1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct btf_field *kptr_field; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 455 { 456 struct btf_record *rec = NULL; 457 struct btf_struct_meta *meta; 458 459 if (reg->type == PTR_TO_MAP_VALUE) { 460 rec = reg->map_ptr->record; 461 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 462 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 463 if (meta) 464 rec = meta->record; 465 } 466 return rec; 467 } 468 469 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 470 { 471 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 472 } 473 474 static bool type_is_rdonly_mem(u32 type) 475 { 476 return type & MEM_RDONLY; 477 } 478 479 static bool type_may_be_null(u32 type) 480 { 481 return type & PTR_MAYBE_NULL; 482 } 483 484 static bool is_acquire_function(enum bpf_func_id func_id, 485 const struct bpf_map *map) 486 { 487 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 488 489 if (func_id == BPF_FUNC_sk_lookup_tcp || 490 func_id == BPF_FUNC_sk_lookup_udp || 491 func_id == BPF_FUNC_skc_lookup_tcp || 492 func_id == BPF_FUNC_ringbuf_reserve || 493 func_id == BPF_FUNC_kptr_xchg) 494 return true; 495 496 if (func_id == BPF_FUNC_map_lookup_elem && 497 (map_type == BPF_MAP_TYPE_SOCKMAP || 498 map_type == BPF_MAP_TYPE_SOCKHASH)) 499 return true; 500 501 return false; 502 } 503 504 static bool is_ptr_cast_function(enum bpf_func_id func_id) 505 { 506 return func_id == BPF_FUNC_tcp_sock || 507 func_id == BPF_FUNC_sk_fullsock || 508 func_id == BPF_FUNC_skc_to_tcp_sock || 509 func_id == BPF_FUNC_skc_to_tcp6_sock || 510 func_id == BPF_FUNC_skc_to_udp6_sock || 511 func_id == BPF_FUNC_skc_to_mptcp_sock || 512 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 513 func_id == BPF_FUNC_skc_to_tcp_request_sock; 514 } 515 516 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 517 { 518 return func_id == BPF_FUNC_dynptr_data; 519 } 520 521 static bool is_callback_calling_function(enum bpf_func_id func_id) 522 { 523 return func_id == BPF_FUNC_for_each_map_elem || 524 func_id == BPF_FUNC_timer_set_callback || 525 func_id == BPF_FUNC_find_vma || 526 func_id == BPF_FUNC_loop || 527 func_id == BPF_FUNC_user_ringbuf_drain; 528 } 529 530 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 531 const struct bpf_map *map) 532 { 533 int ref_obj_uses = 0; 534 535 if (is_ptr_cast_function(func_id)) 536 ref_obj_uses++; 537 if (is_acquire_function(func_id, map)) 538 ref_obj_uses++; 539 if (is_dynptr_ref_function(func_id)) 540 ref_obj_uses++; 541 542 return ref_obj_uses > 1; 543 } 544 545 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 546 { 547 return BPF_CLASS(insn->code) == BPF_STX && 548 BPF_MODE(insn->code) == BPF_ATOMIC && 549 insn->imm == BPF_CMPXCHG; 550 } 551 552 /* string representation of 'enum bpf_reg_type' 553 * 554 * Note that reg_type_str() can not appear more than once in a single verbose() 555 * statement. 556 */ 557 static const char *reg_type_str(struct bpf_verifier_env *env, 558 enum bpf_reg_type type) 559 { 560 char postfix[16] = {0}, prefix[64] = {0}; 561 static const char * const str[] = { 562 [NOT_INIT] = "?", 563 [SCALAR_VALUE] = "scalar", 564 [PTR_TO_CTX] = "ctx", 565 [CONST_PTR_TO_MAP] = "map_ptr", 566 [PTR_TO_MAP_VALUE] = "map_value", 567 [PTR_TO_STACK] = "fp", 568 [PTR_TO_PACKET] = "pkt", 569 [PTR_TO_PACKET_META] = "pkt_meta", 570 [PTR_TO_PACKET_END] = "pkt_end", 571 [PTR_TO_FLOW_KEYS] = "flow_keys", 572 [PTR_TO_SOCKET] = "sock", 573 [PTR_TO_SOCK_COMMON] = "sock_common", 574 [PTR_TO_TCP_SOCK] = "tcp_sock", 575 [PTR_TO_TP_BUFFER] = "tp_buffer", 576 [PTR_TO_XDP_SOCK] = "xdp_sock", 577 [PTR_TO_BTF_ID] = "ptr_", 578 [PTR_TO_MEM] = "mem", 579 [PTR_TO_BUF] = "buf", 580 [PTR_TO_FUNC] = "func", 581 [PTR_TO_MAP_KEY] = "map_key", 582 [PTR_TO_DYNPTR] = "dynptr_ptr", 583 }; 584 585 if (type & PTR_MAYBE_NULL) { 586 if (base_type(type) == PTR_TO_BTF_ID) 587 strncpy(postfix, "or_null_", 16); 588 else 589 strncpy(postfix, "_or_null", 16); 590 } 591 592 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s", 593 type & MEM_RDONLY ? "rdonly_" : "", 594 type & MEM_RINGBUF ? "ringbuf_" : "", 595 type & MEM_USER ? "user_" : "", 596 type & MEM_PERCPU ? "percpu_" : "", 597 type & PTR_UNTRUSTED ? "untrusted_" : "", 598 type & PTR_TRUSTED ? "trusted_" : "" 599 ); 600 601 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 602 prefix, str[base_type(type)], postfix); 603 return env->type_str_buf; 604 } 605 606 static char slot_type_char[] = { 607 [STACK_INVALID] = '?', 608 [STACK_SPILL] = 'r', 609 [STACK_MISC] = 'm', 610 [STACK_ZERO] = '0', 611 [STACK_DYNPTR] = 'd', 612 }; 613 614 static void print_liveness(struct bpf_verifier_env *env, 615 enum bpf_reg_liveness live) 616 { 617 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 618 verbose(env, "_"); 619 if (live & REG_LIVE_READ) 620 verbose(env, "r"); 621 if (live & REG_LIVE_WRITTEN) 622 verbose(env, "w"); 623 if (live & REG_LIVE_DONE) 624 verbose(env, "D"); 625 } 626 627 static int get_spi(s32 off) 628 { 629 return (-off - 1) / BPF_REG_SIZE; 630 } 631 632 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 633 { 634 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 635 636 /* We need to check that slots between [spi - nr_slots + 1, spi] are 637 * within [0, allocated_stack). 638 * 639 * Please note that the spi grows downwards. For example, a dynptr 640 * takes the size of two stack slots; the first slot will be at 641 * spi and the second slot will be at spi - 1. 642 */ 643 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 644 } 645 646 static struct bpf_func_state *func(struct bpf_verifier_env *env, 647 const struct bpf_reg_state *reg) 648 { 649 struct bpf_verifier_state *cur = env->cur_state; 650 651 return cur->frame[reg->frameno]; 652 } 653 654 static const char *kernel_type_name(const struct btf* btf, u32 id) 655 { 656 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 657 } 658 659 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 660 { 661 env->scratched_regs |= 1U << regno; 662 } 663 664 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 665 { 666 env->scratched_stack_slots |= 1ULL << spi; 667 } 668 669 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 670 { 671 return (env->scratched_regs >> regno) & 1; 672 } 673 674 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 675 { 676 return (env->scratched_stack_slots >> regno) & 1; 677 } 678 679 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 680 { 681 return env->scratched_regs || env->scratched_stack_slots; 682 } 683 684 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 685 { 686 env->scratched_regs = 0U; 687 env->scratched_stack_slots = 0ULL; 688 } 689 690 /* Used for printing the entire verifier state. */ 691 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 692 { 693 env->scratched_regs = ~0U; 694 env->scratched_stack_slots = ~0ULL; 695 } 696 697 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 698 { 699 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 700 case DYNPTR_TYPE_LOCAL: 701 return BPF_DYNPTR_TYPE_LOCAL; 702 case DYNPTR_TYPE_RINGBUF: 703 return BPF_DYNPTR_TYPE_RINGBUF; 704 default: 705 return BPF_DYNPTR_TYPE_INVALID; 706 } 707 } 708 709 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 710 { 711 return type == BPF_DYNPTR_TYPE_RINGBUF; 712 } 713 714 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 715 enum bpf_arg_type arg_type, int insn_idx) 716 { 717 struct bpf_func_state *state = func(env, reg); 718 enum bpf_dynptr_type type; 719 int spi, i, id; 720 721 spi = get_spi(reg->off); 722 723 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 724 return -EINVAL; 725 726 for (i = 0; i < BPF_REG_SIZE; i++) { 727 state->stack[spi].slot_type[i] = STACK_DYNPTR; 728 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 729 } 730 731 type = arg_to_dynptr_type(arg_type); 732 if (type == BPF_DYNPTR_TYPE_INVALID) 733 return -EINVAL; 734 735 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 736 state->stack[spi].spilled_ptr.dynptr.type = type; 737 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 738 739 if (dynptr_type_refcounted(type)) { 740 /* The id is used to track proper releasing */ 741 id = acquire_reference_state(env, insn_idx); 742 if (id < 0) 743 return id; 744 745 state->stack[spi].spilled_ptr.id = id; 746 state->stack[spi - 1].spilled_ptr.id = id; 747 } 748 749 return 0; 750 } 751 752 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 753 { 754 struct bpf_func_state *state = func(env, reg); 755 int spi, i; 756 757 spi = get_spi(reg->off); 758 759 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 760 return -EINVAL; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_INVALID; 764 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 765 } 766 767 /* Invalidate any slices associated with this dynptr */ 768 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 769 release_reference(env, state->stack[spi].spilled_ptr.id); 770 state->stack[spi].spilled_ptr.id = 0; 771 state->stack[spi - 1].spilled_ptr.id = 0; 772 } 773 774 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 775 state->stack[spi].spilled_ptr.dynptr.type = 0; 776 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 777 778 return 0; 779 } 780 781 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 782 { 783 struct bpf_func_state *state = func(env, reg); 784 int spi = get_spi(reg->off); 785 int i; 786 787 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 788 return true; 789 790 for (i = 0; i < BPF_REG_SIZE; i++) { 791 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 792 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 793 return false; 794 } 795 796 return true; 797 } 798 799 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, 800 struct bpf_reg_state *reg) 801 { 802 struct bpf_func_state *state = func(env, reg); 803 int spi = get_spi(reg->off); 804 int i; 805 806 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 807 !state->stack[spi].spilled_ptr.dynptr.first_slot) 808 return false; 809 810 for (i = 0; i < BPF_REG_SIZE; i++) { 811 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 812 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 813 return false; 814 } 815 816 return true; 817 } 818 819 bool is_dynptr_type_expected(struct bpf_verifier_env *env, 820 struct bpf_reg_state *reg, 821 enum bpf_arg_type arg_type) 822 { 823 struct bpf_func_state *state = func(env, reg); 824 enum bpf_dynptr_type dynptr_type; 825 int spi = get_spi(reg->off); 826 827 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 828 if (arg_type == ARG_PTR_TO_DYNPTR) 829 return true; 830 831 dynptr_type = arg_to_dynptr_type(arg_type); 832 833 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 834 } 835 836 /* The reg state of a pointer or a bounded scalar was saved when 837 * it was spilled to the stack. 838 */ 839 static bool is_spilled_reg(const struct bpf_stack_state *stack) 840 { 841 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 842 } 843 844 static void scrub_spilled_slot(u8 *stype) 845 { 846 if (*stype != STACK_INVALID) 847 *stype = STACK_MISC; 848 } 849 850 static void print_verifier_state(struct bpf_verifier_env *env, 851 const struct bpf_func_state *state, 852 bool print_all) 853 { 854 const struct bpf_reg_state *reg; 855 enum bpf_reg_type t; 856 int i; 857 858 if (state->frameno) 859 verbose(env, " frame%d:", state->frameno); 860 for (i = 0; i < MAX_BPF_REG; i++) { 861 reg = &state->regs[i]; 862 t = reg->type; 863 if (t == NOT_INIT) 864 continue; 865 if (!print_all && !reg_scratched(env, i)) 866 continue; 867 verbose(env, " R%d", i); 868 print_liveness(env, reg->live); 869 verbose(env, "="); 870 if (t == SCALAR_VALUE && reg->precise) 871 verbose(env, "P"); 872 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 873 tnum_is_const(reg->var_off)) { 874 /* reg->off should be 0 for SCALAR_VALUE */ 875 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 876 verbose(env, "%lld", reg->var_off.value + reg->off); 877 } else { 878 const char *sep = ""; 879 880 verbose(env, "%s", reg_type_str(env, t)); 881 if (base_type(t) == PTR_TO_BTF_ID) 882 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 883 verbose(env, "("); 884 /* 885 * _a stands for append, was shortened to avoid multiline statements below. 886 * This macro is used to output a comma separated list of attributes. 887 */ 888 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 889 890 if (reg->id) 891 verbose_a("id=%d", reg->id); 892 if (reg->ref_obj_id) 893 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 894 if (t != SCALAR_VALUE) 895 verbose_a("off=%d", reg->off); 896 if (type_is_pkt_pointer(t)) 897 verbose_a("r=%d", reg->range); 898 else if (base_type(t) == CONST_PTR_TO_MAP || 899 base_type(t) == PTR_TO_MAP_KEY || 900 base_type(t) == PTR_TO_MAP_VALUE) 901 verbose_a("ks=%d,vs=%d", 902 reg->map_ptr->key_size, 903 reg->map_ptr->value_size); 904 if (tnum_is_const(reg->var_off)) { 905 /* Typically an immediate SCALAR_VALUE, but 906 * could be a pointer whose offset is too big 907 * for reg->off 908 */ 909 verbose_a("imm=%llx", reg->var_off.value); 910 } else { 911 if (reg->smin_value != reg->umin_value && 912 reg->smin_value != S64_MIN) 913 verbose_a("smin=%lld", (long long)reg->smin_value); 914 if (reg->smax_value != reg->umax_value && 915 reg->smax_value != S64_MAX) 916 verbose_a("smax=%lld", (long long)reg->smax_value); 917 if (reg->umin_value != 0) 918 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 919 if (reg->umax_value != U64_MAX) 920 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 921 if (!tnum_is_unknown(reg->var_off)) { 922 char tn_buf[48]; 923 924 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 925 verbose_a("var_off=%s", tn_buf); 926 } 927 if (reg->s32_min_value != reg->smin_value && 928 reg->s32_min_value != S32_MIN) 929 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 930 if (reg->s32_max_value != reg->smax_value && 931 reg->s32_max_value != S32_MAX) 932 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 933 if (reg->u32_min_value != reg->umin_value && 934 reg->u32_min_value != U32_MIN) 935 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 936 if (reg->u32_max_value != reg->umax_value && 937 reg->u32_max_value != U32_MAX) 938 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 939 } 940 #undef verbose_a 941 942 verbose(env, ")"); 943 } 944 } 945 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 946 char types_buf[BPF_REG_SIZE + 1]; 947 bool valid = false; 948 int j; 949 950 for (j = 0; j < BPF_REG_SIZE; j++) { 951 if (state->stack[i].slot_type[j] != STACK_INVALID) 952 valid = true; 953 types_buf[j] = slot_type_char[ 954 state->stack[i].slot_type[j]]; 955 } 956 types_buf[BPF_REG_SIZE] = 0; 957 if (!valid) 958 continue; 959 if (!print_all && !stack_slot_scratched(env, i)) 960 continue; 961 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 962 print_liveness(env, state->stack[i].spilled_ptr.live); 963 if (is_spilled_reg(&state->stack[i])) { 964 reg = &state->stack[i].spilled_ptr; 965 t = reg->type; 966 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 967 if (t == SCALAR_VALUE && reg->precise) 968 verbose(env, "P"); 969 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 970 verbose(env, "%lld", reg->var_off.value + reg->off); 971 } else { 972 verbose(env, "=%s", types_buf); 973 } 974 } 975 if (state->acquired_refs && state->refs[0].id) { 976 verbose(env, " refs=%d", state->refs[0].id); 977 for (i = 1; i < state->acquired_refs; i++) 978 if (state->refs[i].id) 979 verbose(env, ",%d", state->refs[i].id); 980 } 981 if (state->in_callback_fn) 982 verbose(env, " cb"); 983 if (state->in_async_callback_fn) 984 verbose(env, " async_cb"); 985 verbose(env, "\n"); 986 mark_verifier_state_clean(env); 987 } 988 989 static inline u32 vlog_alignment(u32 pos) 990 { 991 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 992 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 993 } 994 995 static void print_insn_state(struct bpf_verifier_env *env, 996 const struct bpf_func_state *state) 997 { 998 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 999 /* remove new line character */ 1000 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1001 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1002 } else { 1003 verbose(env, "%d:", env->insn_idx); 1004 } 1005 print_verifier_state(env, state, false); 1006 } 1007 1008 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1009 * small to hold src. This is different from krealloc since we don't want to preserve 1010 * the contents of dst. 1011 * 1012 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1013 * not be allocated. 1014 */ 1015 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1016 { 1017 size_t bytes; 1018 1019 if (ZERO_OR_NULL_PTR(src)) 1020 goto out; 1021 1022 if (unlikely(check_mul_overflow(n, size, &bytes))) 1023 return NULL; 1024 1025 if (ksize(dst) < bytes) { 1026 kfree(dst); 1027 dst = kmalloc_track_caller(bytes, flags); 1028 if (!dst) 1029 return NULL; 1030 } 1031 1032 memcpy(dst, src, bytes); 1033 out: 1034 return dst ? dst : ZERO_SIZE_PTR; 1035 } 1036 1037 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1038 * small to hold new_n items. new items are zeroed out if the array grows. 1039 * 1040 * Contrary to krealloc_array, does not free arr if new_n is zero. 1041 */ 1042 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1043 { 1044 void *new_arr; 1045 1046 if (!new_n || old_n == new_n) 1047 goto out; 1048 1049 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1050 if (!new_arr) { 1051 kfree(arr); 1052 return NULL; 1053 } 1054 arr = new_arr; 1055 1056 if (new_n > old_n) 1057 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1058 1059 out: 1060 return arr ? arr : ZERO_SIZE_PTR; 1061 } 1062 1063 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1064 { 1065 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1066 sizeof(struct bpf_reference_state), GFP_KERNEL); 1067 if (!dst->refs) 1068 return -ENOMEM; 1069 1070 dst->acquired_refs = src->acquired_refs; 1071 return 0; 1072 } 1073 1074 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1075 { 1076 size_t n = src->allocated_stack / BPF_REG_SIZE; 1077 1078 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1079 GFP_KERNEL); 1080 if (!dst->stack) 1081 return -ENOMEM; 1082 1083 dst->allocated_stack = src->allocated_stack; 1084 return 0; 1085 } 1086 1087 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1088 { 1089 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1090 sizeof(struct bpf_reference_state)); 1091 if (!state->refs) 1092 return -ENOMEM; 1093 1094 state->acquired_refs = n; 1095 return 0; 1096 } 1097 1098 static int grow_stack_state(struct bpf_func_state *state, int size) 1099 { 1100 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1101 1102 if (old_n >= n) 1103 return 0; 1104 1105 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1106 if (!state->stack) 1107 return -ENOMEM; 1108 1109 state->allocated_stack = size; 1110 return 0; 1111 } 1112 1113 /* Acquire a pointer id from the env and update the state->refs to include 1114 * this new pointer reference. 