xref: /openbmc/linux/kernel/bpf/verifier.c (revision 4d2804b7)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have UNKNOWN_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	98304
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 	[NOT_INIT]		= "?",
183 	[UNKNOWN_VALUE]		= "inv",
184 	[PTR_TO_CTX]		= "ctx",
185 	[CONST_PTR_TO_MAP]	= "map_ptr",
186 	[PTR_TO_MAP_VALUE]	= "map_value",
187 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
189 	[FRAME_PTR]		= "fp",
190 	[PTR_TO_STACK]		= "fp",
191 	[CONST_IMM]		= "imm",
192 	[PTR_TO_PACKET]		= "pkt",
193 	[PTR_TO_PACKET_END]	= "pkt_end",
194 };
195 
196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197 static const char * const func_id_str[] = {
198 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199 };
200 #undef __BPF_FUNC_STR_FN
201 
202 static const char *func_id_name(int id)
203 {
204 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205 
206 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 		return func_id_str[id];
208 	else
209 		return "unknown";
210 }
211 
212 static void print_verifier_state(struct bpf_verifier_state *state)
213 {
214 	struct bpf_reg_state *reg;
215 	enum bpf_reg_type t;
216 	int i;
217 
218 	for (i = 0; i < MAX_BPF_REG; i++) {
219 		reg = &state->regs[i];
220 		t = reg->type;
221 		if (t == NOT_INIT)
222 			continue;
223 		verbose(" R%d=%s", i, reg_type_str[t]);
224 		if (t == CONST_IMM || t == PTR_TO_STACK)
225 			verbose("%lld", reg->imm);
226 		else if (t == PTR_TO_PACKET)
227 			verbose("(id=%d,off=%d,r=%d)",
228 				reg->id, reg->off, reg->range);
229 		else if (t == UNKNOWN_VALUE && reg->imm)
230 			verbose("%lld", reg->imm);
231 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
232 			 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 			 t == PTR_TO_MAP_VALUE_ADJ)
234 			verbose("(ks=%d,vs=%d,id=%u)",
235 				reg->map_ptr->key_size,
236 				reg->map_ptr->value_size,
237 				reg->id);
238 		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
239 			verbose(",min_value=%lld",
240 				(long long)reg->min_value);
241 		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 			verbose(",max_value=%llu",
243 				(unsigned long long)reg->max_value);
244 		if (reg->min_align)
245 			verbose(",min_align=%u", reg->min_align);
246 		if (reg->aux_off)
247 			verbose(",aux_off=%u", reg->aux_off);
248 		if (reg->aux_off_align)
249 			verbose(",aux_off_align=%u", reg->aux_off_align);
250 	}
251 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
252 		if (state->stack_slot_type[i] == STACK_SPILL)
253 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
254 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
255 	}
256 	verbose("\n");
257 }
258 
259 static const char *const bpf_class_string[] = {
260 	[BPF_LD]    = "ld",
261 	[BPF_LDX]   = "ldx",
262 	[BPF_ST]    = "st",
263 	[BPF_STX]   = "stx",
264 	[BPF_ALU]   = "alu",
265 	[BPF_JMP]   = "jmp",
266 	[BPF_RET]   = "BUG",
267 	[BPF_ALU64] = "alu64",
268 };
269 
270 static const char *const bpf_alu_string[16] = {
271 	[BPF_ADD >> 4]  = "+=",
272 	[BPF_SUB >> 4]  = "-=",
273 	[BPF_MUL >> 4]  = "*=",
274 	[BPF_DIV >> 4]  = "/=",
275 	[BPF_OR  >> 4]  = "|=",
276 	[BPF_AND >> 4]  = "&=",
277 	[BPF_LSH >> 4]  = "<<=",
278 	[BPF_RSH >> 4]  = ">>=",
279 	[BPF_NEG >> 4]  = "neg",
280 	[BPF_MOD >> 4]  = "%=",
281 	[BPF_XOR >> 4]  = "^=",
282 	[BPF_MOV >> 4]  = "=",
283 	[BPF_ARSH >> 4] = "s>>=",
284 	[BPF_END >> 4]  = "endian",
285 };
286 
287 static const char *const bpf_ldst_string[] = {
288 	[BPF_W >> 3]  = "u32",
289 	[BPF_H >> 3]  = "u16",
290 	[BPF_B >> 3]  = "u8",
291 	[BPF_DW >> 3] = "u64",
292 };
293 
294 static const char *const bpf_jmp_string[16] = {
295 	[BPF_JA >> 4]   = "jmp",
296 	[BPF_JEQ >> 4]  = "==",
297 	[BPF_JGT >> 4]  = ">",
298 	[BPF_JGE >> 4]  = ">=",
299 	[BPF_JSET >> 4] = "&",
300 	[BPF_JNE >> 4]  = "!=",
301 	[BPF_JSGT >> 4] = "s>",
302 	[BPF_JSGE >> 4] = "s>=",
303 	[BPF_CALL >> 4] = "call",
304 	[BPF_EXIT >> 4] = "exit",
305 };
306 
307 static void print_bpf_insn(const struct bpf_verifier_env *env,
308 			   const struct bpf_insn *insn)
309 {
310 	u8 class = BPF_CLASS(insn->code);
311 
312 	if (class == BPF_ALU || class == BPF_ALU64) {
313 		if (BPF_SRC(insn->code) == BPF_X)
314 			verbose("(%02x) %sr%d %s %sr%d\n",
315 				insn->code, class == BPF_ALU ? "(u32) " : "",
316 				insn->dst_reg,
317 				bpf_alu_string[BPF_OP(insn->code) >> 4],
318 				class == BPF_ALU ? "(u32) " : "",
319 				insn->src_reg);
320 		else
321 			verbose("(%02x) %sr%d %s %s%d\n",
322 				insn->code, class == BPF_ALU ? "(u32) " : "",
323 				insn->dst_reg,
324 				bpf_alu_string[BPF_OP(insn->code) >> 4],
325 				class == BPF_ALU ? "(u32) " : "",
326 				insn->imm);
327 	} else if (class == BPF_STX) {
328 		if (BPF_MODE(insn->code) == BPF_MEM)
329 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 				insn->code,
331 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 				insn->dst_reg,
333 				insn->off, insn->src_reg);
334 		else if (BPF_MODE(insn->code) == BPF_XADD)
335 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 				insn->code,
337 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 				insn->dst_reg, insn->off,
339 				insn->src_reg);
340 		else
341 			verbose("BUG_%02x\n", insn->code);
342 	} else if (class == BPF_ST) {
343 		if (BPF_MODE(insn->code) != BPF_MEM) {
344 			verbose("BUG_st_%02x\n", insn->code);
345 			return;
346 		}
347 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 			insn->code,
349 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 			insn->dst_reg,
351 			insn->off, insn->imm);
352 	} else if (class == BPF_LDX) {
353 		if (BPF_MODE(insn->code) != BPF_MEM) {
354 			verbose("BUG_ldx_%02x\n", insn->code);
355 			return;
356 		}
357 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 			insn->code, insn->dst_reg,
359 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 			insn->src_reg, insn->off);
361 	} else if (class == BPF_LD) {
362 		if (BPF_MODE(insn->code) == BPF_ABS) {
363 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 				insn->code,
365 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 				insn->imm);
367 		} else if (BPF_MODE(insn->code) == BPF_IND) {
368 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 				insn->code,
370 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 				insn->src_reg, insn->imm);
372 		} else if (BPF_MODE(insn->code) == BPF_IMM &&
373 			   BPF_SIZE(insn->code) == BPF_DW) {
374 			/* At this point, we already made sure that the second
375 			 * part of the ldimm64 insn is accessible.
376 			 */
377 			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379 
380 			if (map_ptr && !env->allow_ptr_leaks)
381 				imm = 0;
382 
383 			verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 				insn->dst_reg, (unsigned long long)imm);
385 		} else {
386 			verbose("BUG_ld_%02x\n", insn->code);
387 			return;
388 		}
389 	} else if (class == BPF_JMP) {
390 		u8 opcode = BPF_OP(insn->code);
391 
392 		if (opcode == BPF_CALL) {
393 			verbose("(%02x) call %s#%d\n", insn->code,
394 				func_id_name(insn->imm), insn->imm);
395 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
396 			verbose("(%02x) goto pc%+d\n",
397 				insn->code, insn->off);
398 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 			verbose("(%02x) exit\n", insn->code);
400 		} else if (BPF_SRC(insn->code) == BPF_X) {
401 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 				insn->code, insn->dst_reg,
403 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 				insn->src_reg, insn->off);
405 		} else {
406 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 				insn->code, insn->dst_reg,
408 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 				insn->imm, insn->off);
410 		}
411 	} else {
412 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 	}
414 }
415 
416 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
417 {
418 	struct bpf_verifier_stack_elem *elem;
419 	int insn_idx;
420 
421 	if (env->head == NULL)
422 		return -1;
423 
424 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 	insn_idx = env->head->insn_idx;
426 	if (prev_insn_idx)
427 		*prev_insn_idx = env->head->prev_insn_idx;
428 	elem = env->head->next;
429 	kfree(env->head);
430 	env->head = elem;
431 	env->stack_size--;
432 	return insn_idx;
433 }
434 
435 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 					     int insn_idx, int prev_insn_idx)
437 {
438 	struct bpf_verifier_stack_elem *elem;
439 
440 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
441 	if (!elem)
442 		goto err;
443 
444 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 	elem->insn_idx = insn_idx;
446 	elem->prev_insn_idx = prev_insn_idx;
447 	elem->next = env->head;
448 	env->head = elem;
449 	env->stack_size++;
450 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
451 		verbose("BPF program is too complex\n");
452 		goto err;
453 	}
454 	return &elem->st;
455 err:
456 	/* pop all elements and return */
457 	while (pop_stack(env, NULL) >= 0);
458 	return NULL;
459 }
460 
461 #define CALLER_SAVED_REGS 6
462 static const int caller_saved[CALLER_SAVED_REGS] = {
463 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464 };
465 
466 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
467 {
468 	BUG_ON(regno >= MAX_BPF_REG);
469 
470 	memset(&regs[regno], 0, sizeof(regs[regno]));
471 	regs[regno].type = NOT_INIT;
472 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
473 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
474 }
475 
476 static void init_reg_state(struct bpf_reg_state *regs)
477 {
478 	int i;
479 
480 	for (i = 0; i < MAX_BPF_REG; i++)
481 		mark_reg_not_init(regs, i);
482 
483 	/* frame pointer */
484 	regs[BPF_REG_FP].type = FRAME_PTR;
485 
486 	/* 1st arg to a function */
487 	regs[BPF_REG_1].type = PTR_TO_CTX;
488 }
489 
490 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
491 {
492 	regs[regno].type = UNKNOWN_VALUE;
493 	regs[regno].id = 0;
494 	regs[regno].imm = 0;
495 }
496 
497 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
498 {
499 	BUG_ON(regno >= MAX_BPF_REG);
500 	__mark_reg_unknown_value(regs, regno);
501 }
502 
503 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
504 {
505 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
506 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
507 	regs[regno].min_align = 0;
508 }
509 
510 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
511 					     u32 regno)
512 {
513 	mark_reg_unknown_value(regs, regno);
514 	reset_reg_range_values(regs, regno);
515 }
516 
517 enum reg_arg_type {
518 	SRC_OP,		/* register is used as source operand */
519 	DST_OP,		/* register is used as destination operand */
520 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
521 };
522 
523 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
524 			 enum reg_arg_type t)
525 {
526 	if (regno >= MAX_BPF_REG) {
527 		verbose("R%d is invalid\n", regno);
528 		return -EINVAL;
529 	}
530 
531 	if (t == SRC_OP) {
532 		/* check whether register used as source operand can be read */
533 		if (regs[regno].type == NOT_INIT) {
534 			verbose("R%d !read_ok\n", regno);
535 			return -EACCES;
536 		}
537 	} else {
538 		/* check whether register used as dest operand can be written to */
539 		if (regno == BPF_REG_FP) {
540 			verbose("frame pointer is read only\n");
541 			return -EACCES;
542 		}
543 		if (t == DST_OP)
544 			mark_reg_unknown_value(regs, regno);
545 	}
546 	return 0;
547 }
548 
549 static int bpf_size_to_bytes(int bpf_size)
550 {
551 	if (bpf_size == BPF_W)
552 		return 4;
553 	else if (bpf_size == BPF_H)
554 		return 2;
555 	else if (bpf_size == BPF_B)
556 		return 1;
557 	else if (bpf_size == BPF_DW)
558 		return 8;
559 	else
560 		return -EINVAL;
561 }
562 
563 static bool is_spillable_regtype(enum bpf_reg_type type)
564 {
565 	switch (type) {
566 	case PTR_TO_MAP_VALUE:
567 	case PTR_TO_MAP_VALUE_OR_NULL:
568 	case PTR_TO_MAP_VALUE_ADJ:
569 	case PTR_TO_STACK:
570 	case PTR_TO_CTX:
571 	case PTR_TO_PACKET:
572 	case PTR_TO_PACKET_END:
573 	case FRAME_PTR:
574 	case CONST_PTR_TO_MAP:
575 		return true;
576 	default:
577 		return false;
578 	}
579 }
580 
581 /* check_stack_read/write functions track spill/fill of registers,
582  * stack boundary and alignment are checked in check_mem_access()
583  */
584 static int check_stack_write(struct bpf_verifier_state *state, int off,
585 			     int size, int value_regno)
586 {
587 	int i;
588 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
589 	 * so it's aligned access and [off, off + size) are within stack limits
590 	 */
591 
592 	if (value_regno >= 0 &&
593 	    is_spillable_regtype(state->regs[value_regno].type)) {
594 
595 		/* register containing pointer is being spilled into stack */
596 		if (size != BPF_REG_SIZE) {
597 			verbose("invalid size of register spill\n");
598 			return -EACCES;
599 		}
600 
601 		/* save register state */
602 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
603 			state->regs[value_regno];
604 
605 		for (i = 0; i < BPF_REG_SIZE; i++)
606 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
607 	} else {
608 		/* regular write of data into stack */
609 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
610 			(struct bpf_reg_state) {};
611 
612 		for (i = 0; i < size; i++)
613 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
614 	}
615 	return 0;
616 }
617 
618 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
619 			    int value_regno)
620 {
621 	u8 *slot_type;
622 	int i;
623 
624 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
625 
626 	if (slot_type[0] == STACK_SPILL) {
627 		if (size != BPF_REG_SIZE) {
628 			verbose("invalid size of register spill\n");
629 			return -EACCES;
630 		}
631 		for (i = 1; i < BPF_REG_SIZE; i++) {
632 			if (slot_type[i] != STACK_SPILL) {
633 				verbose("corrupted spill memory\n");
634 				return -EACCES;
635 			}
636 		}
637 
638 		if (value_regno >= 0)
639 			/* restore register state from stack */
640 			state->regs[value_regno] =
641 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
642 		return 0;
643 	} else {
644 		for (i = 0; i < size; i++) {
645 			if (slot_type[i] != STACK_MISC) {
646 				verbose("invalid read from stack off %d+%d size %d\n",
647 					off, i, size);
648 				return -EACCES;
649 			}
650 		}
651 		if (value_regno >= 0)
652 			/* have read misc data from the stack */
653 			mark_reg_unknown_value_and_range(state->regs,
654 							 value_regno);
655 		return 0;
656 	}
657 }
658 
659 /* check read/write into map element returned by bpf_map_lookup_elem() */
660 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
661 			    int size)
662 {
663 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
664 
665 	if (off < 0 || size <= 0 || off + size > map->value_size) {
666 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
667 			map->value_size, off, size);
668 		return -EACCES;
669 	}
670 	return 0;
671 }
672 
673 /* check read/write into an adjusted map element */
674 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
675 				int off, int size)
676 {
677 	struct bpf_verifier_state *state = &env->cur_state;
678 	struct bpf_reg_state *reg = &state->regs[regno];
679 	int err;
680 
681 	/* We adjusted the register to this map value, so we
682 	 * need to change off and size to min_value and max_value
683 	 * respectively to make sure our theoretical access will be
684 	 * safe.
