 return false; 2816 } 2817 2818 /* compare two verifier states 2819 * 2820 * all states stored in state_list are known to be valid, since 2821 * verifier reached 'bpf_exit' instruction through them 2822 * 2823 * this function is called when verifier exploring different branches of 2824 * execution popped from the state stack. If it sees an old state that has 2825 * more strict register state and more strict stack state then this execution 2826 * branch doesn't need to be explored further, since verifier already 2827 * concluded that more strict state leads to valid finish. 2828 * 2829 * Therefore two states are equivalent if register state is more conservative 2830 * and explored stack state is more conservative than the current one. 2831 * Example: 2832 * explored current 2833 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 2834 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 2835 * 2836 * In other words if current stack state (one being explored) has more 2837 * valid slots than old one that already passed validation, it means 2838 * the verifier can stop exploring and conclude that current state is valid too 2839 * 2840 * Similarly with registers. If explored state has register type as invalid 2841 * whereas register type in current state is meaningful, it means that 2842 * the current state will reach 'bpf_exit' instruction safely 2843 */ 2844 static bool states_equal(struct bpf_verifier_env *env, 2845 struct bpf_verifier_state *old, 2846 struct bpf_verifier_state *cur) 2847 { 2848 bool varlen_map_access = env->varlen_map_value_access; 2849 struct bpf_reg_state *rold, *rcur; 2850 int i; 2851 2852 for (i = 0; i < MAX_BPF_REG; i++) { 2853 rold = &old->regs[i]; 2854 rcur = &cur->regs[i]; 2855 2856 if (memcmp(rold, rcur, sizeof(*rold)) == 0) 2857 continue; 2858 2859 /* If the ranges were not the same, but everything else was and 2860 * we didn't do a variable access into a map then we are a-ok. 2861 */ 2862 if (!varlen_map_access && 2863 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0) 2864 continue; 2865 2866 /* If we didn't map access then again we don't care about the 2867 * mismatched range values and it's ok if our old type was 2868 * UNKNOWN and we didn't go to a NOT_INIT'ed reg. 2869 */ 2870 if (rold->type == NOT_INIT || 2871 (!varlen_map_access && rold->type == UNKNOWN_VALUE && 2872 rcur->type != NOT_INIT)) 2873 continue; 2874 2875 /* Don't care about the reg->id in this case. */ 2876 if (rold->type == PTR_TO_MAP_VALUE_OR_NULL && 2877 rcur->type == PTR_TO_MAP_VALUE_OR_NULL && 2878 rold->map_ptr == rcur->map_ptr) 2879 continue; 2880 2881 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET && 2882 compare_ptrs_to_packet(env, rold, rcur)) 2883 continue; 2884 2885 return false; 2886 } 2887 2888 for (i = 0; i < MAX_BPF_STACK; i++) { 2889 if (old->stack_slot_type[i] == STACK_INVALID) 2890 continue; 2891 if (old->stack_slot_type[i] != cur->stack_slot_type[i]) 2892 /* Ex: old explored (safe) state has STACK_SPILL in 2893 * this stack slot, but current has has STACK_MISC -> 2894 * this verifier states are not equivalent, 2895 * return false to continue verification of this path 2896 */ 2897 return false; 2898 if (i % BPF_REG_SIZE) 2899 continue; 2900 if (old->stack_slot_type[i] != STACK_SPILL) 2901 continue; 2902 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE], 2903 &cur->spilled_regs[i / BPF_REG_SIZE], 2904 sizeof(old->spilled_regs[0]))) 2905 /* when explored and current stack slot types are 2906 * the same, check that stored pointers types 2907 * are the same as well. 2908 * Ex: explored safe path could have stored 2909 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8} 2910 * but current path has stored: 2911 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16} 2912 * such verifier states are not equivalent. 