1115 * On success, returns a valid pointer id to associate with the register 1116 * On failure, returns a negative errno. 1117 */ 1118 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1119 { 1120 struct bpf_func_state *state = cur_func(env); 1121 int new_ofs = state->acquired_refs; 1122 int id, err; 1123 1124 err = resize_reference_state(state, state->acquired_refs + 1); 1125 if (err) 1126 return err; 1127 id = ++env->id_gen; 1128 state->refs[new_ofs].id = id; 1129 state->refs[new_ofs].insn_idx = insn_idx; 1130 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1131 1132 return id; 1133 } 1134 1135 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1136 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1137 { 1138 int i, last_idx; 1139 1140 last_idx = state->acquired_refs - 1; 1141 for (i = 0; i < state->acquired_refs; i++) { 1142 if (state->refs[i].id == ptr_id) { 1143 /* Cannot release caller references in callbacks */ 1144 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1145 return -EINVAL; 1146 if (last_idx && i != last_idx) 1147 memcpy(&state->refs[i], &state->refs[last_idx], 1148 sizeof(*state->refs)); 1149 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1150 state->acquired_refs--; 1151 return 0; 1152 } 1153 } 1154 return -EINVAL; 1155 } 1156 1157 static void free_func_state(struct bpf_func_state *state) 1158 { 1159 if (!state) 1160 return; 1161 kfree(state->refs); 1162 kfree(state->stack); 1163 kfree(state); 1164 } 1165 1166 static void clear_jmp_history(struct bpf_verifier_state *state) 1167 { 1168 kfree(state->jmp_history); 1169 state->jmp_history = NULL; 1170 state->jmp_history_cnt = 0; 1171 } 1172 1173 static void free_verifier_state(struct bpf_verifier_state *state, 1174 bool free_self) 1175 { 1176 int i; 1177 1178 for (i = 0; i <= state->curframe; i++) { 1179 free_func_state(state->frame[i]); 1180 state->frame[i] = NULL; 1181 } 1182 clear_jmp_history(state); 1183 if (free_self) 1184 kfree(state); 1185 } 1186 1187 /* copy verifier state from src to dst growing dst stack space 1188 * when necessary to accommodate larger src stack 1189 */ 1190 static int copy_func_state(struct bpf_func_state *dst, 1191 const struct bpf_func_state *src) 1192 { 1193 int err; 1194 1195 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1196 err = copy_reference_state(dst, src); 1197 if (err) 1198 return err; 1199 return copy_stack_state(dst, src); 1200 } 1201 1202 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1203 const struct bpf_verifier_state *src) 1204 { 1205 struct bpf_func_state *dst; 1206 int i, err; 1207 1208 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1209 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1210 GFP_USER); 1211 if (!dst_state->jmp_history) 1212 return -ENOMEM; 1213 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1214 1215 /* if dst has more stack frames then src frame, free them */ 1216 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1217 free_func_state(dst_state->frame[i]); 1218 dst_state->frame[i] = NULL; 1219 } 1220 dst_state->speculative = src->speculative; 1221 dst_state->curframe = src->curframe; 1222 dst_state->active_lock.ptr = src->active_lock.ptr; 1223 dst_state->active_lock.id = src->active_lock.id; 1224 dst_state->branches = src->branches; 1225 dst_state->parent = src->parent; 1226 dst_state->first_insn_idx = src->first_insn_idx; 1227 dst_state->last_insn_idx = src->last_insn_idx; 1228 for (i = 0; i <= src->curframe; i++) { 1229 dst = dst_state->frame[i]; 1230 if (!dst) { 1231 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1232 if (!dst) 1233 return -ENOMEM; 1234 dst_state->frame[i] = dst; 1235 } 1236 err = copy_func_state(dst, src->frame[i]); 1237 if (err) 1238 return err; 1239 } 1240 return 0; 1241 } 1242 1243 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1244 { 1245 while (st) { 1246 u32 br = --st->branches; 1247 1248 /* WARN_ON(br > 1) technically makes sense here, 1249 * but see comment in push_stack(), hence: 1250 */ 1251 WARN_ONCE((int)br < 0, 1252 "BUG update_branch_counts:branches_to_explore=%d\n", 1253 br); 1254 if (br) 1255 break; 1256 st = st->parent; 1257 } 1258 } 1259 1260 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1261 int *insn_idx, bool pop_log) 1262 { 1263 struct bpf_verifier_state *cur = env->cur_state; 1264 struct bpf_verifier_stack_elem *elem, *head = env->head; 1265 int err; 1266 1267 if (env->head == NULL) 1268 return -ENOENT; 1269 1270 if (cur) { 1271 err = copy_verifier_state(cur, &head->st); 1272 if (err) 1273 return err; 1274 } 1275 if (pop_log) 1276 bpf_vlog_reset(&env->log, head->log_pos); 1277 if (insn_idx) 1278 *insn_idx = head->insn_idx; 1279 if (prev_insn_idx) 1280 *prev_insn_idx = head->prev_insn_idx; 1281 elem = head->next; 1282 free_verifier_state(&head->st, false); 1283 kfree(head); 1284 env->head = elem; 1285 env->stack_size--; 1286 return 0; 1287 } 1288 1289 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1290 int insn_idx, int prev_insn_idx, 1291 bool speculative) 1292 { 1293 struct bpf_verifier_state *cur = env->cur_state; 1294 struct bpf_verifier_stack_elem *elem; 1295 int err; 1296 1297 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1298 if (!elem) 1299 goto err; 1300 1301 elem->insn_idx = insn_idx; 1302 elem->prev_insn_idx = prev_insn_idx; 1303 elem->next = env->head; 1304 elem->log_pos = env->log.len_used; 1305 env->head = elem; 1306 env->stack_size++; 1307 err = copy_verifier_state(&elem->st, cur); 1308 if (err) 1309 goto err; 1310 elem->st.speculative |= speculative; 1311 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1312 verbose(env, "The sequence of %d jumps is too complex.\n", 1313 env->stack_size); 1314 goto err; 1315 } 1316 if (elem->st.parent) { 1317 ++elem->st.parent->branches; 1318 /* WARN_ON(branches > 2) technically makes sense here, 1319 * but 1320 * 1. speculative states will bump 'branches' for non-branch 1321 * instructions 1322 * 2. is_state_visited() heuristics may decide not to create 1323 * a new state for a sequence of branches and all such current 1324 * and cloned states will be pointing to a single parent state 1325 * which might have large 'branches' count. 1326 */ 1327 } 1328 return &elem->st; 1329 err: 1330 free_verifier_state(env->cur_state, true); 1331 env->cur_state = NULL; 1332 /* pop all elements and return */ 1333 while (!pop_stack(env, NULL, NULL, false)); 1334 return NULL; 1335 } 1336 1337 #define CALLER_SAVED_REGS 6 1338 static const int caller_saved[CALLER_SAVED_REGS] = { 1339 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1340 }; 1341 1342 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1343 struct bpf_reg_state *reg); 1344 1345 /* This helper doesn't clear reg->id */ 1346 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1347 { 1348 reg->var_off = tnum_const(imm); 1349 reg->smin_value = (s64)imm; 1350 reg->smax_value = (s64)imm; 1351 reg->umin_value = imm; 1352 reg->umax_value = imm; 1353 1354 reg->s32_min_value = (s32)imm; 1355 reg->s32_max_value = (s32)imm; 1356 reg->u32_min_value = (u32)imm; 1357 reg->u32_max_value = (u32)imm; 1358 } 1359 1360 /* Mark the unknown part of a register (variable offset or scalar value) as 1361 * known to have the value @imm. 1362 */ 1363 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1364 { 1365 /* Clear id, off, and union(map_ptr, range) */ 1366 memset(((u8 *)reg) + sizeof(reg->type), 0, 1367 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1368 ___mark_reg_known(reg, imm); 1369 } 1370 1371 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1372 { 1373 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1374 reg->s32_min_value = (s32)imm; 1375 reg->s32_max_value = (s32)imm; 1376 reg->u32_min_value = (u32)imm; 1377 reg->u32_max_value = (u32)imm; 1378 } 1379 1380 /* Mark the 'variable offset' part of a register as zero. This should be 1381 * used only on registers holding a pointer type. 1382 */ 1383 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1384 { 1385 __mark_reg_known(reg, 0); 1386 } 1387 1388 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1389 { 1390 __mark_reg_known(reg, 0); 1391 reg->type = SCALAR_VALUE; 1392 } 1393 1394 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1395 struct bpf_reg_state *regs, u32 regno) 1396 { 1397 if (WARN_ON(regno >= MAX_BPF_REG)) { 1398 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1399 /* Something bad happened, let's kill all regs */ 1400 for (regno = 0; regno < MAX_BPF_REG; regno++) 1401 __mark_reg_not_init(env, regs + regno); 1402 return; 1403 } 1404 __mark_reg_known_zero(regs + regno); 1405 } 1406 1407 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1408 { 1409 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1410 const struct bpf_map *map = reg->map_ptr; 1411 1412 if (map->inner_map_meta) { 1413 reg->type = CONST_PTR_TO_MAP; 1414 reg->map_ptr = map->inner_map_meta; 1415 /* transfer reg's id which is unique for every map_lookup_elem 1416 * as UID of the inner map. 1417 */ 1418 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1419 reg->map_uid = reg->id; 1420 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1421 reg->type = PTR_TO_XDP_SOCK; 1422 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1423 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1424 reg->type = PTR_TO_SOCKET; 1425 } else { 1426 reg->type = PTR_TO_MAP_VALUE; 1427 } 1428 return; 1429 } 1430 1431 reg->type &= ~PTR_MAYBE_NULL; 1432 } 1433 1434 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1435 { 1436 return type_is_pkt_pointer(reg->type); 1437 } 1438 1439 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1440 { 1441 return reg_is_pkt_pointer(reg) || 1442 reg->type == PTR_TO_PACKET_END; 1443 } 1444 1445 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1446 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1447 enum bpf_reg_type which) 1448 { 1449 /* The register can already have a range from prior markings. 1450 * This is fine as long as it hasn't been advanced from its 1451 * origin. 1452 */ 1453 return reg->type == which && 1454 reg->id == 0 && 1455 reg->off == 0 && 1456 tnum_equals_const(reg->var_off, 0); 1457 } 1458 1459 /* Reset the min/max bounds of a register */ 1460 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1461 { 1462 reg->smin_value = S64_MIN; 1463 reg->smax_value = S64_MAX; 1464 reg->umin_value = 0; 1465 reg->umax_value = U64_MAX; 1466 1467 reg->s32_min_value = S32_MIN; 1468 reg->s32_max_value = S32_MAX; 1469 reg->u32_min_value = 0; 1470 reg->u32_max_value = U32_MAX; 1471 } 1472 1473 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1474 { 1475 reg->smin_value = S64_MIN; 1476 reg->smax_value = S64_MAX; 1477 reg->umin_value = 0; 1478 reg->umax_value = U64_MAX; 1479 } 1480 1481 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1482 { 1483 reg->s32_min_value = S32_MIN; 1484 reg->s32_max_value = S32_MAX; 1485 reg->u32_min_value = 0; 1486 reg->u32_max_value = U32_MAX; 1487 } 1488 1489 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1490 { 1491 struct tnum var32_off = tnum_subreg(reg->var_off); 1492 1493 /* min signed is max(sign bit) | min(other bits) */ 1494 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1495 var32_off.value | (var32_off.mask & S32_MIN)); 1496 /* max signed is min(sign bit) | max(other bits) */ 1497 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1498 var32_off.value | (var32_off.mask & S32_MAX)); 1499 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1500 reg->u32_max_value = min(reg->u32_max_value, 1501 (u32)(var32_off.value | var32_off.mask)); 1502 } 1503 1504 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1505 { 1506 /* min signed is max(sign bit) | min(other bits) */ 1507 reg->smin_value = max_t(s64, reg->smin_value, 1508 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1509 /* max signed is min(sign bit) | max(other bits) */ 1510 reg->smax_value = min_t(s64, reg->smax_value, 1511 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1512 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1513 reg->umax_value = min(reg->umax_value, 1514 reg->var_off.value | reg->var_off.mask); 1515 } 1516 1517 static void __update_reg_bounds(struct bpf_reg_state *reg) 1518 { 1519 __update_reg32_bounds(reg); 1520 __update_reg64_bounds(reg); 1521 } 1522 1523 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1524 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1525 { 1526 /* Learn sign from signed bounds. 1527 * If we cannot cross the sign boundary, then signed and unsigned bounds 1528 * are the same, so combine. This works even in the negative case, e.g. 1529 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1530 */ 1531 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1532 reg->s32_min_value = reg->u32_min_value = 1533 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1534 reg->s32_max_value = reg->u32_max_value = 1535 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1536 return; 1537 } 1538 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1539 * boundary, so we must be careful. 1540 */ 1541 if ((s32)reg->u32_max_value >= 0) { 1542 /* Positive. We can't learn anything from the smin, but smax 1543 * is positive, hence safe. 1544 */ 1545 reg->s32_min_value = reg->u32_min_value; 1546 reg->s32_max_value = reg->u32_max_value = 1547 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1548 } else if ((s32)reg->u32_min_value < 0) { 1549 /* Negative. We can't learn anything from the smax, but smin 1550 * is negative, hence safe. 1551 */ 1552 reg->s32_min_value = reg->u32_min_value = 1553 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1554 reg->s32_max_value = reg->u32_max_value; 1555 } 1556 } 1557 1558 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1559 { 1560 /* Learn sign from signed bounds. 1561 * If we cannot cross the sign boundary, then signed and unsigned bounds 1562 * are the same, so combine. This works even in the negative case, e.g. 1563 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1564 */ 1565 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1566 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1567 reg->umin_value); 1568 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1569 reg->umax_value); 1570 return; 1571 } 1572 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1573 * boundary, so we must be careful. 1574 */ 1575 if ((s64)reg->umax_value >= 0) { 1576 /* Positive. We can't learn anything from the smin, but smax 1577 * is positive, hence safe. 1578 */ 1579 reg->smin_value = reg->umin_value; 1580 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1581 reg->umax_value); 1582 } else if ((s64)reg->umin_value < 0) { 1583 /* Negative. We can't learn anything from the smax, but smin 1584 * is negative, hence safe. 1585 */ 1586 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1587 reg->umin_value); 1588 reg->smax_value = reg->umax_value; 1589 } 1590 } 1591 1592 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1593 { 1594 __reg32_deduce_bounds(reg); 1595 __reg64_deduce_bounds(reg); 1596 } 1597 1598 /* Attempts to improve var_off based on unsigned min/max information */ 1599 static void __reg_bound_offset(struct bpf_reg_state *reg) 1600 { 1601 struct tnum var64_off = tnum_intersect(reg->var_off, 1602 tnum_range(reg->umin_value, 1603 reg->umax_value)); 1604 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1605 tnum_range(reg->u32_min_value, 1606 reg->u32_max_value)); 1607 1608 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1609 } 1610 1611 static void reg_bounds_sync(struct bpf_reg_state *reg) 1612 { 1613 /* We might have learned new bounds from the var_off. */ 1614 __update_reg_bounds(reg); 1615 /* We might have learned something about the sign bit. */ 1616 __reg_deduce_bounds(reg); 1617 /* We might have learned some bits from the bounds. */ 1618 __reg_bound_offset(reg); 1619 /* Intersecting with the old var_off might have improved our bounds 1620 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1621 * then new var_off is (0; 0x7f...fc) which improves our umax. 1622 */ 1623 __update_reg_bounds(reg); 1624 } 1625 1626 static bool __reg32_bound_s64(s32 a) 1627 { 1628 return a >= 0 && a <= S32_MAX; 1629 } 1630 1631 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1632 { 1633 reg->umin_value = reg->u32_min_value; 1634 reg->umax_value = reg->u32_max_value; 1635 1636 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1637 * be positive otherwise set to worse case bounds and refine later 1638 * from tnum. 1639 */ 1640 if (__reg32_bound_s64(reg->s32_min_value) && 1641 __reg32_bound_s64(reg->s32_max_value)) { 1642 reg->smin_value = reg->s32_min_value; 1643 reg->smax_value = reg->s32_max_value; 1644 } else { 1645 reg->smin_value = 0; 1646 reg->smax_value = U32_MAX; 1647 } 1648 } 1649 1650 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1651 { 1652 /* special case when 64-bit register has upper 32-bit register 1653 * zeroed. Typically happens after zext or <<32, >>32 sequence 1654 * allowing us to use 32-bit bounds directly, 1655 */ 1656 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1657 __reg_assign_32_into_64(reg); 1658 } else { 1659 /* Otherwise the best we can do is push lower 32bit known and 1660 * unknown bits into register (var_off set from jmp logic) 1661 * then learn as much as possible from the 64-bit tnum 1662 * known and unknown bits. The previous smin/smax bounds are 1663 * invalid here because of jmp32 compare so mark them unknown 1664 * so they do not impact tnum bounds calculation. 