1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_sync_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_callback_calling_function(enum bpf_func_id func_id) 561 { 562 return is_sync_callback_calling_function(func_id) || 563 is_async_callback_calling_function(func_id); 564 } 565 566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 567 { 568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 570 } 571 572 static bool is_storage_get_function(enum bpf_func_id func_id) 573 { 574 return func_id == BPF_FUNC_sk_storage_get || 575 func_id == BPF_FUNC_inode_storage_get || 576 func_id == BPF_FUNC_task_storage_get || 577 func_id == BPF_FUNC_cgrp_storage_get; 578 } 579 580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 581 const struct bpf_map *map) 582 { 583 int ref_obj_uses = 0; 584 585 if (is_ptr_cast_function(func_id)) 586 ref_obj_uses++; 587 if (is_acquire_function(func_id, map)) 588 ref_obj_uses++; 589 if (is_dynptr_ref_function(func_id)) 590 ref_obj_uses++; 591 592 return ref_obj_uses > 1; 593 } 594 595 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 596 { 597 return BPF_CLASS(insn->code) == BPF_STX && 598 BPF_MODE(insn->code) == BPF_ATOMIC && 599 insn->imm == BPF_CMPXCHG; 600 } 601 602 /* string representation of 'enum bpf_reg_type' 603 * 604 * Note that reg_type_str() can not appear more than once in a single verbose() 605 * statement. 606 */ 607 static const char *reg_type_str(struct bpf_verifier_env *env, 608 enum bpf_reg_type type) 609 { 610 char postfix[16] = {0}, prefix[64] = {0}; 611 static const char * const str[] = { 612 [NOT_INIT] = "?", 613 [SCALAR_VALUE] = "scalar", 614 [PTR_TO_CTX] = "ctx", 615 [CONST_PTR_TO_MAP] = "map_ptr", 616 [PTR_TO_MAP_VALUE] = "map_value", 617 [PTR_TO_STACK] = "fp", 618 [PTR_TO_PACKET] = "pkt", 619 [PTR_TO_PACKET_META] = "pkt_meta", 620 [PTR_TO_PACKET_END] = "pkt_end", 621 [PTR_TO_FLOW_KEYS] = "flow_keys", 622 [PTR_TO_SOCKET] = "sock", 623 [PTR_TO_SOCK_COMMON] = "sock_common", 624 [PTR_TO_TCP_SOCK] = "tcp_sock", 625 [PTR_TO_TP_BUFFER] = "tp_buffer", 626 [PTR_TO_XDP_SOCK] = "xdp_sock", 627 [PTR_TO_BTF_ID] = "ptr_", 628 [PTR_TO_MEM] = "mem", 629 [PTR_TO_BUF] = "buf", 630 [PTR_TO_FUNC] = "func", 631 [PTR_TO_MAP_KEY] = "map_key", 632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 633 }; 634 635 if (type & PTR_MAYBE_NULL) { 636 if (base_type(type) == PTR_TO_BTF_ID) 637 strncpy(postfix, "or_null_", 16); 638 else 639 strncpy(postfix, "_or_null", 16); 640 } 641 642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 643 type & MEM_RDONLY ? "rdonly_" : "", 644 type & MEM_RINGBUF ? "ringbuf_" : "", 645 type & MEM_USER ? "user_" : "", 646 type & MEM_PERCPU ? "percpu_" : "", 647 type & MEM_RCU ? "rcu_" : "", 648 type & PTR_UNTRUSTED ? "untrusted_" : "", 649 type & PTR_TRUSTED ? "trusted_" : "" 650 ); 651 652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 653 prefix, str[base_type(type)], postfix); 654 return env->tmp_str_buf; 655 } 656 657 static char slot_type_char[] = { 658 [STACK_INVALID] = '?', 659 [STACK_SPILL] = 'r', 660 [STACK_MISC] = 'm', 661 [STACK_ZERO] = '0', 662 [STACK_DYNPTR] = 'd', 663 [STACK_ITER] = 'i', 664 }; 665 666 static void print_liveness(struct bpf_verifier_env *env, 667 enum bpf_reg_liveness live) 668 { 669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 670 verbose(env, "_"); 671 if (live & REG_LIVE_READ) 672 verbose(env, "r"); 673 if (live & REG_LIVE_WRITTEN) 674 verbose(env, "w"); 675 if (live & REG_LIVE_DONE) 676 verbose(env, "D"); 677 } 678 679 static int __get_spi(s32 off) 680 { 681 return (-off - 1) / BPF_REG_SIZE; 682 } 683 684 static struct bpf_func_state *func(struct bpf_verifier_env *env, 685 const struct bpf_reg_state *reg) 686 { 687 struct bpf_verifier_state *cur = env->cur_state; 688 689 return cur->frame[reg->frameno]; 690 } 691 692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 693 { 694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 695 696 /* We need to check that slots between [spi - nr_slots + 1, spi] are 697 * within [0, allocated_stack). 698 * 699 * Please note that the spi grows downwards. For example, a dynptr 700 * takes the size of two stack slots; the first slot will be at 701 * spi and the second slot will be at spi - 1. 702 */ 703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 704 } 705 706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 707 const char *obj_kind, int nr_slots) 708 { 709 int off, spi; 710 711 if (!tnum_is_const(reg->var_off)) { 712 verbose(env, "%s has to be at a constant offset\n", obj_kind); 713 return -EINVAL; 714 } 715 716 off = reg->off + reg->var_off.value; 717 if (off % BPF_REG_SIZE) { 718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 719 return -EINVAL; 720 } 721 722 spi = __get_spi(off); 723 if (spi + 1 < nr_slots) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 729 return -ERANGE; 730 return spi; 731 } 732 733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 734 { 735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 736 } 737 738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 739 { 740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 741 } 742 743 static const char *btf_type_name(const struct btf *btf, u32 id) 744 { 745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 746 } 747 748 static const char *dynptr_type_str(enum bpf_dynptr_type type) 749 { 750 switch (type) { 751 case BPF_DYNPTR_TYPE_LOCAL: 752 return "local"; 753 case BPF_DYNPTR_TYPE_RINGBUF: 754 return "ringbuf"; 755 case BPF_DYNPTR_TYPE_SKB: 756 return "skb"; 757 case BPF_DYNPTR_TYPE_XDP: 758 return "xdp"; 759 case BPF_DYNPTR_TYPE_INVALID: 760 return "<invalid>"; 761 default: 762 WARN_ONCE(1, "unknown dynptr type %d\n", type); 763 return "<unknown>"; 764 } 765 } 766 767 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 768 { 769 if (!btf || btf_id == 0) 770 return "<invalid>"; 771 772 /* we already validated that type is valid and has conforming name */ 773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 774 } 775 776 static const char *iter_state_str(enum bpf_iter_state state) 777 { 778 switch (state) { 779 case BPF_ITER_STATE_ACTIVE: 780 return "active"; 781 case BPF_ITER_STATE_DRAINED: 782 return "drained"; 783 case BPF_ITER_STATE_INVALID: 784 return "<invalid>"; 785 default: 786 WARN_ONCE(1, "unknown iter state %d\n", state); 787 return "<unknown>"; 788 } 789 } 790 791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 792 { 793 env->scratched_regs |= 1U << regno; 794 } 795 796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 797 { 798 env->scratched_stack_slots |= 1ULL << spi; 799 } 800 801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 802 { 803 return (env->scratched_regs >> regno) & 1; 804 } 805 806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 807 { 808 return (env->scratched_stack_slots >> regno) & 1; 809 } 810 811 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 812 { 813 return env->scratched_regs || env->scratched_stack_slots; 814 } 815 816 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 817 { 818 env->scratched_regs = 0U; 819 env->scratched_stack_slots = 0ULL; 820 } 821 822 /* Used for printing the entire verifier state. */ 823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 824 { 825 env->scratched_regs = ~0U; 826 env->scratched_stack_slots = ~0ULL; 827 } 828 829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 830 { 831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 832 case DYNPTR_TYPE_LOCAL: 833 return BPF_DYNPTR_TYPE_LOCAL; 834 case DYNPTR_TYPE_RINGBUF: 835 return BPF_DYNPTR_TYPE_RINGBUF; 836 case DYNPTR_TYPE_SKB: 837 return BPF_DYNPTR_TYPE_SKB; 838 case DYNPTR_TYPE_XDP: 839 return BPF_DYNPTR_TYPE_XDP; 840 default: 841 return BPF_DYNPTR_TYPE_INVALID; 842 } 843 } 844 845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 846 { 847 switch (type) { 848 case BPF_DYNPTR_TYPE_LOCAL: 849 return DYNPTR_TYPE_LOCAL; 850 case BPF_DYNPTR_TYPE_RINGBUF: 851 return DYNPTR_TYPE_RINGBUF; 852 case BPF_DYNPTR_TYPE_SKB: 853 return DYNPTR_TYPE_SKB; 854 case BPF_DYNPTR_TYPE_XDP: 855 return DYNPTR_TYPE_XDP; 856 default: 857 return 0; 858 } 859 } 860 861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 862 { 863 return type == BPF_DYNPTR_TYPE_RINGBUF; 864 } 865 866 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 867 enum bpf_dynptr_type type, 868 bool first_slot, int dynptr_id); 869 870 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 871 struct bpf_reg_state *reg); 872 873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 874 struct bpf_reg_state *sreg1, 875 struct bpf_reg_state *sreg2, 876 enum bpf_dynptr_type type) 877 { 878 int id = ++env->id_gen; 879 880 __mark_dynptr_reg(sreg1, type, true, id); 881 __mark_dynptr_reg(sreg2, type, false, id); 882 } 883 884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 885 struct bpf_reg_state *reg, 886 enum bpf_dynptr_type type) 887 { 888 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 889 } 890 891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 892 struct bpf_func_state *state, int spi); 893 894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 896 { 897 struct bpf_func_state *state = func(env, reg); 898 enum bpf_dynptr_type type; 899 int spi, i, err; 900 901 spi = dynptr_get_spi(env, reg); 902 if (spi < 0) 903 return spi; 904 905 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 906 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 907 * to ensure that for the following example: 908 * [d1][d1][d2][d2] 909 * spi 3 2 1 0 910 * So marking spi = 2 should lead to destruction of both d1 and d2. In 911 * case they do belong to same dynptr, second call won't see slot_type 912 * as STACK_DYNPTR and will simply skip destruction. 913 */ 914 err = destroy_if_dynptr_stack_slot(env, state, spi); 915 if (err) 916 return err; 917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 918 if (err) 919 return err; 920 921 for (i = 0; i < BPF_REG_SIZE; i++) { 922 state->stack[spi].slot_type[i] = STACK_DYNPTR; 923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 924 } 925 926 type = arg_to_dynptr_type(arg_type); 927 if (type == BPF_DYNPTR_TYPE_INVALID) 928 return -EINVAL; 929 930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 931 &state->stack[spi - 1].spilled_ptr, type); 932 933 if (dynptr_type_refcounted(type)) { 934 /* The id is used to track proper releasing */ 935 int id; 936 937 if (clone_ref_obj_id) 938 id = clone_ref_obj_id; 939 else 940 id = acquire_reference_state(env, insn_idx); 941 942 if (id < 0) 943 return id; 944 945 state->stack[spi].spilled_ptr.ref_obj_id = id; 946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 947 } 948 949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 951 952 return 0; 953 } 954 955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 956 { 957 int i; 958 959 for (i = 0; i < BPF_REG_SIZE; i++) { 960 state->stack[spi].slot_type[i] = STACK_INVALID; 961 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 962 } 963 964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 966 967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 968 * 969 * While we don't allow reading STACK_INVALID, it is still possible to 970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 971 * helpers or insns can do partial read of that part without failing, 972 * but check_stack_range_initialized, check_stack_read_var_off, and 973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 974 * the slot conservatively. Hence we need to prevent those liveness 975 * marking walks. 976 * 977 * This was not a problem before because STACK_INVALID is only set by 978 * default (where the default reg state has its reg->parent as NULL), or 979 * in clean_live_states after REG_LIVE_DONE (at which point 980 * mark_reg_read won't walk reg->parent chain), but not randomly during 981 * verifier state exploration (like we did above). Hence, for our case 982 * parentage chain will still be live (i.e. reg->parent may be 983 * non-NULL), while earlier reg->parent was NULL, so we need 984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 985 * done later on reads or by mark_dynptr_read as well to unnecessary 986 * mark registers in verifier state. 987 */ 988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 990 } 991 992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 993 { 994 struct bpf_func_state *state = func(env, reg); 995 int spi, ref_obj_id, i; 996 997 spi = dynptr_get_spi(env, reg); 998 if (spi < 0) 999 return spi; 1000 1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1002 invalidate_dynptr(env, state, spi); 1003 return 0; 1004 } 1005 1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1007 1008 /* If the dynptr has a ref_obj_id, then we need to invalidate 1009 * two things: 1010 * 1011 * 1) Any dynptrs with a matching ref_obj_id (clones) 1012 * 2) Any slices derived from this dynptr. 1013 */ 1014 1015 /* Invalidate any slices associated with this dynptr */ 1016 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1017 1018 /* Invalidate any dynptr clones */ 1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1021 continue; 1022 1023 /* it should always be the case that if the ref obj id 1024 * matches then the stack slot also belongs to a 1025 * dynptr 1026 */ 1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1029 return -EFAULT; 1030 } 1031 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1032 invalidate_dynptr(env, state, i); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1039 struct bpf_reg_state *reg); 1040 1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1042 { 1043 if (!env->allow_ptr_leaks) 1044 __mark_reg_not_init(env, reg); 1045 else 1046 __mark_reg_unknown(env, reg); 1047 } 1048 1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1050 struct bpf_func_state *state, int spi) 1051 { 1052 struct bpf_func_state *fstate; 1053 struct bpf_reg_state *dreg; 1054 int i, dynptr_id; 1055 1056 /* We always ensure that STACK_DYNPTR is never set partially, 1057 * hence just checking for slot_type[0] is enough. This is 1058 * different for STACK_SPILL, where it may be only set for 1059 * 1 byte, so code has to use is_spilled_reg. 1060 */ 1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1062 return 0; 1063 1064 /* Reposition spi to first slot */ 1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1066 spi = spi + 1; 1067 1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1069 verbose(env, "cannot overwrite referenced dynptr\n"); 1070 return -EINVAL; 1071 } 1072 1073 mark_stack_slot_scratched(env, spi); 1074 mark_stack_slot_scratched(env, spi - 1); 1075 1076 /* Writing partially to one dynptr stack slot destroys both. */ 1077 for (i = 0; i < BPF_REG_SIZE; i++) { 1078 state->stack[spi].slot_type[i] = STACK_INVALID; 1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1080 } 1081 1082 dynptr_id = state->stack[spi].spilled_ptr.id; 1083 /* Invalidate any slices associated with this dynptr */ 1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1087 continue; 1088 if (dreg->dynptr_id == dynptr_id) 1089 mark_reg_invalid(env, dreg); 1090 })); 1091 1092 /* Do not release reference state, we are destroying dynptr on stack, 1093 * not using some helper to release it. Just reset register. 1094 */ 1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1097 1098 /* Same reason as unmark_stack_slots_dynptr above */ 1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1101 1102 return 0; 1103 } 1104 1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1106 { 1107 int spi; 1108 1109 if (reg->type == CONST_PTR_TO_DYNPTR) 1110 return false; 1111 1112 spi = dynptr_get_spi(env, reg); 1113 1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1115 * error because this just means the stack state hasn't been updated yet. 1116 * We will do check_mem_access to check and update stack bounds later. 1117 */ 1118 if (spi < 0 && spi != -ERANGE) 1119 return false; 1120 1121 /* We don't need to check if the stack slots are marked by previous 1122 * dynptr initializations because we allow overwriting existing unreferenced 1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1125 * touching are completely destructed before we reinitialize them for a new 1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1127 * instead of delaying it until the end where the user will get "Unreleased 1128 * reference" error. 1129 */ 1130 return true; 1131 } 1132 1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1134 { 1135 struct bpf_func_state *state = func(env, reg); 1136 int i, spi; 1137 1138 /* This already represents first slot of initialized bpf_dynptr. 1139 * 1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1141 * check_func_arg_reg_off's logic, so we don't need to check its 1142 * offset and alignment. 1143 */ 1144 if (reg->type == CONST_PTR_TO_DYNPTR) 1145 return true; 1146 1147 spi = dynptr_get_spi(env, reg); 1148 if (spi < 0) 1149 return false; 1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1151 return false; 1152 1153 for (i = 0; i < BPF_REG_SIZE; i++) { 1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1163 enum bpf_arg_type arg_type) 1164 { 1165 struct bpf_func_state *state = func(env, reg); 1166 enum bpf_dynptr_type dynptr_type; 1167 int spi; 1168 1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1170 if (arg_type == ARG_PTR_TO_DYNPTR) 1171 return true; 1172 1173 dynptr_type = arg_to_dynptr_type(arg_type); 1174 if (reg->type == CONST_PTR_TO_DYNPTR) { 1175 return reg->dynptr.type == dynptr_type; 1176 } else { 1177 spi = dynptr_get_spi(env, reg); 1178 if (spi < 0) 1179 return false; 1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1181 } 1182 } 1183 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1185 1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1187 struct bpf_reg_state *reg, int insn_idx, 1188 struct btf *btf, u32 btf_id, int nr_slots) 1189 { 1190 struct bpf_func_state *state = func(env, reg); 1191 int spi, i, j, id; 1192 1193 spi = iter_get_spi(env, reg, nr_slots); 1194 if (spi < 0) 1195 return spi; 1196 1197 id = acquire_reference_state(env, insn_idx); 1198 if (id < 0) 1199 return id; 1200 1201 for (i = 0; i < nr_slots; i++) { 1202 struct bpf_stack_state *slot = &state->stack[spi - i]; 1203 struct bpf_reg_state *st = &slot->spilled_ptr; 1204 1205 __mark_reg_known_zero(st); 1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1207 st->live |= REG_LIVE_WRITTEN; 1208 st->ref_obj_id = i == 0 ? id : 0; 1209 st->iter.btf = btf; 1210 st->iter.btf_id = btf_id; 1211 st->iter.state = BPF_ITER_STATE_ACTIVE; 1212 st->iter.depth = 0; 1213 1214 for (j = 0; j < BPF_REG_SIZE; j++) 1215 slot->slot_type[j] = STACK_ITER; 1216 1217 mark_stack_slot_scratched(env, spi - i); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1224 struct bpf_reg_state *reg, int nr_slots) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 int spi, i, j; 1228 1229 spi = iter_get_spi(env, reg, nr_slots); 1230 if (spi < 0) 1231 return spi; 1232 1233 for (i = 0; i < nr_slots; i++) { 1234 struct bpf_stack_state *slot = &state->stack[spi - i]; 1235 struct bpf_reg_state *st = &slot->spilled_ptr; 1236 1237 if (i == 0) 1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1239 1240 __mark_reg_not_init(env, st); 1241 1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1243 st->live |= REG_LIVE_WRITTEN; 1244 1245 for (j = 0; j < BPF_REG_SIZE; j++) 1246 slot->slot_type[j] = STACK_INVALID; 1247 1248 mark_stack_slot_scratched(env, spi - i); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1255 struct bpf_reg_state *reg, int nr_slots) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 int spi, i, j; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = iter_get_spi(env, reg, nr_slots); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 1273 for (j = 0; j < BPF_REG_SIZE; j++) 1274 if (slot->slot_type[j] == STACK_ITER) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1282 struct btf *btf, u32 btf_id, int nr_slots) 1283 { 1284 struct bpf_func_state *state = func(env, reg); 1285 int spi, i, j; 1286 1287 spi = iter_get_spi(env, reg, nr_slots); 1288 if (spi < 0) 1289 return false; 1290 1291 for (i = 0; i < nr_slots; i++) { 1292 struct bpf_stack_state *slot = &state->stack[spi - i]; 1293 struct bpf_reg_state *st = &slot->spilled_ptr; 1294 1295 /* only main (first) slot has ref_obj_id set */ 1296 if (i == 0 && !st->ref_obj_id) 1297 return false; 1298 if (i != 0 && st->ref_obj_id) 1299 return false; 1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1301 return false; 1302 1303 for (j = 0; j < BPF_REG_SIZE; j++) 1304 if (slot->slot_type[j] != STACK_ITER) 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /* Check if given stack slot is "special": 1312 * - spilled register state (STACK_SPILL); 1313 * - dynptr state (STACK_DYNPTR); 1314 * - iter state (STACK_ITER). 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 return true; 1325 case STACK_INVALID: 1326 case STACK_MISC: 1327 case STACK_ZERO: 1328 return false; 1329 default: 1330 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1331 return true; 1332 } 1333 } 1334 1335 /* The reg state of a pointer or a bounded scalar was saved when 1336 * it was spilled to the stack. 1337 */ 1338 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1339 { 1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1341 } 1342 1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1344 { 1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1346 stack->spilled_ptr.type == SCALAR_VALUE; 1347 } 1348 1349 static void scrub_spilled_slot(u8 *stype) 1350 { 1351 if (*stype != STACK_INVALID) 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void print_verifier_state(struct bpf_verifier_env *env, 1356 const struct bpf_func_state *state, 1357 bool print_all) 1358 { 1359 const struct bpf_reg_state *reg; 1360 enum bpf_reg_type t; 1361 int i; 1362 1363 if (state->frameno) 1364 verbose(env, " frame%d:", state->frameno); 1365 for (i = 0; i < MAX_BPF_REG; i++) { 1366 reg = &state->regs[i]; 1367 t = reg->type; 1368 if (t == NOT_INIT) 1369 continue; 1370 if (!print_all && !reg_scratched(env, i)) 1371 continue; 1372 verbose(env, " R%d", i); 1373 print_liveness(env, reg->live); 1374 verbose(env, "="); 1375 if (t == SCALAR_VALUE && reg->precise) 1376 verbose(env, "P"); 1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1378 tnum_is_const(reg->var_off)) { 1379 /* reg->off should be 0 for SCALAR_VALUE */ 1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1381 verbose(env, "%lld", reg->var_off.value + reg->off); 1382 } else { 1383 const char *sep = ""; 1384 1385 verbose(env, "%s", reg_type_str(env, t)); 1386 if (base_type(t) == PTR_TO_BTF_ID) 1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1388 verbose(env, "("); 1389 /* 1390 * _a stands for append, was shortened to avoid multiline statements below. 1391 * This macro is used to output a comma separated list of attributes. 1392 */ 1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1394 1395 if (reg->id) 1396 verbose_a("id=%d", reg->id); 1397 if (reg->ref_obj_id) 1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1399 if (type_is_non_owning_ref(reg->type)) 1400 verbose_a("%s", "non_own_ref"); 1401 if (t != SCALAR_VALUE) 1402 verbose_a("off=%d", reg->off); 1403 if (type_is_pkt_pointer(t)) 1404 verbose_a("r=%d", reg->range); 1405 else if (base_type(t) == CONST_PTR_TO_MAP || 1406 base_type(t) == PTR_TO_MAP_KEY || 1407 base_type(t) == PTR_TO_MAP_VALUE) 1408 verbose_a("ks=%d,vs=%d", 1409 reg->map_ptr->key_size, 1410 reg->map_ptr->value_size); 1411 if (tnum_is_const(reg->var_off)) { 1412 /* Typically an immediate SCALAR_VALUE, but 1413 * could be a pointer whose offset is too big 1414 * for reg->off 1415 */ 1416 verbose_a("imm=%llx", reg->var_off.value); 1417 } else { 1418 if (reg->smin_value != reg->umin_value && 1419 reg->smin_value != S64_MIN) 1420 verbose_a("smin=%lld", (long long)reg->smin_value); 1421 if (reg->smax_value != reg->umax_value && 1422 reg->smax_value != S64_MAX) 1423 verbose_a("smax=%lld", (long long)reg->smax_value); 1424 if (reg->umin_value != 0) 1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1426 if (reg->umax_value != U64_MAX) 1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1428 if (!tnum_is_unknown(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose_a("var_off=%s", tn_buf); 1433 } 1434 if (reg->s32_min_value != reg->smin_value && 1435 reg->s32_min_value != S32_MIN) 1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1437 if (reg->s32_max_value != reg->smax_value && 1438 reg->s32_max_value != S32_MAX) 1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1440 if (reg->u32_min_value != reg->umin_value && 1441 reg->u32_min_value != U32_MIN) 1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1443 if (reg->u32_max_value != reg->umax_value && 1444 reg->u32_max_value != U32_MAX) 1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1446 } 1447 #undef verbose_a 1448 1449 verbose(env, ")"); 1450 } 1451 } 1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1453 char types_buf[BPF_REG_SIZE + 1]; 1454 bool valid = false; 1455 int j; 1456 1457 for (j = 0; j < BPF_REG_SIZE; j++) { 1458 if (state->stack[i].slot_type[j] != STACK_INVALID) 1459 valid = true; 1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1461 } 1462 types_buf[BPF_REG_SIZE] = 0; 1463 if (!valid) 1464 continue; 1465 if (!print_all && !stack_slot_scratched(env, i)) 1466 continue; 1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1468 case STACK_SPILL: 1469 reg = &state->stack[i].spilled_ptr; 1470 t = reg->type; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1475 if (t == SCALAR_VALUE && reg->precise) 1476 verbose(env, "P"); 1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1478 verbose(env, "%lld", reg->var_off.value + reg->off); 1479 break; 1480 case STACK_DYNPTR: 1481 i += BPF_DYNPTR_NR_SLOTS - 1; 1482 reg = &state->stack[i].spilled_ptr; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1487 if (reg->ref_obj_id) 1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1489 break; 1490 case STACK_ITER: 1491 /* only main slot has ref_obj_id set; skip others */ 1492 reg = &state->stack[i].spilled_ptr; 1493 if (!reg->ref_obj_id) 1494 continue; 1495 1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1497 print_liveness(env, reg->live); 1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1499 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1500 reg->ref_obj_id, iter_state_str(reg->iter.state), 1501 reg->iter.depth); 1502 break; 1503 case STACK_MISC: 1504 case STACK_ZERO: 1505 default: 1506 reg = &state->stack[i].spilled_ptr; 1507 1508 for (j = 0; j < BPF_REG_SIZE; j++) 1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1510 types_buf[BPF_REG_SIZE] = 0; 1511 1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1513 print_liveness(env, reg->live); 1514 verbose(env, "=%s", types_buf); 1515 break; 1516 } 1517 } 1518 if (state->acquired_refs && state->refs[0].id) { 1519 verbose(env, " refs=%d", state->refs[0].id); 1520 for (i = 1; i < state->acquired_refs; i++) 1521 if (state->refs[i].id) 1522 verbose(env, ",%d", state->refs[i].id); 1523 } 1524 if (state->in_callback_fn) 1525 verbose(env, " cb"); 1526 if (state->in_async_callback_fn) 1527 verbose(env, " async_cb"); 1528 verbose(env, "\n"); 1529 if (!print_all) 1530 mark_verifier_state_clean(env); 1531 } 1532 1533 static inline u32 vlog_alignment(u32 pos) 1534 { 1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1537 } 1538 1539 static void print_insn_state(struct bpf_verifier_env *env, 1540 const struct bpf_func_state *state) 1541 { 1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1543 /* remove new line character */ 1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1546 } else { 1547 verbose(env, "%d:", env->insn_idx); 1548 } 1549 print_verifier_state(env, state, false); 1550 } 1551 1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1553 * small to hold src. This is different from krealloc since we don't want to preserve 1554 * the contents of dst. 1555 * 1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1557 * not be allocated. 1558 */ 1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1560 { 1561 size_t alloc_bytes; 1562 void *orig = dst; 1563 size_t bytes; 1564 1565 if (ZERO_OR_NULL_PTR(src)) 1566 goto out; 1567 1568 if (unlikely(check_mul_overflow(n, size, &bytes))) 1569 return NULL; 1570 1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1572 dst = krealloc(orig, alloc_bytes, flags); 1573 if (!dst) { 1574 kfree(orig); 1575 return NULL; 1576 } 1577 1578 memcpy(dst, src, bytes); 1579 out: 1580 return dst ? dst : ZERO_SIZE_PTR; 1581 } 1582 1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1584 * small to hold new_n items. new items are zeroed out if the array grows. 1585 * 1586 * Contrary to krealloc_array, does not free arr if new_n is zero. 1587 */ 1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1589 { 1590 size_t alloc_size; 1591 void *new_arr; 1592 1593 if (!new_n || old_n == new_n) 1594 goto out; 1595 1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1598 if (!new_arr) { 1599 kfree(arr); 1600 return NULL; 1601 } 1602 arr = new_arr; 1603 1604 if (new_n > old_n) 1605 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1606 1607 out: 1608 return arr ? arr : ZERO_SIZE_PTR; 1609 } 1610 1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1614 sizeof(struct bpf_reference_state), GFP_KERNEL); 1615 if (!dst->refs) 1616 return -ENOMEM; 1617 1618 dst->acquired_refs = src->acquired_refs; 1619 return 0; 1620 } 1621 1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1623 { 1624 size_t n = src->allocated_stack / BPF_REG_SIZE; 1625 1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1627 GFP_KERNEL); 1628 if (!dst->stack) 1629 return -ENOMEM; 1630 1631 dst->allocated_stack = src->allocated_stack; 1632 return 0; 1633 } 1634 1635 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1636 { 1637 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1638 sizeof(struct bpf_reference_state)); 1639 if (!state->refs) 1640 return -ENOMEM; 1641 1642 state->acquired_refs = n; 1643 return 0; 1644 } 1645 1646 /* Possibly update state->allocated_stack to be at least size bytes. Also 1647 * possibly update the function's high-water mark in its bpf_subprog_info. 1648 */ 1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1650 { 1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1652 1653 if (old_n >= n) 1654 return 0; 1655 1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1657 if (!state->stack) 1658 return -ENOMEM; 1659 1660 state->allocated_stack = size; 1661 1662 /* update known max for given subprogram */ 1663 if (env->subprog_info[state->subprogno].stack_depth < size) 1664 env->subprog_info[state->subprogno].stack_depth = size; 1665 1666 return 0; 1667 } 1668 1669 /* Acquire a pointer id from the env and update the state->refs to include 1670 * this new pointer reference. 1671 * On success, returns a valid pointer id to associate with the register 1672 * On failure, returns a negative errno. 1673 */ 1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1675 { 1676 struct bpf_func_state *state = cur_func(env); 1677 int new_ofs = state->acquired_refs; 1678 int id, err; 1679 1680 err = resize_reference_state(state, state->acquired_refs + 1); 1681 if (err) 1682 return err; 1683 id = ++env->id_gen; 1684 state->refs[new_ofs].id = id; 1685 state->refs[new_ofs].insn_idx = insn_idx; 1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1687 1688 return id; 1689 } 1690 1691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1693 { 1694 int i, last_idx; 1695 1696 last_idx = state->acquired_refs - 1; 1697 for (i = 0; i < state->acquired_refs; i++) { 1698 if (state->refs[i].id == ptr_id) { 1699 /* Cannot release caller references in callbacks */ 1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1701 return -EINVAL; 1702 if (last_idx && i != last_idx) 1703 memcpy(&state->refs[i], &state->refs[last_idx], 1704 sizeof(*state->refs)); 1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1706 state->acquired_refs--; 1707 return 0; 1708 } 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static void free_func_state(struct bpf_func_state *state) 1714 { 1715 if (!state) 1716 return; 1717 kfree(state->refs); 1718 kfree(state->stack); 1719 kfree(state); 1720 } 1721 1722 static void clear_jmp_history(struct bpf_verifier_state *state) 1723 { 1724 kfree(state->jmp_history); 1725 state->jmp_history = NULL; 1726 state->jmp_history_cnt = 0; 1727 } 1728 1729 static void free_verifier_state(struct bpf_verifier_state *state, 1730 bool free_self) 1731 { 1732 int i; 1733 1734 for (i = 0; i <= state->curframe; i++) { 1735 free_func_state(state->frame[i]); 1736 state->frame[i] = NULL; 1737 } 1738 clear_jmp_history(state); 1739 if (free_self) 1740 kfree(state); 1741 } 1742 1743 /* copy verifier state from src to dst growing dst stack space 1744 * when necessary to accommodate larger src stack 1745 */ 1746 static int copy_func_state(struct bpf_func_state *dst, 1747 const struct bpf_func_state *src) 1748 { 1749 int err; 1750 1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1752 err = copy_reference_state(dst, src); 1753 if (err) 1754 return err; 1755 return copy_stack_state(dst, src); 1756 } 1757 1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1759 const struct bpf_verifier_state *src) 1760 { 1761 struct bpf_func_state *dst; 1762 int i, err; 1763 1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1766 GFP_USER); 1767 if (!dst_state->jmp_history) 1768 return -ENOMEM; 1769 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1770 1771 /* if dst has more stack frames then src frame, free them */ 1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1773 free_func_state(dst_state->frame[i]); 1774 dst_state->frame[i] = NULL; 1775 } 1776 dst_state->speculative = src->speculative; 1777 dst_state->active_rcu_lock = src->active_rcu_lock; 1778 dst_state->curframe = src->curframe; 1779 dst_state->active_lock.ptr = src->active_lock.ptr; 1780 dst_state->active_lock.id = src->active_lock.id; 1781 dst_state->branches = src->branches; 1782 dst_state->parent = src->parent; 1783 dst_state->first_insn_idx = src->first_insn_idx; 1784 dst_state->last_insn_idx = src->last_insn_idx; 1785 dst_state->dfs_depth = src->dfs_depth; 1786 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1787 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1788 for (i = 0; i <= src->curframe; i++) { 1789 dst = dst_state->frame[i]; 1790 if (!dst) { 1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1792 if (!dst) 1793 return -ENOMEM; 1794 dst_state->frame[i] = dst; 1795 } 1796 err = copy_func_state(dst, src->frame[i]); 1797 if (err) 1798 return err; 1799 } 1800 return 0; 1801 } 1802 1803 static u32 state_htab_size(struct bpf_verifier_env *env) 1804 { 1805 return env->prog->len; 1806 } 1807 1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1809 { 1810 struct bpf_verifier_state *cur = env->cur_state; 1811 struct bpf_func_state *state = cur->frame[cur->curframe]; 1812 1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1814 } 1815 1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1817 { 1818 int fr; 1819 1820 if (a->curframe != b->curframe) 1821 return false; 1822 1823 for (fr = a->curframe; fr >= 0; fr--) 1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1825 return false; 1826 1827 return true; 1828 } 1829 1830 /* Open coded iterators allow back-edges in the state graph in order to 1831 * check unbounded loops that iterators. 1832 * 1833 * In is_state_visited() it is necessary to know if explored states are 1834 * part of some loops in order to decide whether non-exact states 1835 * comparison could be used: 1836 * - non-exact states comparison establishes sub-state relation and uses 1837 * read and precision marks to do so, these marks are propagated from 1838 * children states and thus are not guaranteed to be final in a loop; 1839 * - exact states comparison just checks if current and explored states 1840 * are identical (and thus form a back-edge). 1841 * 1842 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1844 * algorithm for loop structure detection and gives an overview of 1845 * relevant terminology. It also has helpful illustrations. 1846 * 1847 * [1] https://api.semanticscholar.org/CorpusID:15784067 1848 * 1849 * We use a similar algorithm but because loop nested structure is 1850 * irrelevant for verifier ours is significantly simpler and resembles 1851 * strongly connected components algorithm from Sedgewick's textbook. 1852 * 1853 * Define topmost loop entry as a first node of the loop traversed in a 1854 * depth first search starting from initial state. The goal of the loop 1855 * tracking algorithm is to associate topmost loop entries with states 1856 * derived from these entries. 1857 * 1858 * For each step in the DFS states traversal algorithm needs to identify 1859 * the following situations: 1860 * 1861 * initial initial initial 1862 * | | | 1863 * V V V 1864 * ... ... .---------> hdr 1865 * | | | | 1866 * V V | V 1867 * cur .-> succ | .------... 1868 * | | | | | | 1869 * V | V | V V 1870 * succ '-- cur | ... ... 1871 * | | | 1872 * | V V 1873 * | succ <- cur 1874 * | | 1875 * | V 1876 * | ... 1877 * | | 1878 * '----' 1879 * 1880 * (A) successor state of cur (B) successor state of cur or it's entry 1881 * not yet traversed are in current DFS path, thus cur and succ 1882 * are members of the same outermost loop 1883 * 1884 * initial initial 1885 * | | 1886 * V V 1887 * ... ... 1888 * | | 1889 * V V 1890 * .------... .------... 1891 * | | | | 1892 * V V V V 1893 * .-> hdr ... ... ... 1894 * | | | | | 1895 * | V V V V 1896 * | succ <- cur succ <- cur 1897 * | | | 1898 * | V V 1899 * | ... ... 1900 * | | | 1901 * '----' exit 1902 * 1903 * (C) successor state of cur is a part of some loop but this loop 1904 * does not include cur or successor state is not in a loop at all. 1905 * 1906 * Algorithm could be described as the following python code: 1907 * 1908 * traversed = set() # Set of traversed nodes 1909 * entries = {} # Mapping from node to loop entry 1910 * depths = {} # Depth level assigned to graph node 1911 * path = set() # Current DFS path 1912 * 1913 * # Find outermost loop entry known for n 1914 * def get_loop_entry(n): 1915 * h = entries.get(n, None) 1916 * while h in entries and entries[h] != h: 1917 * h = entries[h] 1918 * return h 1919 * 1920 * # Update n's loop entry if h's outermost entry comes 1921 * # before n's outermost entry in current DFS path. 1922 * def update_loop_entry(n, h): 1923 * n1 = get_loop_entry(n) or n 1924 * h1 = get_loop_entry(h) or h 1925 * if h1 in path and depths[h1] <= depths[n1]: 1926 * entries[n] = h1 1927 * 1928 * def dfs(n, depth): 1929 * traversed.add(n) 1930 * path.add(n) 1931 * depths[n] = depth 1932 * for succ in G.successors(n): 1933 * if succ not in traversed: 1934 * # Case A: explore succ and update cur's loop entry 1935 * # only if succ's entry is in current DFS path. 1936 * dfs(succ, depth + 1) 1937 * h = get_loop_entry(succ) 1938 * update_loop_entry(n, h) 1939 * else: 1940 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1941 * update_loop_entry(n, succ) 1942 * path.remove(n) 1943 * 1944 * To adapt this algorithm for use with verifier: 1945 * - use st->branch == 0 as a signal that DFS of succ had been finished 1946 * and cur's loop entry has to be updated (case A), handle this in 1947 * update_branch_counts(); 1948 * - use st->branch > 0 as a signal that st is in the current DFS path; 1949 * - handle cases B and C in is_state_visited(); 1950 * - update topmost loop entry for intermediate states in get_loop_entry(). 1951 */ 1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1953 { 1954 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1955 1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1957 topmost = topmost->loop_entry; 1958 /* Update loop entries for intermediate states to avoid this 1959 * traversal in future get_loop_entry() calls. 1960 */ 1961 while (st && st->loop_entry != topmost) { 1962 old = st->loop_entry; 1963 st->loop_entry = topmost; 1964 st = old; 1965 } 1966 return topmost; 1967 } 1968 1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1970 { 1971 struct bpf_verifier_state *cur1, *hdr1; 1972 1973 cur1 = get_loop_entry(cur) ?: cur; 1974 hdr1 = get_loop_entry(hdr) ?: hdr; 1975 /* The head1->branches check decides between cases B and C in 1976 * comment for get_loop_entry(). If hdr1->branches == 0 then 1977 * head's topmost loop entry is not in current DFS path, 1978 * hence 'cur' and 'hdr' are not in the same loop and there is 1979 * no need to update cur->loop_entry. 1980 */ 1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1982 cur->loop_entry = hdr; 1983 hdr->used_as_loop_entry = true; 1984 } 1985 } 1986 1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1988 { 1989 while (st) { 1990 u32 br = --st->branches; 1991 1992 /* br == 0 signals that DFS exploration for 'st' is finished, 1993 * thus it is necessary to update parent's loop entry if it 1994 * turned out that st is a part of some loop. 1995 * This is a part of 'case A' in get_loop_entry() comment. 1996 */ 1997 if (br == 0 && st->parent && st->loop_entry) 1998 update_loop_entry(st->parent, st->loop_entry); 1999 2000 /* WARN_ON(br > 1) technically makes sense here, 2001 * but see comment in push_stack(), hence: 2002 */ 2003 WARN_ONCE((int)br < 0, 2004 "BUG update_branch_counts:branches_to_explore=%d\n", 2005 br); 2006 if (br) 2007 break; 2008 st = st->parent; 2009 } 2010 } 2011 2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2013 int *insn_idx, bool pop_log) 2014 { 2015 struct bpf_verifier_state *cur = env->cur_state; 2016 struct bpf_verifier_stack_elem *elem, *head = env->head; 2017 int err; 2018 2019 if (env->head == NULL) 2020 return -ENOENT; 2021 2022 if (cur) { 2023 err = copy_verifier_state(cur, &head->st); 2024 if (err) 2025 return err; 2026 } 2027 if (pop_log) 2028 bpf_vlog_reset(&env->log, head->log_pos); 2029 if (insn_idx) 2030 *insn_idx = head->insn_idx; 2031 if (prev_insn_idx) 2032 *prev_insn_idx = head->prev_insn_idx; 2033 elem = head->next; 2034 free_verifier_state(&head->st, false); 2035 kfree(head); 2036 env->head = elem; 2037 env->stack_size--; 2038 return 0; 2039 } 2040 2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2042 int insn_idx, int prev_insn_idx, 2043 bool speculative) 2044 { 2045 struct bpf_verifier_state *cur = env->cur_state; 2046 struct bpf_verifier_stack_elem *elem; 2047 int err; 2048 2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2050 if (!elem) 2051 goto err; 2052 2053 elem->insn_idx = insn_idx; 2054 elem->prev_insn_idx = prev_insn_idx; 2055 elem->next = env->head; 2056 elem->log_pos = env->log.end_pos; 2057 env->head = elem; 2058 env->stack_size++; 2059 err = copy_verifier_state(&elem->st, cur); 2060 if (err) 2061 goto err; 2062 elem->st.speculative |= speculative; 2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2064 verbose(env, "The sequence of %d jumps is too complex.\n", 2065 env->stack_size); 2066 goto err; 2067 } 2068 if (elem->st.parent) { 2069 ++elem->st.parent->branches; 2070 /* WARN_ON(branches > 2) technically makes sense here, 2071 * but 2072 * 1. speculative states will bump 'branches' for non-branch 2073 * instructions 2074 * 2. is_state_visited() heuristics may decide not to create 2075 * a new state for a sequence of branches and all such current 2076 * and cloned states will be pointing to a single parent state 2077 * which might have large 'branches' count. 2078 */ 2079 } 2080 return &elem->st; 2081 err: 2082 free_verifier_state(env->cur_state, true); 2083 env->cur_state = NULL; 2084 /* pop all elements and return */ 2085 while (!pop_stack(env, NULL, NULL, false)); 2086 return NULL; 2087 } 2088 2089 #define CALLER_SAVED_REGS 6 2090 static const int caller_saved[CALLER_SAVED_REGS] = { 2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2092 }; 2093 2094 /* This helper doesn't clear reg->id */ 2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2096 { 2097 reg->var_off = tnum_const(imm); 2098 reg->smin_value = (s64)imm; 2099 reg->smax_value = (s64)imm; 2100 reg->umin_value = imm; 2101 reg->umax_value = imm; 2102 2103 reg->s32_min_value = (s32)imm; 2104 reg->s32_max_value = (s32)imm; 2105 reg->u32_min_value = (u32)imm; 2106 reg->u32_max_value = (u32)imm; 2107 } 2108 2109 /* Mark the unknown part of a register (variable offset or scalar value) as 2110 * known to have the value @imm. 2111 */ 2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2113 { 2114 /* Clear off and union(map_ptr, range) */ 2115 memset(((u8 *)reg) + sizeof(reg->type), 0, 2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2117 reg->id = 0; 2118 reg->ref_obj_id = 0; 2119 ___mark_reg_known(reg, imm); 2120 } 2121 2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2123 { 2124 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2125 reg->s32_min_value = (s32)imm; 2126 reg->s32_max_value = (s32)imm; 2127 reg->u32_min_value = (u32)imm; 2128 reg->u32_max_value = (u32)imm; 2129 } 2130 2131 /* Mark the 'variable offset' part of a register as zero. This should be 2132 * used only on registers holding a pointer type. 2133 */ 2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2135 { 2136 __mark_reg_known(reg, 0); 2137 } 2138 2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2140 { 2141 __mark_reg_known(reg, 0); 2142 reg->type = SCALAR_VALUE; 2143 } 2144 2145 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2146 struct bpf_reg_state *regs, u32 regno) 2147 { 2148 if (WARN_ON(regno >= MAX_BPF_REG)) { 2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2150 /* Something bad happened, let's kill all regs */ 2151 for (regno = 0; regno < MAX_BPF_REG; regno++) 2152 __mark_reg_not_init(env, regs + regno); 2153 return; 2154 } 2155 __mark_reg_known_zero(regs + regno); 2156 } 2157 2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2159 bool first_slot, int dynptr_id) 2160 { 2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2164 */ 2165 __mark_reg_known_zero(reg); 2166 reg->type = CONST_PTR_TO_DYNPTR; 2167 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2168 reg->id = dynptr_id; 2169 reg->dynptr.type = type; 2170 reg->dynptr.first_slot = first_slot; 2171 } 2172 2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2174 { 2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2176 const struct bpf_map *map = reg->map_ptr; 2177 2178 if (map->inner_map_meta) { 2179 reg->type = CONST_PTR_TO_MAP; 2180 reg->map_ptr = map->inner_map_meta; 2181 /* transfer reg's id which is unique for every map_lookup_elem 2182 * as UID of the inner map. 2183 */ 2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2185 reg->map_uid = reg->id; 2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2187 reg->type = PTR_TO_XDP_SOCK; 2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2190 reg->type = PTR_TO_SOCKET; 2191 } else { 2192 reg->type = PTR_TO_MAP_VALUE; 2193 } 2194 return; 2195 } 2196 2197 reg->type &= ~PTR_MAYBE_NULL; 2198 } 2199 2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2201 struct btf_field_graph_root *ds_head) 2202 { 2203 __mark_reg_known_zero(®s[regno]); 2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2205 regs[regno].btf = ds_head->btf; 2206 regs[regno].btf_id = ds_head->value_btf_id; 2207 regs[regno].off = ds_head->node_offset; 2208 } 2209 2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2211 { 2212 return type_is_pkt_pointer(reg->type); 2213 } 2214 2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2216 { 2217 return reg_is_pkt_pointer(reg) || 2218 reg->type == PTR_TO_PACKET_END; 2219 } 2220 2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2222 { 2223 return base_type(reg->type) == PTR_TO_MEM && 2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2225 } 2226 2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2229 enum bpf_reg_type which) 2230 { 2231 /* The register can already have a range from prior markings. 2232 * This is fine as long as it hasn't been advanced from its 2233 * origin. 2234 */ 2235 return reg->type == which && 2236 reg->id == 0 && 2237 reg->off == 0 && 2238 tnum_equals_const(reg->var_off, 0); 2239 } 2240 2241 /* Reset the min/max bounds of a register */ 2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2243 { 2244 reg->smin_value = S64_MIN; 2245 reg->smax_value = S64_MAX; 2246 reg->umin_value = 0; 2247 reg->umax_value = U64_MAX; 2248 2249 reg->s32_min_value = S32_MIN; 2250 reg->s32_max_value = S32_MAX; 2251 reg->u32_min_value = 0; 2252 reg->u32_max_value = U32_MAX; 2253 } 2254 2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2256 { 2257 reg->smin_value = S64_MIN; 2258 reg->smax_value = S64_MAX; 2259 reg->umin_value = 0; 2260 reg->umax_value = U64_MAX; 2261 } 2262 2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2264 { 2265 reg->s32_min_value = S32_MIN; 2266 reg->s32_max_value = S32_MAX; 2267 reg->u32_min_value = 0; 2268 reg->u32_max_value = U32_MAX; 2269 } 2270 2271 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2272 { 2273 struct tnum var32_off = tnum_subreg(reg->var_off); 2274 2275 /* min signed is max(sign bit) | min(other bits) */ 2276 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2277 var32_off.value | (var32_off.mask & S32_MIN)); 2278 /* max signed is min(sign bit) | max(other bits) */ 2279 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2280 var32_off.value | (var32_off.mask & S32_MAX)); 2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2282 reg->u32_max_value = min(reg->u32_max_value, 2283 (u32)(var32_off.value | var32_off.mask)); 2284 } 2285 2286 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* min signed is max(sign bit) | min(other bits) */ 2289 reg->smin_value = max_t(s64, reg->smin_value, 2290 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2291 /* max signed is min(sign bit) | max(other bits) */ 2292 reg->smax_value = min_t(s64, reg->smax_value, 2293 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2294 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2295 reg->umax_value = min(reg->umax_value, 2296 reg->var_off.value | reg->var_off.mask); 2297 } 2298 2299 static void __update_reg_bounds(struct bpf_reg_state *reg) 2300 { 2301 __update_reg32_bounds(reg); 2302 __update_reg64_bounds(reg); 2303 } 2304 2305 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2307 { 2308 /* Learn sign from signed bounds. 2309 * If we cannot cross the sign boundary, then signed and unsigned bounds 2310 * are the same, so combine. This works even in the negative case, e.g. 2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2312 */ 2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2314 reg->s32_min_value = reg->u32_min_value = 2315 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2316 reg->s32_max_value = reg->u32_max_value = 2317 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2318 return; 2319 } 2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2321 * boundary, so we must be careful. 2322 */ 2323 if ((s32)reg->u32_max_value >= 0) { 2324 /* Positive. We can't learn anything from the smin, but smax 2325 * is positive, hence safe. 2326 */ 2327 reg->s32_min_value = reg->u32_min_value; 2328 reg->s32_max_value = reg->u32_max_value = 2329 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2330 } else if ((s32)reg->u32_min_value < 0) { 2331 /* Negative. We can't learn anything from the smax, but smin 2332 * is negative, hence safe. 2333 */ 2334 reg->s32_min_value = reg->u32_min_value = 2335 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2336 reg->s32_max_value = reg->u32_max_value; 2337 } 2338 } 2339 2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2341 { 2342 /* Learn sign from signed bounds. 2343 * If we cannot cross the sign boundary, then signed and unsigned bounds 2344 * are the same, so combine. This works even in the negative case, e.g. 2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2346 */ 2347 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2349 reg->umin_value); 2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2351 reg->umax_value); 2352 return; 2353 } 2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2355 * boundary, so we must be careful. 2356 */ 2357 if ((s64)reg->umax_value >= 0) { 2358 /* Positive. We can't learn anything from the smin, but smax 2359 * is positive, hence safe. 2360 */ 2361 reg->smin_value = reg->umin_value; 2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2363 reg->umax_value); 2364 } else if ((s64)reg->umin_value < 0) { 2365 /* Negative. We can't learn anything from the smax, but smin 2366 * is negative, hence safe. 2367 */ 2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2369 reg->umin_value); 2370 reg->smax_value = reg->umax_value; 2371 } 2372 } 2373 2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2375 { 2376 __reg32_deduce_bounds(reg); 2377 __reg64_deduce_bounds(reg); 2378 } 2379 2380 /* Attempts to improve var_off based on unsigned min/max information */ 2381 static void __reg_bound_offset(struct bpf_reg_state *reg) 2382 { 2383 struct tnum var64_off = tnum_intersect(reg->var_off, 2384 tnum_range(reg->umin_value, 2385 reg->umax_value)); 2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2387 tnum_range(reg->u32_min_value, 2388 reg->u32_max_value)); 2389 2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2391 } 2392 2393 static void reg_bounds_sync(struct bpf_reg_state *reg) 2394 { 2395 /* We might have learned new bounds from the var_off. */ 2396 __update_reg_bounds(reg); 2397 /* We might have learned something about the sign bit. */ 2398 __reg_deduce_bounds(reg); 2399 /* We might have learned some bits from the bounds. */ 2400 __reg_bound_offset(reg); 2401 /* Intersecting with the old var_off might have improved our bounds 2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2403 * then new var_off is (0; 0x7f...fc) which improves our umax. 2404 */ 2405 __update_reg_bounds(reg); 2406 } 2407 2408 static bool __reg32_bound_s64(s32 a) 2409 { 2410 return a >= 0 && a <= S32_MAX; 2411 } 2412 2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2414 { 2415 reg->umin_value = reg->u32_min_value; 2416 reg->umax_value = reg->u32_max_value; 2417 2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2419 * be positive otherwise set to worse case bounds and refine later 2420 * from tnum. 2421 */ 2422 if (__reg32_bound_s64(reg->s32_min_value) && 2423 __reg32_bound_s64(reg->s32_max_value)) { 2424 reg->smin_value = reg->s32_min_value; 2425 reg->smax_value = reg->s32_max_value; 2426 } else { 2427 reg->smin_value = 0; 2428 reg->smax_value = U32_MAX; 2429 } 2430 } 2431 2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2433 { 2434 /* special case when 64-bit register has upper 32-bit register 2435 * zeroed. Typically happens after zext or <<32, >>32 sequence 2436 * allowing us to use 32-bit bounds directly, 2437 */ 2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2439 __reg_assign_32_into_64(reg); 2440 } else { 2441 /* Otherwise the best we can do is push lower 32bit known and 2442 * unknown bits into register (var_off set from jmp logic) 2443 * then learn as much as possible from the 64-bit tnum 2444 * known and unknown bits. The previous smin/smax bounds are 2445 * invalid here because of jmp32 compare so mark them unknown 2446 * so they do not impact tnum bounds calculation. 2447 */ 2448 __mark_reg64_unbounded(reg); 2449 } 2450 reg_bounds_sync(reg); 2451 } 2452 2453 static bool __reg64_bound_s32(s64 a) 2454 { 2455 return a >= S32_MIN && a <= S32_MAX; 2456 } 2457 2458 static bool __reg64_bound_u32(u64 a) 2459 { 2460 return a >= U32_MIN && a <= U32_MAX; 2461 } 2462 2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2464 { 2465 __mark_reg32_unbounded(reg); 2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2467 reg->s32_min_value = (s32)reg->smin_value; 2468 reg->s32_max_value = (s32)reg->smax_value; 2469 } 2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2471 reg->u32_min_value = (u32)reg->umin_value; 2472 reg->u32_max_value = (u32)reg->umax_value; 2473 } 2474 reg_bounds_sync(reg); 2475 } 2476 2477 /* Mark a register as having a completely unknown (scalar) value. */ 2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2479 struct bpf_reg_state *reg) 2480 { 2481 /* 2482 * Clear type, off, and union(map_ptr, range) and 2483 * padding between 'type' and union 2484 */ 2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2486 reg->type = SCALAR_VALUE; 2487 reg->id = 0; 2488 reg->ref_obj_id = 0; 2489 reg->var_off = tnum_unknown; 2490 reg->frameno = 0; 2491 reg->precise = !env->bpf_capable; 2492 __mark_reg_unbounded(reg); 2493 } 2494 2495 static void mark_reg_unknown(struct bpf_verifier_env *env, 2496 struct bpf_reg_state *regs, u32 regno) 2497 { 2498 if (WARN_ON(regno >= MAX_BPF_REG)) { 2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2500 /* Something bad happened, let's kill all regs except FP */ 2501 for (regno = 0; regno < BPF_REG_FP; regno++) 2502 __mark_reg_not_init(env, regs + regno); 2503 return; 2504 } 2505 __mark_reg_unknown(env, regs + regno); 2506 } 2507 2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2509 struct bpf_reg_state *reg) 2510 { 2511 __mark_reg_unknown(env, reg); 2512 reg->type = NOT_INIT; 2513 } 2514 2515 static void mark_reg_not_init(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *regs, u32 regno) 2517 { 2518 if (WARN_ON(regno >= MAX_BPF_REG)) { 2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2520 /* Something bad happened, let's kill all regs except FP */ 2521 for (regno = 0; regno < BPF_REG_FP; regno++) 2522 __mark_reg_not_init(env, regs + regno); 2523 return; 2524 } 2525 __mark_reg_not_init(env, regs + regno); 2526 } 2527 2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2529 struct bpf_reg_state *regs, u32 regno, 2530 enum bpf_reg_type reg_type, 2531 struct btf *btf, u32 btf_id, 2532 enum bpf_type_flag flag) 2533 { 2534 if (reg_type == SCALAR_VALUE) { 2535 mark_reg_unknown(env, regs, regno); 2536 return; 2537 } 2538 mark_reg_known_zero(env, regs, regno); 2539 regs[regno].type = PTR_TO_BTF_ID | flag; 2540 regs[regno].btf = btf; 2541 regs[regno].btf_id = btf_id; 2542 if (type_may_be_null(flag)) 2543 regs[regno].id = ++env->id_gen; 2544 } 2545 2546 #define DEF_NOT_SUBREG (0) 2547 static void init_reg_state(struct bpf_verifier_env *env, 2548 struct bpf_func_state *state) 2549 { 2550 struct bpf_reg_state *regs = state->regs; 2551 int i; 2552 2553 for (i = 0; i < MAX_BPF_REG; i++) { 2554 mark_reg_not_init(env, regs, i); 2555 regs[i].live = REG_LIVE_NONE; 2556 regs[i].parent = NULL; 2557 regs[i].subreg_def = DEF_NOT_SUBREG; 2558 } 2559 2560 /* frame pointer */ 2561 regs[BPF_REG_FP].type = PTR_TO_STACK; 2562 mark_reg_known_zero(env, regs, BPF_REG_FP); 2563 regs[BPF_REG_FP].frameno = state->frameno; 2564 } 2565 2566 #define BPF_MAIN_FUNC (-1) 2567 static void init_func_state(struct bpf_verifier_env *env, 2568 struct bpf_func_state *state, 2569 int callsite, int frameno, int subprogno) 2570 { 2571 state->callsite = callsite; 2572 state->frameno = frameno; 2573 state->subprogno = subprogno; 2574 state->callback_ret_range = tnum_range(0, 0); 2575 init_reg_state(env, state); 2576 mark_verifier_state_scratched(env); 2577 } 2578 2579 /* Similar to push_stack(), but for async callbacks */ 2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2581 int insn_idx, int prev_insn_idx, 2582 int subprog) 2583 { 2584 struct bpf_verifier_stack_elem *elem; 2585 struct bpf_func_state *frame; 2586 2587 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2588 if (!elem) 2589 goto err; 2590 2591 elem->insn_idx = insn_idx; 2592 elem->prev_insn_idx = prev_insn_idx; 2593 elem->next = env->head; 2594 elem->log_pos = env->log.end_pos; 2595 env->head = elem; 2596 env->stack_size++; 2597 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2598 verbose(env, 2599 "The sequence of %d jumps is too complex for async cb.\n", 2600 env->stack_size); 2601 goto err; 2602 } 2603 /* Unlike push_stack() do not copy_verifier_state(). 2604 * The caller state doesn't matter. 2605 * This is async callback. It starts in a fresh stack. 2606 * Initialize it similar to do_check_common(). 2607 */ 2608 elem->st.branches = 1; 2609 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2610 if (!frame) 2611 goto err; 2612 init_func_state(env, frame, 2613 BPF_MAIN_FUNC /* callsite */, 2614 0 /* frameno within this callchain */, 2615 subprog /* subprog number within this prog */); 2616 elem->st.frame[0] = frame; 2617 return &elem->st; 2618 err: 2619 free_verifier_state(env->cur_state, true); 2620 env->cur_state = NULL; 2621 /* pop all elements and return */ 2622 while (!pop_stack(env, NULL, NULL, false)); 2623 return NULL; 2624 } 2625 2626 2627 enum reg_arg_type { 2628 SRC_OP, /* register is used as source operand */ 2629 DST_OP, /* register is used as destination operand */ 2630 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2631 }; 2632 2633 static int cmp_subprogs(const void *a, const void *b) 2634 { 2635 return ((struct bpf_subprog_info *)a)->start - 2636 ((struct bpf_subprog_info *)b)->start; 2637 } 2638 2639 static int find_subprog(struct bpf_verifier_env *env, int off) 2640 { 2641 struct bpf_subprog_info *p; 2642 2643 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2644 sizeof(env->subprog_info[0]), cmp_subprogs); 2645 if (!p) 2646 return -ENOENT; 2647 return p - env->subprog_info; 2648 2649 } 2650 2651 static int add_subprog(struct bpf_verifier_env *env, int off) 2652 { 2653 int insn_cnt = env->prog->len; 2654 int ret; 2655 2656 if (off >= insn_cnt || off < 0) { 2657 verbose(env, "call to invalid destination\n"); 2658 return -EINVAL; 2659 } 2660 ret = find_subprog(env, off); 2661 if (ret >= 0) 2662 return ret; 2663 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2664 verbose(env, "too many subprograms\n"); 2665 return -E2BIG; 2666 } 2667 /* determine subprog starts. The end is one before the next starts */ 2668 env->subprog_info[env->subprog_cnt++].start = off; 2669 sort(env->subprog_info, env->subprog_cnt, 2670 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2671 return env->subprog_cnt - 1; 2672 } 2673 2674 #define MAX_KFUNC_DESCS 256 2675 #define MAX_KFUNC_BTFS 256 2676 2677 struct bpf_kfunc_desc { 2678 struct btf_func_model func_model; 2679 u32 func_id; 2680 s32 imm; 2681 u16 offset; 2682 unsigned long addr; 2683 }; 2684 2685 struct bpf_kfunc_btf { 2686 struct btf *btf; 2687 struct module *module; 2688 u16 offset; 2689 }; 2690 2691 struct bpf_kfunc_desc_tab { 2692 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2693 * verification. JITs do lookups by bpf_insn, where func_id may not be 2694 * available, therefore at the end of verification do_misc_fixups() 2695 * sorts this by imm and offset. 2696 */ 2697 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2698 u32 nr_descs; 2699 }; 2700 2701 struct bpf_kfunc_btf_tab { 2702 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2703 u32 nr_descs; 2704 }; 2705 2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2707 { 2708 const struct bpf_kfunc_desc *d0 = a; 2709 const struct bpf_kfunc_desc *d1 = b; 2710 2711 /* func_id is not greater than BTF_MAX_TYPE */ 2712 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2713 } 2714 2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2716 { 2717 const struct bpf_kfunc_btf *d0 = a; 2718 const struct bpf_kfunc_btf *d1 = b; 2719 2720 return d0->offset - d1->offset; 2721 } 2722 2723 static const struct bpf_kfunc_desc * 2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2725 { 2726 struct bpf_kfunc_desc desc = { 2727 .func_id = func_id, 2728 .offset = offset, 2729 }; 2730 struct bpf_kfunc_desc_tab *tab; 2731 2732 tab = prog->aux->kfunc_tab; 2733 return bsearch(&desc, tab->descs, tab->nr_descs, 2734 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2735 } 2736 2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2738 u16 btf_fd_idx, u8 **func_addr) 2739 { 2740 const struct bpf_kfunc_desc *desc; 2741 2742 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2743 if (!desc) 2744 return -EFAULT; 2745 2746 *func_addr = (u8 *)desc->addr; 2747 return 0; 2748 } 2749 2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2751 s16 offset) 2752 { 2753 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2754 struct bpf_kfunc_btf_tab *tab; 2755 struct bpf_kfunc_btf *b; 2756 struct module *mod; 2757 struct btf *btf; 2758 int btf_fd; 2759 2760 tab = env->prog->aux->kfunc_btf_tab; 2761 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2762 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2763 if (!b) { 2764 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2765 verbose(env, "too many different module BTFs\n"); 2766 return ERR_PTR(-E2BIG); 2767 } 2768 2769 if (bpfptr_is_null(env->fd_array)) { 2770 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2771 return ERR_PTR(-EPROTO); 2772 } 2773 2774 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2775 offset * sizeof(btf_fd), 2776 sizeof(btf_fd))) 2777 return ERR_PTR(-EFAULT); 2778 2779 btf = btf_get_by_fd(btf_fd); 2780 if (IS_ERR(btf)) { 2781 verbose(env, "invalid module BTF fd specified\n"); 2782 return btf; 2783 } 2784 2785 if (!btf_is_module(btf)) { 2786 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2787 btf_put(btf); 2788 return ERR_PTR(-EINVAL); 2789 } 2790 2791 mod = btf_try_get_module(btf); 2792 if (!mod) { 2793 btf_put(btf); 2794 return ERR_PTR(-ENXIO); 2795 } 2796 2797 b = &tab->descs[tab->nr_descs++]; 2798 b->btf = btf; 2799 b->module = mod; 2800 b->offset = offset; 2801 2802 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2803 kfunc_btf_cmp_by_off, NULL); 2804 } 2805 return b->btf; 2806 } 2807 2808 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2809 { 2810 if (!tab) 2811 return; 2812 2813 while (tab->nr_descs--) { 2814 module_put(tab->descs[tab->nr_descs].module); 2815 btf_put(tab->descs[tab->nr_descs].btf); 2816 } 2817 kfree(tab); 2818 } 2819 2820 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2821 { 2822 if (offset) { 2823 if (offset < 0) { 2824 /* In the future, this can be allowed to increase limit 2825 * of fd index into fd_array, interpreted as u16. 2826 */ 2827 verbose(env, "negative offset disallowed for kernel module function call\n"); 2828 return ERR_PTR(-EINVAL); 2829 } 2830 2831 return __find_kfunc_desc_btf(env, offset); 2832 } 2833 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2834 } 2835 2836 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2837 { 2838 const struct btf_type *func, *func_proto; 2839 struct bpf_kfunc_btf_tab *btf_tab; 2840 struct bpf_kfunc_desc_tab *tab; 2841 struct bpf_prog_aux *prog_aux; 2842 struct bpf_kfunc_desc *desc; 2843 const char *func_name; 2844 struct btf *desc_btf; 2845 unsigned long call_imm; 2846 unsigned long addr; 2847 int err; 2848 2849 prog_aux = env->prog->aux; 2850 tab = prog_aux->kfunc_tab; 2851 btf_tab = prog_aux->kfunc_btf_tab; 2852 if (!tab) { 2853 if (!btf_vmlinux) { 2854 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2855 return -ENOTSUPP; 2856 } 2857 2858 if (!env->prog->jit_requested) { 2859 verbose(env, "JIT is required for calling kernel function\n"); 2860 return -ENOTSUPP; 2861 } 2862 2863 if (!bpf_jit_supports_kfunc_call()) { 2864 verbose(env, "JIT does not support calling kernel function\n"); 2865 return -ENOTSUPP; 2866 } 2867 2868 if (!env->prog->gpl_compatible) { 2869 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2870 return -EINVAL; 2871 } 2872 2873 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2874 if (!tab) 2875 return -ENOMEM; 2876 prog_aux->kfunc_tab = tab; 2877 } 2878 2879 /* func_id == 0 is always invalid, but instead of returning an error, be 2880 * conservative and wait until the code elimination pass before returning 2881 * error, so that invalid calls that get pruned out can be in BPF programs 2882 * loaded from userspace. It is also required that offset be untouched 2883 * for such calls. 2884 */ 2885 if (!func_id && !offset) 2886 return 0; 2887 2888 if (!btf_tab && offset) { 2889 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2890 if (!btf_tab) 2891 return -ENOMEM; 2892 prog_aux->kfunc_btf_tab = btf_tab; 2893 } 2894 2895 desc_btf = find_kfunc_desc_btf(env, offset); 2896 if (IS_ERR(desc_btf)) { 2897 verbose(env, "failed to find BTF for kernel function\n"); 2898 return PTR_ERR(desc_btf); 2899 } 2900 2901 if (find_kfunc_desc(env->prog, func_id, offset)) 2902 return 0; 2903 2904 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2905 verbose(env, "too many different kernel function calls\n"); 2906 return -E2BIG; 2907 } 2908 2909 func = btf_type_by_id(desc_btf, func_id); 2910 if (!func || !btf_type_is_func(func)) { 2911 verbose(env, "kernel btf_id %u is not a function\n", 2912 func_id); 2913 return -EINVAL; 2914 } 2915 func_proto = btf_type_by_id(desc_btf, func->type); 2916 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2917 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2918 func_id); 2919 return -EINVAL; 2920 } 2921 2922 func_name = btf_name_by_offset(desc_btf, func->name_off); 2923 addr = kallsyms_lookup_name(func_name); 2924 if (!addr) { 2925 verbose(env, "cannot find address for kernel function %s\n", 2926 func_name); 2927 return -EINVAL; 2928 } 2929 specialize_kfunc(env, func_id, offset, &addr); 2930 2931 if (bpf_jit_supports_far_kfunc_call()) { 2932 call_imm = func_id; 2933 } else { 2934 call_imm = BPF_CALL_IMM(addr); 2935 /* Check whether the relative offset overflows desc->imm */ 2936 if ((unsigned long)(s32)call_imm != call_imm) { 2937 verbose(env, "address of kernel function %s is out of range\n", 2938 func_name); 2939 return -EINVAL; 2940 } 2941 } 2942 2943 if (bpf_dev_bound_kfunc_id(func_id)) { 2944 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2945 if (err) 2946 return err; 2947 } 2948 2949 desc = &tab->descs[tab->nr_descs++]; 2950 desc->func_id = func_id; 2951 desc->imm = call_imm; 2952 desc->offset = offset; 2953 desc->addr = addr; 2954 err = btf_distill_func_proto(&env->log, desc_btf, 2955 func_proto, func_name, 2956 &desc->func_model); 2957 if (!err) 2958 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2959 kfunc_desc_cmp_by_id_off, NULL); 2960 return err; 2961 } 2962 2963 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2964 { 2965 const struct bpf_kfunc_desc *d0 = a; 2966 const struct bpf_kfunc_desc *d1 = b; 2967 2968 if (d0->imm != d1->imm) 2969 return d0->imm < d1->imm ? -1 : 1; 2970 if (d0->offset != d1->offset) 2971 return d0->offset < d1->offset ? -1 : 1; 2972 return 0; 2973 } 2974 2975 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2976 { 2977 struct bpf_kfunc_desc_tab *tab; 2978 2979 tab = prog->aux->kfunc_tab; 2980 if (!tab) 2981 return; 2982 2983 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2984 kfunc_desc_cmp_by_imm_off, NULL); 2985 } 2986 2987 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2988 { 2989 return !!prog->aux->kfunc_tab; 2990 } 2991 2992 const struct btf_func_model * 2993 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2994 const struct bpf_insn *insn) 2995 { 2996 const struct bpf_kfunc_desc desc = { 2997 .imm = insn->imm, 2998 .offset = insn->off, 2999 }; 3000 const struct bpf_kfunc_desc *res; 3001 struct bpf_kfunc_desc_tab *tab; 3002 3003 tab = prog->aux->kfunc_tab; 3004 res = bsearch(&desc, tab->descs, tab->nr_descs, 3005 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3006 3007 return res ? &res->func_model : NULL; 3008 } 3009 3010 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3011 { 3012 struct bpf_subprog_info *subprog = env->subprog_info; 3013 struct bpf_insn *insn = env->prog->insnsi; 3014 int i, ret, insn_cnt = env->prog->len; 3015 3016 /* Add entry function. */ 3017 ret = add_subprog(env, 0); 3018 if (ret) 3019 return ret; 3020 3021 for (i = 0; i < insn_cnt; i++, insn++) { 3022 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3023 !bpf_pseudo_kfunc_call(insn)) 3024 continue; 3025 3026 if (!env->bpf_capable) { 3027 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3028 return -EPERM; 3029 } 3030 3031 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3032 ret = add_subprog(env, i + insn->imm + 1); 3033 else 3034 ret = add_kfunc_call(env, insn->imm, insn->off); 3035 3036 if (ret < 0) 3037 return ret; 3038 } 3039 3040 /* Add a fake 'exit' subprog which could simplify subprog iteration 3041 * logic. 'subprog_cnt' should not be increased. 3042 */ 3043 subprog[env->subprog_cnt].start = insn_cnt; 3044 3045 if (env->log.level & BPF_LOG_LEVEL2) 3046 for (i = 0; i < env->subprog_cnt; i++) 3047 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3048 3049 return 0; 3050 } 3051 3052 static int check_subprogs(struct bpf_verifier_env *env) 3053 { 3054 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3055 struct bpf_subprog_info *subprog = env->subprog_info; 3056 struct bpf_insn *insn = env->prog->insnsi; 3057 int insn_cnt = env->prog->len; 3058 3059 /* now check that all jumps are within the same subprog */ 3060 subprog_start = subprog[cur_subprog].start; 3061 subprog_end = subprog[cur_subprog + 1].start; 3062 for (i = 0; i < insn_cnt; i++) { 3063 u8 code = insn[i].code; 3064 3065 if (code == (BPF_JMP | BPF_CALL) && 3066 insn[i].src_reg == 0 && 3067 insn[i].imm == BPF_FUNC_tail_call) 3068 subprog[cur_subprog].has_tail_call = true; 3069 if (BPF_CLASS(code) == BPF_LD && 3070 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3071 subprog[cur_subprog].has_ld_abs = true; 3072 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3073 goto next; 3074 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3075 goto next; 3076 if (code == (BPF_JMP32 | BPF_JA)) 3077 off = i + insn[i].imm + 1; 3078 else 3079 off = i + insn[i].off + 1; 3080 if (off < subprog_start || off >= subprog_end) { 3081 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3082 return -EINVAL; 3083 } 3084 next: 3085 if (i == subprog_end - 1) { 3086 /* to avoid fall-through from one subprog into another 3087 * the last insn of the subprog should be either exit 3088 * or unconditional jump back 3089 */ 3090 if (code != (BPF_JMP | BPF_EXIT) && 3091 code != (BPF_JMP32 | BPF_JA) && 3092 code != (BPF_JMP | BPF_JA)) { 3093 verbose(env, "last insn is not an exit or jmp\n"); 3094 return -EINVAL; 3095 } 3096 subprog_start = subprog_end; 3097 cur_subprog++; 3098 if (cur_subprog < env->subprog_cnt) 3099 subprog_end = subprog[cur_subprog + 1].start; 3100 } 3101 } 3102 return 0; 3103 } 3104 3105 /* Parentage chain of this register (or stack slot) should take care of all 3106 * issues like callee-saved registers, stack slot allocation time, etc. 3107 */ 3108 static int mark_reg_read(struct bpf_verifier_env *env, 3109 const struct bpf_reg_state *state, 3110 struct bpf_reg_state *parent, u8 flag) 3111 { 3112 bool writes = parent == state->parent; /* Observe write marks */ 3113 int cnt = 0; 3114 3115 while (parent) { 3116 /* if read wasn't screened by an earlier write ... */ 3117 if (writes && state->live & REG_LIVE_WRITTEN) 3118 break; 3119 if (parent->live & REG_LIVE_DONE) { 3120 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3121 reg_type_str(env, parent->type), 3122 parent->var_off.value, parent->off); 3123 return -EFAULT; 3124 } 3125 /* The first condition is more likely to be true than the 3126 * second, checked it first. 3127 */ 3128 if ((parent->live & REG_LIVE_READ) == flag || 3129 parent->live & REG_LIVE_READ64) 3130 /* The parentage chain never changes and 3131 * this parent was already marked as LIVE_READ. 3132 * There is no need to keep walking the chain again and 3133 * keep re-marking all parents as LIVE_READ. 3134 * This case happens when the same register is read 3135 * multiple times without writes into it in-between. 3136 * Also, if parent has the stronger REG_LIVE_READ64 set, 3137 * then no need to set the weak REG_LIVE_READ32. 3138 */ 3139 break; 3140 /* ... then we depend on parent's value */ 3141 parent->live |= flag; 3142 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3143 if (flag == REG_LIVE_READ64) 3144 parent->live &= ~REG_LIVE_READ32; 3145 state = parent; 3146 parent = state->parent; 3147 writes = true; 3148 cnt++; 3149 } 3150 3151 if (env->longest_mark_read_walk < cnt) 3152 env->longest_mark_read_walk = cnt; 3153 return 0; 3154 } 3155 3156 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3157 { 3158 struct bpf_func_state *state = func(env, reg); 3159 int spi, ret; 3160 3161 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3162 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3163 * check_kfunc_call. 3164 */ 3165 if (reg->type == CONST_PTR_TO_DYNPTR) 3166 return 0; 3167 spi = dynptr_get_spi(env, reg); 3168 if (spi < 0) 3169 return spi; 3170 /* Caller ensures dynptr is valid and initialized, which means spi is in 3171 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3172 * read. 3173 */ 3174 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3175 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3176 if (ret) 3177 return ret; 3178 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3179 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3180 } 3181 3182 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3183 int spi, int nr_slots) 3184 { 3185 struct bpf_func_state *state = func(env, reg); 3186 int err, i; 3187 3188 for (i = 0; i < nr_slots; i++) { 3189 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3190 3191 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3192 if (err) 3193 return err; 3194 3195 mark_stack_slot_scratched(env, spi - i); 3196 } 3197 3198 return 0; 3199 } 3200 3201 /* This function is supposed to be used by the following 32-bit optimization 3202 * code only. It returns TRUE if the source or destination register operates 3203 * on 64-bit, otherwise return FALSE. 3204 */ 3205 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3206 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3207 { 3208 u8 code, class, op; 3209 3210 code = insn->code; 3211 class = BPF_CLASS(code); 3212 op = BPF_OP(code); 3213 if (class == BPF_JMP) { 3214 /* BPF_EXIT for "main" will reach here. Return TRUE 3215 * conservatively. 3216 */ 3217 if (op == BPF_EXIT) 3218 return true; 3219 if (op == BPF_CALL) { 3220 /* BPF to BPF call will reach here because of marking 3221 * caller saved clobber with DST_OP_NO_MARK for which we 3222 * don't care the register def because they are anyway 3223 * marked as NOT_INIT already. 