685 	 */
686 	if (log_level)
687 		print_verifier_state(state);
688 	env->varlen_map_value_access = true;
689 	/* The minimum value is only important with signed
690 	 * comparisons where we can't assume the floor of a
691 	 * value is 0.  If we are using signed variables for our
692 	 * index'es we need to make sure that whatever we use
693 	 * will have a set floor within our range.
694 	 */
695 	if (reg->min_value < 0) {
696 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
697 			regno);
698 		return -EACCES;
699 	}
700 	err = check_map_access(env, regno, reg->min_value + off, size);
701 	if (err) {
702 		verbose("R%d min value is outside of the array range\n",
703 			regno);
704 		return err;
705 	}
706 
707 	/* If we haven't set a max value then we need to bail
708 	 * since we can't be sure we won't do bad things.
709 	 */
710 	if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
711 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
712 			regno);
713 		return -EACCES;
714 	}
715 	return check_map_access(env, regno, reg->max_value + off, size);
716 }
717 
718 #define MAX_PACKET_OFF 0xffff
719 
720 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
721 				       const struct bpf_call_arg_meta *meta,
722 				       enum bpf_access_type t)
723 {
724 	switch (env->prog->type) {
725 	case BPF_PROG_TYPE_LWT_IN:
726 	case BPF_PROG_TYPE_LWT_OUT:
727 		/* dst_input() and dst_output() can't write for now */
728 		if (t == BPF_WRITE)
729 			return false;
730 		/* fallthrough */
731 	case BPF_PROG_TYPE_SCHED_CLS:
732 	case BPF_PROG_TYPE_SCHED_ACT:
733 	case BPF_PROG_TYPE_XDP:
734 	case BPF_PROG_TYPE_LWT_XMIT:
735 		if (meta)
736 			return meta->pkt_access;
737 
738 		env->seen_direct_write = true;
739 		return true;
740 	default:
741 		return false;
742 	}
743 }
744 
745 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
746 			       int size)
747 {
748 	struct bpf_reg_state *regs = env->cur_state.regs;
749 	struct bpf_reg_state *reg = &regs[regno];
750 
751 	off += reg->off;
752 	if (off < 0 || size <= 0 || off + size > reg->range) {
753 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
754 			off, size, regno, reg->id, reg->off, reg->range);
755 		return -EACCES;
756 	}
757 	return 0;
758 }
759 
760 /* check access to 'struct bpf_context' fields */
761 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
762 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
763 {
764 	/* for analyzer ctx accesses are already validated and converted */
765 	if (env->analyzer_ops)
766 		return 0;
767 
768 	if (env->prog->aux->ops->is_valid_access &&
769 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
770 		/* remember the offset of last byte accessed in ctx */
771 		if (env->prog->aux->max_ctx_offset < off + size)
772 			env->prog->aux->max_ctx_offset = off + size;
773 		return 0;
774 	}
775 
776 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
777 	return -EACCES;
778 }
779 
780 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
781 {
782 	if (env->allow_ptr_leaks)
783 		return false;
784 
785 	switch (env->cur_state.regs[regno].type) {
786 	case UNKNOWN_VALUE:
787 	case CONST_IMM:
788 		return false;
789 	default:
790 		return true;
791 	}
792 }
793 
794 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
795 				   int off, int size, bool strict)
796 {
797 	int ip_align;
798 	int reg_off;
799 
800 	/* Byte size accesses are always allowed. */
801 	if (!strict || size == 1)
802 		return 0;
803 
804 	reg_off = reg->off;
805 	if (reg->id) {
806 		if (reg->aux_off_align % size) {
807 			verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
808 				reg->aux_off_align, size);
809 			return -EACCES;
810 		}
811 		reg_off += reg->aux_off;
812 	}
813 
814 	/* For platforms that do not have a Kconfig enabling
815 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
816 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
817 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
818 	 * to this code only in strict mode where we want to emulate
819 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
820 	 * unconditional IP align value of '2'.
821 	 */
822 	ip_align = 2;
823 	if ((ip_align + reg_off + off) % size != 0) {
824 		verbose("misaligned packet access off %d+%d+%d size %d\n",
825 			ip_align, reg_off, off, size);
826 		return -EACCES;
827 	}
828 
829 	return 0;
830 }
831 
832 static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
833 				   int size, bool strict)
834 {
835 	if (strict && size != 1) {
836 		verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
837 		return -EACCES;
838 	}
839 
840 	return 0;
841 }
842 
843 static int check_ptr_alignment(struct bpf_verifier_env *env,
844 			       const struct bpf_reg_state *reg,
845 			       int off, int size)
846 {
847 	bool strict = env->strict_alignment;
848 
849 	switch (reg->type) {
850 	case PTR_TO_PACKET:
851 		return check_pkt_ptr_alignment(reg, off, size, strict);
852 	case PTR_TO_MAP_VALUE_ADJ:
853 		return check_val_ptr_alignment(reg, size, strict);
854 	default:
855 		if (off % size != 0) {
856 			verbose("misaligned access off %d size %d\n",
857 				off, size);
858 			return -EACCES;
859 		}
860 
861 		return 0;
862 	}
863 }
864 
865 /* check whether memory at (regno + off) is accessible for t = (read | write)
866  * if t==write, value_regno is a register which value is stored into memory
867  * if t==read, value_regno is a register which will receive the value from memory
868  * if t==write && value_regno==-1, some unknown value is stored into memory
869  * if t==read && value_regno==-1, don't care what we read from memory
870  */
871 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
872 			    int bpf_size, enum bpf_access_type t,
873 			    int value_regno)
874 {
875 	struct bpf_verifier_state *state = &env->cur_state;
876 	struct bpf_reg_state *reg = &state->regs[regno];
877 	int size, err = 0;
878 
879 	if (reg->type == PTR_TO_STACK)
880 		off += reg->imm;
881 
882 	size = bpf_size_to_bytes(bpf_size);
883 	if (size < 0)
884 		return size;
885 
886 	err = check_ptr_alignment(env, reg, off, size);
887 	if (err)
888 		return err;
889 
890 	if (reg->type == PTR_TO_MAP_VALUE ||
891 	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
892 		if (t == BPF_WRITE && value_regno >= 0 &&
893 		    is_pointer_value(env, value_regno)) {
894 			verbose("R%d leaks addr into map\n", value_regno);
895 			return -EACCES;
896 		}
897 
898 		if (reg->type == PTR_TO_MAP_VALUE_ADJ)
899 			err = check_map_access_adj(env, regno, off, size);
900 		else
901 			err = check_map_access(env, regno, off, size);
902 		if (!err && t == BPF_READ && value_regno >= 0)
903 			mark_reg_unknown_value_and_range(state->regs,
904 							 value_regno);
905 
906 	} else if (reg->type == PTR_TO_CTX) {
907 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
908 
909 		if (t == BPF_WRITE && value_regno >= 0 &&
910 		    is_pointer_value(env, value_regno)) {
911 			verbose("R%d leaks addr into ctx\n", value_regno);
912 			return -EACCES;
913 		}
914 		err = check_ctx_access(env, off, size, t, &reg_type);
915 		if (!err && t == BPF_READ && value_regno >= 0) {
916 			mark_reg_unknown_value_and_range(state->regs,
917 							 value_regno);
918 			/* note that reg.[id|off|range] == 0 */
919 			state->regs[value_regno].type = reg_type;
920 			state->regs[value_regno].aux_off = 0;
921 			state->regs[value_regno].aux_off_align = 0;
922 		}
923 
924 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
925 		if (off >= 0 || off < -MAX_BPF_STACK) {
926 			verbose("invalid stack off=%d size=%d\n", off, size);
927 			return -EACCES;
928 		}
929 		if (t == BPF_WRITE) {
930 			if (!env->allow_ptr_leaks &&
931 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
932 			    size != BPF_REG_SIZE) {
933 				verbose("attempt to corrupt spilled pointer on stack\n");
934 				return -EACCES;
935 			}
936 			err = check_stack_write(state, off, size, value_regno);
937 		} else {
938 			err = check_stack_read(state, off, size, value_regno);
939 		}
940 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
941 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
942 			verbose("cannot write into packet\n");
943 			return -EACCES;
944 		}
945 		if (t == BPF_WRITE && value_regno >= 0 &&
946 		    is_pointer_value(env, value_regno)) {
947 			verbose("R%d leaks addr into packet\n", value_regno);
948 			return -EACCES;
949 		}
950 		err = check_packet_access(env, regno, off, size);
951 		if (!err && t == BPF_READ && value_regno >= 0)
952 			mark_reg_unknown_value_and_range(state->regs,
953 							 value_regno);
954 	} else {
955 		verbose("R%d invalid mem access '%s'\n",
956 			regno, reg_type_str[reg->type]);
957 		return -EACCES;
958 	}
959 
960 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
961 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
962 		/* 1 or 2 byte load zero-extends, determine the number of
963 		 * zero upper bits. Not doing it fo 4 byte load, since
964 		 * such values cannot be added to ptr_to_packet anyway.
965 		 */
966 		state->regs[value_regno].imm = 64 - size * 8;
967 	}
968 	return err;
969 }
970 
971 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
972 {
973 	struct bpf_reg_state *regs = env->cur_state.regs;
974 	int err;
975 
976 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
977 	    insn->imm != 0) {
978 		verbose("BPF_XADD uses reserved fields\n");
979 		return -EINVAL;
980 	}
981 
982 	/* check src1 operand */
983 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
984 	if (err)
985 		return err;
986 
987 	/* check src2 operand */
988 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
989 	if (err)
990 		return err;
991 
992 	/* check whether atomic_add can read the memory */
993 	err = check_mem_access(env, insn->dst_reg, insn->off,
994 			       BPF_SIZE(insn->code), BPF_READ, -1);
995 	if (err)
996 		return err;
997 
998 	/* check whether atomic_add can write into the same memory */
999 	return check_mem_access(env, insn->dst_reg, insn->off,
1000 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1001 }
1002 
1003 /* when register 'regno' is passed into function that will read 'access_size'
1004  * bytes from that pointer, make sure that it's within stack boundary
1005  * and all elements of stack are initialized
1006  */
1007 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1008 				int access_size, bool zero_size_allowed,
1009 				struct bpf_call_arg_meta *meta)
1010 {
1011 	struct bpf_verifier_state *state = &env->cur_state;
1012 	struct bpf_reg_state *regs = state->regs;
1013 	int off, i;
1014 
1015 	if (regs[regno].type != PTR_TO_STACK) {
1016 		if (zero_size_allowed && access_size == 0 &&
1017 		    regs[regno].type == CONST_IMM &&
1018 		    regs[regno].imm  == 0)
1019 			return 0;
1020 
1021 		verbose("R%d type=%s expected=%s\n", regno,
1022 			reg_type_str[regs[regno].type],
1023 			reg_type_str[PTR_TO_STACK]);
1024 		return -EACCES;
1025 	}
1026 
1027 	off = regs[regno].imm;
1028 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1029 	    access_size <= 0) {
1030 		verbose("invalid stack type R%d off=%d access_size=%d\n",
1031 			regno, off, access_size);
1032 		return -EACCES;
1033 	}
1034 
1035 	if (meta && meta->raw_mode) {
1036 		meta->access_size = access_size;
1037 		meta->regno = regno;
1038 		return 0;
1039 	}
1040 
1041 	for (i = 0; i < access_size; i++) {
1042 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1043 			verbose("invalid indirect read from stack off %d+%d size %d\n",
1044 				off, i, access_size);
1045 			return -EACCES;
1046 		}
1047 	}
1048 	return 0;
1049 }
1050 
1051 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1052 				   int access_size, bool zero_size_allowed,
1053 				   struct bpf_call_arg_meta *meta)
1054 {
1055 	struct bpf_reg_state *regs = env->cur_state.regs;
1056 
1057 	switch (regs[regno].type) {
1058 	case PTR_TO_PACKET:
1059 		return check_packet_access(env, regno, 0, access_size);
1060 	case PTR_TO_MAP_VALUE:
1061 		return check_map_access(env, regno, 0, access_size);
1062 	case PTR_TO_MAP_VALUE_ADJ:
1063 		return check_map_access_adj(env, regno, 0, access_size);
1064 	default: /* const_imm|ptr_to_stack or invalid ptr */
1065 		return check_stack_boundary(env, regno, access_size,
1066 					    zero_size_allowed, meta);
1067 	}
1068 }
1069 
1070 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1071 			  enum bpf_arg_type arg_type,
1072 			  struct bpf_call_arg_meta *meta)
1073 {
1074 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1075 	enum bpf_reg_type expected_type, type = reg->type;
1076 	int err = 0;
1077 
1078 	if (arg_type == ARG_DONTCARE)
1079 		return 0;
1080 
1081 	if (type == NOT_INIT) {
1082 		verbose("R%d !read_ok\n", regno);
1083 		return -EACCES;
1084 	}
1085 
1086 	if (arg_type == ARG_ANYTHING) {
1087 		if (is_pointer_value(env, regno)) {
1088 			verbose("R%d leaks addr into helper function\n", regno);
1089 			return -EACCES;
1090 		}
1091 		return 0;
1092 	}
1093 
1094 	if (type == PTR_TO_PACKET &&
1095 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1096 		verbose("helper access to the packet is not allowed\n");
1097 		return -EACCES;
1098 	}
1099 
1100 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1101 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1102 		expected_type = PTR_TO_STACK;
1103 		if (type != PTR_TO_PACKET && type != expected_type)
1104 			goto err_type;
1105 	} else if (arg_type == ARG_CONST_SIZE ||
1106 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1107 		expected_type = CONST_IMM;
1108 		/* One exception. Allow UNKNOWN_VALUE registers when the
1109 		 * boundaries are known and don't cause unsafe memory accesses
1110 		 */
1111 		if (type != UNKNOWN_VALUE && type != expected_type)
1112 			goto err_type;
1113 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1114 		expected_type = CONST_PTR_TO_MAP;
1115 		if (type != expected_type)
1116 			goto err_type;
1117 	} else if (arg_type == ARG_PTR_TO_CTX) {
1118 		expected_type = PTR_TO_CTX;
1119 		if (type != expected_type)
1120 			goto err_type;
1121 	} else if (arg_type == ARG_PTR_TO_MEM ||
1122 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1123 		expected_type = PTR_TO_STACK;
1124 		/* One exception here. In case function allows for NULL to be
1125 		 * passed in as argument, it's a CONST_IMM type. Final test
1126 		 * happens during stack boundary checking.