1665 */ 1666 __mark_reg64_unbounded(reg); 1667 } 1668 reg_bounds_sync(reg); 1669 } 1670 1671 static bool __reg64_bound_s32(s64 a) 1672 { 1673 return a >= S32_MIN && a <= S32_MAX; 1674 } 1675 1676 static bool __reg64_bound_u32(u64 a) 1677 { 1678 return a >= U32_MIN && a <= U32_MAX; 1679 } 1680 1681 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1682 { 1683 __mark_reg32_unbounded(reg); 1684 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1685 reg->s32_min_value = (s32)reg->smin_value; 1686 reg->s32_max_value = (s32)reg->smax_value; 1687 } 1688 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1689 reg->u32_min_value = (u32)reg->umin_value; 1690 reg->u32_max_value = (u32)reg->umax_value; 1691 } 1692 reg_bounds_sync(reg); 1693 } 1694 1695 /* Mark a register as having a completely unknown (scalar) value. */ 1696 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1697 struct bpf_reg_state *reg) 1698 { 1699 /* 1700 * Clear type, id, off, and union(map_ptr, range) and 1701 * padding between 'type' and union 1702 */ 1703 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1704 reg->type = SCALAR_VALUE; 1705 reg->var_off = tnum_unknown; 1706 reg->frameno = 0; 1707 reg->precise = !env->bpf_capable; 1708 __mark_reg_unbounded(reg); 1709 } 1710 1711 static void mark_reg_unknown(struct bpf_verifier_env *env, 1712 struct bpf_reg_state *regs, u32 regno) 1713 { 1714 if (WARN_ON(regno >= MAX_BPF_REG)) { 1715 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1716 /* Something bad happened, let's kill all regs except FP */ 1717 for (regno = 0; regno < BPF_REG_FP; regno++) 1718 __mark_reg_not_init(env, regs + regno); 1719 return; 1720 } 1721 __mark_reg_unknown(env, regs + regno); 1722 } 1723 1724 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1725 struct bpf_reg_state *reg) 1726 { 1727 __mark_reg_unknown(env, reg); 1728 reg->type = NOT_INIT; 1729 } 1730 1731 static void mark_reg_not_init(struct bpf_verifier_env *env, 1732 struct bpf_reg_state *regs, u32 regno) 1733 { 1734 if (WARN_ON(regno >= MAX_BPF_REG)) { 1735 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1736 /* Something bad happened, let's kill all regs except FP */ 1737 for (regno = 0; regno < BPF_REG_FP; regno++) 1738 __mark_reg_not_init(env, regs + regno); 1739 return; 1740 } 1741 __mark_reg_not_init(env, regs + regno); 1742 } 1743 1744 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1745 struct bpf_reg_state *regs, u32 regno, 1746 enum bpf_reg_type reg_type, 1747 struct btf *btf, u32 btf_id, 1748 enum bpf_type_flag flag) 1749 { 1750 if (reg_type == SCALAR_VALUE) { 1751 mark_reg_unknown(env, regs, regno); 1752 return; 1753 } 1754 mark_reg_known_zero(env, regs, regno); 1755 regs[regno].type = PTR_TO_BTF_ID | flag; 1756 regs[regno].btf = btf; 1757 regs[regno].btf_id = btf_id; 1758 } 1759 1760 #define DEF_NOT_SUBREG (0) 1761 static void init_reg_state(struct bpf_verifier_env *env, 1762 struct bpf_func_state *state) 1763 { 1764 struct bpf_reg_state *regs = state->regs; 1765 int i; 1766 1767 for (i = 0; i < MAX_BPF_REG; i++) { 1768 mark_reg_not_init(env, regs, i); 1769 regs[i].live = REG_LIVE_NONE; 1770 regs[i].parent = NULL; 1771 regs[i].subreg_def = DEF_NOT_SUBREG; 1772 } 1773 1774 /* frame pointer */ 1775 regs[BPF_REG_FP].type = PTR_TO_STACK; 1776 mark_reg_known_zero(env, regs, BPF_REG_FP); 1777 regs[BPF_REG_FP].frameno = state->frameno; 1778 } 1779 1780 #define BPF_MAIN_FUNC (-1) 1781 static void init_func_state(struct bpf_verifier_env *env, 1782 struct bpf_func_state *state, 1783 int callsite, int frameno, int subprogno) 1784 { 1785 state->callsite = callsite; 1786 state->frameno = frameno; 1787 state->subprogno = subprogno; 1788 state->callback_ret_range = tnum_range(0, 0); 1789 init_reg_state(env, state); 1790 mark_verifier_state_scratched(env); 1791 } 1792 1793 /* Similar to push_stack(), but for async callbacks */ 1794 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1795 int insn_idx, int prev_insn_idx, 1796 int subprog) 1797 { 1798 struct bpf_verifier_stack_elem *elem; 1799 struct bpf_func_state *frame; 1800 1801 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1802 if (!elem) 1803 goto err; 1804 1805 elem->insn_idx = insn_idx; 1806 elem->prev_insn_idx = prev_insn_idx; 1807 elem->next = env->head; 1808 elem->log_pos = env->log.len_used; 1809 env->head = elem; 1810 env->stack_size++; 1811 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1812 verbose(env, 1813 "The sequence of %d jumps is too complex for async cb.\n", 1814 env->stack_size); 1815 goto err; 1816 } 1817 /* Unlike push_stack() do not copy_verifier_state(). 1818 * The caller state doesn't matter. 1819 * This is async callback. It starts in a fresh stack. 1820 * Initialize it similar to do_check_common(). 1821 */ 1822 elem->st.branches = 1; 1823 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1824 if (!frame) 1825 goto err; 1826 init_func_state(env, frame, 1827 BPF_MAIN_FUNC /* callsite */, 1828 0 /* frameno within this callchain */, 1829 subprog /* subprog number within this prog */); 1830 elem->st.frame[0] = frame; 1831 return &elem->st; 1832 err: 1833 free_verifier_state(env->cur_state, true); 1834 env->cur_state = NULL; 1835 /* pop all elements and return */ 1836 while (!pop_stack(env, NULL, NULL, false)); 1837 return NULL; 1838 } 1839 1840 1841 enum reg_arg_type { 1842 SRC_OP, /* register is used as source operand */ 1843 DST_OP, /* register is used as destination operand */ 1844 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1845 }; 1846 1847 static int cmp_subprogs(const void *a, const void *b) 1848 { 1849 return ((struct bpf_subprog_info *)a)->start - 1850 ((struct bpf_subprog_info *)b)->start; 1851 } 1852 1853 static int find_subprog(struct bpf_verifier_env *env, int off) 1854 { 1855 struct bpf_subprog_info *p; 1856 1857 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1858 sizeof(env->subprog_info[0]), cmp_subprogs); 1859 if (!p) 1860 return -ENOENT; 1861 return p - env->subprog_info; 1862 1863 } 1864 1865 static int add_subprog(struct bpf_verifier_env *env, int off) 1866 { 1867 int insn_cnt = env->prog->len; 1868 int ret; 1869 1870 if (off >= insn_cnt || off < 0) { 1871 verbose(env, "call to invalid destination\n"); 1872 return -EINVAL; 1873 } 1874 ret = find_subprog(env, off); 1875 if (ret >= 0) 1876 return ret; 1877 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1878 verbose(env, "too many subprograms\n"); 1879 return -E2BIG; 1880 } 1881 /* determine subprog starts. The end is one before the next starts */ 1882 env->subprog_info[env->subprog_cnt++].start = off; 1883 sort(env->subprog_info, env->subprog_cnt, 1884 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1885 return env->subprog_cnt - 1; 1886 } 1887 1888 #define MAX_KFUNC_DESCS 256 1889 #define MAX_KFUNC_BTFS 256 1890 1891 struct bpf_kfunc_desc { 1892 struct btf_func_model func_model; 1893 u32 func_id; 1894 s32 imm; 1895 u16 offset; 1896 }; 1897 1898 struct bpf_kfunc_btf { 1899 struct btf *btf; 1900 struct module *module; 1901 u16 offset; 1902 }; 1903 1904 struct bpf_kfunc_desc_tab { 1905 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1906 u32 nr_descs; 1907 }; 1908 1909 struct bpf_kfunc_btf_tab { 1910 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1911 u32 nr_descs; 1912 }; 1913 1914 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1915 { 1916 const struct bpf_kfunc_desc *d0 = a; 1917 const struct bpf_kfunc_desc *d1 = b; 1918 1919 /* func_id is not greater than BTF_MAX_TYPE */ 1920 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1921 } 1922 1923 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1924 { 1925 const struct bpf_kfunc_btf *d0 = a; 1926 const struct bpf_kfunc_btf *d1 = b; 1927 1928 return d0->offset - d1->offset; 1929 } 1930 1931 static const struct bpf_kfunc_desc * 1932 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1933 { 1934 struct bpf_kfunc_desc desc = { 1935 .func_id = func_id, 1936 .offset = offset, 1937 }; 1938 struct bpf_kfunc_desc_tab *tab; 1939 1940 tab = prog->aux->kfunc_tab; 1941 return bsearch(&desc, tab->descs, tab->nr_descs, 1942 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1943 } 1944 1945 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1946 s16 offset) 1947 { 1948 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1949 struct bpf_kfunc_btf_tab *tab; 1950 struct bpf_kfunc_btf *b; 1951 struct module *mod; 1952 struct btf *btf; 1953 int btf_fd; 1954 1955 tab = env->prog->aux->kfunc_btf_tab; 1956 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1957 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1958 if (!b) { 1959 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1960 verbose(env, "too many different module BTFs\n"); 1961 return ERR_PTR(-E2BIG); 1962 } 1963 1964 if (bpfptr_is_null(env->fd_array)) { 1965 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1966 return ERR_PTR(-EPROTO); 1967 } 1968 1969 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1970 offset * sizeof(btf_fd), 1971 sizeof(btf_fd))) 1972 return ERR_PTR(-EFAULT); 1973 1974 btf = btf_get_by_fd(btf_fd); 1975 if (IS_ERR(btf)) { 1976 verbose(env, "invalid module BTF fd specified\n"); 1977 return btf; 1978 } 1979 1980 if (!btf_is_module(btf)) { 1981 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1982 btf_put(btf); 1983 return ERR_PTR(-EINVAL); 1984 } 1985 1986 mod = btf_try_get_module(btf); 1987 if (!mod) { 1988 btf_put(btf); 1989 return ERR_PTR(-ENXIO); 1990 } 1991 1992 b = &tab->descs[tab->nr_descs++]; 1993 b->btf = btf; 1994 b->module = mod; 1995 b->offset = offset; 1996 1997 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1998 kfunc_btf_cmp_by_off, NULL); 1999 } 2000 return b->btf; 2001 } 2002 2003 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2004 { 2005 if (!tab) 2006 return; 2007 2008 while (tab->nr_descs--) { 2009 module_put(tab->descs[tab->nr_descs].module); 2010 btf_put(tab->descs[tab->nr_descs].btf); 2011 } 2012 kfree(tab); 2013 } 2014 2015 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2016 { 2017 if (offset) { 2018 if (offset < 0) { 2019 /* In the future, this can be allowed to increase limit 2020 * of fd index into fd_array, interpreted as u16. 2021 */ 2022 verbose(env, "negative offset disallowed for kernel module function call\n"); 2023 return ERR_PTR(-EINVAL); 2024 } 2025 2026 return __find_kfunc_desc_btf(env, offset); 2027 } 2028 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2029 } 2030 2031 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2032 { 2033 const struct btf_type *func, *func_proto; 2034 struct bpf_kfunc_btf_tab *btf_tab; 2035 struct bpf_kfunc_desc_tab *tab; 2036 struct bpf_prog_aux *prog_aux; 2037 struct bpf_kfunc_desc *desc; 2038 const char *func_name; 2039 struct btf *desc_btf; 2040 unsigned long call_imm; 2041 unsigned long addr; 2042 int err; 2043 2044 prog_aux = env->prog->aux; 2045 tab = prog_aux->kfunc_tab; 2046 btf_tab = prog_aux->kfunc_btf_tab; 2047 if (!tab) { 2048 if (!btf_vmlinux) { 2049 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2050 return -ENOTSUPP; 2051 } 2052 2053 if (!env->prog->jit_requested) { 2054 verbose(env, "JIT is required for calling kernel function\n"); 2055 return -ENOTSUPP; 2056 } 2057 2058 if (!bpf_jit_supports_kfunc_call()) { 2059 verbose(env, "JIT does not support calling kernel function\n"); 2060 return -ENOTSUPP; 2061 } 2062 2063 if (!env->prog->gpl_compatible) { 2064 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2065 return -EINVAL; 2066 } 2067 2068 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2069 if (!tab) 2070 return -ENOMEM; 2071 prog_aux->kfunc_tab = tab; 2072 } 2073 2074 /* func_id == 0 is always invalid, but instead of returning an error, be 2075 * conservative and wait until the code elimination pass before returning 2076 * error, so that invalid calls that get pruned out can be in BPF programs 2077 * loaded from userspace. It is also required that offset be untouched 2078 * for such calls. 2079 */ 2080 if (!func_id && !offset) 2081 return 0; 2082 2083 if (!btf_tab && offset) { 2084 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2085 if (!btf_tab) 2086 return -ENOMEM; 2087 prog_aux->kfunc_btf_tab = btf_tab; 2088 } 2089 2090 desc_btf = find_kfunc_desc_btf(env, offset); 2091 if (IS_ERR(desc_btf)) { 2092 verbose(env, "failed to find BTF for kernel function\n"); 2093 return PTR_ERR(desc_btf); 2094 } 2095 2096 if (find_kfunc_desc(env->prog, func_id, offset)) 2097 return 0; 2098 2099 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2100 verbose(env, "too many different kernel function calls\n"); 2101 return -E2BIG; 2102 } 2103 2104 func = btf_type_by_id(desc_btf, func_id); 2105 if (!func || !btf_type_is_func(func)) { 2106 verbose(env, "kernel btf_id %u is not a function\n", 2107 func_id); 2108 return -EINVAL; 2109 } 2110 func_proto = btf_type_by_id(desc_btf, func->type); 2111 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2112 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2113 func_id); 2114 return -EINVAL; 2115 } 2116 2117 func_name = btf_name_by_offset(desc_btf, func->name_off); 2118 addr = kallsyms_lookup_name(func_name); 2119 if (!addr) { 2120 verbose(env, "cannot find address for kernel function %s\n", 2121 func_name); 2122 return -EINVAL; 2123 } 2124 2125 call_imm = BPF_CALL_IMM(addr); 2126 /* Check whether or not the relative offset overflows desc->imm */ 2127 if ((unsigned long)(s32)call_imm != call_imm) { 2128 verbose(env, "address of kernel function %s is out of range\n", 2129 func_name); 2130 return -EINVAL; 2131 } 2132 2133 desc = &tab->descs[tab->nr_descs++]; 2134 desc->func_id = func_id; 2135 desc->imm = call_imm; 2136 desc->offset = offset; 2137 err = btf_distill_func_proto(&env->log, desc_btf, 2138 func_proto, func_name, 2139 &desc->func_model); 2140 if (!err) 2141 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2142 kfunc_desc_cmp_by_id_off, NULL); 2143 return err; 2144 } 2145 2146 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2147 { 2148 const struct bpf_kfunc_desc *d0 = a; 2149 const struct bpf_kfunc_desc *d1 = b; 2150 2151 if (d0->imm > d1->imm) 2152 return 1; 2153 else if (d0->imm < d1->imm) 2154 return -1; 2155 return 0; 2156 } 2157 2158 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2159 { 2160 struct bpf_kfunc_desc_tab *tab; 2161 2162 tab = prog->aux->kfunc_tab; 2163 if (!tab) 2164 return; 2165 2166 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2167 kfunc_desc_cmp_by_imm, NULL); 2168 } 2169 2170 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2171 { 2172 return !!prog->aux->kfunc_tab; 2173 } 2174 2175 const struct btf_func_model * 2176 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2177 const struct bpf_insn *insn) 2178 { 2179 const struct bpf_kfunc_desc desc = { 2180 .imm = insn->imm, 2181 }; 2182 const struct bpf_kfunc_desc *res; 2183 struct bpf_kfunc_desc_tab *tab; 2184 2185 tab = prog->aux->kfunc_tab; 2186 res = bsearch(&desc, tab->descs, tab->nr_descs, 2187 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2188 2189 return res ? &res->func_model : NULL; 2190 } 2191 2192 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2193 { 2194 struct bpf_subprog_info *subprog = env->subprog_info; 2195 struct bpf_insn *insn = env->prog->insnsi; 2196 int i, ret, insn_cnt = env->prog->len; 2197 2198 /* Add entry function. */ 2199 ret = add_subprog(env, 0); 2200 if (ret) 2201 return ret; 2202 2203 for (i = 0; i < insn_cnt; i++, insn++) { 2204 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2205 !bpf_pseudo_kfunc_call(insn)) 2206 continue; 2207 2208 if (!env->bpf_capable) { 2209 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2210 return -EPERM; 2211 } 2212 2213 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2214 ret = add_subprog(env, i + insn->imm + 1); 2215 else 2216 ret = add_kfunc_call(env, insn->imm, insn->off); 2217 2218 if (ret < 0) 2219 return ret; 2220 } 2221 2222 /* Add a fake 'exit' subprog which could simplify subprog iteration 2223 * logic. 'subprog_cnt' should not be increased. 2224 */ 2225 subprog[env->subprog_cnt].start = insn_cnt; 2226 2227 if (env->log.level & BPF_LOG_LEVEL2) 2228 for (i = 0; i < env->subprog_cnt; i++) 2229 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2230 2231 return 0; 2232 } 2233 2234 static int check_subprogs(struct bpf_verifier_env *env) 2235 { 2236 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2237 struct bpf_subprog_info *subprog = env->subprog_info; 2238 struct bpf_insn *insn = env->prog->insnsi; 2239 int insn_cnt = env->prog->len; 2240 2241 /* now check that all jumps are within the same subprog */ 2242 subprog_start = subprog[cur_subprog].start; 2243 subprog_end = subprog[cur_subprog + 1].start; 2244 for (i = 0; i < insn_cnt; i++) { 2245 u8 code = insn[i].code; 2246 2247 if (code == (BPF_JMP | BPF_CALL) && 2248 insn[i].imm == BPF_FUNC_tail_call && 2249 insn[i].src_reg != BPF_PSEUDO_CALL) 2250 subprog[cur_subprog].has_tail_call = true; 2251 if (BPF_CLASS(code) == BPF_LD && 2252 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2253 subprog[cur_subprog].has_ld_abs = true; 2254 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2255 goto next; 2256 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2257 goto next; 2258 off = i + insn[i].off + 1; 2259 if (off < subprog_start || off >= subprog_end) { 2260 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2261 return -EINVAL; 2262 } 2263 next: 2264 if (i == subprog_end - 1) { 2265 /* to avoid fall-through from one subprog into another 2266 * the last insn of the subprog should be either exit 2267 * or unconditional jump back 2268 */ 2269 if (code != (BPF_JMP | BPF_EXIT) && 2270 code != (BPF_JMP | BPF_JA)) { 2271 verbose(env, "last insn is not an exit or jmp\n"); 2272 return -EINVAL; 2273 } 2274 subprog_start = subprog_end; 2275 cur_subprog++; 2276 if (cur_subprog < env->subprog_cnt) 2277 subprog_end = subprog[cur_subprog + 1].start; 2278 } 2279 } 2280 return 0; 2281 } 2282 2283 /* Parentage chain of this register (or stack slot) should take care of all 2284 * issues like callee-saved registers, stack slot allocation time, etc. 2285 */ 2286 static int mark_reg_read(struct bpf_verifier_env *env, 2287 const struct bpf_reg_state *state, 2288 struct bpf_reg_state *parent, u8 flag) 2289 { 2290 bool writes = parent == state->parent; /* Observe write marks */ 2291 int cnt = 0; 2292 2293 while (parent) { 2294 /* if read wasn't screened by an earlier write ... */ 2295 if (writes && state->live & REG_LIVE_WRITTEN) 2296 break; 2297 if (parent->live & REG_LIVE_DONE) { 2298 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2299 reg_type_str(env, parent->type), 2300 parent->var_off.value, parent->off); 2301 return -EFAULT; 2302 } 2303 /* The first condition is more likely to be true than the 2304 * second, checked it first. 2305 */ 2306 if ((parent->live & REG_LIVE_READ) == flag || 2307 parent->live & REG_LIVE_READ64) 2308 /* The parentage chain never changes and 2309 * this parent was already marked as LIVE_READ. 2310 * There is no need to keep walking the chain again and 2311 * keep re-marking all parents as LIVE_READ. 2312 * This case happens when the same register is read 2313 * multiple times without writes into it in-between. 2314 * Also, if parent has the stronger REG_LIVE_READ64 set, 2315 * then no need to set the weak REG_LIVE_READ32. 