3224 */ 3225 if (insn->src_reg == BPF_PSEUDO_CALL) 3226 return false; 3227 /* Helper call will reach here because of arg type 3228 * check, conservatively return TRUE. 3229 */ 3230 if (t == SRC_OP) 3231 return true; 3232 3233 return false; 3234 } 3235 } 3236 3237 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3238 return false; 3239 3240 if (class == BPF_ALU64 || class == BPF_JMP || 3241 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3242 return true; 3243 3244 if (class == BPF_ALU || class == BPF_JMP32) 3245 return false; 3246 3247 if (class == BPF_LDX) { 3248 if (t != SRC_OP) 3249 return BPF_SIZE(code) == BPF_DW; 3250 /* LDX source must be ptr. */ 3251 return true; 3252 } 3253 3254 if (class == BPF_STX) { 3255 /* BPF_STX (including atomic variants) has multiple source 3256 * operands, one of which is a ptr. Check whether the caller is 3257 * asking about it. 3258 */ 3259 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3260 return true; 3261 return BPF_SIZE(code) == BPF_DW; 3262 } 3263 3264 if (class == BPF_LD) { 3265 u8 mode = BPF_MODE(code); 3266 3267 /* LD_IMM64 */ 3268 if (mode == BPF_IMM) 3269 return true; 3270 3271 /* Both LD_IND and LD_ABS return 32-bit data. */ 3272 if (t != SRC_OP) 3273 return false; 3274 3275 /* Implicit ctx ptr. */ 3276 if (regno == BPF_REG_6) 3277 return true; 3278 3279 /* Explicit source could be any width. */ 3280 return true; 3281 } 3282 3283 if (class == BPF_ST) 3284 /* The only source register for BPF_ST is a ptr. */ 3285 return true; 3286 3287 /* Conservatively return true at default. */ 3288 return true; 3289 } 3290 3291 /* Return the regno defined by the insn, or -1. */ 3292 static int insn_def_regno(const struct bpf_insn *insn) 3293 { 3294 switch (BPF_CLASS(insn->code)) { 3295 case BPF_JMP: 3296 case BPF_JMP32: 3297 case BPF_ST: 3298 return -1; 3299 case BPF_STX: 3300 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3301 (insn->imm & BPF_FETCH)) { 3302 if (insn->imm == BPF_CMPXCHG) 3303 return BPF_REG_0; 3304 else 3305 return insn->src_reg; 3306 } else { 3307 return -1; 3308 } 3309 default: 3310 return insn->dst_reg; 3311 } 3312 } 3313 3314 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3315 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3316 { 3317 int dst_reg = insn_def_regno(insn); 3318 3319 if (dst_reg == -1) 3320 return false; 3321 3322 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3323 } 3324 3325 static void mark_insn_zext(struct bpf_verifier_env *env, 3326 struct bpf_reg_state *reg) 3327 { 3328 s32 def_idx = reg->subreg_def; 3329 3330 if (def_idx == DEF_NOT_SUBREG) 3331 return; 3332 3333 env->insn_aux_data[def_idx - 1].zext_dst = true; 3334 /* The dst will be zero extended, so won't be sub-register anymore. */ 3335 reg->subreg_def = DEF_NOT_SUBREG; 3336 } 3337 3338 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3339 enum reg_arg_type t) 3340 { 3341 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3342 struct bpf_reg_state *reg; 3343 bool rw64; 3344 3345 if (regno >= MAX_BPF_REG) { 3346 verbose(env, "R%d is invalid\n", regno); 3347 return -EINVAL; 3348 } 3349 3350 mark_reg_scratched(env, regno); 3351 3352 reg = ®s[regno]; 3353 rw64 = is_reg64(env, insn, regno, reg, t); 3354 if (t == SRC_OP) { 3355 /* check whether register used as source operand can be read */ 3356 if (reg->type == NOT_INIT) { 3357 verbose(env, "R%d !read_ok\n", regno); 3358 return -EACCES; 3359 } 3360 /* We don't need to worry about FP liveness because it's read-only */ 3361 if (regno == BPF_REG_FP) 3362 return 0; 3363 3364 if (rw64) 3365 mark_insn_zext(env, reg); 3366 3367 return mark_reg_read(env, reg, reg->parent, 3368 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3369 } else { 3370 /* check whether register used as dest operand can be written to */ 3371 if (regno == BPF_REG_FP) { 3372 verbose(env, "frame pointer is read only\n"); 3373 return -EACCES; 3374 } 3375 reg->live |= REG_LIVE_WRITTEN; 3376 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3377 if (t == DST_OP) 3378 mark_reg_unknown(env, regs, regno); 3379 } 3380 return 0; 3381 } 3382 3383 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3384 enum reg_arg_type t) 3385 { 3386 struct bpf_verifier_state *vstate = env->cur_state; 3387 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3388 3389 return __check_reg_arg(env, state->regs, regno, t); 3390 } 3391 3392 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3393 { 3394 env->insn_aux_data[idx].jmp_point = true; 3395 } 3396 3397 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3398 { 3399 return env->insn_aux_data[insn_idx].jmp_point; 3400 } 3401 3402 /* for any branch, call, exit record the history of jmps in the given state */ 3403 static int push_jmp_history(struct bpf_verifier_env *env, 3404 struct bpf_verifier_state *cur) 3405 { 3406 u32 cnt = cur->jmp_history_cnt; 3407 struct bpf_idx_pair *p; 3408 size_t alloc_size; 3409 3410 if (!is_jmp_point(env, env->insn_idx)) 3411 return 0; 3412 3413 cnt++; 3414 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3415 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3416 if (!p) 3417 return -ENOMEM; 3418 p[cnt - 1].idx = env->insn_idx; 3419 p[cnt - 1].prev_idx = env->prev_insn_idx; 3420 cur->jmp_history = p; 3421 cur->jmp_history_cnt = cnt; 3422 return 0; 3423 } 3424 3425 /* Backtrack one insn at a time. If idx is not at the top of recorded 3426 * history then previous instruction came from straight line execution. 3427 * Return -ENOENT if we exhausted all instructions within given state. 3428 * 3429 * It's legal to have a bit of a looping with the same starting and ending 3430 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3431 * instruction index is the same as state's first_idx doesn't mean we are 3432 * done. If there is still some jump history left, we should keep going. We 3433 * need to take into account that we might have a jump history between given 3434 * state's parent and itself, due to checkpointing. In this case, we'll have 3435 * history entry recording a jump from last instruction of parent state and 3436 * first instruction of given state. 3437 */ 3438 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3439 u32 *history) 3440 { 3441 u32 cnt = *history; 3442 3443 if (i == st->first_insn_idx) { 3444 if (cnt == 0) 3445 return -ENOENT; 3446 if (cnt == 1 && st->jmp_history[0].idx == i) 3447 return -ENOENT; 3448 } 3449 3450 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3451 i = st->jmp_history[cnt - 1].prev_idx; 3452 (*history)--; 3453 } else { 3454 i--; 3455 } 3456 return i; 3457 } 3458 3459 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3460 { 3461 const struct btf_type *func; 3462 struct btf *desc_btf; 3463 3464 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3465 return NULL; 3466 3467 desc_btf = find_kfunc_desc_btf(data, insn->off); 3468 if (IS_ERR(desc_btf)) 3469 return "<error>"; 3470 3471 func = btf_type_by_id(desc_btf, insn->imm); 3472 return btf_name_by_offset(desc_btf, func->name_off); 3473 } 3474 3475 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3476 { 3477 bt->frame = frame; 3478 } 3479 3480 static inline void bt_reset(struct backtrack_state *bt) 3481 { 3482 struct bpf_verifier_env *env = bt->env; 3483 3484 memset(bt, 0, sizeof(*bt)); 3485 bt->env = env; 3486 } 3487 3488 static inline u32 bt_empty(struct backtrack_state *bt) 3489 { 3490 u64 mask = 0; 3491 int i; 3492 3493 for (i = 0; i <= bt->frame; i++) 3494 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3495 3496 return mask == 0; 3497 } 3498 3499 static inline int bt_subprog_enter(struct backtrack_state *bt) 3500 { 3501 if (bt->frame == MAX_CALL_FRAMES - 1) { 3502 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3503 WARN_ONCE(1, "verifier backtracking bug"); 3504 return -EFAULT; 3505 } 3506 bt->frame++; 3507 return 0; 3508 } 3509 3510 static inline int bt_subprog_exit(struct backtrack_state *bt) 3511 { 3512 if (bt->frame == 0) { 3513 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3514 WARN_ONCE(1, "verifier backtracking bug"); 3515 return -EFAULT; 3516 } 3517 bt->frame--; 3518 return 0; 3519 } 3520 3521 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3522 { 3523 bt->reg_masks[frame] |= 1 << reg; 3524 } 3525 3526 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3527 { 3528 bt->reg_masks[frame] &= ~(1 << reg); 3529 } 3530 3531 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3532 { 3533 bt_set_frame_reg(bt, bt->frame, reg); 3534 } 3535 3536 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3537 { 3538 bt_clear_frame_reg(bt, bt->frame, reg); 3539 } 3540 3541 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3542 { 3543 bt->stack_masks[frame] |= 1ull << slot; 3544 } 3545 3546 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3547 { 3548 bt->stack_masks[frame] &= ~(1ull << slot); 3549 } 3550 3551 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3552 { 3553 bt_set_frame_slot(bt, bt->frame, slot); 3554 } 3555 3556 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3557 { 3558 bt_clear_frame_slot(bt, bt->frame, slot); 3559 } 3560 3561 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3562 { 3563 return bt->reg_masks[frame]; 3564 } 3565 3566 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3567 { 3568 return bt->reg_masks[bt->frame]; 3569 } 3570 3571 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3572 { 3573 return bt->stack_masks[frame]; 3574 } 3575 3576 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3577 { 3578 return bt->stack_masks[bt->frame]; 3579 } 3580 3581 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3582 { 3583 return bt->reg_masks[bt->frame] & (1 << reg); 3584 } 3585 3586 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3587 { 3588 return bt->stack_masks[bt->frame] & (1ull << slot); 3589 } 3590 3591 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3592 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3593 { 3594 DECLARE_BITMAP(mask, 64); 3595 bool first = true; 3596 int i, n; 3597 3598 buf[0] = '\0'; 3599 3600 bitmap_from_u64(mask, reg_mask); 3601 for_each_set_bit(i, mask, 32) { 3602 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3603 first = false; 3604 buf += n; 3605 buf_sz -= n; 3606 if (buf_sz < 0) 3607 break; 3608 } 3609 } 3610 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3611 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3612 { 3613 DECLARE_BITMAP(mask, 64); 3614 bool first = true; 3615 int i, n; 3616 3617 buf[0] = '\0'; 3618 3619 bitmap_from_u64(mask, stack_mask); 3620 for_each_set_bit(i, mask, 64) { 3621 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3622 first = false; 3623 buf += n; 3624 buf_sz -= n; 3625 if (buf_sz < 0) 3626 break; 3627 } 3628 } 3629 3630 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3631 3632 /* For given verifier state backtrack_insn() is called from the last insn to 3633 * the first insn. Its purpose is to compute a bitmask of registers and 3634 * stack slots that needs precision in the parent verifier state. 3635 * 3636 * @idx is an index of the instruction we are currently processing; 3637 * @subseq_idx is an index of the subsequent instruction that: 3638 * - *would be* executed next, if jump history is viewed in forward order; 3639 * - *was* processed previously during backtracking. 3640 */ 3641 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3642 struct backtrack_state *bt) 3643 { 3644 const struct bpf_insn_cbs cbs = { 3645 .cb_call = disasm_kfunc_name, 3646 .cb_print = verbose, 3647 .private_data = env, 3648 }; 3649 struct bpf_insn *insn = env->prog->insnsi + idx; 3650 u8 class = BPF_CLASS(insn->code); 3651 u8 opcode = BPF_OP(insn->code); 3652 u8 mode = BPF_MODE(insn->code); 3653 u32 dreg = insn->dst_reg; 3654 u32 sreg = insn->src_reg; 3655 u32 spi, i; 3656 3657 if (insn->code == 0) 3658 return 0; 3659 if (env->log.level & BPF_LOG_LEVEL2) { 3660 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3661 verbose(env, "mark_precise: frame%d: regs=%s ", 3662 bt->frame, env->tmp_str_buf); 3663 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3664 verbose(env, "stack=%s before ", env->tmp_str_buf); 3665 verbose(env, "%d: ", idx); 3666 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3667 } 3668 3669 if (class == BPF_ALU || class == BPF_ALU64) { 3670 if (!bt_is_reg_set(bt, dreg)) 3671 return 0; 3672 if (opcode == BPF_END || opcode == BPF_NEG) { 3673 /* sreg is reserved and unused 3674 * dreg still need precision before this insn 3675 */ 3676 return 0; 3677 } else if (opcode == BPF_MOV) { 3678 if (BPF_SRC(insn->code) == BPF_X) { 3679 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3680 * dreg needs precision after this insn 3681 * sreg needs precision before this insn 3682 */ 3683 bt_clear_reg(bt, dreg); 3684 if (sreg != BPF_REG_FP) 3685 bt_set_reg(bt, sreg); 3686 } else { 3687 /* dreg = K 3688 * dreg needs precision after this insn. 3689 * Corresponding register is already marked 3690 * as precise=true in this verifier state. 3691 * No further markings in parent are necessary 3692 */ 3693 bt_clear_reg(bt, dreg); 3694 } 3695 } else { 3696 if (BPF_SRC(insn->code) == BPF_X) { 3697 /* dreg += sreg 3698 * both dreg and sreg need precision 3699 * before this insn 3700 */ 3701 if (sreg != BPF_REG_FP) 3702 bt_set_reg(bt, sreg); 3703 } /* else dreg += K 3704 * dreg still needs precision before this insn 3705 */ 3706 } 3707 } else if (class == BPF_LDX) { 3708 if (!bt_is_reg_set(bt, dreg)) 3709 return 0; 3710 bt_clear_reg(bt, dreg); 3711 3712 /* scalars can only be spilled into stack w/o losing precision. 3713 * Load from any other memory can be zero extended. 3714 * The desire to keep that precision is already indicated 3715 * by 'precise' mark in corresponding register of this state. 3716 * No further tracking necessary. 3717 */ 3718 if (insn->src_reg != BPF_REG_FP) 3719 return 0; 3720 3721 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3722 * that [fp - off] slot contains scalar that needs to be 3723 * tracked with precision 3724 */ 3725 spi = (-insn->off - 1) / BPF_REG_SIZE; 3726 if (spi >= 64) { 3727 verbose(env, "BUG spi %d\n", spi); 3728 WARN_ONCE(1, "verifier backtracking bug"); 3729 return -EFAULT; 3730 } 3731 bt_set_slot(bt, spi); 3732 } else if (class == BPF_STX || class == BPF_ST) { 3733 if (bt_is_reg_set(bt, dreg)) 3734 /* stx & st shouldn't be using _scalar_ dst_reg 3735 * to access memory. It means backtracking 3736 * encountered a case of pointer subtraction. 3737 */ 3738 return -ENOTSUPP; 3739 /* scalars can only be spilled into stack */ 3740 if (insn->dst_reg != BPF_REG_FP) 3741 return 0; 3742 spi = (-insn->off - 1) / BPF_REG_SIZE; 3743 if (spi >= 64) { 3744 verbose(env, "BUG spi %d\n", spi); 3745 WARN_ONCE(1, "verifier backtracking bug"); 3746 return -EFAULT; 3747 } 3748 if (!bt_is_slot_set(bt, spi)) 3749 return 0; 3750 bt_clear_slot(bt, spi); 3751 if (class == BPF_STX) 3752 bt_set_reg(bt, sreg); 3753 } else if (class == BPF_JMP || class == BPF_JMP32) { 3754 if (bpf_pseudo_call(insn)) { 3755 int subprog_insn_idx, subprog; 3756 3757 subprog_insn_idx = idx + insn->imm + 1; 3758 subprog = find_subprog(env, subprog_insn_idx); 3759 if (subprog < 0) 3760 return -EFAULT; 3761 3762 if (subprog_is_global(env, subprog)) { 3763 /* check that jump history doesn't have any 3764 * extra instructions from subprog; the next 3765 * instruction after call to global subprog 3766 * should be literally next instruction in 3767 * caller program 3768 */ 3769 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3770 /* r1-r5 are invalidated after subprog call, 3771 * so for global func call it shouldn't be set 3772 * anymore 3773 */ 3774 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3775 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3776 WARN_ONCE(1, "verifier backtracking bug"); 3777 return -EFAULT; 3778 } 3779 /* global subprog always sets R0 */ 3780 bt_clear_reg(bt, BPF_REG_0); 3781 return 0; 3782 } else { 3783 /* static subprog call instruction, which 3784 * means that we are exiting current subprog, 3785 * so only r1-r5 could be still requested as 3786 * precise, r0 and r6-r10 or any stack slot in 3787 * the current frame should be zero by now 3788 */ 3789 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3790 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3791 WARN_ONCE(1, "verifier backtracking bug"); 3792 return -EFAULT; 3793 } 3794 /* we don't track register spills perfectly, 3795 * so fallback to force-precise instead of failing */ 3796 if (bt_stack_mask(bt) != 0) 3797 return -ENOTSUPP; 3798 /* propagate r1-r5 to the caller */ 3799 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3800 if (bt_is_reg_set(bt, i)) { 3801 bt_clear_reg(bt, i); 3802 bt_set_frame_reg(bt, bt->frame - 1, i); 3803 } 3804 } 3805 if (bt_subprog_exit(bt)) 3806 return -EFAULT; 3807 return 0; 3808 } 3809 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3810 /* exit from callback subprog to callback-calling helper or 3811 * kfunc call. Use idx/subseq_idx check to discern it from 3812 * straight line code backtracking. 3813 * Unlike the subprog call handling above, we shouldn't 3814 * propagate precision of r1-r5 (if any requested), as they are 3815 * not actually arguments passed directly to callback subprogs 3816 */ 3817 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3818 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3819 WARN_ONCE(1, "verifier backtracking bug"); 3820 return -EFAULT; 3821 } 3822 if (bt_stack_mask(bt) != 0) 3823 return -ENOTSUPP; 3824 /* clear r1-r5 in callback subprog's mask */ 3825 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3826 bt_clear_reg(bt, i); 3827 if (bt_subprog_exit(bt)) 3828 return -EFAULT; 3829 return 0; 3830 } else if (opcode == BPF_CALL) { 3831 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3832 * catch this error later. Make backtracking conservative 3833 * with ENOTSUPP. 3834 */ 3835 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3836 return -ENOTSUPP; 3837 /* regular helper call sets R0 */ 3838 bt_clear_reg(bt, BPF_REG_0); 3839 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3840 /* if backtracing was looking for registers R1-R5 3841 * they should have been found already. 3842 */ 3843 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3844 WARN_ONCE(1, "verifier backtracking bug"); 3845 return -EFAULT; 3846 } 3847 } else if (opcode == BPF_EXIT) { 3848 bool r0_precise; 3849 3850 /* Backtracking to a nested function call, 'idx' is a part of 3851 * the inner frame 'subseq_idx' is a part of the outer frame. 3852 * In case of a regular function call, instructions giving 3853 * precision to registers R1-R5 should have been found already. 3854 * In case of a callback, it is ok to have R1-R5 marked for 3855 * backtracking, as these registers are set by the function 3856 * invoking callback. 3857 */ 3858 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3859 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3860 bt_clear_reg(bt, i); 3861 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3862 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3863 WARN_ONCE(1, "verifier backtracking bug"); 3864 return -EFAULT; 3865 } 3866 3867 /* BPF_EXIT in subprog or callback always returns 3868 * right after the call instruction, so by checking 3869 * whether the instruction at subseq_idx-1 is subprog 3870 * call or not we can distinguish actual exit from 3871 * *subprog* from exit from *callback*. In the former 3872 * case, we need to propagate r0 precision, if 3873 * necessary. In the former we never do that. 3874 */ 3875 r0_precise = subseq_idx - 1 >= 0 && 3876 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3877 bt_is_reg_set(bt, BPF_REG_0); 3878 3879 bt_clear_reg(bt, BPF_REG_0); 3880 if (bt_subprog_enter(bt)) 3881 return -EFAULT; 3882 3883 if (r0_precise) 3884 bt_set_reg(bt, BPF_REG_0); 3885 /* r6-r9 and stack slots will stay set in caller frame 3886 * bitmasks until we return back from callee(s) 3887 */ 3888 return 0; 3889 } else if (BPF_SRC(insn->code) == BPF_X) { 3890 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3891 return 0; 3892 /* dreg <cond> sreg 3893 * Both dreg and sreg need precision before 3894 * this insn. If only sreg was marked precise 3895 * before it would be equally necessary to 3896 * propagate it to dreg. 3897 */ 3898 bt_set_reg(bt, dreg); 3899 bt_set_reg(bt, sreg); 3900 /* else dreg <cond> K 3901 * Only dreg still needs precision before 3902 * this insn, so for the K-based conditional 3903 * there is nothing new to be marked. 3904 */ 3905 } 3906 } else if (class == BPF_LD) { 3907 if (!bt_is_reg_set(bt, dreg)) 3908 return 0; 3909 bt_clear_reg(bt, dreg); 3910 /* It's ld_imm64 or ld_abs or ld_ind. 3911 * For ld_imm64 no further tracking of precision 3912 * into parent is necessary 3913 */ 3914 if (mode == BPF_IND || mode == BPF_ABS) 3915 /* to be analyzed */ 3916 return -ENOTSUPP; 3917 } 3918 return 0; 3919 } 3920 3921 /* the scalar precision tracking algorithm: 3922 * . at the start all registers have precise=false. 3923 * . scalar ranges are tracked as normal through alu and jmp insns. 3924 * . once precise value of the scalar register is used in: 3925 * . ptr + scalar alu 3926 * . if (scalar cond K|scalar) 3927 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3928 * backtrack through the verifier states and mark all registers and 3929 * stack slots with spilled constants that these scalar regisers 3930 * should be precise. 3931 * . during state pruning two registers (or spilled stack slots) 3932 * are equivalent if both are not precise. 3933 * 3934 * Note the verifier cannot simply walk register parentage chain, 3935 * since many different registers and stack slots could have been 3936 * used to compute single precise scalar. 3937 * 3938 * The approach of starting with precise=true for all registers and then 3939 * backtrack to mark a register as not precise when the verifier detects 3940 * that program doesn't care about specific value (e.g., when helper 3941 * takes register as ARG_ANYTHING parameter) is not safe. 3942 * 3943 * It's ok to walk single parentage chain of the verifier states. 3944 * It's possible that this backtracking will go all the way till 1st insn. 3945 * All other branches will be explored for needing precision later. 3946 * 3947 * The backtracking needs to deal with cases like: 3948 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3949 * r9 -= r8 3950 * r5 = r9 3951 * if r5 > 0x79f goto pc+7 3952 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3953 * r5 += 1 3954 * ... 3955 * call bpf_perf_event_output#25 3956 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3957 * 3958 * and this case: 3959 * r6 = 1 3960 * call foo // uses callee's r6 inside to compute r0 3961 * r0 += r6 3962 * if r0 == 0 goto 3963 * 3964 * to track above reg_mask/stack_mask needs to be independent for each frame. 3965 * 3966 * Also if parent's curframe > frame where backtracking started, 3967 * the verifier need to mark registers in both frames, otherwise callees 3968 * may incorrectly prune callers. This is similar to 3969 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3970 * 3971 * For now backtracking falls back into conservative marking. 3972 */ 3973 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3974 struct bpf_verifier_state *st) 3975 { 3976 struct bpf_func_state *func; 3977 struct bpf_reg_state *reg; 3978 int i, j; 3979 3980 if (env->log.level & BPF_LOG_LEVEL2) { 3981 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3982 st->curframe); 3983 } 3984 3985 /* big hammer: mark all scalars precise in this path. 3986 * pop_stack may still get !precise scalars. 3987 * We also skip current state and go straight to first parent state, 3988 * because precision markings in current non-checkpointed state are 3989 * not needed. See why in the comment in __mark_chain_precision below. 3990 */ 3991 for (st = st->parent; st; st = st->parent) { 3992 for (i = 0; i <= st->curframe; i++) { 3993 func = st->frame[i]; 3994 for (j = 0; j < BPF_REG_FP; j++) { 3995 reg = &func->regs[j]; 3996 if (reg->type != SCALAR_VALUE || reg->precise) 3997 continue; 3998 reg->precise = true; 3999 if (env->log.level & BPF_LOG_LEVEL2) { 4000 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4001 i, j); 4002 } 4003 } 4004 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4005 if (!is_spilled_reg(&func->stack[j])) 4006 continue; 4007 reg = &func->stack[j].spilled_ptr; 4008 if (reg->type != SCALAR_VALUE || reg->precise) 4009 continue; 4010 reg->precise = true; 4011 if (env->log.level & BPF_LOG_LEVEL2) { 4012 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4013 i, -(j + 1) * 8); 4014 } 4015 } 4016 } 4017 } 4018 } 4019 4020 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4021 { 4022 struct bpf_func_state *func; 4023 struct bpf_reg_state *reg; 4024 int i, j; 4025 4026 for (i = 0; i <= st->curframe; i++) { 4027 func = st->frame[i]; 4028 for (j = 0; j < BPF_REG_FP; j++) { 4029 reg = &func->regs[j]; 4030 if (reg->type != SCALAR_VALUE) 4031 continue; 4032 reg->precise = false; 4033 } 4034 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4035 if (!is_spilled_reg(&func->stack[j])) 4036 continue; 4037 reg = &func->stack[j].spilled_ptr; 4038 if (reg->type != SCALAR_VALUE) 4039 continue; 4040 reg->precise = false; 4041 } 4042 } 4043 } 4044 4045 static bool idset_contains(struct bpf_idset *s, u32 id) 4046 { 4047 u32 i; 4048 4049 for (i = 0; i < s->count; ++i) 4050 if (s->ids[i] == id) 4051 return true; 4052 4053 return false; 4054 } 4055 4056 static int idset_push(struct bpf_idset *s, u32 id) 4057 { 4058 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4059 return -EFAULT; 4060 s->ids[s->count++] = id; 4061 return 0; 4062 } 4063 4064 static void idset_reset(struct bpf_idset *s) 4065 { 4066 s->count = 0; 4067 } 4068 4069 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4070 * Mark all registers with these IDs as precise. 4071 */ 4072 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4073 { 4074 struct bpf_idset *precise_ids = &env->idset_scratch; 4075 struct backtrack_state *bt = &env->bt; 4076 struct bpf_func_state *func; 4077 struct bpf_reg_state *reg; 4078 DECLARE_BITMAP(mask, 64); 4079 int i, fr; 4080 4081 idset_reset(precise_ids); 4082 4083 for (fr = bt->frame; fr >= 0; fr--) { 4084 func = st->frame[fr]; 4085 4086 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4087 for_each_set_bit(i, mask, 32) { 4088 reg = &func->regs[i]; 4089 if (!reg->id || reg->type != SCALAR_VALUE) 4090 continue; 4091 if (idset_push(precise_ids, reg->id)) 4092 return -EFAULT; 4093 } 4094 4095 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4096 for_each_set_bit(i, mask, 64) { 4097 if (i >= func->allocated_stack / BPF_REG_SIZE) 4098 break; 4099 if (!is_spilled_scalar_reg(&func->stack[i])) 4100 continue; 4101 reg = &func->stack[i].spilled_ptr; 4102 if (!reg->id) 4103 continue; 4104 if (idset_push(precise_ids, reg->id)) 4105 return -EFAULT; 4106 } 4107 } 4108 4109 for (fr = 0; fr <= st->curframe; ++fr) { 4110 func = st->frame[fr]; 4111 4112 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4113 reg = &func->regs[i]; 4114 if (!reg->id) 4115 continue; 4116 if (!idset_contains(precise_ids, reg->id)) 4117 continue; 4118 bt_set_frame_reg(bt, fr, i); 4119 } 4120 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4121 if (!is_spilled_scalar_reg(&func->stack[i])) 4122 continue; 4123 reg = &func->stack[i].spilled_ptr; 4124 if (!reg->id) 4125 continue; 4126 if (!idset_contains(precise_ids, reg->id)) 4127 continue; 4128 bt_set_frame_slot(bt, fr, i); 4129 } 4130 } 4131 4132 return 0; 4133 } 4134 4135 /* 4136 * __mark_chain_precision() backtracks BPF program instruction sequence and 4137 * chain of verifier states making sure that register *regno* (if regno >= 0) 4138 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4139 * SCALARS, as well as any other registers and slots that contribute to 4140 * a tracked state of given registers/stack slots, depending on specific BPF 4141 * assembly instructions (see backtrack_insns() for exact instruction handling 4142 * logic). This backtracking relies on recorded jmp_history and is able to 4143 * traverse entire chain of parent states. This process ends only when all the 4144 * necessary registers/slots and their transitive dependencies are marked as 4145 * precise. 4146 * 4147 * One important and subtle aspect is that precise marks *do not matter* in 4148 * the currently verified state (current state). It is important to understand 4149 * why this is the case. 4150 * 4151 * First, note that current state is the state that is not yet "checkpointed", 4152 * i.e., it is not yet put into env->explored_states, and it has no children 4153 * states as well. It's ephemeral, and can end up either a) being discarded if 4154 * compatible explored state is found at some point or BPF_EXIT instruction is 4155 * reached or b) checkpointed and put into env->explored_states, branching out 4156 * into one or more children states. 4157 * 4158 * In the former case, precise markings in current state are completely 4159 * ignored by state comparison code (see regsafe() for details). Only 4160 * checkpointed ("old") state precise markings are important, and if old 4161 * state's register/slot is precise, regsafe() assumes current state's 4162 * register/slot as precise and checks value ranges exactly and precisely. If 4163 * states turn out to be compatible, current state's necessary precise 4164 * markings and any required parent states' precise markings are enforced 4165 * after the fact with propagate_precision() logic, after the fact. But it's 4166 * important to realize that in this case, even after marking current state 4167 * registers/slots as precise, we immediately discard current state. So what 4168 * actually matters is any of the precise markings propagated into current 4169 * state's parent states, which are always checkpointed (due to b) case above). 4170 * As such, for scenario a) it doesn't matter if current state has precise 4171 * markings set or not. 4172 * 4173 * Now, for the scenario b), checkpointing and forking into child(ren) 4174 * state(s). Note that before current state gets to checkpointing step, any 4175 * processed instruction always assumes precise SCALAR register/slot 4176 * knowledge: if precise value or range is useful to prune jump branch, BPF 4177 * verifier takes this opportunity enthusiastically. Similarly, when 4178 * register's value is used to calculate offset or memory address, exact 4179 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4180 * what we mentioned above about state comparison ignoring precise markings 4181 * during state comparison, BPF verifier ignores and also assumes precise 4182 * markings *at will* during instruction verification process. But as verifier 4183 * assumes precision, it also propagates any precision dependencies across 4184 * parent states, which are not yet finalized, so can be further restricted 4185 * based on new knowledge gained from restrictions enforced by their children 4186 * states. This is so that once those parent states are finalized, i.e., when 4187 * they have no more active children state, state comparison logic in 4188 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4189 * required for correctness. 4190 * 4191 * To build a bit more intuition, note also that once a state is checkpointed, 4192 * the path we took to get to that state is not important. This is crucial 4193 * property for state pruning. When state is checkpointed and finalized at 4194 * some instruction index, it can be correctly and safely used to "short 4195 * circuit" any *compatible* state that reaches exactly the same instruction 4196 * index. I.e., if we jumped to that instruction from a completely different 4197 * code path than original finalized state was derived from, it doesn't 4198 * matter, current state can be discarded because from that instruction 4199 * forward having a compatible state will ensure we will safely reach the 4200 * exit. States describe preconditions for further exploration, but completely 4201 * forget the history of how we got here. 4202 * 4203 * This also means that even if we needed precise SCALAR range to get to 4204 * finalized state, but from that point forward *that same* SCALAR register is 4205 * never used in a precise context (i.e., it's precise value is not needed for 4206 * correctness), it's correct and safe to mark such register as "imprecise" 4207 * (i.e., precise marking set to false). This is what we rely on when we do 4208 * not set precise marking in current state. If no child state requires 4209 * precision for any given SCALAR register, it's safe to dictate that it can 4210 * be imprecise. If any child state does require this register to be precise, 4211 * we'll mark it precise later retroactively during precise markings 4212 * propagation from child state to parent states. 4213 * 4214 * Skipping precise marking setting in current state is a mild version of 4215 * relying on the above observation. But we can utilize this property even 4216 * more aggressively by proactively forgetting any precise marking in the 4217 * current state (which we inherited from the parent state), right before we 4218 * checkpoint it and branch off into new child state. This is done by 4219 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4220 * finalized states which help in short circuiting more future states. 4221 */ 4222 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4223 { 4224 struct backtrack_state *bt = &env->bt; 4225 struct bpf_verifier_state *st = env->cur_state; 4226 int first_idx = st->first_insn_idx; 4227 int last_idx = env->insn_idx; 4228 int subseq_idx = -1; 4229 struct bpf_func_state *func; 4230 struct bpf_reg_state *reg; 4231 bool skip_first = true; 4232 int i, fr, err; 4233 4234 if (!env->bpf_capable) 4235 return 0; 4236 4237 /* set frame number from which we are starting to backtrack */ 4238 bt_init(bt, env->cur_state->curframe); 4239 4240 /* Do sanity checks against current state of register and/or stack 4241 * slot, but don't set precise flag in current state, as precision 4242 * tracking in the current state is unnecessary. 4243 */ 4244 func = st->frame[bt->frame]; 4245 if (regno >= 0) { 4246 reg = &func->regs[regno]; 4247 if (reg->type != SCALAR_VALUE) { 4248 WARN_ONCE(1, "backtracing misuse"); 4249 return -EFAULT; 4250 } 4251 bt_set_reg(bt, regno); 4252 } 4253 4254 if (bt_empty(bt)) 4255 return 0; 4256 4257 for (;;) { 4258 DECLARE_BITMAP(mask, 64); 4259 u32 history = st->jmp_history_cnt; 4260 4261 if (env->log.level & BPF_LOG_LEVEL2) { 4262 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4263 bt->frame, last_idx, first_idx, subseq_idx); 4264 } 4265 4266 /* If some register with scalar ID is marked as precise, 4267 * make sure that all registers sharing this ID are also precise. 4268 * This is needed to estimate effect of find_equal_scalars(). 4269 * Do this at the last instruction of each state, 4270 * bpf_reg_state::id fields are valid for these instructions. 4271 * 4272 * Allows to track precision in situation like below: 4273 * 4274 * r2 = unknown value 4275 * ... 4276 * --- state #0 --- 4277 * ... 4278 * r1 = r2 // r1 and r2 now share the same ID 4279 * ... 4280 * --- state #1 {r1.id = A, r2.id = A} --- 4281 * ... 4282 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4283 * ... 4284 * --- state #2 {r1.id = A, r2.id = A} --- 4285 * r3 = r10 4286 * r3 += r1 // need to mark both r1 and r2 4287 */ 4288 if (mark_precise_scalar_ids(env, st)) 4289 return -EFAULT; 4290 4291 if (last_idx < 0) { 4292 /* we are at the entry into subprog, which 4293 * is expected for global funcs, but only if 4294 * requested precise registers are R1-R5 4295 * (which are global func's input arguments) 4296 */ 4297 if (st->curframe == 0 && 4298 st->frame[0]->subprogno > 0 && 4299 st->frame[0]->callsite == BPF_MAIN_FUNC && 4300 bt_stack_mask(bt) == 0 && 4301 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4302 bitmap_from_u64(mask, bt_reg_mask(bt)); 4303 for_each_set_bit(i, mask, 32) { 4304 reg = &st->frame[0]->regs[i]; 4305 bt_clear_reg(bt, i); 4306 if (reg->type == SCALAR_VALUE) 4307 reg->precise = true; 4308 } 4309 return 0; 4310 } 4311 4312 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4313 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4314 WARN_ONCE(1, "verifier backtracking bug"); 4315 return -EFAULT; 4316 } 4317 4318 for (i = last_idx;;) { 4319 if (skip_first) { 4320 err = 0; 4321 skip_first = false; 4322 } else { 4323 err = backtrack_insn(env, i, subseq_idx, bt); 4324 } 4325 if (err == -ENOTSUPP) { 4326 mark_all_scalars_precise(env, env->cur_state); 4327 bt_reset(bt); 4328 return 0; 4329 } else if (err) { 4330 return err; 4331 } 4332 if (bt_empty(bt)) 4333 /* Found assignment(s) into tracked register in this state. 4334 * Since this state is already marked, just return. 4335 * Nothing to be tracked further in the parent state. 4336 */ 4337 return 0; 4338 subseq_idx = i; 4339 i = get_prev_insn_idx(st, i, &history); 4340 if (i == -ENOENT) 4341 break; 4342 if (i >= env->prog->len) { 4343 /* This can happen if backtracking reached insn 0 4344 * and there are still reg_mask or stack_mask 4345 * to backtrack. 4346 * It means the backtracking missed the spot where 4347 * particular register was initialized with a constant. 4348 */ 4349 verbose(env, "BUG backtracking idx %d\n", i); 4350 WARN_ONCE(1, "verifier backtracking bug"); 4351 return -EFAULT; 4352 } 4353 } 4354 st = st->parent; 4355 if (!st) 4356 break; 4357 4358 for (fr = bt->frame; fr >= 0; fr--) { 4359 func = st->frame[fr]; 4360 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4361 for_each_set_bit(i, mask, 32) { 4362 reg = &func->regs[i]; 4363 if (reg->type != SCALAR_VALUE) { 4364 bt_clear_frame_reg(bt, fr, i); 4365 continue; 4366 } 4367 if (reg->precise) 4368 bt_clear_frame_reg(bt, fr, i); 4369 else 4370 reg->precise = true; 4371 } 4372 4373 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4374 for_each_set_bit(i, mask, 64) { 4375 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4376 /* the sequence of instructions: 4377 * 2: (bf) r3 = r10 4378 * 3: (7b) *(u64 *)(r3 -8) = r0 4379 * 4: (79) r4 = *(u64 *)(r10 -8) 4380 * doesn't contain jmps. It's backtracked 4381 * as a single block. 4382 * During backtracking insn 3 is not recognized as 4383 * stack access, so at the end of backtracking 4384 * stack slot fp-8 is still marked in stack_mask. 4385 * However the parent state may not have accessed 4386 * fp-8 and it's "unallocated" stack space. 4387 * In such case fallback to conservative. 4388 */ 4389 mark_all_scalars_precise(env, env->cur_state); 4390 bt_reset(bt); 4391 return 0; 4392 } 4393 4394 if (!is_spilled_scalar_reg(&func->stack[i])) { 4395 bt_clear_frame_slot(bt, fr, i); 4396 continue; 4397 } 4398 reg = &func->stack[i].spilled_ptr; 4399 if (reg->precise) 4400 bt_clear_frame_slot(bt, fr, i); 4401 else 4402 reg->precise = true; 4403 } 4404 if (env->log.level & BPF_LOG_LEVEL2) { 4405 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4406 bt_frame_reg_mask(bt, fr)); 4407 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4408 fr, env->tmp_str_buf); 4409 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4410 bt_frame_stack_mask(bt, fr)); 4411 verbose(env, "stack=%s: ", env->tmp_str_buf); 4412 print_verifier_state(env, func, true); 4413 } 4414 } 4415 4416 if (bt_empty(bt)) 4417 return 0; 4418 4419 subseq_idx = first_idx; 4420 last_idx = st->last_insn_idx; 4421 first_idx = st->first_insn_idx; 4422 } 4423 4424 /* if we still have requested precise regs or slots, we missed 4425 * something (e.g., stack access through non-r10 register), so 4426 * fallback to marking all precise 4427 */ 4428 if (!bt_empty(bt)) { 4429 mark_all_scalars_precise(env, env->cur_state); 4430 bt_reset(bt); 4431 } 4432 4433 return 0; 4434 } 4435 4436 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4437 { 4438 return __mark_chain_precision(env, regno); 4439 } 4440 4441 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4442 * desired reg and stack masks across all relevant frames 4443 */ 4444 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4445 { 4446 return __mark_chain_precision(env, -1); 4447 } 4448 4449 static bool is_spillable_regtype(enum bpf_reg_type type) 4450 { 4451 switch (base_type(type)) { 4452 case PTR_TO_MAP_VALUE: 4453 case PTR_TO_STACK: 4454 case PTR_TO_CTX: 4455 case PTR_TO_PACKET: 4456 case PTR_TO_PACKET_META: 4457 case PTR_TO_PACKET_END: 4458 case PTR_TO_FLOW_KEYS: 4459 case CONST_PTR_TO_MAP: 4460 case PTR_TO_SOCKET: 4461 case PTR_TO_SOCK_COMMON: 4462 case PTR_TO_TCP_SOCK: 4463 case PTR_TO_XDP_SOCK: 4464 case PTR_TO_BTF_ID: 4465 case PTR_TO_BUF: 4466 case PTR_TO_MEM: 4467 case PTR_TO_FUNC: 4468 case PTR_TO_MAP_KEY: 4469 return true; 4470 default: 4471 return false; 4472 } 4473 } 4474 4475 /* Does this register contain a constant zero? */ 4476 static bool register_is_null(struct bpf_reg_state *reg) 4477 { 4478 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4479 } 4480 4481 static bool register_is_const(struct bpf_reg_state *reg) 4482 { 4483 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4484 } 4485 4486 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4487 { 4488 return tnum_is_unknown(reg->var_off) && 4489 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4490 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4491 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4492 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4493 } 4494 4495 static bool register_is_bounded(struct bpf_reg_state *reg) 4496 { 4497 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4498 } 4499 4500 static bool __is_pointer_value(bool allow_ptr_leaks, 4501 const struct bpf_reg_state *reg) 4502 { 4503 if (allow_ptr_leaks) 4504 return false; 4505 4506 return reg->type != SCALAR_VALUE; 4507 } 4508 4509 /* Copy src state preserving dst->parent and dst->live fields */ 4510 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4511 { 4512 struct bpf_reg_state *parent = dst->parent; 4513 enum bpf_reg_liveness live = dst->live; 4514 4515 *dst = *src; 4516 dst->parent = parent; 4517 dst->live = live; 4518 } 4519 4520 static void save_register_state(struct bpf_func_state *state, 4521 int spi, struct bpf_reg_state *reg, 4522 int size) 4523 { 4524 int i; 4525 4526 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4527 if (size == BPF_REG_SIZE) 4528 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4529 4530 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4531 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4532 4533 /* size < 8 bytes spill */ 4534 for (; i; i--) 4535 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4536 } 4537 4538 static bool is_bpf_st_mem(struct bpf_insn *insn) 4539 { 4540 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4541 } 4542 4543 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4544 * stack boundary and alignment are checked in check_mem_access() 4545 */ 4546 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4547 /* stack frame we're writing to */ 4548 struct bpf_func_state *state, 4549 int off, int size, int value_regno, 4550 int insn_idx) 4551 { 4552 struct bpf_func_state *cur; /* state of the current function */ 4553 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4554 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4555 struct bpf_reg_state *reg = NULL; 4556 u32 dst_reg = insn->dst_reg; 4557 4558 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4559 * so it's aligned access and [off, off + size) are within stack limits 4560 */ 4561 if (!env->allow_ptr_leaks && 4562 is_spilled_reg(&state->stack[spi]) && 4563 size != BPF_REG_SIZE) { 4564 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4565 return -EACCES; 4566 } 4567 4568 cur = env->cur_state->frame[env->cur_state->curframe]; 4569 if (value_regno >= 0) 4570 reg = &cur->regs[value_regno]; 4571 if (!env->bypass_spec_v4) { 4572 bool sanitize = reg && is_spillable_regtype(reg->type); 4573 4574 for (i = 0; i < size; i++) { 4575 u8 type = state->stack[spi].slot_type[i]; 4576 4577 if (type != STACK_MISC && type != STACK_ZERO) { 4578 sanitize = true; 4579 break; 4580 } 4581 } 4582 4583 if (sanitize) 4584 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4585 } 4586 4587 err = destroy_if_dynptr_stack_slot(env, state, spi); 4588 if (err) 4589 return err; 4590 4591 mark_stack_slot_scratched(env, spi); 4592 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4593 !register_is_null(reg) && env->bpf_capable) { 4594 if (dst_reg != BPF_REG_FP) { 4595 /* The backtracking logic can only recognize explicit 4596 * stack slot address like [fp - 8]. Other spill of 4597 * scalar via different register has to be conservative. 4598 * Backtrack from here and mark all registers as precise 4599 * that contributed into 'reg' being a constant. 4600 */ 4601 err = mark_chain_precision(env, value_regno); 4602 if (err) 4603 return err; 4604 } 4605 save_register_state(state, spi, reg, size); 4606 /* Break the relation on a narrowing spill. */ 4607 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4608 state->stack[spi].spilled_ptr.id = 0; 4609 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4610 insn->imm != 0 && env->bpf_capable) { 4611 struct bpf_reg_state fake_reg = {}; 4612 4613 __mark_reg_known(&fake_reg, insn->imm); 4614 fake_reg.type = SCALAR_VALUE; 4615 save_register_state(state, spi, &fake_reg, size); 4616 } else if (reg && is_spillable_regtype(reg->type)) { 4617 /* register containing pointer is being spilled into stack */ 4618 if (size != BPF_REG_SIZE) { 4619 verbose_linfo(env, insn_idx, "; "); 4620 verbose(env, "invalid size of register spill\n"); 4621 return -EACCES; 4622 } 4623 if (state != cur && reg->type == PTR_TO_STACK) { 4624 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4625 return -EINVAL; 4626 } 4627 save_register_state(state, spi, reg, size); 4628 } else { 4629 u8 type = STACK_MISC; 4630 4631 /* regular write of data into stack destroys any spilled ptr */ 4632 state->stack[spi].spilled_ptr.type = NOT_INIT; 4633 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4634 if (is_stack_slot_special(&state->stack[spi])) 4635 for (i = 0; i < BPF_REG_SIZE; i++) 4636 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4637 4638 /* only mark the slot as written if all 8 bytes were written 4639 * otherwise read propagation may incorrectly stop too soon 4640 * when stack slots are partially written. 4641 * This heuristic means that read propagation will be 4642 * conservative, since it will add reg_live_read marks 4643 * to stack slots all the way to first state when programs 4644 * writes+reads less than 8 bytes 4645 */ 4646 if (size == BPF_REG_SIZE) 4647 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4648 4649 /* when we zero initialize stack slots mark them as such */ 4650 if ((reg && register_is_null(reg)) || 4651 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4652 /* backtracking doesn't work for STACK_ZERO yet. */ 4653 err = mark_chain_precision(env, value_regno); 4654 if (err) 4655 return err; 4656 type = STACK_ZERO; 4657 } 4658 4659 /* Mark slots affected by this stack write. */ 4660 for (i = 0; i < size; i++) 4661 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4662 type; 4663 } 4664 return 0; 4665 } 4666 4667 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4668 * known to contain a variable offset. 4669 * This function checks whether the write is permitted and conservatively 4670 * tracks the effects of the write, considering that each stack slot in the 4671 * dynamic range is potentially written to. 4672 * 4673 * 'off' includes 'regno->off'. 4674 * 'value_regno' can be -1, meaning that an unknown value is being written to 4675 * the stack. 4676 * 4677 * Spilled pointers in range are not marked as written because we don't know 4678 * what's going to be actually written. This means that read propagation for 4679 * future reads cannot be terminated by this write. 4680 * 4681 * For privileged programs, uninitialized stack slots are considered 4682 * initialized by this write (even though we don't know exactly what offsets 4683 * are going to be written to). The idea is that we don't want the verifier to 4684 * reject future reads that access slots written to through variable offsets. 4685 */ 4686 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4687 /* func where register points to */ 4688 struct bpf_func_state *state, 4689 int ptr_regno, int off, int size, 4690 int value_regno, int insn_idx) 4691 { 4692 struct bpf_func_state *cur; /* state of the current function */ 4693 int min_off, max_off; 4694 int i, err; 4695 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4696 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4697 bool writing_zero = false; 4698 /* set if the fact that we're writing a zero is used to let any 4699 * stack slots remain STACK_ZERO 4700 */ 4701 bool zero_used = false; 4702 4703 cur = env->cur_state->frame[env->cur_state->curframe]; 4704 ptr_reg = &cur->regs[ptr_regno]; 4705 min_off = ptr_reg->smin_value + off; 4706 max_off = ptr_reg->smax_value + off + size; 4707 if (value_regno >= 0) 4708 value_reg = &cur->regs[value_regno]; 4709 if ((value_reg && register_is_null(value_reg)) || 4710 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4711 writing_zero = true; 4712 4713 for (i = min_off; i < max_off; i++) { 4714 int spi; 4715 4716 spi = __get_spi(i); 4717 err = destroy_if_dynptr_stack_slot(env, state, spi); 4718 if (err) 4719 return err; 4720 } 4721 4722 /* Variable offset writes destroy any spilled pointers in range. */ 4723 for (i = min_off; i < max_off; i++) { 4724 u8 new_type, *stype; 4725 int slot, spi; 4726 4727 slot = -i - 1; 4728 spi = slot / BPF_REG_SIZE; 4729 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4730 mark_stack_slot_scratched(env, spi); 4731 4732 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4733 /* Reject the write if range we may write to has not 4734 * been initialized beforehand. If we didn't reject 4735 * here, the ptr status would be erased below (even 4736 * though not all slots are actually overwritten), 4737 * possibly opening the door to leaks. 4738 * 4739 * We do however catch STACK_INVALID case below, and 4740 * only allow reading possibly uninitialized memory 4741 * later for CAP_PERFMON, as the write may not happen to 4742 * that slot. 4743 */ 4744 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4745 insn_idx, i); 4746 return -EINVAL; 4747 } 4748 4749 /* Erase all spilled pointers. */ 4750 state->stack[spi].spilled_ptr.type = NOT_INIT; 4751 4752 /* Update the slot type. */ 4753 new_type = STACK_MISC; 4754 if (writing_zero && *stype == STACK_ZERO) { 4755 new_type = STACK_ZERO; 4756 zero_used = true; 4757 } 4758 /* If the slot is STACK_INVALID, we check whether it's OK to 4759 * pretend that it will be initialized by this write. The slot 4760 * might not actually be written to, and so if we mark it as 4761 * initialized future reads might leak uninitialized memory. 4762 * For privileged programs, we will accept such reads to slots 4763 * that may or may not be written because, if we're reject 4764 * them, the error would be too confusing. 4765 */ 4766 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4767 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4768 insn_idx, i); 4769 return -EINVAL; 4770 } 4771 *stype = new_type; 4772 } 4773 if (zero_used) { 4774 /* backtracking doesn't work for STACK_ZERO yet. */ 4775 err = mark_chain_precision(env, value_regno); 4776 if (err) 4777 return err; 4778 } 4779 return 0; 4780 } 4781 4782 /* When register 'dst_regno' is assigned some values from stack[min_off, 4783 * max_off), we set the register's type according to the types of the 4784 * respective stack slots. If all the stack values are known to be zeros, then 4785 * so is the destination reg. Otherwise, the register is considered to be 4786 * SCALAR. This function does not deal with register filling; the caller must 4787 * ensure that all spilled registers in the stack range have been marked as 4788 * read. 4789 */ 4790 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4791 /* func where src register points to */ 4792 struct bpf_func_state *ptr_state, 4793 int min_off, int max_off, int dst_regno) 4794 { 4795 struct bpf_verifier_state *vstate = env->cur_state; 4796 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4797 int i, slot, spi; 4798 u8 *stype; 4799 int zeros = 0; 4800 4801 for (i = min_off; i < max_off; i++) { 4802 slot = -i - 1; 4803 spi = slot / BPF_REG_SIZE; 4804 mark_stack_slot_scratched(env, spi); 4805 stype = ptr_state->stack[spi].slot_type; 4806 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4807 break; 4808 zeros++; 4809 } 4810 if (zeros == max_off - min_off) { 4811 /* any access_size read into register is zero extended, 4812 * so the whole register == const_zero 4813 */ 4814 __mark_reg_const_zero(&state->regs[dst_regno]); 4815 /* backtracking doesn't support STACK_ZERO yet, 4816 * so mark it precise here, so that later 4817 * backtracking can stop here. 4818 * Backtracking may not need this if this register 4819 * doesn't participate in pointer adjustment. 4820 * Forward propagation of precise flag is not 4821 * necessary either. This mark is only to stop 4822 * backtracking. Any register that contributed 4823 * to const 0 was marked precise before spill. 4824 */ 4825 state->regs[dst_regno].precise = true; 4826 } else { 4827 /* have read misc data from the stack */ 4828 mark_reg_unknown(env, state->regs, dst_regno); 4829 } 4830 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4831 } 4832 4833 /* Read the stack at 'off' and put the results into the register indicated by 4834 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4835 * spilled reg. 4836 * 4837 * 'dst_regno' can be -1, meaning that the read value is not going to a 4838 * register. 4839 * 4840 * The access is assumed to be within the current stack bounds. 4841 */ 4842 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4843 /* func where src register points to */ 4844 struct bpf_func_state *reg_state, 4845 int off, int size, int dst_regno) 4846 { 4847 struct bpf_verifier_state *vstate = env->cur_state; 4848 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4849 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4850 struct bpf_reg_state *reg; 4851 u8 *stype, type; 4852 4853 stype = reg_state->stack[spi].slot_type; 4854 reg = ®_state->stack[spi].spilled_ptr; 4855 4856 mark_stack_slot_scratched(env, spi); 4857 4858 if (is_spilled_reg(®_state->stack[spi])) { 4859 u8 spill_size = 1; 4860 4861 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4862 spill_size++; 4863 4864 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4865 if (reg->type != SCALAR_VALUE) { 4866 verbose_linfo(env, env->insn_idx, "; "); 4867 verbose(env, "invalid size of register fill\n"); 4868 return -EACCES; 4869 } 4870 4871 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4872 if (dst_regno < 0) 4873 return 0; 4874 4875 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4876 /* The earlier check_reg_arg() has decided the 4877 * subreg_def for this insn. Save it first. 4878 */ 4879 s32 subreg_def = state->regs[dst_regno].subreg_def; 4880 4881 copy_register_state(&state->regs[dst_regno], reg); 4882 state->regs[dst_regno].subreg_def = subreg_def; 4883 } else { 4884 for (i = 0; i < size; i++) { 4885 type = stype[(slot - i) % BPF_REG_SIZE]; 4886 if (type == STACK_SPILL) 4887 continue; 4888 if (type == STACK_MISC) 4889 continue; 4890 if (type == STACK_INVALID && env->allow_uninit_stack) 4891 continue; 4892 verbose(env, "invalid read from stack off %d+%d size %d\n", 4893 off, i, size); 4894 return -EACCES; 4895 } 4896 mark_reg_unknown(env, state->regs, dst_regno); 4897 } 4898 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4899 return 0; 4900 } 4901 4902 if (dst_regno >= 0) { 4903 /* restore register state from stack */ 4904 copy_register_state(&state->regs[dst_regno], reg); 4905 /* mark reg as written since spilled pointer state likely 4906 * has its liveness marks cleared by is_state_visited() 4907 * which resets stack/reg liveness for state transitions 4908 */ 4909 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4910 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4911 /* If dst_regno==-1, the caller is asking us whether 4912 * it is acceptable to use this value as a SCALAR_VALUE 4913 * (e.g. for XADD). 4914 * We must not allow unprivileged callers to do that 4915 * with spilled pointers. 4916 */ 4917 verbose(env, "leaking pointer from stack off %d\n", 4918 off); 4919 return -EACCES; 4920 } 4921 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4922 } else { 4923 for (i = 0; i < size; i++) { 4924 type = stype[(slot - i) % BPF_REG_SIZE]; 4925 if (type == STACK_MISC) 4926 continue; 4927 if (type == STACK_ZERO) 4928 continue; 4929 if (type == STACK_INVALID && env->allow_uninit_stack) 4930 continue; 4931 verbose(env, "invalid read from stack off %d+%d size %d\n", 4932 off, i, size); 4933 return -EACCES; 4934 } 4935 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4936 if (dst_regno >= 0) 4937 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4938 } 4939 return 0; 4940 } 4941 4942 enum bpf_access_src { 4943 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4944 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4945 }; 4946 4947 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4948 int regno, int off, int access_size, 4949 bool zero_size_allowed, 4950 enum bpf_access_src type, 4951 struct bpf_call_arg_meta *meta); 4952 4953 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4954 { 4955 return cur_regs(env) + regno; 4956 } 4957 4958 /* Read the stack at 'ptr_regno + off' and put the result into the register 4959 * 'dst_regno'. 4960 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4961 * but not its variable offset. 4962 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4963 * 4964 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4965 * filling registers (i.e. reads of spilled register cannot be detected when 4966 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4967 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4968 * offset; for a fixed offset check_stack_read_fixed_off should be used 4969 * instead. 4970 */ 4971 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4972 int ptr_regno, int off, int size, int dst_regno) 4973 { 4974 /* The state of the source register. */ 4975 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4976 struct bpf_func_state *ptr_state = func(env, reg); 4977 int err; 4978 int min_off, max_off; 4979 4980 /* Note that we pass a NULL meta, so raw access will not be permitted. 4981 */ 4982 err = check_stack_range_initialized(env, ptr_regno, off, size, 4983 false, ACCESS_DIRECT, NULL); 4984 if (err) 4985 return err; 4986 4987 min_off = reg->smin_value + off; 4988 max_off = reg->smax_value + off; 4989 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4990 return 0; 4991 } 4992 4993 /* check_stack_read dispatches to check_stack_read_fixed_off or 4994 * check_stack_read_var_off. 4995 * 4996 * The caller must ensure that the offset falls within the allocated stack 4997 * bounds. 4998 * 4999 * 'dst_regno' is a register which will receive the value from the stack. It 5000 * can be -1, meaning that the read value is not going to a register. 5001 */ 5002 static int check_stack_read(struct bpf_verifier_env *env, 5003 int ptr_regno, int off, int size, 5004 int dst_regno) 5005 { 5006 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5007 struct bpf_func_state *state = func(env, reg); 5008 int err; 5009 /* Some accesses are only permitted with a static offset. */ 5010 bool var_off = !tnum_is_const(reg->var_off); 5011 5012 /* The offset is required to be static when reads don't go to a 5013 * register, in order to not leak pointers (see 5014 * check_stack_read_fixed_off). 5015 */ 5016 if (dst_regno < 0 && var_off) { 5017 char tn_buf[48]; 5018 5019 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5020 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5021 tn_buf, off, size); 5022 return -EACCES; 5023 } 5024 /* Variable offset is prohibited for unprivileged mode for simplicity 5025 * since it requires corresponding support in Spectre masking for stack 5026 * ALU. See also retrieve_ptr_limit(). The check in 5027 * check_stack_access_for_ptr_arithmetic() called by 5028 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5029 * with variable offsets, therefore no check is required here. Further, 5030 * just checking it here would be insufficient as speculative stack 5031 * writes could still lead to unsafe speculative behaviour. 5032 */ 5033 if (!var_off) { 5034 off += reg->var_off.value; 5035 err = check_stack_read_fixed_off(env, state, off, size, 5036 dst_regno); 5037 } else { 5038 /* Variable offset stack reads need more conservative handling 5039 * than fixed offset ones. Note that dst_regno >= 0 on this 5040 * branch. 5041 */ 5042 err = check_stack_read_var_off(env, ptr_regno, off, size, 5043 dst_regno); 5044 } 5045 return err; 5046 } 5047 5048 5049 /* check_stack_write dispatches to check_stack_write_fixed_off or 5050 * check_stack_write_var_off. 5051 * 5052 * 'ptr_regno' is the register used as a pointer into the stack. 5053 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5054 * 'value_regno' is the register whose value we're writing to the stack. It can 5055 * be -1, meaning that we're not writing from a register. 5056 * 5057 * The caller must ensure that the offset falls within the maximum stack size. 5058 */ 5059 static int check_stack_write(struct bpf_verifier_env *env, 5060 int ptr_regno, int off, int size, 5061 int value_regno, int insn_idx) 5062 { 5063 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5064 struct bpf_func_state *state = func(env, reg); 5065 int err; 5066 5067 if (tnum_is_const(reg->var_off)) { 5068 off += reg->var_off.value; 5069 err = check_stack_write_fixed_off(env, state, off, size, 5070 value_regno, insn_idx); 5071 } else { 5072 /* Variable offset stack reads need more conservative handling 5073 * than fixed offset ones. 5074 */ 5075 err = check_stack_write_var_off(env, state, 5076 ptr_regno, off, size, 5077 value_regno, insn_idx); 5078 } 5079 return err; 5080 } 5081 5082 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5083 int off, int size, enum bpf_access_type type) 5084 { 5085 struct bpf_reg_state *regs = cur_regs(env); 5086 struct bpf_map *map = regs[regno].map_ptr; 5087 u32 cap = bpf_map_flags_to_cap(map); 5088 5089 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5090 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5091 map->value_size, off, size); 5092 return -EACCES; 5093 } 5094 5095 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5096 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5097 map->value_size, off, size); 5098 return -EACCES; 5099 } 5100 5101 return 0; 5102 } 5103 5104 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5105 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5106 int off, int size, u32 mem_size, 5107 bool zero_size_allowed) 5108 { 5109 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5110 struct bpf_reg_state *reg; 5111 5112 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5113 return 0; 5114 5115 reg = &cur_regs(env)[regno]; 5116 switch (reg->type) { 5117 case PTR_TO_MAP_KEY: 5118 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5119 mem_size, off, size); 5120 break; 5121 case PTR_TO_MAP_VALUE: 5122 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5123 mem_size, off, size); 5124 break; 5125 case PTR_TO_PACKET: 5126 case PTR_TO_PACKET_META: 5127 case PTR_TO_PACKET_END: 5128 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5129 off, size, regno, reg->id, off, mem_size); 5130 break; 5131 case PTR_TO_MEM: 5132 default: 5133 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5134 mem_size, off, size); 5135 } 5136 5137 return -EACCES; 5138 } 5139 5140 /* check read/write into a memory region with possible variable offset */ 5141 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5142 int off, int size, u32 mem_size, 5143 bool zero_size_allowed) 5144 { 5145 struct bpf_verifier_state *vstate = env->cur_state; 5146 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5147 struct bpf_reg_state *reg = &state->regs[regno]; 5148 int err; 5149 5150 /* We may have adjusted the register pointing to memory region, so we 5151 * need to try adding each of min_value and max_value to off 5152 * to make sure our theoretical access will be safe. 5153 * 5154 * The minimum value is only important with signed 5155 * comparisons where we can't assume the floor of a 5156 * value is 0. If we are using signed variables for our 5157 * index'es we need to make sure that whatever we use 5158 * will have a set floor within our range. 5159 */ 5160 if (reg->smin_value < 0 && 5161 (reg->smin_value == S64_MIN || 5162 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5163 reg->smin_value + off < 0)) { 5164 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5165 regno); 5166 return -EACCES; 5167 } 5168 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5169 mem_size, zero_size_allowed); 5170 if (err) { 5171 verbose(env, "R%d min value is outside of the allowed memory range\n", 5172 regno); 5173 return err; 5174 } 5175 5176 /* If we haven't set a max value then we need to bail since we can't be 5177 * sure we won't do bad things. 5178 * If reg->umax_value + off could overflow, treat that as unbounded too. 5179 */ 5180 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5181 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5182 regno); 5183 return -EACCES; 5184 } 5185 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5186 mem_size, zero_size_allowed); 5187 if (err) { 5188 verbose(env, "R%d max value is outside of the allowed memory range\n", 5189 regno); 5190 return err; 5191 } 5192 5193 return 0; 5194 } 5195 5196 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5197 const struct bpf_reg_state *reg, int regno, 5198 bool fixed_off_ok) 5199 { 5200 /* Access to this pointer-typed register or passing it to a helper 5201 * is only allowed in its original, unmodified form. 5202 */ 5203 5204 if (reg->off < 0) { 5205 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5206 reg_type_str(env, reg->type), regno, reg->off); 5207 return -EACCES; 5208 } 5209 5210 if (!fixed_off_ok && reg->off) { 5211 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5212 reg_type_str(env, reg->type), regno, reg->off); 5213 return -EACCES; 5214 } 5215 5216 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5217 char tn_buf[48]; 5218 5219 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5220 verbose(env, "variable %s access var_off=%s disallowed\n", 5221 reg_type_str(env, reg->type), tn_buf); 5222 return -EACCES; 5223 } 5224 5225 return 0; 5226 } 5227 5228 int check_ptr_off_reg(struct bpf_verifier_env *env, 5229 const struct bpf_reg_state *reg, int regno) 5230 { 5231 return __check_ptr_off_reg(env, reg, regno, false); 5232 } 5233 5234 static int map_kptr_match_type(struct bpf_verifier_env *env, 5235 struct btf_field *kptr_field, 5236 struct bpf_reg_state *reg, u32 regno) 5237 { 5238 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5239 int perm_flags; 5240 const char *reg_name = ""; 5241 5242 if (btf_is_kernel(reg->btf)) { 5243 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5244 5245 /* Only unreferenced case accepts untrusted pointers */ 5246 if (kptr_field->type == BPF_KPTR_UNREF) 5247 perm_flags |= PTR_UNTRUSTED; 5248 } else { 5249 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5250 } 5251 5252 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5253 goto bad_type; 5254 5255 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5256 reg_name = btf_type_name(reg->btf, reg->btf_id); 5257 5258 /* For ref_ptr case, release function check should ensure we get one 5259 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5260 * normal store of unreferenced kptr, we must ensure var_off is zero. 5261 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5262 * reg->off and reg->ref_obj_id are not needed here. 5263 */ 5264 if (__check_ptr_off_reg(env, reg, regno, true)) 5265 return -EACCES; 5266 5267 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5268 * we also need to take into account the reg->off. 5269 * 5270 * We want to support cases like: 5271 * 5272 * struct foo { 5273 * struct bar br; 5274 * struct baz bz; 5275 * }; 5276 * 5277 * struct foo *v; 5278 * v = func(); // PTR_TO_BTF_ID 5279 * val->foo = v; // reg->off is zero, btf and btf_id match type 5280 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5281 * // first member type of struct after comparison fails 5282 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5283 * // to match type 5284 * 5285 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5286 * is zero. We must also ensure that btf_struct_ids_match does not walk 5287 * the struct to match type against first member of struct, i.e. reject 5288 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5289 * strict mode to true for type match. 5290 */ 5291 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5292 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5293 kptr_field->type == BPF_KPTR_REF)) 5294 goto bad_type; 5295 return 0; 5296 bad_type: 5297 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5298 reg_type_str(env, reg->type), reg_name); 5299 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5300 if (kptr_field->type == BPF_KPTR_UNREF) 5301 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5302 targ_name); 5303 else 5304 verbose(env, "\n"); 5305 return -EINVAL; 5306 } 5307 5308 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5309 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5310 */ 5311 static bool in_rcu_cs(struct bpf_verifier_env *env) 5312 { 5313 return env->cur_state->active_rcu_lock || 5314 env->cur_state->active_lock.ptr || 5315 !env->prog->aux->sleepable; 5316 } 5317 5318 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5319 BTF_SET_START(rcu_protected_types) 5320 BTF_ID(struct, prog_test_ref_kfunc) 5321 BTF_ID(struct, cgroup) 5322 BTF_ID(struct, bpf_cpumask) 5323 BTF_ID(struct, task_struct) 5324 BTF_SET_END(rcu_protected_types) 5325 5326 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5327 { 5328 if (!btf_is_kernel(btf)) 5329 return false; 5330 return btf_id_set_contains(&rcu_protected_types, btf_id); 5331 } 5332 5333 static bool rcu_safe_kptr(const struct btf_field *field) 5334 { 5335 const struct btf_field_kptr *kptr = &field->kptr; 5336 5337 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5338 } 5339 5340 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5341 int value_regno, int insn_idx, 5342 struct btf_field *kptr_field) 5343 { 5344 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5345 int class = BPF_CLASS(insn->code); 5346 struct bpf_reg_state *val_reg; 5347 5348 /* Things we already checked for in check_map_access and caller: 5349 * - Reject cases where variable offset may touch kptr 5350 * - size of access (must be BPF_DW) 5351 * - tnum_is_const(reg->var_off) 5352 * - kptr_field->offset == off + reg->var_off.value 5353 */ 5354 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5355 if (BPF_MODE(insn->code) != BPF_MEM) { 5356 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5357 return -EACCES; 5358 } 5359 5360 /* We only allow loading referenced kptr, since it will be marked as 5361 * untrusted, similar to unreferenced kptr. 5362 */ 5363 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5364 verbose(env, "store to referenced kptr disallowed\n"); 5365 return -EACCES; 5366 } 5367 5368 if (class == BPF_LDX) { 5369 val_reg = reg_state(env, value_regno); 5370 /* We can simply mark the value_regno receiving the pointer 5371 * value from map as PTR_TO_BTF_ID, with the correct type. 5372 */ 5373 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5374 kptr_field->kptr.btf_id, 5375 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5376 PTR_MAYBE_NULL | MEM_RCU : 5377 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5378 } else if (class == BPF_STX) { 5379 val_reg = reg_state(env, value_regno); 5380 if (!register_is_null(val_reg) && 5381 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5382 return -EACCES; 5383 } else if (class == BPF_ST) { 5384 if (insn->imm) { 5385 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5386 kptr_field->offset); 5387 return -EACCES; 5388 } 5389 } else { 5390 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5391 return -EACCES; 5392 } 5393 return 0; 5394 } 5395 5396 /* check read/write into a map element with possible variable offset */ 5397 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5398 int off, int size, bool zero_size_allowed, 5399 enum bpf_access_src src) 5400 { 5401 struct bpf_verifier_state *vstate = env->cur_state; 5402 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5403 struct bpf_reg_state *reg = &state->regs[regno]; 5404 struct bpf_map *map = reg->map_ptr; 5405 struct btf_record *rec; 5406 int err, i; 5407 5408 err = check_mem_region_access(env, regno, off, size, map->value_size, 5409 zero_size_allowed); 5410 if (err) 5411 return err; 5412 5413 if (IS_ERR_OR_NULL(map->record)) 5414 return 0; 5415 rec = map->record; 5416 for (i = 0; i < rec->cnt; i++) { 5417 struct btf_field *field = &rec->fields[i]; 5418 u32 p = field->offset; 5419 5420 /* If any part of a field can be touched by load/store, reject 5421 * this program. To check that [x1, x2) overlaps with [y1, y2), 5422 * it is sufficient to check x1 < y2 && y1 < x2. 5423 */ 5424 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5425 p < reg->umax_value + off + size) { 5426 switch (field->type) { 5427 case BPF_KPTR_UNREF: 5428 case BPF_KPTR_REF: 5429 if (src != ACCESS_DIRECT) { 5430 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5431 return -EACCES; 5432 } 5433 if (!tnum_is_const(reg->var_off)) { 5434 verbose(env, "kptr access cannot have variable offset\n"); 5435 return -EACCES; 5436 } 5437 if (p != off + reg->var_off.value) { 5438 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5439 p, off + reg->var_off.value); 5440 return -EACCES; 5441 } 5442 if (size != bpf_size_to_bytes(BPF_DW)) { 5443 verbose(env, "kptr access size must be BPF_DW\n"); 5444 return -EACCES; 5445 } 5446 break; 5447 default: 5448 verbose(env, "%s cannot be accessed directly by load/store\n", 5449 btf_field_type_name(field->type)); 5450 return -EACCES; 5451 } 5452 } 5453 } 5454 return 0; 5455 } 5456 5457 #define MAX_PACKET_OFF 0xffff 5458 5459 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5460 const struct bpf_call_arg_meta *meta, 5461 enum bpf_access_type t) 5462 { 5463 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5464 5465 switch (prog_type) { 5466 /* Program types only with direct read access go here! */ 5467 case BPF_PROG_TYPE_LWT_IN: 5468 case BPF_PROG_TYPE_LWT_OUT: 5469 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5470 case BPF_PROG_TYPE_SK_REUSEPORT: 5471 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5472 case BPF_PROG_TYPE_CGROUP_SKB: 5473 if (t == BPF_WRITE) 5474 return false; 5475 fallthrough; 5476 5477 /* Program types with direct read + write access go here! */ 5478 case BPF_PROG_TYPE_SCHED_CLS: 5479 case BPF_PROG_TYPE_SCHED_ACT: 5480 case BPF_PROG_TYPE_XDP: 5481 case BPF_PROG_TYPE_LWT_XMIT: 5482 case BPF_PROG_TYPE_SK_SKB: 5483 case BPF_PROG_TYPE_SK_MSG: 5484 if (meta) 5485 return meta->pkt_access; 5486 5487 env->seen_direct_write = true; 5488 return true; 5489 5490 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5491 if (t == BPF_WRITE) 5492 env->seen_direct_write = true; 5493 5494 return true; 5495 5496 default: 5497 return false; 5498 } 5499 } 5500 5501 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5502 int size, bool zero_size_allowed) 5503 { 5504 struct bpf_reg_state *regs = cur_regs(env); 5505 struct bpf_reg_state *reg = ®s[regno]; 5506 int err; 5507 5508 /* We may have added a variable offset to the packet pointer; but any 5509 * reg->range we have comes after that. We are only checking the fixed 5510 * offset. 5511 */ 5512 5513 /* We don't allow negative numbers, because we aren't tracking enough 5514 * detail to prove they're safe. 5515 */ 5516 if (reg->smin_value < 0) { 5517 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5518 regno); 5519 return -EACCES; 5520 } 5521 5522 err = reg->range < 0 ? -EINVAL : 5523 __check_mem_access(env, regno, off, size, reg->range, 5524 zero_size_allowed); 5525 if (err) { 5526 verbose(env, "R%d offset is outside of the packet\n", regno); 5527 return err; 5528 } 5529 5530 /* __check_mem_access has made sure "off + size - 1" is within u16. 5531 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5532 * otherwise find_good_pkt_pointers would have refused to set range info 5533 * that __check_mem_access would have rejected this pkt access. 5534 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5535 */ 5536 env->prog->aux->max_pkt_offset = 5537 max_t(u32, env->prog->aux->max_pkt_offset, 5538 off + reg->umax_value + size - 1); 5539 5540 return err; 5541 } 5542 5543 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5544 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5545 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5546 struct btf **btf, u32 *btf_id) 5547 { 5548 struct bpf_insn_access_aux info = { 5549 .reg_type = *reg_type, 5550 .log = &env->log, 5551 }; 5552 5553 if (env->ops->is_valid_access && 5554 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5555 /* A non zero info.ctx_field_size indicates that this field is a 5556 * candidate for later verifier transformation to load the whole 5557 * field and then apply a mask when accessed with a narrower 5558 * access than actual ctx access size. A zero info.ctx_field_size 5559 * will only allow for whole field access and rejects any other 5560 * type of narrower access. 5561 */ 5562 *reg_type = info.reg_type; 5563 5564 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5565 *btf = info.btf; 5566 *btf_id = info.btf_id; 5567 } else { 5568 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5569 } 5570 /* remember the offset of last byte accessed in ctx */ 5571 if (env->prog->aux->max_ctx_offset < off + size) 5572 env->prog->aux->max_ctx_offset = off + size; 5573 return 0; 5574 } 5575 5576 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5577 return -EACCES; 5578 } 5579 5580 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5581 int size) 5582 { 5583 if (size < 0 || off < 0 || 5584 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5585 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5586 off, size); 5587 return -EACCES; 5588 } 5589 return 0; 5590 } 5591 5592 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5593 u32 regno, int off, int size, 5594 enum bpf_access_type t) 5595 { 5596 struct bpf_reg_state *regs = cur_regs(env); 5597 struct bpf_reg_state *reg = ®s[regno]; 5598 struct bpf_insn_access_aux info = {}; 5599 bool valid; 5600 5601 if (reg->smin_value < 0) { 5602 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5603 regno); 5604 return -EACCES; 5605 } 5606 5607 switch (reg->type) { 5608 case PTR_TO_SOCK_COMMON: 5609 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5610 break; 5611 case PTR_TO_SOCKET: 5612 valid = bpf_sock_is_valid_access(off, size, t, &info); 5613 break; 5614 case PTR_TO_TCP_SOCK: 5615 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5616 break; 5617 case PTR_TO_XDP_SOCK: 5618 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5619 break; 5620 default: 5621 valid = false; 5622 } 5623 5624 5625 if (valid) { 5626 env->insn_aux_data[insn_idx].ctx_field_size = 5627 info.ctx_field_size; 5628 return 0; 5629 } 5630 5631 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5632 regno, reg_type_str(env, reg->type), off, size); 5633 5634 return -EACCES; 5635 } 5636 5637 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5638 { 5639 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5640 } 5641 5642 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5643 { 5644 const struct bpf_reg_state *reg = reg_state(env, regno); 5645 5646 return reg->type == PTR_TO_CTX; 5647 } 5648 5649 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5650 { 5651 const struct bpf_reg_state *reg = reg_state(env, regno); 5652 5653 return type_is_sk_pointer(reg->type); 5654 } 5655 5656 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5657 { 5658 const struct bpf_reg_state *reg = reg_state(env, regno); 5659 5660 return type_is_pkt_pointer(reg->type); 5661 } 5662 5663 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5664 { 5665 const struct bpf_reg_state *reg = reg_state(env, regno); 5666 5667 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5668 return reg->type == PTR_TO_FLOW_KEYS; 5669 } 5670 5671 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5672 #ifdef CONFIG_NET 5673 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5674 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5675 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5676 #endif 5677 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5678 }; 5679 5680 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5681 { 5682 /* A referenced register is always trusted. */ 5683 if (reg->ref_obj_id) 5684 return true; 5685 5686 /* Types listed in the reg2btf_ids are always trusted */ 5687 if (reg2btf_ids[base_type(reg->type)] && 5688 !bpf_type_has_unsafe_modifiers(reg->type)) 5689 return true; 5690 5691 /* If a register is not referenced, it is trusted if it has the 5692 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5693 * other type modifiers may be safe, but we elect to take an opt-in 5694 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5695 * not. 5696 * 5697 * Eventually, we should make PTR_TRUSTED the single source of truth 5698 * for whether a register is trusted. 