1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_timer_set_callback || 551 func_id == BPF_FUNC_find_vma || 552 func_id == BPF_FUNC_loop || 553 func_id == BPF_FUNC_user_ringbuf_drain; 554 } 555 556 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 557 { 558 return func_id == BPF_FUNC_timer_set_callback; 559 } 560 561 static bool is_storage_get_function(enum bpf_func_id func_id) 562 { 563 return func_id == BPF_FUNC_sk_storage_get || 564 func_id == BPF_FUNC_inode_storage_get || 565 func_id == BPF_FUNC_task_storage_get || 566 func_id == BPF_FUNC_cgrp_storage_get; 567 } 568 569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 570 const struct bpf_map *map) 571 { 572 int ref_obj_uses = 0; 573 574 if (is_ptr_cast_function(func_id)) 575 ref_obj_uses++; 576 if (is_acquire_function(func_id, map)) 577 ref_obj_uses++; 578 if (is_dynptr_ref_function(func_id)) 579 ref_obj_uses++; 580 581 return ref_obj_uses > 1; 582 } 583 584 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 585 { 586 return BPF_CLASS(insn->code) == BPF_STX && 587 BPF_MODE(insn->code) == BPF_ATOMIC && 588 insn->imm == BPF_CMPXCHG; 589 } 590 591 /* string representation of 'enum bpf_reg_type' 592 * 593 * Note that reg_type_str() can not appear more than once in a single verbose() 594 * statement. 595 */ 596 static const char *reg_type_str(struct bpf_verifier_env *env, 597 enum bpf_reg_type type) 598 { 599 char postfix[16] = {0}, prefix[64] = {0}; 600 static const char * const str[] = { 601 [NOT_INIT] = "?", 602 [SCALAR_VALUE] = "scalar", 603 [PTR_TO_CTX] = "ctx", 604 [CONST_PTR_TO_MAP] = "map_ptr", 605 [PTR_TO_MAP_VALUE] = "map_value", 606 [PTR_TO_STACK] = "fp", 607 [PTR_TO_PACKET] = "pkt", 608 [PTR_TO_PACKET_META] = "pkt_meta", 609 [PTR_TO_PACKET_END] = "pkt_end", 610 [PTR_TO_FLOW_KEYS] = "flow_keys", 611 [PTR_TO_SOCKET] = "sock", 612 [PTR_TO_SOCK_COMMON] = "sock_common", 613 [PTR_TO_TCP_SOCK] = "tcp_sock", 614 [PTR_TO_TP_BUFFER] = "tp_buffer", 615 [PTR_TO_XDP_SOCK] = "xdp_sock", 616 [PTR_TO_BTF_ID] = "ptr_", 617 [PTR_TO_MEM] = "mem", 618 [PTR_TO_BUF] = "buf", 619 [PTR_TO_FUNC] = "func", 620 [PTR_TO_MAP_KEY] = "map_key", 621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 622 }; 623 624 if (type & PTR_MAYBE_NULL) { 625 if (base_type(type) == PTR_TO_BTF_ID) 626 strncpy(postfix, "or_null_", 16); 627 else 628 strncpy(postfix, "_or_null", 16); 629 } 630 631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 632 type & MEM_RDONLY ? "rdonly_" : "", 633 type & MEM_RINGBUF ? "ringbuf_" : "", 634 type & MEM_USER ? "user_" : "", 635 type & MEM_PERCPU ? "percpu_" : "", 636 type & MEM_RCU ? "rcu_" : "", 637 type & PTR_UNTRUSTED ? "untrusted_" : "", 638 type & PTR_TRUSTED ? "trusted_" : "" 639 ); 640 641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 642 prefix, str[base_type(type)], postfix); 643 return env->tmp_str_buf; 644 } 645 646 static char slot_type_char[] = { 647 [STACK_INVALID] = '?', 648 [STACK_SPILL] = 'r', 649 [STACK_MISC] = 'm', 650 [STACK_ZERO] = '0', 651 [STACK_DYNPTR] = 'd', 652 [STACK_ITER] = 'i', 653 }; 654 655 static void print_liveness(struct bpf_verifier_env *env, 656 enum bpf_reg_liveness live) 657 { 658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 659 verbose(env, "_"); 660 if (live & REG_LIVE_READ) 661 verbose(env, "r"); 662 if (live & REG_LIVE_WRITTEN) 663 verbose(env, "w"); 664 if (live & REG_LIVE_DONE) 665 verbose(env, "D"); 666 } 667 668 static int __get_spi(s32 off) 669 { 670 return (-off - 1) / BPF_REG_SIZE; 671 } 672 673 static struct bpf_func_state *func(struct bpf_verifier_env *env, 674 const struct bpf_reg_state *reg) 675 { 676 struct bpf_verifier_state *cur = env->cur_state; 677 678 return cur->frame[reg->frameno]; 679 } 680 681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 682 { 683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 684 685 /* We need to check that slots between [spi - nr_slots + 1, spi] are 686 * within [0, allocated_stack). 687 * 688 * Please note that the spi grows downwards. For example, a dynptr 689 * takes the size of two stack slots; the first slot will be at 690 * spi and the second slot will be at spi - 1. 691 */ 692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 693 } 694 695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 696 const char *obj_kind, int nr_slots) 697 { 698 int off, spi; 699 700 if (!tnum_is_const(reg->var_off)) { 701 verbose(env, "%s has to be at a constant offset\n", obj_kind); 702 return -EINVAL; 703 } 704 705 off = reg->off + reg->var_off.value; 706 if (off % BPF_REG_SIZE) { 707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 708 return -EINVAL; 709 } 710 711 spi = __get_spi(off); 712 if (spi + 1 < nr_slots) { 713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 714 return -EINVAL; 715 } 716 717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 718 return -ERANGE; 719 return spi; 720 } 721 722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 723 { 724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 725 } 726 727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 728 { 729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 730 } 731 732 static const char *btf_type_name(const struct btf *btf, u32 id) 733 { 734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 735 } 736 737 static const char *dynptr_type_str(enum bpf_dynptr_type type) 738 { 739 switch (type) { 740 case BPF_DYNPTR_TYPE_LOCAL: 741 return "local"; 742 case BPF_DYNPTR_TYPE_RINGBUF: 743 return "ringbuf"; 744 case BPF_DYNPTR_TYPE_SKB: 745 return "skb"; 746 case BPF_DYNPTR_TYPE_XDP: 747 return "xdp"; 748 case BPF_DYNPTR_TYPE_INVALID: 749 return "<invalid>"; 750 default: 751 WARN_ONCE(1, "unknown dynptr type %d\n", type); 752 return "<unknown>"; 753 } 754 } 755 756 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 757 { 758 if (!btf || btf_id == 0) 759 return "<invalid>"; 760 761 /* we already validated that type is valid and has conforming name */ 762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 763 } 764 765 static const char *iter_state_str(enum bpf_iter_state state) 766 { 767 switch (state) { 768 case BPF_ITER_STATE_ACTIVE: 769 return "active"; 770 case BPF_ITER_STATE_DRAINED: 771 return "drained"; 772 case BPF_ITER_STATE_INVALID: 773 return "<invalid>"; 774 default: 775 WARN_ONCE(1, "unknown iter state %d\n", state); 776 return "<unknown>"; 777 } 778 } 779 780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 781 { 782 env->scratched_regs |= 1U << regno; 783 } 784 785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 786 { 787 env->scratched_stack_slots |= 1ULL << spi; 788 } 789 790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 791 { 792 return (env->scratched_regs >> regno) & 1; 793 } 794 795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 796 { 797 return (env->scratched_stack_slots >> regno) & 1; 798 } 799 800 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 801 { 802 return env->scratched_regs || env->scratched_stack_slots; 803 } 804 805 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 806 { 807 env->scratched_regs = 0U; 808 env->scratched_stack_slots = 0ULL; 809 } 810 811 /* Used for printing the entire verifier state. */ 812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 813 { 814 env->scratched_regs = ~0U; 815 env->scratched_stack_slots = ~0ULL; 816 } 817 818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 819 { 820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 821 case DYNPTR_TYPE_LOCAL: 822 return BPF_DYNPTR_TYPE_LOCAL; 823 case DYNPTR_TYPE_RINGBUF: 824 return BPF_DYNPTR_TYPE_RINGBUF; 825 case DYNPTR_TYPE_SKB: 826 return BPF_DYNPTR_TYPE_SKB; 827 case DYNPTR_TYPE_XDP: 828 return BPF_DYNPTR_TYPE_XDP; 829 default: 830 return BPF_DYNPTR_TYPE_INVALID; 831 } 832 } 833 834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 835 { 836 switch (type) { 837 case BPF_DYNPTR_TYPE_LOCAL: 838 return DYNPTR_TYPE_LOCAL; 839 case BPF_DYNPTR_TYPE_RINGBUF: 840 return DYNPTR_TYPE_RINGBUF; 841 case BPF_DYNPTR_TYPE_SKB: 842 return DYNPTR_TYPE_SKB; 843 case BPF_DYNPTR_TYPE_XDP: 844 return DYNPTR_TYPE_XDP; 845 default: 846 return 0; 847 } 848 } 849 850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 851 { 852 return type == BPF_DYNPTR_TYPE_RINGBUF; 853 } 854 855 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 856 enum bpf_dynptr_type type, 857 bool first_slot, int dynptr_id); 858 859 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 860 struct bpf_reg_state *reg); 861 862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 863 struct bpf_reg_state *sreg1, 864 struct bpf_reg_state *sreg2, 865 enum bpf_dynptr_type type) 866 { 867 int id = ++env->id_gen; 868 869 __mark_dynptr_reg(sreg1, type, true, id); 870 __mark_dynptr_reg(sreg2, type, false, id); 871 } 872 873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 874 struct bpf_reg_state *reg, 875 enum bpf_dynptr_type type) 876 { 877 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 878 } 879 880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 881 struct bpf_func_state *state, int spi); 882 883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 885 { 886 struct bpf_func_state *state = func(env, reg); 887 enum bpf_dynptr_type type; 888 int spi, i, err; 889 890 spi = dynptr_get_spi(env, reg); 891 if (spi < 0) 892 return spi; 893 894 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 895 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 896 * to ensure that for the following example: 897 * [d1][d1][d2][d2] 898 * spi 3 2 1 0 899 * So marking spi = 2 should lead to destruction of both d1 and d2. In 900 * case they do belong to same dynptr, second call won't see slot_type 901 * as STACK_DYNPTR and will simply skip destruction. 902 */ 903 err = destroy_if_dynptr_stack_slot(env, state, spi); 904 if (err) 905 return err; 906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 907 if (err) 908 return err; 909 910 for (i = 0; i < BPF_REG_SIZE; i++) { 911 state->stack[spi].slot_type[i] = STACK_DYNPTR; 912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 913 } 914 915 type = arg_to_dynptr_type(arg_type); 916 if (type == BPF_DYNPTR_TYPE_INVALID) 917 return -EINVAL; 918 919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 920 &state->stack[spi - 1].spilled_ptr, type); 921 922 if (dynptr_type_refcounted(type)) { 923 /* The id is used to track proper releasing */ 924 int id; 925 926 if (clone_ref_obj_id) 927 id = clone_ref_obj_id; 928 else 929 id = acquire_reference_state(env, insn_idx); 930 931 if (id < 0) 932 return id; 933 934 state->stack[spi].spilled_ptr.ref_obj_id = id; 935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 936 } 937 938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 940 941 return 0; 942 } 943 944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 945 { 946 int i; 947 948 for (i = 0; i < BPF_REG_SIZE; i++) { 949 state->stack[spi].slot_type[i] = STACK_INVALID; 950 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 951 } 952 953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 955 956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 957 * 958 * While we don't allow reading STACK_INVALID, it is still possible to 959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 960 * helpers or insns can do partial read of that part without failing, 961 * but check_stack_range_initialized, check_stack_read_var_off, and 962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 963 * the slot conservatively. Hence we need to prevent those liveness 964 * marking walks. 965 * 966 * This was not a problem before because STACK_INVALID is only set by 967 * default (where the default reg state has its reg->parent as NULL), or 968 * in clean_live_states after REG_LIVE_DONE (at which point 969 * mark_reg_read won't walk reg->parent chain), but not randomly during 970 * verifier state exploration (like we did above). Hence, for our case 971 * parentage chain will still be live (i.e. reg->parent may be 972 * non-NULL), while earlier reg->parent was NULL, so we need 973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 974 * done later on reads or by mark_dynptr_read as well to unnecessary 975 * mark registers in verifier state. 976 */ 977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 979 } 980 981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 982 { 983 struct bpf_func_state *state = func(env, reg); 984 int spi, ref_obj_id, i; 985 986 spi = dynptr_get_spi(env, reg); 987 if (spi < 0) 988 return spi; 989 990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 991 invalidate_dynptr(env, state, spi); 992 return 0; 993 } 994 995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 996 997 /* If the dynptr has a ref_obj_id, then we need to invalidate 998 * two things: 999 * 1000 * 1) Any dynptrs with a matching ref_obj_id (clones) 1001 * 2) Any slices derived from this dynptr. 1002 */ 1003 1004 /* Invalidate any slices associated with this dynptr */ 1005 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1006 1007 /* Invalidate any dynptr clones */ 1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1010 continue; 1011 1012 /* it should always be the case that if the ref obj id 1013 * matches then the stack slot also belongs to a 1014 * dynptr 1015 */ 1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1018 return -EFAULT; 1019 } 1020 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1021 invalidate_dynptr(env, state, i); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1028 struct bpf_reg_state *reg); 1029 1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1031 { 1032 if (!env->allow_ptr_leaks) 1033 __mark_reg_not_init(env, reg); 1034 else 1035 __mark_reg_unknown(env, reg); 1036 } 1037 1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1039 struct bpf_func_state *state, int spi) 1040 { 1041 struct bpf_func_state *fstate; 1042 struct bpf_reg_state *dreg; 1043 int i, dynptr_id; 1044 1045 /* We always ensure that STACK_DYNPTR is never set partially, 1046 * hence just checking for slot_type[0] is enough. This is 1047 * different for STACK_SPILL, where it may be only set for 1048 * 1 byte, so code has to use is_spilled_reg. 1049 */ 1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1051 return 0; 1052 1053 /* Reposition spi to first slot */ 1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1055 spi = spi + 1; 1056 1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1058 verbose(env, "cannot overwrite referenced dynptr\n"); 1059 return -EINVAL; 1060 } 1061 1062 mark_stack_slot_scratched(env, spi); 1063 mark_stack_slot_scratched(env, spi - 1); 1064 1065 /* Writing partially to one dynptr stack slot destroys both. */ 1066 for (i = 0; i < BPF_REG_SIZE; i++) { 1067 state->stack[spi].slot_type[i] = STACK_INVALID; 1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1069 } 1070 1071 dynptr_id = state->stack[spi].spilled_ptr.id; 1072 /* Invalidate any slices associated with this dynptr */ 1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1076 continue; 1077 if (dreg->dynptr_id == dynptr_id) 1078 mark_reg_invalid(env, dreg); 1079 })); 1080 1081 /* Do not release reference state, we are destroying dynptr on stack, 1082 * not using some helper to release it. Just reset register. 1083 */ 1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1086 1087 /* Same reason as unmark_stack_slots_dynptr above */ 1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1090 1091 return 0; 1092 } 1093 1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1095 { 1096 int spi; 1097 1098 if (reg->type == CONST_PTR_TO_DYNPTR) 1099 return false; 1100 1101 spi = dynptr_get_spi(env, reg); 1102 1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1104 * error because this just means the stack state hasn't been updated yet. 1105 * We will do check_mem_access to check and update stack bounds later. 1106 */ 1107 if (spi < 0 && spi != -ERANGE) 1108 return false; 1109 1110 /* We don't need to check if the stack slots are marked by previous 1111 * dynptr initializations because we allow overwriting existing unreferenced 1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1114 * touching are completely destructed before we reinitialize them for a new 1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1116 * instead of delaying it until the end where the user will get "Unreleased 1117 * reference" error. 1118 */ 1119 return true; 1120 } 1121 1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1123 { 1124 struct bpf_func_state *state = func(env, reg); 1125 int i, spi; 1126 1127 /* This already represents first slot of initialized bpf_dynptr. 1128 * 1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1130 * check_func_arg_reg_off's logic, so we don't need to check its 1131 * offset and alignment. 1132 */ 1133 if (reg->type == CONST_PTR_TO_DYNPTR) 1134 return true; 1135 1136 spi = dynptr_get_spi(env, reg); 1137 if (spi < 0) 1138 return false; 1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1140 return false; 1141 1142 for (i = 0; i < BPF_REG_SIZE; i++) { 1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1152 enum bpf_arg_type arg_type) 1153 { 1154 struct bpf_func_state *state = func(env, reg); 1155 enum bpf_dynptr_type dynptr_type; 1156 int spi; 1157 1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1159 if (arg_type == ARG_PTR_TO_DYNPTR) 1160 return true; 1161 1162 dynptr_type = arg_to_dynptr_type(arg_type); 1163 if (reg->type == CONST_PTR_TO_DYNPTR) { 1164 return reg->dynptr.type == dynptr_type; 1165 } else { 1166 spi = dynptr_get_spi(env, reg); 1167 if (spi < 0) 1168 return false; 1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1170 } 1171 } 1172 1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1174 1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1176 struct bpf_reg_state *reg, int insn_idx, 1177 struct btf *btf, u32 btf_id, int nr_slots) 1178 { 1179 struct bpf_func_state *state = func(env, reg); 1180 int spi, i, j, id; 1181 1182 spi = iter_get_spi(env, reg, nr_slots); 1183 if (spi < 0) 1184 return spi; 1185 1186 id = acquire_reference_state(env, insn_idx); 1187 if (id < 0) 1188 return id; 1189 1190 for (i = 0; i < nr_slots; i++) { 1191 struct bpf_stack_state *slot = &state->stack[spi - i]; 1192 struct bpf_reg_state *st = &slot->spilled_ptr; 1193 1194 __mark_reg_known_zero(st); 1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1196 st->live |= REG_LIVE_WRITTEN; 1197 st->ref_obj_id = i == 0 ? id : 0; 1198 st->iter.btf = btf; 1199 st->iter.btf_id = btf_id; 1200 st->iter.state = BPF_ITER_STATE_ACTIVE; 1201 st->iter.depth = 0; 1202 1203 for (j = 0; j < BPF_REG_SIZE; j++) 1204 slot->slot_type[j] = STACK_ITER; 1205 1206 mark_stack_slot_scratched(env, spi - i); 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1213 struct bpf_reg_state *reg, int nr_slots) 1214 { 1215 struct bpf_func_state *state = func(env, reg); 1216 int spi, i, j; 1217 1218 spi = iter_get_spi(env, reg, nr_slots); 1219 if (spi < 0) 1220 return spi; 1221 1222 for (i = 0; i < nr_slots; i++) { 1223 struct bpf_stack_state *slot = &state->stack[spi - i]; 1224 struct bpf_reg_state *st = &slot->spilled_ptr; 1225 1226 if (i == 0) 1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1228 1229 __mark_reg_not_init(env, st); 1230 1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1232 st->live |= REG_LIVE_WRITTEN; 1233 1234 for (j = 0; j < BPF_REG_SIZE; j++) 1235 slot->slot_type[j] = STACK_INVALID; 1236 1237 mark_stack_slot_scratched(env, spi - i); 1238 } 1239 1240 return 0; 1241 } 1242 1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1244 struct bpf_reg_state *reg, int nr_slots) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 int spi, i, j; 1248 1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1250 * will do check_mem_access to check and update stack bounds later, so 1251 * return true for that case. 1252 */ 1253 spi = iter_get_spi(env, reg, nr_slots); 1254 if (spi == -ERANGE) 1255 return true; 1256 if (spi < 0) 1257 return false; 1258 1259 for (i = 0; i < nr_slots; i++) { 1260 struct bpf_stack_state *slot = &state->stack[spi - i]; 1261 1262 for (j = 0; j < BPF_REG_SIZE; j++) 1263 if (slot->slot_type[j] == STACK_ITER) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1271 struct btf *btf, u32 btf_id, int nr_slots) 1272 { 1273 struct bpf_func_state *state = func(env, reg); 1274 int spi, i, j; 1275 1276 spi = iter_get_spi(env, reg, nr_slots); 1277 if (spi < 0) 1278 return false; 1279 1280 for (i = 0; i < nr_slots; i++) { 1281 struct bpf_stack_state *slot = &state->stack[spi - i]; 1282 struct bpf_reg_state *st = &slot->spilled_ptr; 1283 1284 /* only main (first) slot has ref_obj_id set */ 1285 if (i == 0 && !st->ref_obj_id) 1286 return false; 1287 if (i != 0 && st->ref_obj_id) 1288 return false; 1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1290 return false; 1291 1292 for (j = 0; j < BPF_REG_SIZE; j++) 1293 if (slot->slot_type[j] != STACK_ITER) 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /* Check if given stack slot is "special": 1301 * - spilled register state (STACK_SPILL); 1302 * - dynptr state (STACK_DYNPTR); 1303 * - iter state (STACK_ITER). 1304 */ 1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1306 { 1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1308 1309 switch (type) { 1310 case STACK_SPILL: 1311 case STACK_DYNPTR: 1312 case STACK_ITER: 1313 return true; 1314 case STACK_INVALID: 1315 case STACK_MISC: 1316 case STACK_ZERO: 1317 return false; 1318 default: 1319 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1320 return true; 1321 } 1322 } 1323 1324 /* The reg state of a pointer or a bounded scalar was saved when 1325 * it was spilled to the stack. 1326 */ 1327 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1328 { 1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1330 } 1331 1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1333 { 1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1335 stack->spilled_ptr.type == SCALAR_VALUE; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 static void print_verifier_state(struct bpf_verifier_env *env, 1345 const struct bpf_func_state *state, 1346 bool print_all) 1347 { 1348 const struct bpf_reg_state *reg; 1349 enum bpf_reg_type t; 1350 int i; 1351 1352 if (state->frameno) 1353 verbose(env, " frame%d:", state->frameno); 1354 for (i = 0; i < MAX_BPF_REG; i++) { 1355 reg = &state->regs[i]; 1356 t = reg->type; 1357 if (t == NOT_INIT) 1358 continue; 1359 if (!print_all && !reg_scratched(env, i)) 1360 continue; 1361 verbose(env, " R%d", i); 1362 print_liveness(env, reg->live); 1363 verbose(env, "="); 1364 if (t == SCALAR_VALUE && reg->precise) 1365 verbose(env, "P"); 1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1367 tnum_is_const(reg->var_off)) { 1368 /* reg->off should be 0 for SCALAR_VALUE */ 1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1370 verbose(env, "%lld", reg->var_off.value + reg->off); 1371 } else { 1372 const char *sep = ""; 1373 1374 verbose(env, "%s", reg_type_str(env, t)); 1375 if (base_type(t) == PTR_TO_BTF_ID) 1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1377 verbose(env, "("); 1378 /* 1379 * _a stands for append, was shortened to avoid multiline statements below. 1380 * This macro is used to output a comma separated list of attributes. 1381 */ 1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1383 1384 if (reg->id) 1385 verbose_a("id=%d", reg->id); 1386 if (reg->ref_obj_id) 1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1388 if (type_is_non_owning_ref(reg->type)) 1389 verbose_a("%s", "non_own_ref"); 1390 if (t != SCALAR_VALUE) 1391 verbose_a("off=%d", reg->off); 1392 if (type_is_pkt_pointer(t)) 1393 verbose_a("r=%d", reg->range); 1394 else if (base_type(t) == CONST_PTR_TO_MAP || 1395 base_type(t) == PTR_TO_MAP_KEY || 1396 base_type(t) == PTR_TO_MAP_VALUE) 1397 verbose_a("ks=%d,vs=%d", 1398 reg->map_ptr->key_size, 1399 reg->map_ptr->value_size); 1400 if (tnum_is_const(reg->var_off)) { 1401 /* Typically an immediate SCALAR_VALUE, but 1402 * could be a pointer whose offset is too big 1403 * for reg->off 1404 */ 1405 verbose_a("imm=%llx", reg->var_off.value); 1406 } else { 1407 if (reg->smin_value != reg->umin_value && 1408 reg->smin_value != S64_MIN) 1409 verbose_a("smin=%lld", (long long)reg->smin_value); 1410 if (reg->smax_value != reg->umax_value && 1411 reg->smax_value != S64_MAX) 1412 verbose_a("smax=%lld", (long long)reg->smax_value); 1413 if (reg->umin_value != 0) 1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1415 if (reg->umax_value != U64_MAX) 1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1417 if (!tnum_is_unknown(reg->var_off)) { 1418 char tn_buf[48]; 1419 1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1421 verbose_a("var_off=%s", tn_buf); 1422 } 1423 if (reg->s32_min_value != reg->smin_value && 1424 reg->s32_min_value != S32_MIN) 1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1426 if (reg->s32_max_value != reg->smax_value && 1427 reg->s32_max_value != S32_MAX) 1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1429 if (reg->u32_min_value != reg->umin_value && 1430 reg->u32_min_value != U32_MIN) 1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1432 if (reg->u32_max_value != reg->umax_value && 1433 reg->u32_max_value != U32_MAX) 1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1435 } 1436 #undef verbose_a 1437 1438 verbose(env, ")"); 1439 } 1440 } 1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1442 char types_buf[BPF_REG_SIZE + 1]; 1443 bool valid = false; 1444 int j; 1445 1446 for (j = 0; j < BPF_REG_SIZE; j++) { 1447 if (state->stack[i].slot_type[j] != STACK_INVALID) 1448 valid = true; 1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1450 } 1451 types_buf[BPF_REG_SIZE] = 0; 1452 if (!valid) 1453 continue; 1454 if (!print_all && !stack_slot_scratched(env, i)) 1455 continue; 1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1457 case STACK_SPILL: 1458 reg = &state->stack[i].spilled_ptr; 1459 t = reg->type; 1460 1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1462 print_liveness(env, reg->live); 1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1464 if (t == SCALAR_VALUE && reg->precise) 1465 verbose(env, "P"); 1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1467 verbose(env, "%lld", reg->var_off.value + reg->off); 1468 break; 1469 case STACK_DYNPTR: 1470 i += BPF_DYNPTR_NR_SLOTS - 1; 1471 reg = &state->stack[i].spilled_ptr; 1472 1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1474 print_liveness(env, reg->live); 1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1476 if (reg->ref_obj_id) 1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1478 break; 1479 case STACK_ITER: 1480 /* only main slot has ref_obj_id set; skip others */ 1481 reg = &state->stack[i].spilled_ptr; 1482 if (!reg->ref_obj_id) 1483 continue; 1484 1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1486 print_liveness(env, reg->live); 1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1488 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1489 reg->ref_obj_id, iter_state_str(reg->iter.state), 1490 reg->iter.depth); 1491 break; 1492 case STACK_MISC: 1493 case STACK_ZERO: 1494 default: 1495 reg = &state->stack[i].spilled_ptr; 1496 1497 for (j = 0; j < BPF_REG_SIZE; j++) 1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1499 types_buf[BPF_REG_SIZE] = 0; 1500 1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1502 print_liveness(env, reg->live); 1503 verbose(env, "=%s", types_buf); 1504 break; 1505 } 1506 } 1507 if (state->acquired_refs && state->refs[0].id) { 1508 verbose(env, " refs=%d", state->refs[0].id); 1509 for (i = 1; i < state->acquired_refs; i++) 1510 if (state->refs[i].id) 1511 verbose(env, ",%d", state->refs[i].id); 1512 } 1513 if (state->in_callback_fn) 1514 verbose(env, " cb"); 1515 if (state->in_async_callback_fn) 1516 verbose(env, " async_cb"); 1517 verbose(env, "\n"); 1518 mark_verifier_state_clean(env); 1519 } 1520 1521 static inline u32 vlog_alignment(u32 pos) 1522 { 1523 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1524 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1525 } 1526 1527 static void print_insn_state(struct bpf_verifier_env *env, 1528 const struct bpf_func_state *state) 1529 { 1530 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1531 /* remove new line character */ 1532 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1533 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1534 } else { 1535 verbose(env, "%d:", env->insn_idx); 1536 } 1537 print_verifier_state(env, state, false); 1538 } 1539 1540 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1541 * small to hold src. This is different from krealloc since we don't want to preserve 1542 * the contents of dst. 1543 * 1544 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1545 * not be allocated. 1546 */ 1547 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1548 { 1549 size_t alloc_bytes; 1550 void *orig = dst; 1551 size_t bytes; 1552 1553 if (ZERO_OR_NULL_PTR(src)) 1554 goto out; 1555 1556 if (unlikely(check_mul_overflow(n, size, &bytes))) 1557 return NULL; 1558 1559 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1560 dst = krealloc(orig, alloc_bytes, flags); 1561 if (!dst) { 1562 kfree(orig); 1563 return NULL; 1564 } 1565 1566 memcpy(dst, src, bytes); 1567 out: 1568 return dst ? dst : ZERO_SIZE_PTR; 1569 } 1570 1571 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1572 * small to hold new_n items. new items are zeroed out if the array grows. 1573 * 1574 * Contrary to krealloc_array, does not free arr if new_n is zero. 1575 */ 1576 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1577 { 1578 size_t alloc_size; 1579 void *new_arr; 1580 1581 if (!new_n || old_n == new_n) 1582 goto out; 1583 1584 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1585 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1586 if (!new_arr) { 1587 kfree(arr); 1588 return NULL; 1589 } 1590 arr = new_arr; 1591 1592 if (new_n > old_n) 1593 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1594 1595 out: 1596 return arr ? arr : ZERO_SIZE_PTR; 1597 } 1598 1599 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1600 { 1601 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1602 sizeof(struct bpf_reference_state), GFP_KERNEL); 1603 if (!dst->refs) 1604 return -ENOMEM; 1605 1606 dst->acquired_refs = src->acquired_refs; 1607 return 0; 1608 } 1609 1610 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1611 { 1612 size_t n = src->allocated_stack / BPF_REG_SIZE; 1613 1614 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1615 GFP_KERNEL); 1616 if (!dst->stack) 1617 return -ENOMEM; 1618 1619 dst->allocated_stack = src->allocated_stack; 1620 return 0; 1621 } 1622 1623 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1624 { 1625 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1626 sizeof(struct bpf_reference_state)); 1627 if (!state->refs) 1628 return -ENOMEM; 1629 1630 state->acquired_refs = n; 1631 return 0; 1632 } 1633 1634 static int grow_stack_state(struct bpf_func_state *state, int size) 1635 { 1636 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1637 1638 if (old_n >= n) 1639 return 0; 1640 1641 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1642 if (!state->stack) 1643 return -ENOMEM; 1644 1645 state->allocated_stack = size; 1646 return 0; 1647 } 1648 1649 /* Acquire a pointer id from the env and update the state->refs to include 1650 * this new pointer reference. 1651 * On success, returns a valid pointer id to associate with the register 1652 * On failure, returns a negative errno. 1653 */ 1654 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1655 { 1656 struct bpf_func_state *state = cur_func(env); 1657 int new_ofs = state->acquired_refs; 1658 int id, err; 1659 1660 err = resize_reference_state(state, state->acquired_refs + 1); 1661 if (err) 1662 return err; 1663 id = ++env->id_gen; 1664 state->refs[new_ofs].id = id; 1665 state->refs[new_ofs].insn_idx = insn_idx; 1666 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1667 1668 return id; 1669 } 1670 1671 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1672 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1673 { 1674 int i, last_idx; 1675 1676 last_idx = state->acquired_refs - 1; 1677 for (i = 0; i < state->acquired_refs; i++) { 1678 if (state->refs[i].id == ptr_id) { 1679 /* Cannot release caller references in callbacks */ 1680 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1681 return -EINVAL; 1682 if (last_idx && i != last_idx) 1683 memcpy(&state->refs[i], &state->refs[last_idx], 1684 sizeof(*state->refs)); 1685 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1686 state->acquired_refs--; 1687 return 0; 1688 } 1689 } 1690 return -EINVAL; 1691 } 1692 1693 static void free_func_state(struct bpf_func_state *state) 1694 { 1695 if (!state) 1696 return; 1697 kfree(state->refs); 1698 kfree(state->stack); 1699 kfree(state); 1700 } 1701 1702 static void clear_jmp_history(struct bpf_verifier_state *state) 1703 { 1704 kfree(state->jmp_history); 1705 state->jmp_history = NULL; 1706 state->jmp_history_cnt = 0; 1707 } 1708 1709 static void free_verifier_state(struct bpf_verifier_state *state, 1710 bool free_self) 1711 { 1712 int i; 1713 1714 for (i = 0; i <= state->curframe; i++) { 1715 free_func_state(state->frame[i]); 1716 state->frame[i] = NULL; 1717 } 1718 clear_jmp_history(state); 1719 if (free_self) 1720 kfree(state); 1721 } 1722 1723 /* copy verifier state from src to dst growing dst stack space 1724 * when necessary to accommodate larger src stack 1725 */ 1726 static int copy_func_state(struct bpf_func_state *dst, 1727 const struct bpf_func_state *src) 1728 { 1729 int err; 1730 1731 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1732 err = copy_reference_state(dst, src); 1733 if (err) 1734 return err; 1735 return copy_stack_state(dst, src); 1736 } 1737 1738 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1739 const struct bpf_verifier_state *src) 1740 { 1741 struct bpf_func_state *dst; 1742 int i, err; 1743 1744 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1745 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1746 GFP_USER); 1747 if (!dst_state->jmp_history) 1748 return -ENOMEM; 1749 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1750 1751 /* if dst has more stack frames then src frame, free them */ 1752 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1753 free_func_state(dst_state->frame[i]); 1754 dst_state->frame[i] = NULL; 1755 } 1756 dst_state->speculative = src->speculative; 1757 dst_state->active_rcu_lock = src->active_rcu_lock; 1758 dst_state->curframe = src->curframe; 1759 dst_state->active_lock.ptr = src->active_lock.ptr; 1760 dst_state->active_lock.id = src->active_lock.id; 1761 dst_state->branches = src->branches; 1762 dst_state->parent = src->parent; 1763 dst_state->first_insn_idx = src->first_insn_idx; 1764 dst_state->last_insn_idx = src->last_insn_idx; 1765 for (i = 0; i <= src->curframe; i++) { 1766 dst = dst_state->frame[i]; 1767 if (!dst) { 1768 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1769 if (!dst) 1770 return -ENOMEM; 1771 dst_state->frame[i] = dst; 1772 } 1773 err = copy_func_state(dst, src->frame[i]); 1774 if (err) 1775 return err; 1776 } 1777 return 0; 1778 } 1779 1780 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1781 { 1782 while (st) { 1783 u32 br = --st->branches; 1784 1785 /* WARN_ON(br > 1) technically makes sense here, 1786 * but see comment in push_stack(), hence: 1787 */ 1788 WARN_ONCE((int)br < 0, 1789 "BUG update_branch_counts:branches_to_explore=%d\n", 1790 br); 1791 if (br) 1792 break; 1793 st = st->parent; 1794 } 1795 } 1796 1797 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1798 int *insn_idx, bool pop_log) 1799 { 1800 struct bpf_verifier_state *cur = env->cur_state; 1801 struct bpf_verifier_stack_elem *elem, *head = env->head; 1802 int err; 1803 1804 if (env->head == NULL) 1805 return -ENOENT; 1806 1807 if (cur) { 1808 err = copy_verifier_state(cur, &head->st); 1809 if (err) 1810 return err; 1811 } 1812 if (pop_log) 1813 bpf_vlog_reset(&env->log, head->log_pos); 1814 if (insn_idx) 1815 *insn_idx = head->insn_idx; 1816 if (prev_insn_idx) 1817 *prev_insn_idx = head->prev_insn_idx; 1818 elem = head->next; 1819 free_verifier_state(&head->st, false); 1820 kfree(head); 1821 env->head = elem; 1822 env->stack_size--; 1823 return 0; 1824 } 1825 1826 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1827 int insn_idx, int prev_insn_idx, 1828 bool speculative) 1829 { 1830 struct bpf_verifier_state *cur = env->cur_state; 1831 struct bpf_verifier_stack_elem *elem; 1832 int err; 1833 1834 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1835 if (!elem) 1836 goto err; 1837 1838 elem->insn_idx = insn_idx; 1839 elem->prev_insn_idx = prev_insn_idx; 1840 elem->next = env->head; 1841 elem->log_pos = env->log.end_pos; 1842 env->head = elem; 1843 env->stack_size++; 1844 err = copy_verifier_state(&elem->st, cur); 1845 if (err) 1846 goto err; 1847 elem->st.speculative |= speculative; 1848 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1849 verbose(env, "The sequence of %d jumps is too complex.\n", 1850 env->stack_size); 1851 goto err; 1852 } 1853 if (elem->st.parent) { 1854 ++elem->st.parent->branches; 1855 /* WARN_ON(branches > 2) technically makes sense here, 1856 * but 1857 * 1. speculative states will bump 'branches' for non-branch 1858 * instructions 1859 * 2. is_state_visited() heuristics may decide not to create 1860 * a new state for a sequence of branches and all such current 1861 * and cloned states will be pointing to a single parent state 1862 * which might have large 'branches' count. 1863 */ 1864 } 1865 return &elem->st; 1866 err: 1867 free_verifier_state(env->cur_state, true); 1868 env->cur_state = NULL; 1869 /* pop all elements and return */ 1870 while (!pop_stack(env, NULL, NULL, false)); 1871 return NULL; 1872 } 1873 1874 #define CALLER_SAVED_REGS 6 1875 static const int caller_saved[CALLER_SAVED_REGS] = { 1876 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1877 }; 1878 1879 /* This helper doesn't clear reg->id */ 1880 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1881 { 1882 reg->var_off = tnum_const(imm); 1883 reg->smin_value = (s64)imm; 1884 reg->smax_value = (s64)imm; 1885 reg->umin_value = imm; 1886 reg->umax_value = imm; 1887 1888 reg->s32_min_value = (s32)imm; 1889 reg->s32_max_value = (s32)imm; 1890 reg->u32_min_value = (u32)imm; 1891 reg->u32_max_value = (u32)imm; 1892 } 1893 1894 /* Mark the unknown part of a register (variable offset or scalar value) as 1895 * known to have the value @imm. 1896 */ 1897 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1898 { 1899 /* Clear off and union(map_ptr, range) */ 1900 memset(((u8 *)reg) + sizeof(reg->type), 0, 1901 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1902 reg->id = 0; 1903 reg->ref_obj_id = 0; 1904 ___mark_reg_known(reg, imm); 1905 } 1906 1907 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1908 { 1909 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1910 reg->s32_min_value = (s32)imm; 1911 reg->s32_max_value = (s32)imm; 1912 reg->u32_min_value = (u32)imm; 1913 reg->u32_max_value = (u32)imm; 1914 } 1915 1916 /* Mark the 'variable offset' part of a register as zero. This should be 1917 * used only on registers holding a pointer type. 1918 */ 1919 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1920 { 1921 __mark_reg_known(reg, 0); 1922 } 1923 1924 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1925 { 1926 __mark_reg_known(reg, 0); 1927 reg->type = SCALAR_VALUE; 1928 } 1929 1930 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1931 struct bpf_reg_state *regs, u32 regno) 1932 { 1933 if (WARN_ON(regno >= MAX_BPF_REG)) { 1934 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1935 /* Something bad happened, let's kill all regs */ 1936 for (regno = 0; regno < MAX_BPF_REG; regno++) 1937 __mark_reg_not_init(env, regs + regno); 1938 return; 1939 } 1940 __mark_reg_known_zero(regs + regno); 1941 } 1942 1943 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1944 bool first_slot, int dynptr_id) 1945 { 1946 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1947 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1948 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1949 */ 1950 __mark_reg_known_zero(reg); 1951 reg->type = CONST_PTR_TO_DYNPTR; 1952 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1953 reg->id = dynptr_id; 1954 reg->dynptr.type = type; 1955 reg->dynptr.first_slot = first_slot; 1956 } 1957 1958 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1959 { 1960 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1961 const struct bpf_map *map = reg->map_ptr; 1962 1963 if (map->inner_map_meta) { 1964 reg->type = CONST_PTR_TO_MAP; 1965 reg->map_ptr = map->inner_map_meta; 1966 /* transfer reg's id which is unique for every map_lookup_elem 1967 * as UID of the inner map. 1968 */ 1969 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1970 reg->map_uid = reg->id; 1971 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1972 reg->type = PTR_TO_XDP_SOCK; 1973 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1974 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1975 reg->type = PTR_TO_SOCKET; 1976 } else { 1977 reg->type = PTR_TO_MAP_VALUE; 1978 } 1979 return; 1980 } 1981 1982 reg->type &= ~PTR_MAYBE_NULL; 1983 } 1984 1985 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1986 struct btf_field_graph_root *ds_head) 1987 { 1988 __mark_reg_known_zero(®s[regno]); 1989 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1990 regs[regno].btf = ds_head->btf; 1991 regs[regno].btf_id = ds_head->value_btf_id; 1992 regs[regno].off = ds_head->node_offset; 1993 } 1994 1995 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1996 { 1997 return type_is_pkt_pointer(reg->type); 1998 } 1999 2000 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2001 { 2002 return reg_is_pkt_pointer(reg) || 2003 reg->type == PTR_TO_PACKET_END; 2004 } 2005 2006 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2007 { 2008 return base_type(reg->type) == PTR_TO_MEM && 2009 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2010 } 2011 2012 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2013 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2014 enum bpf_reg_type which) 2015 { 2016 /* The register can already have a range from prior markings. 2017 * This is fine as long as it hasn't been advanced from its 2018 * origin. 2019 */ 2020 return reg->type == which && 2021 reg->id == 0 && 2022 reg->off == 0 && 2023 tnum_equals_const(reg->var_off, 0); 2024 } 2025 2026 /* Reset the min/max bounds of a register */ 2027 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2028 { 2029 reg->smin_value = S64_MIN; 2030 reg->smax_value = S64_MAX; 2031 reg->umin_value = 0; 2032 reg->umax_value = U64_MAX; 2033 2034 reg->s32_min_value = S32_MIN; 2035 reg->s32_max_value = S32_MAX; 2036 reg->u32_min_value = 0; 2037 reg->u32_max_value = U32_MAX; 2038 } 2039 2040 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2041 { 2042 reg->smin_value = S64_MIN; 2043 reg->smax_value = S64_MAX; 2044 reg->umin_value = 0; 2045 reg->umax_value = U64_MAX; 2046 } 2047 2048 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2049 { 2050 reg->s32_min_value = S32_MIN; 2051 reg->s32_max_value = S32_MAX; 2052 reg->u32_min_value = 0; 2053 reg->u32_max_value = U32_MAX; 2054 } 2055 2056 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2057 { 2058 struct tnum var32_off = tnum_subreg(reg->var_off); 2059 2060 /* min signed is max(sign bit) | min(other bits) */ 2061 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2062 var32_off.value | (var32_off.mask & S32_MIN)); 2063 /* max signed is min(sign bit) | max(other bits) */ 2064 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2065 var32_off.value | (var32_off.mask & S32_MAX)); 2066 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2067 reg->u32_max_value = min(reg->u32_max_value, 2068 (u32)(var32_off.value | var32_off.mask)); 2069 } 2070 2071 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2072 { 2073 /* min signed is max(sign bit) | min(other bits) */ 2074 reg->smin_value = max_t(s64, reg->smin_value, 2075 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2076 /* max signed is min(sign bit) | max(other bits) */ 2077 reg->smax_value = min_t(s64, reg->smax_value, 2078 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2079 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2080 reg->umax_value = min(reg->umax_value, 2081 reg->var_off.value | reg->var_off.mask); 2082 } 2083 2084 static void __update_reg_bounds(struct bpf_reg_state *reg) 2085 { 2086 __update_reg32_bounds(reg); 2087 __update_reg64_bounds(reg); 2088 } 2089 2090 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2091 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2092 { 2093 /* Learn sign from signed bounds. 2094 * If we cannot cross the sign boundary, then signed and unsigned bounds 2095 * are the same, so combine. This works even in the negative case, e.g. 2096 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2097 */ 2098 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2099 reg->s32_min_value = reg->u32_min_value = 2100 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2101 reg->s32_max_value = reg->u32_max_value = 2102 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2103 return; 2104 } 2105 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2106 * boundary, so we must be careful. 2107 */ 2108 if ((s32)reg->u32_max_value >= 0) { 2109 /* Positive. We can't learn anything from the smin, but smax 2110 * is positive, hence safe. 2111 */ 2112 reg->s32_min_value = reg->u32_min_value; 2113 reg->s32_max_value = reg->u32_max_value = 2114 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2115 } else if ((s32)reg->u32_min_value < 0) { 2116 /* Negative. We can't learn anything from the smax, but smin 2117 * is negative, hence safe. 2118 */ 2119 reg->s32_min_value = reg->u32_min_value = 2120 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2121 reg->s32_max_value = reg->u32_max_value; 2122 } 2123 } 2124 2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2126 { 2127 /* Learn sign from signed bounds. 2128 * If we cannot cross the sign boundary, then signed and unsigned bounds 2129 * are the same, so combine. This works even in the negative case, e.g. 2130 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2131 */ 2132 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2133 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2134 reg->umin_value); 2135 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2136 reg->umax_value); 2137 return; 2138 } 2139 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2140 * boundary, so we must be careful. 2141 */ 2142 if ((s64)reg->umax_value >= 0) { 2143 /* Positive. We can't learn anything from the smin, but smax 2144 * is positive, hence safe. 2145 */ 2146 reg->smin_value = reg->umin_value; 2147 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2148 reg->umax_value); 2149 } else if ((s64)reg->umin_value < 0) { 2150 /* Negative. We can't learn anything from the smax, but smin 2151 * is negative, hence safe. 2152 */ 2153 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2154 reg->umin_value); 2155 reg->smax_value = reg->umax_value; 2156 } 2157 } 2158 2159 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2160 { 2161 __reg32_deduce_bounds(reg); 2162 __reg64_deduce_bounds(reg); 2163 } 2164 2165 /* Attempts to improve var_off based on unsigned min/max information */ 2166 static void __reg_bound_offset(struct bpf_reg_state *reg) 2167 { 2168 struct tnum var64_off = tnum_intersect(reg->var_off, 2169 tnum_range(reg->umin_value, 2170 reg->umax_value)); 2171 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2172 tnum_range(reg->u32_min_value, 2173 reg->u32_max_value)); 2174 2175 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2176 } 2177 2178 static void reg_bounds_sync(struct bpf_reg_state *reg) 2179 { 2180 /* We might have learned new bounds from the var_off. */ 2181 __update_reg_bounds(reg); 2182 /* We might have learned something about the sign bit. */ 2183 __reg_deduce_bounds(reg); 2184 /* We might have learned some bits from the bounds. */ 2185 __reg_bound_offset(reg); 2186 /* Intersecting with the old var_off might have improved our bounds 2187 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2188 * then new var_off is (0; 0x7f...fc) which improves our umax. 2189 */ 2190 __update_reg_bounds(reg); 2191 } 2192 2193 static bool __reg32_bound_s64(s32 a) 2194 { 2195 return a >= 0 && a <= S32_MAX; 2196 } 2197 2198 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2199 { 2200 reg->umin_value = reg->u32_min_value; 2201 reg->umax_value = reg->u32_max_value; 2202 2203 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2204 * be positive otherwise set to worse case bounds and refine later 2205 * from tnum. 2206 */ 2207 if (__reg32_bound_s64(reg->s32_min_value) && 2208 __reg32_bound_s64(reg->s32_max_value)) { 2209 reg->smin_value = reg->s32_min_value; 2210 reg->smax_value = reg->s32_max_value; 2211 } else { 2212 reg->smin_value = 0; 2213 reg->smax_value = U32_MAX; 2214 } 2215 } 2216 2217 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2218 { 2219 /* special case when 64-bit register has upper 32-bit register 2220 * zeroed. Typically happens after zext or <<32, >>32 sequence 2221 * allowing us to use 32-bit bounds directly, 2222 */ 2223 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2224 __reg_assign_32_into_64(reg); 2225 } else { 2226 /* Otherwise the best we can do is push lower 32bit known and 2227 * unknown bits into register (var_off set from jmp logic) 2228 * then learn as much as possible from the 64-bit tnum 2229 * known and unknown bits. The previous smin/smax bounds are 2230 * invalid here because of jmp32 compare so mark them unknown 2231 * so they do not impact tnum bounds calculation. 2232 */ 2233 __mark_reg64_unbounded(reg); 2234 } 2235 reg_bounds_sync(reg); 2236 } 2237 2238 static bool __reg64_bound_s32(s64 a) 2239 { 2240 return a >= S32_MIN && a <= S32_MAX; 2241 } 2242 2243 static bool __reg64_bound_u32(u64 a) 2244 { 2245 return a >= U32_MIN && a <= U32_MAX; 2246 } 2247 2248 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2249 { 2250 __mark_reg32_unbounded(reg); 2251 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2252 reg->s32_min_value = (s32)reg->smin_value; 2253 reg->s32_max_value = (s32)reg->smax_value; 2254 } 2255 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2256 reg->u32_min_value = (u32)reg->umin_value; 2257 reg->u32_max_value = (u32)reg->umax_value; 2258 } 2259 reg_bounds_sync(reg); 2260 } 2261 2262 /* Mark a register as having a completely unknown (scalar) value. */ 2263 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2264 struct bpf_reg_state *reg) 2265 { 2266 /* 2267 * Clear type, off, and union(map_ptr, range) and 2268 * padding between 'type' and union 2269 */ 2270 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2271 reg->type = SCALAR_VALUE; 2272 reg->id = 0; 2273 reg->ref_obj_id = 0; 2274 reg->var_off = tnum_unknown; 2275 reg->frameno = 0; 2276 reg->precise = !env->bpf_capable; 2277 __mark_reg_unbounded(reg); 2278 } 2279 2280 static void mark_reg_unknown(struct bpf_verifier_env *env, 2281 struct bpf_reg_state *regs, u32 regno) 2282 { 2283 if (WARN_ON(regno >= MAX_BPF_REG)) { 2284 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2285 /* Something bad happened, let's kill all regs except FP */ 2286 for (regno = 0; regno < BPF_REG_FP; regno++) 2287 __mark_reg_not_init(env, regs + regno); 2288 return; 2289 } 2290 __mark_reg_unknown(env, regs + regno); 2291 } 2292 2293 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2294 struct bpf_reg_state *reg) 2295 { 2296 __mark_reg_unknown(env, reg); 2297 reg->type = NOT_INIT; 2298 } 2299 2300 static void mark_reg_not_init(struct bpf_verifier_env *env, 2301 struct bpf_reg_state *regs, u32 regno) 2302 { 2303 if (WARN_ON(regno >= MAX_BPF_REG)) { 2304 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2305 /* Something bad happened, let's kill all regs except FP */ 2306 for (regno = 0; regno < BPF_REG_FP; regno++) 2307 __mark_reg_not_init(env, regs + regno); 2308 return; 2309 } 2310 __mark_reg_not_init(env, regs + regno); 2311 } 2312 2313 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2314 struct bpf_reg_state *regs, u32 regno, 2315 enum bpf_reg_type reg_type, 2316 struct btf *btf, u32 btf_id, 2317 enum bpf_type_flag flag) 2318 { 2319 if (reg_type == SCALAR_VALUE) { 2320 mark_reg_unknown(env, regs, regno); 2321 return; 2322 } 2323 mark_reg_known_zero(env, regs, regno); 2324 regs[regno].type = PTR_TO_BTF_ID | flag; 2325 regs[regno].btf = btf; 2326 regs[regno].btf_id = btf_id; 2327 } 2328 2329 #define DEF_NOT_SUBREG (0) 2330 static void init_reg_state(struct bpf_verifier_env *env, 2331 struct bpf_func_state *state) 2332 { 2333 struct bpf_reg_state *regs = state->regs; 2334 int i; 2335 2336 for (i = 0; i < MAX_BPF_REG; i++) { 2337 mark_reg_not_init(env, regs, i); 2338 regs[i].live = REG_LIVE_NONE; 2339 regs[i].parent = NULL; 2340 regs[i].subreg_def = DEF_NOT_SUBREG; 2341 } 2342 2343 /* frame pointer */ 2344 regs[BPF_REG_FP].type = PTR_TO_STACK; 2345 mark_reg_known_zero(env, regs, BPF_REG_FP); 2346 regs[BPF_REG_FP].frameno = state->frameno; 2347 } 2348 2349 #define BPF_MAIN_FUNC (-1) 2350 static void init_func_state(struct bpf_verifier_env *env, 2351 struct bpf_func_state *state, 2352 int callsite, int frameno, int subprogno) 2353 { 2354 state->callsite = callsite; 2355 state->frameno = frameno; 2356 state->subprogno = subprogno; 2357 state->callback_ret_range = tnum_range(0, 0); 2358 init_reg_state(env, state); 2359 mark_verifier_state_scratched(env); 2360 } 2361 2362 /* Similar to push_stack(), but for async callbacks */ 2363 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2364 int insn_idx, int prev_insn_idx, 2365 int subprog) 2366 { 2367 struct bpf_verifier_stack_elem *elem; 2368 struct bpf_func_state *frame; 2369 2370 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2371 if (!elem) 2372 goto err; 2373 2374 elem->insn_idx = insn_idx; 2375 elem->prev_insn_idx = prev_insn_idx; 2376 elem->next = env->head; 2377 elem->log_pos = env->log.end_pos; 2378 env->head = elem; 2379 env->stack_size++; 2380 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2381 verbose(env, 2382 "The sequence of %d jumps is too complex for async cb.\n", 2383 env->stack_size); 2384 goto err; 2385 } 2386 /* Unlike push_stack() do not copy_verifier_state(). 2387 * The caller state doesn't matter. 2388 * This is async callback. It starts in a fresh stack. 2389 * Initialize it similar to do_check_common(). 2390 */ 2391 elem->st.branches = 1; 2392 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2393 if (!frame) 2394 goto err; 2395 init_func_state(env, frame, 2396 BPF_MAIN_FUNC /* callsite */, 2397 0 /* frameno within this callchain */, 2398 subprog /* subprog number within this prog */); 2399 elem->st.frame[0] = frame; 2400 return &elem->st; 2401 err: 2402 free_verifier_state(env->cur_state, true); 2403 env->cur_state = NULL; 2404 /* pop all elements and return */ 2405 while (!pop_stack(env, NULL, NULL, false)); 2406 return NULL; 2407 } 2408 2409 2410 enum reg_arg_type { 2411 SRC_OP, /* register is used as source operand */ 2412 DST_OP, /* register is used as destination operand */ 2413 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2414 }; 2415 2416 static int cmp_subprogs(const void *a, const void *b) 2417 { 2418 return ((struct bpf_subprog_info *)a)->start - 2419 ((struct bpf_subprog_info *)b)->start; 2420 } 2421 2422 static int find_subprog(struct bpf_verifier_env *env, int off) 2423 { 2424 struct bpf_subprog_info *p; 2425 2426 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2427 sizeof(env->subprog_info[0]), cmp_subprogs); 2428 if (!p) 2429 return -ENOENT; 2430 return p - env->subprog_info; 2431 2432 } 2433 2434 static int add_subprog(struct bpf_verifier_env *env, int off) 2435 { 2436 int insn_cnt = env->prog->len; 2437 int ret; 2438 2439 if (off >= insn_cnt || off < 0) { 2440 verbose(env, "call to invalid destination\n"); 2441 return -EINVAL; 2442 } 2443 ret = find_subprog(env, off); 2444 if (ret >= 0) 2445 return ret; 2446 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2447 verbose(env, "too many subprograms\n"); 2448 return -E2BIG; 2449 } 2450 /* determine subprog starts. The end is one before the next starts */ 2451 env->subprog_info[env->subprog_cnt++].start = off; 2452 sort(env->subprog_info, env->subprog_cnt, 2453 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2454 return env->subprog_cnt - 1; 2455 } 2456 2457 #define MAX_KFUNC_DESCS 256 2458 #define MAX_KFUNC_BTFS 256 2459 2460 struct bpf_kfunc_desc { 2461 struct btf_func_model func_model; 2462 u32 func_id; 2463 s32 imm; 2464 u16 offset; 2465 unsigned long addr; 2466 }; 2467 2468 struct bpf_kfunc_btf { 2469 struct btf *btf; 2470 struct module *module; 2471 u16 offset; 2472 }; 2473 2474 struct bpf_kfunc_desc_tab { 2475 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2476 * verification. JITs do lookups by bpf_insn, where func_id may not be 2477 * available, therefore at the end of verification do_misc_fixups() 2478 * sorts this by imm and offset. 2479 */ 2480 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2481 u32 nr_descs; 2482 }; 2483 2484 struct bpf_kfunc_btf_tab { 2485 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2486 u32 nr_descs; 2487 }; 2488 2489 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2490 { 2491 const struct bpf_kfunc_desc *d0 = a; 2492 const struct bpf_kfunc_desc *d1 = b; 2493 2494 /* func_id is not greater than BTF_MAX_TYPE */ 2495 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2496 } 2497 2498 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2499 { 2500 const struct bpf_kfunc_btf *d0 = a; 2501 const struct bpf_kfunc_btf *d1 = b; 2502 2503 return d0->offset - d1->offset; 2504 } 2505 2506 static const struct bpf_kfunc_desc * 2507 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2508 { 2509 struct bpf_kfunc_desc desc = { 2510 .func_id = func_id, 2511 .offset = offset, 2512 }; 2513 struct bpf_kfunc_desc_tab *tab; 2514 2515 tab = prog->aux->kfunc_tab; 2516 return bsearch(&desc, tab->descs, tab->nr_descs, 2517 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2518 } 2519 2520 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2521 u16 btf_fd_idx, u8 **func_addr) 2522 { 2523 const struct bpf_kfunc_desc *desc; 2524 2525 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2526 if (!desc) 2527 return -EFAULT; 2528 2529 *func_addr = (u8 *)desc->addr; 2530 return 0; 2531 } 2532 2533 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2534 s16 offset) 2535 { 2536 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2537 struct bpf_kfunc_btf_tab *tab; 2538 struct bpf_kfunc_btf *b; 2539 struct module *mod; 2540 struct btf *btf; 2541 int btf_fd; 2542 2543 tab = env->prog->aux->kfunc_btf_tab; 2544 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2545 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2546 if (!b) { 2547 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2548 verbose(env, "too many different module BTFs\n"); 2549 return ERR_PTR(-E2BIG); 2550 } 2551 2552 if (bpfptr_is_null(env->fd_array)) { 2553 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2554 return ERR_PTR(-EPROTO); 2555 } 2556 2557 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2558 offset * sizeof(btf_fd), 2559 sizeof(btf_fd))) 2560 return ERR_PTR(-EFAULT); 2561 2562 btf = btf_get_by_fd(btf_fd); 2563 if (IS_ERR(btf)) { 2564 verbose(env, "invalid module BTF fd specified\n"); 2565 return btf; 2566 } 2567 2568 if (!btf_is_module(btf)) { 2569 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2570 btf_put(btf); 2571 return ERR_PTR(-EINVAL); 2572 } 2573 2574 mod = btf_try_get_module(btf); 2575 if (!mod) { 2576 btf_put(btf); 2577 return ERR_PTR(-ENXIO); 2578 } 2579 2580 b = &tab->descs[tab->nr_descs++]; 2581 b->btf = btf; 2582 b->module = mod; 2583 b->offset = offset; 2584 2585 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2586 kfunc_btf_cmp_by_off, NULL); 2587 } 2588 return b->btf; 2589 } 2590 2591 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2592 { 2593 if (!tab) 2594 return; 2595 2596 while (tab->nr_descs--) { 2597 module_put(tab->descs[tab->nr_descs].module); 2598 btf_put(tab->descs[tab->nr_descs].btf); 2599 } 2600 kfree(tab); 2601 } 2602 2603 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2604 { 2605 if (offset) { 2606 if (offset < 0) { 2607 /* In the future, this can be allowed to increase limit 2608 * of fd index into fd_array, interpreted as u16. 2609 */ 2610 verbose(env, "negative offset disallowed for kernel module function call\n"); 2611 return ERR_PTR(-EINVAL); 2612 } 2613 2614 return __find_kfunc_desc_btf(env, offset); 2615 } 2616 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2617 } 2618 2619 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2620 { 2621 const struct btf_type *func, *func_proto; 2622 struct bpf_kfunc_btf_tab *btf_tab; 2623 struct bpf_kfunc_desc_tab *tab; 2624 struct bpf_prog_aux *prog_aux; 2625 struct bpf_kfunc_desc *desc; 2626 const char *func_name; 2627 struct btf *desc_btf; 2628 unsigned long call_imm; 2629 unsigned long addr; 2630 int err; 2631 2632 prog_aux = env->prog->aux; 2633 tab = prog_aux->kfunc_tab; 2634 btf_tab = prog_aux->kfunc_btf_tab; 2635 if (!tab) { 2636 if (!btf_vmlinux) { 2637 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2638 return -ENOTSUPP; 2639 } 2640 2641 if (!env->prog->jit_requested) { 2642 verbose(env, "JIT is required for calling kernel function\n"); 2643 return -ENOTSUPP; 2644 } 2645 2646 if (!bpf_jit_supports_kfunc_call()) { 2647 verbose(env, "JIT does not support calling kernel function\n"); 2648 return -ENOTSUPP; 2649 } 2650 2651 if (!env->prog->gpl_compatible) { 2652 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2653 return -EINVAL; 2654 } 2655 2656 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2657 if (!tab) 2658 return -ENOMEM; 2659 prog_aux->kfunc_tab = tab; 2660 } 2661 2662 /* func_id == 0 is always invalid, but instead of returning an error, be 2663 * conservative and wait until the code elimination pass before returning 2664 * error, so that invalid calls that get pruned out can be in BPF programs 2665 * loaded from userspace. It is also required that offset be untouched 2666 * for such calls. 2667 */ 2668 if (!func_id && !offset) 2669 return 0; 2670 2671 if (!btf_tab && offset) { 2672 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2673 if (!btf_tab) 2674 return -ENOMEM; 2675 prog_aux->kfunc_btf_tab = btf_tab; 2676 } 2677 2678 desc_btf = find_kfunc_desc_btf(env, offset); 2679 if (IS_ERR(desc_btf)) { 2680 verbose(env, "failed to find BTF for kernel function\n"); 2681 return PTR_ERR(desc_btf); 2682 } 2683 2684 if (find_kfunc_desc(env->prog, func_id, offset)) 2685 return 0; 2686 2687 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2688 verbose(env, "too many different kernel function calls\n"); 2689 return -E2BIG; 2690 } 2691 2692 func = btf_type_by_id(desc_btf, func_id); 2693 if (!func || !btf_type_is_func(func)) { 2694 verbose(env, "kernel btf_id %u is not a function\n", 2695 func_id); 2696 return -EINVAL; 2697 } 2698 func_proto = btf_type_by_id(desc_btf, func->type); 2699 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2700 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2701 func_id); 2702 return -EINVAL; 2703 } 2704 2705 func_name = btf_name_by_offset(desc_btf, func->name_off); 2706 addr = kallsyms_lookup_name(func_name); 2707 if (!addr) { 2708 verbose(env, "cannot find address for kernel function %s\n", 2709 func_name); 2710 return -EINVAL; 2711 } 2712 specialize_kfunc(env, func_id, offset, &addr); 2713 2714 if (bpf_jit_supports_far_kfunc_call()) { 2715 call_imm = func_id; 2716 } else { 2717 call_imm = BPF_CALL_IMM(addr); 2718 /* Check whether the relative offset overflows desc->imm */ 2719 if ((unsigned long)(s32)call_imm != call_imm) { 2720 verbose(env, "address of kernel function %s is out of range\n", 2721 func_name); 2722 return -EINVAL; 2723 } 2724 } 2725 2726 if (bpf_dev_bound_kfunc_id(func_id)) { 2727 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2728 if (err) 2729 return err; 2730 } 2731 2732 desc = &tab->descs[tab->nr_descs++]; 2733 desc->func_id = func_id; 2734 desc->imm = call_imm; 2735 desc->offset = offset; 2736 desc->addr = addr; 2737 err = btf_distill_func_proto(&env->log, desc_btf, 2738 func_proto, func_name, 2739 &desc->func_model); 2740 if (!err) 2741 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2742 kfunc_desc_cmp_by_id_off, NULL); 2743 return err; 2744 } 2745 2746 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2747 { 2748 const struct bpf_kfunc_desc *d0 = a; 2749 const struct bpf_kfunc_desc *d1 = b; 2750 2751 if (d0->imm != d1->imm) 2752 return d0->imm < d1->imm ? -1 : 1; 2753 if (d0->offset != d1->offset) 2754 return d0->offset < d1->offset ? -1 : 1; 2755 return 0; 2756 } 2757 2758 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2759 { 2760 struct bpf_kfunc_desc_tab *tab; 2761 2762 tab = prog->aux->kfunc_tab; 2763 if (!tab) 2764 return; 2765 2766 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2767 kfunc_desc_cmp_by_imm_off, NULL); 2768 } 2769 2770 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2771 { 2772 return !!prog->aux->kfunc_tab; 2773 } 2774 2775 const struct btf_func_model * 2776 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2777 const struct bpf_insn *insn) 2778 { 2779 const struct bpf_kfunc_desc desc = { 2780 .imm = insn->imm, 2781 .offset = insn->off, 2782 }; 2783 const struct bpf_kfunc_desc *res; 2784 struct bpf_kfunc_desc_tab *tab; 2785 2786 tab = prog->aux->kfunc_tab; 2787 res = bsearch(&desc, tab->descs, tab->nr_descs, 2788 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2789 2790 return res ? &res->func_model : NULL; 2791 } 2792 2793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2794 { 2795 struct bpf_subprog_info *subprog = env->subprog_info; 2796 struct bpf_insn *insn = env->prog->insnsi; 2797 int i, ret, insn_cnt = env->prog->len; 2798 2799 /* Add entry function. */ 2800 ret = add_subprog(env, 0); 2801 if (ret) 2802 return ret; 2803 2804 for (i = 0; i < insn_cnt; i++, insn++) { 2805 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2806 !bpf_pseudo_kfunc_call(insn)) 2807 continue; 2808 2809 if (!env->bpf_capable) { 2810 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2811 return -EPERM; 2812 } 2813 2814 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2815 ret = add_subprog(env, i + insn->imm + 1); 2816 else 2817 ret = add_kfunc_call(env, insn->imm, insn->off); 2818 2819 if (ret < 0) 2820 return ret; 2821 } 2822 2823 /* Add a fake 'exit' subprog which could simplify subprog iteration 2824 * logic. 'subprog_cnt' should not be increased. 2825 */ 2826 subprog[env->subprog_cnt].start = insn_cnt; 2827 2828 if (env->log.level & BPF_LOG_LEVEL2) 2829 for (i = 0; i < env->subprog_cnt; i++) 2830 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2831 2832 return 0; 2833 } 2834 2835 static int check_subprogs(struct bpf_verifier_env *env) 2836 { 2837 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2838 struct bpf_subprog_info *subprog = env->subprog_info; 2839 struct bpf_insn *insn = env->prog->insnsi; 2840 int insn_cnt = env->prog->len; 2841 2842 /* now check that all jumps are within the same subprog */ 2843 subprog_start = subprog[cur_subprog].start; 2844 subprog_end = subprog[cur_subprog + 1].start; 2845 for (i = 0; i < insn_cnt; i++) { 2846 u8 code = insn[i].code; 2847 2848 if (code == (BPF_JMP | BPF_CALL) && 2849 insn[i].src_reg == 0 && 2850 insn[i].imm == BPF_FUNC_tail_call) 2851 subprog[cur_subprog].has_tail_call = true; 2852 if (BPF_CLASS(code) == BPF_LD && 2853 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2854 subprog[cur_subprog].has_ld_abs = true; 2855 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2856 goto next; 2857 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2858 goto next; 2859 if (code == (BPF_JMP32 | BPF_JA)) 2860 off = i + insn[i].imm + 1; 2861 else 2862 off = i + insn[i].off + 1; 2863 if (off < subprog_start || off >= subprog_end) { 2864 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2865 return -EINVAL; 2866 } 2867 next: 2868 if (i == subprog_end - 1) { 2869 /* to avoid fall-through from one subprog into another 2870 * the last insn of the subprog should be either exit 2871 * or unconditional jump back 2872 */ 2873 if (code != (BPF_JMP | BPF_EXIT) && 2874 code != (BPF_JMP32 | BPF_JA) && 2875 code != (BPF_JMP | BPF_JA)) { 2876 verbose(env, "last insn is not an exit or jmp\n"); 2877 return -EINVAL; 2878 } 2879 subprog_start = subprog_end; 2880 cur_subprog++; 2881 if (cur_subprog < env->subprog_cnt) 2882 subprog_end = subprog[cur_subprog + 1].start; 2883 } 2884 } 2885 return 0; 2886 } 2887 2888 /* Parentage chain of this register (or stack slot) should take care of all 2889 * issues like callee-saved registers, stack slot allocation time, etc. 2890 */ 2891 static int mark_reg_read(struct bpf_verifier_env *env, 2892 const struct bpf_reg_state *state, 2893 struct bpf_reg_state *parent, u8 flag) 2894 { 2895 bool writes = parent == state->parent; /* Observe write marks */ 2896 int cnt = 0; 2897 2898 while (parent) { 2899 /* if read wasn't screened by an earlier write ... */ 2900 if (writes && state->live & REG_LIVE_WRITTEN) 2901 break; 2902 if (parent->live & REG_LIVE_DONE) { 2903 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2904 reg_type_str(env, parent->type), 2905 parent->var_off.value, parent->off); 2906 return -EFAULT; 2907 } 2908 /* The first condition is more likely to be true than the 2909 * second, checked it first. 2910 */ 2911 if ((parent->live & REG_LIVE_READ) == flag || 2912 parent->live & REG_LIVE_READ64) 2913 /* The parentage chain never changes and 2914 * this parent was already marked as LIVE_READ. 2915 * There is no need to keep walking the chain again and 2916 * keep re-marking all parents as LIVE_READ. 2917 * This case happens when the same register is read 2918 * multiple times without writes into it in-between. 2919 * Also, if parent has the stronger REG_LIVE_READ64 set, 2920 * then no need to set the weak REG_LIVE_READ32. 2921 */ 2922 break; 2923 /* ... then we depend on parent's value */ 2924 parent->live |= flag; 2925 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2926 if (flag == REG_LIVE_READ64) 2927 parent->live &= ~REG_LIVE_READ32; 2928 state = parent; 2929 parent = state->parent; 2930 writes = true; 2931 cnt++; 2932 } 2933 2934 if (env->longest_mark_read_walk < cnt) 2935 env->longest_mark_read_walk = cnt; 2936 return 0; 2937 } 2938 2939 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2940 { 2941 struct bpf_func_state *state = func(env, reg); 2942 int spi, ret; 2943 2944 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2945 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2946 * check_kfunc_call. 2947 */ 2948 if (reg->type == CONST_PTR_TO_DYNPTR) 2949 return 0; 2950 spi = dynptr_get_spi(env, reg); 2951 if (spi < 0) 2952 return spi; 2953 /* Caller ensures dynptr is valid and initialized, which means spi is in 2954 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2955 * read. 2956 */ 2957 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2958 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2959 if (ret) 2960 return ret; 2961 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2962 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2963 } 2964 2965 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2966 int spi, int nr_slots) 2967 { 2968 struct bpf_func_state *state = func(env, reg); 2969 int err, i; 2970 2971 for (i = 0; i < nr_slots; i++) { 2972 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2973 2974 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2975 if (err) 2976 return err; 2977 2978 mark_stack_slot_scratched(env, spi - i); 2979 } 2980 2981 return 0; 2982 } 2983 2984 /* This function is supposed to be used by the following 32-bit optimization 2985 * code only. It returns TRUE if the source or destination register operates 2986 * on 64-bit, otherwise return FALSE. 2987 */ 2988 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2989 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2990 { 2991 u8 code, class, op; 2992 2993 code = insn->code; 2994 class = BPF_CLASS(code); 2995 op = BPF_OP(code); 2996 if (class == BPF_JMP) { 2997 /* BPF_EXIT for "main" will reach here. Return TRUE 2998 * conservatively. 2999 */ 3000 if (op == BPF_EXIT) 3001 return true; 3002 if (op == BPF_CALL) { 3003 /* BPF to BPF call will reach here because of marking 3004 * caller saved clobber with DST_OP_NO_MARK for which we 3005 * don't care the register def because they are anyway 3006 * marked as NOT_INIT already. 3007 */ 3008 if (insn->src_reg == BPF_PSEUDO_CALL) 3009 return false; 3010 /* Helper call will reach here because of arg type 3011 * check, conservatively return TRUE. 3012 */ 3013 if (t == SRC_OP) 3014 return true; 3015 3016 return false; 3017 } 3018 } 3019 3020 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3021 return false; 3022 3023 if (class == BPF_ALU64 || class == BPF_JMP || 3024 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3025 return true; 3026 3027 if (class == BPF_ALU || class == BPF_JMP32) 3028 return false; 3029 3030 if (class == BPF_LDX) { 3031 if (t != SRC_OP) 3032 return BPF_SIZE(code) == BPF_DW; 3033 /* LDX source must be ptr. */ 3034 return true; 3035 } 3036 3037 if (class == BPF_STX) { 3038 /* BPF_STX (including atomic variants) has multiple source 3039 * operands, one of which is a ptr. Check whether the caller is 3040 * asking about it. 3041 */ 3042 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3043 return true; 3044 return BPF_SIZE(code) == BPF_DW; 3045 } 3046 3047 if (class == BPF_LD) { 3048 u8 mode = BPF_MODE(code); 3049 3050 /* LD_IMM64 */ 3051 if (mode == BPF_IMM) 3052 return true; 3053 3054 /* Both LD_IND and LD_ABS return 32-bit data. */ 3055 if (t != SRC_OP) 3056 return false; 3057 3058 /* Implicit ctx ptr. */ 3059 if (regno == BPF_REG_6) 3060 return true; 3061 3062 /* Explicit source could be any width. */ 3063 return true; 3064 } 3065 3066 if (class == BPF_ST) 3067 /* The only source register for BPF_ST is a ptr. */ 3068 return true; 3069 3070 /* Conservatively return true at default. */ 3071 return true; 3072 } 3073 3074 /* Return the regno defined by the insn, or -1. */ 3075 static int insn_def_regno(const struct bpf_insn *insn) 3076 { 3077 switch (BPF_CLASS(insn->code)) { 3078 case BPF_JMP: 3079 case BPF_JMP32: 3080 case BPF_ST: 3081 return -1; 3082 case BPF_STX: 3083 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3084 (insn->imm & BPF_FETCH)) { 3085 if (insn->imm == BPF_CMPXCHG) 3086 return BPF_REG_0; 3087 else 3088 return insn->src_reg; 3089 } else { 3090 return -1; 3091 } 3092 default: 3093 return insn->dst_reg; 3094 } 3095 } 3096 3097 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3098 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3099 { 3100 int dst_reg = insn_def_regno(insn); 3101 3102 if (dst_reg == -1) 3103 return false; 3104 3105 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3106 } 3107 3108 static void mark_insn_zext(struct bpf_verifier_env *env, 3109 struct bpf_reg_state *reg) 3110 { 3111 s32 def_idx = reg->subreg_def; 3112 3113 if (def_idx == DEF_NOT_SUBREG) 3114 return; 3115 3116 env->insn_aux_data[def_idx - 1].zext_dst = true; 3117 /* The dst will be zero extended, so won't be sub-register anymore. */ 3118 reg->subreg_def = DEF_NOT_SUBREG; 3119 } 3120 3121 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3122 enum reg_arg_type t) 3123 { 3124 struct bpf_verifier_state *vstate = env->cur_state; 3125 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3126 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3127 struct bpf_reg_state *reg, *regs = state->regs; 3128 bool rw64; 3129 3130 if (regno >= MAX_BPF_REG) { 3131 verbose(env, "R%d is invalid\n", regno); 3132 return -EINVAL; 3133 } 3134 3135 mark_reg_scratched(env, regno); 3136 3137 reg = ®s[regno]; 3138 rw64 = is_reg64(env, insn, regno, reg, t); 3139 if (t == SRC_OP) { 3140 /* check whether register used as source operand can be read */ 3141 if (reg->type == NOT_INIT) { 3142 verbose(env, "R%d !read_ok\n", regno); 3143 return -EACCES; 3144 } 3145 /* We don't need to worry about FP liveness because it's read-only */ 3146 if (regno == BPF_REG_FP) 3147 return 0; 3148 3149 if (rw64) 3150 mark_insn_zext(env, reg); 3151 3152 return mark_reg_read(env, reg, reg->parent, 3153 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3154 } else { 3155 /* check whether register used as dest operand can be written to */ 3156 if (regno == BPF_REG_FP) { 3157 verbose(env, "frame pointer is read only\n"); 3158 return -EACCES; 3159 } 3160 reg->live |= REG_LIVE_WRITTEN; 3161 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3162 if (t == DST_OP) 3163 mark_reg_unknown(env, regs, regno); 3164 } 3165 return 0; 3166 } 3167 3168 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3169 { 3170 env->insn_aux_data[idx].jmp_point = true; 3171 } 3172 3173 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3174 { 3175 return env->insn_aux_data[insn_idx].jmp_point; 3176 } 3177 3178 /* for any branch, call, exit record the history of jmps in the given state */ 3179 static int push_jmp_history(struct bpf_verifier_env *env, 3180 struct bpf_verifier_state *cur) 3181 { 3182 u32 cnt = cur->jmp_history_cnt; 3183 struct bpf_idx_pair *p; 3184 size_t alloc_size; 3185 3186 if (!is_jmp_point(env, env->insn_idx)) 3187 return 0; 3188 3189 cnt++; 3190 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3191 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3192 if (!p) 3193 return -ENOMEM; 3194 p[cnt - 1].idx = env->insn_idx; 3195 p[cnt - 1].prev_idx = env->prev_insn_idx; 3196 cur->jmp_history = p; 3197 cur->jmp_history_cnt = cnt; 3198 return 0; 3199 } 3200 3201 /* Backtrack one insn at a time. If idx is not at the top of recorded 3202 * history then previous instruction came from straight line execution. 