2913 * return false to continue verification of this path 2914 */ 2915 return false; 2916 else 2917 continue; 2918 } 2919 return true; 2920 } 2921 2922 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 2923 { 2924 struct bpf_verifier_state_list *new_sl; 2925 struct bpf_verifier_state_list *sl; 2926 2927 sl = env->explored_states[insn_idx]; 2928 if (!sl) 2929 /* this 'insn_idx' instruction wasn't marked, so we will not 2930 * be doing state search here 2931 */ 2932 return 0; 2933 2934 while (sl != STATE_LIST_MARK) { 2935 if (states_equal(env, &sl->state, &env->cur_state)) 2936 /* reached equivalent register/stack state, 2937 * prune the search 2938 */ 2939 return 1; 2940 sl = sl->next; 2941 } 2942 2943 /* there were no equivalent states, remember current one. 2944 * technically the current state is not proven to be safe yet, 2945 * but it will either reach bpf_exit (which means it's safe) or 2946 * it will be rejected. Since there are no loops, we won't be 2947 * seeing this 'insn_idx' instruction again on the way to bpf_exit 2948 */ 2949 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER); 2950 if (!new_sl) 2951 return -ENOMEM; 2952 2953 /* add new state to the head of linked list */ 2954 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); 2955 new_sl->next = env->explored_states[insn_idx]; 2956 env->explored_states[insn_idx] = new_sl; 2957 return 0; 2958 } 2959 2960 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 2961 int insn_idx, int prev_insn_idx) 2962 { 2963 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook) 2964 return 0; 2965 2966 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx); 2967 } 2968 2969 static int do_check(struct bpf_verifier_env *env) 2970 { 2971 struct bpf_verifier_state *state = &env->cur_state; 2972 struct bpf_insn *insns = env->prog->insnsi; 2973 struct bpf_reg_state *regs = state->regs; 2974 int insn_cnt = env->prog->len; 2975 int insn_idx, prev_insn_idx = 0; 2976 int insn_processed = 0; 2977 bool do_print_state = false; 2978 2979 init_reg_state(regs); 2980 insn_idx = 0; 2981 env->varlen_map_value_access = false; 2982 for (;;) { 2983 struct bpf_insn *insn; 2984 u8 class; 2985 int err; 2986 2987 if (insn_idx >= insn_cnt) { 2988 verbose("invalid insn idx %d insn_cnt %d\n", 2989 insn_idx, insn_cnt); 2990 return -EFAULT; 2991 } 2992 2993 insn = &insns[insn_idx]; 2994 class = BPF_CLASS(insn->code); 2995 2996 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 2997 verbose("BPF program is too large. Processed %d insn\n", 2998 insn_processed); 2999 return -E2BIG; 3000 } 3001 3002 err = is_state_visited(env, insn_idx); 3003 if (err < 0) 3004 return err; 3005 if (err == 1) { 3006 /* found equivalent state, can prune the search */ 3007 if (log_level) { 3008 if (do_print_state) 3009 verbose("\nfrom %d to %d: safe\n", 3010 prev_insn_idx, insn_idx); 3011 else 3012 verbose("%d: safe\n", insn_idx); 3013 } 3014 goto process_bpf_exit; 3015 } 3016 3017 if (need_resched()) 3018 cond_resched(); 3019 3020 if (log_level > 1 || (log_level && do_print_state)) { 3021 if (log_level > 1) 3022 verbose("%d:", insn_idx); 3023 else 3024 verbose("\nfrom %d to %d:", 3025 prev_insn_idx, insn_idx); 3026 print_verifier_state(&env->cur_state); 3027 do_print_state = false; 3028 } 3029 3030 if (log_level) { 3031 verbose("%d: ", insn_idx); 3032 print_bpf_insn(env, insn); 3033 } 3034 3035 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3036 if (err) 3037 return err; 3038 3039 if (class == BPF_ALU || class == BPF_ALU64) { 3040 err = check_alu_op(env, insn); 3041 if (err) 3042 return err; 3043 3044 } else if (class == BPF_LDX) { 3045 enum bpf_reg_type *prev_src_type, src_reg_type; 3046 3047 /* check for reserved fields is already