5699 */ 5700 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5701 !bpf_type_has_unsafe_modifiers(reg->type); 5702 } 5703 5704 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5705 { 5706 return reg->type & MEM_RCU; 5707 } 5708 5709 static void clear_trusted_flags(enum bpf_type_flag *flag) 5710 { 5711 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5712 } 5713 5714 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5715 const struct bpf_reg_state *reg, 5716 int off, int size, bool strict) 5717 { 5718 struct tnum reg_off; 5719 int ip_align; 5720 5721 /* Byte size accesses are always allowed. */ 5722 if (!strict || size == 1) 5723 return 0; 5724 5725 /* For platforms that do not have a Kconfig enabling 5726 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5727 * NET_IP_ALIGN is universally set to '2'. And on platforms 5728 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5729 * to this code only in strict mode where we want to emulate 5730 * the NET_IP_ALIGN==2 checking. Therefore use an 5731 * unconditional IP align value of '2'. 5732 */ 5733 ip_align = 2; 5734 5735 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5736 if (!tnum_is_aligned(reg_off, size)) { 5737 char tn_buf[48]; 5738 5739 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5740 verbose(env, 5741 "misaligned packet access off %d+%s+%d+%d size %d\n", 5742 ip_align, tn_buf, reg->off, off, size); 5743 return -EACCES; 5744 } 5745 5746 return 0; 5747 } 5748 5749 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5750 const struct bpf_reg_state *reg, 5751 const char *pointer_desc, 5752 int off, int size, bool strict) 5753 { 5754 struct tnum reg_off; 5755 5756 /* Byte size accesses are always allowed. */ 5757 if (!strict || size == 1) 5758 return 0; 5759 5760 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5761 if (!tnum_is_aligned(reg_off, size)) { 5762 char tn_buf[48]; 5763 5764 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5765 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5766 pointer_desc, tn_buf, reg->off, off, size); 5767 return -EACCES; 5768 } 5769 5770 return 0; 5771 } 5772 5773 static int check_ptr_alignment(struct bpf_verifier_env *env, 5774 const struct bpf_reg_state *reg, int off, 5775 int size, bool strict_alignment_once) 5776 { 5777 bool strict = env->strict_alignment || strict_alignment_once; 5778 const char *pointer_desc = ""; 5779 5780 switch (reg->type) { 5781 case PTR_TO_PACKET: 5782 case PTR_TO_PACKET_META: 5783 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5784 * right in front, treat it the very same way. 5785 */ 5786 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5787 case PTR_TO_FLOW_KEYS: 5788 pointer_desc = "flow keys "; 5789 break; 5790 case PTR_TO_MAP_KEY: 5791 pointer_desc = "key "; 5792 break; 5793 case PTR_TO_MAP_VALUE: 5794 pointer_desc = "value "; 5795 break; 5796 case PTR_TO_CTX: 5797 pointer_desc = "context "; 5798 break; 5799 case PTR_TO_STACK: 5800 pointer_desc = "stack "; 5801 /* The stack spill tracking logic in check_stack_write_fixed_off() 5802 * and check_stack_read_fixed_off() relies on stack accesses being 5803 * aligned. 5804 */ 5805 strict = true; 5806 break; 5807 case PTR_TO_SOCKET: 5808 pointer_desc = "sock "; 5809 break; 5810 case PTR_TO_SOCK_COMMON: 5811 pointer_desc = "sock_common "; 5812 break; 5813 case PTR_TO_TCP_SOCK: 5814 pointer_desc = "tcp_sock "; 5815 break; 5816 case PTR_TO_XDP_SOCK: 5817 pointer_desc = "xdp_sock "; 5818 break; 5819 default: 5820 break; 5821 } 5822 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5823 strict); 5824 } 5825 5826 /* starting from main bpf function walk all instructions of the function 5827 * and recursively walk all callees that given function can call. 5828 * Ignore jump and exit insns. 5829 * Since recursion is prevented by check_cfg() this algorithm 5830 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5831 */ 5832 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5833 { 5834 struct bpf_subprog_info *subprog = env->subprog_info; 5835 struct bpf_insn *insn = env->prog->insnsi; 5836 int depth = 0, frame = 0, i, subprog_end; 5837 bool tail_call_reachable = false; 5838 int ret_insn[MAX_CALL_FRAMES]; 5839 int ret_prog[MAX_CALL_FRAMES]; 5840 int j; 5841 5842 i = subprog[idx].start; 5843 process_func: 5844 /* protect against potential stack overflow that might happen when 5845 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5846 * depth for such case down to 256 so that the worst case scenario 5847 * would result in 8k stack size (32 which is tailcall limit * 256 = 5848 * 8k). 5849 * 5850 * To get the idea what might happen, see an example: 5851 * func1 -> sub rsp, 128 5852 * subfunc1 -> sub rsp, 256 5853 * tailcall1 -> add rsp, 256 5854 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5855 * subfunc2 -> sub rsp, 64 5856 * subfunc22 -> sub rsp, 128 5857 * tailcall2 -> add rsp, 128 5858 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5859 * 5860 * tailcall will unwind the current stack frame but it will not get rid 5861 * of caller's stack as shown on the example above. 5862 */ 5863 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5864 verbose(env, 5865 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5866 depth); 5867 return -EACCES; 5868 } 5869 /* round up to 32-bytes, since this is granularity 5870 * of interpreter stack size 5871 */ 5872 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5873 if (depth > MAX_BPF_STACK) { 5874 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5875 frame + 1, depth); 5876 return -EACCES; 5877 } 5878 continue_func: 5879 subprog_end = subprog[idx + 1].start; 5880 for (; i < subprog_end; i++) { 5881 int next_insn, sidx; 5882 5883 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5884 continue; 5885 /* remember insn and function to return to */ 5886 ret_insn[frame] = i + 1; 5887 ret_prog[frame] = idx; 5888 5889 /* find the callee */ 5890 next_insn = i + insn[i].imm + 1; 5891 sidx = find_subprog(env, next_insn); 5892 if (sidx < 0) { 5893 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5894 next_insn); 5895 return -EFAULT; 5896 } 5897 if (subprog[sidx].is_async_cb) { 5898 if (subprog[sidx].has_tail_call) { 5899 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5900 return -EFAULT; 5901 } 5902 /* async callbacks don't increase bpf prog stack size unless called directly */ 5903 if (!bpf_pseudo_call(insn + i)) 5904 continue; 5905 } 5906 i = next_insn; 5907 idx = sidx; 5908 5909 if (subprog[idx].has_tail_call) 5910 tail_call_reachable = true; 5911 5912 frame++; 5913 if (frame >= MAX_CALL_FRAMES) { 5914 verbose(env, "the call stack of %d frames is too deep !\n", 5915 frame); 5916 return -E2BIG; 5917 } 5918 goto process_func; 5919 } 5920 /* if tail call got detected across bpf2bpf calls then mark each of the 5921 * currently present subprog frames as tail call reachable subprogs; 5922 * this info will be utilized by JIT so that we will be preserving the 5923 * tail call counter throughout bpf2bpf calls combined with tailcalls 5924 */ 5925 if (tail_call_reachable) 5926 for (j = 0; j < frame; j++) 5927 subprog[ret_prog[j]].tail_call_reachable = true; 5928 if (subprog[0].tail_call_reachable) 5929 env->prog->aux->tail_call_reachable = true; 5930 5931 /* end of for() loop means the last insn of the 'subprog' 5932 * was reached. Doesn't matter whether it was JA or EXIT 5933 */ 5934 if (frame == 0) 5935 return 0; 5936 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5937 frame--; 5938 i = ret_insn[frame]; 5939 idx = ret_prog[frame]; 5940 goto continue_func; 5941 } 5942 5943 static int check_max_stack_depth(struct bpf_verifier_env *env) 5944 { 5945 struct bpf_subprog_info *si = env->subprog_info; 5946 int ret; 5947 5948 for (int i = 0; i < env->subprog_cnt; i++) { 5949 if (!i || si[i].is_async_cb) { 5950 ret = check_max_stack_depth_subprog(env, i); 5951 if (ret < 0) 5952 return ret; 5953 } 5954 continue; 5955 } 5956 return 0; 5957 } 5958 5959 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5960 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5961 const struct bpf_insn *insn, int idx) 5962 { 5963 int start = idx + insn->imm + 1, subprog; 5964 5965 subprog = find_subprog(env, start); 5966 if (subprog < 0) { 5967 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5968 start); 5969 return -EFAULT; 5970 } 5971 return env->subprog_info[subprog].stack_depth; 5972 } 5973 #endif 5974 5975 static int __check_buffer_access(struct bpf_verifier_env *env, 5976 const char *buf_info, 5977 const struct bpf_reg_state *reg, 5978 int regno, int off, int size) 5979 { 5980 if (off < 0) { 5981 verbose(env, 5982 "R%d invalid %s buffer access: off=%d, size=%d\n", 5983 regno, buf_info, off, size); 5984 return -EACCES; 5985 } 5986 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5987 char tn_buf[48]; 5988 5989 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5990 verbose(env, 5991 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5992 regno, off, tn_buf); 5993 return -EACCES; 5994 } 5995 5996 return 0; 5997 } 5998 5999 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6000 const struct bpf_reg_state *reg, 6001 int regno, int off, int size) 6002 { 6003 int err; 6004 6005 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6006 if (err) 6007 return err; 6008 6009 if (off + size > env->prog->aux->max_tp_access) 6010 env->prog->aux->max_tp_access = off + size; 6011 6012 return 0; 6013 } 6014 6015 static int check_buffer_access(struct bpf_verifier_env *env, 6016 const struct bpf_reg_state *reg, 6017 int regno, int off, int size, 6018 bool zero_size_allowed, 6019 u32 *max_access) 6020 { 6021 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6022 int err; 6023 6024 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6025 if (err) 6026 return err; 6027 6028 if (off + size > *max_access) 6029 *max_access = off + size; 6030 6031 return 0; 6032 } 6033 6034 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6035 static void zext_32_to_64(struct bpf_reg_state *reg) 6036 { 6037 reg->var_off = tnum_subreg(reg->var_off); 6038 __reg_assign_32_into_64(reg); 6039 } 6040 6041 /* truncate register to smaller size (in bytes) 6042 * must be called with size < BPF_REG_SIZE 6043 */ 6044 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6045 { 6046 u64 mask; 6047 6048 /* clear high bits in bit representation */ 6049 reg->var_off = tnum_cast(reg->var_off, size); 6050 6051 /* fix arithmetic bounds */ 6052 mask = ((u64)1 << (size * 8)) - 1; 6053 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6054 reg->umin_value &= mask; 6055 reg->umax_value &= mask; 6056 } else { 6057 reg->umin_value = 0; 6058 reg->umax_value = mask; 6059 } 6060 reg->smin_value = reg->umin_value; 6061 reg->smax_value = reg->umax_value; 6062 6063 /* If size is smaller than 32bit register the 32bit register 6064 * values are also truncated so we push 64-bit bounds into 6065 * 32-bit bounds. Above were truncated < 32-bits already. 6066 */ 6067 if (size >= 4) 6068 return; 6069 __reg_combine_64_into_32(reg); 6070 } 6071 6072 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6073 { 6074 if (size == 1) { 6075 reg->smin_value = reg->s32_min_value = S8_MIN; 6076 reg->smax_value = reg->s32_max_value = S8_MAX; 6077 } else if (size == 2) { 6078 reg->smin_value = reg->s32_min_value = S16_MIN; 6079 reg->smax_value = reg->s32_max_value = S16_MAX; 6080 } else { 6081 /* size == 4 */ 6082 reg->smin_value = reg->s32_min_value = S32_MIN; 6083 reg->smax_value = reg->s32_max_value = S32_MAX; 6084 } 6085 reg->umin_value = reg->u32_min_value = 0; 6086 reg->umax_value = U64_MAX; 6087 reg->u32_max_value = U32_MAX; 6088 reg->var_off = tnum_unknown; 6089 } 6090 6091 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6092 { 6093 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6094 u64 top_smax_value, top_smin_value; 6095 u64 num_bits = size * 8; 6096 6097 if (tnum_is_const(reg->var_off)) { 6098 u64_cval = reg->var_off.value; 6099 if (size == 1) 6100 reg->var_off = tnum_const((s8)u64_cval); 6101 else if (size == 2) 6102 reg->var_off = tnum_const((s16)u64_cval); 6103 else 6104 /* size == 4 */ 6105 reg->var_off = tnum_const((s32)u64_cval); 6106 6107 u64_cval = reg->var_off.value; 6108 reg->smax_value = reg->smin_value = u64_cval; 6109 reg->umax_value = reg->umin_value = u64_cval; 6110 reg->s32_max_value = reg->s32_min_value = u64_cval; 6111 reg->u32_max_value = reg->u32_min_value = u64_cval; 6112 return; 6113 } 6114 6115 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6116 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6117 6118 if (top_smax_value != top_smin_value) 6119 goto out; 6120 6121 /* find the s64_min and s64_min after sign extension */ 6122 if (size == 1) { 6123 init_s64_max = (s8)reg->smax_value; 6124 init_s64_min = (s8)reg->smin_value; 6125 } else if (size == 2) { 6126 init_s64_max = (s16)reg->smax_value; 6127 init_s64_min = (s16)reg->smin_value; 6128 } else { 6129 init_s64_max = (s32)reg->smax_value; 6130 init_s64_min = (s32)reg->smin_value; 6131 } 6132 6133 s64_max = max(init_s64_max, init_s64_min); 6134 s64_min = min(init_s64_max, init_s64_min); 6135 6136 /* both of s64_max/s64_min positive or negative */ 6137 if ((s64_max >= 0) == (s64_min >= 0)) { 6138 reg->smin_value = reg->s32_min_value = s64_min; 6139 reg->smax_value = reg->s32_max_value = s64_max; 6140 reg->umin_value = reg->u32_min_value = s64_min; 6141 reg->umax_value = reg->u32_max_value = s64_max; 6142 reg->var_off = tnum_range(s64_min, s64_max); 6143 return; 6144 } 6145 6146 out: 6147 set_sext64_default_val(reg, size); 6148 } 6149 6150 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6151 { 6152 if (size == 1) { 6153 reg->s32_min_value = S8_MIN; 6154 reg->s32_max_value = S8_MAX; 6155 } else { 6156 /* size == 2 */ 6157 reg->s32_min_value = S16_MIN; 6158 reg->s32_max_value = S16_MAX; 6159 } 6160 reg->u32_min_value = 0; 6161 reg->u32_max_value = U32_MAX; 6162 } 6163 6164 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6165 { 6166 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6167 u32 top_smax_value, top_smin_value; 6168 u32 num_bits = size * 8; 6169 6170 if (tnum_is_const(reg->var_off)) { 6171 u32_val = reg->var_off.value; 6172 if (size == 1) 6173 reg->var_off = tnum_const((s8)u32_val); 6174 else 6175 reg->var_off = tnum_const((s16)u32_val); 6176 6177 u32_val = reg->var_off.value; 6178 reg->s32_min_value = reg->s32_max_value = u32_val; 6179 reg->u32_min_value = reg->u32_max_value = u32_val; 6180 return; 6181 } 6182 6183 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6184 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6185 6186 if (top_smax_value != top_smin_value) 6187 goto out; 6188 6189 /* find the s32_min and s32_min after sign extension */ 6190 if (size == 1) { 6191 init_s32_max = (s8)reg->s32_max_value; 6192 init_s32_min = (s8)reg->s32_min_value; 6193 } else { 6194 /* size == 2 */ 6195 init_s32_max = (s16)reg->s32_max_value; 6196 init_s32_min = (s16)reg->s32_min_value; 6197 } 6198 s32_max = max(init_s32_max, init_s32_min); 6199 s32_min = min(init_s32_max, init_s32_min); 6200 6201 if ((s32_min >= 0) == (s32_max >= 0)) { 6202 reg->s32_min_value = s32_min; 6203 reg->s32_max_value = s32_max; 6204 reg->u32_min_value = (u32)s32_min; 6205 reg->u32_max_value = (u32)s32_max; 6206 return; 6207 } 6208 6209 out: 6210 set_sext32_default_val(reg, size); 6211 } 6212 6213 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6214 { 6215 /* A map is considered read-only if the following condition are true: 6216 * 6217 * 1) BPF program side cannot change any of the map content. The 6218 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6219 * and was set at map creation time. 6220 * 2) The map value(s) have been initialized from user space by a 6221 * loader and then "frozen", such that no new map update/delete 6222 * operations from syscall side are possible for the rest of 6223 * the map's lifetime from that point onwards. 6224 * 3) Any parallel/pending map update/delete operations from syscall 6225 * side have been completed. Only after that point, it's safe to 6226 * assume that map value(s) are immutable. 6227 */ 6228 return (map->map_flags & BPF_F_RDONLY_PROG) && 6229 READ_ONCE(map->frozen) && 6230 !bpf_map_write_active(map); 6231 } 6232 6233 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6234 bool is_ldsx) 6235 { 6236 void *ptr; 6237 u64 addr; 6238 int err; 6239 6240 err = map->ops->map_direct_value_addr(map, &addr, off); 6241 if (err) 6242 return err; 6243 ptr = (void *)(long)addr + off; 6244 6245 switch (size) { 6246 case sizeof(u8): 6247 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6248 break; 6249 case sizeof(u16): 6250 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6251 break; 6252 case sizeof(u32): 6253 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6254 break; 6255 case sizeof(u64): 6256 *val = *(u64 *)ptr; 6257 break; 6258 default: 6259 return -EINVAL; 6260 } 6261 return 0; 6262 } 6263 6264 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6265 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6266 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6267 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6268 6269 /* 6270 * Allow list few fields as RCU trusted or full trusted. 6271 * This logic doesn't allow mix tagging and will be removed once GCC supports 6272 * btf_type_tag. 6273 */ 6274 6275 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6276 BTF_TYPE_SAFE_RCU(struct task_struct) { 6277 const cpumask_t *cpus_ptr; 6278 struct css_set __rcu *cgroups; 6279 struct task_struct __rcu *real_parent; 6280 struct task_struct *group_leader; 6281 }; 6282 6283 BTF_TYPE_SAFE_RCU(struct cgroup) { 6284 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6285 struct kernfs_node *kn; 6286 }; 6287 6288 BTF_TYPE_SAFE_RCU(struct css_set) { 6289 struct cgroup *dfl_cgrp; 6290 }; 6291 6292 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6293 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6294 struct file __rcu *exe_file; 6295 }; 6296 6297 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6298 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6299 */ 6300 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6301 struct sock *sk; 6302 }; 6303 6304 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6305 struct sock *sk; 6306 }; 6307 6308 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6309 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6310 struct seq_file *seq; 6311 }; 6312 6313 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6314 struct bpf_iter_meta *meta; 6315 struct task_struct *task; 6316 }; 6317 6318 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6319 struct file *file; 6320 }; 6321 6322 BTF_TYPE_SAFE_TRUSTED(struct file) { 6323 struct inode *f_inode; 6324 }; 6325 6326 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6327 /* no negative dentry-s in places where bpf can see it */ 6328 struct inode *d_inode; 6329 }; 6330 6331 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6332 struct sock *sk; 6333 }; 6334 6335 static bool type_is_rcu(struct bpf_verifier_env *env, 6336 struct bpf_reg_state *reg, 6337 const char *field_name, u32 btf_id) 6338 { 6339 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6340 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6341 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6342 6343 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6344 } 6345 6346 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6347 struct bpf_reg_state *reg, 6348 const char *field_name, u32 btf_id) 6349 { 6350 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6351 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6352 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6353 6354 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6355 } 6356 6357 static bool type_is_trusted(struct bpf_verifier_env *env, 6358 struct bpf_reg_state *reg, 6359 const char *field_name, u32 btf_id) 6360 { 6361 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6362 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6363 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6364 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6365 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6366 6367 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6368 } 6369 6370 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6371 struct bpf_reg_state *reg, 6372 const char *field_name, u32 btf_id) 6373 { 6374 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6375 6376 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6377 "__safe_trusted_or_null"); 6378 } 6379 6380 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6381 struct bpf_reg_state *regs, 6382 int regno, int off, int size, 6383 enum bpf_access_type atype, 6384 int value_regno) 6385 { 6386 struct bpf_reg_state *reg = regs + regno; 6387 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6388 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6389 const char *field_name = NULL; 6390 enum bpf_type_flag flag = 0; 6391 u32 btf_id = 0; 6392 int ret; 6393 6394 if (!env->allow_ptr_leaks) { 6395 verbose(env, 6396 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6397 tname); 6398 return -EPERM; 6399 } 6400 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6401 verbose(env, 6402 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6403 tname); 6404 return -EINVAL; 6405 } 6406 if (off < 0) { 6407 verbose(env, 6408 "R%d is ptr_%s invalid negative access: off=%d\n", 6409 regno, tname, off); 6410 return -EACCES; 6411 } 6412 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6413 char tn_buf[48]; 6414 6415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6416 verbose(env, 6417 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6418 regno, tname, off, tn_buf); 6419 return -EACCES; 6420 } 6421 6422 if (reg->type & MEM_USER) { 6423 verbose(env, 6424 "R%d is ptr_%s access user memory: off=%d\n", 6425 regno, tname, off); 6426 return -EACCES; 6427 } 6428 6429 if (reg->type & MEM_PERCPU) { 6430 verbose(env, 6431 "R%d is ptr_%s access percpu memory: off=%d\n", 6432 regno, tname, off); 6433 return -EACCES; 6434 } 6435 6436 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6437 if (!btf_is_kernel(reg->btf)) { 6438 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6439 return -EFAULT; 6440 } 6441 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6442 } else { 6443 /* Writes are permitted with default btf_struct_access for 6444 * program allocated objects (which always have ref_obj_id > 0), 6445 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6446 */ 6447 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6448 verbose(env, "only read is supported\n"); 6449 return -EACCES; 6450 } 6451 6452 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6453 !reg->ref_obj_id) { 6454 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6455 return -EFAULT; 6456 } 6457 6458 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6459 } 6460 6461 if (ret < 0) 6462 return ret; 6463 6464 if (ret != PTR_TO_BTF_ID) { 6465 /* just mark; */ 6466 6467 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6468 /* If this is an untrusted pointer, all pointers formed by walking it 6469 * also inherit the untrusted flag. 6470 */ 6471 flag = PTR_UNTRUSTED; 6472 6473 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6474 /* By default any pointer obtained from walking a trusted pointer is no 6475 * longer trusted, unless the field being accessed has explicitly been 6476 * marked as inheriting its parent's state of trust (either full or RCU). 6477 * For example: 6478 * 'cgroups' pointer is untrusted if task->cgroups dereference 6479 * happened in a sleepable program outside of bpf_rcu_read_lock() 6480 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6481 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6482 * 6483 * A regular RCU-protected pointer with __rcu tag can also be deemed 6484 * trusted if we are in an RCU CS. Such pointer can be NULL. 6485 */ 6486 if (type_is_trusted(env, reg, field_name, btf_id)) { 6487 flag |= PTR_TRUSTED; 6488 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6489 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6490 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6491 if (type_is_rcu(env, reg, field_name, btf_id)) { 6492 /* ignore __rcu tag and mark it MEM_RCU */ 6493 flag |= MEM_RCU; 6494 } else if (flag & MEM_RCU || 6495 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6496 /* __rcu tagged pointers can be NULL */ 6497 flag |= MEM_RCU | PTR_MAYBE_NULL; 6498 6499 /* We always trust them */ 6500 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6501 flag & PTR_UNTRUSTED) 6502 flag &= ~PTR_UNTRUSTED; 6503 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6504 /* keep as-is */ 6505 } else { 6506 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6507 clear_trusted_flags(&flag); 6508 } 6509 } else { 6510 /* 6511 * If not in RCU CS or MEM_RCU pointer can be NULL then 6512 * aggressively mark as untrusted otherwise such 6513 * pointers will be plain PTR_TO_BTF_ID without flags 6514 * and will be allowed to be passed into helpers for 6515 * compat reasons. 6516 */ 6517 flag = PTR_UNTRUSTED; 6518 } 6519 } else { 6520 /* Old compat. Deprecated */ 6521 clear_trusted_flags(&flag); 6522 } 6523 6524 if (atype == BPF_READ && value_regno >= 0) 6525 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6526 6527 return 0; 6528 } 6529 6530 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6531 struct bpf_reg_state *regs, 6532 int regno, int off, int size, 6533 enum bpf_access_type atype, 6534 int value_regno) 6535 { 6536 struct bpf_reg_state *reg = regs + regno; 6537 struct bpf_map *map = reg->map_ptr; 6538 struct bpf_reg_state map_reg; 6539 enum bpf_type_flag flag = 0; 6540 const struct btf_type *t; 6541 const char *tname; 6542 u32 btf_id; 6543 int ret; 6544 6545 if (!btf_vmlinux) { 6546 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6547 return -ENOTSUPP; 6548 } 6549 6550 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6551 verbose(env, "map_ptr access not supported for map type %d\n", 6552 map->map_type); 6553 return -ENOTSUPP; 6554 } 6555 6556 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6557 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6558 6559 if (!env->allow_ptr_leaks) { 6560 verbose(env, 6561 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6562 tname); 6563 return -EPERM; 6564 } 6565 6566 if (off < 0) { 6567 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6568 regno, tname, off); 6569 return -EACCES; 6570 } 6571 6572 if (atype != BPF_READ) { 6573 verbose(env, "only read from %s is supported\n", tname); 6574 return -EACCES; 6575 } 6576 6577 /* Simulate access to a PTR_TO_BTF_ID */ 6578 memset(&map_reg, 0, sizeof(map_reg)); 6579 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6580 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6581 if (ret < 0) 6582 return ret; 6583 6584 if (value_regno >= 0) 6585 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6586 6587 return 0; 6588 } 6589 6590 /* Check that the stack access at the given offset is within bounds. The 6591 * maximum valid offset is -1. 6592 * 6593 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6594 * -state->allocated_stack for reads. 6595 */ 6596 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6597 s64 off, 6598 struct bpf_func_state *state, 6599 enum bpf_access_type t) 6600 { 6601 int min_valid_off; 6602 6603 if (t == BPF_WRITE || env->allow_uninit_stack) 6604 min_valid_off = -MAX_BPF_STACK; 6605 else 6606 min_valid_off = -state->allocated_stack; 6607 6608 if (off < min_valid_off || off > -1) 6609 return -EACCES; 6610 return 0; 6611 } 6612 6613 /* Check that the stack access at 'regno + off' falls within the maximum stack 6614 * bounds. 6615 * 6616 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6617 */ 6618 static int check_stack_access_within_bounds( 6619 struct bpf_verifier_env *env, 6620 int regno, int off, int access_size, 6621 enum bpf_access_src src, enum bpf_access_type type) 6622 { 6623 struct bpf_reg_state *regs = cur_regs(env); 6624 struct bpf_reg_state *reg = regs + regno; 6625 struct bpf_func_state *state = func(env, reg); 6626 s64 min_off, max_off; 6627 int err; 6628 char *err_extra; 6629 6630 if (src == ACCESS_HELPER) 6631 /* We don't know if helpers are reading or writing (or both). */ 6632 err_extra = " indirect access to"; 6633 else if (type == BPF_READ) 6634 err_extra = " read from"; 6635 else 6636 err_extra = " write to"; 6637 6638 if (tnum_is_const(reg->var_off)) { 6639 min_off = (s64)reg->var_off.value + off; 6640 max_off = min_off + access_size; 6641 } else { 6642 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6643 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6644 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6645 err_extra, regno); 6646 return -EACCES; 6647 } 6648 min_off = reg->smin_value + off; 6649 max_off = reg->smax_value + off + access_size; 6650 } 6651 6652 err = check_stack_slot_within_bounds(env, min_off, state, type); 6653 if (!err && max_off > 0) 6654 err = -EINVAL; /* out of stack access into non-negative offsets */ 6655 if (!err && access_size < 0) 6656 /* access_size should not be negative (or overflow an int); others checks 6657 * along the way should have prevented such an access. 6658 */ 6659 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6660 6661 if (err) { 6662 if (tnum_is_const(reg->var_off)) { 6663 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6664 err_extra, regno, off, access_size); 6665 } else { 6666 char tn_buf[48]; 6667 6668 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6669 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6670 err_extra, regno, tn_buf, access_size); 6671 } 6672 return err; 6673 } 6674 6675 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE)); 6676 } 6677 6678 /* check whether memory at (regno + off) is accessible for t = (read | write) 6679 * if t==write, value_regno is a register which value is stored into memory 6680 * if t==read, value_regno is a register which will receive the value from memory 6681 * if t==write && value_regno==-1, some unknown value is stored into memory 6682 * if t==read && value_regno==-1, don't care what we read from memory 6683 */ 6684 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6685 int off, int bpf_size, enum bpf_access_type t, 6686 int value_regno, bool strict_alignment_once, bool is_ldsx) 6687 { 6688 struct bpf_reg_state *regs = cur_regs(env); 6689 struct bpf_reg_state *reg = regs + regno; 6690 int size, err = 0; 6691 6692 size = bpf_size_to_bytes(bpf_size); 6693 if (size < 0) 6694 return size; 6695 6696 /* alignment checks will add in reg->off themselves */ 6697 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6698 if (err) 6699 return err; 6700 6701 /* for access checks, reg->off is just part of off */ 6702 off += reg->off; 6703 6704 if (reg->type == PTR_TO_MAP_KEY) { 6705 if (t == BPF_WRITE) { 6706 verbose(env, "write to change key R%d not allowed\n", regno); 6707 return -EACCES; 6708 } 6709 6710 err = check_mem_region_access(env, regno, off, size, 6711 reg->map_ptr->key_size, false); 6712 if (err) 6713 return err; 6714 if (value_regno >= 0) 6715 mark_reg_unknown(env, regs, value_regno); 6716 } else if (reg->type == PTR_TO_MAP_VALUE) { 6717 struct btf_field *kptr_field = NULL; 6718 6719 if (t == BPF_WRITE && value_regno >= 0 && 6720 is_pointer_value(env, value_regno)) { 6721 verbose(env, "R%d leaks addr into map\n", value_regno); 6722 return -EACCES; 6723 } 6724 err = check_map_access_type(env, regno, off, size, t); 6725 if (err) 6726 return err; 6727 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6728 if (err) 6729 return err; 6730 if (tnum_is_const(reg->var_off)) 6731 kptr_field = btf_record_find(reg->map_ptr->record, 6732 off + reg->var_off.value, BPF_KPTR); 6733 if (kptr_field) { 6734 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6735 } else if (t == BPF_READ && value_regno >= 0) { 6736 struct bpf_map *map = reg->map_ptr; 6737 6738 /* if map is read-only, track its contents as scalars */ 6739 if (tnum_is_const(reg->var_off) && 6740 bpf_map_is_rdonly(map) && 6741 map->ops->map_direct_value_addr) { 6742 int map_off = off + reg->var_off.value; 6743 u64 val = 0; 6744 6745 err = bpf_map_direct_read(map, map_off, size, 6746 &val, is_ldsx); 6747 if (err) 6748 return err; 6749 6750 regs[value_regno].type = SCALAR_VALUE; 6751 __mark_reg_known(®s[value_regno], val); 6752 } else { 6753 mark_reg_unknown(env, regs, value_regno); 6754 } 6755 } 6756 } else if (base_type(reg->type) == PTR_TO_MEM) { 6757 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6758 6759 if (type_may_be_null(reg->type)) { 6760 verbose(env, "R%d invalid mem access '%s'\n", regno, 6761 reg_type_str(env, reg->type)); 6762 return -EACCES; 6763 } 6764 6765 if (t == BPF_WRITE && rdonly_mem) { 6766 verbose(env, "R%d cannot write into %s\n", 6767 regno, reg_type_str(env, reg->type)); 6768 return -EACCES; 6769 } 6770 6771 if (t == BPF_WRITE && value_regno >= 0 && 6772 is_pointer_value(env, value_regno)) { 6773 verbose(env, "R%d leaks addr into mem\n", value_regno); 6774 return -EACCES; 6775 } 6776 6777 err = check_mem_region_access(env, regno, off, size, 6778 reg->mem_size, false); 6779 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6780 mark_reg_unknown(env, regs, value_regno); 6781 } else if (reg->type == PTR_TO_CTX) { 6782 enum bpf_reg_type reg_type = SCALAR_VALUE; 6783 struct btf *btf = NULL; 6784 u32 btf_id = 0; 6785 6786 if (t == BPF_WRITE && value_regno >= 0 && 6787 is_pointer_value(env, value_regno)) { 6788 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6789 return -EACCES; 6790 } 6791 6792 err = check_ptr_off_reg(env, reg, regno); 6793 if (err < 0) 6794 return err; 6795 6796 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6797 &btf_id); 6798 if (err) 6799 verbose_linfo(env, insn_idx, "; "); 6800 if (!err && t == BPF_READ && value_regno >= 0) { 6801 /* ctx access returns either a scalar, or a 6802 * PTR_TO_PACKET[_META,_END]. In the latter 6803 * case, we know the offset is zero. 6804 */ 6805 if (reg_type == SCALAR_VALUE) { 6806 mark_reg_unknown(env, regs, value_regno); 6807 } else { 6808 mark_reg_known_zero(env, regs, 6809 value_regno); 6810 if (type_may_be_null(reg_type)) 6811 regs[value_regno].id = ++env->id_gen; 6812 /* A load of ctx field could have different 6813 * actual load size with the one encoded in the 6814 * insn. When the dst is PTR, it is for sure not 6815 * a sub-register. 6816 */ 6817 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6818 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6819 regs[value_regno].btf = btf; 6820 regs[value_regno].btf_id = btf_id; 6821 } 6822 } 6823 regs[value_regno].type = reg_type; 6824 } 6825 6826 } else if (reg->type == PTR_TO_STACK) { 6827 /* Basic bounds checks. */ 6828 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6829 if (err) 6830 return err; 6831 6832 if (t == BPF_READ) 6833 err = check_stack_read(env, regno, off, size, 6834 value_regno); 6835 else 6836 err = check_stack_write(env, regno, off, size, 6837 value_regno, insn_idx); 6838 } else if (reg_is_pkt_pointer(reg)) { 6839 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6840 verbose(env, "cannot write into packet\n"); 6841 return -EACCES; 6842 } 6843 if (t == BPF_WRITE && value_regno >= 0 && 6844 is_pointer_value(env, value_regno)) { 6845 verbose(env, "R%d leaks addr into packet\n", 6846 value_regno); 6847 return -EACCES; 6848 } 6849 err = check_packet_access(env, regno, off, size, false); 6850 if (!err && t == BPF_READ && value_regno >= 0) 6851 mark_reg_unknown(env, regs, value_regno); 6852 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6853 if (t == BPF_WRITE && value_regno >= 0 && 6854 is_pointer_value(env, value_regno)) { 6855 verbose(env, "R%d leaks addr into flow keys\n", 6856 value_regno); 6857 return -EACCES; 6858 } 6859 6860 err = check_flow_keys_access(env, off, size); 6861 if (!err && t == BPF_READ && value_regno >= 0) 6862 mark_reg_unknown(env, regs, value_regno); 6863 } else if (type_is_sk_pointer(reg->type)) { 6864 if (t == BPF_WRITE) { 6865 verbose(env, "R%d cannot write into %s\n", 6866 regno, reg_type_str(env, reg->type)); 6867 return -EACCES; 6868 } 6869 err = check_sock_access(env, insn_idx, regno, off, size, t); 6870 if (!err && value_regno >= 0) 6871 mark_reg_unknown(env, regs, value_regno); 6872 } else if (reg->type == PTR_TO_TP_BUFFER) { 6873 err = check_tp_buffer_access(env, reg, regno, off, size); 6874 if (!err && t == BPF_READ && value_regno >= 0) 6875 mark_reg_unknown(env, regs, value_regno); 6876 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6877 !type_may_be_null(reg->type)) { 6878 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6879 value_regno); 6880 } else if (reg->type == CONST_PTR_TO_MAP) { 6881 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6882 value_regno); 6883 } else if (base_type(reg->type) == PTR_TO_BUF) { 6884 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6885 u32 *max_access; 6886 6887 if (rdonly_mem) { 6888 if (t == BPF_WRITE) { 6889 verbose(env, "R%d cannot write into %s\n", 6890 regno, reg_type_str(env, reg->type)); 6891 return -EACCES; 6892 } 6893 max_access = &env->prog->aux->max_rdonly_access; 6894 } else { 6895 max_access = &env->prog->aux->max_rdwr_access; 6896 } 6897 6898 err = check_buffer_access(env, reg, regno, off, size, false, 6899 max_access); 6900 6901 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6902 mark_reg_unknown(env, regs, value_regno); 6903 } else { 6904 verbose(env, "R%d invalid mem access '%s'\n", regno, 6905 reg_type_str(env, reg->type)); 6906 return -EACCES; 6907 } 6908 6909 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6910 regs[value_regno].type == SCALAR_VALUE) { 6911 if (!is_ldsx) 6912 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6913 coerce_reg_to_size(®s[value_regno], size); 6914 else 6915 coerce_reg_to_size_sx(®s[value_regno], size); 6916 } 6917 return err; 6918 } 6919 6920 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6921 { 6922 int load_reg; 6923 int err; 6924 6925 switch (insn->imm) { 6926 case BPF_ADD: 6927 case BPF_ADD | BPF_FETCH: 6928 case BPF_AND: 6929 case BPF_AND | BPF_FETCH: 6930 case BPF_OR: 6931 case BPF_OR | BPF_FETCH: 6932 case BPF_XOR: 6933 case BPF_XOR | BPF_FETCH: 6934 case BPF_XCHG: 6935 case BPF_CMPXCHG: 6936 break; 6937 default: 6938 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6939 return -EINVAL; 6940 } 6941 6942 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6943 verbose(env, "invalid atomic operand size\n"); 6944 return -EINVAL; 6945 } 6946 6947 /* check src1 operand */ 6948 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6949 if (err) 6950 return err; 6951 6952 /* check src2 operand */ 6953 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6954 if (err) 6955 return err; 6956 6957 if (insn->imm == BPF_CMPXCHG) { 6958 /* Check comparison of R0 with memory location */ 6959 const u32 aux_reg = BPF_REG_0; 6960 6961 err = check_reg_arg(env, aux_reg, SRC_OP); 6962 if (err) 6963 return err; 6964 6965 if (is_pointer_value(env, aux_reg)) { 6966 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6967 return -EACCES; 6968 } 6969 } 6970 6971 if (is_pointer_value(env, insn->src_reg)) { 6972 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6973 return -EACCES; 6974 } 6975 6976 if (is_ctx_reg(env, insn->dst_reg) || 6977 is_pkt_reg(env, insn->dst_reg) || 6978 is_flow_key_reg(env, insn->dst_reg) || 6979 is_sk_reg(env, insn->dst_reg)) { 6980 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6981 insn->dst_reg, 6982 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6983 return -EACCES; 6984 } 6985 6986 if (insn->imm & BPF_FETCH) { 6987 if (insn->imm == BPF_CMPXCHG) 6988 load_reg = BPF_REG_0; 6989 else 6990 load_reg = insn->src_reg; 6991 6992 /* check and record load of old value */ 6993 err = check_reg_arg(env, load_reg, DST_OP); 6994 if (err) 6995 return err; 6996 } else { 6997 /* This instruction accesses a memory location but doesn't 6998 * actually load it into a register. 6999 */ 7000 load_reg = -1; 7001 } 7002 7003 /* Check whether we can read the memory, with second call for fetch 7004 * case to simulate the register fill. 7005 */ 7006 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7007 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7008 if (!err && load_reg >= 0) 7009 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7010 BPF_SIZE(insn->code), BPF_READ, load_reg, 7011 true, false); 7012 if (err) 7013 return err; 7014 7015 /* Check whether we can write into the same memory. */ 7016 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7017 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7018 if (err) 7019 return err; 7020 7021 return 0; 7022 } 7023 7024 /* When register 'regno' is used to read the stack (either directly or through 7025 * a helper function) make sure that it's within stack boundary and, depending 7026 * on the access type and privileges, that all elements of the stack are 7027 * initialized. 7028 * 7029 * 'off' includes 'regno->off', but not its dynamic part (if any). 7030 * 7031 * All registers that have been spilled on the stack in the slots within the 7032 * read offsets are marked as read. 7033 */ 7034 static int check_stack_range_initialized( 7035 struct bpf_verifier_env *env, int regno, int off, 7036 int access_size, bool zero_size_allowed, 7037 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7038 { 7039 struct bpf_reg_state *reg = reg_state(env, regno); 7040 struct bpf_func_state *state = func(env, reg); 7041 int err, min_off, max_off, i, j, slot, spi; 7042 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7043 enum bpf_access_type bounds_check_type; 7044 /* Some accesses can write anything into the stack, others are 7045 * read-only. 7046 */ 7047 bool clobber = false; 7048 7049 if (access_size == 0 && !zero_size_allowed) { 7050 verbose(env, "invalid zero-sized read\n"); 7051 return -EACCES; 7052 } 7053 7054 if (type == ACCESS_HELPER) { 7055 /* The bounds checks for writes are more permissive than for 7056 * reads. However, if raw_mode is not set, we'll do extra 7057 * checks below. 7058 */ 7059 bounds_check_type = BPF_WRITE; 7060 clobber = true; 7061 } else { 7062 bounds_check_type = BPF_READ; 7063 } 7064 err = check_stack_access_within_bounds(env, regno, off, access_size, 7065 type, bounds_check_type); 7066 if (err) 7067 return err; 7068 7069 7070 if (tnum_is_const(reg->var_off)) { 7071 min_off = max_off = reg->var_off.value + off; 7072 } else { 7073 /* Variable offset is prohibited for unprivileged mode for 7074 * simplicity since it requires corresponding support in 7075 * Spectre masking for stack ALU. 7076 * See also retrieve_ptr_limit(). 7077 */ 7078 if (!env->bypass_spec_v1) { 7079 char tn_buf[48]; 7080 7081 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7082 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7083 regno, err_extra, tn_buf); 7084 return -EACCES; 7085 } 7086 /* Only initialized buffer on stack is allowed to be accessed 7087 * with variable offset. With uninitialized buffer it's hard to 7088 * guarantee that whole memory is marked as initialized on 7089 * helper return since specific bounds are unknown what may 7090 * cause uninitialized stack leaking. 7091 */ 7092 if (meta && meta->raw_mode) 7093 meta = NULL; 7094 7095 min_off = reg->smin_value + off; 7096 max_off = reg->smax_value + off; 7097 } 7098 7099 if (meta && meta->raw_mode) { 7100 /* Ensure we won't be overwriting dynptrs when simulating byte 7101 * by byte access in check_helper_call using meta.access_size. 7102 * This would be a problem if we have a helper in the future 7103 * which takes: 7104 * 7105 * helper(uninit_mem, len, dynptr) 7106 * 7107 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7108 * may end up writing to dynptr itself when touching memory from 7109 * arg 1. This can be relaxed on a case by case basis for known 7110 * safe cases, but reject due to the possibilitiy of aliasing by 7111 * default. 7112 */ 7113 for (i = min_off; i < max_off + access_size; i++) { 7114 int stack_off = -i - 1; 7115 7116 spi = __get_spi(i); 7117 /* raw_mode may write past allocated_stack */ 7118 if (state->allocated_stack <= stack_off) 7119 continue; 7120 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7121 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7122 return -EACCES; 7123 } 7124 } 7125 meta->access_size = access_size; 7126 meta->regno = regno; 7127 return 0; 7128 } 7129 7130 for (i = min_off; i < max_off + access_size; i++) { 7131 u8 *stype; 7132 7133 slot = -i - 1; 7134 spi = slot / BPF_REG_SIZE; 7135 if (state->allocated_stack <= slot) { 7136 verbose(env, "verifier bug: allocated_stack too small"); 7137 return -EFAULT; 7138 } 7139 7140 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7141 if (*stype == STACK_MISC) 7142 goto mark; 7143 if ((*stype == STACK_ZERO) || 7144 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7145 if (clobber) { 7146 /* helper can write anything into the stack */ 7147 *stype = STACK_MISC; 7148 } 7149 goto mark; 7150 } 7151 7152 if (is_spilled_reg(&state->stack[spi]) && 7153 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7154 env->allow_ptr_leaks)) { 7155 if (clobber) { 7156 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7157 for (j = 0; j < BPF_REG_SIZE; j++) 7158 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7159 } 7160 goto mark; 7161 } 7162 7163 if (tnum_is_const(reg->var_off)) { 7164 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7165 err_extra, regno, min_off, i - min_off, access_size); 7166 } else { 7167 char tn_buf[48]; 7168 7169 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7170 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7171 err_extra, regno, tn_buf, i - min_off, access_size); 7172 } 7173 return -EACCES; 7174 mark: 7175 /* reading any byte out of 8-byte 'spill_slot' will cause 7176 * the whole slot to be marked as 'read' 7177 */ 7178 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7179 state->stack[spi].spilled_ptr.parent, 7180 REG_LIVE_READ64); 7181 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7182 * be sure that whether stack slot is written to or not. Hence, 7183 * we must still conservatively propagate reads upwards even if 7184 * helper may write to the entire memory range. 7185 */ 7186 } 7187 return 0; 7188 } 7189 7190 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7191 int access_size, bool zero_size_allowed, 7192 struct bpf_call_arg_meta *meta) 7193 { 7194 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7195 u32 *max_access; 7196 7197 switch (base_type(reg->type)) { 7198 case PTR_TO_PACKET: 7199 case PTR_TO_PACKET_META: 7200 return check_packet_access(env, regno, reg->off, access_size, 7201 zero_size_allowed); 7202 case PTR_TO_MAP_KEY: 7203 if (meta && meta->raw_mode) { 7204 verbose(env, "R%d cannot write into %s\n", regno, 7205 reg_type_str(env, reg->type)); 7206 return -EACCES; 7207 } 7208 return check_mem_region_access(env, regno, reg->off, access_size, 7209 reg->map_ptr->key_size, false); 7210 case PTR_TO_MAP_VALUE: 7211 if (check_map_access_type(env, regno, reg->off, access_size, 7212 meta && meta->raw_mode ? BPF_WRITE : 7213 BPF_READ)) 7214 return -EACCES; 7215 return check_map_access(env, regno, reg->off, access_size, 7216 zero_size_allowed, ACCESS_HELPER); 7217 case PTR_TO_MEM: 7218 if (type_is_rdonly_mem(reg->type)) { 7219 if (meta && meta->raw_mode) { 7220 verbose(env, "R%d cannot write into %s\n", regno, 7221 reg_type_str(env, reg->type)); 7222 return -EACCES; 7223 } 7224 } 7225 return check_mem_region_access(env, regno, reg->off, 7226 access_size, reg->mem_size, 7227 zero_size_allowed); 7228 case PTR_TO_BUF: 7229 if (type_is_rdonly_mem(reg->type)) { 7230 if (meta && meta->raw_mode) { 7231 verbose(env, "R%d cannot write into %s\n", regno, 7232 reg_type_str(env, reg->type)); 7233 return -EACCES; 7234 } 7235 7236 max_access = &env->prog->aux->max_rdonly_access; 7237 } else { 7238 max_access = &env->prog->aux->max_rdwr_access; 7239 } 7240 return check_buffer_access(env, reg, regno, reg->off, 7241 access_size, zero_size_allowed, 7242 max_access); 7243 case PTR_TO_STACK: 7244 return check_stack_range_initialized( 7245 env, 7246 regno, reg->off, access_size, 7247 zero_size_allowed, ACCESS_HELPER, meta); 7248 case PTR_TO_BTF_ID: 7249 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7250 access_size, BPF_READ, -1); 7251 case PTR_TO_CTX: 7252 /* in case the function doesn't know how to access the context, 7253 * (because we are in a program of type SYSCALL for example), we 7254 * can not statically check its size. 7255 * Dynamically check it now. 7256 */ 7257 if (!env->ops->convert_ctx_access) { 7258 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7259 int offset = access_size - 1; 7260 7261 /* Allow zero-byte read from PTR_TO_CTX */ 7262 if (access_size == 0) 7263 return zero_size_allowed ? 0 : -EACCES; 7264 7265 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7266 atype, -1, false, false); 7267 } 7268 7269 fallthrough; 7270 default: /* scalar_value or invalid ptr */ 7271 /* Allow zero-byte read from NULL, regardless of pointer type */ 7272 if (zero_size_allowed && access_size == 0 && 7273 register_is_null(reg)) 7274 return 0; 7275 7276 verbose(env, "R%d type=%s ", regno, 7277 reg_type_str(env, reg->type)); 7278 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7279 return -EACCES; 7280 } 7281 } 7282 7283 static int check_mem_size_reg(struct bpf_verifier_env *env, 7284 struct bpf_reg_state *reg, u32 regno, 7285 bool zero_size_allowed, 7286 struct bpf_call_arg_meta *meta) 7287 { 7288 int err; 7289 7290 /* This is used to refine r0 return value bounds for helpers 7291 * that enforce this value as an upper bound on return values. 7292 * See do_refine_retval_range() for helpers that can refine 7293 * the return value. C type of helper is u32 so we pull register 7294 * bound from umax_value however, if negative verifier errors 7295 * out. Only upper bounds can be learned because retval is an 7296 * int type and negative retvals are allowed. 7297 */ 7298 meta->msize_max_value = reg->umax_value; 7299 7300 /* The register is SCALAR_VALUE; the access check 7301 * happens using its boundaries. 7302 */ 7303 if (!tnum_is_const(reg->var_off)) 7304 /* For unprivileged variable accesses, disable raw 7305 * mode so that the program is required to 7306 * initialize all the memory that the helper could 7307 * just partially fill up. 7308 */ 7309 meta = NULL; 7310 7311 if (reg->smin_value < 0) { 7312 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7313 regno); 7314 return -EACCES; 7315 } 7316 7317 if (reg->umin_value == 0) { 7318 err = check_helper_mem_access(env, regno - 1, 0, 7319 zero_size_allowed, 7320 meta); 7321 if (err) 7322 return err; 7323 } 7324 7325 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7326 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7327 regno); 7328 return -EACCES; 7329 } 7330 err = check_helper_mem_access(env, regno - 1, 7331 reg->umax_value, 7332 zero_size_allowed, meta); 7333 if (!err) 7334 err = mark_chain_precision(env, regno); 7335 return err; 7336 } 7337 7338 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7339 u32 regno, u32 mem_size) 7340 { 7341 bool may_be_null = type_may_be_null(reg->type); 7342 struct bpf_reg_state saved_reg; 7343 struct bpf_call_arg_meta meta; 7344 int err; 7345 7346 if (register_is_null(reg)) 7347 return 0; 7348 7349 memset(&meta, 0, sizeof(meta)); 7350 /* Assuming that the register contains a value check if the memory 7351 * access is safe. Temporarily save and restore the register's state as 7352 * the conversion shouldn't be visible to a caller. 7353 */ 7354 if (may_be_null) { 7355 saved_reg = *reg; 7356 mark_ptr_not_null_reg(reg); 7357 } 7358 7359 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7360 /* Check access for BPF_WRITE */ 7361 meta.raw_mode = true; 7362 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7363 7364 if (may_be_null) 7365 *reg = saved_reg; 7366 7367 return err; 7368 } 7369 7370 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7371 u32 regno) 7372 { 7373 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7374 bool may_be_null = type_may_be_null(mem_reg->type); 7375 struct bpf_reg_state saved_reg; 7376 struct bpf_call_arg_meta meta; 7377 int err; 7378 7379 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7380 7381 memset(&meta, 0, sizeof(meta)); 7382 7383 if (may_be_null) { 7384 saved_reg = *mem_reg; 7385 mark_ptr_not_null_reg(mem_reg); 7386 } 7387 7388 err = check_mem_size_reg(env, reg, regno, true, &meta); 7389 /* Check access for BPF_WRITE */ 7390 meta.raw_mode = true; 7391 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7392 7393 if (may_be_null) 7394 *mem_reg = saved_reg; 7395 return err; 7396 } 7397 7398 /* Implementation details: 7399 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7400 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7401 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7402 * Two separate bpf_obj_new will also have different reg->id. 7403 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7404 * clears reg->id after value_or_null->value transition, since the verifier only 7405 * cares about the range of access to valid map value pointer and doesn't care 7406 * about actual address of the map element. 7407 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7408 * reg->id > 0 after value_or_null->value transition. By doing so 7409 * two bpf_map_lookups will be considered two different pointers that 7410 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7411 * returned from bpf_obj_new. 7412 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7413 * dead-locks. 7414 * Since only one bpf_spin_lock is allowed the checks are simpler than 7415 * reg_is_refcounted() logic. The verifier needs to remember only 7416 * one spin_lock instead of array of acquired_refs. 7417 * cur_state->active_lock remembers which map value element or allocated 7418 * object got locked and clears it after bpf_spin_unlock. 7419 */ 7420 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7421 bool is_lock) 7422 { 7423 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7424 struct bpf_verifier_state *cur = env->cur_state; 7425 bool is_const = tnum_is_const(reg->var_off); 7426 u64 val = reg->var_off.value; 7427 struct bpf_map *map = NULL; 7428 struct btf *btf = NULL; 7429 struct btf_record *rec; 7430 7431 if (!is_const) { 7432 verbose(env, 7433 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7434 regno); 7435 return -EINVAL; 7436 } 7437 if (reg->type == PTR_TO_MAP_VALUE) { 7438 map = reg->map_ptr; 7439 if (!map->btf) { 7440 verbose(env, 7441 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7442 map->name); 7443 return -EINVAL; 7444 } 7445 } else { 7446 btf = reg->btf; 7447 } 7448 7449 rec = reg_btf_record(reg); 7450 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7451 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7452 map ? map->name : "kptr"); 7453 return -EINVAL; 7454 } 7455 if (rec->spin_lock_off != val + reg->off) { 7456 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7457 val + reg->off, rec->spin_lock_off); 7458 return -EINVAL; 7459 } 7460 if (is_lock) { 7461 if (cur->active_lock.ptr) { 7462 verbose(env, 7463 "Locking two bpf_spin_locks are not allowed\n"); 7464 return -EINVAL; 7465 } 7466 if (map) 7467 cur->active_lock.ptr = map; 7468 else 7469 cur->active_lock.ptr = btf; 7470 cur->active_lock.id = reg->id; 7471 } else { 7472 void *ptr; 7473 7474 if (map) 7475 ptr = map; 7476 else 7477 ptr = btf; 7478 7479 if (!cur->active_lock.ptr) { 7480 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7481 return -EINVAL; 7482 } 7483 if (cur->active_lock.ptr != ptr || 7484 cur->active_lock.id != reg->id) { 7485 verbose(env, "bpf_spin_unlock of different lock\n"); 7486 return -EINVAL; 7487 } 7488 7489 invalidate_non_owning_refs(env); 7490 7491 cur->active_lock.ptr = NULL; 7492 cur->active_lock.id = 0; 7493 } 7494 return 0; 7495 } 7496 7497 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7498 struct bpf_call_arg_meta *meta) 7499 { 7500 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7501 bool is_const = tnum_is_const(reg->var_off); 7502 struct bpf_map *map = reg->map_ptr; 7503 u64 val = reg->var_off.value; 7504 7505 if (!is_const) { 7506 verbose(env, 7507 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7508 regno); 7509 return -EINVAL; 7510 } 7511 if (!map->btf) { 7512 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7513 map->name); 7514 return -EINVAL; 7515 } 7516 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7517 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7518 return -EINVAL; 7519 } 7520 if (map->record->timer_off != val + reg->off) { 7521 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7522 val + reg->off, map->record->timer_off); 7523 return -EINVAL; 7524 } 7525 if (meta->map_ptr) { 7526 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7527 return -EFAULT; 7528 } 7529 meta->map_uid = reg->map_uid; 7530 meta->map_ptr = map; 7531 return 0; 7532 } 7533 7534 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7535 struct bpf_call_arg_meta *meta) 7536 { 7537 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7538 struct bpf_map *map_ptr = reg->map_ptr; 7539 struct btf_field *kptr_field; 7540 u32 kptr_off; 7541 7542 if (!tnum_is_const(reg->var_off)) { 7543 verbose(env, 7544 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7545 regno); 7546 return -EINVAL; 7547 } 7548 if (!map_ptr->btf) { 7549 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7550 map_ptr->name); 7551 return -EINVAL; 7552 } 7553 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7554 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7555 return -EINVAL; 7556 } 7557 7558 meta->map_ptr = map_ptr; 7559 kptr_off = reg->off + reg->var_off.value; 7560 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7561 if (!kptr_field) { 7562 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7563 return -EACCES; 7564 } 7565 if (kptr_field->type != BPF_KPTR_REF) { 7566 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7567 return -EACCES; 7568 } 7569 meta->kptr_field = kptr_field; 7570 return 0; 7571 } 7572 7573 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7574 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7575 * 7576 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7577 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7578 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7579 * 7580 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7581 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7582 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7583 * mutate the view of the dynptr and also possibly destroy it. In the latter 7584 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7585 * memory that dynptr points to. 7586 * 7587 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7588 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7589 * readonly dynptr view yet, hence only the first case is tracked and checked. 7590 * 7591 * This is consistent with how C applies the const modifier to a struct object, 7592 * where the pointer itself inside bpf_dynptr becomes const but not what it 7593 * points to. 7594 * 7595 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7596 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7597 */ 7598 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7599 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7600 { 7601 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7602 int err; 7603 7604 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7605 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7606 */ 7607 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7608 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7609 return -EFAULT; 7610 } 7611 7612 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7613 * constructing a mutable bpf_dynptr object. 7614 * 7615 * Currently, this is only possible with PTR_TO_STACK 7616 * pointing to a region of at least 16 bytes which doesn't 7617 * contain an existing bpf_dynptr. 7618 * 7619 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7620 * mutated or destroyed. However, the memory it points to 7621 * may be mutated. 7622 * 7623 * None - Points to a initialized dynptr that can be mutated and 7624 * destroyed, including mutation of the memory it points 7625 * to. 7626 */ 7627 if (arg_type & MEM_UNINIT) { 7628 int i; 7629 7630 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7631 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7632 return -EINVAL; 7633 } 7634 7635 /* we write BPF_DW bits (8 bytes) at a time */ 7636 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7637 err = check_mem_access(env, insn_idx, regno, 7638 i, BPF_DW, BPF_WRITE, -1, false, false); 7639 if (err) 7640 return err; 7641 } 7642 7643 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7644 } else /* MEM_RDONLY and None case from above */ { 7645 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7646 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7647 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7648 return -EINVAL; 7649 } 7650 7651 if (!is_dynptr_reg_valid_init(env, reg)) { 7652 verbose(env, 7653 "Expected an initialized dynptr as arg #%d\n", 7654 regno); 7655 return -EINVAL; 7656 } 7657 7658 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7659 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7660 verbose(env, 7661 "Expected a dynptr of type %s as arg #%d\n", 7662 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7663 return -EINVAL; 7664 } 7665 7666 err = mark_dynptr_read(env, reg); 7667 } 7668 return err; 7669 } 7670 7671 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7672 { 7673 struct bpf_func_state *state = func(env, reg); 7674 7675 return state->stack[spi].spilled_ptr.ref_obj_id; 7676 } 7677 7678 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7679 { 7680 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7681 } 7682 7683 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7684 { 7685 return meta->kfunc_flags & KF_ITER_NEW; 7686 } 7687 7688 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7689 { 7690 return meta->kfunc_flags & KF_ITER_NEXT; 7691 } 7692 7693 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7694 { 7695 return meta->kfunc_flags & KF_ITER_DESTROY; 7696 } 7697 7698 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7699 { 7700 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7701 * kfunc is iter state pointer 7702 */ 7703 return arg == 0 && is_iter_kfunc(meta); 7704 } 7705 7706 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7707 struct bpf_kfunc_call_arg_meta *meta) 7708 { 7709 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7710 const struct btf_type *t; 7711 const struct btf_param *arg; 7712 int spi, err, i, nr_slots; 7713 u32 btf_id; 7714 7715 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7716 arg = &btf_params(meta->func_proto)[0]; 7717 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7718 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7719 nr_slots = t->size / BPF_REG_SIZE; 7720 7721 if (is_iter_new_kfunc(meta)) { 7722 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7723 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7724 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7725 iter_type_str(meta->btf, btf_id), regno); 7726 return -EINVAL; 7727 } 7728 7729 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7730 err = check_mem_access(env, insn_idx, regno, 7731 i, BPF_DW, BPF_WRITE, -1, false, false); 7732 if (err) 7733 return err; 7734 } 7735 7736 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7737 if (err) 7738 return err; 7739 } else { 7740 /* iter_next() or iter_destroy() expect initialized iter state*/ 7741 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7742 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7743 iter_type_str(meta->btf, btf_id), regno); 7744 return -EINVAL; 7745 } 7746 7747 spi = iter_get_spi(env, reg, nr_slots); 7748 if (spi < 0) 7749 return spi; 7750 7751 err = mark_iter_read(env, reg, spi, nr_slots); 7752 if (err) 7753 return err; 7754 7755 /* remember meta->iter info for process_iter_next_call() */ 7756 meta->iter.spi = spi; 7757 meta->iter.frameno = reg->frameno; 7758 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7759 7760 if (is_iter_destroy_kfunc(meta)) { 7761 err = unmark_stack_slots_iter(env, reg, nr_slots); 7762 if (err) 7763 return err; 7764 } 7765 } 7766 7767 return 0; 7768 } 7769 7770 /* Look for a previous loop entry at insn_idx: nearest parent state 7771 * stopped at insn_idx with callsites matching those in cur->frame. 7772 */ 7773 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7774 struct bpf_verifier_state *cur, 7775 int insn_idx) 7776 { 7777 struct bpf_verifier_state_list *sl; 7778 struct bpf_verifier_state *st; 7779 7780 /* Explored states are pushed in stack order, most recent states come first */ 7781 sl = *explored_state(env, insn_idx); 7782 for (; sl; sl = sl->next) { 7783 /* If st->branches != 0 state is a part of current DFS verification path, 7784 * hence cur & st for a loop. 7785 */ 7786 st = &sl->state; 7787 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7788 st->dfs_depth < cur->dfs_depth) 7789 return st; 7790 } 7791 7792 return NULL; 7793 } 7794 7795 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7796 static bool regs_exact(const struct bpf_reg_state *rold, 7797 const struct bpf_reg_state *rcur, 7798 struct bpf_idmap *idmap); 7799 7800 static void maybe_widen_reg(struct bpf_verifier_env *env, 7801 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7802 struct bpf_idmap *idmap) 7803 { 7804 if (rold->type != SCALAR_VALUE) 7805 return; 7806 if (rold->type != rcur->type) 7807 return; 7808 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7809 return; 7810 __mark_reg_unknown(env, rcur); 7811 } 7812 7813 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7814 struct bpf_verifier_state *old, 7815 struct bpf_verifier_state *cur) 7816 { 7817 struct bpf_func_state *fold, *fcur; 7818 int i, fr; 7819 7820 reset_idmap_scratch(env); 7821 for (fr = old->curframe; fr >= 0; fr--) { 7822 fold = old->frame[fr]; 7823 fcur = cur->frame[fr]; 7824 7825 for (i = 0; i < MAX_BPF_REG; i++) 7826 maybe_widen_reg(env, 7827 &fold->regs[i], 7828 &fcur->regs[i], 7829 &env->idmap_scratch); 7830 7831 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7832 if (!is_spilled_reg(&fold->stack[i]) || 7833 !is_spilled_reg(&fcur->stack[i])) 7834 continue; 7835 7836 maybe_widen_reg(env, 7837 &fold->stack[i].spilled_ptr, 7838 &fcur->stack[i].spilled_ptr, 7839 &env->idmap_scratch); 7840 } 7841 } 7842 return 0; 7843 } 7844 7845 /* process_iter_next_call() is called when verifier gets to iterator's next 7846 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7847 * to it as just "iter_next()" in comments below. 7848 * 7849 * BPF verifier relies on a crucial contract for any iter_next() 7850 * implementation: it should *eventually* return NULL, and once that happens 7851 * it should keep returning NULL. That is, once iterator exhausts elements to 7852 * iterate, it should never reset or spuriously return new elements. 7853 * 7854 * With the assumption of such contract, process_iter_next_call() simulates 7855 * a fork in the verifier state to validate loop logic correctness and safety 7856 * without having to simulate infinite amount of iterations. 7857 * 7858 * In current state, we first assume that iter_next() returned NULL and 7859 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7860 * conditions we should not form an infinite loop and should eventually reach 7861 * exit. 7862 * 7863 * Besides that, we also fork current state and enqueue it for later 7864 * verification. In a forked state we keep iterator state as ACTIVE 7865 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7866 * also bump iteration depth to prevent erroneous infinite loop detection 7867 * later on (see iter_active_depths_differ() comment for details). In this 7868 * state we assume that we'll eventually loop back to another iter_next() 7869 * calls (it could be in exactly same location or in some other instruction, 7870 * it doesn't matter, we don't make any unnecessary assumptions about this, 7871 * everything revolves around iterator state in a stack slot, not which 7872 * instruction is calling iter_next()). When that happens, we either will come 7873 * to iter_next() with equivalent state and can conclude that next iteration 7874 * will proceed in exactly the same way as we just verified, so it's safe to 7875 * assume that loop converges. If not, we'll go on another iteration 7876 * simulation with a different input state, until all possible starting states 7877 * are validated or we reach maximum number of instructions limit. 7878 * 7879 * This way, we will either exhaustively discover all possible input states 7880 * that iterator loop can start with and eventually will converge, or we'll 7881 * effectively regress into bounded loop simulation logic and either reach 7882 * maximum number of instructions if loop is not provably convergent, or there 7883 * is some statically known limit on number of iterations (e.g., if there is 7884 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7885 * 7886 * Iteration convergence logic in is_state_visited() relies on exact 7887 * states comparison, which ignores read and precision marks. 7888 * This is necessary because read and precision marks are not finalized 7889 * while in the loop. Exact comparison might preclude convergence for 7890 * simple programs like below: 7891 * 7892 * i = 0; 7893 * while(iter_next(&it)) 7894 * i++; 7895 * 7896 * At each iteration step i++ would produce a new distinct state and 7897 * eventually instruction processing limit would be reached. 7898 * 7899 * To avoid such behavior speculatively forget (widen) range for 7900 * imprecise scalar registers, if those registers were not precise at the 7901 * end of the previous iteration and do not match exactly. 7902 * 7903 * This is a conservative heuristic that allows to verify wide range of programs, 7904 * however it precludes verification of programs that conjure an 7905 * imprecise value on the first loop iteration and use it as precise on a second. 7906 * For example, the following safe program would fail to verify: 7907 * 7908 * struct bpf_num_iter it; 7909 * int arr[10]; 7910 * int i = 0, a = 0; 7911 * bpf_iter_num_new(&it, 0, 10); 7912 * while (bpf_iter_num_next(&it)) { 7913 * if (a == 0) { 7914 * a = 1; 7915 * i = 7; // Because i changed verifier would forget 7916 * // it's range on second loop entry. 7917 * } else { 7918 * arr[i] = 42; // This would fail to verify. 7919 * } 7920 * } 7921 * bpf_iter_num_destroy(&it); 7922 */ 7923 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7924 struct bpf_kfunc_call_arg_meta *meta) 7925 { 7926 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7927 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7928 struct bpf_reg_state *cur_iter, *queued_iter; 7929 int iter_frameno = meta->iter.frameno; 7930 int iter_spi = meta->iter.spi; 7931 7932 BTF_TYPE_EMIT(struct bpf_iter); 7933 7934 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7935 7936 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7937 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7938 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7939 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7940 return -EFAULT; 7941 } 7942 7943 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7944 /* Because iter_next() call is a checkpoint is_state_visitied() 7945 * should guarantee parent state with same call sites and insn_idx. 7946 */ 7947 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7948 !same_callsites(cur_st->parent, cur_st)) { 7949 verbose(env, "bug: bad parent state for iter next call"); 7950 return -EFAULT; 7951 } 7952 /* Note cur_st->parent in the call below, it is necessary to skip 7953 * checkpoint created for cur_st by is_state_visited() 7954 * right at this instruction. 7955 */ 7956 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7957 /* branch out active iter state */ 7958 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7959 if (!queued_st) 7960 return -ENOMEM; 7961 7962 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7963 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7964 queued_iter->iter.depth++; 7965 if (prev_st) 7966 widen_imprecise_scalars(env, prev_st, queued_st); 7967 7968 queued_fr = queued_st->frame[queued_st->curframe]; 7969 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7970 } 7971 7972 /* switch to DRAINED state, but keep the depth unchanged */ 7973 /* mark current iter state as drained and assume returned NULL */ 7974 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7975 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7976 7977 return 0; 7978 } 7979 7980 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7981 { 7982 return type == ARG_CONST_SIZE || 7983 type == ARG_CONST_SIZE_OR_ZERO; 7984 } 7985 7986 static bool arg_type_is_release(enum bpf_arg_type type) 7987 { 7988 return type & OBJ_RELEASE; 7989 } 7990 7991 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7992 { 7993 return base_type(type) == ARG_PTR_TO_DYNPTR; 7994 } 7995 7996 static int int_ptr_type_to_size(enum bpf_arg_type type) 7997 { 7998 if (type == ARG_PTR_TO_INT) 7999 return sizeof(u32); 8000 else if (type == ARG_PTR_TO_LONG) 8001 return sizeof(u64); 8002 8003 return -EINVAL; 8004 } 8005 8006 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8007 const struct bpf_call_arg_meta *meta, 8008 enum bpf_arg_type *arg_type) 8009 { 8010 if (!meta->map_ptr) { 8011 /* kernel subsystem misconfigured verifier */ 8012 verbose(env, "invalid map_ptr to access map->type\n"); 8013 return -EACCES; 8014 } 8015 8016 switch (meta->map_ptr->map_type) { 8017 case BPF_MAP_TYPE_SOCKMAP: 8018 case BPF_MAP_TYPE_SOCKHASH: 8019 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8020 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8021 } else { 8022 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8023 return -EINVAL; 8024 } 8025 break; 8026 case BPF_MAP_TYPE_BLOOM_FILTER: 8027 if (meta->func_id == BPF_FUNC_map_peek_elem) 8028 *arg_type = ARG_PTR_TO_MAP_VALUE; 8029 break; 8030 default: 8031 break; 8032 } 8033 return 0; 8034 } 8035 8036 struct bpf_reg_types { 8037 const enum bpf_reg_type types[10]; 8038 u32 *btf_id; 8039 }; 8040 8041 static const struct bpf_reg_types sock_types = { 8042 .types = { 8043 PTR_TO_SOCK_COMMON, 8044 PTR_TO_SOCKET, 8045 PTR_TO_TCP_SOCK, 8046 PTR_TO_XDP_SOCK, 8047 }, 8048 }; 8049 8050 #ifdef CONFIG_NET 8051 static const struct bpf_reg_types btf_id_sock_common_types = { 8052 .types = { 8053 PTR_TO_SOCK_COMMON, 8054 PTR_TO_SOCKET, 8055 PTR_TO_TCP_SOCK, 8056 PTR_TO_XDP_SOCK, 8057 PTR_TO_BTF_ID, 8058 PTR_TO_BTF_ID | PTR_TRUSTED, 8059 }, 8060 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8061 }; 8062 #endif 8063 8064 static const struct bpf_reg_types mem_types = { 8065 .types = { 8066 PTR_TO_STACK, 8067 PTR_TO_PACKET, 8068 PTR_TO_PACKET_META, 8069 PTR_TO_MAP_KEY, 8070 PTR_TO_MAP_VALUE, 8071 PTR_TO_MEM, 8072 PTR_TO_MEM | MEM_RINGBUF, 8073 PTR_TO_BUF, 8074 PTR_TO_BTF_ID | PTR_TRUSTED, 8075 }, 8076 }; 8077 8078 static const struct bpf_reg_types int_ptr_types = { 8079 .types = { 8080 PTR_TO_STACK, 8081 PTR_TO_PACKET, 8082 PTR_TO_PACKET_META, 8083 PTR_TO_MAP_KEY, 8084 PTR_TO_MAP_VALUE, 8085 }, 8086 }; 8087 8088 static const struct bpf_reg_types spin_lock_types = { 8089 .types = { 8090 PTR_TO_MAP_VALUE, 8091 PTR_TO_BTF_ID | MEM_ALLOC, 8092 } 8093 }; 8094 8095 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8096 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8097 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8098 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8099 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8100 static const struct bpf_reg_types btf_ptr_types = { 8101 .types = { 8102 PTR_TO_BTF_ID, 8103 PTR_TO_BTF_ID | PTR_TRUSTED, 8104 PTR_TO_BTF_ID | MEM_RCU, 8105 }, 8106 }; 8107 static const struct bpf_reg_types percpu_btf_ptr_types = { 8108 .types = { 8109 PTR_TO_BTF_ID | MEM_PERCPU, 8110 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8111 } 8112 }; 8113 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8114 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8115 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8116 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8117 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8118 static const struct bpf_reg_types dynptr_types = { 8119 .types = { 8120 PTR_TO_STACK, 8121 CONST_PTR_TO_DYNPTR, 8122 } 8123 }; 8124 8125 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8126 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8127 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8128 [ARG_CONST_SIZE] = &scalar_types, 8129 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8130 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8131 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8132 [ARG_PTR_TO_CTX] = &context_types, 8133 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8134 #ifdef CONFIG_NET 8135 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8136 #endif 8137 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8138 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8139 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8140 [ARG_PTR_TO_MEM] = &mem_types, 8141 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8142 [ARG_PTR_TO_INT] = &int_ptr_types, 8143 [ARG_PTR_TO_LONG] = &int_ptr_types, 8144 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8145 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8146 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8147 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8148 [ARG_PTR_TO_TIMER] = &timer_types, 8149 [ARG_PTR_TO_KPTR] = &kptr_types, 8150 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8151 }; 8152 8153 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8154 enum bpf_arg_type arg_type, 8155 const u32 *arg_btf_id, 8156 struct bpf_call_arg_meta *meta) 8157 { 8158 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8159 enum bpf_reg_type expected, type = reg->type; 8160 const struct bpf_reg_types *compatible; 8161 int i, j; 8162 8163 compatible = compatible_reg_types[base_type(arg_type)]; 8164 if (!compatible) { 8165 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8166 return -EFAULT; 8167 } 8168 8169 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8170 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8171 * 8172 * Same for MAYBE_NULL: 8173 * 8174 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8175 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8176 * 8177 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8178 * 8179 * Therefore we fold these flags depending on the arg_type before comparison. 