3203 */ 3204 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3205 u32 *history) 3206 { 3207 u32 cnt = *history; 3208 3209 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3210 i = st->jmp_history[cnt - 1].prev_idx; 3211 (*history)--; 3212 } else { 3213 i--; 3214 } 3215 return i; 3216 } 3217 3218 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3219 { 3220 const struct btf_type *func; 3221 struct btf *desc_btf; 3222 3223 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3224 return NULL; 3225 3226 desc_btf = find_kfunc_desc_btf(data, insn->off); 3227 if (IS_ERR(desc_btf)) 3228 return "<error>"; 3229 3230 func = btf_type_by_id(desc_btf, insn->imm); 3231 return btf_name_by_offset(desc_btf, func->name_off); 3232 } 3233 3234 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3235 { 3236 bt->frame = frame; 3237 } 3238 3239 static inline void bt_reset(struct backtrack_state *bt) 3240 { 3241 struct bpf_verifier_env *env = bt->env; 3242 3243 memset(bt, 0, sizeof(*bt)); 3244 bt->env = env; 3245 } 3246 3247 static inline u32 bt_empty(struct backtrack_state *bt) 3248 { 3249 u64 mask = 0; 3250 int i; 3251 3252 for (i = 0; i <= bt->frame; i++) 3253 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3254 3255 return mask == 0; 3256 } 3257 3258 static inline int bt_subprog_enter(struct backtrack_state *bt) 3259 { 3260 if (bt->frame == MAX_CALL_FRAMES - 1) { 3261 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3262 WARN_ONCE(1, "verifier backtracking bug"); 3263 return -EFAULT; 3264 } 3265 bt->frame++; 3266 return 0; 3267 } 3268 3269 static inline int bt_subprog_exit(struct backtrack_state *bt) 3270 { 3271 if (bt->frame == 0) { 3272 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3273 WARN_ONCE(1, "verifier backtracking bug"); 3274 return -EFAULT; 3275 } 3276 bt->frame--; 3277 return 0; 3278 } 3279 3280 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3281 { 3282 bt->reg_masks[frame] |= 1 << reg; 3283 } 3284 3285 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3286 { 3287 bt->reg_masks[frame] &= ~(1 << reg); 3288 } 3289 3290 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3291 { 3292 bt_set_frame_reg(bt, bt->frame, reg); 3293 } 3294 3295 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3296 { 3297 bt_clear_frame_reg(bt, bt->frame, reg); 3298 } 3299 3300 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3301 { 3302 bt->stack_masks[frame] |= 1ull << slot; 3303 } 3304 3305 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3306 { 3307 bt->stack_masks[frame] &= ~(1ull << slot); 3308 } 3309 3310 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3311 { 3312 bt_set_frame_slot(bt, bt->frame, slot); 3313 } 3314 3315 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3316 { 3317 bt_clear_frame_slot(bt, bt->frame, slot); 3318 } 3319 3320 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3321 { 3322 return bt->reg_masks[frame]; 3323 } 3324 3325 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3326 { 3327 return bt->reg_masks[bt->frame]; 3328 } 3329 3330 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3331 { 3332 return bt->stack_masks[frame]; 3333 } 3334 3335 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3336 { 3337 return bt->stack_masks[bt->frame]; 3338 } 3339 3340 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3341 { 3342 return bt->reg_masks[bt->frame] & (1 << reg); 3343 } 3344 3345 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3346 { 3347 return bt->stack_masks[bt->frame] & (1ull << slot); 3348 } 3349 3350 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3351 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3352 { 3353 DECLARE_BITMAP(mask, 64); 3354 bool first = true; 3355 int i, n; 3356 3357 buf[0] = '\0'; 3358 3359 bitmap_from_u64(mask, reg_mask); 3360 for_each_set_bit(i, mask, 32) { 3361 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3362 first = false; 3363 buf += n; 3364 buf_sz -= n; 3365 if (buf_sz < 0) 3366 break; 3367 } 3368 } 3369 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3370 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3371 { 3372 DECLARE_BITMAP(mask, 64); 3373 bool first = true; 3374 int i, n; 3375 3376 buf[0] = '\0'; 3377 3378 bitmap_from_u64(mask, stack_mask); 3379 for_each_set_bit(i, mask, 64) { 3380 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3381 first = false; 3382 buf += n; 3383 buf_sz -= n; 3384 if (buf_sz < 0) 3385 break; 3386 } 3387 } 3388 3389 /* For given verifier state backtrack_insn() is called from the last insn to 3390 * the first insn. Its purpose is to compute a bitmask of registers and 3391 * stack slots that needs precision in the parent verifier state. 3392 * 3393 * @idx is an index of the instruction we are currently processing; 3394 * @subseq_idx is an index of the subsequent instruction that: 3395 * - *would be* executed next, if jump history is viewed in forward order; 3396 * - *was* processed previously during backtracking. 3397 */ 3398 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3399 struct backtrack_state *bt) 3400 { 3401 const struct bpf_insn_cbs cbs = { 3402 .cb_call = disasm_kfunc_name, 3403 .cb_print = verbose, 3404 .private_data = env, 3405 }; 3406 struct bpf_insn *insn = env->prog->insnsi + idx; 3407 u8 class = BPF_CLASS(insn->code); 3408 u8 opcode = BPF_OP(insn->code); 3409 u8 mode = BPF_MODE(insn->code); 3410 u32 dreg = insn->dst_reg; 3411 u32 sreg = insn->src_reg; 3412 u32 spi, i; 3413 3414 if (insn->code == 0) 3415 return 0; 3416 if (env->log.level & BPF_LOG_LEVEL2) { 3417 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3418 verbose(env, "mark_precise: frame%d: regs=%s ", 3419 bt->frame, env->tmp_str_buf); 3420 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3421 verbose(env, "stack=%s before ", env->tmp_str_buf); 3422 verbose(env, "%d: ", idx); 3423 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3424 } 3425 3426 if (class == BPF_ALU || class == BPF_ALU64) { 3427 if (!bt_is_reg_set(bt, dreg)) 3428 return 0; 3429 if (opcode == BPF_MOV) { 3430 if (BPF_SRC(insn->code) == BPF_X) { 3431 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3432 * dreg needs precision after this insn 3433 * sreg needs precision before this insn 3434 */ 3435 bt_clear_reg(bt, dreg); 3436 bt_set_reg(bt, sreg); 3437 } else { 3438 /* dreg = K 3439 * dreg needs precision after this insn. 3440 * Corresponding register is already marked 3441 * as precise=true in this verifier state. 3442 * No further markings in parent are necessary 3443 */ 3444 bt_clear_reg(bt, dreg); 3445 } 3446 } else { 3447 if (BPF_SRC(insn->code) == BPF_X) { 3448 /* dreg += sreg 3449 * both dreg and sreg need precision 3450 * before this insn 3451 */ 3452 bt_set_reg(bt, sreg); 3453 } /* else dreg += K 3454 * dreg still needs precision before this insn 3455 */ 3456 } 3457 } else if (class == BPF_LDX) { 3458 if (!bt_is_reg_set(bt, dreg)) 3459 return 0; 3460 bt_clear_reg(bt, dreg); 3461 3462 /* scalars can only be spilled into stack w/o losing precision. 3463 * Load from any other memory can be zero extended. 3464 * The desire to keep that precision is already indicated 3465 * by 'precise' mark in corresponding register of this state. 3466 * No further tracking necessary. 3467 */ 3468 if (insn->src_reg != BPF_REG_FP) 3469 return 0; 3470 3471 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3472 * that [fp - off] slot contains scalar that needs to be 3473 * tracked with precision 3474 */ 3475 spi = (-insn->off - 1) / BPF_REG_SIZE; 3476 if (spi >= 64) { 3477 verbose(env, "BUG spi %d\n", spi); 3478 WARN_ONCE(1, "verifier backtracking bug"); 3479 return -EFAULT; 3480 } 3481 bt_set_slot(bt, spi); 3482 } else if (class == BPF_STX || class == BPF_ST) { 3483 if (bt_is_reg_set(bt, dreg)) 3484 /* stx & st shouldn't be using _scalar_ dst_reg 3485 * to access memory. It means backtracking 3486 * encountered a case of pointer subtraction. 3487 */ 3488 return -ENOTSUPP; 3489 /* scalars can only be spilled into stack */ 3490 if (insn->dst_reg != BPF_REG_FP) 3491 return 0; 3492 spi = (-insn->off - 1) / BPF_REG_SIZE; 3493 if (spi >= 64) { 3494 verbose(env, "BUG spi %d\n", spi); 3495 WARN_ONCE(1, "verifier backtracking bug"); 3496 return -EFAULT; 3497 } 3498 if (!bt_is_slot_set(bt, spi)) 3499 return 0; 3500 bt_clear_slot(bt, spi); 3501 if (class == BPF_STX) 3502 bt_set_reg(bt, sreg); 3503 } else if (class == BPF_JMP || class == BPF_JMP32) { 3504 if (bpf_pseudo_call(insn)) { 3505 int subprog_insn_idx, subprog; 3506 3507 subprog_insn_idx = idx + insn->imm + 1; 3508 subprog = find_subprog(env, subprog_insn_idx); 3509 if (subprog < 0) 3510 return -EFAULT; 3511 3512 if (subprog_is_global(env, subprog)) { 3513 /* check that jump history doesn't have any 3514 * extra instructions from subprog; the next 3515 * instruction after call to global subprog 3516 * should be literally next instruction in 3517 * caller program 3518 */ 3519 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3520 /* r1-r5 are invalidated after subprog call, 3521 * so for global func call it shouldn't be set 3522 * anymore 3523 */ 3524 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3525 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3526 WARN_ONCE(1, "verifier backtracking bug"); 3527 return -EFAULT; 3528 } 3529 /* global subprog always sets R0 */ 3530 bt_clear_reg(bt, BPF_REG_0); 3531 return 0; 3532 } else { 3533 /* static subprog call instruction, which 3534 * means that we are exiting current subprog, 3535 * so only r1-r5 could be still requested as 3536 * precise, r0 and r6-r10 or any stack slot in 3537 * the current frame should be zero by now 3538 */ 3539 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3540 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3541 WARN_ONCE(1, "verifier backtracking bug"); 3542 return -EFAULT; 3543 } 3544 /* we don't track register spills perfectly, 3545 * so fallback to force-precise instead of failing */ 3546 if (bt_stack_mask(bt) != 0) 3547 return -ENOTSUPP; 3548 /* propagate r1-r5 to the caller */ 3549 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3550 if (bt_is_reg_set(bt, i)) { 3551 bt_clear_reg(bt, i); 3552 bt_set_frame_reg(bt, bt->frame - 1, i); 3553 } 3554 } 3555 if (bt_subprog_exit(bt)) 3556 return -EFAULT; 3557 return 0; 3558 } 3559 } else if ((bpf_helper_call(insn) && 3560 is_callback_calling_function(insn->imm) && 3561 !is_async_callback_calling_function(insn->imm)) || 3562 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3563 /* callback-calling helper or kfunc call, which means 3564 * we are exiting from subprog, but unlike the subprog 3565 * call handling above, we shouldn't propagate 3566 * precision of r1-r5 (if any requested), as they are 3567 * not actually arguments passed directly to callback 3568 * subprogs 3569 */ 3570 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3571 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3572 WARN_ONCE(1, "verifier backtracking bug"); 3573 return -EFAULT; 3574 } 3575 if (bt_stack_mask(bt) != 0) 3576 return -ENOTSUPP; 3577 /* clear r1-r5 in callback subprog's mask */ 3578 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3579 bt_clear_reg(bt, i); 3580 if (bt_subprog_exit(bt)) 3581 return -EFAULT; 3582 return 0; 3583 } else if (opcode == BPF_CALL) { 3584 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3585 * catch this error later. Make backtracking conservative 3586 * with ENOTSUPP. 3587 */ 3588 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3589 return -ENOTSUPP; 3590 /* regular helper call sets R0 */ 3591 bt_clear_reg(bt, BPF_REG_0); 3592 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3593 /* if backtracing was looking for registers R1-R5 3594 * they should have been found already. 3595 */ 3596 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3597 WARN_ONCE(1, "verifier backtracking bug"); 3598 return -EFAULT; 3599 } 3600 } else if (opcode == BPF_EXIT) { 3601 bool r0_precise; 3602 3603 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3604 /* if backtracing was looking for registers R1-R5 3605 * they should have been found already. 3606 */ 3607 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3608 WARN_ONCE(1, "verifier backtracking bug"); 3609 return -EFAULT; 3610 } 3611 3612 /* BPF_EXIT in subprog or callback always returns 3613 * right after the call instruction, so by checking 3614 * whether the instruction at subseq_idx-1 is subprog 3615 * call or not we can distinguish actual exit from 3616 * *subprog* from exit from *callback*. In the former 3617 * case, we need to propagate r0 precision, if 3618 * necessary. In the former we never do that. 3619 */ 3620 r0_precise = subseq_idx - 1 >= 0 && 3621 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3622 bt_is_reg_set(bt, BPF_REG_0); 3623 3624 bt_clear_reg(bt, BPF_REG_0); 3625 if (bt_subprog_enter(bt)) 3626 return -EFAULT; 3627 3628 if (r0_precise) 3629 bt_set_reg(bt, BPF_REG_0); 3630 /* r6-r9 and stack slots will stay set in caller frame 3631 * bitmasks until we return back from callee(s) 3632 */ 3633 return 0; 3634 } else if (BPF_SRC(insn->code) == BPF_X) { 3635 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3636 return 0; 3637 /* dreg <cond> sreg 3638 * Both dreg and sreg need precision before 3639 * this insn. If only sreg was marked precise 3640 * before it would be equally necessary to 3641 * propagate it to dreg. 3642 */ 3643 bt_set_reg(bt, dreg); 3644 bt_set_reg(bt, sreg); 3645 /* else dreg <cond> K 3646 * Only dreg still needs precision before 3647 * this insn, so for the K-based conditional 3648 * there is nothing new to be marked. 3649 */ 3650 } 3651 } else if (class == BPF_LD) { 3652 if (!bt_is_reg_set(bt, dreg)) 3653 return 0; 3654 bt_clear_reg(bt, dreg); 3655 /* It's ld_imm64 or ld_abs or ld_ind. 3656 * For ld_imm64 no further tracking of precision 3657 * into parent is necessary 3658 */ 3659 if (mode == BPF_IND || mode == BPF_ABS) 3660 /* to be analyzed */ 3661 return -ENOTSUPP; 3662 } 3663 return 0; 3664 } 3665 3666 /* the scalar precision tracking algorithm: 3667 * . at the start all registers have precise=false. 3668 * . scalar ranges are tracked as normal through alu and jmp insns. 3669 * . once precise value of the scalar register is used in: 3670 * . ptr + scalar alu 3671 * . if (scalar cond K|scalar) 3672 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3673 * backtrack through the verifier states and mark all registers and 3674 * stack slots with spilled constants that these scalar regisers 3675 * should be precise. 3676 * . during state pruning two registers (or spilled stack slots) 3677 * are equivalent if both are not precise. 3678 * 3679 * Note the verifier cannot simply walk register parentage chain, 3680 * since many different registers and stack slots could have been 3681 * used to compute single precise scalar. 3682 * 3683 * The approach of starting with precise=true for all registers and then 3684 * backtrack to mark a register as not precise when the verifier detects 3685 * that program doesn't care about specific value (e.g., when helper 3686 * takes register as ARG_ANYTHING parameter) is not safe. 3687 * 3688 * It's ok to walk single parentage chain of the verifier states. 3689 * It's possible that this backtracking will go all the way till 1st insn. 3690 * All other branches will be explored for needing precision later. 3691 * 3692 * The backtracking needs to deal with cases like: 3693 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3694 * r9 -= r8 3695 * r5 = r9 3696 * if r5 > 0x79f goto pc+7 3697 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3698 * r5 += 1 3699 * ... 3700 * call bpf_perf_event_output#25 3701 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3702 * 3703 * and this case: 3704 * r6 = 1 3705 * call foo // uses callee's r6 inside to compute r0 3706 * r0 += r6 3707 * if r0 == 0 goto 3708 * 3709 * to track above reg_mask/stack_mask needs to be independent for each frame. 3710 * 3711 * Also if parent's curframe > frame where backtracking started, 3712 * the verifier need to mark registers in both frames, otherwise callees 3713 * may incorrectly prune callers. This is similar to 3714 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3715 * 3716 * For now backtracking falls back into conservative marking. 3717 */ 3718 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3719 struct bpf_verifier_state *st) 3720 { 3721 struct bpf_func_state *func; 3722 struct bpf_reg_state *reg; 3723 int i, j; 3724 3725 if (env->log.level & BPF_LOG_LEVEL2) { 3726 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3727 st->curframe); 3728 } 3729 3730 /* big hammer: mark all scalars precise in this path. 3731 * pop_stack may still get !precise scalars. 3732 * We also skip current state and go straight to first parent state, 3733 * because precision markings in current non-checkpointed state are 3734 * not needed. See why in the comment in __mark_chain_precision below. 3735 */ 3736 for (st = st->parent; st; st = st->parent) { 3737 for (i = 0; i <= st->curframe; i++) { 3738 func = st->frame[i]; 3739 for (j = 0; j < BPF_REG_FP; j++) { 3740 reg = &func->regs[j]; 3741 if (reg->type != SCALAR_VALUE || reg->precise) 3742 continue; 3743 reg->precise = true; 3744 if (env->log.level & BPF_LOG_LEVEL2) { 3745 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3746 i, j); 3747 } 3748 } 3749 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3750 if (!is_spilled_reg(&func->stack[j])) 3751 continue; 3752 reg = &func->stack[j].spilled_ptr; 3753 if (reg->type != SCALAR_VALUE || reg->precise) 3754 continue; 3755 reg->precise = true; 3756 if (env->log.level & BPF_LOG_LEVEL2) { 3757 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3758 i, -(j + 1) * 8); 3759 } 3760 } 3761 } 3762 } 3763 } 3764 3765 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3766 { 3767 struct bpf_func_state *func; 3768 struct bpf_reg_state *reg; 3769 int i, j; 3770 3771 for (i = 0; i <= st->curframe; i++) { 3772 func = st->frame[i]; 3773 for (j = 0; j < BPF_REG_FP; j++) { 3774 reg = &func->regs[j]; 3775 if (reg->type != SCALAR_VALUE) 3776 continue; 3777 reg->precise = false; 3778 } 3779 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3780 if (!is_spilled_reg(&func->stack[j])) 3781 continue; 3782 reg = &func->stack[j].spilled_ptr; 3783 if (reg->type != SCALAR_VALUE) 3784 continue; 3785 reg->precise = false; 3786 } 3787 } 3788 } 3789 3790 static bool idset_contains(struct bpf_idset *s, u32 id) 3791 { 3792 u32 i; 3793 3794 for (i = 0; i < s->count; ++i) 3795 if (s->ids[i] == id) 3796 return true; 3797 3798 return false; 3799 } 3800 3801 static int idset_push(struct bpf_idset *s, u32 id) 3802 { 3803 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3804 return -EFAULT; 3805 s->ids[s->count++] = id; 3806 return 0; 3807 } 3808 3809 static void idset_reset(struct bpf_idset *s) 3810 { 3811 s->count = 0; 3812 } 3813 3814 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3815 * Mark all registers with these IDs as precise. 3816 */ 3817 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3818 { 3819 struct bpf_idset *precise_ids = &env->idset_scratch; 3820 struct backtrack_state *bt = &env->bt; 3821 struct bpf_func_state *func; 3822 struct bpf_reg_state *reg; 3823 DECLARE_BITMAP(mask, 64); 3824 int i, fr; 3825 3826 idset_reset(precise_ids); 3827 3828 for (fr = bt->frame; fr >= 0; fr--) { 3829 func = st->frame[fr]; 3830 3831 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3832 for_each_set_bit(i, mask, 32) { 3833 reg = &func->regs[i]; 3834 if (!reg->id || reg->type != SCALAR_VALUE) 3835 continue; 3836 if (idset_push(precise_ids, reg->id)) 3837 return -EFAULT; 3838 } 3839 3840 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3841 for_each_set_bit(i, mask, 64) { 3842 if (i >= func->allocated_stack / BPF_REG_SIZE) 3843 break; 3844 if (!is_spilled_scalar_reg(&func->stack[i])) 3845 continue; 3846 reg = &func->stack[i].spilled_ptr; 3847 if (!reg->id) 3848 continue; 3849 if (idset_push(precise_ids, reg->id)) 3850 return -EFAULT; 3851 } 3852 } 3853 3854 for (fr = 0; fr <= st->curframe; ++fr) { 3855 func = st->frame[fr]; 3856 3857 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3858 reg = &func->regs[i]; 3859 if (!reg->id) 3860 continue; 3861 if (!idset_contains(precise_ids, reg->id)) 3862 continue; 3863 bt_set_frame_reg(bt, fr, i); 3864 } 3865 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3866 if (!is_spilled_scalar_reg(&func->stack[i])) 3867 continue; 3868 reg = &func->stack[i].spilled_ptr; 3869 if (!reg->id) 3870 continue; 3871 if (!idset_contains(precise_ids, reg->id)) 3872 continue; 3873 bt_set_frame_slot(bt, fr, i); 3874 } 3875 } 3876 3877 return 0; 3878 } 3879 3880 /* 3881 * __mark_chain_precision() backtracks BPF program instruction sequence and 3882 * chain of verifier states making sure that register *regno* (if regno >= 0) 3883 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3884 * SCALARS, as well as any other registers and slots that contribute to 3885 * a tracked state of given registers/stack slots, depending on specific BPF 3886 * assembly instructions (see backtrack_insns() for exact instruction handling 3887 * logic). This backtracking relies on recorded jmp_history and is able to 3888 * traverse entire chain of parent states. This process ends only when all the 3889 * necessary registers/slots and their transitive dependencies are marked as 3890 * precise. 3891 * 3892 * One important and subtle aspect is that precise marks *do not matter* in 3893 * the currently verified state (current state). It is important to understand 3894 * why this is the case. 3895 * 3896 * First, note that current state is the state that is not yet "checkpointed", 3897 * i.e., it is not yet put into env->explored_states, and it has no children 3898 * states as well. It's ephemeral, and can end up either a) being discarded if 3899 * compatible explored state is found at some point or BPF_EXIT instruction is 3900 * reached or b) checkpointed and put into env->explored_states, branching out 3901 * into one or more children states. 3902 * 3903 * In the former case, precise markings in current state are completely 3904 * ignored by state comparison code (see regsafe() for details). Only 3905 * checkpointed ("old") state precise markings are important, and if old 3906 * state's register/slot is precise, regsafe() assumes current state's 3907 * register/slot as precise and checks value ranges exactly and precisely. If 3908 * states turn out to be compatible, current state's necessary precise 3909 * markings and any required parent states' precise markings are enforced 3910 * after the fact with propagate_precision() logic, after the fact. But it's 3911 * important to realize that in this case, even after marking current state 3912 * registers/slots as precise, we immediately discard current state. So what 3913 * actually matters is any of the precise markings propagated into current 3914 * state's parent states, which are always checkpointed (due to b) case above). 3915 * As such, for scenario a) it doesn't matter if current state has precise 3916 * markings set or not. 3917 * 3918 * Now, for the scenario b), checkpointing and forking into child(ren) 3919 * state(s). Note that before current state gets to checkpointing step, any 3920 * processed instruction always assumes precise SCALAR register/slot 3921 * knowledge: if precise value or range is useful to prune jump branch, BPF 3922 * verifier takes this opportunity enthusiastically. Similarly, when 3923 * register's value is used to calculate offset or memory address, exact 3924 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3925 * what we mentioned above about state comparison ignoring precise markings 3926 * during state comparison, BPF verifier ignores and also assumes precise 3927 * markings *at will* during instruction verification process. But as verifier 3928 * assumes precision, it also propagates any precision dependencies across 3929 * parent states, which are not yet finalized, so can be further restricted 3930 * based on new knowledge gained from restrictions enforced by their children 3931 * states. This is so that once those parent states are finalized, i.e., when 3932 * they have no more active children state, state comparison logic in 3933 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3934 * required for correctness. 3935 * 3936 * To build a bit more intuition, note also that once a state is checkpointed, 3937 * the path we took to get to that state is not important. This is crucial 3938 * property for state pruning. When state is checkpointed and finalized at 3939 * some instruction index, it can be correctly and safely used to "short 3940 * circuit" any *compatible* state that reaches exactly the same instruction 3941 * index. I.e., if we jumped to that instruction from a completely different 3942 * code path than original finalized state was derived from, it doesn't 3943 * matter, current state can be discarded because from that instruction 3944 * forward having a compatible state will ensure we will safely reach the 3945 * exit. States describe preconditions for further exploration, but completely 3946 * forget the history of how we got here. 3947 * 3948 * This also means that even if we needed precise SCALAR range to get to 3949 * finalized state, but from that point forward *that same* SCALAR register is 3950 * never used in a precise context (i.e., it's precise value is not needed for 3951 * correctness), it's correct and safe to mark such register as "imprecise" 3952 * (i.e., precise marking set to false). This is what we rely on when we do 3953 * not set precise marking in current state. If no child state requires 3954 * precision for any given SCALAR register, it's safe to dictate that it can 3955 * be imprecise. If any child state does require this register to be precise, 3956 * we'll mark it precise later retroactively during precise markings 3957 * propagation from child state to parent states. 3958 * 3959 * Skipping precise marking setting in current state is a mild version of 3960 * relying on the above observation. But we can utilize this property even 3961 * more aggressively by proactively forgetting any precise marking in the 3962 * current state (which we inherited from the parent state), right before we 3963 * checkpoint it and branch off into new child state. This is done by 3964 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3965 * finalized states which help in short circuiting more future states. 3966 */ 3967 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3968 { 3969 struct backtrack_state *bt = &env->bt; 3970 struct bpf_verifier_state *st = env->cur_state; 3971 int first_idx = st->first_insn_idx; 3972 int last_idx = env->insn_idx; 3973 int subseq_idx = -1; 3974 struct bpf_func_state *func; 3975 struct bpf_reg_state *reg; 3976 bool skip_first = true; 3977 int i, fr, err; 3978 3979 if (!env->bpf_capable) 3980 return 0; 3981 3982 /* set frame number from which we are starting to backtrack */ 3983 bt_init(bt, env->cur_state->curframe); 3984 3985 /* Do sanity checks against current state of register and/or stack 3986 * slot, but don't set precise flag in current state, as precision 3987 * tracking in the current state is unnecessary. 3988 */ 3989 func = st->frame[bt->frame]; 3990 if (regno >= 0) { 3991 reg = &func->regs[regno]; 3992 if (reg->type != SCALAR_VALUE) { 3993 WARN_ONCE(1, "backtracing misuse"); 3994 return -EFAULT; 3995 } 3996 bt_set_reg(bt, regno); 3997 } 3998 3999 if (bt_empty(bt)) 4000 return 0; 4001 4002 for (;;) { 4003 DECLARE_BITMAP(mask, 64); 4004 u32 history = st->jmp_history_cnt; 4005 4006 if (env->log.level & BPF_LOG_LEVEL2) { 4007 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4008 bt->frame, last_idx, first_idx, subseq_idx); 4009 } 4010 4011 /* If some register with scalar ID is marked as precise, 4012 * make sure that all registers sharing this ID are also precise. 4013 * This is needed to estimate effect of find_equal_scalars(). 4014 * Do this at the last instruction of each state, 4015 * bpf_reg_state::id fields are valid for these instructions. 4016 * 4017 * Allows to track precision in situation like below: 4018 * 4019 * r2 = unknown value 4020 * ... 4021 * --- state #0 --- 4022 * ... 4023 * r1 = r2 // r1 and r2 now share the same ID 4024 * ... 4025 * --- state #1 {r1.id = A, r2.id = A} --- 4026 * ... 4027 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4028 * ... 4029 * --- state #2 {r1.id = A, r2.id = A} --- 4030 * r3 = r10 4031 * r3 += r1 // need to mark both r1 and r2 4032 */ 4033 if (mark_precise_scalar_ids(env, st)) 4034 return -EFAULT; 4035 4036 if (last_idx < 0) { 4037 /* we are at the entry into subprog, which 4038 * is expected for global funcs, but only if 4039 * requested precise registers are R1-R5 4040 * (which are global func's input arguments) 4041 */ 4042 if (st->curframe == 0 && 4043 st->frame[0]->subprogno > 0 && 4044 st->frame[0]->callsite == BPF_MAIN_FUNC && 4045 bt_stack_mask(bt) == 0 && 4046 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4047 bitmap_from_u64(mask, bt_reg_mask(bt)); 4048 for_each_set_bit(i, mask, 32) { 4049 reg = &st->frame[0]->regs[i]; 4050 if (reg->type != SCALAR_VALUE) { 4051 bt_clear_reg(bt, i); 4052 continue; 4053 } 4054 reg->precise = true; 4055 } 4056 return 0; 4057 } 4058 4059 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4060 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4061 WARN_ONCE(1, "verifier backtracking bug"); 4062 return -EFAULT; 4063 } 4064 4065 for (i = last_idx;;) { 4066 if (skip_first) { 4067 err = 0; 4068 skip_first = false; 4069 } else { 4070 err = backtrack_insn(env, i, subseq_idx, bt); 4071 } 4072 if (err == -ENOTSUPP) { 4073 mark_all_scalars_precise(env, env->cur_state); 4074 bt_reset(bt); 4075 return 0; 4076 } else if (err) { 4077 return err; 4078 } 4079 if (bt_empty(bt)) 4080 /* Found assignment(s) into tracked register in this state. 4081 * Since this state is already marked, just return. 4082 * Nothing to be tracked further in the parent state. 4083 */ 4084 return 0; 4085 if (i == first_idx) 4086 break; 4087 subseq_idx = i; 4088 i = get_prev_insn_idx(st, i, &history); 4089 if (i >= env->prog->len) { 4090 /* This can happen if backtracking reached insn 0 4091 * and there are still reg_mask or stack_mask 4092 * to backtrack. 4093 * It means the backtracking missed the spot where 4094 * particular register was initialized with a constant. 4095 */ 4096 verbose(env, "BUG backtracking idx %d\n", i); 4097 WARN_ONCE(1, "verifier backtracking bug"); 4098 return -EFAULT; 4099 } 4100 } 4101 st = st->parent; 4102 if (!st) 4103 break; 4104 4105 for (fr = bt->frame; fr >= 0; fr--) { 4106 func = st->frame[fr]; 4107 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4108 for_each_set_bit(i, mask, 32) { 4109 reg = &func->regs[i]; 4110 if (reg->type != SCALAR_VALUE) { 4111 bt_clear_frame_reg(bt, fr, i); 4112 continue; 4113 } 4114 if (reg->precise) 4115 bt_clear_frame_reg(bt, fr, i); 4116 else 4117 reg->precise = true; 4118 } 4119 4120 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4121 for_each_set_bit(i, mask, 64) { 4122 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4123 /* the sequence of instructions: 4124 * 2: (bf) r3 = r10 4125 * 3: (7b) *(u64 *)(r3 -8) = r0 4126 * 4: (79) r4 = *(u64 *)(r10 -8) 4127 * doesn't contain jmps. It's backtracked 4128 * as a single block. 4129 * During backtracking insn 3 is not recognized as 4130 * stack access, so at the end of backtracking 4131 * stack slot fp-8 is still marked in stack_mask. 4132 * However the parent state may not have accessed 4133 * fp-8 and it's "unallocated" stack space. 4134 * In such case fallback to conservative. 4135 */ 4136 mark_all_scalars_precise(env, env->cur_state); 4137 bt_reset(bt); 4138 return 0; 4139 } 4140 4141 if (!is_spilled_scalar_reg(&func->stack[i])) { 4142 bt_clear_frame_slot(bt, fr, i); 4143 continue; 4144 } 4145 reg = &func->stack[i].spilled_ptr; 4146 if (reg->precise) 4147 bt_clear_frame_slot(bt, fr, i); 4148 else 4149 reg->precise = true; 4150 } 4151 if (env->log.level & BPF_LOG_LEVEL2) { 4152 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4153 bt_frame_reg_mask(bt, fr)); 4154 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4155 fr, env->tmp_str_buf); 4156 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4157 bt_frame_stack_mask(bt, fr)); 4158 verbose(env, "stack=%s: ", env->tmp_str_buf); 4159 print_verifier_state(env, func, true); 4160 } 4161 } 4162 4163 if (bt_empty(bt)) 4164 return 0; 4165 4166 subseq_idx = first_idx; 4167 last_idx = st->last_insn_idx; 4168 first_idx = st->first_insn_idx; 4169 } 4170 4171 /* if we still have requested precise regs or slots, we missed 4172 * something (e.g., stack access through non-r10 register), so 4173 * fallback to marking all precise 4174 */ 4175 if (!bt_empty(bt)) { 4176 mark_all_scalars_precise(env, env->cur_state); 4177 bt_reset(bt); 4178 } 4179 4180 return 0; 4181 } 4182 4183 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4184 { 4185 return __mark_chain_precision(env, regno); 4186 } 4187 4188 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4189 * desired reg and stack masks across all relevant frames 4190 */ 4191 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4192 { 4193 return __mark_chain_precision(env, -1); 4194 } 4195 4196 static bool is_spillable_regtype(enum bpf_reg_type type) 4197 { 4198 switch (base_type(type)) { 4199 case PTR_TO_MAP_VALUE: 4200 case PTR_TO_STACK: 4201 case PTR_TO_CTX: 4202 case PTR_TO_PACKET: 4203 case PTR_TO_PACKET_META: 4204 case PTR_TO_PACKET_END: 4205 case PTR_TO_FLOW_KEYS: 4206 case CONST_PTR_TO_MAP: 4207 case PTR_TO_SOCKET: 4208 case PTR_TO_SOCK_COMMON: 4209 case PTR_TO_TCP_SOCK: 4210 case PTR_TO_XDP_SOCK: 4211 case PTR_TO_BTF_ID: 4212 case PTR_TO_BUF: 4213 case PTR_TO_MEM: 4214 case PTR_TO_FUNC: 4215 case PTR_TO_MAP_KEY: 4216 return true; 4217 default: 4218 return false; 4219 } 4220 } 4221 4222 /* Does this register contain a constant zero? */ 4223 static bool register_is_null(struct bpf_reg_state *reg) 4224 { 4225 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4226 } 4227 4228 static bool register_is_const(struct bpf_reg_state *reg) 4229 { 4230 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4231 } 4232 4233 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4234 { 4235 return tnum_is_unknown(reg->var_off) && 4236 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4237 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4238 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4239 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4240 } 4241 4242 static bool register_is_bounded(struct bpf_reg_state *reg) 4243 { 4244 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4245 } 4246 4247 static bool __is_pointer_value(bool allow_ptr_leaks, 4248 const struct bpf_reg_state *reg) 4249 { 4250 if (allow_ptr_leaks) 4251 return false; 4252 4253 return reg->type != SCALAR_VALUE; 4254 } 4255 4256 /* Copy src state preserving dst->parent and dst->live fields */ 4257 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4258 { 4259 struct bpf_reg_state *parent = dst->parent; 4260 enum bpf_reg_liveness live = dst->live; 4261 4262 *dst = *src; 4263 dst->parent = parent; 4264 dst->live = live; 4265 } 4266 4267 static void save_register_state(struct bpf_func_state *state, 4268 int spi, struct bpf_reg_state *reg, 4269 int size) 4270 { 4271 int i; 4272 4273 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4274 if (size == BPF_REG_SIZE) 4275 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4276 4277 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4278 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4279 4280 /* size < 8 bytes spill */ 4281 for (; i; i--) 4282 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4283 } 4284 4285 static bool is_bpf_st_mem(struct bpf_insn *insn) 4286 { 4287 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4288 } 4289 4290 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4291 * stack boundary and alignment are checked in check_mem_access() 4292 */ 4293 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4294 /* stack frame we're writing to */ 4295 struct bpf_func_state *state, 4296 int off, int size, int value_regno, 4297 int insn_idx) 4298 { 4299 struct bpf_func_state *cur; /* state of the current function */ 4300 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4301 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4302 struct bpf_reg_state *reg = NULL; 4303 u32 dst_reg = insn->dst_reg; 4304 4305 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4306 if (err) 4307 return err; 4308 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4309 * so it's aligned access and [off, off + size) are within stack limits 4310 */ 4311 if (!env->allow_ptr_leaks && 4312 state->stack[spi].slot_type[0] == STACK_SPILL && 4313 size != BPF_REG_SIZE) { 4314 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4315 return -EACCES; 4316 } 4317 4318 cur = env->cur_state->frame[env->cur_state->curframe]; 4319 if (value_regno >= 0) 4320 reg = &cur->regs[value_regno]; 4321 if (!env->bypass_spec_v4) { 4322 bool sanitize = reg && is_spillable_regtype(reg->type); 4323 4324 for (i = 0; i < size; i++) { 4325 u8 type = state->stack[spi].slot_type[i]; 4326 4327 if (type != STACK_MISC && type != STACK_ZERO) { 4328 sanitize = true; 4329 break; 4330 } 4331 } 4332 4333 if (sanitize) 4334 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4335 } 4336 4337 err = destroy_if_dynptr_stack_slot(env, state, spi); 4338 if (err) 4339 return err; 4340 4341 mark_stack_slot_scratched(env, spi); 4342 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4343 !register_is_null(reg) && env->bpf_capable) { 4344 if (dst_reg != BPF_REG_FP) { 4345 /* The backtracking logic can only recognize explicit 4346 * stack slot address like [fp - 8]. Other spill of 4347 * scalar via different register has to be conservative. 4348 * Backtrack from here and mark all registers as precise 4349 * that contributed into 'reg' being a constant. 4350 */ 4351 err = mark_chain_precision(env, value_regno); 4352 if (err) 4353 return err; 4354 } 4355 save_register_state(state, spi, reg, size); 4356 /* Break the relation on a narrowing spill. */ 4357 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4358 state->stack[spi].spilled_ptr.id = 0; 4359 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4360 insn->imm != 0 && env->bpf_capable) { 4361 struct bpf_reg_state fake_reg = {}; 4362 4363 __mark_reg_known(&fake_reg, (u32)insn->imm); 4364 fake_reg.type = SCALAR_VALUE; 4365 save_register_state(state, spi, &fake_reg, size); 4366 } else if (reg && is_spillable_regtype(reg->type)) { 4367 /* register containing pointer is being spilled into stack */ 4368 if (size != BPF_REG_SIZE) { 4369 verbose_linfo(env, insn_idx, "; "); 4370 verbose(env, "invalid size of register spill\n"); 4371 return -EACCES; 4372 } 4373 if (state != cur && reg->type == PTR_TO_STACK) { 4374 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4375 return -EINVAL; 4376 } 4377 save_register_state(state, spi, reg, size); 4378 } else { 4379 u8 type = STACK_MISC; 4380 4381 /* regular write of data into stack destroys any spilled ptr */ 4382 state->stack[spi].spilled_ptr.type = NOT_INIT; 4383 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4384 if (is_stack_slot_special(&state->stack[spi])) 4385 for (i = 0; i < BPF_REG_SIZE; i++) 4386 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4387 4388 /* only mark the slot as written if all 8 bytes were written 4389 * otherwise read propagation may incorrectly stop too soon 4390 * when stack slots are partially written. 4391 * This heuristic means that read propagation will be 4392 * conservative, since it will add reg_live_read marks 4393 * to stack slots all the way to first state when programs 4394 * writes+reads less than 8 bytes 4395 */ 4396 if (size == BPF_REG_SIZE) 4397 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4398 4399 /* when we zero initialize stack slots mark them as such */ 4400 if ((reg && register_is_null(reg)) || 4401 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4402 /* backtracking doesn't work for STACK_ZERO yet. */ 4403 err = mark_chain_precision(env, value_regno); 4404 if (err) 4405 return err; 4406 type = STACK_ZERO; 4407 } 4408 4409 /* Mark slots affected by this stack write. */ 4410 for (i = 0; i < size; i++) 4411 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4412 type; 4413 } 4414 return 0; 4415 } 4416 4417 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4418 * known to contain a variable offset. 4419 * This function checks whether the write is permitted and conservatively 4420 * tracks the effects of the write, considering that each stack slot in the 4421 * dynamic range is potentially written to. 4422 * 4423 * 'off' includes 'regno->off'. 4424 * 'value_regno' can be -1, meaning that an unknown value is being written to 4425 * the stack. 4426 * 4427 * Spilled pointers in range are not marked as written because we don't know 4428 * what's going to be actually written. This means that read propagation for 4429 * future reads cannot be terminated by this write. 4430 * 4431 * For privileged programs, uninitialized stack slots are considered 4432 * initialized by this write (even though we don't know exactly what offsets 4433 * are going to be written to). The idea is that we don't want the verifier to 4434 * reject future reads that access slots written to through variable offsets. 4435 */ 4436 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4437 /* func where register points to */ 4438 struct bpf_func_state *state, 4439 int ptr_regno, int off, int size, 4440 int value_regno, int insn_idx) 4441 { 4442 struct bpf_func_state *cur; /* state of the current function */ 4443 int min_off, max_off; 4444 int i, err; 4445 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4446 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4447 bool writing_zero = false; 4448 /* set if the fact that we're writing a zero is used to let any 4449 * stack slots remain STACK_ZERO 4450 */ 4451 bool zero_used = false; 4452 4453 cur = env->cur_state->frame[env->cur_state->curframe]; 4454 ptr_reg = &cur->regs[ptr_regno]; 4455 min_off = ptr_reg->smin_value + off; 4456 max_off = ptr_reg->smax_value + off + size; 4457 if (value_regno >= 0) 4458 value_reg = &cur->regs[value_regno]; 4459 if ((value_reg && register_is_null(value_reg)) || 4460 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4461 writing_zero = true; 4462 4463 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4464 if (err) 4465 return err; 4466 4467 for (i = min_off; i < max_off; i++) { 4468 int spi; 4469 4470 spi = __get_spi(i); 4471 err = destroy_if_dynptr_stack_slot(env, state, spi); 4472 if (err) 4473 return err; 4474 } 4475 4476 /* Variable offset writes destroy any spilled pointers in range. */ 4477 for (i = min_off; i < max_off; i++) { 4478 u8 new_type, *stype; 4479 int slot, spi; 4480 4481 slot = -i - 1; 4482 spi = slot / BPF_REG_SIZE; 4483 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4484 mark_stack_slot_scratched(env, spi); 4485 4486 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4487 /* Reject the write if range we may write to has not 4488 * been initialized beforehand. If we didn't reject 4489 * here, the ptr status would be erased below (even 4490 * though not all slots are actually overwritten), 4491 * possibly opening the door to leaks. 4492 * 4493 * We do however catch STACK_INVALID case below, and 4494 * only allow reading possibly uninitialized memory 4495 * later for CAP_PERFMON, as the write may not happen to 4496 * that slot. 4497 */ 4498 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4499 insn_idx, i); 4500 return -EINVAL; 4501 } 4502 4503 /* Erase all spilled pointers. */ 4504 state->stack[spi].spilled_ptr.type = NOT_INIT; 4505 4506 /* Update the slot type. */ 4507 new_type = STACK_MISC; 4508 if (writing_zero && *stype == STACK_ZERO) { 4509 new_type = STACK_ZERO; 4510 zero_used = true; 4511 } 4512 /* If the slot is STACK_INVALID, we check whether it's OK to 4513 * pretend that it will be initialized by this write. The slot 4514 * might not actually be written to, and so if we mark it as 4515 * initialized future reads might leak uninitialized memory. 4516 * For privileged programs, we will accept such reads to slots 4517 * that may or may not be written because, if we're reject 4518 * them, the error would be too confusing. 4519 */ 4520 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4521 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4522 insn_idx, i); 4523 return -EINVAL; 4524 } 4525 *stype = new_type; 4526 } 4527 if (zero_used) { 4528 /* backtracking doesn't work for STACK_ZERO yet. */ 4529 err = mark_chain_precision(env, value_regno); 4530 if (err) 4531 return err; 4532 } 4533 return 0; 4534 } 4535 4536 /* When register 'dst_regno' is assigned some values from stack[min_off, 4537 * max_off), we set the register's type according to the types of the 4538 * respective stack slots. If all the stack values are known to be zeros, then 4539 * so is the destination reg. Otherwise, the register is considered to be 4540 * SCALAR. This function does not deal with register filling; the caller must 4541 * ensure that all spilled registers in the stack range have been marked as 4542 * read. 4543 */ 4544 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4545 /* func where src register points to */ 4546 struct bpf_func_state *ptr_state, 4547 int min_off, int max_off, int dst_regno) 4548 { 4549 struct bpf_verifier_state *vstate = env->cur_state; 4550 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4551 int i, slot, spi; 4552 u8 *stype; 4553 int zeros = 0; 4554 4555 for (i = min_off; i < max_off; i++) { 4556 slot = -i - 1; 4557 spi = slot / BPF_REG_SIZE; 4558 mark_stack_slot_scratched(env, spi); 4559 stype = ptr_state->stack[spi].slot_type; 4560 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4561 break; 4562 zeros++; 4563 } 4564 if (zeros == max_off - min_off) { 4565 /* any access_size read into register is zero extended, 4566 * so the whole register == const_zero 4567 */ 4568 __mark_reg_const_zero(&state->regs[dst_regno]); 4569 /* backtracking doesn't support STACK_ZERO yet, 4570 * so mark it precise here, so that later 4571 * backtracking can stop here. 4572 * Backtracking may not need this if this register 4573 * doesn't participate in pointer adjustment. 4574 * Forward propagation of precise flag is not 4575 * necessary either. This mark is only to stop 4576 * backtracking. Any register that contributed 4577 * to const 0 was marked precise before spill. 4578 */ 4579 state->regs[dst_regno].precise = true; 4580 } else { 4581 /* have read misc data from the stack */ 4582 mark_reg_unknown(env, state->regs, dst_regno); 4583 } 4584 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4585 } 4586 4587 /* Read the stack at 'off' and put the results into the register indicated by 4588 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4589 * spilled reg. 4590 * 4591 * 'dst_regno' can be -1, meaning that the read value is not going to a 4592 * register. 4593 * 4594 * The access is assumed to be within the current stack bounds. 4595 */ 4596 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4597 /* func where src register points to */ 4598 struct bpf_func_state *reg_state, 4599 int off, int size, int dst_regno) 4600 { 4601 struct bpf_verifier_state *vstate = env->cur_state; 4602 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4603 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4604 struct bpf_reg_state *reg; 4605 u8 *stype, type; 4606 4607 stype = reg_state->stack[spi].slot_type; 4608 reg = ®_state->stack[spi].spilled_ptr; 4609 4610 mark_stack_slot_scratched(env, spi); 4611 4612 if (is_spilled_reg(®_state->stack[spi])) { 4613 u8 spill_size = 1; 4614 4615 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4616 spill_size++; 4617 4618 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4619 if (reg->type != SCALAR_VALUE) { 4620 verbose_linfo(env, env->insn_idx, "; "); 4621 verbose(env, "invalid size of register fill\n"); 4622 return -EACCES; 4623 } 4624 4625 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4626 if (dst_regno < 0) 4627 return 0; 4628 4629 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4630 /* The earlier check_reg_arg() has decided the 4631 * subreg_def for this insn. Save it first. 4632 */ 4633 s32 subreg_def = state->regs[dst_regno].subreg_def; 4634 4635 copy_register_state(&state->regs[dst_regno], reg); 4636 state->regs[dst_regno].subreg_def = subreg_def; 4637 } else { 4638 for (i = 0; i < size; i++) { 4639 type = stype[(slot - i) % BPF_REG_SIZE]; 4640 if (type == STACK_SPILL) 4641 continue; 4642 if (type == STACK_MISC) 4643 continue; 4644 if (type == STACK_INVALID && env->allow_uninit_stack) 4645 continue; 4646 verbose(env, "invalid read from stack off %d+%d size %d\n", 4647 off, i, size); 4648 return -EACCES; 4649 } 4650 mark_reg_unknown(env, state->regs, dst_regno); 4651 } 4652 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4653 return 0; 4654 } 4655 4656 if (dst_regno >= 0) { 4657 /* restore register state from stack */ 4658 copy_register_state(&state->regs[dst_regno], reg); 4659 /* mark reg as written since spilled pointer state likely 4660 * has its liveness marks cleared by is_state_visited() 4661 * which resets stack/reg liveness for state transitions 4662 */ 4663 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4664 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4665 /* If dst_regno==-1, the caller is asking us whether 4666 * it is acceptable to use this value as a SCALAR_VALUE 4667 * (e.g. for XADD). 4668 * We must not allow unprivileged callers to do that 4669 * with spilled pointers. 4670 */ 4671 verbose(env, "leaking pointer from stack off %d\n", 4672 off); 4673 return -EACCES; 4674 } 4675 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4676 } else { 4677 for (i = 0; i < size; i++) { 4678 type = stype[(slot - i) % BPF_REG_SIZE]; 4679 if (type == STACK_MISC) 4680 continue; 4681 if (type == STACK_ZERO) 4682 continue; 4683 if (type == STACK_INVALID && env->allow_uninit_stack) 4684 continue; 4685 verbose(env, "invalid read from stack off %d+%d size %d\n", 4686 off, i, size); 4687 return -EACCES; 4688 } 4689 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4690 if (dst_regno >= 0) 4691 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4692 } 4693 return 0; 4694 } 4695 4696 enum bpf_access_src { 4697 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4698 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4699 }; 4700 4701 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4702 int regno, int off, int access_size, 4703 bool zero_size_allowed, 4704 enum bpf_access_src type, 4705 struct bpf_call_arg_meta *meta); 4706 4707 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4708 { 4709 return cur_regs(env) + regno; 4710 } 4711 4712 /* Read the stack at 'ptr_regno + off' and put the result into the register 4713 * 'dst_regno'. 4714 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4715 * but not its variable offset. 4716 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4717 * 4718 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4719 * filling registers (i.e. reads of spilled register cannot be detected when 4720 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4721 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4722 * offset; for a fixed offset check_stack_read_fixed_off should be used 4723 * instead. 4724 */ 4725 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4726 int ptr_regno, int off, int size, int dst_regno) 4727 { 4728 /* The state of the source register. */ 4729 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4730 struct bpf_func_state *ptr_state = func(env, reg); 4731 int err; 4732 int min_off, max_off; 4733 4734 /* Note that we pass a NULL meta, so raw access will not be permitted. 4735 */ 4736 err = check_stack_range_initialized(env, ptr_regno, off, size, 4737 false, ACCESS_DIRECT, NULL); 4738 if (err) 4739 return err; 4740 4741 min_off = reg->smin_value + off; 4742 max_off = reg->smax_value + off; 4743 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4744 return 0; 4745 } 4746 4747 /* check_stack_read dispatches to check_stack_read_fixed_off or 4748 * check_stack_read_var_off. 4749 * 4750 * The caller must ensure that the offset falls within the allocated stack 4751 * bounds. 4752 * 4753 * 'dst_regno' is a register which will receive the value from the stack. It 4754 * can be -1, meaning that the read value is not going to a register. 4755 */ 4756 static int check_stack_read(struct bpf_verifier_env *env, 4757 int ptr_regno, int off, int size, 4758 int dst_regno) 4759 { 4760 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4761 struct bpf_func_state *state = func(env, reg); 4762 int err; 4763 /* Some accesses are only permitted with a static offset. */ 4764 bool var_off = !tnum_is_const(reg->var_off); 4765 4766 /* The offset is required to be static when reads don't go to a 4767 * register, in order to not leak pointers (see 4768 * check_stack_read_fixed_off). 4769 */ 4770 if (dst_regno < 0 && var_off) { 4771 char tn_buf[48]; 4772 4773 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4774 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4775 tn_buf, off, size); 4776 return -EACCES; 4777 } 4778 /* Variable offset is prohibited for unprivileged mode for simplicity 4779 * since it requires corresponding support in Spectre masking for stack 4780 * ALU. See also retrieve_ptr_limit(). The check in 4781 * check_stack_access_for_ptr_arithmetic() called by 4782 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4783 * with variable offsets, therefore no check is required here. Further, 4784 * just checking it here would be insufficient as speculative stack 4785 * writes could still lead to unsafe speculative behaviour. 4786 */ 4787 if (!var_off) { 4788 off += reg->var_off.value; 4789 err = check_stack_read_fixed_off(env, state, off, size, 4790 dst_regno); 4791 } else { 4792 /* Variable offset stack reads need more conservative handling 4793 * than fixed offset ones. Note that dst_regno >= 0 on this 4794 * branch. 4795 */ 4796 err = check_stack_read_var_off(env, ptr_regno, off, size, 4797 dst_regno); 4798 } 4799 return err; 4800 } 4801 4802 4803 /* check_stack_write dispatches to check_stack_write_fixed_off or 4804 * check_stack_write_var_off. 4805 * 4806 * 'ptr_regno' is the register used as a pointer into the stack. 4807 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4808 * 'value_regno' is the register whose value we're writing to the stack. It can 4809 * be -1, meaning that we're not writing from a register. 4810 * 4811 * The caller must ensure that the offset falls within the maximum stack size. 4812 */ 4813 static int check_stack_write(struct bpf_verifier_env *env, 4814 int ptr_regno, int off, int size, 4815 int value_regno, int insn_idx) 4816 { 4817 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4818 struct bpf_func_state *state = func(env, reg); 4819 int err; 4820 4821 if (tnum_is_const(reg->var_off)) { 4822 off += reg->var_off.value; 4823 err = check_stack_write_fixed_off(env, state, off, size, 4824 value_regno, insn_idx); 4825 } else { 4826 /* Variable offset stack reads need more conservative handling 4827 * than fixed offset ones. 4828 */ 4829 err = check_stack_write_var_off(env, state, 4830 ptr_regno, off, size, 4831 value_regno, insn_idx); 4832 } 4833 return err; 4834 } 4835 4836 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4837 int off, int size, enum bpf_access_type type) 4838 { 4839 struct bpf_reg_state *regs = cur_regs(env); 4840 struct bpf_map *map = regs[regno].map_ptr; 4841 u32 cap = bpf_map_flags_to_cap(map); 4842 4843 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4844 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4845 map->value_size, off, size); 4846 return -EACCES; 4847 } 4848 4849 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4850 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4851 map->value_size, off, size); 4852 return -EACCES; 4853 } 4854 4855 return 0; 4856 } 4857 4858 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4859 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4860 int off, int size, u32 mem_size, 4861 bool zero_size_allowed) 4862 { 4863 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4864 struct bpf_reg_state *reg; 4865 4866 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4867 return 0; 4868 4869 reg = &cur_regs(env)[regno]; 4870 switch (reg->type) { 4871 case PTR_TO_MAP_KEY: 4872 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4873 mem_size, off, size); 4874 break; 4875 case PTR_TO_MAP_VALUE: 4876 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4877 mem_size, off, size); 4878 break; 4879 case PTR_TO_PACKET: 4880 case PTR_TO_PACKET_META: 4881 case PTR_TO_PACKET_END: 4882 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4883 off, size, regno, reg->id, off, mem_size); 4884 break; 4885 case PTR_TO_MEM: 4886 default: 4887 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4888 mem_size, off, size); 4889 } 4890 4891 return -EACCES; 4892 } 4893 4894 /* check read/write into a memory region with possible variable offset */ 4895 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4896 int off, int size, u32 mem_size, 4897 bool zero_size_allowed) 4898 { 4899 struct bpf_verifier_state *vstate = env->cur_state; 4900 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4901 struct bpf_reg_state *reg = &state->regs[regno]; 4902 int err; 4903 4904 /* We may have adjusted the register pointing to memory region, so we 4905 * need to try adding each of min_value and max_value to off 4906 * to make sure our theoretical access will be safe. 4907 * 4908 * The minimum value is only important with signed 4909 * comparisons where we can't assume the floor of a 4910 * value is 0. If we are using signed variables for our 4911 * index'es we need to make sure that whatever we use 4912 * will have a set floor within our range. 4913 */ 4914 if (reg->smin_value < 0 && 4915 (reg->smin_value == S64_MIN || 4916 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4917 reg->smin_value + off < 0)) { 4918 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4919 regno); 4920 return -EACCES; 4921 } 4922 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4923 mem_size, zero_size_allowed); 4924 if (err) { 4925 verbose(env, "R%d min value is outside of the allowed memory range\n", 4926 regno); 4927 return err; 4928 } 4929 4930 /* If we haven't set a max value then we need to bail since we can't be 4931 * sure we won't do bad things. 4932 * If reg->umax_value + off could overflow, treat that as unbounded too. 4933 */ 4934 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4935 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4936 regno); 4937 return -EACCES; 4938 } 4939 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4940 mem_size, zero_size_allowed); 4941 if (err) { 4942 verbose(env, "R%d max value is outside of the allowed memory range\n", 4943 regno); 4944 return err; 4945 } 4946 4947 return 0; 4948 } 4949 4950 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4951 const struct bpf_reg_state *reg, int regno, 4952 bool fixed_off_ok) 4953 { 4954 /* Access to this pointer-typed register or passing it to a helper 4955 * is only allowed in its original, unmodified form. 4956 */ 4957 4958 if (reg->off < 0) { 4959 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4960 reg_type_str(env, reg->type), regno, reg->off); 4961 return -EACCES; 4962 } 4963 4964 if (!fixed_off_ok && reg->off) { 4965 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4966 reg_type_str(env, reg->type), regno, reg->off); 4967 return -EACCES; 4968 } 4969 4970 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4971 char tn_buf[48]; 4972 4973 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4974 verbose(env, "variable %s access var_off=%s disallowed\n", 4975 reg_type_str(env, reg->type), tn_buf); 4976 return -EACCES; 4977 } 4978 4979 return 0; 4980 } 4981 4982 int check_ptr_off_reg(struct bpf_verifier_env *env, 4983 const struct bpf_reg_state *reg, int regno) 4984 { 4985 return __check_ptr_off_reg(env, reg, regno, false); 4986 } 4987 4988 static int map_kptr_match_type(struct bpf_verifier_env *env, 4989 struct btf_field *kptr_field, 4990 struct bpf_reg_state *reg, u32 regno) 4991 { 4992 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4993 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4994 const char *reg_name = ""; 4995 4996 /* Only unreferenced case accepts untrusted pointers */ 4997 if (kptr_field->type == BPF_KPTR_UNREF) 4998 perm_flags |= PTR_UNTRUSTED; 4999 5000 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5001 goto bad_type; 5002 5003 if (!btf_is_kernel(reg->btf)) { 5004 verbose(env, "R%d must point to kernel BTF\n", regno); 5005 return -EINVAL; 5006 } 5007 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5008 reg_name = btf_type_name(reg->btf, reg->btf_id); 5009 5010 /* For ref_ptr case, release function check should ensure we get one 5011 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5012 * normal store of unreferenced kptr, we must ensure var_off is zero. 5013 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5014 * reg->off and reg->ref_obj_id are not needed here. 5015 */ 5016 if (__check_ptr_off_reg(env, reg, regno, true)) 5017 return -EACCES; 5018 5019 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 5020 * we also need to take into account the reg->off. 5021 * 5022 * We want to support cases like: 5023 * 5024 * struct foo { 5025 * struct bar br; 5026 * struct baz bz; 5027 * }; 5028 * 5029 * struct foo *v; 5030 * v = func(); // PTR_TO_BTF_ID 5031 * val->foo = v; // reg->off is zero, btf and btf_id match type 5032 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5033 * // first member type of struct after comparison fails 5034 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5035 * // to match type 5036 * 5037 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5038 * is zero. We must also ensure that btf_struct_ids_match does not walk 5039 * the struct to match type against first member of struct, i.e. reject 5040 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5041 * strict mode to true for type match. 5042 */ 5043 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5044 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5045 kptr_field->type == BPF_KPTR_REF)) 5046 goto bad_type; 5047 return 0; 5048 bad_type: 5049 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5050 reg_type_str(env, reg->type), reg_name); 5051 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5052 if (kptr_field->type == BPF_KPTR_UNREF) 5053 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5054 targ_name); 5055 else 5056 verbose(env, "\n"); 5057 return -EINVAL; 5058 } 5059 5060 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5061 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5062 */ 5063 static bool in_rcu_cs(struct bpf_verifier_env *env) 5064 { 5065 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 5066 } 5067 5068 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5069 BTF_SET_START(rcu_protected_types) 5070 BTF_ID(struct, prog_test_ref_kfunc) 5071 BTF_ID(struct, cgroup) 5072 BTF_ID(struct, bpf_cpumask) 5073 BTF_ID(struct, task_struct) 5074 BTF_SET_END(rcu_protected_types) 5075 5076 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5077 { 5078 if (!btf_is_kernel(btf)) 5079 return false; 5080 return btf_id_set_contains(&rcu_protected_types, btf_id); 5081 } 5082 5083 static bool rcu_safe_kptr(const struct btf_field *field) 5084 { 5085 const struct btf_field_kptr *kptr = &field->kptr; 5086 5087 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5088 } 5089 5090 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5091 int value_regno, int insn_idx, 5092 struct btf_field *kptr_field) 5093 { 5094 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5095 int class = BPF_CLASS(insn->code); 5096 struct bpf_reg_state *val_reg; 5097 5098 /* Things we already checked for in check_map_access and caller: 5099 * - Reject cases where variable offset may touch kptr 5100 * - size of access (must be BPF_DW) 5101 * - tnum_is_const(reg->var_off) 5102 * - kptr_field->offset == off + reg->var_off.value 5103 */ 5104 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5105 if (BPF_MODE(insn->code) != BPF_MEM) { 5106 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5107 return -EACCES; 5108 } 5109 5110 /* We only allow loading referenced kptr, since it will be marked as 5111 * untrusted, similar to unreferenced kptr. 5112 */ 5113 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5114 verbose(env, "store to referenced kptr disallowed\n"); 5115 return -EACCES; 5116 } 5117 5118 if (class == BPF_LDX) { 5119 val_reg = reg_state(env, value_regno); 5120 /* We can simply mark the value_regno receiving the pointer 5121 * value from map as PTR_TO_BTF_ID, with the correct type. 5122 */ 5123 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5124 kptr_field->kptr.btf_id, 5125 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5126 PTR_MAYBE_NULL | MEM_RCU : 5127 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5128 /* For mark_ptr_or_null_reg */ 5129 val_reg->id = ++env->id_gen; 5130 } else if (class == BPF_STX) { 5131 val_reg = reg_state(env, value_regno); 5132 if (!register_is_null(val_reg) && 5133 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5134 return -EACCES; 5135 } else if (class == BPF_ST) { 5136 if (insn->imm) { 5137 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5138 kptr_field->offset); 5139 return -EACCES; 5140 } 5141 } else { 5142 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5143 return -EACCES; 5144 } 5145 return 0; 5146 } 5147 5148 /* check read/write into a map element with possible variable offset */ 5149 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5150 int off, int size, bool zero_size_allowed, 5151 enum bpf_access_src src) 5152 { 5153 struct bpf_verifier_state *vstate = env->cur_state; 5154 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5155 struct bpf_reg_state *reg = &state->regs[regno]; 5156 struct bpf_map *map = reg->map_ptr; 5157 struct btf_record *rec; 5158 int err, i; 5159 5160 err = check_mem_region_access(env, regno, off, size, map->value_size, 5161 zero_size_allowed); 5162 if (err) 5163 return err; 5164 5165 if (IS_ERR_OR_NULL(map->record)) 5166 return 0; 5167 rec = map->record; 5168 for (i = 0; i < rec->cnt; i++) { 5169 struct btf_field *field = &rec->fields[i]; 5170 u32 p = field->offset; 5171 5172 /* If any part of a field can be touched by load/store, reject 5173 * this program. To check that [x1, x2) overlaps with [y1, y2), 5174 * it is sufficient to check x1 < y2 && y1 < x2. 5175 */ 5176 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5177 p < reg->umax_value + off + size) { 5178 switch (field->type) { 5179 case BPF_KPTR_UNREF: 5180 case BPF_KPTR_REF: 5181 if (src != ACCESS_DIRECT) { 5182 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5183 return -EACCES; 5184 } 5185 if (!tnum_is_const(reg->var_off)) { 5186 verbose(env, "kptr access cannot have variable offset\n"); 5187 return -EACCES; 5188 } 5189 if (p != off + reg->var_off.value) { 5190 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5191 p, off + reg->var_off.value); 5192 return -EACCES; 5193 } 5194 if (size != bpf_size_to_bytes(BPF_DW)) { 5195 verbose(env, "kptr access size must be BPF_DW\n"); 5196 return -EACCES; 5197 } 5198 break; 5199 default: 5200 verbose(env, "%s cannot be accessed directly by load/store\n", 5201 btf_field_type_name(field->type)); 5202 return -EACCES; 5203 } 5204 } 5205 } 5206 return 0; 5207 } 5208 5209 #define MAX_PACKET_OFF 0xffff 5210 5211 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5212 const struct bpf_call_arg_meta *meta, 5213 enum bpf_access_type t) 5214 { 5215 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5216 5217 switch (prog_type) { 5218 /* Program types only with direct read access go here! */ 5219 case BPF_PROG_TYPE_LWT_IN: 5220 case BPF_PROG_TYPE_LWT_OUT: 5221 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5222 case BPF_PROG_TYPE_SK_REUSEPORT: 5223 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5224 case BPF_PROG_TYPE_CGROUP_SKB: 5225 if (t == BPF_WRITE) 5226 return false; 5227 fallthrough; 5228 5229 /* Program types with direct read + write access go here! */ 5230 case BPF_PROG_TYPE_SCHED_CLS: 5231 case BPF_PROG_TYPE_SCHED_ACT: 5232 case BPF_PROG_TYPE_XDP: 5233 case BPF_PROG_TYPE_LWT_XMIT: 5234 case BPF_PROG_TYPE_SK_SKB: 5235 case BPF_PROG_TYPE_SK_MSG: 5236 if (meta) 5237 return meta->pkt_access; 5238 5239 env->seen_direct_write = true; 5240 return true; 5241 5242 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5243 if (t == BPF_WRITE) 5244 env->seen_direct_write = true; 5245 5246 return true; 5247 5248 default: 5249 return false; 5250 } 5251 } 5252 5253 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5254 int size, bool zero_size_allowed) 5255 { 5256 struct bpf_reg_state *regs = cur_regs(env); 5257 struct bpf_reg_state *reg = ®s[regno]; 5258 int err; 5259 5260 /* We may have added a variable offset to the packet pointer; but any 5261 * reg->range we have comes after that. We are only checking the fixed 5262 * offset. 5263 */ 5264 5265 /* We don't allow negative numbers, because we aren't tracking enough 5266 * detail to prove they're safe. 5267 */ 5268 if (reg->smin_value < 0) { 5269 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5270 regno); 5271 return -EACCES; 5272 } 5273 5274 err = reg->range < 0 ? -EINVAL : 5275 __check_mem_access(env, regno, off, size, reg->range, 5276 zero_size_allowed); 5277 if (err) { 5278 verbose(env, "R%d offset is outside of the packet\n", regno); 5279 return err; 5280 } 5281 5282 /* __check_mem_access has made sure "off + size - 1" is within u16. 5283 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5284 * otherwise find_good_pkt_pointers would have refused to set range info 5285 * that __check_mem_access would have rejected this pkt access. 5286 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5287 */ 5288 env->prog->aux->max_pkt_offset = 5289 max_t(u32, env->prog->aux->max_pkt_offset, 5290 off + reg->umax_value + size - 1); 5291 5292 return err; 5293 } 5294 5295 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5296 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5297 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5298 struct btf **btf, u32 *btf_id) 5299 { 5300 struct bpf_insn_access_aux info = { 5301 .reg_type = *reg_type, 5302 .log = &env->log, 5303 }; 5304 5305 if (env->ops->is_valid_access && 5306 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5307 /* A non zero info.ctx_field_size indicates that this field is a 5308 * candidate for later verifier transformation to load the whole 5309 * field and then apply a mask when accessed with a narrower 5310 * access than actual ctx access size. A zero info.ctx_field_size 5311 * will only allow for whole field access and rejects any other 5312 * type of narrower access. 5313 */ 5314 *reg_type = info.reg_type; 5315 5316 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5317 *btf = info.btf; 5318 *btf_id = info.btf_id; 5319 } else { 5320 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5321 } 5322 /* remember the offset of last byte accessed in ctx */ 5323 if (env->prog->aux->max_ctx_offset < off + size) 5324 env->prog->aux->max_ctx_offset = off + size; 5325 return 0; 5326 } 5327 5328 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5329 return -EACCES; 5330 } 5331 5332 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5333 int size) 5334 { 5335 if (size < 0 || off < 0 || 5336 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5337 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5338 off, size); 5339 return -EACCES; 5340 } 5341 return 0; 5342 } 5343 5344 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5345 u32 regno, int off, int size, 5346 enum bpf_access_type t) 5347 { 5348 struct bpf_reg_state *regs = cur_regs(env); 5349 struct bpf_reg_state *reg = ®s[regno]; 5350 struct bpf_insn_access_aux info = {}; 5351 bool valid; 5352 5353 if (reg->smin_value < 0) { 5354 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5355 regno); 5356 return -EACCES; 5357 } 5358 5359 switch (reg->type) { 5360 case PTR_TO_SOCK_COMMON: 5361 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5362 break; 5363 case PTR_TO_SOCKET: 5364 valid = bpf_sock_is_valid_access(off, size, t, &info); 5365 break; 5366 case PTR_TO_TCP_SOCK: 5367 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5368 break; 5369 case PTR_TO_XDP_SOCK: 5370 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5371 break; 5372 default: 5373 valid = false; 5374 } 5375 5376 5377 if (valid) { 5378 env->insn_aux_data[insn_idx].ctx_field_size = 5379 info.ctx_field_size; 5380 return 0; 5381 } 5382 5383 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5384 regno, reg_type_str(env, reg->type), off, size); 5385 5386 return -EACCES; 5387 } 5388 5389 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5390 { 5391 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5392 } 5393 5394 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5395 { 5396 const struct bpf_reg_state *reg = reg_state(env, regno); 5397 5398 return reg->type == PTR_TO_CTX; 5399 } 5400 5401 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5402 { 5403 const struct bpf_reg_state *reg = reg_state(env, regno); 5404 5405 return type_is_sk_pointer(reg->type); 5406 } 5407 5408 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5409 { 5410 const struct bpf_reg_state *reg = reg_state(env, regno); 5411 5412 return type_is_pkt_pointer(reg->type); 5413 } 5414 5415 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5416 { 5417 const struct bpf_reg_state *reg = reg_state(env, regno); 5418 5419 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5420 return reg->type == PTR_TO_FLOW_KEYS; 5421 } 5422 5423 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5424 #ifdef CONFIG_NET 5425 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5426 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5427 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5428 #endif 5429 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5430 }; 5431 5432 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5433 { 5434 /* A referenced register is always trusted. */ 5435 if (reg->ref_obj_id) 5436 return true; 5437 5438 /* Types listed in the reg2btf_ids are always trusted */ 5439 if (reg2btf_ids[base_type(reg->type)]) 5440 return true; 5441 5442 /* If a register is not referenced, it is trusted if it has the 5443 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5444 * other type modifiers may be safe, but we elect to take an opt-in 5445 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5446 * not. 5447 * 5448 * Eventually, we should make PTR_TRUSTED the single source of truth 5449 * for whether a register is trusted. 5450 */ 5451 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5452 !bpf_type_has_unsafe_modifiers(reg->type); 5453 } 5454 5455 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5456 { 5457 return reg->type & MEM_RCU; 5458 } 5459 5460 static void clear_trusted_flags(enum bpf_type_flag *flag) 5461 { 5462 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5463 } 5464 5465 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5466 const struct bpf_reg_state *reg, 5467 int off, int size, bool strict) 5468 { 5469 struct tnum reg_off; 5470 int ip_align; 5471 5472 /* Byte size accesses are always allowed. */ 5473 if (!strict || size == 1) 5474 return 0; 5475 5476 /* For platforms that do not have a Kconfig enabling 5477 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5478 * NET_IP_ALIGN is universally set to '2'. And on platforms 5479 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5480 * to this code only in strict mode where we want to emulate 5481 * the NET_IP_ALIGN==2 checking. Therefore use an 5482 * unconditional IP align value of '2'. 