2316 */ 2317 break; 2318 /* ... then we depend on parent's value */ 2319 parent->live |= flag; 2320 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2321 if (flag == REG_LIVE_READ64) 2322 parent->live &= ~REG_LIVE_READ32; 2323 state = parent; 2324 parent = state->parent; 2325 writes = true; 2326 cnt++; 2327 } 2328 2329 if (env->longest_mark_read_walk < cnt) 2330 env->longest_mark_read_walk = cnt; 2331 return 0; 2332 } 2333 2334 /* This function is supposed to be used by the following 32-bit optimization 2335 * code only. It returns TRUE if the source or destination register operates 2336 * on 64-bit, otherwise return FALSE. 2337 */ 2338 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2339 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2340 { 2341 u8 code, class, op; 2342 2343 code = insn->code; 2344 class = BPF_CLASS(code); 2345 op = BPF_OP(code); 2346 if (class == BPF_JMP) { 2347 /* BPF_EXIT for "main" will reach here. Return TRUE 2348 * conservatively. 2349 */ 2350 if (op == BPF_EXIT) 2351 return true; 2352 if (op == BPF_CALL) { 2353 /* BPF to BPF call will reach here because of marking 2354 * caller saved clobber with DST_OP_NO_MARK for which we 2355 * don't care the register def because they are anyway 2356 * marked as NOT_INIT already. 2357 */ 2358 if (insn->src_reg == BPF_PSEUDO_CALL) 2359 return false; 2360 /* Helper call will reach here because of arg type 2361 * check, conservatively return TRUE. 2362 */ 2363 if (t == SRC_OP) 2364 return true; 2365 2366 return false; 2367 } 2368 } 2369 2370 if (class == BPF_ALU64 || class == BPF_JMP || 2371 /* BPF_END always use BPF_ALU class. */ 2372 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2373 return true; 2374 2375 if (class == BPF_ALU || class == BPF_JMP32) 2376 return false; 2377 2378 if (class == BPF_LDX) { 2379 if (t != SRC_OP) 2380 return BPF_SIZE(code) == BPF_DW; 2381 /* LDX source must be ptr. */ 2382 return true; 2383 } 2384 2385 if (class == BPF_STX) { 2386 /* BPF_STX (including atomic variants) has multiple source 2387 * operands, one of which is a ptr. Check whether the caller is 2388 * asking about it. 2389 */ 2390 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2391 return true; 2392 return BPF_SIZE(code) == BPF_DW; 2393 } 2394 2395 if (class == BPF_LD) { 2396 u8 mode = BPF_MODE(code); 2397 2398 /* LD_IMM64 */ 2399 if (mode == BPF_IMM) 2400 return true; 2401 2402 /* Both LD_IND and LD_ABS return 32-bit data. */ 2403 if (t != SRC_OP) 2404 return false; 2405 2406 /* Implicit ctx ptr. */ 2407 if (regno == BPF_REG_6) 2408 return true; 2409 2410 /* Explicit source could be any width. */ 2411 return true; 2412 } 2413 2414 if (class == BPF_ST) 2415 /* The only source register for BPF_ST is a ptr. */ 2416 return true; 2417 2418 /* Conservatively return true at default. */ 2419 return true; 2420 } 2421 2422 /* Return the regno defined by the insn, or -1. */ 2423 static int insn_def_regno(const struct bpf_insn *insn) 2424 { 2425 switch (BPF_CLASS(insn->code)) { 2426 case BPF_JMP: 2427 case BPF_JMP32: 2428 case BPF_ST: 2429 return -1; 2430 case BPF_STX: 2431 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2432 (insn->imm & BPF_FETCH)) { 2433 if (insn->imm == BPF_CMPXCHG) 2434 return BPF_REG_0; 2435 else 2436 return insn->src_reg; 2437 } else { 2438 return -1; 2439 } 2440 default: 2441 return insn->dst_reg; 2442 } 2443 } 2444 2445 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2446 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2447 { 2448 int dst_reg = insn_def_regno(insn); 2449 2450 if (dst_reg == -1) 2451 return false; 2452 2453 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2454 } 2455 2456 static void mark_insn_zext(struct bpf_verifier_env *env, 2457 struct bpf_reg_state *reg) 2458 { 2459 s32 def_idx = reg->subreg_def; 2460 2461 if (def_idx == DEF_NOT_SUBREG) 2462 return; 2463 2464 env->insn_aux_data[def_idx - 1].zext_dst = true; 2465 /* The dst will be zero extended, so won't be sub-register anymore. */ 2466 reg->subreg_def = DEF_NOT_SUBREG; 2467 } 2468 2469 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2470 enum reg_arg_type t) 2471 { 2472 struct bpf_verifier_state *vstate = env->cur_state; 2473 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2474 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2475 struct bpf_reg_state *reg, *regs = state->regs; 2476 bool rw64; 2477 2478 if (regno >= MAX_BPF_REG) { 2479 verbose(env, "R%d is invalid\n", regno); 2480 return -EINVAL; 2481 } 2482 2483 mark_reg_scratched(env, regno); 2484 2485 reg = ®s[regno]; 2486 rw64 = is_reg64(env, insn, regno, reg, t); 2487 if (t == SRC_OP) { 2488 /* check whether register used as source operand can be read */ 2489 if (reg->type == NOT_INIT) { 2490 verbose(env, "R%d !read_ok\n", regno); 2491 return -EACCES; 2492 } 2493 /* We don't need to worry about FP liveness because it's read-only */ 2494 if (regno == BPF_REG_FP) 2495 return 0; 2496 2497 if (rw64) 2498 mark_insn_zext(env, reg); 2499 2500 return mark_reg_read(env, reg, reg->parent, 2501 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2502 } else { 2503 /* check whether register used as dest operand can be written to */ 2504 if (regno == BPF_REG_FP) { 2505 verbose(env, "frame pointer is read only\n"); 2506 return -EACCES; 2507 } 2508 reg->live |= REG_LIVE_WRITTEN; 2509 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2510 if (t == DST_OP) 2511 mark_reg_unknown(env, regs, regno); 2512 } 2513 return 0; 2514 } 2515 2516 /* for any branch, call, exit record the history of jmps in the given state */ 2517 static int push_jmp_history(struct bpf_verifier_env *env, 2518 struct bpf_verifier_state *cur) 2519 { 2520 u32 cnt = cur->jmp_history_cnt; 2521 struct bpf_idx_pair *p; 2522 2523 cnt++; 2524 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2525 if (!p) 2526 return -ENOMEM; 2527 p[cnt - 1].idx = env->insn_idx; 2528 p[cnt - 1].prev_idx = env->prev_insn_idx; 2529 cur->jmp_history = p; 2530 cur->jmp_history_cnt = cnt; 2531 return 0; 2532 } 2533 2534 /* Backtrack one insn at a time. If idx is not at the top of recorded 2535 * history then previous instruction came from straight line execution. 2536 */ 2537 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2538 u32 *history) 2539 { 2540 u32 cnt = *history; 2541 2542 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2543 i = st->jmp_history[cnt - 1].prev_idx; 2544 (*history)--; 2545 } else { 2546 i--; 2547 } 2548 return i; 2549 } 2550 2551 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2552 { 2553 const struct btf_type *func; 2554 struct btf *desc_btf; 2555 2556 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2557 return NULL; 2558 2559 desc_btf = find_kfunc_desc_btf(data, insn->off); 2560 if (IS_ERR(desc_btf)) 2561 return "<error>"; 2562 2563 func = btf_type_by_id(desc_btf, insn->imm); 2564 return btf_name_by_offset(desc_btf, func->name_off); 2565 } 2566 2567 /* For given verifier state backtrack_insn() is called from the last insn to 2568 * the first insn. Its purpose is to compute a bitmask of registers and 2569 * stack slots that needs precision in the parent verifier state. 2570 */ 2571 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2572 u32 *reg_mask, u64 *stack_mask) 2573 { 2574 const struct bpf_insn_cbs cbs = { 2575 .cb_call = disasm_kfunc_name, 2576 .cb_print = verbose, 2577 .private_data = env, 2578 }; 2579 struct bpf_insn *insn = env->prog->insnsi + idx; 2580 u8 class = BPF_CLASS(insn->code); 2581 u8 opcode = BPF_OP(insn->code); 2582 u8 mode = BPF_MODE(insn->code); 2583 u32 dreg = 1u << insn->dst_reg; 2584 u32 sreg = 1u << insn->src_reg; 2585 u32 spi; 2586 2587 if (insn->code == 0) 2588 return 0; 2589 if (env->log.level & BPF_LOG_LEVEL2) { 2590 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2591 verbose(env, "%d: ", idx); 2592 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2593 } 2594 2595 if (class == BPF_ALU || class == BPF_ALU64) { 2596 if (!(*reg_mask & dreg)) 2597 return 0; 2598 if (opcode == BPF_MOV) { 2599 if (BPF_SRC(insn->code) == BPF_X) { 2600 /* dreg = sreg 2601 * dreg needs precision after this insn 2602 * sreg needs precision before this insn 2603 */ 2604 *reg_mask &= ~dreg; 2605 *reg_mask |= sreg; 2606 } else { 2607 /* dreg = K 2608 * dreg needs precision after this insn. 2609 * Corresponding register is already marked 2610 * as precise=true in this verifier state. 2611 * No further markings in parent are necessary 2612 */ 2613 *reg_mask &= ~dreg; 2614 } 2615 } else { 2616 if (BPF_SRC(insn->code) == BPF_X) { 2617 /* dreg += sreg 2618 * both dreg and sreg need precision 2619 * before this insn 2620 */ 2621 *reg_mask |= sreg; 2622 } /* else dreg += K 2623 * dreg still needs precision before this insn 2624 */ 2625 } 2626 } else if (class == BPF_LDX) { 2627 if (!(*reg_mask & dreg)) 2628 return 0; 2629 *reg_mask &= ~dreg; 2630 2631 /* scalars can only be spilled into stack w/o losing precision. 2632 * Load from any other memory can be zero extended. 2633 * The desire to keep that precision is already indicated 2634 * by 'precise' mark in corresponding register of this state. 2635 * No further tracking necessary. 2636 */ 2637 if (insn->src_reg != BPF_REG_FP) 2638 return 0; 2639 2640 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2641 * that [fp - off] slot contains scalar that needs to be 2642 * tracked with precision 2643 */ 2644 spi = (-insn->off - 1) / BPF_REG_SIZE; 2645 if (spi >= 64) { 2646 verbose(env, "BUG spi %d\n", spi); 2647 WARN_ONCE(1, "verifier backtracking bug"); 2648 return -EFAULT; 2649 } 2650 *stack_mask |= 1ull << spi; 2651 } else if (class == BPF_STX || class == BPF_ST) { 2652 if (*reg_mask & dreg) 2653 /* stx & st shouldn't be using _scalar_ dst_reg 2654 * to access memory. It means backtracking 2655 * encountered a case of pointer subtraction. 2656 */ 2657 return -ENOTSUPP; 2658 /* scalars can only be spilled into stack */ 2659 if (insn->dst_reg != BPF_REG_FP) 2660 return 0; 2661 spi = (-insn->off - 1) / BPF_REG_SIZE; 2662 if (spi >= 64) { 2663 verbose(env, "BUG spi %d\n", spi); 2664 WARN_ONCE(1, "verifier backtracking bug"); 2665 return -EFAULT; 2666 } 2667 if (!(*stack_mask & (1ull << spi))) 2668 return 0; 2669 *stack_mask &= ~(1ull << spi); 2670 if (class == BPF_STX) 2671 *reg_mask |= sreg; 2672 } else if (class == BPF_JMP || class == BPF_JMP32) { 2673 if (opcode == BPF_CALL) { 2674 if (insn->src_reg == BPF_PSEUDO_CALL) 2675 return -ENOTSUPP; 2676 /* BPF helpers that invoke callback subprogs are 2677 * equivalent to BPF_PSEUDO_CALL above 2678 */ 2679 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2680 return -ENOTSUPP; 2681 /* regular helper call sets R0 */ 2682 *reg_mask &= ~1; 2683 if (*reg_mask & 0x3f) { 2684 /* if backtracing was looking for registers R1-R5 2685 * they should have been found already. 2686 */ 2687 verbose(env, "BUG regs %x\n", *reg_mask); 2688 WARN_ONCE(1, "verifier backtracking bug"); 2689 return -EFAULT; 2690 } 2691 } else if (opcode == BPF_EXIT) { 2692 return -ENOTSUPP; 2693 } 2694 } else if (class == BPF_LD) { 2695 if (!(*reg_mask & dreg)) 2696 return 0; 2697 *reg_mask &= ~dreg; 2698 /* It's ld_imm64 or ld_abs or ld_ind. 2699 * For ld_imm64 no further tracking of precision 2700 * into parent is necessary 2701 */ 2702 if (mode == BPF_IND || mode == BPF_ABS) 2703 /* to be analyzed */ 2704 return -ENOTSUPP; 2705 } 2706 return 0; 2707 } 2708 2709 /* the scalar precision tracking algorithm: 2710 * . at the start all registers have precise=false. 2711 * . scalar ranges are tracked as normal through alu and jmp insns. 2712 * . once precise value of the scalar register is used in: 2713 * . ptr + scalar alu 2714 * . if (scalar cond K|scalar) 2715 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2716 * backtrack through the verifier states and mark all registers and 2717 * stack slots with spilled constants that these scalar regisers 2718 * should be precise. 2719 * . during state pruning two registers (or spilled stack slots) 2720 * are equivalent if both are not precise. 2721 * 2722 * Note the verifier cannot simply walk register parentage chain, 2723 * since many different registers and stack slots could have been 2724 * used to compute single precise scalar. 2725 * 2726 * The approach of starting with precise=true for all registers and then 2727 * backtrack to mark a register as not precise when the verifier detects 2728 * that program doesn't care about specific value (e.g., when helper 2729 * takes register as ARG_ANYTHING parameter) is not safe. 2730 * 2731 * It's ok to walk single parentage chain of the verifier states. 2732 * It's possible that this backtracking will go all the way till 1st insn. 2733 * All other branches will be explored for needing precision later. 2734 * 2735 * The backtracking needs to deal with cases like: 2736 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2737 * r9 -= r8 2738 * r5 = r9 2739 * if r5 > 0x79f goto pc+7 2740 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2741 * r5 += 1 2742 * ... 2743 * call bpf_perf_event_output#25 2744 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2745 * 2746 * and this case: 2747 * r6 = 1 2748 * call foo // uses callee's r6 inside to compute r0 2749 * r0 += r6 2750 * if r0 == 0 goto 2751 * 2752 * to track above reg_mask/stack_mask needs to be independent for each frame. 2753 * 2754 * Also if parent's curframe > frame where backtracking started, 2755 * the verifier need to mark registers in both frames, otherwise callees 2756 * may incorrectly prune callers. This is similar to 2757 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2758 * 2759 * For now backtracking falls back into conservative marking. 2760 */ 2761 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2762 struct bpf_verifier_state *st) 2763 { 2764 struct bpf_func_state *func; 2765 struct bpf_reg_state *reg; 2766 int i, j; 2767 2768 /* big hammer: mark all scalars precise in this path. 2769 * pop_stack may still get !precise scalars. 2770 * We also skip current state and go straight to first parent state, 2771 * because precision markings in current non-checkpointed state are 2772 * not needed. See why in the comment in __mark_chain_precision below. 2773 */ 2774 for (st = st->parent; st; st = st->parent) { 2775 for (i = 0; i <= st->curframe; i++) { 2776 func = st->frame[i]; 2777 for (j = 0; j < BPF_REG_FP; j++) { 2778 reg = &func->regs[j]; 2779 if (reg->type != SCALAR_VALUE) 2780 continue; 2781 reg->precise = true; 2782 } 2783 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2784 if (!is_spilled_reg(&func->stack[j])) 2785 continue; 2786 reg = &func->stack[j].spilled_ptr; 2787 if (reg->type != SCALAR_VALUE) 2788 continue; 2789 reg->precise = true; 2790 } 2791 } 2792 } 2793 } 2794 2795 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2796 { 2797 struct bpf_func_state *func; 2798 struct bpf_reg_state *reg; 2799 int i, j; 2800 2801 for (i = 0; i <= st->curframe; i++) { 2802 func = st->frame[i]; 2803 for (j = 0; j < BPF_REG_FP; j++) { 2804 reg = &func->regs[j]; 2805 if (reg->type != SCALAR_VALUE) 2806 continue; 2807 reg->precise = false; 2808 } 2809 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2810 if (!is_spilled_reg(&func->stack[j])) 2811 continue; 2812 reg = &func->stack[j].spilled_ptr; 2813 if (reg->type != SCALAR_VALUE) 2814 continue; 2815 reg->precise = false; 2816 } 2817 } 2818 } 2819 2820 /* 2821 * __mark_chain_precision() backtracks BPF program instruction sequence and 2822 * chain of verifier states making sure that register *regno* (if regno >= 0) 2823 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 2824 * SCALARS, as well as any other registers and slots that contribute to 2825 * a tracked state of given registers/stack slots, depending on specific BPF 2826 * assembly instructions (see backtrack_insns() for exact instruction handling 2827 * logic). This backtracking relies on recorded jmp_history and is able to 2828 * traverse entire chain of parent states. This process ends only when all the 2829 * necessary registers/slots and their transitive dependencies are marked as 2830 * precise. 2831 * 2832 * One important and subtle aspect is that precise marks *do not matter* in 2833 * the currently verified state (current state). It is important to understand 2834 * why this is the case. 2835 * 2836 * First, note that current state is the state that is not yet "checkpointed", 2837 * i.e., it is not yet put into env->explored_states, and it has no children 2838 * states as well. It's ephemeral, and can end up either a) being discarded if 2839 * compatible explored state is found at some point or BPF_EXIT instruction is 2840 * reached or b) checkpointed and put into env->explored_states, branching out 2841 * into one or more children states. 2842 * 2843 * In the former case, precise markings in current state are completely 2844 * ignored by state comparison code (see regsafe() for details). Only 2845 * checkpointed ("old") state precise markings are important, and if old 2846 * state's register/slot is precise, regsafe() assumes current state's 2847 * register/slot as precise and checks value ranges exactly and precisely. If 2848 * states turn out to be compatible, current state's necessary precise 2849 * markings and any required parent states' precise markings are enforced 2850 * after the fact with propagate_precision() logic, after the fact. But it's 2851 * important to realize that in this case, even after marking current state 2852 * registers/slots as precise, we immediately discard current state. So what 2853 * actually matters is any of the precise markings propagated into current 2854 * state's parent states, which are always checkpointed (due to b) case above). 2855 * As such, for scenario a) it doesn't matter if current state has precise 2856 * markings set or not. 2857 * 2858 * Now, for the scenario b), checkpointing and forking into child(ren) 2859 * state(s). Note that before current state gets to checkpointing step, any 2860 * processed instruction always assumes precise SCALAR register/slot 2861 * knowledge: if precise value or range is useful to prune jump branch, BPF 2862 * verifier takes this opportunity enthusiastically. Similarly, when 2863 * register's value is used to calculate offset or memory address, exact 2864 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 2865 * what we mentioned above about state comparison ignoring precise markings 2866 * during state comparison, BPF verifier ignores and also assumes precise 2867 * markings *at will* during instruction verification process. But as verifier 2868 * assumes precision, it also propagates any precision dependencies across 2869 * parent states, which are not yet finalized, so can be further restricted 2870 * based on new knowledge gained from restrictions enforced by their children 2871 * states. This is so that once those parent states are finalized, i.e., when 2872 * they have no more active children state, state comparison logic in 2873 * is_state_visited() would enforce strict and precise SCALAR ranges, if 2874 * required for correctness. 