1127 		 */
1128 		if (type == CONST_IMM && reg->imm == 0)
1129 			/* final test in check_stack_boundary() */;
1130 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1131 			 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1132 			goto err_type;
1133 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1134 	} else {
1135 		verbose("unsupported arg_type %d\n", arg_type);
1136 		return -EFAULT;
1137 	}
1138 
1139 	if (arg_type == ARG_CONST_MAP_PTR) {
1140 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1141 		meta->map_ptr = reg->map_ptr;
1142 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1143 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1144 		 * check that [key, key + map->key_size) are within
1145 		 * stack limits and initialized
1146 		 */
1147 		if (!meta->map_ptr) {
1148 			/* in function declaration map_ptr must come before
1149 			 * map_key, so that it's verified and known before
1150 			 * we have to check map_key here. Otherwise it means
1151 			 * that kernel subsystem misconfigured verifier
1152 			 */
1153 			verbose("invalid map_ptr to access map->key\n");
1154 			return -EACCES;
1155 		}
1156 		if (type == PTR_TO_PACKET)
1157 			err = check_packet_access(env, regno, 0,
1158 						  meta->map_ptr->key_size);
1159 		else
1160 			err = check_stack_boundary(env, regno,
1161 						   meta->map_ptr->key_size,
1162 						   false, NULL);
1163 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1164 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1165 		 * check [value, value + map->value_size) validity
1166 		 */
1167 		if (!meta->map_ptr) {
1168 			/* kernel subsystem misconfigured verifier */
1169 			verbose("invalid map_ptr to access map->value\n");
1170 			return -EACCES;
1171 		}
1172 		if (type == PTR_TO_PACKET)
1173 			err = check_packet_access(env, regno, 0,
1174 						  meta->map_ptr->value_size);
1175 		else
1176 			err = check_stack_boundary(env, regno,
1177 						   meta->map_ptr->value_size,
1178 						   false, NULL);
1179 	} else if (arg_type == ARG_CONST_SIZE ||
1180 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1181 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1182 
1183 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1184 		 * from stack pointer 'buf'. Check it
1185 		 * note: regno == len, regno - 1 == buf
1186 		 */
1187 		if (regno == 0) {
1188 			/* kernel subsystem misconfigured verifier */
1189 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1190 			return -EACCES;
1191 		}
1192 
1193 		/* If the register is UNKNOWN_VALUE, the access check happens
1194 		 * using its boundaries. Otherwise, just use its imm
1195 		 */
1196 		if (type == UNKNOWN_VALUE) {
1197 			/* For unprivileged variable accesses, disable raw
1198 			 * mode so that the program is required to
1199 			 * initialize all the memory that the helper could
1200 			 * just partially fill up.
1201 			 */
1202 			meta = NULL;
1203 
1204 			if (reg->min_value < 0) {
1205 				verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1206 					regno);
1207 				return -EACCES;
1208 			}
1209 
1210 			if (reg->min_value == 0) {
1211 				err = check_helper_mem_access(env, regno - 1, 0,
1212 							      zero_size_allowed,
1213 							      meta);
1214 				if (err)
1215 					return err;
1216 			}
1217 
1218 			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1219 				verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1220 					regno);
1221 				return -EACCES;
1222 			}
1223 			err = check_helper_mem_access(env, regno - 1,
1224 						      reg->max_value,
1225 						      zero_size_allowed, meta);
1226 			if (err)
1227 				return err;
1228 		} else {
1229 			/* register is CONST_IMM */
1230 			err = check_helper_mem_access(env, regno - 1, reg->imm,
1231 						      zero_size_allowed, meta);
1232 		}
1233 	}
1234 
1235 	return err;
1236 err_type:
1237 	verbose("R%d type=%s expected=%s\n", regno,
1238 		reg_type_str[type], reg_type_str[expected_type]);
1239 	return -EACCES;
1240 }
1241 
1242 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1243 {
1244 	if (!map)
1245 		return 0;
1246 
1247 	/* We need a two way check, first is from map perspective ... */
1248 	switch (map->map_type) {
1249 	case BPF_MAP_TYPE_PROG_ARRAY:
1250 		if (func_id != BPF_FUNC_tail_call)
1251 			goto error;
1252 		break;
1253 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1254 		if (func_id != BPF_FUNC_perf_event_read &&
1255 		    func_id != BPF_FUNC_perf_event_output)
1256 			goto error;
1257 		break;
1258 	case BPF_MAP_TYPE_STACK_TRACE:
1259 		if (func_id != BPF_FUNC_get_stackid)
1260 			goto error;
1261 		break;
1262 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1263 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1264 		    func_id != BPF_FUNC_current_task_under_cgroup)
1265 			goto error;
1266 		break;
1267 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1268 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1269 		if (func_id != BPF_FUNC_map_lookup_elem)
1270 			goto error;
1271 	default:
1272 		break;
1273 	}
1274 
1275 	/* ... and second from the function itself. */
1276 	switch (func_id) {
1277 	case BPF_FUNC_tail_call:
1278 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1279 			goto error;
1280 		break;
1281 	case BPF_FUNC_perf_event_read:
1282 	case BPF_FUNC_perf_event_output:
1283 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1284 			goto error;
1285 		break;
1286 	case BPF_FUNC_get_stackid:
1287 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1288 			goto error;
1289 		break;
1290 	case BPF_FUNC_current_task_under_cgroup:
1291 	case BPF_FUNC_skb_under_cgroup:
1292 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1293 			goto error;
1294 		break;
1295 	default:
1296 		break;
1297 	}
1298 
1299 	return 0;
1300 error:
1301 	verbose("cannot pass map_type %d into func %s#%d\n",
1302 		map->map_type, func_id_name(func_id), func_id);
1303 	return -EINVAL;
1304 }
1305 
1306 static int check_raw_mode(const struct bpf_func_proto *fn)
1307 {
1308 	int count = 0;
1309 
1310 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1311 		count++;
1312 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1313 		count++;
1314 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1315 		count++;
1316 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1317 		count++;
1318 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1319 		count++;
1320 
1321 	return count > 1 ? -EINVAL : 0;
1322 }
1323 
1324 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1325 {
1326 	struct bpf_verifier_state *state = &env->cur_state;
1327 	struct bpf_reg_state *regs = state->regs, *reg;
1328 	int i;
1329 
1330 	for (i = 0; i < MAX_BPF_REG; i++)
1331 		if (regs[i].type == PTR_TO_PACKET ||
1332 		    regs[i].type == PTR_TO_PACKET_END)
1333 			mark_reg_unknown_value(regs, i);
1334 
1335 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1336 		if (state->stack_slot_type[i] != STACK_SPILL)
1337 			continue;
1338 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1339 		if (reg->type != PTR_TO_PACKET &&
1340 		    reg->type != PTR_TO_PACKET_END)
1341 			continue;
1342 		reg->type = UNKNOWN_VALUE;
1343 		reg->imm = 0;
1344 	}
1345 }
1346 
1347 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1348 {
1349 	struct bpf_verifier_state *state = &env->cur_state;
1350 	const struct bpf_func_proto *fn = NULL;
1351 	struct bpf_reg_state *regs = state->regs;
1352 	struct bpf_call_arg_meta meta;
1353 	bool changes_data;
1354 	int i, err;
1355 
1356 	/* find function prototype */
1357 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1358 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1359 		return -EINVAL;
1360 	}
1361 
1362 	if (env->prog->aux->ops->get_func_proto)
1363 		fn = env->prog->aux->ops->get_func_proto(func_id);
1364 
1365 	if (!fn) {
1366 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1367 		return -EINVAL;
1368 	}
1369 
1370 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1371 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1372 		verbose("cannot call GPL only function from proprietary program\n");
1373 		return -EINVAL;
1374 	}
1375 
1376 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1377 
1378 	memset(&meta, 0, sizeof(meta));
1379 	meta.pkt_access = fn->pkt_access;
1380 
1381 	/* We only support one arg being in raw mode at the moment, which
1382 	 * is sufficient for the helper functions we have right now.
1383 	 */
1384 	err = check_raw_mode(fn);
1385 	if (err) {
1386 		verbose("kernel subsystem misconfigured func %s#%d\n",
1387 			func_id_name(func_id), func_id);
1388 		return err;
1389 	}
1390 
1391 	/* check args */
1392 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1393 	if (err)
1394 		return err;
1395 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1396 	if (err)
1397 		return err;
1398 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1399 	if (err)
1400 		return err;
1401 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1402 	if (err)
1403 		return err;
1404 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1405 	if (err)
1406 		return err;
1407 
1408 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1409 	 * is inferred from register state.
1410 	 */
1411 	for (i = 0; i < meta.access_size; i++) {
1412 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1413 		if (err)
1414 			return err;
1415 	}
1416 
1417 	/* reset caller saved regs */
1418 	for (i = 0; i < CALLER_SAVED_REGS; i++)
1419 		mark_reg_not_init(regs, caller_saved[i]);
1420 
1421 	/* update return register */
1422 	if (fn->ret_type == RET_INTEGER) {
1423 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1424 	} else if (fn->ret_type == RET_VOID) {
1425 		regs[BPF_REG_0].type = NOT_INIT;
1426 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1427 		struct bpf_insn_aux_data *insn_aux;
1428 
1429 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1430 		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1431 		/* remember map_ptr, so that check_map_access()
1432 		 * can check 'value_size' boundary of memory access
1433 		 * to map element returned from bpf_map_lookup_elem()
1434 		 */
1435 		if (meta.map_ptr == NULL) {
1436 			verbose("kernel subsystem misconfigured verifier\n");
1437 			return -EINVAL;
1438 		}
1439 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1440 		regs[BPF_REG_0].id = ++env->id_gen;
1441 		insn_aux = &env->insn_aux_data[insn_idx];
1442 		if (!insn_aux->map_ptr)
1443 			insn_aux->map_ptr = meta.map_ptr;
1444 		else if (insn_aux->map_ptr != meta.map_ptr)
1445 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1446 	} else {
1447 		verbose("unknown return type %d of func %s#%d\n",
1448 			fn->ret_type, func_id_name(func_id), func_id);
1449 		return -EINVAL;
1450 	}
1451 
1452 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1453 	if (err)
1454 		return err;
1455 
1456 	if (changes_data)
1457 		clear_all_pkt_pointers(env);
1458 	return 0;
1459 }
1460 
1461 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1462 				struct bpf_insn *insn)
1463 {
1464 	struct bpf_reg_state *regs = env->cur_state.regs;
1465 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1466 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1467 	struct bpf_reg_state tmp_reg;
1468 	s32 imm;
1469 
1470 	if (BPF_SRC(insn->code) == BPF_K) {
1471 		/* pkt_ptr += imm */
1472 		imm = insn->imm;
1473 
1474 add_imm:
1475 		if (imm < 0) {
1476 			verbose("addition of negative constant to packet pointer is not allowed\n");
1477 			return -EACCES;
1478 		}
1479 		if (imm >= MAX_PACKET_OFF ||
1480 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1481 			verbose("constant %d is too large to add to packet pointer\n",
1482 				imm);
1483 			return -EACCES;
1484 		}
1485 		/* a constant was added to pkt_ptr.