5483 */ 5484 ip_align = 2; 5485 5486 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5487 if (!tnum_is_aligned(reg_off, size)) { 5488 char tn_buf[48]; 5489 5490 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5491 verbose(env, 5492 "misaligned packet access off %d+%s+%d+%d size %d\n", 5493 ip_align, tn_buf, reg->off, off, size); 5494 return -EACCES; 5495 } 5496 5497 return 0; 5498 } 5499 5500 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5501 const struct bpf_reg_state *reg, 5502 const char *pointer_desc, 5503 int off, int size, bool strict) 5504 { 5505 struct tnum reg_off; 5506 5507 /* Byte size accesses are always allowed. */ 5508 if (!strict || size == 1) 5509 return 0; 5510 5511 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5512 if (!tnum_is_aligned(reg_off, size)) { 5513 char tn_buf[48]; 5514 5515 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5516 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5517 pointer_desc, tn_buf, reg->off, off, size); 5518 return -EACCES; 5519 } 5520 5521 return 0; 5522 } 5523 5524 static int check_ptr_alignment(struct bpf_verifier_env *env, 5525 const struct bpf_reg_state *reg, int off, 5526 int size, bool strict_alignment_once) 5527 { 5528 bool strict = env->strict_alignment || strict_alignment_once; 5529 const char *pointer_desc = ""; 5530 5531 switch (reg->type) { 5532 case PTR_TO_PACKET: 5533 case PTR_TO_PACKET_META: 5534 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5535 * right in front, treat it the very same way. 5536 */ 5537 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5538 case PTR_TO_FLOW_KEYS: 5539 pointer_desc = "flow keys "; 5540 break; 5541 case PTR_TO_MAP_KEY: 5542 pointer_desc = "key "; 5543 break; 5544 case PTR_TO_MAP_VALUE: 5545 pointer_desc = "value "; 5546 break; 5547 case PTR_TO_CTX: 5548 pointer_desc = "context "; 5549 break; 5550 case PTR_TO_STACK: 5551 pointer_desc = "stack "; 5552 /* The stack spill tracking logic in check_stack_write_fixed_off() 5553 * and check_stack_read_fixed_off() relies on stack accesses being 5554 * aligned. 5555 */ 5556 strict = true; 5557 break; 5558 case PTR_TO_SOCKET: 5559 pointer_desc = "sock "; 5560 break; 5561 case PTR_TO_SOCK_COMMON: 5562 pointer_desc = "sock_common "; 5563 break; 5564 case PTR_TO_TCP_SOCK: 5565 pointer_desc = "tcp_sock "; 5566 break; 5567 case PTR_TO_XDP_SOCK: 5568 pointer_desc = "xdp_sock "; 5569 break; 5570 default: 5571 break; 5572 } 5573 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5574 strict); 5575 } 5576 5577 static int update_stack_depth(struct bpf_verifier_env *env, 5578 const struct bpf_func_state *func, 5579 int off) 5580 { 5581 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5582 5583 if (stack >= -off) 5584 return 0; 5585 5586 /* update known max for given subprogram */ 5587 env->subprog_info[func->subprogno].stack_depth = -off; 5588 return 0; 5589 } 5590 5591 /* starting from main bpf function walk all instructions of the function 5592 * and recursively walk all callees that given function can call. 5593 * Ignore jump and exit insns. 5594 * Since recursion is prevented by check_cfg() this algorithm 5595 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5596 */ 5597 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5598 { 5599 struct bpf_subprog_info *subprog = env->subprog_info; 5600 struct bpf_insn *insn = env->prog->insnsi; 5601 int depth = 0, frame = 0, i, subprog_end; 5602 bool tail_call_reachable = false; 5603 int ret_insn[MAX_CALL_FRAMES]; 5604 int ret_prog[MAX_CALL_FRAMES]; 5605 int j; 5606 5607 i = subprog[idx].start; 5608 process_func: 5609 /* protect against potential stack overflow that might happen when 5610 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5611 * depth for such case down to 256 so that the worst case scenario 5612 * would result in 8k stack size (32 which is tailcall limit * 256 = 5613 * 8k). 5614 * 5615 * To get the idea what might happen, see an example: 5616 * func1 -> sub rsp, 128 5617 * subfunc1 -> sub rsp, 256 5618 * tailcall1 -> add rsp, 256 5619 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5620 * subfunc2 -> sub rsp, 64 5621 * subfunc22 -> sub rsp, 128 5622 * tailcall2 -> add rsp, 128 5623 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5624 * 5625 * tailcall will unwind the current stack frame but it will not get rid 5626 * of caller's stack as shown on the example above. 5627 */ 5628 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5629 verbose(env, 5630 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5631 depth); 5632 return -EACCES; 5633 } 5634 /* round up to 32-bytes, since this is granularity 5635 * of interpreter stack size 5636 */ 5637 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5638 if (depth > MAX_BPF_STACK) { 5639 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5640 frame + 1, depth); 5641 return -EACCES; 5642 } 5643 continue_func: 5644 subprog_end = subprog[idx + 1].start; 5645 for (; i < subprog_end; i++) { 5646 int next_insn, sidx; 5647 5648 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5649 continue; 5650 /* remember insn and function to return to */ 5651 ret_insn[frame] = i + 1; 5652 ret_prog[frame] = idx; 5653 5654 /* find the callee */ 5655 next_insn = i + insn[i].imm + 1; 5656 sidx = find_subprog(env, next_insn); 5657 if (sidx < 0) { 5658 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5659 next_insn); 5660 return -EFAULT; 5661 } 5662 if (subprog[sidx].is_async_cb) { 5663 if (subprog[sidx].has_tail_call) { 5664 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5665 return -EFAULT; 5666 } 5667 /* async callbacks don't increase bpf prog stack size unless called directly */ 5668 if (!bpf_pseudo_call(insn + i)) 5669 continue; 5670 } 5671 i = next_insn; 5672 idx = sidx; 5673 5674 if (subprog[idx].has_tail_call) 5675 tail_call_reachable = true; 5676 5677 frame++; 5678 if (frame >= MAX_CALL_FRAMES) { 5679 verbose(env, "the call stack of %d frames is too deep !\n", 5680 frame); 5681 return -E2BIG; 5682 } 5683 goto process_func; 5684 } 5685 /* if tail call got detected across bpf2bpf calls then mark each of the 5686 * currently present subprog frames as tail call reachable subprogs; 5687 * this info will be utilized by JIT so that we will be preserving the 5688 * tail call counter throughout bpf2bpf calls combined with tailcalls 5689 */ 5690 if (tail_call_reachable) 5691 for (j = 0; j < frame; j++) 5692 subprog[ret_prog[j]].tail_call_reachable = true; 5693 if (subprog[0].tail_call_reachable) 5694 env->prog->aux->tail_call_reachable = true; 5695 5696 /* end of for() loop means the last insn of the 'subprog' 5697 * was reached. Doesn't matter whether it was JA or EXIT 5698 */ 5699 if (frame == 0) 5700 return 0; 5701 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5702 frame--; 5703 i = ret_insn[frame]; 5704 idx = ret_prog[frame]; 5705 goto continue_func; 5706 } 5707 5708 static int check_max_stack_depth(struct bpf_verifier_env *env) 5709 { 5710 struct bpf_subprog_info *si = env->subprog_info; 5711 int ret; 5712 5713 for (int i = 0; i < env->subprog_cnt; i++) { 5714 if (!i || si[i].is_async_cb) { 5715 ret = check_max_stack_depth_subprog(env, i); 5716 if (ret < 0) 5717 return ret; 5718 } 5719 continue; 5720 } 5721 return 0; 5722 } 5723 5724 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5725 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5726 const struct bpf_insn *insn, int idx) 5727 { 5728 int start = idx + insn->imm + 1, subprog; 5729 5730 subprog = find_subprog(env, start); 5731 if (subprog < 0) { 5732 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5733 start); 5734 return -EFAULT; 5735 } 5736 return env->subprog_info[subprog].stack_depth; 5737 } 5738 #endif 5739 5740 static int __check_buffer_access(struct bpf_verifier_env *env, 5741 const char *buf_info, 5742 const struct bpf_reg_state *reg, 5743 int regno, int off, int size) 5744 { 5745 if (off < 0) { 5746 verbose(env, 5747 "R%d invalid %s buffer access: off=%d, size=%d\n", 5748 regno, buf_info, off, size); 5749 return -EACCES; 5750 } 5751 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5752 char tn_buf[48]; 5753 5754 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5755 verbose(env, 5756 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5757 regno, off, tn_buf); 5758 return -EACCES; 5759 } 5760 5761 return 0; 5762 } 5763 5764 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5765 const struct bpf_reg_state *reg, 5766 int regno, int off, int size) 5767 { 5768 int err; 5769 5770 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5771 if (err) 5772 return err; 5773 5774 if (off + size > env->prog->aux->max_tp_access) 5775 env->prog->aux->max_tp_access = off + size; 5776 5777 return 0; 5778 } 5779 5780 static int check_buffer_access(struct bpf_verifier_env *env, 5781 const struct bpf_reg_state *reg, 5782 int regno, int off, int size, 5783 bool zero_size_allowed, 5784 u32 *max_access) 5785 { 5786 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5787 int err; 5788 5789 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5790 if (err) 5791 return err; 5792 5793 if (off + size > *max_access) 5794 *max_access = off + size; 5795 5796 return 0; 5797 } 5798 5799 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5800 static void zext_32_to_64(struct bpf_reg_state *reg) 5801 { 5802 reg->var_off = tnum_subreg(reg->var_off); 5803 __reg_assign_32_into_64(reg); 5804 } 5805 5806 /* truncate register to smaller size (in bytes) 5807 * must be called with size < BPF_REG_SIZE 5808 */ 5809 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5810 { 5811 u64 mask; 5812 5813 /* clear high bits in bit representation */ 5814 reg->var_off = tnum_cast(reg->var_off, size); 5815 5816 /* fix arithmetic bounds */ 5817 mask = ((u64)1 << (size * 8)) - 1; 5818 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5819 reg->umin_value &= mask; 5820 reg->umax_value &= mask; 5821 } else { 5822 reg->umin_value = 0; 5823 reg->umax_value = mask; 5824 } 5825 reg->smin_value = reg->umin_value; 5826 reg->smax_value = reg->umax_value; 5827 5828 /* If size is smaller than 32bit register the 32bit register 5829 * values are also truncated so we push 64-bit bounds into 5830 * 32-bit bounds. Above were truncated < 32-bits already. 5831 */ 5832 if (size >= 4) 5833 return; 5834 __reg_combine_64_into_32(reg); 5835 } 5836 5837 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 5838 { 5839 if (size == 1) { 5840 reg->smin_value = reg->s32_min_value = S8_MIN; 5841 reg->smax_value = reg->s32_max_value = S8_MAX; 5842 } else if (size == 2) { 5843 reg->smin_value = reg->s32_min_value = S16_MIN; 5844 reg->smax_value = reg->s32_max_value = S16_MAX; 5845 } else { 5846 /* size == 4 */ 5847 reg->smin_value = reg->s32_min_value = S32_MIN; 5848 reg->smax_value = reg->s32_max_value = S32_MAX; 5849 } 5850 reg->umin_value = reg->u32_min_value = 0; 5851 reg->umax_value = U64_MAX; 5852 reg->u32_max_value = U32_MAX; 5853 reg->var_off = tnum_unknown; 5854 } 5855 5856 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 5857 { 5858 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 5859 u64 top_smax_value, top_smin_value; 5860 u64 num_bits = size * 8; 5861 5862 if (tnum_is_const(reg->var_off)) { 5863 u64_cval = reg->var_off.value; 5864 if (size == 1) 5865 reg->var_off = tnum_const((s8)u64_cval); 5866 else if (size == 2) 5867 reg->var_off = tnum_const((s16)u64_cval); 5868 else 5869 /* size == 4 */ 5870 reg->var_off = tnum_const((s32)u64_cval); 5871 5872 u64_cval = reg->var_off.value; 5873 reg->smax_value = reg->smin_value = u64_cval; 5874 reg->umax_value = reg->umin_value = u64_cval; 5875 reg->s32_max_value = reg->s32_min_value = u64_cval; 5876 reg->u32_max_value = reg->u32_min_value = u64_cval; 5877 return; 5878 } 5879 5880 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 5881 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 5882 5883 if (top_smax_value != top_smin_value) 5884 goto out; 5885 5886 /* find the s64_min and s64_min after sign extension */ 5887 if (size == 1) { 5888 init_s64_max = (s8)reg->smax_value; 5889 init_s64_min = (s8)reg->smin_value; 5890 } else if (size == 2) { 5891 init_s64_max = (s16)reg->smax_value; 5892 init_s64_min = (s16)reg->smin_value; 5893 } else { 5894 init_s64_max = (s32)reg->smax_value; 5895 init_s64_min = (s32)reg->smin_value; 5896 } 5897 5898 s64_max = max(init_s64_max, init_s64_min); 5899 s64_min = min(init_s64_max, init_s64_min); 5900 5901 /* both of s64_max/s64_min positive or negative */ 5902 if ((s64_max >= 0) == (s64_min >= 0)) { 5903 reg->smin_value = reg->s32_min_value = s64_min; 5904 reg->smax_value = reg->s32_max_value = s64_max; 5905 reg->umin_value = reg->u32_min_value = s64_min; 5906 reg->umax_value = reg->u32_max_value = s64_max; 5907 reg->var_off = tnum_range(s64_min, s64_max); 5908 return; 5909 } 5910 5911 out: 5912 set_sext64_default_val(reg, size); 5913 } 5914 5915 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 5916 { 5917 if (size == 1) { 5918 reg->s32_min_value = S8_MIN; 5919 reg->s32_max_value = S8_MAX; 5920 } else { 5921 /* size == 2 */ 5922 reg->s32_min_value = S16_MIN; 5923 reg->s32_max_value = S16_MAX; 5924 } 5925 reg->u32_min_value = 0; 5926 reg->u32_max_value = U32_MAX; 5927 } 5928 5929 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 5930 { 5931 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 5932 u32 top_smax_value, top_smin_value; 5933 u32 num_bits = size * 8; 5934 5935 if (tnum_is_const(reg->var_off)) { 5936 u32_val = reg->var_off.value; 5937 if (size == 1) 5938 reg->var_off = tnum_const((s8)u32_val); 5939 else 5940 reg->var_off = tnum_const((s16)u32_val); 5941 5942 u32_val = reg->var_off.value; 5943 reg->s32_min_value = reg->s32_max_value = u32_val; 5944 reg->u32_min_value = reg->u32_max_value = u32_val; 5945 return; 5946 } 5947 5948 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 5949 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 5950 5951 if (top_smax_value != top_smin_value) 5952 goto out; 5953 5954 /* find the s32_min and s32_min after sign extension */ 5955 if (size == 1) { 5956 init_s32_max = (s8)reg->s32_max_value; 5957 init_s32_min = (s8)reg->s32_min_value; 5958 } else { 5959 /* size == 2 */ 5960 init_s32_max = (s16)reg->s32_max_value; 5961 init_s32_min = (s16)reg->s32_min_value; 5962 } 5963 s32_max = max(init_s32_max, init_s32_min); 5964 s32_min = min(init_s32_max, init_s32_min); 5965 5966 if ((s32_min >= 0) == (s32_max >= 0)) { 5967 reg->s32_min_value = s32_min; 5968 reg->s32_max_value = s32_max; 5969 reg->u32_min_value = (u32)s32_min; 5970 reg->u32_max_value = (u32)s32_max; 5971 return; 5972 } 5973 5974 out: 5975 set_sext32_default_val(reg, size); 5976 } 5977 5978 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5979 { 5980 /* A map is considered read-only if the following condition are true: 5981 * 5982 * 1) BPF program side cannot change any of the map content. The 5983 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5984 * and was set at map creation time. 5985 * 2) The map value(s) have been initialized from user space by a 5986 * loader and then "frozen", such that no new map update/delete 5987 * operations from syscall side are possible for the rest of 5988 * the map's lifetime from that point onwards. 5989 * 3) Any parallel/pending map update/delete operations from syscall 5990 * side have been completed. Only after that point, it's safe to 5991 * assume that map value(s) are immutable. 5992 */ 5993 return (map->map_flags & BPF_F_RDONLY_PROG) && 5994 READ_ONCE(map->frozen) && 5995 !bpf_map_write_active(map); 5996 } 5997 5998 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 5999 bool is_ldsx) 6000 { 6001 void *ptr; 6002 u64 addr; 6003 int err; 6004 6005 err = map->ops->map_direct_value_addr(map, &addr, off); 6006 if (err) 6007 return err; 6008 ptr = (void *)(long)addr + off; 6009 6010 switch (size) { 6011 case sizeof(u8): 6012 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6013 break; 6014 case sizeof(u16): 6015 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6016 break; 6017 case sizeof(u32): 6018 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6019 break; 6020 case sizeof(u64): 6021 *val = *(u64 *)ptr; 6022 break; 6023 default: 6024 return -EINVAL; 6025 } 6026 return 0; 6027 } 6028 6029 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6030 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6031 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6032 6033 /* 6034 * Allow list few fields as RCU trusted or full trusted. 6035 * This logic doesn't allow mix tagging and will be removed once GCC supports 6036 * btf_type_tag. 6037 */ 6038 6039 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6040 BTF_TYPE_SAFE_RCU(struct task_struct) { 6041 const cpumask_t *cpus_ptr; 6042 struct css_set __rcu *cgroups; 6043 struct task_struct __rcu *real_parent; 6044 struct task_struct *group_leader; 6045 }; 6046 6047 BTF_TYPE_SAFE_RCU(struct cgroup) { 6048 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6049 struct kernfs_node *kn; 6050 }; 6051 6052 BTF_TYPE_SAFE_RCU(struct css_set) { 6053 struct cgroup *dfl_cgrp; 6054 }; 6055 6056 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6057 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6058 struct file __rcu *exe_file; 6059 }; 6060 6061 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6062 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6063 */ 6064 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6065 struct sock *sk; 6066 }; 6067 6068 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6069 struct sock *sk; 6070 }; 6071 6072 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6073 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6074 struct seq_file *seq; 6075 }; 6076 6077 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6078 struct bpf_iter_meta *meta; 6079 struct task_struct *task; 6080 }; 6081 6082 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6083 struct file *file; 6084 }; 6085 6086 BTF_TYPE_SAFE_TRUSTED(struct file) { 6087 struct inode *f_inode; 6088 }; 6089 6090 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6091 /* no negative dentry-s in places where bpf can see it */ 6092 struct inode *d_inode; 6093 }; 6094 6095 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6096 struct sock *sk; 6097 }; 6098 6099 static bool type_is_rcu(struct bpf_verifier_env *env, 6100 struct bpf_reg_state *reg, 6101 const char *field_name, u32 btf_id) 6102 { 6103 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6104 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6105 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6106 6107 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6108 } 6109 6110 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6111 struct bpf_reg_state *reg, 6112 const char *field_name, u32 btf_id) 6113 { 6114 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6115 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6116 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6117 6118 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6119 } 6120 6121 static bool type_is_trusted(struct bpf_verifier_env *env, 6122 struct bpf_reg_state *reg, 6123 const char *field_name, u32 btf_id) 6124 { 6125 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6126 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6127 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6128 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6129 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6130 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6131 6132 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6133 } 6134 6135 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6136 struct bpf_reg_state *regs, 6137 int regno, int off, int size, 6138 enum bpf_access_type atype, 6139 int value_regno) 6140 { 6141 struct bpf_reg_state *reg = regs + regno; 6142 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6143 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6144 const char *field_name = NULL; 6145 enum bpf_type_flag flag = 0; 6146 u32 btf_id = 0; 6147 int ret; 6148 6149 if (!env->allow_ptr_leaks) { 6150 verbose(env, 6151 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6152 tname); 6153 return -EPERM; 6154 } 6155 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6156 verbose(env, 6157 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6158 tname); 6159 return -EINVAL; 6160 } 6161 if (off < 0) { 6162 verbose(env, 6163 "R%d is ptr_%s invalid negative access: off=%d\n", 6164 regno, tname, off); 6165 return -EACCES; 6166 } 6167 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6168 char tn_buf[48]; 6169 6170 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6171 verbose(env, 6172 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6173 regno, tname, off, tn_buf); 6174 return -EACCES; 6175 } 6176 6177 if (reg->type & MEM_USER) { 6178 verbose(env, 6179 "R%d is ptr_%s access user memory: off=%d\n", 6180 regno, tname, off); 6181 return -EACCES; 6182 } 6183 6184 if (reg->type & MEM_PERCPU) { 6185 verbose(env, 6186 "R%d is ptr_%s access percpu memory: off=%d\n", 6187 regno, tname, off); 6188 return -EACCES; 6189 } 6190 6191 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6192 if (!btf_is_kernel(reg->btf)) { 6193 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6194 return -EFAULT; 6195 } 6196 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6197 } else { 6198 /* Writes are permitted with default btf_struct_access for 6199 * program allocated objects (which always have ref_obj_id > 0), 6200 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6201 */ 6202 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6203 verbose(env, "only read is supported\n"); 6204 return -EACCES; 6205 } 6206 6207 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6208 !reg->ref_obj_id) { 6209 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6210 return -EFAULT; 6211 } 6212 6213 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6214 } 6215 6216 if (ret < 0) 6217 return ret; 6218 6219 if (ret != PTR_TO_BTF_ID) { 6220 /* just mark; */ 6221 6222 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6223 /* If this is an untrusted pointer, all pointers formed by walking it 6224 * also inherit the untrusted flag. 6225 */ 6226 flag = PTR_UNTRUSTED; 6227 6228 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6229 /* By default any pointer obtained from walking a trusted pointer is no 6230 * longer trusted, unless the field being accessed has explicitly been 6231 * marked as inheriting its parent's state of trust (either full or RCU). 6232 * For example: 6233 * 'cgroups' pointer is untrusted if task->cgroups dereference 6234 * happened in a sleepable program outside of bpf_rcu_read_lock() 6235 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6236 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6237 * 6238 * A regular RCU-protected pointer with __rcu tag can also be deemed 6239 * trusted if we are in an RCU CS. Such pointer can be NULL. 6240 */ 6241 if (type_is_trusted(env, reg, field_name, btf_id)) { 6242 flag |= PTR_TRUSTED; 6243 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6244 if (type_is_rcu(env, reg, field_name, btf_id)) { 6245 /* ignore __rcu tag and mark it MEM_RCU */ 6246 flag |= MEM_RCU; 6247 } else if (flag & MEM_RCU || 6248 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6249 /* __rcu tagged pointers can be NULL */ 6250 flag |= MEM_RCU | PTR_MAYBE_NULL; 6251 6252 /* We always trust them */ 6253 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6254 flag & PTR_UNTRUSTED) 6255 flag &= ~PTR_UNTRUSTED; 6256 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6257 /* keep as-is */ 6258 } else { 6259 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6260 clear_trusted_flags(&flag); 6261 } 6262 } else { 6263 /* 6264 * If not in RCU CS or MEM_RCU pointer can be NULL then 6265 * aggressively mark as untrusted otherwise such 6266 * pointers will be plain PTR_TO_BTF_ID without flags 6267 * and will be allowed to be passed into helpers for 6268 * compat reasons. 6269 */ 6270 flag = PTR_UNTRUSTED; 6271 } 6272 } else { 6273 /* Old compat. Deprecated */ 6274 clear_trusted_flags(&flag); 6275 } 6276 6277 if (atype == BPF_READ && value_regno >= 0) 6278 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6279 6280 return 0; 6281 } 6282 6283 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6284 struct bpf_reg_state *regs, 6285 int regno, int off, int size, 6286 enum bpf_access_type atype, 6287 int value_regno) 6288 { 6289 struct bpf_reg_state *reg = regs + regno; 6290 struct bpf_map *map = reg->map_ptr; 6291 struct bpf_reg_state map_reg; 6292 enum bpf_type_flag flag = 0; 6293 const struct btf_type *t; 6294 const char *tname; 6295 u32 btf_id; 6296 int ret; 6297 6298 if (!btf_vmlinux) { 6299 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6300 return -ENOTSUPP; 6301 } 6302 6303 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6304 verbose(env, "map_ptr access not supported for map type %d\n", 6305 map->map_type); 6306 return -ENOTSUPP; 6307 } 6308 6309 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6310 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6311 6312 if (!env->allow_ptr_leaks) { 6313 verbose(env, 6314 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6315 tname); 6316 return -EPERM; 6317 } 6318 6319 if (off < 0) { 6320 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6321 regno, tname, off); 6322 return -EACCES; 6323 } 6324 6325 if (atype != BPF_READ) { 6326 verbose(env, "only read from %s is supported\n", tname); 6327 return -EACCES; 6328 } 6329 6330 /* Simulate access to a PTR_TO_BTF_ID */ 6331 memset(&map_reg, 0, sizeof(map_reg)); 6332 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6333 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6334 if (ret < 0) 6335 return ret; 6336 6337 if (value_regno >= 0) 6338 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6339 6340 return 0; 6341 } 6342 6343 /* Check that the stack access at the given offset is within bounds. The 6344 * maximum valid offset is -1. 6345 * 6346 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6347 * -state->allocated_stack for reads. 6348 */ 6349 static int check_stack_slot_within_bounds(int off, 6350 struct bpf_func_state *state, 6351 enum bpf_access_type t) 6352 { 6353 int min_valid_off; 6354 6355 if (t == BPF_WRITE) 6356 min_valid_off = -MAX_BPF_STACK; 6357 else 6358 min_valid_off = -state->allocated_stack; 6359 6360 if (off < min_valid_off || off > -1) 6361 return -EACCES; 6362 return 0; 6363 } 6364 6365 /* Check that the stack access at 'regno + off' falls within the maximum stack 6366 * bounds. 6367 * 6368 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6369 */ 6370 static int check_stack_access_within_bounds( 6371 struct bpf_verifier_env *env, 6372 int regno, int off, int access_size, 6373 enum bpf_access_src src, enum bpf_access_type type) 6374 { 6375 struct bpf_reg_state *regs = cur_regs(env); 6376 struct bpf_reg_state *reg = regs + regno; 6377 struct bpf_func_state *state = func(env, reg); 6378 int min_off, max_off; 6379 int err; 6380 char *err_extra; 6381 6382 if (src == ACCESS_HELPER) 6383 /* We don't know if helpers are reading or writing (or both). */ 6384 err_extra = " indirect access to"; 6385 else if (type == BPF_READ) 6386 err_extra = " read from"; 6387 else 6388 err_extra = " write to"; 6389 6390 if (tnum_is_const(reg->var_off)) { 6391 min_off = reg->var_off.value + off; 6392 if (access_size > 0) 6393 max_off = min_off + access_size - 1; 6394 else 6395 max_off = min_off; 6396 } else { 6397 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6398 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6399 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6400 err_extra, regno); 6401 return -EACCES; 6402 } 6403 min_off = reg->smin_value + off; 6404 if (access_size > 0) 6405 max_off = reg->smax_value + off + access_size - 1; 6406 else 6407 max_off = min_off; 6408 } 6409 6410 err = check_stack_slot_within_bounds(min_off, state, type); 6411 if (!err) 6412 err = check_stack_slot_within_bounds(max_off, state, type); 6413 6414 if (err) { 6415 if (tnum_is_const(reg->var_off)) { 6416 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6417 err_extra, regno, off, access_size); 6418 } else { 6419 char tn_buf[48]; 6420 6421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6422 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6423 err_extra, regno, tn_buf, access_size); 6424 } 6425 } 6426 return err; 6427 } 6428 6429 /* check whether memory at (regno + off) is accessible for t = (read | write) 6430 * if t==write, value_regno is a register which value is stored into memory 6431 * if t==read, value_regno is a register which will receive the value from memory 6432 * if t==write && value_regno==-1, some unknown value is stored into memory 6433 * if t==read && value_regno==-1, don't care what we read from memory 6434 */ 6435 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6436 int off, int bpf_size, enum bpf_access_type t, 6437 int value_regno, bool strict_alignment_once, bool is_ldsx) 6438 { 6439 struct bpf_reg_state *regs = cur_regs(env); 6440 struct bpf_reg_state *reg = regs + regno; 6441 struct bpf_func_state *state; 6442 int size, err = 0; 6443 6444 size = bpf_size_to_bytes(bpf_size); 6445 if (size < 0) 6446 return size; 6447 6448 /* alignment checks will add in reg->off themselves */ 6449 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6450 if (err) 6451 return err; 6452 6453 /* for access checks, reg->off is just part of off */ 6454 off += reg->off; 6455 6456 if (reg->type == PTR_TO_MAP_KEY) { 6457 if (t == BPF_WRITE) { 6458 verbose(env, "write to change key R%d not allowed\n", regno); 6459 return -EACCES; 6460 } 6461 6462 err = check_mem_region_access(env, regno, off, size, 6463 reg->map_ptr->key_size, false); 6464 if (err) 6465 return err; 6466 if (value_regno >= 0) 6467 mark_reg_unknown(env, regs, value_regno); 6468 } else if (reg->type == PTR_TO_MAP_VALUE) { 6469 struct btf_field *kptr_field = NULL; 6470 6471 if (t == BPF_WRITE && value_regno >= 0 && 6472 is_pointer_value(env, value_regno)) { 6473 verbose(env, "R%d leaks addr into map\n", value_regno); 6474 return -EACCES; 6475 } 6476 err = check_map_access_type(env, regno, off, size, t); 6477 if (err) 6478 return err; 6479 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6480 if (err) 6481 return err; 6482 if (tnum_is_const(reg->var_off)) 6483 kptr_field = btf_record_find(reg->map_ptr->record, 6484 off + reg->var_off.value, BPF_KPTR); 6485 if (kptr_field) { 6486 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6487 } else if (t == BPF_READ && value_regno >= 0) { 6488 struct bpf_map *map = reg->map_ptr; 6489 6490 /* if map is read-only, track its contents as scalars */ 6491 if (tnum_is_const(reg->var_off) && 6492 bpf_map_is_rdonly(map) && 6493 map->ops->map_direct_value_addr) { 6494 int map_off = off + reg->var_off.value; 6495 u64 val = 0; 6496 6497 err = bpf_map_direct_read(map, map_off, size, 6498 &val, is_ldsx); 6499 if (err) 6500 return err; 6501 6502 regs[value_regno].type = SCALAR_VALUE; 6503 __mark_reg_known(®s[value_regno], val); 6504 } else { 6505 mark_reg_unknown(env, regs, value_regno); 6506 } 6507 } 6508 } else if (base_type(reg->type) == PTR_TO_MEM) { 6509 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6510 6511 if (type_may_be_null(reg->type)) { 6512 verbose(env, "R%d invalid mem access '%s'\n", regno, 6513 reg_type_str(env, reg->type)); 6514 return -EACCES; 6515 } 6516 6517 if (t == BPF_WRITE && rdonly_mem) { 6518 verbose(env, "R%d cannot write into %s\n", 6519 regno, reg_type_str(env, reg->type)); 6520 return -EACCES; 6521 } 6522 6523 if (t == BPF_WRITE && value_regno >= 0 && 6524 is_pointer_value(env, value_regno)) { 6525 verbose(env, "R%d leaks addr into mem\n", value_regno); 6526 return -EACCES; 6527 } 6528 6529 err = check_mem_region_access(env, regno, off, size, 6530 reg->mem_size, false); 6531 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6532 mark_reg_unknown(env, regs, value_regno); 6533 } else if (reg->type == PTR_TO_CTX) { 6534 enum bpf_reg_type reg_type = SCALAR_VALUE; 6535 struct btf *btf = NULL; 6536 u32 btf_id = 0; 6537 6538 if (t == BPF_WRITE && value_regno >= 0 && 6539 is_pointer_value(env, value_regno)) { 6540 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6541 return -EACCES; 6542 } 6543 6544 err = check_ptr_off_reg(env, reg, regno); 6545 if (err < 0) 6546 return err; 6547 6548 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6549 &btf_id); 6550 if (err) 6551 verbose_linfo(env, insn_idx, "; "); 6552 if (!err && t == BPF_READ && value_regno >= 0) { 6553 /* ctx access returns either a scalar, or a 6554 * PTR_TO_PACKET[_META,_END]. In the latter 6555 * case, we know the offset is zero. 6556 */ 6557 if (reg_type == SCALAR_VALUE) { 6558 mark_reg_unknown(env, regs, value_regno); 6559 } else { 6560 mark_reg_known_zero(env, regs, 6561 value_regno); 6562 if (type_may_be_null(reg_type)) 6563 regs[value_regno].id = ++env->id_gen; 6564 /* A load of ctx field could have different 6565 * actual load size with the one encoded in the 6566 * insn. When the dst is PTR, it is for sure not 6567 * a sub-register. 6568 */ 6569 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6570 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6571 regs[value_regno].btf = btf; 6572 regs[value_regno].btf_id = btf_id; 6573 } 6574 } 6575 regs[value_regno].type = reg_type; 6576 } 6577 6578 } else if (reg->type == PTR_TO_STACK) { 6579 /* Basic bounds checks. */ 6580 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6581 if (err) 6582 return err; 6583 6584 state = func(env, reg); 6585 err = update_stack_depth(env, state, off); 6586 if (err) 6587 return err; 6588 6589 if (t == BPF_READ) 6590 err = check_stack_read(env, regno, off, size, 6591 value_regno); 6592 else 6593 err = check_stack_write(env, regno, off, size, 6594 value_regno, insn_idx); 6595 } else if (reg_is_pkt_pointer(reg)) { 6596 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6597 verbose(env, "cannot write into packet\n"); 6598 return -EACCES; 6599 } 6600 if (t == BPF_WRITE && value_regno >= 0 && 6601 is_pointer_value(env, value_regno)) { 6602 verbose(env, "R%d leaks addr into packet\n", 6603 value_regno); 6604 return -EACCES; 6605 } 6606 err = check_packet_access(env, regno, off, size, false); 6607 if (!err && t == BPF_READ && value_regno >= 0) 6608 mark_reg_unknown(env, regs, value_regno); 6609 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6610 if (t == BPF_WRITE && value_regno >= 0 && 6611 is_pointer_value(env, value_regno)) { 6612 verbose(env, "R%d leaks addr into flow keys\n", 6613 value_regno); 6614 return -EACCES; 6615 } 6616 6617 err = check_flow_keys_access(env, off, size); 6618 if (!err && t == BPF_READ && value_regno >= 0) 6619 mark_reg_unknown(env, regs, value_regno); 6620 } else if (type_is_sk_pointer(reg->type)) { 6621 if (t == BPF_WRITE) { 6622 verbose(env, "R%d cannot write into %s\n", 6623 regno, reg_type_str(env, reg->type)); 6624 return -EACCES; 6625 } 6626 err = check_sock_access(env, insn_idx, regno, off, size, t); 6627 if (!err && value_regno >= 0) 6628 mark_reg_unknown(env, regs, value_regno); 6629 } else if (reg->type == PTR_TO_TP_BUFFER) { 6630 err = check_tp_buffer_access(env, reg, regno, off, size); 6631 if (!err && t == BPF_READ && value_regno >= 0) 6632 mark_reg_unknown(env, regs, value_regno); 6633 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6634 !type_may_be_null(reg->type)) { 6635 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6636 value_regno); 6637 } else if (reg->type == CONST_PTR_TO_MAP) { 6638 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6639 value_regno); 6640 } else if (base_type(reg->type) == PTR_TO_BUF) { 6641 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6642 u32 *max_access; 6643 6644 if (rdonly_mem) { 6645 if (t == BPF_WRITE) { 6646 verbose(env, "R%d cannot write into %s\n", 6647 regno, reg_type_str(env, reg->type)); 6648 return -EACCES; 6649 } 6650 max_access = &env->prog->aux->max_rdonly_access; 6651 } else { 6652 max_access = &env->prog->aux->max_rdwr_access; 6653 } 6654 6655 err = check_buffer_access(env, reg, regno, off, size, false, 6656 max_access); 6657 6658 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6659 mark_reg_unknown(env, regs, value_regno); 6660 } else { 6661 verbose(env, "R%d invalid mem access '%s'\n", regno, 6662 reg_type_str(env, reg->type)); 6663 return -EACCES; 6664 } 6665 6666 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6667 regs[value_regno].type == SCALAR_VALUE) { 6668 if (!is_ldsx) 6669 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6670 coerce_reg_to_size(®s[value_regno], size); 6671 else 6672 coerce_reg_to_size_sx(®s[value_regno], size); 6673 } 6674 return err; 6675 } 6676 6677 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6678 { 6679 int load_reg; 6680 int err; 6681 6682 switch (insn->imm) { 6683 case BPF_ADD: 6684 case BPF_ADD | BPF_FETCH: 6685 case BPF_AND: 6686 case BPF_AND | BPF_FETCH: 6687 case BPF_OR: 6688 case BPF_OR | BPF_FETCH: 6689 case BPF_XOR: 6690 case BPF_XOR | BPF_FETCH: 6691 case BPF_XCHG: 6692 case BPF_CMPXCHG: 6693 break; 6694 default: 6695 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6696 return -EINVAL; 6697 } 6698 6699 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6700 verbose(env, "invalid atomic operand size\n"); 6701 return -EINVAL; 6702 } 6703 6704 /* check src1 operand */ 6705 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6706 if (err) 6707 return err; 6708 6709 /* check src2 operand */ 6710 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6711 if (err) 6712 return err; 6713 6714 if (insn->imm == BPF_CMPXCHG) { 6715 /* Check comparison of R0 with memory location */ 6716 const u32 aux_reg = BPF_REG_0; 6717 6718 err = check_reg_arg(env, aux_reg, SRC_OP); 6719 if (err) 6720 return err; 6721 6722 if (is_pointer_value(env, aux_reg)) { 6723 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6724 return -EACCES; 6725 } 6726 } 6727 6728 if (is_pointer_value(env, insn->src_reg)) { 6729 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6730 return -EACCES; 6731 } 6732 6733 if (is_ctx_reg(env, insn->dst_reg) || 6734 is_pkt_reg(env, insn->dst_reg) || 6735 is_flow_key_reg(env, insn->dst_reg) || 6736 is_sk_reg(env, insn->dst_reg)) { 6737 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6738 insn->dst_reg, 6739 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6740 return -EACCES; 6741 } 6742 6743 if (insn->imm & BPF_FETCH) { 6744 if (insn->imm == BPF_CMPXCHG) 6745 load_reg = BPF_REG_0; 6746 else 6747 load_reg = insn->src_reg; 6748 6749 /* check and record load of old value */ 6750 err = check_reg_arg(env, load_reg, DST_OP); 6751 if (err) 6752 return err; 6753 } else { 6754 /* This instruction accesses a memory location but doesn't 6755 * actually load it into a register. 6756 */ 6757 load_reg = -1; 6758 } 6759 6760 /* Check whether we can read the memory, with second call for fetch 6761 * case to simulate the register fill. 6762 */ 6763 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6764 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6765 if (!err && load_reg >= 0) 6766 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6767 BPF_SIZE(insn->code), BPF_READ, load_reg, 6768 true, false); 6769 if (err) 6770 return err; 6771 6772 /* Check whether we can write into the same memory. */ 6773 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6774 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6775 if (err) 6776 return err; 6777 6778 return 0; 6779 } 6780 6781 /* When register 'regno' is used to read the stack (either directly or through 6782 * a helper function) make sure that it's within stack boundary and, depending 6783 * on the access type, that all elements of the stack are initialized. 6784 * 6785 * 'off' includes 'regno->off', but not its dynamic part (if any). 6786 * 6787 * All registers that have been spilled on the stack in the slots within the 6788 * read offsets are marked as read. 6789 */ 6790 static int check_stack_range_initialized( 6791 struct bpf_verifier_env *env, int regno, int off, 6792 int access_size, bool zero_size_allowed, 6793 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6794 { 6795 struct bpf_reg_state *reg = reg_state(env, regno); 6796 struct bpf_func_state *state = func(env, reg); 6797 int err, min_off, max_off, i, j, slot, spi; 6798 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6799 enum bpf_access_type bounds_check_type; 6800 /* Some accesses can write anything into the stack, others are 6801 * read-only. 6802 */ 6803 bool clobber = false; 6804 6805 if (access_size == 0 && !zero_size_allowed) { 6806 verbose(env, "invalid zero-sized read\n"); 6807 return -EACCES; 6808 } 6809 6810 if (type == ACCESS_HELPER) { 6811 /* The bounds checks for writes are more permissive than for 6812 * reads. However, if raw_mode is not set, we'll do extra 6813 * checks below. 6814 */ 6815 bounds_check_type = BPF_WRITE; 6816 clobber = true; 6817 } else { 6818 bounds_check_type = BPF_READ; 6819 } 6820 err = check_stack_access_within_bounds(env, regno, off, access_size, 6821 type, bounds_check_type); 6822 if (err) 6823 return err; 6824 6825 6826 if (tnum_is_const(reg->var_off)) { 6827 min_off = max_off = reg->var_off.value + off; 6828 } else { 6829 /* Variable offset is prohibited for unprivileged mode for 6830 * simplicity since it requires corresponding support in 6831 * Spectre masking for stack ALU. 6832 * See also retrieve_ptr_limit(). 6833 */ 6834 if (!env->bypass_spec_v1) { 6835 char tn_buf[48]; 6836 6837 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6838 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6839 regno, err_extra, tn_buf); 6840 return -EACCES; 6841 } 6842 /* Only initialized buffer on stack is allowed to be accessed 6843 * with variable offset. With uninitialized buffer it's hard to 6844 * guarantee that whole memory is marked as initialized on 6845 * helper return since specific bounds are unknown what may 6846 * cause uninitialized stack leaking. 6847 */ 6848 if (meta && meta->raw_mode) 6849 meta = NULL; 6850 6851 min_off = reg->smin_value + off; 6852 max_off = reg->smax_value + off; 6853 } 6854 6855 if (meta && meta->raw_mode) { 6856 /* Ensure we won't be overwriting dynptrs when simulating byte 6857 * by byte access in check_helper_call using meta.access_size. 6858 * This would be a problem if we have a helper in the future 6859 * which takes: 6860 * 6861 * helper(uninit_mem, len, dynptr) 6862 * 6863 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6864 * may end up writing to dynptr itself when touching memory from 6865 * arg 1. This can be relaxed on a case by case basis for known 6866 * safe cases, but reject due to the possibilitiy of aliasing by 6867 * default. 6868 */ 6869 for (i = min_off; i < max_off + access_size; i++) { 6870 int stack_off = -i - 1; 6871 6872 spi = __get_spi(i); 6873 /* raw_mode may write past allocated_stack */ 6874 if (state->allocated_stack <= stack_off) 6875 continue; 6876 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6877 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6878 return -EACCES; 6879 } 6880 } 6881 meta->access_size = access_size; 6882 meta->regno = regno; 6883 return 0; 6884 } 6885 6886 for (i = min_off; i < max_off + access_size; i++) { 6887 u8 *stype; 6888 6889 slot = -i - 1; 6890 spi = slot / BPF_REG_SIZE; 6891 if (state->allocated_stack <= slot) 6892 goto err; 6893 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6894 if (*stype == STACK_MISC) 6895 goto mark; 6896 if ((*stype == STACK_ZERO) || 6897 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6898 if (clobber) { 6899 /* helper can write anything into the stack */ 6900 *stype = STACK_MISC; 6901 } 6902 goto mark; 6903 } 6904 6905 if (is_spilled_reg(&state->stack[spi]) && 6906 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6907 env->allow_ptr_leaks)) { 6908 if (clobber) { 6909 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6910 for (j = 0; j < BPF_REG_SIZE; j++) 6911 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6912 } 6913 goto mark; 6914 } 6915 6916 err: 6917 if (tnum_is_const(reg->var_off)) { 6918 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6919 err_extra, regno, min_off, i - min_off, access_size); 6920 } else { 6921 char tn_buf[48]; 6922 6923 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6924 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6925 err_extra, regno, tn_buf, i - min_off, access_size); 6926 } 6927 return -EACCES; 6928 mark: 6929 /* reading any byte out of 8-byte 'spill_slot' will cause 6930 * the whole slot to be marked as 'read' 6931 */ 6932 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6933 state->stack[spi].spilled_ptr.parent, 6934 REG_LIVE_READ64); 6935 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6936 * be sure that whether stack slot is written to or not. Hence, 6937 * we must still conservatively propagate reads upwards even if 6938 * helper may write to the entire memory range. 6939 */ 6940 } 6941 return update_stack_depth(env, state, min_off); 6942 } 6943 6944 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6945 int access_size, bool zero_size_allowed, 6946 struct bpf_call_arg_meta *meta) 6947 { 6948 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6949 u32 *max_access; 6950 6951 switch (base_type(reg->type)) { 6952 case PTR_TO_PACKET: 6953 case PTR_TO_PACKET_META: 6954 return check_packet_access(env, regno, reg->off, access_size, 6955 zero_size_allowed); 6956 case PTR_TO_MAP_KEY: 6957 if (meta && meta->raw_mode) { 6958 verbose(env, "R%d cannot write into %s\n", regno, 6959 reg_type_str(env, reg->type)); 6960 return -EACCES; 6961 } 6962 return check_mem_region_access(env, regno, reg->off, access_size, 6963 reg->map_ptr->key_size, false); 6964 case PTR_TO_MAP_VALUE: 6965 if (check_map_access_type(env, regno, reg->off, access_size, 6966 meta && meta->raw_mode ? BPF_WRITE : 6967 BPF_READ)) 6968 return -EACCES; 6969 return check_map_access(env, regno, reg->off, access_size, 6970 zero_size_allowed, ACCESS_HELPER); 6971 case PTR_TO_MEM: 6972 if (type_is_rdonly_mem(reg->type)) { 6973 if (meta && meta->raw_mode) { 6974 verbose(env, "R%d cannot write into %s\n", regno, 6975 reg_type_str(env, reg->type)); 6976 return -EACCES; 6977 } 6978 } 6979 return check_mem_region_access(env, regno, reg->off, 6980 access_size, reg->mem_size, 6981 zero_size_allowed); 6982 case PTR_TO_BUF: 6983 if (type_is_rdonly_mem(reg->type)) { 6984 if (meta && meta->raw_mode) { 6985 verbose(env, "R%d cannot write into %s\n", regno, 6986 reg_type_str(env, reg->type)); 6987 return -EACCES; 6988 } 6989 6990 max_access = &env->prog->aux->max_rdonly_access; 6991 } else { 6992 max_access = &env->prog->aux->max_rdwr_access; 6993 } 6994 return check_buffer_access(env, reg, regno, reg->off, 6995 access_size, zero_size_allowed, 6996 max_access); 6997 case PTR_TO_STACK: 6998 return check_stack_range_initialized( 6999 env, 7000 regno, reg->off, access_size, 7001 zero_size_allowed, ACCESS_HELPER, meta); 7002 case PTR_TO_BTF_ID: 7003 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7004 access_size, BPF_READ, -1); 7005 case PTR_TO_CTX: 7006 /* in case the function doesn't know how to access the context, 7007 * (because we are in a program of type SYSCALL for example), we 7008 * can not statically check its size. 7009 * Dynamically check it now. 7010 */ 7011 if (!env->ops->convert_ctx_access) { 7012 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7013 int offset = access_size - 1; 7014 7015 /* Allow zero-byte read from PTR_TO_CTX */ 7016 if (access_size == 0) 7017 return zero_size_allowed ? 0 : -EACCES; 7018 7019 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7020 atype, -1, false, false); 7021 } 7022 7023 fallthrough; 7024 default: /* scalar_value or invalid ptr */ 7025 /* Allow zero-byte read from NULL, regardless of pointer type */ 7026 if (zero_size_allowed && access_size == 0 && 7027 register_is_null(reg)) 7028 return 0; 7029 7030 verbose(env, "R%d type=%s ", regno, 7031 reg_type_str(env, reg->type)); 7032 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7033 return -EACCES; 7034 } 7035 } 7036 7037 static int check_mem_size_reg(struct bpf_verifier_env *env, 7038 struct bpf_reg_state *reg, u32 regno, 7039 bool zero_size_allowed, 7040 struct bpf_call_arg_meta *meta) 7041 { 7042 int err; 7043 7044 /* This is used to refine r0 return value bounds for helpers 7045 * that enforce this value as an upper bound on return values. 7046 * See do_refine_retval_range() for helpers that can refine 7047 * the return value. C type of helper is u32 so we pull register 7048 * bound from umax_value however, if negative verifier errors 7049 * out. Only upper bounds can be learned because retval is an 7050 * int type and negative retvals are allowed. 7051 */ 7052 meta->msize_max_value = reg->umax_value; 7053 7054 /* The register is SCALAR_VALUE; the access check 7055 * happens using its boundaries. 7056 */ 7057 if (!tnum_is_const(reg->var_off)) 7058 /* For unprivileged variable accesses, disable raw 7059 * mode so that the program is required to 7060 * initialize all the memory that the helper could 7061 * just partially fill up. 7062 */ 7063 meta = NULL; 7064 7065 if (reg->smin_value < 0) { 7066 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7067 regno); 7068 return -EACCES; 7069 } 7070 7071 if (reg->umin_value == 0) { 7072 err = check_helper_mem_access(env, regno - 1, 0, 7073 zero_size_allowed, 7074 meta); 7075 if (err) 7076 return err; 7077 } 7078 7079 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7080 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7081 regno); 7082 return -EACCES; 7083 } 7084 err = check_helper_mem_access(env, regno - 1, 7085 reg->umax_value, 7086 zero_size_allowed, meta); 7087 if (!err) 7088 err = mark_chain_precision(env, regno); 7089 return err; 7090 } 7091 7092 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7093 u32 regno, u32 mem_size) 7094 { 7095 bool may_be_null = type_may_be_null(reg->type); 7096 struct bpf_reg_state saved_reg; 7097 struct bpf_call_arg_meta meta; 7098 int err; 7099 7100 if (register_is_null(reg)) 7101 return 0; 7102 7103 memset(&meta, 0, sizeof(meta)); 7104 /* Assuming that the register contains a value check if the memory 7105 * access is safe. Temporarily save and restore the register's state as 7106 * the conversion shouldn't be visible to a caller. 7107 */ 7108 if (may_be_null) { 7109 saved_reg = *reg; 7110 mark_ptr_not_null_reg(reg); 7111 } 7112 7113 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7114 /* Check access for BPF_WRITE */ 7115 meta.raw_mode = true; 7116 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7117 7118 if (may_be_null) 7119 *reg = saved_reg; 7120 7121 return err; 7122 } 7123 7124 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7125 u32 regno) 7126 { 7127 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7128 bool may_be_null = type_may_be_null(mem_reg->type); 7129 struct bpf_reg_state saved_reg; 7130 struct bpf_call_arg_meta meta; 7131 int err; 7132 7133 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7134 7135 memset(&meta, 0, sizeof(meta)); 7136 7137 if (may_be_null) { 7138 saved_reg = *mem_reg; 7139 mark_ptr_not_null_reg(mem_reg); 7140 } 7141 7142 err = check_mem_size_reg(env, reg, regno, true, &meta); 7143 /* Check access for BPF_WRITE */ 7144 meta.raw_mode = true; 7145 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7146 7147 if (may_be_null) 7148 *mem_reg = saved_reg; 7149 return err; 7150 } 7151 7152 /* Implementation details: 7153 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7154 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7155 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7156 * Two separate bpf_obj_new will also have different reg->id. 7157 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7158 * clears reg->id after value_or_null->value transition, since the verifier only 7159 * cares about the range of access to valid map value pointer and doesn't care 7160 * about actual address of the map element. 7161 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7162 * reg->id > 0 after value_or_null->value transition. By doing so 7163 * two bpf_map_lookups will be considered two different pointers that 7164 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7165 * returned from bpf_obj_new. 7166 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7167 * dead-locks. 7168 * Since only one bpf_spin_lock is allowed the checks are simpler than 7169 * reg_is_refcounted() logic. The verifier needs to remember only 7170 * one spin_lock instead of array of acquired_refs. 7171 * cur_state->active_lock remembers which map value element or allocated 7172 * object got locked and clears it after bpf_spin_unlock. 7173 */ 7174 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7175 bool is_lock) 7176 { 7177 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7178 struct bpf_verifier_state *cur = env->cur_state; 7179 bool is_const = tnum_is_const(reg->var_off); 7180 u64 val = reg->var_off.value; 7181 struct bpf_map *map = NULL; 7182 struct btf *btf = NULL; 7183 struct btf_record *rec; 7184 7185 if (!is_const) { 7186 verbose(env, 7187 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7188 regno); 7189 return -EINVAL; 7190 } 7191 if (reg->type == PTR_TO_MAP_VALUE) { 7192 map = reg->map_ptr; 7193 if (!map->btf) { 7194 verbose(env, 7195 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7196 map->name); 7197 return -EINVAL; 7198 } 7199 } else { 7200 btf = reg->btf; 7201 } 7202 7203 rec = reg_btf_record(reg); 7204 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7205 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7206 map ? map->name : "kptr"); 7207 return -EINVAL; 7208 } 7209 if (rec->spin_lock_off != val + reg->off) { 7210 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7211 val + reg->off, rec->spin_lock_off); 7212 return -EINVAL; 7213 } 7214 if (is_lock) { 7215 if (cur->active_lock.ptr) { 7216 verbose(env, 7217 "Locking two bpf_spin_locks are not allowed\n"); 7218 return -EINVAL; 7219 } 7220 if (map) 7221 cur->active_lock.ptr = map; 7222 else 7223 cur->active_lock.ptr = btf; 7224 cur->active_lock.id = reg->id; 7225 } else { 7226 void *ptr; 7227 7228 if (map) 7229 ptr = map; 7230 else 7231 ptr = btf; 7232 7233 if (!cur->active_lock.ptr) { 7234 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7235 return -EINVAL; 7236 } 7237 if (cur->active_lock.ptr != ptr || 7238 cur->active_lock.id != reg->id) { 7239 verbose(env, "bpf_spin_unlock of different lock\n"); 7240 return -EINVAL; 7241 } 7242 7243 invalidate_non_owning_refs(env); 7244 7245 cur->active_lock.ptr = NULL; 7246 cur->active_lock.id = 0; 7247 } 7248 return 0; 7249 } 7250 7251 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7252 struct bpf_call_arg_meta *meta) 7253 { 7254 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7255 bool is_const = tnum_is_const(reg->var_off); 7256 struct bpf_map *map = reg->map_ptr; 7257 u64 val = reg->var_off.value; 7258 7259 if (!is_const) { 7260 verbose(env, 7261 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7262 regno); 7263 return -EINVAL; 7264 } 7265 if (!map->btf) { 7266 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7267 map->name); 7268 return -EINVAL; 7269 } 7270 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7271 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7272 return -EINVAL; 7273 } 7274 if (map->record->timer_off != val + reg->off) { 7275 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7276 val + reg->off, map->record->timer_off); 7277 return -EINVAL; 7278 } 7279 if (meta->map_ptr) { 7280 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7281 return -EFAULT; 7282 } 7283 meta->map_uid = reg->map_uid; 7284 meta->map_ptr = map; 7285 return 0; 7286 } 7287 7288 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7289 struct bpf_call_arg_meta *meta) 7290 { 7291 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7292 struct bpf_map *map_ptr = reg->map_ptr; 7293 struct btf_field *kptr_field; 7294 u32 kptr_off; 7295 7296 if (!tnum_is_const(reg->var_off)) { 7297 verbose(env, 7298 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7299 regno); 7300 return -EINVAL; 7301 } 7302 if (!map_ptr->btf) { 7303 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7304 map_ptr->name); 7305 return -EINVAL; 7306 } 7307 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7308 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7309 return -EINVAL; 7310 } 7311 7312 meta->map_ptr = map_ptr; 7313 kptr_off = reg->off + reg->var_off.value; 7314 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7315 if (!kptr_field) { 7316 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7317 return -EACCES; 7318 } 7319 if (kptr_field->type != BPF_KPTR_REF) { 7320 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7321 return -EACCES; 7322 } 7323 meta->kptr_field = kptr_field; 7324 return 0; 7325 } 7326 7327 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7328 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7329 * 7330 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7331 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7332 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7333 * 7334 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7335 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7336 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7337 * mutate the view of the dynptr and also possibly destroy it. In the latter 7338 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7339 * memory that dynptr points to. 7340 * 7341 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7342 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7343 * readonly dynptr view yet, hence only the first case is tracked and checked. 7344 * 7345 * This is consistent with how C applies the const modifier to a struct object, 7346 * where the pointer itself inside bpf_dynptr becomes const but not what it 7347 * points to. 7348 * 7349 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7350 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7351 */ 7352 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7353 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7354 { 7355 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7356 int err; 7357 7358 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7359 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7360 */ 7361 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7362 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7363 return -EFAULT; 7364 } 7365 7366 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7367 * constructing a mutable bpf_dynptr object. 7368 * 7369 * Currently, this is only possible with PTR_TO_STACK 7370 * pointing to a region of at least 16 bytes which doesn't 7371 * contain an existing bpf_dynptr. 7372 * 7373 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7374 * mutated or destroyed. However, the memory it points to 7375 * may be mutated. 7376 * 7377 * None - Points to a initialized dynptr that can be mutated and 7378 * destroyed, including mutation of the memory it points 7379 * to. 7380 */ 7381 if (arg_type & MEM_UNINIT) { 7382 int i; 7383 7384 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7385 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7386 return -EINVAL; 7387 } 7388 7389 /* we write BPF_DW bits (8 bytes) at a time */ 7390 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7391 err = check_mem_access(env, insn_idx, regno, 7392 i, BPF_DW, BPF_WRITE, -1, false, false); 7393 if (err) 7394 return err; 7395 } 7396 7397 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7398 } else /* MEM_RDONLY and None case from above */ { 7399 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7400 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7401 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7402 return -EINVAL; 7403 } 7404 7405 if (!is_dynptr_reg_valid_init(env, reg)) { 7406 verbose(env, 7407 "Expected an initialized dynptr as arg #%d\n", 7408 regno); 7409 return -EINVAL; 7410 } 7411 7412 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7413 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7414 verbose(env, 7415 "Expected a dynptr of type %s as arg #%d\n", 7416 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7417 return -EINVAL; 7418 } 7419 7420 err = mark_dynptr_read(env, reg); 7421 } 7422 return err; 7423 } 7424 7425 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7426 { 7427 struct bpf_func_state *state = func(env, reg); 7428 7429 return state->stack[spi].spilled_ptr.ref_obj_id; 7430 } 7431 7432 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7433 { 7434 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7435 } 7436 7437 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7438 { 7439 return meta->kfunc_flags & KF_ITER_NEW; 7440 } 7441 7442 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7443 { 7444 return meta->kfunc_flags & KF_ITER_NEXT; 7445 } 7446 7447 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7448 { 7449 return meta->kfunc_flags & KF_ITER_DESTROY; 7450 } 7451 7452 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7453 { 7454 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7455 * kfunc is iter state pointer 7456 */ 7457 return arg == 0 && is_iter_kfunc(meta); 7458 } 7459 7460 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7461 struct bpf_kfunc_call_arg_meta *meta) 7462 { 7463 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7464 const struct btf_type *t; 7465 const struct btf_param *arg; 7466 int spi, err, i, nr_slots; 7467 u32 btf_id; 7468 7469 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7470 arg = &btf_params(meta->func_proto)[0]; 7471 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7472 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7473 nr_slots = t->size / BPF_REG_SIZE; 7474 7475 if (is_iter_new_kfunc(meta)) { 7476 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7477 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7478 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7479 iter_type_str(meta->btf, btf_id), regno); 7480 return -EINVAL; 7481 } 7482 7483 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7484 err = check_mem_access(env, insn_idx, regno, 7485 i, BPF_DW, BPF_WRITE, -1, false, false); 7486 if (err) 7487 return err; 7488 } 7489 7490 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7491 if (err) 7492 return err; 7493 } else { 7494 /* iter_next() or iter_destroy() expect initialized iter state*/ 7495 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7496 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7497 iter_type_str(meta->btf, btf_id), regno); 7498 return -EINVAL; 7499 } 7500 7501 spi = iter_get_spi(env, reg, nr_slots); 7502 if (spi < 0) 7503 return spi; 7504 7505 err = mark_iter_read(env, reg, spi, nr_slots); 7506 if (err) 7507 return err; 7508 7509 /* remember meta->iter info for process_iter_next_call() */ 7510 meta->iter.spi = spi; 7511 meta->iter.frameno = reg->frameno; 7512 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7513 7514 if (is_iter_destroy_kfunc(meta)) { 7515 err = unmark_stack_slots_iter(env, reg, nr_slots); 7516 if (err) 7517 return err; 7518 } 7519 } 7520 7521 return 0; 7522 } 7523 7524 /* process_iter_next_call() is called when verifier gets to iterator's next 7525 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7526 * to it as just "iter_next()" in comments below. 7527 * 7528 * BPF verifier relies on a crucial contract for any iter_next() 7529 * implementation: it should *eventually* return NULL, and once that happens 7530 * it should keep returning NULL. That is, once iterator exhausts elements to 7531 * iterate, it should never reset or spuriously return new elements. 7532 * 7533 * With the assumption of such contract, process_iter_next_call() simulates 7534 * a fork in the verifier state to validate loop logic correctness and safety 7535 * without having to simulate infinite amount of iterations. 7536 * 7537 * In current state, we first assume that iter_next() returned NULL and 7538 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7539 * conditions we should not form an infinite loop and should eventually reach 7540 * exit. 7541 * 7542 * Besides that, we also fork current state and enqueue it for later 7543 * verification. In a forked state we keep iterator state as ACTIVE 7544 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7545 * also bump iteration depth to prevent erroneous infinite loop detection 7546 * later on (see iter_active_depths_differ() comment for details). In this 7547 * state we assume that we'll eventually loop back to another iter_next() 7548 * calls (it could be in exactly same location or in some other instruction, 7549 * it doesn't matter, we don't make any unnecessary assumptions about this, 7550 * everything revolves around iterator state in a stack slot, not which 7551 * instruction is calling iter_next()). When that happens, we either will come 7552 * to iter_next() with equivalent state and can conclude that next iteration 7553 * will proceed in exactly the same way as we just verified, so it's safe to 7554 * assume that loop converges. If not, we'll go on another iteration 7555 * simulation with a different input state, until all possible starting states 7556 * are validated or we reach maximum number of instructions limit. 7557 * 7558 * This way, we will either exhaustively discover all possible input states 7559 * that iterator loop can start with and eventually will converge, or we'll 7560 * effectively regress into bounded loop simulation logic and either reach 7561 * maximum number of instructions if loop is not provably convergent, or there 7562 * is some statically known limit on number of iterations (e.g., if there is 7563 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7564 * 7565 * One very subtle but very important aspect is that we *always* simulate NULL 7566 * condition first (as the current state) before we simulate non-NULL case. 7567 * This has to do with intricacies of scalar precision tracking. By simulating 7568 * "exit condition" of iter_next() returning NULL first, we make sure all the 7569 * relevant precision marks *that will be set **after** we exit iterator loop* 7570 * are propagated backwards to common parent state of NULL and non-NULL 7571 * branches. Thanks to that, state equivalence checks done later in forked 7572 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7573 * precision marks are finalized and won't change. Because simulating another 7574 * ACTIVE iterator iteration won't change them (because given same input 7575 * states we'll end up with exactly same output states which we are currently 7576 * comparing; and verification after the loop already propagated back what 7577 * needs to be **additionally** tracked as precise). It's subtle, grok 7578 * precision tracking for more intuitive understanding. 7579 */ 7580 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7581 struct bpf_kfunc_call_arg_meta *meta) 7582 { 7583 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7584 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7585 struct bpf_reg_state *cur_iter, *queued_iter; 7586 int iter_frameno = meta->iter.frameno; 7587 int iter_spi = meta->iter.spi; 7588 7589 BTF_TYPE_EMIT(struct bpf_iter); 7590 7591 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7592 7593 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7594 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7595 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7596 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7597 return -EFAULT; 7598 } 7599 7600 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7601 /* branch out active iter state */ 7602 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7603 if (!queued_st) 7604 return -ENOMEM; 7605 7606 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7607 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7608 queued_iter->iter.depth++; 7609 7610 queued_fr = queued_st->frame[queued_st->curframe]; 7611 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7612 } 7613 7614 /* switch to DRAINED state, but keep the depth unchanged */ 7615 /* mark current iter state as drained and assume returned NULL */ 7616 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7617 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7618 7619 return 0; 7620 } 7621 7622 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7623 { 7624 return type == ARG_CONST_SIZE || 7625 type == ARG_CONST_SIZE_OR_ZERO; 7626 } 7627 7628 static bool arg_type_is_release(enum bpf_arg_type type) 7629 { 7630 return type & OBJ_RELEASE; 7631 } 7632 7633 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7634 { 7635 return base_type(type) == ARG_PTR_TO_DYNPTR; 7636 } 7637 7638 static int int_ptr_type_to_size(enum bpf_arg_type type) 7639 { 7640 if (type == ARG_PTR_TO_INT) 7641 return sizeof(u32); 7642 else if (type == ARG_PTR_TO_LONG) 7643 return sizeof(u64); 7644 7645 return -EINVAL; 7646 } 7647 7648 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7649 const struct bpf_call_arg_meta *meta, 7650 enum bpf_arg_type *arg_type) 7651 { 7652 if (!meta->map_ptr) { 7653 /* kernel subsystem misconfigured verifier */ 7654 verbose(env, "invalid map_ptr to access map->type\n"); 7655 return -EACCES; 7656 } 7657 7658 switch (meta->map_ptr->map_type) { 7659 case BPF_MAP_TYPE_SOCKMAP: 7660 case BPF_MAP_TYPE_SOCKHASH: 7661 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7662 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7663 } else { 7664 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7665 return -EINVAL; 7666 } 7667 break; 7668 case BPF_MAP_TYPE_BLOOM_FILTER: 7669 if (meta->func_id == BPF_FUNC_map_peek_elem) 7670 *arg_type = ARG_PTR_TO_MAP_VALUE; 7671 break; 7672 default: 7673 break; 7674 } 7675 return 0; 7676 } 7677 7678 struct bpf_reg_types { 7679 const enum bpf_reg_type types[10]; 7680 u32 *btf_id; 7681 }; 7682 7683 static const struct bpf_reg_types sock_types = { 7684 .types = { 7685 PTR_TO_SOCK_COMMON, 7686 PTR_TO_SOCKET, 7687 PTR_TO_TCP_SOCK, 7688 PTR_TO_XDP_SOCK, 7689 }, 7690 }; 7691 7692 #ifdef CONFIG_NET 7693 static const struct bpf_reg_types btf_id_sock_common_types = { 7694 .types = { 7695 PTR_TO_SOCK_COMMON, 7696 PTR_TO_SOCKET, 7697 PTR_TO_TCP_SOCK, 7698 PTR_TO_XDP_SOCK, 7699 PTR_TO_BTF_ID, 7700 PTR_TO_BTF_ID | PTR_TRUSTED, 7701 }, 7702 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7703 }; 7704 #endif 7705 7706 static const struct bpf_reg_types mem_types = { 7707 .types = { 7708 PTR_TO_STACK, 7709 PTR_TO_PACKET, 7710 PTR_TO_PACKET_META, 7711 PTR_TO_MAP_KEY, 7712 PTR_TO_MAP_VALUE, 7713 PTR_TO_MEM, 7714 PTR_TO_MEM | MEM_RINGBUF, 7715 PTR_TO_BUF, 7716 PTR_TO_BTF_ID | PTR_TRUSTED, 7717 }, 7718 }; 7719 7720 static const struct bpf_reg_types int_ptr_types = { 7721 .types = { 7722 PTR_TO_STACK, 7723 PTR_TO_PACKET, 7724 PTR_TO_PACKET_META, 7725 PTR_TO_MAP_KEY, 7726 PTR_TO_MAP_VALUE, 7727 }, 7728 }; 7729 7730 static const struct bpf_reg_types spin_lock_types = { 7731 .types = { 7732 PTR_TO_MAP_VALUE, 7733 PTR_TO_BTF_ID | MEM_ALLOC, 7734 } 7735 }; 7736 7737 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7738 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7739 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7740 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7741 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7742 static const struct bpf_reg_types btf_ptr_types = { 7743 .types = { 7744 PTR_TO_BTF_ID, 7745 PTR_TO_BTF_ID | PTR_TRUSTED, 7746 PTR_TO_BTF_ID | MEM_RCU, 7747 }, 7748 }; 7749 static const struct bpf_reg_types percpu_btf_ptr_types = { 7750 .types = { 7751 PTR_TO_BTF_ID | MEM_PERCPU, 7752 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7753 } 7754 }; 7755 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7756 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7757 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7758 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7759 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7760 static const struct bpf_reg_types dynptr_types = { 7761 .types = { 7762 PTR_TO_STACK, 7763 CONST_PTR_TO_DYNPTR, 7764 } 7765 }; 7766 7767 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7768 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7769 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7770 [ARG_CONST_SIZE] = &scalar_types, 7771 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7772 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7773 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7774 [ARG_PTR_TO_CTX] = &context_types, 7775 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7776 #ifdef CONFIG_NET 7777 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7778 #endif 7779 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7780 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7781 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7782 [ARG_PTR_TO_MEM] = &mem_types, 7783 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7784 [ARG_PTR_TO_INT] = &int_ptr_types, 7785 [ARG_PTR_TO_LONG] = &int_ptr_types, 7786 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7787 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7788 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7789 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7790 [ARG_PTR_TO_TIMER] = &timer_types, 7791 [ARG_PTR_TO_KPTR] = &kptr_types, 7792 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7793 }; 7794 7795 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7796 enum bpf_arg_type arg_type, 7797 const u32 *arg_btf_id, 7798 struct bpf_call_arg_meta *meta) 7799 { 7800 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7801 enum bpf_reg_type expected, type = reg->type; 7802 const struct bpf_reg_types *compatible; 7803 int i, j; 7804 7805 compatible = compatible_reg_types[base_type(arg_type)]; 7806 if (!compatible) { 7807 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7808 return -EFAULT; 7809 } 7810 7811 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7812 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7813 * 7814 * Same for MAYBE_NULL: 7815 * 7816 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7817 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7818 * 7819 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7820 * 7821 * Therefore we fold these flags depending on the arg_type before comparison. 7822 */ 7823 if (arg_type & MEM_RDONLY) 7824 type &= ~MEM_RDONLY; 7825 if (arg_type & PTR_MAYBE_NULL) 7826 type &= ~PTR_MAYBE_NULL; 7827 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7828 type &= ~DYNPTR_TYPE_FLAG_MASK; 7829 7830 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7831 type &= ~MEM_ALLOC; 7832 7833 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7834 expected = compatible->types[i]; 7835 if (expected == NOT_INIT) 7836 break; 7837 7838 if (type == expected) 7839 goto found; 7840 } 7841 7842 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7843 for (j = 0; j + 1 < i; j++) 7844 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7845 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7846 return -EACCES; 7847 7848 found: 7849 if (base_type(reg->type) != PTR_TO_BTF_ID) 7850 return 0; 7851 7852 if (compatible == &mem_types) { 7853 if (!(arg_type & MEM_RDONLY)) { 7854 verbose(env, 7855 "%s() may write into memory pointed by R%d type=%s\n", 7856 func_id_name(meta->func_id), 7857 regno, reg_type_str(env, reg->type)); 7858 return -EACCES; 7859 } 7860 return 0; 7861 } 7862 7863 switch ((int)reg->type) { 7864 case PTR_TO_BTF_ID: 7865 case PTR_TO_BTF_ID | PTR_TRUSTED: 7866 case PTR_TO_BTF_ID | MEM_RCU: 7867 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7868 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7869 { 7870 /* For bpf_sk_release, it needs to match against first member 7871 * 'struct sock_common', hence make an exception for it. This 7872 * allows bpf_sk_release to work for multiple socket types. 