2875 * 2876 * To build a bit more intuition, note also that once a state is checkpointed, 2877 * the path we took to get to that state is not important. This is crucial 2878 * property for state pruning. When state is checkpointed and finalized at 2879 * some instruction index, it can be correctly and safely used to "short 2880 * circuit" any *compatible* state that reaches exactly the same instruction 2881 * index. I.e., if we jumped to that instruction from a completely different 2882 * code path than original finalized state was derived from, it doesn't 2883 * matter, current state can be discarded because from that instruction 2884 * forward having a compatible state will ensure we will safely reach the 2885 * exit. States describe preconditions for further exploration, but completely 2886 * forget the history of how we got here. 2887 * 2888 * This also means that even if we needed precise SCALAR range to get to 2889 * finalized state, but from that point forward *that same* SCALAR register is 2890 * never used in a precise context (i.e., it's precise value is not needed for 2891 * correctness), it's correct and safe to mark such register as "imprecise" 2892 * (i.e., precise marking set to false). This is what we rely on when we do 2893 * not set precise marking in current state. If no child state requires 2894 * precision for any given SCALAR register, it's safe to dictate that it can 2895 * be imprecise. If any child state does require this register to be precise, 2896 * we'll mark it precise later retroactively during precise markings 2897 * propagation from child state to parent states. 2898 * 2899 * Skipping precise marking setting in current state is a mild version of 2900 * relying on the above observation. But we can utilize this property even 2901 * more aggressively by proactively forgetting any precise marking in the 2902 * current state (which we inherited from the parent state), right before we 2903 * checkpoint it and branch off into new child state. This is done by 2904 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 2905 * finalized states which help in short circuiting more future states. 2906 */ 2907 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 2908 int spi) 2909 { 2910 struct bpf_verifier_state *st = env->cur_state; 2911 int first_idx = st->first_insn_idx; 2912 int last_idx = env->insn_idx; 2913 struct bpf_func_state *func; 2914 struct bpf_reg_state *reg; 2915 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2916 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2917 bool skip_first = true; 2918 bool new_marks = false; 2919 int i, err; 2920 2921 if (!env->bpf_capable) 2922 return 0; 2923 2924 /* Do sanity checks against current state of register and/or stack 2925 * slot, but don't set precise flag in current state, as precision 2926 * tracking in the current state is unnecessary. 2927 */ 2928 func = st->frame[frame]; 2929 if (regno >= 0) { 2930 reg = &func->regs[regno]; 2931 if (reg->type != SCALAR_VALUE) { 2932 WARN_ONCE(1, "backtracing misuse"); 2933 return -EFAULT; 2934 } 2935 new_marks = true; 2936 } 2937 2938 while (spi >= 0) { 2939 if (!is_spilled_reg(&func->stack[spi])) { 2940 stack_mask = 0; 2941 break; 2942 } 2943 reg = &func->stack[spi].spilled_ptr; 2944 if (reg->type != SCALAR_VALUE) { 2945 stack_mask = 0; 2946 break; 2947 } 2948 new_marks = true; 2949 break; 2950 } 2951 2952 if (!new_marks) 2953 return 0; 2954 if (!reg_mask && !stack_mask) 2955 return 0; 2956 2957 for (;;) { 2958 DECLARE_BITMAP(mask, 64); 2959 u32 history = st->jmp_history_cnt; 2960 2961 if (env->log.level & BPF_LOG_LEVEL2) 2962 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2963 2964 if (last_idx < 0) { 2965 /* we are at the entry into subprog, which 2966 * is expected for global funcs, but only if 2967 * requested precise registers are R1-R5 2968 * (which are global func's input arguments) 2969 */ 2970 if (st->curframe == 0 && 2971 st->frame[0]->subprogno > 0 && 2972 st->frame[0]->callsite == BPF_MAIN_FUNC && 2973 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 2974 bitmap_from_u64(mask, reg_mask); 2975 for_each_set_bit(i, mask, 32) { 2976 reg = &st->frame[0]->regs[i]; 2977 if (reg->type != SCALAR_VALUE) { 2978 reg_mask &= ~(1u << i); 2979 continue; 2980 } 2981 reg->precise = true; 2982 } 2983 return 0; 2984 } 2985 2986 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 2987 st->frame[0]->subprogno, reg_mask, stack_mask); 2988 WARN_ONCE(1, "verifier backtracking bug"); 2989 return -EFAULT; 2990 } 2991 2992 for (i = last_idx;;) { 2993 if (skip_first) { 2994 err = 0; 2995 skip_first = false; 2996 } else { 2997 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2998 } 2999 if (err == -ENOTSUPP) { 3000 mark_all_scalars_precise(env, st); 3001 return 0; 3002 } else if (err) { 3003 return err; 3004 } 3005 if (!reg_mask && !stack_mask) 3006 /* Found assignment(s) into tracked register in this state. 3007 * Since this state is already marked, just return. 3008 * Nothing to be tracked further in the parent state. 3009 */ 3010 return 0; 3011 if (i == first_idx) 3012 break; 3013 i = get_prev_insn_idx(st, i, &history); 3014 if (i >= env->prog->len) { 3015 /* This can happen if backtracking reached insn 0 3016 * and there are still reg_mask or stack_mask 3017 * to backtrack. 3018 * It means the backtracking missed the spot where 3019 * particular register was initialized with a constant. 3020 */ 3021 verbose(env, "BUG backtracking idx %d\n", i); 3022 WARN_ONCE(1, "verifier backtracking bug"); 3023 return -EFAULT; 3024 } 3025 } 3026 st = st->parent; 3027 if (!st) 3028 break; 3029 3030 new_marks = false; 3031 func = st->frame[frame]; 3032 bitmap_from_u64(mask, reg_mask); 3033 for_each_set_bit(i, mask, 32) { 3034 reg = &func->regs[i]; 3035 if (reg->type != SCALAR_VALUE) { 3036 reg_mask &= ~(1u << i); 3037 continue; 3038 } 3039 if (!reg->precise) 3040 new_marks = true; 3041 reg->precise = true; 3042 } 3043 3044 bitmap_from_u64(mask, stack_mask); 3045 for_each_set_bit(i, mask, 64) { 3046 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3047 /* the sequence of instructions: 3048 * 2: (bf) r3 = r10 3049 * 3: (7b) *(u64 *)(r3 -8) = r0 3050 * 4: (79) r4 = *(u64 *)(r10 -8) 3051 * doesn't contain jmps. It's backtracked 3052 * as a single block. 3053 * During backtracking insn 3 is not recognized as 3054 * stack access, so at the end of backtracking 3055 * stack slot fp-8 is still marked in stack_mask. 3056 * However the parent state may not have accessed 3057 * fp-8 and it's "unallocated" stack space. 3058 * In such case fallback to conservative. 3059 */ 3060 mark_all_scalars_precise(env, st); 3061 return 0; 3062 } 3063 3064 if (!is_spilled_reg(&func->stack[i])) { 3065 stack_mask &= ~(1ull << i); 3066 continue; 3067 } 3068 reg = &func->stack[i].spilled_ptr; 3069 if (reg->type != SCALAR_VALUE) { 3070 stack_mask &= ~(1ull << i); 3071 continue; 3072 } 3073 if (!reg->precise) 3074 new_marks = true; 3075 reg->precise = true; 3076 } 3077 if (env->log.level & BPF_LOG_LEVEL2) { 3078 verbose(env, "parent %s regs=%x stack=%llx marks:", 3079 new_marks ? "didn't have" : "already had", 3080 reg_mask, stack_mask); 3081 print_verifier_state(env, func, true); 3082 } 3083 3084 if (!reg_mask && !stack_mask) 3085 break; 3086 if (!new_marks) 3087 break; 3088 3089 last_idx = st->last_insn_idx; 3090 first_idx = st->first_insn_idx; 3091 } 3092 return 0; 3093 } 3094 3095 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3096 { 3097 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3098 } 3099 3100 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3101 { 3102 return __mark_chain_precision(env, frame, regno, -1); 3103 } 3104 3105 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3106 { 3107 return __mark_chain_precision(env, frame, -1, spi); 3108 } 3109 3110 static bool is_spillable_regtype(enum bpf_reg_type type) 3111 { 3112 switch (base_type(type)) { 3113 case PTR_TO_MAP_VALUE: 3114 case PTR_TO_STACK: 3115 case PTR_TO_CTX: 3116 case PTR_TO_PACKET: 3117 case PTR_TO_PACKET_META: 3118 case PTR_TO_PACKET_END: 3119 case PTR_TO_FLOW_KEYS: 3120 case CONST_PTR_TO_MAP: 3121 case PTR_TO_SOCKET: 3122 case PTR_TO_SOCK_COMMON: 3123 case PTR_TO_TCP_SOCK: 3124 case PTR_TO_XDP_SOCK: 3125 case PTR_TO_BTF_ID: 3126 case PTR_TO_BUF: 3127 case PTR_TO_MEM: 3128 case PTR_TO_FUNC: 3129 case PTR_TO_MAP_KEY: 3130 return true; 3131 default: 3132 return false; 3133 } 3134 } 3135 3136 /* Does this register contain a constant zero? */ 3137 static bool register_is_null(struct bpf_reg_state *reg) 3138 { 3139 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3140 } 3141 3142 static bool register_is_const(struct bpf_reg_state *reg) 3143 { 3144 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3145 } 3146 3147 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3148 { 3149 return tnum_is_unknown(reg->var_off) && 3150 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3151 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3152 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3153 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3154 } 3155 3156 static bool register_is_bounded(struct bpf_reg_state *reg) 3157 { 3158 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3159 } 3160 3161 static bool __is_pointer_value(bool allow_ptr_leaks, 3162 const struct bpf_reg_state *reg) 3163 { 3164 if (allow_ptr_leaks) 3165 return false; 3166 3167 return reg->type != SCALAR_VALUE; 3168 } 3169 3170 static void save_register_state(struct bpf_func_state *state, 3171 int spi, struct bpf_reg_state *reg, 3172 int size) 3173 { 3174 int i; 3175 3176 state->stack[spi].spilled_ptr = *reg; 3177 if (size == BPF_REG_SIZE) 3178 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3179 3180 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3181 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3182 3183 /* size < 8 bytes spill */ 3184 for (; i; i--) 3185 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3186 } 3187 3188 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3189 * stack boundary and alignment are checked in check_mem_access() 3190 */ 3191 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3192 /* stack frame we're writing to */ 3193 struct bpf_func_state *state, 3194 int off, int size, int value_regno, 3195 int insn_idx) 3196 { 3197 struct bpf_func_state *cur; /* state of the current function */ 3198 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3199 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3200 struct bpf_reg_state *reg = NULL; 3201 3202 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3203 if (err) 3204 return err; 3205 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3206 * so it's aligned access and [off, off + size) are within stack limits 3207 */ 3208 if (!env->allow_ptr_leaks && 3209 state->stack[spi].slot_type[0] == STACK_SPILL && 3210 size != BPF_REG_SIZE) { 3211 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3212 return -EACCES; 3213 } 3214 3215 cur = env->cur_state->frame[env->cur_state->curframe]; 3216 if (value_regno >= 0) 3217 reg = &cur->regs[value_regno]; 3218 if (!env->bypass_spec_v4) { 3219 bool sanitize = reg && is_spillable_regtype(reg->type); 3220 3221 for (i = 0; i < size; i++) { 3222 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3223 sanitize = true; 3224 break; 3225 } 3226 } 3227 3228 if (sanitize) 3229 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3230 } 3231 3232 mark_stack_slot_scratched(env, spi); 3233 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3234 !register_is_null(reg) && env->bpf_capable) { 3235 if (dst_reg != BPF_REG_FP) { 3236 /* The backtracking logic can only recognize explicit 3237 * stack slot address like [fp - 8]. Other spill of 3238 * scalar via different register has to be conservative. 3239 * Backtrack from here and mark all registers as precise 3240 * that contributed into 'reg' being a constant. 3241 */ 3242 err = mark_chain_precision(env, value_regno); 3243 if (err) 3244 return err; 3245 } 3246 save_register_state(state, spi, reg, size); 3247 } else if (reg && is_spillable_regtype(reg->type)) { 3248 /* register containing pointer is being spilled into stack */ 3249 if (size != BPF_REG_SIZE) { 3250 verbose_linfo(env, insn_idx, "; "); 3251 verbose(env, "invalid size of register spill\n"); 3252 return -EACCES; 3253 } 3254 if (state != cur && reg->type == PTR_TO_STACK) { 3255 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3256 return -EINVAL; 3257 } 3258 save_register_state(state, spi, reg, size); 3259 } else { 3260 u8 type = STACK_MISC; 3261 3262 /* regular write of data into stack destroys any spilled ptr */ 3263 state->stack[spi].spilled_ptr.type = NOT_INIT; 3264 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3265 if (is_spilled_reg(&state->stack[spi])) 3266 for (i = 0; i < BPF_REG_SIZE; i++) 3267 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3268 3269 /* only mark the slot as written if all 8 bytes were written 3270 * otherwise read propagation may incorrectly stop too soon 3271 * when stack slots are partially written. 3272 * This heuristic means that read propagation will be 3273 * conservative, since it will add reg_live_read marks 3274 * to stack slots all the way to first state when programs 3275 * writes+reads less than 8 bytes 3276 */ 3277 if (size == BPF_REG_SIZE) 3278 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3279 3280 /* when we zero initialize stack slots mark them as such */ 3281 if (reg && register_is_null(reg)) { 3282 /* backtracking doesn't work for STACK_ZERO yet. */ 3283 err = mark_chain_precision(env, value_regno); 3284 if (err) 3285 return err; 3286 type = STACK_ZERO; 3287 } 3288 3289 /* Mark slots affected by this stack write. */ 3290 for (i = 0; i < size; i++) 3291 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3292 type; 3293 } 3294 return 0; 3295 } 3296 3297 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3298 * known to contain a variable offset. 3299 * This function checks whether the write is permitted and conservatively 3300 * tracks the effects of the write, considering that each stack slot in the 3301 * dynamic range is potentially written to. 3302 * 3303 * 'off' includes 'regno->off'. 3304 * 'value_regno' can be -1, meaning that an unknown value is being written to 3305 * the stack. 3306 * 3307 * Spilled pointers in range are not marked as written because we don't know 3308 * what's going to be actually written. This means that read propagation for 3309 * future reads cannot be terminated by this write. 3310 * 3311 * For privileged programs, uninitialized stack slots are considered 3312 * initialized by this write (even though we don't know exactly what offsets 3313 * are going to be written to). The idea is that we don't want the verifier to 3314 * reject future reads that access slots written to through variable offsets. 3315 */ 3316 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3317 /* func where register points to */ 3318 struct bpf_func_state *state, 3319 int ptr_regno, int off, int size, 3320 int value_regno, int insn_idx) 3321 { 3322 struct bpf_func_state *cur; /* state of the current function */ 3323 int min_off, max_off; 3324 int i, err; 3325 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3326 bool writing_zero = false; 3327 /* set if the fact that we're writing a zero is used to let any 3328 * stack slots remain STACK_ZERO 3329 */ 3330 bool zero_used = false; 3331 3332 cur = env->cur_state->frame[env->cur_state->curframe]; 3333 ptr_reg = &cur->regs[ptr_regno]; 3334 min_off = ptr_reg->smin_value + off; 3335 max_off = ptr_reg->smax_value + off + size; 3336 if (value_regno >= 0) 3337 value_reg = &cur->regs[value_regno]; 3338 if (value_reg && register_is_null(value_reg)) 3339 writing_zero = true; 3340 3341 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3342 if (err) 3343 return err; 3344 3345 3346 /* Variable offset writes destroy any spilled pointers in range. */ 3347 for (i = min_off; i < max_off; i++) { 3348 u8 new_type, *stype; 3349 int slot, spi; 3350 3351 slot = -i - 1; 3352 spi = slot / BPF_REG_SIZE; 3353 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3354 mark_stack_slot_scratched(env, spi); 3355 3356 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3357 /* Reject the write if range we may write to has not 3358 * been initialized beforehand. If we didn't reject 3359 * here, the ptr status would be erased below (even 3360 * though not all slots are actually overwritten), 3361 * possibly opening the door to leaks. 3362 * 3363 * We do however catch STACK_INVALID case below, and 3364 * only allow reading possibly uninitialized memory 3365 * later for CAP_PERFMON, as the write may not happen to 3366 * that slot. 3367 */ 3368 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3369 insn_idx, i); 3370 return -EINVAL; 3371 } 3372 3373 /* Erase all spilled pointers. */ 3374 state->stack[spi].spilled_ptr.type = NOT_INIT; 3375 3376 /* Update the slot type. */ 3377 new_type = STACK_MISC; 3378 if (writing_zero && *stype == STACK_ZERO) { 3379 new_type = STACK_ZERO; 3380 zero_used = true; 3381 } 3382 /* If the slot is STACK_INVALID, we check whether it's OK to 3383 * pretend that it will be initialized by this write. The slot 3384 * might not actually be written to, and so if we mark it as 3385 * initialized future reads might leak uninitialized memory. 3386 * For privileged programs, we will accept such reads to slots 3387 * that may or may not be written because, if we're reject 3388 * them, the error would be too confusing. 3389 */ 3390 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3391 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3392 insn_idx, i); 3393 return -EINVAL; 3394 } 3395 *stype = new_type; 3396 } 3397 if (zero_used) { 3398 /* backtracking doesn't work for STACK_ZERO yet. */ 3399 err = mark_chain_precision(env, value_regno); 3400 if (err) 3401 return err; 3402 } 3403 return 0; 3404 } 3405 3406 /* When register 'dst_regno' is assigned some values from stack[min_off, 3407 * max_off), we set the register's type according to the types of the 3408 * respective stack slots. If all the stack values are known to be zeros, then 3409 * so is the destination reg. Otherwise, the register is considered to be 3410 * SCALAR. This function does not deal with register filling; the caller must 3411 * ensure that all spilled registers in the stack range have been marked as 3412 * read. 3413 */ 3414 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3415 /* func where src register points to */ 3416 struct bpf_func_state *ptr_state, 3417 int min_off, int max_off, int dst_regno) 3418 { 3419 struct bpf_verifier_state *vstate = env->cur_state; 3420 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3421 int i, slot, spi; 3422 u8 *stype; 3423 int zeros = 0; 3424 3425 for (i = min_off; i < max_off; i++) { 3426 slot = -i - 1; 3427 spi = slot / BPF_REG_SIZE; 3428 stype = ptr_state->stack[spi].slot_type; 3429 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3430 break; 3431 zeros++; 3432 } 3433 if (zeros == max_off - min_off) { 3434 /* any access_size read into register is zero extended, 3435 * so the whole register == const_zero 3436 */ 3437 __mark_reg_const_zero(&state->regs[dst_regno]); 3438 /* backtracking doesn't support STACK_ZERO yet, 3439 * so mark it precise here, so that later 3440 * backtracking can stop here. 3441 * Backtracking may not need this if this register 3442 * doesn't participate in pointer adjustment. 