1486 		 * Remember it while keeping the same 'id'
1487 		 */
1488 		dst_reg->off += imm;
1489 	} else {
1490 		bool had_id;
1491 
1492 		if (src_reg->type == PTR_TO_PACKET) {
1493 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1494 			tmp_reg = *dst_reg;  /* save r7 state */
1495 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1496 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1497 			/* if the checks below reject it, the copy won't matter,
1498 			 * since we're rejecting the whole program. If all ok,
1499 			 * then imm22 state will be added to r7
1500 			 * and r7 will be pkt(id=0,off=22,r=62) while
1501 			 * r6 will stay as pkt(id=0,off=0,r=62)
1502 			 */
1503 		}
1504 
1505 		if (src_reg->type == CONST_IMM) {
1506 			/* pkt_ptr += reg where reg is known constant */
1507 			imm = src_reg->imm;
1508 			goto add_imm;
1509 		}
1510 		/* disallow pkt_ptr += reg
1511 		 * if reg is not uknown_value with guaranteed zero upper bits
1512 		 * otherwise pkt_ptr may overflow and addition will become
1513 		 * subtraction which is not allowed
1514 		 */
1515 		if (src_reg->type != UNKNOWN_VALUE) {
1516 			verbose("cannot add '%s' to ptr_to_packet\n",
1517 				reg_type_str[src_reg->type]);
1518 			return -EACCES;
1519 		}
1520 		if (src_reg->imm < 48) {
1521 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1522 				src_reg->imm);
1523 			return -EACCES;
1524 		}
1525 
1526 		had_id = (dst_reg->id != 0);
1527 
1528 		/* dst_reg stays as pkt_ptr type and since some positive
1529 		 * integer value was added to the pointer, increment its 'id'
1530 		 */
1531 		dst_reg->id = ++env->id_gen;
1532 
1533 		/* something was added to pkt_ptr, set range to zero */
1534 		dst_reg->aux_off += dst_reg->off;
1535 		dst_reg->off = 0;
1536 		dst_reg->range = 0;
1537 		if (had_id)
1538 			dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1539 						     src_reg->min_align);
1540 		else
1541 			dst_reg->aux_off_align = src_reg->min_align;
1542 	}
1543 	return 0;
1544 }
1545 
1546 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1547 {
1548 	struct bpf_reg_state *regs = env->cur_state.regs;
1549 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1550 	u8 opcode = BPF_OP(insn->code);
1551 	s64 imm_log2;
1552 
1553 	/* for type == UNKNOWN_VALUE:
1554 	 * imm > 0 -> number of zero upper bits
1555 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1556 	 */
1557 
1558 	if (BPF_SRC(insn->code) == BPF_X) {
1559 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1560 
1561 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1562 		    dst_reg->imm && opcode == BPF_ADD) {
1563 			/* dreg += sreg
1564 			 * where both have zero upper bits. Adding them
1565 			 * can only result making one more bit non-zero
1566 			 * in the larger value.
1567 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1568 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1569 			 */
1570 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1571 			dst_reg->imm--;
1572 			return 0;
1573 		}
1574 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1575 		    dst_reg->imm && opcode == BPF_ADD) {
1576 			/* dreg += sreg
1577 			 * where dreg has zero upper bits and sreg is const.
1578 			 * Adding them can only result making one more bit
1579 			 * non-zero in the larger value.
1580 			 */
1581 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1582 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1583 			dst_reg->imm--;
1584 			return 0;
1585 		}
1586 		/* all other cases non supported yet, just mark dst_reg */
1587 		dst_reg->imm = 0;
1588 		return 0;
1589 	}
1590 
1591 	/* sign extend 32-bit imm into 64-bit to make sure that
1592 	 * negative values occupy bit 63. Note ilog2() would have
1593 	 * been incorrect, since sizeof(insn->imm) == 4
1594 	 */
1595 	imm_log2 = __ilog2_u64((long long)insn->imm);
1596 
1597 	if (dst_reg->imm && opcode == BPF_LSH) {
1598 		/* reg <<= imm
1599 		 * if reg was a result of 2 byte load, then its imm == 48
1600 		 * which means that upper 48 bits are zero and shifting this reg
1601 		 * left by 4 would mean that upper 44 bits are still zero
1602 		 */
1603 		dst_reg->imm -= insn->imm;
1604 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1605 		/* reg *= imm
1606 		 * if multiplying by 14 subtract 4
1607 		 * This is conservative calculation of upper zero bits.
1608 		 * It's not trying to special case insn->imm == 1 or 0 cases
1609 		 */
1610 		dst_reg->imm -= imm_log2 + 1;
1611 	} else if (opcode == BPF_AND) {
1612 		/* reg &= imm */
1613 		dst_reg->imm = 63 - imm_log2;
1614 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1615 		/* reg += imm */
1616 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1617 		dst_reg->imm--;
1618 	} else if (opcode == BPF_RSH) {
1619 		/* reg >>= imm
1620 		 * which means that after right shift, upper bits will be zero
1621 		 * note that verifier already checked that
1622 		 * 0 <= imm < 64 for shift insn
1623 		 */
1624 		dst_reg->imm += insn->imm;
1625 		if (unlikely(dst_reg->imm > 64))
1626 			/* some dumb code did:
1627 			 * r2 = *(u32 *)mem;
1628 			 * r2 >>= 32;
1629 			 * and all bits are zero now */
1630 			dst_reg->imm = 64;
1631 	} else {
1632 		/* all other alu ops, means that we don't know what will
1633 		 * happen to the value, mark it with unknown number of zero bits
1634 		 */
1635 		dst_reg->imm = 0;
1636 	}
1637 
1638 	if (dst_reg->imm < 0) {
1639 		/* all 64 bits of the register can contain non-zero bits
1640 		 * and such value cannot be added to ptr_to_packet, since it
1641 		 * may overflow, mark it as unknown to avoid further eval
1642 		 */
1643 		dst_reg->imm = 0;
1644 	}
1645 	return 0;
1646 }
1647 
1648 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1649 				struct bpf_insn *insn)
1650 {
1651 	struct bpf_reg_state *regs = env->cur_state.regs;
1652 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1653 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1654 	u8 opcode = BPF_OP(insn->code);
1655 	u64 dst_imm = dst_reg->imm;
1656 
1657 	/* dst_reg->type == CONST_IMM here. Simulate execution of insns
1658 	 * containing ALU ops. Don't care about overflow or negative
1659 	 * values, just add/sub/... them; registers are in u64.
1660 	 */
1661 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1662 		dst_imm += insn->imm;
1663 	} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1664 		   src_reg->type == CONST_IMM) {
1665 		dst_imm += src_reg->imm;
1666 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1667 		dst_imm -= insn->imm;
1668 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1669 		   src_reg->type == CONST_IMM) {
1670 		dst_imm -= src_reg->imm;
1671 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1672 		dst_imm *= insn->imm;
1673 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1674 		   src_reg->type == CONST_IMM) {
1675 		dst_imm *= src_reg->imm;
1676 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1677 		dst_imm |= insn->imm;
1678 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1679 		   src_reg->type == CONST_IMM) {
1680 		dst_imm |= src_reg->imm;
1681 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1682 		dst_imm &= insn->imm;
1683 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1684 		   src_reg->type == CONST_IMM) {
1685 		dst_imm &= src_reg->imm;
1686 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1687 		dst_imm >>= insn->imm;
1688 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1689 		   src_reg->type == CONST_IMM) {
1690 		dst_imm >>= src_reg->imm;
1691 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1692 		dst_imm <<= insn->imm;
1693 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1694 		   src_reg->type == CONST_IMM) {
1695 		dst_imm <<= src_reg->imm;
1696 	} else {
1697 		mark_reg_unknown_value(regs, insn->dst_reg);
1698 		goto out;
1699 	}
1700 
1701 	dst_reg->imm = dst_imm;
1702 out:
1703 	return 0;
1704 }
1705 
1706 static void check_reg_overflow(struct bpf_reg_state *reg)
1707 {
1708 	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1709 		reg->max_value = BPF_REGISTER_MAX_RANGE;
1710 	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1711 	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1712 		reg->min_value = BPF_REGISTER_MIN_RANGE;
1713 }
1714 
1715 static u32 calc_align(u32 imm)
1716 {
1717 	if (!imm)
1718 		return 1U << 31;
1719 	return imm - ((imm - 1) & imm);
1720 }
1721 
1722 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1723 				    struct bpf_insn *insn)
1724 {
1725 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1726 	s64 min_val = BPF_REGISTER_MIN_RANGE;
1727 	u64 max_val = BPF_REGISTER_MAX_RANGE;
1728 	u8 opcode = BPF_OP(insn->code);
1729 	u32 dst_align, src_align;
1730 
1731 	dst_reg = &regs[insn->dst_reg];
1732 	src_align = 0;
1733 	if (BPF_SRC(insn->code) == BPF_X) {
1734 		check_reg_overflow(&regs[insn->src_reg]);
1735 		min_val = regs[insn->src_reg].min_value;
1736 		max_val = regs[insn->src_reg].max_value;
1737 
1738 		/* If the source register is a random pointer then the
1739 		 * min_value/max_value values represent the range of the known
1740 		 * accesses into that value, not the actual min/max value of the
1741 		 * register itself.  In this case we have to reset the reg range
1742 		 * values so we know it is not safe to look at.
1743 		 */
1744 		if (regs[insn->src_reg].type != CONST_IMM &&
1745 		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1746 			min_val = BPF_REGISTER_MIN_RANGE;
1747 			max_val = BPF_REGISTER_MAX_RANGE;
1748 			src_align = 0;
1749 		} else {
1750 			src_align = regs[insn->src_reg].min_align;
1751 		}
1752 	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1753 		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1754 		min_val = max_val = insn->imm;
1755 		src_align = calc_align(insn->imm);
1756 	}
1757 
1758 	dst_align = dst_reg->min_align;
1759 
1760 	/* We don't know anything about what was done to this register, mark it
1761 	 * as unknown.
1762 	 */
1763 	if (min_val == BPF_REGISTER_MIN_RANGE &&
1764 	    max_val == BPF_REGISTER_MAX_RANGE) {
1765 		reset_reg_range_values(regs, insn->dst_reg);
1766 		return;
1767 	}
1768 
1769 	/* If one of our values was at the end of our ranges then we can't just
1770 	 * do our normal operations to the register, we need to set the values
1771 	 * to the min/max since they are undefined.
1772 	 */
1773 	if (min_val == BPF_REGISTER_MIN_RANGE)
1774 		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1775 	if (max_val == BPF_REGISTER_MAX_RANGE)
1776 		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1777 
1778 	switch (opcode) {
1779 	case BPF_ADD:
1780 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1781 			dst_reg->min_value += min_val;
1782 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1783 			dst_reg->max_value += max_val;
1784 		dst_reg->min_align = min(src_align, dst_align);
1785 		break;
1786 	case BPF_SUB:
1787 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1788 			dst_reg->min_value -= min_val;
1789 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1790 			dst_reg->max_value -= max_val;
1791 		dst_reg->min_align = min(src_align, dst_align);
1792 		break;
1793 	case BPF_MUL:
1794 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1795 			dst_reg->min_value *= min_val;
1796 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1797 			dst_reg->max_value *= max_val;
1798 		dst_reg->min_align = max(src_align, dst_align);
1799 		break;
1800 	case BPF_AND:
1801 		/* Disallow AND'ing of negative numbers, ain't nobody got time
1802 		 * for that.  Otherwise the minimum is 0 and the max is the max
1803 		 * value we could AND against.
1804 		 */
1805 		if (min_val < 0)
1806 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1807 		else
1808 			dst_reg->min_value = 0;
1809 		dst_reg->max_value = max_val;
1810 		dst_reg->min_align = max(src_align, dst_align);
1811 		break;
1812 	case BPF_LSH:
1813 		/* Gotta have special overflow logic here, if we're shifting
1814 		 * more than MAX_RANGE then just assume we have an invalid
1815 		 * range.
1816 		 */
1817 		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
1818 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1819 			dst_reg->min_align = 1;
1820 		} else {
1821 			if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1822 				dst_reg->min_value <<= min_val;
1823 			if (!dst_reg->min_align)
1824 				dst_reg->min_align = 1;
1825 			dst_reg->min_align <<= min_val;
1826 		}
1827 		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1828 			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1829 		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1830 			dst_reg->max_value <<= max_val;
1831 		break;
1832 	case BPF_RSH:
1833 		/* RSH by a negative number is undefined, and the BPF_RSH is an
1834 		 * unsigned shift, so make the appropriate casts.
1835 		 */
1836 		if (min_val < 0 || dst_reg->min_value < 0) {
1837 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1838 		} else {
1839 			dst_reg->min_value =
1840 				(u64)(dst_reg->min_value) >> min_val;
1841 		}
1842 		if (min_val < 0) {
1843 			dst_reg->min_align = 1;
1844 		} else {
1845 			dst_reg->min_align >>= (u64) min_val;
1846 			if (!dst_reg->min_align)
1847 				dst_reg->min_align = 1;
1848 		}
1849 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1850 			dst_reg->max_value >>= max_val;
1851 		break;
1852 	default:
1853 		reset_reg_range_values(regs, insn->dst_reg);
1854 		break;
1855 	}
1856 
1857 	check_reg_overflow(dst_reg);
1858 }
1859 
1860 /* check validity of 32-bit and 64-bit arithmetic operations */
1861 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1862 {
1863 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1864 	u8 opcode = BPF_OP(insn->code);
1865 	int err;
1866 
1867 	if (opcode == BPF_END || opcode == BPF_NEG) {
1868 		if (opcode == BPF_NEG) {
1869 			if (BPF_SRC(insn->code) != 0 ||
1870 			    insn->src_reg != BPF_REG_0 ||
1871 			    insn->off != 0 || insn->imm != 0) {
1872 				verbose("BPF_NEG uses reserved fields\n");
1873 				return -EINVAL;
1874 			}
1875 		} else {
1876 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1877 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1878 				verbose("BPF_END uses reserved fields\n");
1879 				return -EINVAL;
1880 			}
1881 		}
1882 
1883 		/* check src operand */
1884 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1885 		if (err)
1886 			return err;
1887 
1888 		if (is_pointer_value(env, insn->dst_reg)) {
1889 			verbose("R%d pointer arithmetic prohibited\n",
1890 				insn->dst_reg);
1891 			return -EACCES;
1892 		}
1893 
1894 		/* check dest operand */
1895 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1896 		if (err)
1897 			return err;
1898 
1899 	} else if (opcode == BPF_MOV) {
1900 
1901 		if (BPF_SRC(insn->code) == BPF_X) {
1902 			if (insn->imm != 0 || insn->off != 0) {
1903 				verbose("BPF_MOV uses reserved fields\n");
1904 				return -EINVAL;
1905 			}
1906 
1907 			/* check src operand */
1908 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1909 			if (err)
1910 				return err;
1911 		} else {
1912 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1913 				verbose("BPF_MOV uses reserved fields\n");
1914 				return -EINVAL;
1915 			}
1916 		}
1917 
1918 		/* check dest operand */
1919 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1920 		if (err)
1921 			return err;
1922 
1923 		/* we are setting our register to something new, we need to
1924 		 * reset its range values.