done */ 3048 3049 /* check src operand */ 3050 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 3051 if (err) 3052 return err; 3053 3054 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); 3055 if (err) 3056 return err; 3057 3058 src_reg_type = regs[insn->src_reg].type; 3059 3060 /* check that memory (src_reg + off) is readable, 3061 * the state of dst_reg will be updated by this func 3062 */ 3063 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 3064 BPF_SIZE(insn->code), BPF_READ, 3065 insn->dst_reg); 3066 if (err) 3067 return err; 3068 3069 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 3070 3071 if (*prev_src_type == NOT_INIT) { 3072 /* saw a valid insn 3073 * dst_reg = *(u32 *)(src_reg + off) 3074 * save type to validate intersecting paths 3075 */ 3076 *prev_src_type = src_reg_type; 3077 3078 } else if (src_reg_type != *prev_src_type && 3079 (src_reg_type == PTR_TO_CTX || 3080 *prev_src_type == PTR_TO_CTX)) { 3081 /* ABuser program is trying to use the same insn 3082 * dst_reg = *(u32*) (src_reg + off) 3083 * with different pointer types: 3084 * src_reg == ctx in one branch and 3085 * src_reg == stack|map in some other branch. 3086 * Reject it. 3087 */ 3088 verbose("same insn cannot be used with different pointers\n"); 3089 return -EINVAL; 3090 } 3091 3092 } else if (class == BPF_STX) { 3093 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3094 3095 if (BPF_MODE(insn->code) == BPF_XADD) { 3096 err = check_xadd(env, insn_idx, insn); 3097 if (err) 3098 return err; 3099 insn_idx++; 3100 continue; 3101 } 3102 3103 /* check src1 operand */ 3104 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 3105 if (err) 3106 return err; 3107 /* check src2 operand */ 3108 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 3109 if (err) 3110 return err; 3111 3112 dst_reg_type = regs[insn->dst_reg].type; 3113 3114 /* check that memory (dst_reg + off) is writeable */ 3115 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3116 BPF_SIZE(insn->code), BPF_WRITE, 3117 insn->src_reg); 3118 if (err) 3119 return err; 3120 3121 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3122 3123 if (*prev_dst_type == NOT_INIT) { 3124 *prev_dst_type = dst_reg_type; 3125 } else if (dst_reg_type != *prev_dst_type && 3126 (dst_reg_type == PTR_TO_CTX || 3127 *prev_dst_type == PTR_TO_CTX)) { 3128 verbose("same insn cannot be used with different pointers\n"); 3129 return -EINVAL; 3130 } 3131 3132 } else if (class == BPF_ST) { 3133 if (BPF_MODE(insn->code) != BPF_MEM || 3134 insn->src_reg != BPF_REG_0) { 3135 verbose("BPF_ST uses reserved fields\n"); 3136 return -EINVAL; 3137 } 3138 /* check src operand */ 3139 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 3140 if (err) 3141 return err; 3142 3143 /* check that memory (dst_reg + off) is writeable */ 3144 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3145 BPF_SIZE(insn->code), BPF_WRITE, 3146 -1); 3147 if (err) 3148 return err; 3149 3150 } else if (class == BPF_JMP) { 3151 u8 opcode = BPF_OP(insn->code); 3152 3153 if (opcode == BPF_CALL) { 3154 if (BPF_SRC(insn->code) != BPF_K || 3155 insn->off != 0 || 3156 insn->src_reg != BPF_REG_0 || 3157 insn->dst_reg != BPF_REG_0) { 3158 verbose("BPF_CALL uses reserved fields\n"); 3159 return -EINVAL; 3160 } 3161 3162 err = check_call(env, insn->imm, insn_idx); 3163 if (err) 3164 return err; 3165 3166 } else if (opcode == BPF_JA) { 3167 if (BPF_SRC(insn->code) != BPF_K || 3168 insn->imm != 0 || 3169 insn->src_reg != BPF_REG_0 || 3170 insn->dst_reg != BPF_REG_0) { 3171 verbose("BPF_JA uses reserved fields\n"); 3172 return -EINVAL; 3173 } 3174 3175 insn_idx += insn->off + 1; 3176 continue; 3177 3178 } else if (opcode == BPF_EXIT) { 3179 if (BPF_SRC(insn->code) != BPF_K || 3180 insn->imm != 0 || 3181 insn->src_reg != BPF_REG_0 || 3182 insn->dst_reg != BPF_REG_0) { 3183 verbose("BPF_EXIT uses reserved fields\n"); 3184 return -EINVAL; 3185 } 3186 3187 /* eBPF calling convetion is such that R0 is used 3188 * to return the value from eBPF program. 