3443 * Forward propagation of precise flag is not 3444 * necessary either. This mark is only to stop 3445 * backtracking. Any register that contributed 3446 * to const 0 was marked precise before spill. 3447 */ 3448 state->regs[dst_regno].precise = true; 3449 } else { 3450 /* have read misc data from the stack */ 3451 mark_reg_unknown(env, state->regs, dst_regno); 3452 } 3453 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3454 } 3455 3456 /* Read the stack at 'off' and put the results into the register indicated by 3457 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3458 * spilled reg. 3459 * 3460 * 'dst_regno' can be -1, meaning that the read value is not going to a 3461 * register. 3462 * 3463 * The access is assumed to be within the current stack bounds. 3464 */ 3465 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3466 /* func where src register points to */ 3467 struct bpf_func_state *reg_state, 3468 int off, int size, int dst_regno) 3469 { 3470 struct bpf_verifier_state *vstate = env->cur_state; 3471 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3472 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3473 struct bpf_reg_state *reg; 3474 u8 *stype, type; 3475 3476 stype = reg_state->stack[spi].slot_type; 3477 reg = ®_state->stack[spi].spilled_ptr; 3478 3479 if (is_spilled_reg(®_state->stack[spi])) { 3480 u8 spill_size = 1; 3481 3482 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3483 spill_size++; 3484 3485 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3486 if (reg->type != SCALAR_VALUE) { 3487 verbose_linfo(env, env->insn_idx, "; "); 3488 verbose(env, "invalid size of register fill\n"); 3489 return -EACCES; 3490 } 3491 3492 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3493 if (dst_regno < 0) 3494 return 0; 3495 3496 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3497 /* The earlier check_reg_arg() has decided the 3498 * subreg_def for this insn. Save it first. 3499 */ 3500 s32 subreg_def = state->regs[dst_regno].subreg_def; 3501 3502 state->regs[dst_regno] = *reg; 3503 state->regs[dst_regno].subreg_def = subreg_def; 3504 } else { 3505 for (i = 0; i < size; i++) { 3506 type = stype[(slot - i) % BPF_REG_SIZE]; 3507 if (type == STACK_SPILL) 3508 continue; 3509 if (type == STACK_MISC) 3510 continue; 3511 verbose(env, "invalid read from stack off %d+%d size %d\n", 3512 off, i, size); 3513 return -EACCES; 3514 } 3515 mark_reg_unknown(env, state->regs, dst_regno); 3516 } 3517 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3518 return 0; 3519 } 3520 3521 if (dst_regno >= 0) { 3522 /* restore register state from stack */ 3523 state->regs[dst_regno] = *reg; 3524 /* mark reg as written since spilled pointer state likely 3525 * has its liveness marks cleared by is_state_visited() 3526 * which resets stack/reg liveness for state transitions 3527 */ 3528 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3529 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3530 /* If dst_regno==-1, the caller is asking us whether 3531 * it is acceptable to use this value as a SCALAR_VALUE 3532 * (e.g. for XADD). 3533 * We must not allow unprivileged callers to do that 3534 * with spilled pointers. 3535 */ 3536 verbose(env, "leaking pointer from stack off %d\n", 3537 off); 3538 return -EACCES; 3539 } 3540 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3541 } else { 3542 for (i = 0; i < size; i++) { 3543 type = stype[(slot - i) % BPF_REG_SIZE]; 3544 if (type == STACK_MISC) 3545 continue; 3546 if (type == STACK_ZERO) 3547 continue; 3548 verbose(env, "invalid read from stack off %d+%d size %d\n", 3549 off, i, size); 3550 return -EACCES; 3551 } 3552 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3553 if (dst_regno >= 0) 3554 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3555 } 3556 return 0; 3557 } 3558 3559 enum bpf_access_src { 3560 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3561 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3562 }; 3563 3564 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3565 int regno, int off, int access_size, 3566 bool zero_size_allowed, 3567 enum bpf_access_src type, 3568 struct bpf_call_arg_meta *meta); 3569 3570 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3571 { 3572 return cur_regs(env) + regno; 3573 } 3574 3575 /* Read the stack at 'ptr_regno + off' and put the result into the register 3576 * 'dst_regno'. 3577 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3578 * but not its variable offset. 3579 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3580 * 3581 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3582 * filling registers (i.e. reads of spilled register cannot be detected when 3583 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3584 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3585 * offset; for a fixed offset check_stack_read_fixed_off should be used 3586 * instead. 3587 */ 3588 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3589 int ptr_regno, int off, int size, int dst_regno) 3590 { 3591 /* The state of the source register. */ 3592 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3593 struct bpf_func_state *ptr_state = func(env, reg); 3594 int err; 3595 int min_off, max_off; 3596 3597 /* Note that we pass a NULL meta, so raw access will not be permitted. 3598 */ 3599 err = check_stack_range_initialized(env, ptr_regno, off, size, 3600 false, ACCESS_DIRECT, NULL); 3601 if (err) 3602 return err; 3603 3604 min_off = reg->smin_value + off; 3605 max_off = reg->smax_value + off; 3606 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3607 return 0; 3608 } 3609 3610 /* check_stack_read dispatches to check_stack_read_fixed_off or 3611 * check_stack_read_var_off. 3612 * 3613 * The caller must ensure that the offset falls within the allocated stack 3614 * bounds. 3615 * 3616 * 'dst_regno' is a register which will receive the value from the stack. It 3617 * can be -1, meaning that the read value is not going to a register. 3618 */ 3619 static int check_stack_read(struct bpf_verifier_env *env, 3620 int ptr_regno, int off, int size, 3621 int dst_regno) 3622 { 3623 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3624 struct bpf_func_state *state = func(env, reg); 3625 int err; 3626 /* Some accesses are only permitted with a static offset. */ 3627 bool var_off = !tnum_is_const(reg->var_off); 3628 3629 /* The offset is required to be static when reads don't go to a 3630 * register, in order to not leak pointers (see 3631 * check_stack_read_fixed_off). 3632 */ 3633 if (dst_regno < 0 && var_off) { 3634 char tn_buf[48]; 3635 3636 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3637 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3638 tn_buf, off, size); 3639 return -EACCES; 3640 } 3641 /* Variable offset is prohibited for unprivileged mode for simplicity 3642 * since it requires corresponding support in Spectre masking for stack 3643 * ALU. See also retrieve_ptr_limit(). 3644 */ 3645 if (!env->bypass_spec_v1 && var_off) { 3646 char tn_buf[48]; 3647 3648 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3649 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3650 ptr_regno, tn_buf); 3651 return -EACCES; 3652 } 3653 3654 if (!var_off) { 3655 off += reg->var_off.value; 3656 err = check_stack_read_fixed_off(env, state, off, size, 3657 dst_regno); 3658 } else { 3659 /* Variable offset stack reads need more conservative handling 3660 * than fixed offset ones. Note that dst_regno >= 0 on this 3661 * branch. 3662 */ 3663 err = check_stack_read_var_off(env, ptr_regno, off, size, 3664 dst_regno); 3665 } 3666 return err; 3667 } 3668 3669 3670 /* check_stack_write dispatches to check_stack_write_fixed_off or 3671 * check_stack_write_var_off. 3672 * 3673 * 'ptr_regno' is the register used as a pointer into the stack. 3674 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3675 * 'value_regno' is the register whose value we're writing to the stack. It can 3676 * be -1, meaning that we're not writing from a register. 3677 * 3678 * The caller must ensure that the offset falls within the maximum stack size. 3679 */ 3680 static int check_stack_write(struct bpf_verifier_env *env, 3681 int ptr_regno, int off, int size, 3682 int value_regno, int insn_idx) 3683 { 3684 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3685 struct bpf_func_state *state = func(env, reg); 3686 int err; 3687 3688 if (tnum_is_const(reg->var_off)) { 3689 off += reg->var_off.value; 3690 err = check_stack_write_fixed_off(env, state, off, size, 3691 value_regno, insn_idx); 3692 } else { 3693 /* Variable offset stack reads need more conservative handling 3694 * than fixed offset ones. 3695 */ 3696 err = check_stack_write_var_off(env, state, 3697 ptr_regno, off, size, 3698 value_regno, insn_idx); 3699 } 3700 return err; 3701 } 3702 3703 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3704 int off, int size, enum bpf_access_type type) 3705 { 3706 struct bpf_reg_state *regs = cur_regs(env); 3707 struct bpf_map *map = regs[regno].map_ptr; 3708 u32 cap = bpf_map_flags_to_cap(map); 3709 3710 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3711 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3712 map->value_size, off, size); 3713 return -EACCES; 3714 } 3715 3716 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3717 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3718 map->value_size, off, size); 3719 return -EACCES; 3720 } 3721 3722 return 0; 3723 } 3724 3725 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3726 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3727 int off, int size, u32 mem_size, 3728 bool zero_size_allowed) 3729 { 3730 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3731 struct bpf_reg_state *reg; 3732 3733 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3734 return 0; 3735 3736 reg = &cur_regs(env)[regno]; 3737 switch (reg->type) { 3738 case PTR_TO_MAP_KEY: 3739 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3740 mem_size, off, size); 3741 break; 3742 case PTR_TO_MAP_VALUE: 3743 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3744 mem_size, off, size); 3745 break; 3746 case PTR_TO_PACKET: 3747 case PTR_TO_PACKET_META: 3748 case PTR_TO_PACKET_END: 3749 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3750 off, size, regno, reg->id, off, mem_size); 3751 break; 3752 case PTR_TO_MEM: 3753 default: 3754 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3755 mem_size, off, size); 3756 } 3757 3758 return -EACCES; 3759 } 3760 3761 /* check read/write into a memory region with possible variable offset */ 3762 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3763 int off, int size, u32 mem_size, 3764 bool zero_size_allowed) 3765 { 3766 struct bpf_verifier_state *vstate = env->cur_state; 3767 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3768 struct bpf_reg_state *reg = &state->regs[regno]; 3769 int err; 3770 3771 /* We may have adjusted the register pointing to memory region, so we 3772 * need to try adding each of min_value and max_value to off 3773 * to make sure our theoretical access will be safe. 3774 * 3775 * The minimum value is only important with signed 3776 * comparisons where we can't assume the floor of a 3777 * value is 0. If we are using signed variables for our 3778 * index'es we need to make sure that whatever we use 3779 * will have a set floor within our range. 3780 */ 3781 if (reg->smin_value < 0 && 3782 (reg->smin_value == S64_MIN || 3783 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3784 reg->smin_value + off < 0)) { 3785 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3786 regno); 3787 return -EACCES; 3788 } 3789 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3790 mem_size, zero_size_allowed); 3791 if (err) { 3792 verbose(env, "R%d min value is outside of the allowed memory range\n", 3793 regno); 3794 return err; 3795 } 3796 3797 /* If we haven't set a max value then we need to bail since we can't be 3798 * sure we won't do bad things. 3799 * If reg->umax_value + off could overflow, treat that as unbounded too. 3800 */ 3801 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3802 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3803 regno); 3804 return -EACCES; 3805 } 3806 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3807 mem_size, zero_size_allowed); 3808 if (err) { 3809 verbose(env, "R%d max value is outside of the allowed memory range\n", 3810 regno); 3811 return err; 3812 } 3813 3814 return 0; 3815 } 3816 3817 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3818 const struct bpf_reg_state *reg, int regno, 3819 bool fixed_off_ok) 3820 { 3821 /* Access to this pointer-typed register or passing it to a helper 3822 * is only allowed in its original, unmodified form. 3823 */ 3824 3825 if (reg->off < 0) { 3826 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3827 reg_type_str(env, reg->type), regno, reg->off); 3828 return -EACCES; 3829 } 3830 3831 if (!fixed_off_ok && reg->off) { 3832 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3833 reg_type_str(env, reg->type), regno, reg->off); 3834 return -EACCES; 3835 } 3836 3837 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3838 char tn_buf[48]; 3839 3840 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3841 verbose(env, "variable %s access var_off=%s disallowed\n", 3842 reg_type_str(env, reg->type), tn_buf); 3843 return -EACCES; 3844 } 3845 3846 return 0; 3847 } 3848 3849 int check_ptr_off_reg(struct bpf_verifier_env *env, 3850 const struct bpf_reg_state *reg, int regno) 3851 { 3852 return __check_ptr_off_reg(env, reg, regno, false); 3853 } 3854 3855 static int map_kptr_match_type(struct bpf_verifier_env *env, 3856 struct btf_field *kptr_field, 3857 struct bpf_reg_state *reg, u32 regno) 3858 { 3859 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 3860 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 3861 const char *reg_name = ""; 3862 3863 /* Only unreferenced case accepts untrusted pointers */ 3864 if (kptr_field->type == BPF_KPTR_UNREF) 3865 perm_flags |= PTR_UNTRUSTED; 3866 3867 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3868 goto bad_type; 3869 3870 if (!btf_is_kernel(reg->btf)) { 3871 verbose(env, "R%d must point to kernel BTF\n", regno); 3872 return -EINVAL; 3873 } 3874 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3875 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3876 3877 /* For ref_ptr case, release function check should ensure we get one 3878 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3879 * normal store of unreferenced kptr, we must ensure var_off is zero. 3880 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3881 * reg->off and reg->ref_obj_id are not needed here. 3882 */ 3883 if (__check_ptr_off_reg(env, reg, regno, true)) 3884 return -EACCES; 3885 3886 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3887 * we also need to take into account the reg->off. 3888 * 3889 * We want to support cases like: 3890 * 3891 * struct foo { 3892 * struct bar br; 3893 * struct baz bz; 3894 * }; 3895 * 3896 * struct foo *v; 3897 * v = func(); // PTR_TO_BTF_ID 3898 * val->foo = v; // reg->off is zero, btf and btf_id match type 3899 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3900 * // first member type of struct after comparison fails 3901 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3902 * // to match type 3903 * 3904 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3905 * is zero. We must also ensure that btf_struct_ids_match does not walk 3906 * the struct to match type against first member of struct, i.e. reject 3907 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3908 * strict mode to true for type match. 3909 */ 3910 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3911 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 3912 kptr_field->type == BPF_KPTR_REF)) 3913 goto bad_type; 3914 return 0; 3915 bad_type: 3916 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3917 reg_type_str(env, reg->type), reg_name); 3918 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3919 if (kptr_field->type == BPF_KPTR_UNREF) 3920 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3921 targ_name); 3922 else 3923 verbose(env, "\n"); 3924 return -EINVAL; 3925 } 3926 3927 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3928 int value_regno, int insn_idx, 3929 struct btf_field *kptr_field) 3930 { 3931 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3932 int class = BPF_CLASS(insn->code); 3933 struct bpf_reg_state *val_reg; 3934 3935 /* Things we already checked for in check_map_access and caller: 3936 * - Reject cases where variable offset may touch kptr 3937 * - size of access (must be BPF_DW) 3938 * - tnum_is_const(reg->var_off) 3939 * - kptr_field->offset == off + reg->var_off.value 3940 */ 3941 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3942 if (BPF_MODE(insn->code) != BPF_MEM) { 3943 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3944 return -EACCES; 3945 } 3946 3947 /* We only allow loading referenced kptr, since it will be marked as 3948 * untrusted, similar to unreferenced kptr. 3949 */ 3950 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 3951 verbose(env, "store to referenced kptr disallowed\n"); 3952 return -EACCES; 3953 } 3954 3955 if (class == BPF_LDX) { 3956 val_reg = reg_state(env, value_regno); 3957 /* We can simply mark the value_regno receiving the pointer 3958 * value from map as PTR_TO_BTF_ID, with the correct type. 3959 */ 3960 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 3961 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3962 /* For mark_ptr_or_null_reg */ 3963 val_reg->id = ++env->id_gen; 3964 } else if (class == BPF_STX) { 3965 val_reg = reg_state(env, value_regno); 3966 if (!register_is_null(val_reg) && 3967 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 3968 return -EACCES; 3969 } else if (class == BPF_ST) { 3970 if (insn->imm) { 3971 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3972 kptr_field->offset); 3973 return -EACCES; 3974 } 3975 } else { 3976 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3977 return -EACCES; 3978 } 3979 return 0; 3980 } 3981 3982 /* check read/write into a map element with possible variable offset */ 3983 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3984 int off, int size, bool zero_size_allowed, 3985 enum bpf_access_src src) 3986 { 3987 struct bpf_verifier_state *vstate = env->cur_state; 3988 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3989 struct bpf_reg_state *reg = &state->regs[regno]; 3990 struct bpf_map *map = reg->map_ptr; 3991 struct btf_record *rec; 3992 int err, i; 3993 3994 err = check_mem_region_access(env, regno, off, size, map->value_size, 3995 zero_size_allowed); 3996 if (err) 3997 return err; 3998 3999 if (IS_ERR_OR_NULL(map->record)) 4000 return 0; 4001 rec = map->record; 4002 for (i = 0; i < rec->cnt; i++) { 4003 struct btf_field *field = &rec->fields[i]; 4004 u32 p = field->offset; 4005 4006 /* If any part of a field can be touched by load/store, reject 4007 * this program. To check that [x1, x2) overlaps with [y1, y2), 4008 * it is sufficient to check x1 < y2 && y1 < x2. 