8180 */ 8181 if (arg_type & MEM_RDONLY) 8182 type &= ~MEM_RDONLY; 8183 if (arg_type & PTR_MAYBE_NULL) 8184 type &= ~PTR_MAYBE_NULL; 8185 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8186 type &= ~DYNPTR_TYPE_FLAG_MASK; 8187 8188 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 8189 type &= ~MEM_ALLOC; 8190 8191 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8192 expected = compatible->types[i]; 8193 if (expected == NOT_INIT) 8194 break; 8195 8196 if (type == expected) 8197 goto found; 8198 } 8199 8200 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8201 for (j = 0; j + 1 < i; j++) 8202 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8203 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8204 return -EACCES; 8205 8206 found: 8207 if (base_type(reg->type) != PTR_TO_BTF_ID) 8208 return 0; 8209 8210 if (compatible == &mem_types) { 8211 if (!(arg_type & MEM_RDONLY)) { 8212 verbose(env, 8213 "%s() may write into memory pointed by R%d type=%s\n", 8214 func_id_name(meta->func_id), 8215 regno, reg_type_str(env, reg->type)); 8216 return -EACCES; 8217 } 8218 return 0; 8219 } 8220 8221 switch ((int)reg->type) { 8222 case PTR_TO_BTF_ID: 8223 case PTR_TO_BTF_ID | PTR_TRUSTED: 8224 case PTR_TO_BTF_ID | MEM_RCU: 8225 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8226 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8227 { 8228 /* For bpf_sk_release, it needs to match against first member 8229 * 'struct sock_common', hence make an exception for it. This 8230 * allows bpf_sk_release to work for multiple socket types. 8231 */ 8232 bool strict_type_match = arg_type_is_release(arg_type) && 8233 meta->func_id != BPF_FUNC_sk_release; 8234 8235 if (type_may_be_null(reg->type) && 8236 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8237 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8238 return -EACCES; 8239 } 8240 8241 if (!arg_btf_id) { 8242 if (!compatible->btf_id) { 8243 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8244 return -EFAULT; 8245 } 8246 arg_btf_id = compatible->btf_id; 8247 } 8248 8249 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8250 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8251 return -EACCES; 8252 } else { 8253 if (arg_btf_id == BPF_PTR_POISON) { 8254 verbose(env, "verifier internal error:"); 8255 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8256 regno); 8257 return -EACCES; 8258 } 8259 8260 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8261 btf_vmlinux, *arg_btf_id, 8262 strict_type_match)) { 8263 verbose(env, "R%d is of type %s but %s is expected\n", 8264 regno, btf_type_name(reg->btf, reg->btf_id), 8265 btf_type_name(btf_vmlinux, *arg_btf_id)); 8266 return -EACCES; 8267 } 8268 } 8269 break; 8270 } 8271 case PTR_TO_BTF_ID | MEM_ALLOC: 8272 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8273 meta->func_id != BPF_FUNC_kptr_xchg) { 8274 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8275 return -EFAULT; 8276 } 8277 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8278 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8279 return -EACCES; 8280 } 8281 break; 8282 case PTR_TO_BTF_ID | MEM_PERCPU: 8283 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8284 /* Handled by helper specific checks */ 8285 break; 8286 default: 8287 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8288 return -EFAULT; 8289 } 8290 return 0; 8291 } 8292 8293 static struct btf_field * 8294 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8295 { 8296 struct btf_field *field; 8297 struct btf_record *rec; 8298 8299 rec = reg_btf_record(reg); 8300 if (!rec) 8301 return NULL; 8302 8303 field = btf_record_find(rec, off, fields); 8304 if (!field) 8305 return NULL; 8306 8307 return field; 8308 } 8309 8310 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8311 const struct bpf_reg_state *reg, int regno, 8312 enum bpf_arg_type arg_type) 8313 { 8314 u32 type = reg->type; 8315 8316 /* When referenced register is passed to release function, its fixed 8317 * offset must be 0. 8318 * 8319 * We will check arg_type_is_release reg has ref_obj_id when storing 8320 * meta->release_regno. 8321 */ 8322 if (arg_type_is_release(arg_type)) { 8323 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8324 * may not directly point to the object being released, but to 8325 * dynptr pointing to such object, which might be at some offset 8326 * on the stack. In that case, we simply to fallback to the 8327 * default handling. 8328 */ 8329 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8330 return 0; 8331 8332 /* Doing check_ptr_off_reg check for the offset will catch this 8333 * because fixed_off_ok is false, but checking here allows us 8334 * to give the user a better error message. 8335 */ 8336 if (reg->off) { 8337 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8338 regno); 8339 return -EINVAL; 8340 } 8341 return __check_ptr_off_reg(env, reg, regno, false); 8342 } 8343 8344 switch (type) { 8345 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8346 case PTR_TO_STACK: 8347 case PTR_TO_PACKET: 8348 case PTR_TO_PACKET_META: 8349 case PTR_TO_MAP_KEY: 8350 case PTR_TO_MAP_VALUE: 8351 case PTR_TO_MEM: 8352 case PTR_TO_MEM | MEM_RDONLY: 8353 case PTR_TO_MEM | MEM_RINGBUF: 8354 case PTR_TO_BUF: 8355 case PTR_TO_BUF | MEM_RDONLY: 8356 case SCALAR_VALUE: 8357 return 0; 8358 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8359 * fixed offset. 8360 */ 8361 case PTR_TO_BTF_ID: 8362 case PTR_TO_BTF_ID | MEM_ALLOC: 8363 case PTR_TO_BTF_ID | PTR_TRUSTED: 8364 case PTR_TO_BTF_ID | MEM_RCU: 8365 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8366 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8367 /* When referenced PTR_TO_BTF_ID is passed to release function, 8368 * its fixed offset must be 0. In the other cases, fixed offset 8369 * can be non-zero. This was already checked above. So pass 8370 * fixed_off_ok as true to allow fixed offset for all other 8371 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8372 * still need to do checks instead of returning. 8373 */ 8374 return __check_ptr_off_reg(env, reg, regno, true); 8375 default: 8376 return __check_ptr_off_reg(env, reg, regno, false); 8377 } 8378 } 8379 8380 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8381 const struct bpf_func_proto *fn, 8382 struct bpf_reg_state *regs) 8383 { 8384 struct bpf_reg_state *state = NULL; 8385 int i; 8386 8387 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8388 if (arg_type_is_dynptr(fn->arg_type[i])) { 8389 if (state) { 8390 verbose(env, "verifier internal error: multiple dynptr args\n"); 8391 return NULL; 8392 } 8393 state = ®s[BPF_REG_1 + i]; 8394 } 8395 8396 if (!state) 8397 verbose(env, "verifier internal error: no dynptr arg found\n"); 8398 8399 return state; 8400 } 8401 8402 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8403 { 8404 struct bpf_func_state *state = func(env, reg); 8405 int spi; 8406 8407 if (reg->type == CONST_PTR_TO_DYNPTR) 8408 return reg->id; 8409 spi = dynptr_get_spi(env, reg); 8410 if (spi < 0) 8411 return spi; 8412 return state->stack[spi].spilled_ptr.id; 8413 } 8414 8415 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8416 { 8417 struct bpf_func_state *state = func(env, reg); 8418 int spi; 8419 8420 if (reg->type == CONST_PTR_TO_DYNPTR) 8421 return reg->ref_obj_id; 8422 spi = dynptr_get_spi(env, reg); 8423 if (spi < 0) 8424 return spi; 8425 return state->stack[spi].spilled_ptr.ref_obj_id; 8426 } 8427 8428 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8429 struct bpf_reg_state *reg) 8430 { 8431 struct bpf_func_state *state = func(env, reg); 8432 int spi; 8433 8434 if (reg->type == CONST_PTR_TO_DYNPTR) 8435 return reg->dynptr.type; 8436 8437 spi = __get_spi(reg->off); 8438 if (spi < 0) { 8439 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8440 return BPF_DYNPTR_TYPE_INVALID; 8441 } 8442 8443 return state->stack[spi].spilled_ptr.dynptr.type; 8444 } 8445 8446 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8447 struct bpf_call_arg_meta *meta, 8448 const struct bpf_func_proto *fn, 8449 int insn_idx) 8450 { 8451 u32 regno = BPF_REG_1 + arg; 8452 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8453 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8454 enum bpf_reg_type type = reg->type; 8455 u32 *arg_btf_id = NULL; 8456 int err = 0; 8457 8458 if (arg_type == ARG_DONTCARE) 8459 return 0; 8460 8461 err = check_reg_arg(env, regno, SRC_OP); 8462 if (err) 8463 return err; 8464 8465 if (arg_type == ARG_ANYTHING) { 8466 if (is_pointer_value(env, regno)) { 8467 verbose(env, "R%d leaks addr into helper function\n", 8468 regno); 8469 return -EACCES; 8470 } 8471 return 0; 8472 } 8473 8474 if (type_is_pkt_pointer(type) && 8475 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8476 verbose(env, "helper access to the packet is not allowed\n"); 8477 return -EACCES; 8478 } 8479 8480 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8481 err = resolve_map_arg_type(env, meta, &arg_type); 8482 if (err) 8483 return err; 8484 } 8485 8486 if (register_is_null(reg) && type_may_be_null(arg_type)) 8487 /* A NULL register has a SCALAR_VALUE type, so skip 8488 * type checking. 8489 */ 8490 goto skip_type_check; 8491 8492 /* arg_btf_id and arg_size are in a union. */ 8493 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8494 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8495 arg_btf_id = fn->arg_btf_id[arg]; 8496 8497 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8498 if (err) 8499 return err; 8500 8501 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8502 if (err) 8503 return err; 8504 8505 skip_type_check: 8506 if (arg_type_is_release(arg_type)) { 8507 if (arg_type_is_dynptr(arg_type)) { 8508 struct bpf_func_state *state = func(env, reg); 8509 int spi; 8510 8511 /* Only dynptr created on stack can be released, thus 8512 * the get_spi and stack state checks for spilled_ptr 8513 * should only be done before process_dynptr_func for 8514 * PTR_TO_STACK. 8515 */ 8516 if (reg->type == PTR_TO_STACK) { 8517 spi = dynptr_get_spi(env, reg); 8518 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8519 verbose(env, "arg %d is an unacquired reference\n", regno); 8520 return -EINVAL; 8521 } 8522 } else { 8523 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8524 return -EINVAL; 8525 } 8526 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8527 verbose(env, "R%d must be referenced when passed to release function\n", 8528 regno); 8529 return -EINVAL; 8530 } 8531 if (meta->release_regno) { 8532 verbose(env, "verifier internal error: more than one release argument\n"); 8533 return -EFAULT; 8534 } 8535 meta->release_regno = regno; 8536 } 8537 8538 if (reg->ref_obj_id) { 8539 if (meta->ref_obj_id) { 8540 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8541 regno, reg->ref_obj_id, 8542 meta->ref_obj_id); 8543 return -EFAULT; 8544 } 8545 meta->ref_obj_id = reg->ref_obj_id; 8546 } 8547 8548 switch (base_type(arg_type)) { 8549 case ARG_CONST_MAP_PTR: 8550 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8551 if (meta->map_ptr) { 8552 /* Use map_uid (which is unique id of inner map) to reject: 8553 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8554 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8555 * if (inner_map1 && inner_map2) { 8556 * timer = bpf_map_lookup_elem(inner_map1); 8557 * if (timer) 8558 * // mismatch would have been allowed 8559 * bpf_timer_init(timer, inner_map2); 8560 * } 8561 * 8562 * Comparing map_ptr is enough to distinguish normal and outer maps. 8563 */ 8564 if (meta->map_ptr != reg->map_ptr || 8565 meta->map_uid != reg->map_uid) { 8566 verbose(env, 8567 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8568 meta->map_uid, reg->map_uid); 8569 return -EINVAL; 8570 } 8571 } 8572 meta->map_ptr = reg->map_ptr; 8573 meta->map_uid = reg->map_uid; 8574 break; 8575 case ARG_PTR_TO_MAP_KEY: 8576 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8577 * check that [key, key + map->key_size) are within 8578 * stack limits and initialized 8579 */ 8580 if (!meta->map_ptr) { 8581 /* in function declaration map_ptr must come before 8582 * map_key, so that it's verified and known before 8583 * we have to check map_key here. Otherwise it means 8584 * that kernel subsystem misconfigured verifier 8585 */ 8586 verbose(env, "invalid map_ptr to access map->key\n"); 8587 return -EACCES; 8588 } 8589 err = check_helper_mem_access(env, regno, 8590 meta->map_ptr->key_size, false, 8591 NULL); 8592 break; 8593 case ARG_PTR_TO_MAP_VALUE: 8594 if (type_may_be_null(arg_type) && register_is_null(reg)) 8595 return 0; 8596 8597 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8598 * check [value, value + map->value_size) validity 8599 */ 8600 if (!meta->map_ptr) { 8601 /* kernel subsystem misconfigured verifier */ 8602 verbose(env, "invalid map_ptr to access map->value\n"); 8603 return -EACCES; 8604 } 8605 meta->raw_mode = arg_type & MEM_UNINIT; 8606 err = check_helper_mem_access(env, regno, 8607 meta->map_ptr->value_size, false, 8608 meta); 8609 break; 8610 case ARG_PTR_TO_PERCPU_BTF_ID: 8611 if (!reg->btf_id) { 8612 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8613 return -EACCES; 8614 } 8615 meta->ret_btf = reg->btf; 8616 meta->ret_btf_id = reg->btf_id; 8617 break; 8618 case ARG_PTR_TO_SPIN_LOCK: 8619 if (in_rbtree_lock_required_cb(env)) { 8620 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8621 return -EACCES; 8622 } 8623 if (meta->func_id == BPF_FUNC_spin_lock) { 8624 err = process_spin_lock(env, regno, true); 8625 if (err) 8626 return err; 8627 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8628 err = process_spin_lock(env, regno, false); 8629 if (err) 8630 return err; 8631 } else { 8632 verbose(env, "verifier internal error\n"); 8633 return -EFAULT; 8634 } 8635 break; 8636 case ARG_PTR_TO_TIMER: 8637 err = process_timer_func(env, regno, meta); 8638 if (err) 8639 return err; 8640 break; 8641 case ARG_PTR_TO_FUNC: 8642 meta->subprogno = reg->subprogno; 8643 break; 8644 case ARG_PTR_TO_MEM: 8645 /* The access to this pointer is only checked when we hit the 8646 * next is_mem_size argument below. 8647 */ 8648 meta->raw_mode = arg_type & MEM_UNINIT; 8649 if (arg_type & MEM_FIXED_SIZE) { 8650 err = check_helper_mem_access(env, regno, 8651 fn->arg_size[arg], false, 8652 meta); 8653 } 8654 break; 8655 case ARG_CONST_SIZE: 8656 err = check_mem_size_reg(env, reg, regno, false, meta); 8657 break; 8658 case ARG_CONST_SIZE_OR_ZERO: 8659 err = check_mem_size_reg(env, reg, regno, true, meta); 8660 break; 8661 case ARG_PTR_TO_DYNPTR: 8662 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8663 if (err) 8664 return err; 8665 break; 8666 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8667 if (!tnum_is_const(reg->var_off)) { 8668 verbose(env, "R%d is not a known constant'\n", 8669 regno); 8670 return -EACCES; 8671 } 8672 meta->mem_size = reg->var_off.value; 8673 err = mark_chain_precision(env, regno); 8674 if (err) 8675 return err; 8676 break; 8677 case ARG_PTR_TO_INT: 8678 case ARG_PTR_TO_LONG: 8679 { 8680 int size = int_ptr_type_to_size(arg_type); 8681 8682 err = check_helper_mem_access(env, regno, size, false, meta); 8683 if (err) 8684 return err; 8685 err = check_ptr_alignment(env, reg, 0, size, true); 8686 break; 8687 } 8688 case ARG_PTR_TO_CONST_STR: 8689 { 8690 struct bpf_map *map = reg->map_ptr; 8691 int map_off; 8692 u64 map_addr; 8693 char *str_ptr; 8694 8695 if (!bpf_map_is_rdonly(map)) { 8696 verbose(env, "R%d does not point to a readonly map'\n", regno); 8697 return -EACCES; 8698 } 8699 8700 if (!tnum_is_const(reg->var_off)) { 8701 verbose(env, "R%d is not a constant address'\n", regno); 8702 return -EACCES; 8703 } 8704 8705 if (!map->ops->map_direct_value_addr) { 8706 verbose(env, "no direct value access support for this map type\n"); 8707 return -EACCES; 8708 } 8709 8710 err = check_map_access(env, regno, reg->off, 8711 map->value_size - reg->off, false, 8712 ACCESS_HELPER); 8713 if (err) 8714 return err; 8715 8716 map_off = reg->off + reg->var_off.value; 8717 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8718 if (err) { 8719 verbose(env, "direct value access on string failed\n"); 8720 return err; 8721 } 8722 8723 str_ptr = (char *)(long)(map_addr); 8724 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8725 verbose(env, "string is not zero-terminated\n"); 8726 return -EINVAL; 8727 } 8728 break; 8729 } 8730 case ARG_PTR_TO_KPTR: 8731 err = process_kptr_func(env, regno, meta); 8732 if (err) 8733 return err; 8734 break; 8735 } 8736 8737 return err; 8738 } 8739 8740 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8741 { 8742 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8743 enum bpf_prog_type type = resolve_prog_type(env->prog); 8744 8745 if (func_id != BPF_FUNC_map_update_elem && 8746 func_id != BPF_FUNC_map_delete_elem) 8747 return false; 8748 8749 /* It's not possible to get access to a locked struct sock in these 8750 * contexts, so updating is safe. 8751 */ 8752 switch (type) { 8753 case BPF_PROG_TYPE_TRACING: 8754 if (eatype == BPF_TRACE_ITER) 8755 return true; 8756 break; 8757 case BPF_PROG_TYPE_SOCK_OPS: 8758 /* map_update allowed only via dedicated helpers with event type checks */ 8759 if (func_id == BPF_FUNC_map_delete_elem) 8760 return true; 8761 break; 8762 case BPF_PROG_TYPE_SOCKET_FILTER: 8763 case BPF_PROG_TYPE_SCHED_CLS: 8764 case BPF_PROG_TYPE_SCHED_ACT: 8765 case BPF_PROG_TYPE_XDP: 8766 case BPF_PROG_TYPE_SK_REUSEPORT: 8767 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8768 case BPF_PROG_TYPE_SK_LOOKUP: 8769 return true; 8770 default: 8771 break; 8772 } 8773 8774 verbose(env, "cannot update sockmap in this context\n"); 8775 return false; 8776 } 8777 8778 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8779 { 8780 return env->prog->jit_requested && 8781 bpf_jit_supports_subprog_tailcalls(); 8782 } 8783 8784 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8785 struct bpf_map *map, int func_id) 8786 { 8787 if (!map) 8788 return 0; 8789 8790 /* We need a two way check, first is from map perspective ... */ 8791 switch (map->map_type) { 8792 case BPF_MAP_TYPE_PROG_ARRAY: 8793 if (func_id != BPF_FUNC_tail_call) 8794 goto error; 8795 break; 8796 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8797 if (func_id != BPF_FUNC_perf_event_read && 8798 func_id != BPF_FUNC_perf_event_output && 8799 func_id != BPF_FUNC_skb_output && 8800 func_id != BPF_FUNC_perf_event_read_value && 8801 func_id != BPF_FUNC_xdp_output) 8802 goto error; 8803 break; 8804 case BPF_MAP_TYPE_RINGBUF: 8805 if (func_id != BPF_FUNC_ringbuf_output && 8806 func_id != BPF_FUNC_ringbuf_reserve && 8807 func_id != BPF_FUNC_ringbuf_query && 8808 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8809 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8810 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8811 goto error; 8812 break; 8813 case BPF_MAP_TYPE_USER_RINGBUF: 8814 if (func_id != BPF_FUNC_user_ringbuf_drain) 8815 goto error; 8816 break; 8817 case BPF_MAP_TYPE_STACK_TRACE: 8818 if (func_id != BPF_FUNC_get_stackid) 8819 goto error; 8820 break; 8821 case BPF_MAP_TYPE_CGROUP_ARRAY: 8822 if (func_id != BPF_FUNC_skb_under_cgroup && 8823 func_id != BPF_FUNC_current_task_under_cgroup) 8824 goto error; 8825 break; 8826 case BPF_MAP_TYPE_CGROUP_STORAGE: 8827 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8828 if (func_id != BPF_FUNC_get_local_storage) 8829 goto error; 8830 break; 8831 case BPF_MAP_TYPE_DEVMAP: 8832 case BPF_MAP_TYPE_DEVMAP_HASH: 8833 if (func_id != BPF_FUNC_redirect_map && 8834 func_id != BPF_FUNC_map_lookup_elem) 8835 goto error; 8836 break; 8837 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8838 * appear. 8839 */ 8840 case BPF_MAP_TYPE_CPUMAP: 8841 if (func_id != BPF_FUNC_redirect_map) 8842 goto error; 8843 break; 8844 case BPF_MAP_TYPE_XSKMAP: 8845 if (func_id != BPF_FUNC_redirect_map && 8846 func_id != BPF_FUNC_map_lookup_elem) 8847 goto error; 8848 break; 8849 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8850 case BPF_MAP_TYPE_HASH_OF_MAPS: 8851 if (func_id != BPF_FUNC_map_lookup_elem) 8852 goto error; 8853 break; 8854 case BPF_MAP_TYPE_SOCKMAP: 8855 if (func_id != BPF_FUNC_sk_redirect_map && 8856 func_id != BPF_FUNC_sock_map_update && 8857 func_id != BPF_FUNC_msg_redirect_map && 8858 func_id != BPF_FUNC_sk_select_reuseport && 8859 func_id != BPF_FUNC_map_lookup_elem && 8860 !may_update_sockmap(env, func_id)) 8861 goto error; 8862 break; 8863 case BPF_MAP_TYPE_SOCKHASH: 8864 if (func_id != BPF_FUNC_sk_redirect_hash && 8865 func_id != BPF_FUNC_sock_hash_update && 8866 func_id != BPF_FUNC_msg_redirect_hash && 8867 func_id != BPF_FUNC_sk_select_reuseport && 8868 func_id != BPF_FUNC_map_lookup_elem && 8869 !may_update_sockmap(env, func_id)) 8870 goto error; 8871 break; 8872 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8873 if (func_id != BPF_FUNC_sk_select_reuseport) 8874 goto error; 8875 break; 8876 case BPF_MAP_TYPE_QUEUE: 8877 case BPF_MAP_TYPE_STACK: 8878 if (func_id != BPF_FUNC_map_peek_elem && 8879 func_id != BPF_FUNC_map_pop_elem && 8880 func_id != BPF_FUNC_map_push_elem) 8881 goto error; 8882 break; 8883 case BPF_MAP_TYPE_SK_STORAGE: 8884 if (func_id != BPF_FUNC_sk_storage_get && 8885 func_id != BPF_FUNC_sk_storage_delete && 8886 func_id != BPF_FUNC_kptr_xchg) 8887 goto error; 8888 break; 8889 case BPF_MAP_TYPE_INODE_STORAGE: 8890 if (func_id != BPF_FUNC_inode_storage_get && 8891 func_id != BPF_FUNC_inode_storage_delete && 8892 func_id != BPF_FUNC_kptr_xchg) 8893 goto error; 8894 break; 8895 case BPF_MAP_TYPE_TASK_STORAGE: 8896 if (func_id != BPF_FUNC_task_storage_get && 8897 func_id != BPF_FUNC_task_storage_delete && 8898 func_id != BPF_FUNC_kptr_xchg) 8899 goto error; 8900 break; 8901 case BPF_MAP_TYPE_CGRP_STORAGE: 8902 if (func_id != BPF_FUNC_cgrp_storage_get && 8903 func_id != BPF_FUNC_cgrp_storage_delete && 8904 func_id != BPF_FUNC_kptr_xchg) 8905 goto error; 8906 break; 8907 case BPF_MAP_TYPE_BLOOM_FILTER: 8908 if (func_id != BPF_FUNC_map_peek_elem && 8909 func_id != BPF_FUNC_map_push_elem) 8910 goto error; 8911 break; 8912 default: 8913 break; 8914 } 8915 8916 /* ... and second from the function itself. */ 8917 switch (func_id) { 8918 case BPF_FUNC_tail_call: 8919 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8920 goto error; 8921 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8922 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8923 return -EINVAL; 8924 } 8925 break; 8926 case BPF_FUNC_perf_event_read: 8927 case BPF_FUNC_perf_event_output: 8928 case BPF_FUNC_perf_event_read_value: 8929 case BPF_FUNC_skb_output: 8930 case BPF_FUNC_xdp_output: 8931 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8932 goto error; 8933 break; 8934 case BPF_FUNC_ringbuf_output: 8935 case BPF_FUNC_ringbuf_reserve: 8936 case BPF_FUNC_ringbuf_query: 8937 case BPF_FUNC_ringbuf_reserve_dynptr: 8938 case BPF_FUNC_ringbuf_submit_dynptr: 8939 case BPF_FUNC_ringbuf_discard_dynptr: 8940 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8941 goto error; 8942 break; 8943 case BPF_FUNC_user_ringbuf_drain: 8944 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8945 goto error; 8946 break; 8947 case BPF_FUNC_get_stackid: 8948 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8949 goto error; 8950 break; 8951 case BPF_FUNC_current_task_under_cgroup: 8952 case BPF_FUNC_skb_under_cgroup: 8953 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8954 goto error; 8955 break; 8956 case BPF_FUNC_redirect_map: 8957 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8958 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8959 map->map_type != BPF_MAP_TYPE_CPUMAP && 8960 map->map_type != BPF_MAP_TYPE_XSKMAP) 8961 goto error; 8962 break; 8963 case BPF_FUNC_sk_redirect_map: 8964 case BPF_FUNC_msg_redirect_map: 8965 case BPF_FUNC_sock_map_update: 8966 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8967 goto error; 8968 break; 8969 case BPF_FUNC_sk_redirect_hash: 8970 case BPF_FUNC_msg_redirect_hash: 8971 case BPF_FUNC_sock_hash_update: 8972 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8973 goto error; 8974 break; 8975 case BPF_FUNC_get_local_storage: 8976 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8977 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8978 goto error; 8979 break; 8980 case BPF_FUNC_sk_select_reuseport: 8981 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8982 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8983 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8984 goto error; 8985 break; 8986 case BPF_FUNC_map_pop_elem: 8987 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8988 map->map_type != BPF_MAP_TYPE_STACK) 8989 goto error; 8990 break; 8991 case BPF_FUNC_map_peek_elem: 8992 case BPF_FUNC_map_push_elem: 8993 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8994 map->map_type != BPF_MAP_TYPE_STACK && 8995 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8996 goto error; 8997 break; 8998 case BPF_FUNC_map_lookup_percpu_elem: 8999 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9000 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9001 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9002 goto error; 9003 break; 9004 case BPF_FUNC_sk_storage_get: 9005 case BPF_FUNC_sk_storage_delete: 9006 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9007 goto error; 9008 break; 9009 case BPF_FUNC_inode_storage_get: 9010 case BPF_FUNC_inode_storage_delete: 9011 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9012 goto error; 9013 break; 9014 case BPF_FUNC_task_storage_get: 9015 case BPF_FUNC_task_storage_delete: 9016 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9017 goto error; 9018 break; 9019 case BPF_FUNC_cgrp_storage_get: 9020 case BPF_FUNC_cgrp_storage_delete: 9021 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9022 goto error; 9023 break; 9024 default: 9025 break; 9026 } 9027 9028 return 0; 9029 error: 9030 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9031 map->map_type, func_id_name(func_id), func_id); 9032 return -EINVAL; 9033 } 9034 9035 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9036 { 9037 int count = 0; 9038 9039 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9040 count++; 9041 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9042 count++; 9043 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9044 count++; 9045 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9046 count++; 9047 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9048 count++; 9049 9050 /* We only support one arg being in raw mode at the moment, 9051 * which is sufficient for the helper functions we have 9052 * right now. 9053 */ 9054 return count <= 1; 9055 } 9056 9057 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9058 { 9059 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9060 bool has_size = fn->arg_size[arg] != 0; 9061 bool is_next_size = false; 9062 9063 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9064 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9065 9066 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9067 return is_next_size; 9068 9069 return has_size == is_next_size || is_next_size == is_fixed; 9070 } 9071 9072 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9073 { 9074 /* bpf_xxx(..., buf, len) call will access 'len' 9075 * bytes from memory 'buf'. Both arg types need 9076 * to be paired, so make sure there's no buggy 9077 * helper function specification. 9078 */ 9079 if (arg_type_is_mem_size(fn->arg1_type) || 9080 check_args_pair_invalid(fn, 0) || 9081 check_args_pair_invalid(fn, 1) || 9082 check_args_pair_invalid(fn, 2) || 9083 check_args_pair_invalid(fn, 3) || 9084 check_args_pair_invalid(fn, 4)) 9085 return false; 9086 9087 return true; 9088 } 9089 9090 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9091 { 9092 int i; 9093 9094 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9095 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9096 return !!fn->arg_btf_id[i]; 9097 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9098 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9099 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9100 /* arg_btf_id and arg_size are in a union. */ 9101 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9102 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9103 return false; 9104 } 9105 9106 return true; 9107 } 9108 9109 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9110 { 9111 return check_raw_mode_ok(fn) && 9112 check_arg_pair_ok(fn) && 9113 check_btf_id_ok(fn) ? 0 : -EINVAL; 9114 } 9115 9116 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9117 * are now invalid, so turn them into unknown SCALAR_VALUE. 9118 * 9119 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9120 * since these slices point to packet data. 9121 */ 9122 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9123 { 9124 struct bpf_func_state *state; 9125 struct bpf_reg_state *reg; 9126 9127 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9128 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9129 mark_reg_invalid(env, reg); 9130 })); 9131 } 9132 9133 enum { 9134 AT_PKT_END = -1, 9135 BEYOND_PKT_END = -2, 9136 }; 9137 9138 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9139 { 9140 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9141 struct bpf_reg_state *reg = &state->regs[regn]; 9142 9143 if (reg->type != PTR_TO_PACKET) 9144 /* PTR_TO_PACKET_META is not supported yet */ 9145 return; 9146 9147 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9148 * How far beyond pkt_end it goes is unknown. 9149 * if (!range_open) it's the case of pkt >= pkt_end 9150 * if (range_open) it's the case of pkt > pkt_end 9151 * hence this pointer is at least 1 byte bigger than pkt_end 9152 */ 9153 if (range_open) 9154 reg->range = BEYOND_PKT_END; 9155 else 9156 reg->range = AT_PKT_END; 9157 } 9158 9159 /* The pointer with the specified id has released its reference to kernel 9160 * resources. Identify all copies of the same pointer and clear the reference. 9161 */ 9162 static int release_reference(struct bpf_verifier_env *env, 9163 int ref_obj_id) 9164 { 9165 struct bpf_func_state *state; 9166 struct bpf_reg_state *reg; 9167 int err; 9168 9169 err = release_reference_state(cur_func(env), ref_obj_id); 9170 if (err) 9171 return err; 9172 9173 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9174 if (reg->ref_obj_id == ref_obj_id) 9175 mark_reg_invalid(env, reg); 9176 })); 9177 9178 return 0; 9179 } 9180 9181 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9182 { 9183 struct bpf_func_state *unused; 9184 struct bpf_reg_state *reg; 9185 9186 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9187 if (type_is_non_owning_ref(reg->type)) 9188 mark_reg_invalid(env, reg); 9189 })); 9190 } 9191 9192 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9193 struct bpf_reg_state *regs) 9194 { 9195 int i; 9196 9197 /* after the call registers r0 - r5 were scratched */ 9198 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9199 mark_reg_not_init(env, regs, caller_saved[i]); 9200 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9201 } 9202 } 9203 9204 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9205 struct bpf_func_state *caller, 9206 struct bpf_func_state *callee, 9207 int insn_idx); 9208 9209 static int set_callee_state(struct bpf_verifier_env *env, 9210 struct bpf_func_state *caller, 9211 struct bpf_func_state *callee, int insn_idx); 9212 9213 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9214 set_callee_state_fn set_callee_state_cb, 9215 struct bpf_verifier_state *state) 9216 { 9217 struct bpf_func_state *caller, *callee; 9218 int err; 9219 9220 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9221 verbose(env, "the call stack of %d frames is too deep\n", 9222 state->curframe + 2); 9223 return -E2BIG; 9224 } 9225 9226 if (state->frame[state->curframe + 1]) { 9227 verbose(env, "verifier bug. Frame %d already allocated\n", 9228 state->curframe + 1); 9229 return -EFAULT; 9230 } 9231 9232 caller = state->frame[state->curframe]; 9233 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9234 if (!callee) 9235 return -ENOMEM; 9236 state->frame[state->curframe + 1] = callee; 9237 9238 /* callee cannot access r0, r6 - r9 for reading and has to write 9239 * into its own stack before reading from it. 9240 * callee can read/write into caller's stack 9241 */ 9242 init_func_state(env, callee, 9243 /* remember the callsite, it will be used by bpf_exit */ 9244 callsite, 9245 state->curframe + 1 /* frameno within this callchain */, 9246 subprog /* subprog number within this prog */); 9247 /* Transfer references to the callee */ 9248 err = copy_reference_state(callee, caller); 9249 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9250 if (err) 9251 goto err_out; 9252 9253 /* only increment it after check_reg_arg() finished */ 9254 state->curframe++; 9255 9256 return 0; 9257 9258 err_out: 9259 free_func_state(callee); 9260 state->frame[state->curframe + 1] = NULL; 9261 return err; 9262 } 9263 9264 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9265 int insn_idx, int subprog, 9266 set_callee_state_fn set_callee_state_cb) 9267 { 9268 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9269 struct bpf_func_state *caller, *callee; 9270 int err; 9271 9272 caller = state->frame[state->curframe]; 9273 err = btf_check_subprog_call(env, subprog, caller->regs); 9274 if (err == -EFAULT) 9275 return err; 9276 9277 /* set_callee_state is used for direct subprog calls, but we are 9278 * interested in validating only BPF helpers that can call subprogs as 9279 * callbacks 9280 */ 9281 if (bpf_pseudo_kfunc_call(insn) && 9282 !is_sync_callback_calling_kfunc(insn->imm)) { 9283 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9284 func_id_name(insn->imm), insn->imm); 9285 return -EFAULT; 9286 } else if (!bpf_pseudo_kfunc_call(insn) && 9287 !is_callback_calling_function(insn->imm)) { /* helper */ 9288 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9289 func_id_name(insn->imm), insn->imm); 9290 return -EFAULT; 9291 } 9292 9293 if (insn->code == (BPF_JMP | BPF_CALL) && 9294 insn->src_reg == 0 && 9295 insn->imm == BPF_FUNC_timer_set_callback) { 9296 struct bpf_verifier_state *async_cb; 9297 9298 /* there is no real recursion here. timer callbacks are async */ 9299 env->subprog_info[subprog].is_async_cb = true; 9300 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9301 insn_idx, subprog); 9302 if (!async_cb) 9303 return -EFAULT; 9304 callee = async_cb->frame[0]; 9305 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9306 9307 /* Convert bpf_timer_set_callback() args into timer callback args */ 9308 err = set_callee_state_cb(env, caller, callee, insn_idx); 9309 if (err) 9310 return err; 9311 9312 return 0; 9313 } 9314 9315 /* for callback functions enqueue entry to callback and 9316 * proceed with next instruction within current frame. 9317 */ 9318 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9319 if (!callback_state) 9320 return -ENOMEM; 9321 9322 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9323 callback_state); 9324 if (err) 9325 return err; 9326 9327 callback_state->callback_unroll_depth++; 9328 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9329 caller->callback_depth = 0; 9330 return 0; 9331 } 9332 9333 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9334 int *insn_idx) 9335 { 9336 struct bpf_verifier_state *state = env->cur_state; 9337 struct bpf_func_state *caller; 9338 int err, subprog, target_insn; 9339 9340 target_insn = *insn_idx + insn->imm + 1; 9341 subprog = find_subprog(env, target_insn); 9342 if (subprog < 0) { 9343 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9344 return -EFAULT; 9345 } 9346 9347 caller = state->frame[state->curframe]; 9348 err = btf_check_subprog_call(env, subprog, caller->regs); 9349 if (err == -EFAULT) 9350 return err; 9351 if (subprog_is_global(env, subprog)) { 9352 if (err) { 9353 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9354 return err; 9355 } 9356 9357 if (env->log.level & BPF_LOG_LEVEL) 9358 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9359 clear_caller_saved_regs(env, caller->regs); 9360 9361 /* All global functions return a 64-bit SCALAR_VALUE */ 9362 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9363 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9364 9365 /* continue with next insn after call */ 9366 return 0; 9367 } 9368 9369 /* for regular function entry setup new frame and continue 9370 * from that frame. 9371 */ 9372 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9373 if (err) 9374 return err; 9375 9376 clear_caller_saved_regs(env, caller->regs); 9377 9378 /* and go analyze first insn of the callee */ 9379 *insn_idx = env->subprog_info[subprog].start - 1; 9380 9381 if (env->log.level & BPF_LOG_LEVEL) { 9382 verbose(env, "caller:\n"); 9383 print_verifier_state(env, caller, true); 9384 verbose(env, "callee:\n"); 9385 print_verifier_state(env, state->frame[state->curframe], true); 9386 } 9387 9388 return 0; 9389 } 9390 9391 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9392 struct bpf_func_state *caller, 9393 struct bpf_func_state *callee) 9394 { 9395 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9396 * void *callback_ctx, u64 flags); 9397 * callback_fn(struct bpf_map *map, void *key, void *value, 9398 * void *callback_ctx); 9399 */ 9400 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9401 9402 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9403 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9404 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9405 9406 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9407 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9408 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9409 9410 /* pointer to stack or null */ 9411 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9412 9413 /* unused */ 9414 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9415 return 0; 9416 } 9417 9418 static int set_callee_state(struct bpf_verifier_env *env, 9419 struct bpf_func_state *caller, 9420 struct bpf_func_state *callee, int insn_idx) 9421 { 9422 int i; 9423 9424 /* copy r1 - r5 args that callee can access. The copy includes parent 9425 * pointers, which connects us up to the liveness chain 9426 */ 9427 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9428 callee->regs[i] = caller->regs[i]; 9429 return 0; 9430 } 9431 9432 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9433 struct bpf_func_state *caller, 9434 struct bpf_func_state *callee, 9435 int insn_idx) 9436 { 9437 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9438 struct bpf_map *map; 9439 int err; 9440 9441 if (bpf_map_ptr_poisoned(insn_aux)) { 9442 verbose(env, "tail_call abusing map_ptr\n"); 9443 return -EINVAL; 9444 } 9445 9446 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9447 if (!map->ops->map_set_for_each_callback_args || 9448 !map->ops->map_for_each_callback) { 9449 verbose(env, "callback function not allowed for map\n"); 9450 return -ENOTSUPP; 9451 } 9452 9453 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9454 if (err) 9455 return err; 9456 9457 callee->in_callback_fn = true; 9458 callee->callback_ret_range = tnum_range(0, 1); 9459 return 0; 9460 } 9461 9462 static int set_loop_callback_state(struct bpf_verifier_env *env, 9463 struct bpf_func_state *caller, 9464 struct bpf_func_state *callee, 9465 int insn_idx) 9466 { 9467 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9468 * u64 flags); 9469 * callback_fn(u32 index, void *callback_ctx); 9470 */ 9471 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9472 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9473 9474 /* unused */ 9475 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9476 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9477 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9478 9479 callee->in_callback_fn = true; 9480 callee->callback_ret_range = tnum_range(0, 1); 9481 return 0; 9482 } 9483 9484 static int set_timer_callback_state(struct bpf_verifier_env *env, 9485 struct bpf_func_state *caller, 9486 struct bpf_func_state *callee, 9487 int insn_idx) 9488 { 9489 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9490 9491 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9492 * callback_fn(struct bpf_map *map, void *key, void *value); 9493 */ 9494 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9495 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9496 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9497 9498 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9499 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9500 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9501 9502 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9503 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9504 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9505 9506 /* unused */ 9507 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9508 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9509 callee->in_async_callback_fn = true; 9510 callee->callback_ret_range = tnum_range(0, 1); 9511 return 0; 9512 } 9513 9514 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9515 struct bpf_func_state *caller, 9516 struct bpf_func_state *callee, 9517 int insn_idx) 9518 { 9519 /* bpf_find_vma(struct task_struct *task, u64 addr, 9520 * void *callback_fn, void *callback_ctx, u64 flags) 9521 * (callback_fn)(struct task_struct *task, 9522 * struct vm_area_struct *vma, void *callback_ctx); 9523 */ 9524 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9525 9526 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9527 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9528 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9529 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9530 9531 /* pointer to stack or null */ 9532 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9533 9534 /* unused */ 9535 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9536 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9537 callee->in_callback_fn = true; 9538 callee->callback_ret_range = tnum_range(0, 1); 9539 return 0; 9540 } 9541 9542 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9543 struct bpf_func_state *caller, 9544 struct bpf_func_state *callee, 9545 int insn_idx) 9546 { 9547 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9548 * callback_ctx, u64 flags); 9549 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9550 */ 9551 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9552 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9553 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9554 9555 /* unused */ 9556 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9557 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9558 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9559 9560 callee->in_callback_fn = true; 9561 callee->callback_ret_range = tnum_range(0, 1); 9562 return 0; 9563 } 9564 9565 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9566 struct bpf_func_state *caller, 9567 struct bpf_func_state *callee, 9568 int insn_idx) 9569 { 9570 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9571 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9572 * 9573 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9574 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9575 * by this point, so look at 'root' 9576 */ 9577 struct btf_field *field; 9578 9579 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9580 BPF_RB_ROOT); 9581 if (!field || !field->graph_root.value_btf_id) 9582 return -EFAULT; 9583 9584 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9585 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9586 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9587 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9588 9589 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9590 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9591 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9592 callee->in_callback_fn = true; 9593 callee->callback_ret_range = tnum_range(0, 1); 9594 return 0; 9595 } 9596 9597 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9598 9599 /* Are we currently verifying the callback for a rbtree helper that must 9600 * be called with lock held? If so, no need to complain about unreleased 9601 * lock 9602 */ 9603 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9604 { 9605 struct bpf_verifier_state *state = env->cur_state; 9606 struct bpf_insn *insn = env->prog->insnsi; 9607 struct bpf_func_state *callee; 9608 int kfunc_btf_id; 9609 9610 if (!state->curframe) 9611 return false; 9612 9613 callee = state->frame[state->curframe]; 9614 9615 if (!callee->in_callback_fn) 9616 return false; 9617 9618 kfunc_btf_id = insn[callee->callsite].imm; 9619 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9620 } 9621 9622 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9623 { 9624 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9625 struct bpf_func_state *caller, *callee; 9626 struct bpf_reg_state *r0; 9627 bool in_callback_fn; 9628 int err; 9629 9630 callee = state->frame[state->curframe]; 9631 r0 = &callee->regs[BPF_REG_0]; 9632 if (r0->type == PTR_TO_STACK) { 9633 /* technically it's ok to return caller's stack pointer 9634 * (or caller's caller's pointer) back to the caller, 9635 * since these pointers are valid. Only current stack 9636 * pointer will be invalid as soon as function exits, 9637 * but let's be conservative 9638 */ 9639 verbose(env, "cannot return stack pointer to the caller\n"); 9640 return -EINVAL; 9641 } 9642 9643 caller = state->frame[state->curframe - 1]; 9644 if (callee->in_callback_fn) { 9645 /* enforce R0 return value range [0, 1]. */ 9646 struct tnum range = callee->callback_ret_range; 9647 9648 if (r0->type != SCALAR_VALUE) { 9649 verbose(env, "R0 not a scalar value\n"); 9650 return -EACCES; 9651 } 9652 9653 /* we are going to rely on register's precise value */ 9654 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9655 err = err ?: mark_chain_precision(env, BPF_REG_0); 9656 if (err) 9657 return err; 9658 9659 if (!tnum_in(range, r0->var_off)) { 9660 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9661 return -EINVAL; 9662 } 9663 if (!calls_callback(env, callee->callsite)) { 9664 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9665 *insn_idx, callee->callsite); 9666 return -EFAULT; 9667 } 9668 } else { 9669 /* return to the caller whatever r0 had in the callee */ 9670 caller->regs[BPF_REG_0] = *r0; 9671 } 9672 9673 /* callback_fn frame should have released its own additions to parent's 9674 * reference state at this point, or check_reference_leak would 9675 * complain, hence it must be the same as the caller. There is no need 9676 * to copy it back. 9677 */ 9678 if (!callee->in_callback_fn) { 9679 /* Transfer references to the caller */ 9680 err = copy_reference_state(caller, callee); 9681 if (err) 9682 return err; 9683 } 9684 9685 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9686 * there function call logic would reschedule callback visit. If iteration 9687 * converges is_state_visited() would prune that visit eventually. 9688 */ 9689 in_callback_fn = callee->in_callback_fn; 9690 if (in_callback_fn) 9691 *insn_idx = callee->callsite; 9692 else 9693 *insn_idx = callee->callsite + 1; 9694 9695 if (env->log.level & BPF_LOG_LEVEL) { 9696 verbose(env, "returning from callee:\n"); 9697 print_verifier_state(env, callee, true); 9698 verbose(env, "to caller at %d:\n", *insn_idx); 9699 print_verifier_state(env, caller, true); 9700 } 9701 /* clear everything in the callee */ 9702 free_func_state(callee); 9703 state->frame[state->curframe--] = NULL; 9704 9705 /* for callbacks widen imprecise scalars to make programs like below verify: 9706 * 9707 * struct ctx { int i; } 9708 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9709 * ... 9710 * struct ctx = { .i = 0; } 9711 * bpf_loop(100, cb, &ctx, 0); 9712 * 9713 * This is similar to what is done in process_iter_next_call() for open 9714 * coded iterators. 9715 */ 9716 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9717 if (prev_st) { 9718 err = widen_imprecise_scalars(env, prev_st, state); 9719 if (err) 9720 return err; 9721 } 9722 return 0; 9723 } 9724 9725 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9726 int func_id, 9727 struct bpf_call_arg_meta *meta) 9728 { 9729 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9730 9731 if (ret_type != RET_INTEGER) 9732 return; 9733 9734 switch (func_id) { 9735 case BPF_FUNC_get_stack: 9736 case BPF_FUNC_get_task_stack: 9737 case BPF_FUNC_probe_read_str: 9738 case BPF_FUNC_probe_read_kernel_str: 9739 case BPF_FUNC_probe_read_user_str: 9740 ret_reg->smax_value = meta->msize_max_value; 9741 ret_reg->s32_max_value = meta->msize_max_value; 9742 ret_reg->smin_value = -MAX_ERRNO; 9743 ret_reg->s32_min_value = -MAX_ERRNO; 9744 reg_bounds_sync(ret_reg); 9745 break; 9746 case BPF_FUNC_get_smp_processor_id: 9747 ret_reg->umax_value = nr_cpu_ids - 1; 9748 ret_reg->u32_max_value = nr_cpu_ids - 1; 9749 ret_reg->smax_value = nr_cpu_ids - 1; 9750 ret_reg->s32_max_value = nr_cpu_ids - 1; 9751 ret_reg->umin_value = 0; 9752 ret_reg->u32_min_value = 0; 9753 ret_reg->smin_value = 0; 9754 ret_reg->s32_min_value = 0; 9755 reg_bounds_sync(ret_reg); 9756 break; 9757 } 9758 } 9759 9760 static int 9761 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9762 int func_id, int insn_idx) 9763 { 9764 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9765 struct bpf_map *map = meta->map_ptr; 9766 9767 if (func_id != BPF_FUNC_tail_call && 9768 func_id != BPF_FUNC_map_lookup_elem && 9769 func_id != BPF_FUNC_map_update_elem && 9770 func_id != BPF_FUNC_map_delete_elem && 9771 func_id != BPF_FUNC_map_push_elem && 9772 func_id != BPF_FUNC_map_pop_elem && 9773 func_id != BPF_FUNC_map_peek_elem && 9774 func_id != BPF_FUNC_for_each_map_elem && 9775 func_id != BPF_FUNC_redirect_map && 9776 func_id != BPF_FUNC_map_lookup_percpu_elem) 9777 return 0; 9778 9779 if (map == NULL) { 9780 verbose(env, "kernel subsystem misconfigured verifier\n"); 9781 return -EINVAL; 9782 } 9783 9784 /* In case of read-only, some additional restrictions 9785 * need to be applied in order to prevent altering the 9786 * state of the map from program side. 9787 */ 9788 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9789 (func_id == BPF_FUNC_map_delete_elem || 9790 func_id == BPF_FUNC_map_update_elem || 9791 func_id == BPF_FUNC_map_push_elem || 9792 func_id == BPF_FUNC_map_pop_elem)) { 9793 verbose(env, "write into map forbidden\n"); 9794 return -EACCES; 9795 } 9796 9797 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9798 bpf_map_ptr_store(aux, meta->map_ptr, 9799 !meta->map_ptr->bypass_spec_v1); 9800 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9801 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9802 !meta->map_ptr->bypass_spec_v1); 9803 return 0; 9804 } 9805 9806 static int 9807 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9808 int func_id, int insn_idx) 9809 { 9810 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9811 struct bpf_reg_state *regs = cur_regs(env), *reg; 9812 struct bpf_map *map = meta->map_ptr; 9813 u64 val, max; 9814 int err; 9815 9816 if (func_id != BPF_FUNC_tail_call) 9817 return 0; 9818 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9819 verbose(env, "kernel subsystem misconfigured verifier\n"); 9820 return -EINVAL; 9821 } 9822 9823 reg = ®s[BPF_REG_3]; 9824 val = reg->var_off.value; 9825 max = map->max_entries; 9826 9827 if (!(register_is_const(reg) && val < max)) { 9828 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9829 return 0; 9830 } 9831 9832 err = mark_chain_precision(env, BPF_REG_3); 9833 if (err) 9834 return err; 9835 if (bpf_map_key_unseen(aux)) 9836 bpf_map_key_store(aux, val); 9837 else if (!bpf_map_key_poisoned(aux) && 9838 bpf_map_key_immediate(aux) != val) 9839 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9840 return 0; 9841 } 9842 9843 static int check_reference_leak(struct bpf_verifier_env *env) 9844 { 9845 struct bpf_func_state *state = cur_func(env); 9846 bool refs_lingering = false; 9847 int i; 9848 9849 if (state->frameno && !state->in_callback_fn) 9850 return 0; 9851 9852 for (i = 0; i < state->acquired_refs; i++) { 9853 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9854 continue; 9855 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9856 state->refs[i].id, state->refs[i].insn_idx); 9857 refs_lingering = true; 9858 } 9859 return refs_lingering ? -EINVAL : 0; 9860 } 9861 9862 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9863 struct bpf_reg_state *regs) 9864 { 9865 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9866 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9867 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9868 struct bpf_bprintf_data data = {}; 9869 int err, fmt_map_off, num_args; 9870 u64 fmt_addr; 9871 char *fmt; 9872 9873 /* data must be an array of u64 */ 9874 if (data_len_reg->var_off.value % 8) 9875 return -EINVAL; 9876 num_args = data_len_reg->var_off.value / 8; 9877 9878 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9879 * and map_direct_value_addr is set. 9880 */ 9881 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9882 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9883 fmt_map_off); 9884 if (err) { 9885 verbose(env, "verifier bug\n"); 9886 return -EFAULT; 9887 } 9888 fmt = (char *)(long)fmt_addr + fmt_map_off; 9889 9890 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9891 * can focus on validating the format specifiers. 9892 */ 9893 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9894 if (err < 0) 9895 verbose(env, "Invalid format string\n"); 9896 9897 return err; 9898 } 9899 9900 static int check_get_func_ip(struct bpf_verifier_env *env) 9901 { 9902 enum bpf_prog_type type = resolve_prog_type(env->prog); 9903 int func_id = BPF_FUNC_get_func_ip; 9904 9905 if (type == BPF_PROG_TYPE_TRACING) { 9906 if (!bpf_prog_has_trampoline(env->prog)) { 9907 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9908 func_id_name(func_id), func_id); 9909 return -ENOTSUPP; 9910 } 9911 return 0; 9912 } else if (type == BPF_PROG_TYPE_KPROBE) { 9913 return 0; 9914 } 9915 9916 verbose(env, "func %s#%d not supported for program type %d\n", 9917 func_id_name(func_id), func_id, type); 9918 return -ENOTSUPP; 9919 } 9920 9921 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9922 { 9923 return &env->insn_aux_data[env->insn_idx]; 9924 } 9925 9926 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9927 { 9928 struct bpf_reg_state *regs = cur_regs(env); 9929 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9930 bool reg_is_null = register_is_null(reg); 9931 9932 if (reg_is_null) 9933 mark_chain_precision(env, BPF_REG_4); 9934 9935 return reg_is_null; 9936 } 9937 9938 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9939 { 9940 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9941 9942 if (!state->initialized) { 9943 state->initialized = 1; 9944 state->fit_for_inline = loop_flag_is_zero(env); 9945 state->callback_subprogno = subprogno; 9946 return; 9947 } 9948 9949 if (!state->fit_for_inline) 9950 return; 9951 9952 state->fit_for_inline = (loop_flag_is_zero(env) && 9953 state->callback_subprogno == subprogno); 9954 } 9955 9956 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9957 int *insn_idx_p) 9958 { 9959 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9960 const struct bpf_func_proto *fn = NULL; 9961 enum bpf_return_type ret_type; 9962 enum bpf_type_flag ret_flag; 9963 struct bpf_reg_state *regs; 9964 struct bpf_call_arg_meta meta; 9965 int insn_idx = *insn_idx_p; 9966 bool changes_data; 9967 int i, err, func_id; 9968 9969 /* find function prototype */ 9970 func_id = insn->imm; 9971 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9972 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9973 func_id); 9974 return -EINVAL; 9975 } 9976 9977 if (env->ops->get_func_proto) 9978 fn = env->ops->get_func_proto(func_id, env->prog); 9979 if (!fn) { 9980 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9981 func_id); 9982 return -EINVAL; 9983 } 9984 9985 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9986 if (!env->prog->gpl_compatible && fn->gpl_only) { 9987 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9988 return -EINVAL; 9989 } 9990 9991 if (fn->allowed && !fn->allowed(env->prog)) { 9992 verbose(env, "helper call is not allowed in probe\n"); 9993 return -EINVAL; 9994 } 9995 9996 if (!env->prog->aux->sleepable && fn->might_sleep) { 9997 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9998 return -EINVAL; 9999 } 10000 10001 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10002 changes_data = bpf_helper_changes_pkt_data(fn->func); 10003 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10004 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10005 func_id_name(func_id), func_id); 10006 return -EINVAL; 10007 } 10008 10009 memset(&meta, 0, sizeof(meta)); 10010 meta.pkt_access = fn->pkt_access; 10011 10012 err = check_func_proto(fn, func_id); 10013 if (err) { 10014 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10015 func_id_name(func_id), func_id); 10016 return err; 10017 } 10018 10019 if (env->cur_state->active_rcu_lock) { 10020 if (fn->might_sleep) { 10021 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10022 func_id_name(func_id), func_id); 10023 return -EINVAL; 10024 } 10025 10026 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10027 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10028 } 10029 10030 meta.func_id = func_id; 10031 /* check args */ 10032 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10033 err = check_func_arg(env, i, &meta, fn, insn_idx); 10034 if (err) 10035 return err; 10036 } 10037 10038 err = record_func_map(env, &meta, func_id, insn_idx); 10039 if (err) 10040 return err; 10041 10042 err = record_func_key(env, &meta, func_id, insn_idx); 10043 if (err) 10044 return err; 10045 10046 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10047 * is inferred from register state. 10048 */ 10049 for (i = 0; i < meta.access_size; i++) { 10050 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10051 BPF_WRITE, -1, false, false); 10052 if (err) 10053 return err; 10054 } 10055 10056 regs = cur_regs(env); 10057 10058 if (meta.release_regno) { 10059 err = -EINVAL; 10060 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10061 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10062 * is safe to do directly. 10063 */ 10064 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10065 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10066 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10067 return -EFAULT; 10068 } 10069 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10070 } else if (meta.ref_obj_id) { 10071 err = release_reference(env, meta.ref_obj_id); 10072 } else if (register_is_null(®s[meta.release_regno])) { 10073 /* meta.ref_obj_id can only be 0 if register that is meant to be 10074 * released is NULL, which must be > R0. 10075 */ 10076 err = 0; 10077 } 10078 if (err) { 10079 verbose(env, "func %s#%d reference has not been acquired before\n", 10080 func_id_name(func_id), func_id); 10081 return err; 10082 } 10083 } 10084 10085 switch (func_id) { 10086 case BPF_FUNC_tail_call: 10087 err = check_reference_leak(env); 10088 if (err) { 10089 verbose(env, "tail_call would lead to reference leak\n"); 10090 return err; 10091 } 10092 break; 10093 case BPF_FUNC_get_local_storage: 10094 /* check that flags argument in get_local_storage(map, flags) is 0, 10095 * this is required because get_local_storage() can't return an error. 10096 */ 10097 if (!register_is_null(®s[BPF_REG_2])) { 10098 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10099 return -EINVAL; 10100 } 10101 break; 10102 case BPF_FUNC_for_each_map_elem: 10103 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10104 set_map_elem_callback_state); 10105 break; 10106 case BPF_FUNC_timer_set_callback: 10107 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10108 set_timer_callback_state); 10109 break; 10110 case BPF_FUNC_find_vma: 10111 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10112 set_find_vma_callback_state); 10113 break; 10114 case BPF_FUNC_snprintf: 10115 err = check_bpf_snprintf_call(env, regs); 10116 break; 10117 case BPF_FUNC_loop: 10118 update_loop_inline_state(env, meta.subprogno); 10119 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10120 * is finished, thus mark it precise. 10121 */ 10122 err = mark_chain_precision(env, BPF_REG_1); 10123 if (err) 10124 return err; 10125 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10126 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10127 set_loop_callback_state); 10128 } else { 10129 cur_func(env)->callback_depth = 0; 10130 if (env->log.level & BPF_LOG_LEVEL2) 10131 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10132 env->cur_state->curframe); 10133 } 10134 break; 10135 case BPF_FUNC_dynptr_from_mem: 10136 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10137 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10138 reg_type_str(env, regs[BPF_REG_1].type)); 10139 return -EACCES; 10140 } 10141 break; 10142 case BPF_FUNC_set_retval: 10143 if (prog_type == BPF_PROG_TYPE_LSM && 10144 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10145 if (!env->prog->aux->attach_func_proto->type) { 10146 /* Make sure programs that attach to void 10147 * hooks don't try to modify return value. 10148 */ 10149 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10150 return -EINVAL; 10151 } 10152 } 10153 break; 10154 case BPF_FUNC_dynptr_data: 10155 { 10156 struct bpf_reg_state *reg; 10157 int id, ref_obj_id; 10158 10159 reg = get_dynptr_arg_reg(env, fn, regs); 10160 if (!reg) 10161 return -EFAULT; 10162 10163 10164 if (meta.dynptr_id) { 10165 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10166 return -EFAULT; 10167 } 10168 if (meta.ref_obj_id) { 10169 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10170 return -EFAULT; 10171 } 10172 10173 id = dynptr_id(env, reg); 10174 if (id < 0) { 10175 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10176 return id; 10177 } 10178 10179 ref_obj_id = dynptr_ref_obj_id(env, reg); 10180 if (ref_obj_id < 0) { 10181 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10182 return ref_obj_id; 10183 } 10184 10185 meta.dynptr_id = id; 10186 meta.ref_obj_id = ref_obj_id; 10187 10188 break; 10189 } 10190 case BPF_FUNC_dynptr_write: 10191 { 10192 enum bpf_dynptr_type dynptr_type; 10193 struct bpf_reg_state *reg; 10194 10195 reg = get_dynptr_arg_reg(env, fn, regs); 10196 if (!reg) 10197 return -EFAULT; 10198 10199 dynptr_type = dynptr_get_type(env, reg); 10200 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10201 return -EFAULT; 10202 10203 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10204 /* this will trigger clear_all_pkt_pointers(), which will 10205 * invalidate all dynptr slices associated with the skb 10206 */ 10207 changes_data = true; 10208 10209 break; 10210 } 10211 case BPF_FUNC_user_ringbuf_drain: 10212 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10213 set_user_ringbuf_callback_state); 10214 break; 10215 } 10216 10217 if (err) 10218 return err; 10219 10220 /* reset caller saved regs */ 10221 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10222 mark_reg_not_init(env, regs, caller_saved[i]); 10223 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10224 } 10225 10226 /* helper call returns 64-bit value. */ 10227 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10228 10229 /* update return register (already marked as written above) */ 10230 ret_type = fn->ret_type; 10231 ret_flag = type_flag(ret_type); 10232 10233 switch (base_type(ret_type)) { 10234 case RET_INTEGER: 10235 /* sets type to SCALAR_VALUE */ 10236 mark_reg_unknown(env, regs, BPF_REG_0); 10237 break; 10238 case RET_VOID: 10239 regs[BPF_REG_0].type = NOT_INIT; 10240 break; 10241 case RET_PTR_TO_MAP_VALUE: 10242 /* There is no offset yet applied, variable or fixed */ 10243 mark_reg_known_zero(env, regs, BPF_REG_0); 10244 /* remember map_ptr, so that check_map_access() 10245 * can check 'value_size' boundary of memory access 10246 * to map element returned from bpf_map_lookup_elem() 10247 */ 10248 if (meta.map_ptr == NULL) { 10249 verbose(env, 10250 "kernel subsystem misconfigured verifier\n"); 10251 return -EINVAL; 10252 } 10253 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10254 regs[BPF_REG_0].map_uid = meta.map_uid; 10255 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10256 if (!type_may_be_null(ret_type) && 10257 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10258 regs[BPF_REG_0].id = ++env->id_gen; 10259 } 10260 break; 10261 case RET_PTR_TO_SOCKET: 10262 mark_reg_known_zero(env, regs, BPF_REG_0); 10263 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10264 break; 10265 case RET_PTR_TO_SOCK_COMMON: 10266 mark_reg_known_zero(env, regs, BPF_REG_0); 10267 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10268 break; 10269 case RET_PTR_TO_TCP_SOCK: 10270 mark_reg_known_zero(env, regs, BPF_REG_0); 10271 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10272 break; 10273 case RET_PTR_TO_MEM: 10274 mark_reg_known_zero(env, regs, BPF_REG_0); 10275 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10276 regs[BPF_REG_0].mem_size = meta.mem_size; 10277 break; 10278 case RET_PTR_TO_MEM_OR_BTF_ID: 10279 { 10280 const struct btf_type *t; 10281 10282 mark_reg_known_zero(env, regs, BPF_REG_0); 10283 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10284 if (!btf_type_is_struct(t)) { 10285 u32 tsize; 10286 const struct btf_type *ret; 10287 const char *tname; 10288 10289 /* resolve the type size of ksym. */ 10290 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10291 if (IS_ERR(ret)) { 10292 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10293 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10294 tname, PTR_ERR(ret)); 10295 return -EINVAL; 10296 } 10297 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10298 regs[BPF_REG_0].mem_size = tsize; 10299 } else { 10300 /* MEM_RDONLY may be carried from ret_flag, but it 10301 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10302 * it will confuse the check of PTR_TO_BTF_ID in 10303 * check_mem_access(). 10304 */ 10305 ret_flag &= ~MEM_RDONLY; 10306 10307 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10308 regs[BPF_REG_0].btf = meta.ret_btf; 10309 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10310 } 10311 break; 10312 } 10313 case RET_PTR_TO_BTF_ID: 10314 { 10315 struct btf *ret_btf; 10316 int ret_btf_id; 10317 10318 mark_reg_known_zero(env, regs, BPF_REG_0); 10319 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10320 if (func_id == BPF_FUNC_kptr_xchg) { 10321 ret_btf = meta.kptr_field->kptr.btf; 10322 ret_btf_id = meta.kptr_field->kptr.btf_id; 10323 if (!btf_is_kernel(ret_btf)) 10324 regs[BPF_REG_0].type |= MEM_ALLOC; 10325 } else { 10326 if (fn->ret_btf_id == BPF_PTR_POISON) { 10327 verbose(env, "verifier internal error:"); 10328 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10329 func_id_name(func_id)); 10330 return -EINVAL; 10331 } 10332 ret_btf = btf_vmlinux; 10333 ret_btf_id = *fn->ret_btf_id; 10334 } 10335 if (ret_btf_id == 0) { 10336 verbose(env, "invalid return type %u of func %s#%d\n", 10337 base_type(ret_type), func_id_name(func_id), 10338 func_id); 10339 return -EINVAL; 10340 } 10341 regs[BPF_REG_0].btf = ret_btf; 10342 regs[BPF_REG_0].btf_id = ret_btf_id; 10343 break; 10344 } 10345 default: 10346 verbose(env, "unknown return type %u of func %s#%d\n", 10347 base_type(ret_type), func_id_name(func_id), func_id); 10348 return -EINVAL; 10349 } 10350 10351 if (type_may_be_null(regs[BPF_REG_0].type)) 10352 regs[BPF_REG_0].id = ++env->id_gen; 10353 10354 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10355 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10356 func_id_name(func_id), func_id); 10357 return -EFAULT; 10358 } 10359 10360 if (is_dynptr_ref_function(func_id)) 10361 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10362 10363 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10364 /* For release_reference() */ 10365 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10366 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10367 int id = acquire_reference_state(env, insn_idx); 10368 10369 if (id < 0) 10370 return id; 10371 /* For mark_ptr_or_null_reg() */ 10372 regs[BPF_REG_0].id = id; 10373 /* For release_reference() */ 10374 regs[BPF_REG_0].ref_obj_id = id; 10375 } 10376 10377 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10378 10379 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10380 if (err) 10381 return err; 10382 10383 if ((func_id == BPF_FUNC_get_stack || 10384 func_id == BPF_FUNC_get_task_stack) && 10385 !env->prog->has_callchain_buf) { 10386 const char *err_str; 10387 10388 #ifdef CONFIG_PERF_EVENTS 10389 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10390 err_str = "cannot get callchain buffer for func %s#%d\n"; 10391 #else 10392 err = -ENOTSUPP; 10393 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10394 #endif 10395 if (err) { 10396 verbose(env, err_str, func_id_name(func_id), func_id); 10397 return err; 10398 } 10399 10400 env->prog->has_callchain_buf = true; 10401 } 10402 10403 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10404 env->prog->call_get_stack = true; 10405 10406 if (func_id == BPF_FUNC_get_func_ip) { 10407 if (check_get_func_ip(env)) 10408 return -ENOTSUPP; 10409 env->prog->call_get_func_ip = true; 10410 } 10411 10412 if (changes_data) 10413 clear_all_pkt_pointers(env); 10414 return 0; 10415 } 10416 10417 /* mark_btf_func_reg_size() is used when the reg size is determined by 10418 * the BTF func_proto's return value size and argument. 10419 */ 10420 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10421 size_t reg_size) 10422 { 10423 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10424 10425 if (regno == BPF_REG_0) { 10426 /* Function return value */ 10427 reg->live |= REG_LIVE_WRITTEN; 10428 reg->subreg_def = reg_size == sizeof(u64) ? 10429 DEF_NOT_SUBREG : env->insn_idx + 1; 10430 } else { 10431 /* Function argument */ 10432 if (reg_size == sizeof(u64)) { 10433 mark_insn_zext(env, reg); 10434 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10435 } else { 10436 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10437 } 10438 } 10439 } 10440 10441 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10442 { 10443 return meta->kfunc_flags & KF_ACQUIRE; 10444 } 10445 10446 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10447 { 10448 return meta->kfunc_flags & KF_RELEASE; 10449 } 10450 10451 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10452 { 10453 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10454 } 10455 10456 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10457 { 10458 return meta->kfunc_flags & KF_SLEEPABLE; 10459 } 10460 10461 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10462 { 10463 return meta->kfunc_flags & KF_DESTRUCTIVE; 10464 } 10465 10466 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10467 { 10468 return meta->kfunc_flags & KF_RCU; 10469 } 10470 10471 static bool __kfunc_param_match_suffix(const struct btf *btf, 10472 const struct btf_param *arg, 10473 const char *suffix) 10474 { 10475 int suffix_len = strlen(suffix), len; 10476 const char *param_name; 10477 10478 /* In the future, this can be ported to use BTF tagging */ 10479 param_name = btf_name_by_offset(btf, arg->name_off); 10480 if (str_is_empty(param_name)) 10481 return false; 10482 len = strlen(param_name); 10483 if (len < suffix_len) 10484 return false; 10485 param_name += len - suffix_len; 10486 return !strncmp(param_name, suffix, suffix_len); 10487 } 10488 10489 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10490 const struct btf_param *arg, 10491 const struct bpf_reg_state *reg) 10492 { 10493 const struct btf_type *t; 10494 10495 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10496 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10497 return false; 10498 10499 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10500 } 10501 10502 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10503 const struct btf_param *arg, 10504 const struct bpf_reg_state *reg) 10505 { 10506 const struct btf_type *t; 10507 10508 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10509 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10510 return false; 10511 10512 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10513 } 10514 10515 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10516 { 10517 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10518 } 10519 10520 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10521 { 10522 return __kfunc_param_match_suffix(btf, arg, "__k"); 10523 } 10524 10525 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10526 { 10527 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10528 } 10529 10530 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10531 { 10532 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10533 } 10534 10535 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10536 { 10537 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10538 } 10539 10540 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10541 { 10542 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10543 } 10544 10545 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10546 const struct btf_param *arg, 10547 const char *name) 10548 { 10549 int len, target_len = strlen(name); 10550 const char *param_name; 10551 10552 param_name = btf_name_by_offset(btf, arg->name_off); 10553 if (str_is_empty(param_name)) 10554 return false; 10555 len = strlen(param_name); 10556 if (len != target_len) 10557 return false; 10558 if (strcmp(param_name, name)) 10559 return false; 10560 10561 return true; 10562 } 10563 10564 enum { 10565 KF_ARG_DYNPTR_ID, 10566 KF_ARG_LIST_HEAD_ID, 10567 KF_ARG_LIST_NODE_ID, 10568 KF_ARG_RB_ROOT_ID, 10569 KF_ARG_RB_NODE_ID, 10570 }; 10571 10572 BTF_ID_LIST(kf_arg_btf_ids) 10573 BTF_ID(struct, bpf_dynptr_kern) 10574 BTF_ID(struct, bpf_list_head) 10575 BTF_ID(struct, bpf_list_node) 10576 BTF_ID(struct, bpf_rb_root) 10577 BTF_ID(struct, bpf_rb_node) 10578 10579 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10580 const struct btf_param *arg, int type) 10581 { 10582 const struct btf_type *t; 10583 u32 res_id; 10584 10585 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10586 if (!t) 10587 return false; 10588 if (!btf_type_is_ptr(t)) 10589 return false; 10590 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10591 if (!t) 10592 return false; 10593 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10594 } 10595 10596 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10597 { 10598 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10599 } 10600 10601 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10602 { 10603 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10604 } 10605 10606 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10607 { 10608 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10609 } 10610 10611 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10612 { 10613 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10614 } 10615 10616 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10617 { 10618 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10619 } 10620 10621 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10622 const struct btf_param *arg) 10623 { 10624 const struct btf_type *t; 10625 10626 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10627 if (!t) 10628 return false; 10629 10630 return true; 10631 } 10632 10633 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10634 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10635 const struct btf *btf, 10636 const struct btf_type *t, int rec) 10637 { 10638 const struct btf_type *member_type; 10639 const struct btf_member *member; 10640 u32 i; 10641 10642 if (!btf_type_is_struct(t)) 10643 return false; 10644 10645 for_each_member(i, t, member) { 10646 const struct btf_array *array; 10647 10648 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10649 if (btf_type_is_struct(member_type)) { 10650 if (rec >= 3) { 10651 verbose(env, "max struct nesting depth exceeded\n"); 10652 return false; 10653 } 10654 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10655 return false; 10656 continue; 10657 } 10658 if (btf_type_is_array(member_type)) { 10659 array = btf_array(member_type); 10660 if (!array->nelems) 10661 return false; 10662 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10663 if (!btf_type_is_scalar(member_type)) 10664 return false; 10665 continue; 10666 } 10667 if (!btf_type_is_scalar(member_type)) 10668 return false; 10669 } 10670 return true; 10671 } 10672 10673 enum kfunc_ptr_arg_type { 10674 KF_ARG_PTR_TO_CTX, 10675 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10676 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10677 KF_ARG_PTR_TO_DYNPTR, 10678 KF_ARG_PTR_TO_ITER, 10679 KF_ARG_PTR_TO_LIST_HEAD, 10680 KF_ARG_PTR_TO_LIST_NODE, 10681 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10682 KF_ARG_PTR_TO_MEM, 10683 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10684 KF_ARG_PTR_TO_CALLBACK, 10685 KF_ARG_PTR_TO_RB_ROOT, 10686 KF_ARG_PTR_TO_RB_NODE, 10687 }; 10688 10689 enum special_kfunc_type { 10690 KF_bpf_obj_new_impl, 10691 KF_bpf_obj_drop_impl, 10692 KF_bpf_refcount_acquire_impl, 10693 KF_bpf_list_push_front_impl, 10694 KF_bpf_list_push_back_impl, 10695 KF_bpf_list_pop_front, 10696 KF_bpf_list_pop_back, 10697 KF_bpf_cast_to_kern_ctx, 10698 KF_bpf_rdonly_cast, 10699 KF_bpf_rcu_read_lock, 10700 KF_bpf_rcu_read_unlock, 10701 KF_bpf_rbtree_remove, 10702 KF_bpf_rbtree_add_impl, 10703 KF_bpf_rbtree_first, 10704 KF_bpf_dynptr_from_skb, 10705 KF_bpf_dynptr_from_xdp, 10706 KF_bpf_dynptr_slice, 10707 KF_bpf_dynptr_slice_rdwr, 10708 KF_bpf_dynptr_clone, 10709 }; 10710 10711 BTF_SET_START(special_kfunc_set) 10712 BTF_ID(func, bpf_obj_new_impl) 10713 BTF_ID(func, bpf_obj_drop_impl) 10714 BTF_ID(func, bpf_refcount_acquire_impl) 10715 BTF_ID(func, bpf_list_push_front_impl) 10716 BTF_ID(func, bpf_list_push_back_impl) 10717 BTF_ID(func, bpf_list_pop_front) 10718 BTF_ID(func, bpf_list_pop_back) 10719 BTF_ID(func, bpf_cast_to_kern_ctx) 10720 BTF_ID(func, bpf_rdonly_cast) 10721 BTF_ID(func, bpf_rbtree_remove) 10722 BTF_ID(func, bpf_rbtree_add_impl) 10723 BTF_ID(func, bpf_rbtree_first) 10724 BTF_ID(func, bpf_dynptr_from_skb) 10725 BTF_ID(func, bpf_dynptr_from_xdp) 10726 BTF_ID(func, bpf_dynptr_slice) 10727 BTF_ID(func, bpf_dynptr_slice_rdwr) 10728 BTF_ID(func, bpf_dynptr_clone) 10729 BTF_SET_END(special_kfunc_set) 10730 10731 BTF_ID_LIST(special_kfunc_list) 10732 BTF_ID(func, bpf_obj_new_impl) 10733 BTF_ID(func, bpf_obj_drop_impl) 10734 BTF_ID(func, bpf_refcount_acquire_impl) 10735 BTF_ID(func, bpf_list_push_front_impl) 10736 BTF_ID(func, bpf_list_push_back_impl) 10737 BTF_ID(func, bpf_list_pop_front) 10738 BTF_ID(func, bpf_list_pop_back) 10739 BTF_ID(func, bpf_cast_to_kern_ctx) 10740 BTF_ID(func, bpf_rdonly_cast) 10741 BTF_ID(func, bpf_rcu_read_lock) 10742 BTF_ID(func, bpf_rcu_read_unlock) 10743 BTF_ID(func, bpf_rbtree_remove) 10744 BTF_ID(func, bpf_rbtree_add_impl) 10745 BTF_ID(func, bpf_rbtree_first) 10746 BTF_ID(func, bpf_dynptr_from_skb) 10747 BTF_ID(func, bpf_dynptr_from_xdp) 10748 BTF_ID(func, bpf_dynptr_slice) 10749 BTF_ID(func, bpf_dynptr_slice_rdwr) 10750 BTF_ID(func, bpf_dynptr_clone) 10751 10752 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10753 { 10754 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10755 meta->arg_owning_ref) { 10756 return false; 10757 } 10758 10759 return meta->kfunc_flags & KF_RET_NULL; 10760 } 10761 10762 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10763 { 10764 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10765 } 10766 10767 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10768 { 10769 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10770 } 10771 10772 static enum kfunc_ptr_arg_type 10773 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10774 struct bpf_kfunc_call_arg_meta *meta, 10775 const struct btf_type *t, const struct btf_type *ref_t, 10776 const char *ref_tname, const struct btf_param *args, 10777 int argno, int nargs) 10778 { 10779 u32 regno = argno + 1; 10780 struct bpf_reg_state *regs = cur_regs(env); 10781 struct bpf_reg_state *reg = ®s[regno]; 10782 bool arg_mem_size = false; 10783 10784 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10785 return KF_ARG_PTR_TO_CTX; 10786 10787 /* In this function, we verify the kfunc's BTF as per the argument type, 10788 * leaving the rest of the verification with respect to the register 10789 * type to our caller. When a set of conditions hold in the BTF type of 10790 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10791 */ 10792 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10793 return KF_ARG_PTR_TO_CTX; 10794 10795 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10796 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10797 10798 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10799 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10800 10801 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10802 return KF_ARG_PTR_TO_DYNPTR; 10803 10804 if (is_kfunc_arg_iter(meta, argno)) 10805 return KF_ARG_PTR_TO_ITER; 10806 10807 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10808 return KF_ARG_PTR_TO_LIST_HEAD; 10809 10810 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10811 return KF_ARG_PTR_TO_LIST_NODE; 10812 10813 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10814 return KF_ARG_PTR_TO_RB_ROOT; 10815 10816 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10817 return KF_ARG_PTR_TO_RB_NODE; 10818 10819 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10820 if (!btf_type_is_struct(ref_t)) { 10821 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10822 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10823 return -EINVAL; 10824 } 10825 return KF_ARG_PTR_TO_BTF_ID; 10826 } 10827 10828 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10829 return KF_ARG_PTR_TO_CALLBACK; 10830 10831 10832 if (argno + 1 < nargs && 10833 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10834 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10835 arg_mem_size = true; 10836 10837 /* This is the catch all argument type of register types supported by 10838 * check_helper_mem_access. However, we only allow when argument type is 10839 * pointer to scalar, or struct composed (recursively) of scalars. When 10840 * arg_mem_size is true, the pointer can be void *. 