7873 */ 7874 bool strict_type_match = arg_type_is_release(arg_type) && 7875 meta->func_id != BPF_FUNC_sk_release; 7876 7877 if (type_may_be_null(reg->type) && 7878 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7879 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7880 return -EACCES; 7881 } 7882 7883 if (!arg_btf_id) { 7884 if (!compatible->btf_id) { 7885 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7886 return -EFAULT; 7887 } 7888 arg_btf_id = compatible->btf_id; 7889 } 7890 7891 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7892 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7893 return -EACCES; 7894 } else { 7895 if (arg_btf_id == BPF_PTR_POISON) { 7896 verbose(env, "verifier internal error:"); 7897 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7898 regno); 7899 return -EACCES; 7900 } 7901 7902 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7903 btf_vmlinux, *arg_btf_id, 7904 strict_type_match)) { 7905 verbose(env, "R%d is of type %s but %s is expected\n", 7906 regno, btf_type_name(reg->btf, reg->btf_id), 7907 btf_type_name(btf_vmlinux, *arg_btf_id)); 7908 return -EACCES; 7909 } 7910 } 7911 break; 7912 } 7913 case PTR_TO_BTF_ID | MEM_ALLOC: 7914 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7915 meta->func_id != BPF_FUNC_kptr_xchg) { 7916 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7917 return -EFAULT; 7918 } 7919 /* Handled by helper specific checks */ 7920 break; 7921 case PTR_TO_BTF_ID | MEM_PERCPU: 7922 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7923 /* Handled by helper specific checks */ 7924 break; 7925 default: 7926 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7927 return -EFAULT; 7928 } 7929 return 0; 7930 } 7931 7932 static struct btf_field * 7933 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7934 { 7935 struct btf_field *field; 7936 struct btf_record *rec; 7937 7938 rec = reg_btf_record(reg); 7939 if (!rec) 7940 return NULL; 7941 7942 field = btf_record_find(rec, off, fields); 7943 if (!field) 7944 return NULL; 7945 7946 return field; 7947 } 7948 7949 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7950 const struct bpf_reg_state *reg, int regno, 7951 enum bpf_arg_type arg_type) 7952 { 7953 u32 type = reg->type; 7954 7955 /* When referenced register is passed to release function, its fixed 7956 * offset must be 0. 7957 * 7958 * We will check arg_type_is_release reg has ref_obj_id when storing 7959 * meta->release_regno. 7960 */ 7961 if (arg_type_is_release(arg_type)) { 7962 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7963 * may not directly point to the object being released, but to 7964 * dynptr pointing to such object, which might be at some offset 7965 * on the stack. In that case, we simply to fallback to the 7966 * default handling. 7967 */ 7968 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7969 return 0; 7970 7971 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 7972 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 7973 return __check_ptr_off_reg(env, reg, regno, true); 7974 7975 verbose(env, "R%d must have zero offset when passed to release func\n", 7976 regno); 7977 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 7978 btf_type_name(reg->btf, reg->btf_id), reg->off); 7979 return -EINVAL; 7980 } 7981 7982 /* Doing check_ptr_off_reg check for the offset will catch this 7983 * because fixed_off_ok is false, but checking here allows us 7984 * to give the user a better error message. 7985 */ 7986 if (reg->off) { 7987 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7988 regno); 7989 return -EINVAL; 7990 } 7991 return __check_ptr_off_reg(env, reg, regno, false); 7992 } 7993 7994 switch (type) { 7995 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7996 case PTR_TO_STACK: 7997 case PTR_TO_PACKET: 7998 case PTR_TO_PACKET_META: 7999 case PTR_TO_MAP_KEY: 8000 case PTR_TO_MAP_VALUE: 8001 case PTR_TO_MEM: 8002 case PTR_TO_MEM | MEM_RDONLY: 8003 case PTR_TO_MEM | MEM_RINGBUF: 8004 case PTR_TO_BUF: 8005 case PTR_TO_BUF | MEM_RDONLY: 8006 case SCALAR_VALUE: 8007 return 0; 8008 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8009 * fixed offset. 8010 */ 8011 case PTR_TO_BTF_ID: 8012 case PTR_TO_BTF_ID | MEM_ALLOC: 8013 case PTR_TO_BTF_ID | PTR_TRUSTED: 8014 case PTR_TO_BTF_ID | MEM_RCU: 8015 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8016 /* When referenced PTR_TO_BTF_ID is passed to release function, 8017 * its fixed offset must be 0. In the other cases, fixed offset 8018 * can be non-zero. This was already checked above. So pass 8019 * fixed_off_ok as true to allow fixed offset for all other 8020 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8021 * still need to do checks instead of returning. 8022 */ 8023 return __check_ptr_off_reg(env, reg, regno, true); 8024 default: 8025 return __check_ptr_off_reg(env, reg, regno, false); 8026 } 8027 } 8028 8029 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8030 const struct bpf_func_proto *fn, 8031 struct bpf_reg_state *regs) 8032 { 8033 struct bpf_reg_state *state = NULL; 8034 int i; 8035 8036 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8037 if (arg_type_is_dynptr(fn->arg_type[i])) { 8038 if (state) { 8039 verbose(env, "verifier internal error: multiple dynptr args\n"); 8040 return NULL; 8041 } 8042 state = ®s[BPF_REG_1 + i]; 8043 } 8044 8045 if (!state) 8046 verbose(env, "verifier internal error: no dynptr arg found\n"); 8047 8048 return state; 8049 } 8050 8051 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8052 { 8053 struct bpf_func_state *state = func(env, reg); 8054 int spi; 8055 8056 if (reg->type == CONST_PTR_TO_DYNPTR) 8057 return reg->id; 8058 spi = dynptr_get_spi(env, reg); 8059 if (spi < 0) 8060 return spi; 8061 return state->stack[spi].spilled_ptr.id; 8062 } 8063 8064 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8065 { 8066 struct bpf_func_state *state = func(env, reg); 8067 int spi; 8068 8069 if (reg->type == CONST_PTR_TO_DYNPTR) 8070 return reg->ref_obj_id; 8071 spi = dynptr_get_spi(env, reg); 8072 if (spi < 0) 8073 return spi; 8074 return state->stack[spi].spilled_ptr.ref_obj_id; 8075 } 8076 8077 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8078 struct bpf_reg_state *reg) 8079 { 8080 struct bpf_func_state *state = func(env, reg); 8081 int spi; 8082 8083 if (reg->type == CONST_PTR_TO_DYNPTR) 8084 return reg->dynptr.type; 8085 8086 spi = __get_spi(reg->off); 8087 if (spi < 0) { 8088 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8089 return BPF_DYNPTR_TYPE_INVALID; 8090 } 8091 8092 return state->stack[spi].spilled_ptr.dynptr.type; 8093 } 8094 8095 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8096 struct bpf_call_arg_meta *meta, 8097 const struct bpf_func_proto *fn, 8098 int insn_idx) 8099 { 8100 u32 regno = BPF_REG_1 + arg; 8101 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8102 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8103 enum bpf_reg_type type = reg->type; 8104 u32 *arg_btf_id = NULL; 8105 int err = 0; 8106 8107 if (arg_type == ARG_DONTCARE) 8108 return 0; 8109 8110 err = check_reg_arg(env, regno, SRC_OP); 8111 if (err) 8112 return err; 8113 8114 if (arg_type == ARG_ANYTHING) { 8115 if (is_pointer_value(env, regno)) { 8116 verbose(env, "R%d leaks addr into helper function\n", 8117 regno); 8118 return -EACCES; 8119 } 8120 return 0; 8121 } 8122 8123 if (type_is_pkt_pointer(type) && 8124 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8125 verbose(env, "helper access to the packet is not allowed\n"); 8126 return -EACCES; 8127 } 8128 8129 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8130 err = resolve_map_arg_type(env, meta, &arg_type); 8131 if (err) 8132 return err; 8133 } 8134 8135 if (register_is_null(reg) && type_may_be_null(arg_type)) 8136 /* A NULL register has a SCALAR_VALUE type, so skip 8137 * type checking. 8138 */ 8139 goto skip_type_check; 8140 8141 /* arg_btf_id and arg_size are in a union. */ 8142 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8143 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8144 arg_btf_id = fn->arg_btf_id[arg]; 8145 8146 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8147 if (err) 8148 return err; 8149 8150 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8151 if (err) 8152 return err; 8153 8154 skip_type_check: 8155 if (arg_type_is_release(arg_type)) { 8156 if (arg_type_is_dynptr(arg_type)) { 8157 struct bpf_func_state *state = func(env, reg); 8158 int spi; 8159 8160 /* Only dynptr created on stack can be released, thus 8161 * the get_spi and stack state checks for spilled_ptr 8162 * should only be done before process_dynptr_func for 8163 * PTR_TO_STACK. 8164 */ 8165 if (reg->type == PTR_TO_STACK) { 8166 spi = dynptr_get_spi(env, reg); 8167 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8168 verbose(env, "arg %d is an unacquired reference\n", regno); 8169 return -EINVAL; 8170 } 8171 } else { 8172 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8173 return -EINVAL; 8174 } 8175 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8176 verbose(env, "R%d must be referenced when passed to release function\n", 8177 regno); 8178 return -EINVAL; 8179 } 8180 if (meta->release_regno) { 8181 verbose(env, "verifier internal error: more than one release argument\n"); 8182 return -EFAULT; 8183 } 8184 meta->release_regno = regno; 8185 } 8186 8187 if (reg->ref_obj_id) { 8188 if (meta->ref_obj_id) { 8189 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8190 regno, reg->ref_obj_id, 8191 meta->ref_obj_id); 8192 return -EFAULT; 8193 } 8194 meta->ref_obj_id = reg->ref_obj_id; 8195 } 8196 8197 switch (base_type(arg_type)) { 8198 case ARG_CONST_MAP_PTR: 8199 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8200 if (meta->map_ptr) { 8201 /* Use map_uid (which is unique id of inner map) to reject: 8202 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8203 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8204 * if (inner_map1 && inner_map2) { 8205 * timer = bpf_map_lookup_elem(inner_map1); 8206 * if (timer) 8207 * // mismatch would have been allowed 8208 * bpf_timer_init(timer, inner_map2); 8209 * } 8210 * 8211 * Comparing map_ptr is enough to distinguish normal and outer maps. 8212 */ 8213 if (meta->map_ptr != reg->map_ptr || 8214 meta->map_uid != reg->map_uid) { 8215 verbose(env, 8216 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8217 meta->map_uid, reg->map_uid); 8218 return -EINVAL; 8219 } 8220 } 8221 meta->map_ptr = reg->map_ptr; 8222 meta->map_uid = reg->map_uid; 8223 break; 8224 case ARG_PTR_TO_MAP_KEY: 8225 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8226 * check that [key, key + map->key_size) are within 8227 * stack limits and initialized 8228 */ 8229 if (!meta->map_ptr) { 8230 /* in function declaration map_ptr must come before 8231 * map_key, so that it's verified and known before 8232 * we have to check map_key here. Otherwise it means 8233 * that kernel subsystem misconfigured verifier 8234 */ 8235 verbose(env, "invalid map_ptr to access map->key\n"); 8236 return -EACCES; 8237 } 8238 err = check_helper_mem_access(env, regno, 8239 meta->map_ptr->key_size, false, 8240 NULL); 8241 break; 8242 case ARG_PTR_TO_MAP_VALUE: 8243 if (type_may_be_null(arg_type) && register_is_null(reg)) 8244 return 0; 8245 8246 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8247 * check [value, value + map->value_size) validity 8248 */ 8249 if (!meta->map_ptr) { 8250 /* kernel subsystem misconfigured verifier */ 8251 verbose(env, "invalid map_ptr to access map->value\n"); 8252 return -EACCES; 8253 } 8254 meta->raw_mode = arg_type & MEM_UNINIT; 8255 err = check_helper_mem_access(env, regno, 8256 meta->map_ptr->value_size, false, 8257 meta); 8258 break; 8259 case ARG_PTR_TO_PERCPU_BTF_ID: 8260 if (!reg->btf_id) { 8261 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8262 return -EACCES; 8263 } 8264 meta->ret_btf = reg->btf; 8265 meta->ret_btf_id = reg->btf_id; 8266 break; 8267 case ARG_PTR_TO_SPIN_LOCK: 8268 if (in_rbtree_lock_required_cb(env)) { 8269 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8270 return -EACCES; 8271 } 8272 if (meta->func_id == BPF_FUNC_spin_lock) { 8273 err = process_spin_lock(env, regno, true); 8274 if (err) 8275 return err; 8276 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8277 err = process_spin_lock(env, regno, false); 8278 if (err) 8279 return err; 8280 } else { 8281 verbose(env, "verifier internal error\n"); 8282 return -EFAULT; 8283 } 8284 break; 8285 case ARG_PTR_TO_TIMER: 8286 err = process_timer_func(env, regno, meta); 8287 if (err) 8288 return err; 8289 break; 8290 case ARG_PTR_TO_FUNC: 8291 meta->subprogno = reg->subprogno; 8292 break; 8293 case ARG_PTR_TO_MEM: 8294 /* The access to this pointer is only checked when we hit the 8295 * next is_mem_size argument below. 8296 */ 8297 meta->raw_mode = arg_type & MEM_UNINIT; 8298 if (arg_type & MEM_FIXED_SIZE) { 8299 err = check_helper_mem_access(env, regno, 8300 fn->arg_size[arg], false, 8301 meta); 8302 } 8303 break; 8304 case ARG_CONST_SIZE: 8305 err = check_mem_size_reg(env, reg, regno, false, meta); 8306 break; 8307 case ARG_CONST_SIZE_OR_ZERO: 8308 err = check_mem_size_reg(env, reg, regno, true, meta); 8309 break; 8310 case ARG_PTR_TO_DYNPTR: 8311 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8312 if (err) 8313 return err; 8314 break; 8315 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8316 if (!tnum_is_const(reg->var_off)) { 8317 verbose(env, "R%d is not a known constant'\n", 8318 regno); 8319 return -EACCES; 8320 } 8321 meta->mem_size = reg->var_off.value; 8322 err = mark_chain_precision(env, regno); 8323 if (err) 8324 return err; 8325 break; 8326 case ARG_PTR_TO_INT: 8327 case ARG_PTR_TO_LONG: 8328 { 8329 int size = int_ptr_type_to_size(arg_type); 8330 8331 err = check_helper_mem_access(env, regno, size, false, meta); 8332 if (err) 8333 return err; 8334 err = check_ptr_alignment(env, reg, 0, size, true); 8335 break; 8336 } 8337 case ARG_PTR_TO_CONST_STR: 8338 { 8339 struct bpf_map *map = reg->map_ptr; 8340 int map_off; 8341 u64 map_addr; 8342 char *str_ptr; 8343 8344 if (!bpf_map_is_rdonly(map)) { 8345 verbose(env, "R%d does not point to a readonly map'\n", regno); 8346 return -EACCES; 8347 } 8348 8349 if (!tnum_is_const(reg->var_off)) { 8350 verbose(env, "R%d is not a constant address'\n", regno); 8351 return -EACCES; 8352 } 8353 8354 if (!map->ops->map_direct_value_addr) { 8355 verbose(env, "no direct value access support for this map type\n"); 8356 return -EACCES; 8357 } 8358 8359 err = check_map_access(env, regno, reg->off, 8360 map->value_size - reg->off, false, 8361 ACCESS_HELPER); 8362 if (err) 8363 return err; 8364 8365 map_off = reg->off + reg->var_off.value; 8366 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8367 if (err) { 8368 verbose(env, "direct value access on string failed\n"); 8369 return err; 8370 } 8371 8372 str_ptr = (char *)(long)(map_addr); 8373 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8374 verbose(env, "string is not zero-terminated\n"); 8375 return -EINVAL; 8376 } 8377 break; 8378 } 8379 case ARG_PTR_TO_KPTR: 8380 err = process_kptr_func(env, regno, meta); 8381 if (err) 8382 return err; 8383 break; 8384 } 8385 8386 return err; 8387 } 8388 8389 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8390 { 8391 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8392 enum bpf_prog_type type = resolve_prog_type(env->prog); 8393 8394 if (func_id != BPF_FUNC_map_update_elem) 8395 return false; 8396 8397 /* It's not possible to get access to a locked struct sock in these 8398 * contexts, so updating is safe. 8399 */ 8400 switch (type) { 8401 case BPF_PROG_TYPE_TRACING: 8402 if (eatype == BPF_TRACE_ITER) 8403 return true; 8404 break; 8405 case BPF_PROG_TYPE_SOCKET_FILTER: 8406 case BPF_PROG_TYPE_SCHED_CLS: 8407 case BPF_PROG_TYPE_SCHED_ACT: 8408 case BPF_PROG_TYPE_XDP: 8409 case BPF_PROG_TYPE_SK_REUSEPORT: 8410 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8411 case BPF_PROG_TYPE_SK_LOOKUP: 8412 return true; 8413 default: 8414 break; 8415 } 8416 8417 verbose(env, "cannot update sockmap in this context\n"); 8418 return false; 8419 } 8420 8421 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8422 { 8423 return env->prog->jit_requested && 8424 bpf_jit_supports_subprog_tailcalls(); 8425 } 8426 8427 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8428 struct bpf_map *map, int func_id) 8429 { 8430 if (!map) 8431 return 0; 8432 8433 /* We need a two way check, first is from map perspective ... */ 8434 switch (map->map_type) { 8435 case BPF_MAP_TYPE_PROG_ARRAY: 8436 if (func_id != BPF_FUNC_tail_call) 8437 goto error; 8438 break; 8439 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8440 if (func_id != BPF_FUNC_perf_event_read && 8441 func_id != BPF_FUNC_perf_event_output && 8442 func_id != BPF_FUNC_skb_output && 8443 func_id != BPF_FUNC_perf_event_read_value && 8444 func_id != BPF_FUNC_xdp_output) 8445 goto error; 8446 break; 8447 case BPF_MAP_TYPE_RINGBUF: 8448 if (func_id != BPF_FUNC_ringbuf_output && 8449 func_id != BPF_FUNC_ringbuf_reserve && 8450 func_id != BPF_FUNC_ringbuf_query && 8451 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8452 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8453 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8454 goto error; 8455 break; 8456 case BPF_MAP_TYPE_USER_RINGBUF: 8457 if (func_id != BPF_FUNC_user_ringbuf_drain) 8458 goto error; 8459 break; 8460 case BPF_MAP_TYPE_STACK_TRACE: 8461 if (func_id != BPF_FUNC_get_stackid) 8462 goto error; 8463 break; 8464 case BPF_MAP_TYPE_CGROUP_ARRAY: 8465 if (func_id != BPF_FUNC_skb_under_cgroup && 8466 func_id != BPF_FUNC_current_task_under_cgroup) 8467 goto error; 8468 break; 8469 case BPF_MAP_TYPE_CGROUP_STORAGE: 8470 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8471 if (func_id != BPF_FUNC_get_local_storage) 8472 goto error; 8473 break; 8474 case BPF_MAP_TYPE_DEVMAP: 8475 case BPF_MAP_TYPE_DEVMAP_HASH: 8476 if (func_id != BPF_FUNC_redirect_map && 8477 func_id != BPF_FUNC_map_lookup_elem) 8478 goto error; 8479 break; 8480 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8481 * appear. 8482 */ 8483 case BPF_MAP_TYPE_CPUMAP: 8484 if (func_id != BPF_FUNC_redirect_map) 8485 goto error; 8486 break; 8487 case BPF_MAP_TYPE_XSKMAP: 8488 if (func_id != BPF_FUNC_redirect_map && 8489 func_id != BPF_FUNC_map_lookup_elem) 8490 goto error; 8491 break; 8492 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8493 case BPF_MAP_TYPE_HASH_OF_MAPS: 8494 if (func_id != BPF_FUNC_map_lookup_elem) 8495 goto error; 8496 break; 8497 case BPF_MAP_TYPE_SOCKMAP: 8498 if (func_id != BPF_FUNC_sk_redirect_map && 8499 func_id != BPF_FUNC_sock_map_update && 8500 func_id != BPF_FUNC_map_delete_elem && 8501 func_id != BPF_FUNC_msg_redirect_map && 8502 func_id != BPF_FUNC_sk_select_reuseport && 8503 func_id != BPF_FUNC_map_lookup_elem && 8504 !may_update_sockmap(env, func_id)) 8505 goto error; 8506 break; 8507 case BPF_MAP_TYPE_SOCKHASH: 8508 if (func_id != BPF_FUNC_sk_redirect_hash && 8509 func_id != BPF_FUNC_sock_hash_update && 8510 func_id != BPF_FUNC_map_delete_elem && 8511 func_id != BPF_FUNC_msg_redirect_hash && 8512 func_id != BPF_FUNC_sk_select_reuseport && 8513 func_id != BPF_FUNC_map_lookup_elem && 8514 !may_update_sockmap(env, func_id)) 8515 goto error; 8516 break; 8517 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8518 if (func_id != BPF_FUNC_sk_select_reuseport) 8519 goto error; 8520 break; 8521 case BPF_MAP_TYPE_QUEUE: 8522 case BPF_MAP_TYPE_STACK: 8523 if (func_id != BPF_FUNC_map_peek_elem && 8524 func_id != BPF_FUNC_map_pop_elem && 8525 func_id != BPF_FUNC_map_push_elem) 8526 goto error; 8527 break; 8528 case BPF_MAP_TYPE_SK_STORAGE: 8529 if (func_id != BPF_FUNC_sk_storage_get && 8530 func_id != BPF_FUNC_sk_storage_delete && 8531 func_id != BPF_FUNC_kptr_xchg) 8532 goto error; 8533 break; 8534 case BPF_MAP_TYPE_INODE_STORAGE: 8535 if (func_id != BPF_FUNC_inode_storage_get && 8536 func_id != BPF_FUNC_inode_storage_delete && 8537 func_id != BPF_FUNC_kptr_xchg) 8538 goto error; 8539 break; 8540 case BPF_MAP_TYPE_TASK_STORAGE: 8541 if (func_id != BPF_FUNC_task_storage_get && 8542 func_id != BPF_FUNC_task_storage_delete && 8543 func_id != BPF_FUNC_kptr_xchg) 8544 goto error; 8545 break; 8546 case BPF_MAP_TYPE_CGRP_STORAGE: 8547 if (func_id != BPF_FUNC_cgrp_storage_get && 8548 func_id != BPF_FUNC_cgrp_storage_delete && 8549 func_id != BPF_FUNC_kptr_xchg) 8550 goto error; 8551 break; 8552 case BPF_MAP_TYPE_BLOOM_FILTER: 8553 if (func_id != BPF_FUNC_map_peek_elem && 8554 func_id != BPF_FUNC_map_push_elem) 8555 goto error; 8556 break; 8557 default: 8558 break; 8559 } 8560 8561 /* ... and second from the function itself. */ 8562 switch (func_id) { 8563 case BPF_FUNC_tail_call: 8564 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8565 goto error; 8566 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8567 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8568 return -EINVAL; 8569 } 8570 break; 8571 case BPF_FUNC_perf_event_read: 8572 case BPF_FUNC_perf_event_output: 8573 case BPF_FUNC_perf_event_read_value: 8574 case BPF_FUNC_skb_output: 8575 case BPF_FUNC_xdp_output: 8576 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8577 goto error; 8578 break; 8579 case BPF_FUNC_ringbuf_output: 8580 case BPF_FUNC_ringbuf_reserve: 8581 case BPF_FUNC_ringbuf_query: 8582 case BPF_FUNC_ringbuf_reserve_dynptr: 8583 case BPF_FUNC_ringbuf_submit_dynptr: 8584 case BPF_FUNC_ringbuf_discard_dynptr: 8585 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8586 goto error; 8587 break; 8588 case BPF_FUNC_user_ringbuf_drain: 8589 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8590 goto error; 8591 break; 8592 case BPF_FUNC_get_stackid: 8593 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8594 goto error; 8595 break; 8596 case BPF_FUNC_current_task_under_cgroup: 8597 case BPF_FUNC_skb_under_cgroup: 8598 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8599 goto error; 8600 break; 8601 case BPF_FUNC_redirect_map: 8602 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8603 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8604 map->map_type != BPF_MAP_TYPE_CPUMAP && 8605 map->map_type != BPF_MAP_TYPE_XSKMAP) 8606 goto error; 8607 break; 8608 case BPF_FUNC_sk_redirect_map: 8609 case BPF_FUNC_msg_redirect_map: 8610 case BPF_FUNC_sock_map_update: 8611 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8612 goto error; 8613 break; 8614 case BPF_FUNC_sk_redirect_hash: 8615 case BPF_FUNC_msg_redirect_hash: 8616 case BPF_FUNC_sock_hash_update: 8617 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8618 goto error; 8619 break; 8620 case BPF_FUNC_get_local_storage: 8621 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8622 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8623 goto error; 8624 break; 8625 case BPF_FUNC_sk_select_reuseport: 8626 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8627 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8628 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8629 goto error; 8630 break; 8631 case BPF_FUNC_map_pop_elem: 8632 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8633 map->map_type != BPF_MAP_TYPE_STACK) 8634 goto error; 8635 break; 8636 case BPF_FUNC_map_peek_elem: 8637 case BPF_FUNC_map_push_elem: 8638 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8639 map->map_type != BPF_MAP_TYPE_STACK && 8640 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8641 goto error; 8642 break; 8643 case BPF_FUNC_map_lookup_percpu_elem: 8644 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8645 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8646 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8647 goto error; 8648 break; 8649 case BPF_FUNC_sk_storage_get: 8650 case BPF_FUNC_sk_storage_delete: 8651 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8652 goto error; 8653 break; 8654 case BPF_FUNC_inode_storage_get: 8655 case BPF_FUNC_inode_storage_delete: 8656 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8657 goto error; 8658 break; 8659 case BPF_FUNC_task_storage_get: 8660 case BPF_FUNC_task_storage_delete: 8661 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8662 goto error; 8663 break; 8664 case BPF_FUNC_cgrp_storage_get: 8665 case BPF_FUNC_cgrp_storage_delete: 8666 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8667 goto error; 8668 break; 8669 default: 8670 break; 8671 } 8672 8673 return 0; 8674 error: 8675 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8676 map->map_type, func_id_name(func_id), func_id); 8677 return -EINVAL; 8678 } 8679 8680 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8681 { 8682 int count = 0; 8683 8684 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8685 count++; 8686 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8687 count++; 8688 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8689 count++; 8690 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8691 count++; 8692 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8693 count++; 8694 8695 /* We only support one arg being in raw mode at the moment, 8696 * which is sufficient for the helper functions we have 8697 * right now. 8698 */ 8699 return count <= 1; 8700 } 8701 8702 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8703 { 8704 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8705 bool has_size = fn->arg_size[arg] != 0; 8706 bool is_next_size = false; 8707 8708 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8709 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8710 8711 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8712 return is_next_size; 8713 8714 return has_size == is_next_size || is_next_size == is_fixed; 8715 } 8716 8717 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8718 { 8719 /* bpf_xxx(..., buf, len) call will access 'len' 8720 * bytes from memory 'buf'. Both arg types need 8721 * to be paired, so make sure there's no buggy 8722 * helper function specification. 8723 */ 8724 if (arg_type_is_mem_size(fn->arg1_type) || 8725 check_args_pair_invalid(fn, 0) || 8726 check_args_pair_invalid(fn, 1) || 8727 check_args_pair_invalid(fn, 2) || 8728 check_args_pair_invalid(fn, 3) || 8729 check_args_pair_invalid(fn, 4)) 8730 return false; 8731 8732 return true; 8733 } 8734 8735 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8736 { 8737 int i; 8738 8739 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8740 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8741 return !!fn->arg_btf_id[i]; 8742 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8743 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8744 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8745 /* arg_btf_id and arg_size are in a union. */ 8746 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8747 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8748 return false; 8749 } 8750 8751 return true; 8752 } 8753 8754 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8755 { 8756 return check_raw_mode_ok(fn) && 8757 check_arg_pair_ok(fn) && 8758 check_btf_id_ok(fn) ? 0 : -EINVAL; 8759 } 8760 8761 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8762 * are now invalid, so turn them into unknown SCALAR_VALUE. 8763 * 8764 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8765 * since these slices point to packet data. 8766 */ 8767 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8768 { 8769 struct bpf_func_state *state; 8770 struct bpf_reg_state *reg; 8771 8772 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8773 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8774 mark_reg_invalid(env, reg); 8775 })); 8776 } 8777 8778 enum { 8779 AT_PKT_END = -1, 8780 BEYOND_PKT_END = -2, 8781 }; 8782 8783 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8784 { 8785 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8786 struct bpf_reg_state *reg = &state->regs[regn]; 8787 8788 if (reg->type != PTR_TO_PACKET) 8789 /* PTR_TO_PACKET_META is not supported yet */ 8790 return; 8791 8792 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8793 * How far beyond pkt_end it goes is unknown. 8794 * if (!range_open) it's the case of pkt >= pkt_end 8795 * if (range_open) it's the case of pkt > pkt_end 8796 * hence this pointer is at least 1 byte bigger than pkt_end 8797 */ 8798 if (range_open) 8799 reg->range = BEYOND_PKT_END; 8800 else 8801 reg->range = AT_PKT_END; 8802 } 8803 8804 /* The pointer with the specified id has released its reference to kernel 8805 * resources. Identify all copies of the same pointer and clear the reference. 8806 */ 8807 static int release_reference(struct bpf_verifier_env *env, 8808 int ref_obj_id) 8809 { 8810 struct bpf_func_state *state; 8811 struct bpf_reg_state *reg; 8812 int err; 8813 8814 err = release_reference_state(cur_func(env), ref_obj_id); 8815 if (err) 8816 return err; 8817 8818 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8819 if (reg->ref_obj_id == ref_obj_id) 8820 mark_reg_invalid(env, reg); 8821 })); 8822 8823 return 0; 8824 } 8825 8826 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8827 { 8828 struct bpf_func_state *unused; 8829 struct bpf_reg_state *reg; 8830 8831 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8832 if (type_is_non_owning_ref(reg->type)) 8833 mark_reg_invalid(env, reg); 8834 })); 8835 } 8836 8837 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8838 struct bpf_reg_state *regs) 8839 { 8840 int i; 8841 8842 /* after the call registers r0 - r5 were scratched */ 8843 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8844 mark_reg_not_init(env, regs, caller_saved[i]); 8845 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8846 } 8847 } 8848 8849 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8850 struct bpf_func_state *caller, 8851 struct bpf_func_state *callee, 8852 int insn_idx); 8853 8854 static int set_callee_state(struct bpf_verifier_env *env, 8855 struct bpf_func_state *caller, 8856 struct bpf_func_state *callee, int insn_idx); 8857 8858 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8859 int *insn_idx, int subprog, 8860 set_callee_state_fn set_callee_state_cb) 8861 { 8862 struct bpf_verifier_state *state = env->cur_state; 8863 struct bpf_func_state *caller, *callee; 8864 int err; 8865 8866 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8867 verbose(env, "the call stack of %d frames is too deep\n", 8868 state->curframe + 2); 8869 return -E2BIG; 8870 } 8871 8872 caller = state->frame[state->curframe]; 8873 if (state->frame[state->curframe + 1]) { 8874 verbose(env, "verifier bug. Frame %d already allocated\n", 8875 state->curframe + 1); 8876 return -EFAULT; 8877 } 8878 8879 err = btf_check_subprog_call(env, subprog, caller->regs); 8880 if (err == -EFAULT) 8881 return err; 8882 if (subprog_is_global(env, subprog)) { 8883 if (err) { 8884 verbose(env, "Caller passes invalid args into func#%d\n", 8885 subprog); 8886 return err; 8887 } else { 8888 if (env->log.level & BPF_LOG_LEVEL) 8889 verbose(env, 8890 "Func#%d is global and valid. Skipping.\n", 8891 subprog); 8892 clear_caller_saved_regs(env, caller->regs); 8893 8894 /* All global functions return a 64-bit SCALAR_VALUE */ 8895 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8896 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8897 8898 /* continue with next insn after call */ 8899 return 0; 8900 } 8901 } 8902 8903 /* set_callee_state is used for direct subprog calls, but we are 8904 * interested in validating only BPF helpers that can call subprogs as 8905 * callbacks 8906 */ 8907 if (set_callee_state_cb != set_callee_state) { 8908 if (bpf_pseudo_kfunc_call(insn) && 8909 !is_callback_calling_kfunc(insn->imm)) { 8910 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8911 func_id_name(insn->imm), insn->imm); 8912 return -EFAULT; 8913 } else if (!bpf_pseudo_kfunc_call(insn) && 8914 !is_callback_calling_function(insn->imm)) { /* helper */ 8915 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8916 func_id_name(insn->imm), insn->imm); 8917 return -EFAULT; 8918 } 8919 } 8920 8921 if (insn->code == (BPF_JMP | BPF_CALL) && 8922 insn->src_reg == 0 && 8923 insn->imm == BPF_FUNC_timer_set_callback) { 8924 struct bpf_verifier_state *async_cb; 8925 8926 /* there is no real recursion here. timer callbacks are async */ 8927 env->subprog_info[subprog].is_async_cb = true; 8928 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8929 *insn_idx, subprog); 8930 if (!async_cb) 8931 return -EFAULT; 8932 callee = async_cb->frame[0]; 8933 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8934 8935 /* Convert bpf_timer_set_callback() args into timer callback args */ 8936 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8937 if (err) 8938 return err; 8939 8940 clear_caller_saved_regs(env, caller->regs); 8941 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8942 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8943 /* continue with next insn after call */ 8944 return 0; 8945 } 8946 8947 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8948 if (!callee) 8949 return -ENOMEM; 8950 state->frame[state->curframe + 1] = callee; 8951 8952 /* callee cannot access r0, r6 - r9 for reading and has to write 8953 * into its own stack before reading from it. 8954 * callee can read/write into caller's stack 8955 */ 8956 init_func_state(env, callee, 8957 /* remember the callsite, it will be used by bpf_exit */ 8958 *insn_idx /* callsite */, 8959 state->curframe + 1 /* frameno within this callchain */, 8960 subprog /* subprog number within this prog */); 8961 8962 /* Transfer references to the callee */ 8963 err = copy_reference_state(callee, caller); 8964 if (err) 8965 goto err_out; 8966 8967 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8968 if (err) 8969 goto err_out; 8970 8971 clear_caller_saved_regs(env, caller->regs); 8972 8973 /* only increment it after check_reg_arg() finished */ 8974 state->curframe++; 8975 8976 /* and go analyze first insn of the callee */ 8977 *insn_idx = env->subprog_info[subprog].start - 1; 8978 8979 if (env->log.level & BPF_LOG_LEVEL) { 8980 verbose(env, "caller:\n"); 8981 print_verifier_state(env, caller, true); 8982 verbose(env, "callee:\n"); 8983 print_verifier_state(env, callee, true); 8984 } 8985 return 0; 8986 8987 err_out: 8988 free_func_state(callee); 8989 state->frame[state->curframe + 1] = NULL; 8990 return err; 8991 } 8992 8993 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8994 struct bpf_func_state *caller, 8995 struct bpf_func_state *callee) 8996 { 8997 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8998 * void *callback_ctx, u64 flags); 8999 * callback_fn(struct bpf_map *map, void *key, void *value, 9000 * void *callback_ctx); 9001 */ 9002 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9003 9004 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9005 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9006 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9007 9008 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9009 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9010 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9011 9012 /* pointer to stack or null */ 9013 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9014 9015 /* unused */ 9016 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9017 return 0; 9018 } 9019 9020 static int set_callee_state(struct bpf_verifier_env *env, 9021 struct bpf_func_state *caller, 9022 struct bpf_func_state *callee, int insn_idx) 9023 { 9024 int i; 9025 9026 /* copy r1 - r5 args that callee can access. The copy includes parent 9027 * pointers, which connects us up to the liveness chain 9028 */ 9029 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9030 callee->regs[i] = caller->regs[i]; 9031 return 0; 9032 } 9033 9034 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9035 int *insn_idx) 9036 { 9037 int subprog, target_insn; 9038 9039 target_insn = *insn_idx + insn->imm + 1; 9040 subprog = find_subprog(env, target_insn); 9041 if (subprog < 0) { 9042 verbose(env, "verifier bug. No program starts at insn %d\n", 9043 target_insn); 9044 return -EFAULT; 9045 } 9046 9047 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 9048 } 9049 9050 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9051 struct bpf_func_state *caller, 9052 struct bpf_func_state *callee, 9053 int insn_idx) 9054 { 9055 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9056 struct bpf_map *map; 9057 int err; 9058 9059 if (bpf_map_ptr_poisoned(insn_aux)) { 9060 verbose(env, "tail_call abusing map_ptr\n"); 9061 return -EINVAL; 9062 } 9063 9064 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9065 if (!map->ops->map_set_for_each_callback_args || 9066 !map->ops->map_for_each_callback) { 9067 verbose(env, "callback function not allowed for map\n"); 9068 return -ENOTSUPP; 9069 } 9070 9071 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9072 if (err) 9073 return err; 9074 9075 callee->in_callback_fn = true; 9076 callee->callback_ret_range = tnum_range(0, 1); 9077 return 0; 9078 } 9079 9080 static int set_loop_callback_state(struct bpf_verifier_env *env, 9081 struct bpf_func_state *caller, 9082 struct bpf_func_state *callee, 9083 int insn_idx) 9084 { 9085 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9086 * u64 flags); 9087 * callback_fn(u32 index, void *callback_ctx); 9088 */ 9089 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9090 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9091 9092 /* unused */ 9093 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9094 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9095 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9096 9097 callee->in_callback_fn = true; 9098 callee->callback_ret_range = tnum_range(0, 1); 9099 return 0; 9100 } 9101 9102 static int set_timer_callback_state(struct bpf_verifier_env *env, 9103 struct bpf_func_state *caller, 9104 struct bpf_func_state *callee, 9105 int insn_idx) 9106 { 9107 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9108 9109 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9110 * callback_fn(struct bpf_map *map, void *key, void *value); 9111 */ 9112 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9113 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9114 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9115 9116 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9117 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9118 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9119 9120 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9121 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9122 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9123 9124 /* unused */ 9125 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9126 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9127 callee->in_async_callback_fn = true; 9128 callee->callback_ret_range = tnum_range(0, 1); 9129 return 0; 9130 } 9131 9132 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9133 struct bpf_func_state *caller, 9134 struct bpf_func_state *callee, 9135 int insn_idx) 9136 { 9137 /* bpf_find_vma(struct task_struct *task, u64 addr, 9138 * void *callback_fn, void *callback_ctx, u64 flags) 9139 * (callback_fn)(struct task_struct *task, 9140 * struct vm_area_struct *vma, void *callback_ctx); 9141 */ 9142 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9143 9144 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9145 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9146 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9147 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9148 9149 /* pointer to stack or null */ 9150 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9151 9152 /* unused */ 9153 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9154 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9155 callee->in_callback_fn = true; 9156 callee->callback_ret_range = tnum_range(0, 1); 9157 return 0; 9158 } 9159 9160 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9161 struct bpf_func_state *caller, 9162 struct bpf_func_state *callee, 9163 int insn_idx) 9164 { 9165 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9166 * callback_ctx, u64 flags); 9167 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9168 */ 9169 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9170 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9171 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9172 9173 /* unused */ 9174 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9175 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9176 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9177 9178 callee->in_callback_fn = true; 9179 callee->callback_ret_range = tnum_range(0, 1); 9180 return 0; 9181 } 9182 9183 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9184 struct bpf_func_state *caller, 9185 struct bpf_func_state *callee, 9186 int insn_idx) 9187 { 9188 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9189 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9190 * 9191 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9192 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9193 * by this point, so look at 'root' 9194 */ 9195 struct btf_field *field; 9196 9197 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9198 BPF_RB_ROOT); 9199 if (!field || !field->graph_root.value_btf_id) 9200 return -EFAULT; 9201 9202 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9203 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9204 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9205 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9206 9207 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9208 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9209 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9210 callee->in_callback_fn = true; 9211 callee->callback_ret_range = tnum_range(0, 1); 9212 return 0; 9213 } 9214 9215 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9216 9217 /* Are we currently verifying the callback for a rbtree helper that must 9218 * be called with lock held? If so, no need to complain about unreleased 9219 * lock 9220 */ 9221 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9222 { 9223 struct bpf_verifier_state *state = env->cur_state; 9224 struct bpf_insn *insn = env->prog->insnsi; 9225 struct bpf_func_state *callee; 9226 int kfunc_btf_id; 9227 9228 if (!state->curframe) 9229 return false; 9230 9231 callee = state->frame[state->curframe]; 9232 9233 if (!callee->in_callback_fn) 9234 return false; 9235 9236 kfunc_btf_id = insn[callee->callsite].imm; 9237 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9238 } 9239 9240 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9241 { 9242 struct bpf_verifier_state *state = env->cur_state; 9243 struct bpf_func_state *caller, *callee; 9244 struct bpf_reg_state *r0; 9245 int err; 9246 9247 callee = state->frame[state->curframe]; 9248 r0 = &callee->regs[BPF_REG_0]; 9249 if (r0->type == PTR_TO_STACK) { 9250 /* technically it's ok to return caller's stack pointer 9251 * (or caller's caller's pointer) back to the caller, 9252 * since these pointers are valid. Only current stack 9253 * pointer will be invalid as soon as function exits, 9254 * but let's be conservative 9255 */ 9256 verbose(env, "cannot return stack pointer to the caller\n"); 9257 return -EINVAL; 9258 } 9259 9260 caller = state->frame[state->curframe - 1]; 9261 if (callee->in_callback_fn) { 9262 /* enforce R0 return value range [0, 1]. */ 9263 struct tnum range = callee->callback_ret_range; 9264 9265 if (r0->type != SCALAR_VALUE) { 9266 verbose(env, "R0 not a scalar value\n"); 9267 return -EACCES; 9268 } 9269 if (!tnum_in(range, r0->var_off)) { 9270 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9271 return -EINVAL; 9272 } 9273 } else { 9274 /* return to the caller whatever r0 had in the callee */ 9275 caller->regs[BPF_REG_0] = *r0; 9276 } 9277 9278 /* callback_fn frame should have released its own additions to parent's 9279 * reference state at this point, or check_reference_leak would 9280 * complain, hence it must be the same as the caller. There is no need 9281 * to copy it back. 9282 */ 9283 if (!callee->in_callback_fn) { 9284 /* Transfer references to the caller */ 9285 err = copy_reference_state(caller, callee); 9286 if (err) 9287 return err; 9288 } 9289 9290 *insn_idx = callee->callsite + 1; 9291 if (env->log.level & BPF_LOG_LEVEL) { 9292 verbose(env, "returning from callee:\n"); 9293 print_verifier_state(env, callee, true); 9294 verbose(env, "to caller at %d:\n", *insn_idx); 9295 print_verifier_state(env, caller, true); 9296 } 9297 /* clear everything in the callee */ 9298 free_func_state(callee); 9299 state->frame[state->curframe--] = NULL; 9300 return 0; 9301 } 9302 9303 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9304 int func_id, 9305 struct bpf_call_arg_meta *meta) 9306 { 9307 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9308 9309 if (ret_type != RET_INTEGER) 9310 return; 9311 9312 switch (func_id) { 9313 case BPF_FUNC_get_stack: 9314 case BPF_FUNC_get_task_stack: 9315 case BPF_FUNC_probe_read_str: 9316 case BPF_FUNC_probe_read_kernel_str: 9317 case BPF_FUNC_probe_read_user_str: 9318 ret_reg->smax_value = meta->msize_max_value; 9319 ret_reg->s32_max_value = meta->msize_max_value; 9320 ret_reg->smin_value = -MAX_ERRNO; 9321 ret_reg->s32_min_value = -MAX_ERRNO; 9322 reg_bounds_sync(ret_reg); 9323 break; 9324 case BPF_FUNC_get_smp_processor_id: 9325 ret_reg->umax_value = nr_cpu_ids - 1; 9326 ret_reg->u32_max_value = nr_cpu_ids - 1; 9327 ret_reg->smax_value = nr_cpu_ids - 1; 9328 ret_reg->s32_max_value = nr_cpu_ids - 1; 9329 ret_reg->umin_value = 0; 9330 ret_reg->u32_min_value = 0; 9331 ret_reg->smin_value = 0; 9332 ret_reg->s32_min_value = 0; 9333 reg_bounds_sync(ret_reg); 9334 break; 9335 } 9336 } 9337 9338 static int 9339 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9340 int func_id, int insn_idx) 9341 { 9342 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9343 struct bpf_map *map = meta->map_ptr; 9344 9345 if (func_id != BPF_FUNC_tail_call && 9346 func_id != BPF_FUNC_map_lookup_elem && 9347 func_id != BPF_FUNC_map_update_elem && 9348 func_id != BPF_FUNC_map_delete_elem && 9349 func_id != BPF_FUNC_map_push_elem && 9350 func_id != BPF_FUNC_map_pop_elem && 9351 func_id != BPF_FUNC_map_peek_elem && 9352 func_id != BPF_FUNC_for_each_map_elem && 9353 func_id != BPF_FUNC_redirect_map && 9354 func_id != BPF_FUNC_map_lookup_percpu_elem) 9355 return 0; 9356 9357 if (map == NULL) { 9358 verbose(env, "kernel subsystem misconfigured verifier\n"); 9359 return -EINVAL; 9360 } 9361 9362 /* In case of read-only, some additional restrictions 9363 * need to be applied in order to prevent altering the 9364 * state of the map from program side. 9365 */ 9366 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9367 (func_id == BPF_FUNC_map_delete_elem || 9368 func_id == BPF_FUNC_map_update_elem || 9369 func_id == BPF_FUNC_map_push_elem || 9370 func_id == BPF_FUNC_map_pop_elem)) { 9371 verbose(env, "write into map forbidden\n"); 9372 return -EACCES; 9373 } 9374 9375 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9376 bpf_map_ptr_store(aux, meta->map_ptr, 9377 !meta->map_ptr->bypass_spec_v1); 9378 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9379 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9380 !meta->map_ptr->bypass_spec_v1); 9381 return 0; 9382 } 9383 9384 static int 9385 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9386 int func_id, int insn_idx) 9387 { 9388 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9389 struct bpf_reg_state *regs = cur_regs(env), *reg; 9390 struct bpf_map *map = meta->map_ptr; 9391 u64 val, max; 9392 int err; 9393 9394 if (func_id != BPF_FUNC_tail_call) 9395 return 0; 9396 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9397 verbose(env, "kernel subsystem misconfigured verifier\n"); 9398 return -EINVAL; 9399 } 9400 9401 reg = ®s[BPF_REG_3]; 9402 val = reg->var_off.value; 9403 max = map->max_entries; 9404 9405 if (!(register_is_const(reg) && val < max)) { 9406 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9407 return 0; 9408 } 9409 9410 err = mark_chain_precision(env, BPF_REG_3); 9411 if (err) 9412 return err; 9413 if (bpf_map_key_unseen(aux)) 9414 bpf_map_key_store(aux, val); 9415 else if (!bpf_map_key_poisoned(aux) && 9416 bpf_map_key_immediate(aux) != val) 9417 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9418 return 0; 9419 } 9420 9421 static int check_reference_leak(struct bpf_verifier_env *env) 9422 { 9423 struct bpf_func_state *state = cur_func(env); 9424 bool refs_lingering = false; 9425 int i; 9426 9427 if (state->frameno && !state->in_callback_fn) 9428 return 0; 9429 9430 for (i = 0; i < state->acquired_refs; i++) { 9431 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9432 continue; 9433 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9434 state->refs[i].id, state->refs[i].insn_idx); 9435 refs_lingering = true; 9436 } 9437 return refs_lingering ? -EINVAL : 0; 9438 } 9439 9440 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9441 struct bpf_reg_state *regs) 9442 { 9443 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9444 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9445 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9446 struct bpf_bprintf_data data = {}; 9447 int err, fmt_map_off, num_args; 9448 u64 fmt_addr; 9449 char *fmt; 9450 9451 /* data must be an array of u64 */ 9452 if (data_len_reg->var_off.value % 8) 9453 return -EINVAL; 9454 num_args = data_len_reg->var_off.value / 8; 9455 9456 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9457 * and map_direct_value_addr is set. 9458 */ 9459 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9460 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9461 fmt_map_off); 9462 if (err) { 9463 verbose(env, "verifier bug\n"); 9464 return -EFAULT; 9465 } 9466 fmt = (char *)(long)fmt_addr + fmt_map_off; 9467 9468 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9469 * can focus on validating the format specifiers. 9470 */ 9471 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9472 if (err < 0) 9473 verbose(env, "Invalid format string\n"); 9474 9475 return err; 9476 } 9477 9478 static int check_get_func_ip(struct bpf_verifier_env *env) 9479 { 9480 enum bpf_prog_type type = resolve_prog_type(env->prog); 9481 int func_id = BPF_FUNC_get_func_ip; 9482 9483 if (type == BPF_PROG_TYPE_TRACING) { 9484 if (!bpf_prog_has_trampoline(env->prog)) { 9485 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9486 func_id_name(func_id), func_id); 9487 return -ENOTSUPP; 9488 } 9489 return 0; 9490 } else if (type == BPF_PROG_TYPE_KPROBE) { 9491 return 0; 9492 } 9493 9494 verbose(env, "func %s#%d not supported for program type %d\n", 9495 func_id_name(func_id), func_id, type); 9496 return -ENOTSUPP; 9497 } 9498 9499 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9500 { 9501 return &env->insn_aux_data[env->insn_idx]; 9502 } 9503 9504 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9505 { 9506 struct bpf_reg_state *regs = cur_regs(env); 9507 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9508 bool reg_is_null = register_is_null(reg); 9509 9510 if (reg_is_null) 9511 mark_chain_precision(env, BPF_REG_4); 9512 9513 return reg_is_null; 9514 } 9515 9516 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9517 { 9518 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9519 9520 if (!state->initialized) { 9521 state->initialized = 1; 9522 state->fit_for_inline = loop_flag_is_zero(env); 9523 state->callback_subprogno = subprogno; 9524 return; 9525 } 9526 9527 if (!state->fit_for_inline) 9528 return; 9529 9530 state->fit_for_inline = (loop_flag_is_zero(env) && 9531 state->callback_subprogno == subprogno); 9532 } 9533 9534 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9535 int *insn_idx_p) 9536 { 9537 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9538 const struct bpf_func_proto *fn = NULL; 9539 enum bpf_return_type ret_type; 9540 enum bpf_type_flag ret_flag; 9541 struct bpf_reg_state *regs; 9542 struct bpf_call_arg_meta meta; 9543 int insn_idx = *insn_idx_p; 9544 bool changes_data; 9545 int i, err, func_id; 9546 9547 /* find function prototype */ 9548 func_id = insn->imm; 9549 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9550 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9551 func_id); 9552 return -EINVAL; 9553 } 9554 9555 if (env->ops->get_func_proto) 9556 fn = env->ops->get_func_proto(func_id, env->prog); 9557 if (!fn) { 9558 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9559 func_id); 9560 return -EINVAL; 9561 } 9562 9563 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9564 if (!env->prog->gpl_compatible && fn->gpl_only) { 9565 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9566 return -EINVAL; 9567 } 9568 9569 if (fn->allowed && !fn->allowed(env->prog)) { 9570 verbose(env, "helper call is not allowed in probe\n"); 9571 return -EINVAL; 9572 } 9573 9574 if (!env->prog->aux->sleepable && fn->might_sleep) { 9575 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9576 return -EINVAL; 9577 } 9578 9579 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9580 changes_data = bpf_helper_changes_pkt_data(fn->func); 9581 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9582 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9583 func_id_name(func_id), func_id); 9584 return -EINVAL; 9585 } 9586 9587 memset(&meta, 0, sizeof(meta)); 9588 meta.pkt_access = fn->pkt_access; 9589 9590 err = check_func_proto(fn, func_id); 9591 if (err) { 9592 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9593 func_id_name(func_id), func_id); 9594 return err; 9595 } 9596 9597 if (env->cur_state->active_rcu_lock) { 9598 if (fn->might_sleep) { 9599 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9600 func_id_name(func_id), func_id); 9601 return -EINVAL; 9602 } 9603 9604 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9605 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9606 } 9607 9608 meta.func_id = func_id; 9609 /* check args */ 9610 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9611 err = check_func_arg(env, i, &meta, fn, insn_idx); 9612 if (err) 9613 return err; 9614 } 9615 9616 err = record_func_map(env, &meta, func_id, insn_idx); 9617 if (err) 9618 return err; 9619 9620 err = record_func_key(env, &meta, func_id, insn_idx); 9621 if (err) 9622 return err; 9623 9624 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9625 * is inferred from register state. 9626 */ 9627 for (i = 0; i < meta.access_size; i++) { 9628 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9629 BPF_WRITE, -1, false, false); 9630 if (err) 9631 return err; 9632 } 9633 9634 regs = cur_regs(env); 9635 9636 if (meta.release_regno) { 9637 err = -EINVAL; 9638 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9639 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9640 * is safe to do directly. 9641 */ 9642 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9643 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9644 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9645 return -EFAULT; 9646 } 9647 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9648 } else if (meta.ref_obj_id) { 9649 err = release_reference(env, meta.ref_obj_id); 9650 } else if (register_is_null(®s[meta.release_regno])) { 9651 /* meta.ref_obj_id can only be 0 if register that is meant to be 9652 * released is NULL, which must be > R0. 9653 */ 9654 err = 0; 9655 } 9656 if (err) { 9657 verbose(env, "func %s#%d reference has not been acquired before\n", 9658 func_id_name(func_id), func_id); 9659 return err; 9660 } 9661 } 9662 9663 switch (func_id) { 9664 case BPF_FUNC_tail_call: 9665 err = check_reference_leak(env); 9666 if (err) { 9667 verbose(env, "tail_call would lead to reference leak\n"); 9668 return err; 9669 } 9670 break; 9671 case BPF_FUNC_get_local_storage: 9672 /* check that flags argument in get_local_storage(map, flags) is 0, 9673 * this is required because get_local_storage() can't return an error. 9674 */ 9675 if (!register_is_null(®s[BPF_REG_2])) { 9676 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9677 return -EINVAL; 9678 } 9679 break; 9680 case BPF_FUNC_for_each_map_elem: 9681 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9682 set_map_elem_callback_state); 9683 break; 9684 case BPF_FUNC_timer_set_callback: 9685 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9686 set_timer_callback_state); 9687 break; 9688 case BPF_FUNC_find_vma: 9689 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9690 set_find_vma_callback_state); 9691 break; 9692 case BPF_FUNC_snprintf: 9693 err = check_bpf_snprintf_call(env, regs); 9694 break; 9695 case BPF_FUNC_loop: 9696 update_loop_inline_state(env, meta.subprogno); 9697 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9698 set_loop_callback_state); 9699 break; 9700 case BPF_FUNC_dynptr_from_mem: 9701 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9702 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9703 reg_type_str(env, regs[BPF_REG_1].type)); 9704 return -EACCES; 9705 } 9706 break; 9707 case BPF_FUNC_set_retval: 9708 if (prog_type == BPF_PROG_TYPE_LSM && 9709 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9710 if (!env->prog->aux->attach_func_proto->type) { 9711 /* Make sure programs that attach to void 9712 * hooks don't try to modify return value. 9713 */ 9714 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9715 return -EINVAL; 9716 } 9717 } 9718 break; 9719 case BPF_FUNC_dynptr_data: 9720 { 9721 struct bpf_reg_state *reg; 9722 int id, ref_obj_id; 9723 9724 reg = get_dynptr_arg_reg(env, fn, regs); 9725 if (!reg) 9726 return -EFAULT; 9727 9728 9729 if (meta.dynptr_id) { 9730 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9731 return -EFAULT; 9732 } 9733 if (meta.ref_obj_id) { 9734 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9735 return -EFAULT; 9736 } 9737 9738 id = dynptr_id(env, reg); 9739 if (id < 0) { 9740 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9741 return id; 9742 } 9743 9744 ref_obj_id = dynptr_ref_obj_id(env, reg); 9745 if (ref_obj_id < 0) { 9746 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9747 return ref_obj_id; 9748 } 9749 9750 meta.dynptr_id = id; 9751 meta.ref_obj_id = ref_obj_id; 9752 9753 break; 9754 } 9755 case BPF_FUNC_dynptr_write: 9756 { 9757 enum bpf_dynptr_type dynptr_type; 9758 struct bpf_reg_state *reg; 9759 9760 reg = get_dynptr_arg_reg(env, fn, regs); 9761 if (!reg) 9762 return -EFAULT; 9763 9764 dynptr_type = dynptr_get_type(env, reg); 9765 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9766 return -EFAULT; 9767 9768 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9769 /* this will trigger clear_all_pkt_pointers(), which will 9770 * invalidate all dynptr slices associated with the skb 9771 */ 9772 changes_data = true; 9773 9774 break; 9775 } 9776 case BPF_FUNC_user_ringbuf_drain: 9777 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9778 set_user_ringbuf_callback_state); 9779 break; 9780 } 9781 9782 if (err) 9783 return err; 9784 9785 /* reset caller saved regs */ 9786 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9787 mark_reg_not_init(env, regs, caller_saved[i]); 9788 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9789 } 9790 9791 /* helper call returns 64-bit value. */ 9792 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9793 9794 /* update return register (already marked as written above) */ 9795 ret_type = fn->ret_type; 9796 ret_flag = type_flag(ret_type); 9797 9798 switch (base_type(ret_type)) { 9799 case RET_INTEGER: 9800 /* sets type to SCALAR_VALUE */ 9801 mark_reg_unknown(env, regs, BPF_REG_0); 9802 break; 9803 case RET_VOID: 9804 regs[BPF_REG_0].type = NOT_INIT; 9805 break; 9806 case RET_PTR_TO_MAP_VALUE: 9807 /* There is no offset yet applied, variable or fixed */ 9808 mark_reg_known_zero(env, regs, BPF_REG_0); 9809 /* remember map_ptr, so that check_map_access() 9810 * can check 'value_size' boundary of memory access 9811 * to map element returned from bpf_map_lookup_elem() 9812 */ 9813 if (meta.map_ptr == NULL) { 9814 verbose(env, 9815 "kernel subsystem misconfigured verifier\n"); 9816 return -EINVAL; 9817 } 9818 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9819 regs[BPF_REG_0].map_uid = meta.map_uid; 9820 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9821 if (!type_may_be_null(ret_type) && 9822 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9823 regs[BPF_REG_0].id = ++env->id_gen; 9824 } 9825 break; 9826 case RET_PTR_TO_SOCKET: 9827 mark_reg_known_zero(env, regs, BPF_REG_0); 9828 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9829 break; 9830 case RET_PTR_TO_SOCK_COMMON: 9831 mark_reg_known_zero(env, regs, BPF_REG_0); 9832 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9833 break; 9834 case RET_PTR_TO_TCP_SOCK: 9835 mark_reg_known_zero(env, regs, BPF_REG_0); 9836 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9837 break; 9838 case RET_PTR_TO_MEM: 9839 mark_reg_known_zero(env, regs, BPF_REG_0); 9840 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9841 regs[BPF_REG_0].mem_size = meta.mem_size; 9842 break; 9843 case RET_PTR_TO_MEM_OR_BTF_ID: 9844 { 9845 const struct btf_type *t; 9846 9847 mark_reg_known_zero(env, regs, BPF_REG_0); 9848 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9849 if (!btf_type_is_struct(t)) { 9850 u32 tsize; 9851 const struct btf_type *ret; 9852 const char *tname; 9853 9854 /* resolve the type size of ksym. */ 9855 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9856 if (IS_ERR(ret)) { 9857 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9858 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9859 tname, PTR_ERR(ret)); 9860 return -EINVAL; 9861 } 9862 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9863 regs[BPF_REG_0].mem_size = tsize; 9864 } else { 9865 /* MEM_RDONLY may be carried from ret_flag, but it 9866 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9867 * it will confuse the check of PTR_TO_BTF_ID in 9868 * check_mem_access(). 9869 */ 9870 ret_flag &= ~MEM_RDONLY; 9871 9872 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9873 regs[BPF_REG_0].btf = meta.ret_btf; 9874 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9875 } 9876 break; 9877 } 9878 case RET_PTR_TO_BTF_ID: 9879 { 9880 struct btf *ret_btf; 9881 int ret_btf_id; 9882 9883 mark_reg_known_zero(env, regs, BPF_REG_0); 9884 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9885 if (func_id == BPF_FUNC_kptr_xchg) { 9886 ret_btf = meta.kptr_field->kptr.btf; 9887 ret_btf_id = meta.kptr_field->kptr.btf_id; 9888 if (!btf_is_kernel(ret_btf)) 9889 regs[BPF_REG_0].type |= MEM_ALLOC; 9890 } else { 9891 if (fn->ret_btf_id == BPF_PTR_POISON) { 9892 verbose(env, "verifier internal error:"); 9893 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9894 func_id_name(func_id)); 9895 return -EINVAL; 9896 } 9897 ret_btf = btf_vmlinux; 9898 ret_btf_id = *fn->ret_btf_id; 9899 } 9900 if (ret_btf_id == 0) { 9901 verbose(env, "invalid return type %u of func %s#%d\n", 9902 base_type(ret_type), func_id_name(func_id), 9903 func_id); 9904 return -EINVAL; 9905 } 9906 regs[BPF_REG_0].btf = ret_btf; 9907 regs[BPF_REG_0].btf_id = ret_btf_id; 9908 break; 9909 } 9910 default: 9911 verbose(env, "unknown return type %u of func %s#%d\n", 9912 base_type(ret_type), func_id_name(func_id), func_id); 9913 return -EINVAL; 9914 } 9915 9916 if (type_may_be_null(regs[BPF_REG_0].type)) 9917 regs[BPF_REG_0].id = ++env->id_gen; 9918 9919 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9920 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9921 func_id_name(func_id), func_id); 9922 return -EFAULT; 9923 } 9924 9925 if (is_dynptr_ref_function(func_id)) 9926 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9927 9928 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9929 /* For release_reference() */ 9930 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9931 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9932 int id = acquire_reference_state(env, insn_idx); 9933 9934 if (id < 0) 9935 return id; 9936 /* For mark_ptr_or_null_reg() */ 9937 regs[BPF_REG_0].id = id; 9938 /* For release_reference() */ 9939 regs[BPF_REG_0].ref_obj_id = id; 9940 } 9941 9942 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9943 9944 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9945 if (err) 9946 return err; 9947 9948 if ((func_id == BPF_FUNC_get_stack || 9949 func_id == BPF_FUNC_get_task_stack) && 9950 !env->prog->has_callchain_buf) { 9951 const char *err_str; 9952 9953 #ifdef CONFIG_PERF_EVENTS 9954 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9955 err_str = "cannot get callchain buffer for func %s#%d\n"; 9956 #else 9957 err = -ENOTSUPP; 9958 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9959 #endif 9960 if (err) { 9961 verbose(env, err_str, func_id_name(func_id), func_id); 9962 return err; 9963 } 9964 9965 env->prog->has_callchain_buf = true; 9966 } 9967 9968 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9969 env->prog->call_get_stack = true; 9970 9971 if (func_id == BPF_FUNC_get_func_ip) { 9972 if (check_get_func_ip(env)) 9973 return -ENOTSUPP; 9974 env->prog->call_get_func_ip = true; 9975 } 9976 9977 if (changes_data) 9978 clear_all_pkt_pointers(env); 9979 return 0; 9980 } 9981 9982 /* mark_btf_func_reg_size() is used when the reg size is determined by 9983 * the BTF func_proto's return value size and argument. 9984 */ 9985 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9986 size_t reg_size) 9987 { 9988 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9989 9990 if (regno == BPF_REG_0) { 9991 /* Function return value */ 9992 reg->live |= REG_LIVE_WRITTEN; 9993 reg->subreg_def = reg_size == sizeof(u64) ? 9994 DEF_NOT_SUBREG : env->insn_idx + 1; 9995 } else { 9996 /* Function argument */ 9997 if (reg_size == sizeof(u64)) { 9998 mark_insn_zext(env, reg); 9999 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10000 } else { 10001 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10002 } 10003 } 10004 } 10005 10006 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10007 { 10008 return meta->kfunc_flags & KF_ACQUIRE; 10009 } 10010 10011 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10012 { 10013 return meta->kfunc_flags & KF_RELEASE; 10014 } 10015 10016 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10017 { 10018 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10019 } 10020 10021 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10022 { 10023 return meta->kfunc_flags & KF_SLEEPABLE; 10024 } 10025 10026 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10027 { 10028 return meta->kfunc_flags & KF_DESTRUCTIVE; 10029 } 10030 10031 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10032 { 10033 return meta->kfunc_flags & KF_RCU; 10034 } 10035 10036 static bool __kfunc_param_match_suffix(const struct btf *btf, 10037 const struct btf_param *arg, 10038 const char *suffix) 10039 { 10040 int suffix_len = strlen(suffix), len; 10041 const char *param_name; 10042 10043 /* In the future, this can be ported to use BTF tagging */ 10044 param_name = btf_name_by_offset(btf, arg->name_off); 10045 if (str_is_empty(param_name)) 10046 return false; 10047 len = strlen(param_name); 10048 if (len < suffix_len) 10049 return false; 10050 param_name += len - suffix_len; 10051 return !strncmp(param_name, suffix, suffix_len); 10052 } 10053 10054 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10055 const struct btf_param *arg, 10056 const struct bpf_reg_state *reg) 10057 { 10058 const struct btf_type *t; 10059 10060 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10061 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10062 return false; 10063 10064 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10065 } 10066 10067 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10068 const struct btf_param *arg, 10069 const struct bpf_reg_state *reg) 10070 { 10071 const struct btf_type *t; 10072 10073 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10074 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10075 return false; 10076 10077 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10078 } 10079 10080 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10081 { 10082 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10083 } 10084 10085 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10086 { 10087 return __kfunc_param_match_suffix(btf, arg, "__k"); 10088 } 10089 10090 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10091 { 10092 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10093 } 10094 10095 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10096 { 10097 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10098 } 10099 10100 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10101 { 10102 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10103 } 10104 10105 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10106 { 10107 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10108 } 10109 10110 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10111 const struct btf_param *arg, 10112 const char *name) 10113 { 10114 int len, target_len = strlen(name); 10115 const char *param_name; 10116 10117 param_name = btf_name_by_offset(btf, arg->name_off); 10118 if (str_is_empty(param_name)) 10119 return false; 10120 len = strlen(param_name); 10121 if (len != target_len) 10122 return false; 10123 if (strcmp(param_name, name)) 10124 return false; 10125 10126 return true; 10127 } 10128 10129 enum { 10130 KF_ARG_DYNPTR_ID, 10131 KF_ARG_LIST_HEAD_ID, 10132 KF_ARG_LIST_NODE_ID, 10133 KF_ARG_RB_ROOT_ID, 10134 KF_ARG_RB_NODE_ID, 10135 }; 10136 10137 BTF_ID_LIST(kf_arg_btf_ids) 10138 BTF_ID(struct, bpf_dynptr_kern) 10139 BTF_ID(struct, bpf_list_head) 10140 BTF_ID(struct, bpf_list_node) 10141 BTF_ID(struct, bpf_rb_root) 10142 BTF_ID(struct, bpf_rb_node) 10143 10144 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10145 const struct btf_param *arg, int type) 10146 { 10147 const struct btf_type *t; 10148 u32 res_id; 10149 10150 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10151 if (!t) 10152 return false; 10153 if (!btf_type_is_ptr(t)) 10154 return false; 10155 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10156 if (!t) 10157 return false; 10158 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10159 } 10160 10161 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10162 { 10163 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10164 } 10165 10166 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10167 { 10168 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10169 } 10170 10171 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10172 { 10173 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10174 } 10175 10176 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10177 { 10178 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10179 } 10180 10181 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10182 { 10183 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10184 } 10185 10186 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10187 const struct btf_param *arg) 10188 { 10189 const struct btf_type *t; 10190 10191 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10192 if (!t) 10193 return false; 10194 10195 return true; 10196 } 10197 10198 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10199 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10200 const struct btf *btf, 10201 const struct btf_type *t, int rec) 10202 { 10203 const struct btf_type *member_type; 10204 const struct btf_member *member; 10205 u32 i; 10206 10207 if (!btf_type_is_struct(t)) 10208 return false; 10209 10210 for_each_member(i, t, member) { 10211 const struct btf_array *array; 10212 10213 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10214 if (btf_type_is_struct(member_type)) { 10215 if (rec >= 3) { 10216 verbose(env, "max struct nesting depth exceeded\n"); 10217 return false; 10218 } 10219 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10220 return false; 10221 continue; 10222 } 10223 if (btf_type_is_array(member_type)) { 10224 array = btf_array(member_type); 10225 if (!array->nelems) 10226 return false; 10227 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10228 if (!btf_type_is_scalar(member_type)) 10229 return false; 10230 continue; 10231 } 10232 if (!btf_type_is_scalar(member_type)) 10233 return false; 10234 } 10235 return true; 10236 } 10237 10238 enum kfunc_ptr_arg_type { 10239 KF_ARG_PTR_TO_CTX, 10240 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10241 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10242 KF_ARG_PTR_TO_DYNPTR, 10243 KF_ARG_PTR_TO_ITER, 10244 KF_ARG_PTR_TO_LIST_HEAD, 10245 KF_ARG_PTR_TO_LIST_NODE, 10246 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10247 KF_ARG_PTR_TO_MEM, 10248 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10249 KF_ARG_PTR_TO_CALLBACK, 10250 KF_ARG_PTR_TO_RB_ROOT, 10251 KF_ARG_PTR_TO_RB_NODE, 10252 }; 10253 10254 enum special_kfunc_type { 10255 KF_bpf_obj_new_impl, 10256 KF_bpf_obj_drop_impl, 10257 KF_bpf_refcount_acquire_impl, 10258 KF_bpf_list_push_front_impl, 10259 KF_bpf_list_push_back_impl, 10260 KF_bpf_list_pop_front, 10261 KF_bpf_list_pop_back, 10262 KF_bpf_cast_to_kern_ctx, 10263 KF_bpf_rdonly_cast, 10264 KF_bpf_rcu_read_lock, 10265 KF_bpf_rcu_read_unlock, 10266 KF_bpf_rbtree_remove, 10267 KF_bpf_rbtree_add_impl, 10268 KF_bpf_rbtree_first, 10269 KF_bpf_dynptr_from_skb, 10270 KF_bpf_dynptr_from_xdp, 10271 KF_bpf_dynptr_slice, 10272 KF_bpf_dynptr_slice_rdwr, 10273 KF_bpf_dynptr_clone, 10274 }; 10275 10276 BTF_SET_START(special_kfunc_set) 10277 BTF_ID(func, bpf_obj_new_impl) 10278 BTF_ID(func, bpf_obj_drop_impl) 10279 BTF_ID(func, bpf_refcount_acquire_impl) 10280 BTF_ID(func, bpf_list_push_front_impl) 10281 BTF_ID(func, bpf_list_push_back_impl) 10282 BTF_ID(func, bpf_list_pop_front) 10283 BTF_ID(func, bpf_list_pop_back) 10284 BTF_ID(func, bpf_cast_to_kern_ctx) 10285 BTF_ID(func, bpf_rdonly_cast) 10286 BTF_ID(func, bpf_rbtree_remove) 10287 BTF_ID(func, bpf_rbtree_add_impl) 10288 BTF_ID(func, bpf_rbtree_first) 10289 BTF_ID(func, bpf_dynptr_from_skb) 10290 BTF_ID(func, bpf_dynptr_from_xdp) 10291 BTF_ID(func, bpf_dynptr_slice) 10292 BTF_ID(func, bpf_dynptr_slice_rdwr) 10293 BTF_ID(func, bpf_dynptr_clone) 10294 BTF_SET_END(special_kfunc_set) 10295 10296 BTF_ID_LIST(special_kfunc_list) 10297 BTF_ID(func, bpf_obj_new_impl) 10298 BTF_ID(func, bpf_obj_drop_impl) 10299 BTF_ID(func, bpf_refcount_acquire_impl) 10300 BTF_ID(func, bpf_list_push_front_impl) 10301 BTF_ID(func, bpf_list_push_back_impl) 10302 BTF_ID(func, bpf_list_pop_front) 10303 BTF_ID(func, bpf_list_pop_back) 10304 BTF_ID(func, bpf_cast_to_kern_ctx) 10305 BTF_ID(func, bpf_rdonly_cast) 10306 BTF_ID(func, bpf_rcu_read_lock) 10307 BTF_ID(func, bpf_rcu_read_unlock) 10308 BTF_ID(func, bpf_rbtree_remove) 10309 BTF_ID(func, bpf_rbtree_add_impl) 10310 BTF_ID(func, bpf_rbtree_first) 10311 BTF_ID(func, bpf_dynptr_from_skb) 10312 BTF_ID(func, bpf_dynptr_from_xdp) 10313 BTF_ID(func, bpf_dynptr_slice) 10314 BTF_ID(func, bpf_dynptr_slice_rdwr) 10315 BTF_ID(func, bpf_dynptr_clone) 10316 10317 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10318 { 10319 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10320 meta->arg_owning_ref) { 10321 return false; 10322 } 10323 10324 return meta->kfunc_flags & KF_RET_NULL; 10325 } 10326 10327 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10328 { 10329 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10330 } 10331 10332 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10333 { 10334 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10335 } 10336 10337 static enum kfunc_ptr_arg_type 10338 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10339 struct bpf_kfunc_call_arg_meta *meta, 10340 const struct btf_type *t, const struct btf_type *ref_t, 10341 const char *ref_tname, const struct btf_param *args, 10342 int argno, int nargs) 10343 { 10344 u32 regno = argno + 1; 10345 struct bpf_reg_state *regs = cur_regs(env); 10346 struct bpf_reg_state *reg = ®s[regno]; 10347 bool arg_mem_size = false; 10348 10349 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10350 return KF_ARG_PTR_TO_CTX; 10351 10352 /* In this function, we verify the kfunc's BTF as per the argument type, 10353 * leaving the rest of the verification with respect to the register 10354 * type to our caller. When a set of conditions hold in the BTF type of 10355 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10356 */ 10357 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10358 return KF_ARG_PTR_TO_CTX; 10359 10360 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10361 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10362 10363 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10364 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10365 10366 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10367 return KF_ARG_PTR_TO_DYNPTR; 10368 10369 if (is_kfunc_arg_iter(meta, argno)) 10370 return KF_ARG_PTR_TO_ITER; 10371 10372 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10373 return KF_ARG_PTR_TO_LIST_HEAD; 10374 10375 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10376 return KF_ARG_PTR_TO_LIST_NODE; 10377 10378 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10379 return KF_ARG_PTR_TO_RB_ROOT; 10380 10381 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10382 return KF_ARG_PTR_TO_RB_NODE; 10383 10384 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10385 if (!btf_type_is_struct(ref_t)) { 10386 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10387 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10388 return -EINVAL; 10389 } 10390 return KF_ARG_PTR_TO_BTF_ID; 10391 } 10392 10393 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10394 return KF_ARG_PTR_TO_CALLBACK; 10395 10396 10397 if (argno + 1 < nargs && 10398 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10399 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10400 arg_mem_size = true; 10401 10402 /* This is the catch all argument type of register types supported by 10403 * check_helper_mem_access. However, we only allow when argument type is 10404 * pointer to scalar, or struct composed (recursively) of scalars. When 10405 * arg_mem_size is true, the pointer can be void *. 