4009 */ 4010 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4011 p < reg->umax_value + off + size) { 4012 switch (field->type) { 4013 case BPF_KPTR_UNREF: 4014 case BPF_KPTR_REF: 4015 if (src != ACCESS_DIRECT) { 4016 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4017 return -EACCES; 4018 } 4019 if (!tnum_is_const(reg->var_off)) { 4020 verbose(env, "kptr access cannot have variable offset\n"); 4021 return -EACCES; 4022 } 4023 if (p != off + reg->var_off.value) { 4024 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4025 p, off + reg->var_off.value); 4026 return -EACCES; 4027 } 4028 if (size != bpf_size_to_bytes(BPF_DW)) { 4029 verbose(env, "kptr access size must be BPF_DW\n"); 4030 return -EACCES; 4031 } 4032 break; 4033 default: 4034 verbose(env, "%s cannot be accessed directly by load/store\n", 4035 btf_field_type_name(field->type)); 4036 return -EACCES; 4037 } 4038 } 4039 } 4040 return 0; 4041 } 4042 4043 #define MAX_PACKET_OFF 0xffff 4044 4045 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4046 const struct bpf_call_arg_meta *meta, 4047 enum bpf_access_type t) 4048 { 4049 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4050 4051 switch (prog_type) { 4052 /* Program types only with direct read access go here! */ 4053 case BPF_PROG_TYPE_LWT_IN: 4054 case BPF_PROG_TYPE_LWT_OUT: 4055 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4056 case BPF_PROG_TYPE_SK_REUSEPORT: 4057 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4058 case BPF_PROG_TYPE_CGROUP_SKB: 4059 if (t == BPF_WRITE) 4060 return false; 4061 fallthrough; 4062 4063 /* Program types with direct read + write access go here! */ 4064 case BPF_PROG_TYPE_SCHED_CLS: 4065 case BPF_PROG_TYPE_SCHED_ACT: 4066 case BPF_PROG_TYPE_XDP: 4067 case BPF_PROG_TYPE_LWT_XMIT: 4068 case BPF_PROG_TYPE_SK_SKB: 4069 case BPF_PROG_TYPE_SK_MSG: 4070 if (meta) 4071 return meta->pkt_access; 4072 4073 env->seen_direct_write = true; 4074 return true; 4075 4076 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4077 if (t == BPF_WRITE) 4078 env->seen_direct_write = true; 4079 4080 return true; 4081 4082 default: 4083 return false; 4084 } 4085 } 4086 4087 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4088 int size, bool zero_size_allowed) 4089 { 4090 struct bpf_reg_state *regs = cur_regs(env); 4091 struct bpf_reg_state *reg = ®s[regno]; 4092 int err; 4093 4094 /* We may have added a variable offset to the packet pointer; but any 4095 * reg->range we have comes after that. We are only checking the fixed 4096 * offset. 4097 */ 4098 4099 /* We don't allow negative numbers, because we aren't tracking enough 4100 * detail to prove they're safe. 4101 */ 4102 if (reg->smin_value < 0) { 4103 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4104 regno); 4105 return -EACCES; 4106 } 4107 4108 err = reg->range < 0 ? -EINVAL : 4109 __check_mem_access(env, regno, off, size, reg->range, 4110 zero_size_allowed); 4111 if (err) { 4112 verbose(env, "R%d offset is outside of the packet\n", regno); 4113 return err; 4114 } 4115 4116 /* __check_mem_access has made sure "off + size - 1" is within u16. 4117 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4118 * otherwise find_good_pkt_pointers would have refused to set range info 4119 * that __check_mem_access would have rejected this pkt access. 4120 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4121 */ 4122 env->prog->aux->max_pkt_offset = 4123 max_t(u32, env->prog->aux->max_pkt_offset, 4124 off + reg->umax_value + size - 1); 4125 4126 return err; 4127 } 4128 4129 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4130 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4131 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4132 struct btf **btf, u32 *btf_id) 4133 { 4134 struct bpf_insn_access_aux info = { 4135 .reg_type = *reg_type, 4136 .log = &env->log, 4137 }; 4138 4139 if (env->ops->is_valid_access && 4140 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4141 /* A non zero info.ctx_field_size indicates that this field is a 4142 * candidate for later verifier transformation to load the whole 4143 * field and then apply a mask when accessed with a narrower 4144 * access than actual ctx access size. A zero info.ctx_field_size 4145 * will only allow for whole field access and rejects any other 4146 * type of narrower access. 4147 */ 4148 *reg_type = info.reg_type; 4149 4150 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4151 *btf = info.btf; 4152 *btf_id = info.btf_id; 4153 } else { 4154 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4155 } 4156 /* remember the offset of last byte accessed in ctx */ 4157 if (env->prog->aux->max_ctx_offset < off + size) 4158 env->prog->aux->max_ctx_offset = off + size; 4159 return 0; 4160 } 4161 4162 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4163 return -EACCES; 4164 } 4165 4166 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4167 int size) 4168 { 4169 if (size < 0 || off < 0 || 4170 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4171 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4172 off, size); 4173 return -EACCES; 4174 } 4175 return 0; 4176 } 4177 4178 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4179 u32 regno, int off, int size, 4180 enum bpf_access_type t) 4181 { 4182 struct bpf_reg_state *regs = cur_regs(env); 4183 struct bpf_reg_state *reg = ®s[regno]; 4184 struct bpf_insn_access_aux info = {}; 4185 bool valid; 4186 4187 if (reg->smin_value < 0) { 4188 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4189 regno); 4190 return -EACCES; 4191 } 4192 4193 switch (reg->type) { 4194 case PTR_TO_SOCK_COMMON: 4195 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4196 break; 4197 case PTR_TO_SOCKET: 4198 valid = bpf_sock_is_valid_access(off, size, t, &info); 4199 break; 4200 case PTR_TO_TCP_SOCK: 4201 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4202 break; 4203 case PTR_TO_XDP_SOCK: 4204 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4205 break; 4206 default: 4207 valid = false; 4208 } 4209 4210 4211 if (valid) { 4212 env->insn_aux_data[insn_idx].ctx_field_size = 4213 info.ctx_field_size; 4214 return 0; 4215 } 4216 4217 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4218 regno, reg_type_str(env, reg->type), off, size); 4219 4220 return -EACCES; 4221 } 4222 4223 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4224 { 4225 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4226 } 4227 4228 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4229 { 4230 const struct bpf_reg_state *reg = reg_state(env, regno); 4231 4232 return reg->type == PTR_TO_CTX; 4233 } 4234 4235 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4236 { 4237 const struct bpf_reg_state *reg = reg_state(env, regno); 4238 4239 return type_is_sk_pointer(reg->type); 4240 } 4241 4242 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4243 { 4244 const struct bpf_reg_state *reg = reg_state(env, regno); 4245 4246 return type_is_pkt_pointer(reg->type); 4247 } 4248 4249 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4250 { 4251 const struct bpf_reg_state *reg = reg_state(env, regno); 4252 4253 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4254 return reg->type == PTR_TO_FLOW_KEYS; 4255 } 4256 4257 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4258 const struct bpf_reg_state *reg, 4259 int off, int size, bool strict) 4260 { 4261 struct tnum reg_off; 4262 int ip_align; 4263 4264 /* Byte size accesses are always allowed. */ 4265 if (!strict || size == 1) 4266 return 0; 4267 4268 /* For platforms that do not have a Kconfig enabling 4269 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4270 * NET_IP_ALIGN is universally set to '2'. And on platforms 4271 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4272 * to this code only in strict mode where we want to emulate 4273 * the NET_IP_ALIGN==2 checking. Therefore use an 4274 * unconditional IP align value of '2'. 4275 */ 4276 ip_align = 2; 4277 4278 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4279 if (!tnum_is_aligned(reg_off, size)) { 4280 char tn_buf[48]; 4281 4282 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4283 verbose(env, 4284 "misaligned packet access off %d+%s+%d+%d size %d\n", 4285 ip_align, tn_buf, reg->off, off, size); 4286 return -EACCES; 4287 } 4288 4289 return 0; 4290 } 4291 4292 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4293 const struct bpf_reg_state *reg, 4294 const char *pointer_desc, 4295 int off, int size, bool strict) 4296 { 4297 struct tnum reg_off; 4298 4299 /* Byte size accesses are always allowed. */ 4300 if (!strict || size == 1) 4301 return 0; 4302 4303 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4304 if (!tnum_is_aligned(reg_off, size)) { 4305 char tn_buf[48]; 4306 4307 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4308 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4309 pointer_desc, tn_buf, reg->off, off, size); 4310 return -EACCES; 4311 } 4312 4313 return 0; 4314 } 4315 4316 static int check_ptr_alignment(struct bpf_verifier_env *env, 4317 const struct bpf_reg_state *reg, int off, 4318 int size, bool strict_alignment_once) 4319 { 4320 bool strict = env->strict_alignment || strict_alignment_once; 4321 const char *pointer_desc = ""; 4322 4323 switch (reg->type) { 4324 case PTR_TO_PACKET: 4325 case PTR_TO_PACKET_META: 4326 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4327 * right in front, treat it the very same way. 4328 */ 4329 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4330 case PTR_TO_FLOW_KEYS: 4331 pointer_desc = "flow keys "; 4332 break; 4333 case PTR_TO_MAP_KEY: 4334 pointer_desc = "key "; 4335 break; 4336 case PTR_TO_MAP_VALUE: 4337 pointer_desc = "value "; 4338 break; 4339 case PTR_TO_CTX: 4340 pointer_desc = "context "; 4341 break; 4342 case PTR_TO_STACK: 4343 pointer_desc = "stack "; 4344 /* The stack spill tracking logic in check_stack_write_fixed_off() 4345 * and check_stack_read_fixed_off() relies on stack accesses being 4346 * aligned. 4347 */ 4348 strict = true; 4349 break; 4350 case PTR_TO_SOCKET: 4351 pointer_desc = "sock "; 4352 break; 4353 case PTR_TO_SOCK_COMMON: 4354 pointer_desc = "sock_common "; 4355 break; 4356 case PTR_TO_TCP_SOCK: 4357 pointer_desc = "tcp_sock "; 4358 break; 4359 case PTR_TO_XDP_SOCK: 4360 pointer_desc = "xdp_sock "; 4361 break; 4362 default: 4363 break; 4364 } 4365 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4366 strict); 4367 } 4368 4369 static int update_stack_depth(struct bpf_verifier_env *env, 4370 const struct bpf_func_state *func, 4371 int off) 4372 { 4373 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4374 4375 if (stack >= -off) 4376 return 0; 4377 4378 /* update known max for given subprogram */ 4379 env->subprog_info[func->subprogno].stack_depth = -off; 4380 return 0; 4381 } 4382 4383 /* starting from main bpf function walk all instructions of the function 4384 * and recursively walk all callees that given function can call. 4385 * Ignore jump and exit insns. 4386 * Since recursion is prevented by check_cfg() this algorithm 4387 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4388 */ 4389 static int check_max_stack_depth(struct bpf_verifier_env *env) 4390 { 4391 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4392 struct bpf_subprog_info *subprog = env->subprog_info; 4393 struct bpf_insn *insn = env->prog->insnsi; 4394 bool tail_call_reachable = false; 4395 int ret_insn[MAX_CALL_FRAMES]; 4396 int ret_prog[MAX_CALL_FRAMES]; 4397 int j; 4398 4399 process_func: 4400 /* protect against potential stack overflow that might happen when 4401 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4402 * depth for such case down to 256 so that the worst case scenario 4403 * would result in 8k stack size (32 which is tailcall limit * 256 = 4404 * 8k). 4405 * 4406 * To get the idea what might happen, see an example: 4407 * func1 -> sub rsp, 128 4408 * subfunc1 -> sub rsp, 256 4409 * tailcall1 -> add rsp, 256 4410 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4411 * subfunc2 -> sub rsp, 64 4412 * subfunc22 -> sub rsp, 128 4413 * tailcall2 -> add rsp, 128 4414 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4415 * 4416 * tailcall will unwind the current stack frame but it will not get rid 4417 * of caller's stack as shown on the example above. 4418 */ 4419 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4420 verbose(env, 4421 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4422 depth); 4423 return -EACCES; 4424 } 4425 /* round up to 32-bytes, since this is granularity 4426 * of interpreter stack size 4427 */ 4428 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4429 if (depth > MAX_BPF_STACK) { 4430 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4431 frame + 1, depth); 4432 return -EACCES; 4433 } 4434 continue_func: 4435 subprog_end = subprog[idx + 1].start; 4436 for (; i < subprog_end; i++) { 4437 int next_insn; 4438 4439 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4440 continue; 4441 /* remember insn and function to return to */ 4442 ret_insn[frame] = i + 1; 4443 ret_prog[frame] = idx; 4444 4445 /* find the callee */ 4446 next_insn = i + insn[i].imm + 1; 4447 idx = find_subprog(env, next_insn); 4448 if (idx < 0) { 4449 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4450 next_insn); 4451 return -EFAULT; 4452 } 4453 if (subprog[idx].is_async_cb) { 4454 if (subprog[idx].has_tail_call) { 4455 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4456 return -EFAULT; 4457 } 4458 /* async callbacks don't increase bpf prog stack size */ 4459 continue; 4460 } 4461 i = next_insn; 4462 4463 if (subprog[idx].has_tail_call) 4464 tail_call_reachable = true; 4465 4466 frame++; 4467 if (frame >= MAX_CALL_FRAMES) { 4468 verbose(env, "the call stack of %d frames is too deep !\n", 4469 frame); 4470 return -E2BIG; 4471 } 4472 goto process_func; 4473 } 4474 /* if tail call got detected across bpf2bpf calls then mark each of the 4475 * currently present subprog frames as tail call reachable subprogs; 4476 * this info will be utilized by JIT so that we will be preserving the 4477 * tail call counter throughout bpf2bpf calls combined with tailcalls 4478 */ 4479 if (tail_call_reachable) 4480 for (j = 0; j < frame; j++) 4481 subprog[ret_prog[j]].tail_call_reachable = true; 4482 if (subprog[0].tail_call_reachable) 4483 env->prog->aux->tail_call_reachable = true; 4484 4485 /* end of for() loop means the last insn of the 'subprog' 4486 * was reached. Doesn't matter whether it was JA or EXIT 4487 */ 4488 if (frame == 0) 4489 return 0; 4490 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4491 frame--; 4492 i = ret_insn[frame]; 4493 idx = ret_prog[frame]; 4494 goto continue_func; 4495 } 4496 4497 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4498 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4499 const struct bpf_insn *insn, int idx) 4500 { 4501 int start = idx + insn->imm + 1, subprog; 4502 4503 subprog = find_subprog(env, start); 4504 if (subprog < 0) { 4505 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4506 start); 4507 return -EFAULT; 4508 } 4509 return env->subprog_info[subprog].stack_depth; 4510 } 4511 #endif 4512 4513 static int __check_buffer_access(struct bpf_verifier_env *env, 4514 const char *buf_info, 4515 const struct bpf_reg_state *reg, 4516 int regno, int off, int size) 4517 { 4518 if (off < 0) { 4519 verbose(env, 4520 "R%d invalid %s buffer access: off=%d, size=%d\n", 4521 regno, buf_info, off, size); 4522 return -EACCES; 4523 } 4524 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4525 char tn_buf[48]; 4526 4527 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4528 verbose(env, 4529 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4530 regno, off, tn_buf); 4531 return -EACCES; 4532 } 4533 4534 return 0; 4535 } 4536 4537 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4538 const struct bpf_reg_state *reg, 4539 int regno, int off, int size) 4540 { 4541 int err; 4542 4543 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4544 if (err) 4545 return err; 4546 4547 if (off + size > env->prog->aux->max_tp_access) 4548 env->prog->aux->max_tp_access = off + size; 4549 4550 return 0; 4551 } 4552 4553 static int check_buffer_access(struct bpf_verifier_env *env, 4554 const struct bpf_reg_state *reg, 4555 int regno, int off, int size, 4556 bool zero_size_allowed, 4557 u32 *max_access) 4558 { 4559 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4560 int err; 4561 4562 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4563 if (err) 4564 return err; 4565 4566 if (off + size > *max_access) 4567 *max_access = off + size; 4568 4569 return 0; 4570 } 4571 4572 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4573 static void zext_32_to_64(struct bpf_reg_state *reg) 4574 { 4575 reg->var_off = tnum_subreg(reg->var_off); 4576 __reg_assign_32_into_64(reg); 4577 } 4578 4579 /* truncate register to smaller size (in bytes) 4580 * must be called with size < BPF_REG_SIZE 4581 */ 4582 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4583 { 4584 u64 mask; 4585 4586 /* clear high bits in bit representation */ 4587 reg->var_off = tnum_cast(reg->var_off, size); 4588 4589 /* fix arithmetic bounds */ 4590 mask = ((u64)1 << (size * 8)) - 1; 4591 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4592 reg->umin_value &= mask; 4593 reg->umax_value &= mask; 4594 } else { 4595 reg->umin_value = 0; 4596 reg->umax_value = mask; 4597 } 4598 reg->smin_value = reg->umin_value; 4599 reg->smax_value = reg->umax_value; 4600 4601 /* If size is smaller than 32bit register the 32bit register 4602 * values are also truncated so we push 64-bit bounds into 4603 * 32-bit bounds. Above were truncated < 32-bits already. 