10841 */ 10842 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10843 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10844 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10845 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10846 return -EINVAL; 10847 } 10848 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10849 } 10850 10851 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10852 struct bpf_reg_state *reg, 10853 const struct btf_type *ref_t, 10854 const char *ref_tname, u32 ref_id, 10855 struct bpf_kfunc_call_arg_meta *meta, 10856 int argno) 10857 { 10858 const struct btf_type *reg_ref_t; 10859 bool strict_type_match = false; 10860 const struct btf *reg_btf; 10861 const char *reg_ref_tname; 10862 u32 reg_ref_id; 10863 10864 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10865 reg_btf = reg->btf; 10866 reg_ref_id = reg->btf_id; 10867 } else { 10868 reg_btf = btf_vmlinux; 10869 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10870 } 10871 10872 /* Enforce strict type matching for calls to kfuncs that are acquiring 10873 * or releasing a reference, or are no-cast aliases. We do _not_ 10874 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10875 * as we want to enable BPF programs to pass types that are bitwise 10876 * equivalent without forcing them to explicitly cast with something 10877 * like bpf_cast_to_kern_ctx(). 10878 * 10879 * For example, say we had a type like the following: 10880 * 10881 * struct bpf_cpumask { 10882 * cpumask_t cpumask; 10883 * refcount_t usage; 10884 * }; 10885 * 10886 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10887 * to a struct cpumask, so it would be safe to pass a struct 10888 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10889 * 10890 * The philosophy here is similar to how we allow scalars of different 10891 * types to be passed to kfuncs as long as the size is the same. The 10892 * only difference here is that we're simply allowing 10893 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10894 * resolve types. 10895 */ 10896 if (is_kfunc_acquire(meta) || 10897 (is_kfunc_release(meta) && reg->ref_obj_id) || 10898 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10899 strict_type_match = true; 10900 10901 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10902 10903 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10904 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10905 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10906 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10907 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10908 btf_type_str(reg_ref_t), reg_ref_tname); 10909 return -EINVAL; 10910 } 10911 return 0; 10912 } 10913 10914 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10915 { 10916 struct bpf_verifier_state *state = env->cur_state; 10917 struct btf_record *rec = reg_btf_record(reg); 10918 10919 if (!state->active_lock.ptr) { 10920 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10921 return -EFAULT; 10922 } 10923 10924 if (type_flag(reg->type) & NON_OWN_REF) { 10925 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10926 return -EFAULT; 10927 } 10928 10929 reg->type |= NON_OWN_REF; 10930 if (rec->refcount_off >= 0) 10931 reg->type |= MEM_RCU; 10932 10933 return 0; 10934 } 10935 10936 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10937 { 10938 struct bpf_func_state *state, *unused; 10939 struct bpf_reg_state *reg; 10940 int i; 10941 10942 state = cur_func(env); 10943 10944 if (!ref_obj_id) { 10945 verbose(env, "verifier internal error: ref_obj_id is zero for " 10946 "owning -> non-owning conversion\n"); 10947 return -EFAULT; 10948 } 10949 10950 for (i = 0; i < state->acquired_refs; i++) { 10951 if (state->refs[i].id != ref_obj_id) 10952 continue; 10953 10954 /* Clear ref_obj_id here so release_reference doesn't clobber 10955 * the whole reg 10956 */ 10957 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10958 if (reg->ref_obj_id == ref_obj_id) { 10959 reg->ref_obj_id = 0; 10960 ref_set_non_owning(env, reg); 10961 } 10962 })); 10963 return 0; 10964 } 10965 10966 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10967 return -EFAULT; 10968 } 10969 10970 /* Implementation details: 10971 * 10972 * Each register points to some region of memory, which we define as an 10973 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10974 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10975 * allocation. The lock and the data it protects are colocated in the same 10976 * memory region. 10977 * 10978 * Hence, everytime a register holds a pointer value pointing to such 10979 * allocation, the verifier preserves a unique reg->id for it. 10980 * 10981 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10982 * bpf_spin_lock is called. 10983 * 10984 * To enable this, lock state in the verifier captures two values: 10985 * active_lock.ptr = Register's type specific pointer 10986 * active_lock.id = A unique ID for each register pointer value 10987 * 10988 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10989 * supported register types. 10990 * 10991 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10992 * allocated objects is the reg->btf pointer. 10993 * 10994 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10995 * can establish the provenance of the map value statically for each distinct 10996 * lookup into such maps. They always contain a single map value hence unique 10997 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10998 * 10999 * So, in case of global variables, they use array maps with max_entries = 1, 11000 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11001 * into the same map value as max_entries is 1, as described above). 11002 * 11003 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11004 * outer map pointer (in verifier context), but each lookup into an inner map 11005 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11006 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11007 * will get different reg->id assigned to each lookup, hence different 11008 * active_lock.id. 11009 * 11010 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11011 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11012 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11013 */ 11014 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11015 { 11016 void *ptr; 11017 u32 id; 11018 11019 switch ((int)reg->type) { 11020 case PTR_TO_MAP_VALUE: 11021 ptr = reg->map_ptr; 11022 break; 11023 case PTR_TO_BTF_ID | MEM_ALLOC: 11024 ptr = reg->btf; 11025 break; 11026 default: 11027 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11028 return -EFAULT; 11029 } 11030 id = reg->id; 11031 11032 if (!env->cur_state->active_lock.ptr) 11033 return -EINVAL; 11034 if (env->cur_state->active_lock.ptr != ptr || 11035 env->cur_state->active_lock.id != id) { 11036 verbose(env, "held lock and object are not in the same allocation\n"); 11037 return -EINVAL; 11038 } 11039 return 0; 11040 } 11041 11042 static bool is_bpf_list_api_kfunc(u32 btf_id) 11043 { 11044 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11045 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11046 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11047 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11048 } 11049 11050 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11051 { 11052 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11053 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11054 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11055 } 11056 11057 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11058 { 11059 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11060 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11061 } 11062 11063 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11064 { 11065 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11066 } 11067 11068 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11069 { 11070 return is_bpf_rbtree_api_kfunc(btf_id); 11071 } 11072 11073 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11074 enum btf_field_type head_field_type, 11075 u32 kfunc_btf_id) 11076 { 11077 bool ret; 11078 11079 switch (head_field_type) { 11080 case BPF_LIST_HEAD: 11081 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11082 break; 11083 case BPF_RB_ROOT: 11084 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11085 break; 11086 default: 11087 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11088 btf_field_type_name(head_field_type)); 11089 return false; 11090 } 11091 11092 if (!ret) 11093 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11094 btf_field_type_name(head_field_type)); 11095 return ret; 11096 } 11097 11098 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11099 enum btf_field_type node_field_type, 11100 u32 kfunc_btf_id) 11101 { 11102 bool ret; 11103 11104 switch (node_field_type) { 11105 case BPF_LIST_NODE: 11106 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11107 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11108 break; 11109 case BPF_RB_NODE: 11110 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11111 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11112 break; 11113 default: 11114 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11115 btf_field_type_name(node_field_type)); 11116 return false; 11117 } 11118 11119 if (!ret) 11120 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11121 btf_field_type_name(node_field_type)); 11122 return ret; 11123 } 11124 11125 static int 11126 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11127 struct bpf_reg_state *reg, u32 regno, 11128 struct bpf_kfunc_call_arg_meta *meta, 11129 enum btf_field_type head_field_type, 11130 struct btf_field **head_field) 11131 { 11132 const char *head_type_name; 11133 struct btf_field *field; 11134 struct btf_record *rec; 11135 u32 head_off; 11136 11137 if (meta->btf != btf_vmlinux) { 11138 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11139 return -EFAULT; 11140 } 11141 11142 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11143 return -EFAULT; 11144 11145 head_type_name = btf_field_type_name(head_field_type); 11146 if (!tnum_is_const(reg->var_off)) { 11147 verbose(env, 11148 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11149 regno, head_type_name); 11150 return -EINVAL; 11151 } 11152 11153 rec = reg_btf_record(reg); 11154 head_off = reg->off + reg->var_off.value; 11155 field = btf_record_find(rec, head_off, head_field_type); 11156 if (!field) { 11157 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11158 return -EINVAL; 11159 } 11160 11161 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11162 if (check_reg_allocation_locked(env, reg)) { 11163 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11164 rec->spin_lock_off, head_type_name); 11165 return -EINVAL; 11166 } 11167 11168 if (*head_field) { 11169 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11170 return -EFAULT; 11171 } 11172 *head_field = field; 11173 return 0; 11174 } 11175 11176 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11177 struct bpf_reg_state *reg, u32 regno, 11178 struct bpf_kfunc_call_arg_meta *meta) 11179 { 11180 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11181 &meta->arg_list_head.field); 11182 } 11183 11184 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11185 struct bpf_reg_state *reg, u32 regno, 11186 struct bpf_kfunc_call_arg_meta *meta) 11187 { 11188 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11189 &meta->arg_rbtree_root.field); 11190 } 11191 11192 static int 11193 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11194 struct bpf_reg_state *reg, u32 regno, 11195 struct bpf_kfunc_call_arg_meta *meta, 11196 enum btf_field_type head_field_type, 11197 enum btf_field_type node_field_type, 11198 struct btf_field **node_field) 11199 { 11200 const char *node_type_name; 11201 const struct btf_type *et, *t; 11202 struct btf_field *field; 11203 u32 node_off; 11204 11205 if (meta->btf != btf_vmlinux) { 11206 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11207 return -EFAULT; 11208 } 11209 11210 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11211 return -EFAULT; 11212 11213 node_type_name = btf_field_type_name(node_field_type); 11214 if (!tnum_is_const(reg->var_off)) { 11215 verbose(env, 11216 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11217 regno, node_type_name); 11218 return -EINVAL; 11219 } 11220 11221 node_off = reg->off + reg->var_off.value; 11222 field = reg_find_field_offset(reg, node_off, node_field_type); 11223 if (!field || field->offset != node_off) { 11224 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11225 return -EINVAL; 11226 } 11227 11228 field = *node_field; 11229 11230 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11231 t = btf_type_by_id(reg->btf, reg->btf_id); 11232 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11233 field->graph_root.value_btf_id, true)) { 11234 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11235 "in struct %s, but arg is at offset=%d in struct %s\n", 11236 btf_field_type_name(head_field_type), 11237 btf_field_type_name(node_field_type), 11238 field->graph_root.node_offset, 11239 btf_name_by_offset(field->graph_root.btf, et->name_off), 11240 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11241 return -EINVAL; 11242 } 11243 meta->arg_btf = reg->btf; 11244 meta->arg_btf_id = reg->btf_id; 11245 11246 if (node_off != field->graph_root.node_offset) { 11247 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11248 node_off, btf_field_type_name(node_field_type), 11249 field->graph_root.node_offset, 11250 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11251 return -EINVAL; 11252 } 11253 11254 return 0; 11255 } 11256 11257 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11258 struct bpf_reg_state *reg, u32 regno, 11259 struct bpf_kfunc_call_arg_meta *meta) 11260 { 11261 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11262 BPF_LIST_HEAD, BPF_LIST_NODE, 11263 &meta->arg_list_head.field); 11264 } 11265 11266 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11267 struct bpf_reg_state *reg, u32 regno, 11268 struct bpf_kfunc_call_arg_meta *meta) 11269 { 11270 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11271 BPF_RB_ROOT, BPF_RB_NODE, 11272 &meta->arg_rbtree_root.field); 11273 } 11274 11275 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11276 int insn_idx) 11277 { 11278 const char *func_name = meta->func_name, *ref_tname; 11279 const struct btf *btf = meta->btf; 11280 const struct btf_param *args; 11281 struct btf_record *rec; 11282 u32 i, nargs; 11283 int ret; 11284 11285 args = (const struct btf_param *)(meta->func_proto + 1); 11286 nargs = btf_type_vlen(meta->func_proto); 11287 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11288 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11289 MAX_BPF_FUNC_REG_ARGS); 11290 return -EINVAL; 11291 } 11292 11293 /* Check that BTF function arguments match actual types that the 11294 * verifier sees. 11295 */ 11296 for (i = 0; i < nargs; i++) { 11297 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11298 const struct btf_type *t, *ref_t, *resolve_ret; 11299 enum bpf_arg_type arg_type = ARG_DONTCARE; 11300 u32 regno = i + 1, ref_id, type_size; 11301 bool is_ret_buf_sz = false; 11302 int kf_arg_type; 11303 11304 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11305 11306 if (is_kfunc_arg_ignore(btf, &args[i])) 11307 continue; 11308 11309 if (btf_type_is_scalar(t)) { 11310 if (reg->type != SCALAR_VALUE) { 11311 verbose(env, "R%d is not a scalar\n", regno); 11312 return -EINVAL; 11313 } 11314 11315 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11316 if (meta->arg_constant.found) { 11317 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11318 return -EFAULT; 11319 } 11320 if (!tnum_is_const(reg->var_off)) { 11321 verbose(env, "R%d must be a known constant\n", regno); 11322 return -EINVAL; 11323 } 11324 ret = mark_chain_precision(env, regno); 11325 if (ret < 0) 11326 return ret; 11327 meta->arg_constant.found = true; 11328 meta->arg_constant.value = reg->var_off.value; 11329 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11330 meta->r0_rdonly = true; 11331 is_ret_buf_sz = true; 11332 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11333 is_ret_buf_sz = true; 11334 } 11335 11336 if (is_ret_buf_sz) { 11337 if (meta->r0_size) { 11338 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11339 return -EINVAL; 11340 } 11341 11342 if (!tnum_is_const(reg->var_off)) { 11343 verbose(env, "R%d is not a const\n", regno); 11344 return -EINVAL; 11345 } 11346 11347 meta->r0_size = reg->var_off.value; 11348 ret = mark_chain_precision(env, regno); 11349 if (ret) 11350 return ret; 11351 } 11352 continue; 11353 } 11354 11355 if (!btf_type_is_ptr(t)) { 11356 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11357 return -EINVAL; 11358 } 11359 11360 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11361 (register_is_null(reg) || type_may_be_null(reg->type))) { 11362 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11363 return -EACCES; 11364 } 11365 11366 if (reg->ref_obj_id) { 11367 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11368 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11369 regno, reg->ref_obj_id, 11370 meta->ref_obj_id); 11371 return -EFAULT; 11372 } 11373 meta->ref_obj_id = reg->ref_obj_id; 11374 if (is_kfunc_release(meta)) 11375 meta->release_regno = regno; 11376 } 11377 11378 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11379 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11380 11381 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11382 if (kf_arg_type < 0) 11383 return kf_arg_type; 11384 11385 switch (kf_arg_type) { 11386 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11387 case KF_ARG_PTR_TO_BTF_ID: 11388 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11389 break; 11390 11391 if (!is_trusted_reg(reg)) { 11392 if (!is_kfunc_rcu(meta)) { 11393 verbose(env, "R%d must be referenced or trusted\n", regno); 11394 return -EINVAL; 11395 } 11396 if (!is_rcu_reg(reg)) { 11397 verbose(env, "R%d must be a rcu pointer\n", regno); 11398 return -EINVAL; 11399 } 11400 } 11401 11402 fallthrough; 11403 case KF_ARG_PTR_TO_CTX: 11404 /* Trusted arguments have the same offset checks as release arguments */ 11405 arg_type |= OBJ_RELEASE; 11406 break; 11407 case KF_ARG_PTR_TO_DYNPTR: 11408 case KF_ARG_PTR_TO_ITER: 11409 case KF_ARG_PTR_TO_LIST_HEAD: 11410 case KF_ARG_PTR_TO_LIST_NODE: 11411 case KF_ARG_PTR_TO_RB_ROOT: 11412 case KF_ARG_PTR_TO_RB_NODE: 11413 case KF_ARG_PTR_TO_MEM: 11414 case KF_ARG_PTR_TO_MEM_SIZE: 11415 case KF_ARG_PTR_TO_CALLBACK: 11416 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11417 /* Trusted by default */ 11418 break; 11419 default: 11420 WARN_ON_ONCE(1); 11421 return -EFAULT; 11422 } 11423 11424 if (is_kfunc_release(meta) && reg->ref_obj_id) 11425 arg_type |= OBJ_RELEASE; 11426 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11427 if (ret < 0) 11428 return ret; 11429 11430 switch (kf_arg_type) { 11431 case KF_ARG_PTR_TO_CTX: 11432 if (reg->type != PTR_TO_CTX) { 11433 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11434 return -EINVAL; 11435 } 11436 11437 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11438 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11439 if (ret < 0) 11440 return -EINVAL; 11441 meta->ret_btf_id = ret; 11442 } 11443 break; 11444 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11445 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11446 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11447 return -EINVAL; 11448 } 11449 if (!reg->ref_obj_id) { 11450 verbose(env, "allocated object must be referenced\n"); 11451 return -EINVAL; 11452 } 11453 if (meta->btf == btf_vmlinux && 11454 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11455 meta->arg_btf = reg->btf; 11456 meta->arg_btf_id = reg->btf_id; 11457 } 11458 break; 11459 case KF_ARG_PTR_TO_DYNPTR: 11460 { 11461 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11462 int clone_ref_obj_id = 0; 11463 11464 if (reg->type != PTR_TO_STACK && 11465 reg->type != CONST_PTR_TO_DYNPTR) { 11466 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11467 return -EINVAL; 11468 } 11469 11470 if (reg->type == CONST_PTR_TO_DYNPTR) 11471 dynptr_arg_type |= MEM_RDONLY; 11472 11473 if (is_kfunc_arg_uninit(btf, &args[i])) 11474 dynptr_arg_type |= MEM_UNINIT; 11475 11476 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11477 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11478 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11479 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11480 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11481 (dynptr_arg_type & MEM_UNINIT)) { 11482 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11483 11484 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11485 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11486 return -EFAULT; 11487 } 11488 11489 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11490 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11491 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11492 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11493 return -EFAULT; 11494 } 11495 } 11496 11497 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11498 if (ret < 0) 11499 return ret; 11500 11501 if (!(dynptr_arg_type & MEM_UNINIT)) { 11502 int id = dynptr_id(env, reg); 11503 11504 if (id < 0) { 11505 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11506 return id; 11507 } 11508 meta->initialized_dynptr.id = id; 11509 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11510 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11511 } 11512 11513 break; 11514 } 11515 case KF_ARG_PTR_TO_ITER: 11516 ret = process_iter_arg(env, regno, insn_idx, meta); 11517 if (ret < 0) 11518 return ret; 11519 break; 11520 case KF_ARG_PTR_TO_LIST_HEAD: 11521 if (reg->type != PTR_TO_MAP_VALUE && 11522 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11523 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11524 return -EINVAL; 11525 } 11526 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11527 verbose(env, "allocated object must be referenced\n"); 11528 return -EINVAL; 11529 } 11530 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11531 if (ret < 0) 11532 return ret; 11533 break; 11534 case KF_ARG_PTR_TO_RB_ROOT: 11535 if (reg->type != PTR_TO_MAP_VALUE && 11536 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11537 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11538 return -EINVAL; 11539 } 11540 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11541 verbose(env, "allocated object must be referenced\n"); 11542 return -EINVAL; 11543 } 11544 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11545 if (ret < 0) 11546 return ret; 11547 break; 11548 case KF_ARG_PTR_TO_LIST_NODE: 11549 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11550 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11551 return -EINVAL; 11552 } 11553 if (!reg->ref_obj_id) { 11554 verbose(env, "allocated object must be referenced\n"); 11555 return -EINVAL; 11556 } 11557 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11558 if (ret < 0) 11559 return ret; 11560 break; 11561 case KF_ARG_PTR_TO_RB_NODE: 11562 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11563 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11564 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11565 return -EINVAL; 11566 } 11567 if (in_rbtree_lock_required_cb(env)) { 11568 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11569 return -EINVAL; 11570 } 11571 } else { 11572 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11573 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11574 return -EINVAL; 11575 } 11576 if (!reg->ref_obj_id) { 11577 verbose(env, "allocated object must be referenced\n"); 11578 return -EINVAL; 11579 } 11580 } 11581 11582 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11583 if (ret < 0) 11584 return ret; 11585 break; 11586 case KF_ARG_PTR_TO_BTF_ID: 11587 /* Only base_type is checked, further checks are done here */ 11588 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11589 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11590 !reg2btf_ids[base_type(reg->type)]) { 11591 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11592 verbose(env, "expected %s or socket\n", 11593 reg_type_str(env, base_type(reg->type) | 11594 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11595 return -EINVAL; 11596 } 11597 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11598 if (ret < 0) 11599 return ret; 11600 break; 11601 case KF_ARG_PTR_TO_MEM: 11602 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11603 if (IS_ERR(resolve_ret)) { 11604 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11605 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11606 return -EINVAL; 11607 } 11608 ret = check_mem_reg(env, reg, regno, type_size); 11609 if (ret < 0) 11610 return ret; 11611 break; 11612 case KF_ARG_PTR_TO_MEM_SIZE: 11613 { 11614 struct bpf_reg_state *buff_reg = ®s[regno]; 11615 const struct btf_param *buff_arg = &args[i]; 11616 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11617 const struct btf_param *size_arg = &args[i + 1]; 11618 11619 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11620 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11621 if (ret < 0) { 11622 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11623 return ret; 11624 } 11625 } 11626 11627 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11628 if (meta->arg_constant.found) { 11629 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11630 return -EFAULT; 11631 } 11632 if (!tnum_is_const(size_reg->var_off)) { 11633 verbose(env, "R%d must be a known constant\n", regno + 1); 11634 return -EINVAL; 11635 } 11636 meta->arg_constant.found = true; 11637 meta->arg_constant.value = size_reg->var_off.value; 11638 } 11639 11640 /* Skip next '__sz' or '__szk' argument */ 11641 i++; 11642 break; 11643 } 11644 case KF_ARG_PTR_TO_CALLBACK: 11645 if (reg->type != PTR_TO_FUNC) { 11646 verbose(env, "arg%d expected pointer to func\n", i); 11647 return -EINVAL; 11648 } 11649 meta->subprogno = reg->subprogno; 11650 break; 11651 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11652 if (!type_is_ptr_alloc_obj(reg->type)) { 11653 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11654 return -EINVAL; 11655 } 11656 if (!type_is_non_owning_ref(reg->type)) 11657 meta->arg_owning_ref = true; 11658 11659 rec = reg_btf_record(reg); 11660 if (!rec) { 11661 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11662 return -EFAULT; 11663 } 11664 11665 if (rec->refcount_off < 0) { 11666 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11667 return -EINVAL; 11668 } 11669 11670 meta->arg_btf = reg->btf; 11671 meta->arg_btf_id = reg->btf_id; 11672 break; 11673 } 11674 } 11675 11676 if (is_kfunc_release(meta) && !meta->release_regno) { 11677 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11678 func_name); 11679 return -EINVAL; 11680 } 11681 11682 return 0; 11683 } 11684 11685 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11686 struct bpf_insn *insn, 11687 struct bpf_kfunc_call_arg_meta *meta, 11688 const char **kfunc_name) 11689 { 11690 const struct btf_type *func, *func_proto; 11691 u32 func_id, *kfunc_flags; 11692 const char *func_name; 11693 struct btf *desc_btf; 11694 11695 if (kfunc_name) 11696 *kfunc_name = NULL; 11697 11698 if (!insn->imm) 11699 return -EINVAL; 11700 11701 desc_btf = find_kfunc_desc_btf(env, insn->off); 11702 if (IS_ERR(desc_btf)) 11703 return PTR_ERR(desc_btf); 11704 11705 func_id = insn->imm; 11706 func = btf_type_by_id(desc_btf, func_id); 11707 func_name = btf_name_by_offset(desc_btf, func->name_off); 11708 if (kfunc_name) 11709 *kfunc_name = func_name; 11710 func_proto = btf_type_by_id(desc_btf, func->type); 11711 11712 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11713 if (!kfunc_flags) { 11714 return -EACCES; 11715 } 11716 11717 memset(meta, 0, sizeof(*meta)); 11718 meta->btf = desc_btf; 11719 meta->func_id = func_id; 11720 meta->kfunc_flags = *kfunc_flags; 11721 meta->func_proto = func_proto; 11722 meta->func_name = func_name; 11723 11724 return 0; 11725 } 11726 11727 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11728 int *insn_idx_p) 11729 { 11730 const struct btf_type *t, *ptr_type; 11731 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11732 struct bpf_reg_state *regs = cur_regs(env); 11733 const char *func_name, *ptr_type_name; 11734 bool sleepable, rcu_lock, rcu_unlock; 11735 struct bpf_kfunc_call_arg_meta meta; 11736 struct bpf_insn_aux_data *insn_aux; 11737 int err, insn_idx = *insn_idx_p; 11738 const struct btf_param *args; 11739 const struct btf_type *ret_t; 11740 struct btf *desc_btf; 11741 11742 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11743 if (!insn->imm) 11744 return 0; 11745 11746 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11747 if (err == -EACCES && func_name) 11748 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11749 if (err) 11750 return err; 11751 desc_btf = meta.btf; 11752 insn_aux = &env->insn_aux_data[insn_idx]; 11753 11754 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11755 11756 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11757 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11758 return -EACCES; 11759 } 11760 11761 sleepable = is_kfunc_sleepable(&meta); 11762 if (sleepable && !env->prog->aux->sleepable) { 11763 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11764 return -EACCES; 11765 } 11766 11767 /* Check the arguments */ 11768 err = check_kfunc_args(env, &meta, insn_idx); 11769 if (err < 0) 11770 return err; 11771 11772 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11773 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11774 set_rbtree_add_callback_state); 11775 if (err) { 11776 verbose(env, "kfunc %s#%d failed callback verification\n", 11777 func_name, meta.func_id); 11778 return err; 11779 } 11780 } 11781 11782 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11783 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11784 11785 if (env->cur_state->active_rcu_lock) { 11786 struct bpf_func_state *state; 11787 struct bpf_reg_state *reg; 11788 11789 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11790 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11791 return -EACCES; 11792 } 11793 11794 if (rcu_lock) { 11795 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11796 return -EINVAL; 11797 } else if (rcu_unlock) { 11798 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11799 if (reg->type & MEM_RCU) { 11800 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11801 reg->type |= PTR_UNTRUSTED; 11802 } 11803 })); 11804 env->cur_state->active_rcu_lock = false; 11805 } else if (sleepable) { 11806 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11807 return -EACCES; 11808 } 11809 } else if (rcu_lock) { 11810 env->cur_state->active_rcu_lock = true; 11811 } else if (rcu_unlock) { 11812 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11813 return -EINVAL; 11814 } 11815 11816 /* In case of release function, we get register number of refcounted 11817 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11818 */ 11819 if (meta.release_regno) { 11820 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11821 if (err) { 11822 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11823 func_name, meta.func_id); 11824 return err; 11825 } 11826 } 11827 11828 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11829 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11830 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11831 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11832 insn_aux->insert_off = regs[BPF_REG_2].off; 11833 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11834 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11835 if (err) { 11836 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11837 func_name, meta.func_id); 11838 return err; 11839 } 11840 11841 err = release_reference(env, release_ref_obj_id); 11842 if (err) { 11843 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11844 func_name, meta.func_id); 11845 return err; 11846 } 11847 } 11848 11849 for (i = 0; i < CALLER_SAVED_REGS; i++) 11850 mark_reg_not_init(env, regs, caller_saved[i]); 11851 11852 /* Check return type */ 11853 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11854 11855 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11856 /* Only exception is bpf_obj_new_impl */ 11857 if (meta.btf != btf_vmlinux || 11858 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11859 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11860 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11861 return -EINVAL; 11862 } 11863 } 11864 11865 if (btf_type_is_scalar(t)) { 11866 mark_reg_unknown(env, regs, BPF_REG_0); 11867 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11868 } else if (btf_type_is_ptr(t)) { 11869 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11870 11871 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11872 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11873 struct btf *ret_btf; 11874 u32 ret_btf_id; 11875 11876 if (unlikely(!bpf_global_ma_set)) 11877 return -ENOMEM; 11878 11879 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11880 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11881 return -EINVAL; 11882 } 11883 11884 ret_btf = env->prog->aux->btf; 11885 ret_btf_id = meta.arg_constant.value; 11886 11887 /* This may be NULL due to user not supplying a BTF */ 11888 if (!ret_btf) { 11889 verbose(env, "bpf_obj_new requires prog BTF\n"); 11890 return -EINVAL; 11891 } 11892 11893 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11894 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11895 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11896 return -EINVAL; 11897 } 11898 11899 mark_reg_known_zero(env, regs, BPF_REG_0); 11900 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11901 regs[BPF_REG_0].btf = ret_btf; 11902 regs[BPF_REG_0].btf_id = ret_btf_id; 11903 11904 insn_aux->obj_new_size = ret_t->size; 11905 insn_aux->kptr_struct_meta = 11906 btf_find_struct_meta(ret_btf, ret_btf_id); 11907 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11908 mark_reg_known_zero(env, regs, BPF_REG_0); 11909 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11910 regs[BPF_REG_0].btf = meta.arg_btf; 11911 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11912 11913 insn_aux->kptr_struct_meta = 11914 btf_find_struct_meta(meta.arg_btf, 11915 meta.arg_btf_id); 11916 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11917 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11918 struct btf_field *field = meta.arg_list_head.field; 11919 11920 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11921 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11922 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11923 struct btf_field *field = meta.arg_rbtree_root.field; 11924 11925 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11926 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11927 mark_reg_known_zero(env, regs, BPF_REG_0); 11928 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11929 regs[BPF_REG_0].btf = desc_btf; 11930 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11931 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11932 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11933 if (!ret_t || !btf_type_is_struct(ret_t)) { 11934 verbose(env, 11935 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11936 return -EINVAL; 11937 } 11938 11939 mark_reg_known_zero(env, regs, BPF_REG_0); 11940 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11941 regs[BPF_REG_0].btf = desc_btf; 11942 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11943 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11944 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11945 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11946 11947 mark_reg_known_zero(env, regs, BPF_REG_0); 11948 11949 if (!meta.arg_constant.found) { 11950 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11951 return -EFAULT; 11952 } 11953 11954 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11955 11956 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11957 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11958 11959 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11960 regs[BPF_REG_0].type |= MEM_RDONLY; 11961 } else { 11962 /* this will set env->seen_direct_write to true */ 11963 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11964 verbose(env, "the prog does not allow writes to packet data\n"); 11965 return -EINVAL; 11966 } 11967 } 11968 11969 if (!meta.initialized_dynptr.id) { 11970 verbose(env, "verifier internal error: no dynptr id\n"); 11971 return -EFAULT; 11972 } 11973 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11974 11975 /* we don't need to set BPF_REG_0's ref obj id 11976 * because packet slices are not refcounted (see 11977 * dynptr_type_refcounted) 11978 */ 11979 } else { 11980 verbose(env, "kernel function %s unhandled dynamic return type\n", 11981 meta.func_name); 11982 return -EFAULT; 11983 } 11984 } else if (!__btf_type_is_struct(ptr_type)) { 11985 if (!meta.r0_size) { 11986 __u32 sz; 11987 11988 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11989 meta.r0_size = sz; 11990 meta.r0_rdonly = true; 11991 } 11992 } 11993 if (!meta.r0_size) { 11994 ptr_type_name = btf_name_by_offset(desc_btf, 11995 ptr_type->name_off); 11996 verbose(env, 11997 "kernel function %s returns pointer type %s %s is not supported\n", 11998 func_name, 11999 btf_type_str(ptr_type), 12000 ptr_type_name); 12001 return -EINVAL; 12002 } 12003 12004 mark_reg_known_zero(env, regs, BPF_REG_0); 12005 regs[BPF_REG_0].type = PTR_TO_MEM; 12006 regs[BPF_REG_0].mem_size = meta.r0_size; 12007 12008 if (meta.r0_rdonly) 12009 regs[BPF_REG_0].type |= MEM_RDONLY; 12010 12011 /* Ensures we don't access the memory after a release_reference() */ 12012 if (meta.ref_obj_id) 12013 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12014 } else { 12015 mark_reg_known_zero(env, regs, BPF_REG_0); 12016 regs[BPF_REG_0].btf = desc_btf; 12017 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12018 regs[BPF_REG_0].btf_id = ptr_type_id; 12019 } 12020 12021 if (is_kfunc_ret_null(&meta)) { 12022 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12023 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12024 regs[BPF_REG_0].id = ++env->id_gen; 12025 } 12026 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12027 if (is_kfunc_acquire(&meta)) { 12028 int id = acquire_reference_state(env, insn_idx); 12029 12030 if (id < 0) 12031 return id; 12032 if (is_kfunc_ret_null(&meta)) 12033 regs[BPF_REG_0].id = id; 12034 regs[BPF_REG_0].ref_obj_id = id; 12035 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12036 ref_set_non_owning(env, ®s[BPF_REG_0]); 12037 } 12038 12039 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12040 regs[BPF_REG_0].id = ++env->id_gen; 12041 } else if (btf_type_is_void(t)) { 12042 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12043 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 12044 insn_aux->kptr_struct_meta = 12045 btf_find_struct_meta(meta.arg_btf, 12046 meta.arg_btf_id); 12047 } 12048 } 12049 } 12050 12051 nargs = btf_type_vlen(meta.func_proto); 12052 args = (const struct btf_param *)(meta.func_proto + 1); 12053 for (i = 0; i < nargs; i++) { 12054 u32 regno = i + 1; 12055 12056 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12057 if (btf_type_is_ptr(t)) 12058 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12059 else 12060 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12061 mark_btf_func_reg_size(env, regno, t->size); 12062 } 12063 12064 if (is_iter_next_kfunc(&meta)) { 12065 err = process_iter_next_call(env, insn_idx, &meta); 12066 if (err) 12067 return err; 12068 } 12069 12070 return 0; 12071 } 12072 12073 static bool signed_add_overflows(s64 a, s64 b) 12074 { 12075 /* Do the add in u64, where overflow is well-defined */ 12076 s64 res = (s64)((u64)a + (u64)b); 12077 12078 if (b < 0) 12079 return res > a; 12080 return res < a; 12081 } 12082 12083 static bool signed_add32_overflows(s32 a, s32 b) 12084 { 12085 /* Do the add in u32, where overflow is well-defined */ 12086 s32 res = (s32)((u32)a + (u32)b); 12087 12088 if (b < 0) 12089 return res > a; 12090 return res < a; 12091 } 12092 12093 static bool signed_sub_overflows(s64 a, s64 b) 12094 { 12095 /* Do the sub in u64, where overflow is well-defined */ 12096 s64 res = (s64)((u64)a - (u64)b); 12097 12098 if (b < 0) 12099 return res < a; 12100 return res > a; 12101 } 12102 12103 static bool signed_sub32_overflows(s32 a, s32 b) 12104 { 12105 /* Do the sub in u32, where overflow is well-defined */ 12106 s32 res = (s32)((u32)a - (u32)b); 12107 12108 if (b < 0) 12109 return res < a; 12110 return res > a; 12111 } 12112 12113 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12114 const struct bpf_reg_state *reg, 12115 enum bpf_reg_type type) 12116 { 12117 bool known = tnum_is_const(reg->var_off); 12118 s64 val = reg->var_off.value; 12119 s64 smin = reg->smin_value; 12120 12121 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12122 verbose(env, "math between %s pointer and %lld is not allowed\n", 12123 reg_type_str(env, type), val); 12124 return false; 12125 } 12126 12127 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12128 verbose(env, "%s pointer offset %d is not allowed\n", 12129 reg_type_str(env, type), reg->off); 12130 return false; 12131 } 12132 12133 if (smin == S64_MIN) { 12134 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12135 reg_type_str(env, type)); 12136 return false; 12137 } 12138 12139 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12140 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12141 smin, reg_type_str(env, type)); 12142 return false; 12143 } 12144 12145 return true; 12146 } 12147 12148 enum { 12149 REASON_BOUNDS = -1, 12150 REASON_TYPE = -2, 12151 REASON_PATHS = -3, 12152 REASON_LIMIT = -4, 12153 REASON_STACK = -5, 12154 }; 12155 12156 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12157 u32 *alu_limit, bool mask_to_left) 12158 { 12159 u32 max = 0, ptr_limit = 0; 12160 12161 switch (ptr_reg->type) { 12162 case PTR_TO_STACK: 12163 /* Offset 0 is out-of-bounds, but acceptable start for the 12164 * left direction, see BPF_REG_FP. Also, unknown scalar 12165 * offset where we would need to deal with min/max bounds is 12166 * currently prohibited for unprivileged. 12167 */ 12168 max = MAX_BPF_STACK + mask_to_left; 12169 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12170 break; 12171 case PTR_TO_MAP_VALUE: 12172 max = ptr_reg->map_ptr->value_size; 12173 ptr_limit = (mask_to_left ? 12174 ptr_reg->smin_value : 12175 ptr_reg->umax_value) + ptr_reg->off; 12176 break; 12177 default: 12178 return REASON_TYPE; 12179 } 12180 12181 if (ptr_limit >= max) 12182 return REASON_LIMIT; 12183 *alu_limit = ptr_limit; 12184 return 0; 12185 } 12186 12187 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12188 const struct bpf_insn *insn) 12189 { 12190 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12191 } 12192 12193 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12194 u32 alu_state, u32 alu_limit) 12195 { 12196 /* If we arrived here from different branches with different 12197 * state or limits to sanitize, then this won't work. 12198 */ 12199 if (aux->alu_state && 12200 (aux->alu_state != alu_state || 12201 aux->alu_limit != alu_limit)) 12202 return REASON_PATHS; 12203 12204 /* Corresponding fixup done in do_misc_fixups(). */ 12205 aux->alu_state = alu_state; 12206 aux->alu_limit = alu_limit; 12207 return 0; 12208 } 12209 12210 static int sanitize_val_alu(struct bpf_verifier_env *env, 12211 struct bpf_insn *insn) 12212 { 12213 struct bpf_insn_aux_data *aux = cur_aux(env); 12214 12215 if (can_skip_alu_sanitation(env, insn)) 12216 return 0; 12217 12218 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12219 } 12220 12221 static bool sanitize_needed(u8 opcode) 12222 { 12223 return opcode == BPF_ADD || opcode == BPF_SUB; 12224 } 12225 12226 struct bpf_sanitize_info { 12227 struct bpf_insn_aux_data aux; 12228 bool mask_to_left; 12229 }; 12230 12231 static struct bpf_verifier_state * 12232 sanitize_speculative_path(struct bpf_verifier_env *env, 12233 const struct bpf_insn *insn, 12234 u32 next_idx, u32 curr_idx) 12235 { 12236 struct bpf_verifier_state *branch; 12237 struct bpf_reg_state *regs; 12238 12239 branch = push_stack(env, next_idx, curr_idx, true); 12240 if (branch && insn) { 12241 regs = branch->frame[branch->curframe]->regs; 12242 if (BPF_SRC(insn->code) == BPF_K) { 12243 mark_reg_unknown(env, regs, insn->dst_reg); 12244 } else if (BPF_SRC(insn->code) == BPF_X) { 12245 mark_reg_unknown(env, regs, insn->dst_reg); 12246 mark_reg_unknown(env, regs, insn->src_reg); 12247 } 12248 } 12249 return branch; 12250 } 12251 12252 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12253 struct bpf_insn *insn, 12254 const struct bpf_reg_state *ptr_reg, 12255 const struct bpf_reg_state *off_reg, 12256 struct bpf_reg_state *dst_reg, 12257 struct bpf_sanitize_info *info, 12258 const bool commit_window) 12259 { 12260 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12261 struct bpf_verifier_state *vstate = env->cur_state; 12262 bool off_is_imm = tnum_is_const(off_reg->var_off); 12263 bool off_is_neg = off_reg->smin_value < 0; 12264 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12265 u8 opcode = BPF_OP(insn->code); 12266 u32 alu_state, alu_limit; 12267 struct bpf_reg_state tmp; 12268 bool ret; 12269 int err; 12270 12271 if (can_skip_alu_sanitation(env, insn)) 12272 return 0; 12273 12274 /* We already marked aux for masking from non-speculative 12275 * paths, thus we got here in the first place. We only care 12276 * to explore bad access from here. 12277 */ 12278 if (vstate->speculative) 12279 goto do_sim; 12280 12281 if (!commit_window) { 12282 if (!tnum_is_const(off_reg->var_off) && 12283 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12284 return REASON_BOUNDS; 12285 12286 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12287 (opcode == BPF_SUB && !off_is_neg); 12288 } 12289 12290 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12291 if (err < 0) 12292 return err; 12293 12294 if (commit_window) { 12295 /* In commit phase we narrow the masking window based on 12296 * the observed pointer move after the simulated operation. 12297 */ 12298 alu_state = info->aux.alu_state; 12299 alu_limit = abs(info->aux.alu_limit - alu_limit); 12300 } else { 12301 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12302 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12303 alu_state |= ptr_is_dst_reg ? 12304 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12305 12306 /* Limit pruning on unknown scalars to enable deep search for 12307 * potential masking differences from other program paths. 12308 */ 12309 if (!off_is_imm) 12310 env->explore_alu_limits = true; 12311 } 12312 12313 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12314 if (err < 0) 12315 return err; 12316 do_sim: 12317 /* If we're in commit phase, we're done here given we already 12318 * pushed the truncated dst_reg into the speculative verification 12319 * stack. 12320 * 12321 * Also, when register is a known constant, we rewrite register-based 12322 * operation to immediate-based, and thus do not need masking (and as 12323 * a consequence, do not need to simulate the zero-truncation either). 12324 */ 12325 if (commit_window || off_is_imm) 12326 return 0; 12327 12328 /* Simulate and find potential out-of-bounds access under 12329 * speculative execution from truncation as a result of 12330 * masking when off was not within expected range. If off 12331 * sits in dst, then we temporarily need to move ptr there 12332 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12333 * for cases where we use K-based arithmetic in one direction 12334 * and truncated reg-based in the other in order to explore 12335 * bad access. 12336 */ 12337 if (!ptr_is_dst_reg) { 12338 tmp = *dst_reg; 12339 copy_register_state(dst_reg, ptr_reg); 12340 } 12341 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12342 env->insn_idx); 12343 if (!ptr_is_dst_reg && ret) 12344 *dst_reg = tmp; 12345 return !ret ? REASON_STACK : 0; 12346 } 12347 12348 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12349 { 12350 struct bpf_verifier_state *vstate = env->cur_state; 12351 12352 /* If we simulate paths under speculation, we don't update the 12353 * insn as 'seen' such that when we verify unreachable paths in 12354 * the non-speculative domain, sanitize_dead_code() can still 12355 * rewrite/sanitize them. 12356 */ 12357 if (!vstate->speculative) 12358 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12359 } 12360 12361 static int sanitize_err(struct bpf_verifier_env *env, 12362 const struct bpf_insn *insn, int reason, 12363 const struct bpf_reg_state *off_reg, 12364 const struct bpf_reg_state *dst_reg) 12365 { 12366 static const char *err = "pointer arithmetic with it prohibited for !root"; 12367 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12368 u32 dst = insn->dst_reg, src = insn->src_reg; 12369 12370 switch (reason) { 12371 case REASON_BOUNDS: 12372 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12373 off_reg == dst_reg ? dst : src, err); 12374 break; 12375 case REASON_TYPE: 12376 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12377 off_reg == dst_reg ? src : dst, err); 12378 break; 12379 case REASON_PATHS: 12380 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12381 dst, op, err); 12382 break; 12383 case REASON_LIMIT: 12384 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12385 dst, op, err); 12386 break; 12387 case REASON_STACK: 12388 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12389 dst, err); 12390 break; 12391 default: 12392 verbose(env, "verifier internal error: unknown reason (%d)\n", 12393 reason); 12394 break; 12395 } 12396 12397 return -EACCES; 12398 } 12399 12400 /* check that stack access falls within stack limits and that 'reg' doesn't 12401 * have a variable offset. 12402 * 12403 * Variable offset is prohibited for unprivileged mode for simplicity since it 12404 * requires corresponding support in Spectre masking for stack ALU. See also 12405 * retrieve_ptr_limit(). 12406 * 12407 * 12408 * 'off' includes 'reg->off'. 12409 */ 12410 static int check_stack_access_for_ptr_arithmetic( 12411 struct bpf_verifier_env *env, 12412 int regno, 12413 const struct bpf_reg_state *reg, 12414 int off) 12415 { 12416 if (!tnum_is_const(reg->var_off)) { 12417 char tn_buf[48]; 12418 12419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12420 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12421 regno, tn_buf, off); 12422 return -EACCES; 12423 } 12424 12425 if (off >= 0 || off < -MAX_BPF_STACK) { 12426 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12427 "prohibited for !root; off=%d\n", regno, off); 12428 return -EACCES; 12429 } 12430 12431 return 0; 12432 } 12433 12434 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12435 const struct bpf_insn *insn, 12436 const struct bpf_reg_state *dst_reg) 12437 { 12438 u32 dst = insn->dst_reg; 12439 12440 /* For unprivileged we require that resulting offset must be in bounds 12441 * in order to be able to sanitize access later on. 12442 */ 12443 if (env->bypass_spec_v1) 12444 return 0; 12445 12446 switch (dst_reg->type) { 12447 case PTR_TO_STACK: 12448 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12449 dst_reg->off + dst_reg->var_off.value)) 12450 return -EACCES; 12451 break; 12452 case PTR_TO_MAP_VALUE: 12453 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12454 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12455 "prohibited for !root\n", dst); 12456 return -EACCES; 12457 } 12458 break; 12459 default: 12460 break; 12461 } 12462 12463 return 0; 12464 } 12465 12466 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12467 * Caller should also handle BPF_MOV case separately. 12468 * If we return -EACCES, caller may want to try again treating pointer as a 12469 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12470 */ 12471 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12472 struct bpf_insn *insn, 12473 const struct bpf_reg_state *ptr_reg, 12474 const struct bpf_reg_state *off_reg) 12475 { 12476 struct bpf_verifier_state *vstate = env->cur_state; 12477 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12478 struct bpf_reg_state *regs = state->regs, *dst_reg; 12479 bool known = tnum_is_const(off_reg->var_off); 12480 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12481 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12482 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12483 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12484 struct bpf_sanitize_info info = {}; 12485 u8 opcode = BPF_OP(insn->code); 12486 u32 dst = insn->dst_reg; 12487 int ret; 12488 12489 dst_reg = ®s[dst]; 12490 12491 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12492 smin_val > smax_val || umin_val > umax_val) { 12493 /* Taint dst register if offset had invalid bounds derived from 12494 * e.g. dead branches. 12495 */ 12496 __mark_reg_unknown(env, dst_reg); 12497 return 0; 12498 } 12499 12500 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12501 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12502 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12503 __mark_reg_unknown(env, dst_reg); 12504 return 0; 12505 } 12506 12507 verbose(env, 12508 "R%d 32-bit pointer arithmetic prohibited\n", 12509 dst); 12510 return -EACCES; 12511 } 12512 12513 if (ptr_reg->type & PTR_MAYBE_NULL) { 12514 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12515 dst, reg_type_str(env, ptr_reg->type)); 12516 return -EACCES; 12517 } 12518 12519 switch (base_type(ptr_reg->type)) { 12520 case PTR_TO_FLOW_KEYS: 12521 if (known) 12522 break; 12523 fallthrough; 12524 case CONST_PTR_TO_MAP: 12525 /* smin_val represents the known value */ 12526 if (known && smin_val == 0 && opcode == BPF_ADD) 12527 break; 12528 fallthrough; 12529 case PTR_TO_PACKET_END: 12530 case PTR_TO_SOCKET: 12531 case PTR_TO_SOCK_COMMON: 12532 case PTR_TO_TCP_SOCK: 12533 case PTR_TO_XDP_SOCK: 12534 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12535 dst, reg_type_str(env, ptr_reg->type)); 12536 return -EACCES; 12537 default: 12538 break; 12539 } 12540 12541 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12542 * The id may be overwritten later if we create a new variable offset. 12543 */ 12544 dst_reg->type = ptr_reg->type; 12545 dst_reg->id = ptr_reg->id; 12546 12547 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12548 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12549 return -EINVAL; 12550 12551 /* pointer types do not carry 32-bit bounds at the moment. */ 12552 __mark_reg32_unbounded(dst_reg); 12553 12554 if (sanitize_needed(opcode)) { 12555 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12556 &info, false); 12557 if (ret < 0) 12558 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12559 } 12560 12561 switch (opcode) { 12562 case BPF_ADD: 12563 /* We can take a fixed offset as long as it doesn't overflow 12564 * the s32 'off' field 12565 */ 12566 if (known && (ptr_reg->off + smin_val == 12567 (s64)(s32)(ptr_reg->off + smin_val))) { 12568 /* pointer += K. Accumulate it into fixed offset */ 12569 dst_reg->smin_value = smin_ptr; 12570 dst_reg->smax_value = smax_ptr; 12571 dst_reg->umin_value = umin_ptr; 12572 dst_reg->umax_value = umax_ptr; 12573 dst_reg->var_off = ptr_reg->var_off; 12574 dst_reg->off = ptr_reg->off + smin_val; 12575 dst_reg->raw = ptr_reg->raw; 12576 break; 12577 } 12578 /* A new variable offset is created. Note that off_reg->off 12579 * == 0, since it's a scalar. 12580 * dst_reg gets the pointer type and since some positive 12581 * integer value was added to the pointer, give it a new 'id' 12582 * if it's a PTR_TO_PACKET. 12583 * this creates a new 'base' pointer, off_reg (variable) gets 12584 * added into the variable offset, and we copy the fixed offset 12585 * from ptr_reg. 12586 */ 12587 if (signed_add_overflows(smin_ptr, smin_val) || 12588 signed_add_overflows(smax_ptr, smax_val)) { 12589 dst_reg->smin_value = S64_MIN; 12590 dst_reg->smax_value = S64_MAX; 12591 } else { 12592 dst_reg->smin_value = smin_ptr + smin_val; 12593 dst_reg->smax_value = smax_ptr + smax_val; 12594 } 12595 if (umin_ptr + umin_val < umin_ptr || 12596 umax_ptr + umax_val < umax_ptr) { 12597 dst_reg->umin_value = 0; 12598 dst_reg->umax_value = U64_MAX; 12599 } else { 12600 dst_reg->umin_value = umin_ptr + umin_val; 12601 dst_reg->umax_value = umax_ptr + umax_val; 12602 } 12603 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12604 dst_reg->off = ptr_reg->off; 12605 dst_reg->raw = ptr_reg->raw; 12606 if (reg_is_pkt_pointer(ptr_reg)) { 12607 dst_reg->id = ++env->id_gen; 12608 /* something was added to pkt_ptr, set range to zero */ 12609 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12610 } 12611 break; 12612 case BPF_SUB: 12613 if (dst_reg == off_reg) { 12614 /* scalar -= pointer. Creates an unknown scalar */ 12615 verbose(env, "R%d tried to subtract pointer from scalar\n", 12616 dst); 12617 return -EACCES; 12618 } 12619 /* We don't allow subtraction from FP, because (according to 12620 * test_verifier.c test "invalid fp arithmetic", JITs might not 12621 * be able to deal with it. 12622 */ 12623 if (ptr_reg->type == PTR_TO_STACK) { 12624 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12625 dst); 12626 return -EACCES; 12627 } 12628 if (known && (ptr_reg->off - smin_val == 12629 (s64)(s32)(ptr_reg->off - smin_val))) { 12630 /* pointer -= K. Subtract it from fixed offset */ 12631 dst_reg->smin_value = smin_ptr; 12632 dst_reg->smax_value = smax_ptr; 12633 dst_reg->umin_value = umin_ptr; 12634 dst_reg->umax_value = umax_ptr; 12635 dst_reg->var_off = ptr_reg->var_off; 12636 dst_reg->id = ptr_reg->id; 12637 dst_reg->off = ptr_reg->off - smin_val; 12638 dst_reg->raw = ptr_reg->raw; 12639 break; 12640 } 12641 /* A new variable offset is created. If the subtrahend is known 12642 * nonnegative, then any reg->range we had before is still good. 12643 */ 12644 if (signed_sub_overflows(smin_ptr, smax_val) || 12645 signed_sub_overflows(smax_ptr, smin_val)) { 12646 /* Overflow possible, we know nothing */ 12647 dst_reg->smin_value = S64_MIN; 12648 dst_reg->smax_value = S64_MAX; 12649 } else { 12650 dst_reg->smin_value = smin_ptr - smax_val; 12651 dst_reg->smax_value = smax_ptr - smin_val; 12652 } 12653 if (umin_ptr < umax_val) { 12654 /* Overflow possible, we know nothing */ 12655 dst_reg->umin_value = 0; 12656 dst_reg->umax_value = U64_MAX; 12657 } else { 12658 /* Cannot overflow (as long as bounds are consistent) */ 12659 dst_reg->umin_value = umin_ptr - umax_val; 12660 dst_reg->umax_value = umax_ptr - umin_val; 12661 } 12662 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12663 dst_reg->off = ptr_reg->off; 12664 dst_reg->raw = ptr_reg->raw; 12665 if (reg_is_pkt_pointer(ptr_reg)) { 12666 dst_reg->id = ++env->id_gen; 12667 /* something was added to pkt_ptr, set range to zero */ 12668 if (smin_val < 0) 12669 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12670 } 12671 break; 12672 case BPF_AND: 12673 case BPF_OR: 12674 case BPF_XOR: 12675 /* bitwise ops on pointers are troublesome, prohibit. */ 12676 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12677 dst, bpf_alu_string[opcode >> 4]); 12678 return -EACCES; 12679 default: 12680 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12681 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12682 dst, bpf_alu_string[opcode >> 4]); 12683 return -EACCES; 12684 } 12685 12686 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12687 return -EINVAL; 12688 reg_bounds_sync(dst_reg); 12689 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12690 return -EACCES; 12691 if (sanitize_needed(opcode)) { 12692 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12693 &info, true); 12694 if (ret < 0) 12695 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12696 } 12697 12698 return 0; 12699 } 12700 12701 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12702 struct bpf_reg_state *src_reg) 12703 { 12704 s32 smin_val = src_reg->s32_min_value; 12705 s32 smax_val = src_reg->s32_max_value; 12706 u32 umin_val = src_reg->u32_min_value; 12707 u32 umax_val = src_reg->u32_max_value; 12708 12709 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12710 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12711 dst_reg->s32_min_value = S32_MIN; 12712 dst_reg->s32_max_value = S32_MAX; 12713 } else { 12714 dst_reg->s32_min_value += smin_val; 12715 dst_reg->s32_max_value += smax_val; 12716 } 12717 if (dst_reg->u32_min_value + umin_val < umin_val || 12718 dst_reg->u32_max_value + umax_val < umax_val) { 12719 dst_reg->u32_min_value = 0; 12720 dst_reg->u32_max_value = U32_MAX; 12721 } else { 12722 dst_reg->u32_min_value += umin_val; 12723 dst_reg->u32_max_value += umax_val; 12724 } 12725 } 12726 12727 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12728 struct bpf_reg_state *src_reg) 12729 { 12730 s64 smin_val = src_reg->smin_value; 12731 s64 smax_val = src_reg->smax_value; 12732 u64 umin_val = src_reg->umin_value; 12733 u64 umax_val = src_reg->umax_value; 12734 12735 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12736 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12737 dst_reg->smin_value = S64_MIN; 12738 dst_reg->smax_value = S64_MAX; 12739 } else { 12740 dst_reg->smin_value += smin_val; 12741 dst_reg->smax_value += smax_val; 12742 } 12743 if (dst_reg->umin_value + umin_val < umin_val || 12744 dst_reg->umax_value + umax_val < umax_val) { 12745 dst_reg->umin_value = 0; 12746 dst_reg->umax_value = U64_MAX; 12747 } else { 12748 dst_reg->umin_value += umin_val; 12749 dst_reg->umax_value += umax_val; 12750 } 12751 } 12752 12753 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12754 struct bpf_reg_state *src_reg) 12755 { 12756 s32 smin_val = src_reg->s32_min_value; 12757 s32 smax_val = src_reg->s32_max_value; 12758 u32 umin_val = src_reg->u32_min_value; 12759 u32 umax_val = src_reg->u32_max_value; 12760 12761 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12762 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12763 /* Overflow possible, we know nothing */ 12764 dst_reg->s32_min_value = S32_MIN; 12765 dst_reg->s32_max_value = S32_MAX; 12766 } else { 12767 dst_reg->s32_min_value -= smax_val; 12768 dst_reg->s32_max_value -= smin_val; 12769 } 12770 if (dst_reg->u32_min_value < umax_val) { 12771 /* Overflow possible, we know nothing */ 12772 dst_reg->u32_min_value = 0; 12773 dst_reg->u32_max_value = U32_MAX; 12774 } else { 12775 /* Cannot overflow (as long as bounds are consistent) */ 12776 dst_reg->u32_min_value -= umax_val; 12777 dst_reg->u32_max_value -= umin_val; 12778 } 12779 } 12780 12781 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12782 struct bpf_reg_state *src_reg) 12783 { 12784 s64 smin_val = src_reg->smin_value; 12785 s64 smax_val = src_reg->smax_value; 12786 u64 umin_val = src_reg->umin_value; 12787 u64 umax_val = src_reg->umax_value; 12788 12789 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12790 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12791 /* Overflow possible, we know nothing */ 12792 dst_reg->smin_value = S64_MIN; 12793 dst_reg->smax_value = S64_MAX; 12794 } else { 12795 dst_reg->smin_value -= smax_val; 12796 dst_reg->smax_value -= smin_val; 12797 } 12798 if (dst_reg->umin_value < umax_val) { 12799 /* Overflow possible, we know nothing */ 12800 dst_reg->umin_value = 0; 12801 dst_reg->umax_value = U64_MAX; 12802 } else { 12803 /* Cannot overflow (as long as bounds are consistent) */ 12804 dst_reg->umin_value -= umax_val; 12805 dst_reg->umax_value -= umin_val; 12806 } 12807 } 12808 12809 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12810 struct bpf_reg_state *src_reg) 12811 { 12812 s32 smin_val = src_reg->s32_min_value; 12813 u32 umin_val = src_reg->u32_min_value; 12814 u32 umax_val = src_reg->u32_max_value; 12815 12816 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12817 /* Ain't nobody got time to multiply that sign */ 12818 __mark_reg32_unbounded(dst_reg); 12819 return; 12820 } 12821 /* Both values are positive, so we can work with unsigned and 12822 * copy the result to signed (unless it exceeds S32_MAX). 12823 */ 12824 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12825 /* Potential overflow, we know nothing */ 12826 __mark_reg32_unbounded(dst_reg); 12827 return; 12828 } 12829 dst_reg->u32_min_value *= umin_val; 12830 dst_reg->u32_max_value *= umax_val; 12831 if (dst_reg->u32_max_value > S32_MAX) { 12832 /* Overflow possible, we know nothing */ 12833 dst_reg->s32_min_value = S32_MIN; 12834 dst_reg->s32_max_value = S32_MAX; 12835 } else { 12836 dst_reg->s32_min_value = dst_reg->u32_min_value; 12837 dst_reg->s32_max_value = dst_reg->u32_max_value; 12838 } 12839 } 12840 12841 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12842 struct bpf_reg_state *src_reg) 12843 { 12844 s64 smin_val = src_reg->smin_value; 12845 u64 umin_val = src_reg->umin_value; 12846 u64 umax_val = src_reg->umax_value; 12847 12848 if (smin_val < 0 || dst_reg->smin_value < 0) { 12849 /* Ain't nobody got time to multiply that sign */ 12850 __mark_reg64_unbounded(dst_reg); 12851 return; 12852 } 12853 /* Both values are positive, so we can work with unsigned and 12854 * copy the result to signed (unless it exceeds S64_MAX). 12855 */ 12856 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12857 /* Potential overflow, we know nothing */ 12858 __mark_reg64_unbounded(dst_reg); 12859 return; 12860 } 12861 dst_reg->umin_value *= umin_val; 12862 dst_reg->umax_value *= umax_val; 12863 if (dst_reg->umax_value > S64_MAX) { 12864 /* Overflow possible, we know nothing */ 12865 dst_reg->smin_value = S64_MIN; 12866 dst_reg->smax_value = S64_MAX; 12867 } else { 12868 dst_reg->smin_value = dst_reg->umin_value; 12869 dst_reg->smax_value = dst_reg->umax_value; 12870 } 12871 } 12872 12873 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12874 struct bpf_reg_state *src_reg) 12875 { 12876 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12877 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12878 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12879 s32 smin_val = src_reg->s32_min_value; 12880 u32 umax_val = src_reg->u32_max_value; 12881 12882 if (src_known && dst_known) { 12883 __mark_reg32_known(dst_reg, var32_off.value); 12884 return; 12885 } 12886 12887 /* We get our minimum from the var_off, since that's inherently 12888 * bitwise. Our maximum is the minimum of the operands' maxima. 12889 */ 12890 dst_reg->u32_min_value = var32_off.value; 12891 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12892 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12893 /* Lose signed bounds when ANDing negative numbers, 12894 * ain't nobody got time for that. 12895 */ 12896 dst_reg->s32_min_value = S32_MIN; 12897 dst_reg->s32_max_value = S32_MAX; 12898 } else { 12899 /* ANDing two positives gives a positive, so safe to 12900 * cast result into s64. 12901 */ 12902 dst_reg->s32_min_value = dst_reg->u32_min_value; 12903 dst_reg->s32_max_value = dst_reg->u32_max_value; 12904 } 12905 } 12906 12907 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12908 struct bpf_reg_state *src_reg) 12909 { 12910 bool src_known = tnum_is_const(src_reg->var_off); 12911 bool dst_known = tnum_is_const(dst_reg->var_off); 12912 s64 smin_val = src_reg->smin_value; 12913 u64 umax_val = src_reg->umax_value; 12914 12915 if (src_known && dst_known) { 12916 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12917 return; 12918 } 12919 12920 /* We get our minimum from the var_off, since that's inherently 12921 * bitwise. Our maximum is the minimum of the operands' maxima. 12922 */ 12923 dst_reg->umin_value = dst_reg->var_off.value; 12924 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12925 if (dst_reg->smin_value < 0 || smin_val < 0) { 12926 /* Lose signed bounds when ANDing negative numbers, 12927 * ain't nobody got time for that. 12928 */ 12929 dst_reg->smin_value = S64_MIN; 12930 dst_reg->smax_value = S64_MAX; 12931 } else { 12932 /* ANDing two positives gives a positive, so safe to 12933 * cast result into s64. 12934 */ 12935 dst_reg->smin_value = dst_reg->umin_value; 12936 dst_reg->smax_value = dst_reg->umax_value; 12937 } 12938 /* We may learn something more from the var_off */ 12939 __update_reg_bounds(dst_reg); 12940 } 12941 12942 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12943 struct bpf_reg_state *src_reg) 12944 { 12945 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12946 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12947 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12948 s32 smin_val = src_reg->s32_min_value; 12949 u32 umin_val = src_reg->u32_min_value; 12950 12951 if (src_known && dst_known) { 12952 __mark_reg32_known(dst_reg, var32_off.value); 12953 return; 12954 } 12955 12956 /* We get our maximum from the var_off, and our minimum is the 12957 * maximum of the operands' minima 12958 */ 12959 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12960 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12961 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12962 /* Lose signed bounds when ORing negative numbers, 12963 * ain't nobody got time for that. 12964 */ 12965 dst_reg->s32_min_value = S32_MIN; 12966 dst_reg->s32_max_value = S32_MAX; 12967 } else { 12968 /* ORing two positives gives a positive, so safe to 12969 * cast result into s64. 12970 */ 12971 dst_reg->s32_min_value = dst_reg->u32_min_value; 12972 dst_reg->s32_max_value = dst_reg->u32_max_value; 12973 } 12974 } 12975 12976 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12977 struct bpf_reg_state *src_reg) 12978 { 12979 bool src_known = tnum_is_const(src_reg->var_off); 12980 bool dst_known = tnum_is_const(dst_reg->var_off); 12981 s64 smin_val = src_reg->smin_value; 12982 u64 umin_val = src_reg->umin_value; 12983 12984 if (src_known && dst_known) { 12985 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12986 return; 12987 } 12988 12989 /* We get our maximum from the var_off, and our minimum is the 12990 * maximum of the operands' minima 12991 */ 12992 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12993 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12994 if (dst_reg->smin_value < 0 || smin_val < 0) { 12995 /* Lose signed bounds when ORing negative numbers, 12996 * ain't nobody got time for that. 12997 */ 12998 dst_reg->smin_value = S64_MIN; 12999 dst_reg->smax_value = S64_MAX; 13000 } else { 13001 /* ORing two positives gives a positive, so safe to 13002 * cast result into s64. 13003 */ 13004 dst_reg->smin_value = dst_reg->umin_value; 13005 dst_reg->smax_value = dst_reg->umax_value; 13006 } 13007 /* We may learn something more from the var_off */ 13008 __update_reg_bounds(dst_reg); 13009 } 13010 13011 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13012 struct bpf_reg_state *src_reg) 13013 { 13014 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13015 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13016 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13017 s32 smin_val = src_reg->s32_min_value; 13018 13019 if (src_known && dst_known) { 13020 __mark_reg32_known(dst_reg, var32_off.value); 13021 return; 13022 } 13023 13024 /* We get both minimum and maximum from the var32_off. */ 13025 dst_reg->u32_min_value = var32_off.value; 13026 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13027 13028 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13029 /* XORing two positive sign numbers gives a positive, 13030 * so safe to cast u32 result into s32. 13031 */ 13032 dst_reg->s32_min_value = dst_reg->u32_min_value; 13033 dst_reg->s32_max_value = dst_reg->u32_max_value; 13034 } else { 13035 dst_reg->s32_min_value = S32_MIN; 13036 dst_reg->s32_max_value = S32_MAX; 13037 } 13038 } 13039 13040 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13041 struct bpf_reg_state *src_reg) 13042 { 13043 bool src_known = tnum_is_const(src_reg->var_off); 13044 bool dst_known = tnum_is_const(dst_reg->var_off); 13045 s64 smin_val = src_reg->smin_value; 13046 13047 if (src_known && dst_known) { 13048 /* dst_reg->var_off.value has been updated earlier */ 13049 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13050 return; 13051 } 13052 13053 /* We get both minimum and maximum from the var_off. */ 13054 dst_reg->umin_value = dst_reg->var_off.value; 13055 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13056 13057 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13058 /* XORing two positive sign numbers gives a positive, 13059 * so safe to cast u64 result into s64. 13060 */ 13061 dst_reg->smin_value = dst_reg->umin_value; 13062 dst_reg->smax_value = dst_reg->umax_value; 13063 } else { 13064 dst_reg->smin_value = S64_MIN; 13065 dst_reg->smax_value = S64_MAX; 13066 } 13067 13068 __update_reg_bounds(dst_reg); 13069 } 13070 13071 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13072 u64 umin_val, u64 umax_val) 13073 { 13074 /* We lose all sign bit information (except what we can pick 13075 * up from var_off) 13076 */ 13077 dst_reg->s32_min_value = S32_MIN; 13078 dst_reg->s32_max_value = S32_MAX; 13079 /* If we might shift our top bit out, then we know nothing */ 13080 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13081 dst_reg->u32_min_value = 0; 13082 dst_reg->u32_max_value = U32_MAX; 13083 } else { 13084 dst_reg->u32_min_value <<= umin_val; 13085 dst_reg->u32_max_value <<= umax_val; 13086 } 13087 } 13088 13089 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13090 struct bpf_reg_state *src_reg) 13091 { 13092 u32 umax_val = src_reg->u32_max_value; 13093 u32 umin_val = src_reg->u32_min_value; 13094 /* u32 alu operation will zext upper bits */ 13095 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13096 13097 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13098 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13099 /* Not required but being careful mark reg64 bounds as unknown so 13100 * that we are forced to pick them up from tnum and zext later and 13101 * if some path skips this step we are still safe. 13102 */ 13103 __mark_reg64_unbounded(dst_reg); 13104 __update_reg32_bounds(dst_reg); 13105 } 13106 13107 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13108 u64 umin_val, u64 umax_val) 13109 { 13110 /* Special case <<32 because it is a common compiler pattern to sign 13111 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13112 * positive we know this shift will also be positive so we can track 13113 * bounds correctly. Otherwise we lose all sign bit information except 13114 * what we can pick up from var_off. Perhaps we can generalize this 13115 * later to shifts of any length. 