3189 * Make sure that it's readable at this time 3190 * of bpf_exit, which means that program wrote 3191 * something into it earlier 3192 */ 3193 err = check_reg_arg(regs, BPF_REG_0, SRC_OP); 3194 if (err) 3195 return err; 3196 3197 if (is_pointer_value(env, BPF_REG_0)) { 3198 verbose("R0 leaks addr as return value\n"); 3199 return -EACCES; 3200 } 3201 3202 process_bpf_exit: 3203 insn_idx = pop_stack(env, &prev_insn_idx); 3204 if (insn_idx < 0) { 3205 break; 3206 } else { 3207 do_print_state = true; 3208 continue; 3209 } 3210 } else { 3211 err = check_cond_jmp_op(env, insn, &insn_idx); 3212 if (err) 3213 return err; 3214 } 3215 } else if (class == BPF_LD) { 3216 u8 mode = BPF_MODE(insn->code); 3217 3218 if (mode == BPF_ABS || mode == BPF_IND) { 3219 err = check_ld_abs(env, insn); 3220 if (err) 3221 return err; 3222 3223 } else if (mode == BPF_IMM) { 3224 err = check_ld_imm(env, insn); 3225 if (err) 3226 return err; 3227 3228 insn_idx++; 3229 } else { 3230 verbose("invalid BPF_LD mode\n"); 3231 return -EINVAL; 3232 } 3233 reset_reg_range_values(regs, insn->dst_reg); 3234 } else { 3235 verbose("unknown insn class %d\n", class); 3236 return -EINVAL; 3237 } 3238 3239 insn_idx++; 3240 } 3241 3242 verbose("processed %d insns, stack depth %d\n", 3243 insn_processed, env->prog->aux->stack_depth); 3244 return 0; 3245 } 3246 3247 static int check_map_prealloc(struct bpf_map *map) 3248 { 3249 return (map->map_type != BPF_MAP_TYPE_HASH && 3250 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 3251 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 3252 !(map->map_flags & BPF_F_NO_PREALLOC); 3253 } 3254 3255 static int check_map_prog_compatibility(struct bpf_map *map, 3256 struct bpf_prog *prog) 3257 3258 { 3259 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 3260 * preallocated hash maps, since doing memory allocation 3261 * in overflow_handler can crash depending on where nmi got 3262 * triggered. 3263 */ 3264 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 3265 if (!check_map_prealloc(map)) { 3266 verbose("perf_event programs can only use preallocated hash map\n"); 3267 return -EINVAL; 3268 } 3269 if (map->inner_map_meta && 3270 !check_map_prealloc(map->inner_map_meta)) { 3271 verbose("perf_event programs can only use preallocated inner hash map\n"); 3272 return -EINVAL; 3273 } 3274 } 3275 return 0; 3276 } 3277 3278 /* look for pseudo eBPF instructions that access map FDs and 3279 * replace them with actual map pointers 3280 */ 3281 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 3282 { 3283 struct bpf_insn *insn = env->prog->insnsi; 3284 int insn_cnt = env->prog->len; 3285 int i, j, err; 3286 3287 err = bpf_prog_calc_tag(env->prog); 3288 if (err) 3289 return err; 3290 3291 for (i = 0; i < insn_cnt; i++, insn++) { 3292 if (BPF_CLASS(insn->code) == BPF_LDX && 3293 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 3294 verbose("BPF_LDX uses reserved fields\n"); 3295 return -EINVAL; 3296 } 3297 3298 if (BPF_CLASS(insn->code) == BPF_STX && 3299 ((BPF_MODE(insn->code) != BPF_MEM && 3300 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 3301 verbose("BPF_STX uses reserved fields\n"); 3302 return -EINVAL; 3303 } 3304 3305 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 3306 struct bpf_map *map; 3307 struct fd f; 3308 3309 if (i == insn_cnt - 1 || insn[1].code != 0 || 3310 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 3311 insn[1].off != 0) { 3312 verbose("invalid bpf_ld_imm64 insn\n"); 3313 return -EINVAL; 3314 } 3315 3316 if (insn->src_reg == 0) 3317 /* valid generic load 64-bit imm */ 3318 goto next_insn; 3319 3320 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 3321 verbose("unrecognized bpf_ld_imm64 insn\n"); 3322 return -EINVAL; 3323 } 3324 3325 f = fdget(insn->imm); 3326 map = __bpf_map_get(f); 3327 if (IS_ERR(map)) { 3328 verbose("fd %d is not pointing to valid bpf_map\n", 3329 insn->imm); 3330 return PTR_ERR(map); 3331 } 3332 3333 err = check_map_prog_compatibility(map, env->prog); 3334 if (err) { 3335 fdput(f); 3336 return err; 3337 } 3338 3339 /* store map pointer inside BPF_LD_IMM64 instruction */ 3340 insn[0].imm = (u32) (unsigned long) map; 3341 insn[1].imm = ((u64) (unsigned long) map) >> 32; 3342 3343 /* check whether we recorded this map already */ 3344 for (j = 0; j < env->used_map_cnt; j++) 3345 if (env->used_maps[j] == map) { 3346 fdput(f); 3347 goto next_insn; 3348 } 3349 3350 if (env->used_map_cnt >= MAX_USED_MAPS) { 3351 fdput(f); 3352 return -E2BIG; 3353 } 3354 3355 /* hold the map. If the program is rejected by verifier, 3356 * the map will be released by release_maps() or it 3357 * will be used by the valid program until it's unloaded 3358 * and all maps are released in free_bpf_prog_info() 3359 */ 3360 map = bpf_map_inc(map, false); 3361 if (IS_ERR(map)) { 3362 fdput(f); 3363 return PTR_ERR(map); 3364 } 3365 env->used_maps[env->used_map_cnt++] = map; 3366 3367 fdput(f); 3368 next_insn: 3369 insn++; 3370 i++; 3371 } 3372 } 3373 3374 /* now all pseudo BPF_LD_IMM64 instructions load valid 3375 * 'struct bpf_map *' into a register instead of user map_fd. 3376 * These pointers will be used later by verifier to validate map access. 3377 */ 3378 return 0; 3379 } 3380 3381 /* drop refcnt of maps used by the rejected program */ 3382 static void release_maps(struct bpf_verifier_env *env) 3383 { 3384 int i; 3385 3386 for (i = 0; i < env->used_map_cnt; i++) 3387 bpf_map_put(env->used_maps[i]); 3388 } 3389 3390 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 3391 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 3392 { 3393 struct bpf_insn *insn = env->prog->insnsi; 3394 int insn_cnt = env->prog->len; 3395 int i; 3396 3397 for (i = 0; i < insn_cnt; i++, insn++) 3398 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 3399 insn->src_reg = 0; 3400 } 3401 3402 /* single env->prog->insni[off] instruction was replaced with the range 3403 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 3404 * [0, off) and [off, end) to new locations, so the patched range stays zero 3405 */ 3406 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 3407 u32 off, u32 cnt) 3408 { 3409 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 3410 3411 if (cnt == 1) 3412 return 0; 3413 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 3414 if (!new_data) 3415 return -ENOMEM; 3416 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 3417 memcpy(new_data + off + cnt - 1, old_data + off, 3418 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 3419 env->insn_aux_data = new_data; 3420 vfree(old_data); 3421 return 0; 3422 } 3423 3424 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 3425 const struct bpf_insn *patch, u32 len) 3426 { 3427 struct bpf_prog *new_prog; 3428 3429 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 3430 if (!new_prog) 3431 return NULL; 3432 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 3433 return NULL; 3434 return new_prog; 3435 } 3436 3437 /* convert load instructions that access fields of 'struct __sk_buff' 3438 * into sequence of instructions that access fields of 'struct sk_buff' 3439 */ 3440 static int convert_ctx_accesses(struct bpf_verifier_env *env) 3441 { 3442 const struct bpf_verifier_ops *ops = env->prog->aux->ops; 3443 int i, cnt, size, ctx_field_size, delta = 