1925 		 */
1926 		reset_reg_range_values(regs, insn->dst_reg);
1927 
1928 		if (BPF_SRC(insn->code) == BPF_X) {
1929 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1930 				/* case: R1 = R2
1931 				 * copy register state to dest reg
1932 				 */
1933 				regs[insn->dst_reg] = regs[insn->src_reg];
1934 			} else {
1935 				if (is_pointer_value(env, insn->src_reg)) {
1936 					verbose("R%d partial copy of pointer\n",
1937 						insn->src_reg);
1938 					return -EACCES;
1939 				}
1940 				mark_reg_unknown_value(regs, insn->dst_reg);
1941 			}
1942 		} else {
1943 			/* case: R = imm
1944 			 * remember the value we stored into this reg
1945 			 */
1946 			regs[insn->dst_reg].type = CONST_IMM;
1947 			regs[insn->dst_reg].imm = insn->imm;
1948 			regs[insn->dst_reg].max_value = insn->imm;
1949 			regs[insn->dst_reg].min_value = insn->imm;
1950 			regs[insn->dst_reg].min_align = calc_align(insn->imm);
1951 		}
1952 
1953 	} else if (opcode > BPF_END) {
1954 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1955 		return -EINVAL;
1956 
1957 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1958 
1959 		if (BPF_SRC(insn->code) == BPF_X) {
1960 			if (insn->imm != 0 || insn->off != 0) {
1961 				verbose("BPF_ALU uses reserved fields\n");
1962 				return -EINVAL;
1963 			}
1964 			/* check src1 operand */
1965 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1966 			if (err)
1967 				return err;
1968 		} else {
1969 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1970 				verbose("BPF_ALU uses reserved fields\n");
1971 				return -EINVAL;
1972 			}
1973 		}
1974 
1975 		/* check src2 operand */
1976 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1977 		if (err)
1978 			return err;
1979 
1980 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1981 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1982 			verbose("div by zero\n");
1983 			return -EINVAL;
1984 		}
1985 
1986 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1987 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1988 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1989 
1990 			if (insn->imm < 0 || insn->imm >= size) {
1991 				verbose("invalid shift %d\n", insn->imm);
1992 				return -EINVAL;
1993 			}
1994 		}
1995 
1996 		/* check dest operand */
1997 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1998 		if (err)
1999 			return err;
2000 
2001 		dst_reg = &regs[insn->dst_reg];
2002 
2003 		/* first we want to adjust our ranges. */
2004 		adjust_reg_min_max_vals(env, insn);
2005 
2006 		/* pattern match 'bpf_add Rx, imm' instruction */
2007 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
2008 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2009 			dst_reg->type = PTR_TO_STACK;
2010 			dst_reg->imm = insn->imm;
2011 			return 0;
2012 		} else if (opcode == BPF_ADD &&
2013 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
2014 			   dst_reg->type == PTR_TO_STACK &&
2015 			   ((BPF_SRC(insn->code) == BPF_X &&
2016 			     regs[insn->src_reg].type == CONST_IMM) ||
2017 			    BPF_SRC(insn->code) == BPF_K)) {
2018 			if (BPF_SRC(insn->code) == BPF_X)
2019 				dst_reg->imm += regs[insn->src_reg].imm;
2020 			else
2021 				dst_reg->imm += insn->imm;
2022 			return 0;
2023 		} else if (opcode == BPF_ADD &&
2024 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
2025 			   (dst_reg->type == PTR_TO_PACKET ||
2026 			    (BPF_SRC(insn->code) == BPF_X &&
2027 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
2028 			/* ptr_to_packet += K|X */
2029 			return check_packet_ptr_add(env, insn);
2030 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2031 			   dst_reg->type == UNKNOWN_VALUE &&
2032 			   env->allow_ptr_leaks) {
2033 			/* unknown += K|X */
2034 			return evaluate_reg_alu(env, insn);
2035 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2036 			   dst_reg->type == CONST_IMM &&
2037 			   env->allow_ptr_leaks) {
2038 			/* reg_imm += K|X */
2039 			return evaluate_reg_imm_alu(env, insn);
2040 		} else if (is_pointer_value(env, insn->dst_reg)) {
2041 			verbose("R%d pointer arithmetic prohibited\n",
2042 				insn->dst_reg);
2043 			return -EACCES;
2044 		} else if (BPF_SRC(insn->code) == BPF_X &&
2045 			   is_pointer_value(env, insn->src_reg)) {
2046 			verbose("R%d pointer arithmetic prohibited\n",
2047 				insn->src_reg);
2048 			return -EACCES;
2049 		}
2050 
2051 		/* If we did pointer math on a map value then just set it to our
2052 		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2053 		 * loads to this register appropriately, otherwise just mark the
2054 		 * register as unknown.
2055 		 */
2056 		if (env->allow_ptr_leaks &&
2057 		    BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
2058 		    (dst_reg->type == PTR_TO_MAP_VALUE ||
2059 		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2060 			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2061 		else
2062 			mark_reg_unknown_value(regs, insn->dst_reg);
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2069 				   struct bpf_reg_state *dst_reg)
2070 {
2071 	struct bpf_reg_state *regs = state->regs, *reg;
2072 	int i;
2073 
2074 	/* LLVM can generate two kind of checks:
2075 	 *
2076 	 * Type 1:
2077 	 *
2078 	 *   r2 = r3;
2079 	 *   r2 += 8;
2080 	 *   if (r2 > pkt_end) goto <handle exception>
2081 	 *   <access okay>
2082 	 *
2083 	 *   Where:
2084 	 *     r2 == dst_reg, pkt_end == src_reg
2085 	 *     r2=pkt(id=n,off=8,r=0)
2086 	 *     r3=pkt(id=n,off=0,r=0)
2087 	 *
2088 	 * Type 2:
2089 	 *
2090 	 *   r2 = r3;
2091 	 *   r2 += 8;
2092 	 *   if (pkt_end >= r2) goto <access okay>
2093 	 *   <handle exception>
2094 	 *
2095 	 *   Where:
2096 	 *     pkt_end == dst_reg, r2 == src_reg
2097 	 *     r2=pkt(id=n,off=8,r=0)
2098 	 *     r3=pkt(id=n,off=0,r=0)
2099 	 *
2100 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2101 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2102 	 */
2103 
2104 	for (i = 0; i < MAX_BPF_REG; i++)
2105 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2106 			/* keep the maximum range already checked */
2107 			regs[i].range = max(regs[i].range, dst_reg->off);
2108 
2109 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2110 		if (state->stack_slot_type[i] != STACK_SPILL)
2111 			continue;
2112 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2113 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2114 			reg->range = max(reg->range, dst_reg->off);
2115 	}
2116 }
2117 
2118 /* Adjusts the register min/max values in the case that the dst_reg is the
2119  * variable register that we are working on, and src_reg is a constant or we're
2120  * simply doing a BPF_K check.
2121  */
2122 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2123 			    struct bpf_reg_state *false_reg, u64 val,
2124 			    u8 opcode)
2125 {
2126 	switch (opcode) {
2127 	case BPF_JEQ:
2128 		/* If this is false then we know nothing Jon Snow, but if it is
2129 		 * true then we know for sure.
2130 		 */
2131 		true_reg->max_value = true_reg->min_value = val;
2132 		break;
2133 	case BPF_JNE:
2134 		/* If this is true we know nothing Jon Snow, but if it is false
2135 		 * we know the value for sure;
2136 		 */
2137 		false_reg->max_value = false_reg->min_value = val;
2138 		break;
2139 	case BPF_JGT:
2140 		/* Unsigned comparison, the minimum value is 0. */
2141 		false_reg->min_value = 0;
2142 		/* fallthrough */
2143 	case BPF_JSGT:
2144 		/* If this is false then we know the maximum val is val,
2145 		 * otherwise we know the min val is val+1.
2146 		 */
2147 		false_reg->max_value = val;
2148 		true_reg->min_value = val + 1;
2149 		break;
2150 	case BPF_JGE:
2151 		/* Unsigned comparison, the minimum value is 0. */
2152 		false_reg->min_value = 0;
2153 		/* fallthrough */
2154 	case BPF_JSGE:
2155 		/* If this is false then we know the maximum value is val - 1,
2156 		 * otherwise we know the mimimum value is val.
2157 		 */
2158 		false_reg->max_value = val - 1;
2159 		true_reg->min_value = val;
2160 		break;
2161 	default:
2162 		break;
2163 	}
2164 
2165 	check_reg_overflow(false_reg);
2166 	check_reg_overflow(true_reg);
2167 }
2168 
2169 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2170  * is the variable reg.
2171  */
2172 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2173 				struct bpf_reg_state *false_reg, u64 val,
2174 				u8 opcode)
2175 {
2176 	switch (opcode) {
2177 	case BPF_JEQ:
2178 		/* If this is false then we know nothing Jon Snow, but if it is
2179 		 * true then we know for sure.
2180 		 */
2181 		true_reg->max_value = true_reg->min_value = val;
2182 		break;
2183 	case BPF_JNE:
2184 		/* If this is true we know nothing Jon Snow, but if it is false
2185 		 * we know the value for sure;
2186 		 */
2187 		false_reg->max_value = false_reg->min_value = val;
2188 		break;
2189 	case BPF_JGT:
2190 		/* Unsigned comparison, the minimum value is 0. */
2191 		true_reg->min_value = 0;
2192 		/* fallthrough */
2193 	case BPF_JSGT:
2194 		/*
2195 		 * If this is false, then the val is <= the register, if it is
2196 		 * true the register <= to the val.
2197 		 */
2198 		false_reg->min_value = val;
2199 		true_reg->max_value = val - 1;
2200 		break;
2201 	case BPF_JGE:
2202 		/* Unsigned comparison, the minimum value is 0. */
2203 		true_reg->min_value = 0;
2204 		/* fallthrough */
2205 	case BPF_JSGE:
2206 		/* If this is false then constant < register, if it is true then
2207 		 * the register < constant.
2208 		 */
2209 		false_reg->min_value = val + 1;
2210 		true_reg->max_value = val;
2211 		break;
2212 	default:
2213 		break;
2214 	}
2215 
2216 	check_reg_overflow(false_reg);
2217 	check_reg_overflow(true_reg);
2218 }
2219 
2220 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2221 			 enum bpf_reg_type type)
2222 {
2223 	struct bpf_reg_state *reg = &regs[regno];
2224 
2225 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2226 		if (type == UNKNOWN_VALUE) {
2227 			__mark_reg_unknown_value(regs, regno);
2228 		} else if (reg->map_ptr->inner_map_meta) {
2229 			reg->type = CONST_PTR_TO_MAP;
2230 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2231 		} else {
2232 			reg->type = type;
2233 		}
2234 		/* We don't need id from this point onwards anymore, thus we
2235 		 * should better reset it, so that state pruning has chances
2236 		 * to take effect.
2237 		 */
2238 		reg->id = 0;
2239 	}
2240 }
2241 
2242 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2243  * be folded together at some point.
2244  */
2245 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2246 			  enum bpf_reg_type type)
2247 {
2248 	struct bpf_reg_state *regs = state->regs;
2249 	u32 id = regs[regno].id;
2250 	int i;
2251 
2252 	for (i = 0; i < MAX_BPF_REG; i++)
2253 		mark_map_reg(regs, i, id, type);
2254 
2255 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2256 		if (state->stack_slot_type[i] != STACK_SPILL)
2257 			continue;
2258 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2259 	}
2260 }
2261 
2262 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2263 			     struct bpf_insn *insn, int *insn_idx)
2264 {
2265 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2266 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2267 	u8 opcode = BPF_OP(insn->code);
2268 	int err;
2269 
2270 	if (opcode > BPF_EXIT) {
2271 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2272 		return -EINVAL;
2273 	}
2274 
2275 	if (BPF_SRC(insn->code) == BPF_X) {
2276 		if (insn->imm != 0) {
2277 			verbose("BPF_JMP uses reserved fields\n");
2278 			return -EINVAL;
2279 		}
2280 
2281 		/* check src1 operand */
2282 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2283 		if (err)
2284 			return err;
2285 
2286 		if (is_pointer_value(env, insn->src_reg)) {
2287 			verbose("R%d pointer comparison prohibited\n",
2288 				insn->src_reg);
2289 			return -EACCES;
2290 		}
2291 	} else {
2292 		if (insn->src_reg != BPF_REG_0) {
2293 			verbose("BPF_JMP uses reserved fields\n");
2294 			return -EINVAL;
2295 		}
2296 	}
2297 
2298 	/* check src2 operand */
2299 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2300 	if (err)
2301 		return err;
2302 
2303 	dst_reg = &regs[insn->dst_reg];
2304 
2305 	/* detect if R == 0 where R was initialized to zero earlier */
2306 	if (BPF_SRC(insn->code) == BPF_K &&
2307 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2308 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2309 		if (opcode == BPF_JEQ) {
2310 			/* if (imm == imm) goto pc+off;
2311 			 * only follow the goto, ignore fall-through
2312 			 */
2313 			*insn_idx += insn->off;
2314 			return 0;
2315 		} else {
2316 			/* if (imm != imm) goto pc+off;
2317 			 * only follow fall-through branch, since
2318 			 * that's where the program will go
2319 			 */
2320 			return 0;
2321 		}
2322 	}
2323 
2324 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2325 	if (!other_branch)
2326 		return -EFAULT;
2327 
2328 	/* detect if we are comparing against a constant value so we can adjust
2329 	 * our min/max values for our dst register.
2330 	 */
2331 	if (BPF_SRC(insn->code) == BPF_X) {
2332 		if (regs[insn->src_reg].type == CONST_IMM)
2333 			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2334 					dst_reg, regs[insn->src_reg].imm,
2335 					opcode);
2336 		else if (dst_reg->type == CONST_IMM)
2337 			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2338 					    &regs[insn->src_reg], dst_reg->imm,
2339 					    opcode);
2340 	} else {
2341 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2342 					dst_reg, insn->imm, opcode);
2343 	}
2344 
2345 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2346 	if (BPF_SRC(insn->code) == BPF_K &&
2347 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2348 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2349 		/* Mark all identical map registers in each branch as either
2350 		 * safe or unknown depending R == 0 or R != 0 conditional.