10406 */ 10407 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10408 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10409 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10410 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10411 return -EINVAL; 10412 } 10413 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10414 } 10415 10416 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10417 struct bpf_reg_state *reg, 10418 const struct btf_type *ref_t, 10419 const char *ref_tname, u32 ref_id, 10420 struct bpf_kfunc_call_arg_meta *meta, 10421 int argno) 10422 { 10423 const struct btf_type *reg_ref_t; 10424 bool strict_type_match = false; 10425 const struct btf *reg_btf; 10426 const char *reg_ref_tname; 10427 u32 reg_ref_id; 10428 10429 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10430 reg_btf = reg->btf; 10431 reg_ref_id = reg->btf_id; 10432 } else { 10433 reg_btf = btf_vmlinux; 10434 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10435 } 10436 10437 /* Enforce strict type matching for calls to kfuncs that are acquiring 10438 * or releasing a reference, or are no-cast aliases. We do _not_ 10439 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10440 * as we want to enable BPF programs to pass types that are bitwise 10441 * equivalent without forcing them to explicitly cast with something 10442 * like bpf_cast_to_kern_ctx(). 10443 * 10444 * For example, say we had a type like the following: 10445 * 10446 * struct bpf_cpumask { 10447 * cpumask_t cpumask; 10448 * refcount_t usage; 10449 * }; 10450 * 10451 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10452 * to a struct cpumask, so it would be safe to pass a struct 10453 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10454 * 10455 * The philosophy here is similar to how we allow scalars of different 10456 * types to be passed to kfuncs as long as the size is the same. The 10457 * only difference here is that we're simply allowing 10458 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10459 * resolve types. 10460 */ 10461 if (is_kfunc_acquire(meta) || 10462 (is_kfunc_release(meta) && reg->ref_obj_id) || 10463 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10464 strict_type_match = true; 10465 10466 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10467 10468 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10469 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10470 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10471 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10472 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10473 btf_type_str(reg_ref_t), reg_ref_tname); 10474 return -EINVAL; 10475 } 10476 return 0; 10477 } 10478 10479 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10480 { 10481 struct bpf_verifier_state *state = env->cur_state; 10482 10483 if (!state->active_lock.ptr) { 10484 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10485 return -EFAULT; 10486 } 10487 10488 if (type_flag(reg->type) & NON_OWN_REF) { 10489 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10490 return -EFAULT; 10491 } 10492 10493 reg->type |= NON_OWN_REF; 10494 return 0; 10495 } 10496 10497 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10498 { 10499 struct bpf_func_state *state, *unused; 10500 struct bpf_reg_state *reg; 10501 int i; 10502 10503 state = cur_func(env); 10504 10505 if (!ref_obj_id) { 10506 verbose(env, "verifier internal error: ref_obj_id is zero for " 10507 "owning -> non-owning conversion\n"); 10508 return -EFAULT; 10509 } 10510 10511 for (i = 0; i < state->acquired_refs; i++) { 10512 if (state->refs[i].id != ref_obj_id) 10513 continue; 10514 10515 /* Clear ref_obj_id here so release_reference doesn't clobber 10516 * the whole reg 10517 */ 10518 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10519 if (reg->ref_obj_id == ref_obj_id) { 10520 reg->ref_obj_id = 0; 10521 ref_set_non_owning(env, reg); 10522 } 10523 })); 10524 return 0; 10525 } 10526 10527 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10528 return -EFAULT; 10529 } 10530 10531 /* Implementation details: 10532 * 10533 * Each register points to some region of memory, which we define as an 10534 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10535 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10536 * allocation. The lock and the data it protects are colocated in the same 10537 * memory region. 10538 * 10539 * Hence, everytime a register holds a pointer value pointing to such 10540 * allocation, the verifier preserves a unique reg->id for it. 10541 * 10542 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10543 * bpf_spin_lock is called. 10544 * 10545 * To enable this, lock state in the verifier captures two values: 10546 * active_lock.ptr = Register's type specific pointer 10547 * active_lock.id = A unique ID for each register pointer value 10548 * 10549 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10550 * supported register types. 10551 * 10552 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10553 * allocated objects is the reg->btf pointer. 10554 * 10555 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10556 * can establish the provenance of the map value statically for each distinct 10557 * lookup into such maps. They always contain a single map value hence unique 10558 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10559 * 10560 * So, in case of global variables, they use array maps with max_entries = 1, 10561 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10562 * into the same map value as max_entries is 1, as described above). 10563 * 10564 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10565 * outer map pointer (in verifier context), but each lookup into an inner map 10566 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10567 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10568 * will get different reg->id assigned to each lookup, hence different 10569 * active_lock.id. 10570 * 10571 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10572 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10573 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10574 */ 10575 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10576 { 10577 void *ptr; 10578 u32 id; 10579 10580 switch ((int)reg->type) { 10581 case PTR_TO_MAP_VALUE: 10582 ptr = reg->map_ptr; 10583 break; 10584 case PTR_TO_BTF_ID | MEM_ALLOC: 10585 ptr = reg->btf; 10586 break; 10587 default: 10588 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10589 return -EFAULT; 10590 } 10591 id = reg->id; 10592 10593 if (!env->cur_state->active_lock.ptr) 10594 return -EINVAL; 10595 if (env->cur_state->active_lock.ptr != ptr || 10596 env->cur_state->active_lock.id != id) { 10597 verbose(env, "held lock and object are not in the same allocation\n"); 10598 return -EINVAL; 10599 } 10600 return 0; 10601 } 10602 10603 static bool is_bpf_list_api_kfunc(u32 btf_id) 10604 { 10605 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10606 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10607 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10608 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10609 } 10610 10611 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10612 { 10613 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10614 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10615 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10616 } 10617 10618 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10619 { 10620 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10621 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10622 } 10623 10624 static bool is_callback_calling_kfunc(u32 btf_id) 10625 { 10626 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10627 } 10628 10629 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10630 { 10631 return is_bpf_rbtree_api_kfunc(btf_id); 10632 } 10633 10634 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10635 enum btf_field_type head_field_type, 10636 u32 kfunc_btf_id) 10637 { 10638 bool ret; 10639 10640 switch (head_field_type) { 10641 case BPF_LIST_HEAD: 10642 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10643 break; 10644 case BPF_RB_ROOT: 10645 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10646 break; 10647 default: 10648 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10649 btf_field_type_name(head_field_type)); 10650 return false; 10651 } 10652 10653 if (!ret) 10654 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10655 btf_field_type_name(head_field_type)); 10656 return ret; 10657 } 10658 10659 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10660 enum btf_field_type node_field_type, 10661 u32 kfunc_btf_id) 10662 { 10663 bool ret; 10664 10665 switch (node_field_type) { 10666 case BPF_LIST_NODE: 10667 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10668 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10669 break; 10670 case BPF_RB_NODE: 10671 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10672 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10673 break; 10674 default: 10675 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10676 btf_field_type_name(node_field_type)); 10677 return false; 10678 } 10679 10680 if (!ret) 10681 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10682 btf_field_type_name(node_field_type)); 10683 return ret; 10684 } 10685 10686 static int 10687 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10688 struct bpf_reg_state *reg, u32 regno, 10689 struct bpf_kfunc_call_arg_meta *meta, 10690 enum btf_field_type head_field_type, 10691 struct btf_field **head_field) 10692 { 10693 const char *head_type_name; 10694 struct btf_field *field; 10695 struct btf_record *rec; 10696 u32 head_off; 10697 10698 if (meta->btf != btf_vmlinux) { 10699 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10700 return -EFAULT; 10701 } 10702 10703 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10704 return -EFAULT; 10705 10706 head_type_name = btf_field_type_name(head_field_type); 10707 if (!tnum_is_const(reg->var_off)) { 10708 verbose(env, 10709 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10710 regno, head_type_name); 10711 return -EINVAL; 10712 } 10713 10714 rec = reg_btf_record(reg); 10715 head_off = reg->off + reg->var_off.value; 10716 field = btf_record_find(rec, head_off, head_field_type); 10717 if (!field) { 10718 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10719 return -EINVAL; 10720 } 10721 10722 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10723 if (check_reg_allocation_locked(env, reg)) { 10724 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10725 rec->spin_lock_off, head_type_name); 10726 return -EINVAL; 10727 } 10728 10729 if (*head_field) { 10730 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10731 return -EFAULT; 10732 } 10733 *head_field = field; 10734 return 0; 10735 } 10736 10737 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10738 struct bpf_reg_state *reg, u32 regno, 10739 struct bpf_kfunc_call_arg_meta *meta) 10740 { 10741 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10742 &meta->arg_list_head.field); 10743 } 10744 10745 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10746 struct bpf_reg_state *reg, u32 regno, 10747 struct bpf_kfunc_call_arg_meta *meta) 10748 { 10749 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10750 &meta->arg_rbtree_root.field); 10751 } 10752 10753 static int 10754 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10755 struct bpf_reg_state *reg, u32 regno, 10756 struct bpf_kfunc_call_arg_meta *meta, 10757 enum btf_field_type head_field_type, 10758 enum btf_field_type node_field_type, 10759 struct btf_field **node_field) 10760 { 10761 const char *node_type_name; 10762 const struct btf_type *et, *t; 10763 struct btf_field *field; 10764 u32 node_off; 10765 10766 if (meta->btf != btf_vmlinux) { 10767 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10768 return -EFAULT; 10769 } 10770 10771 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10772 return -EFAULT; 10773 10774 node_type_name = btf_field_type_name(node_field_type); 10775 if (!tnum_is_const(reg->var_off)) { 10776 verbose(env, 10777 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10778 regno, node_type_name); 10779 return -EINVAL; 10780 } 10781 10782 node_off = reg->off + reg->var_off.value; 10783 field = reg_find_field_offset(reg, node_off, node_field_type); 10784 if (!field || field->offset != node_off) { 10785 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10786 return -EINVAL; 10787 } 10788 10789 field = *node_field; 10790 10791 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10792 t = btf_type_by_id(reg->btf, reg->btf_id); 10793 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10794 field->graph_root.value_btf_id, true)) { 10795 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10796 "in struct %s, but arg is at offset=%d in struct %s\n", 10797 btf_field_type_name(head_field_type), 10798 btf_field_type_name(node_field_type), 10799 field->graph_root.node_offset, 10800 btf_name_by_offset(field->graph_root.btf, et->name_off), 10801 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10802 return -EINVAL; 10803 } 10804 meta->arg_btf = reg->btf; 10805 meta->arg_btf_id = reg->btf_id; 10806 10807 if (node_off != field->graph_root.node_offset) { 10808 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10809 node_off, btf_field_type_name(node_field_type), 10810 field->graph_root.node_offset, 10811 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10812 return -EINVAL; 10813 } 10814 10815 return 0; 10816 } 10817 10818 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10819 struct bpf_reg_state *reg, u32 regno, 10820 struct bpf_kfunc_call_arg_meta *meta) 10821 { 10822 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10823 BPF_LIST_HEAD, BPF_LIST_NODE, 10824 &meta->arg_list_head.field); 10825 } 10826 10827 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10828 struct bpf_reg_state *reg, u32 regno, 10829 struct bpf_kfunc_call_arg_meta *meta) 10830 { 10831 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10832 BPF_RB_ROOT, BPF_RB_NODE, 10833 &meta->arg_rbtree_root.field); 10834 } 10835 10836 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10837 int insn_idx) 10838 { 10839 const char *func_name = meta->func_name, *ref_tname; 10840 const struct btf *btf = meta->btf; 10841 const struct btf_param *args; 10842 struct btf_record *rec; 10843 u32 i, nargs; 10844 int ret; 10845 10846 args = (const struct btf_param *)(meta->func_proto + 1); 10847 nargs = btf_type_vlen(meta->func_proto); 10848 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10849 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10850 MAX_BPF_FUNC_REG_ARGS); 10851 return -EINVAL; 10852 } 10853 10854 /* Check that BTF function arguments match actual types that the 10855 * verifier sees. 10856 */ 10857 for (i = 0; i < nargs; i++) { 10858 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10859 const struct btf_type *t, *ref_t, *resolve_ret; 10860 enum bpf_arg_type arg_type = ARG_DONTCARE; 10861 u32 regno = i + 1, ref_id, type_size; 10862 bool is_ret_buf_sz = false; 10863 int kf_arg_type; 10864 10865 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10866 10867 if (is_kfunc_arg_ignore(btf, &args[i])) 10868 continue; 10869 10870 if (btf_type_is_scalar(t)) { 10871 if (reg->type != SCALAR_VALUE) { 10872 verbose(env, "R%d is not a scalar\n", regno); 10873 return -EINVAL; 10874 } 10875 10876 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10877 if (meta->arg_constant.found) { 10878 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10879 return -EFAULT; 10880 } 10881 if (!tnum_is_const(reg->var_off)) { 10882 verbose(env, "R%d must be a known constant\n", regno); 10883 return -EINVAL; 10884 } 10885 ret = mark_chain_precision(env, regno); 10886 if (ret < 0) 10887 return ret; 10888 meta->arg_constant.found = true; 10889 meta->arg_constant.value = reg->var_off.value; 10890 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10891 meta->r0_rdonly = true; 10892 is_ret_buf_sz = true; 10893 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10894 is_ret_buf_sz = true; 10895 } 10896 10897 if (is_ret_buf_sz) { 10898 if (meta->r0_size) { 10899 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10900 return -EINVAL; 10901 } 10902 10903 if (!tnum_is_const(reg->var_off)) { 10904 verbose(env, "R%d is not a const\n", regno); 10905 return -EINVAL; 10906 } 10907 10908 meta->r0_size = reg->var_off.value; 10909 ret = mark_chain_precision(env, regno); 10910 if (ret) 10911 return ret; 10912 } 10913 continue; 10914 } 10915 10916 if (!btf_type_is_ptr(t)) { 10917 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10918 return -EINVAL; 10919 } 10920 10921 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10922 (register_is_null(reg) || type_may_be_null(reg->type))) { 10923 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10924 return -EACCES; 10925 } 10926 10927 if (reg->ref_obj_id) { 10928 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10929 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10930 regno, reg->ref_obj_id, 10931 meta->ref_obj_id); 10932 return -EFAULT; 10933 } 10934 meta->ref_obj_id = reg->ref_obj_id; 10935 if (is_kfunc_release(meta)) 10936 meta->release_regno = regno; 10937 } 10938 10939 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10940 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10941 10942 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10943 if (kf_arg_type < 0) 10944 return kf_arg_type; 10945 10946 switch (kf_arg_type) { 10947 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10948 case KF_ARG_PTR_TO_BTF_ID: 10949 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10950 break; 10951 10952 if (!is_trusted_reg(reg)) { 10953 if (!is_kfunc_rcu(meta)) { 10954 verbose(env, "R%d must be referenced or trusted\n", regno); 10955 return -EINVAL; 10956 } 10957 if (!is_rcu_reg(reg)) { 10958 verbose(env, "R%d must be a rcu pointer\n", regno); 10959 return -EINVAL; 10960 } 10961 } 10962 10963 fallthrough; 10964 case KF_ARG_PTR_TO_CTX: 10965 /* Trusted arguments have the same offset checks as release arguments */ 10966 arg_type |= OBJ_RELEASE; 10967 break; 10968 case KF_ARG_PTR_TO_DYNPTR: 10969 case KF_ARG_PTR_TO_ITER: 10970 case KF_ARG_PTR_TO_LIST_HEAD: 10971 case KF_ARG_PTR_TO_LIST_NODE: 10972 case KF_ARG_PTR_TO_RB_ROOT: 10973 case KF_ARG_PTR_TO_RB_NODE: 10974 case KF_ARG_PTR_TO_MEM: 10975 case KF_ARG_PTR_TO_MEM_SIZE: 10976 case KF_ARG_PTR_TO_CALLBACK: 10977 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10978 /* Trusted by default */ 10979 break; 10980 default: 10981 WARN_ON_ONCE(1); 10982 return -EFAULT; 10983 } 10984 10985 if (is_kfunc_release(meta) && reg->ref_obj_id) 10986 arg_type |= OBJ_RELEASE; 10987 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10988 if (ret < 0) 10989 return ret; 10990 10991 switch (kf_arg_type) { 10992 case KF_ARG_PTR_TO_CTX: 10993 if (reg->type != PTR_TO_CTX) { 10994 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10995 return -EINVAL; 10996 } 10997 10998 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10999 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11000 if (ret < 0) 11001 return -EINVAL; 11002 meta->ret_btf_id = ret; 11003 } 11004 break; 11005 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11006 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11007 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11008 return -EINVAL; 11009 } 11010 if (!reg->ref_obj_id) { 11011 verbose(env, "allocated object must be referenced\n"); 11012 return -EINVAL; 11013 } 11014 if (meta->btf == btf_vmlinux && 11015 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11016 meta->arg_btf = reg->btf; 11017 meta->arg_btf_id = reg->btf_id; 11018 } 11019 break; 11020 case KF_ARG_PTR_TO_DYNPTR: 11021 { 11022 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11023 int clone_ref_obj_id = 0; 11024 11025 if (reg->type != PTR_TO_STACK && 11026 reg->type != CONST_PTR_TO_DYNPTR) { 11027 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11028 return -EINVAL; 11029 } 11030 11031 if (reg->type == CONST_PTR_TO_DYNPTR) 11032 dynptr_arg_type |= MEM_RDONLY; 11033 11034 if (is_kfunc_arg_uninit(btf, &args[i])) 11035 dynptr_arg_type |= MEM_UNINIT; 11036 11037 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11038 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11039 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11040 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11041 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11042 (dynptr_arg_type & MEM_UNINIT)) { 11043 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11044 11045 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11046 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11047 return -EFAULT; 11048 } 11049 11050 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11051 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11052 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11053 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11054 return -EFAULT; 11055 } 11056 } 11057 11058 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11059 if (ret < 0) 11060 return ret; 11061 11062 if (!(dynptr_arg_type & MEM_UNINIT)) { 11063 int id = dynptr_id(env, reg); 11064 11065 if (id < 0) { 11066 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11067 return id; 11068 } 11069 meta->initialized_dynptr.id = id; 11070 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11071 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11072 } 11073 11074 break; 11075 } 11076 case KF_ARG_PTR_TO_ITER: 11077 ret = process_iter_arg(env, regno, insn_idx, meta); 11078 if (ret < 0) 11079 return ret; 11080 break; 11081 case KF_ARG_PTR_TO_LIST_HEAD: 11082 if (reg->type != PTR_TO_MAP_VALUE && 11083 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11084 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11085 return -EINVAL; 11086 } 11087 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11088 verbose(env, "allocated object must be referenced\n"); 11089 return -EINVAL; 11090 } 11091 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11092 if (ret < 0) 11093 return ret; 11094 break; 11095 case KF_ARG_PTR_TO_RB_ROOT: 11096 if (reg->type != PTR_TO_MAP_VALUE && 11097 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11098 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11099 return -EINVAL; 11100 } 11101 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11102 verbose(env, "allocated object must be referenced\n"); 11103 return -EINVAL; 11104 } 11105 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11106 if (ret < 0) 11107 return ret; 11108 break; 11109 case KF_ARG_PTR_TO_LIST_NODE: 11110 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11111 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11112 return -EINVAL; 11113 } 11114 if (!reg->ref_obj_id) { 11115 verbose(env, "allocated object must be referenced\n"); 11116 return -EINVAL; 11117 } 11118 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11119 if (ret < 0) 11120 return ret; 11121 break; 11122 case KF_ARG_PTR_TO_RB_NODE: 11123 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11124 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11125 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11126 return -EINVAL; 11127 } 11128 if (in_rbtree_lock_required_cb(env)) { 11129 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11130 return -EINVAL; 11131 } 11132 } else { 11133 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11134 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11135 return -EINVAL; 11136 } 11137 if (!reg->ref_obj_id) { 11138 verbose(env, "allocated object must be referenced\n"); 11139 return -EINVAL; 11140 } 11141 } 11142 11143 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11144 if (ret < 0) 11145 return ret; 11146 break; 11147 case KF_ARG_PTR_TO_BTF_ID: 11148 /* Only base_type is checked, further checks are done here */ 11149 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11150 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11151 !reg2btf_ids[base_type(reg->type)]) { 11152 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11153 verbose(env, "expected %s or socket\n", 11154 reg_type_str(env, base_type(reg->type) | 11155 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11156 return -EINVAL; 11157 } 11158 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11159 if (ret < 0) 11160 return ret; 11161 break; 11162 case KF_ARG_PTR_TO_MEM: 11163 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11164 if (IS_ERR(resolve_ret)) { 11165 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11166 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11167 return -EINVAL; 11168 } 11169 ret = check_mem_reg(env, reg, regno, type_size); 11170 if (ret < 0) 11171 return ret; 11172 break; 11173 case KF_ARG_PTR_TO_MEM_SIZE: 11174 { 11175 struct bpf_reg_state *buff_reg = ®s[regno]; 11176 const struct btf_param *buff_arg = &args[i]; 11177 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11178 const struct btf_param *size_arg = &args[i + 1]; 11179 11180 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11181 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11182 if (ret < 0) { 11183 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11184 return ret; 11185 } 11186 } 11187 11188 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11189 if (meta->arg_constant.found) { 11190 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11191 return -EFAULT; 11192 } 11193 if (!tnum_is_const(size_reg->var_off)) { 11194 verbose(env, "R%d must be a known constant\n", regno + 1); 11195 return -EINVAL; 11196 } 11197 meta->arg_constant.found = true; 11198 meta->arg_constant.value = size_reg->var_off.value; 11199 } 11200 11201 /* Skip next '__sz' or '__szk' argument */ 11202 i++; 11203 break; 11204 } 11205 case KF_ARG_PTR_TO_CALLBACK: 11206 meta->subprogno = reg->subprogno; 11207 break; 11208 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11209 if (!type_is_ptr_alloc_obj(reg->type)) { 11210 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11211 return -EINVAL; 11212 } 11213 if (!type_is_non_owning_ref(reg->type)) 11214 meta->arg_owning_ref = true; 11215 11216 rec = reg_btf_record(reg); 11217 if (!rec) { 11218 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11219 return -EFAULT; 11220 } 11221 11222 if (rec->refcount_off < 0) { 11223 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11224 return -EINVAL; 11225 } 11226 if (rec->refcount_off >= 0) { 11227 verbose(env, "bpf_refcount_acquire calls are disabled for now\n"); 11228 return -EINVAL; 11229 } 11230 meta->arg_btf = reg->btf; 11231 meta->arg_btf_id = reg->btf_id; 11232 break; 11233 } 11234 } 11235 11236 if (is_kfunc_release(meta) && !meta->release_regno) { 11237 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11238 func_name); 11239 return -EINVAL; 11240 } 11241 11242 return 0; 11243 } 11244 11245 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11246 struct bpf_insn *insn, 11247 struct bpf_kfunc_call_arg_meta *meta, 11248 const char **kfunc_name) 11249 { 11250 const struct btf_type *func, *func_proto; 11251 u32 func_id, *kfunc_flags; 11252 const char *func_name; 11253 struct btf *desc_btf; 11254 11255 if (kfunc_name) 11256 *kfunc_name = NULL; 11257 11258 if (!insn->imm) 11259 return -EINVAL; 11260 11261 desc_btf = find_kfunc_desc_btf(env, insn->off); 11262 if (IS_ERR(desc_btf)) 11263 return PTR_ERR(desc_btf); 11264 11265 func_id = insn->imm; 11266 func = btf_type_by_id(desc_btf, func_id); 11267 func_name = btf_name_by_offset(desc_btf, func->name_off); 11268 if (kfunc_name) 11269 *kfunc_name = func_name; 11270 func_proto = btf_type_by_id(desc_btf, func->type); 11271 11272 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11273 if (!kfunc_flags) { 11274 return -EACCES; 11275 } 11276 11277 memset(meta, 0, sizeof(*meta)); 11278 meta->btf = desc_btf; 11279 meta->func_id = func_id; 11280 meta->kfunc_flags = *kfunc_flags; 11281 meta->func_proto = func_proto; 11282 meta->func_name = func_name; 11283 11284 return 0; 11285 } 11286 11287 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11288 int *insn_idx_p) 11289 { 11290 const struct btf_type *t, *ptr_type; 11291 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11292 struct bpf_reg_state *regs = cur_regs(env); 11293 const char *func_name, *ptr_type_name; 11294 bool sleepable, rcu_lock, rcu_unlock; 11295 struct bpf_kfunc_call_arg_meta meta; 11296 struct bpf_insn_aux_data *insn_aux; 11297 int err, insn_idx = *insn_idx_p; 11298 const struct btf_param *args; 11299 const struct btf_type *ret_t; 11300 struct btf *desc_btf; 11301 11302 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11303 if (!insn->imm) 11304 return 0; 11305 11306 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11307 if (err == -EACCES && func_name) 11308 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11309 if (err) 11310 return err; 11311 desc_btf = meta.btf; 11312 insn_aux = &env->insn_aux_data[insn_idx]; 11313 11314 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11315 11316 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11317 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11318 return -EACCES; 11319 } 11320 11321 sleepable = is_kfunc_sleepable(&meta); 11322 if (sleepable && !env->prog->aux->sleepable) { 11323 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11324 return -EACCES; 11325 } 11326 11327 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11328 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11329 11330 if (env->cur_state->active_rcu_lock) { 11331 struct bpf_func_state *state; 11332 struct bpf_reg_state *reg; 11333 11334 if (rcu_lock) { 11335 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11336 return -EINVAL; 11337 } else if (rcu_unlock) { 11338 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11339 if (reg->type & MEM_RCU) { 11340 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11341 reg->type |= PTR_UNTRUSTED; 11342 } 11343 })); 11344 env->cur_state->active_rcu_lock = false; 11345 } else if (sleepable) { 11346 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11347 return -EACCES; 11348 } 11349 } else if (rcu_lock) { 11350 env->cur_state->active_rcu_lock = true; 11351 } else if (rcu_unlock) { 11352 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11353 return -EINVAL; 11354 } 11355 11356 /* Check the arguments */ 11357 err = check_kfunc_args(env, &meta, insn_idx); 11358 if (err < 0) 11359 return err; 11360 /* In case of release function, we get register number of refcounted 11361 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11362 */ 11363 if (meta.release_regno) { 11364 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11365 if (err) { 11366 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11367 func_name, meta.func_id); 11368 return err; 11369 } 11370 } 11371 11372 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11373 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11374 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11375 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11376 insn_aux->insert_off = regs[BPF_REG_2].off; 11377 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11378 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11379 if (err) { 11380 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11381 func_name, meta.func_id); 11382 return err; 11383 } 11384 11385 err = release_reference(env, release_ref_obj_id); 11386 if (err) { 11387 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11388 func_name, meta.func_id); 11389 return err; 11390 } 11391 } 11392 11393 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11394 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11395 set_rbtree_add_callback_state); 11396 if (err) { 11397 verbose(env, "kfunc %s#%d failed callback verification\n", 11398 func_name, meta.func_id); 11399 return err; 11400 } 11401 } 11402 11403 for (i = 0; i < CALLER_SAVED_REGS; i++) 11404 mark_reg_not_init(env, regs, caller_saved[i]); 11405 11406 /* Check return type */ 11407 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11408 11409 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11410 /* Only exception is bpf_obj_new_impl */ 11411 if (meta.btf != btf_vmlinux || 11412 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11413 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11414 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11415 return -EINVAL; 11416 } 11417 } 11418 11419 if (btf_type_is_scalar(t)) { 11420 mark_reg_unknown(env, regs, BPF_REG_0); 11421 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11422 } else if (btf_type_is_ptr(t)) { 11423 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11424 11425 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11426 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11427 struct btf *ret_btf; 11428 u32 ret_btf_id; 11429 11430 if (unlikely(!bpf_global_ma_set)) 11431 return -ENOMEM; 11432 11433 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11434 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11435 return -EINVAL; 11436 } 11437 11438 ret_btf = env->prog->aux->btf; 11439 ret_btf_id = meta.arg_constant.value; 11440 11441 /* This may be NULL due to user not supplying a BTF */ 11442 if (!ret_btf) { 11443 verbose(env, "bpf_obj_new requires prog BTF\n"); 11444 return -EINVAL; 11445 } 11446 11447 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11448 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11449 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11450 return -EINVAL; 11451 } 11452 11453 mark_reg_known_zero(env, regs, BPF_REG_0); 11454 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11455 regs[BPF_REG_0].btf = ret_btf; 11456 regs[BPF_REG_0].btf_id = ret_btf_id; 11457 11458 insn_aux->obj_new_size = ret_t->size; 11459 insn_aux->kptr_struct_meta = 11460 btf_find_struct_meta(ret_btf, ret_btf_id); 11461 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11462 mark_reg_known_zero(env, regs, BPF_REG_0); 11463 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11464 regs[BPF_REG_0].btf = meta.arg_btf; 11465 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11466 11467 insn_aux->kptr_struct_meta = 11468 btf_find_struct_meta(meta.arg_btf, 11469 meta.arg_btf_id); 11470 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11471 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11472 struct btf_field *field = meta.arg_list_head.field; 11473 11474 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11475 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11476 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11477 struct btf_field *field = meta.arg_rbtree_root.field; 11478 11479 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11480 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11481 mark_reg_known_zero(env, regs, BPF_REG_0); 11482 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11483 regs[BPF_REG_0].btf = desc_btf; 11484 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11485 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11486 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11487 if (!ret_t || !btf_type_is_struct(ret_t)) { 11488 verbose(env, 11489 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11490 return -EINVAL; 11491 } 11492 11493 mark_reg_known_zero(env, regs, BPF_REG_0); 11494 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11495 regs[BPF_REG_0].btf = desc_btf; 11496 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11497 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11498 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11499 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11500 11501 mark_reg_known_zero(env, regs, BPF_REG_0); 11502 11503 if (!meta.arg_constant.found) { 11504 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11505 return -EFAULT; 11506 } 11507 11508 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11509 11510 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11511 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11512 11513 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11514 regs[BPF_REG_0].type |= MEM_RDONLY; 11515 } else { 11516 /* this will set env->seen_direct_write to true */ 11517 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11518 verbose(env, "the prog does not allow writes to packet data\n"); 11519 return -EINVAL; 11520 } 11521 } 11522 11523 if (!meta.initialized_dynptr.id) { 11524 verbose(env, "verifier internal error: no dynptr id\n"); 11525 return -EFAULT; 11526 } 11527 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11528 11529 /* we don't need to set BPF_REG_0's ref obj id 11530 * because packet slices are not refcounted (see 11531 * dynptr_type_refcounted) 11532 */ 11533 } else { 11534 verbose(env, "kernel function %s unhandled dynamic return type\n", 11535 meta.func_name); 11536 return -EFAULT; 11537 } 11538 } else if (!__btf_type_is_struct(ptr_type)) { 11539 if (!meta.r0_size) { 11540 __u32 sz; 11541 11542 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11543 meta.r0_size = sz; 11544 meta.r0_rdonly = true; 11545 } 11546 } 11547 if (!meta.r0_size) { 11548 ptr_type_name = btf_name_by_offset(desc_btf, 11549 ptr_type->name_off); 11550 verbose(env, 11551 "kernel function %s returns pointer type %s %s is not supported\n", 11552 func_name, 11553 btf_type_str(ptr_type), 11554 ptr_type_name); 11555 return -EINVAL; 11556 } 11557 11558 mark_reg_known_zero(env, regs, BPF_REG_0); 11559 regs[BPF_REG_0].type = PTR_TO_MEM; 11560 regs[BPF_REG_0].mem_size = meta.r0_size; 11561 11562 if (meta.r0_rdonly) 11563 regs[BPF_REG_0].type |= MEM_RDONLY; 11564 11565 /* Ensures we don't access the memory after a release_reference() */ 11566 if (meta.ref_obj_id) 11567 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11568 } else { 11569 mark_reg_known_zero(env, regs, BPF_REG_0); 11570 regs[BPF_REG_0].btf = desc_btf; 11571 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11572 regs[BPF_REG_0].btf_id = ptr_type_id; 11573 } 11574 11575 if (is_kfunc_ret_null(&meta)) { 11576 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11577 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11578 regs[BPF_REG_0].id = ++env->id_gen; 11579 } 11580 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11581 if (is_kfunc_acquire(&meta)) { 11582 int id = acquire_reference_state(env, insn_idx); 11583 11584 if (id < 0) 11585 return id; 11586 if (is_kfunc_ret_null(&meta)) 11587 regs[BPF_REG_0].id = id; 11588 regs[BPF_REG_0].ref_obj_id = id; 11589 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11590 ref_set_non_owning(env, ®s[BPF_REG_0]); 11591 } 11592 11593 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11594 regs[BPF_REG_0].id = ++env->id_gen; 11595 } else if (btf_type_is_void(t)) { 11596 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11597 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11598 insn_aux->kptr_struct_meta = 11599 btf_find_struct_meta(meta.arg_btf, 11600 meta.arg_btf_id); 11601 } 11602 } 11603 } 11604 11605 nargs = btf_type_vlen(meta.func_proto); 11606 args = (const struct btf_param *)(meta.func_proto + 1); 11607 for (i = 0; i < nargs; i++) { 11608 u32 regno = i + 1; 11609 11610 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11611 if (btf_type_is_ptr(t)) 11612 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11613 else 11614 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11615 mark_btf_func_reg_size(env, regno, t->size); 11616 } 11617 11618 if (is_iter_next_kfunc(&meta)) { 11619 err = process_iter_next_call(env, insn_idx, &meta); 11620 if (err) 11621 return err; 11622 } 11623 11624 return 0; 11625 } 11626 11627 static bool signed_add_overflows(s64 a, s64 b) 11628 { 11629 /* Do the add in u64, where overflow is well-defined */ 11630 s64 res = (s64)((u64)a + (u64)b); 11631 11632 if (b < 0) 11633 return res > a; 11634 return res < a; 11635 } 11636 11637 static bool signed_add32_overflows(s32 a, s32 b) 11638 { 11639 /* Do the add in u32, where overflow is well-defined */ 11640 s32 res = (s32)((u32)a + (u32)b); 11641 11642 if (b < 0) 11643 return res > a; 11644 return res < a; 11645 } 11646 11647 static bool signed_sub_overflows(s64 a, s64 b) 11648 { 11649 /* Do the sub in u64, where overflow is well-defined */ 11650 s64 res = (s64)((u64)a - (u64)b); 11651 11652 if (b < 0) 11653 return res < a; 11654 return res > a; 11655 } 11656 11657 static bool signed_sub32_overflows(s32 a, s32 b) 11658 { 11659 /* Do the sub in u32, where overflow is well-defined */ 11660 s32 res = (s32)((u32)a - (u32)b); 11661 11662 if (b < 0) 11663 return res < a; 11664 return res > a; 11665 } 11666 11667 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11668 const struct bpf_reg_state *reg, 11669 enum bpf_reg_type type) 11670 { 11671 bool known = tnum_is_const(reg->var_off); 11672 s64 val = reg->var_off.value; 11673 s64 smin = reg->smin_value; 11674 11675 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11676 verbose(env, "math between %s pointer and %lld is not allowed\n", 11677 reg_type_str(env, type), val); 11678 return false; 11679 } 11680 11681 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11682 verbose(env, "%s pointer offset %d is not allowed\n", 11683 reg_type_str(env, type), reg->off); 11684 return false; 11685 } 11686 11687 if (smin == S64_MIN) { 11688 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11689 reg_type_str(env, type)); 11690 return false; 11691 } 11692 11693 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11694 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11695 smin, reg_type_str(env, type)); 11696 return false; 11697 } 11698 11699 return true; 11700 } 11701 11702 enum { 11703 REASON_BOUNDS = -1, 11704 REASON_TYPE = -2, 11705 REASON_PATHS = -3, 11706 REASON_LIMIT = -4, 11707 REASON_STACK = -5, 11708 }; 11709 11710 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11711 u32 *alu_limit, bool mask_to_left) 11712 { 11713 u32 max = 0, ptr_limit = 0; 11714 11715 switch (ptr_reg->type) { 11716 case PTR_TO_STACK: 11717 /* Offset 0 is out-of-bounds, but acceptable start for the 11718 * left direction, see BPF_REG_FP. Also, unknown scalar 11719 * offset where we would need to deal with min/max bounds is 11720 * currently prohibited for unprivileged. 11721 */ 11722 max = MAX_BPF_STACK + mask_to_left; 11723 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11724 break; 11725 case PTR_TO_MAP_VALUE: 11726 max = ptr_reg->map_ptr->value_size; 11727 ptr_limit = (mask_to_left ? 11728 ptr_reg->smin_value : 11729 ptr_reg->umax_value) + ptr_reg->off; 11730 break; 11731 default: 11732 return REASON_TYPE; 11733 } 11734 11735 if (ptr_limit >= max) 11736 return REASON_LIMIT; 11737 *alu_limit = ptr_limit; 11738 return 0; 11739 } 11740 11741 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11742 const struct bpf_insn *insn) 11743 { 11744 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11745 } 11746 11747 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11748 u32 alu_state, u32 alu_limit) 11749 { 11750 /* If we arrived here from different branches with different 11751 * state or limits to sanitize, then this won't work. 11752 */ 11753 if (aux->alu_state && 11754 (aux->alu_state != alu_state || 11755 aux->alu_limit != alu_limit)) 11756 return REASON_PATHS; 11757 11758 /* Corresponding fixup done in do_misc_fixups(). */ 11759 aux->alu_state = alu_state; 11760 aux->alu_limit = alu_limit; 11761 return 0; 11762 } 11763 11764 static int sanitize_val_alu(struct bpf_verifier_env *env, 11765 struct bpf_insn *insn) 11766 { 11767 struct bpf_insn_aux_data *aux = cur_aux(env); 11768 11769 if (can_skip_alu_sanitation(env, insn)) 11770 return 0; 11771 11772 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11773 } 11774 11775 static bool sanitize_needed(u8 opcode) 11776 { 11777 return opcode == BPF_ADD || opcode == BPF_SUB; 11778 } 11779 11780 struct bpf_sanitize_info { 11781 struct bpf_insn_aux_data aux; 11782 bool mask_to_left; 11783 }; 11784 11785 static struct bpf_verifier_state * 11786 sanitize_speculative_path(struct bpf_verifier_env *env, 11787 const struct bpf_insn *insn, 11788 u32 next_idx, u32 curr_idx) 11789 { 11790 struct bpf_verifier_state *branch; 11791 struct bpf_reg_state *regs; 11792 11793 branch = push_stack(env, next_idx, curr_idx, true); 11794 if (branch && insn) { 11795 regs = branch->frame[branch->curframe]->regs; 11796 if (BPF_SRC(insn->code) == BPF_K) { 11797 mark_reg_unknown(env, regs, insn->dst_reg); 11798 } else if (BPF_SRC(insn->code) == BPF_X) { 11799 mark_reg_unknown(env, regs, insn->dst_reg); 11800 mark_reg_unknown(env, regs, insn->src_reg); 11801 } 11802 } 11803 return branch; 11804 } 11805 11806 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11807 struct bpf_insn *insn, 11808 const struct bpf_reg_state *ptr_reg, 11809 const struct bpf_reg_state *off_reg, 11810 struct bpf_reg_state *dst_reg, 11811 struct bpf_sanitize_info *info, 11812 const bool commit_window) 11813 { 11814 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11815 struct bpf_verifier_state *vstate = env->cur_state; 11816 bool off_is_imm = tnum_is_const(off_reg->var_off); 11817 bool off_is_neg = off_reg->smin_value < 0; 11818 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11819 u8 opcode = BPF_OP(insn->code); 11820 u32 alu_state, alu_limit; 11821 struct bpf_reg_state tmp; 11822 bool ret; 11823 int err; 11824 11825 if (can_skip_alu_sanitation(env, insn)) 11826 return 0; 11827 11828 /* We already marked aux for masking from non-speculative 11829 * paths, thus we got here in the first place. We only care 11830 * to explore bad access from here. 11831 */ 11832 if (vstate->speculative) 11833 goto do_sim; 11834 11835 if (!commit_window) { 11836 if (!tnum_is_const(off_reg->var_off) && 11837 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11838 return REASON_BOUNDS; 11839 11840 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11841 (opcode == BPF_SUB && !off_is_neg); 11842 } 11843 11844 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11845 if (err < 0) 11846 return err; 11847 11848 if (commit_window) { 11849 /* In commit phase we narrow the masking window based on 11850 * the observed pointer move after the simulated operation. 11851 */ 11852 alu_state = info->aux.alu_state; 11853 alu_limit = abs(info->aux.alu_limit - alu_limit); 11854 } else { 11855 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11856 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11857 alu_state |= ptr_is_dst_reg ? 11858 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11859 11860 /* Limit pruning on unknown scalars to enable deep search for 11861 * potential masking differences from other program paths. 11862 */ 11863 if (!off_is_imm) 11864 env->explore_alu_limits = true; 11865 } 11866 11867 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11868 if (err < 0) 11869 return err; 11870 do_sim: 11871 /* If we're in commit phase, we're done here given we already 11872 * pushed the truncated dst_reg into the speculative verification 11873 * stack. 11874 * 11875 * Also, when register is a known constant, we rewrite register-based 11876 * operation to immediate-based, and thus do not need masking (and as 11877 * a consequence, do not need to simulate the zero-truncation either). 11878 */ 11879 if (commit_window || off_is_imm) 11880 return 0; 11881 11882 /* Simulate and find potential out-of-bounds access under 11883 * speculative execution from truncation as a result of 11884 * masking when off was not within expected range. If off 11885 * sits in dst, then we temporarily need to move ptr there 11886 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11887 * for cases where we use K-based arithmetic in one direction 11888 * and truncated reg-based in the other in order to explore 11889 * bad access. 11890 */ 11891 if (!ptr_is_dst_reg) { 11892 tmp = *dst_reg; 11893 copy_register_state(dst_reg, ptr_reg); 11894 } 11895 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11896 env->insn_idx); 11897 if (!ptr_is_dst_reg && ret) 11898 *dst_reg = tmp; 11899 return !ret ? REASON_STACK : 0; 11900 } 11901 11902 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11903 { 11904 struct bpf_verifier_state *vstate = env->cur_state; 11905 11906 /* If we simulate paths under speculation, we don't update the 11907 * insn as 'seen' such that when we verify unreachable paths in 11908 * the non-speculative domain, sanitize_dead_code() can still 11909 * rewrite/sanitize them. 11910 */ 11911 if (!vstate->speculative) 11912 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11913 } 11914 11915 static int sanitize_err(struct bpf_verifier_env *env, 11916 const struct bpf_insn *insn, int reason, 11917 const struct bpf_reg_state *off_reg, 11918 const struct bpf_reg_state *dst_reg) 11919 { 11920 static const char *err = "pointer arithmetic with it prohibited for !root"; 11921 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11922 u32 dst = insn->dst_reg, src = insn->src_reg; 11923 11924 switch (reason) { 11925 case REASON_BOUNDS: 11926 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11927 off_reg == dst_reg ? dst : src, err); 11928 break; 11929 case REASON_TYPE: 11930 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11931 off_reg == dst_reg ? src : dst, err); 11932 break; 11933 case REASON_PATHS: 11934 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11935 dst, op, err); 11936 break; 11937 case REASON_LIMIT: 11938 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11939 dst, op, err); 11940 break; 11941 case REASON_STACK: 11942 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11943 dst, err); 11944 break; 11945 default: 11946 verbose(env, "verifier internal error: unknown reason (%d)\n", 11947 reason); 11948 break; 11949 } 11950 11951 return -EACCES; 11952 } 11953 11954 /* check that stack access falls within stack limits and that 'reg' doesn't 11955 * have a variable offset. 11956 * 11957 * Variable offset is prohibited for unprivileged mode for simplicity since it 11958 * requires corresponding support in Spectre masking for stack ALU. See also 11959 * retrieve_ptr_limit(). 11960 * 11961 * 11962 * 'off' includes 'reg->off'. 11963 */ 11964 static int check_stack_access_for_ptr_arithmetic( 11965 struct bpf_verifier_env *env, 11966 int regno, 11967 const struct bpf_reg_state *reg, 11968 int off) 11969 { 11970 if (!tnum_is_const(reg->var_off)) { 11971 char tn_buf[48]; 11972 11973 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11974 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11975 regno, tn_buf, off); 11976 return -EACCES; 11977 } 11978 11979 if (off >= 0 || off < -MAX_BPF_STACK) { 11980 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11981 "prohibited for !root; off=%d\n", regno, off); 11982 return -EACCES; 11983 } 11984 11985 return 0; 11986 } 11987 11988 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11989 const struct bpf_insn *insn, 11990 const struct bpf_reg_state *dst_reg) 11991 { 11992 u32 dst = insn->dst_reg; 11993 11994 /* For unprivileged we require that resulting offset must be in bounds 11995 * in order to be able to sanitize access later on. 11996 */ 11997 if (env->bypass_spec_v1) 11998 return 0; 11999 12000 switch (dst_reg->type) { 12001 case PTR_TO_STACK: 12002 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12003 dst_reg->off + dst_reg->var_off.value)) 12004 return -EACCES; 12005 break; 12006 case PTR_TO_MAP_VALUE: 12007 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12008 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12009 "prohibited for !root\n", dst); 12010 return -EACCES; 12011 } 12012 break; 12013 default: 12014 break; 12015 } 12016 12017 return 0; 12018 } 12019 12020 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12021 * Caller should also handle BPF_MOV case separately. 12022 * If we return -EACCES, caller may want to try again treating pointer as a 12023 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12024 */ 12025 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12026 struct bpf_insn *insn, 12027 const struct bpf_reg_state *ptr_reg, 12028 const struct bpf_reg_state *off_reg) 12029 { 12030 struct bpf_verifier_state *vstate = env->cur_state; 12031 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12032 struct bpf_reg_state *regs = state->regs, *dst_reg; 12033 bool known = tnum_is_const(off_reg->var_off); 12034 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12035 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12036 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12037 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12038 struct bpf_sanitize_info info = {}; 12039 u8 opcode = BPF_OP(insn->code); 12040 u32 dst = insn->dst_reg; 12041 int ret; 12042 12043 dst_reg = ®s[dst]; 12044 12045 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12046 smin_val > smax_val || umin_val > umax_val) { 12047 /* Taint dst register if offset had invalid bounds derived from 12048 * e.g. dead branches. 12049 */ 12050 __mark_reg_unknown(env, dst_reg); 12051 return 0; 12052 } 12053 12054 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12055 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12056 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12057 __mark_reg_unknown(env, dst_reg); 12058 return 0; 12059 } 12060 12061 verbose(env, 12062 "R%d 32-bit pointer arithmetic prohibited\n", 12063 dst); 12064 return -EACCES; 12065 } 12066 12067 if (ptr_reg->type & PTR_MAYBE_NULL) { 12068 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12069 dst, reg_type_str(env, ptr_reg->type)); 12070 return -EACCES; 12071 } 12072 12073 switch (base_type(ptr_reg->type)) { 12074 case CONST_PTR_TO_MAP: 12075 /* smin_val represents the known value */ 12076 if (known && smin_val == 0 && opcode == BPF_ADD) 12077 break; 12078 fallthrough; 12079 case PTR_TO_PACKET_END: 12080 case PTR_TO_SOCKET: 12081 case PTR_TO_SOCK_COMMON: 12082 case PTR_TO_TCP_SOCK: 12083 case PTR_TO_XDP_SOCK: 12084 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12085 dst, reg_type_str(env, ptr_reg->type)); 12086 return -EACCES; 12087 default: 12088 break; 12089 } 12090 12091 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12092 * The id may be overwritten later if we create a new variable offset. 12093 */ 12094 dst_reg->type = ptr_reg->type; 12095 dst_reg->id = ptr_reg->id; 12096 12097 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12098 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12099 return -EINVAL; 12100 12101 /* pointer types do not carry 32-bit bounds at the moment. */ 12102 __mark_reg32_unbounded(dst_reg); 12103 12104 if (sanitize_needed(opcode)) { 12105 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12106 &info, false); 12107 if (ret < 0) 12108 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12109 } 12110 12111 switch (opcode) { 12112 case BPF_ADD: 12113 /* We can take a fixed offset as long as it doesn't overflow 12114 * the s32 'off' field 12115 */ 12116 if (known && (ptr_reg->off + smin_val == 12117 (s64)(s32)(ptr_reg->off + smin_val))) { 12118 /* pointer += K. Accumulate it into fixed offset */ 12119 dst_reg->smin_value = smin_ptr; 12120 dst_reg->smax_value = smax_ptr; 12121 dst_reg->umin_value = umin_ptr; 12122 dst_reg->umax_value = umax_ptr; 12123 dst_reg->var_off = ptr_reg->var_off; 12124 dst_reg->off = ptr_reg->off + smin_val; 12125 dst_reg->raw = ptr_reg->raw; 12126 break; 12127 } 12128 /* A new variable offset is created. Note that off_reg->off 12129 * == 0, since it's a scalar. 12130 * dst_reg gets the pointer type and since some positive 12131 * integer value was added to the pointer, give it a new 'id' 12132 * if it's a PTR_TO_PACKET. 12133 * this creates a new 'base' pointer, off_reg (variable) gets 12134 * added into the variable offset, and we copy the fixed offset 12135 * from ptr_reg. 12136 */ 12137 if (signed_add_overflows(smin_ptr, smin_val) || 12138 signed_add_overflows(smax_ptr, smax_val)) { 12139 dst_reg->smin_value = S64_MIN; 12140 dst_reg->smax_value = S64_MAX; 12141 } else { 12142 dst_reg->smin_value = smin_ptr + smin_val; 12143 dst_reg->smax_value = smax_ptr + smax_val; 12144 } 12145 if (umin_ptr + umin_val < umin_ptr || 12146 umax_ptr + umax_val < umax_ptr) { 12147 dst_reg->umin_value = 0; 12148 dst_reg->umax_value = U64_MAX; 12149 } else { 12150 dst_reg->umin_value = umin_ptr + umin_val; 12151 dst_reg->umax_value = umax_ptr + umax_val; 12152 } 12153 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12154 dst_reg->off = ptr_reg->off; 12155 dst_reg->raw = ptr_reg->raw; 12156 if (reg_is_pkt_pointer(ptr_reg)) { 12157 dst_reg->id = ++env->id_gen; 12158 /* something was added to pkt_ptr, set range to zero */ 12159 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12160 } 12161 break; 12162 case BPF_SUB: 12163 if (dst_reg == off_reg) { 12164 /* scalar -= pointer. Creates an unknown scalar */ 12165 verbose(env, "R%d tried to subtract pointer from scalar\n", 12166 dst); 12167 return -EACCES; 12168 } 12169 /* We don't allow subtraction from FP, because (according to 12170 * test_verifier.c test "invalid fp arithmetic", JITs might not 12171 * be able to deal with it. 12172 */ 12173 if (ptr_reg->type == PTR_TO_STACK) { 12174 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12175 dst); 12176 return -EACCES; 12177 } 12178 if (known && (ptr_reg->off - smin_val == 12179 (s64)(s32)(ptr_reg->off - smin_val))) { 12180 /* pointer -= K. Subtract it from fixed offset */ 12181 dst_reg->smin_value = smin_ptr; 12182 dst_reg->smax_value = smax_ptr; 12183 dst_reg->umin_value = umin_ptr; 12184 dst_reg->umax_value = umax_ptr; 12185 dst_reg->var_off = ptr_reg->var_off; 12186 dst_reg->id = ptr_reg->id; 12187 dst_reg->off = ptr_reg->off - smin_val; 12188 dst_reg->raw = ptr_reg->raw; 12189 break; 12190 } 12191 /* A new variable offset is created. If the subtrahend is known 12192 * nonnegative, then any reg->range we had before is still good. 12193 */ 12194 if (signed_sub_overflows(smin_ptr, smax_val) || 12195 signed_sub_overflows(smax_ptr, smin_val)) { 12196 /* Overflow possible, we know nothing */ 12197 dst_reg->smin_value = S64_MIN; 12198 dst_reg->smax_value = S64_MAX; 12199 } else { 12200 dst_reg->smin_value = smin_ptr - smax_val; 12201 dst_reg->smax_value = smax_ptr - smin_val; 12202 } 12203 if (umin_ptr < umax_val) { 12204 /* Overflow possible, we know nothing */ 12205 dst_reg->umin_value = 0; 12206 dst_reg->umax_value = U64_MAX; 12207 } else { 12208 /* Cannot overflow (as long as bounds are consistent) */ 12209 dst_reg->umin_value = umin_ptr - umax_val; 12210 dst_reg->umax_value = umax_ptr - umin_val; 12211 } 12212 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12213 dst_reg->off = ptr_reg->off; 12214 dst_reg->raw = ptr_reg->raw; 12215 if (reg_is_pkt_pointer(ptr_reg)) { 12216 dst_reg->id = ++env->id_gen; 12217 /* something was added to pkt_ptr, set range to zero */ 12218 if (smin_val < 0) 12219 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12220 } 12221 break; 12222 case BPF_AND: 12223 case BPF_OR: 12224 case BPF_XOR: 12225 /* bitwise ops on pointers are troublesome, prohibit. */ 12226 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12227 dst, bpf_alu_string[opcode >> 4]); 12228 return -EACCES; 12229 default: 12230 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12231 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12232 dst, bpf_alu_string[opcode >> 4]); 12233 return -EACCES; 12234 } 12235 12236 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12237 return -EINVAL; 12238 reg_bounds_sync(dst_reg); 12239 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12240 return -EACCES; 12241 if (sanitize_needed(opcode)) { 12242 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12243 &info, true); 12244 if (ret < 0) 12245 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12246 } 12247 12248 return 0; 12249 } 12250 12251 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12252 struct bpf_reg_state *src_reg) 12253 { 12254 s32 smin_val = src_reg->s32_min_value; 12255 s32 smax_val = src_reg->s32_max_value; 12256 u32 umin_val = src_reg->u32_min_value; 12257 u32 umax_val = src_reg->u32_max_value; 12258 12259 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12260 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12261 dst_reg->s32_min_value = S32_MIN; 12262 dst_reg->s32_max_value = S32_MAX; 12263 } else { 12264 dst_reg->s32_min_value += smin_val; 12265 dst_reg->s32_max_value += smax_val; 12266 } 12267 if (dst_reg->u32_min_value + umin_val < umin_val || 12268 dst_reg->u32_max_value + umax_val < umax_val) { 12269 dst_reg->u32_min_value = 0; 12270 dst_reg->u32_max_value = U32_MAX; 12271 } else { 12272 dst_reg->u32_min_value += umin_val; 12273 dst_reg->u32_max_value += umax_val; 12274 } 12275 } 12276 12277 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12278 struct bpf_reg_state *src_reg) 12279 { 12280 s64 smin_val = src_reg->smin_value; 12281 s64 smax_val = src_reg->smax_value; 12282 u64 umin_val = src_reg->umin_value; 12283 u64 umax_val = src_reg->umax_value; 12284 12285 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12286 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12287 dst_reg->smin_value = S64_MIN; 12288 dst_reg->smax_value = S64_MAX; 12289 } else { 12290 dst_reg->smin_value += smin_val; 12291 dst_reg->smax_value += smax_val; 12292 } 12293 if (dst_reg->umin_value + umin_val < umin_val || 12294 dst_reg->umax_value + umax_val < umax_val) { 12295 dst_reg->umin_value = 0; 12296 dst_reg->umax_value = U64_MAX; 12297 } else { 12298 dst_reg->umin_value += umin_val; 12299 dst_reg->umax_value += umax_val; 12300 } 12301 } 12302 12303 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12304 struct bpf_reg_state *src_reg) 12305 { 12306 s32 smin_val = src_reg->s32_min_value; 12307 s32 smax_val = src_reg->s32_max_value; 12308 u32 umin_val = src_reg->u32_min_value; 12309 u32 umax_val = src_reg->u32_max_value; 12310 12311 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12312 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12313 /* Overflow possible, we know nothing */ 12314 dst_reg->s32_min_value = S32_MIN; 12315 dst_reg->s32_max_value = S32_MAX; 12316 } else { 12317 dst_reg->s32_min_value -= smax_val; 12318 dst_reg->s32_max_value -= smin_val; 12319 } 12320 if (dst_reg->u32_min_value < umax_val) { 12321 /* Overflow possible, we know nothing */ 12322 dst_reg->u32_min_value = 0; 12323 dst_reg->u32_max_value = U32_MAX; 12324 } else { 12325 /* Cannot overflow (as long as bounds are consistent) */ 12326 dst_reg->u32_min_value -= umax_val; 12327 dst_reg->u32_max_value -= umin_val; 12328 } 12329 } 12330 12331 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12332 struct bpf_reg_state *src_reg) 12333 { 12334 s64 smin_val = src_reg->smin_value; 12335 s64 smax_val = src_reg->smax_value; 12336 u64 umin_val = src_reg->umin_value; 12337 u64 umax_val = src_reg->umax_value; 12338 12339 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12340 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12341 /* Overflow possible, we know nothing */ 12342 dst_reg->smin_value = S64_MIN; 12343 dst_reg->smax_value = S64_MAX; 12344 } else { 12345 dst_reg->smin_value -= smax_val; 12346 dst_reg->smax_value -= smin_val; 12347 } 12348 if (dst_reg->umin_value < umax_val) { 12349 /* Overflow possible, we know nothing */ 12350 dst_reg->umin_value = 0; 12351 dst_reg->umax_value = U64_MAX; 12352 } else { 12353 /* Cannot overflow (as long as bounds are consistent) */ 12354 dst_reg->umin_value -= umax_val; 12355 dst_reg->umax_value -= umin_val; 12356 } 12357 } 12358 12359 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12360 struct bpf_reg_state *src_reg) 12361 { 12362 s32 smin_val = src_reg->s32_min_value; 12363 u32 umin_val = src_reg->u32_min_value; 12364 u32 umax_val = src_reg->u32_max_value; 12365 12366 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12367 /* Ain't nobody got time to multiply that sign */ 12368 __mark_reg32_unbounded(dst_reg); 12369 return; 12370 } 12371 /* Both values are positive, so we can work with unsigned and 12372 * copy the result to signed (unless it exceeds S32_MAX). 12373 */ 12374 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12375 /* Potential overflow, we know nothing */ 12376 __mark_reg32_unbounded(dst_reg); 12377 return; 12378 } 12379 dst_reg->u32_min_value *= umin_val; 12380 dst_reg->u32_max_value *= umax_val; 12381 if (dst_reg->u32_max_value > S32_MAX) { 12382 /* Overflow possible, we know nothing */ 12383 dst_reg->s32_min_value = S32_MIN; 12384 dst_reg->s32_max_value = S32_MAX; 12385 } else { 12386 dst_reg->s32_min_value = dst_reg->u32_min_value; 12387 dst_reg->s32_max_value = dst_reg->u32_max_value; 12388 } 12389 } 12390 12391 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12392 struct bpf_reg_state *src_reg) 12393 { 12394 s64 smin_val = src_reg->smin_value; 12395 u64 umin_val = src_reg->umin_value; 12396 u64 umax_val = src_reg->umax_value; 12397 12398 if (smin_val < 0 || dst_reg->smin_value < 0) { 12399 /* Ain't nobody got time to multiply that sign */ 12400 __mark_reg64_unbounded(dst_reg); 12401 return; 12402 } 12403 /* Both values are positive, so we can work with unsigned and 12404 * copy the result to signed (unless it exceeds S64_MAX). 12405 */ 12406 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12407 /* Potential overflow, we know nothing */ 12408 __mark_reg64_unbounded(dst_reg); 12409 return; 12410 } 12411 dst_reg->umin_value *= umin_val; 12412 dst_reg->umax_value *= umax_val; 12413 if (dst_reg->umax_value > S64_MAX) { 12414 /* Overflow possible, we know nothing */ 12415 dst_reg->smin_value = S64_MIN; 12416 dst_reg->smax_value = S64_MAX; 12417 } else { 12418 dst_reg->smin_value = dst_reg->umin_value; 12419 dst_reg->smax_value = dst_reg->umax_value; 12420 } 12421 } 12422 12423 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12424 struct bpf_reg_state *src_reg) 12425 { 12426 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12427 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12428 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12429 s32 smin_val = src_reg->s32_min_value; 12430 u32 umax_val = src_reg->u32_max_value; 12431 12432 if (src_known && dst_known) { 12433 __mark_reg32_known(dst_reg, var32_off.value); 12434 return; 12435 } 12436 12437 /* We get our minimum from the var_off, since that's inherently 12438 * bitwise. Our maximum is the minimum of the operands' maxima. 12439 */ 12440 dst_reg->u32_min_value = var32_off.value; 12441 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12442 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12443 /* Lose signed bounds when ANDing negative numbers, 12444 * ain't nobody got time for that. 12445 */ 12446 dst_reg->s32_min_value = S32_MIN; 12447 dst_reg->s32_max_value = S32_MAX; 12448 } else { 12449 /* ANDing two positives gives a positive, so safe to 12450 * cast result into s64. 12451 */ 12452 dst_reg->s32_min_value = dst_reg->u32_min_value; 12453 dst_reg->s32_max_value = dst_reg->u32_max_value; 12454 } 12455 } 12456 12457 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12458 struct bpf_reg_state *src_reg) 12459 { 12460 bool src_known = tnum_is_const(src_reg->var_off); 12461 bool dst_known = tnum_is_const(dst_reg->var_off); 12462 s64 smin_val = src_reg->smin_value; 12463 u64 umax_val = src_reg->umax_value; 12464 12465 if (src_known && dst_known) { 12466 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12467 return; 12468 } 12469 12470 /* We get our minimum from the var_off, since that's inherently 12471 * bitwise. Our maximum is the minimum of the operands' maxima. 12472 */ 12473 dst_reg->umin_value = dst_reg->var_off.value; 12474 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12475 if (dst_reg->smin_value < 0 || smin_val < 0) { 12476 /* Lose signed bounds when ANDing negative numbers, 12477 * ain't nobody got time for that. 12478 */ 12479 dst_reg->smin_value = S64_MIN; 12480 dst_reg->smax_value = S64_MAX; 12481 } else { 12482 /* ANDing two positives gives a positive, so safe to 12483 * cast result into s64. 12484 */ 12485 dst_reg->smin_value = dst_reg->umin_value; 12486 dst_reg->smax_value = dst_reg->umax_value; 12487 } 12488 /* We may learn something more from the var_off */ 12489 __update_reg_bounds(dst_reg); 12490 } 12491 12492 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12493 struct bpf_reg_state *src_reg) 12494 { 12495 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12496 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12497 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12498 s32 smin_val = src_reg->s32_min_value; 12499 u32 umin_val = src_reg->u32_min_value; 12500 12501 if (src_known && dst_known) { 12502 __mark_reg32_known(dst_reg, var32_off.value); 12503 return; 12504 } 12505 12506 /* We get our maximum from the var_off, and our minimum is the 12507 * maximum of the operands' minima 12508 */ 12509 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12510 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12511 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12512 /* Lose signed bounds when ORing negative numbers, 12513 * ain't nobody got time for that. 12514 */ 12515 dst_reg->s32_min_value = S32_MIN; 12516 dst_reg->s32_max_value = S32_MAX; 12517 } else { 12518 /* ORing two positives gives a positive, so safe to 12519 * cast result into s64. 12520 */ 12521 dst_reg->s32_min_value = dst_reg->u32_min_value; 12522 dst_reg->s32_max_value = dst_reg->u32_max_value; 12523 } 12524 } 12525 12526 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12527 struct bpf_reg_state *src_reg) 12528 { 12529 bool src_known = tnum_is_const(src_reg->var_off); 12530 bool dst_known = tnum_is_const(dst_reg->var_off); 12531 s64 smin_val = src_reg->smin_value; 12532 u64 umin_val = src_reg->umin_value; 12533 12534 if (src_known && dst_known) { 12535 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12536 return; 12537 } 12538 12539 /* We get our maximum from the var_off, and our minimum is the 12540 * maximum of the operands' minima 12541 */ 12542 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12543 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12544 if (dst_reg->smin_value < 0 || smin_val < 0) { 12545 /* Lose signed bounds when ORing negative numbers, 12546 * ain't nobody got time for that. 12547 */ 12548 dst_reg->smin_value = S64_MIN; 12549 dst_reg->smax_value = S64_MAX; 12550 } else { 12551 /* ORing two positives gives a positive, so safe to 12552 * cast result into s64. 12553 */ 12554 dst_reg->smin_value = dst_reg->umin_value; 12555 dst_reg->smax_value = dst_reg->umax_value; 12556 } 12557 /* We may learn something more from the var_off */ 12558 __update_reg_bounds(dst_reg); 12559 } 12560 12561 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12562 struct bpf_reg_state *src_reg) 12563 { 12564 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12565 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12566 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12567 s32 smin_val = src_reg->s32_min_value; 12568 12569 if (src_known && dst_known) { 12570 __mark_reg32_known(dst_reg, var32_off.value); 12571 return; 12572 } 12573 12574 /* We get both minimum and maximum from the var32_off. */ 12575 dst_reg->u32_min_value = var32_off.value; 12576 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12577 12578 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12579 /* XORing two positive sign numbers gives a positive, 12580 * so safe to cast u32 result into s32. 12581 */ 12582 dst_reg->s32_min_value = dst_reg->u32_min_value; 12583 dst_reg->s32_max_value = dst_reg->u32_max_value; 12584 } else { 12585 dst_reg->s32_min_value = S32_MIN; 12586 dst_reg->s32_max_value = S32_MAX; 12587 } 12588 } 12589 12590 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12591 struct bpf_reg_state *src_reg) 12592 { 12593 bool src_known = tnum_is_const(src_reg->var_off); 12594 bool dst_known = tnum_is_const(dst_reg->var_off); 12595 s64 smin_val = src_reg->smin_value; 12596 12597 if (src_known && dst_known) { 12598 /* dst_reg->var_off.value has been updated earlier */ 12599 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12600 return; 12601 } 12602 12603 /* We get both minimum and maximum from the var_off. */ 12604 dst_reg->umin_value = dst_reg->var_off.value; 12605 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12606 12607 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12608 /* XORing two positive sign numbers gives a positive, 12609 * so safe to cast u64 result into s64. 12610 */ 12611 dst_reg->smin_value = dst_reg->umin_value; 12612 dst_reg->smax_value = dst_reg->umax_value; 12613 } else { 12614 dst_reg->smin_value = S64_MIN; 12615 dst_reg->smax_value = S64_MAX; 12616 } 12617 12618 __update_reg_bounds(dst_reg); 12619 } 12620 12621 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12622 u64 umin_val, u64 umax_val) 12623 { 12624 /* We lose all sign bit information (except what we can pick 12625 * up from var_off) 12626 */ 12627 dst_reg->s32_min_value = S32_MIN; 12628 dst_reg->s32_max_value = S32_MAX; 12629 /* If we might shift our top bit out, then we know nothing */ 12630 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12631 dst_reg->u32_min_value = 0; 12632 dst_reg->u32_max_value = U32_MAX; 12633 } else { 12634 dst_reg->u32_min_value <<= umin_val; 12635 dst_reg->u32_max_value <<= umax_val; 12636 } 12637 } 12638 12639 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12640 struct bpf_reg_state *src_reg) 12641 { 12642 u32 umax_val = src_reg->u32_max_value; 12643 u32 umin_val = src_reg->u32_min_value; 12644 /* u32 alu operation will zext upper bits */ 12645 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12646 12647 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12648 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12649 /* Not required but being careful mark reg64 bounds as unknown so 12650 * that we are forced to pick them up from tnum and zext later and 12651 * if some path skips this step we are still safe. 12652 */ 12653 __mark_reg64_unbounded(dst_reg); 12654 __update_reg32_bounds(dst_reg); 12655 } 12656 12657 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12658 u64 umin_val, u64 umax_val) 12659 { 12660 /* Special case <<32 because it is a common compiler pattern to sign 12661 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12662 * positive we know this shift will also be positive so we can track 12663 * bounds correctly. Otherwise we lose all sign bit information except 12664 * what we can pick up from var_off. Perhaps we can generalize this 12665 * later to shifts of any length. 12666 */ 12667 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12668 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12669 else 12670 dst_reg->smax_value = S64_MAX; 12671 12672 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12673 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12674 else 12675 dst_reg->smin_value = S64_MIN; 12676 12677 /* If we might shift our top bit out, then we know nothing */ 12678 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12679 dst_reg->umin_value = 0; 12680 dst_reg->umax_value = U64_MAX; 12681 } else { 12682 dst_reg->umin_value <<= umin_val; 12683 dst_reg->umax_value <<= umax_val; 12684 } 12685 } 12686 12687 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12688 struct bpf_reg_state *src_reg) 12689 { 12690 u64 umax_val = src_reg->umax_value; 12691 u64 umin_val = src_reg->umin_value; 12692 12693 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12694 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12695 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12696 12697 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12698 /* We may learn something more from the var_off */ 12699 __update_reg_bounds(dst_reg); 12700 } 12701 12702 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12703 struct bpf_reg_state *src_reg) 12704 { 12705 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12706 u32 umax_val = src_reg->u32_max_value; 12707 u32 umin_val = src_reg->u32_min_value; 12708 12709 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12710 * be negative, then either: 12711 * 1) src_reg might be zero, so the sign bit of the result is 12712 * unknown, so we lose our signed bounds 12713 * 2) it's known negative, thus the unsigned bounds capture the 12714 * signed bounds 12715 * 3) the signed bounds cross zero, so they tell us nothing 12716 * about the result 12717 * If the value in dst_reg is known nonnegative, then again the 12718 * unsigned bounds capture the signed bounds. 