0; 3444 const int insn_cnt = env->prog->len; 3445 struct bpf_insn insn_buf[16], *insn; 3446 struct bpf_prog *new_prog; 3447 enum bpf_access_type type; 3448 bool is_narrower_load; 3449 u32 target_size; 3450 3451 if (ops->gen_prologue) { 3452 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 3453 env->prog); 3454 if (cnt >= ARRAY_SIZE(insn_buf)) { 3455 verbose("bpf verifier is misconfigured\n"); 3456 return -EINVAL; 3457 } else if (cnt) { 3458 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 3459 if (!new_prog) 3460 return -ENOMEM; 3461 3462 env->prog = new_prog; 3463 delta += cnt - 1; 3464 } 3465 } 3466 3467 if (!ops->convert_ctx_access) 3468 return 0; 3469 3470 insn = env->prog->insnsi + delta; 3471 3472 for (i = 0; i < insn_cnt; i++, insn++) { 3473 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 3474 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 3475 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 3476 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 3477 type = BPF_READ; 3478 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 3479 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 3480 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 3481 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 3482 type = BPF_WRITE; 3483 else 3484 continue; 3485 3486 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 3487 continue; 3488 3489 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 3490 size = BPF_LDST_BYTES(insn); 3491 3492 /* If the read access is a narrower load of the field, 3493 * convert to a 4/8-byte load, to minimum program type specific 3494 * convert_ctx_access changes. If conversion is successful, 3495 * we will apply proper mask to the result. 3496 */ 3497 is_narrower_load = size < ctx_field_size; 3498 if (is_narrower_load) { 3499 u32 off = insn->off; 3500 u8 size_code; 3501 3502 if (type == BPF_WRITE) { 3503 verbose("bpf verifier narrow ctx access misconfigured\n"); 3504 return -EINVAL; 3505 } 3506 3507 size_code = BPF_H; 3508 if (ctx_field_size == 4) 3509 size_code = BPF_W; 3510 else if (ctx_field_size == 8) 3511 size_code = BPF_DW; 3512 3513 insn->off = off & ~(ctx_field_size - 1); 3514 insn->code = BPF_LDX | BPF_MEM | size_code; 3515 } 3516 3517 target_size = 0; 3518 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 3519 &target_size); 3520 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 3521 (ctx_field_size && !target_size)) { 3522 verbose("bpf verifier is misconfigured\n"); 3523 return -EINVAL; 3524 } 3525 3526 if (is_narrower_load && size < target_size) { 3527 if (ctx_field_size <= 4) 3528 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 3529 (1 << size * 8) - 1); 3530 else 3531 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 3532 (1 << size * 8) - 1); 3533 } 3534 3535 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 3536 if (!new_prog) 3537 return -ENOMEM; 3538 3539 delta += cnt - 1; 3540 3541 /* keep walking new program and skip insns we just inserted */ 3542 env->prog = new_prog; 3543 insn = new_prog->insnsi + i + delta; 3544 } 3545 3546 return 0; 3547 } 3548 3549 /* fixup insn->imm field of bpf_call instructions 3550 * and inline eligible helpers as explicit sequence of BPF instructions 3551 * 3552 * this function is called after eBPF program passed verification 3553 */ 3554 static int fixup_bpf_calls(struct bpf_verifier_env *env) 3555 { 3556 struct bpf_prog *prog = env->prog; 3557 struct bpf_insn *insn = prog->insnsi; 3558 const struct bpf_func_proto *fn; 3559 const int insn_cnt = prog->len; 3560 struct bpf_insn insn_buf[16]; 3561 struct bpf_prog *new_prog; 3562 struct bpf_map *map_ptr; 3563 int i, cnt, delta = 0; 3564 3565 for (i = 0; i < insn_cnt; i++, insn++) { 3566 if (insn->code != (BPF_JMP | BPF_CALL)) 3567 continue; 3568 3569 if (insn->imm == BPF_FUNC_get_route_realm) 3570 prog->dst_needed = 1; 3571 if (insn->imm == BPF_FUNC_get_prandom_u32) 3572 bpf_user_rnd_init_once(); 3573 if (insn->imm == BPF_FUNC_tail_call) { 3574 /* If we tail call into other programs, we 3575 * cannot make any assumptions since they can 3576 * be replaced dynamically during runtime in 3577 * the program array. 