2351 		 */
2352 		mark_map_regs(this_branch, insn->dst_reg,
2353 			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2354 		mark_map_regs(other_branch, insn->dst_reg,
2355 			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2356 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2357 		   dst_reg->type == PTR_TO_PACKET &&
2358 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2359 		find_good_pkt_pointers(this_branch, dst_reg);
2360 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2361 		   dst_reg->type == PTR_TO_PACKET_END &&
2362 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2363 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2364 	} else if (is_pointer_value(env, insn->dst_reg)) {
2365 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2366 		return -EACCES;
2367 	}
2368 	if (log_level)
2369 		print_verifier_state(this_branch);
2370 	return 0;
2371 }
2372 
2373 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2374 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2375 {
2376 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2377 
2378 	return (struct bpf_map *) (unsigned long) imm64;
2379 }
2380 
2381 /* verify BPF_LD_IMM64 instruction */
2382 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2383 {
2384 	struct bpf_reg_state *regs = env->cur_state.regs;
2385 	int err;
2386 
2387 	if (BPF_SIZE(insn->code) != BPF_DW) {
2388 		verbose("invalid BPF_LD_IMM insn\n");
2389 		return -EINVAL;
2390 	}
2391 	if (insn->off != 0) {
2392 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2393 		return -EINVAL;
2394 	}
2395 
2396 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2397 	if (err)
2398 		return err;
2399 
2400 	if (insn->src_reg == 0) {
2401 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2402 
2403 		regs[insn->dst_reg].type = CONST_IMM;
2404 		regs[insn->dst_reg].imm = imm;
2405 		return 0;
2406 	}
2407 
2408 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2409 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2410 
2411 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2412 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2413 	return 0;
2414 }
2415 
2416 static bool may_access_skb(enum bpf_prog_type type)
2417 {
2418 	switch (type) {
2419 	case BPF_PROG_TYPE_SOCKET_FILTER:
2420 	case BPF_PROG_TYPE_SCHED_CLS:
2421 	case BPF_PROG_TYPE_SCHED_ACT:
2422 		return true;
2423 	default:
2424 		return false;
2425 	}
2426 }
2427 
2428 /* verify safety of LD_ABS|LD_IND instructions:
2429  * - they can only appear in the programs where ctx == skb
2430  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2431  *   preserve R6-R9, and store return value into R0
2432  *
2433  * Implicit input:
2434  *   ctx == skb == R6 == CTX
2435  *
2436  * Explicit input:
2437  *   SRC == any register
2438  *   IMM == 32-bit immediate
2439  *
2440  * Output:
2441  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2442  */
2443 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2444 {
2445 	struct bpf_reg_state *regs = env->cur_state.regs;
2446 	u8 mode = BPF_MODE(insn->code);
2447 	int i, err;
2448 
2449 	if (!may_access_skb(env->prog->type)) {
2450 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2451 		return -EINVAL;
2452 	}
2453 
2454 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2455 	    BPF_SIZE(insn->code) == BPF_DW ||
2456 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2457 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2458 		return -EINVAL;
2459 	}
2460 
2461 	/* check whether implicit source operand (register R6) is readable */
2462 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2463 	if (err)
2464 		return err;
2465 
2466 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2467 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2468 		return -EINVAL;
2469 	}
2470 
2471 	if (mode == BPF_IND) {
2472 		/* check explicit source operand */
2473 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2474 		if (err)
2475 			return err;
2476 	}
2477 
2478 	/* reset caller saved regs to unreadable */
2479 	for (i = 0; i < CALLER_SAVED_REGS; i++)
2480 		mark_reg_not_init(regs, caller_saved[i]);
2481 
2482 	/* mark destination R0 register as readable, since it contains
2483 	 * the value fetched from the packet
2484 	 */
2485 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2486 	return 0;
2487 }
2488 
2489 /* non-recursive DFS pseudo code
2490  * 1  procedure DFS-iterative(G,v):
2491  * 2      label v as discovered
2492  * 3      let S be a stack
2493  * 4      S.push(v)
2494  * 5      while S is not empty
2495  * 6            t <- S.pop()
2496  * 7            if t is what we're looking for:
2497  * 8                return t
2498  * 9            for all edges e in G.adjacentEdges(t) do
2499  * 10               if edge e is already labelled
2500  * 11                   continue with the next edge
2501  * 12               w <- G.adjacentVertex(t,e)
2502  * 13               if vertex w is not discovered and not explored
2503  * 14                   label e as tree-edge
2504  * 15                   label w as discovered
2505  * 16                   S.push(w)
2506  * 17                   continue at 5
2507  * 18               else if vertex w is discovered
2508  * 19                   label e as back-edge
2509  * 20               else
2510  * 21                   // vertex w is explored
2511  * 22                   label e as forward- or cross-edge
2512  * 23           label t as explored
2513  * 24           S.pop()
2514  *
2515  * convention:
2516  * 0x10 - discovered
2517  * 0x11 - discovered and fall-through edge labelled
2518  * 0x12 - discovered and fall-through and branch edges labelled
2519  * 0x20 - explored
2520  */
2521 
2522 enum {
2523 	DISCOVERED = 0x10,
2524 	EXPLORED = 0x20,
2525 	FALLTHROUGH = 1,
2526 	BRANCH = 2,
2527 };
2528 
2529 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2530 
2531 static int *insn_stack;	/* stack of insns to process */
2532 static int cur_stack;	/* current stack index */
2533 static int *insn_state;
2534 
2535 /* t, w, e - match pseudo-code above:
2536  * t - index of current instruction
2537  * w - next instruction
2538  * e - edge
2539  */
2540 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2541 {
2542 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2543 		return 0;
2544 
2545 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2546 		return 0;
2547 
2548 	if (w < 0 || w >= env->prog->len) {
2549 		verbose("jump out of range from insn %d to %d\n", t, w);
2550 		return -EINVAL;
2551 	}
2552 
2553 	if (e == BRANCH)
2554 		/* mark branch target for state pruning */
2555 		env->explored_states[w] = STATE_LIST_MARK;
2556 
2557 	if (insn_state[w] == 0) {
2558 		/* tree-edge */
2559 		insn_state[t] = DISCOVERED | e;
2560 		insn_state[w] = DISCOVERED;
2561 		if (cur_stack >= env->prog->len)
2562 			return -E2BIG;
2563 		insn_stack[cur_stack++] = w;
2564 		return 1;
2565 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2566 		verbose("back-edge from insn %d to %d\n", t, w);
2567 		return -EINVAL;
2568 	} else if (insn_state[w] == EXPLORED) {
2569 		/* forward- or cross-edge */
2570 		insn_state[t] = DISCOVERED | e;
2571 	} else {
2572 		verbose("insn state internal bug\n");
2573 		return -EFAULT;
2574 	}
2575 	return 0;
2576 }
2577 
2578 /* non-recursive depth-first-search to detect loops in BPF program
2579  * loop == back-edge in directed graph
2580  */
2581 static int check_cfg(struct bpf_verifier_env *env)
2582 {
2583 	struct bpf_insn *insns = env->prog->insnsi;
2584 	int insn_cnt = env->prog->len;
2585 	int ret = 0;
2586 	int i, t;
2587 
2588 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2589 	if (!insn_state)
2590 		return -ENOMEM;
2591 
2592 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2593 	if (!insn_stack) {
2594 		kfree(insn_state);
2595 		return -ENOMEM;
2596 	}
2597 
2598 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2599 	insn_stack[0] = 0; /* 0 is the first instruction */
2600 	cur_stack = 1;
2601 
2602 peek_stack:
2603 	if (cur_stack == 0)
2604 		goto check_state;
2605 	t = insn_stack[cur_stack - 1];
2606 
2607 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2608 		u8 opcode = BPF_OP(insns[t].code);
2609 
2610 		if (opcode == BPF_EXIT) {
2611 			goto mark_explored;
2612 		} else if (opcode == BPF_CALL) {
2613 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2614 			if (ret == 1)
2615 				goto peek_stack;
2616 			else if (ret < 0)
2617 				goto err_free;
2618 			if (t + 1 < insn_cnt)
2619 				env->explored_states[t + 1] = STATE_LIST_MARK;
2620 		} else if (opcode == BPF_JA) {
2621 			if (BPF_SRC(insns[t].code) != BPF_K) {
2622 				ret = -EINVAL;
2623 				goto err_free;
2624 			}
2625 			/* unconditional jump with single edge */
2626 			ret = push_insn(t, t + insns[t].off + 1,
2627 					FALLTHROUGH, env);
2628 			if (ret == 1)
2629 				goto peek_stack;
2630 			else if (ret < 0)
2631 				goto err_free;
2632 			/* tell verifier to check for equivalent states
2633 			 * after every call and jump
2634 			 */
2635 			if (t + 1 < insn_cnt)
2636 				env->explored_states[t + 1] = STATE_LIST_MARK;
2637 		} else {
2638 			/* conditional jump with two edges */
2639 			env->explored_states[t] = STATE_LIST_MARK;
2640 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2641 			if (ret == 1)
2642 				goto peek_stack;
2643 			else if (ret < 0)
2644 				goto err_free;
2645 
2646 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2647 			if (ret == 1)
2648 				goto peek_stack;
2649 			else if (ret < 0)
2650 				goto err_free;
2651 		}
2652 	} else {
2653 		/* all other non-branch instructions with single
2654 		 * fall-through edge
2655 		 */
2656 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2657 		if (ret == 1)
2658 			goto peek_stack;
2659 		else if (ret < 0)
2660 			goto err_free;
2661 	}
2662 
2663 mark_explored:
2664 	insn_state[t] = EXPLORED;
2665 	if (cur_stack-- <= 0) {
2666 		verbose("pop stack internal bug\n");
2667 		ret = -EFAULT;
2668 		goto err_free;
2669 	}
2670 	goto peek_stack;
2671 
2672 check_state:
2673 	for (i = 0; i < insn_cnt; i++) {
2674 		if (insn_state[i] != EXPLORED) {
2675 			verbose("unreachable insn %d\n", i);
2676 			ret = -EINVAL;
2677 			goto err_free;
2678 		}
2679 	}
2680 	ret = 0; /* cfg looks good */
2681 
2682 err_free:
2683 	kfree(insn_state);
2684 	kfree(insn_stack);
2685 	return ret;
2686 }
2687 
2688 /* the following conditions reduce the number of explored insns
2689  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2690  */
2691 static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
2692 				   struct bpf_reg_state *old,
2693 				   struct bpf_reg_state *cur)
2694 {
2695 	if (old->id != cur->id)
2696 		return false;
2697 
2698 	/* old ptr_to_packet is more conservative, since it allows smaller
2699 	 * range. Ex:
2700 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2701 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2702 	 * further and found no issues with the program. Now we're in the same
2703 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2704 	 * will only be looking at most 10 bytes after this pointer.
2705 	 */
2706 	if (old->off == cur->off && old->range < cur->range)
2707 		return true;
2708 
2709 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2710 	 * since both cannot be used for packet access and safe(old)
2711 	 * pointer has smaller off that could be used for further
2712 	 * 'if (ptr > data_end)' check
2713 	 * Ex:
2714 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2715 	 * that we cannot access the packet.
2716 	 * The safe range is:
2717 	 * [ptr, ptr + range - off)
2718 	 * so whenever off >=range, it means no safe bytes from this pointer.
2719 	 * When comparing old->off <= cur->off, it means that older code
2720 	 * went with smaller offset and that offset was later
2721 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2722 	 * Say, 'old' state was explored like:
2723 	 * ... R3(off=0, r=0)
2724 	 * R4 = R3 + 20
2725 	 * ... now R4(off=20,r=0)  <-- here
2726 	 * if (R4 > data_end)
2727 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2728 	 * ... the code further went all the way to bpf_exit.
2729 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2730 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2731 	 * goes further, such cur_R4 will give larger safe packet range after
2732 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2733 	 * so they will be good with r=30 and we can prune the search.
2734 	 */
2735 	if (!env->strict_alignment && old->off <= cur->off &&
2736 	    old->off >= old->range && cur->off >= cur->range)
2737 		return true;
2738 
2739 	return false;
2740 }
2741 
2742 /* compare two verifier states
2743  *
2744  * all states stored in state_list are known to be valid, since
2745  * verifier reached 'bpf_exit' instruction through them
2746  *
2747  * this function is called when verifier exploring different branches of
2748  * execution popped from the state stack. If it sees an old state that has
2749  * more strict register state and more strict stack state then this execution
2750  * branch doesn't need to be explored further, since verifier already
2751  * concluded that more strict state leads to valid finish.
2752  *
2753  * Therefore two states are equivalent if register state is more conservative
2754  * and explored stack state is more conservative than the current one.
2755  * Example:
2756  *       explored                   current
2757  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2758  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2759  *
2760  * In other words if current stack state (one being explored) has more
2761  * valid slots than old one that already passed validation, it means
2762  * the verifier can stop exploring and conclude that current state is valid too
2763  *
2764  * Similarly with registers. If explored state has register type as invalid
2765  * whereas register type in current state is meaningful, it means that
2766  * the current state will reach 'bpf_exit' instruction safely
2767  */
2768 static bool states_equal(struct bpf_verifier_env *env,
2769 			 struct bpf_verifier_state *old,
2770 			 struct bpf_verifier_state *cur)
2771 {
2772 	bool varlen_map_access = env->varlen_map_value_access;
2773 	struct bpf_reg_state *rold, *rcur;
2774 	int i;
2775 
2776 	for (i = 0; i < MAX_BPF_REG; i++) {
2777 		rold = &old->regs[i];
2778 		rcur = &cur->regs[i];
2779 
2780 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2781 			continue;
2782 
2783 		/* If the ranges were not the same, but everything else was and
2784 		 * we didn't do a variable access into a map then we are a-ok.
2785 		 */
2786 		if (!varlen_map_access &&
2787 		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2788 			continue;
2789 
2790 		/* If we didn't map access then again we don't care about the
2791 		 * mismatched range values and it's ok if our old type was
2792 		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2793 		 */
2794 		if (rold->type == NOT_INIT ||
2795 		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2796 		     rcur->type != NOT_INIT))
2797 			continue;
2798 
2799 		/* Don't care about the reg->id in this case. */
2800 		if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2801 		    rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2802 		    rold->map_ptr == rcur->map_ptr)
2803 			continue;
2804 
2805 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2806 		    compare_ptrs_to_packet(env, rold, rcur))
2807 			continue;
2808 
2809 		return false;
2810 	}
2811 
2812 	for (i = 0; i < MAX_BPF_STACK; i++) {
2813 		if (old->stack_slot_type[i] == STACK_INVALID)
2814 			continue;
2815 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2816 			/* Ex: old explored (safe) state has STACK_SPILL in
2817 			 * this stack slot, but current has has STACK_MISC ->
2818 			 * this verifier states are not equivalent,
2819 			 * return false to continue verification of this path
2820 			 */
2821 			return false;
2822 		if (i % BPF_REG_SIZE)
2823 			continue;
2824 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2825 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2826 			   sizeof(old->spilled_regs[0])))
2827 			/* when explored and current stack slot types are
2828 			 * the same, check that stored pointers types
2829 			 * are the same as well.