12719 * Thus, in all cases it suffices to blow away our signed bounds 12720 * and rely on inferring new ones from the unsigned bounds and 12721 * var_off of the result. 12722 */ 12723 dst_reg->s32_min_value = S32_MIN; 12724 dst_reg->s32_max_value = S32_MAX; 12725 12726 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12727 dst_reg->u32_min_value >>= umax_val; 12728 dst_reg->u32_max_value >>= umin_val; 12729 12730 __mark_reg64_unbounded(dst_reg); 12731 __update_reg32_bounds(dst_reg); 12732 } 12733 12734 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12735 struct bpf_reg_state *src_reg) 12736 { 12737 u64 umax_val = src_reg->umax_value; 12738 u64 umin_val = src_reg->umin_value; 12739 12740 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12741 * be negative, then either: 12742 * 1) src_reg might be zero, so the sign bit of the result is 12743 * unknown, so we lose our signed bounds 12744 * 2) it's known negative, thus the unsigned bounds capture the 12745 * signed bounds 12746 * 3) the signed bounds cross zero, so they tell us nothing 12747 * about the result 12748 * If the value in dst_reg is known nonnegative, then again the 12749 * unsigned bounds capture the signed bounds. 12750 * Thus, in all cases it suffices to blow away our signed bounds 12751 * and rely on inferring new ones from the unsigned bounds and 12752 * var_off of the result. 12753 */ 12754 dst_reg->smin_value = S64_MIN; 12755 dst_reg->smax_value = S64_MAX; 12756 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12757 dst_reg->umin_value >>= umax_val; 12758 dst_reg->umax_value >>= umin_val; 12759 12760 /* Its not easy to operate on alu32 bounds here because it depends 12761 * on bits being shifted in. Take easy way out and mark unbounded 12762 * so we can recalculate later from tnum. 12763 */ 12764 __mark_reg32_unbounded(dst_reg); 12765 __update_reg_bounds(dst_reg); 12766 } 12767 12768 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12769 struct bpf_reg_state *src_reg) 12770 { 12771 u64 umin_val = src_reg->u32_min_value; 12772 12773 /* Upon reaching here, src_known is true and 12774 * umax_val is equal to umin_val. 12775 */ 12776 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12777 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12778 12779 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12780 12781 /* blow away the dst_reg umin_value/umax_value and rely on 12782 * dst_reg var_off to refine the result. 12783 */ 12784 dst_reg->u32_min_value = 0; 12785 dst_reg->u32_max_value = U32_MAX; 12786 12787 __mark_reg64_unbounded(dst_reg); 12788 __update_reg32_bounds(dst_reg); 12789 } 12790 12791 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12792 struct bpf_reg_state *src_reg) 12793 { 12794 u64 umin_val = src_reg->umin_value; 12795 12796 /* Upon reaching here, src_known is true and umax_val is equal 12797 * to umin_val. 12798 */ 12799 dst_reg->smin_value >>= umin_val; 12800 dst_reg->smax_value >>= umin_val; 12801 12802 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12803 12804 /* blow away the dst_reg umin_value/umax_value and rely on 12805 * dst_reg var_off to refine the result. 12806 */ 12807 dst_reg->umin_value = 0; 12808 dst_reg->umax_value = U64_MAX; 12809 12810 /* Its not easy to operate on alu32 bounds here because it depends 12811 * on bits being shifted in from upper 32-bits. Take easy way out 12812 * and mark unbounded so we can recalculate later from tnum. 12813 */ 12814 __mark_reg32_unbounded(dst_reg); 12815 __update_reg_bounds(dst_reg); 12816 } 12817 12818 /* WARNING: This function does calculations on 64-bit values, but the actual 12819 * execution may occur on 32-bit values. Therefore, things like bitshifts 12820 * need extra checks in the 32-bit case. 12821 */ 12822 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12823 struct bpf_insn *insn, 12824 struct bpf_reg_state *dst_reg, 12825 struct bpf_reg_state src_reg) 12826 { 12827 struct bpf_reg_state *regs = cur_regs(env); 12828 u8 opcode = BPF_OP(insn->code); 12829 bool src_known; 12830 s64 smin_val, smax_val; 12831 u64 umin_val, umax_val; 12832 s32 s32_min_val, s32_max_val; 12833 u32 u32_min_val, u32_max_val; 12834 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12835 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12836 int ret; 12837 12838 smin_val = src_reg.smin_value; 12839 smax_val = src_reg.smax_value; 12840 umin_val = src_reg.umin_value; 12841 umax_val = src_reg.umax_value; 12842 12843 s32_min_val = src_reg.s32_min_value; 12844 s32_max_val = src_reg.s32_max_value; 12845 u32_min_val = src_reg.u32_min_value; 12846 u32_max_val = src_reg.u32_max_value; 12847 12848 if (alu32) { 12849 src_known = tnum_subreg_is_const(src_reg.var_off); 12850 if ((src_known && 12851 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12852 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12853 /* Taint dst register if offset had invalid bounds 12854 * derived from e.g. dead branches. 12855 */ 12856 __mark_reg_unknown(env, dst_reg); 12857 return 0; 12858 } 12859 } else { 12860 src_known = tnum_is_const(src_reg.var_off); 12861 if ((src_known && 12862 (smin_val != smax_val || umin_val != umax_val)) || 12863 smin_val > smax_val || umin_val > umax_val) { 12864 /* Taint dst register if offset had invalid bounds 12865 * derived from e.g. dead branches. 12866 */ 12867 __mark_reg_unknown(env, dst_reg); 12868 return 0; 12869 } 12870 } 12871 12872 if (!src_known && 12873 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12874 __mark_reg_unknown(env, dst_reg); 12875 return 0; 12876 } 12877 12878 if (sanitize_needed(opcode)) { 12879 ret = sanitize_val_alu(env, insn); 12880 if (ret < 0) 12881 return sanitize_err(env, insn, ret, NULL, NULL); 12882 } 12883 12884 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12885 * There are two classes of instructions: The first class we track both 12886 * alu32 and alu64 sign/unsigned bounds independently this provides the 12887 * greatest amount of precision when alu operations are mixed with jmp32 12888 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12889 * and BPF_OR. This is possible because these ops have fairly easy to 12890 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12891 * See alu32 verifier tests for examples. The second class of 12892 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12893 * with regards to tracking sign/unsigned bounds because the bits may 12894 * cross subreg boundaries in the alu64 case. When this happens we mark 12895 * the reg unbounded in the subreg bound space and use the resulting 12896 * tnum to calculate an approximation of the sign/unsigned bounds. 12897 */ 12898 switch (opcode) { 12899 case BPF_ADD: 12900 scalar32_min_max_add(dst_reg, &src_reg); 12901 scalar_min_max_add(dst_reg, &src_reg); 12902 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12903 break; 12904 case BPF_SUB: 12905 scalar32_min_max_sub(dst_reg, &src_reg); 12906 scalar_min_max_sub(dst_reg, &src_reg); 12907 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12908 break; 12909 case BPF_MUL: 12910 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12911 scalar32_min_max_mul(dst_reg, &src_reg); 12912 scalar_min_max_mul(dst_reg, &src_reg); 12913 break; 12914 case BPF_AND: 12915 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12916 scalar32_min_max_and(dst_reg, &src_reg); 12917 scalar_min_max_and(dst_reg, &src_reg); 12918 break; 12919 case BPF_OR: 12920 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12921 scalar32_min_max_or(dst_reg, &src_reg); 12922 scalar_min_max_or(dst_reg, &src_reg); 12923 break; 12924 case BPF_XOR: 12925 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12926 scalar32_min_max_xor(dst_reg, &src_reg); 12927 scalar_min_max_xor(dst_reg, &src_reg); 12928 break; 12929 case BPF_LSH: 12930 if (umax_val >= insn_bitness) { 12931 /* Shifts greater than 31 or 63 are undefined. 12932 * This includes shifts by a negative number. 12933 */ 12934 mark_reg_unknown(env, regs, insn->dst_reg); 12935 break; 12936 } 12937 if (alu32) 12938 scalar32_min_max_lsh(dst_reg, &src_reg); 12939 else 12940 scalar_min_max_lsh(dst_reg, &src_reg); 12941 break; 12942 case BPF_RSH: 12943 if (umax_val >= insn_bitness) { 12944 /* Shifts greater than 31 or 63 are undefined. 12945 * This includes shifts by a negative number. 12946 */ 12947 mark_reg_unknown(env, regs, insn->dst_reg); 12948 break; 12949 } 12950 if (alu32) 12951 scalar32_min_max_rsh(dst_reg, &src_reg); 12952 else 12953 scalar_min_max_rsh(dst_reg, &src_reg); 12954 break; 12955 case BPF_ARSH: 12956 if (umax_val >= insn_bitness) { 12957 /* Shifts greater than 31 or 63 are undefined. 12958 * This includes shifts by a negative number. 12959 */ 12960 mark_reg_unknown(env, regs, insn->dst_reg); 12961 break; 12962 } 12963 if (alu32) 12964 scalar32_min_max_arsh(dst_reg, &src_reg); 12965 else 12966 scalar_min_max_arsh(dst_reg, &src_reg); 12967 break; 12968 default: 12969 mark_reg_unknown(env, regs, insn->dst_reg); 12970 break; 12971 } 12972 12973 /* ALU32 ops are zero extended into 64bit register */ 12974 if (alu32) 12975 zext_32_to_64(dst_reg); 12976 reg_bounds_sync(dst_reg); 12977 return 0; 12978 } 12979 12980 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12981 * and var_off. 12982 */ 12983 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12984 struct bpf_insn *insn) 12985 { 12986 struct bpf_verifier_state *vstate = env->cur_state; 12987 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12988 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12989 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12990 u8 opcode = BPF_OP(insn->code); 12991 int err; 12992 12993 dst_reg = ®s[insn->dst_reg]; 12994 src_reg = NULL; 12995 if (dst_reg->type != SCALAR_VALUE) 12996 ptr_reg = dst_reg; 12997 else 12998 /* Make sure ID is cleared otherwise dst_reg min/max could be 12999 * incorrectly propagated into other registers by find_equal_scalars() 13000 */ 13001 dst_reg->id = 0; 13002 if (BPF_SRC(insn->code) == BPF_X) { 13003 src_reg = ®s[insn->src_reg]; 13004 if (src_reg->type != SCALAR_VALUE) { 13005 if (dst_reg->type != SCALAR_VALUE) { 13006 /* Combining two pointers by any ALU op yields 13007 * an arbitrary scalar. Disallow all math except 13008 * pointer subtraction 13009 */ 13010 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13011 mark_reg_unknown(env, regs, insn->dst_reg); 13012 return 0; 13013 } 13014 verbose(env, "R%d pointer %s pointer prohibited\n", 13015 insn->dst_reg, 13016 bpf_alu_string[opcode >> 4]); 13017 return -EACCES; 13018 } else { 13019 /* scalar += pointer 13020 * This is legal, but we have to reverse our 13021 * src/dest handling in computing the range 13022 */ 13023 err = mark_chain_precision(env, insn->dst_reg); 13024 if (err) 13025 return err; 13026 return adjust_ptr_min_max_vals(env, insn, 13027 src_reg, dst_reg); 13028 } 13029 } else if (ptr_reg) { 13030 /* pointer += scalar */ 13031 err = mark_chain_precision(env, insn->src_reg); 13032 if (err) 13033 return err; 13034 return adjust_ptr_min_max_vals(env, insn, 13035 dst_reg, src_reg); 13036 } else if (dst_reg->precise) { 13037 /* if dst_reg is precise, src_reg should be precise as well */ 13038 err = mark_chain_precision(env, insn->src_reg); 13039 if (err) 13040 return err; 13041 } 13042 } else { 13043 /* Pretend the src is a reg with a known value, since we only 13044 * need to be able to read from this state. 13045 */ 13046 off_reg.type = SCALAR_VALUE; 13047 __mark_reg_known(&off_reg, insn->imm); 13048 src_reg = &off_reg; 13049 if (ptr_reg) /* pointer += K */ 13050 return adjust_ptr_min_max_vals(env, insn, 13051 ptr_reg, src_reg); 13052 } 13053 13054 /* Got here implies adding two SCALAR_VALUEs */ 13055 if (WARN_ON_ONCE(ptr_reg)) { 13056 print_verifier_state(env, state, true); 13057 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13058 return -EINVAL; 13059 } 13060 if (WARN_ON(!src_reg)) { 13061 print_verifier_state(env, state, true); 13062 verbose(env, "verifier internal error: no src_reg\n"); 13063 return -EINVAL; 13064 } 13065 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13066 } 13067 13068 /* check validity of 32-bit and 64-bit arithmetic operations */ 13069 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13070 { 13071 struct bpf_reg_state *regs = cur_regs(env); 13072 u8 opcode = BPF_OP(insn->code); 13073 int err; 13074 13075 if (opcode == BPF_END || opcode == BPF_NEG) { 13076 if (opcode == BPF_NEG) { 13077 if (BPF_SRC(insn->code) != BPF_K || 13078 insn->src_reg != BPF_REG_0 || 13079 insn->off != 0 || insn->imm != 0) { 13080 verbose(env, "BPF_NEG uses reserved fields\n"); 13081 return -EINVAL; 13082 } 13083 } else { 13084 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13085 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13086 (BPF_CLASS(insn->code) == BPF_ALU64 && 13087 BPF_SRC(insn->code) != BPF_TO_LE)) { 13088 verbose(env, "BPF_END uses reserved fields\n"); 13089 return -EINVAL; 13090 } 13091 } 13092 13093 /* check src operand */ 13094 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13095 if (err) 13096 return err; 13097 13098 if (is_pointer_value(env, insn->dst_reg)) { 13099 verbose(env, "R%d pointer arithmetic prohibited\n", 13100 insn->dst_reg); 13101 return -EACCES; 13102 } 13103 13104 /* check dest operand */ 13105 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13106 if (err) 13107 return err; 13108 13109 } else if (opcode == BPF_MOV) { 13110 13111 if (BPF_SRC(insn->code) == BPF_X) { 13112 if (insn->imm != 0) { 13113 verbose(env, "BPF_MOV uses reserved fields\n"); 13114 return -EINVAL; 13115 } 13116 13117 if (BPF_CLASS(insn->code) == BPF_ALU) { 13118 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13119 verbose(env, "BPF_MOV uses reserved fields\n"); 13120 return -EINVAL; 13121 } 13122 } else { 13123 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13124 insn->off != 32) { 13125 verbose(env, "BPF_MOV uses reserved fields\n"); 13126 return -EINVAL; 13127 } 13128 } 13129 13130 /* check src operand */ 13131 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13132 if (err) 13133 return err; 13134 } else { 13135 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13136 verbose(env, "BPF_MOV uses reserved fields\n"); 13137 return -EINVAL; 13138 } 13139 } 13140 13141 /* check dest operand, mark as required later */ 13142 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13143 if (err) 13144 return err; 13145 13146 if (BPF_SRC(insn->code) == BPF_X) { 13147 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13148 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13149 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13150 !tnum_is_const(src_reg->var_off); 13151 13152 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13153 if (insn->off == 0) { 13154 /* case: R1 = R2 13155 * copy register state to dest reg 13156 */ 13157 if (need_id) 13158 /* Assign src and dst registers the same ID 13159 * that will be used by find_equal_scalars() 13160 * to propagate min/max range. 13161 */ 13162 src_reg->id = ++env->id_gen; 13163 copy_register_state(dst_reg, src_reg); 13164 dst_reg->live |= REG_LIVE_WRITTEN; 13165 dst_reg->subreg_def = DEF_NOT_SUBREG; 13166 } else { 13167 /* case: R1 = (s8, s16 s32)R2 */ 13168 bool no_sext; 13169 13170 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13171 if (no_sext && need_id) 13172 src_reg->id = ++env->id_gen; 13173 copy_register_state(dst_reg, src_reg); 13174 if (!no_sext) 13175 dst_reg->id = 0; 13176 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13177 dst_reg->live |= REG_LIVE_WRITTEN; 13178 dst_reg->subreg_def = DEF_NOT_SUBREG; 13179 } 13180 } else { 13181 /* R1 = (u32) R2 */ 13182 if (is_pointer_value(env, insn->src_reg)) { 13183 verbose(env, 13184 "R%d partial copy of pointer\n", 13185 insn->src_reg); 13186 return -EACCES; 13187 } else if (src_reg->type == SCALAR_VALUE) { 13188 if (insn->off == 0) { 13189 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13190 13191 if (is_src_reg_u32 && need_id) 13192 src_reg->id = ++env->id_gen; 13193 copy_register_state(dst_reg, src_reg); 13194 /* Make sure ID is cleared if src_reg is not in u32 13195 * range otherwise dst_reg min/max could be incorrectly 13196 * propagated into src_reg by find_equal_scalars() 13197 */ 13198 if (!is_src_reg_u32) 13199 dst_reg->id = 0; 13200 dst_reg->live |= REG_LIVE_WRITTEN; 13201 dst_reg->subreg_def = env->insn_idx + 1; 13202 } else { 13203 /* case: W1 = (s8, s16)W2 */ 13204 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13205 13206 if (no_sext && need_id) 13207 src_reg->id = ++env->id_gen; 13208 copy_register_state(dst_reg, src_reg); 13209 if (!no_sext) 13210 dst_reg->id = 0; 13211 dst_reg->live |= REG_LIVE_WRITTEN; 13212 dst_reg->subreg_def = env->insn_idx + 1; 13213 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13214 } 13215 } else { 13216 mark_reg_unknown(env, regs, 13217 insn->dst_reg); 13218 } 13219 zext_32_to_64(dst_reg); 13220 reg_bounds_sync(dst_reg); 13221 } 13222 } else { 13223 /* case: R = imm 13224 * remember the value we stored into this reg 13225 */ 13226 /* clear any state __mark_reg_known doesn't set */ 13227 mark_reg_unknown(env, regs, insn->dst_reg); 13228 regs[insn->dst_reg].type = SCALAR_VALUE; 13229 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13230 __mark_reg_known(regs + insn->dst_reg, 13231 insn->imm); 13232 } else { 13233 __mark_reg_known(regs + insn->dst_reg, 13234 (u32)insn->imm); 13235 } 13236 } 13237 13238 } else if (opcode > BPF_END) { 13239 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13240 return -EINVAL; 13241 13242 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13243 13244 if (BPF_SRC(insn->code) == BPF_X) { 13245 if (insn->imm != 0 || insn->off > 1 || 13246 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13247 verbose(env, "BPF_ALU uses reserved fields\n"); 13248 return -EINVAL; 13249 } 13250 /* check src1 operand */ 13251 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13252 if (err) 13253 return err; 13254 } else { 13255 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13256 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13257 verbose(env, "BPF_ALU uses reserved fields\n"); 13258 return -EINVAL; 13259 } 13260 } 13261 13262 /* check src2 operand */ 13263 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13264 if (err) 13265 return err; 13266 13267 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13268 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13269 verbose(env, "div by zero\n"); 13270 return -EINVAL; 13271 } 13272 13273 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13274 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13275 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13276 13277 if (insn->imm < 0 || insn->imm >= size) { 13278 verbose(env, "invalid shift %d\n", insn->imm); 13279 return -EINVAL; 13280 } 13281 } 13282 13283 /* check dest operand */ 13284 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13285 if (err) 13286 return err; 13287 13288 return adjust_reg_min_max_vals(env, insn); 13289 } 13290 13291 return 0; 13292 } 13293 13294 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13295 struct bpf_reg_state *dst_reg, 13296 enum bpf_reg_type type, 13297 bool range_right_open) 13298 { 13299 struct bpf_func_state *state; 13300 struct bpf_reg_state *reg; 13301 int new_range; 13302 13303 if (dst_reg->off < 0 || 13304 (dst_reg->off == 0 && range_right_open)) 13305 /* This doesn't give us any range */ 13306 return; 13307 13308 if (dst_reg->umax_value > MAX_PACKET_OFF || 13309 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13310 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13311 * than pkt_end, but that's because it's also less than pkt. 13312 */ 13313 return; 13314 13315 new_range = dst_reg->off; 13316 if (range_right_open) 13317 new_range++; 13318 13319 /* Examples for register markings: 13320 * 13321 * pkt_data in dst register: 13322 * 13323 * r2 = r3; 13324 * r2 += 8; 13325 * if (r2 > pkt_end) goto <handle exception> 13326 * <access okay> 13327 * 13328 * r2 = r3; 13329 * r2 += 8; 13330 * if (r2 < pkt_end) goto <access okay> 13331 * <handle exception> 13332 * 13333 * Where: 13334 * r2 == dst_reg, pkt_end == src_reg 13335 * r2=pkt(id=n,off=8,r=0) 13336 * r3=pkt(id=n,off=0,r=0) 13337 * 13338 * pkt_data in src register: 13339 * 13340 * r2 = r3; 13341 * r2 += 8; 13342 * if (pkt_end >= r2) goto <access okay> 13343 * <handle exception> 13344 * 13345 * r2 = r3; 13346 * r2 += 8; 13347 * if (pkt_end <= r2) goto <handle exception> 13348 * <access okay> 13349 * 13350 * Where: 13351 * pkt_end == dst_reg, r2 == src_reg 13352 * r2=pkt(id=n,off=8,r=0) 13353 * r3=pkt(id=n,off=0,r=0) 13354 * 13355 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13356 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13357 * and [r3, r3 + 8-1) respectively is safe to access depending on 13358 * the check. 13359 */ 13360 13361 /* If our ids match, then we must have the same max_value. And we 13362 * don't care about the other reg's fixed offset, since if it's too big 13363 * the range won't allow anything. 13364 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13365 */ 13366 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13367 if (reg->type == type && reg->id == dst_reg->id) 13368 /* keep the maximum range already checked */ 13369 reg->range = max(reg->range, new_range); 13370 })); 13371 } 13372 13373 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13374 { 13375 struct tnum subreg = tnum_subreg(reg->var_off); 13376 s32 sval = (s32)val; 13377 13378 switch (opcode) { 13379 case BPF_JEQ: 13380 if (tnum_is_const(subreg)) 13381 return !!tnum_equals_const(subreg, val); 13382 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13383 return 0; 13384 break; 13385 case BPF_JNE: 13386 if (tnum_is_const(subreg)) 13387 return !tnum_equals_const(subreg, val); 13388 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13389 return 1; 13390 break; 13391 case BPF_JSET: 13392 if ((~subreg.mask & subreg.value) & val) 13393 return 1; 13394 if (!((subreg.mask | subreg.value) & val)) 13395 return 0; 13396 break; 13397 case BPF_JGT: 13398 if (reg->u32_min_value > val) 13399 return 1; 13400 else if (reg->u32_max_value <= val) 13401 return 0; 13402 break; 13403 case BPF_JSGT: 13404 if (reg->s32_min_value > sval) 13405 return 1; 13406 else if (reg->s32_max_value <= sval) 13407 return 0; 13408 break; 13409 case BPF_JLT: 13410 if (reg->u32_max_value < val) 13411 return 1; 13412 else if (reg->u32_min_value >= val) 13413 return 0; 13414 break; 13415 case BPF_JSLT: 13416 if (reg->s32_max_value < sval) 13417 return 1; 13418 else if (reg->s32_min_value >= sval) 13419 return 0; 13420 break; 13421 case BPF_JGE: 13422 if (reg->u32_min_value >= val) 13423 return 1; 13424 else if (reg->u32_max_value < val) 13425 return 0; 13426 break; 13427 case BPF_JSGE: 13428 if (reg->s32_min_value >= sval) 13429 return 1; 13430 else if (reg->s32_max_value < sval) 13431 return 0; 13432 break; 13433 case BPF_JLE: 13434 if (reg->u32_max_value <= val) 13435 return 1; 13436 else if (reg->u32_min_value > val) 13437 return 0; 13438 break; 13439 case BPF_JSLE: 13440 if (reg->s32_max_value <= sval) 13441 return 1; 13442 else if (reg->s32_min_value > sval) 13443 return 0; 13444 break; 13445 } 13446 13447 return -1; 13448 } 13449 13450 13451 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13452 { 13453 s64 sval = (s64)val; 13454 13455 switch (opcode) { 13456 case BPF_JEQ: 13457 if (tnum_is_const(reg->var_off)) 13458 return !!tnum_equals_const(reg->var_off, val); 13459 else if (val < reg->umin_value || val > reg->umax_value) 13460 return 0; 13461 break; 13462 case BPF_JNE: 13463 if (tnum_is_const(reg->var_off)) 13464 return !tnum_equals_const(reg->var_off, val); 13465 else if (val < reg->umin_value || val > reg->umax_value) 13466 return 1; 13467 break; 13468 case BPF_JSET: 13469 if ((~reg->var_off.mask & reg->var_off.value) & val) 13470 return 1; 13471 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13472 return 0; 13473 break; 13474 case BPF_JGT: 13475 if (reg->umin_value > val) 13476 return 1; 13477 else if (reg->umax_value <= val) 13478 return 0; 13479 break; 13480 case BPF_JSGT: 13481 if (reg->smin_value > sval) 13482 return 1; 13483 else if (reg->smax_value <= sval) 13484 return 0; 13485 break; 13486 case BPF_JLT: 13487 if (reg->umax_value < val) 13488 return 1; 13489 else if (reg->umin_value >= val) 13490 return 0; 13491 break; 13492 case BPF_JSLT: 13493 if (reg->smax_value < sval) 13494 return 1; 13495 else if (reg->smin_value >= sval) 13496 return 0; 13497 break; 13498 case BPF_JGE: 13499 if (reg->umin_value >= val) 13500 return 1; 13501 else if (reg->umax_value < val) 13502 return 0; 13503 break; 13504 case BPF_JSGE: 13505 if (reg->smin_value >= sval) 13506 return 1; 13507 else if (reg->smax_value < sval) 13508 return 0; 13509 break; 13510 case BPF_JLE: 13511 if (reg->umax_value <= val) 13512 return 1; 13513 else if (reg->umin_value > val) 13514 return 0; 13515 break; 13516 case BPF_JSLE: 13517 if (reg->smax_value <= sval) 13518 return 1; 13519 else if (reg->smin_value > sval) 13520 return 0; 13521 break; 13522 } 13523 13524 return -1; 13525 } 13526 13527 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13528 * and return: 13529 * 1 - branch will be taken and "goto target" will be executed 13530 * 0 - branch will not be taken and fall-through to next insn 13531 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13532 * range [0,10] 13533 */ 13534 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13535 bool is_jmp32) 13536 { 13537 if (__is_pointer_value(false, reg)) { 13538 if (!reg_not_null(reg)) 13539 return -1; 13540 13541 /* If pointer is valid tests against zero will fail so we can 13542 * use this to direct branch taken. 13543 */ 13544 if (val != 0) 13545 return -1; 13546 13547 switch (opcode) { 13548 case BPF_JEQ: 13549 return 0; 13550 case BPF_JNE: 13551 return 1; 13552 default: 13553 return -1; 13554 } 13555 } 13556 13557 if (is_jmp32) 13558 return is_branch32_taken(reg, val, opcode); 13559 return is_branch64_taken(reg, val, opcode); 13560 } 13561 13562 static int flip_opcode(u32 opcode) 13563 { 13564 /* How can we transform "a <op> b" into "b <op> a"? */ 13565 static const u8 opcode_flip[16] = { 13566 /* these stay the same */ 13567 [BPF_JEQ >> 4] = BPF_JEQ, 13568 [BPF_JNE >> 4] = BPF_JNE, 13569 [BPF_JSET >> 4] = BPF_JSET, 13570 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13571 [BPF_JGE >> 4] = BPF_JLE, 13572 [BPF_JGT >> 4] = BPF_JLT, 13573 [BPF_JLE >> 4] = BPF_JGE, 13574 [BPF_JLT >> 4] = BPF_JGT, 13575 [BPF_JSGE >> 4] = BPF_JSLE, 13576 [BPF_JSGT >> 4] = BPF_JSLT, 13577 [BPF_JSLE >> 4] = BPF_JSGE, 13578 [BPF_JSLT >> 4] = BPF_JSGT 13579 }; 13580 return opcode_flip[opcode >> 4]; 13581 } 13582 13583 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13584 struct bpf_reg_state *src_reg, 13585 u8 opcode) 13586 { 13587 struct bpf_reg_state *pkt; 13588 13589 if (src_reg->type == PTR_TO_PACKET_END) { 13590 pkt = dst_reg; 13591 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13592 pkt = src_reg; 13593 opcode = flip_opcode(opcode); 13594 } else { 13595 return -1; 13596 } 13597 13598 if (pkt->range >= 0) 13599 return -1; 13600 13601 switch (opcode) { 13602 case BPF_JLE: 13603 /* pkt <= pkt_end */ 13604 fallthrough; 13605 case BPF_JGT: 13606 /* pkt > pkt_end */ 13607 if (pkt->range == BEYOND_PKT_END) 13608 /* pkt has at last one extra byte beyond pkt_end */ 13609 return opcode == BPF_JGT; 13610 break; 13611 case BPF_JLT: 13612 /* pkt < pkt_end */ 13613 fallthrough; 13614 case BPF_JGE: 13615 /* pkt >= pkt_end */ 13616 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13617 return opcode == BPF_JGE; 13618 break; 13619 } 13620 return -1; 13621 } 13622 13623 /* Adjusts the register min/max values in the case that the dst_reg is the 13624 * variable register that we are working on, and src_reg is a constant or we're 13625 * simply doing a BPF_K check. 13626 * In JEQ/JNE cases we also adjust the var_off values. 13627 */ 13628 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13629 struct bpf_reg_state *false_reg, 13630 u64 val, u32 val32, 13631 u8 opcode, bool is_jmp32) 13632 { 13633 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13634 struct tnum false_64off = false_reg->var_off; 13635 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13636 struct tnum true_64off = true_reg->var_off; 13637 s64 sval = (s64)val; 13638 s32 sval32 = (s32)val32; 13639 13640 /* If the dst_reg is a pointer, we can't learn anything about its 13641 * variable offset from the compare (unless src_reg were a pointer into 13642 * the same object, but we don't bother with that. 13643 * Since false_reg and true_reg have the same type by construction, we 13644 * only need to check one of them for pointerness. 13645 */ 13646 if (__is_pointer_value(false, false_reg)) 13647 return; 13648 13649 switch (opcode) { 13650 /* JEQ/JNE comparison doesn't change the register equivalence. 13651 * 13652 * r1 = r2; 13653 * if (r1 == 42) goto label; 13654 * ... 13655 * label: // here both r1 and r2 are known to be 42. 13656 * 13657 * Hence when marking register as known preserve it's ID. 13658 */ 13659 case BPF_JEQ: 13660 if (is_jmp32) { 13661 __mark_reg32_known(true_reg, val32); 13662 true_32off = tnum_subreg(true_reg->var_off); 13663 } else { 13664 ___mark_reg_known(true_reg, val); 13665 true_64off = true_reg->var_off; 13666 } 13667 break; 13668 case BPF_JNE: 13669 if (is_jmp32) { 13670 __mark_reg32_known(false_reg, val32); 13671 false_32off = tnum_subreg(false_reg->var_off); 13672 } else { 13673 ___mark_reg_known(false_reg, val); 13674 false_64off = false_reg->var_off; 13675 } 13676 break; 13677 case BPF_JSET: 13678 if (is_jmp32) { 13679 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13680 if (is_power_of_2(val32)) 13681 true_32off = tnum_or(true_32off, 13682 tnum_const(val32)); 13683 } else { 13684 false_64off = tnum_and(false_64off, tnum_const(~val)); 13685 if (is_power_of_2(val)) 13686 true_64off = tnum_or(true_64off, 13687 tnum_const(val)); 13688 } 13689 break; 13690 case BPF_JGE: 13691 case BPF_JGT: 13692 { 13693 if (is_jmp32) { 13694 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13695 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13696 13697 false_reg->u32_max_value = min(false_reg->u32_max_value, 13698 false_umax); 13699 true_reg->u32_min_value = max(true_reg->u32_min_value, 13700 true_umin); 13701 } else { 13702 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13703 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13704 13705 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13706 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13707 } 13708 break; 13709 } 13710 case BPF_JSGE: 13711 case BPF_JSGT: 13712 { 13713 if (is_jmp32) { 13714 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13715 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13716 13717 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13718 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13719 } else { 13720 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13721 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13722 13723 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13724 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13725 } 13726 break; 13727 } 13728 case BPF_JLE: 13729 case BPF_JLT: 13730 { 13731 if (is_jmp32) { 13732 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13733 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13734 13735 false_reg->u32_min_value = max(false_reg->u32_min_value, 13736 false_umin); 13737 true_reg->u32_max_value = min(true_reg->u32_max_value, 13738 true_umax); 13739 } else { 13740 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13741 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13742 13743 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13744 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13745 } 13746 break; 13747 } 13748 case BPF_JSLE: 13749 case BPF_JSLT: 13750 { 13751 if (is_jmp32) { 13752 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13753 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13754 13755 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13756 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13757 } else { 13758 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13759 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13760 13761 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13762 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13763 } 13764 break; 13765 } 13766 default: 13767 return; 13768 } 13769 13770 if (is_jmp32) { 13771 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13772 tnum_subreg(false_32off)); 13773 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13774 tnum_subreg(true_32off)); 13775 __reg_combine_32_into_64(false_reg); 13776 __reg_combine_32_into_64(true_reg); 13777 } else { 13778 false_reg->var_off = false_64off; 13779 true_reg->var_off = true_64off; 13780 __reg_combine_64_into_32(false_reg); 13781 __reg_combine_64_into_32(true_reg); 13782 } 13783 } 13784 13785 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13786 * the variable reg. 13787 */ 13788 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13789 struct bpf_reg_state *false_reg, 13790 u64 val, u32 val32, 13791 u8 opcode, bool is_jmp32) 13792 { 13793 opcode = flip_opcode(opcode); 13794 /* This uses zero as "not present in table"; luckily the zero opcode, 13795 * BPF_JA, can't get here. 13796 */ 13797 if (opcode) 13798 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13799 } 13800 13801 /* Regs are known to be equal, so intersect their min/max/var_off */ 13802 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13803 struct bpf_reg_state *dst_reg) 13804 { 13805 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13806 dst_reg->umin_value); 13807 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13808 dst_reg->umax_value); 13809 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13810 dst_reg->smin_value); 13811 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13812 dst_reg->smax_value); 13813 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13814 dst_reg->var_off); 13815 reg_bounds_sync(src_reg); 13816 reg_bounds_sync(dst_reg); 13817 } 13818 13819 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13820 struct bpf_reg_state *true_dst, 13821 struct bpf_reg_state *false_src, 13822 struct bpf_reg_state *false_dst, 13823 u8 opcode) 13824 { 13825 switch (opcode) { 13826 case BPF_JEQ: 13827 __reg_combine_min_max(true_src, true_dst); 13828 break; 13829 case BPF_JNE: 13830 __reg_combine_min_max(false_src, false_dst); 13831 break; 13832 } 13833 } 13834 13835 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13836 struct bpf_reg_state *reg, u32 id, 13837 bool is_null) 13838 { 13839 if (type_may_be_null(reg->type) && reg->id == id && 13840 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13841 /* Old offset (both fixed and variable parts) should have been 13842 * known-zero, because we don't allow pointer arithmetic on 13843 * pointers that might be NULL. If we see this happening, don't 13844 * convert the register. 13845 * 13846 * But in some cases, some helpers that return local kptrs 13847 * advance offset for the returned pointer. In those cases, it 13848 * is fine to expect to see reg->off. 13849 */ 13850 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13851 return; 13852 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13853 WARN_ON_ONCE(reg->off)) 13854 return; 13855 13856 if (is_null) { 13857 reg->type = SCALAR_VALUE; 13858 /* We don't need id and ref_obj_id from this point 13859 * onwards anymore, thus we should better reset it, 13860 * so that state pruning has chances to take effect. 13861 */ 13862 reg->id = 0; 13863 reg->ref_obj_id = 0; 13864 13865 return; 13866 } 13867 13868 mark_ptr_not_null_reg(reg); 13869 13870 if (!reg_may_point_to_spin_lock(reg)) { 13871 /* For not-NULL ptr, reg->ref_obj_id will be reset 13872 * in release_reference(). 13873 * 13874 * reg->id is still used by spin_lock ptr. Other 13875 * than spin_lock ptr type, reg->id can be reset. 13876 */ 13877 reg->id = 0; 13878 } 13879 } 13880 } 13881 13882 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13883 * be folded together at some point. 13884 */ 13885 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13886 bool is_null) 13887 { 13888 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13889 struct bpf_reg_state *regs = state->regs, *reg; 13890 u32 ref_obj_id = regs[regno].ref_obj_id; 13891 u32 id = regs[regno].id; 13892 13893 if (ref_obj_id && ref_obj_id == id && is_null) 13894 /* regs[regno] is in the " == NULL" branch. 13895 * No one could have freed the reference state before 13896 * doing the NULL check. 13897 */ 13898 WARN_ON_ONCE(release_reference_state(state, id)); 13899 13900 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13901 mark_ptr_or_null_reg(state, reg, id, is_null); 13902 })); 13903 } 13904 13905 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13906 struct bpf_reg_state *dst_reg, 13907 struct bpf_reg_state *src_reg, 13908 struct bpf_verifier_state *this_branch, 13909 struct bpf_verifier_state *other_branch) 13910 { 13911 if (BPF_SRC(insn->code) != BPF_X) 13912 return false; 13913 13914 /* Pointers are always 64-bit. */ 13915 if (BPF_CLASS(insn->code) == BPF_JMP32) 13916 return false; 13917 13918 switch (BPF_OP(insn->code)) { 13919 case BPF_JGT: 13920 if ((dst_reg->type == PTR_TO_PACKET && 13921 src_reg->type == PTR_TO_PACKET_END) || 13922 (dst_reg->type == PTR_TO_PACKET_META && 13923 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13924 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13925 find_good_pkt_pointers(this_branch, dst_reg, 13926 dst_reg->type, false); 13927 mark_pkt_end(other_branch, insn->dst_reg, true); 13928 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13929 src_reg->type == PTR_TO_PACKET) || 13930 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13931 src_reg->type == PTR_TO_PACKET_META)) { 13932 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13933 find_good_pkt_pointers(other_branch, src_reg, 13934 src_reg->type, true); 13935 mark_pkt_end(this_branch, insn->src_reg, false); 13936 } else { 13937 return false; 13938 } 13939 break; 13940 case BPF_JLT: 13941 if ((dst_reg->type == PTR_TO_PACKET && 13942 src_reg->type == PTR_TO_PACKET_END) || 13943 (dst_reg->type == PTR_TO_PACKET_META && 13944 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13945 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13946 find_good_pkt_pointers(other_branch, dst_reg, 13947 dst_reg->type, true); 13948 mark_pkt_end(this_branch, insn->dst_reg, false); 13949 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13950 src_reg->type == PTR_TO_PACKET) || 13951 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13952 src_reg->type == PTR_TO_PACKET_META)) { 13953 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13954 find_good_pkt_pointers(this_branch, src_reg, 13955 src_reg->type, false); 13956 mark_pkt_end(other_branch, insn->src_reg, true); 13957 } else { 13958 return false; 13959 } 13960 break; 13961 case BPF_JGE: 13962 if ((dst_reg->type == PTR_TO_PACKET && 13963 src_reg->type == PTR_TO_PACKET_END) || 13964 (dst_reg->type == PTR_TO_PACKET_META && 13965 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13966 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13967 find_good_pkt_pointers(this_branch, dst_reg, 13968 dst_reg->type, true); 13969 mark_pkt_end(other_branch, insn->dst_reg, false); 13970 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13971 src_reg->type == PTR_TO_PACKET) || 13972 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13973 src_reg->type == PTR_TO_PACKET_META)) { 13974 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13975 find_good_pkt_pointers(other_branch, src_reg, 13976 src_reg->type, false); 13977 mark_pkt_end(this_branch, insn->src_reg, true); 13978 } else { 13979 return false; 13980 } 13981 break; 13982 case BPF_JLE: 13983 if ((dst_reg->type == PTR_TO_PACKET && 13984 src_reg->type == PTR_TO_PACKET_END) || 13985 (dst_reg->type == PTR_TO_PACKET_META && 13986 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13987 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13988 find_good_pkt_pointers(other_branch, dst_reg, 13989 dst_reg->type, false); 13990 mark_pkt_end(this_branch, insn->dst_reg, true); 13991 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13992 src_reg->type == PTR_TO_PACKET) || 13993 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13994 src_reg->type == PTR_TO_PACKET_META)) { 13995 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 13996 find_good_pkt_pointers(this_branch, src_reg, 13997 src_reg->type, true); 13998 mark_pkt_end(other_branch, insn->src_reg, false); 13999 } else { 14000 return false; 14001 } 14002 break; 14003 default: 14004 return false; 14005 } 14006 14007 return true; 14008 } 14009 14010 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14011 struct bpf_reg_state *known_reg) 14012 { 14013 struct bpf_func_state *state; 14014 struct bpf_reg_state *reg; 14015 14016 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14017 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14018 copy_register_state(reg, known_reg); 14019 })); 14020 } 14021 14022 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14023 struct bpf_insn *insn, int *insn_idx) 14024 { 14025 struct bpf_verifier_state *this_branch = env->cur_state; 14026 struct bpf_verifier_state *other_branch; 14027 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14028 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14029 struct bpf_reg_state *eq_branch_regs; 14030 u8 opcode = BPF_OP(insn->code); 14031 bool is_jmp32; 14032 int pred = -1; 14033 int err; 14034 14035 /* Only conditional jumps are expected to reach here. */ 14036 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14037 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14038 return -EINVAL; 14039 } 14040 14041 if (BPF_SRC(insn->code) == BPF_X) { 14042 if (insn->imm != 0) { 14043 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14044 return -EINVAL; 14045 } 14046 14047 /* check src1 operand */ 14048 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14049 if (err) 14050 return err; 14051 14052 if (is_pointer_value(env, insn->src_reg)) { 14053 verbose(env, "R%d pointer comparison prohibited\n", 14054 insn->src_reg); 14055 return -EACCES; 14056 } 14057 src_reg = ®s[insn->src_reg]; 14058 } else { 14059 if (insn->src_reg != BPF_REG_0) { 14060 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14061 return -EINVAL; 14062 } 14063 } 14064 14065 /* check src2 operand */ 14066 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14067 if (err) 14068 return err; 14069 14070 dst_reg = ®s[insn->dst_reg]; 14071 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14072 14073 if (BPF_SRC(insn->code) == BPF_K) { 14074 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14075 } else if (src_reg->type == SCALAR_VALUE && 14076 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14077 pred = is_branch_taken(dst_reg, 14078 tnum_subreg(src_reg->var_off).value, 14079 opcode, 14080 is_jmp32); 14081 } else if (src_reg->type == SCALAR_VALUE && 14082 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14083 pred = is_branch_taken(dst_reg, 14084 src_reg->var_off.value, 14085 opcode, 14086 is_jmp32); 14087 } else if (dst_reg->type == SCALAR_VALUE && 14088 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14089 pred = is_branch_taken(src_reg, 14090 tnum_subreg(dst_reg->var_off).value, 14091 flip_opcode(opcode), 14092 is_jmp32); 14093 } else if (dst_reg->type == SCALAR_VALUE && 14094 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14095 pred = is_branch_taken(src_reg, 14096 dst_reg->var_off.value, 14097 flip_opcode(opcode), 14098 is_jmp32); 14099 } else if (reg_is_pkt_pointer_any(dst_reg) && 14100 reg_is_pkt_pointer_any(src_reg) && 14101 !is_jmp32) { 14102 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14103 } 14104 14105 if (pred >= 0) { 14106 /* If we get here with a dst_reg pointer type it is because 14107 * above is_branch_taken() special cased the 0 comparison. 14108 */ 14109 if (!__is_pointer_value(false, dst_reg)) 14110 err = mark_chain_precision(env, insn->dst_reg); 14111 if (BPF_SRC(insn->code) == BPF_X && !err && 14112 !__is_pointer_value(false, src_reg)) 14113 err = mark_chain_precision(env, insn->src_reg); 14114 if (err) 14115 return err; 14116 } 14117 14118 if (pred == 1) { 14119 /* Only follow the goto, ignore fall-through. If needed, push 14120 * the fall-through branch for simulation under speculative 14121 * execution. 14122 */ 14123 if (!env->bypass_spec_v1 && 14124 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14125 *insn_idx)) 14126 return -EFAULT; 14127 *insn_idx += insn->off; 14128 return 0; 14129 } else if (pred == 0) { 14130 /* Only follow the fall-through branch, since that's where the 14131 * program will go. If needed, push the goto branch for 14132 * simulation under speculative execution. 14133 */ 14134 if (!env->bypass_spec_v1 && 14135 !sanitize_speculative_path(env, insn, 14136 *insn_idx + insn->off + 1, 14137 *insn_idx)) 14138 return -EFAULT; 14139 return 0; 14140 } 14141 14142 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14143 false); 14144 if (!other_branch) 14145 return -EFAULT; 14146 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14147 14148 /* detect if we are comparing against a constant value so we can adjust 14149 * our min/max values for our dst register. 14150 * this is only legit if both are scalars (or pointers to the same 14151 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14152 * because otherwise the different base pointers mean the offsets aren't 14153 * comparable. 14154 */ 14155 if (BPF_SRC(insn->code) == BPF_X) { 14156 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14157 14158 if (dst_reg->type == SCALAR_VALUE && 14159 src_reg->type == SCALAR_VALUE) { 14160 if (tnum_is_const(src_reg->var_off) || 14161 (is_jmp32 && 14162 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14163 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14164 dst_reg, 14165 src_reg->var_off.value, 14166 tnum_subreg(src_reg->var_off).value, 14167 opcode, is_jmp32); 14168 else if (tnum_is_const(dst_reg->var_off) || 14169 (is_jmp32 && 14170 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14171 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14172 src_reg, 14173 dst_reg->var_off.value, 14174 tnum_subreg(dst_reg->var_off).value, 14175 opcode, is_jmp32); 14176 else if (!is_jmp32 && 14177 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14178 /* Comparing for equality, we can combine knowledge */ 14179 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14180 &other_branch_regs[insn->dst_reg], 14181 src_reg, dst_reg, opcode); 14182 if (src_reg->id && 14183 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14184 find_equal_scalars(this_branch, src_reg); 14185 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14186 } 14187 14188 } 14189 } else if (dst_reg->type == SCALAR_VALUE) { 14190 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14191 dst_reg, insn->imm, (u32)insn->imm, 14192 opcode, is_jmp32); 14193 } 14194 14195 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14196 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14197 find_equal_scalars(this_branch, dst_reg); 14198 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14199 } 14200 14201 /* if one pointer register is compared to another pointer 14202 * register check if PTR_MAYBE_NULL could be lifted. 14203 * E.g. register A - maybe null 14204 * register B - not null 14205 * for JNE A, B, ... - A is not null in the false branch; 14206 * for JEQ A, B, ... - A is not null in the true branch. 14207 * 14208 * Since PTR_TO_BTF_ID points to a kernel struct that does 14209 * not need to be null checked by the BPF program, i.e., 14210 * could be null even without PTR_MAYBE_NULL marking, so 14211 * only propagate nullness when neither reg is that type. 14212 */ 14213 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14214 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14215 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14216 base_type(src_reg->type) != PTR_TO_BTF_ID && 14217 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14218 eq_branch_regs = NULL; 14219 switch (opcode) { 14220 case BPF_JEQ: 14221 eq_branch_regs = other_branch_regs; 14222 break; 14223 case BPF_JNE: 14224 eq_branch_regs = regs; 14225 break; 14226 default: 14227 /* do nothing */ 14228 break; 14229 } 14230 if (eq_branch_regs) { 14231 if (type_may_be_null(src_reg->type)) 14232 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14233 else 14234 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14235 } 14236 } 14237 14238 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14239 * NOTE: these optimizations below are related with pointer comparison 14240 * which will never be JMP32. 14241 */ 14242 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14243 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14244 type_may_be_null(dst_reg->type)) { 14245 /* Mark all identical registers in each branch as either 14246 * safe or unknown depending R == 0 or R != 0 conditional. 14247 */ 14248 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14249 opcode == BPF_JNE); 14250 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14251 opcode == BPF_JEQ); 14252 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14253 this_branch, other_branch) && 14254 is_pointer_value(env, insn->dst_reg)) { 14255 verbose(env, "R%d pointer comparison prohibited\n", 14256 insn->dst_reg); 14257 return -EACCES; 14258 } 14259 if (env->log.level & BPF_LOG_LEVEL) 14260 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14261 return 0; 14262 } 14263 14264 /* verify BPF_LD_IMM64 instruction */ 14265 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14266 { 14267 struct bpf_insn_aux_data *aux = cur_aux(env); 14268 struct bpf_reg_state *regs = cur_regs(env); 14269 struct bpf_reg_state *dst_reg; 14270 struct bpf_map *map; 14271 int err; 14272 14273 if (BPF_SIZE(insn->code) != BPF_DW) { 14274 verbose(env, "invalid BPF_LD_IMM insn\n"); 14275 return -EINVAL; 14276 } 14277 if (insn->off != 0) { 14278 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14279 return -EINVAL; 14280 } 14281 14282 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14283 if (err) 14284 return err; 14285 14286 dst_reg = ®s[insn->dst_reg]; 14287 if (insn->src_reg == 0) { 14288 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14289 14290 dst_reg->type = SCALAR_VALUE; 14291 __mark_reg_known(®s[insn->dst_reg], imm); 14292 return 0; 14293 } 14294 14295 /* All special src_reg cases are listed below. From this point onwards 14296 * we either succeed and assign a corresponding dst_reg->type after 14297 * zeroing the offset, or fail and reject the program. 14298 */ 14299 mark_reg_known_zero(env, regs, insn->dst_reg); 14300 14301 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14302 dst_reg->type = aux->btf_var.reg_type; 14303 switch (base_type(dst_reg->type)) { 14304 case PTR_TO_MEM: 14305 dst_reg->mem_size = aux->btf_var.mem_size; 14306 break; 14307 case PTR_TO_BTF_ID: 14308 dst_reg->btf = aux->btf_var.btf; 14309 dst_reg->btf_id = aux->btf_var.btf_id; 14310 break; 14311 default: 14312 verbose(env, "bpf verifier is misconfigured\n"); 14313 return -EFAULT; 14314 } 14315 return 0; 14316 } 14317 14318 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14319 struct bpf_prog_aux *aux = env->prog->aux; 14320 u32 subprogno = find_subprog(env, 14321 env->insn_idx + insn->imm + 1); 14322 14323 if (!aux->func_info) { 14324 verbose(env, "missing btf func_info\n"); 14325 return -EINVAL; 14326 } 14327 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14328 verbose(env, "callback function not static\n"); 14329 return -EINVAL; 14330 } 14331 14332 dst_reg->type = PTR_TO_FUNC; 14333 dst_reg->subprogno = subprogno; 14334 return 0; 14335 } 14336 14337 map = env->used_maps[aux->map_index]; 14338 dst_reg->map_ptr = map; 14339 14340 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14341 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14342 dst_reg->type = PTR_TO_MAP_VALUE; 14343 dst_reg->off = aux->map_off; 14344 WARN_ON_ONCE(map->max_entries != 1); 14345 /* We want reg->id to be same (0) as map_value is not distinct */ 14346 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14347 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14348 dst_reg->type = CONST_PTR_TO_MAP; 14349 } else { 14350 verbose(env, "bpf verifier is misconfigured\n"); 14351 return -EINVAL; 14352 } 14353 14354 return 0; 14355 } 14356 14357 static bool may_access_skb(enum bpf_prog_type type) 14358 { 14359 switch (type) { 14360 case BPF_PROG_TYPE_SOCKET_FILTER: 14361 case BPF_PROG_TYPE_SCHED_CLS: 14362 case BPF_PROG_TYPE_SCHED_ACT: 14363 return true; 14364 default: 14365 return false; 14366 } 14367 } 14368 14369 /* verify safety of LD_ABS|LD_IND instructions: 14370 * - they can only appear in the programs where ctx == skb 14371 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14372 * preserve R6-R9, and store return value into R0 14373 * 14374 * Implicit input: 14375 * ctx == skb == R6 == CTX 14376 * 14377 * Explicit input: 14378 * SRC == any register 14379 * IMM == 32-bit immediate 14380 * 14381 * Output: 14382 * R0 - 8/16/32-bit skb data converted to cpu endianness 14383 */ 14384 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14385 { 14386 struct bpf_reg_state *regs = cur_regs(env); 14387 static const int ctx_reg = BPF_REG_6; 14388 u8 mode = BPF_MODE(insn->code); 14389 int i, err; 14390 14391 if (!may_access_skb(resolve_prog_type(env->prog))) { 14392 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14393 return -EINVAL; 14394 } 14395 14396 if (!env->ops->gen_ld_abs) { 14397 verbose(env, "bpf verifier is misconfigured\n"); 14398 return -EINVAL; 14399 } 14400 14401 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14402 BPF_SIZE(insn->code) == BPF_DW || 14403 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14404 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14405 return -EINVAL; 14406 } 14407 14408 /* check whether implicit source operand (register R6) is readable */ 14409 err = check_reg_arg(env, ctx_reg, SRC_OP); 14410 if (err) 14411 return err; 14412 14413 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14414 * gen_ld_abs() may terminate the program at runtime, leading to 14415 * reference leak. 14416 */ 14417 err = check_reference_leak(env); 14418 if (err) { 14419 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14420 return err; 14421 } 14422 14423 if (env->cur_state->active_lock.ptr) { 14424 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14425 return -EINVAL; 14426 } 14427 14428 if (env->cur_state->active_rcu_lock) { 14429 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14430 return -EINVAL; 14431 } 14432 14433 if (regs[ctx_reg].type != PTR_TO_CTX) { 14434 verbose(env, 14435 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14436 return -EINVAL; 14437 } 14438 14439 if (mode == BPF_IND) { 14440 /* check explicit source operand */ 14441 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14442 if (err) 14443 return err; 14444 } 14445 14446 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14447 if (err < 0) 14448 return err; 14449 14450 /* reset caller saved regs to unreadable */ 14451 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14452 mark_reg_not_init(env, regs, caller_saved[i]); 14453 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14454 } 14455 14456 /* mark destination R0 register as readable, since it contains 14457 * the value fetched from the packet. 14458 * Already marked as written above. 14459 */ 14460 mark_reg_unknown(env, regs, BPF_REG_0); 14461 /* ld_abs load up to 32-bit skb data. */ 14462 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14463 return 0; 14464 } 14465 14466 static int check_return_code(struct bpf_verifier_env *env) 14467 { 14468 struct tnum enforce_attach_type_range = tnum_unknown; 14469 const struct bpf_prog *prog = env->prog; 14470 struct bpf_reg_state *reg; 14471 struct tnum range = tnum_range(0, 1); 14472 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14473 int err; 14474 struct bpf_func_state *frame = env->cur_state->frame[0]; 14475 const bool is_subprog = frame->subprogno; 14476 14477 /* LSM and struct_ops func-ptr's return type could be "void" */ 14478 if (!is_subprog) { 14479 switch (prog_type) { 14480 case BPF_PROG_TYPE_LSM: 14481 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14482 /* See below, can be 0 or 0-1 depending on hook. */ 14483 break; 14484 fallthrough; 14485 case BPF_PROG_TYPE_STRUCT_OPS: 14486 if (!prog->aux->attach_func_proto->type) 14487 return 0; 14488 break; 14489 default: 14490 break; 14491 } 14492 } 14493 14494 /* eBPF calling convention is such that R0 is used 14495 * to return the value from eBPF program. 14496 * Make sure that it's readable at this time 14497 * of bpf_exit, which means that program wrote 14498 * something into it earlier 14499 */ 14500 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14501 if (err) 14502 return err; 14503 14504 if (is_pointer_value(env, BPF_REG_0)) { 14505 verbose(env, "R0 leaks addr as return value\n"); 14506 return -EACCES; 14507 } 14508 14509 reg = cur_regs(env) + BPF_REG_0; 14510 14511 if (frame->in_async_callback_fn) { 14512 /* enforce return zero from async callbacks like timer */ 14513 if (reg->type != SCALAR_VALUE) { 14514 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14515 reg_type_str(env, reg->type)); 14516 return -EINVAL; 14517 } 14518 14519 if (!tnum_in(tnum_const(0), reg->var_off)) { 14520 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 14521 return -EINVAL; 14522 } 14523 return 0; 14524 } 14525 14526 if (is_subprog) { 14527 if (reg->type != SCALAR_VALUE) { 14528 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14529 reg_type_str(env, reg->type)); 14530 return -EINVAL; 14531 } 14532 return 0; 14533 } 14534 14535 switch (prog_type) { 14536 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14537 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14538 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14539 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14540 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14541 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14542 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14543 range = tnum_range(1, 1); 14544 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14545 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14546 range = tnum_range(0, 3); 14547 break; 14548 case BPF_PROG_TYPE_CGROUP_SKB: 14549 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14550 range = tnum_range(0, 3); 14551 enforce_attach_type_range = tnum_range(2, 3); 14552 } 14553 break; 14554 case BPF_PROG_TYPE_CGROUP_SOCK: 14555 case BPF_PROG_TYPE_SOCK_OPS: 14556 case BPF_PROG_TYPE_CGROUP_DEVICE: 14557 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14558 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14559 break; 14560 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14561 if (!env->prog->aux->attach_btf_id) 14562 return 0; 14563 range = tnum_const(0); 14564 break; 14565 case BPF_PROG_TYPE_TRACING: 14566 switch (env->prog->expected_attach_type) { 14567 case BPF_TRACE_FENTRY: 14568 case BPF_TRACE_FEXIT: 14569 range = tnum_const(0); 14570 break; 14571 case BPF_TRACE_RAW_TP: 14572 case BPF_MODIFY_RETURN: 14573 return 0; 14574 case BPF_TRACE_ITER: 14575 break; 14576 default: 14577 return -ENOTSUPP; 14578 } 14579 break; 14580 case BPF_PROG_TYPE_SK_LOOKUP: 14581 range = tnum_range(SK_DROP, SK_PASS); 14582 break; 14583 14584 case BPF_PROG_TYPE_LSM: 14585 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14586 /* Regular BPF_PROG_TYPE_LSM programs can return 14587 * any value. 14588 */ 14589 return 0; 14590 } 14591 if (!env->prog->aux->attach_func_proto->type) { 14592 /* Make sure programs that attach to void 14593 * hooks don't try to modify return value. 14594 */ 14595 range = tnum_range(1, 1); 14596 } 14597 break; 14598 14599 case BPF_PROG_TYPE_NETFILTER: 14600 range = tnum_range(NF_DROP, NF_ACCEPT); 14601 break; 14602 case BPF_PROG_TYPE_EXT: 14603 /* freplace program can return anything as its return value 14604 * depends on the to-be-replaced kernel func or bpf program. 14605 */ 14606 default: 14607 return 0; 14608 } 14609 14610 if (reg->type != SCALAR_VALUE) { 14611 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14612 reg_type_str(env, reg->type)); 14613 return -EINVAL; 14614 } 14615 14616 if (!tnum_in(range, reg->var_off)) { 14617 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14618 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14619 prog_type == BPF_PROG_TYPE_LSM && 14620 !prog->aux->attach_func_proto->type) 14621 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14622 return -EINVAL; 14623 } 14624 14625 if (!tnum_is_unknown(enforce_attach_type_range) && 14626 tnum_in(enforce_attach_type_range, reg->var_off)) 14627 env->prog->enforce_expected_attach_type = 1; 14628 return 0; 14629 } 14630 14631 /* non-recursive DFS pseudo code 14632 * 1 procedure DFS-iterative(G,v): 14633 * 2 label v as discovered 14634 * 3 let S be a stack 14635 * 4 S.push(v) 14636 * 5 while S is not empty 14637 * 6 t <- S.peek() 14638 * 7 if t is what we're looking for: 14639 * 8 return t 14640 * 9 for all edges e in G.adjacentEdges(t) do 14641 * 10 if edge e is already labelled 14642 * 11 continue with the next edge 14643 * 12 w <- G.adjacentVertex(t,e) 14644 * 13 if vertex w is not discovered and not explored 14645 * 14 label e as tree-edge 14646 * 15 label w as discovered 14647 * 16 S.push(w) 14648 * 17 continue at 5 14649 * 18 else if vertex w is discovered 14650 * 19 label e as back-edge 14651 * 20 else 14652 * 21 // vertex w is explored 14653 * 22 label e as forward- or cross-edge 14654 * 23 label t as explored 14655 * 24 S.pop() 14656 * 14657 * convention: 14658 * 0x10 - discovered 14659 * 0x11 - discovered and fall-through edge labelled 14660 * 0x12 - discovered and fall-through and branch edges labelled 14661 * 0x20 - explored 14662 */ 14663 14664 enum { 14665 DISCOVERED = 0x10, 14666 EXPLORED = 0x20, 14667 FALLTHROUGH = 1, 14668 BRANCH = 2, 14669 }; 14670 14671 static u32 state_htab_size(struct bpf_verifier_env *env) 14672 { 14673 return env->prog->len; 14674 } 14675 14676 static struct bpf_verifier_state_list **explored_state( 14677 struct bpf_verifier_env *env, 14678 int idx) 14679 { 14680 struct bpf_verifier_state *cur = env->cur_state; 14681 struct bpf_func_state *state = cur->frame[cur->curframe]; 14682 14683 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14684 } 14685 14686 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14687 { 14688 env->insn_aux_data[idx].prune_point = true; 14689 } 14690 14691 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14692 { 14693 return env->insn_aux_data[insn_idx].prune_point; 14694 } 14695 14696 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14697 { 14698 env->insn_aux_data[idx].force_checkpoint = true; 14699 } 14700 14701 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14702 { 14703 return env->insn_aux_data[insn_idx].force_checkpoint; 14704 } 14705 14706 14707 enum { 14708 DONE_EXPLORING = 0, 14709 KEEP_EXPLORING = 1, 14710 }; 14711 14712 /* t, w, e - match pseudo-code above: 14713 * t - index of current instruction 14714 * w - next instruction 14715 * e - edge 14716 */ 14717 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14718 bool loop_ok) 14719 { 14720 int *insn_stack = env->cfg.insn_stack; 14721 int *insn_state = env->cfg.insn_state; 14722 14723 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14724 return DONE_EXPLORING; 14725 14726 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14727 return DONE_EXPLORING; 14728 14729 if (w < 0 || w >= env->prog->len) { 14730 verbose_linfo(env, t, "%d: ", t); 14731 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14732 return -EINVAL; 14733 } 14734 14735 if (e == BRANCH) { 14736 /* mark branch target for state pruning */ 14737 mark_prune_point(env, w); 14738 mark_jmp_point(env, w); 14739 } 14740 14741 if (insn_state[w] == 0) { 14742 /* tree-edge */ 14743 insn_state[t] = DISCOVERED | e; 14744 insn_state[w] = DISCOVERED; 14745 if (env->cfg.cur_stack >= env->prog->len) 14746 return -E2BIG; 14747 insn_stack[env->cfg.cur_stack++] = w; 14748 return KEEP_EXPLORING; 14749 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14750 if (loop_ok && env->bpf_capable) 14751 return DONE_EXPLORING; 14752 verbose_linfo(env, t, "%d: ", t); 14753 verbose_linfo(env, w, "%d: ", w); 14754 verbose(env, "back-edge from insn %d to %d\n", t, w); 14755 return -EINVAL; 14756 } else if (insn_state[w] == EXPLORED) { 14757 /* forward- or cross-edge */ 14758 insn_state[t] = DISCOVERED | e; 14759 } else { 14760 verbose(env, "insn state internal bug\n"); 14761 return -EFAULT; 14762 } 14763 return DONE_EXPLORING; 14764 } 14765 14766 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14767 struct bpf_verifier_env *env, 14768 bool visit_callee) 14769 { 14770 int ret; 14771 14772 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14773 if (ret) 14774 return ret; 14775 14776 mark_prune_point(env, t + 1); 14777 /* when we exit from subprog, we need to record non-linear history */ 14778 mark_jmp_point(env, t + 1); 14779 14780 if (visit_callee) { 14781 mark_prune_point(env, t); 14782 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14783 /* It's ok to allow recursion from CFG point of 14784 * view. __check_func_call() will do the actual 14785 * check. 14786 */ 14787 bpf_pseudo_func(insns + t)); 14788 } 14789 return ret; 14790 } 14791 14792 /* Visits the instruction at index t and returns one of the following: 14793 * < 0 - an error occurred 14794 * DONE_EXPLORING - the instruction was fully explored 14795 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14796 */ 14797 static int visit_insn(int t, struct bpf_verifier_env *env) 14798 { 14799 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14800 int ret, off; 14801 14802 if (bpf_pseudo_func(insn)) 14803 return visit_func_call_insn(t, insns, env, true); 14804 14805 /* All non-branch instructions have a single fall-through edge. */ 14806 if (BPF_CLASS(insn->code) != BPF_JMP && 14807 BPF_CLASS(insn->code) != BPF_JMP32) 14808 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14809 14810 switch (BPF_OP(insn->code)) { 14811 case BPF_EXIT: 14812 return DONE_EXPLORING; 14813 14814 case BPF_CALL: 14815 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14816 /* Mark this call insn as a prune point to trigger 14817 * is_state_visited() check before call itself is 14818 * processed by __check_func_call(). Otherwise new 14819 * async state will be pushed for further exploration. 14820 */ 14821 mark_prune_point(env, t); 14822 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14823 struct bpf_kfunc_call_arg_meta meta; 14824 14825 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14826 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14827 mark_prune_point(env, t); 14828 /* Checking and saving state checkpoints at iter_next() call 14829 * is crucial for fast convergence of open-coded iterator loop 14830 * logic, so we need to force it. If we don't do that, 14831 * is_state_visited() might skip saving a checkpoint, causing 14832 * unnecessarily long sequence of not checkpointed 14833 * instructions and jumps, leading to exhaustion of jump 14834 * history buffer, and potentially other undesired outcomes. 14835 * It is expected that with correct open-coded iterators 14836 * convergence will happen quickly, so we don't run a risk of 14837 * exhausting memory. 14838 */ 14839 mark_force_checkpoint(env, t); 14840 } 14841 } 14842 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14843 14844 case BPF_JA: 14845 if (BPF_SRC(insn->code) != BPF_K) 14846 return -EINVAL; 14847 14848 if (BPF_CLASS(insn->code) == BPF_JMP) 14849 off = insn->off; 14850 else 14851 off = insn->imm; 14852 14853 /* unconditional jump with single edge */ 14854 ret = push_insn(t, t + off + 1, FALLTHROUGH, env, 14855 true); 14856 if (ret) 14857 return ret; 14858 14859 mark_prune_point(env, t + off + 1); 14860 mark_jmp_point(env, t + off + 1); 14861 14862 return ret; 14863 14864 default: 14865 /* conditional jump with two edges */ 14866 mark_prune_point(env, t); 14867 14868 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14869 if (ret) 14870 return ret; 14871 14872 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14873 } 14874 } 14875 14876 /* non-recursive depth-first-search to detect loops in BPF program 14877 * loop == back-edge in directed graph 14878 */ 14879 static int check_cfg(struct bpf_verifier_env *env) 14880 { 14881 int insn_cnt = env->prog->len; 14882 int *insn_stack, *insn_state; 14883 int ret = 0; 14884 int i; 14885 14886 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14887 if (!insn_state) 14888 return -ENOMEM; 14889 14890 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14891 if (!insn_stack) { 14892 kvfree(insn_state); 14893 return -ENOMEM; 14894 } 14895 14896 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14897 insn_stack[0] = 0; /* 0 is the first instruction */ 14898 env->cfg.cur_stack = 1; 14899 14900 while (env->cfg.cur_stack > 0) { 14901 int t = insn_stack[env->cfg.cur_stack - 1]; 14902 14903 ret = visit_insn(t, env); 14904 switch (ret) { 14905 case DONE_EXPLORING: 14906 insn_state[t] = EXPLORED; 14907 env->cfg.cur_stack--; 14908 break; 14909 case KEEP_EXPLORING: 14910 break; 14911 default: 14912 if (ret > 0) { 14913 verbose(env, "visit_insn internal bug\n"); 14914 ret = -EFAULT; 14915 } 14916 goto err_free; 14917 } 14918 } 14919 14920 if (env->cfg.cur_stack < 0) { 14921 verbose(env, "pop stack internal bug\n"); 14922 ret = -EFAULT; 14923 goto err_free; 14924 } 14925 14926 for (i = 0; i < insn_cnt; i++) { 14927 if (insn_state[i] != EXPLORED) { 14928 verbose(env, "unreachable insn %d\n", i); 14929 ret = -EINVAL; 14930 goto err_free; 14931 } 14932 } 14933 ret = 0; /* cfg looks good */ 14934 14935 err_free: 14936 kvfree(insn_state); 14937 kvfree(insn_stack); 14938 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14939 return ret; 14940 } 14941 14942 static int check_abnormal_return(struct bpf_verifier_env *env) 14943 { 14944 int i; 14945 14946 for (i = 1; i < env->subprog_cnt; i++) { 14947 if (env->subprog_info[i].has_ld_abs) { 14948 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14949 return -EINVAL; 14950 } 14951 if (env->subprog_info[i].has_tail_call) { 14952 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14953 return -EINVAL; 14954 } 14955 } 14956 return 0; 14957 } 14958 14959 /* The minimum supported BTF func info size */ 14960 #define MIN_BPF_FUNCINFO_SIZE 8 14961 #define MAX_FUNCINFO_REC_SIZE 252 14962 14963 static int check_btf_func(struct bpf_verifier_env *env, 14964 const union bpf_attr *attr, 14965 bpfptr_t uattr) 14966 { 14967 const struct btf_type *type, *func_proto, *ret_type; 14968 u32 i, nfuncs, urec_size, min_size; 14969 u32 krec_size = sizeof(struct bpf_func_info); 14970 struct bpf_func_info *krecord; 14971 struct bpf_func_info_aux *info_aux = NULL; 14972 struct bpf_prog *prog; 14973 const struct btf *btf; 14974 bpfptr_t urecord; 14975 u32 prev_offset = 0; 14976 bool scalar_return; 14977 int ret = -ENOMEM; 14978 14979 nfuncs = attr->func_info_cnt; 14980 if (!nfuncs) { 14981 if (check_abnormal_return(env)) 14982 return -EINVAL; 14983 return 0; 14984 } 14985 14986 if (nfuncs != env->subprog_cnt) { 14987 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14988 return -EINVAL; 14989 } 14990 14991 urec_size = attr->func_info_rec_size; 14992 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 14993 urec_size > MAX_FUNCINFO_REC_SIZE || 14994 urec_size % sizeof(u32)) { 14995 verbose(env, "invalid func info rec size %u\n", urec_size); 14996 return -EINVAL; 14997 } 14998 14999 prog = env->prog; 15000 btf = prog->aux->btf; 15001 15002 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15003 min_size = min_t(u32, krec_size, urec_size); 15004 15005 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15006 if (!krecord) 15007 return -ENOMEM; 15008 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15009 if (!info_aux) 15010 goto err_free; 15011 15012 for (i = 0; i < nfuncs; i++) { 15013 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15014 if (ret) { 15015 if (ret == -E2BIG) { 15016 verbose(env, "nonzero tailing record in func info"); 15017 /* set the size kernel expects so loader can zero 15018 * out the rest of the record. 15019 */ 15020 if (copy_to_bpfptr_offset(uattr, 15021 offsetof(union bpf_attr, func_info_rec_size), 15022 &min_size, sizeof(min_size))) 15023 ret = -EFAULT; 15024 } 15025 goto err_free; 15026 } 15027 15028 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15029 ret = -EFAULT; 15030 goto err_free; 15031 } 15032 15033 /* check insn_off */ 15034 ret = -EINVAL; 15035 if (i == 0) { 15036 if (krecord[i].insn_off) { 15037 verbose(env, 15038 "nonzero insn_off %u for the first func info record", 15039 krecord[i].insn_off); 15040 goto err_free; 15041 } 15042 } else if (krecord[i].insn_off <= prev_offset) { 15043 verbose(env, 15044 "same or smaller insn offset (%u) than previous func info record (%u)", 15045 krecord[i].insn_off, prev_offset); 15046 goto err_free; 15047 } 15048 15049 if (env->subprog_info[i].start != krecord[i].insn_off) { 15050 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15051 goto err_free; 15052 } 15053 15054 /* check type_id */ 15055 type = btf_type_by_id(btf, krecord[i].type_id); 15056 if (!type || !btf_type_is_func(type)) { 15057 verbose(env, "invalid type id %d in func info", 15058 krecord[i].type_id); 15059 goto err_free; 15060 } 15061 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15062 15063 func_proto = btf_type_by_id(btf, type->type); 15064 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15065 /* btf_func_check() already verified it during BTF load */ 15066 goto err_free; 15067 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15068 scalar_return = 15069 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15070 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15071 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15072 goto err_free; 15073 } 15074 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15075 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15076 goto err_free; 15077 } 15078 15079 prev_offset = krecord[i].insn_off; 15080 bpfptr_add(&urecord, urec_size); 15081 } 15082 15083 prog->aux->func_info = krecord; 15084 prog->aux->func_info_cnt = nfuncs; 15085 prog->aux->func_info_aux = info_aux; 15086 return 0; 15087 15088 err_free: 15089 kvfree(krecord); 15090 kfree(info_aux); 15091 return ret; 15092 } 15093 15094 static void adjust_btf_func(struct bpf_verifier_env *env) 15095 { 15096 struct bpf_prog_aux *aux = env->prog->aux; 15097 int i; 15098 15099 if (!aux->func_info) 15100 return; 15101 15102 for (i = 0; i < env->subprog_cnt; i++) 15103 aux->func_info[i].insn_off = env->subprog_info[i].start; 15104 } 15105 15106 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15107 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15108 15109 static int check_btf_line(struct bpf_verifier_env *env, 15110 const union bpf_attr *attr, 15111 bpfptr_t uattr) 15112 { 15113 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15114 struct bpf_subprog_info *sub; 15115 struct bpf_line_info *linfo; 15116 struct bpf_prog *prog; 15117 const struct btf *btf; 15118 bpfptr_t ulinfo; 15119 int err; 15120 15121 nr_linfo = attr->line_info_cnt; 15122 if (!nr_linfo) 15123 return 0; 15124 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15125 return -EINVAL; 15126 15127 rec_size = attr->line_info_rec_size; 15128 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15129 rec_size > MAX_LINEINFO_REC_SIZE || 15130 rec_size & (sizeof(u32) - 1)) 15131 return -EINVAL; 15132 15133 /* Need to zero it in case the userspace may 15134 * pass in a smaller bpf_line_info object. 