13116 */ 13117 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13118 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13119 else 13120 dst_reg->smax_value = S64_MAX; 13121 13122 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13123 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13124 else 13125 dst_reg->smin_value = S64_MIN; 13126 13127 /* If we might shift our top bit out, then we know nothing */ 13128 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13129 dst_reg->umin_value = 0; 13130 dst_reg->umax_value = U64_MAX; 13131 } else { 13132 dst_reg->umin_value <<= umin_val; 13133 dst_reg->umax_value <<= umax_val; 13134 } 13135 } 13136 13137 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13138 struct bpf_reg_state *src_reg) 13139 { 13140 u64 umax_val = src_reg->umax_value; 13141 u64 umin_val = src_reg->umin_value; 13142 13143 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13144 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13145 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13146 13147 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13148 /* We may learn something more from the var_off */ 13149 __update_reg_bounds(dst_reg); 13150 } 13151 13152 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13153 struct bpf_reg_state *src_reg) 13154 { 13155 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13156 u32 umax_val = src_reg->u32_max_value; 13157 u32 umin_val = src_reg->u32_min_value; 13158 13159 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13160 * be negative, then either: 13161 * 1) src_reg might be zero, so the sign bit of the result is 13162 * unknown, so we lose our signed bounds 13163 * 2) it's known negative, thus the unsigned bounds capture the 13164 * signed bounds 13165 * 3) the signed bounds cross zero, so they tell us nothing 13166 * about the result 13167 * If the value in dst_reg is known nonnegative, then again the 13168 * unsigned bounds capture the signed bounds. 13169 * Thus, in all cases it suffices to blow away our signed bounds 13170 * and rely on inferring new ones from the unsigned bounds and 13171 * var_off of the result. 13172 */ 13173 dst_reg->s32_min_value = S32_MIN; 13174 dst_reg->s32_max_value = S32_MAX; 13175 13176 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13177 dst_reg->u32_min_value >>= umax_val; 13178 dst_reg->u32_max_value >>= umin_val; 13179 13180 __mark_reg64_unbounded(dst_reg); 13181 __update_reg32_bounds(dst_reg); 13182 } 13183 13184 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13185 struct bpf_reg_state *src_reg) 13186 { 13187 u64 umax_val = src_reg->umax_value; 13188 u64 umin_val = src_reg->umin_value; 13189 13190 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13191 * be negative, then either: 13192 * 1) src_reg might be zero, so the sign bit of the result is 13193 * unknown, so we lose our signed bounds 13194 * 2) it's known negative, thus the unsigned bounds capture the 13195 * signed bounds 13196 * 3) the signed bounds cross zero, so they tell us nothing 13197 * about the result 13198 * If the value in dst_reg is known nonnegative, then again the 13199 * unsigned bounds capture the signed bounds. 13200 * Thus, in all cases it suffices to blow away our signed bounds 13201 * and rely on inferring new ones from the unsigned bounds and 13202 * var_off of the result. 13203 */ 13204 dst_reg->smin_value = S64_MIN; 13205 dst_reg->smax_value = S64_MAX; 13206 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13207 dst_reg->umin_value >>= umax_val; 13208 dst_reg->umax_value >>= umin_val; 13209 13210 /* Its not easy to operate on alu32 bounds here because it depends 13211 * on bits being shifted in. Take easy way out and mark unbounded 13212 * so we can recalculate later from tnum. 13213 */ 13214 __mark_reg32_unbounded(dst_reg); 13215 __update_reg_bounds(dst_reg); 13216 } 13217 13218 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13219 struct bpf_reg_state *src_reg) 13220 { 13221 u64 umin_val = src_reg->u32_min_value; 13222 13223 /* Upon reaching here, src_known is true and 13224 * umax_val is equal to umin_val. 13225 */ 13226 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13227 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13228 13229 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13230 13231 /* blow away the dst_reg umin_value/umax_value and rely on 13232 * dst_reg var_off to refine the result. 13233 */ 13234 dst_reg->u32_min_value = 0; 13235 dst_reg->u32_max_value = U32_MAX; 13236 13237 __mark_reg64_unbounded(dst_reg); 13238 __update_reg32_bounds(dst_reg); 13239 } 13240 13241 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13242 struct bpf_reg_state *src_reg) 13243 { 13244 u64 umin_val = src_reg->umin_value; 13245 13246 /* Upon reaching here, src_known is true and umax_val is equal 13247 * to umin_val. 13248 */ 13249 dst_reg->smin_value >>= umin_val; 13250 dst_reg->smax_value >>= umin_val; 13251 13252 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13253 13254 /* blow away the dst_reg umin_value/umax_value and rely on 13255 * dst_reg var_off to refine the result. 13256 */ 13257 dst_reg->umin_value = 0; 13258 dst_reg->umax_value = U64_MAX; 13259 13260 /* Its not easy to operate on alu32 bounds here because it depends 13261 * on bits being shifted in from upper 32-bits. Take easy way out 13262 * and mark unbounded so we can recalculate later from tnum. 13263 */ 13264 __mark_reg32_unbounded(dst_reg); 13265 __update_reg_bounds(dst_reg); 13266 } 13267 13268 /* WARNING: This function does calculations on 64-bit values, but the actual 13269 * execution may occur on 32-bit values. Therefore, things like bitshifts 13270 * need extra checks in the 32-bit case. 13271 */ 13272 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13273 struct bpf_insn *insn, 13274 struct bpf_reg_state *dst_reg, 13275 struct bpf_reg_state src_reg) 13276 { 13277 struct bpf_reg_state *regs = cur_regs(env); 13278 u8 opcode = BPF_OP(insn->code); 13279 bool src_known; 13280 s64 smin_val, smax_val; 13281 u64 umin_val, umax_val; 13282 s32 s32_min_val, s32_max_val; 13283 u32 u32_min_val, u32_max_val; 13284 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13285 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13286 int ret; 13287 13288 smin_val = src_reg.smin_value; 13289 smax_val = src_reg.smax_value; 13290 umin_val = src_reg.umin_value; 13291 umax_val = src_reg.umax_value; 13292 13293 s32_min_val = src_reg.s32_min_value; 13294 s32_max_val = src_reg.s32_max_value; 13295 u32_min_val = src_reg.u32_min_value; 13296 u32_max_val = src_reg.u32_max_value; 13297 13298 if (alu32) { 13299 src_known = tnum_subreg_is_const(src_reg.var_off); 13300 if ((src_known && 13301 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13302 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13303 /* Taint dst register if offset had invalid bounds 13304 * derived from e.g. dead branches. 13305 */ 13306 __mark_reg_unknown(env, dst_reg); 13307 return 0; 13308 } 13309 } else { 13310 src_known = tnum_is_const(src_reg.var_off); 13311 if ((src_known && 13312 (smin_val != smax_val || umin_val != umax_val)) || 13313 smin_val > smax_val || umin_val > umax_val) { 13314 /* Taint dst register if offset had invalid bounds 13315 * derived from e.g. dead branches. 13316 */ 13317 __mark_reg_unknown(env, dst_reg); 13318 return 0; 13319 } 13320 } 13321 13322 if (!src_known && 13323 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13324 __mark_reg_unknown(env, dst_reg); 13325 return 0; 13326 } 13327 13328 if (sanitize_needed(opcode)) { 13329 ret = sanitize_val_alu(env, insn); 13330 if (ret < 0) 13331 return sanitize_err(env, insn, ret, NULL, NULL); 13332 } 13333 13334 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13335 * There are two classes of instructions: The first class we track both 13336 * alu32 and alu64 sign/unsigned bounds independently this provides the 13337 * greatest amount of precision when alu operations are mixed with jmp32 13338 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13339 * and BPF_OR. This is possible because these ops have fairly easy to 13340 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13341 * See alu32 verifier tests for examples. The second class of 13342 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13343 * with regards to tracking sign/unsigned bounds because the bits may 13344 * cross subreg boundaries in the alu64 case. When this happens we mark 13345 * the reg unbounded in the subreg bound space and use the resulting 13346 * tnum to calculate an approximation of the sign/unsigned bounds. 13347 */ 13348 switch (opcode) { 13349 case BPF_ADD: 13350 scalar32_min_max_add(dst_reg, &src_reg); 13351 scalar_min_max_add(dst_reg, &src_reg); 13352 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13353 break; 13354 case BPF_SUB: 13355 scalar32_min_max_sub(dst_reg, &src_reg); 13356 scalar_min_max_sub(dst_reg, &src_reg); 13357 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13358 break; 13359 case BPF_MUL: 13360 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13361 scalar32_min_max_mul(dst_reg, &src_reg); 13362 scalar_min_max_mul(dst_reg, &src_reg); 13363 break; 13364 case BPF_AND: 13365 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13366 scalar32_min_max_and(dst_reg, &src_reg); 13367 scalar_min_max_and(dst_reg, &src_reg); 13368 break; 13369 case BPF_OR: 13370 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13371 scalar32_min_max_or(dst_reg, &src_reg); 13372 scalar_min_max_or(dst_reg, &src_reg); 13373 break; 13374 case BPF_XOR: 13375 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13376 scalar32_min_max_xor(dst_reg, &src_reg); 13377 scalar_min_max_xor(dst_reg, &src_reg); 13378 break; 13379 case BPF_LSH: 13380 if (umax_val >= insn_bitness) { 13381 /* Shifts greater than 31 or 63 are undefined. 13382 * This includes shifts by a negative number. 13383 */ 13384 mark_reg_unknown(env, regs, insn->dst_reg); 13385 break; 13386 } 13387 if (alu32) 13388 scalar32_min_max_lsh(dst_reg, &src_reg); 13389 else 13390 scalar_min_max_lsh(dst_reg, &src_reg); 13391 break; 13392 case BPF_RSH: 13393 if (umax_val >= insn_bitness) { 13394 /* Shifts greater than 31 or 63 are undefined. 13395 * This includes shifts by a negative number. 13396 */ 13397 mark_reg_unknown(env, regs, insn->dst_reg); 13398 break; 13399 } 13400 if (alu32) 13401 scalar32_min_max_rsh(dst_reg, &src_reg); 13402 else 13403 scalar_min_max_rsh(dst_reg, &src_reg); 13404 break; 13405 case BPF_ARSH: 13406 if (umax_val >= insn_bitness) { 13407 /* Shifts greater than 31 or 63 are undefined. 13408 * This includes shifts by a negative number. 13409 */ 13410 mark_reg_unknown(env, regs, insn->dst_reg); 13411 break; 13412 } 13413 if (alu32) 13414 scalar32_min_max_arsh(dst_reg, &src_reg); 13415 else 13416 scalar_min_max_arsh(dst_reg, &src_reg); 13417 break; 13418 default: 13419 mark_reg_unknown(env, regs, insn->dst_reg); 13420 break; 13421 } 13422 13423 /* ALU32 ops are zero extended into 64bit register */ 13424 if (alu32) 13425 zext_32_to_64(dst_reg); 13426 reg_bounds_sync(dst_reg); 13427 return 0; 13428 } 13429 13430 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13431 * and var_off. 13432 */ 13433 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13434 struct bpf_insn *insn) 13435 { 13436 struct bpf_verifier_state *vstate = env->cur_state; 13437 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13438 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13439 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13440 u8 opcode = BPF_OP(insn->code); 13441 int err; 13442 13443 dst_reg = ®s[insn->dst_reg]; 13444 src_reg = NULL; 13445 if (dst_reg->type != SCALAR_VALUE) 13446 ptr_reg = dst_reg; 13447 else 13448 /* Make sure ID is cleared otherwise dst_reg min/max could be 13449 * incorrectly propagated into other registers by find_equal_scalars() 13450 */ 13451 dst_reg->id = 0; 13452 if (BPF_SRC(insn->code) == BPF_X) { 13453 src_reg = ®s[insn->src_reg]; 13454 if (src_reg->type != SCALAR_VALUE) { 13455 if (dst_reg->type != SCALAR_VALUE) { 13456 /* Combining two pointers by any ALU op yields 13457 * an arbitrary scalar. Disallow all math except 13458 * pointer subtraction 13459 */ 13460 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13461 mark_reg_unknown(env, regs, insn->dst_reg); 13462 return 0; 13463 } 13464 verbose(env, "R%d pointer %s pointer prohibited\n", 13465 insn->dst_reg, 13466 bpf_alu_string[opcode >> 4]); 13467 return -EACCES; 13468 } else { 13469 /* scalar += pointer 13470 * This is legal, but we have to reverse our 13471 * src/dest handling in computing the range 13472 */ 13473 err = mark_chain_precision(env, insn->dst_reg); 13474 if (err) 13475 return err; 13476 return adjust_ptr_min_max_vals(env, insn, 13477 src_reg, dst_reg); 13478 } 13479 } else if (ptr_reg) { 13480 /* pointer += scalar */ 13481 err = mark_chain_precision(env, insn->src_reg); 13482 if (err) 13483 return err; 13484 return adjust_ptr_min_max_vals(env, insn, 13485 dst_reg, src_reg); 13486 } else if (dst_reg->precise) { 13487 /* if dst_reg is precise, src_reg should be precise as well */ 13488 err = mark_chain_precision(env, insn->src_reg); 13489 if (err) 13490 return err; 13491 } 13492 } else { 13493 /* Pretend the src is a reg with a known value, since we only 13494 * need to be able to read from this state. 13495 */ 13496 off_reg.type = SCALAR_VALUE; 13497 __mark_reg_known(&off_reg, insn->imm); 13498 src_reg = &off_reg; 13499 if (ptr_reg) /* pointer += K */ 13500 return adjust_ptr_min_max_vals(env, insn, 13501 ptr_reg, src_reg); 13502 } 13503 13504 /* Got here implies adding two SCALAR_VALUEs */ 13505 if (WARN_ON_ONCE(ptr_reg)) { 13506 print_verifier_state(env, state, true); 13507 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13508 return -EINVAL; 13509 } 13510 if (WARN_ON(!src_reg)) { 13511 print_verifier_state(env, state, true); 13512 verbose(env, "verifier internal error: no src_reg\n"); 13513 return -EINVAL; 13514 } 13515 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13516 } 13517 13518 /* check validity of 32-bit and 64-bit arithmetic operations */ 13519 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13520 { 13521 struct bpf_reg_state *regs = cur_regs(env); 13522 u8 opcode = BPF_OP(insn->code); 13523 int err; 13524 13525 if (opcode == BPF_END || opcode == BPF_NEG) { 13526 if (opcode == BPF_NEG) { 13527 if (BPF_SRC(insn->code) != BPF_K || 13528 insn->src_reg != BPF_REG_0 || 13529 insn->off != 0 || insn->imm != 0) { 13530 verbose(env, "BPF_NEG uses reserved fields\n"); 13531 return -EINVAL; 13532 } 13533 } else { 13534 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13535 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13536 (BPF_CLASS(insn->code) == BPF_ALU64 && 13537 BPF_SRC(insn->code) != BPF_TO_LE)) { 13538 verbose(env, "BPF_END uses reserved fields\n"); 13539 return -EINVAL; 13540 } 13541 } 13542 13543 /* check src operand */ 13544 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13545 if (err) 13546 return err; 13547 13548 if (is_pointer_value(env, insn->dst_reg)) { 13549 verbose(env, "R%d pointer arithmetic prohibited\n", 13550 insn->dst_reg); 13551 return -EACCES; 13552 } 13553 13554 /* check dest operand */ 13555 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13556 if (err) 13557 return err; 13558 13559 } else if (opcode == BPF_MOV) { 13560 13561 if (BPF_SRC(insn->code) == BPF_X) { 13562 if (insn->imm != 0) { 13563 verbose(env, "BPF_MOV uses reserved fields\n"); 13564 return -EINVAL; 13565 } 13566 13567 if (BPF_CLASS(insn->code) == BPF_ALU) { 13568 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13569 verbose(env, "BPF_MOV uses reserved fields\n"); 13570 return -EINVAL; 13571 } 13572 } else { 13573 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13574 insn->off != 32) { 13575 verbose(env, "BPF_MOV uses reserved fields\n"); 13576 return -EINVAL; 13577 } 13578 } 13579 13580 /* check src operand */ 13581 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13582 if (err) 13583 return err; 13584 } else { 13585 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13586 verbose(env, "BPF_MOV uses reserved fields\n"); 13587 return -EINVAL; 13588 } 13589 } 13590 13591 /* check dest operand, mark as required later */ 13592 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13593 if (err) 13594 return err; 13595 13596 if (BPF_SRC(insn->code) == BPF_X) { 13597 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13598 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13599 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13600 !tnum_is_const(src_reg->var_off); 13601 13602 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13603 if (insn->off == 0) { 13604 /* case: R1 = R2 13605 * copy register state to dest reg 13606 */ 13607 if (need_id) 13608 /* Assign src and dst registers the same ID 13609 * that will be used by find_equal_scalars() 13610 * to propagate min/max range. 13611 */ 13612 src_reg->id = ++env->id_gen; 13613 copy_register_state(dst_reg, src_reg); 13614 dst_reg->live |= REG_LIVE_WRITTEN; 13615 dst_reg->subreg_def = DEF_NOT_SUBREG; 13616 } else { 13617 /* case: R1 = (s8, s16 s32)R2 */ 13618 if (is_pointer_value(env, insn->src_reg)) { 13619 verbose(env, 13620 "R%d sign-extension part of pointer\n", 13621 insn->src_reg); 13622 return -EACCES; 13623 } else if (src_reg->type == SCALAR_VALUE) { 13624 bool no_sext; 13625 13626 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13627 if (no_sext && need_id) 13628 src_reg->id = ++env->id_gen; 13629 copy_register_state(dst_reg, src_reg); 13630 if (!no_sext) 13631 dst_reg->id = 0; 13632 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13633 dst_reg->live |= REG_LIVE_WRITTEN; 13634 dst_reg->subreg_def = DEF_NOT_SUBREG; 13635 } else { 13636 mark_reg_unknown(env, regs, insn->dst_reg); 13637 } 13638 } 13639 } else { 13640 /* R1 = (u32) R2 */ 13641 if (is_pointer_value(env, insn->src_reg)) { 13642 verbose(env, 13643 "R%d partial copy of pointer\n", 13644 insn->src_reg); 13645 return -EACCES; 13646 } else if (src_reg->type == SCALAR_VALUE) { 13647 if (insn->off == 0) { 13648 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13649 13650 if (is_src_reg_u32 && need_id) 13651 src_reg->id = ++env->id_gen; 13652 copy_register_state(dst_reg, src_reg); 13653 /* Make sure ID is cleared if src_reg is not in u32 13654 * range otherwise dst_reg min/max could be incorrectly 13655 * propagated into src_reg by find_equal_scalars() 13656 */ 13657 if (!is_src_reg_u32) 13658 dst_reg->id = 0; 13659 dst_reg->live |= REG_LIVE_WRITTEN; 13660 dst_reg->subreg_def = env->insn_idx + 1; 13661 } else { 13662 /* case: W1 = (s8, s16)W2 */ 13663 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13664 13665 if (no_sext && need_id) 13666 src_reg->id = ++env->id_gen; 13667 copy_register_state(dst_reg, src_reg); 13668 if (!no_sext) 13669 dst_reg->id = 0; 13670 dst_reg->live |= REG_LIVE_WRITTEN; 13671 dst_reg->subreg_def = env->insn_idx + 1; 13672 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13673 } 13674 } else { 13675 mark_reg_unknown(env, regs, 13676 insn->dst_reg); 13677 } 13678 zext_32_to_64(dst_reg); 13679 reg_bounds_sync(dst_reg); 13680 } 13681 } else { 13682 /* case: R = imm 13683 * remember the value we stored into this reg 13684 */ 13685 /* clear any state __mark_reg_known doesn't set */ 13686 mark_reg_unknown(env, regs, insn->dst_reg); 13687 regs[insn->dst_reg].type = SCALAR_VALUE; 13688 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13689 __mark_reg_known(regs + insn->dst_reg, 13690 insn->imm); 13691 } else { 13692 __mark_reg_known(regs + insn->dst_reg, 13693 (u32)insn->imm); 13694 } 13695 } 13696 13697 } else if (opcode > BPF_END) { 13698 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13699 return -EINVAL; 13700 13701 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13702 13703 if (BPF_SRC(insn->code) == BPF_X) { 13704 if (insn->imm != 0 || insn->off > 1 || 13705 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13706 verbose(env, "BPF_ALU uses reserved fields\n"); 13707 return -EINVAL; 13708 } 13709 /* check src1 operand */ 13710 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13711 if (err) 13712 return err; 13713 } else { 13714 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13715 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13716 verbose(env, "BPF_ALU uses reserved fields\n"); 13717 return -EINVAL; 13718 } 13719 } 13720 13721 /* check src2 operand */ 13722 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13723 if (err) 13724 return err; 13725 13726 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13727 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13728 verbose(env, "div by zero\n"); 13729 return -EINVAL; 13730 } 13731 13732 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13733 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13734 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13735 13736 if (insn->imm < 0 || insn->imm >= size) { 13737 verbose(env, "invalid shift %d\n", insn->imm); 13738 return -EINVAL; 13739 } 13740 } 13741 13742 /* check dest operand */ 13743 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13744 if (err) 13745 return err; 13746 13747 return adjust_reg_min_max_vals(env, insn); 13748 } 13749 13750 return 0; 13751 } 13752 13753 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13754 struct bpf_reg_state *dst_reg, 13755 enum bpf_reg_type type, 13756 bool range_right_open) 13757 { 13758 struct bpf_func_state *state; 13759 struct bpf_reg_state *reg; 13760 int new_range; 13761 13762 if (dst_reg->off < 0 || 13763 (dst_reg->off == 0 && range_right_open)) 13764 /* This doesn't give us any range */ 13765 return; 13766 13767 if (dst_reg->umax_value > MAX_PACKET_OFF || 13768 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13769 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13770 * than pkt_end, but that's because it's also less than pkt. 13771 */ 13772 return; 13773 13774 new_range = dst_reg->off; 13775 if (range_right_open) 13776 new_range++; 13777 13778 /* Examples for register markings: 13779 * 13780 * pkt_data in dst register: 13781 * 13782 * r2 = r3; 13783 * r2 += 8; 13784 * if (r2 > pkt_end) goto <handle exception> 13785 * <access okay> 13786 * 13787 * r2 = r3; 13788 * r2 += 8; 13789 * if (r2 < pkt_end) goto <access okay> 13790 * <handle exception> 13791 * 13792 * Where: 13793 * r2 == dst_reg, pkt_end == src_reg 13794 * r2=pkt(id=n,off=8,r=0) 13795 * r3=pkt(id=n,off=0,r=0) 13796 * 13797 * pkt_data in src register: 13798 * 13799 * r2 = r3; 13800 * r2 += 8; 13801 * if (pkt_end >= r2) goto <access okay> 13802 * <handle exception> 13803 * 13804 * r2 = r3; 13805 * r2 += 8; 13806 * if (pkt_end <= r2) goto <handle exception> 13807 * <access okay> 13808 * 13809 * Where: 13810 * pkt_end == dst_reg, r2 == src_reg 13811 * r2=pkt(id=n,off=8,r=0) 13812 * r3=pkt(id=n,off=0,r=0) 13813 * 13814 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13815 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13816 * and [r3, r3 + 8-1) respectively is safe to access depending on 13817 * the check. 13818 */ 13819 13820 /* If our ids match, then we must have the same max_value. And we 13821 * don't care about the other reg's fixed offset, since if it's too big 13822 * the range won't allow anything. 13823 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13824 */ 13825 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13826 if (reg->type == type && reg->id == dst_reg->id) 13827 /* keep the maximum range already checked */ 13828 reg->range = max(reg->range, new_range); 13829 })); 13830 } 13831 13832 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13833 { 13834 struct tnum subreg = tnum_subreg(reg->var_off); 13835 s32 sval = (s32)val; 13836 13837 switch (opcode) { 13838 case BPF_JEQ: 13839 if (tnum_is_const(subreg)) 13840 return !!tnum_equals_const(subreg, val); 13841 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13842 return 0; 13843 break; 13844 case BPF_JNE: 13845 if (tnum_is_const(subreg)) 13846 return !tnum_equals_const(subreg, val); 13847 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13848 return 1; 13849 break; 13850 case BPF_JSET: 13851 if ((~subreg.mask & subreg.value) & val) 13852 return 1; 13853 if (!((subreg.mask | subreg.value) & val)) 13854 return 0; 13855 break; 13856 case BPF_JGT: 13857 if (reg->u32_min_value > val) 13858 return 1; 13859 else if (reg->u32_max_value <= val) 13860 return 0; 13861 break; 13862 case BPF_JSGT: 13863 if (reg->s32_min_value > sval) 13864 return 1; 13865 else if (reg->s32_max_value <= sval) 13866 return 0; 13867 break; 13868 case BPF_JLT: 13869 if (reg->u32_max_value < val) 13870 return 1; 13871 else if (reg->u32_min_value >= val) 13872 return 0; 13873 break; 13874 case BPF_JSLT: 13875 if (reg->s32_max_value < sval) 13876 return 1; 13877 else if (reg->s32_min_value >= sval) 13878 return 0; 13879 break; 13880 case BPF_JGE: 13881 if (reg->u32_min_value >= val) 13882 return 1; 13883 else if (reg->u32_max_value < val) 13884 return 0; 13885 break; 13886 case BPF_JSGE: 13887 if (reg->s32_min_value >= sval) 13888 return 1; 13889 else if (reg->s32_max_value < sval) 13890 return 0; 13891 break; 13892 case BPF_JLE: 13893 if (reg->u32_max_value <= val) 13894 return 1; 13895 else if (reg->u32_min_value > val) 13896 return 0; 13897 break; 13898 case BPF_JSLE: 13899 if (reg->s32_max_value <= sval) 13900 return 1; 13901 else if (reg->s32_min_value > sval) 13902 return 0; 13903 break; 13904 } 13905 13906 return -1; 13907 } 13908 13909 13910 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13911 { 13912 s64 sval = (s64)val; 13913 13914 switch (opcode) { 13915 case BPF_JEQ: 13916 if (tnum_is_const(reg->var_off)) 13917 return !!tnum_equals_const(reg->var_off, val); 13918 else if (val < reg->umin_value || val > reg->umax_value) 13919 return 0; 13920 break; 13921 case BPF_JNE: 13922 if (tnum_is_const(reg->var_off)) 13923 return !tnum_equals_const(reg->var_off, val); 13924 else if (val < reg->umin_value || val > reg->umax_value) 13925 return 1; 13926 break; 13927 case BPF_JSET: 13928 if ((~reg->var_off.mask & reg->var_off.value) & val) 13929 return 1; 13930 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13931 return 0; 13932 break; 13933 case BPF_JGT: 13934 if (reg->umin_value > val) 13935 return 1; 13936 else if (reg->umax_value <= val) 13937 return 0; 13938 break; 13939 case BPF_JSGT: 13940 if (reg->smin_value > sval) 13941 return 1; 13942 else if (reg->smax_value <= sval) 13943 return 0; 13944 break; 13945 case BPF_JLT: 13946 if (reg->umax_value < val) 13947 return 1; 13948 else if (reg->umin_value >= val) 13949 return 0; 13950 break; 13951 case BPF_JSLT: 13952 if (reg->smax_value < sval) 13953 return 1; 13954 else if (reg->smin_value >= sval) 13955 return 0; 13956 break; 13957 case BPF_JGE: 13958 if (reg->umin_value >= val) 13959 return 1; 13960 else if (reg->umax_value < val) 13961 return 0; 13962 break; 13963 case BPF_JSGE: 13964 if (reg->smin_value >= sval) 13965 return 1; 13966 else if (reg->smax_value < sval) 13967 return 0; 13968 break; 13969 case BPF_JLE: 13970 if (reg->umax_value <= val) 13971 return 1; 13972 else if (reg->umin_value > val) 13973 return 0; 13974 break; 13975 case BPF_JSLE: 13976 if (reg->smax_value <= sval) 13977 return 1; 13978 else if (reg->smin_value > sval) 13979 return 0; 13980 break; 13981 } 13982 13983 return -1; 13984 } 13985 13986 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13987 * and return: 13988 * 1 - branch will be taken and "goto target" will be executed 13989 * 0 - branch will not be taken and fall-through to next insn 13990 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13991 * range [0,10] 13992 */ 13993 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13994 bool is_jmp32) 13995 { 13996 if (__is_pointer_value(false, reg)) { 13997 if (!reg_not_null(reg)) 13998 return -1; 13999 14000 /* If pointer is valid tests against zero will fail so we can 14001 * use this to direct branch taken. 14002 */ 14003 if (val != 0) 14004 return -1; 14005 14006 switch (opcode) { 14007 case BPF_JEQ: 14008 return 0; 14009 case BPF_JNE: 14010 return 1; 14011 default: 14012 return -1; 14013 } 14014 } 14015 14016 if (is_jmp32) 14017 return is_branch32_taken(reg, val, opcode); 14018 return is_branch64_taken(reg, val, opcode); 14019 } 14020 14021 static int flip_opcode(u32 opcode) 14022 { 14023 /* How can we transform "a <op> b" into "b <op> a"? */ 14024 static const u8 opcode_flip[16] = { 14025 /* these stay the same */ 14026 [BPF_JEQ >> 4] = BPF_JEQ, 14027 [BPF_JNE >> 4] = BPF_JNE, 14028 [BPF_JSET >> 4] = BPF_JSET, 14029 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14030 [BPF_JGE >> 4] = BPF_JLE, 14031 [BPF_JGT >> 4] = BPF_JLT, 14032 [BPF_JLE >> 4] = BPF_JGE, 14033 [BPF_JLT >> 4] = BPF_JGT, 14034 [BPF_JSGE >> 4] = BPF_JSLE, 14035 [BPF_JSGT >> 4] = BPF_JSLT, 14036 [BPF_JSLE >> 4] = BPF_JSGE, 14037 [BPF_JSLT >> 4] = BPF_JSGT 14038 }; 14039 return opcode_flip[opcode >> 4]; 14040 } 14041 14042 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14043 struct bpf_reg_state *src_reg, 14044 u8 opcode) 14045 { 14046 struct bpf_reg_state *pkt; 14047 14048 if (src_reg->type == PTR_TO_PACKET_END) { 14049 pkt = dst_reg; 14050 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14051 pkt = src_reg; 14052 opcode = flip_opcode(opcode); 14053 } else { 14054 return -1; 14055 } 14056 14057 if (pkt->range >= 0) 14058 return -1; 14059 14060 switch (opcode) { 14061 case BPF_JLE: 14062 /* pkt <= pkt_end */ 14063 fallthrough; 14064 case BPF_JGT: 14065 /* pkt > pkt_end */ 14066 if (pkt->range == BEYOND_PKT_END) 14067 /* pkt has at last one extra byte beyond pkt_end */ 14068 return opcode == BPF_JGT; 14069 break; 14070 case BPF_JLT: 14071 /* pkt < pkt_end */ 14072 fallthrough; 14073 case BPF_JGE: 14074 /* pkt >= pkt_end */ 14075 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14076 return opcode == BPF_JGE; 14077 break; 14078 } 14079 return -1; 14080 } 14081 14082 /* Adjusts the register min/max values in the case that the dst_reg is the 14083 * variable register that we are working on, and src_reg is a constant or we're 14084 * simply doing a BPF_K check. 14085 * In JEQ/JNE cases we also adjust the var_off values. 14086 */ 14087 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14088 struct bpf_reg_state *false_reg, 14089 u64 val, u32 val32, 14090 u8 opcode, bool is_jmp32) 14091 { 14092 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14093 struct tnum false_64off = false_reg->var_off; 14094 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14095 struct tnum true_64off = true_reg->var_off; 14096 s64 sval = (s64)val; 14097 s32 sval32 = (s32)val32; 14098 14099 /* If the dst_reg is a pointer, we can't learn anything about its 14100 * variable offset from the compare (unless src_reg were a pointer into 14101 * the same object, but we don't bother with that. 14102 * Since false_reg and true_reg have the same type by construction, we 14103 * only need to check one of them for pointerness. 14104 */ 14105 if (__is_pointer_value(false, false_reg)) 14106 return; 14107 14108 switch (opcode) { 14109 /* JEQ/JNE comparison doesn't change the register equivalence. 14110 * 14111 * r1 = r2; 14112 * if (r1 == 42) goto label; 14113 * ... 14114 * label: // here both r1 and r2 are known to be 42. 14115 * 14116 * Hence when marking register as known preserve it's ID. 14117 */ 14118 case BPF_JEQ: 14119 if (is_jmp32) { 14120 __mark_reg32_known(true_reg, val32); 14121 true_32off = tnum_subreg(true_reg->var_off); 14122 } else { 14123 ___mark_reg_known(true_reg, val); 14124 true_64off = true_reg->var_off; 14125 } 14126 break; 14127 case BPF_JNE: 14128 if (is_jmp32) { 14129 __mark_reg32_known(false_reg, val32); 14130 false_32off = tnum_subreg(false_reg->var_off); 14131 } else { 14132 ___mark_reg_known(false_reg, val); 14133 false_64off = false_reg->var_off; 14134 } 14135 break; 14136 case BPF_JSET: 14137 if (is_jmp32) { 14138 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14139 if (is_power_of_2(val32)) 14140 true_32off = tnum_or(true_32off, 14141 tnum_const(val32)); 14142 } else { 14143 false_64off = tnum_and(false_64off, tnum_const(~val)); 14144 if (is_power_of_2(val)) 14145 true_64off = tnum_or(true_64off, 14146 tnum_const(val)); 14147 } 14148 break; 14149 case BPF_JGE: 14150 case BPF_JGT: 14151 { 14152 if (is_jmp32) { 14153 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14154 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14155 14156 false_reg->u32_max_value = min(false_reg->u32_max_value, 14157 false_umax); 14158 true_reg->u32_min_value = max(true_reg->u32_min_value, 14159 true_umin); 14160 } else { 14161 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14162 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14163 14164 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14165 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14166 } 14167 break; 14168 } 14169 case BPF_JSGE: 14170 case BPF_JSGT: 14171 { 14172 if (is_jmp32) { 14173 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14174 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14175 14176 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14177 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14178 } else { 14179 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14180 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14181 14182 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14183 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14184 } 14185 break; 14186 } 14187 case BPF_JLE: 14188 case BPF_JLT: 14189 { 14190 if (is_jmp32) { 14191 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14192 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14193 14194 false_reg->u32_min_value = max(false_reg->u32_min_value, 14195 false_umin); 14196 true_reg->u32_max_value = min(true_reg->u32_max_value, 14197 true_umax); 14198 } else { 14199 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14200 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14201 14202 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14203 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14204 } 14205 break; 14206 } 14207 case BPF_JSLE: 14208 case BPF_JSLT: 14209 { 14210 if (is_jmp32) { 14211 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14212 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14213 14214 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14215 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14216 } else { 14217 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14218 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14219 14220 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14221 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14222 } 14223 break; 14224 } 14225 default: 14226 return; 14227 } 14228 14229 if (is_jmp32) { 14230 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14231 tnum_subreg(false_32off)); 14232 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14233 tnum_subreg(true_32off)); 14234 __reg_combine_32_into_64(false_reg); 14235 __reg_combine_32_into_64(true_reg); 14236 } else { 14237 false_reg->var_off = false_64off; 14238 true_reg->var_off = true_64off; 14239 __reg_combine_64_into_32(false_reg); 14240 __reg_combine_64_into_32(true_reg); 14241 } 14242 } 14243 14244 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14245 * the variable reg. 14246 */ 14247 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14248 struct bpf_reg_state *false_reg, 14249 u64 val, u32 val32, 14250 u8 opcode, bool is_jmp32) 14251 { 14252 opcode = flip_opcode(opcode); 14253 /* This uses zero as "not present in table"; luckily the zero opcode, 14254 * BPF_JA, can't get here. 14255 */ 14256 if (opcode) 14257 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14258 } 14259 14260 /* Regs are known to be equal, so intersect their min/max/var_off */ 14261 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14262 struct bpf_reg_state *dst_reg) 14263 { 14264 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14265 dst_reg->umin_value); 14266 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14267 dst_reg->umax_value); 14268 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14269 dst_reg->smin_value); 14270 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14271 dst_reg->smax_value); 14272 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14273 dst_reg->var_off); 14274 reg_bounds_sync(src_reg); 14275 reg_bounds_sync(dst_reg); 14276 } 14277 14278 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14279 struct bpf_reg_state *true_dst, 14280 struct bpf_reg_state *false_src, 14281 struct bpf_reg_state *false_dst, 14282 u8 opcode) 14283 { 14284 switch (opcode) { 14285 case BPF_JEQ: 14286 __reg_combine_min_max(true_src, true_dst); 14287 break; 14288 case BPF_JNE: 14289 __reg_combine_min_max(false_src, false_dst); 14290 break; 14291 } 14292 } 14293 14294 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14295 struct bpf_reg_state *reg, u32 id, 14296 bool is_null) 14297 { 14298 if (type_may_be_null(reg->type) && reg->id == id && 14299 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14300 /* Old offset (both fixed and variable parts) should have been 14301 * known-zero, because we don't allow pointer arithmetic on 14302 * pointers that might be NULL. If we see this happening, don't 14303 * convert the register. 14304 * 14305 * But in some cases, some helpers that return local kptrs 14306 * advance offset for the returned pointer. In those cases, it 14307 * is fine to expect to see reg->off. 14308 */ 14309 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14310 return; 14311 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14312 WARN_ON_ONCE(reg->off)) 14313 return; 14314 14315 if (is_null) { 14316 reg->type = SCALAR_VALUE; 14317 /* We don't need id and ref_obj_id from this point 14318 * onwards anymore, thus we should better reset it, 14319 * so that state pruning has chances to take effect. 14320 */ 14321 reg->id = 0; 14322 reg->ref_obj_id = 0; 14323 14324 return; 14325 } 14326 14327 mark_ptr_not_null_reg(reg); 14328 14329 if (!reg_may_point_to_spin_lock(reg)) { 14330 /* For not-NULL ptr, reg->ref_obj_id will be reset 14331 * in release_reference(). 14332 * 14333 * reg->id is still used by spin_lock ptr. Other 14334 * than spin_lock ptr type, reg->id can be reset. 14335 */ 14336 reg->id = 0; 14337 } 14338 } 14339 } 14340 14341 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14342 * be folded together at some point. 14343 */ 14344 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14345 bool is_null) 14346 { 14347 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14348 struct bpf_reg_state *regs = state->regs, *reg; 14349 u32 ref_obj_id = regs[regno].ref_obj_id; 14350 u32 id = regs[regno].id; 14351 14352 if (ref_obj_id && ref_obj_id == id && is_null) 14353 /* regs[regno] is in the " == NULL" branch. 14354 * No one could have freed the reference state before 14355 * doing the NULL check. 14356 */ 14357 WARN_ON_ONCE(release_reference_state(state, id)); 14358 14359 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14360 mark_ptr_or_null_reg(state, reg, id, is_null); 14361 })); 14362 } 14363 14364 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14365 struct bpf_reg_state *dst_reg, 14366 struct bpf_reg_state *src_reg, 14367 struct bpf_verifier_state *this_branch, 14368 struct bpf_verifier_state *other_branch) 14369 { 14370 if (BPF_SRC(insn->code) != BPF_X) 14371 return false; 14372 14373 /* Pointers are always 64-bit. */ 14374 if (BPF_CLASS(insn->code) == BPF_JMP32) 14375 return false; 14376 14377 switch (BPF_OP(insn->code)) { 14378 case BPF_JGT: 14379 if ((dst_reg->type == PTR_TO_PACKET && 14380 src_reg->type == PTR_TO_PACKET_END) || 14381 (dst_reg->type == PTR_TO_PACKET_META && 14382 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14383 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14384 find_good_pkt_pointers(this_branch, dst_reg, 14385 dst_reg->type, false); 14386 mark_pkt_end(other_branch, insn->dst_reg, true); 14387 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14388 src_reg->type == PTR_TO_PACKET) || 14389 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14390 src_reg->type == PTR_TO_PACKET_META)) { 14391 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14392 find_good_pkt_pointers(other_branch, src_reg, 14393 src_reg->type, true); 14394 mark_pkt_end(this_branch, insn->src_reg, false); 14395 } else { 14396 return false; 14397 } 14398 break; 14399 case BPF_JLT: 14400 if ((dst_reg->type == PTR_TO_PACKET && 14401 src_reg->type == PTR_TO_PACKET_END) || 14402 (dst_reg->type == PTR_TO_PACKET_META && 14403 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14404 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14405 find_good_pkt_pointers(other_branch, dst_reg, 14406 dst_reg->type, true); 14407 mark_pkt_end(this_branch, insn->dst_reg, false); 14408 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14409 src_reg->type == PTR_TO_PACKET) || 14410 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14411 src_reg->type == PTR_TO_PACKET_META)) { 14412 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14413 find_good_pkt_pointers(this_branch, src_reg, 14414 src_reg->type, false); 14415 mark_pkt_end(other_branch, insn->src_reg, true); 14416 } else { 14417 return false; 14418 } 14419 break; 14420 case BPF_JGE: 14421 if ((dst_reg->type == PTR_TO_PACKET && 14422 src_reg->type == PTR_TO_PACKET_END) || 14423 (dst_reg->type == PTR_TO_PACKET_META && 14424 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14425 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14426 find_good_pkt_pointers(this_branch, dst_reg, 14427 dst_reg->type, true); 14428 mark_pkt_end(other_branch, insn->dst_reg, false); 14429 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14430 src_reg->type == PTR_TO_PACKET) || 14431 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14432 src_reg->type == PTR_TO_PACKET_META)) { 14433 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14434 find_good_pkt_pointers(other_branch, src_reg, 14435 src_reg->type, false); 14436 mark_pkt_end(this_branch, insn->src_reg, true); 14437 } else { 14438 return false; 14439 } 14440 break; 14441 case BPF_JLE: 14442 if ((dst_reg->type == PTR_TO_PACKET && 14443 src_reg->type == PTR_TO_PACKET_END) || 14444 (dst_reg->type == PTR_TO_PACKET_META && 14445 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14446 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14447 find_good_pkt_pointers(other_branch, dst_reg, 14448 dst_reg->type, false); 14449 mark_pkt_end(this_branch, insn->dst_reg, true); 14450 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14451 src_reg->type == PTR_TO_PACKET) || 14452 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14453 src_reg->type == PTR_TO_PACKET_META)) { 14454 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14455 find_good_pkt_pointers(this_branch, src_reg, 14456 src_reg->type, true); 14457 mark_pkt_end(other_branch, insn->src_reg, false); 14458 } else { 14459 return false; 14460 } 14461 break; 14462 default: 14463 return false; 14464 } 14465 14466 return true; 14467 } 14468 14469 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14470 struct bpf_reg_state *known_reg) 14471 { 14472 struct bpf_func_state *state; 14473 struct bpf_reg_state *reg; 14474 14475 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14476 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14477 copy_register_state(reg, known_reg); 14478 })); 14479 } 14480 14481 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14482 struct bpf_insn *insn, int *insn_idx) 14483 { 14484 struct bpf_verifier_state *this_branch = env->cur_state; 14485 struct bpf_verifier_state *other_branch; 14486 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14487 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14488 struct bpf_reg_state *eq_branch_regs; 14489 u8 opcode = BPF_OP(insn->code); 14490 bool is_jmp32; 14491 int pred = -1; 14492 int err; 14493 14494 /* Only conditional jumps are expected to reach here. */ 14495 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14496 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14497 return -EINVAL; 14498 } 14499 14500 /* check src2 operand */ 14501 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14502 if (err) 14503 return err; 14504 14505 dst_reg = ®s[insn->dst_reg]; 14506 if (BPF_SRC(insn->code) == BPF_X) { 14507 if (insn->imm != 0) { 14508 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14509 return -EINVAL; 14510 } 14511 14512 /* check src1 operand */ 14513 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14514 if (err) 14515 return err; 14516 14517 src_reg = ®s[insn->src_reg]; 14518 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14519 is_pointer_value(env, insn->src_reg)) { 14520 verbose(env, "R%d pointer comparison prohibited\n", 14521 insn->src_reg); 14522 return -EACCES; 14523 } 14524 } else { 14525 if (insn->src_reg != BPF_REG_0) { 14526 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14527 return -EINVAL; 14528 } 14529 } 14530 14531 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14532 14533 if (BPF_SRC(insn->code) == BPF_K) { 14534 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14535 } else if (src_reg->type == SCALAR_VALUE && 14536 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14537 pred = is_branch_taken(dst_reg, 14538 tnum_subreg(src_reg->var_off).value, 14539 opcode, 14540 is_jmp32); 14541 } else if (src_reg->type == SCALAR_VALUE && 14542 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14543 pred = is_branch_taken(dst_reg, 14544 src_reg->var_off.value, 14545 opcode, 14546 is_jmp32); 14547 } else if (dst_reg->type == SCALAR_VALUE && 14548 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14549 pred = is_branch_taken(src_reg, 14550 tnum_subreg(dst_reg->var_off).value, 14551 flip_opcode(opcode), 14552 is_jmp32); 14553 } else if (dst_reg->type == SCALAR_VALUE && 14554 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14555 pred = is_branch_taken(src_reg, 14556 dst_reg->var_off.value, 14557 flip_opcode(opcode), 14558 is_jmp32); 14559 } else if (reg_is_pkt_pointer_any(dst_reg) && 14560 reg_is_pkt_pointer_any(src_reg) && 14561 !is_jmp32) { 14562 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14563 } 14564 14565 if (pred >= 0) { 14566 /* If we get here with a dst_reg pointer type it is because 14567 * above is_branch_taken() special cased the 0 comparison. 14568 */ 14569 if (!__is_pointer_value(false, dst_reg)) 14570 err = mark_chain_precision(env, insn->dst_reg); 14571 if (BPF_SRC(insn->code) == BPF_X && !err && 14572 !__is_pointer_value(false, src_reg)) 14573 err = mark_chain_precision(env, insn->src_reg); 14574 if (err) 14575 return err; 14576 } 14577 14578 if (pred == 1) { 14579 /* Only follow the goto, ignore fall-through. If needed, push 14580 * the fall-through branch for simulation under speculative 14581 * execution. 14582 */ 14583 if (!env->bypass_spec_v1 && 14584 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14585 *insn_idx)) 14586 return -EFAULT; 14587 if (env->log.level & BPF_LOG_LEVEL) 14588 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14589 *insn_idx += insn->off; 14590 return 0; 14591 } else if (pred == 0) { 14592 /* Only follow the fall-through branch, since that's where the 14593 * program will go. If needed, push the goto branch for 14594 * simulation under speculative execution. 14595 */ 14596 if (!env->bypass_spec_v1 && 14597 !sanitize_speculative_path(env, insn, 14598 *insn_idx + insn->off + 1, 14599 *insn_idx)) 14600 return -EFAULT; 14601 if (env->log.level & BPF_LOG_LEVEL) 14602 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14603 return 0; 14604 } 14605 14606 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14607 false); 14608 if (!other_branch) 14609 return -EFAULT; 14610 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14611 14612 /* detect if we are comparing against a constant value so we can adjust 14613 * our min/max values for our dst register. 14614 * this is only legit if both are scalars (or pointers to the same 14615 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14616 * because otherwise the different base pointers mean the offsets aren't 14617 * comparable. 14618 */ 14619 if (BPF_SRC(insn->code) == BPF_X) { 14620 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14621 14622 if (dst_reg->type == SCALAR_VALUE && 14623 src_reg->type == SCALAR_VALUE) { 14624 if (tnum_is_const(src_reg->var_off) || 14625 (is_jmp32 && 14626 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14627 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14628 dst_reg, 14629 src_reg->var_off.value, 14630 tnum_subreg(src_reg->var_off).value, 14631 opcode, is_jmp32); 14632 else if (tnum_is_const(dst_reg->var_off) || 14633 (is_jmp32 && 14634 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14635 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14636 src_reg, 14637 dst_reg->var_off.value, 14638 tnum_subreg(dst_reg->var_off).value, 14639 opcode, is_jmp32); 14640 else if (!is_jmp32 && 14641 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14642 /* Comparing for equality, we can combine knowledge */ 14643 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14644 &other_branch_regs[insn->dst_reg], 14645 src_reg, dst_reg, opcode); 14646 if (src_reg->id && 14647 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14648 find_equal_scalars(this_branch, src_reg); 14649 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14650 } 14651 14652 } 14653 } else if (dst_reg->type == SCALAR_VALUE) { 14654 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14655 dst_reg, insn->imm, (u32)insn->imm, 14656 opcode, is_jmp32); 14657 } 14658 14659 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14660 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14661 find_equal_scalars(this_branch, dst_reg); 14662 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14663 } 14664 14665 /* if one pointer register is compared to another pointer 14666 * register check if PTR_MAYBE_NULL could be lifted. 14667 * E.g. register A - maybe null 14668 * register B - not null 14669 * for JNE A, B, ... - A is not null in the false branch; 14670 * for JEQ A, B, ... - A is not null in the true branch. 14671 * 14672 * Since PTR_TO_BTF_ID points to a kernel struct that does 14673 * not need to be null checked by the BPF program, i.e., 14674 * could be null even without PTR_MAYBE_NULL marking, so 14675 * only propagate nullness when neither reg is that type. 14676 */ 14677 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14678 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14679 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14680 base_type(src_reg->type) != PTR_TO_BTF_ID && 14681 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14682 eq_branch_regs = NULL; 14683 switch (opcode) { 14684 case BPF_JEQ: 14685 eq_branch_regs = other_branch_regs; 14686 break; 14687 case BPF_JNE: 14688 eq_branch_regs = regs; 14689 break; 14690 default: 14691 /* do nothing */ 14692 break; 14693 } 14694 if (eq_branch_regs) { 14695 if (type_may_be_null(src_reg->type)) 14696 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14697 else 14698 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14699 } 14700 } 14701 14702 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14703 * NOTE: these optimizations below are related with pointer comparison 14704 * which will never be JMP32. 14705 */ 14706 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14707 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14708 type_may_be_null(dst_reg->type)) { 14709 /* Mark all identical registers in each branch as either 14710 * safe or unknown depending R == 0 or R != 0 conditional. 14711 */ 14712 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14713 opcode == BPF_JNE); 14714 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14715 opcode == BPF_JEQ); 14716 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14717 this_branch, other_branch) && 14718 is_pointer_value(env, insn->dst_reg)) { 14719 verbose(env, "R%d pointer comparison prohibited\n", 14720 insn->dst_reg); 14721 return -EACCES; 14722 } 14723 if (env->log.level & BPF_LOG_LEVEL) 14724 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14725 return 0; 14726 } 14727 14728 /* verify BPF_LD_IMM64 instruction */ 14729 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14730 { 14731 struct bpf_insn_aux_data *aux = cur_aux(env); 14732 struct bpf_reg_state *regs = cur_regs(env); 14733 struct bpf_reg_state *dst_reg; 14734 struct bpf_map *map; 14735 int err; 14736 14737 if (BPF_SIZE(insn->code) != BPF_DW) { 14738 verbose(env, "invalid BPF_LD_IMM insn\n"); 14739 return -EINVAL; 14740 } 14741 if (insn->off != 0) { 14742 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14743 return -EINVAL; 14744 } 14745 14746 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14747 if (err) 14748 return err; 14749 14750 dst_reg = ®s[insn->dst_reg]; 14751 if (insn->src_reg == 0) { 14752 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14753 14754 dst_reg->type = SCALAR_VALUE; 14755 __mark_reg_known(®s[insn->dst_reg], imm); 14756 return 0; 14757 } 14758 14759 /* All special src_reg cases are listed below. From this point onwards 14760 * we either succeed and assign a corresponding dst_reg->type after 14761 * zeroing the offset, or fail and reject the program. 14762 */ 14763 mark_reg_known_zero(env, regs, insn->dst_reg); 14764 14765 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14766 dst_reg->type = aux->btf_var.reg_type; 14767 switch (base_type(dst_reg->type)) { 14768 case PTR_TO_MEM: 14769 dst_reg->mem_size = aux->btf_var.mem_size; 14770 break; 14771 case PTR_TO_BTF_ID: 14772 dst_reg->btf = aux->btf_var.btf; 14773 dst_reg->btf_id = aux->btf_var.btf_id; 14774 break; 14775 default: 14776 verbose(env, "bpf verifier is misconfigured\n"); 14777 return -EFAULT; 14778 } 14779 return 0; 14780 } 14781 14782 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14783 struct bpf_prog_aux *aux = env->prog->aux; 14784 u32 subprogno = find_subprog(env, 14785 env->insn_idx + insn->imm + 1); 14786 14787 if (!aux->func_info) { 14788 verbose(env, "missing btf func_info\n"); 14789 return -EINVAL; 14790 } 14791 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14792 verbose(env, "callback function not static\n"); 14793 return -EINVAL; 14794 } 14795 14796 dst_reg->type = PTR_TO_FUNC; 14797 dst_reg->subprogno = subprogno; 14798 return 0; 14799 } 14800 14801 map = env->used_maps[aux->map_index]; 14802 dst_reg->map_ptr = map; 14803 14804 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14805 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14806 dst_reg->type = PTR_TO_MAP_VALUE; 14807 dst_reg->off = aux->map_off; 14808 WARN_ON_ONCE(map->max_entries != 1); 14809 /* We want reg->id to be same (0) as map_value is not distinct */ 14810 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14811 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14812 dst_reg->type = CONST_PTR_TO_MAP; 14813 } else { 14814 verbose(env, "bpf verifier is misconfigured\n"); 14815 return -EINVAL; 14816 } 14817 14818 return 0; 14819 } 14820 14821 static bool may_access_skb(enum bpf_prog_type type) 14822 { 14823 switch (type) { 14824 case BPF_PROG_TYPE_SOCKET_FILTER: 14825 case BPF_PROG_TYPE_SCHED_CLS: 14826 case BPF_PROG_TYPE_SCHED_ACT: 14827 return true; 14828 default: 14829 return false; 14830 } 14831 } 14832 14833 /* verify safety of LD_ABS|LD_IND instructions: 14834 * - they can only appear in the programs where ctx == skb 14835 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14836 * preserve R6-R9, and store return value into R0 14837 * 14838 * Implicit input: 14839 * ctx == skb == R6 == CTX 14840 * 14841 * Explicit input: 14842 * SRC == any register 14843 * IMM == 32-bit immediate 14844 * 14845 * Output: 14846 * R0 - 8/16/32-bit skb data converted to cpu endianness 14847 */ 14848 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14849 { 14850 struct bpf_reg_state *regs = cur_regs(env); 14851 static const int ctx_reg = BPF_REG_6; 14852 u8 mode = BPF_MODE(insn->code); 14853 int i, err; 14854 14855 if (!may_access_skb(resolve_prog_type(env->prog))) { 14856 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14857 return -EINVAL; 14858 } 14859 14860 if (!env->ops->gen_ld_abs) { 14861 verbose(env, "bpf verifier is misconfigured\n"); 14862 return -EINVAL; 14863 } 14864 14865 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14866 BPF_SIZE(insn->code) == BPF_DW || 14867 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14868 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14869 return -EINVAL; 14870 } 14871 14872 /* check whether implicit source operand (register R6) is readable */ 14873 err = check_reg_arg(env, ctx_reg, SRC_OP); 14874 if (err) 14875 return err; 14876 14877 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14878 * gen_ld_abs() may terminate the program at runtime, leading to 14879 * reference leak. 14880 */ 14881 err = check_reference_leak(env); 14882 if (err) { 14883 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14884 return err; 14885 } 14886 14887 if (env->cur_state->active_lock.ptr) { 14888 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14889 return -EINVAL; 14890 } 14891 14892 if (env->cur_state->active_rcu_lock) { 14893 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14894 return -EINVAL; 14895 } 14896 14897 if (regs[ctx_reg].type != PTR_TO_CTX) { 14898 verbose(env, 14899 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14900 return -EINVAL; 14901 } 14902 14903 if (mode == BPF_IND) { 14904 /* check explicit source operand */ 14905 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14906 if (err) 14907 return err; 14908 } 14909 14910 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14911 if (err < 0) 14912 return err; 14913 14914 /* reset caller saved regs to unreadable */ 14915 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14916 mark_reg_not_init(env, regs, caller_saved[i]); 14917 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14918 } 14919 14920 /* mark destination R0 register as readable, since it contains 14921 * the value fetched from the packet. 14922 * Already marked as written above. 14923 */ 14924 mark_reg_unknown(env, regs, BPF_REG_0); 14925 /* ld_abs load up to 32-bit skb data. */ 14926 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14927 return 0; 14928 } 14929 14930 static int check_return_code(struct bpf_verifier_env *env) 14931 { 14932 struct tnum enforce_attach_type_range = tnum_unknown; 14933 const struct bpf_prog *prog = env->prog; 14934 struct bpf_reg_state *reg; 14935 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14936 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14937 int err; 14938 struct bpf_func_state *frame = env->cur_state->frame[0]; 14939 const bool is_subprog = frame->subprogno; 14940 14941 /* LSM and struct_ops func-ptr's return type could be "void" */ 14942 if (!is_subprog) { 14943 switch (prog_type) { 14944 case BPF_PROG_TYPE_LSM: 14945 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14946 /* See below, can be 0 or 0-1 depending on hook. */ 14947 break; 14948 fallthrough; 14949 case BPF_PROG_TYPE_STRUCT_OPS: 14950 if (!prog->aux->attach_func_proto->type) 14951 return 0; 14952 break; 14953 default: 14954 break; 14955 } 14956 } 14957 14958 /* eBPF calling convention is such that R0 is used 14959 * to return the value from eBPF program. 14960 * Make sure that it's readable at this time 14961 * of bpf_exit, which means that program wrote 14962 * something into it earlier 14963 */ 14964 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14965 if (err) 14966 return err; 14967 14968 if (is_pointer_value(env, BPF_REG_0)) { 14969 verbose(env, "R0 leaks addr as return value\n"); 14970 return -EACCES; 14971 } 14972 14973 reg = cur_regs(env) + BPF_REG_0; 14974 14975 if (frame->in_async_callback_fn) { 14976 /* enforce return zero from async callbacks like timer */ 14977 if (reg->type != SCALAR_VALUE) { 14978 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14979 reg_type_str(env, reg->type)); 14980 return -EINVAL; 14981 } 14982 14983 if (!tnum_in(const_0, reg->var_off)) { 14984 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14985 return -EINVAL; 14986 } 14987 return 0; 14988 } 14989 14990 if (is_subprog) { 14991 if (reg->type != SCALAR_VALUE) { 14992 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14993 reg_type_str(env, reg->type)); 14994 return -EINVAL; 14995 } 14996 return 0; 14997 } 14998 14999 switch (prog_type) { 15000 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15001 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15002 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15003 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15004 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15005 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15006 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 15007 range = tnum_range(1, 1); 15008 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15009 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15010 range = tnum_range(0, 3); 15011 break; 15012 case BPF_PROG_TYPE_CGROUP_SKB: 15013 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15014 range = tnum_range(0, 3); 15015 enforce_attach_type_range = tnum_range(2, 3); 15016 } 15017 break; 15018 case BPF_PROG_TYPE_CGROUP_SOCK: 15019 case BPF_PROG_TYPE_SOCK_OPS: 15020 case BPF_PROG_TYPE_CGROUP_DEVICE: 15021 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15022 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15023 break; 15024 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15025 if (!env->prog->aux->attach_btf_id) 15026 return 0; 15027 range = tnum_const(0); 15028 break; 15029 case BPF_PROG_TYPE_TRACING: 15030 switch (env->prog->expected_attach_type) { 15031 case BPF_TRACE_FENTRY: 15032 case BPF_TRACE_FEXIT: 15033 range = tnum_const(0); 15034 break; 15035 case BPF_TRACE_RAW_TP: 15036 case BPF_MODIFY_RETURN: 15037 return 0; 15038 case BPF_TRACE_ITER: 15039 break; 15040 default: 15041 return -ENOTSUPP; 15042 } 15043 break; 15044 case BPF_PROG_TYPE_SK_LOOKUP: 15045 range = tnum_range(SK_DROP, SK_PASS); 15046 break; 15047 15048 case BPF_PROG_TYPE_LSM: 15049 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15050 /* Regular BPF_PROG_TYPE_LSM programs can return 15051 * any value. 15052 */ 15053 return 0; 15054 } 15055 if (!env->prog->aux->attach_func_proto->type) { 15056 /* Make sure programs that attach to void 15057 * hooks don't try to modify return value. 15058 */ 15059 range = tnum_range(1, 1); 15060 } 15061 break; 15062 15063 case BPF_PROG_TYPE_NETFILTER: 15064 range = tnum_range(NF_DROP, NF_ACCEPT); 15065 break; 15066 case BPF_PROG_TYPE_EXT: 15067 /* freplace program can return anything as its return value 15068 * depends on the to-be-replaced kernel func or bpf program. 15069 */ 15070 default: 15071 return 0; 15072 } 15073 15074 if (reg->type != SCALAR_VALUE) { 15075 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 15076 reg_type_str(env, reg->type)); 15077 return -EINVAL; 15078 } 15079 15080 if (!tnum_in(range, reg->var_off)) { 15081 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15082 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15083 prog_type == BPF_PROG_TYPE_LSM && 15084 !prog->aux->attach_func_proto->type) 15085 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15086 return -EINVAL; 15087 } 15088 15089 if (!tnum_is_unknown(enforce_attach_type_range) && 15090 tnum_in(enforce_attach_type_range, reg->var_off)) 15091 env->prog->enforce_expected_attach_type = 1; 15092 return 0; 15093 } 15094 15095 /* non-recursive DFS pseudo code 15096 * 1 procedure DFS-iterative(G,v): 15097 * 2 label v as discovered 15098 * 3 let S be a stack 15099 * 4 S.push(v) 15100 * 5 while S is not empty 15101 * 6 t <- S.peek() 15102 * 7 if t is what we're looking for: 15103 * 8 return t 15104 * 9 for all edges e in G.adjacentEdges(t) do 15105 * 10 if edge e is already labelled 15106 * 11 continue with the next edge 15107 * 12 w <- G.adjacentVertex(t,e) 15108 * 13 if vertex w is not discovered and not explored 15109 * 14 label e as tree-edge 15110 * 15 label w as discovered 15111 * 16 S.push(w) 15112 * 17 continue at 5 15113 * 18 else if vertex w is discovered 15114 * 19 label e as back-edge 15115 * 20 else 15116 * 21 // vertex w is explored 15117 * 22 label e as forward- or cross-edge 15118 * 23 label t as explored 15119 * 24 S.pop() 15120 * 15121 * convention: 15122 * 0x10 - discovered 15123 * 0x11 - discovered and fall-through edge labelled 15124 * 0x12 - discovered and fall-through and branch edges labelled 15125 * 0x20 - explored 15126 */ 15127 15128 enum { 15129 DISCOVERED = 0x10, 15130 EXPLORED = 0x20, 15131 FALLTHROUGH = 1, 15132 BRANCH = 2, 15133 }; 15134 15135 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15136 { 15137 env->insn_aux_data[idx].prune_point = true; 15138 } 15139 15140 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15141 { 15142 return env->insn_aux_data[insn_idx].prune_point; 15143 } 15144 15145 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15146 { 15147 env->insn_aux_data[idx].force_checkpoint = true; 15148 } 15149 15150 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15151 { 15152 return env->insn_aux_data[insn_idx].force_checkpoint; 15153 } 15154 15155 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15156 { 15157 env->insn_aux_data[idx].calls_callback = true; 15158 } 15159 15160 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15161 { 15162 return env->insn_aux_data[insn_idx].calls_callback; 15163 } 15164 15165 enum { 15166 DONE_EXPLORING = 0, 15167 KEEP_EXPLORING = 1, 15168 }; 15169 15170 /* t, w, e - match pseudo-code above: 15171 * t - index of current instruction 15172 * w - next instruction 15173 * e - edge 15174 */ 15175 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15176 { 15177 int *insn_stack = env->cfg.insn_stack; 15178 int *insn_state = env->cfg.insn_state; 15179 15180 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15181 return DONE_EXPLORING; 15182 15183 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15184 return DONE_EXPLORING; 15185 15186 if (w < 0 || w >= env->prog->len) { 15187 verbose_linfo(env, t, "%d: ", t); 15188 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15189 return -EINVAL; 15190 } 15191 15192 if (e == BRANCH) { 15193 /* mark branch target for state pruning */ 15194 mark_prune_point(env, w); 15195 mark_jmp_point(env, w); 15196 } 15197 15198 if (insn_state[w] == 0) { 15199 /* tree-edge */ 15200 insn_state[t] = DISCOVERED | e; 15201 insn_state[w] = DISCOVERED; 15202 if (env->cfg.cur_stack >= env->prog->len) 15203 return -E2BIG; 15204 insn_stack[env->cfg.cur_stack++] = w; 15205 return KEEP_EXPLORING; 15206 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15207 if (env->bpf_capable) 15208 return DONE_EXPLORING; 15209 verbose_linfo(env, t, "%d: ", t); 15210 verbose_linfo(env, w, "%d: ", w); 15211 verbose(env, "back-edge from insn %d to %d\n", t, w); 15212 return -EINVAL; 15213 } else if (insn_state[w] == EXPLORED) { 15214 /* forward- or cross-edge */ 15215 insn_state[t] = DISCOVERED | e; 15216 } else { 15217 verbose(env, "insn state internal bug\n"); 15218 return -EFAULT; 15219 } 15220 return DONE_EXPLORING; 15221 } 15222 15223 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15224 struct bpf_verifier_env *env, 15225 bool visit_callee) 15226 { 15227 int ret, insn_sz; 15228 15229 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15230 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15231 if (ret) 15232 return ret; 15233 15234 mark_prune_point(env, t + insn_sz); 15235 /* when we exit from subprog, we need to record non-linear history */ 15236 mark_jmp_point(env, t + insn_sz); 15237 15238 if (visit_callee) { 15239 mark_prune_point(env, t); 15240 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15241 } 15242 return ret; 15243 } 15244 15245 /* Visits the instruction at index t and returns one of the following: 15246 * < 0 - an error occurred 15247 * DONE_EXPLORING - the instruction was fully explored 15248 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15249 */ 15250 static int visit_insn(int t, struct bpf_verifier_env *env) 15251 { 15252 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15253 int ret, off, insn_sz; 15254 15255 if (bpf_pseudo_func(insn)) 15256 return visit_func_call_insn(t, insns, env, true); 15257 15258 /* All non-branch instructions have a single fall-through edge. */ 15259 if (BPF_CLASS(insn->code) != BPF_JMP && 15260 BPF_CLASS(insn->code) != BPF_JMP32) { 15261 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15262 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15263 } 15264 15265 switch (BPF_OP(insn->code)) { 15266 case BPF_EXIT: 15267 return DONE_EXPLORING; 15268 15269 case BPF_CALL: 15270 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15271 /* Mark this call insn as a prune point to trigger 15272 * is_state_visited() check before call itself is 15273 * processed by __check_func_call(). Otherwise new 15274 * async state will be pushed for further exploration. 15275 */ 15276 mark_prune_point(env, t); 15277 /* For functions that invoke callbacks it is not known how many times 15278 * callback would be called. Verifier models callback calling functions 15279 * by repeatedly visiting callback bodies and returning to origin call 15280 * instruction. 15281 * In order to stop such iteration verifier needs to identify when a 15282 * state identical some state from a previous iteration is reached. 15283 * Check below forces creation of checkpoint before callback calling 15284 * instruction to allow search for such identical states. 15285 */ 15286 if (is_sync_callback_calling_insn(insn)) { 15287 mark_calls_callback(env, t); 15288 mark_force_checkpoint(env, t); 15289 mark_prune_point(env, t); 15290 mark_jmp_point(env, t); 15291 } 15292 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15293 struct bpf_kfunc_call_arg_meta meta; 15294 15295 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15296 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15297 mark_prune_point(env, t); 15298 /* Checking and saving state checkpoints at iter_next() call 15299 * is crucial for fast convergence of open-coded iterator loop 15300 * logic, so we need to force it. If we don't do that, 15301 * is_state_visited() might skip saving a checkpoint, causing 15302 * unnecessarily long sequence of not checkpointed 15303 * instructions and jumps, leading to exhaustion of jump 15304 * history buffer, and potentially other undesired outcomes. 15305 * It is expected that with correct open-coded iterators 15306 * convergence will happen quickly, so we don't run a risk of 15307 * exhausting memory. 15308 */ 15309 mark_force_checkpoint(env, t); 15310 } 15311 } 15312 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15313 15314 case BPF_JA: 15315 if (BPF_SRC(insn->code) != BPF_K) 15316 return -EINVAL; 15317 15318 if (BPF_CLASS(insn->code) == BPF_JMP) 15319 off = insn->off; 15320 else 15321 off = insn->imm; 15322 15323 /* unconditional jump with single edge */ 15324 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15325 if (ret) 15326 return ret; 15327 15328 mark_prune_point(env, t + off + 1); 15329 mark_jmp_point(env, t + off + 1); 15330 15331 return ret; 15332 15333 default: 15334 /* conditional jump with two edges */ 15335 mark_prune_point(env, t); 15336 15337 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15338 if (ret) 15339 return ret; 15340 15341 return push_insn(t, t + insn->off + 1, BRANCH, env); 15342 } 15343 } 15344 15345 /* non-recursive depth-first-search to detect loops in BPF program 15346 * loop == back-edge in directed graph 15347 */ 15348 static int check_cfg(struct bpf_verifier_env *env) 15349 { 15350 int insn_cnt = env->prog->len; 15351 int *insn_stack, *insn_state; 15352 int ret = 0; 15353 int i; 15354 15355 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15356 if (!insn_state) 15357 return -ENOMEM; 15358 15359 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15360 if (!insn_stack) { 15361 kvfree(insn_state); 15362 return -ENOMEM; 15363 } 15364 15365 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15366 insn_stack[0] = 0; /* 0 is the first instruction */ 15367 env->cfg.cur_stack = 1; 15368 15369 while (env->cfg.cur_stack > 0) { 15370 int t = insn_stack[env->cfg.cur_stack - 1]; 15371 15372 ret = visit_insn(t, env); 15373 switch (ret) { 15374 case DONE_EXPLORING: 15375 insn_state[t] = EXPLORED; 15376 env->cfg.cur_stack--; 15377 break; 15378 case KEEP_EXPLORING: 15379 break; 15380 default: 15381 if (ret > 0) { 15382 verbose(env, "visit_insn internal bug\n"); 15383 ret = -EFAULT; 15384 } 15385 goto err_free; 15386 } 15387 } 15388 15389 if (env->cfg.cur_stack < 0) { 15390 verbose(env, "pop stack internal bug\n"); 15391 ret = -EFAULT; 15392 goto err_free; 15393 } 15394 15395 for (i = 0; i < insn_cnt; i++) { 15396 struct bpf_insn *insn = &env->prog->insnsi[i]; 15397 15398 if (insn_state[i] != EXPLORED) { 15399 verbose(env, "unreachable insn %d\n", i); 15400 ret = -EINVAL; 15401 goto err_free; 15402 } 15403 if (bpf_is_ldimm64(insn)) { 15404 if (insn_state[i + 1] != 0) { 15405 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15406 ret = -EINVAL; 15407 goto err_free; 15408 } 15409 i++; /* skip second half of ldimm64 */ 15410 } 15411 } 15412 ret = 0; /* cfg looks good */ 15413 15414 err_free: 15415 kvfree(insn_state); 15416 kvfree(insn_stack); 15417 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15418 return ret; 15419 } 15420 15421 static int check_abnormal_return(struct bpf_verifier_env *env) 15422 { 15423 int i; 15424 15425 for (i = 1; i < env->subprog_cnt; i++) { 15426 if (env->subprog_info[i].has_ld_abs) { 15427 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15428 return -EINVAL; 15429 } 15430 if (env->subprog_info[i].has_tail_call) { 15431 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15432 return -EINVAL; 15433 } 15434 } 15435 return 0; 15436 } 15437 15438 /* The minimum supported BTF func info size */ 15439 #define MIN_BPF_FUNCINFO_SIZE 8 15440 #define MAX_FUNCINFO_REC_SIZE 252 15441 15442 static int check_btf_func(struct bpf_verifier_env *env, 15443 const union bpf_attr *attr, 15444 bpfptr_t uattr) 15445 { 15446 const struct btf_type *type, *func_proto, *ret_type; 15447 u32 i, nfuncs, urec_size, min_size; 15448 u32 krec_size = sizeof(struct bpf_func_info); 15449 struct bpf_func_info *krecord; 15450 struct bpf_func_info_aux *info_aux = NULL; 15451 struct bpf_prog *prog; 15452 const struct btf *btf; 15453 bpfptr_t urecord; 15454 u32 prev_offset = 0; 15455 bool scalar_return; 15456 int ret = -ENOMEM; 15457 15458 nfuncs = attr->func_info_cnt; 15459 if (!nfuncs) { 15460 if (check_abnormal_return(env)) 15461 return -EINVAL; 15462 return 0; 15463 } 15464 15465 if (nfuncs != env->subprog_cnt) { 15466 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15467 return -EINVAL; 15468 } 15469 15470 urec_size = attr->func_info_rec_size; 15471 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15472 urec_size > MAX_FUNCINFO_REC_SIZE || 15473 urec_size % sizeof(u32)) { 15474 verbose(env, "invalid func info rec size %u\n", urec_size); 15475 return -EINVAL; 15476 } 15477 15478 prog = env->prog; 15479 btf = prog->aux->btf; 15480 15481 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15482 min_size = min_t(u32, krec_size, urec_size); 15483 15484 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15485 if (!krecord) 15486 return -ENOMEM; 15487 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15488 if (!info_aux) 15489 goto err_free; 15490 15491 for (i = 0; i < nfuncs; i++) { 15492 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15493 if (ret) { 15494 if (ret == -E2BIG) { 15495 verbose(env, "nonzero tailing record in func info"); 15496 /* set the size kernel expects so loader can zero 15497 * out the rest of the record. 15498 */ 15499 if (copy_to_bpfptr_offset(uattr, 15500 offsetof(union bpf_attr, func_info_rec_size), 15501 &min_size, sizeof(min_size))) 15502 ret = -EFAULT; 15503 } 15504 goto err_free; 15505 } 15506 15507 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15508 ret = -EFAULT; 15509 goto err_free; 15510 } 15511 15512 /* check insn_off */ 15513 ret = -EINVAL; 15514 if (i == 0) { 15515 if (krecord[i].insn_off) { 15516 verbose(env, 15517 "nonzero insn_off %u for the first func info record", 15518 krecord[i].insn_off); 15519 goto err_free; 15520 } 15521 } else if (krecord[i].insn_off <= prev_offset) { 15522 verbose(env, 15523 "same or smaller insn offset (%u) than previous func info record (%u)", 15524 krecord[i].insn_off, prev_offset); 15525 goto err_free; 15526 } 15527 15528 if (env->subprog_info[i].start != krecord[i].insn_off) { 15529 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15530 goto err_free; 15531 } 15532 15533 /* check type_id */ 15534 type = btf_type_by_id(btf, krecord[i].type_id); 15535 if (!type || !btf_type_is_func(type)) { 15536 verbose(env, "invalid type id %d in func info", 15537 krecord[i].type_id); 15538 goto err_free; 15539 } 15540 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15541 15542 func_proto = btf_type_by_id(btf, type->type); 15543 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15544 /* btf_func_check() already verified it during BTF load */ 15545 goto err_free; 15546 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15547 scalar_return = 15548 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15549 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15550 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15551 goto err_free; 15552 } 15553 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15554 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15555 goto err_free; 15556 } 15557 15558 prev_offset = krecord[i].insn_off; 15559 bpfptr_add(&urecord, urec_size); 15560 } 15561 15562 prog->aux->func_info = krecord; 15563 prog->aux->func_info_cnt = nfuncs; 15564 prog->aux->func_info_aux = info_aux; 15565 return 0; 15566 15567 err_free: 15568 kvfree(krecord); 15569 kfree(info_aux); 15570 return ret; 15571 } 15572 15573 static void adjust_btf_func(struct bpf_verifier_env *env) 15574 { 15575 struct bpf_prog_aux *aux = env->prog->aux; 15576 int i; 15577 15578 if (!aux->func_info) 15579 return; 15580 15581 for (i = 0; i < env->subprog_cnt; i++) 15582 aux->func_info[i].insn_off = env->subprog_info[i].start; 15583 } 15584 15585 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15586 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15587 15588 static int check_btf_line(struct bpf_verifier_env *env, 15589 const union bpf_attr *attr, 15590 bpfptr_t uattr) 15591 { 15592 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15593 struct bpf_subprog_info *sub; 15594 struct bpf_line_info *linfo; 15595 struct bpf_prog *prog; 15596 const struct btf *btf; 15597 bpfptr_t ulinfo; 15598 int err; 15599 15600 nr_linfo = attr->line_info_cnt; 15601 if (!nr_linfo) 15602 return 0; 15603 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15604 return -EINVAL; 15605 15606 rec_size = attr->line_info_rec_size; 15607 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15608 rec_size > MAX_LINEINFO_REC_SIZE || 15609 rec_size & (sizeof(u32) - 1)) 15610 return -EINVAL; 15611 15612 /* Need to zero it in case the userspace may 15613 * pass in a smaller bpf_line_info object. 