2830 			 * Ex: explored safe path could have stored
2831 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2832 			 * but current path has stored:
2833 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2834 			 * such verifier states are not equivalent.
2835 			 * return false to continue verification of this path
2836 			 */
2837 			return false;
2838 		else
2839 			continue;
2840 	}
2841 	return true;
2842 }
2843 
2844 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2845 {
2846 	struct bpf_verifier_state_list *new_sl;
2847 	struct bpf_verifier_state_list *sl;
2848 
2849 	sl = env->explored_states[insn_idx];
2850 	if (!sl)
2851 		/* this 'insn_idx' instruction wasn't marked, so we will not
2852 		 * be doing state search here
2853 		 */
2854 		return 0;
2855 
2856 	while (sl != STATE_LIST_MARK) {
2857 		if (states_equal(env, &sl->state, &env->cur_state))
2858 			/* reached equivalent register/stack state,
2859 			 * prune the search
2860 			 */
2861 			return 1;
2862 		sl = sl->next;
2863 	}
2864 
2865 	/* there were no equivalent states, remember current one.
2866 	 * technically the current state is not proven to be safe yet,
2867 	 * but it will either reach bpf_exit (which means it's safe) or
2868 	 * it will be rejected. Since there are no loops, we won't be
2869 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2870 	 */
2871 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2872 	if (!new_sl)
2873 		return -ENOMEM;
2874 
2875 	/* add new state to the head of linked list */
2876 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2877 	new_sl->next = env->explored_states[insn_idx];
2878 	env->explored_states[insn_idx] = new_sl;
2879 	return 0;
2880 }
2881 
2882 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2883 				  int insn_idx, int prev_insn_idx)
2884 {
2885 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2886 		return 0;
2887 
2888 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2889 }
2890 
2891 static int do_check(struct bpf_verifier_env *env)
2892 {
2893 	struct bpf_verifier_state *state = &env->cur_state;
2894 	struct bpf_insn *insns = env->prog->insnsi;
2895 	struct bpf_reg_state *regs = state->regs;
2896 	int insn_cnt = env->prog->len;
2897 	int insn_idx, prev_insn_idx = 0;
2898 	int insn_processed = 0;
2899 	bool do_print_state = false;
2900 
2901 	init_reg_state(regs);
2902 	insn_idx = 0;
2903 	env->varlen_map_value_access = false;
2904 	for (;;) {
2905 		struct bpf_insn *insn;
2906 		u8 class;
2907 		int err;
2908 
2909 		if (insn_idx >= insn_cnt) {
2910 			verbose("invalid insn idx %d insn_cnt %d\n",
2911 				insn_idx, insn_cnt);
2912 			return -EFAULT;
2913 		}
2914 
2915 		insn = &insns[insn_idx];
2916 		class = BPF_CLASS(insn->code);
2917 
2918 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2919 			verbose("BPF program is too large. Processed %d insn\n",
2920 				insn_processed);
2921 			return -E2BIG;
2922 		}
2923 
2924 		err = is_state_visited(env, insn_idx);
2925 		if (err < 0)
2926 			return err;
2927 		if (err == 1) {
2928 			/* found equivalent state, can prune the search */
2929 			if (log_level) {
2930 				if (do_print_state)
2931 					verbose("\nfrom %d to %d: safe\n",
2932 						prev_insn_idx, insn_idx);
2933 				else
2934 					verbose("%d: safe\n", insn_idx);
2935 			}
2936 			goto process_bpf_exit;
2937 		}
2938 
2939 		if (need_resched())
2940 			cond_resched();
2941 
2942 		if (log_level > 1 || (log_level && do_print_state)) {
2943 			if (log_level > 1)
2944 				verbose("%d:", insn_idx);
2945 			else
2946 				verbose("\nfrom %d to %d:",
2947 					prev_insn_idx, insn_idx);
2948 			print_verifier_state(&env->cur_state);
2949 			do_print_state = false;
2950 		}
2951 
2952 		if (log_level) {
2953 			verbose("%d: ", insn_idx);
2954 			print_bpf_insn(env, insn);
2955 		}
2956 
2957 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2958 		if (err)
2959 			return err;
2960 
2961 		if (class == BPF_ALU || class == BPF_ALU64) {
2962 			err = check_alu_op(env, insn);
2963 			if (err)
2964 				return err;
2965 
2966 		} else if (class == BPF_LDX) {
2967 			enum bpf_reg_type *prev_src_type, src_reg_type;
2968 
2969 			/* check for reserved fields is already done */
2970 
2971 			/* check src operand */
2972 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2973 			if (err)
2974 				return err;
2975 
2976 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2977 			if (err)
2978 				return err;
2979 
2980 			src_reg_type = regs[insn->src_reg].type;
2981 
2982 			/* check that memory (src_reg + off) is readable,
2983 			 * the state of dst_reg will be updated by this func
2984 			 */
2985 			err = check_mem_access(env, insn->src_reg, insn->off,
2986 					       BPF_SIZE(insn->code), BPF_READ,
2987 					       insn->dst_reg);
2988 			if (err)
2989 				return err;
2990 
2991 			if (BPF_SIZE(insn->code) != BPF_W &&
2992 			    BPF_SIZE(insn->code) != BPF_DW) {
2993 				insn_idx++;
2994 				continue;
2995 			}
2996 
2997 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2998 
2999 			if (*prev_src_type == NOT_INIT) {
3000 				/* saw a valid insn
3001 				 * dst_reg = *(u32 *)(src_reg + off)
3002 				 * save type to validate intersecting paths
3003 				 */
3004 				*prev_src_type = src_reg_type;
3005 
3006 			} else if (src_reg_type != *prev_src_type &&
3007 				   (src_reg_type == PTR_TO_CTX ||
3008 				    *prev_src_type == PTR_TO_CTX)) {
3009 				/* ABuser program is trying to use the same insn
3010 				 * dst_reg = *(u32*) (src_reg + off)
3011 				 * with different pointer types:
3012 				 * src_reg == ctx in one branch and
3013 				 * src_reg == stack|map in some other branch.
3014 				 * Reject it.
3015 				 */
3016 				verbose("same insn cannot be used with different pointers\n");
3017 				return -EINVAL;
3018 			}
3019 
3020 		} else if (class == BPF_STX) {
3021 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3022 
3023 			if (BPF_MODE(insn->code) == BPF_XADD) {
3024 				err = check_xadd(env, insn);
3025 				if (err)
3026 					return err;
3027 				insn_idx++;
3028 				continue;
3029 			}
3030 
3031 			/* check src1 operand */
3032 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3033 			if (err)
3034 				return err;
3035 			/* check src2 operand */
3036 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3037 			if (err)
3038 				return err;
3039 
3040 			dst_reg_type = regs[insn->dst_reg].type;
3041 
3042 			/* check that memory (dst_reg + off) is writeable */
3043 			err = check_mem_access(env, insn->dst_reg, insn->off,
3044 					       BPF_SIZE(insn->code), BPF_WRITE,
3045 					       insn->src_reg);
3046 			if (err)
3047 				return err;
3048 
3049 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3050 
3051 			if (*prev_dst_type == NOT_INIT) {
3052 				*prev_dst_type = dst_reg_type;
3053 			} else if (dst_reg_type != *prev_dst_type &&
3054 				   (dst_reg_type == PTR_TO_CTX ||
3055 				    *prev_dst_type == PTR_TO_CTX)) {
3056 				verbose("same insn cannot be used with different pointers\n");
3057 				return -EINVAL;
3058 			}
3059 
3060 		} else if (class == BPF_ST) {
3061 			if (BPF_MODE(insn->code) != BPF_MEM ||
3062 			    insn->src_reg != BPF_REG_0) {
3063 				verbose("BPF_ST uses reserved fields\n");
3064 				return -EINVAL;
3065 			}
3066 			/* check src operand */
3067 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3068 			if (err)
3069 				return err;
3070 
3071 			/* check that memory (dst_reg + off) is writeable */
3072 			err = check_mem_access(env, insn->dst_reg, insn->off,
3073 					       BPF_SIZE(insn->code), BPF_WRITE,
3074 					       -1);
3075 			if (err)
3076 				return err;
3077 
3078 		} else if (class == BPF_JMP) {
3079 			u8 opcode = BPF_OP(insn->code);
3080 
3081 			if (opcode == BPF_CALL) {
3082 				if (BPF_SRC(insn->code) != BPF_K ||
3083 				    insn->off != 0 ||
3084 				    insn->src_reg != BPF_REG_0 ||
3085 				    insn->dst_reg != BPF_REG_0) {
3086 					verbose("BPF_CALL uses reserved fields\n");
3087 					return -EINVAL;
3088 				}
3089 
3090 				err = check_call(env, insn->imm, insn_idx);
3091 				if (err)
3092 					return err;
3093 
3094 			} else if (opcode == BPF_JA) {
3095 				if (BPF_SRC(insn->code) != BPF_K ||
3096 				    insn->imm != 0 ||
3097 				    insn->src_reg != BPF_REG_0 ||
3098 				    insn->dst_reg != BPF_REG_0) {
3099 					verbose("BPF_JA uses reserved fields\n");
3100 					return -EINVAL;
3101 				}
3102 
3103 				insn_idx += insn->off + 1;
3104 				continue;
3105 
3106 			} else if (opcode == BPF_EXIT) {
3107 				if (BPF_SRC(insn->code) != BPF_K ||
3108 				    insn->imm != 0 ||
3109 				    insn->src_reg != BPF_REG_0 ||
3110 				    insn->dst_reg != BPF_REG_0) {
3111 					verbose("BPF_EXIT uses reserved fields\n");
3112 					return -EINVAL;
3113 				}
3114 
3115 				/* eBPF calling convetion is such that R0 is used
3116 				 * to return the value from eBPF program.
3117 				 * Make sure that it's readable at this time
3118 				 * of bpf_exit, which means that program wrote
3119 				 * something into it earlier
3120 				 */
3121 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3122 				if (err)
3123 					return err;
3124 
3125 				if (is_pointer_value(env, BPF_REG_0)) {
3126 					verbose("R0 leaks addr as return value\n");
3127 					return -EACCES;
3128 				}
3129 
3130 process_bpf_exit:
3131 				insn_idx = pop_stack(env, &prev_insn_idx);
3132 				if (insn_idx < 0) {
3133 					break;
3134 				} else {
3135 					do_print_state = true;
3136 					continue;
3137 				}
3138 			} else {
3139 				err = check_cond_jmp_op(env, insn, &insn_idx);
3140 				if (err)
3141 					return err;
3142 			}
3143 		} else if (class == BPF_LD) {
3144 			u8 mode = BPF_MODE(insn->code);
3145 
3146 			if (mode == BPF_ABS || mode == BPF_IND) {
3147 				err = check_ld_abs(env, insn);
3148 				if (err)
3149 					return err;
3150 
3151 			} else if (mode == BPF_IMM) {
3152 				err = check_ld_imm(env, insn);
3153 				if (err)
3154 					return err;
3155 
3156 				insn_idx++;
3157 			} else {
3158 				verbose("invalid BPF_LD mode\n");
3159 				return -EINVAL;
3160 			}
3161 			reset_reg_range_values(regs, insn->dst_reg);
3162 		} else {
3163 			verbose("unknown insn class %d\n", class);
3164 			return -EINVAL;
3165 		}
3166 
3167 		insn_idx++;
3168 	}
3169 
3170 	verbose("processed %d insns\n", insn_processed);
3171 	return 0;
3172 }
3173 
3174 static int check_map_prealloc(struct bpf_map *map)
3175 {
3176 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3177 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3178 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3179 		!(map->map_flags & BPF_F_NO_PREALLOC);
3180 }
3181 
3182 static int check_map_prog_compatibility(struct bpf_map *map,
3183 					struct bpf_prog *prog)
3184 
3185 {
3186 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3187 	 * preallocated hash maps, since doing memory allocation
3188 	 * in overflow_handler can crash depending on where nmi got
3189 	 * triggered.
3190 	 */
3191 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3192 		if (!check_map_prealloc(map)) {
3193 			verbose("perf_event programs can only use preallocated hash map\n");
3194 			return -EINVAL;
3195 		}
3196 		if (map->inner_map_meta &&
3197 		    !check_map_prealloc(map->inner_map_meta)) {
3198 			verbose("perf_event programs can only use preallocated inner hash map\n");
3199 			return -EINVAL;
3200 		}
3201 	}
3202 	return 0;
3203 }
3204 
3205 /* look for pseudo eBPF instructions that access map FDs and
3206  * replace them with actual map pointers
3207  */
3208 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3209 {
3210 	struct bpf_insn *insn = env->prog->insnsi;
3211 	int insn_cnt = env->prog->len;
3212 	int i, j, err;
3213 
3214 	err = bpf_prog_calc_tag(env->prog);
3215 	if (err)
3216 		return err;
3217 
3218 	for (i = 0; i < insn_cnt; i++, insn++) {
3219 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3220 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3221 			verbose("BPF_LDX uses reserved fields\n");
3222 			return -EINVAL;
3223 		}
3224 
3225 		if (BPF_CLASS(insn->code) == BPF_STX &&
3226 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3227 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3228 			verbose("BPF_STX uses reserved fields\n");
3229 			return -EINVAL;
3230 		}
3231 
3232 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3233 			struct bpf_map *map;
3234 			struct fd f;
3235 
3236 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3237 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3238 			    insn[1].off != 0) {
3239 				verbose("invalid bpf_ld_imm64 insn\n");
3240 				return -EINVAL;
3241 			}
3242 
3243 			if (insn->src_reg == 0)
3244 				/* valid generic load 64-bit imm */
3245 				goto next_insn;
3246 
3247 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3248 				verbose("unrecognized bpf_ld_imm64 insn\n");
3249 				return -EINVAL;
3250 			}
3251 
3252 			f = fdget(insn->imm);
3253 			map = __bpf_map_get(f);
3254 			if (IS_ERR(map)) {
3255 				verbose("fd %d is not pointing to valid bpf_map\n",
3256 					insn->imm);
3257 				return PTR_ERR(map);
3258 			}
3259 
3260 			err = check_map_prog_compatibility(map, env->prog);
3261 			if (err) {
3262 				fdput(f);
3263 				return err;
3264 			}
3265 
3266 			/* store map pointer inside BPF_LD_IMM64 instruction */
3267 			insn[0].imm = (u32) (unsigned long) map;
3268 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3269 
3270 			/* check whether we recorded this map already */
3271 			for (j = 0; j < env->used_map_cnt; j++)
3272 				if (env->used_maps[j] == map) {
3273 					fdput(f);
3274 					goto next_insn;
3275 				}
3276 
3277 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3278 				fdput(f);
3279 				return -E2BIG;
3280 			}
3281 
3282 			/* hold the map. If the program is rejected by verifier,
3283 			 * the map will be released by release_maps() or it
3284 			 * will be used by the valid program until it's unloaded
3285 			 * and all maps are released in free_bpf_prog_info()
3286 			 */
3287 			map = bpf_map_inc(map, false);
3288 			if (IS_ERR(map)) {
3289 				fdput(f);
3290 				return PTR_ERR(map);
3291 			}
3292 			env->used_maps[env->used_map_cnt++] = map;
3293 
3294 			fdput(f);
3295 next_insn:
3296 			insn++;
3297 			i++;
3298 		}
3299 	}
3300 
3301 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3302 	 * 'struct bpf_map *' into a register instead of user map_fd.