15135 */ 15136 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15137 GFP_KERNEL | __GFP_NOWARN); 15138 if (!linfo) 15139 return -ENOMEM; 15140 15141 prog = env->prog; 15142 btf = prog->aux->btf; 15143 15144 s = 0; 15145 sub = env->subprog_info; 15146 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15147 expected_size = sizeof(struct bpf_line_info); 15148 ncopy = min_t(u32, expected_size, rec_size); 15149 for (i = 0; i < nr_linfo; i++) { 15150 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15151 if (err) { 15152 if (err == -E2BIG) { 15153 verbose(env, "nonzero tailing record in line_info"); 15154 if (copy_to_bpfptr_offset(uattr, 15155 offsetof(union bpf_attr, line_info_rec_size), 15156 &expected_size, sizeof(expected_size))) 15157 err = -EFAULT; 15158 } 15159 goto err_free; 15160 } 15161 15162 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15163 err = -EFAULT; 15164 goto err_free; 15165 } 15166 15167 /* 15168 * Check insn_off to ensure 15169 * 1) strictly increasing AND 15170 * 2) bounded by prog->len 15171 * 15172 * The linfo[0].insn_off == 0 check logically falls into 15173 * the later "missing bpf_line_info for func..." case 15174 * because the first linfo[0].insn_off must be the 15175 * first sub also and the first sub must have 15176 * subprog_info[0].start == 0. 15177 */ 15178 if ((i && linfo[i].insn_off <= prev_offset) || 15179 linfo[i].insn_off >= prog->len) { 15180 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15181 i, linfo[i].insn_off, prev_offset, 15182 prog->len); 15183 err = -EINVAL; 15184 goto err_free; 15185 } 15186 15187 if (!prog->insnsi[linfo[i].insn_off].code) { 15188 verbose(env, 15189 "Invalid insn code at line_info[%u].insn_off\n", 15190 i); 15191 err = -EINVAL; 15192 goto err_free; 15193 } 15194 15195 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15196 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15197 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15198 err = -EINVAL; 15199 goto err_free; 15200 } 15201 15202 if (s != env->subprog_cnt) { 15203 if (linfo[i].insn_off == sub[s].start) { 15204 sub[s].linfo_idx = i; 15205 s++; 15206 } else if (sub[s].start < linfo[i].insn_off) { 15207 verbose(env, "missing bpf_line_info for func#%u\n", s); 15208 err = -EINVAL; 15209 goto err_free; 15210 } 15211 } 15212 15213 prev_offset = linfo[i].insn_off; 15214 bpfptr_add(&ulinfo, rec_size); 15215 } 15216 15217 if (s != env->subprog_cnt) { 15218 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15219 env->subprog_cnt - s, s); 15220 err = -EINVAL; 15221 goto err_free; 15222 } 15223 15224 prog->aux->linfo = linfo; 15225 prog->aux->nr_linfo = nr_linfo; 15226 15227 return 0; 15228 15229 err_free: 15230 kvfree(linfo); 15231 return err; 15232 } 15233 15234 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15235 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15236 15237 static int check_core_relo(struct bpf_verifier_env *env, 15238 const union bpf_attr *attr, 15239 bpfptr_t uattr) 15240 { 15241 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15242 struct bpf_core_relo core_relo = {}; 15243 struct bpf_prog *prog = env->prog; 15244 const struct btf *btf = prog->aux->btf; 15245 struct bpf_core_ctx ctx = { 15246 .log = &env->log, 15247 .btf = btf, 15248 }; 15249 bpfptr_t u_core_relo; 15250 int err; 15251 15252 nr_core_relo = attr->core_relo_cnt; 15253 if (!nr_core_relo) 15254 return 0; 15255 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15256 return -EINVAL; 15257 15258 rec_size = attr->core_relo_rec_size; 15259 if (rec_size < MIN_CORE_RELO_SIZE || 15260 rec_size > MAX_CORE_RELO_SIZE || 15261 rec_size % sizeof(u32)) 15262 return -EINVAL; 15263 15264 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15265 expected_size = sizeof(struct bpf_core_relo); 15266 ncopy = min_t(u32, expected_size, rec_size); 15267 15268 /* Unlike func_info and line_info, copy and apply each CO-RE 15269 * relocation record one at a time. 15270 */ 15271 for (i = 0; i < nr_core_relo; i++) { 15272 /* future proofing when sizeof(bpf_core_relo) changes */ 15273 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15274 if (err) { 15275 if (err == -E2BIG) { 15276 verbose(env, "nonzero tailing record in core_relo"); 15277 if (copy_to_bpfptr_offset(uattr, 15278 offsetof(union bpf_attr, core_relo_rec_size), 15279 &expected_size, sizeof(expected_size))) 15280 err = -EFAULT; 15281 } 15282 break; 15283 } 15284 15285 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15286 err = -EFAULT; 15287 break; 15288 } 15289 15290 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15291 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15292 i, core_relo.insn_off, prog->len); 15293 err = -EINVAL; 15294 break; 15295 } 15296 15297 err = bpf_core_apply(&ctx, &core_relo, i, 15298 &prog->insnsi[core_relo.insn_off / 8]); 15299 if (err) 15300 break; 15301 bpfptr_add(&u_core_relo, rec_size); 15302 } 15303 return err; 15304 } 15305 15306 static int check_btf_info(struct bpf_verifier_env *env, 15307 const union bpf_attr *attr, 15308 bpfptr_t uattr) 15309 { 15310 struct btf *btf; 15311 int err; 15312 15313 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15314 if (check_abnormal_return(env)) 15315 return -EINVAL; 15316 return 0; 15317 } 15318 15319 btf = btf_get_by_fd(attr->prog_btf_fd); 15320 if (IS_ERR(btf)) 15321 return PTR_ERR(btf); 15322 if (btf_is_kernel(btf)) { 15323 btf_put(btf); 15324 return -EACCES; 15325 } 15326 env->prog->aux->btf = btf; 15327 15328 err = check_btf_func(env, attr, uattr); 15329 if (err) 15330 return err; 15331 15332 err = check_btf_line(env, attr, uattr); 15333 if (err) 15334 return err; 15335 15336 err = check_core_relo(env, attr, uattr); 15337 if (err) 15338 return err; 15339 15340 return 0; 15341 } 15342 15343 /* check %cur's range satisfies %old's */ 15344 static bool range_within(struct bpf_reg_state *old, 15345 struct bpf_reg_state *cur) 15346 { 15347 return old->umin_value <= cur->umin_value && 15348 old->umax_value >= cur->umax_value && 15349 old->smin_value <= cur->smin_value && 15350 old->smax_value >= cur->smax_value && 15351 old->u32_min_value <= cur->u32_min_value && 15352 old->u32_max_value >= cur->u32_max_value && 15353 old->s32_min_value <= cur->s32_min_value && 15354 old->s32_max_value >= cur->s32_max_value; 15355 } 15356 15357 /* If in the old state two registers had the same id, then they need to have 15358 * the same id in the new state as well. But that id could be different from 15359 * the old state, so we need to track the mapping from old to new ids. 15360 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15361 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15362 * regs with a different old id could still have new id 9, we don't care about 15363 * that. 15364 * So we look through our idmap to see if this old id has been seen before. If 15365 * so, we require the new id to match; otherwise, we add the id pair to the map. 15366 */ 15367 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15368 { 15369 struct bpf_id_pair *map = idmap->map; 15370 unsigned int i; 15371 15372 /* either both IDs should be set or both should be zero */ 15373 if (!!old_id != !!cur_id) 15374 return false; 15375 15376 if (old_id == 0) /* cur_id == 0 as well */ 15377 return true; 15378 15379 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15380 if (!map[i].old) { 15381 /* Reached an empty slot; haven't seen this id before */ 15382 map[i].old = old_id; 15383 map[i].cur = cur_id; 15384 return true; 15385 } 15386 if (map[i].old == old_id) 15387 return map[i].cur == cur_id; 15388 if (map[i].cur == cur_id) 15389 return false; 15390 } 15391 /* We ran out of idmap slots, which should be impossible */ 15392 WARN_ON_ONCE(1); 15393 return false; 15394 } 15395 15396 /* Similar to check_ids(), but allocate a unique temporary ID 15397 * for 'old_id' or 'cur_id' of zero. 15398 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15399 */ 15400 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15401 { 15402 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15403 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15404 15405 return check_ids(old_id, cur_id, idmap); 15406 } 15407 15408 static void clean_func_state(struct bpf_verifier_env *env, 15409 struct bpf_func_state *st) 15410 { 15411 enum bpf_reg_liveness live; 15412 int i, j; 15413 15414 for (i = 0; i < BPF_REG_FP; i++) { 15415 live = st->regs[i].live; 15416 /* liveness must not touch this register anymore */ 15417 st->regs[i].live |= REG_LIVE_DONE; 15418 if (!(live & REG_LIVE_READ)) 15419 /* since the register is unused, clear its state 15420 * to make further comparison simpler 15421 */ 15422 __mark_reg_not_init(env, &st->regs[i]); 15423 } 15424 15425 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15426 live = st->stack[i].spilled_ptr.live; 15427 /* liveness must not touch this stack slot anymore */ 15428 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15429 if (!(live & REG_LIVE_READ)) { 15430 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15431 for (j = 0; j < BPF_REG_SIZE; j++) 15432 st->stack[i].slot_type[j] = STACK_INVALID; 15433 } 15434 } 15435 } 15436 15437 static void clean_verifier_state(struct bpf_verifier_env *env, 15438 struct bpf_verifier_state *st) 15439 { 15440 int i; 15441 15442 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15443 /* all regs in this state in all frames were already marked */ 15444 return; 15445 15446 for (i = 0; i <= st->curframe; i++) 15447 clean_func_state(env, st->frame[i]); 15448 } 15449 15450 /* the parentage chains form a tree. 15451 * the verifier states are added to state lists at given insn and 15452 * pushed into state stack for future exploration. 15453 * when the verifier reaches bpf_exit insn some of the verifer states 15454 * stored in the state lists have their final liveness state already, 15455 * but a lot of states will get revised from liveness point of view when 15456 * the verifier explores other branches. 15457 * Example: 15458 * 1: r0 = 1 15459 * 2: if r1 == 100 goto pc+1 15460 * 3: r0 = 2 15461 * 4: exit 15462 * when the verifier reaches exit insn the register r0 in the state list of 15463 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15464 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15465 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15466 * 15467 * Since the verifier pushes the branch states as it sees them while exploring 15468 * the program the condition of walking the branch instruction for the second 15469 * time means that all states below this branch were already explored and 15470 * their final liveness marks are already propagated. 15471 * Hence when the verifier completes the search of state list in is_state_visited() 15472 * we can call this clean_live_states() function to mark all liveness states 15473 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15474 * will not be used. 15475 * This function also clears the registers and stack for states that !READ 15476 * to simplify state merging. 15477 * 15478 * Important note here that walking the same branch instruction in the callee 15479 * doesn't meant that the states are DONE. The verifier has to compare 15480 * the callsites 15481 */ 15482 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15483 struct bpf_verifier_state *cur) 15484 { 15485 struct bpf_verifier_state_list *sl; 15486 int i; 15487 15488 sl = *explored_state(env, insn); 15489 while (sl) { 15490 if (sl->state.branches) 15491 goto next; 15492 if (sl->state.insn_idx != insn || 15493 sl->state.curframe != cur->curframe) 15494 goto next; 15495 for (i = 0; i <= cur->curframe; i++) 15496 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15497 goto next; 15498 clean_verifier_state(env, &sl->state); 15499 next: 15500 sl = sl->next; 15501 } 15502 } 15503 15504 static bool regs_exact(const struct bpf_reg_state *rold, 15505 const struct bpf_reg_state *rcur, 15506 struct bpf_idmap *idmap) 15507 { 15508 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15509 check_ids(rold->id, rcur->id, idmap) && 15510 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15511 } 15512 15513 /* Returns true if (rold safe implies rcur safe) */ 15514 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15515 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15516 { 15517 if (!(rold->live & REG_LIVE_READ)) 15518 /* explored state didn't use this */ 15519 return true; 15520 if (rold->type == NOT_INIT) 15521 /* explored state can't have used this */ 15522 return true; 15523 if (rcur->type == NOT_INIT) 15524 return false; 15525 15526 /* Enforce that register types have to match exactly, including their 15527 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15528 * rule. 15529 * 15530 * One can make a point that using a pointer register as unbounded 15531 * SCALAR would be technically acceptable, but this could lead to 15532 * pointer leaks because scalars are allowed to leak while pointers 15533 * are not. We could make this safe in special cases if root is 15534 * calling us, but it's probably not worth the hassle. 15535 * 15536 * Also, register types that are *not* MAYBE_NULL could technically be 15537 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15538 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15539 * to the same map). 15540 * However, if the old MAYBE_NULL register then got NULL checked, 15541 * doing so could have affected others with the same id, and we can't 15542 * check for that because we lost the id when we converted to 15543 * a non-MAYBE_NULL variant. 15544 * So, as a general rule we don't allow mixing MAYBE_NULL and 15545 * non-MAYBE_NULL registers as well. 15546 */ 15547 if (rold->type != rcur->type) 15548 return false; 15549 15550 switch (base_type(rold->type)) { 15551 case SCALAR_VALUE: 15552 if (env->explore_alu_limits) { 15553 /* explore_alu_limits disables tnum_in() and range_within() 15554 * logic and requires everything to be strict 15555 */ 15556 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15557 check_scalar_ids(rold->id, rcur->id, idmap); 15558 } 15559 if (!rold->precise) 15560 return true; 15561 /* Why check_ids() for scalar registers? 15562 * 15563 * Consider the following BPF code: 15564 * 1: r6 = ... unbound scalar, ID=a ... 15565 * 2: r7 = ... unbound scalar, ID=b ... 15566 * 3: if (r6 > r7) goto +1 15567 * 4: r6 = r7 15568 * 5: if (r6 > X) goto ... 15569 * 6: ... memory operation using r7 ... 15570 * 15571 * First verification path is [1-6]: 15572 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15573 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15574 * r7 <= X, because r6 and r7 share same id. 15575 * Next verification path is [1-4, 6]. 15576 * 15577 * Instruction (6) would be reached in two states: 15578 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15579 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15580 * 15581 * Use check_ids() to distinguish these states. 15582 * --- 15583 * Also verify that new value satisfies old value range knowledge. 15584 */ 15585 return range_within(rold, rcur) && 15586 tnum_in(rold->var_off, rcur->var_off) && 15587 check_scalar_ids(rold->id, rcur->id, idmap); 15588 case PTR_TO_MAP_KEY: 15589 case PTR_TO_MAP_VALUE: 15590 case PTR_TO_MEM: 15591 case PTR_TO_BUF: 15592 case PTR_TO_TP_BUFFER: 15593 /* If the new min/max/var_off satisfy the old ones and 15594 * everything else matches, we are OK. 15595 */ 15596 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15597 range_within(rold, rcur) && 15598 tnum_in(rold->var_off, rcur->var_off) && 15599 check_ids(rold->id, rcur->id, idmap) && 15600 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15601 case PTR_TO_PACKET_META: 15602 case PTR_TO_PACKET: 15603 /* We must have at least as much range as the old ptr 15604 * did, so that any accesses which were safe before are 15605 * still safe. This is true even if old range < old off, 15606 * since someone could have accessed through (ptr - k), or 15607 * even done ptr -= k in a register, to get a safe access. 15608 */ 15609 if (rold->range > rcur->range) 15610 return false; 15611 /* If the offsets don't match, we can't trust our alignment; 15612 * nor can we be sure that we won't fall out of range. 15613 */ 15614 if (rold->off != rcur->off) 15615 return false; 15616 /* id relations must be preserved */ 15617 if (!check_ids(rold->id, rcur->id, idmap)) 15618 return false; 15619 /* new val must satisfy old val knowledge */ 15620 return range_within(rold, rcur) && 15621 tnum_in(rold->var_off, rcur->var_off); 15622 case PTR_TO_STACK: 15623 /* two stack pointers are equal only if they're pointing to 15624 * the same stack frame, since fp-8 in foo != fp-8 in bar 15625 */ 15626 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15627 default: 15628 return regs_exact(rold, rcur, idmap); 15629 } 15630 } 15631 15632 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15633 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15634 { 15635 int i, spi; 15636 15637 /* walk slots of the explored stack and ignore any additional 15638 * slots in the current stack, since explored(safe) state 15639 * didn't use them 15640 */ 15641 for (i = 0; i < old->allocated_stack; i++) { 15642 struct bpf_reg_state *old_reg, *cur_reg; 15643 15644 spi = i / BPF_REG_SIZE; 15645 15646 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15647 i += BPF_REG_SIZE - 1; 15648 /* explored state didn't use this */ 15649 continue; 15650 } 15651 15652 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15653 continue; 15654 15655 if (env->allow_uninit_stack && 15656 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15657 continue; 15658 15659 /* explored stack has more populated slots than current stack 15660 * and these slots were used 15661 */ 15662 if (i >= cur->allocated_stack) 15663 return false; 15664 15665 /* if old state was safe with misc data in the stack 15666 * it will be safe with zero-initialized stack. 15667 * The opposite is not true 15668 */ 15669 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15670 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15671 continue; 15672 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15673 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15674 /* Ex: old explored (safe) state has STACK_SPILL in 15675 * this stack slot, but current has STACK_MISC -> 15676 * this verifier states are not equivalent, 15677 * return false to continue verification of this path 15678 */ 15679 return false; 15680 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15681 continue; 15682 /* Both old and cur are having same slot_type */ 15683 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15684 case STACK_SPILL: 15685 /* when explored and current stack slot are both storing 15686 * spilled registers, check that stored pointers types 15687 * are the same as well. 15688 * Ex: explored safe path could have stored 15689 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15690 * but current path has stored: 15691 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15692 * such verifier states are not equivalent. 15693 * return false to continue verification of this path 15694 */ 15695 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15696 &cur->stack[spi].spilled_ptr, idmap)) 15697 return false; 15698 break; 15699 case STACK_DYNPTR: 15700 old_reg = &old->stack[spi].spilled_ptr; 15701 cur_reg = &cur->stack[spi].spilled_ptr; 15702 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15703 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15704 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15705 return false; 15706 break; 15707 case STACK_ITER: 15708 old_reg = &old->stack[spi].spilled_ptr; 15709 cur_reg = &cur->stack[spi].spilled_ptr; 15710 /* iter.depth is not compared between states as it 15711 * doesn't matter for correctness and would otherwise 15712 * prevent convergence; we maintain it only to prevent 15713 * infinite loop check triggering, see 15714 * iter_active_depths_differ() 15715 */ 15716 if (old_reg->iter.btf != cur_reg->iter.btf || 15717 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15718 old_reg->iter.state != cur_reg->iter.state || 15719 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15720 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15721 return false; 15722 break; 15723 case STACK_MISC: 15724 case STACK_ZERO: 15725 case STACK_INVALID: 15726 continue; 15727 /* Ensure that new unhandled slot types return false by default */ 15728 default: 15729 return false; 15730 } 15731 } 15732 return true; 15733 } 15734 15735 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15736 struct bpf_idmap *idmap) 15737 { 15738 int i; 15739 15740 if (old->acquired_refs != cur->acquired_refs) 15741 return false; 15742 15743 for (i = 0; i < old->acquired_refs; i++) { 15744 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15745 return false; 15746 } 15747 15748 return true; 15749 } 15750 15751 /* compare two verifier states 15752 * 15753 * all states stored in state_list are known to be valid, since 15754 * verifier reached 'bpf_exit' instruction through them 15755 * 15756 * this function is called when verifier exploring different branches of 15757 * execution popped from the state stack. If it sees an old state that has 15758 * more strict register state and more strict stack state then this execution 15759 * branch doesn't need to be explored further, since verifier already 15760 * concluded that more strict state leads to valid finish. 15761 * 15762 * Therefore two states are equivalent if register state is more conservative 15763 * and explored stack state is more conservative than the current one. 15764 * Example: 15765 * explored current 15766 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15767 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15768 * 15769 * In other words if current stack state (one being explored) has more 15770 * valid slots than old one that already passed validation, it means 15771 * the verifier can stop exploring and conclude that current state is valid too 15772 * 15773 * Similarly with registers. If explored state has register type as invalid 15774 * whereas register type in current state is meaningful, it means that 15775 * the current state will reach 'bpf_exit' instruction safely 15776 */ 15777 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15778 struct bpf_func_state *cur) 15779 { 15780 int i; 15781 15782 for (i = 0; i < MAX_BPF_REG; i++) 15783 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15784 &env->idmap_scratch)) 15785 return false; 15786 15787 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15788 return false; 15789 15790 if (!refsafe(old, cur, &env->idmap_scratch)) 15791 return false; 15792 15793 return true; 15794 } 15795 15796 static bool states_equal(struct bpf_verifier_env *env, 15797 struct bpf_verifier_state *old, 15798 struct bpf_verifier_state *cur) 15799 { 15800 int i; 15801 15802 if (old->curframe != cur->curframe) 15803 return false; 15804 15805 env->idmap_scratch.tmp_id_gen = env->id_gen; 15806 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15807 15808 /* Verification state from speculative execution simulation 15809 * must never prune a non-speculative execution one. 15810 */ 15811 if (old->speculative && !cur->speculative) 15812 return false; 15813 15814 if (old->active_lock.ptr != cur->active_lock.ptr) 15815 return false; 15816 15817 /* Old and cur active_lock's have to be either both present 15818 * or both absent. 15819 */ 15820 if (!!old->active_lock.id != !!cur->active_lock.id) 15821 return false; 15822 15823 if (old->active_lock.id && 15824 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15825 return false; 15826 15827 if (old->active_rcu_lock != cur->active_rcu_lock) 15828 return false; 15829 15830 /* for states to be equal callsites have to be the same 15831 * and all frame states need to be equivalent 15832 */ 15833 for (i = 0; i <= old->curframe; i++) { 15834 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15835 return false; 15836 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15837 return false; 15838 } 15839 return true; 15840 } 15841 15842 /* Return 0 if no propagation happened. Return negative error code if error 15843 * happened. Otherwise, return the propagated bit. 15844 */ 15845 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15846 struct bpf_reg_state *reg, 15847 struct bpf_reg_state *parent_reg) 15848 { 15849 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15850 u8 flag = reg->live & REG_LIVE_READ; 15851 int err; 15852 15853 /* When comes here, read flags of PARENT_REG or REG could be any of 15854 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15855 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15856 */ 15857 if (parent_flag == REG_LIVE_READ64 || 15858 /* Or if there is no read flag from REG. */ 15859 !flag || 15860 /* Or if the read flag from REG is the same as PARENT_REG. */ 15861 parent_flag == flag) 15862 return 0; 15863 15864 err = mark_reg_read(env, reg, parent_reg, flag); 15865 if (err) 15866 return err; 15867 15868 return flag; 15869 } 15870 15871 /* A write screens off any subsequent reads; but write marks come from the 15872 * straight-line code between a state and its parent. When we arrive at an 15873 * equivalent state (jump target or such) we didn't arrive by the straight-line 15874 * code, so read marks in the state must propagate to the parent regardless 15875 * of the state's write marks. That's what 'parent == state->parent' comparison 15876 * in mark_reg_read() is for. 15877 */ 15878 static int propagate_liveness(struct bpf_verifier_env *env, 15879 const struct bpf_verifier_state *vstate, 15880 struct bpf_verifier_state *vparent) 15881 { 15882 struct bpf_reg_state *state_reg, *parent_reg; 15883 struct bpf_func_state *state, *parent; 15884 int i, frame, err = 0; 15885 15886 if (vparent->curframe != vstate->curframe) { 15887 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15888 vparent->curframe, vstate->curframe); 15889 return -EFAULT; 15890 } 15891 /* Propagate read liveness of registers... */ 15892 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15893 for (frame = 0; frame <= vstate->curframe; frame++) { 15894 parent = vparent->frame[frame]; 15895 state = vstate->frame[frame]; 15896 parent_reg = parent->regs; 15897 state_reg = state->regs; 15898 /* We don't need to worry about FP liveness, it's read-only */ 15899 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15900 err = propagate_liveness_reg(env, &state_reg[i], 15901 &parent_reg[i]); 15902 if (err < 0) 15903 return err; 15904 if (err == REG_LIVE_READ64) 15905 mark_insn_zext(env, &parent_reg[i]); 15906 } 15907 15908 /* Propagate stack slots. */ 15909 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15910 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15911 parent_reg = &parent->stack[i].spilled_ptr; 15912 state_reg = &state->stack[i].spilled_ptr; 15913 err = propagate_liveness_reg(env, state_reg, 15914 parent_reg); 15915 if (err < 0) 15916 return err; 15917 } 15918 } 15919 return 0; 15920 } 15921 15922 /* find precise scalars in the previous equivalent state and 15923 * propagate them into the current state 15924 */ 15925 static int propagate_precision(struct bpf_verifier_env *env, 15926 const struct bpf_verifier_state *old) 15927 { 15928 struct bpf_reg_state *state_reg; 15929 struct bpf_func_state *state; 15930 int i, err = 0, fr; 15931 bool first; 15932 15933 for (fr = old->curframe; fr >= 0; fr--) { 15934 state = old->frame[fr]; 15935 state_reg = state->regs; 15936 first = true; 15937 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15938 if (state_reg->type != SCALAR_VALUE || 15939 !state_reg->precise || 15940 !(state_reg->live & REG_LIVE_READ)) 15941 continue; 15942 if (env->log.level & BPF_LOG_LEVEL2) { 15943 if (first) 15944 verbose(env, "frame %d: propagating r%d", fr, i); 15945 else 15946 verbose(env, ",r%d", i); 15947 } 15948 bt_set_frame_reg(&env->bt, fr, i); 15949 first = false; 15950 } 15951 15952 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15953 if (!is_spilled_reg(&state->stack[i])) 15954 continue; 15955 state_reg = &state->stack[i].spilled_ptr; 15956 if (state_reg->type != SCALAR_VALUE || 15957 !state_reg->precise || 15958 !(state_reg->live & REG_LIVE_READ)) 15959 continue; 15960 if (env->log.level & BPF_LOG_LEVEL2) { 15961 if (first) 15962 verbose(env, "frame %d: propagating fp%d", 15963 fr, (-i - 1) * BPF_REG_SIZE); 15964 else 15965 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15966 } 15967 bt_set_frame_slot(&env->bt, fr, i); 15968 first = false; 15969 } 15970 if (!first) 15971 verbose(env, "\n"); 15972 } 15973 15974 err = mark_chain_precision_batch(env); 15975 if (err < 0) 15976 return err; 15977 15978 return 0; 15979 } 15980 15981 static bool states_maybe_looping(struct bpf_verifier_state *old, 15982 struct bpf_verifier_state *cur) 15983 { 15984 struct bpf_func_state *fold, *fcur; 15985 int i, fr = cur->curframe; 15986 15987 if (old->curframe != fr) 15988 return false; 15989 15990 fold = old->frame[fr]; 15991 fcur = cur->frame[fr]; 15992 for (i = 0; i < MAX_BPF_REG; i++) 15993 if (memcmp(&fold->regs[i], &fcur->regs[i], 15994 offsetof(struct bpf_reg_state, parent))) 15995 return false; 15996 return true; 15997 } 15998 15999 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16000 { 16001 return env->insn_aux_data[insn_idx].is_iter_next; 16002 } 16003 16004 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16005 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16006 * states to match, which otherwise would look like an infinite loop. So while 16007 * iter_next() calls are taken care of, we still need to be careful and 16008 * prevent erroneous and too eager declaration of "ininite loop", when 16009 * iterators are involved. 16010 * 16011 * Here's a situation in pseudo-BPF assembly form: 16012 * 16013 * 0: again: ; set up iter_next() call args 16014 * 1: r1 = &it ; <CHECKPOINT HERE> 16015 * 2: call bpf_iter_num_next ; this is iter_next() call 16016 * 3: if r0 == 0 goto done 16017 * 4: ... something useful here ... 16018 * 5: goto again ; another iteration 16019 * 6: done: 16020 * 7: r1 = &it 16021 * 8: call bpf_iter_num_destroy ; clean up iter state 16022 * 9: exit 16023 * 16024 * This is a typical loop. Let's assume that we have a prune point at 1:, 16025 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16026 * again`, assuming other heuristics don't get in a way). 16027 * 16028 * When we first time come to 1:, let's say we have some state X. We proceed 16029 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16030 * Now we come back to validate that forked ACTIVE state. We proceed through 16031 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16032 * are converging. But the problem is that we don't know that yet, as this 16033 * convergence has to happen at iter_next() call site only. So if nothing is 16034 * done, at 1: verifier will use bounded loop logic and declare infinite 16035 * looping (and would be *technically* correct, if not for iterator's 16036 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16037 * don't want that. So what we do in process_iter_next_call() when we go on 16038 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16039 * a different iteration. So when we suspect an infinite loop, we additionally 16040 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16041 * pretend we are not looping and wait for next iter_next() call. 16042 * 16043 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16044 * loop, because that would actually mean infinite loop, as DRAINED state is 16045 * "sticky", and so we'll keep returning into the same instruction with the 16046 * same state (at least in one of possible code paths). 16047 * 16048 * This approach allows to keep infinite loop heuristic even in the face of 16049 * active iterator. E.g., C snippet below is and will be detected as 16050 * inifintely looping: 16051 * 16052 * struct bpf_iter_num it; 16053 * int *p, x; 16054 * 16055 * bpf_iter_num_new(&it, 0, 10); 16056 * while ((p = bpf_iter_num_next(&t))) { 16057 * x = p; 16058 * while (x--) {} // <<-- infinite loop here 16059 * } 16060 * 16061 */ 16062 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16063 { 16064 struct bpf_reg_state *slot, *cur_slot; 16065 struct bpf_func_state *state; 16066 int i, fr; 16067 16068 for (fr = old->curframe; fr >= 0; fr--) { 16069 state = old->frame[fr]; 16070 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16071 if (state->stack[i].slot_type[0] != STACK_ITER) 16072 continue; 16073 16074 slot = &state->stack[i].spilled_ptr; 16075 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16076 continue; 16077 16078 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16079 if (cur_slot->iter.depth != slot->iter.depth) 16080 return true; 16081 } 16082 } 16083 return false; 16084 } 16085 16086 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16087 { 16088 struct bpf_verifier_state_list *new_sl; 16089 struct bpf_verifier_state_list *sl, **pprev; 16090 struct bpf_verifier_state *cur = env->cur_state, *new; 16091 int i, j, err, states_cnt = 0; 16092 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16093 bool add_new_state = force_new_state; 16094 16095 /* bpf progs typically have pruning point every 4 instructions 16096 * http://vger.kernel.org/bpfconf2019.html#session-1 16097 * Do not add new state for future pruning if the verifier hasn't seen 16098 * at least 2 jumps and at least 8 instructions. 16099 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16100 * In tests that amounts to up to 50% reduction into total verifier 16101 * memory consumption and 20% verifier time speedup. 16102 */ 16103 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16104 env->insn_processed - env->prev_insn_processed >= 8) 16105 add_new_state = true; 16106 16107 pprev = explored_state(env, insn_idx); 16108 sl = *pprev; 16109 16110 clean_live_states(env, insn_idx, cur); 16111 16112 while (sl) { 16113 states_cnt++; 16114 if (sl->state.insn_idx != insn_idx) 16115 goto next; 16116 16117 if (sl->state.branches) { 16118 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16119 16120 if (frame->in_async_callback_fn && 16121 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16122 /* Different async_entry_cnt means that the verifier is 16123 * processing another entry into async callback. 16124 * Seeing the same state is not an indication of infinite 16125 * loop or infinite recursion. 16126 * But finding the same state doesn't mean that it's safe 16127 * to stop processing the current state. The previous state 16128 * hasn't yet reached bpf_exit, since state.branches > 0. 16129 * Checking in_async_callback_fn alone is not enough either. 16130 * Since the verifier still needs to catch infinite loops 16131 * inside async callbacks. 16132 */ 16133 goto skip_inf_loop_check; 16134 } 16135 /* BPF open-coded iterators loop detection is special. 16136 * states_maybe_looping() logic is too simplistic in detecting 16137 * states that *might* be equivalent, because it doesn't know 16138 * about ID remapping, so don't even perform it. 16139 * See process_iter_next_call() and iter_active_depths_differ() 16140 * for overview of the logic. When current and one of parent 16141 * states are detected as equivalent, it's a good thing: we prove 16142 * convergence and can stop simulating further iterations. 16143 * It's safe to assume that iterator loop will finish, taking into 16144 * account iter_next() contract of eventually returning 16145 * sticky NULL result. 16146 */ 16147 if (is_iter_next_insn(env, insn_idx)) { 16148 if (states_equal(env, &sl->state, cur)) { 16149 struct bpf_func_state *cur_frame; 16150 struct bpf_reg_state *iter_state, *iter_reg; 16151 int spi; 16152 16153 cur_frame = cur->frame[cur->curframe]; 16154 /* btf_check_iter_kfuncs() enforces that 16155 * iter state pointer is always the first arg 16156 */ 16157 iter_reg = &cur_frame->regs[BPF_REG_1]; 16158 /* current state is valid due to states_equal(), 16159 * so we can assume valid iter and reg state, 16160 * no need for extra (re-)validations 16161 */ 16162 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16163 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16164 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 16165 goto hit; 16166 } 16167 goto skip_inf_loop_check; 16168 } 16169 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16170 if (states_maybe_looping(&sl->state, cur) && 16171 states_equal(env, &sl->state, cur) && 16172 !iter_active_depths_differ(&sl->state, cur)) { 16173 verbose_linfo(env, insn_idx, "; "); 16174 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16175 return -EINVAL; 16176 } 16177 /* if the verifier is processing a loop, avoid adding new state 16178 * too often, since different loop iterations have distinct 16179 * states and may not help future pruning. 16180 * This threshold shouldn't be too low to make sure that 16181 * a loop with large bound will be rejected quickly. 16182 * The most abusive loop will be: 16183 * r1 += 1 16184 * if r1 < 1000000 goto pc-2 16185 * 1M insn_procssed limit / 100 == 10k peak states. 16186 * This threshold shouldn't be too high either, since states 16187 * at the end of the loop are likely to be useful in pruning. 16188 */ 16189 skip_inf_loop_check: 16190 if (!force_new_state && 16191 env->jmps_processed - env->prev_jmps_processed < 20 && 16192 env->insn_processed - env->prev_insn_processed < 100) 16193 add_new_state = false; 16194 goto miss; 16195 } 16196 if (states_equal(env, &sl->state, cur)) { 16197 hit: 16198 sl->hit_cnt++; 16199 /* reached equivalent register/stack state, 16200 * prune the search. 16201 * Registers read by the continuation are read by us. 16202 * If we have any write marks in env->cur_state, they 16203 * will prevent corresponding reads in the continuation 16204 * from reaching our parent (an explored_state). Our 16205 * own state will get the read marks recorded, but 16206 * they'll be immediately forgotten as we're pruning 16207 * this state and will pop a new one. 16208 */ 16209 err = propagate_liveness(env, &sl->state, cur); 16210 16211 /* if previous state reached the exit with precision and 16212 * current state is equivalent to it (except precsion marks) 16213 * the precision needs to be propagated back in 16214 * the current state. 16215 */ 16216 err = err ? : push_jmp_history(env, cur); 16217 err = err ? : propagate_precision(env, &sl->state); 16218 if (err) 16219 return err; 16220 return 1; 16221 } 16222 miss: 16223 /* when new state is not going to be added do not increase miss count. 16224 * Otherwise several loop iterations will remove the state 16225 * recorded earlier. The goal of these heuristics is to have 16226 * states from some iterations of the loop (some in the beginning 16227 * and some at the end) to help pruning. 16228 */ 16229 if (add_new_state) 16230 sl->miss_cnt++; 16231 /* heuristic to determine whether this state is beneficial 16232 * to keep checking from state equivalence point of view. 16233 * Higher numbers increase max_states_per_insn and verification time, 16234 * but do not meaningfully decrease insn_processed. 16235 */ 16236 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16237 /* the state is unlikely to be useful. Remove it to 16238 * speed up verification 16239 */ 16240 *pprev = sl->next; 16241 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16242 u32 br = sl->state.branches; 16243 16244 WARN_ONCE(br, 16245 "BUG live_done but branches_to_explore %d\n", 16246 br); 16247 free_verifier_state(&sl->state, false); 16248 kfree(sl); 16249 env->peak_states--; 16250 } else { 16251 /* cannot free this state, since parentage chain may 16252 * walk it later. Add it for free_list instead to 16253 * be freed at the end of verification 16254 */ 16255 sl->next = env->free_list; 16256 env->free_list = sl; 16257 } 16258 sl = *pprev; 16259 continue; 16260 } 16261 next: 16262 pprev = &sl->next; 16263 sl = *pprev; 16264 } 16265 16266 if (env->max_states_per_insn < states_cnt) 16267 env->max_states_per_insn = states_cnt; 16268 16269 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16270 return 0; 16271 16272 if (!add_new_state) 16273 return 0; 16274 16275 /* There were no equivalent states, remember the current one. 16276 * Technically the current state is not proven to be safe yet, 16277 * but it will either reach outer most bpf_exit (which means it's safe) 16278 * or it will be rejected. When there are no loops the verifier won't be 16279 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16280 * again on the way to bpf_exit. 16281 * When looping the sl->state.branches will be > 0 and this state 16282 * will not be considered for equivalence until branches == 0. 16283 */ 16284 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16285 if (!new_sl) 16286 return -ENOMEM; 16287 env->total_states++; 16288 env->peak_states++; 16289 env->prev_jmps_processed = env->jmps_processed; 16290 env->prev_insn_processed = env->insn_processed; 16291 16292 /* forget precise markings we inherited, see __mark_chain_precision */ 16293 if (env->bpf_capable) 16294 mark_all_scalars_imprecise(env, cur); 16295 16296 /* add new state to the head of linked list */ 16297 new = &new_sl->state; 16298 err = copy_verifier_state(new, cur); 16299 if (err) { 16300 free_verifier_state(new, false); 16301 kfree(new_sl); 16302 return err; 16303 } 16304 new->insn_idx = insn_idx; 16305 WARN_ONCE(new->branches != 1, 16306 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16307 16308 cur->parent = new; 16309 cur->first_insn_idx = insn_idx; 16310 clear_jmp_history(cur); 16311 new_sl->next = *explored_state(env, insn_idx); 16312 *explored_state(env, insn_idx) = new_sl; 16313 /* connect new state to parentage chain. Current frame needs all 16314 * registers connected. Only r6 - r9 of the callers are alive (pushed 16315 * to the stack implicitly by JITs) so in callers' frames connect just 16316 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16317 * the state of the call instruction (with WRITTEN set), and r0 comes 16318 * from callee with its full parentage chain, anyway. 16319 */ 16320 /* clear write marks in current state: the writes we did are not writes 16321 * our child did, so they don't screen off its reads from us. 16322 * (There are no read marks in current state, because reads always mark 16323 * their parent and current state never has children yet. Only 16324 * explored_states can get read marks.) 16325 */ 16326 for (j = 0; j <= cur->curframe; j++) { 16327 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16328 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16329 for (i = 0; i < BPF_REG_FP; i++) 16330 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16331 } 16332 16333 /* all stack frames are accessible from callee, clear them all */ 16334 for (j = 0; j <= cur->curframe; j++) { 16335 struct bpf_func_state *frame = cur->frame[j]; 16336 struct bpf_func_state *newframe = new->frame[j]; 16337 16338 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16339 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16340 frame->stack[i].spilled_ptr.parent = 16341 &newframe->stack[i].spilled_ptr; 16342 } 16343 } 16344 return 0; 16345 } 16346 16347 /* Return true if it's OK to have the same insn return a different type. */ 16348 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16349 { 16350 switch (base_type(type)) { 16351 case PTR_TO_CTX: 16352 case PTR_TO_SOCKET: 16353 case PTR_TO_SOCK_COMMON: 16354 case PTR_TO_TCP_SOCK: 16355 case PTR_TO_XDP_SOCK: 16356 case PTR_TO_BTF_ID: 16357 return false; 16358 default: 16359 return true; 16360 } 16361 } 16362 16363 /* If an instruction was previously used with particular pointer types, then we 16364 * need to be careful to avoid cases such as the below, where it may be ok 16365 * for one branch accessing the pointer, but not ok for the other branch: 16366 * 16367 * R1 = sock_ptr 16368 * goto X; 16369 * ... 16370 * R1 = some_other_valid_ptr; 16371 * goto X; 16372 * ... 16373 * R2 = *(u32 *)(R1 + 0); 16374 */ 16375 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16376 { 16377 return src != prev && (!reg_type_mismatch_ok(src) || 16378 !reg_type_mismatch_ok(prev)); 16379 } 16380 16381 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16382 bool allow_trust_missmatch) 16383 { 16384 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16385 16386 if (*prev_type == NOT_INIT) { 16387 /* Saw a valid insn 16388 * dst_reg = *(u32 *)(src_reg + off) 16389 * save type to validate intersecting paths 16390 */ 16391 *prev_type = type; 16392 } else if (reg_type_mismatch(type, *prev_type)) { 16393 /* Abuser program is trying to use the same insn 16394 * dst_reg = *(u32*) (src_reg + off) 16395 * with different pointer types: 16396 * src_reg == ctx in one branch and 16397 * src_reg == stack|map in some other branch. 16398 * Reject it. 16399 */ 16400 if (allow_trust_missmatch && 16401 base_type(type) == PTR_TO_BTF_ID && 16402 base_type(*prev_type) == PTR_TO_BTF_ID) { 16403 /* 16404 * Have to support a use case when one path through 16405 * the program yields TRUSTED pointer while another 16406 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16407 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16408 */ 16409 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16410 } else { 16411 verbose(env, "same insn cannot be used with different pointers\n"); 16412 return -EINVAL; 16413 } 16414 } 16415 16416 return 0; 16417 } 16418 16419 static int do_check(struct bpf_verifier_env *env) 16420 { 16421 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16422 struct bpf_verifier_state *state = env->cur_state; 16423 struct bpf_insn *insns = env->prog->insnsi; 16424 struct bpf_reg_state *regs; 16425 int insn_cnt = env->prog->len; 16426 bool do_print_state = false; 16427 int prev_insn_idx = -1; 16428 16429 for (;;) { 16430 struct bpf_insn *insn; 16431 u8 class; 16432 int err; 16433 16434 env->prev_insn_idx = prev_insn_idx; 16435 if (env->insn_idx >= insn_cnt) { 16436 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16437 env->insn_idx, insn_cnt); 16438 return -EFAULT; 16439 } 16440 16441 insn = &insns[env->insn_idx]; 16442 class = BPF_CLASS(insn->code); 16443 16444 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16445 verbose(env, 16446 "BPF program is too large. Processed %d insn\n", 16447 env->insn_processed); 16448 return -E2BIG; 16449 } 16450 16451 state->last_insn_idx = env->prev_insn_idx; 16452 16453 if (is_prune_point(env, env->insn_idx)) { 16454 err = is_state_visited(env, env->insn_idx); 16455 if (err < 0) 16456 return err; 16457 if (err == 1) { 16458 /* found equivalent state, can prune the search */ 16459 if (env->log.level & BPF_LOG_LEVEL) { 16460 if (do_print_state) 16461 verbose(env, "\nfrom %d to %d%s: safe\n", 16462 env->prev_insn_idx, env->insn_idx, 16463 env->cur_state->speculative ? 16464 " (speculative execution)" : ""); 16465 else 16466 verbose(env, "%d: safe\n", env->insn_idx); 16467 } 16468 goto process_bpf_exit; 16469 } 16470 } 16471 16472 if (is_jmp_point(env, env->insn_idx)) { 16473 err = push_jmp_history(env, state); 16474 if (err) 16475 return err; 16476 } 16477 16478 if (signal_pending(current)) 16479 return -EAGAIN; 16480 16481 if (need_resched()) 16482 cond_resched(); 16483 16484 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16485 verbose(env, "\nfrom %d to %d%s:", 16486 env->prev_insn_idx, env->insn_idx, 16487 env->cur_state->speculative ? 16488 " (speculative execution)" : ""); 16489 print_verifier_state(env, state->frame[state->curframe], true); 16490 do_print_state = false; 16491 } 16492 16493 if (env->log.level & BPF_LOG_LEVEL) { 16494 const struct bpf_insn_cbs cbs = { 16495 .cb_call = disasm_kfunc_name, 16496 .cb_print = verbose, 16497 .private_data = env, 16498 }; 16499 16500 if (verifier_state_scratched(env)) 16501 print_insn_state(env, state->frame[state->curframe]); 16502 16503 verbose_linfo(env, env->insn_idx, "; "); 16504 env->prev_log_pos = env->log.end_pos; 16505 verbose(env, "%d: ", env->insn_idx); 16506 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16507 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16508 env->prev_log_pos = env->log.end_pos; 16509 } 16510 16511 if (bpf_prog_is_offloaded(env->prog->aux)) { 16512 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16513 env->prev_insn_idx); 16514 if (err) 16515 return err; 16516 } 16517 16518 regs = cur_regs(env); 16519 sanitize_mark_insn_seen(env); 16520 prev_insn_idx = env->insn_idx; 16521 16522 if (class == BPF_ALU || class == BPF_ALU64) { 16523 err = check_alu_op(env, insn); 16524 if (err) 16525 return err; 16526 16527 } else if (class == BPF_LDX) { 16528 enum bpf_reg_type src_reg_type; 16529 16530 /* check for reserved fields is already done */ 16531 16532 /* check src operand */ 16533 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16534 if (err) 16535 return err; 16536 16537 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16538 if (err) 16539 return err; 16540 16541 src_reg_type = regs[insn->src_reg].type; 16542 16543 /* check that memory (src_reg + off) is readable, 16544 * the state of dst_reg will be updated by this func 16545 */ 16546 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16547 insn->off, BPF_SIZE(insn->code), 16548 BPF_READ, insn->dst_reg, false, 16549 BPF_MODE(insn->code) == BPF_MEMSX); 16550 if (err) 16551 return err; 16552 16553 err = save_aux_ptr_type(env, src_reg_type, true); 16554 if (err) 16555 return err; 16556 } else if (class == BPF_STX) { 16557 enum bpf_reg_type dst_reg_type; 16558 16559 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16560 err = check_atomic(env, env->insn_idx, insn); 16561 if (err) 16562 return err; 16563 env->insn_idx++; 16564 continue; 16565 } 16566 16567 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16568 verbose(env, "BPF_STX uses reserved fields\n"); 16569 return -EINVAL; 16570 } 16571 16572 /* check src1 operand */ 16573 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16574 if (err) 16575 return err; 16576 /* check src2 operand */ 16577 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16578 if (err) 16579 return err; 16580 16581 dst_reg_type = regs[insn->dst_reg].type; 16582 16583 /* check that memory (dst_reg + off) is writeable */ 16584 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16585 insn->off, BPF_SIZE(insn->code), 16586 BPF_WRITE, insn->src_reg, false, false); 16587 if (err) 16588 return err; 16589 16590 err = save_aux_ptr_type(env, dst_reg_type, false); 16591 if (err) 16592 return err; 16593 } else if (class == BPF_ST) { 16594 enum bpf_reg_type dst_reg_type; 16595 16596 if (BPF_MODE(insn->code) != BPF_MEM || 16597 insn->src_reg != BPF_REG_0) { 16598 verbose(env, "BPF_ST uses reserved fields\n"); 16599 return -EINVAL; 16600 } 16601 /* check src operand */ 16602 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16603 if (err) 16604 return err; 16605 16606 dst_reg_type = regs[insn->dst_reg].type; 16607 16608 /* check that memory (dst_reg + off) is writeable */ 16609 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16610 insn->off, BPF_SIZE(insn->code), 16611 BPF_WRITE, -1, false, false); 16612 if (err) 16613 return err; 16614 16615 err = save_aux_ptr_type(env, dst_reg_type, false); 16616 if (err) 16617 return err; 16618 } else if (class == BPF_JMP || class == BPF_JMP32) { 16619 u8 opcode = BPF_OP(insn->code); 16620 16621 env->jmps_processed++; 16622 if (opcode == BPF_CALL) { 16623 if (BPF_SRC(insn->code) != BPF_K || 16624 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16625 && insn->off != 0) || 16626 (insn->src_reg != BPF_REG_0 && 16627 insn->src_reg != BPF_PSEUDO_CALL && 16628 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16629 insn->dst_reg != BPF_REG_0 || 16630 class == BPF_JMP32) { 16631 verbose(env, "BPF_CALL uses reserved fields\n"); 16632 return -EINVAL; 16633 } 16634 16635 if (env->cur_state->active_lock.ptr) { 16636 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16637 (insn->src_reg == BPF_PSEUDO_CALL) || 16638 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16639 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16640 verbose(env, "function calls are not allowed while holding a lock\n"); 16641 return -EINVAL; 16642 } 16643 } 16644 if (insn->src_reg == BPF_PSEUDO_CALL) 16645 err = check_func_call(env, insn, &env->insn_idx); 16646 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16647 err = check_kfunc_call(env, insn, &env->insn_idx); 16648 else 16649 err = check_helper_call(env, insn, &env->insn_idx); 16650 if (err) 16651 return err; 16652 16653 mark_reg_scratched(env, BPF_REG_0); 16654 } else if (opcode == BPF_JA) { 16655 if (BPF_SRC(insn->code) != BPF_K || 16656 insn->src_reg != BPF_REG_0 || 16657 insn->dst_reg != BPF_REG_0 || 16658 (class == BPF_JMP && insn->imm != 0) || 16659 (class == BPF_JMP32 && insn->off != 0)) { 16660 verbose(env, "BPF_JA uses reserved fields\n"); 16661 return -EINVAL; 16662 } 16663 16664 if (class == BPF_JMP) 16665 env->insn_idx += insn->off + 1; 16666 else 16667 env->insn_idx += insn->imm + 1; 16668 continue; 16669 16670 } else if (opcode == BPF_EXIT) { 16671 if (BPF_SRC(insn->code) != BPF_K || 16672 insn->imm != 0 || 16673 insn->src_reg != BPF_REG_0 || 16674 insn->dst_reg != BPF_REG_0 || 16675 class == BPF_JMP32) { 16676 verbose(env, "BPF_EXIT uses reserved fields\n"); 16677 return -EINVAL; 16678 } 16679 16680 if (env->cur_state->active_lock.ptr && 16681 !in_rbtree_lock_required_cb(env)) { 16682 verbose(env, "bpf_spin_unlock is missing\n"); 16683 return -EINVAL; 16684 } 16685 16686 if (env->cur_state->active_rcu_lock) { 16687 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16688 return -EINVAL; 16689 } 16690 16691 /* We must do check_reference_leak here before 16692 * prepare_func_exit to handle the case when 16693 * state->curframe > 0, it may be a callback 16694 * function, for which reference_state must 16695 * match caller reference state when it exits. 16696 */ 16697 err = check_reference_leak(env); 16698 if (err) 16699 return err; 16700 16701 if (state->curframe) { 16702 /* exit from nested function */ 16703 err = prepare_func_exit(env, &env->insn_idx); 16704 if (err) 16705 return err; 16706 do_print_state = true; 16707 continue; 16708 } 16709 16710 err = check_return_code(env); 16711 if (err) 16712 return err; 16713 process_bpf_exit: 16714 mark_verifier_state_scratched(env); 16715 update_branch_counts(env, env->cur_state); 16716 err = pop_stack(env, &prev_insn_idx, 16717 &env->insn_idx, pop_log); 16718 if (err < 0) { 16719 if (err != -ENOENT) 16720 return err; 16721 break; 16722 } else { 16723 do_print_state = true; 16724 continue; 16725 } 16726 } else { 16727 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16728 if (err) 16729 return err; 16730 } 16731 } else if (class == BPF_LD) { 16732 u8 mode = BPF_MODE(insn->code); 16733 16734 if (mode == BPF_ABS || mode == BPF_IND) { 16735 err = check_ld_abs(env, insn); 16736 if (err) 16737 return err; 16738 16739 } else if (mode == BPF_IMM) { 16740 err = check_ld_imm(env, insn); 16741 if (err) 16742 return err; 16743 16744 env->insn_idx++; 16745 sanitize_mark_insn_seen(env); 16746 } else { 16747 verbose(env, "invalid BPF_LD mode\n"); 16748 return -EINVAL; 16749 } 16750 } else { 16751 verbose(env, "unknown insn class %d\n", class); 16752 return -EINVAL; 16753 } 16754 16755 env->insn_idx++; 16756 } 16757 16758 return 0; 16759 } 16760 16761 static int find_btf_percpu_datasec(struct btf *btf) 16762 { 16763 const struct btf_type *t; 16764 const char *tname; 16765 int i, n; 16766 16767 /* 16768 * Both vmlinux and module each have their own ".data..percpu" 16769 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16770 * types to look at only module's own BTF types. 16771 */ 16772 n = btf_nr_types(btf); 16773 if (btf_is_module(btf)) 16774 i = btf_nr_types(btf_vmlinux); 16775 else 16776 i = 1; 16777 16778 for(; i < n; i++) { 16779 t = btf_type_by_id(btf, i); 16780 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16781 continue; 16782 16783 tname = btf_name_by_offset(btf, t->name_off); 16784 if (!strcmp(tname, ".data..percpu")) 16785 return i; 16786 } 16787 16788 return -ENOENT; 16789 } 16790 16791 /* replace pseudo btf_id with kernel symbol address */ 16792 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16793 struct bpf_insn *insn, 16794 struct bpf_insn_aux_data *aux) 16795 { 16796 const struct btf_var_secinfo *vsi; 16797 const struct btf_type *datasec; 16798 struct btf_mod_pair *btf_mod; 16799 const struct btf_type *t; 16800 const char *sym_name; 16801 bool percpu = false; 16802 u32 type, id = insn->imm; 16803 struct btf *btf; 16804 s32 datasec_id; 16805 u64 addr; 16806 int i, btf_fd, err; 16807 16808 btf_fd = insn[1].imm; 16809 if (btf_fd) { 16810 btf = btf_get_by_fd(btf_fd); 16811 if (IS_ERR(btf)) { 16812 verbose(env, "invalid module BTF object FD specified.\n"); 16813 return -EINVAL; 16814 } 16815 } else { 16816 if (!btf_vmlinux) { 16817 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16818 return -EINVAL; 16819 } 16820 btf = btf_vmlinux; 16821 btf_get(btf); 16822 } 16823 16824 t = btf_type_by_id(btf, id); 16825 if (!t) { 16826 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16827 err = -ENOENT; 16828 goto err_put; 16829 } 16830 16831 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16832 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16833 err = -EINVAL; 16834 goto err_put; 16835 } 16836 16837 sym_name = btf_name_by_offset(btf, t->name_off); 16838 addr = kallsyms_lookup_name(sym_name); 16839 if (!addr) { 16840 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16841 sym_name); 16842 err = -ENOENT; 16843 goto err_put; 16844 } 16845 insn[0].imm = (u32)addr; 16846 insn[1].imm = addr >> 32; 16847 16848 if (btf_type_is_func(t)) { 16849 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16850 aux->btf_var.mem_size = 0; 16851 goto check_btf; 16852 } 16853 16854 datasec_id = find_btf_percpu_datasec(btf); 16855 if (datasec_id > 0) { 16856 datasec = btf_type_by_id(btf, datasec_id); 16857 for_each_vsi(i, datasec, vsi) { 16858 if (vsi->type == id) { 16859 percpu = true; 16860 break; 16861 } 16862 } 16863 } 16864 16865 type = t->type; 16866 t = btf_type_skip_modifiers(btf, type, NULL); 16867 if (percpu) { 16868 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16869 aux->btf_var.btf = btf; 16870 aux->btf_var.btf_id = type; 16871 } else if (!btf_type_is_struct(t)) { 16872 const struct btf_type *ret; 16873 const char *tname; 16874 u32 tsize; 16875 16876 /* resolve the type size of ksym. */ 16877 ret = btf_resolve_size(btf, t, &tsize); 16878 if (IS_ERR(ret)) { 16879 tname = btf_name_by_offset(btf, t->name_off); 16880 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16881 tname, PTR_ERR(ret)); 16882 err = -EINVAL; 16883 goto err_put; 16884 } 16885 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16886 aux->btf_var.mem_size = tsize; 16887 } else { 16888 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16889 aux->btf_var.btf = btf; 16890 aux->btf_var.btf_id = type; 16891 } 16892 check_btf: 16893 /* check whether we recorded this BTF (and maybe module) already */ 16894 for (i = 0; i < env->used_btf_cnt; i++) { 16895 if (env->used_btfs[i].btf == btf) { 16896 btf_put(btf); 16897 return 0; 16898 } 16899 } 16900 16901 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16902 err = -E2BIG; 16903 goto err_put; 16904 } 16905 16906 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16907 btf_mod->btf = btf; 16908 btf_mod->module = NULL; 16909 16910 /* if we reference variables from kernel module, bump its refcount */ 16911 if (btf_is_module(btf)) { 16912 btf_mod->module = btf_try_get_module(btf); 16913 if (!btf_mod->module) { 16914 err = -ENXIO; 16915 goto err_put; 16916 } 16917 } 16918 16919 env->used_btf_cnt++; 16920 16921 return 0; 16922 err_put: 16923 btf_put(btf); 16924 return err; 16925 } 16926 16927 static bool is_tracing_prog_type(enum bpf_prog_type type) 16928 { 16929 switch (type) { 16930 case BPF_PROG_TYPE_KPROBE: 16931 case BPF_PROG_TYPE_TRACEPOINT: 16932 case BPF_PROG_TYPE_PERF_EVENT: 16933 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16934 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16935 return true; 16936 default: 16937 return false; 16938 } 16939 } 16940 16941 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16942 struct bpf_map *map, 16943 struct bpf_prog *prog) 16944 16945 { 16946 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16947 16948 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16949 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16950 if (is_tracing_prog_type(prog_type)) { 16951 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16952 return -EINVAL; 16953 } 16954 } 16955 16956 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16957 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16958 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16959 return -EINVAL; 16960 } 16961 16962 if (is_tracing_prog_type(prog_type)) { 16963 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16964 return -EINVAL; 16965 } 16966 16967 if (prog->aux->sleepable) { 16968 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 16969 return -EINVAL; 16970 } 16971 } 16972 16973 if (btf_record_has_field(map->record, BPF_TIMER)) { 16974 if (is_tracing_prog_type(prog_type)) { 16975 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16976 return -EINVAL; 16977 } 16978 } 16979 16980 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16981 !bpf_offload_prog_map_match(prog, map)) { 16982 verbose(env, "offload device mismatch between prog and map\n"); 16983 return -EINVAL; 16984 } 16985 16986 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16987 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16988 return -EINVAL; 16989 } 16990 16991 if (prog->aux->sleepable) 16992 switch (map->map_type) { 16993 case BPF_MAP_TYPE_HASH: 16994 case BPF_MAP_TYPE_LRU_HASH: 16995 case BPF_MAP_TYPE_ARRAY: 16996 case BPF_MAP_TYPE_PERCPU_HASH: 16997 case BPF_MAP_TYPE_PERCPU_ARRAY: 16998 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 16999 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17000 case BPF_MAP_TYPE_HASH_OF_MAPS: 17001 case BPF_MAP_TYPE_RINGBUF: 17002 case BPF_MAP_TYPE_USER_RINGBUF: 17003 case BPF_MAP_TYPE_INODE_STORAGE: 17004 case BPF_MAP_TYPE_SK_STORAGE: 17005 case BPF_MAP_TYPE_TASK_STORAGE: 17006 case BPF_MAP_TYPE_CGRP_STORAGE: 17007 break; 17008 default: 17009 verbose(env, 17010 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17011 return -EINVAL; 17012 } 17013 17014 return 0; 17015 } 17016 17017 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17018 { 17019 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17020 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17021 } 17022 17023 /* find and rewrite pseudo imm in ld_imm64 instructions: 17024 * 17025 * 1. if it accesses map FD, replace it with actual map pointer. 17026 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17027 * 17028 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17029 */ 17030 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17031 { 17032 struct bpf_insn *insn = env->prog->insnsi; 17033 int insn_cnt = env->prog->len; 17034 int i, j, err; 17035 17036 err = bpf_prog_calc_tag(env->prog); 17037 if (err) 17038 return err; 17039 17040 for (i = 0; i < insn_cnt; i++, insn++) { 17041 if (BPF_CLASS(insn->code) == BPF_LDX && 17042 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17043 insn->imm != 0)) { 17044 verbose(env, "BPF_LDX uses reserved fields\n"); 17045 return -EINVAL; 17046 } 17047 17048 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17049 struct bpf_insn_aux_data *aux; 17050 struct bpf_map *map; 17051 struct fd f; 17052 u64 addr; 17053 u32 fd; 17054 17055 if (i == insn_cnt - 1 || insn[1].code != 0 || 17056 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17057 insn[1].off != 0) { 17058 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17059 return -EINVAL; 17060 } 17061 17062 if (insn[0].src_reg == 0) 17063 /* valid generic load 64-bit imm */ 17064 goto next_insn; 17065 17066 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17067 aux = &env->insn_aux_data[i]; 17068 err = check_pseudo_btf_id(env, insn, aux); 17069 if (err) 17070 return err; 17071 goto next_insn; 17072 } 17073 17074 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17075 aux = &env->insn_aux_data[i]; 17076 aux->ptr_type = PTR_TO_FUNC; 17077 goto next_insn; 17078 } 17079 17080 /* In final convert_pseudo_ld_imm64() step, this is 17081 * converted into regular 64-bit imm load insn. 17082 */ 17083 switch (insn[0].src_reg) { 17084 case BPF_PSEUDO_MAP_VALUE: 17085 case BPF_PSEUDO_MAP_IDX_VALUE: 17086 break; 17087 case BPF_PSEUDO_MAP_FD: 17088 case BPF_PSEUDO_MAP_IDX: 17089 if (insn[1].imm == 0) 17090 break; 17091 fallthrough; 17092 default: 17093 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17094 return -EINVAL; 17095 } 17096 17097 switch (insn[0].src_reg) { 17098 case BPF_PSEUDO_MAP_IDX_VALUE: 17099 case BPF_PSEUDO_MAP_IDX: 17100 if (bpfptr_is_null(env->fd_array)) { 17101 verbose(env, "fd_idx without fd_array is invalid\n"); 17102 return -EPROTO; 17103 } 17104 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17105 insn[0].imm * sizeof(fd), 17106 sizeof(fd))) 17107 return -EFAULT; 17108 break; 17109 default: 17110 fd = insn[0].imm; 17111 break; 17112 } 17113 17114 f = fdget(fd); 17115 map = __bpf_map_get(f); 17116 if (IS_ERR(map)) { 17117 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17118 insn[0].imm); 17119 return PTR_ERR(map); 17120 } 17121 17122 err = check_map_prog_compatibility(env, map, env->prog); 17123 if (err) { 17124 fdput(f); 17125 return err; 17126 } 17127 17128 aux = &env->insn_aux_data[i]; 17129 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17130 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17131 addr = (unsigned long)map; 17132 } else { 17133 u32 off = insn[1].imm; 17134 17135 if (off >= BPF_MAX_VAR_OFF) { 17136 verbose(env, "direct value offset of %u is not allowed\n", off); 17137 fdput(f); 17138 return -EINVAL; 17139 } 17140 17141 if (!map->ops->map_direct_value_addr) { 17142 verbose(env, "no direct value access support for this map type\n"); 17143 fdput(f); 17144 return -EINVAL; 17145 } 17146 17147 err = map->ops->map_direct_value_addr(map, &addr, off); 17148 if (err) { 17149 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17150 map->value_size, off); 17151 fdput(f); 17152 return err; 17153 } 17154 17155 aux->map_off = off; 17156 addr += off; 17157 } 17158 17159 insn[0].imm = (u32)addr; 17160 insn[1].imm = addr >> 32; 17161 17162 /* check whether we recorded this map already */ 17163 for (j = 0; j < env->used_map_cnt; j++) { 17164 if (env->used_maps[j] == map) { 17165 aux->map_index = j; 17166 fdput(f); 17167 goto next_insn; 17168 } 17169 } 17170 17171 if (env->used_map_cnt >= MAX_USED_MAPS) { 17172 fdput(f); 17173 return -E2BIG; 17174 } 17175 17176 /* hold the map. If the program is rejected by verifier, 17177 * the map will be released by release_maps() or it 17178 * will be used by the valid program until it's unloaded 17179 * and all maps are released in free_used_maps() 17180 */ 17181 bpf_map_inc(map); 17182 17183 aux->map_index = env->used_map_cnt; 17184 env->used_maps[env->used_map_cnt++] = map; 17185 17186 if (bpf_map_is_cgroup_storage(map) && 17187 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17188 verbose(env, "only one cgroup storage of each type is allowed\n"); 17189 fdput(f); 17190 return -EBUSY; 17191 } 17192 17193 fdput(f); 17194 next_insn: 17195 insn++; 17196 i++; 17197 continue; 17198 } 17199 17200 /* Basic sanity check before we invest more work here. */ 17201 if (!bpf_opcode_in_insntable(insn->code)) { 17202 verbose(env, "unknown opcode %02x\n", insn->code); 17203 return -EINVAL; 17204 } 17205 } 17206 17207 /* now all pseudo BPF_LD_IMM64 instructions load valid 17208 * 'struct bpf_map *' into a register instead of user map_fd. 17209 * These pointers will be used later by verifier to validate map access. 17210 */ 17211 return 0; 17212 } 17213 17214 /* drop refcnt of maps used by the rejected program */ 17215 static void release_maps(struct bpf_verifier_env *env) 17216 { 17217 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17218 env->used_map_cnt); 17219 } 17220 17221 /* drop refcnt of maps used by the rejected program */ 17222 static void release_btfs(struct bpf_verifier_env *env) 17223 { 17224 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17225 env->used_btf_cnt); 17226 } 17227 17228 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17229 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17230 { 17231 struct bpf_insn *insn = env->prog->insnsi; 17232 int insn_cnt = env->prog->len; 17233 int i; 17234 17235 for (i = 0; i < insn_cnt; i++, insn++) { 17236 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17237 continue; 17238 if (insn->src_reg == BPF_PSEUDO_FUNC) 17239 continue; 17240 insn->src_reg = 0; 17241 } 17242 } 17243 17244 /* single env->prog->insni[off] instruction was replaced with the range 17245 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17246 * [0, off) and [off, end) to new locations, so the patched range stays zero 17247 */ 17248 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17249 struct bpf_insn_aux_data *new_data, 17250 struct bpf_prog *new_prog, u32 off, u32 cnt) 17251 { 17252 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17253 struct bpf_insn *insn = new_prog->insnsi; 17254 u32 old_seen = old_data[off].seen; 17255 u32 prog_len; 17256 int i; 17257 17258 /* aux info at OFF always needs adjustment, no matter fast path 17259 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17260 * original insn at old prog. 17261 */ 17262 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17263 17264 if (cnt == 1) 17265 return; 17266 prog_len = new_prog->len; 17267 17268 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17269 memcpy(new_data + off + cnt - 1, old_data + off, 17270 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17271 for (i = off; i < off + cnt - 1; i++) { 17272 /* Expand insni[off]'s seen count to the patched range. */ 17273 new_data[i].seen = old_seen; 17274 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17275 } 17276 env->insn_aux_data = new_data; 17277 vfree(old_data); 17278 } 17279 17280 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17281 { 17282 int i; 17283 17284 if (len == 1) 17285 return; 17286 /* NOTE: fake 'exit' subprog should be updated as well. */ 17287 for (i = 0; i <= env->subprog_cnt; i++) { 17288 if (env->subprog_info[i].start <= off) 17289 continue; 17290 env->subprog_info[i].start += len - 1; 17291 } 17292 } 17293 17294 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17295 { 17296 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17297 int i, sz = prog->aux->size_poke_tab; 17298 struct bpf_jit_poke_descriptor *desc; 17299 17300 for (i = 0; i < sz; i++) { 17301 desc = &tab[i]; 17302 if (desc->insn_idx <= off) 17303 continue; 17304 desc->insn_idx += len - 1; 17305 } 17306 } 17307 17308 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17309 const struct bpf_insn *patch, u32 len) 17310 { 17311 struct bpf_prog *new_prog; 17312 struct bpf_insn_aux_data *new_data = NULL; 17313 17314 if (len > 1) { 17315 new_data = vzalloc(array_size(env->prog->len + len - 1, 17316 sizeof(struct bpf_insn_aux_data))); 17317 if (!new_data) 17318 return NULL; 17319 } 17320 17321 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17322 if (IS_ERR(new_prog)) { 17323 if (PTR_ERR(new_prog) == -ERANGE) 17324 verbose(env, 17325 "insn %d cannot be patched due to 16-bit range\n", 17326 env->insn_aux_data[off].orig_idx); 17327 vfree(new_data); 17328 return NULL; 17329 } 17330 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17331 adjust_subprog_starts(env, off, len); 17332 adjust_poke_descs(new_prog, off, len); 17333 return new_prog; 17334 } 17335 17336 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17337 u32 off, u32 cnt) 17338 { 17339 int i, j; 17340 17341 /* find first prog starting at or after off (first to remove) */ 17342 for (i = 0; i < env->subprog_cnt; i++) 17343 if (env->subprog_info[i].start >= off) 17344 break; 17345 /* find first prog starting at or after off + cnt (first to stay) */ 17346 for (j = i; j < env->subprog_cnt; j++) 17347 if (env->subprog_info[j].start >= off + cnt) 17348 break; 17349 /* if j doesn't start exactly at off + cnt, we are just removing 17350 * the front of previous prog 17351 */ 17352 if (env->subprog_info[j].start != off + cnt) 17353 j--; 17354 17355 if (j > i) { 17356 struct bpf_prog_aux *aux = env->prog->aux; 17357 int move; 17358 17359 /* move fake 'exit' subprog as well */ 17360 move = env->subprog_cnt + 1 - j; 17361 17362 memmove(env->subprog_info + i, 17363 env->subprog_info + j, 17364 sizeof(*env->subprog_info) * move); 17365 env->subprog_cnt -= j - i; 17366 17367 /* remove func_info */ 17368 if (aux->func_info) { 17369 move = aux->func_info_cnt - j; 17370 17371 memmove(aux->func_info + i, 17372 aux->func_info + j, 17373 sizeof(*aux->func_info) * move); 17374 aux->func_info_cnt -= j - i; 17375 /* func_info->insn_off is set after all code rewrites, 17376 * in adjust_btf_func() - no need to adjust 17377 */ 17378 } 17379 } else { 17380 /* convert i from "first prog to remove" to "first to adjust" */ 17381 if (env->subprog_info[i].start == off) 17382 i++; 17383 } 17384 17385 /* update fake 'exit' subprog as well */ 17386 for (; i <= env->subprog_cnt; i++) 17387 env->subprog_info[i].start -= cnt; 17388 17389 return 0; 17390 } 17391 17392 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17393 u32 cnt) 17394 { 17395 struct bpf_prog *prog = env->prog; 17396 u32 i, l_off, l_cnt, nr_linfo; 17397 struct bpf_line_info *linfo; 17398 17399 nr_linfo = prog->aux->nr_linfo; 17400 if (!nr_linfo) 17401 return 0; 17402 17403 linfo = prog->aux->linfo; 17404 17405 /* find first line info to remove, count lines to be removed */ 17406 for (i = 0; i < nr_linfo; i++) 17407 if (linfo[i].insn_off >= off) 17408 break; 17409 17410 l_off = i; 17411 l_cnt = 0; 17412 for (; i < nr_linfo; i++) 17413 if (linfo[i].insn_off < off + cnt) 17414 l_cnt++; 17415 else 17416 break; 17417 17418 /* First live insn doesn't match first live linfo, it needs to "inherit" 17419 * last removed linfo. prog is already modified, so prog->len == off 17420 * means no live instructions after (tail of the program was removed). 17421 */ 17422 if (prog->len != off && l_cnt && 17423 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17424 l_cnt--; 17425 linfo[--i].insn_off = off + cnt; 17426 } 17427 17428 /* remove the line info which refer to the removed instructions */ 17429 if (l_cnt) { 17430 memmove(linfo + l_off, linfo + i, 17431 sizeof(*linfo) * (nr_linfo - i)); 17432 17433 prog->aux->nr_linfo -= l_cnt; 17434 nr_linfo = prog->aux->nr_linfo; 17435 } 17436 17437 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17438 for (i = l_off; i < nr_linfo; i++) 17439 linfo[i].insn_off -= cnt; 17440 17441 /* fix up all subprogs (incl. 'exit') which start >= off */ 17442 for (i = 0; i <= env->subprog_cnt; i++) 17443 if (env->subprog_info[i].linfo_idx > l_off) { 17444 /* program may have started in the removed region but 17445 * may not be fully removed 17446 */ 17447 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17448 env->subprog_info[i].linfo_idx -= l_cnt; 17449 else 17450 env->subprog_info[i].linfo_idx = l_off; 17451 } 17452 17453 return 0; 17454 } 17455 17456 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17457 { 17458 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17459 unsigned int orig_prog_len = env->prog->len; 17460 int err; 17461 17462 if (bpf_prog_is_offloaded(env->prog->aux)) 17463 bpf_prog_offload_remove_insns(env, off, cnt); 17464 17465 err = bpf_remove_insns(env->prog, off, cnt); 17466 if (err) 17467 return err; 17468 17469 err = adjust_subprog_starts_after_remove(env, off, cnt); 17470 if (err) 17471 return err; 17472 17473 err = bpf_adj_linfo_after_remove(env, off, cnt); 17474 if (err) 17475 return err; 17476 17477 memmove(aux_data + off, aux_data + off + cnt, 17478 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17479 17480 return 0; 17481 } 17482 17483 /* The verifier does more data flow analysis than llvm and will not 17484 * explore branches that are dead at run time. Malicious programs can 17485 * have dead code too. Therefore replace all dead at-run-time code 17486 * with 'ja -1'. 17487 * 17488 * Just nops are not optimal, e.g. if they would sit at the end of the 17489 * program and through another bug we would manage to jump there, then 17490 * we'd execute beyond program memory otherwise. Returning exception 17491 * code also wouldn't work since we can have subprogs where the dead 17492 * code could be located. 