3578 */ 3579 prog->cb_access = 1; 3580 env->prog->aux->stack_depth = MAX_BPF_STACK; 3581 3582 /* mark bpf_tail_call as different opcode to avoid 3583 * conditional branch in the interpeter for every normal 3584 * call and to prevent accidental JITing by JIT compiler 3585 * that doesn't support bpf_tail_call yet 3586 */ 3587 insn->imm = 0; 3588 insn->code = BPF_JMP | BPF_TAIL_CALL; 3589 continue; 3590 } 3591 3592 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) { 3593 map_ptr = env->insn_aux_data[i + delta].map_ptr; 3594 if (map_ptr == BPF_MAP_PTR_POISON || 3595 !map_ptr->ops->map_gen_lookup) 3596 goto patch_call_imm; 3597 3598 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 3599 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 3600 verbose("bpf verifier is misconfigured\n"); 3601 return -EINVAL; 3602 } 3603 3604 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 3605 cnt); 3606 if (!new_prog) 3607 return -ENOMEM; 3608 3609 delta += cnt - 1; 3610 3611 /* keep walking new program and skip insns we just inserted */ 3612 env->prog = prog = new_prog; 3613 insn = new_prog->insnsi + i + delta; 3614 continue; 3615 } 3616 3617 patch_call_imm: 3618 fn = prog->aux->ops->get_func_proto(insn->imm); 3619 /* all functions that have prototype and verifier allowed 3620 * programs to call them, must be real in-kernel functions 3621 */ 3622 if (!fn->func) { 3623 verbose("kernel subsystem misconfigured func %s#%d\n", 3624 func_id_name(insn->imm), insn->imm); 3625 return -EFAULT; 3626 } 3627 insn->imm = fn->func - __bpf_call_base; 3628 } 3629 3630 return 0; 3631 } 3632 3633 static void free_states(struct bpf_verifier_env *env) 3634 { 3635 struct bpf_verifier_state_list *sl, *sln; 3636 int i; 3637 3638 if (!env->explored_states) 3639 return; 3640 3641 for (i = 0; i < env->prog->len; i++) { 3642 sl = env->explored_states[i]; 3643 3644 if (sl) 3645 while (sl != STATE_LIST_MARK) { 3646 sln = sl->next; 3647 kfree(sl); 3648 sl = sln; 3649 } 3650 } 3651 3652 kfree(env->explored_states); 3653 } 3654 3655 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 3656 { 3657 char __user *log_ubuf = NULL; 3658 struct bpf_verifier_env *env; 3659 int ret = -EINVAL; 3660 3661 /* 'struct bpf_verifier_env' can be global, but since it's not small, 3662 * allocate/free it every time bpf_check() is called 3663 */ 3664 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 3665 if (!env) 3666 return -ENOMEM; 3667 3668 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 3669 (*prog)->len); 3670 ret = -ENOMEM; 3671 if (!env->insn_aux_data) 3672 goto err_free_env; 3673 env->prog = *prog; 3674 3675 /* grab the mutex to protect few globals used by verifier */ 3676 mutex_lock(&bpf_verifier_lock); 3677 3678 if (attr->log_level || attr->log_buf || attr->log_size) { 3679 /* user requested verbose verifier output 3680 * and supplied buffer to store the verification trace 3681 */ 3682 log_level = attr->log_level; 3683 log_ubuf = (char __user *) (unsigned long) attr->log_buf; 3684 log_size = attr->log_size; 3685 log_len = 0; 3686 3687 ret = -EINVAL; 3688 /* log_* values have to be sane */ 3689 if (log_size < 128 || log_size > UINT_MAX >> 8 || 3690 log_level == 0 || log_ubuf == NULL) 3691 goto err_unlock; 3692 3693 ret = -ENOMEM; 3694 log_buf = vmalloc(log_size); 3695 if (!log_buf) 3696 goto err_unlock; 3697 } else { 3698 log_level = 0; 3699 } 3700 