15614 */ 15615 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15616 GFP_KERNEL | __GFP_NOWARN); 15617 if (!linfo) 15618 return -ENOMEM; 15619 15620 prog = env->prog; 15621 btf = prog->aux->btf; 15622 15623 s = 0; 15624 sub = env->subprog_info; 15625 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15626 expected_size = sizeof(struct bpf_line_info); 15627 ncopy = min_t(u32, expected_size, rec_size); 15628 for (i = 0; i < nr_linfo; i++) { 15629 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15630 if (err) { 15631 if (err == -E2BIG) { 15632 verbose(env, "nonzero tailing record in line_info"); 15633 if (copy_to_bpfptr_offset(uattr, 15634 offsetof(union bpf_attr, line_info_rec_size), 15635 &expected_size, sizeof(expected_size))) 15636 err = -EFAULT; 15637 } 15638 goto err_free; 15639 } 15640 15641 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15642 err = -EFAULT; 15643 goto err_free; 15644 } 15645 15646 /* 15647 * Check insn_off to ensure 15648 * 1) strictly increasing AND 15649 * 2) bounded by prog->len 15650 * 15651 * The linfo[0].insn_off == 0 check logically falls into 15652 * the later "missing bpf_line_info for func..." case 15653 * because the first linfo[0].insn_off must be the 15654 * first sub also and the first sub must have 15655 * subprog_info[0].start == 0. 15656 */ 15657 if ((i && linfo[i].insn_off <= prev_offset) || 15658 linfo[i].insn_off >= prog->len) { 15659 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15660 i, linfo[i].insn_off, prev_offset, 15661 prog->len); 15662 err = -EINVAL; 15663 goto err_free; 15664 } 15665 15666 if (!prog->insnsi[linfo[i].insn_off].code) { 15667 verbose(env, 15668 "Invalid insn code at line_info[%u].insn_off\n", 15669 i); 15670 err = -EINVAL; 15671 goto err_free; 15672 } 15673 15674 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15675 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15676 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15677 err = -EINVAL; 15678 goto err_free; 15679 } 15680 15681 if (s != env->subprog_cnt) { 15682 if (linfo[i].insn_off == sub[s].start) { 15683 sub[s].linfo_idx = i; 15684 s++; 15685 } else if (sub[s].start < linfo[i].insn_off) { 15686 verbose(env, "missing bpf_line_info for func#%u\n", s); 15687 err = -EINVAL; 15688 goto err_free; 15689 } 15690 } 15691 15692 prev_offset = linfo[i].insn_off; 15693 bpfptr_add(&ulinfo, rec_size); 15694 } 15695 15696 if (s != env->subprog_cnt) { 15697 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15698 env->subprog_cnt - s, s); 15699 err = -EINVAL; 15700 goto err_free; 15701 } 15702 15703 prog->aux->linfo = linfo; 15704 prog->aux->nr_linfo = nr_linfo; 15705 15706 return 0; 15707 15708 err_free: 15709 kvfree(linfo); 15710 return err; 15711 } 15712 15713 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15714 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15715 15716 static int check_core_relo(struct bpf_verifier_env *env, 15717 const union bpf_attr *attr, 15718 bpfptr_t uattr) 15719 { 15720 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15721 struct bpf_core_relo core_relo = {}; 15722 struct bpf_prog *prog = env->prog; 15723 const struct btf *btf = prog->aux->btf; 15724 struct bpf_core_ctx ctx = { 15725 .log = &env->log, 15726 .btf = btf, 15727 }; 15728 bpfptr_t u_core_relo; 15729 int err; 15730 15731 nr_core_relo = attr->core_relo_cnt; 15732 if (!nr_core_relo) 15733 return 0; 15734 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15735 return -EINVAL; 15736 15737 rec_size = attr->core_relo_rec_size; 15738 if (rec_size < MIN_CORE_RELO_SIZE || 15739 rec_size > MAX_CORE_RELO_SIZE || 15740 rec_size % sizeof(u32)) 15741 return -EINVAL; 15742 15743 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15744 expected_size = sizeof(struct bpf_core_relo); 15745 ncopy = min_t(u32, expected_size, rec_size); 15746 15747 /* Unlike func_info and line_info, copy and apply each CO-RE 15748 * relocation record one at a time. 15749 */ 15750 for (i = 0; i < nr_core_relo; i++) { 15751 /* future proofing when sizeof(bpf_core_relo) changes */ 15752 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15753 if (err) { 15754 if (err == -E2BIG) { 15755 verbose(env, "nonzero tailing record in core_relo"); 15756 if (copy_to_bpfptr_offset(uattr, 15757 offsetof(union bpf_attr, core_relo_rec_size), 15758 &expected_size, sizeof(expected_size))) 15759 err = -EFAULT; 15760 } 15761 break; 15762 } 15763 15764 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15765 err = -EFAULT; 15766 break; 15767 } 15768 15769 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15770 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15771 i, core_relo.insn_off, prog->len); 15772 err = -EINVAL; 15773 break; 15774 } 15775 15776 err = bpf_core_apply(&ctx, &core_relo, i, 15777 &prog->insnsi[core_relo.insn_off / 8]); 15778 if (err) 15779 break; 15780 bpfptr_add(&u_core_relo, rec_size); 15781 } 15782 return err; 15783 } 15784 15785 static int check_btf_info(struct bpf_verifier_env *env, 15786 const union bpf_attr *attr, 15787 bpfptr_t uattr) 15788 { 15789 struct btf *btf; 15790 int err; 15791 15792 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15793 if (check_abnormal_return(env)) 15794 return -EINVAL; 15795 return 0; 15796 } 15797 15798 btf = btf_get_by_fd(attr->prog_btf_fd); 15799 if (IS_ERR(btf)) 15800 return PTR_ERR(btf); 15801 if (btf_is_kernel(btf)) { 15802 btf_put(btf); 15803 return -EACCES; 15804 } 15805 env->prog->aux->btf = btf; 15806 15807 err = check_btf_func(env, attr, uattr); 15808 if (err) 15809 return err; 15810 15811 err = check_btf_line(env, attr, uattr); 15812 if (err) 15813 return err; 15814 15815 err = check_core_relo(env, attr, uattr); 15816 if (err) 15817 return err; 15818 15819 return 0; 15820 } 15821 15822 /* check %cur's range satisfies %old's */ 15823 static bool range_within(struct bpf_reg_state *old, 15824 struct bpf_reg_state *cur) 15825 { 15826 return old->umin_value <= cur->umin_value && 15827 old->umax_value >= cur->umax_value && 15828 old->smin_value <= cur->smin_value && 15829 old->smax_value >= cur->smax_value && 15830 old->u32_min_value <= cur->u32_min_value && 15831 old->u32_max_value >= cur->u32_max_value && 15832 old->s32_min_value <= cur->s32_min_value && 15833 old->s32_max_value >= cur->s32_max_value; 15834 } 15835 15836 /* If in the old state two registers had the same id, then they need to have 15837 * the same id in the new state as well. But that id could be different from 15838 * the old state, so we need to track the mapping from old to new ids. 15839 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15840 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15841 * regs with a different old id could still have new id 9, we don't care about 15842 * that. 15843 * So we look through our idmap to see if this old id has been seen before. If 15844 * so, we require the new id to match; otherwise, we add the id pair to the map. 15845 */ 15846 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15847 { 15848 struct bpf_id_pair *map = idmap->map; 15849 unsigned int i; 15850 15851 /* either both IDs should be set or both should be zero */ 15852 if (!!old_id != !!cur_id) 15853 return false; 15854 15855 if (old_id == 0) /* cur_id == 0 as well */ 15856 return true; 15857 15858 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15859 if (!map[i].old) { 15860 /* Reached an empty slot; haven't seen this id before */ 15861 map[i].old = old_id; 15862 map[i].cur = cur_id; 15863 return true; 15864 } 15865 if (map[i].old == old_id) 15866 return map[i].cur == cur_id; 15867 if (map[i].cur == cur_id) 15868 return false; 15869 } 15870 /* We ran out of idmap slots, which should be impossible */ 15871 WARN_ON_ONCE(1); 15872 return false; 15873 } 15874 15875 /* Similar to check_ids(), but allocate a unique temporary ID 15876 * for 'old_id' or 'cur_id' of zero. 15877 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15878 */ 15879 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15880 { 15881 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15882 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15883 15884 return check_ids(old_id, cur_id, idmap); 15885 } 15886 15887 static void clean_func_state(struct bpf_verifier_env *env, 15888 struct bpf_func_state *st) 15889 { 15890 enum bpf_reg_liveness live; 15891 int i, j; 15892 15893 for (i = 0; i < BPF_REG_FP; i++) { 15894 live = st->regs[i].live; 15895 /* liveness must not touch this register anymore */ 15896 st->regs[i].live |= REG_LIVE_DONE; 15897 if (!(live & REG_LIVE_READ)) 15898 /* since the register is unused, clear its state 15899 * to make further comparison simpler 15900 */ 15901 __mark_reg_not_init(env, &st->regs[i]); 15902 } 15903 15904 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15905 live = st->stack[i].spilled_ptr.live; 15906 /* liveness must not touch this stack slot anymore */ 15907 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15908 if (!(live & REG_LIVE_READ)) { 15909 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15910 for (j = 0; j < BPF_REG_SIZE; j++) 15911 st->stack[i].slot_type[j] = STACK_INVALID; 15912 } 15913 } 15914 } 15915 15916 static void clean_verifier_state(struct bpf_verifier_env *env, 15917 struct bpf_verifier_state *st) 15918 { 15919 int i; 15920 15921 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15922 /* all regs in this state in all frames were already marked */ 15923 return; 15924 15925 for (i = 0; i <= st->curframe; i++) 15926 clean_func_state(env, st->frame[i]); 15927 } 15928 15929 /* the parentage chains form a tree. 15930 * the verifier states are added to state lists at given insn and 15931 * pushed into state stack for future exploration. 15932 * when the verifier reaches bpf_exit insn some of the verifer states 15933 * stored in the state lists have their final liveness state already, 15934 * but a lot of states will get revised from liveness point of view when 15935 * the verifier explores other branches. 15936 * Example: 15937 * 1: r0 = 1 15938 * 2: if r1 == 100 goto pc+1 15939 * 3: r0 = 2 15940 * 4: exit 15941 * when the verifier reaches exit insn the register r0 in the state list of 15942 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15943 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15944 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15945 * 15946 * Since the verifier pushes the branch states as it sees them while exploring 15947 * the program the condition of walking the branch instruction for the second 15948 * time means that all states below this branch were already explored and 15949 * their final liveness marks are already propagated. 15950 * Hence when the verifier completes the search of state list in is_state_visited() 15951 * we can call this clean_live_states() function to mark all liveness states 15952 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15953 * will not be used. 15954 * This function also clears the registers and stack for states that !READ 15955 * to simplify state merging. 15956 * 15957 * Important note here that walking the same branch instruction in the callee 15958 * doesn't meant that the states are DONE. The verifier has to compare 15959 * the callsites 15960 */ 15961 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15962 struct bpf_verifier_state *cur) 15963 { 15964 struct bpf_verifier_state_list *sl; 15965 15966 sl = *explored_state(env, insn); 15967 while (sl) { 15968 if (sl->state.branches) 15969 goto next; 15970 if (sl->state.insn_idx != insn || 15971 !same_callsites(&sl->state, cur)) 15972 goto next; 15973 clean_verifier_state(env, &sl->state); 15974 next: 15975 sl = sl->next; 15976 } 15977 } 15978 15979 static bool regs_exact(const struct bpf_reg_state *rold, 15980 const struct bpf_reg_state *rcur, 15981 struct bpf_idmap *idmap) 15982 { 15983 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15984 check_ids(rold->id, rcur->id, idmap) && 15985 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15986 } 15987 15988 /* Returns true if (rold safe implies rcur safe) */ 15989 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15990 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 15991 { 15992 if (exact) 15993 return regs_exact(rold, rcur, idmap); 15994 15995 if (!(rold->live & REG_LIVE_READ)) 15996 /* explored state didn't use this */ 15997 return true; 15998 if (rold->type == NOT_INIT) 15999 /* explored state can't have used this */ 16000 return true; 16001 if (rcur->type == NOT_INIT) 16002 return false; 16003 16004 /* Enforce that register types have to match exactly, including their 16005 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16006 * rule. 16007 * 16008 * One can make a point that using a pointer register as unbounded 16009 * SCALAR would be technically acceptable, but this could lead to 16010 * pointer leaks because scalars are allowed to leak while pointers 16011 * are not. We could make this safe in special cases if root is 16012 * calling us, but it's probably not worth the hassle. 16013 * 16014 * Also, register types that are *not* MAYBE_NULL could technically be 16015 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16016 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16017 * to the same map). 16018 * However, if the old MAYBE_NULL register then got NULL checked, 16019 * doing so could have affected others with the same id, and we can't 16020 * check for that because we lost the id when we converted to 16021 * a non-MAYBE_NULL variant. 16022 * So, as a general rule we don't allow mixing MAYBE_NULL and 16023 * non-MAYBE_NULL registers as well. 16024 */ 16025 if (rold->type != rcur->type) 16026 return false; 16027 16028 switch (base_type(rold->type)) { 16029 case SCALAR_VALUE: 16030 if (env->explore_alu_limits) { 16031 /* explore_alu_limits disables tnum_in() and range_within() 16032 * logic and requires everything to be strict 16033 */ 16034 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16035 check_scalar_ids(rold->id, rcur->id, idmap); 16036 } 16037 if (!rold->precise) 16038 return true; 16039 /* Why check_ids() for scalar registers? 16040 * 16041 * Consider the following BPF code: 16042 * 1: r6 = ... unbound scalar, ID=a ... 16043 * 2: r7 = ... unbound scalar, ID=b ... 16044 * 3: if (r6 > r7) goto +1 16045 * 4: r6 = r7 16046 * 5: if (r6 > X) goto ... 16047 * 6: ... memory operation using r7 ... 16048 * 16049 * First verification path is [1-6]: 16050 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16051 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16052 * r7 <= X, because r6 and r7 share same id. 16053 * Next verification path is [1-4, 6]. 16054 * 16055 * Instruction (6) would be reached in two states: 16056 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16057 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16058 * 16059 * Use check_ids() to distinguish these states. 16060 * --- 16061 * Also verify that new value satisfies old value range knowledge. 16062 */ 16063 return range_within(rold, rcur) && 16064 tnum_in(rold->var_off, rcur->var_off) && 16065 check_scalar_ids(rold->id, rcur->id, idmap); 16066 case PTR_TO_MAP_KEY: 16067 case PTR_TO_MAP_VALUE: 16068 case PTR_TO_MEM: 16069 case PTR_TO_BUF: 16070 case PTR_TO_TP_BUFFER: 16071 /* If the new min/max/var_off satisfy the old ones and 16072 * everything else matches, we are OK. 16073 */ 16074 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16075 range_within(rold, rcur) && 16076 tnum_in(rold->var_off, rcur->var_off) && 16077 check_ids(rold->id, rcur->id, idmap) && 16078 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16079 case PTR_TO_PACKET_META: 16080 case PTR_TO_PACKET: 16081 /* We must have at least as much range as the old ptr 16082 * did, so that any accesses which were safe before are 16083 * still safe. This is true even if old range < old off, 16084 * since someone could have accessed through (ptr - k), or 16085 * even done ptr -= k in a register, to get a safe access. 16086 */ 16087 if (rold->range > rcur->range) 16088 return false; 16089 /* If the offsets don't match, we can't trust our alignment; 16090 * nor can we be sure that we won't fall out of range. 16091 */ 16092 if (rold->off != rcur->off) 16093 return false; 16094 /* id relations must be preserved */ 16095 if (!check_ids(rold->id, rcur->id, idmap)) 16096 return false; 16097 /* new val must satisfy old val knowledge */ 16098 return range_within(rold, rcur) && 16099 tnum_in(rold->var_off, rcur->var_off); 16100 case PTR_TO_STACK: 16101 /* two stack pointers are equal only if they're pointing to 16102 * the same stack frame, since fp-8 in foo != fp-8 in bar 16103 */ 16104 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16105 default: 16106 return regs_exact(rold, rcur, idmap); 16107 } 16108 } 16109 16110 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16111 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16112 { 16113 int i, spi; 16114 16115 /* walk slots of the explored stack and ignore any additional 16116 * slots in the current stack, since explored(safe) state 16117 * didn't use them 16118 */ 16119 for (i = 0; i < old->allocated_stack; i++) { 16120 struct bpf_reg_state *old_reg, *cur_reg; 16121 16122 spi = i / BPF_REG_SIZE; 16123 16124 if (exact && 16125 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16126 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16127 return false; 16128 16129 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16130 i += BPF_REG_SIZE - 1; 16131 /* explored state didn't use this */ 16132 continue; 16133 } 16134 16135 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16136 continue; 16137 16138 if (env->allow_uninit_stack && 16139 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16140 continue; 16141 16142 /* explored stack has more populated slots than current stack 16143 * and these slots were used 16144 */ 16145 if (i >= cur->allocated_stack) 16146 return false; 16147 16148 /* if old state was safe with misc data in the stack 16149 * it will be safe with zero-initialized stack. 16150 * The opposite is not true 16151 */ 16152 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16153 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16154 continue; 16155 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16156 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16157 /* Ex: old explored (safe) state has STACK_SPILL in 16158 * this stack slot, but current has STACK_MISC -> 16159 * this verifier states are not equivalent, 16160 * return false to continue verification of this path 16161 */ 16162 return false; 16163 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16164 continue; 16165 /* Both old and cur are having same slot_type */ 16166 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16167 case STACK_SPILL: 16168 /* when explored and current stack slot are both storing 16169 * spilled registers, check that stored pointers types 16170 * are the same as well. 16171 * Ex: explored safe path could have stored 16172 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16173 * but current path has stored: 16174 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16175 * such verifier states are not equivalent. 16176 * return false to continue verification of this path 16177 */ 16178 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16179 &cur->stack[spi].spilled_ptr, idmap, exact)) 16180 return false; 16181 break; 16182 case STACK_DYNPTR: 16183 old_reg = &old->stack[spi].spilled_ptr; 16184 cur_reg = &cur->stack[spi].spilled_ptr; 16185 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16186 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16187 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16188 return false; 16189 break; 16190 case STACK_ITER: 16191 old_reg = &old->stack[spi].spilled_ptr; 16192 cur_reg = &cur->stack[spi].spilled_ptr; 16193 /* iter.depth is not compared between states as it 16194 * doesn't matter for correctness and would otherwise 16195 * prevent convergence; we maintain it only to prevent 16196 * infinite loop check triggering, see 16197 * iter_active_depths_differ() 16198 */ 16199 if (old_reg->iter.btf != cur_reg->iter.btf || 16200 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16201 old_reg->iter.state != cur_reg->iter.state || 16202 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16203 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16204 return false; 16205 break; 16206 case STACK_MISC: 16207 case STACK_ZERO: 16208 case STACK_INVALID: 16209 continue; 16210 /* Ensure that new unhandled slot types return false by default */ 16211 default: 16212 return false; 16213 } 16214 } 16215 return true; 16216 } 16217 16218 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16219 struct bpf_idmap *idmap) 16220 { 16221 int i; 16222 16223 if (old->acquired_refs != cur->acquired_refs) 16224 return false; 16225 16226 for (i = 0; i < old->acquired_refs; i++) { 16227 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16228 return false; 16229 } 16230 16231 return true; 16232 } 16233 16234 /* compare two verifier states 16235 * 16236 * all states stored in state_list are known to be valid, since 16237 * verifier reached 'bpf_exit' instruction through them 16238 * 16239 * this function is called when verifier exploring different branches of 16240 * execution popped from the state stack. If it sees an old state that has 16241 * more strict register state and more strict stack state then this execution 16242 * branch doesn't need to be explored further, since verifier already 16243 * concluded that more strict state leads to valid finish. 16244 * 16245 * Therefore two states are equivalent if register state is more conservative 16246 * and explored stack state is more conservative than the current one. 16247 * Example: 16248 * explored current 16249 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16250 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16251 * 16252 * In other words if current stack state (one being explored) has more 16253 * valid slots than old one that already passed validation, it means 16254 * the verifier can stop exploring and conclude that current state is valid too 16255 * 16256 * Similarly with registers. If explored state has register type as invalid 16257 * whereas register type in current state is meaningful, it means that 16258 * the current state will reach 'bpf_exit' instruction safely 16259 */ 16260 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16261 struct bpf_func_state *cur, bool exact) 16262 { 16263 int i; 16264 16265 if (old->callback_depth > cur->callback_depth) 16266 return false; 16267 16268 for (i = 0; i < MAX_BPF_REG; i++) 16269 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16270 &env->idmap_scratch, exact)) 16271 return false; 16272 16273 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16274 return false; 16275 16276 if (!refsafe(old, cur, &env->idmap_scratch)) 16277 return false; 16278 16279 return true; 16280 } 16281 16282 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16283 { 16284 env->idmap_scratch.tmp_id_gen = env->id_gen; 16285 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16286 } 16287 16288 static bool states_equal(struct bpf_verifier_env *env, 16289 struct bpf_verifier_state *old, 16290 struct bpf_verifier_state *cur, 16291 bool exact) 16292 { 16293 int i; 16294 16295 if (old->curframe != cur->curframe) 16296 return false; 16297 16298 reset_idmap_scratch(env); 16299 16300 /* Verification state from speculative execution simulation 16301 * must never prune a non-speculative execution one. 16302 */ 16303 if (old->speculative && !cur->speculative) 16304 return false; 16305 16306 if (old->active_lock.ptr != cur->active_lock.ptr) 16307 return false; 16308 16309 /* Old and cur active_lock's have to be either both present 16310 * or both absent. 16311 */ 16312 if (!!old->active_lock.id != !!cur->active_lock.id) 16313 return false; 16314 16315 if (old->active_lock.id && 16316 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16317 return false; 16318 16319 if (old->active_rcu_lock != cur->active_rcu_lock) 16320 return false; 16321 16322 /* for states to be equal callsites have to be the same 16323 * and all frame states need to be equivalent 16324 */ 16325 for (i = 0; i <= old->curframe; i++) { 16326 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16327 return false; 16328 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16329 return false; 16330 } 16331 return true; 16332 } 16333 16334 /* Return 0 if no propagation happened. Return negative error code if error 16335 * happened. Otherwise, return the propagated bit. 16336 */ 16337 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16338 struct bpf_reg_state *reg, 16339 struct bpf_reg_state *parent_reg) 16340 { 16341 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16342 u8 flag = reg->live & REG_LIVE_READ; 16343 int err; 16344 16345 /* When comes here, read flags of PARENT_REG or REG could be any of 16346 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16347 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16348 */ 16349 if (parent_flag == REG_LIVE_READ64 || 16350 /* Or if there is no read flag from REG. */ 16351 !flag || 16352 /* Or if the read flag from REG is the same as PARENT_REG. */ 16353 parent_flag == flag) 16354 return 0; 16355 16356 err = mark_reg_read(env, reg, parent_reg, flag); 16357 if (err) 16358 return err; 16359 16360 return flag; 16361 } 16362 16363 /* A write screens off any subsequent reads; but write marks come from the 16364 * straight-line code between a state and its parent. When we arrive at an 16365 * equivalent state (jump target or such) we didn't arrive by the straight-line 16366 * code, so read marks in the state must propagate to the parent regardless 16367 * of the state's write marks. That's what 'parent == state->parent' comparison 16368 * in mark_reg_read() is for. 16369 */ 16370 static int propagate_liveness(struct bpf_verifier_env *env, 16371 const struct bpf_verifier_state *vstate, 16372 struct bpf_verifier_state *vparent) 16373 { 16374 struct bpf_reg_state *state_reg, *parent_reg; 16375 struct bpf_func_state *state, *parent; 16376 int i, frame, err = 0; 16377 16378 if (vparent->curframe != vstate->curframe) { 16379 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16380 vparent->curframe, vstate->curframe); 16381 return -EFAULT; 16382 } 16383 /* Propagate read liveness of registers... */ 16384 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16385 for (frame = 0; frame <= vstate->curframe; frame++) { 16386 parent = vparent->frame[frame]; 16387 state = vstate->frame[frame]; 16388 parent_reg = parent->regs; 16389 state_reg = state->regs; 16390 /* We don't need to worry about FP liveness, it's read-only */ 16391 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16392 err = propagate_liveness_reg(env, &state_reg[i], 16393 &parent_reg[i]); 16394 if (err < 0) 16395 return err; 16396 if (err == REG_LIVE_READ64) 16397 mark_insn_zext(env, &parent_reg[i]); 16398 } 16399 16400 /* Propagate stack slots. */ 16401 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16402 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16403 parent_reg = &parent->stack[i].spilled_ptr; 16404 state_reg = &state->stack[i].spilled_ptr; 16405 err = propagate_liveness_reg(env, state_reg, 16406 parent_reg); 16407 if (err < 0) 16408 return err; 16409 } 16410 } 16411 return 0; 16412 } 16413 16414 /* find precise scalars in the previous equivalent state and 16415 * propagate them into the current state 16416 */ 16417 static int propagate_precision(struct bpf_verifier_env *env, 16418 const struct bpf_verifier_state *old) 16419 { 16420 struct bpf_reg_state *state_reg; 16421 struct bpf_func_state *state; 16422 int i, err = 0, fr; 16423 bool first; 16424 16425 for (fr = old->curframe; fr >= 0; fr--) { 16426 state = old->frame[fr]; 16427 state_reg = state->regs; 16428 first = true; 16429 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16430 if (state_reg->type != SCALAR_VALUE || 16431 !state_reg->precise || 16432 !(state_reg->live & REG_LIVE_READ)) 16433 continue; 16434 if (env->log.level & BPF_LOG_LEVEL2) { 16435 if (first) 16436 verbose(env, "frame %d: propagating r%d", fr, i); 16437 else 16438 verbose(env, ",r%d", i); 16439 } 16440 bt_set_frame_reg(&env->bt, fr, i); 16441 first = false; 16442 } 16443 16444 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16445 if (!is_spilled_reg(&state->stack[i])) 16446 continue; 16447 state_reg = &state->stack[i].spilled_ptr; 16448 if (state_reg->type != SCALAR_VALUE || 16449 !state_reg->precise || 16450 !(state_reg->live & REG_LIVE_READ)) 16451 continue; 16452 if (env->log.level & BPF_LOG_LEVEL2) { 16453 if (first) 16454 verbose(env, "frame %d: propagating fp%d", 16455 fr, (-i - 1) * BPF_REG_SIZE); 16456 else 16457 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16458 } 16459 bt_set_frame_slot(&env->bt, fr, i); 16460 first = false; 16461 } 16462 if (!first) 16463 verbose(env, "\n"); 16464 } 16465 16466 err = mark_chain_precision_batch(env); 16467 if (err < 0) 16468 return err; 16469 16470 return 0; 16471 } 16472 16473 static bool states_maybe_looping(struct bpf_verifier_state *old, 16474 struct bpf_verifier_state *cur) 16475 { 16476 struct bpf_func_state *fold, *fcur; 16477 int i, fr = cur->curframe; 16478 16479 if (old->curframe != fr) 16480 return false; 16481 16482 fold = old->frame[fr]; 16483 fcur = cur->frame[fr]; 16484 for (i = 0; i < MAX_BPF_REG; i++) 16485 if (memcmp(&fold->regs[i], &fcur->regs[i], 16486 offsetof(struct bpf_reg_state, parent))) 16487 return false; 16488 return true; 16489 } 16490 16491 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16492 { 16493 return env->insn_aux_data[insn_idx].is_iter_next; 16494 } 16495 16496 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16497 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16498 * states to match, which otherwise would look like an infinite loop. So while 16499 * iter_next() calls are taken care of, we still need to be careful and 16500 * prevent erroneous and too eager declaration of "ininite loop", when 16501 * iterators are involved. 16502 * 16503 * Here's a situation in pseudo-BPF assembly form: 16504 * 16505 * 0: again: ; set up iter_next() call args 16506 * 1: r1 = &it ; <CHECKPOINT HERE> 16507 * 2: call bpf_iter_num_next ; this is iter_next() call 16508 * 3: if r0 == 0 goto done 16509 * 4: ... something useful here ... 16510 * 5: goto again ; another iteration 16511 * 6: done: 16512 * 7: r1 = &it 16513 * 8: call bpf_iter_num_destroy ; clean up iter state 16514 * 9: exit 16515 * 16516 * This is a typical loop. Let's assume that we have a prune point at 1:, 16517 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16518 * again`, assuming other heuristics don't get in a way). 16519 * 16520 * When we first time come to 1:, let's say we have some state X. We proceed 16521 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16522 * Now we come back to validate that forked ACTIVE state. We proceed through 16523 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16524 * are converging. But the problem is that we don't know that yet, as this 16525 * convergence has to happen at iter_next() call site only. So if nothing is 16526 * done, at 1: verifier will use bounded loop logic and declare infinite 16527 * looping (and would be *technically* correct, if not for iterator's 16528 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16529 * don't want that. So what we do in process_iter_next_call() when we go on 16530 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16531 * a different iteration. So when we suspect an infinite loop, we additionally 16532 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16533 * pretend we are not looping and wait for next iter_next() call. 16534 * 16535 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16536 * loop, because that would actually mean infinite loop, as DRAINED state is 16537 * "sticky", and so we'll keep returning into the same instruction with the 16538 * same state (at least in one of possible code paths). 16539 * 16540 * This approach allows to keep infinite loop heuristic even in the face of 16541 * active iterator. E.g., C snippet below is and will be detected as 16542 * inifintely looping: 16543 * 16544 * struct bpf_iter_num it; 16545 * int *p, x; 16546 * 16547 * bpf_iter_num_new(&it, 0, 10); 16548 * while ((p = bpf_iter_num_next(&t))) { 16549 * x = p; 16550 * while (x--) {} // <<-- infinite loop here 16551 * } 16552 * 16553 */ 16554 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16555 { 16556 struct bpf_reg_state *slot, *cur_slot; 16557 struct bpf_func_state *state; 16558 int i, fr; 16559 16560 for (fr = old->curframe; fr >= 0; fr--) { 16561 state = old->frame[fr]; 16562 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16563 if (state->stack[i].slot_type[0] != STACK_ITER) 16564 continue; 16565 16566 slot = &state->stack[i].spilled_ptr; 16567 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16568 continue; 16569 16570 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16571 if (cur_slot->iter.depth != slot->iter.depth) 16572 return true; 16573 } 16574 } 16575 return false; 16576 } 16577 16578 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16579 { 16580 struct bpf_verifier_state_list *new_sl; 16581 struct bpf_verifier_state_list *sl, **pprev; 16582 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16583 int i, j, n, err, states_cnt = 0; 16584 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16585 bool add_new_state = force_new_state; 16586 bool force_exact; 16587 16588 /* bpf progs typically have pruning point every 4 instructions 16589 * http://vger.kernel.org/bpfconf2019.html#session-1 16590 * Do not add new state for future pruning if the verifier hasn't seen 16591 * at least 2 jumps and at least 8 instructions. 16592 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16593 * In tests that amounts to up to 50% reduction into total verifier 16594 * memory consumption and 20% verifier time speedup. 16595 */ 16596 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16597 env->insn_processed - env->prev_insn_processed >= 8) 16598 add_new_state = true; 16599 16600 pprev = explored_state(env, insn_idx); 16601 sl = *pprev; 16602 16603 clean_live_states(env, insn_idx, cur); 16604 16605 while (sl) { 16606 states_cnt++; 16607 if (sl->state.insn_idx != insn_idx) 16608 goto next; 16609 16610 if (sl->state.branches) { 16611 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16612 16613 if (frame->in_async_callback_fn && 16614 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16615 /* Different async_entry_cnt means that the verifier is 16616 * processing another entry into async callback. 16617 * Seeing the same state is not an indication of infinite 16618 * loop or infinite recursion. 16619 * But finding the same state doesn't mean that it's safe 16620 * to stop processing the current state. The previous state 16621 * hasn't yet reached bpf_exit, since state.branches > 0. 16622 * Checking in_async_callback_fn alone is not enough either. 16623 * Since the verifier still needs to catch infinite loops 16624 * inside async callbacks. 16625 */ 16626 goto skip_inf_loop_check; 16627 } 16628 /* BPF open-coded iterators loop detection is special. 16629 * states_maybe_looping() logic is too simplistic in detecting 16630 * states that *might* be equivalent, because it doesn't know 16631 * about ID remapping, so don't even perform it. 16632 * See process_iter_next_call() and iter_active_depths_differ() 16633 * for overview of the logic. When current and one of parent 16634 * states are detected as equivalent, it's a good thing: we prove 16635 * convergence and can stop simulating further iterations. 16636 * It's safe to assume that iterator loop will finish, taking into 16637 * account iter_next() contract of eventually returning 16638 * sticky NULL result. 16639 * 16640 * Note, that states have to be compared exactly in this case because 16641 * read and precision marks might not be finalized inside the loop. 16642 * E.g. as in the program below: 16643 * 16644 * 1. r7 = -16 16645 * 2. r6 = bpf_get_prandom_u32() 16646 * 3. while (bpf_iter_num_next(&fp[-8])) { 16647 * 4. if (r6 != 42) { 16648 * 5. r7 = -32 16649 * 6. r6 = bpf_get_prandom_u32() 16650 * 7. continue 16651 * 8. } 16652 * 9. r0 = r10 16653 * 10. r0 += r7 16654 * 11. r8 = *(u64 *)(r0 + 0) 16655 * 12. r6 = bpf_get_prandom_u32() 16656 * 13. } 16657 * 16658 * Here verifier would first visit path 1-3, create a checkpoint at 3 16659 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16660 * not have read or precision mark for r7 yet, thus inexact states 16661 * comparison would discard current state with r7=-32 16662 * => unsafe memory access at 11 would not be caught. 16663 */ 16664 if (is_iter_next_insn(env, insn_idx)) { 16665 if (states_equal(env, &sl->state, cur, true)) { 16666 struct bpf_func_state *cur_frame; 16667 struct bpf_reg_state *iter_state, *iter_reg; 16668 int spi; 16669 16670 cur_frame = cur->frame[cur->curframe]; 16671 /* btf_check_iter_kfuncs() enforces that 16672 * iter state pointer is always the first arg 16673 */ 16674 iter_reg = &cur_frame->regs[BPF_REG_1]; 16675 /* current state is valid due to states_equal(), 16676 * so we can assume valid iter and reg state, 16677 * no need for extra (re-)validations 16678 */ 16679 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16680 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16681 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16682 update_loop_entry(cur, &sl->state); 16683 goto hit; 16684 } 16685 } 16686 goto skip_inf_loop_check; 16687 } 16688 if (calls_callback(env, insn_idx)) { 16689 if (states_equal(env, &sl->state, cur, true)) 16690 goto hit; 16691 goto skip_inf_loop_check; 16692 } 16693 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16694 if (states_maybe_looping(&sl->state, cur) && 16695 states_equal(env, &sl->state, cur, false) && 16696 !iter_active_depths_differ(&sl->state, cur) && 16697 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16698 verbose_linfo(env, insn_idx, "; "); 16699 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16700 verbose(env, "cur state:"); 16701 print_verifier_state(env, cur->frame[cur->curframe], true); 16702 verbose(env, "old state:"); 16703 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16704 return -EINVAL; 16705 } 16706 /* if the verifier is processing a loop, avoid adding new state 16707 * too often, since different loop iterations have distinct 16708 * states and may not help future pruning. 16709 * This threshold shouldn't be too low to make sure that 16710 * a loop with large bound will be rejected quickly. 16711 * The most abusive loop will be: 16712 * r1 += 1 16713 * if r1 < 1000000 goto pc-2 16714 * 1M insn_procssed limit / 100 == 10k peak states. 16715 * This threshold shouldn't be too high either, since states 16716 * at the end of the loop are likely to be useful in pruning. 16717 */ 16718 skip_inf_loop_check: 16719 if (!force_new_state && 16720 env->jmps_processed - env->prev_jmps_processed < 20 && 16721 env->insn_processed - env->prev_insn_processed < 100) 16722 add_new_state = false; 16723 goto miss; 16724 } 16725 /* If sl->state is a part of a loop and this loop's entry is a part of 16726 * current verification path then states have to be compared exactly. 16727 * 'force_exact' is needed to catch the following case: 16728 * 16729 * initial Here state 'succ' was processed first, 16730 * | it was eventually tracked to produce a 16731 * V state identical to 'hdr'. 16732 * .---------> hdr All branches from 'succ' had been explored 16733 * | | and thus 'succ' has its .branches == 0. 16734 * | V 16735 * | .------... Suppose states 'cur' and 'succ' correspond 16736 * | | | to the same instruction + callsites. 16737 * | V V In such case it is necessary to check 16738 * | ... ... if 'succ' and 'cur' are states_equal(). 16739 * | | | If 'succ' and 'cur' are a part of the 16740 * | V V same loop exact flag has to be set. 16741 * | succ <- cur To check if that is the case, verify 16742 * | | if loop entry of 'succ' is in current 16743 * | V DFS path. 16744 * | ... 16745 * | | 16746 * '----' 16747 * 16748 * Additional details are in the comment before get_loop_entry(). 16749 */ 16750 loop_entry = get_loop_entry(&sl->state); 16751 force_exact = loop_entry && loop_entry->branches > 0; 16752 if (states_equal(env, &sl->state, cur, force_exact)) { 16753 if (force_exact) 16754 update_loop_entry(cur, loop_entry); 16755 hit: 16756 sl->hit_cnt++; 16757 /* reached equivalent register/stack state, 16758 * prune the search. 16759 * Registers read by the continuation are read by us. 16760 * If we have any write marks in env->cur_state, they 16761 * will prevent corresponding reads in the continuation 16762 * from reaching our parent (an explored_state). Our 16763 * own state will get the read marks recorded, but 16764 * they'll be immediately forgotten as we're pruning 16765 * this state and will pop a new one. 16766 */ 16767 err = propagate_liveness(env, &sl->state, cur); 16768 16769 /* if previous state reached the exit with precision and 16770 * current state is equivalent to it (except precsion marks) 16771 * the precision needs to be propagated back in 16772 * the current state. 16773 */ 16774 err = err ? : push_jmp_history(env, cur); 16775 err = err ? : propagate_precision(env, &sl->state); 16776 if (err) 16777 return err; 16778 return 1; 16779 } 16780 miss: 16781 /* when new state is not going to be added do not increase miss count. 16782 * Otherwise several loop iterations will remove the state 16783 * recorded earlier. The goal of these heuristics is to have 16784 * states from some iterations of the loop (some in the beginning 16785 * and some at the end) to help pruning. 16786 */ 16787 if (add_new_state) 16788 sl->miss_cnt++; 16789 /* heuristic to determine whether this state is beneficial 16790 * to keep checking from state equivalence point of view. 16791 * Higher numbers increase max_states_per_insn and verification time, 16792 * but do not meaningfully decrease insn_processed. 16793 * 'n' controls how many times state could miss before eviction. 16794 * Use bigger 'n' for checkpoints because evicting checkpoint states 16795 * too early would hinder iterator convergence. 16796 */ 16797 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16798 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16799 /* the state is unlikely to be useful. Remove it to 16800 * speed up verification 16801 */ 16802 *pprev = sl->next; 16803 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16804 !sl->state.used_as_loop_entry) { 16805 u32 br = sl->state.branches; 16806 16807 WARN_ONCE(br, 16808 "BUG live_done but branches_to_explore %d\n", 16809 br); 16810 free_verifier_state(&sl->state, false); 16811 kfree(sl); 16812 env->peak_states--; 16813 } else { 16814 /* cannot free this state, since parentage chain may 16815 * walk it later. Add it for free_list instead to 16816 * be freed at the end of verification 16817 */ 16818 sl->next = env->free_list; 16819 env->free_list = sl; 16820 } 16821 sl = *pprev; 16822 continue; 16823 } 16824 next: 16825 pprev = &sl->next; 16826 sl = *pprev; 16827 } 16828 16829 if (env->max_states_per_insn < states_cnt) 16830 env->max_states_per_insn = states_cnt; 16831 16832 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16833 return 0; 16834 16835 if (!add_new_state) 16836 return 0; 16837 16838 /* There were no equivalent states, remember the current one. 16839 * Technically the current state is not proven to be safe yet, 16840 * but it will either reach outer most bpf_exit (which means it's safe) 16841 * or it will be rejected. When there are no loops the verifier won't be 16842 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16843 * again on the way to bpf_exit. 16844 * When looping the sl->state.branches will be > 0 and this state 16845 * will not be considered for equivalence until branches == 0. 16846 */ 16847 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16848 if (!new_sl) 16849 return -ENOMEM; 16850 env->total_states++; 16851 env->peak_states++; 16852 env->prev_jmps_processed = env->jmps_processed; 16853 env->prev_insn_processed = env->insn_processed; 16854 16855 /* forget precise markings we inherited, see __mark_chain_precision */ 16856 if (env->bpf_capable) 16857 mark_all_scalars_imprecise(env, cur); 16858 16859 /* add new state to the head of linked list */ 16860 new = &new_sl->state; 16861 err = copy_verifier_state(new, cur); 16862 if (err) { 16863 free_verifier_state(new, false); 16864 kfree(new_sl); 16865 return err; 16866 } 16867 new->insn_idx = insn_idx; 16868 WARN_ONCE(new->branches != 1, 16869 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16870 16871 cur->parent = new; 16872 cur->first_insn_idx = insn_idx; 16873 cur->dfs_depth = new->dfs_depth + 1; 16874 clear_jmp_history(cur); 16875 new_sl->next = *explored_state(env, insn_idx); 16876 *explored_state(env, insn_idx) = new_sl; 16877 /* connect new state to parentage chain. Current frame needs all 16878 * registers connected. Only r6 - r9 of the callers are alive (pushed 16879 * to the stack implicitly by JITs) so in callers' frames connect just 16880 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16881 * the state of the call instruction (with WRITTEN set), and r0 comes 16882 * from callee with its full parentage chain, anyway. 16883 */ 16884 /* clear write marks in current state: the writes we did are not writes 16885 * our child did, so they don't screen off its reads from us. 16886 * (There are no read marks in current state, because reads always mark 16887 * their parent and current state never has children yet. Only 16888 * explored_states can get read marks.) 16889 */ 16890 for (j = 0; j <= cur->curframe; j++) { 16891 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16892 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16893 for (i = 0; i < BPF_REG_FP; i++) 16894 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16895 } 16896 16897 /* all stack frames are accessible from callee, clear them all */ 16898 for (j = 0; j <= cur->curframe; j++) { 16899 struct bpf_func_state *frame = cur->frame[j]; 16900 struct bpf_func_state *newframe = new->frame[j]; 16901 16902 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16903 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16904 frame->stack[i].spilled_ptr.parent = 16905 &newframe->stack[i].spilled_ptr; 16906 } 16907 } 16908 return 0; 16909 } 16910 16911 /* Return true if it's OK to have the same insn return a different type. */ 16912 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16913 { 16914 switch (base_type(type)) { 16915 case PTR_TO_CTX: 16916 case PTR_TO_SOCKET: 16917 case PTR_TO_SOCK_COMMON: 16918 case PTR_TO_TCP_SOCK: 16919 case PTR_TO_XDP_SOCK: 16920 case PTR_TO_BTF_ID: 16921 return false; 16922 default: 16923 return true; 16924 } 16925 } 16926 16927 /* If an instruction was previously used with particular pointer types, then we 16928 * need to be careful to avoid cases such as the below, where it may be ok 16929 * for one branch accessing the pointer, but not ok for the other branch: 16930 * 16931 * R1 = sock_ptr 16932 * goto X; 16933 * ... 16934 * R1 = some_other_valid_ptr; 16935 * goto X; 16936 * ... 16937 * R2 = *(u32 *)(R1 + 0); 16938 */ 16939 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16940 { 16941 return src != prev && (!reg_type_mismatch_ok(src) || 16942 !reg_type_mismatch_ok(prev)); 16943 } 16944 16945 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16946 bool allow_trust_missmatch) 16947 { 16948 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16949 16950 if (*prev_type == NOT_INIT) { 16951 /* Saw a valid insn 16952 * dst_reg = *(u32 *)(src_reg + off) 16953 * save type to validate intersecting paths 16954 */ 16955 *prev_type = type; 16956 } else if (reg_type_mismatch(type, *prev_type)) { 16957 /* Abuser program is trying to use the same insn 16958 * dst_reg = *(u32*) (src_reg + off) 16959 * with different pointer types: 16960 * src_reg == ctx in one branch and 16961 * src_reg == stack|map in some other branch. 16962 * Reject it. 16963 */ 16964 if (allow_trust_missmatch && 16965 base_type(type) == PTR_TO_BTF_ID && 16966 base_type(*prev_type) == PTR_TO_BTF_ID) { 16967 /* 16968 * Have to support a use case when one path through 16969 * the program yields TRUSTED pointer while another 16970 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16971 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16972 */ 16973 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16974 } else { 16975 verbose(env, "same insn cannot be used with different pointers\n"); 16976 return -EINVAL; 16977 } 16978 } 16979 16980 return 0; 16981 } 16982 16983 static int do_check(struct bpf_verifier_env *env) 16984 { 16985 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16986 struct bpf_verifier_state *state = env->cur_state; 16987 struct bpf_insn *insns = env->prog->insnsi; 16988 struct bpf_reg_state *regs; 16989 int insn_cnt = env->prog->len; 16990 bool do_print_state = false; 16991 int prev_insn_idx = -1; 16992 16993 for (;;) { 16994 struct bpf_insn *insn; 16995 u8 class; 16996 int err; 16997 16998 env->prev_insn_idx = prev_insn_idx; 16999 if (env->insn_idx >= insn_cnt) { 17000 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17001 env->insn_idx, insn_cnt); 17002 return -EFAULT; 17003 } 17004 17005 insn = &insns[env->insn_idx]; 17006 class = BPF_CLASS(insn->code); 17007 17008 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17009 verbose(env, 17010 "BPF program is too large. Processed %d insn\n", 17011 env->insn_processed); 17012 return -E2BIG; 17013 } 17014 17015 state->last_insn_idx = env->prev_insn_idx; 17016 17017 if (is_prune_point(env, env->insn_idx)) { 17018 err = is_state_visited(env, env->insn_idx); 17019 if (err < 0) 17020 return err; 17021 if (err == 1) { 17022 /* found equivalent state, can prune the search */ 17023 if (env->log.level & BPF_LOG_LEVEL) { 17024 if (do_print_state) 17025 verbose(env, "\nfrom %d to %d%s: safe\n", 17026 env->prev_insn_idx, env->insn_idx, 17027 env->cur_state->speculative ? 17028 " (speculative execution)" : ""); 17029 else 17030 verbose(env, "%d: safe\n", env->insn_idx); 17031 } 17032 goto process_bpf_exit; 17033 } 17034 } 17035 17036 if (is_jmp_point(env, env->insn_idx)) { 17037 err = push_jmp_history(env, state); 17038 if (err) 17039 return err; 17040 } 17041 17042 if (signal_pending(current)) 17043 return -EAGAIN; 17044 17045 if (need_resched()) 17046 cond_resched(); 17047 17048 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17049 verbose(env, "\nfrom %d to %d%s:", 17050 env->prev_insn_idx, env->insn_idx, 17051 env->cur_state->speculative ? 17052 " (speculative execution)" : ""); 17053 print_verifier_state(env, state->frame[state->curframe], true); 17054 do_print_state = false; 17055 } 17056 17057 if (env->log.level & BPF_LOG_LEVEL) { 17058 const struct bpf_insn_cbs cbs = { 17059 .cb_call = disasm_kfunc_name, 17060 .cb_print = verbose, 17061 .private_data = env, 17062 }; 17063 17064 if (verifier_state_scratched(env)) 17065 print_insn_state(env, state->frame[state->curframe]); 17066 17067 verbose_linfo(env, env->insn_idx, "; "); 17068 env->prev_log_pos = env->log.end_pos; 17069 verbose(env, "%d: ", env->insn_idx); 17070 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17071 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17072 env->prev_log_pos = env->log.end_pos; 17073 } 17074 17075 if (bpf_prog_is_offloaded(env->prog->aux)) { 17076 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17077 env->prev_insn_idx); 17078 if (err) 17079 return err; 17080 } 17081 17082 regs = cur_regs(env); 17083 sanitize_mark_insn_seen(env); 17084 prev_insn_idx = env->insn_idx; 17085 17086 if (class == BPF_ALU || class == BPF_ALU64) { 17087 err = check_alu_op(env, insn); 17088 if (err) 17089 return err; 17090 17091 } else if (class == BPF_LDX) { 17092 enum bpf_reg_type src_reg_type; 17093 17094 /* check for reserved fields is already done */ 17095 17096 /* check src operand */ 17097 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17098 if (err) 17099 return err; 17100 17101 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17102 if (err) 17103 return err; 17104 17105 src_reg_type = regs[insn->src_reg].type; 17106 17107 /* check that memory (src_reg + off) is readable, 17108 * the state of dst_reg will be updated by this func 17109 */ 17110 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17111 insn->off, BPF_SIZE(insn->code), 17112 BPF_READ, insn->dst_reg, false, 17113 BPF_MODE(insn->code) == BPF_MEMSX); 17114 if (err) 17115 return err; 17116 17117 err = save_aux_ptr_type(env, src_reg_type, true); 17118 if (err) 17119 return err; 17120 } else if (class == BPF_STX) { 17121 enum bpf_reg_type dst_reg_type; 17122 17123 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17124 err = check_atomic(env, env->insn_idx, insn); 17125 if (err) 17126 return err; 17127 env->insn_idx++; 17128 continue; 17129 } 17130 17131 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17132 verbose(env, "BPF_STX uses reserved fields\n"); 17133 return -EINVAL; 17134 } 17135 17136 /* check src1 operand */ 17137 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17138 if (err) 17139 return err; 17140 /* check src2 operand */ 17141 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17142 if (err) 17143 return err; 17144 17145 dst_reg_type = regs[insn->dst_reg].type; 17146 17147 /* check that memory (dst_reg + off) is writeable */ 17148 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17149 insn->off, BPF_SIZE(insn->code), 17150 BPF_WRITE, insn->src_reg, false, false); 17151 if (err) 17152 return err; 17153 17154 err = save_aux_ptr_type(env, dst_reg_type, false); 17155 if (err) 17156 return err; 17157 } else if (class == BPF_ST) { 17158 enum bpf_reg_type dst_reg_type; 17159 17160 if (BPF_MODE(insn->code) != BPF_MEM || 17161 insn->src_reg != BPF_REG_0) { 17162 verbose(env, "BPF_ST uses reserved fields\n"); 17163 return -EINVAL; 17164 } 17165 /* check src operand */ 17166 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17167 if (err) 17168 return err; 17169 17170 dst_reg_type = regs[insn->dst_reg].type; 17171 17172 /* check that memory (dst_reg + off) is writeable */ 17173 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17174 insn->off, BPF_SIZE(insn->code), 17175 BPF_WRITE, -1, false, false); 17176 if (err) 17177 return err; 17178 17179 err = save_aux_ptr_type(env, dst_reg_type, false); 17180 if (err) 17181 return err; 17182 } else if (class == BPF_JMP || class == BPF_JMP32) { 17183 u8 opcode = BPF_OP(insn->code); 17184 17185 env->jmps_processed++; 17186 if (opcode == BPF_CALL) { 17187 if (BPF_SRC(insn->code) != BPF_K || 17188 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17189 && insn->off != 0) || 17190 (insn->src_reg != BPF_REG_0 && 17191 insn->src_reg != BPF_PSEUDO_CALL && 17192 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17193 insn->dst_reg != BPF_REG_0 || 17194 class == BPF_JMP32) { 17195 verbose(env, "BPF_CALL uses reserved fields\n"); 17196 return -EINVAL; 17197 } 17198 17199 if (env->cur_state->active_lock.ptr) { 17200 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17201 (insn->src_reg == BPF_PSEUDO_CALL) || 17202 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17203 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17204 verbose(env, "function calls are not allowed while holding a lock\n"); 17205 return -EINVAL; 17206 } 17207 } 17208 if (insn->src_reg == BPF_PSEUDO_CALL) 17209 err = check_func_call(env, insn, &env->insn_idx); 17210 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 17211 err = check_kfunc_call(env, insn, &env->insn_idx); 17212 else 17213 err = check_helper_call(env, insn, &env->insn_idx); 17214 if (err) 17215 return err; 17216 17217 mark_reg_scratched(env, BPF_REG_0); 17218 } else if (opcode == BPF_JA) { 17219 if (BPF_SRC(insn->code) != BPF_K || 17220 insn->src_reg != BPF_REG_0 || 17221 insn->dst_reg != BPF_REG_0 || 17222 (class == BPF_JMP && insn->imm != 0) || 17223 (class == BPF_JMP32 && insn->off != 0)) { 17224 verbose(env, "BPF_JA uses reserved fields\n"); 17225 return -EINVAL; 17226 } 17227 17228 if (class == BPF_JMP) 17229 env->insn_idx += insn->off + 1; 17230 else 17231 env->insn_idx += insn->imm + 1; 17232 continue; 17233 17234 } else if (opcode == BPF_EXIT) { 17235 if (BPF_SRC(insn->code) != BPF_K || 17236 insn->imm != 0 || 17237 insn->src_reg != BPF_REG_0 || 17238 insn->dst_reg != BPF_REG_0 || 17239 class == BPF_JMP32) { 17240 verbose(env, "BPF_EXIT uses reserved fields\n"); 17241 return -EINVAL; 17242 } 17243 17244 if (env->cur_state->active_lock.ptr && 17245 !in_rbtree_lock_required_cb(env)) { 17246 verbose(env, "bpf_spin_unlock is missing\n"); 17247 return -EINVAL; 17248 } 17249 17250 if (env->cur_state->active_rcu_lock && 17251 !in_rbtree_lock_required_cb(env)) { 17252 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17253 return -EINVAL; 17254 } 17255 17256 /* We must do check_reference_leak here before 17257 * prepare_func_exit to handle the case when 17258 * state->curframe > 0, it may be a callback 17259 * function, for which reference_state must 17260 * match caller reference state when it exits. 17261 */ 17262 err = check_reference_leak(env); 17263 if (err) 17264 return err; 17265 17266 if (state->curframe) { 17267 /* exit from nested function */ 17268 err = prepare_func_exit(env, &env->insn_idx); 17269 if (err) 17270 return err; 17271 do_print_state = true; 17272 continue; 17273 } 17274 17275 err = check_return_code(env); 17276 if (err) 17277 return err; 17278 process_bpf_exit: 17279 mark_verifier_state_scratched(env); 17280 update_branch_counts(env, env->cur_state); 17281 err = pop_stack(env, &prev_insn_idx, 17282 &env->insn_idx, pop_log); 17283 if (err < 0) { 17284 if (err != -ENOENT) 17285 return err; 17286 break; 17287 } else { 17288 do_print_state = true; 17289 continue; 17290 } 17291 } else { 17292 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17293 if (err) 17294 return err; 17295 } 17296 } else if (class == BPF_LD) { 17297 u8 mode = BPF_MODE(insn->code); 17298 17299 if (mode == BPF_ABS || mode == BPF_IND) { 17300 err = check_ld_abs(env, insn); 17301 if (err) 17302 return err; 17303 17304 } else if (mode == BPF_IMM) { 17305 err = check_ld_imm(env, insn); 17306 if (err) 17307 return err; 17308 17309 env->insn_idx++; 17310 sanitize_mark_insn_seen(env); 17311 } else { 17312 verbose(env, "invalid BPF_LD mode\n"); 17313 return -EINVAL; 17314 } 17315 } else { 17316 verbose(env, "unknown insn class %d\n", class); 17317 return -EINVAL; 17318 } 17319 17320 env->insn_idx++; 17321 } 17322 17323 return 0; 17324 } 17325 17326 static int find_btf_percpu_datasec(struct btf *btf) 17327 { 17328 const struct btf_type *t; 17329 const char *tname; 17330 int i, n; 17331 17332 /* 17333 * Both vmlinux and module each have their own ".data..percpu" 17334 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17335 * types to look at only module's own BTF types. 17336 */ 17337 n = btf_nr_types(btf); 17338 if (btf_is_module(btf)) 17339 i = btf_nr_types(btf_vmlinux); 17340 else 17341 i = 1; 17342 17343 for(; i < n; i++) { 17344 t = btf_type_by_id(btf, i); 17345 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17346 continue; 17347 17348 tname = btf_name_by_offset(btf, t->name_off); 17349 if (!strcmp(tname, ".data..percpu")) 17350 return i; 17351 } 17352 17353 return -ENOENT; 17354 } 17355 17356 /* replace pseudo btf_id with kernel symbol address */ 17357 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17358 struct bpf_insn *insn, 17359 struct bpf_insn_aux_data *aux) 17360 { 17361 const struct btf_var_secinfo *vsi; 17362 const struct btf_type *datasec; 17363 struct btf_mod_pair *btf_mod; 17364 const struct btf_type *t; 17365 const char *sym_name; 17366 bool percpu = false; 17367 u32 type, id = insn->imm; 17368 struct btf *btf; 17369 s32 datasec_id; 17370 u64 addr; 17371 int i, btf_fd, err; 17372 17373 btf_fd = insn[1].imm; 17374 if (btf_fd) { 17375 btf = btf_get_by_fd(btf_fd); 17376 if (IS_ERR(btf)) { 17377 verbose(env, "invalid module BTF object FD specified.\n"); 17378 return -EINVAL; 17379 } 17380 } else { 17381 if (!btf_vmlinux) { 17382 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17383 return -EINVAL; 17384 } 17385 btf = btf_vmlinux; 17386 btf_get(btf); 17387 } 17388 17389 t = btf_type_by_id(btf, id); 17390 if (!t) { 17391 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17392 err = -ENOENT; 17393 goto err_put; 17394 } 17395 17396 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17397 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17398 err = -EINVAL; 17399 goto err_put; 17400 } 17401 17402 sym_name = btf_name_by_offset(btf, t->name_off); 17403 addr = kallsyms_lookup_name(sym_name); 17404 if (!addr) { 17405 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17406 sym_name); 17407 err = -ENOENT; 17408 goto err_put; 17409 } 17410 insn[0].imm = (u32)addr; 17411 insn[1].imm = addr >> 32; 17412 17413 if (btf_type_is_func(t)) { 17414 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17415 aux->btf_var.mem_size = 0; 17416 goto check_btf; 17417 } 17418 17419 datasec_id = find_btf_percpu_datasec(btf); 17420 if (datasec_id > 0) { 17421 datasec = btf_type_by_id(btf, datasec_id); 17422 for_each_vsi(i, datasec, vsi) { 17423 if (vsi->type == id) { 17424 percpu = true; 17425 break; 17426 } 17427 } 17428 } 17429 17430 type = t->type; 17431 t = btf_type_skip_modifiers(btf, type, NULL); 17432 if (percpu) { 17433 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17434 aux->btf_var.btf = btf; 17435 aux->btf_var.btf_id = type; 17436 } else if (!btf_type_is_struct(t)) { 17437 const struct btf_type *ret; 17438 const char *tname; 17439 u32 tsize; 17440 17441 /* resolve the type size of ksym. */ 17442 ret = btf_resolve_size(btf, t, &tsize); 17443 if (IS_ERR(ret)) { 17444 tname = btf_name_by_offset(btf, t->name_off); 17445 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17446 tname, PTR_ERR(ret)); 17447 err = -EINVAL; 17448 goto err_put; 17449 } 17450 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17451 aux->btf_var.mem_size = tsize; 17452 } else { 17453 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17454 aux->btf_var.btf = btf; 17455 aux->btf_var.btf_id = type; 17456 } 17457 check_btf: 17458 /* check whether we recorded this BTF (and maybe module) already */ 17459 for (i = 0; i < env->used_btf_cnt; i++) { 17460 if (env->used_btfs[i].btf == btf) { 17461 btf_put(btf); 17462 return 0; 17463 } 17464 } 17465 17466 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17467 err = -E2BIG; 17468 goto err_put; 17469 } 17470 17471 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17472 btf_mod->btf = btf; 17473 btf_mod->module = NULL; 17474 17475 /* if we reference variables from kernel module, bump its refcount */ 17476 if (btf_is_module(btf)) { 17477 btf_mod->module = btf_try_get_module(btf); 17478 if (!btf_mod->module) { 17479 err = -ENXIO; 17480 goto err_put; 17481 } 17482 } 17483 17484 env->used_btf_cnt++; 17485 17486 return 0; 17487 err_put: 17488 btf_put(btf); 17489 return err; 17490 } 17491 17492 static bool is_tracing_prog_type(enum bpf_prog_type type) 17493 { 17494 switch (type) { 17495 case BPF_PROG_TYPE_KPROBE: 17496 case BPF_PROG_TYPE_TRACEPOINT: 17497 case BPF_PROG_TYPE_PERF_EVENT: 17498 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17499 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17500 return true; 17501 default: 17502 return false; 17503 } 17504 } 17505 17506 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17507 struct bpf_map *map, 17508 struct bpf_prog *prog) 17509 17510 { 17511 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17512 17513 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17514 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17515 if (is_tracing_prog_type(prog_type)) { 17516 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17517 return -EINVAL; 17518 } 17519 } 17520 17521 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17522 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17523 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17524 return -EINVAL; 17525 } 17526 17527 if (is_tracing_prog_type(prog_type)) { 17528 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17529 return -EINVAL; 17530 } 17531 } 17532 17533 if (btf_record_has_field(map->record, BPF_TIMER)) { 17534 if (is_tracing_prog_type(prog_type)) { 17535 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17536 return -EINVAL; 17537 } 17538 } 17539 17540 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17541 !bpf_offload_prog_map_match(prog, map)) { 17542 verbose(env, "offload device mismatch between prog and map\n"); 17543 return -EINVAL; 17544 } 17545 17546 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17547 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17548 return -EINVAL; 17549 } 17550 17551 if (prog->aux->sleepable) 17552 switch (map->map_type) { 17553 case BPF_MAP_TYPE_HASH: 17554 case BPF_MAP_TYPE_LRU_HASH: 17555 case BPF_MAP_TYPE_ARRAY: 17556 case BPF_MAP_TYPE_PERCPU_HASH: 17557 case BPF_MAP_TYPE_PERCPU_ARRAY: 17558 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17559 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17560 case BPF_MAP_TYPE_HASH_OF_MAPS: 17561 case BPF_MAP_TYPE_RINGBUF: 17562 case BPF_MAP_TYPE_USER_RINGBUF: 17563 case BPF_MAP_TYPE_INODE_STORAGE: 17564 case BPF_MAP_TYPE_SK_STORAGE: 17565 case BPF_MAP_TYPE_TASK_STORAGE: 17566 case BPF_MAP_TYPE_CGRP_STORAGE: 17567 break; 17568 default: 17569 verbose(env, 17570 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17571 return -EINVAL; 17572 } 17573 17574 return 0; 17575 } 17576 17577 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17578 { 17579 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17580 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17581 } 17582 17583 /* find and rewrite pseudo imm in ld_imm64 instructions: 17584 * 17585 * 1. if it accesses map FD, replace it with actual map pointer. 17586 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17587 * 17588 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17589 */ 17590 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17591 { 17592 struct bpf_insn *insn = env->prog->insnsi; 17593 int insn_cnt = env->prog->len; 17594 int i, j, err; 17595 17596 err = bpf_prog_calc_tag(env->prog); 17597 if (err) 17598 return err; 17599 17600 for (i = 0; i < insn_cnt; i++, insn++) { 17601 if (BPF_CLASS(insn->code) == BPF_LDX && 17602 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17603 insn->imm != 0)) { 17604 verbose(env, "BPF_LDX uses reserved fields\n"); 17605 return -EINVAL; 17606 } 17607 17608 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17609 struct bpf_insn_aux_data *aux; 17610 struct bpf_map *map; 17611 struct fd f; 17612 u64 addr; 17613 u32 fd; 17614 17615 if (i == insn_cnt - 1 || insn[1].code != 0 || 17616 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17617 insn[1].off != 0) { 17618 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17619 return -EINVAL; 17620 } 17621 17622 if (insn[0].src_reg == 0) 17623 /* valid generic load 64-bit imm */ 17624 goto next_insn; 17625 17626 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17627 aux = &env->insn_aux_data[i]; 17628 err = check_pseudo_btf_id(env, insn, aux); 17629 if (err) 17630 return err; 17631 goto next_insn; 17632 } 17633 17634 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17635 aux = &env->insn_aux_data[i]; 17636 aux->ptr_type = PTR_TO_FUNC; 17637 goto next_insn; 17638 } 17639 17640 /* In final convert_pseudo_ld_imm64() step, this is 17641 * converted into regular 64-bit imm load insn. 17642 */ 17643 switch (insn[0].src_reg) { 17644 case BPF_PSEUDO_MAP_VALUE: 17645 case BPF_PSEUDO_MAP_IDX_VALUE: 17646 break; 17647 case BPF_PSEUDO_MAP_FD: 17648 case BPF_PSEUDO_MAP_IDX: 17649 if (insn[1].imm == 0) 17650 break; 17651 fallthrough; 17652 default: 17653 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17654 return -EINVAL; 17655 } 17656 17657 switch (insn[0].src_reg) { 17658 case BPF_PSEUDO_MAP_IDX_VALUE: 17659 case BPF_PSEUDO_MAP_IDX: 17660 if (bpfptr_is_null(env->fd_array)) { 17661 verbose(env, "fd_idx without fd_array is invalid\n"); 17662 return -EPROTO; 17663 } 17664 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17665 insn[0].imm * sizeof(fd), 17666 sizeof(fd))) 17667 return -EFAULT; 17668 break; 17669 default: 17670 fd = insn[0].imm; 17671 break; 17672 } 17673 17674 f = fdget(fd); 17675 map = __bpf_map_get(f); 17676 if (IS_ERR(map)) { 17677 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 17678 return PTR_ERR(map); 17679 } 17680 17681 err = check_map_prog_compatibility(env, map, env->prog); 17682 if (err) { 17683 fdput(f); 17684 return err; 17685 } 17686 17687 aux = &env->insn_aux_data[i]; 17688 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17689 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17690 addr = (unsigned long)map; 17691 } else { 17692 u32 off = insn[1].imm; 17693 17694 if (off >= BPF_MAX_VAR_OFF) { 17695 verbose(env, "direct value offset of %u is not allowed\n", off); 17696 fdput(f); 17697 return -EINVAL; 17698 } 17699 17700 if (!map->ops->map_direct_value_addr) { 17701 verbose(env, "no direct value access support for this map type\n"); 17702 fdput(f); 17703 return -EINVAL; 17704 } 17705 17706 err = map->ops->map_direct_value_addr(map, &addr, off); 17707 if (err) { 17708 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17709 map->value_size, off); 17710 fdput(f); 17711 return err; 17712 } 17713 17714 aux->map_off = off; 17715 addr += off; 17716 } 17717 17718 insn[0].imm = (u32)addr; 17719 insn[1].imm = addr >> 32; 17720 17721 /* check whether we recorded this map already */ 17722 for (j = 0; j < env->used_map_cnt; j++) { 17723 if (env->used_maps[j] == map) { 17724 aux->map_index = j; 17725 fdput(f); 17726 goto next_insn; 17727 } 17728 } 17729 17730 if (env->used_map_cnt >= MAX_USED_MAPS) { 17731 fdput(f); 17732 return -E2BIG; 17733 } 17734 17735 /* hold the map. If the program is rejected by verifier, 17736 * the map will be released by release_maps() or it 17737 * will be used by the valid program until it's unloaded 17738 * and all maps are released in free_used_maps() 17739 */ 17740 bpf_map_inc(map); 17741 17742 aux->map_index = env->used_map_cnt; 17743 env->used_maps[env->used_map_cnt++] = map; 17744 17745 if (bpf_map_is_cgroup_storage(map) && 17746 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17747 verbose(env, "only one cgroup storage of each type is allowed\n"); 17748 fdput(f); 17749 return -EBUSY; 17750 } 17751 17752 fdput(f); 17753 next_insn: 17754 insn++; 17755 i++; 17756 continue; 17757 } 17758 17759 /* Basic sanity check before we invest more work here. */ 17760 if (!bpf_opcode_in_insntable(insn->code)) { 17761 verbose(env, "unknown opcode %02x\n", insn->code); 17762 return -EINVAL; 17763 } 17764 } 17765 17766 /* now all pseudo BPF_LD_IMM64 instructions load valid 17767 * 'struct bpf_map *' into a register instead of user map_fd. 17768 * These pointers will be used later by verifier to validate map access. 17769 */ 17770 return 0; 17771 } 17772 17773 /* drop refcnt of maps used by the rejected program */ 17774 static void release_maps(struct bpf_verifier_env *env) 17775 { 17776 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17777 env->used_map_cnt); 17778 } 17779 17780 /* drop refcnt of maps used by the rejected program */ 17781 static void release_btfs(struct bpf_verifier_env *env) 17782 { 17783 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17784 env->used_btf_cnt); 17785 } 17786 17787 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17788 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17789 { 17790 struct bpf_insn *insn = env->prog->insnsi; 17791 int insn_cnt = env->prog->len; 17792 int i; 17793 17794 for (i = 0; i < insn_cnt; i++, insn++) { 17795 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17796 continue; 17797 if (insn->src_reg == BPF_PSEUDO_FUNC) 17798 continue; 17799 insn->src_reg = 0; 17800 } 17801 } 17802 17803 /* single env->prog->insni[off] instruction was replaced with the range 17804 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17805 * [0, off) and [off, end) to new locations, so the patched range stays zero 17806 */ 17807 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17808 struct bpf_insn_aux_data *new_data, 17809 struct bpf_prog *new_prog, u32 off, u32 cnt) 17810 { 17811 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17812 struct bpf_insn *insn = new_prog->insnsi; 17813 u32 old_seen = old_data[off].seen; 17814 u32 prog_len; 17815 int i; 17816 17817 /* aux info at OFF always needs adjustment, no matter fast path 17818 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17819 * original insn at old prog. 17820 */ 17821 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17822 17823 if (cnt == 1) 17824 return; 17825 prog_len = new_prog->len; 17826 17827 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17828 memcpy(new_data + off + cnt - 1, old_data + off, 17829 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17830 for (i = off; i < off + cnt - 1; i++) { 17831 /* Expand insni[off]'s seen count to the patched range. */ 17832 new_data[i].seen = old_seen; 17833 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17834 } 17835 env->insn_aux_data = new_data; 17836 vfree(old_data); 17837 } 17838 17839 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17840 { 17841 int i; 17842 17843 if (len == 1) 17844 return; 17845 /* NOTE: fake 'exit' subprog should be updated as well. */ 17846 for (i = 0; i <= env->subprog_cnt; i++) { 17847 if (env->subprog_info[i].start <= off) 17848 continue; 17849 env->subprog_info[i].start += len - 1; 17850 } 17851 } 17852 17853 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17854 { 17855 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17856 int i, sz = prog->aux->size_poke_tab; 17857 struct bpf_jit_poke_descriptor *desc; 17858 17859 for (i = 0; i < sz; i++) { 17860 desc = &tab[i]; 17861 if (desc->insn_idx <= off) 17862 continue; 17863 desc->insn_idx += len - 1; 17864 } 17865 } 17866 17867 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17868 const struct bpf_insn *patch, u32 len) 17869 { 17870 struct bpf_prog *new_prog; 17871 struct bpf_insn_aux_data *new_data = NULL; 17872 17873 if (len > 1) { 17874 new_data = vzalloc(array_size(env->prog->len + len - 1, 17875 sizeof(struct bpf_insn_aux_data))); 17876 if (!new_data) 17877 return NULL; 17878 } 17879 17880 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17881 if (IS_ERR(new_prog)) { 17882 if (PTR_ERR(new_prog) == -ERANGE) 17883 verbose(env, 17884 "insn %d cannot be patched due to 16-bit range\n", 17885 env->insn_aux_data[off].orig_idx); 17886 vfree(new_data); 17887 return NULL; 17888 } 17889 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17890 adjust_subprog_starts(env, off, len); 17891 adjust_poke_descs(new_prog, off, len); 17892 return new_prog; 17893 } 17894 17895 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17896 u32 off, u32 cnt) 17897 { 17898 int i, j; 17899 17900 /* find first prog starting at or after off (first to remove) */ 17901 for (i = 0; i < env->subprog_cnt; i++) 17902 if (env->subprog_info[i].start >= off) 17903 break; 17904 /* find first prog starting at or after off + cnt (first to stay) */ 17905 for (j = i; j < env->subprog_cnt; j++) 17906 if (env->subprog_info[j].start >= off + cnt) 17907 break; 17908 /* if j doesn't start exactly at off + cnt, we are just removing 17909 * the front of previous prog 17910 */ 17911 if (env->subprog_info[j].start != off + cnt) 17912 j--; 17913 17914 if (j > i) { 17915 struct bpf_prog_aux *aux = env->prog->aux; 17916 int move; 17917 17918 /* move fake 'exit' subprog as well */ 17919 move = env->subprog_cnt + 1 - j; 17920 17921 memmove(env->subprog_info + i, 17922 env->subprog_info + j, 17923 sizeof(*env->subprog_info) * move); 17924 env->subprog_cnt -= j - i; 17925 17926 /* remove func_info */ 17927 if (aux->func_info) { 17928 move = aux->func_info_cnt - j; 17929 17930 memmove(aux->func_info + i, 17931 aux->func_info + j, 17932 sizeof(*aux->func_info) * move); 17933 aux->func_info_cnt -= j - i; 17934 /* func_info->insn_off is set after all code rewrites, 17935 * in adjust_btf_func() - no need to adjust 17936 */ 17937 } 17938 } else { 17939 /* convert i from "first prog to remove" to "first to adjust" */ 17940 if (env->subprog_info[i].start == off) 17941 i++; 17942 } 17943 17944 /* update fake 'exit' subprog as well */ 17945 for (; i <= env->subprog_cnt; i++) 17946 env->subprog_info[i].start -= cnt; 17947 17948 return 0; 17949 } 17950 17951 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17952 u32 cnt) 17953 { 17954 struct bpf_prog *prog = env->prog; 17955 u32 i, l_off, l_cnt, nr_linfo; 17956 struct bpf_line_info *linfo; 17957 17958 nr_linfo = prog->aux->nr_linfo; 17959 if (!nr_linfo) 17960 return 0; 17961 17962 linfo = prog->aux->linfo; 17963 17964 /* find first line info to remove, count lines to be removed */ 17965 for (i = 0; i < nr_linfo; i++) 17966 if (linfo[i].insn_off >= off) 17967 break; 17968 17969 l_off = i; 17970 l_cnt = 0; 17971 for (; i < nr_linfo; i++) 17972 if (linfo[i].insn_off < off + cnt) 17973 l_cnt++; 17974 else 17975 break; 17976 17977 /* First live insn doesn't match first live linfo, it needs to "inherit" 17978 * last removed linfo. prog is already modified, so prog->len == off 17979 * means no live instructions after (tail of the program was removed). 17980 */ 17981 if (prog->len != off && l_cnt && 17982 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17983 l_cnt--; 17984 linfo[--i].insn_off = off + cnt; 17985 } 17986 17987 /* remove the line info which refer to the removed instructions */ 17988 if (l_cnt) { 17989 memmove(linfo + l_off, linfo + i, 17990 sizeof(*linfo) * (nr_linfo - i)); 17991 17992 prog->aux->nr_linfo -= l_cnt; 17993 nr_linfo = prog->aux->nr_linfo; 17994 } 17995 17996 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17997 for (i = l_off; i < nr_linfo; i++) 17998 linfo[i].insn_off -= cnt; 17999 18000 /* fix up all subprogs (incl. 