17493 */ 17494 static void sanitize_dead_code(struct bpf_verifier_env *env) 17495 { 17496 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17497 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17498 struct bpf_insn *insn = env->prog->insnsi; 17499 const int insn_cnt = env->prog->len; 17500 int i; 17501 17502 for (i = 0; i < insn_cnt; i++) { 17503 if (aux_data[i].seen) 17504 continue; 17505 memcpy(insn + i, &trap, sizeof(trap)); 17506 aux_data[i].zext_dst = false; 17507 } 17508 } 17509 17510 static bool insn_is_cond_jump(u8 code) 17511 { 17512 u8 op; 17513 17514 op = BPF_OP(code); 17515 if (BPF_CLASS(code) == BPF_JMP32) 17516 return op != BPF_JA; 17517 17518 if (BPF_CLASS(code) != BPF_JMP) 17519 return false; 17520 17521 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17522 } 17523 17524 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17525 { 17526 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17527 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17528 struct bpf_insn *insn = env->prog->insnsi; 17529 const int insn_cnt = env->prog->len; 17530 int i; 17531 17532 for (i = 0; i < insn_cnt; i++, insn++) { 17533 if (!insn_is_cond_jump(insn->code)) 17534 continue; 17535 17536 if (!aux_data[i + 1].seen) 17537 ja.off = insn->off; 17538 else if (!aux_data[i + 1 + insn->off].seen) 17539 ja.off = 0; 17540 else 17541 continue; 17542 17543 if (bpf_prog_is_offloaded(env->prog->aux)) 17544 bpf_prog_offload_replace_insn(env, i, &ja); 17545 17546 memcpy(insn, &ja, sizeof(ja)); 17547 } 17548 } 17549 17550 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17551 { 17552 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17553 int insn_cnt = env->prog->len; 17554 int i, err; 17555 17556 for (i = 0; i < insn_cnt; i++) { 17557 int j; 17558 17559 j = 0; 17560 while (i + j < insn_cnt && !aux_data[i + j].seen) 17561 j++; 17562 if (!j) 17563 continue; 17564 17565 err = verifier_remove_insns(env, i, j); 17566 if (err) 17567 return err; 17568 insn_cnt = env->prog->len; 17569 } 17570 17571 return 0; 17572 } 17573 17574 static int opt_remove_nops(struct bpf_verifier_env *env) 17575 { 17576 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17577 struct bpf_insn *insn = env->prog->insnsi; 17578 int insn_cnt = env->prog->len; 17579 int i, err; 17580 17581 for (i = 0; i < insn_cnt; i++) { 17582 if (memcmp(&insn[i], &ja, sizeof(ja))) 17583 continue; 17584 17585 err = verifier_remove_insns(env, i, 1); 17586 if (err) 17587 return err; 17588 insn_cnt--; 17589 i--; 17590 } 17591 17592 return 0; 17593 } 17594 17595 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17596 const union bpf_attr *attr) 17597 { 17598 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17599 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17600 int i, patch_len, delta = 0, len = env->prog->len; 17601 struct bpf_insn *insns = env->prog->insnsi; 17602 struct bpf_prog *new_prog; 17603 bool rnd_hi32; 17604 17605 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17606 zext_patch[1] = BPF_ZEXT_REG(0); 17607 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17608 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17609 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17610 for (i = 0; i < len; i++) { 17611 int adj_idx = i + delta; 17612 struct bpf_insn insn; 17613 int load_reg; 17614 17615 insn = insns[adj_idx]; 17616 load_reg = insn_def_regno(&insn); 17617 if (!aux[adj_idx].zext_dst) { 17618 u8 code, class; 17619 u32 imm_rnd; 17620 17621 if (!rnd_hi32) 17622 continue; 17623 17624 code = insn.code; 17625 class = BPF_CLASS(code); 17626 if (load_reg == -1) 17627 continue; 17628 17629 /* NOTE: arg "reg" (the fourth one) is only used for 17630 * BPF_STX + SRC_OP, so it is safe to pass NULL 17631 * here. 17632 */ 17633 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17634 if (class == BPF_LD && 17635 BPF_MODE(code) == BPF_IMM) 17636 i++; 17637 continue; 17638 } 17639 17640 /* ctx load could be transformed into wider load. */ 17641 if (class == BPF_LDX && 17642 aux[adj_idx].ptr_type == PTR_TO_CTX) 17643 continue; 17644 17645 imm_rnd = get_random_u32(); 17646 rnd_hi32_patch[0] = insn; 17647 rnd_hi32_patch[1].imm = imm_rnd; 17648 rnd_hi32_patch[3].dst_reg = load_reg; 17649 patch = rnd_hi32_patch; 17650 patch_len = 4; 17651 goto apply_patch_buffer; 17652 } 17653 17654 /* Add in an zero-extend instruction if a) the JIT has requested 17655 * it or b) it's a CMPXCHG. 17656 * 17657 * The latter is because: BPF_CMPXCHG always loads a value into 17658 * R0, therefore always zero-extends. However some archs' 17659 * equivalent instruction only does this load when the 17660 * comparison is successful. This detail of CMPXCHG is 17661 * orthogonal to the general zero-extension behaviour of the 17662 * CPU, so it's treated independently of bpf_jit_needs_zext. 17663 */ 17664 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17665 continue; 17666 17667 /* Zero-extension is done by the caller. */ 17668 if (bpf_pseudo_kfunc_call(&insn)) 17669 continue; 17670 17671 if (WARN_ON(load_reg == -1)) { 17672 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17673 return -EFAULT; 17674 } 17675 17676 zext_patch[0] = insn; 17677 zext_patch[1].dst_reg = load_reg; 17678 zext_patch[1].src_reg = load_reg; 17679 patch = zext_patch; 17680 patch_len = 2; 17681 apply_patch_buffer: 17682 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17683 if (!new_prog) 17684 return -ENOMEM; 17685 env->prog = new_prog; 17686 insns = new_prog->insnsi; 17687 aux = env->insn_aux_data; 17688 delta += patch_len - 1; 17689 } 17690 17691 return 0; 17692 } 17693 17694 /* convert load instructions that access fields of a context type into a 17695 * sequence of instructions that access fields of the underlying structure: 17696 * struct __sk_buff -> struct sk_buff 17697 * struct bpf_sock_ops -> struct sock 17698 */ 17699 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17700 { 17701 const struct bpf_verifier_ops *ops = env->ops; 17702 int i, cnt, size, ctx_field_size, delta = 0; 17703 const int insn_cnt = env->prog->len; 17704 struct bpf_insn insn_buf[16], *insn; 17705 u32 target_size, size_default, off; 17706 struct bpf_prog *new_prog; 17707 enum bpf_access_type type; 17708 bool is_narrower_load; 17709 17710 if (ops->gen_prologue || env->seen_direct_write) { 17711 if (!ops->gen_prologue) { 17712 verbose(env, "bpf verifier is misconfigured\n"); 17713 return -EINVAL; 17714 } 17715 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17716 env->prog); 17717 if (cnt >= ARRAY_SIZE(insn_buf)) { 17718 verbose(env, "bpf verifier is misconfigured\n"); 17719 return -EINVAL; 17720 } else if (cnt) { 17721 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17722 if (!new_prog) 17723 return -ENOMEM; 17724 17725 env->prog = new_prog; 17726 delta += cnt - 1; 17727 } 17728 } 17729 17730 if (bpf_prog_is_offloaded(env->prog->aux)) 17731 return 0; 17732 17733 insn = env->prog->insnsi + delta; 17734 17735 for (i = 0; i < insn_cnt; i++, insn++) { 17736 bpf_convert_ctx_access_t convert_ctx_access; 17737 u8 mode; 17738 17739 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17740 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17741 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17742 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 17743 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 17744 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 17745 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 17746 type = BPF_READ; 17747 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17748 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17749 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17750 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17751 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17752 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17753 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17754 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17755 type = BPF_WRITE; 17756 } else { 17757 continue; 17758 } 17759 17760 if (type == BPF_WRITE && 17761 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17762 struct bpf_insn patch[] = { 17763 *insn, 17764 BPF_ST_NOSPEC(), 17765 }; 17766 17767 cnt = ARRAY_SIZE(patch); 17768 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17769 if (!new_prog) 17770 return -ENOMEM; 17771 17772 delta += cnt - 1; 17773 env->prog = new_prog; 17774 insn = new_prog->insnsi + i + delta; 17775 continue; 17776 } 17777 17778 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17779 case PTR_TO_CTX: 17780 if (!ops->convert_ctx_access) 17781 continue; 17782 convert_ctx_access = ops->convert_ctx_access; 17783 break; 17784 case PTR_TO_SOCKET: 17785 case PTR_TO_SOCK_COMMON: 17786 convert_ctx_access = bpf_sock_convert_ctx_access; 17787 break; 17788 case PTR_TO_TCP_SOCK: 17789 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17790 break; 17791 case PTR_TO_XDP_SOCK: 17792 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17793 break; 17794 case PTR_TO_BTF_ID: 17795 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17796 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17797 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17798 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17799 * any faults for loads into such types. BPF_WRITE is disallowed 17800 * for this case. 17801 */ 17802 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17803 if (type == BPF_READ) { 17804 if (BPF_MODE(insn->code) == BPF_MEM) 17805 insn->code = BPF_LDX | BPF_PROBE_MEM | 17806 BPF_SIZE((insn)->code); 17807 else 17808 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 17809 BPF_SIZE((insn)->code); 17810 env->prog->aux->num_exentries++; 17811 } 17812 continue; 17813 default: 17814 continue; 17815 } 17816 17817 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17818 size = BPF_LDST_BYTES(insn); 17819 mode = BPF_MODE(insn->code); 17820 17821 /* If the read access is a narrower load of the field, 17822 * convert to a 4/8-byte load, to minimum program type specific 17823 * convert_ctx_access changes. If conversion is successful, 17824 * we will apply proper mask to the result. 17825 */ 17826 is_narrower_load = size < ctx_field_size; 17827 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17828 off = insn->off; 17829 if (is_narrower_load) { 17830 u8 size_code; 17831 17832 if (type == BPF_WRITE) { 17833 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17834 return -EINVAL; 17835 } 17836 17837 size_code = BPF_H; 17838 if (ctx_field_size == 4) 17839 size_code = BPF_W; 17840 else if (ctx_field_size == 8) 17841 size_code = BPF_DW; 17842 17843 insn->off = off & ~(size_default - 1); 17844 insn->code = BPF_LDX | BPF_MEM | size_code; 17845 } 17846 17847 target_size = 0; 17848 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17849 &target_size); 17850 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17851 (ctx_field_size && !target_size)) { 17852 verbose(env, "bpf verifier is misconfigured\n"); 17853 return -EINVAL; 17854 } 17855 17856 if (is_narrower_load && size < target_size) { 17857 u8 shift = bpf_ctx_narrow_access_offset( 17858 off, size, size_default) * 8; 17859 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17860 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17861 return -EINVAL; 17862 } 17863 if (ctx_field_size <= 4) { 17864 if (shift) 17865 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17866 insn->dst_reg, 17867 shift); 17868 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17869 (1 << size * 8) - 1); 17870 } else { 17871 if (shift) 17872 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17873 insn->dst_reg, 17874 shift); 17875 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17876 (1ULL << size * 8) - 1); 17877 } 17878 } 17879 if (mode == BPF_MEMSX) 17880 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 17881 insn->dst_reg, insn->dst_reg, 17882 size * 8, 0); 17883 17884 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17885 if (!new_prog) 17886 return -ENOMEM; 17887 17888 delta += cnt - 1; 17889 17890 /* keep walking new program and skip insns we just inserted */ 17891 env->prog = new_prog; 17892 insn = new_prog->insnsi + i + delta; 17893 } 17894 17895 return 0; 17896 } 17897 17898 static int jit_subprogs(struct bpf_verifier_env *env) 17899 { 17900 struct bpf_prog *prog = env->prog, **func, *tmp; 17901 int i, j, subprog_start, subprog_end = 0, len, subprog; 17902 struct bpf_map *map_ptr; 17903 struct bpf_insn *insn; 17904 void *old_bpf_func; 17905 int err, num_exentries; 17906 17907 if (env->subprog_cnt <= 1) 17908 return 0; 17909 17910 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17911 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17912 continue; 17913 17914 /* Upon error here we cannot fall back to interpreter but 17915 * need a hard reject of the program. Thus -EFAULT is 17916 * propagated in any case. 17917 */ 17918 subprog = find_subprog(env, i + insn->imm + 1); 17919 if (subprog < 0) { 17920 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17921 i + insn->imm + 1); 17922 return -EFAULT; 17923 } 17924 /* temporarily remember subprog id inside insn instead of 17925 * aux_data, since next loop will split up all insns into funcs 17926 */ 17927 insn->off = subprog; 17928 /* remember original imm in case JIT fails and fallback 17929 * to interpreter will be needed 17930 */ 17931 env->insn_aux_data[i].call_imm = insn->imm; 17932 /* point imm to __bpf_call_base+1 from JITs point of view */ 17933 insn->imm = 1; 17934 if (bpf_pseudo_func(insn)) 17935 /* jit (e.g. x86_64) may emit fewer instructions 17936 * if it learns a u32 imm is the same as a u64 imm. 17937 * Force a non zero here. 17938 */ 17939 insn[1].imm = 1; 17940 } 17941 17942 err = bpf_prog_alloc_jited_linfo(prog); 17943 if (err) 17944 goto out_undo_insn; 17945 17946 err = -ENOMEM; 17947 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17948 if (!func) 17949 goto out_undo_insn; 17950 17951 for (i = 0; i < env->subprog_cnt; i++) { 17952 subprog_start = subprog_end; 17953 subprog_end = env->subprog_info[i + 1].start; 17954 17955 len = subprog_end - subprog_start; 17956 /* bpf_prog_run() doesn't call subprogs directly, 17957 * hence main prog stats include the runtime of subprogs. 17958 * subprogs don't have IDs and not reachable via prog_get_next_id 17959 * func[i]->stats will never be accessed and stays NULL 17960 */ 17961 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17962 if (!func[i]) 17963 goto out_free; 17964 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17965 len * sizeof(struct bpf_insn)); 17966 func[i]->type = prog->type; 17967 func[i]->len = len; 17968 if (bpf_prog_calc_tag(func[i])) 17969 goto out_free; 17970 func[i]->is_func = 1; 17971 func[i]->aux->func_idx = i; 17972 /* Below members will be freed only at prog->aux */ 17973 func[i]->aux->btf = prog->aux->btf; 17974 func[i]->aux->func_info = prog->aux->func_info; 17975 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17976 func[i]->aux->poke_tab = prog->aux->poke_tab; 17977 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17978 17979 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17980 struct bpf_jit_poke_descriptor *poke; 17981 17982 poke = &prog->aux->poke_tab[j]; 17983 if (poke->insn_idx < subprog_end && 17984 poke->insn_idx >= subprog_start) 17985 poke->aux = func[i]->aux; 17986 } 17987 17988 func[i]->aux->name[0] = 'F'; 17989 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17990 func[i]->jit_requested = 1; 17991 func[i]->blinding_requested = prog->blinding_requested; 17992 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 17993 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 17994 func[i]->aux->linfo = prog->aux->linfo; 17995 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 17996 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 17997 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 17998 num_exentries = 0; 17999 insn = func[i]->insnsi; 18000 for (j = 0; j < func[i]->len; j++, insn++) { 18001 if (BPF_CLASS(insn->code) == BPF_LDX && 18002 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18003 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18004 num_exentries++; 18005 } 18006 func[i]->aux->num_exentries = num_exentries; 18007 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18008 func[i] = bpf_int_jit_compile(func[i]); 18009 if (!func[i]->jited) { 18010 err = -ENOTSUPP; 18011 goto out_free; 18012 } 18013 cond_resched(); 18014 } 18015 18016 /* at this point all bpf functions were successfully JITed 18017 * now populate all bpf_calls with correct addresses and 18018 * run last pass of JIT 18019 */ 18020 for (i = 0; i < env->subprog_cnt; i++) { 18021 insn = func[i]->insnsi; 18022 for (j = 0; j < func[i]->len; j++, insn++) { 18023 if (bpf_pseudo_func(insn)) { 18024 subprog = insn->off; 18025 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18026 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18027 continue; 18028 } 18029 if (!bpf_pseudo_call(insn)) 18030 continue; 18031 subprog = insn->off; 18032 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18033 } 18034 18035 /* we use the aux data to keep a list of the start addresses 18036 * of the JITed images for each function in the program 18037 * 18038 * for some architectures, such as powerpc64, the imm field 18039 * might not be large enough to hold the offset of the start 18040 * address of the callee's JITed image from __bpf_call_base 18041 * 18042 * in such cases, we can lookup the start address of a callee 18043 * by using its subprog id, available from the off field of 18044 * the call instruction, as an index for this list 18045 */ 18046 func[i]->aux->func = func; 18047 func[i]->aux->func_cnt = env->subprog_cnt; 18048 } 18049 for (i = 0; i < env->subprog_cnt; i++) { 18050 old_bpf_func = func[i]->bpf_func; 18051 tmp = bpf_int_jit_compile(func[i]); 18052 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18053 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18054 err = -ENOTSUPP; 18055 goto out_free; 18056 } 18057 cond_resched(); 18058 } 18059 18060 /* finally lock prog and jit images for all functions and 18061 * populate kallsysm. Begin at the first subprogram, since 18062 * bpf_prog_load will add the kallsyms for the main program. 18063 */ 18064 for (i = 1; i < env->subprog_cnt; i++) { 18065 bpf_prog_lock_ro(func[i]); 18066 bpf_prog_kallsyms_add(func[i]); 18067 } 18068 18069 /* Last step: make now unused interpreter insns from main 18070 * prog consistent for later dump requests, so they can 18071 * later look the same as if they were interpreted only. 18072 */ 18073 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18074 if (bpf_pseudo_func(insn)) { 18075 insn[0].imm = env->insn_aux_data[i].call_imm; 18076 insn[1].imm = insn->off; 18077 insn->off = 0; 18078 continue; 18079 } 18080 if (!bpf_pseudo_call(insn)) 18081 continue; 18082 insn->off = env->insn_aux_data[i].call_imm; 18083 subprog = find_subprog(env, i + insn->off + 1); 18084 insn->imm = subprog; 18085 } 18086 18087 prog->jited = 1; 18088 prog->bpf_func = func[0]->bpf_func; 18089 prog->jited_len = func[0]->jited_len; 18090 prog->aux->extable = func[0]->aux->extable; 18091 prog->aux->num_exentries = func[0]->aux->num_exentries; 18092 prog->aux->func = func; 18093 prog->aux->func_cnt = env->subprog_cnt; 18094 bpf_prog_jit_attempt_done(prog); 18095 return 0; 18096 out_free: 18097 /* We failed JIT'ing, so at this point we need to unregister poke 18098 * descriptors from subprogs, so that kernel is not attempting to 18099 * patch it anymore as we're freeing the subprog JIT memory. 18100 */ 18101 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18102 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18103 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18104 } 18105 /* At this point we're guaranteed that poke descriptors are not 18106 * live anymore. We can just unlink its descriptor table as it's 18107 * released with the main prog. 18108 */ 18109 for (i = 0; i < env->subprog_cnt; i++) { 18110 if (!func[i]) 18111 continue; 18112 func[i]->aux->poke_tab = NULL; 18113 bpf_jit_free(func[i]); 18114 } 18115 kfree(func); 18116 out_undo_insn: 18117 /* cleanup main prog to be interpreted */ 18118 prog->jit_requested = 0; 18119 prog->blinding_requested = 0; 18120 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18121 if (!bpf_pseudo_call(insn)) 18122 continue; 18123 insn->off = 0; 18124 insn->imm = env->insn_aux_data[i].call_imm; 18125 } 18126 bpf_prog_jit_attempt_done(prog); 18127 return err; 18128 } 18129 18130 static int fixup_call_args(struct bpf_verifier_env *env) 18131 { 18132 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18133 struct bpf_prog *prog = env->prog; 18134 struct bpf_insn *insn = prog->insnsi; 18135 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18136 int i, depth; 18137 #endif 18138 int err = 0; 18139 18140 if (env->prog->jit_requested && 18141 !bpf_prog_is_offloaded(env->prog->aux)) { 18142 err = jit_subprogs(env); 18143 if (err == 0) 18144 return 0; 18145 if (err == -EFAULT) 18146 return err; 18147 } 18148 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18149 if (has_kfunc_call) { 18150 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18151 return -EINVAL; 18152 } 18153 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18154 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18155 * have to be rejected, since interpreter doesn't support them yet. 18156 */ 18157 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18158 return -EINVAL; 18159 } 18160 for (i = 0; i < prog->len; i++, insn++) { 18161 if (bpf_pseudo_func(insn)) { 18162 /* When JIT fails the progs with callback calls 18163 * have to be rejected, since interpreter doesn't support them yet. 18164 */ 18165 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18166 return -EINVAL; 18167 } 18168 18169 if (!bpf_pseudo_call(insn)) 18170 continue; 18171 depth = get_callee_stack_depth(env, insn, i); 18172 if (depth < 0) 18173 return depth; 18174 bpf_patch_call_args(insn, depth); 18175 } 18176 err = 0; 18177 #endif 18178 return err; 18179 } 18180 18181 /* replace a generic kfunc with a specialized version if necessary */ 18182 static void specialize_kfunc(struct bpf_verifier_env *env, 18183 u32 func_id, u16 offset, unsigned long *addr) 18184 { 18185 struct bpf_prog *prog = env->prog; 18186 bool seen_direct_write; 18187 void *xdp_kfunc; 18188 bool is_rdonly; 18189 18190 if (bpf_dev_bound_kfunc_id(func_id)) { 18191 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18192 if (xdp_kfunc) { 18193 *addr = (unsigned long)xdp_kfunc; 18194 return; 18195 } 18196 /* fallback to default kfunc when not supported by netdev */ 18197 } 18198 18199 if (offset) 18200 return; 18201 18202 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18203 seen_direct_write = env->seen_direct_write; 18204 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18205 18206 if (is_rdonly) 18207 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18208 18209 /* restore env->seen_direct_write to its original value, since 18210 * may_access_direct_pkt_data mutates it 18211 */ 18212 env->seen_direct_write = seen_direct_write; 18213 } 18214 } 18215 18216 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18217 u16 struct_meta_reg, 18218 u16 node_offset_reg, 18219 struct bpf_insn *insn, 18220 struct bpf_insn *insn_buf, 18221 int *cnt) 18222 { 18223 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18224 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18225 18226 insn_buf[0] = addr[0]; 18227 insn_buf[1] = addr[1]; 18228 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18229 insn_buf[3] = *insn; 18230 *cnt = 4; 18231 } 18232 18233 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18234 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18235 { 18236 const struct bpf_kfunc_desc *desc; 18237 18238 if (!insn->imm) { 18239 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18240 return -EINVAL; 18241 } 18242 18243 *cnt = 0; 18244 18245 /* insn->imm has the btf func_id. Replace it with an offset relative to 18246 * __bpf_call_base, unless the JIT needs to call functions that are 18247 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18248 */ 18249 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18250 if (!desc) { 18251 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18252 insn->imm); 18253 return -EFAULT; 18254 } 18255 18256 if (!bpf_jit_supports_far_kfunc_call()) 18257 insn->imm = BPF_CALL_IMM(desc->addr); 18258 if (insn->off) 18259 return 0; 18260 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18261 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18262 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18263 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18264 18265 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18266 insn_buf[1] = addr[0]; 18267 insn_buf[2] = addr[1]; 18268 insn_buf[3] = *insn; 18269 *cnt = 4; 18270 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18271 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18272 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18273 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18274 18275 insn_buf[0] = addr[0]; 18276 insn_buf[1] = addr[1]; 18277 insn_buf[2] = *insn; 18278 *cnt = 3; 18279 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18280 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18281 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18282 int struct_meta_reg = BPF_REG_3; 18283 int node_offset_reg = BPF_REG_4; 18284 18285 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18286 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18287 struct_meta_reg = BPF_REG_4; 18288 node_offset_reg = BPF_REG_5; 18289 } 18290 18291 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18292 node_offset_reg, insn, insn_buf, cnt); 18293 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18294 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18295 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18296 *cnt = 1; 18297 } 18298 return 0; 18299 } 18300 18301 /* Do various post-verification rewrites in a single program pass. 18302 * These rewrites simplify JIT and interpreter implementations. 18303 */ 18304 static int do_misc_fixups(struct bpf_verifier_env *env) 18305 { 18306 struct bpf_prog *prog = env->prog; 18307 enum bpf_attach_type eatype = prog->expected_attach_type; 18308 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18309 struct bpf_insn *insn = prog->insnsi; 18310 const struct bpf_func_proto *fn; 18311 const int insn_cnt = prog->len; 18312 const struct bpf_map_ops *ops; 18313 struct bpf_insn_aux_data *aux; 18314 struct bpf_insn insn_buf[16]; 18315 struct bpf_prog *new_prog; 18316 struct bpf_map *map_ptr; 18317 int i, ret, cnt, delta = 0; 18318 18319 for (i = 0; i < insn_cnt; i++, insn++) { 18320 /* Make divide-by-zero exceptions impossible. */ 18321 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18322 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18323 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18324 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18325 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18326 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18327 struct bpf_insn *patchlet; 18328 struct bpf_insn chk_and_div[] = { 18329 /* [R,W]x div 0 -> 0 */ 18330 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18331 BPF_JNE | BPF_K, insn->src_reg, 18332 0, 2, 0), 18333 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18334 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18335 *insn, 18336 }; 18337 struct bpf_insn chk_and_mod[] = { 18338 /* [R,W]x mod 0 -> [R,W]x */ 18339 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18340 BPF_JEQ | BPF_K, insn->src_reg, 18341 0, 1 + (is64 ? 0 : 1), 0), 18342 *insn, 18343 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18344 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18345 }; 18346 18347 patchlet = isdiv ? chk_and_div : chk_and_mod; 18348 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18349 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18350 18351 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18352 if (!new_prog) 18353 return -ENOMEM; 18354 18355 delta += cnt - 1; 18356 env->prog = prog = new_prog; 18357 insn = new_prog->insnsi + i + delta; 18358 continue; 18359 } 18360 18361 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18362 if (BPF_CLASS(insn->code) == BPF_LD && 18363 (BPF_MODE(insn->code) == BPF_ABS || 18364 BPF_MODE(insn->code) == BPF_IND)) { 18365 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18366 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18367 verbose(env, "bpf verifier is misconfigured\n"); 18368 return -EINVAL; 18369 } 18370 18371 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18372 if (!new_prog) 18373 return -ENOMEM; 18374 18375 delta += cnt - 1; 18376 env->prog = prog = new_prog; 18377 insn = new_prog->insnsi + i + delta; 18378 continue; 18379 } 18380 18381 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18382 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18383 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18384 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18385 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18386 struct bpf_insn *patch = &insn_buf[0]; 18387 bool issrc, isneg, isimm; 18388 u32 off_reg; 18389 18390 aux = &env->insn_aux_data[i + delta]; 18391 if (!aux->alu_state || 18392 aux->alu_state == BPF_ALU_NON_POINTER) 18393 continue; 18394 18395 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18396 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18397 BPF_ALU_SANITIZE_SRC; 18398 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18399 18400 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18401 if (isimm) { 18402 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18403 } else { 18404 if (isneg) 18405 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18406 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18407 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18408 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18409 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18410 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18411 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18412 } 18413 if (!issrc) 18414 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18415 insn->src_reg = BPF_REG_AX; 18416 if (isneg) 18417 insn->code = insn->code == code_add ? 18418 code_sub : code_add; 18419 *patch++ = *insn; 18420 if (issrc && isneg && !isimm) 18421 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18422 cnt = patch - insn_buf; 18423 18424 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18425 if (!new_prog) 18426 return -ENOMEM; 18427 18428 delta += cnt - 1; 18429 env->prog = prog = new_prog; 18430 insn = new_prog->insnsi + i + delta; 18431 continue; 18432 } 18433 18434 if (insn->code != (BPF_JMP | BPF_CALL)) 18435 continue; 18436 if (insn->src_reg == BPF_PSEUDO_CALL) 18437 continue; 18438 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18439 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18440 if (ret) 18441 return ret; 18442 if (cnt == 0) 18443 continue; 18444 18445 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18446 if (!new_prog) 18447 return -ENOMEM; 18448 18449 delta += cnt - 1; 18450 env->prog = prog = new_prog; 18451 insn = new_prog->insnsi + i + delta; 18452 continue; 18453 } 18454 18455 if (insn->imm == BPF_FUNC_get_route_realm) 18456 prog->dst_needed = 1; 18457 if (insn->imm == BPF_FUNC_get_prandom_u32) 18458 bpf_user_rnd_init_once(); 18459 if (insn->imm == BPF_FUNC_override_return) 18460 prog->kprobe_override = 1; 18461 if (insn->imm == BPF_FUNC_tail_call) { 18462 /* If we tail call into other programs, we 18463 * cannot make any assumptions since they can 18464 * be replaced dynamically during runtime in 18465 * the program array. 18466 */ 18467 prog->cb_access = 1; 18468 if (!allow_tail_call_in_subprogs(env)) 18469 prog->aux->stack_depth = MAX_BPF_STACK; 18470 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18471 18472 /* mark bpf_tail_call as different opcode to avoid 18473 * conditional branch in the interpreter for every normal 18474 * call and to prevent accidental JITing by JIT compiler 18475 * that doesn't support bpf_tail_call yet 18476 */ 18477 insn->imm = 0; 18478 insn->code = BPF_JMP | BPF_TAIL_CALL; 18479 18480 aux = &env->insn_aux_data[i + delta]; 18481 if (env->bpf_capable && !prog->blinding_requested && 18482 prog->jit_requested && 18483 !bpf_map_key_poisoned(aux) && 18484 !bpf_map_ptr_poisoned(aux) && 18485 !bpf_map_ptr_unpriv(aux)) { 18486 struct bpf_jit_poke_descriptor desc = { 18487 .reason = BPF_POKE_REASON_TAIL_CALL, 18488 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18489 .tail_call.key = bpf_map_key_immediate(aux), 18490 .insn_idx = i + delta, 18491 }; 18492 18493 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18494 if (ret < 0) { 18495 verbose(env, "adding tail call poke descriptor failed\n"); 18496 return ret; 18497 } 18498 18499 insn->imm = ret + 1; 18500 continue; 18501 } 18502 18503 if (!bpf_map_ptr_unpriv(aux)) 18504 continue; 18505 18506 /* instead of changing every JIT dealing with tail_call 18507 * emit two extra insns: 18508 * if (index >= max_entries) goto out; 18509 * index &= array->index_mask; 18510 * to avoid out-of-bounds cpu speculation 18511 */ 18512 if (bpf_map_ptr_poisoned(aux)) { 18513 verbose(env, "tail_call abusing map_ptr\n"); 18514 return -EINVAL; 18515 } 18516 18517 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18518 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18519 map_ptr->max_entries, 2); 18520 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18521 container_of(map_ptr, 18522 struct bpf_array, 18523 map)->index_mask); 18524 insn_buf[2] = *insn; 18525 cnt = 3; 18526 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18527 if (!new_prog) 18528 return -ENOMEM; 18529 18530 delta += cnt - 1; 18531 env->prog = prog = new_prog; 18532 insn = new_prog->insnsi + i + delta; 18533 continue; 18534 } 18535 18536 if (insn->imm == BPF_FUNC_timer_set_callback) { 18537 /* The verifier will process callback_fn as many times as necessary 18538 * with different maps and the register states prepared by 18539 * set_timer_callback_state will be accurate. 18540 * 18541 * The following use case is valid: 18542 * map1 is shared by prog1, prog2, prog3. 18543 * prog1 calls bpf_timer_init for some map1 elements 18544 * prog2 calls bpf_timer_set_callback for some map1 elements. 18545 * Those that were not bpf_timer_init-ed will return -EINVAL. 18546 * prog3 calls bpf_timer_start for some map1 elements. 18547 * Those that were not both bpf_timer_init-ed and 18548 * bpf_timer_set_callback-ed will return -EINVAL. 18549 */ 18550 struct bpf_insn ld_addrs[2] = { 18551 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18552 }; 18553 18554 insn_buf[0] = ld_addrs[0]; 18555 insn_buf[1] = ld_addrs[1]; 18556 insn_buf[2] = *insn; 18557 cnt = 3; 18558 18559 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18560 if (!new_prog) 18561 return -ENOMEM; 18562 18563 delta += cnt - 1; 18564 env->prog = prog = new_prog; 18565 insn = new_prog->insnsi + i + delta; 18566 goto patch_call_imm; 18567 } 18568 18569 if (is_storage_get_function(insn->imm)) { 18570 if (!env->prog->aux->sleepable || 18571 env->insn_aux_data[i + delta].storage_get_func_atomic) 18572 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18573 else 18574 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18575 insn_buf[1] = *insn; 18576 cnt = 2; 18577 18578 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18579 if (!new_prog) 18580 return -ENOMEM; 18581 18582 delta += cnt - 1; 18583 env->prog = prog = new_prog; 18584 insn = new_prog->insnsi + i + delta; 18585 goto patch_call_imm; 18586 } 18587 18588 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18589 * and other inlining handlers are currently limited to 64 bit 18590 * only. 18591 */ 18592 if (prog->jit_requested && BITS_PER_LONG == 64 && 18593 (insn->imm == BPF_FUNC_map_lookup_elem || 18594 insn->imm == BPF_FUNC_map_update_elem || 18595 insn->imm == BPF_FUNC_map_delete_elem || 18596 insn->imm == BPF_FUNC_map_push_elem || 18597 insn->imm == BPF_FUNC_map_pop_elem || 18598 insn->imm == BPF_FUNC_map_peek_elem || 18599 insn->imm == BPF_FUNC_redirect_map || 18600 insn->imm == BPF_FUNC_for_each_map_elem || 18601 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18602 aux = &env->insn_aux_data[i + delta]; 18603 if (bpf_map_ptr_poisoned(aux)) 18604 goto patch_call_imm; 18605 18606 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18607 ops = map_ptr->ops; 18608 if (insn->imm == BPF_FUNC_map_lookup_elem && 18609 ops->map_gen_lookup) { 18610 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18611 if (cnt == -EOPNOTSUPP) 18612 goto patch_map_ops_generic; 18613 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18614 verbose(env, "bpf verifier is misconfigured\n"); 18615 return -EINVAL; 18616 } 18617 18618 new_prog = bpf_patch_insn_data(env, i + delta, 18619 insn_buf, cnt); 18620 if (!new_prog) 18621 return -ENOMEM; 18622 18623 delta += cnt - 1; 18624 env->prog = prog = new_prog; 18625 insn = new_prog->insnsi + i + delta; 18626 continue; 18627 } 18628 18629 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18630 (void *(*)(struct bpf_map *map, void *key))NULL)); 18631 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18632 (long (*)(struct bpf_map *map, void *key))NULL)); 18633 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18634 (long (*)(struct bpf_map *map, void *key, void *value, 18635 u64 flags))NULL)); 18636 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18637 (long (*)(struct bpf_map *map, void *value, 18638 u64 flags))NULL)); 18639 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18640 (long (*)(struct bpf_map *map, void *value))NULL)); 18641 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18642 (long (*)(struct bpf_map *map, void *value))NULL)); 18643 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18644 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18645 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18646 (long (*)(struct bpf_map *map, 18647 bpf_callback_t callback_fn, 18648 void *callback_ctx, 18649 u64 flags))NULL)); 18650 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18651 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18652 18653 patch_map_ops_generic: 18654 switch (insn->imm) { 18655 case BPF_FUNC_map_lookup_elem: 18656 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18657 continue; 18658 case BPF_FUNC_map_update_elem: 18659 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18660 continue; 18661 case BPF_FUNC_map_delete_elem: 18662 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18663 continue; 18664 case BPF_FUNC_map_push_elem: 18665 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18666 continue; 18667 case BPF_FUNC_map_pop_elem: 18668 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18669 continue; 18670 case BPF_FUNC_map_peek_elem: 18671 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18672 continue; 18673 case BPF_FUNC_redirect_map: 18674 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18675 continue; 18676 case BPF_FUNC_for_each_map_elem: 18677 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18678 continue; 18679 case BPF_FUNC_map_lookup_percpu_elem: 18680 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18681 continue; 18682 } 18683 18684 goto patch_call_imm; 18685 } 18686 18687 /* Implement bpf_jiffies64 inline. */ 18688 if (prog->jit_requested && BITS_PER_LONG == 64 && 18689 insn->imm == BPF_FUNC_jiffies64) { 18690 struct bpf_insn ld_jiffies_addr[2] = { 18691 BPF_LD_IMM64(BPF_REG_0, 18692 (unsigned long)&jiffies), 18693 }; 18694 18695 insn_buf[0] = ld_jiffies_addr[0]; 18696 insn_buf[1] = ld_jiffies_addr[1]; 18697 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18698 BPF_REG_0, 0); 18699 cnt = 3; 18700 18701 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18702 cnt); 18703 if (!new_prog) 18704 return -ENOMEM; 18705 18706 delta += cnt - 1; 18707 env->prog = prog = new_prog; 18708 insn = new_prog->insnsi + i + delta; 18709 continue; 18710 } 18711 18712 /* Implement bpf_get_func_arg inline. */ 18713 if (prog_type == BPF_PROG_TYPE_TRACING && 18714 insn->imm == BPF_FUNC_get_func_arg) { 18715 /* Load nr_args from ctx - 8 */ 18716 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18717 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18718 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18719 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18720 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18721 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18722 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18723 insn_buf[7] = BPF_JMP_A(1); 18724 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18725 cnt = 9; 18726 18727 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18728 if (!new_prog) 18729 return -ENOMEM; 18730 18731 delta += cnt - 1; 18732 env->prog = prog = new_prog; 18733 insn = new_prog->insnsi + i + delta; 18734 continue; 18735 } 18736 18737 /* Implement bpf_get_func_ret inline. */ 18738 if (prog_type == BPF_PROG_TYPE_TRACING && 18739 insn->imm == BPF_FUNC_get_func_ret) { 18740 if (eatype == BPF_TRACE_FEXIT || 18741 eatype == BPF_MODIFY_RETURN) { 18742 /* Load nr_args from ctx - 8 */ 18743 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18744 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18745 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18746 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18747 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18748 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18749 cnt = 6; 18750 } else { 18751 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18752 cnt = 1; 18753 } 18754 18755 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18756 if (!new_prog) 18757 return -ENOMEM; 18758 18759 delta += cnt - 1; 18760 env->prog = prog = new_prog; 18761 insn = new_prog->insnsi + i + delta; 18762 continue; 18763 } 18764 18765 /* Implement get_func_arg_cnt inline. */ 18766 if (prog_type == BPF_PROG_TYPE_TRACING && 18767 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18768 /* Load nr_args from ctx - 8 */ 18769 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18770 18771 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18772 if (!new_prog) 18773 return -ENOMEM; 18774 18775 env->prog = prog = new_prog; 18776 insn = new_prog->insnsi + i + delta; 18777 continue; 18778 } 18779 18780 /* Implement bpf_get_func_ip inline. */ 18781 if (prog_type == BPF_PROG_TYPE_TRACING && 18782 insn->imm == BPF_FUNC_get_func_ip) { 18783 /* Load IP address from ctx - 16 */ 18784 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18785 18786 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18787 if (!new_prog) 18788 return -ENOMEM; 18789 18790 env->prog = prog = new_prog; 18791 insn = new_prog->insnsi + i + delta; 18792 continue; 18793 } 18794 18795 patch_call_imm: 18796 fn = env->ops->get_func_proto(insn->imm, env->prog); 18797 /* all functions that have prototype and verifier allowed 18798 * programs to call them, must be real in-kernel functions 18799 */ 18800 if (!fn->func) { 18801 verbose(env, 18802 "kernel subsystem misconfigured func %s#%d\n", 18803 func_id_name(insn->imm), insn->imm); 18804 return -EFAULT; 18805 } 18806 insn->imm = fn->func - __bpf_call_base; 18807 } 18808 18809 /* Since poke tab is now finalized, publish aux to tracker. */ 18810 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18811 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18812 if (!map_ptr->ops->map_poke_track || 18813 !map_ptr->ops->map_poke_untrack || 18814 !map_ptr->ops->map_poke_run) { 18815 verbose(env, "bpf verifier is misconfigured\n"); 18816 return -EINVAL; 18817 } 18818 18819 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18820 if (ret < 0) { 18821 verbose(env, "tracking tail call prog failed\n"); 18822 return ret; 18823 } 18824 } 18825 18826 sort_kfunc_descs_by_imm_off(env->prog); 18827 18828 return 0; 18829 } 18830 18831 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18832 int position, 18833 s32 stack_base, 18834 u32 callback_subprogno, 18835 u32 *cnt) 18836 { 18837 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18838 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18839 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18840 int reg_loop_max = BPF_REG_6; 18841 int reg_loop_cnt = BPF_REG_7; 18842 int reg_loop_ctx = BPF_REG_8; 18843 18844 struct bpf_prog *new_prog; 18845 u32 callback_start; 18846 u32 call_insn_offset; 18847 s32 callback_offset; 18848 18849 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18850 * be careful to modify this code in sync. 18851 */ 18852 struct bpf_insn insn_buf[] = { 18853 /* Return error and jump to the end of the patch if 18854 * expected number of iterations is too big. 18855 */ 18856 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18857 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18858 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18859 /* spill R6, R7, R8 to use these as loop vars */ 18860 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18861 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18862 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18863 /* initialize loop vars */ 18864 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18865 BPF_MOV32_IMM(reg_loop_cnt, 0), 18866 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18867 /* loop header, 18868 * if reg_loop_cnt >= reg_loop_max skip the loop body 18869 */ 18870 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18871 /* callback call, 18872 * correct callback offset would be set after patching 18873 */ 18874 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18875 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18876 BPF_CALL_REL(0), 18877 /* increment loop counter */ 18878 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18879 /* jump to loop header if callback returned 0 */ 18880 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18881 /* return value of bpf_loop, 18882 * set R0 to the number of iterations 18883 */ 18884 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18885 /* restore original values of R6, R7, R8 */ 18886 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18887 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18888 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18889 }; 18890 18891 *cnt = ARRAY_SIZE(insn_buf); 18892 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18893 if (!new_prog) 18894 return new_prog; 18895 18896 /* callback start is known only after patching */ 18897 callback_start = env->subprog_info[callback_subprogno].start; 18898 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18899 call_insn_offset = position + 12; 18900 callback_offset = callback_start - call_insn_offset - 1; 18901 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18902 18903 return new_prog; 18904 } 18905 18906 static bool is_bpf_loop_call(struct bpf_insn *insn) 18907 { 18908 return insn->code == (BPF_JMP | BPF_CALL) && 18909 insn->src_reg == 0 && 18910 insn->imm == BPF_FUNC_loop; 18911 } 18912 18913 /* For all sub-programs in the program (including main) check 18914 * insn_aux_data to see if there are bpf_loop calls that require 18915 * inlining. If such calls are found the calls are replaced with a 18916 * sequence of instructions produced by `inline_bpf_loop` function and 18917 * subprog stack_depth is increased by the size of 3 registers. 18918 * This stack space is used to spill values of the R6, R7, R8. These 18919 * registers are used to store the loop bound, counter and context 18920 * variables. 18921 */ 18922 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18923 { 18924 struct bpf_subprog_info *subprogs = env->subprog_info; 18925 int i, cur_subprog = 0, cnt, delta = 0; 18926 struct bpf_insn *insn = env->prog->insnsi; 18927 int insn_cnt = env->prog->len; 18928 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18929 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18930 u16 stack_depth_extra = 0; 18931 18932 for (i = 0; i < insn_cnt; i++, insn++) { 18933 struct bpf_loop_inline_state *inline_state = 18934 &env->insn_aux_data[i + delta].loop_inline_state; 18935 18936 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18937 struct bpf_prog *new_prog; 18938 18939 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18940 new_prog = inline_bpf_loop(env, 18941 i + delta, 18942 -(stack_depth + stack_depth_extra), 18943 inline_state->callback_subprogno, 18944 &cnt); 18945 if (!new_prog) 18946 return -ENOMEM; 18947 18948 delta += cnt - 1; 18949 env->prog = new_prog; 18950 insn = new_prog->insnsi + i + delta; 18951 } 18952 18953 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18954 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18955 cur_subprog++; 18956 stack_depth = subprogs[cur_subprog].stack_depth; 18957 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18958 stack_depth_extra = 0; 18959 } 18960 } 18961 18962 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18963 18964 return 0; 18965 } 18966 18967 static void free_states(struct bpf_verifier_env *env) 18968 { 18969 struct bpf_verifier_state_list *sl, *sln; 18970 int i; 18971 18972 sl = env->free_list; 18973 while (sl) { 18974 sln = sl->next; 18975 free_verifier_state(&sl->state, false); 18976 kfree(sl); 18977 sl = sln; 18978 } 18979 env->free_list = NULL; 18980 18981 if (!env->explored_states) 18982 return; 18983 18984 for (i = 0; i < state_htab_size(env); i++) { 18985 sl = env->explored_states[i]; 18986 18987 while (sl) { 18988 sln = sl->next; 18989 free_verifier_state(&sl->state, false); 18990 kfree(sl); 18991 sl = sln; 18992 } 18993 env->explored_states[i] = NULL; 18994 } 18995 } 18996 18997 static int do_check_common(struct bpf_verifier_env *env, int subprog) 18998 { 18999 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19000 struct bpf_verifier_state *state; 19001 struct bpf_reg_state *regs; 19002 int ret, i; 19003 19004 env->prev_linfo = NULL; 19005 env->pass_cnt++; 19006 19007 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19008 if (!state) 19009 return -ENOMEM; 19010 state->curframe = 0; 19011 state->speculative = false; 19012 state->branches = 1; 19013 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19014 if (!state->frame[0]) { 19015 kfree(state); 19016 return -ENOMEM; 19017 } 19018 env->cur_state = state; 19019 init_func_state(env, state->frame[0], 19020 BPF_MAIN_FUNC /* callsite */, 19021 0 /* frameno */, 19022 subprog); 19023 state->first_insn_idx = env->subprog_info[subprog].start; 19024 state->last_insn_idx = -1; 19025 19026 regs = state->frame[state->curframe]->regs; 19027 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19028 ret = btf_prepare_func_args(env, subprog, regs); 19029 if (ret) 19030 goto out; 19031 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19032 if (regs[i].type == PTR_TO_CTX) 19033 mark_reg_known_zero(env, regs, i); 19034 else if (regs[i].type == SCALAR_VALUE) 19035 mark_reg_unknown(env, regs, i); 19036 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19037 const u32 mem_size = regs[i].mem_size; 19038 19039 mark_reg_known_zero(env, regs, i); 19040 regs[i].mem_size = mem_size; 19041 regs[i].id = ++env->id_gen; 19042 } 19043 } 19044 } else { 19045 /* 1st arg to a function */ 19046 regs[BPF_REG_1].type = PTR_TO_CTX; 19047 mark_reg_known_zero(env, regs, BPF_REG_1); 19048 ret = btf_check_subprog_arg_match(env, subprog, regs); 19049 if (ret == -EFAULT) 19050 /* unlikely verifier bug. abort. 19051 * ret == 0 and ret < 0 are sadly acceptable for 19052 * main() function due to backward compatibility. 19053 * Like socket filter program may be written as: 19054 * int bpf_prog(struct pt_regs *ctx) 19055 * and never dereference that ctx in the program. 19056 * 'struct pt_regs' is a type mismatch for socket 19057 * filter that should be using 'struct __sk_buff'. 19058 */ 19059 goto out; 19060 } 19061 19062 ret = do_check(env); 19063 out: 19064 /* check for NULL is necessary, since cur_state can be freed inside 19065 * do_check() under memory pressure. 19066 */ 19067 if (env->cur_state) { 19068 free_verifier_state(env->cur_state, true); 19069 env->cur_state = NULL; 19070 } 19071 while (!pop_stack(env, NULL, NULL, false)); 19072 if (!ret && pop_log) 19073 bpf_vlog_reset(&env->log, 0); 19074 free_states(env); 19075 return ret; 19076 } 19077 19078 /* Verify all global functions in a BPF program one by one based on their BTF. 19079 * All global functions must pass verification. Otherwise the whole program is rejected. 19080 * Consider: 19081 * int bar(int); 19082 * int foo(int f) 19083 * { 19084 * return bar(f); 19085 * } 19086 * int bar(int b) 19087 * { 19088 * ... 19089 * } 19090 * foo() will be verified first for R1=any_scalar_value. During verification it 19091 * will be assumed that bar() already verified successfully and call to bar() 19092 * from foo() will be checked for type match only. Later bar() will be verified 19093 * independently to check that it's safe for R1=any_scalar_value. 19094 */ 19095 static int do_check_subprogs(struct bpf_verifier_env *env) 19096 { 19097 struct bpf_prog_aux *aux = env->prog->aux; 19098 int i, ret; 19099 19100 if (!aux->func_info) 19101 return 0; 19102 19103 for (i = 1; i < env->subprog_cnt; i++) { 19104 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19105 continue; 19106 env->insn_idx = env->subprog_info[i].start; 19107 WARN_ON_ONCE(env->insn_idx == 0); 19108 ret = do_check_common(env, i); 19109 if (ret) { 19110 return ret; 19111 } else if (env->log.level & BPF_LOG_LEVEL) { 19112 verbose(env, 19113 "Func#%d is safe for any args that match its prototype\n", 19114 i); 19115 } 19116 } 19117 return 0; 19118 } 19119 19120 static int do_check_main(struct bpf_verifier_env *env) 19121 { 19122 int ret; 19123 19124 env->insn_idx = 0; 19125 ret = do_check_common(env, 0); 19126 if (!ret) 19127 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19128 return ret; 19129 } 19130 19131 19132 static void print_verification_stats(struct bpf_verifier_env *env) 19133 { 19134 int i; 19135 19136 if (env->log.level & BPF_LOG_STATS) { 19137 verbose(env, "verification time %lld usec\n", 19138 div_u64(env->verification_time, 1000)); 19139 verbose(env, "stack depth "); 19140 for (i = 0; i < env->subprog_cnt; i++) { 19141 u32 depth = env->subprog_info[i].stack_depth; 19142 19143 verbose(env, "%d", depth); 19144 if (i + 1 < env->subprog_cnt) 19145 verbose(env, "+"); 19146 } 19147 verbose(env, "\n"); 19148 } 19149 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19150 "total_states %d peak_states %d mark_read %d\n", 19151 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19152 env->max_states_per_insn, env->total_states, 19153 env->peak_states, env->longest_mark_read_walk); 19154 } 19155 19156 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19157 { 19158 const struct btf_type *t, *func_proto; 19159 const struct bpf_struct_ops *st_ops; 19160 const struct btf_member *member; 19161 struct bpf_prog *prog = env->prog; 19162 u32 btf_id, member_idx; 19163 const char *mname; 19164 19165 if (!prog->gpl_compatible) { 19166 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19167 return -EINVAL; 19168 } 19169 19170 btf_id = prog->aux->attach_btf_id; 19171 st_ops = bpf_struct_ops_find(btf_id); 19172 if (!st_ops) { 19173 verbose(env, "attach_btf_id %u is not a supported struct\n", 19174 btf_id); 19175 return -ENOTSUPP; 19176 } 19177 19178 t = st_ops->type; 19179 member_idx = prog->expected_attach_type; 19180 if (member_idx >= btf_type_vlen(t)) { 19181 verbose(env, "attach to invalid member idx %u of struct %s\n", 19182 member_idx, st_ops->name); 19183 return -EINVAL; 19184 } 19185 19186 member = &btf_type_member(t)[member_idx]; 19187 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19188 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19189 NULL); 19190 if (!func_proto) { 19191 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19192 mname, member_idx, st_ops->name); 19193 return -EINVAL; 19194 } 19195 19196 if (st_ops->check_member) { 19197 int err = st_ops->check_member(t, member, prog); 19198 19199 if (err) { 19200 verbose(env, "attach to unsupported member %s of struct %s\n", 19201 mname, st_ops->name); 19202 return err; 19203 } 19204 } 19205 19206 prog->aux->attach_func_proto = func_proto; 19207 prog->aux->attach_func_name = mname; 19208 env->ops = st_ops->verifier_ops; 19209 19210 return 0; 19211 } 19212 #define SECURITY_PREFIX "security_" 19213 19214 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19215 { 19216 if (within_error_injection_list(addr) || 19217 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19218 return 0; 19219 19220 return -EINVAL; 19221 } 19222 19223 /* list of non-sleepable functions that are otherwise on 19224 * ALLOW_ERROR_INJECTION list 19225 */ 19226 BTF_SET_START(btf_non_sleepable_error_inject) 19227 /* Three functions below can be called from sleepable and non-sleepable context. 19228 * Assume non-sleepable from bpf safety point of view. 19229 */ 19230 BTF_ID(func, __filemap_add_folio) 19231 BTF_ID(func, should_fail_alloc_page) 19232 BTF_ID(func, should_failslab) 19233 BTF_SET_END(btf_non_sleepable_error_inject) 19234 19235 static int check_non_sleepable_error_inject(u32 btf_id) 19236 { 19237 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19238 } 19239 19240 int bpf_check_attach_target(struct bpf_verifier_log *log, 19241 const struct bpf_prog *prog, 19242 const struct bpf_prog *tgt_prog, 19243 u32 btf_id, 19244 struct bpf_attach_target_info *tgt_info) 19245 { 19246 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19247 const char prefix[] = "btf_trace_"; 19248 int ret = 0, subprog = -1, i; 19249 const struct btf_type *t; 19250 bool conservative = true; 19251 const char *tname; 19252 struct btf *btf; 19253 long addr = 0; 19254 struct module *mod = NULL; 19255 19256 if (!btf_id) { 19257 bpf_log(log, "Tracing programs must provide btf_id\n"); 19258 return -EINVAL; 19259 } 19260 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19261 if (!btf) { 19262 bpf_log(log, 19263 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19264 return -EINVAL; 19265 } 19266 t = btf_type_by_id(btf, btf_id); 19267 if (!t) { 19268 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19269 return -EINVAL; 19270 } 19271 tname = btf_name_by_offset(btf, t->name_off); 19272 if (!tname) { 19273 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19274 return -EINVAL; 19275 } 19276 if (tgt_prog) { 19277 struct bpf_prog_aux *aux = tgt_prog->aux; 19278 19279 if (bpf_prog_is_dev_bound(prog->aux) && 19280 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19281 bpf_log(log, "Target program bound device mismatch"); 19282 return -EINVAL; 19283 } 19284 19285 for (i = 0; i < aux->func_info_cnt; i++) 19286 if (aux->func_info[i].type_id == btf_id) { 19287 subprog = i; 19288 break; 19289 } 19290 if (subprog == -1) { 19291 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19292 return -EINVAL; 19293 } 19294 conservative = aux->func_info_aux[subprog].unreliable; 19295 if (prog_extension) { 19296 if (conservative) { 19297 bpf_log(log, 19298 "Cannot replace static functions\n"); 19299 return -EINVAL; 19300 } 19301 if (!prog->jit_requested) { 19302 bpf_log(log, 19303 "Extension programs should be JITed\n"); 19304 return -EINVAL; 19305 } 19306 } 19307 if (!tgt_prog->jited) { 19308 bpf_log(log, "Can attach to only JITed progs\n"); 19309 return -EINVAL; 19310 } 19311 if (tgt_prog->type == prog->type) { 19312 /* Cannot fentry/fexit another fentry/fexit program. 19313 * Cannot attach program extension to another extension. 19314 * It's ok to attach fentry/fexit to extension program. 19315 */ 19316 bpf_log(log, "Cannot recursively attach\n"); 19317 return -EINVAL; 19318 } 19319 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19320 prog_extension && 19321 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19322 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19323 /* Program extensions can extend all program types 19324 * except fentry/fexit. The reason is the following. 19325 * The fentry/fexit programs are used for performance 19326 * analysis, stats and can be attached to any program 19327 * type except themselves. When extension program is 19328 * replacing XDP function it is necessary to allow 19329 * performance analysis of all functions. Both original 19330 * XDP program and its program extension. Hence 19331 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19332 * allowed. If extending of fentry/fexit was allowed it 19333 * would be possible to create long call chain 19334 * fentry->extension->fentry->extension beyond 19335 * reasonable stack size. Hence extending fentry is not 19336 * allowed. 19337 */ 19338 bpf_log(log, "Cannot extend fentry/fexit\n"); 19339 return -EINVAL; 19340 } 19341 } else { 19342 if (prog_extension) { 19343 bpf_log(log, "Cannot replace kernel functions\n"); 19344 return -EINVAL; 19345 } 19346 } 19347 19348 switch (prog->expected_attach_type) { 19349 case BPF_TRACE_RAW_TP: 19350 if (tgt_prog) { 19351 bpf_log(log, 19352 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19353 return -EINVAL; 19354 } 19355 if (!btf_type_is_typedef(t)) { 19356 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19357 btf_id); 19358 return -EINVAL; 19359 } 19360 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19361 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19362 btf_id, tname); 19363 return -EINVAL; 19364 } 19365 tname += sizeof(prefix) - 1; 19366 t = btf_type_by_id(btf, t->type); 19367 if (!btf_type_is_ptr(t)) 19368 /* should never happen in valid vmlinux build */ 19369 return -EINVAL; 19370 t = btf_type_by_id(btf, t->type); 19371 if (!btf_type_is_func_proto(t)) 19372 /* should never happen in valid vmlinux build */ 19373 return -EINVAL; 19374 19375 break; 19376 case BPF_TRACE_ITER: 19377 if (!btf_type_is_func(t)) { 19378 bpf_log(log, "attach_btf_id %u is not a function\n", 19379 btf_id); 19380 return -EINVAL; 19381 } 19382 t = btf_type_by_id(btf, t->type); 19383 if (!btf_type_is_func_proto(t)) 19384 return -EINVAL; 19385 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19386 if (ret) 19387 return ret; 19388 break; 19389 default: 19390 if (!prog_extension) 19391 return -EINVAL; 19392 fallthrough; 19393 case BPF_MODIFY_RETURN: 19394 case BPF_LSM_MAC: 19395 case BPF_LSM_CGROUP: 19396 case BPF_TRACE_FENTRY: 19397 case BPF_TRACE_FEXIT: 19398 if (!btf_type_is_func(t)) { 19399 bpf_log(log, "attach_btf_id %u is not a function\n", 19400 btf_id); 19401 return -EINVAL; 19402 } 19403 if (prog_extension && 19404 btf_check_type_match(log, prog, btf, t)) 19405 return -EINVAL; 19406 t = btf_type_by_id(btf, t->type); 19407 if (!btf_type_is_func_proto(t)) 19408 return -EINVAL; 19409 19410 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19411 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19412 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19413 return -EINVAL; 19414 19415 if (tgt_prog && conservative) 19416 t = NULL; 19417 19418 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19419 if (ret < 0) 19420 return ret; 19421 19422 if (tgt_prog) { 19423 if (subprog == 0) 19424 addr = (long) tgt_prog->bpf_func; 19425 else 19426 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19427 } else { 19428 if (btf_is_module(btf)) { 19429 mod = btf_try_get_module(btf); 19430 if (mod) 19431 addr = find_kallsyms_symbol_value(mod, tname); 19432 else 19433 addr = 0; 19434 } else { 19435 addr = kallsyms_lookup_name(tname); 19436 } 19437 if (!addr) { 19438 module_put(mod); 19439 bpf_log(log, 19440 "The address of function %s cannot be found\n", 19441 tname); 19442 return -ENOENT; 19443 } 19444 } 19445 19446 if (prog->aux->sleepable) { 19447 ret = -EINVAL; 19448 switch (prog->type) { 19449 case BPF_PROG_TYPE_TRACING: 19450 19451 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19452 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19453 */ 19454 if (!check_non_sleepable_error_inject(btf_id) && 19455 within_error_injection_list(addr)) 19456 ret = 0; 19457 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19458 * in the fmodret id set with the KF_SLEEPABLE flag. 19459 */ 19460 else { 19461 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19462 prog); 19463 19464 if (flags && (*flags & KF_SLEEPABLE)) 19465 ret = 0; 19466 } 19467 break; 19468 case BPF_PROG_TYPE_LSM: 19469 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19470 * Only some of them are sleepable. 19471 */ 19472 if (bpf_lsm_is_sleepable_hook(btf_id)) 19473 ret = 0; 19474 break; 19475 default: 19476 break; 19477 } 19478 if (ret) { 19479 module_put(mod); 19480 bpf_log(log, "%s is not sleepable\n", tname); 19481 return ret; 19482 } 19483 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19484 if (tgt_prog) { 19485 module_put(mod); 19486 bpf_log(log, "can't modify return codes of BPF programs\n"); 19487 return -EINVAL; 19488 } 19489 ret = -EINVAL; 19490 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19491 !check_attach_modify_return(addr, tname)) 19492 ret = 0; 19493 if (ret) { 19494 module_put(mod); 19495 bpf_log(log, "%s() is not modifiable\n", tname); 19496 return ret; 19497 } 19498 } 19499 19500 break; 19501 } 19502 tgt_info->tgt_addr = addr; 19503 tgt_info->tgt_name = tname; 19504 tgt_info->tgt_type = t; 19505 tgt_info->tgt_mod = mod; 19506 return 0; 19507 } 19508 19509 BTF_SET_START(btf_id_deny) 19510 BTF_ID_UNUSED 19511 #ifdef CONFIG_SMP 19512 BTF_ID(func, migrate_disable) 19513 BTF_ID(func, migrate_enable) 19514 #endif 19515 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19516 BTF_ID(func, rcu_read_unlock_strict) 19517 #endif 19518 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19519 BTF_ID(func, preempt_count_add) 19520 BTF_ID(func, preempt_count_sub) 19521 #endif 19522 #ifdef CONFIG_PREEMPT_RCU 19523 BTF_ID(func, __rcu_read_lock) 19524 BTF_ID(func, __rcu_read_unlock) 19525 #endif 19526 BTF_SET_END(btf_id_deny) 19527 19528 static bool can_be_sleepable(struct bpf_prog *prog) 19529 { 19530 if (prog->type == BPF_PROG_TYPE_TRACING) { 19531 switch (prog->expected_attach_type) { 19532 case BPF_TRACE_FENTRY: 19533 case BPF_TRACE_FEXIT: 19534 case BPF_MODIFY_RETURN: 19535 case BPF_TRACE_ITER: 19536 return true; 19537 default: 19538 return false; 19539 } 19540 } 19541 return prog->type == BPF_PROG_TYPE_LSM || 19542 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19543 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19544 } 19545 19546 static int check_attach_btf_id(struct bpf_verifier_env *env) 19547 { 19548 struct bpf_prog *prog = env->prog; 19549 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19550 struct bpf_attach_target_info tgt_info = {}; 19551 u32 btf_id = prog->aux->attach_btf_id; 19552 struct bpf_trampoline *tr; 19553 int ret; 19554 u64 key; 19555 19556 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19557 if (prog->aux->sleepable) 19558 /* attach_btf_id checked to be zero already */ 19559 return 0; 19560 verbose(env, "Syscall programs can only be sleepable\n"); 19561 return -EINVAL; 19562 } 19563 19564 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19565 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19566 return -EINVAL; 19567 } 19568 19569 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19570 return check_struct_ops_btf_id(env); 19571 19572 if (prog->type != BPF_PROG_TYPE_TRACING && 19573 prog->type != BPF_PROG_TYPE_LSM && 19574 prog->type != BPF_PROG_TYPE_EXT) 19575 return 0; 19576 19577 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19578 if (ret) 19579 return ret; 19580 19581 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19582 /* to make freplace equivalent to their targets, they need to 19583 * inherit env->ops and expected_attach_type for the rest of the 19584 * verification 19585 */ 19586 env->ops = bpf_verifier_ops[tgt_prog->type]; 19587 prog->expected_attach_type = tgt_prog->expected_attach_type; 19588 } 19589 19590 /* store info about the attachment target that will be used later */ 19591 prog->aux->attach_func_proto = tgt_info.tgt_type; 19592 prog->aux->attach_func_name = tgt_info.tgt_name; 19593 prog->aux->mod = tgt_info.tgt_mod; 19594 19595 if (tgt_prog) { 19596 prog->aux->saved_dst_prog_type = tgt_prog->type; 19597 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19598 } 19599 19600 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19601 prog->aux->attach_btf_trace = true; 19602 return 0; 19603 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19604 if (!bpf_iter_prog_supported(prog)) 19605 return -EINVAL; 19606 return 0; 19607 } 19608 19609 if (prog->type == BPF_PROG_TYPE_LSM) { 19610 ret = bpf_lsm_verify_prog(&env->log, prog); 19611 if (ret < 0) 19612 return ret; 19613 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19614 btf_id_set_contains(&btf_id_deny, btf_id)) { 19615 return -EINVAL; 19616 } 19617 19618 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19619 tr = bpf_trampoline_get(key, &tgt_info); 19620 if (!tr) 19621 return -ENOMEM; 19622 19623 prog->aux->dst_trampoline = tr; 19624 return 0; 19625 } 19626 19627 struct btf *bpf_get_btf_vmlinux(void) 19628 { 19629 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19630 mutex_lock(&bpf_verifier_lock); 19631 if (!btf_vmlinux) 19632 btf_vmlinux = btf_parse_vmlinux(); 19633 mutex_unlock(&bpf_verifier_lock); 19634 } 19635 return btf_vmlinux; 19636 } 19637 19638 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19639 { 19640 u64 start_time = ktime_get_ns(); 19641 struct bpf_verifier_env *env; 19642 int i, len, ret = -EINVAL, err; 19643 u32 log_true_size; 19644 bool is_priv; 19645 19646 /* no program is valid */ 19647 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19648 return -EINVAL; 19649 19650 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19651 * allocate/free it every time bpf_check() is called 19652 */ 19653 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19654 if (!env) 19655 return -ENOMEM; 19656 19657 env->bt.env = env; 19658 19659 len = (*prog)->len; 19660 env->insn_aux_data = 19661 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19662 ret = -ENOMEM; 19663 if (!env->insn_aux_data) 19664 goto err_free_env; 19665 for (i = 0; i < len; i++) 19666 env->insn_aux_data[i].orig_idx = i; 19667 env->prog = *prog; 19668 env->ops = bpf_verifier_ops[env->prog->type]; 19669 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19670 is_priv = bpf_capable(); 19671 19672 bpf_get_btf_vmlinux(); 19673 19674 /* grab the mutex to protect few globals used by verifier */ 19675 if (!is_priv) 19676 mutex_lock(&bpf_verifier_lock); 19677 19678 /* user could have requested verbose verifier output 19679 * and supplied buffer to store the verification trace 19680 */ 19681 ret = bpf_vlog_init(&env->log, attr->log_level, 19682 (char __user *) (unsigned long) attr->log_buf, 19683 attr->log_size); 19684 if (ret) 19685 goto err_unlock; 19686 19687 mark_verifier_state_clean(env); 19688 19689 if (IS_ERR(btf_vmlinux)) { 19690 /* Either gcc or pahole or kernel are broken. */ 19691 verbose(env, "in-kernel BTF is malformed\n"); 19692 ret = PTR_ERR(btf_vmlinux); 19693 goto skip_full_check; 19694 } 19695 19696 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19697 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19698 env->strict_alignment = true; 19699 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19700 env->strict_alignment = false; 19701 19702 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19703 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19704 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19705 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19706 env->bpf_capable = bpf_capable(); 19707 19708 if (is_priv) 19709 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19710 19711 env->explored_states = kvcalloc(state_htab_size(env), 19712 sizeof(struct bpf_verifier_state_list *), 19713 GFP_USER); 19714 ret = -ENOMEM; 19715 if (!env->explored_states) 19716 goto skip_full_check; 19717 19718 ret = add_subprog_and_kfunc(env); 19719 if (ret < 0) 19720 goto skip_full_check; 19721 19722 ret = check_subprogs(env); 19723 if (ret < 0) 19724 goto skip_full_check; 19725 19726 ret = check_btf_info(env, attr, uattr); 19727 if (ret < 0) 19728 goto skip_full_check; 19729 19730 ret = check_attach_btf_id(env); 19731 if (ret) 19732 goto skip_full_check; 19733 19734 ret = resolve_pseudo_ldimm64(env); 19735 if (ret < 0) 19736 goto skip_full_check; 19737 19738 if (bpf_prog_is_offloaded(env->prog->aux)) { 19739 ret = bpf_prog_offload_verifier_prep(env->prog); 19740 if (ret) 19741 goto skip_full_check; 19742 } 19743 19744 ret = check_cfg(env); 19745 if (ret < 0) 19746 goto skip_full_check; 19747 19748 ret = do_check_subprogs(env); 19749 ret = ret ?: do_check_main(env); 19750 19751 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19752 ret = bpf_prog_offload_finalize(env); 19753 19754 skip_full_check: 19755 kvfree(env->explored_states); 19756 19757 if (ret == 0) 19758 ret = check_max_stack_depth(env); 19759 19760 /* instruction rewrites happen after this point */ 19761 if (ret == 0) 19762 ret = optimize_bpf_loop(env); 19763 19764 if (is_priv) { 19765 if (ret == 0) 19766 opt_hard_wire_dead_code_branches(env); 19767 if (ret == 0) 19768 ret = opt_remove_dead_code(env); 19769 if (ret == 0) 19770 ret = opt_remove_nops(env); 19771 } else { 19772 if (ret == 0) 19773 sanitize_dead_code(env); 19774 } 19775 19776 if (ret == 0) 19777 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19778 ret = convert_ctx_accesses(env); 19779 19780 if (ret == 0) 19781 ret = do_misc_fixups(env); 19782 19783 /* do 32-bit optimization after insn patching has done so those patched 19784 * insns could be handled correctly. 19785 */ 19786 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19787 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19788 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19789 : false; 19790 } 19791 19792 if (ret == 0) 19793 ret = fixup_call_args(env); 19794 19795 env->verification_time = ktime_get_ns() - start_time; 19796 print_verification_stats(env); 19797 env->prog->aux->verified_insns = env->insn_processed; 19798 19799 /* preserve original error even if log finalization is successful */ 19800 err = bpf_vlog_finalize(&env->log, &log_true_size); 19801 if (err) 19802 ret = err; 19803 19804 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19805 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19806 &log_true_size, sizeof(log_true_size))) { 19807 ret = -EFAULT; 19808 goto err_release_maps; 19809 } 19810 19811 if (ret) 19812 goto err_release_maps; 19813 19814 if (env->used_map_cnt) { 19815 /* if program passed verifier, update used_maps in bpf_prog_info */ 19816 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19817 sizeof(env->used_maps[0]), 19818 GFP_KERNEL); 19819 19820 if (!env->prog->aux->used_maps) { 19821 ret = -ENOMEM; 19822 goto err_release_maps; 19823 } 19824 19825 memcpy(env->prog->aux->used_maps, env->used_maps, 19826 sizeof(env->used_maps[0]) * env->used_map_cnt); 19827 env->prog->aux->used_map_cnt = env->used_map_cnt; 19828 } 19829 if (env->used_btf_cnt) { 19830 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19831 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19832 sizeof(env->used_btfs[0]), 19833 GFP_KERNEL); 19834 if (!env->prog->aux->used_btfs) { 19835 ret = -ENOMEM; 19836 goto err_release_maps; 19837 } 19838 19839 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19840 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19841 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19842 } 19843 if (env->used_map_cnt || env->used_btf_cnt) { 19844 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19845 * bpf_ld_imm64 instructions 19846 */ 19847 convert_pseudo_ld_imm64(env); 19848 } 19849 19850 adjust_btf_func(env); 19851 19852 err_release_maps: 19853 if (!env->prog->aux->used_maps) 19854 /* if we didn't copy map pointers into bpf_prog_info, release 19855 * them now. Otherwise free_used_maps() will release them. 19856 */ 19857 release_maps(env); 19858 if (!env->prog->aux->used_btfs) 19859 release_btfs(env); 19860 19861 /* extension progs temporarily inherit the attach_type of their targets 19862 for verification purposes, so set it back to zero before returning 19863 */ 19864 if (env->prog->type == BPF_PROG_TYPE_EXT) 19865 env->prog->expected_attach_type = 0; 19866 19867 *prog = env->prog; 19868 err_unlock: 19869 if (!is_priv) 19870 mutex_unlock(&bpf_verifier_lock); 19871 vfree(env->insn_aux_data); 19872 err_free_env: 19873 kfree(env); 19874 return ret; 19875 } 19876