3701 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 3702 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 3703 env->strict_alignment = true; 3704 3705 ret = replace_map_fd_with_map_ptr(env); 3706 if (ret < 0) 3707 goto skip_full_check; 3708 3709 env->explored_states = kcalloc(env->prog->len, 3710 sizeof(struct bpf_verifier_state_list *), 3711 GFP_USER); 3712 ret = -ENOMEM; 3713 if (!env->explored_states) 3714 goto skip_full_check; 3715 3716 ret = check_cfg(env); 3717 if (ret < 0) 3718 goto skip_full_check; 3719 3720 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 3721 3722 ret = do_check(env); 3723 3724 skip_full_check: 3725 while (pop_stack(env, NULL) >= 0); 3726 free_states(env); 3727 3728 if (ret == 0) 3729 /* program is valid, convert *(u32*)(ctx + off) accesses */ 3730 ret = convert_ctx_accesses(env); 3731 3732 if (ret == 0) 3733 ret = fixup_bpf_calls(env); 3734 3735 if (log_level && log_len >= log_size - 1) { 3736 BUG_ON(log_len >= log_size); 3737 /* verifier log exceeded user supplied buffer */ 3738 ret = -ENOSPC; 3739 /* fall through to return what was recorded */ 3740 } 3741 3742 /* copy verifier log back to user space including trailing zero */ 3743 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { 3744 ret = -EFAULT; 3745 goto free_log_buf; 3746 } 3747 3748 if (ret == 0 && env->used_map_cnt) { 3749 /* if program passed verifier, update used_maps in bpf_prog_info */ 3750 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 3751 sizeof(env->used_maps[0]), 3752 GFP_KERNEL); 3753 3754 if (!env->prog->aux->used_maps) { 3755 ret = -ENOMEM; 3756 goto free_log_buf; 3757 } 3758 3759 memcpy(env->prog->aux->used_maps, env->used_maps, 3760 sizeof(env->used_maps[0]) * env->used_map_cnt); 3761 env->prog->aux->used_map_cnt = env->used_map_cnt; 3762 3763 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 3764 * bpf_ld_imm64 instructions 3765 */ 3766 convert_pseudo_ld_imm64(env); 3767 } 3768 3769 free_log_buf: 3770 if (log_level) 3771 vfree(log_buf); 3772 if (!env->prog->aux->used_maps) 3773 /* if we didn't copy map pointers into bpf_prog_info, release 3774 * them now. Otherwise free_bpf_prog_info() will release them. 3775 */ 3776 release_maps(env); 3777 *prog = env->prog; 3778 err_unlock: 3779 mutex_unlock(&bpf_verifier_lock); 3780 vfree(env->insn_aux_data); 3781 err_free_env: 3782 kfree(env); 3783 return ret; 3784 } 3785 3786 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 3787 void *priv) 3788 { 3789 struct bpf_verifier_env *env; 3790 int ret; 3791 3792 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 3793 if (!env) 3794 return -ENOMEM; 3795 3796 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 3797 prog->len); 3798 ret = -ENOMEM; 3799 if (!env->insn_aux_data) 3800 goto err_free_env; 3801 env->prog = prog; 3802 env->analyzer_ops = ops; 3803 env->analyzer_priv = priv; 3804 3805 /* grab the mutex to protect few globals used by verifier */ 3806 mutex_lock(&bpf_verifier_lock); 3807 3808 log_level = 0; 3809 3810 env->strict_alignment = false; 3811 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 3812 env->strict_alignment = true; 3813 3814 env->explored_states = kcalloc(env->prog->len, 3815 sizeof(struct bpf_verifier_state_list *), 3816 GFP_KERNEL); 3817 ret = -ENOMEM; 3818 if (!env->explored_states) 3819 goto skip_full_check; 3820 3821 ret = check_cfg(env); 3822 if (ret < 0) 3823 goto skip_full_check; 3824 3825 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 3826 3827 ret = do_check(env); 3828 3829 skip_full_check: 3830 while (pop_stack(env, NULL) >= 0); 3831 free_states(env); 3832 3833 mutex_unlock(&bpf_verifier_lock); 3834 vfree(env->insn_aux_data); 3835 err_free_env: 3836 kfree(env); 3837 return ret; 3838 } 3839 EXPORT_SYMBOL_GPL(bpf_analyzer); 3840