'exit') which start >= off */ 18001 for (i = 0; i <= env->subprog_cnt; i++) 18002 if (env->subprog_info[i].linfo_idx > l_off) { 18003 /* program may have started in the removed region but 18004 * may not be fully removed 18005 */ 18006 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18007 env->subprog_info[i].linfo_idx -= l_cnt; 18008 else 18009 env->subprog_info[i].linfo_idx = l_off; 18010 } 18011 18012 return 0; 18013 } 18014 18015 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18016 { 18017 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18018 unsigned int orig_prog_len = env->prog->len; 18019 int err; 18020 18021 if (bpf_prog_is_offloaded(env->prog->aux)) 18022 bpf_prog_offload_remove_insns(env, off, cnt); 18023 18024 err = bpf_remove_insns(env->prog, off, cnt); 18025 if (err) 18026 return err; 18027 18028 err = adjust_subprog_starts_after_remove(env, off, cnt); 18029 if (err) 18030 return err; 18031 18032 err = bpf_adj_linfo_after_remove(env, off, cnt); 18033 if (err) 18034 return err; 18035 18036 memmove(aux_data + off, aux_data + off + cnt, 18037 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18038 18039 return 0; 18040 } 18041 18042 /* The verifier does more data flow analysis than llvm and will not 18043 * explore branches that are dead at run time. Malicious programs can 18044 * have dead code too. Therefore replace all dead at-run-time code 18045 * with 'ja -1'. 18046 * 18047 * Just nops are not optimal, e.g. if they would sit at the end of the 18048 * program and through another bug we would manage to jump there, then 18049 * we'd execute beyond program memory otherwise. Returning exception 18050 * code also wouldn't work since we can have subprogs where the dead 18051 * code could be located. 18052 */ 18053 static void sanitize_dead_code(struct bpf_verifier_env *env) 18054 { 18055 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18056 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18057 struct bpf_insn *insn = env->prog->insnsi; 18058 const int insn_cnt = env->prog->len; 18059 int i; 18060 18061 for (i = 0; i < insn_cnt; i++) { 18062 if (aux_data[i].seen) 18063 continue; 18064 memcpy(insn + i, &trap, sizeof(trap)); 18065 aux_data[i].zext_dst = false; 18066 } 18067 } 18068 18069 static bool insn_is_cond_jump(u8 code) 18070 { 18071 u8 op; 18072 18073 op = BPF_OP(code); 18074 if (BPF_CLASS(code) == BPF_JMP32) 18075 return op != BPF_JA; 18076 18077 if (BPF_CLASS(code) != BPF_JMP) 18078 return false; 18079 18080 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18081 } 18082 18083 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18084 { 18085 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18086 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18087 struct bpf_insn *insn = env->prog->insnsi; 18088 const int insn_cnt = env->prog->len; 18089 int i; 18090 18091 for (i = 0; i < insn_cnt; i++, insn++) { 18092 if (!insn_is_cond_jump(insn->code)) 18093 continue; 18094 18095 if (!aux_data[i + 1].seen) 18096 ja.off = insn->off; 18097 else if (!aux_data[i + 1 + insn->off].seen) 18098 ja.off = 0; 18099 else 18100 continue; 18101 18102 if (bpf_prog_is_offloaded(env->prog->aux)) 18103 bpf_prog_offload_replace_insn(env, i, &ja); 18104 18105 memcpy(insn, &ja, sizeof(ja)); 18106 } 18107 } 18108 18109 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18110 { 18111 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18112 int insn_cnt = env->prog->len; 18113 int i, err; 18114 18115 for (i = 0; i < insn_cnt; i++) { 18116 int j; 18117 18118 j = 0; 18119 while (i + j < insn_cnt && !aux_data[i + j].seen) 18120 j++; 18121 if (!j) 18122 continue; 18123 18124 err = verifier_remove_insns(env, i, j); 18125 if (err) 18126 return err; 18127 insn_cnt = env->prog->len; 18128 } 18129 18130 return 0; 18131 } 18132 18133 static int opt_remove_nops(struct bpf_verifier_env *env) 18134 { 18135 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18136 struct bpf_insn *insn = env->prog->insnsi; 18137 int insn_cnt = env->prog->len; 18138 int i, err; 18139 18140 for (i = 0; i < insn_cnt; i++) { 18141 if (memcmp(&insn[i], &ja, sizeof(ja))) 18142 continue; 18143 18144 err = verifier_remove_insns(env, i, 1); 18145 if (err) 18146 return err; 18147 insn_cnt--; 18148 i--; 18149 } 18150 18151 return 0; 18152 } 18153 18154 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18155 const union bpf_attr *attr) 18156 { 18157 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18158 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18159 int i, patch_len, delta = 0, len = env->prog->len; 18160 struct bpf_insn *insns = env->prog->insnsi; 18161 struct bpf_prog *new_prog; 18162 bool rnd_hi32; 18163 18164 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18165 zext_patch[1] = BPF_ZEXT_REG(0); 18166 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18167 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18168 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18169 for (i = 0; i < len; i++) { 18170 int adj_idx = i + delta; 18171 struct bpf_insn insn; 18172 int load_reg; 18173 18174 insn = insns[adj_idx]; 18175 load_reg = insn_def_regno(&insn); 18176 if (!aux[adj_idx].zext_dst) { 18177 u8 code, class; 18178 u32 imm_rnd; 18179 18180 if (!rnd_hi32) 18181 continue; 18182 18183 code = insn.code; 18184 class = BPF_CLASS(code); 18185 if (load_reg == -1) 18186 continue; 18187 18188 /* NOTE: arg "reg" (the fourth one) is only used for 18189 * BPF_STX + SRC_OP, so it is safe to pass NULL 18190 * here. 18191 */ 18192 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18193 if (class == BPF_LD && 18194 BPF_MODE(code) == BPF_IMM) 18195 i++; 18196 continue; 18197 } 18198 18199 /* ctx load could be transformed into wider load. */ 18200 if (class == BPF_LDX && 18201 aux[adj_idx].ptr_type == PTR_TO_CTX) 18202 continue; 18203 18204 imm_rnd = get_random_u32(); 18205 rnd_hi32_patch[0] = insn; 18206 rnd_hi32_patch[1].imm = imm_rnd; 18207 rnd_hi32_patch[3].dst_reg = load_reg; 18208 patch = rnd_hi32_patch; 18209 patch_len = 4; 18210 goto apply_patch_buffer; 18211 } 18212 18213 /* Add in an zero-extend instruction if a) the JIT has requested 18214 * it or b) it's a CMPXCHG. 18215 * 18216 * The latter is because: BPF_CMPXCHG always loads a value into 18217 * R0, therefore always zero-extends. However some archs' 18218 * equivalent instruction only does this load when the 18219 * comparison is successful. This detail of CMPXCHG is 18220 * orthogonal to the general zero-extension behaviour of the 18221 * CPU, so it's treated independently of bpf_jit_needs_zext. 18222 */ 18223 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18224 continue; 18225 18226 /* Zero-extension is done by the caller. */ 18227 if (bpf_pseudo_kfunc_call(&insn)) 18228 continue; 18229 18230 if (WARN_ON(load_reg == -1)) { 18231 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18232 return -EFAULT; 18233 } 18234 18235 zext_patch[0] = insn; 18236 zext_patch[1].dst_reg = load_reg; 18237 zext_patch[1].src_reg = load_reg; 18238 patch = zext_patch; 18239 patch_len = 2; 18240 apply_patch_buffer: 18241 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18242 if (!new_prog) 18243 return -ENOMEM; 18244 env->prog = new_prog; 18245 insns = new_prog->insnsi; 18246 aux = env->insn_aux_data; 18247 delta += patch_len - 1; 18248 } 18249 18250 return 0; 18251 } 18252 18253 /* convert load instructions that access fields of a context type into a 18254 * sequence of instructions that access fields of the underlying structure: 18255 * struct __sk_buff -> struct sk_buff 18256 * struct bpf_sock_ops -> struct sock 18257 */ 18258 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18259 { 18260 const struct bpf_verifier_ops *ops = env->ops; 18261 int i, cnt, size, ctx_field_size, delta = 0; 18262 const int insn_cnt = env->prog->len; 18263 struct bpf_insn insn_buf[16], *insn; 18264 u32 target_size, size_default, off; 18265 struct bpf_prog *new_prog; 18266 enum bpf_access_type type; 18267 bool is_narrower_load; 18268 18269 if (ops->gen_prologue || env->seen_direct_write) { 18270 if (!ops->gen_prologue) { 18271 verbose(env, "bpf verifier is misconfigured\n"); 18272 return -EINVAL; 18273 } 18274 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18275 env->prog); 18276 if (cnt >= ARRAY_SIZE(insn_buf)) { 18277 verbose(env, "bpf verifier is misconfigured\n"); 18278 return -EINVAL; 18279 } else if (cnt) { 18280 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18281 if (!new_prog) 18282 return -ENOMEM; 18283 18284 env->prog = new_prog; 18285 delta += cnt - 1; 18286 } 18287 } 18288 18289 if (bpf_prog_is_offloaded(env->prog->aux)) 18290 return 0; 18291 18292 insn = env->prog->insnsi + delta; 18293 18294 for (i = 0; i < insn_cnt; i++, insn++) { 18295 bpf_convert_ctx_access_t convert_ctx_access; 18296 u8 mode; 18297 18298 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18299 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18300 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18301 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18302 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18303 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18304 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18305 type = BPF_READ; 18306 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18307 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18308 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18309 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18310 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18311 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18312 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18313 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18314 type = BPF_WRITE; 18315 } else { 18316 continue; 18317 } 18318 18319 if (type == BPF_WRITE && 18320 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18321 struct bpf_insn patch[] = { 18322 *insn, 18323 BPF_ST_NOSPEC(), 18324 }; 18325 18326 cnt = ARRAY_SIZE(patch); 18327 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18328 if (!new_prog) 18329 return -ENOMEM; 18330 18331 delta += cnt - 1; 18332 env->prog = new_prog; 18333 insn = new_prog->insnsi + i + delta; 18334 continue; 18335 } 18336 18337 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18338 case PTR_TO_CTX: 18339 if (!ops->convert_ctx_access) 18340 continue; 18341 convert_ctx_access = ops->convert_ctx_access; 18342 break; 18343 case PTR_TO_SOCKET: 18344 case PTR_TO_SOCK_COMMON: 18345 convert_ctx_access = bpf_sock_convert_ctx_access; 18346 break; 18347 case PTR_TO_TCP_SOCK: 18348 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18349 break; 18350 case PTR_TO_XDP_SOCK: 18351 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18352 break; 18353 case PTR_TO_BTF_ID: 18354 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18355 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18356 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18357 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18358 * any faults for loads into such types. BPF_WRITE is disallowed 18359 * for this case. 18360 */ 18361 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18362 if (type == BPF_READ) { 18363 if (BPF_MODE(insn->code) == BPF_MEM) 18364 insn->code = BPF_LDX | BPF_PROBE_MEM | 18365 BPF_SIZE((insn)->code); 18366 else 18367 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18368 BPF_SIZE((insn)->code); 18369 env->prog->aux->num_exentries++; 18370 } 18371 continue; 18372 default: 18373 continue; 18374 } 18375 18376 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18377 size = BPF_LDST_BYTES(insn); 18378 mode = BPF_MODE(insn->code); 18379 18380 /* If the read access is a narrower load of the field, 18381 * convert to a 4/8-byte load, to minimum program type specific 18382 * convert_ctx_access changes. If conversion is successful, 18383 * we will apply proper mask to the result. 18384 */ 18385 is_narrower_load = size < ctx_field_size; 18386 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18387 off = insn->off; 18388 if (is_narrower_load) { 18389 u8 size_code; 18390 18391 if (type == BPF_WRITE) { 18392 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18393 return -EINVAL; 18394 } 18395 18396 size_code = BPF_H; 18397 if (ctx_field_size == 4) 18398 size_code = BPF_W; 18399 else if (ctx_field_size == 8) 18400 size_code = BPF_DW; 18401 18402 insn->off = off & ~(size_default - 1); 18403 insn->code = BPF_LDX | BPF_MEM | size_code; 18404 } 18405 18406 target_size = 0; 18407 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18408 &target_size); 18409 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18410 (ctx_field_size && !target_size)) { 18411 verbose(env, "bpf verifier is misconfigured\n"); 18412 return -EINVAL; 18413 } 18414 18415 if (is_narrower_load && size < target_size) { 18416 u8 shift = bpf_ctx_narrow_access_offset( 18417 off, size, size_default) * 8; 18418 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18419 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18420 return -EINVAL; 18421 } 18422 if (ctx_field_size <= 4) { 18423 if (shift) 18424 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18425 insn->dst_reg, 18426 shift); 18427 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18428 (1 << size * 8) - 1); 18429 } else { 18430 if (shift) 18431 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18432 insn->dst_reg, 18433 shift); 18434 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18435 (1ULL << size * 8) - 1); 18436 } 18437 } 18438 if (mode == BPF_MEMSX) 18439 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18440 insn->dst_reg, insn->dst_reg, 18441 size * 8, 0); 18442 18443 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18444 if (!new_prog) 18445 return -ENOMEM; 18446 18447 delta += cnt - 1; 18448 18449 /* keep walking new program and skip insns we just inserted */ 18450 env->prog = new_prog; 18451 insn = new_prog->insnsi + i + delta; 18452 } 18453 18454 return 0; 18455 } 18456 18457 static int jit_subprogs(struct bpf_verifier_env *env) 18458 { 18459 struct bpf_prog *prog = env->prog, **func, *tmp; 18460 int i, j, subprog_start, subprog_end = 0, len, subprog; 18461 struct bpf_map *map_ptr; 18462 struct bpf_insn *insn; 18463 void *old_bpf_func; 18464 int err, num_exentries; 18465 18466 if (env->subprog_cnt <= 1) 18467 return 0; 18468 18469 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18470 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18471 continue; 18472 18473 /* Upon error here we cannot fall back to interpreter but 18474 * need a hard reject of the program. Thus -EFAULT is 18475 * propagated in any case. 18476 */ 18477 subprog = find_subprog(env, i + insn->imm + 1); 18478 if (subprog < 0) { 18479 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18480 i + insn->imm + 1); 18481 return -EFAULT; 18482 } 18483 /* temporarily remember subprog id inside insn instead of 18484 * aux_data, since next loop will split up all insns into funcs 18485 */ 18486 insn->off = subprog; 18487 /* remember original imm in case JIT fails and fallback 18488 * to interpreter will be needed 18489 */ 18490 env->insn_aux_data[i].call_imm = insn->imm; 18491 /* point imm to __bpf_call_base+1 from JITs point of view */ 18492 insn->imm = 1; 18493 if (bpf_pseudo_func(insn)) 18494 /* jit (e.g. x86_64) may emit fewer instructions 18495 * if it learns a u32 imm is the same as a u64 imm. 18496 * Force a non zero here. 18497 */ 18498 insn[1].imm = 1; 18499 } 18500 18501 err = bpf_prog_alloc_jited_linfo(prog); 18502 if (err) 18503 goto out_undo_insn; 18504 18505 err = -ENOMEM; 18506 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18507 if (!func) 18508 goto out_undo_insn; 18509 18510 for (i = 0; i < env->subprog_cnt; i++) { 18511 subprog_start = subprog_end; 18512 subprog_end = env->subprog_info[i + 1].start; 18513 18514 len = subprog_end - subprog_start; 18515 /* bpf_prog_run() doesn't call subprogs directly, 18516 * hence main prog stats include the runtime of subprogs. 18517 * subprogs don't have IDs and not reachable via prog_get_next_id 18518 * func[i]->stats will never be accessed and stays NULL 18519 */ 18520 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18521 if (!func[i]) 18522 goto out_free; 18523 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18524 len * sizeof(struct bpf_insn)); 18525 func[i]->type = prog->type; 18526 func[i]->len = len; 18527 if (bpf_prog_calc_tag(func[i])) 18528 goto out_free; 18529 func[i]->is_func = 1; 18530 func[i]->aux->func_idx = i; 18531 /* Below members will be freed only at prog->aux */ 18532 func[i]->aux->btf = prog->aux->btf; 18533 func[i]->aux->func_info = prog->aux->func_info; 18534 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18535 func[i]->aux->poke_tab = prog->aux->poke_tab; 18536 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18537 18538 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18539 struct bpf_jit_poke_descriptor *poke; 18540 18541 poke = &prog->aux->poke_tab[j]; 18542 if (poke->insn_idx < subprog_end && 18543 poke->insn_idx >= subprog_start) 18544 poke->aux = func[i]->aux; 18545 } 18546 18547 func[i]->aux->name[0] = 'F'; 18548 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18549 func[i]->jit_requested = 1; 18550 func[i]->blinding_requested = prog->blinding_requested; 18551 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18552 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18553 func[i]->aux->linfo = prog->aux->linfo; 18554 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18555 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18556 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18557 num_exentries = 0; 18558 insn = func[i]->insnsi; 18559 for (j = 0; j < func[i]->len; j++, insn++) { 18560 if (BPF_CLASS(insn->code) == BPF_LDX && 18561 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18562 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18563 num_exentries++; 18564 } 18565 func[i]->aux->num_exentries = num_exentries; 18566 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18567 func[i] = bpf_int_jit_compile(func[i]); 18568 if (!func[i]->jited) { 18569 err = -ENOTSUPP; 18570 goto out_free; 18571 } 18572 cond_resched(); 18573 } 18574 18575 /* at this point all bpf functions were successfully JITed 18576 * now populate all bpf_calls with correct addresses and 18577 * run last pass of JIT 18578 */ 18579 for (i = 0; i < env->subprog_cnt; i++) { 18580 insn = func[i]->insnsi; 18581 for (j = 0; j < func[i]->len; j++, insn++) { 18582 if (bpf_pseudo_func(insn)) { 18583 subprog = insn->off; 18584 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18585 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18586 continue; 18587 } 18588 if (!bpf_pseudo_call(insn)) 18589 continue; 18590 subprog = insn->off; 18591 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18592 } 18593 18594 /* we use the aux data to keep a list of the start addresses 18595 * of the JITed images for each function in the program 18596 * 18597 * for some architectures, such as powerpc64, the imm field 18598 * might not be large enough to hold the offset of the start 18599 * address of the callee's JITed image from __bpf_call_base 18600 * 18601 * in such cases, we can lookup the start address of a callee 18602 * by using its subprog id, available from the off field of 18603 * the call instruction, as an index for this list 18604 */ 18605 func[i]->aux->func = func; 18606 func[i]->aux->func_cnt = env->subprog_cnt; 18607 } 18608 for (i = 0; i < env->subprog_cnt; i++) { 18609 old_bpf_func = func[i]->bpf_func; 18610 tmp = bpf_int_jit_compile(func[i]); 18611 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18612 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18613 err = -ENOTSUPP; 18614 goto out_free; 18615 } 18616 cond_resched(); 18617 } 18618 18619 /* finally lock prog and jit images for all functions and 18620 * populate kallsysm. Begin at the first subprogram, since 18621 * bpf_prog_load will add the kallsyms for the main program. 18622 */ 18623 for (i = 1; i < env->subprog_cnt; i++) { 18624 bpf_prog_lock_ro(func[i]); 18625 bpf_prog_kallsyms_add(func[i]); 18626 } 18627 18628 /* Last step: make now unused interpreter insns from main 18629 * prog consistent for later dump requests, so they can 18630 * later look the same as if they were interpreted only. 18631 */ 18632 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18633 if (bpf_pseudo_func(insn)) { 18634 insn[0].imm = env->insn_aux_data[i].call_imm; 18635 insn[1].imm = insn->off; 18636 insn->off = 0; 18637 continue; 18638 } 18639 if (!bpf_pseudo_call(insn)) 18640 continue; 18641 insn->off = env->insn_aux_data[i].call_imm; 18642 subprog = find_subprog(env, i + insn->off + 1); 18643 insn->imm = subprog; 18644 } 18645 18646 prog->jited = 1; 18647 prog->bpf_func = func[0]->bpf_func; 18648 prog->jited_len = func[0]->jited_len; 18649 prog->aux->extable = func[0]->aux->extable; 18650 prog->aux->num_exentries = func[0]->aux->num_exentries; 18651 prog->aux->func = func; 18652 prog->aux->func_cnt = env->subprog_cnt; 18653 bpf_prog_jit_attempt_done(prog); 18654 return 0; 18655 out_free: 18656 /* We failed JIT'ing, so at this point we need to unregister poke 18657 * descriptors from subprogs, so that kernel is not attempting to 18658 * patch it anymore as we're freeing the subprog JIT memory. 18659 */ 18660 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18661 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18662 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18663 } 18664 /* At this point we're guaranteed that poke descriptors are not 18665 * live anymore. We can just unlink its descriptor table as it's 18666 * released with the main prog. 18667 */ 18668 for (i = 0; i < env->subprog_cnt; i++) { 18669 if (!func[i]) 18670 continue; 18671 func[i]->aux->poke_tab = NULL; 18672 bpf_jit_free(func[i]); 18673 } 18674 kfree(func); 18675 out_undo_insn: 18676 /* cleanup main prog to be interpreted */ 18677 prog->jit_requested = 0; 18678 prog->blinding_requested = 0; 18679 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18680 if (!bpf_pseudo_call(insn)) 18681 continue; 18682 insn->off = 0; 18683 insn->imm = env->insn_aux_data[i].call_imm; 18684 } 18685 bpf_prog_jit_attempt_done(prog); 18686 return err; 18687 } 18688 18689 static int fixup_call_args(struct bpf_verifier_env *env) 18690 { 18691 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18692 struct bpf_prog *prog = env->prog; 18693 struct bpf_insn *insn = prog->insnsi; 18694 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18695 int i, depth; 18696 #endif 18697 int err = 0; 18698 18699 if (env->prog->jit_requested && 18700 !bpf_prog_is_offloaded(env->prog->aux)) { 18701 err = jit_subprogs(env); 18702 if (err == 0) 18703 return 0; 18704 if (err == -EFAULT) 18705 return err; 18706 } 18707 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18708 if (has_kfunc_call) { 18709 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18710 return -EINVAL; 18711 } 18712 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18713 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18714 * have to be rejected, since interpreter doesn't support them yet. 18715 */ 18716 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18717 return -EINVAL; 18718 } 18719 for (i = 0; i < prog->len; i++, insn++) { 18720 if (bpf_pseudo_func(insn)) { 18721 /* When JIT fails the progs with callback calls 18722 * have to be rejected, since interpreter doesn't support them yet. 18723 */ 18724 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18725 return -EINVAL; 18726 } 18727 18728 if (!bpf_pseudo_call(insn)) 18729 continue; 18730 depth = get_callee_stack_depth(env, insn, i); 18731 if (depth < 0) 18732 return depth; 18733 bpf_patch_call_args(insn, depth); 18734 } 18735 err = 0; 18736 #endif 18737 return err; 18738 } 18739 18740 /* replace a generic kfunc with a specialized version if necessary */ 18741 static void specialize_kfunc(struct bpf_verifier_env *env, 18742 u32 func_id, u16 offset, unsigned long *addr) 18743 { 18744 struct bpf_prog *prog = env->prog; 18745 bool seen_direct_write; 18746 void *xdp_kfunc; 18747 bool is_rdonly; 18748 18749 if (bpf_dev_bound_kfunc_id(func_id)) { 18750 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18751 if (xdp_kfunc) { 18752 *addr = (unsigned long)xdp_kfunc; 18753 return; 18754 } 18755 /* fallback to default kfunc when not supported by netdev */ 18756 } 18757 18758 if (offset) 18759 return; 18760 18761 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18762 seen_direct_write = env->seen_direct_write; 18763 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18764 18765 if (is_rdonly) 18766 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18767 18768 /* restore env->seen_direct_write to its original value, since 18769 * may_access_direct_pkt_data mutates it 18770 */ 18771 env->seen_direct_write = seen_direct_write; 18772 } 18773 } 18774 18775 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18776 u16 struct_meta_reg, 18777 u16 node_offset_reg, 18778 struct bpf_insn *insn, 18779 struct bpf_insn *insn_buf, 18780 int *cnt) 18781 { 18782 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18783 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18784 18785 insn_buf[0] = addr[0]; 18786 insn_buf[1] = addr[1]; 18787 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18788 insn_buf[3] = *insn; 18789 *cnt = 4; 18790 } 18791 18792 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18793 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18794 { 18795 const struct bpf_kfunc_desc *desc; 18796 18797 if (!insn->imm) { 18798 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18799 return -EINVAL; 18800 } 18801 18802 *cnt = 0; 18803 18804 /* insn->imm has the btf func_id. Replace it with an offset relative to 18805 * __bpf_call_base, unless the JIT needs to call functions that are 18806 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18807 */ 18808 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18809 if (!desc) { 18810 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18811 insn->imm); 18812 return -EFAULT; 18813 } 18814 18815 if (!bpf_jit_supports_far_kfunc_call()) 18816 insn->imm = BPF_CALL_IMM(desc->addr); 18817 if (insn->off) 18818 return 0; 18819 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18820 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18821 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18822 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18823 18824 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18825 insn_buf[1] = addr[0]; 18826 insn_buf[2] = addr[1]; 18827 insn_buf[3] = *insn; 18828 *cnt = 4; 18829 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18830 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18831 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18832 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18833 18834 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18835 !kptr_struct_meta) { 18836 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18837 insn_idx); 18838 return -EFAULT; 18839 } 18840 18841 insn_buf[0] = addr[0]; 18842 insn_buf[1] = addr[1]; 18843 insn_buf[2] = *insn; 18844 *cnt = 3; 18845 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18846 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18847 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18848 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18849 int struct_meta_reg = BPF_REG_3; 18850 int node_offset_reg = BPF_REG_4; 18851 18852 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18853 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18854 struct_meta_reg = BPF_REG_4; 18855 node_offset_reg = BPF_REG_5; 18856 } 18857 18858 if (!kptr_struct_meta) { 18859 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18860 insn_idx); 18861 return -EFAULT; 18862 } 18863 18864 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18865 node_offset_reg, insn, insn_buf, cnt); 18866 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18867 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18868 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18869 *cnt = 1; 18870 } 18871 return 0; 18872 } 18873 18874 /* Do various post-verification rewrites in a single program pass. 18875 * These rewrites simplify JIT and interpreter implementations. 18876 */ 18877 static int do_misc_fixups(struct bpf_verifier_env *env) 18878 { 18879 struct bpf_prog *prog = env->prog; 18880 enum bpf_attach_type eatype = prog->expected_attach_type; 18881 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18882 struct bpf_insn *insn = prog->insnsi; 18883 const struct bpf_func_proto *fn; 18884 const int insn_cnt = prog->len; 18885 const struct bpf_map_ops *ops; 18886 struct bpf_insn_aux_data *aux; 18887 struct bpf_insn insn_buf[16]; 18888 struct bpf_prog *new_prog; 18889 struct bpf_map *map_ptr; 18890 int i, ret, cnt, delta = 0; 18891 18892 for (i = 0; i < insn_cnt; i++, insn++) { 18893 /* Make divide-by-zero exceptions impossible. */ 18894 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18895 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18896 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18897 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18898 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18899 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18900 struct bpf_insn *patchlet; 18901 struct bpf_insn chk_and_div[] = { 18902 /* [R,W]x div 0 -> 0 */ 18903 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18904 BPF_JNE | BPF_K, insn->src_reg, 18905 0, 2, 0), 18906 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18907 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18908 *insn, 18909 }; 18910 struct bpf_insn chk_and_mod[] = { 18911 /* [R,W]x mod 0 -> [R,W]x */ 18912 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18913 BPF_JEQ | BPF_K, insn->src_reg, 18914 0, 1 + (is64 ? 0 : 1), 0), 18915 *insn, 18916 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18917 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18918 }; 18919 18920 patchlet = isdiv ? chk_and_div : chk_and_mod; 18921 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18922 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18923 18924 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18925 if (!new_prog) 18926 return -ENOMEM; 18927 18928 delta += cnt - 1; 18929 env->prog = prog = new_prog; 18930 insn = new_prog->insnsi + i + delta; 18931 continue; 18932 } 18933 18934 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18935 if (BPF_CLASS(insn->code) == BPF_LD && 18936 (BPF_MODE(insn->code) == BPF_ABS || 18937 BPF_MODE(insn->code) == BPF_IND)) { 18938 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18939 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18940 verbose(env, "bpf verifier is misconfigured\n"); 18941 return -EINVAL; 18942 } 18943 18944 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18945 if (!new_prog) 18946 return -ENOMEM; 18947 18948 delta += cnt - 1; 18949 env->prog = prog = new_prog; 18950 insn = new_prog->insnsi + i + delta; 18951 continue; 18952 } 18953 18954 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18955 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18956 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18957 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18958 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18959 struct bpf_insn *patch = &insn_buf[0]; 18960 bool issrc, isneg, isimm; 18961 u32 off_reg; 18962 18963 aux = &env->insn_aux_data[i + delta]; 18964 if (!aux->alu_state || 18965 aux->alu_state == BPF_ALU_NON_POINTER) 18966 continue; 18967 18968 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18969 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18970 BPF_ALU_SANITIZE_SRC; 18971 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18972 18973 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18974 if (isimm) { 18975 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18976 } else { 18977 if (isneg) 18978 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18979 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18980 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18981 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18982 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18983 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18984 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18985 } 18986 if (!issrc) 18987 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18988 insn->src_reg = BPF_REG_AX; 18989 if (isneg) 18990 insn->code = insn->code == code_add ? 18991 code_sub : code_add; 18992 *patch++ = *insn; 18993 if (issrc && isneg && !isimm) 18994 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18995 cnt = patch - insn_buf; 18996 18997 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18998 if (!new_prog) 18999 return -ENOMEM; 19000 19001 delta += cnt - 1; 19002 env->prog = prog = new_prog; 19003 insn = new_prog->insnsi + i + delta; 19004 continue; 19005 } 19006 19007 if (insn->code != (BPF_JMP | BPF_CALL)) 19008 continue; 19009 if (insn->src_reg == BPF_PSEUDO_CALL) 19010 continue; 19011 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19012 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19013 if (ret) 19014 return ret; 19015 if (cnt == 0) 19016 continue; 19017 19018 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19019 if (!new_prog) 19020 return -ENOMEM; 19021 19022 delta += cnt - 1; 19023 env->prog = prog = new_prog; 19024 insn = new_prog->insnsi + i + delta; 19025 continue; 19026 } 19027 19028 if (insn->imm == BPF_FUNC_get_route_realm) 19029 prog->dst_needed = 1; 19030 if (insn->imm == BPF_FUNC_get_prandom_u32) 19031 bpf_user_rnd_init_once(); 19032 if (insn->imm == BPF_FUNC_override_return) 19033 prog->kprobe_override = 1; 19034 if (insn->imm == BPF_FUNC_tail_call) { 19035 /* If we tail call into other programs, we 19036 * cannot make any assumptions since they can 19037 * be replaced dynamically during runtime in 19038 * the program array. 19039 */ 19040 prog->cb_access = 1; 19041 if (!allow_tail_call_in_subprogs(env)) 19042 prog->aux->stack_depth = MAX_BPF_STACK; 19043 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19044 19045 /* mark bpf_tail_call as different opcode to avoid 19046 * conditional branch in the interpreter for every normal 19047 * call and to prevent accidental JITing by JIT compiler 19048 * that doesn't support bpf_tail_call yet 19049 */ 19050 insn->imm = 0; 19051 insn->code = BPF_JMP | BPF_TAIL_CALL; 19052 19053 aux = &env->insn_aux_data[i + delta]; 19054 if (env->bpf_capable && !prog->blinding_requested && 19055 prog->jit_requested && 19056 !bpf_map_key_poisoned(aux) && 19057 !bpf_map_ptr_poisoned(aux) && 19058 !bpf_map_ptr_unpriv(aux)) { 19059 struct bpf_jit_poke_descriptor desc = { 19060 .reason = BPF_POKE_REASON_TAIL_CALL, 19061 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19062 .tail_call.key = bpf_map_key_immediate(aux), 19063 .insn_idx = i + delta, 19064 }; 19065 19066 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19067 if (ret < 0) { 19068 verbose(env, "adding tail call poke descriptor failed\n"); 19069 return ret; 19070 } 19071 19072 insn->imm = ret + 1; 19073 continue; 19074 } 19075 19076 if (!bpf_map_ptr_unpriv(aux)) 19077 continue; 19078 19079 /* instead of changing every JIT dealing with tail_call 19080 * emit two extra insns: 19081 * if (index >= max_entries) goto out; 19082 * index &= array->index_mask; 19083 * to avoid out-of-bounds cpu speculation 19084 */ 19085 if (bpf_map_ptr_poisoned(aux)) { 19086 verbose(env, "tail_call abusing map_ptr\n"); 19087 return -EINVAL; 19088 } 19089 19090 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19091 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19092 map_ptr->max_entries, 2); 19093 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19094 container_of(map_ptr, 19095 struct bpf_array, 19096 map)->index_mask); 19097 insn_buf[2] = *insn; 19098 cnt = 3; 19099 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19100 if (!new_prog) 19101 return -ENOMEM; 19102 19103 delta += cnt - 1; 19104 env->prog = prog = new_prog; 19105 insn = new_prog->insnsi + i + delta; 19106 continue; 19107 } 19108 19109 if (insn->imm == BPF_FUNC_timer_set_callback) { 19110 /* The verifier will process callback_fn as many times as necessary 19111 * with different maps and the register states prepared by 19112 * set_timer_callback_state will be accurate. 19113 * 19114 * The following use case is valid: 19115 * map1 is shared by prog1, prog2, prog3. 19116 * prog1 calls bpf_timer_init for some map1 elements 19117 * prog2 calls bpf_timer_set_callback for some map1 elements. 19118 * Those that were not bpf_timer_init-ed will return -EINVAL. 19119 * prog3 calls bpf_timer_start for some map1 elements. 19120 * Those that were not both bpf_timer_init-ed and 19121 * bpf_timer_set_callback-ed will return -EINVAL. 19122 */ 19123 struct bpf_insn ld_addrs[2] = { 19124 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19125 }; 19126 19127 insn_buf[0] = ld_addrs[0]; 19128 insn_buf[1] = ld_addrs[1]; 19129 insn_buf[2] = *insn; 19130 cnt = 3; 19131 19132 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19133 if (!new_prog) 19134 return -ENOMEM; 19135 19136 delta += cnt - 1; 19137 env->prog = prog = new_prog; 19138 insn = new_prog->insnsi + i + delta; 19139 goto patch_call_imm; 19140 } 19141 19142 if (is_storage_get_function(insn->imm)) { 19143 if (!env->prog->aux->sleepable || 19144 env->insn_aux_data[i + delta].storage_get_func_atomic) 19145 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19146 else 19147 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19148 insn_buf[1] = *insn; 19149 cnt = 2; 19150 19151 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19152 if (!new_prog) 19153 return -ENOMEM; 19154 19155 delta += cnt - 1; 19156 env->prog = prog = new_prog; 19157 insn = new_prog->insnsi + i + delta; 19158 goto patch_call_imm; 19159 } 19160 19161 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19162 * and other inlining handlers are currently limited to 64 bit 19163 * only. 19164 */ 19165 if (prog->jit_requested && BITS_PER_LONG == 64 && 19166 (insn->imm == BPF_FUNC_map_lookup_elem || 19167 insn->imm == BPF_FUNC_map_update_elem || 19168 insn->imm == BPF_FUNC_map_delete_elem || 19169 insn->imm == BPF_FUNC_map_push_elem || 19170 insn->imm == BPF_FUNC_map_pop_elem || 19171 insn->imm == BPF_FUNC_map_peek_elem || 19172 insn->imm == BPF_FUNC_redirect_map || 19173 insn->imm == BPF_FUNC_for_each_map_elem || 19174 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19175 aux = &env->insn_aux_data[i + delta]; 19176 if (bpf_map_ptr_poisoned(aux)) 19177 goto patch_call_imm; 19178 19179 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19180 ops = map_ptr->ops; 19181 if (insn->imm == BPF_FUNC_map_lookup_elem && 19182 ops->map_gen_lookup) { 19183 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19184 if (cnt == -EOPNOTSUPP) 19185 goto patch_map_ops_generic; 19186 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19187 verbose(env, "bpf verifier is misconfigured\n"); 19188 return -EINVAL; 19189 } 19190 19191 new_prog = bpf_patch_insn_data(env, i + delta, 19192 insn_buf, cnt); 19193 if (!new_prog) 19194 return -ENOMEM; 19195 19196 delta += cnt - 1; 19197 env->prog = prog = new_prog; 19198 insn = new_prog->insnsi + i + delta; 19199 continue; 19200 } 19201 19202 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19203 (void *(*)(struct bpf_map *map, void *key))NULL)); 19204 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19205 (long (*)(struct bpf_map *map, void *key))NULL)); 19206 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19207 (long (*)(struct bpf_map *map, void *key, void *value, 19208 u64 flags))NULL)); 19209 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19210 (long (*)(struct bpf_map *map, void *value, 19211 u64 flags))NULL)); 19212 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19213 (long (*)(struct bpf_map *map, void *value))NULL)); 19214 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19215 (long (*)(struct bpf_map *map, void *value))NULL)); 19216 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19217 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19218 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19219 (long (*)(struct bpf_map *map, 19220 bpf_callback_t callback_fn, 19221 void *callback_ctx, 19222 u64 flags))NULL)); 19223 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19224 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19225 19226 patch_map_ops_generic: 19227 switch (insn->imm) { 19228 case BPF_FUNC_map_lookup_elem: 19229 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19230 continue; 19231 case BPF_FUNC_map_update_elem: 19232 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19233 continue; 19234 case BPF_FUNC_map_delete_elem: 19235 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19236 continue; 19237 case BPF_FUNC_map_push_elem: 19238 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19239 continue; 19240 case BPF_FUNC_map_pop_elem: 19241 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19242 continue; 19243 case BPF_FUNC_map_peek_elem: 19244 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19245 continue; 19246 case BPF_FUNC_redirect_map: 19247 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19248 continue; 19249 case BPF_FUNC_for_each_map_elem: 19250 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19251 continue; 19252 case BPF_FUNC_map_lookup_percpu_elem: 19253 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19254 continue; 19255 } 19256 19257 goto patch_call_imm; 19258 } 19259 19260 /* Implement bpf_jiffies64 inline. */ 19261 if (prog->jit_requested && BITS_PER_LONG == 64 && 19262 insn->imm == BPF_FUNC_jiffies64) { 19263 struct bpf_insn ld_jiffies_addr[2] = { 19264 BPF_LD_IMM64(BPF_REG_0, 19265 (unsigned long)&jiffies), 19266 }; 19267 19268 insn_buf[0] = ld_jiffies_addr[0]; 19269 insn_buf[1] = ld_jiffies_addr[1]; 19270 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19271 BPF_REG_0, 0); 19272 cnt = 3; 19273 19274 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19275 cnt); 19276 if (!new_prog) 19277 return -ENOMEM; 19278 19279 delta += cnt - 1; 19280 env->prog = prog = new_prog; 19281 insn = new_prog->insnsi + i + delta; 19282 continue; 19283 } 19284 19285 /* Implement bpf_get_func_arg inline. */ 19286 if (prog_type == BPF_PROG_TYPE_TRACING && 19287 insn->imm == BPF_FUNC_get_func_arg) { 19288 /* Load nr_args from ctx - 8 */ 19289 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19290 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19291 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19292 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19293 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19294 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19295 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19296 insn_buf[7] = BPF_JMP_A(1); 19297 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19298 cnt = 9; 19299 19300 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19301 if (!new_prog) 19302 return -ENOMEM; 19303 19304 delta += cnt - 1; 19305 env->prog = prog = new_prog; 19306 insn = new_prog->insnsi + i + delta; 19307 continue; 19308 } 19309 19310 /* Implement bpf_get_func_ret inline. */ 19311 if (prog_type == BPF_PROG_TYPE_TRACING && 19312 insn->imm == BPF_FUNC_get_func_ret) { 19313 if (eatype == BPF_TRACE_FEXIT || 19314 eatype == BPF_MODIFY_RETURN) { 19315 /* Load nr_args from ctx - 8 */ 19316 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19317 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19318 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19319 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19320 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19321 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19322 cnt = 6; 19323 } else { 19324 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19325 cnt = 1; 19326 } 19327 19328 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19329 if (!new_prog) 19330 return -ENOMEM; 19331 19332 delta += cnt - 1; 19333 env->prog = prog = new_prog; 19334 insn = new_prog->insnsi + i + delta; 19335 continue; 19336 } 19337 19338 /* Implement get_func_arg_cnt inline. */ 19339 if (prog_type == BPF_PROG_TYPE_TRACING && 19340 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19341 /* Load nr_args from ctx - 8 */ 19342 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19343 19344 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19345 if (!new_prog) 19346 return -ENOMEM; 19347 19348 env->prog = prog = new_prog; 19349 insn = new_prog->insnsi + i + delta; 19350 continue; 19351 } 19352 19353 /* Implement bpf_get_func_ip inline. */ 19354 if (prog_type == BPF_PROG_TYPE_TRACING && 19355 insn->imm == BPF_FUNC_get_func_ip) { 19356 /* Load IP address from ctx - 16 */ 19357 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19358 19359 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19360 if (!new_prog) 19361 return -ENOMEM; 19362 19363 env->prog = prog = new_prog; 19364 insn = new_prog->insnsi + i + delta; 19365 continue; 19366 } 19367 19368 patch_call_imm: 19369 fn = env->ops->get_func_proto(insn->imm, env->prog); 19370 /* all functions that have prototype and verifier allowed 19371 * programs to call them, must be real in-kernel functions 19372 */ 19373 if (!fn->func) { 19374 verbose(env, 19375 "kernel subsystem misconfigured func %s#%d\n", 19376 func_id_name(insn->imm), insn->imm); 19377 return -EFAULT; 19378 } 19379 insn->imm = fn->func - __bpf_call_base; 19380 } 19381 19382 /* Since poke tab is now finalized, publish aux to tracker. */ 19383 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19384 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19385 if (!map_ptr->ops->map_poke_track || 19386 !map_ptr->ops->map_poke_untrack || 19387 !map_ptr->ops->map_poke_run) { 19388 verbose(env, "bpf verifier is misconfigured\n"); 19389 return -EINVAL; 19390 } 19391 19392 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19393 if (ret < 0) { 19394 verbose(env, "tracking tail call prog failed\n"); 19395 return ret; 19396 } 19397 } 19398 19399 sort_kfunc_descs_by_imm_off(env->prog); 19400 19401 return 0; 19402 } 19403 19404 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19405 int position, 19406 s32 stack_base, 19407 u32 callback_subprogno, 19408 u32 *cnt) 19409 { 19410 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19411 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19412 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19413 int reg_loop_max = BPF_REG_6; 19414 int reg_loop_cnt = BPF_REG_7; 19415 int reg_loop_ctx = BPF_REG_8; 19416 19417 struct bpf_prog *new_prog; 19418 u32 callback_start; 19419 u32 call_insn_offset; 19420 s32 callback_offset; 19421 19422 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19423 * be careful to modify this code in sync. 19424 */ 19425 struct bpf_insn insn_buf[] = { 19426 /* Return error and jump to the end of the patch if 19427 * expected number of iterations is too big. 19428 */ 19429 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19430 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19431 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19432 /* spill R6, R7, R8 to use these as loop vars */ 19433 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19434 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19435 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19436 /* initialize loop vars */ 19437 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19438 BPF_MOV32_IMM(reg_loop_cnt, 0), 19439 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19440 /* loop header, 19441 * if reg_loop_cnt >= reg_loop_max skip the loop body 19442 */ 19443 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19444 /* callback call, 19445 * correct callback offset would be set after patching 19446 */ 19447 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19448 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19449 BPF_CALL_REL(0), 19450 /* increment loop counter */ 19451 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19452 /* jump to loop header if callback returned 0 */ 19453 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19454 /* return value of bpf_loop, 19455 * set R0 to the number of iterations 19456 */ 19457 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19458 /* restore original values of R6, R7, R8 */ 19459 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19460 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19461 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19462 }; 19463 19464 *cnt = ARRAY_SIZE(insn_buf); 19465 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19466 if (!new_prog) 19467 return new_prog; 19468 19469 /* callback start is known only after patching */ 19470 callback_start = env->subprog_info[callback_subprogno].start; 19471 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19472 call_insn_offset = position + 12; 19473 callback_offset = callback_start - call_insn_offset - 1; 19474 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19475 19476 return new_prog; 19477 } 19478 19479 static bool is_bpf_loop_call(struct bpf_insn *insn) 19480 { 19481 return insn->code == (BPF_JMP | BPF_CALL) && 19482 insn->src_reg == 0 && 19483 insn->imm == BPF_FUNC_loop; 19484 } 19485 19486 /* For all sub-programs in the program (including main) check 19487 * insn_aux_data to see if there are bpf_loop calls that require 19488 * inlining. If such calls are found the calls are replaced with a 19489 * sequence of instructions produced by `inline_bpf_loop` function and 19490 * subprog stack_depth is increased by the size of 3 registers. 19491 * This stack space is used to spill values of the R6, R7, R8. These 19492 * registers are used to store the loop bound, counter and context 19493 * variables. 19494 */ 19495 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19496 { 19497 struct bpf_subprog_info *subprogs = env->subprog_info; 19498 int i, cur_subprog = 0, cnt, delta = 0; 19499 struct bpf_insn *insn = env->prog->insnsi; 19500 int insn_cnt = env->prog->len; 19501 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19502 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19503 u16 stack_depth_extra = 0; 19504 19505 for (i = 0; i < insn_cnt; i++, insn++) { 19506 struct bpf_loop_inline_state *inline_state = 19507 &env->insn_aux_data[i + delta].loop_inline_state; 19508 19509 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19510 struct bpf_prog *new_prog; 19511 19512 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19513 new_prog = inline_bpf_loop(env, 19514 i + delta, 19515 -(stack_depth + stack_depth_extra), 19516 inline_state->callback_subprogno, 19517 &cnt); 19518 if (!new_prog) 19519 return -ENOMEM; 19520 19521 delta += cnt - 1; 19522 env->prog = new_prog; 19523 insn = new_prog->insnsi + i + delta; 19524 } 19525 19526 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19527 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19528 cur_subprog++; 19529 stack_depth = subprogs[cur_subprog].stack_depth; 19530 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19531 stack_depth_extra = 0; 19532 } 19533 } 19534 19535 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19536 19537 return 0; 19538 } 19539 19540 static void free_states(struct bpf_verifier_env *env) 19541 { 19542 struct bpf_verifier_state_list *sl, *sln; 19543 int i; 19544 19545 sl = env->free_list; 19546 while (sl) { 19547 sln = sl->next; 19548 free_verifier_state(&sl->state, false); 19549 kfree(sl); 19550 sl = sln; 19551 } 19552 env->free_list = NULL; 19553 19554 if (!env->explored_states) 19555 return; 19556 19557 for (i = 0; i < state_htab_size(env); i++) { 19558 sl = env->explored_states[i]; 19559 19560 while (sl) { 19561 sln = sl->next; 19562 free_verifier_state(&sl->state, false); 19563 kfree(sl); 19564 sl = sln; 19565 } 19566 env->explored_states[i] = NULL; 19567 } 19568 } 19569 19570 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19571 { 19572 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19573 struct bpf_verifier_state *state; 19574 struct bpf_reg_state *regs; 19575 int ret, i; 19576 19577 env->prev_linfo = NULL; 19578 env->pass_cnt++; 19579 19580 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19581 if (!state) 19582 return -ENOMEM; 19583 state->curframe = 0; 19584 state->speculative = false; 19585 state->branches = 1; 19586 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19587 if (!state->frame[0]) { 19588 kfree(state); 19589 return -ENOMEM; 19590 } 19591 env->cur_state = state; 19592 init_func_state(env, state->frame[0], 19593 BPF_MAIN_FUNC /* callsite */, 19594 0 /* frameno */, 19595 subprog); 19596 state->first_insn_idx = env->subprog_info[subprog].start; 19597 state->last_insn_idx = -1; 19598 19599 regs = state->frame[state->curframe]->regs; 19600 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19601 ret = btf_prepare_func_args(env, subprog, regs); 19602 if (ret) 19603 goto out; 19604 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19605 if (regs[i].type == PTR_TO_CTX) 19606 mark_reg_known_zero(env, regs, i); 19607 else if (regs[i].type == SCALAR_VALUE) 19608 mark_reg_unknown(env, regs, i); 19609 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19610 const u32 mem_size = regs[i].mem_size; 19611 19612 mark_reg_known_zero(env, regs, i); 19613 regs[i].mem_size = mem_size; 19614 regs[i].id = ++env->id_gen; 19615 } 19616 } 19617 } else { 19618 /* 1st arg to a function */ 19619 regs[BPF_REG_1].type = PTR_TO_CTX; 19620 mark_reg_known_zero(env, regs, BPF_REG_1); 19621 ret = btf_check_subprog_arg_match(env, subprog, regs); 19622 if (ret == -EFAULT) 19623 /* unlikely verifier bug. abort. 19624 * ret == 0 and ret < 0 are sadly acceptable for 19625 * main() function due to backward compatibility. 19626 * Like socket filter program may be written as: 19627 * int bpf_prog(struct pt_regs *ctx) 19628 * and never dereference that ctx in the program. 19629 * 'struct pt_regs' is a type mismatch for socket 19630 * filter that should be using 'struct __sk_buff'. 19631 */ 19632 goto out; 19633 } 19634 19635 ret = do_check(env); 19636 out: 19637 /* check for NULL is necessary, since cur_state can be freed inside 19638 * do_check() under memory pressure. 19639 */ 19640 if (env->cur_state) { 19641 free_verifier_state(env->cur_state, true); 19642 env->cur_state = NULL; 19643 } 19644 while (!pop_stack(env, NULL, NULL, false)); 19645 if (!ret && pop_log) 19646 bpf_vlog_reset(&env->log, 0); 19647 free_states(env); 19648 return ret; 19649 } 19650 19651 /* Verify all global functions in a BPF program one by one based on their BTF. 19652 * All global functions must pass verification. Otherwise the whole program is rejected. 19653 * Consider: 19654 * int bar(int); 19655 * int foo(int f) 19656 * { 19657 * return bar(f); 19658 * } 19659 * int bar(int b) 19660 * { 19661 * ... 19662 * } 19663 * foo() will be verified first for R1=any_scalar_value. During verification it 19664 * will be assumed that bar() already verified successfully and call to bar() 19665 * from foo() will be checked for type match only. Later bar() will be verified 19666 * independently to check that it's safe for R1=any_scalar_value. 19667 */ 19668 static int do_check_subprogs(struct bpf_verifier_env *env) 19669 { 19670 struct bpf_prog_aux *aux = env->prog->aux; 19671 int i, ret; 19672 19673 if (!aux->func_info) 19674 return 0; 19675 19676 for (i = 1; i < env->subprog_cnt; i++) { 19677 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19678 continue; 19679 env->insn_idx = env->subprog_info[i].start; 19680 WARN_ON_ONCE(env->insn_idx == 0); 19681 ret = do_check_common(env, i); 19682 if (ret) { 19683 return ret; 19684 } else if (env->log.level & BPF_LOG_LEVEL) { 19685 verbose(env, 19686 "Func#%d is safe for any args that match its prototype\n", 19687 i); 19688 } 19689 } 19690 return 0; 19691 } 19692 19693 static int do_check_main(struct bpf_verifier_env *env) 19694 { 19695 int ret; 19696 19697 env->insn_idx = 0; 19698 ret = do_check_common(env, 0); 19699 if (!ret) 19700 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19701 return ret; 19702 } 19703 19704 19705 static void print_verification_stats(struct bpf_verifier_env *env) 19706 { 19707 int i; 19708 19709 if (env->log.level & BPF_LOG_STATS) { 19710 verbose(env, "verification time %lld usec\n", 19711 div_u64(env->verification_time, 1000)); 19712 verbose(env, "stack depth "); 19713 for (i = 0; i < env->subprog_cnt; i++) { 19714 u32 depth = env->subprog_info[i].stack_depth; 19715 19716 verbose(env, "%d", depth); 19717 if (i + 1 < env->subprog_cnt) 19718 verbose(env, "+"); 19719 } 19720 verbose(env, "\n"); 19721 } 19722 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19723 "total_states %d peak_states %d mark_read %d\n", 19724 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19725 env->max_states_per_insn, env->total_states, 19726 env->peak_states, env->longest_mark_read_walk); 19727 } 19728 19729 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19730 { 19731 const struct btf_type *t, *func_proto; 19732 const struct bpf_struct_ops *st_ops; 19733 const struct btf_member *member; 19734 struct bpf_prog *prog = env->prog; 19735 u32 btf_id, member_idx; 19736 const char *mname; 19737 19738 if (!prog->gpl_compatible) { 19739 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19740 return -EINVAL; 19741 } 19742 19743 btf_id = prog->aux->attach_btf_id; 19744 st_ops = bpf_struct_ops_find(btf_id); 19745 if (!st_ops) { 19746 verbose(env, "attach_btf_id %u is not a supported struct\n", 19747 btf_id); 19748 return -ENOTSUPP; 19749 } 19750 19751 t = st_ops->type; 19752 member_idx = prog->expected_attach_type; 19753 if (member_idx >= btf_type_vlen(t)) { 19754 verbose(env, "attach to invalid member idx %u of struct %s\n", 19755 member_idx, st_ops->name); 19756 return -EINVAL; 19757 } 19758 19759 member = &btf_type_member(t)[member_idx]; 19760 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19761 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19762 NULL); 19763 if (!func_proto) { 19764 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19765 mname, member_idx, st_ops->name); 19766 return -EINVAL; 19767 } 19768 19769 if (st_ops->check_member) { 19770 int err = st_ops->check_member(t, member, prog); 19771 19772 if (err) { 19773 verbose(env, "attach to unsupported member %s of struct %s\n", 19774 mname, st_ops->name); 19775 return err; 19776 } 19777 } 19778 19779 prog->aux->attach_func_proto = func_proto; 19780 prog->aux->attach_func_name = mname; 19781 env->ops = st_ops->verifier_ops; 19782 19783 return 0; 19784 } 19785 #define SECURITY_PREFIX "security_" 19786 19787 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19788 { 19789 if (within_error_injection_list(addr) || 19790 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19791 return 0; 19792 19793 return -EINVAL; 19794 } 19795 19796 /* list of non-sleepable functions that are otherwise on 19797 * ALLOW_ERROR_INJECTION list 19798 */ 19799 BTF_SET_START(btf_non_sleepable_error_inject) 19800 /* Three functions below can be called from sleepable and non-sleepable context. 19801 * Assume non-sleepable from bpf safety point of view. 19802 */ 19803 BTF_ID(func, __filemap_add_folio) 19804 BTF_ID(func, should_fail_alloc_page) 19805 BTF_ID(func, should_failslab) 19806 BTF_SET_END(btf_non_sleepable_error_inject) 19807 19808 static int check_non_sleepable_error_inject(u32 btf_id) 19809 { 19810 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19811 } 19812 19813 int bpf_check_attach_target(struct bpf_verifier_log *log, 19814 const struct bpf_prog *prog, 19815 const struct bpf_prog *tgt_prog, 19816 u32 btf_id, 19817 struct bpf_attach_target_info *tgt_info) 19818 { 19819 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19820 const char prefix[] = "btf_trace_"; 19821 int ret = 0, subprog = -1, i; 19822 const struct btf_type *t; 19823 bool conservative = true; 19824 const char *tname; 19825 struct btf *btf; 19826 long addr = 0; 19827 struct module *mod = NULL; 19828 19829 if (!btf_id) { 19830 bpf_log(log, "Tracing programs must provide btf_id\n"); 19831 return -EINVAL; 19832 } 19833 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19834 if (!btf) { 19835 bpf_log(log, 19836 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19837 return -EINVAL; 19838 } 19839 t = btf_type_by_id(btf, btf_id); 19840 if (!t) { 19841 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19842 return -EINVAL; 19843 } 19844 tname = btf_name_by_offset(btf, t->name_off); 19845 if (!tname) { 19846 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19847 return -EINVAL; 19848 } 19849 if (tgt_prog) { 19850 struct bpf_prog_aux *aux = tgt_prog->aux; 19851 19852 if (bpf_prog_is_dev_bound(prog->aux) && 19853 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19854 bpf_log(log, "Target program bound device mismatch"); 19855 return -EINVAL; 19856 } 19857 19858 for (i = 0; i < aux->func_info_cnt; i++) 19859 if (aux->func_info[i].type_id == btf_id) { 19860 subprog = i; 19861 break; 19862 } 19863 if (subprog == -1) { 19864 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19865 return -EINVAL; 19866 } 19867 conservative = aux->func_info_aux[subprog].unreliable; 19868 if (prog_extension) { 19869 if (conservative) { 19870 bpf_log(log, 19871 "Cannot replace static functions\n"); 19872 return -EINVAL; 19873 } 19874 if (!prog->jit_requested) { 19875 bpf_log(log, 19876 "Extension programs should be JITed\n"); 19877 return -EINVAL; 19878 } 19879 } 19880 if (!tgt_prog->jited) { 19881 bpf_log(log, "Can attach to only JITed progs\n"); 19882 return -EINVAL; 19883 } 19884 if (tgt_prog->type == prog->type) { 19885 /* Cannot fentry/fexit another fentry/fexit program. 19886 * Cannot attach program extension to another extension. 19887 * It's ok to attach fentry/fexit to extension program. 19888 */ 19889 bpf_log(log, "Cannot recursively attach\n"); 19890 return -EINVAL; 19891 } 19892 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19893 prog_extension && 19894 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19895 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19896 /* Program extensions can extend all program types 19897 * except fentry/fexit. The reason is the following. 19898 * The fentry/fexit programs are used for performance 19899 * analysis, stats and can be attached to any program 19900 * type except themselves. When extension program is 19901 * replacing XDP function it is necessary to allow 19902 * performance analysis of all functions. Both original 19903 * XDP program and its program extension. Hence 19904 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19905 * allowed. If extending of fentry/fexit was allowed it 19906 * would be possible to create long call chain 19907 * fentry->extension->fentry->extension beyond 19908 * reasonable stack size. Hence extending fentry is not 19909 * allowed. 19910 */ 19911 bpf_log(log, "Cannot extend fentry/fexit\n"); 19912 return -EINVAL; 19913 } 19914 } else { 19915 if (prog_extension) { 19916 bpf_log(log, "Cannot replace kernel functions\n"); 19917 return -EINVAL; 19918 } 19919 } 19920 19921 switch (prog->expected_attach_type) { 19922 case BPF_TRACE_RAW_TP: 19923 if (tgt_prog) { 19924 bpf_log(log, 19925 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19926 return -EINVAL; 19927 } 19928 if (!btf_type_is_typedef(t)) { 19929 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19930 btf_id); 19931 return -EINVAL; 19932 } 19933 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19934 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19935 btf_id, tname); 19936 return -EINVAL; 19937 } 19938 tname += sizeof(prefix) - 1; 19939 t = btf_type_by_id(btf, t->type); 19940 if (!btf_type_is_ptr(t)) 19941 /* should never happen in valid vmlinux build */ 19942 return -EINVAL; 19943 t = btf_type_by_id(btf, t->type); 19944 if (!btf_type_is_func_proto(t)) 19945 /* should never happen in valid vmlinux build */ 19946 return -EINVAL; 19947 19948 break; 19949 case BPF_TRACE_ITER: 19950 if (!btf_type_is_func(t)) { 19951 bpf_log(log, "attach_btf_id %u is not a function\n", 19952 btf_id); 19953 return -EINVAL; 19954 } 19955 t = btf_type_by_id(btf, t->type); 19956 if (!btf_type_is_func_proto(t)) 19957 return -EINVAL; 19958 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19959 if (ret) 19960 return ret; 19961 break; 19962 default: 19963 if (!prog_extension) 19964 return -EINVAL; 19965 fallthrough; 19966 case BPF_MODIFY_RETURN: 19967 case BPF_LSM_MAC: 19968 case BPF_LSM_CGROUP: 19969 case BPF_TRACE_FENTRY: 19970 case BPF_TRACE_FEXIT: 19971 if (!btf_type_is_func(t)) { 19972 bpf_log(log, "attach_btf_id %u is not a function\n", 19973 btf_id); 19974 return -EINVAL; 19975 } 19976 if (prog_extension && 19977 btf_check_type_match(log, prog, btf, t)) 19978 return -EINVAL; 19979 t = btf_type_by_id(btf, t->type); 19980 if (!btf_type_is_func_proto(t)) 19981 return -EINVAL; 19982 19983 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19984 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19985 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19986 return -EINVAL; 19987 19988 if (tgt_prog && conservative) 19989 t = NULL; 19990 19991 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19992 if (ret < 0) 19993 return ret; 19994 19995 if (tgt_prog) { 19996 if (subprog == 0) 19997 addr = (long) tgt_prog->bpf_func; 19998 else 19999 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20000 } else { 20001 if (btf_is_module(btf)) { 20002 mod = btf_try_get_module(btf); 20003 if (mod) 20004 addr = find_kallsyms_symbol_value(mod, tname); 20005 else 20006 addr = 0; 20007 } else { 20008 addr = kallsyms_lookup_name(tname); 20009 } 20010 if (!addr) { 20011 module_put(mod); 20012 bpf_log(log, 20013 "The address of function %s cannot be found\n", 20014 tname); 20015 return -ENOENT; 20016 } 20017 } 20018 20019 if (prog->aux->sleepable) { 20020 ret = -EINVAL; 20021 switch (prog->type) { 20022 case BPF_PROG_TYPE_TRACING: 20023 20024 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20025 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20026 */ 20027 if (!check_non_sleepable_error_inject(btf_id) && 20028 within_error_injection_list(addr)) 20029 ret = 0; 20030 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20031 * in the fmodret id set with the KF_SLEEPABLE flag. 20032 */ 20033 else { 20034 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20035 prog); 20036 20037 if (flags && (*flags & KF_SLEEPABLE)) 20038 ret = 0; 20039 } 20040 break; 20041 case BPF_PROG_TYPE_LSM: 20042 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20043 * Only some of them are sleepable. 20044 */ 20045 if (bpf_lsm_is_sleepable_hook(btf_id)) 20046 ret = 0; 20047 break; 20048 default: 20049 break; 20050 } 20051 if (ret) { 20052 module_put(mod); 20053 bpf_log(log, "%s is not sleepable\n", tname); 20054 return ret; 20055 } 20056 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20057 if (tgt_prog) { 20058 module_put(mod); 20059 bpf_log(log, "can't modify return codes of BPF programs\n"); 20060 return -EINVAL; 20061 } 20062 ret = -EINVAL; 20063 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20064 !check_attach_modify_return(addr, tname)) 20065 ret = 0; 20066 if (ret) { 20067 module_put(mod); 20068 bpf_log(log, "%s() is not modifiable\n", tname); 20069 return ret; 20070 } 20071 } 20072 20073 break; 20074 } 20075 tgt_info->tgt_addr = addr; 20076 tgt_info->tgt_name = tname; 20077 tgt_info->tgt_type = t; 20078 tgt_info->tgt_mod = mod; 20079 return 0; 20080 } 20081 20082 BTF_SET_START(btf_id_deny) 20083 BTF_ID_UNUSED 20084 #ifdef CONFIG_SMP 20085 BTF_ID(func, migrate_disable) 20086 BTF_ID(func, migrate_enable) 20087 #endif 20088 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20089 BTF_ID(func, rcu_read_unlock_strict) 20090 #endif 20091 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20092 BTF_ID(func, preempt_count_add) 20093 BTF_ID(func, preempt_count_sub) 20094 #endif 20095 #ifdef CONFIG_PREEMPT_RCU 20096 BTF_ID(func, __rcu_read_lock) 20097 BTF_ID(func, __rcu_read_unlock) 20098 #endif 20099 BTF_SET_END(btf_id_deny) 20100 20101 static bool can_be_sleepable(struct bpf_prog *prog) 20102 { 20103 if (prog->type == BPF_PROG_TYPE_TRACING) { 20104 switch (prog->expected_attach_type) { 20105 case BPF_TRACE_FENTRY: 20106 case BPF_TRACE_FEXIT: 20107 case BPF_MODIFY_RETURN: 20108 case BPF_TRACE_ITER: 20109 return true; 20110 default: 20111 return false; 20112 } 20113 } 20114 return prog->type == BPF_PROG_TYPE_LSM || 20115 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20116 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20117 } 20118 20119 static int check_attach_btf_id(struct bpf_verifier_env *env) 20120 { 20121 struct bpf_prog *prog = env->prog; 20122 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20123 struct bpf_attach_target_info tgt_info = {}; 20124 u32 btf_id = prog->aux->attach_btf_id; 20125 struct bpf_trampoline *tr; 20126 int ret; 20127 u64 key; 20128 20129 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20130 if (prog->aux->sleepable) 20131 /* attach_btf_id checked to be zero already */ 20132 return 0; 20133 verbose(env, "Syscall programs can only be sleepable\n"); 20134 return -EINVAL; 20135 } 20136 20137 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20138 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20139 return -EINVAL; 20140 } 20141 20142 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20143 return check_struct_ops_btf_id(env); 20144 20145 if (prog->type != BPF_PROG_TYPE_TRACING && 20146 prog->type != BPF_PROG_TYPE_LSM && 20147 prog->type != BPF_PROG_TYPE_EXT) 20148 return 0; 20149 20150 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20151 if (ret) 20152 return ret; 20153 20154 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20155 /* to make freplace equivalent to their targets, they need to 20156 * inherit env->ops and expected_attach_type for the rest of the 20157 * verification 20158 */ 20159 env->ops = bpf_verifier_ops[tgt_prog->type]; 20160 prog->expected_attach_type = tgt_prog->expected_attach_type; 20161 } 20162 20163 /* store info about the attachment target that will be used later */ 20164 prog->aux->attach_func_proto = tgt_info.tgt_type; 20165 prog->aux->attach_func_name = tgt_info.tgt_name; 20166 prog->aux->mod = tgt_info.tgt_mod; 20167 20168 if (tgt_prog) { 20169 prog->aux->saved_dst_prog_type = tgt_prog->type; 20170 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20171 } 20172 20173 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20174 prog->aux->attach_btf_trace = true; 20175 return 0; 20176 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20177 if (!bpf_iter_prog_supported(prog)) 20178 return -EINVAL; 20179 return 0; 20180 } 20181 20182 if (prog->type == BPF_PROG_TYPE_LSM) { 20183 ret = bpf_lsm_verify_prog(&env->log, prog); 20184 if (ret < 0) 20185 return ret; 20186 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20187 btf_id_set_contains(&btf_id_deny, btf_id)) { 20188 return -EINVAL; 20189 } 20190 20191 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20192 tr = bpf_trampoline_get(key, &tgt_info); 20193 if (!tr) 20194 return -ENOMEM; 20195 20196 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20197 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20198 20199 prog->aux->dst_trampoline = tr; 20200 return 0; 20201 } 20202 20203 struct btf *bpf_get_btf_vmlinux(void) 20204 { 20205 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20206 mutex_lock(&bpf_verifier_lock); 20207 if (!btf_vmlinux) 20208 btf_vmlinux = btf_parse_vmlinux(); 20209 mutex_unlock(&bpf_verifier_lock); 20210 } 20211 return btf_vmlinux; 20212 } 20213 20214 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20215 { 20216 u64 start_time = ktime_get_ns(); 20217 struct bpf_verifier_env *env; 20218 int i, len, ret = -EINVAL, err; 20219 u32 log_true_size; 20220 bool is_priv; 20221 20222 /* no program is valid */ 20223 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20224 return -EINVAL; 20225 20226 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20227 * allocate/free it every time bpf_check() is called 20228 */ 20229 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20230 if (!env) 20231 return -ENOMEM; 20232 20233 env->bt.env = env; 20234 20235 len = (*prog)->len; 20236 env->insn_aux_data = 20237 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20238 ret = -ENOMEM; 20239 if (!env->insn_aux_data) 20240 goto err_free_env; 20241 for (i = 0; i < len; i++) 20242 env->insn_aux_data[i].orig_idx = i; 20243 env->prog = *prog; 20244 env->ops = bpf_verifier_ops[env->prog->type]; 20245 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20246 is_priv = bpf_capable(); 20247 20248 bpf_get_btf_vmlinux(); 20249 20250 /* grab the mutex to protect few globals used by verifier */ 20251 if (!is_priv) 20252 mutex_lock(&bpf_verifier_lock); 20253 20254 /* user could have requested verbose verifier output 20255 * and supplied buffer to store the verification trace 20256 */ 20257 ret = bpf_vlog_init(&env->log, attr->log_level, 20258 (char __user *) (unsigned long) attr->log_buf, 20259 attr->log_size); 20260 if (ret) 20261 goto err_unlock; 20262 20263 mark_verifier_state_clean(env); 20264 20265 if (IS_ERR(btf_vmlinux)) { 20266 /* Either gcc or pahole or kernel are broken. */ 20267 verbose(env, "in-kernel BTF is malformed\n"); 20268 ret = PTR_ERR(btf_vmlinux); 20269 goto skip_full_check; 20270 } 20271 20272 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20273 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20274 env->strict_alignment = true; 20275 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20276 env->strict_alignment = false; 20277 20278 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20279 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20280 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20281 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20282 env->bpf_capable = bpf_capable(); 20283 20284 if (is_priv) 20285 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20286 20287 env->explored_states = kvcalloc(state_htab_size(env), 20288 sizeof(struct bpf_verifier_state_list *), 20289 GFP_USER); 20290 ret = -ENOMEM; 20291 if (!env->explored_states) 20292 goto skip_full_check; 20293 20294 ret = add_subprog_and_kfunc(env); 20295 if (ret < 0) 20296 goto skip_full_check; 20297 20298 ret = check_subprogs(env); 20299 if (ret < 0) 20300 goto skip_full_check; 20301 20302 ret = check_btf_info(env, attr, uattr); 20303 if (ret < 0) 20304 goto skip_full_check; 20305 20306 ret = check_attach_btf_id(env); 20307 if (ret) 20308 goto skip_full_check; 20309 20310 ret = resolve_pseudo_ldimm64(env); 20311 if (ret < 0) 20312 goto skip_full_check; 20313 20314 if (bpf_prog_is_offloaded(env->prog->aux)) { 20315 ret = bpf_prog_offload_verifier_prep(env->prog); 20316 if (ret) 20317 goto skip_full_check; 20318 } 20319 20320 ret = check_cfg(env); 20321 if (ret < 0) 20322 goto skip_full_check; 20323 20324 ret = do_check_subprogs(env); 20325 ret = ret ?: do_check_main(env); 20326 20327 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20328 ret = bpf_prog_offload_finalize(env); 20329 20330 skip_full_check: 20331 kvfree(env->explored_states); 20332 20333 if (ret == 0) 20334 ret = check_max_stack_depth(env); 20335 20336 /* instruction rewrites happen after this point */ 20337 if (ret == 0) 20338 ret = optimize_bpf_loop(env); 20339 20340 if (is_priv) { 20341 if (ret == 0) 20342 opt_hard_wire_dead_code_branches(env); 20343 if (ret == 0) 20344 ret = opt_remove_dead_code(env); 20345 if (ret == 0) 20346 ret = opt_remove_nops(env); 20347 } else { 20348 if (ret == 0) 20349 sanitize_dead_code(env); 20350 } 20351 20352 if (ret == 0) 20353 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20354 ret = convert_ctx_accesses(env); 20355 20356 if (ret == 0) 20357 ret = do_misc_fixups(env); 20358 20359 /* do 32-bit optimization after insn patching has done so those patched 20360 * insns could be handled correctly. 20361 */ 20362 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20363 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20364 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20365 : false; 20366 } 20367 20368 if (ret == 0) 20369 ret = fixup_call_args(env); 20370 20371 env->verification_time = ktime_get_ns() - start_time; 20372 print_verification_stats(env); 20373 env->prog->aux->verified_insns = env->insn_processed; 20374 20375 /* preserve original error even if log finalization is successful */ 20376 err = bpf_vlog_finalize(&env->log, &log_true_size); 20377 if (err) 20378 ret = err; 20379 20380 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20381 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20382 &log_true_size, sizeof(log_true_size))) { 20383 ret = -EFAULT; 20384 goto err_release_maps; 20385 } 20386 20387 if (ret) 20388 goto err_release_maps; 20389 20390 if (env->used_map_cnt) { 20391 /* if program passed verifier, update used_maps in bpf_prog_info */ 20392 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20393 sizeof(env->used_maps[0]), 20394 GFP_KERNEL); 20395 20396 if (!env->prog->aux->used_maps) { 20397 ret = -ENOMEM; 20398 goto err_release_maps; 20399 } 20400 20401 memcpy(env->prog->aux->used_maps, env->used_maps, 20402 sizeof(env->used_maps[0]) * env->used_map_cnt); 20403 env->prog->aux->used_map_cnt = env->used_map_cnt; 20404 } 20405 if (env->used_btf_cnt) { 20406 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20407 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20408 sizeof(env->used_btfs[0]), 20409 GFP_KERNEL); 20410 if (!env->prog->aux->used_btfs) { 20411 ret = -ENOMEM; 20412 goto err_release_maps; 20413 } 20414 20415 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20416 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20417 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20418 } 20419 if (env->used_map_cnt || env->used_btf_cnt) { 20420 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20421 * bpf_ld_imm64 instructions 20422 */ 20423 convert_pseudo_ld_imm64(env); 20424 } 20425 20426 adjust_btf_func(env); 20427 20428 err_release_maps: 20429 if (!env->prog->aux->used_maps) 20430 /* if we didn't copy map pointers into bpf_prog_info, release 20431 * them now. Otherwise free_used_maps() will release them. 20432 */ 20433 release_maps(env); 20434 if (!env->prog->aux->used_btfs) 20435 release_btfs(env); 20436 20437 /* extension progs temporarily inherit the attach_type of their targets 20438 for verification purposes, so set it back to zero before returning 20439 */ 20440 if (env->prog->type == BPF_PROG_TYPE_EXT) 20441 env->prog->expected_attach_type = 0; 20442 20443 *prog = env->prog; 20444 err_unlock: 20445 if (!is_priv) 20446 mutex_unlock(&bpf_verifier_lock); 20447 vfree(env->insn_aux_data); 20448 err_free_env: 20449 kfree(env); 20450 return ret; 20451 } 20452