3303 	 * These pointers will be used later by verifier to validate map access.
3304 	 */
3305 	return 0;
3306 }
3307 
3308 /* drop refcnt of maps used by the rejected program */
3309 static void release_maps(struct bpf_verifier_env *env)
3310 {
3311 	int i;
3312 
3313 	for (i = 0; i < env->used_map_cnt; i++)
3314 		bpf_map_put(env->used_maps[i]);
3315 }
3316 
3317 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3318 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3319 {
3320 	struct bpf_insn *insn = env->prog->insnsi;
3321 	int insn_cnt = env->prog->len;
3322 	int i;
3323 
3324 	for (i = 0; i < insn_cnt; i++, insn++)
3325 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3326 			insn->src_reg = 0;
3327 }
3328 
3329 /* single env->prog->insni[off] instruction was replaced with the range
3330  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
3331  * [0, off) and [off, end) to new locations, so the patched range stays zero
3332  */
3333 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3334 				u32 off, u32 cnt)
3335 {
3336 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3337 
3338 	if (cnt == 1)
3339 		return 0;
3340 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3341 	if (!new_data)
3342 		return -ENOMEM;
3343 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3344 	memcpy(new_data + off + cnt - 1, old_data + off,
3345 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3346 	env->insn_aux_data = new_data;
3347 	vfree(old_data);
3348 	return 0;
3349 }
3350 
3351 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3352 					    const struct bpf_insn *patch, u32 len)
3353 {
3354 	struct bpf_prog *new_prog;
3355 
3356 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3357 	if (!new_prog)
3358 		return NULL;
3359 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
3360 		return NULL;
3361 	return new_prog;
3362 }
3363 
3364 /* convert load instructions that access fields of 'struct __sk_buff'
3365  * into sequence of instructions that access fields of 'struct sk_buff'
3366  */
3367 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3368 {
3369 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3370 	const int insn_cnt = env->prog->len;
3371 	struct bpf_insn insn_buf[16], *insn;
3372 	struct bpf_prog *new_prog;
3373 	enum bpf_access_type type;
3374 	int i, cnt, delta = 0;
3375 
3376 	if (ops->gen_prologue) {
3377 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3378 					env->prog);
3379 		if (cnt >= ARRAY_SIZE(insn_buf)) {
3380 			verbose("bpf verifier is misconfigured\n");
3381 			return -EINVAL;
3382 		} else if (cnt) {
3383 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3384 			if (!new_prog)
3385 				return -ENOMEM;
3386 
3387 			env->prog = new_prog;
3388 			delta += cnt - 1;
3389 		}
3390 	}
3391 
3392 	if (!ops->convert_ctx_access)
3393 		return 0;
3394 
3395 	insn = env->prog->insnsi + delta;
3396 
3397 	for (i = 0; i < insn_cnt; i++, insn++) {
3398 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3399 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3400 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3401 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3402 			type = BPF_READ;
3403 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3404 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3405 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3406 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3407 			type = BPF_WRITE;
3408 		else
3409 			continue;
3410 
3411 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3412 			continue;
3413 
3414 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3415 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3416 			verbose("bpf verifier is misconfigured\n");
3417 			return -EINVAL;
3418 		}
3419 
3420 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3421 		if (!new_prog)
3422 			return -ENOMEM;
3423 
3424 		delta += cnt - 1;
3425 
3426 		/* keep walking new program and skip insns we just inserted */
3427 		env->prog = new_prog;
3428 		insn      = new_prog->insnsi + i + delta;
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 /* fixup insn->imm field of bpf_call instructions
3435  * and inline eligible helpers as explicit sequence of BPF instructions
3436  *
3437  * this function is called after eBPF program passed verification
3438  */
3439 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3440 {
3441 	struct bpf_prog *prog = env->prog;
3442 	struct bpf_insn *insn = prog->insnsi;
3443 	const struct bpf_func_proto *fn;
3444 	const int insn_cnt = prog->len;
3445 	struct bpf_insn insn_buf[16];
3446 	struct bpf_prog *new_prog;
3447 	struct bpf_map *map_ptr;
3448 	int i, cnt, delta = 0;
3449 
3450 	for (i = 0; i < insn_cnt; i++, insn++) {
3451 		if (insn->code != (BPF_JMP | BPF_CALL))
3452 			continue;
3453 
3454 		if (insn->imm == BPF_FUNC_get_route_realm)
3455 			prog->dst_needed = 1;
3456 		if (insn->imm == BPF_FUNC_get_prandom_u32)
3457 			bpf_user_rnd_init_once();
3458 		if (insn->imm == BPF_FUNC_tail_call) {
3459 			/* If we tail call into other programs, we
3460 			 * cannot make any assumptions since they can
3461 			 * be replaced dynamically during runtime in
3462 			 * the program array.
3463 			 */
3464 			prog->cb_access = 1;
3465 
3466 			/* mark bpf_tail_call as different opcode to avoid
3467 			 * conditional branch in the interpeter for every normal
3468 			 * call and to prevent accidental JITing by JIT compiler
3469 			 * that doesn't support bpf_tail_call yet
3470 			 */
3471 			insn->imm = 0;
3472 			insn->code |= BPF_X;
3473 			continue;
3474 		}
3475 
3476 		if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3477 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
3478 			if (map_ptr == BPF_MAP_PTR_POISON ||
3479 			    !map_ptr->ops->map_gen_lookup)
3480 				goto patch_call_imm;
3481 
3482 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3483 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3484 				verbose("bpf verifier is misconfigured\n");
3485 				return -EINVAL;
3486 			}
3487 
3488 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3489 						       cnt);
3490 			if (!new_prog)
3491 				return -ENOMEM;
3492 
3493 			delta += cnt - 1;
3494 
3495 			/* keep walking new program and skip insns we just inserted */
3496 			env->prog = prog = new_prog;
3497 			insn      = new_prog->insnsi + i + delta;
3498 			continue;
3499 		}
3500 
3501 patch_call_imm:
3502 		fn = prog->aux->ops->get_func_proto(insn->imm);
3503 		/* all functions that have prototype and verifier allowed
3504 		 * programs to call them, must be real in-kernel functions
3505 		 */
3506 		if (!fn->func) {
3507 			verbose("kernel subsystem misconfigured func %s#%d\n",
3508 				func_id_name(insn->imm), insn->imm);
3509 			return -EFAULT;
3510 		}
3511 		insn->imm = fn->func - __bpf_call_base;
3512 	}
3513 
3514 	return 0;
3515 }
3516 
3517 static void free_states(struct bpf_verifier_env *env)
3518 {
3519 	struct bpf_verifier_state_list *sl, *sln;
3520 	int i;
3521 
3522 	if (!env->explored_states)
3523 		return;
3524 
3525 	for (i = 0; i < env->prog->len; i++) {
3526 		sl = env->explored_states[i];
3527 
3528 		if (sl)
3529 			while (sl != STATE_LIST_MARK) {
3530 				sln = sl->next;
3531 				kfree(sl);
3532 				sl = sln;
3533 			}
3534 	}
3535 
3536 	kfree(env->explored_states);
3537 }
3538 
3539 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3540 {
3541 	char __user *log_ubuf = NULL;
3542 	struct bpf_verifier_env *env;
3543 	int ret = -EINVAL;
3544 
3545 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3546 	 * allocate/free it every time bpf_check() is called
3547 	 */
3548 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3549 	if (!env)
3550 		return -ENOMEM;
3551 
3552 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3553 				     (*prog)->len);
3554 	ret = -ENOMEM;
3555 	if (!env->insn_aux_data)
3556 		goto err_free_env;
3557 	env->prog = *prog;
3558 
3559 	/* grab the mutex to protect few globals used by verifier */
3560 	mutex_lock(&bpf_verifier_lock);
3561 
3562 	if (attr->log_level || attr->log_buf || attr->log_size) {
3563 		/* user requested verbose verifier output
3564 		 * and supplied buffer to store the verification trace
3565 		 */
3566 		log_level = attr->log_level;
3567 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3568 		log_size = attr->log_size;
3569 		log_len = 0;
3570 
3571 		ret = -EINVAL;
3572 		/* log_* values have to be sane */
3573 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3574 		    log_level == 0 || log_ubuf == NULL)
3575 			goto err_unlock;
3576 
3577 		ret = -ENOMEM;
3578 		log_buf = vmalloc(log_size);
3579 		if (!log_buf)
3580 			goto err_unlock;
3581 	} else {
3582 		log_level = 0;
3583 	}
3584 
3585 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
3586 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3587 		env->strict_alignment = true;
3588 
3589 	ret = replace_map_fd_with_map_ptr(env);
3590 	if (ret < 0)
3591 		goto skip_full_check;
3592 
3593 	env->explored_states = kcalloc(env->prog->len,
3594 				       sizeof(struct bpf_verifier_state_list *),
3595 				       GFP_USER);
3596 	ret = -ENOMEM;
3597 	if (!env->explored_states)
3598 		goto skip_full_check;
3599 
3600 	ret = check_cfg(env);
3601 	if (ret < 0)
3602 		goto skip_full_check;
3603 
3604 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3605 
3606 	ret = do_check(env);
3607 
3608 skip_full_check:
3609 	while (pop_stack(env, NULL) >= 0);
3610 	free_states(env);
3611 
3612 	if (ret == 0)
3613 		/* program is valid, convert *(u32*)(ctx + off) accesses */
3614 		ret = convert_ctx_accesses(env);
3615 
3616 	if (ret == 0)
3617 		ret = fixup_bpf_calls(env);
3618 
3619 	if (log_level && log_len >= log_size - 1) {
3620 		BUG_ON(log_len >= log_size);
3621 		/* verifier log exceeded user supplied buffer */
3622 		ret = -ENOSPC;
3623 		/* fall through to return what was recorded */
3624 	}
3625 
3626 	/* copy verifier log back to user space including trailing zero */
3627 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3628 		ret = -EFAULT;
3629 		goto free_log_buf;
3630 	}
3631 
3632 	if (ret == 0 && env->used_map_cnt) {
3633 		/* if program passed verifier, update used_maps in bpf_prog_info */
3634 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3635 							  sizeof(env->used_maps[0]),
3636 							  GFP_KERNEL);
3637 
3638 		if (!env->prog->aux->used_maps) {
3639 			ret = -ENOMEM;
3640 			goto free_log_buf;
3641 		}
3642 
3643 		memcpy(env->prog->aux->used_maps, env->used_maps,
3644 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3645 		env->prog->aux->used_map_cnt = env->used_map_cnt;
3646 
3647 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3648 		 * bpf_ld_imm64 instructions
3649 		 */
3650 		convert_pseudo_ld_imm64(env);
3651 	}
3652 
3653 free_log_buf:
3654 	if (log_level)
3655 		vfree(log_buf);
3656 	if (!env->prog->aux->used_maps)
3657 		/* if we didn't copy map pointers into bpf_prog_info, release
3658 		 * them now. Otherwise free_bpf_prog_info() will release them.
3659 		 */
3660 		release_maps(env);
3661 	*prog = env->prog;
3662 err_unlock:
3663 	mutex_unlock(&bpf_verifier_lock);
3664 	vfree(env->insn_aux_data);
3665 err_free_env:
3666 	kfree(env);
3667 	return ret;
3668 }
3669 
3670 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3671 		 void *priv)
3672 {
3673 	struct bpf_verifier_env *env;
3674 	int ret;
3675 
3676 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3677 	if (!env)
3678 		return -ENOMEM;
3679 
3680 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3681 				     prog->len);
3682 	ret = -ENOMEM;
3683 	if (!env->insn_aux_data)
3684 		goto err_free_env;
3685 	env->prog = prog;
3686 	env->analyzer_ops = ops;
3687 	env->analyzer_priv = priv;
3688 
3689 	/* grab the mutex to protect few globals used by verifier */
3690 	mutex_lock(&bpf_verifier_lock);
3691 
3692 	log_level = 0;
3693 
3694 	env->strict_alignment = false;
3695 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3696 		env->strict_alignment = true;
3697 
3698 	env->explored_states = kcalloc(env->prog->len,
3699 				       sizeof(struct bpf_verifier_state_list *),
3700 				       GFP_KERNEL);
3701 	ret = -ENOMEM;
3702 	if (!env->explored_states)
3703 		goto skip_full_check;
3704 
3705 	ret = check_cfg(env);
3706 	if (ret < 0)
3707 		goto skip_full_check;
3708 
3709 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3710 
3711 	ret = do_check(env);
3712 
3713 skip_full_check:
3714 	while (pop_stack(env, NULL) >= 0);
3715 	free_states(env);
3716 
3717 	mutex_unlock(&bpf_verifier_lock);
3718 	vfree(env->insn_aux_data);
3719 err_free_env:
3720 	kfree(env);
3721 	return ret;
3722 }
3723 EXPORT_SYMBOL_GPL(bpf_analyzer);
3724