4604 */ 4605 if (size >= 4) 4606 return; 4607 __reg_combine_64_into_32(reg); 4608 } 4609 4610 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4611 { 4612 /* A map is considered read-only if the following condition are true: 4613 * 4614 * 1) BPF program side cannot change any of the map content. The 4615 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4616 * and was set at map creation time. 4617 * 2) The map value(s) have been initialized from user space by a 4618 * loader and then "frozen", such that no new map update/delete 4619 * operations from syscall side are possible for the rest of 4620 * the map's lifetime from that point onwards. 4621 * 3) Any parallel/pending map update/delete operations from syscall 4622 * side have been completed. Only after that point, it's safe to 4623 * assume that map value(s) are immutable. 4624 */ 4625 return (map->map_flags & BPF_F_RDONLY_PROG) && 4626 READ_ONCE(map->frozen) && 4627 !bpf_map_write_active(map); 4628 } 4629 4630 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4631 { 4632 void *ptr; 4633 u64 addr; 4634 int err; 4635 4636 err = map->ops->map_direct_value_addr(map, &addr, off); 4637 if (err) 4638 return err; 4639 ptr = (void *)(long)addr + off; 4640 4641 switch (size) { 4642 case sizeof(u8): 4643 *val = (u64)*(u8 *)ptr; 4644 break; 4645 case sizeof(u16): 4646 *val = (u64)*(u16 *)ptr; 4647 break; 4648 case sizeof(u32): 4649 *val = (u64)*(u32 *)ptr; 4650 break; 4651 case sizeof(u64): 4652 *val = *(u64 *)ptr; 4653 break; 4654 default: 4655 return -EINVAL; 4656 } 4657 return 0; 4658 } 4659 4660 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4661 struct bpf_reg_state *regs, 4662 int regno, int off, int size, 4663 enum bpf_access_type atype, 4664 int value_regno) 4665 { 4666 struct bpf_reg_state *reg = regs + regno; 4667 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4668 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4669 enum bpf_type_flag flag = 0; 4670 u32 btf_id; 4671 int ret; 4672 4673 if (off < 0) { 4674 verbose(env, 4675 "R%d is ptr_%s invalid negative access: off=%d\n", 4676 regno, tname, off); 4677 return -EACCES; 4678 } 4679 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4680 char tn_buf[48]; 4681 4682 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4683 verbose(env, 4684 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4685 regno, tname, off, tn_buf); 4686 return -EACCES; 4687 } 4688 4689 if (reg->type & MEM_USER) { 4690 verbose(env, 4691 "R%d is ptr_%s access user memory: off=%d\n", 4692 regno, tname, off); 4693 return -EACCES; 4694 } 4695 4696 if (reg->type & MEM_PERCPU) { 4697 verbose(env, 4698 "R%d is ptr_%s access percpu memory: off=%d\n", 4699 regno, tname, off); 4700 return -EACCES; 4701 } 4702 4703 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 4704 if (!btf_is_kernel(reg->btf)) { 4705 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 4706 return -EFAULT; 4707 } 4708 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4709 } else { 4710 /* Writes are permitted with default btf_struct_access for 4711 * program allocated objects (which always have ref_obj_id > 0), 4712 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 4713 */ 4714 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 4715 verbose(env, "only read is supported\n"); 4716 return -EACCES; 4717 } 4718 4719 if (type_is_alloc(reg->type) && !reg->ref_obj_id) { 4720 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 4721 return -EFAULT; 4722 } 4723 4724 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4725 } 4726 4727 if (ret < 0) 4728 return ret; 4729 4730 /* If this is an untrusted pointer, all pointers formed by walking it 4731 * also inherit the untrusted flag. 4732 */ 4733 if (type_flag(reg->type) & PTR_UNTRUSTED) 4734 flag |= PTR_UNTRUSTED; 4735 4736 /* Any pointer obtained from walking a trusted pointer is no longer trusted. */ 4737 flag &= ~PTR_TRUSTED; 4738 4739 if (atype == BPF_READ && value_regno >= 0) 4740 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4741 4742 return 0; 4743 } 4744 4745 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4746 struct bpf_reg_state *regs, 4747 int regno, int off, int size, 4748 enum bpf_access_type atype, 4749 int value_regno) 4750 { 4751 struct bpf_reg_state *reg = regs + regno; 4752 struct bpf_map *map = reg->map_ptr; 4753 struct bpf_reg_state map_reg; 4754 enum bpf_type_flag flag = 0; 4755 const struct btf_type *t; 4756 const char *tname; 4757 u32 btf_id; 4758 int ret; 4759 4760 if (!btf_vmlinux) { 4761 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4762 return -ENOTSUPP; 4763 } 4764 4765 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4766 verbose(env, "map_ptr access not supported for map type %d\n", 4767 map->map_type); 4768 return -ENOTSUPP; 4769 } 4770 4771 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4772 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4773 4774 if (!env->allow_ptr_to_map_access) { 4775 verbose(env, 4776 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4777 tname); 4778 return -EPERM; 4779 } 4780 4781 if (off < 0) { 4782 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4783 regno, tname, off); 4784 return -EACCES; 4785 } 4786 4787 if (atype != BPF_READ) { 4788 verbose(env, "only read from %s is supported\n", tname); 4789 return -EACCES; 4790 } 4791 4792 /* Simulate access to a PTR_TO_BTF_ID */ 4793 memset(&map_reg, 0, sizeof(map_reg)); 4794 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 4795 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 4796 if (ret < 0) 4797 return ret; 4798 4799 if (value_regno >= 0) 4800 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4801 4802 return 0; 4803 } 4804 4805 /* Check that the stack access at the given offset is within bounds. The 4806 * maximum valid offset is -1. 4807 * 4808 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4809 * -state->allocated_stack for reads. 4810 */ 4811 static int check_stack_slot_within_bounds(int off, 4812 struct bpf_func_state *state, 4813 enum bpf_access_type t) 4814 { 4815 int min_valid_off; 4816 4817 if (t == BPF_WRITE) 4818 min_valid_off = -MAX_BPF_STACK; 4819 else 4820 min_valid_off = -state->allocated_stack; 4821 4822 if (off < min_valid_off || off > -1) 4823 return -EACCES; 4824 return 0; 4825 } 4826 4827 /* Check that the stack access at 'regno + off' falls within the maximum stack 4828 * bounds. 4829 * 4830 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4831 */ 4832 static int check_stack_access_within_bounds( 4833 struct bpf_verifier_env *env, 4834 int regno, int off, int access_size, 4835 enum bpf_access_src src, enum bpf_access_type type) 4836 { 4837 struct bpf_reg_state *regs = cur_regs(env); 4838 struct bpf_reg_state *reg = regs + regno; 4839 struct bpf_func_state *state = func(env, reg); 4840 int min_off, max_off; 4841 int err; 4842 char *err_extra; 4843 4844 if (src == ACCESS_HELPER) 4845 /* We don't know if helpers are reading or writing (or both). */ 4846 err_extra = " indirect access to"; 4847 else if (type == BPF_READ) 4848 err_extra = " read from"; 4849 else 4850 err_extra = " write to"; 4851 4852 if (tnum_is_const(reg->var_off)) { 4853 min_off = reg->var_off.value + off; 4854 if (access_size > 0) 4855 max_off = min_off + access_size - 1; 4856 else 4857 max_off = min_off; 4858 } else { 4859 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4860 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4861 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4862 err_extra, regno); 4863 return -EACCES; 4864 } 4865 min_off = reg->smin_value + off; 4866 if (access_size > 0) 4867 max_off = reg->smax_value + off + access_size - 1; 4868 else 4869 max_off = min_off; 4870 } 4871 4872 err = check_stack_slot_within_bounds(min_off, state, type); 4873 if (!err) 4874 err = check_stack_slot_within_bounds(max_off, state, type); 4875 4876 if (err) { 4877 if (tnum_is_const(reg->var_off)) { 4878 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4879 err_extra, regno, off, access_size); 4880 } else { 4881 char tn_buf[48]; 4882 4883 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4884 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4885 err_extra, regno, tn_buf, access_size); 4886 } 4887 } 4888 return err; 4889 } 4890 4891 /* check whether memory at (regno + off) is accessible for t = (read | write) 4892 * if t==write, value_regno is a register which value is stored into memory 4893 * if t==read, value_regno is a register which will receive the value from memory 4894 * if t==write && value_regno==-1, some unknown value is stored into memory 4895 * if t==read && value_regno==-1, don't care what we read from memory 4896 */ 4897 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4898 int off, int bpf_size, enum bpf_access_type t, 4899 int value_regno, bool strict_alignment_once) 4900 { 4901 struct bpf_reg_state *regs = cur_regs(env); 4902 struct bpf_reg_state *reg = regs + regno; 4903 struct bpf_func_state *state; 4904 int size, err = 0; 4905 4906 size = bpf_size_to_bytes(bpf_size); 4907 if (size < 0) 4908 return size; 4909 4910 /* alignment checks will add in reg->off themselves */ 4911 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4912 if (err) 4913 return err; 4914 4915 /* for access checks, reg->off is just part of off */ 4916 off += reg->off; 4917 4918 if (reg->type == PTR_TO_MAP_KEY) { 4919 if (t == BPF_WRITE) { 4920 verbose(env, "write to change key R%d not allowed\n", regno); 4921 return -EACCES; 4922 } 4923 4924 err = check_mem_region_access(env, regno, off, size, 4925 reg->map_ptr->key_size, false); 4926 if (err) 4927 return err; 4928 if (value_regno >= 0) 4929 mark_reg_unknown(env, regs, value_regno); 4930 } else if (reg->type == PTR_TO_MAP_VALUE) { 4931 struct btf_field *kptr_field = NULL; 4932 4933 if (t == BPF_WRITE && value_regno >= 0 && 4934 is_pointer_value(env, value_regno)) { 4935 verbose(env, "R%d leaks addr into map\n", value_regno); 4936 return -EACCES; 4937 } 4938 err = check_map_access_type(env, regno, off, size, t); 4939 if (err) 4940 return err; 4941 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4942 if (err) 4943 return err; 4944 if (tnum_is_const(reg->var_off)) 4945 kptr_field = btf_record_find(reg->map_ptr->record, 4946 off + reg->var_off.value, BPF_KPTR); 4947 if (kptr_field) { 4948 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 4949 } else if (t == BPF_READ && value_regno >= 0) { 4950 struct bpf_map *map = reg->map_ptr; 4951 4952 /* if map is read-only, track its contents as scalars */ 4953 if (tnum_is_const(reg->var_off) && 4954 bpf_map_is_rdonly(map) && 4955 map->ops->map_direct_value_addr) { 4956 int map_off = off + reg->var_off.value; 4957 u64 val = 0; 4958 4959 err = bpf_map_direct_read(map, map_off, size, 4960 &val); 4961 if (err) 4962 return err; 4963 4964 regs[value_regno].type = SCALAR_VALUE; 4965 __mark_reg_known(®s[value_regno], val); 4966 } else { 4967 mark_reg_unknown(env, regs, value_regno); 4968 } 4969 } 4970 } else if (base_type(reg->type) == PTR_TO_MEM) { 4971 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4972 4973 if (type_may_be_null(reg->type)) { 4974 verbose(env, "R%d invalid mem access '%s'\n", regno, 4975 reg_type_str(env, reg->type)); 4976 return -EACCES; 4977 } 4978 4979 if (t == BPF_WRITE && rdonly_mem) { 4980 verbose(env, "R%d cannot write into %s\n", 4981 regno, reg_type_str(env, reg->type)); 4982 return -EACCES; 4983 } 4984 4985 if (t == BPF_WRITE && value_regno >= 0 && 4986 is_pointer_value(env, value_regno)) { 4987 verbose(env, "R%d leaks addr into mem\n", value_regno); 4988 return -EACCES; 4989 } 4990 4991 err = check_mem_region_access(env, regno, off, size, 4992 reg->mem_size, false); 4993 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4994 mark_reg_unknown(env, regs, value_regno); 4995 } else if (reg->type == PTR_TO_CTX) { 4996 enum bpf_reg_type reg_type = SCALAR_VALUE; 4997 struct btf *btf = NULL; 4998 u32 btf_id = 0; 4999 5000 if (t == BPF_WRITE && value_regno >= 0 && 5001 is_pointer_value(env, value_regno)) { 5002 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5003 return -EACCES; 5004 } 5005 5006 err = check_ptr_off_reg(env, reg, regno); 5007 if (err < 0) 5008 return err; 5009 5010 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5011 &btf_id); 5012 if (err) 5013 verbose_linfo(env, insn_idx, "; "); 5014 if (!err && t == BPF_READ && value_regno >= 0) { 5015 /* ctx access returns either a scalar, or a 5016 * PTR_TO_PACKET[_META,_END]. In the latter 5017 * case, we know the offset is zero. 5018 */ 5019 if (reg_type == SCALAR_VALUE) { 5020 mark_reg_unknown(env, regs, value_regno); 5021 } else { 5022 mark_reg_known_zero(env, regs, 5023 value_regno); 5024 if (type_may_be_null(reg_type)) 5025 regs[value_regno].id = ++env->id_gen; 5026 /* A load of ctx field could have different 5027 * actual load size with the one encoded in the 5028 * insn. When the dst is PTR, it is for sure not 5029 * a sub-register. 5030 */ 5031 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5032 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5033 regs[value_regno].btf = btf; 5034 regs[value_regno].btf_id = btf_id; 5035 } 5036 } 5037 regs[value_regno].type = reg_type; 5038 } 5039 5040 } else if (reg->type == PTR_TO_STACK) { 5041 /* Basic bounds checks. */ 5042 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5043 if (err) 5044 return err; 5045 5046 state = func(env, reg); 5047 err = update_stack_depth(env, state, off); 5048 if (err) 5049 return err; 5050 5051 if (t == BPF_READ) 5052 err = check_stack_read(env, regno, off, size, 5053 value_regno); 5054 else 5055 err = check_stack_write(env, regno, off, size, 5056 value_regno, insn_idx); 5057 } else if (reg_is_pkt_pointer(reg)) { 5058 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5059 verbose(env, "cannot write into packet\n"); 5060 return -EACCES; 5061 } 5062 if (t == BPF_WRITE && value_regno >= 0 && 5063 is_pointer_value(env, value_regno)) { 5064 verbose(env, "R%d leaks addr into packet\n", 5065 value_regno); 5066 return -EACCES; 5067 } 5068 err = check_packet_access(env, regno, off, size, false); 5069 if (!err && t == BPF_READ && value_regno >= 0) 5070 mark_reg_unknown(env, regs, value_regno); 5071 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5072 if (t == BPF_WRITE && value_regno >= 0 && 5073 is_pointer_value(env, value_regno)) { 5074 verbose(env, "R%d leaks addr into flow keys\n", 5075 value_regno); 5076 return -EACCES; 5077 } 5078 5079 err = check_flow_keys_access(env, off, size); 5080 if (!err && t == BPF_READ && value_regno >= 0) 5081 mark_reg_unknown(env, regs, value_regno); 5082 } else if (type_is_sk_pointer(reg->type)) { 5083 if (t == BPF_WRITE) { 5084 verbose(env, "R%d cannot write into %s\n", 5085 regno, reg_type_str(env, reg->type)); 5086 return -EACCES; 5087 } 5088 err = check_sock_access(env, insn_idx, regno, off, size, t); 5089 if (!err && value_regno >= 0) 5090 mark_reg_unknown(env, regs, value_regno); 5091 } else if (reg->type == PTR_TO_TP_BUFFER) { 5092 err = check_tp_buffer_access(env, reg, regno, off, size); 5093 if (!err && t == BPF_READ && value_regno >= 0) 5094 mark_reg_unknown(env, regs, value_regno); 5095 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5096 !type_may_be_null(reg->type)) { 5097 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5098 value_regno); 5099 } else if (reg->type == CONST_PTR_TO_MAP) { 5100 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5101 value_regno); 5102 } else if (base_type(reg->type) == PTR_TO_BUF) { 5103 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5104 u32 *max_access; 5105 5106 if (rdonly_mem) { 5107 if (t == BPF_WRITE) { 5108 verbose(env, "R%d cannot write into %s\n", 5109 regno, reg_type_str(env, reg->type)); 5110 return -EACCES; 5111 } 5112 max_access = &env->prog->aux->max_rdonly_access; 5113 } else { 5114 max_access = &env->prog->aux->max_rdwr_access; 5115 } 5116 5117 err = check_buffer_access(env, reg, regno, off, size, false, 5118 max_access); 5119 5120 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5121 mark_reg_unknown(env, regs, value_regno); 5122 } else { 5123 verbose(env, "R%d invalid mem access '%s'\n", regno, 5124 reg_type_str(env, reg->type)); 5125 return -EACCES; 5126 } 5127 5128 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5129 regs[value_regno].type == SCALAR_VALUE) { 5130 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5131 coerce_reg_to_size(®s[value_regno], size); 5132 } 5133 return err; 5134 } 5135 5136 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5137 { 5138 int load_reg; 5139 int err; 5140 5141 switch (insn->imm) { 5142 case BPF_ADD: 5143 case BPF_ADD | BPF_FETCH: 5144 case BPF_AND: 5145 case BPF_AND | BPF_FETCH: 5146 case BPF_OR: 5147 case BPF_OR | BPF_FETCH: 5148 case BPF_XOR: 5149 case BPF_XOR | BPF_FETCH: 5150 case BPF_XCHG: 5151 case BPF_CMPXCHG: 5152 break; 5153 default: 5154 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5155 return -EINVAL; 5156 } 5157 5158 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5159 verbose(env, "invalid atomic operand size\n"); 5160 return -EINVAL; 5161 } 5162 5163 /* check src1 operand */ 5164 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5165 if (err) 5166 return err; 5167 5168 /* check src2 operand */ 5169 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5170 if (err) 5171 return err; 5172 5173 if (insn->imm == BPF_CMPXCHG) { 5174 /* Check comparison of R0 with memory location */ 5175 const u32 aux_reg = BPF_REG_0; 5176 5177 err = check_reg_arg(env, aux_reg, SRC_OP); 5178 if (err) 5179 return err; 5180 5181 if (is_pointer_value(env, aux_reg)) { 5182 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5183 return -EACCES; 5184 } 5185 } 5186 5187 if (is_pointer_value(env, insn->src_reg)) { 5188 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5189 return -EACCES; 5190 } 5191 5192 if (is_ctx_reg(env, insn->dst_reg) || 5193 is_pkt_reg(env, insn->dst_reg) || 5194 is_flow_key_reg(env, insn->dst_reg) || 5195 is_sk_reg(env, insn->dst_reg)) { 5196 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5197 insn->dst_reg, 5198 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5199 return -EACCES; 5200 } 5201 5202 if (insn->imm & BPF_FETCH) { 5203 if (insn->imm == BPF_CMPXCHG) 5204 load_reg = BPF_REG_0; 5205 else 5206 load_reg = insn->src_reg; 5207 5208 /* check and record load of old value */ 5209 err = check_reg_arg(env, load_reg, DST_OP); 5210 if (err) 5211 return err; 5212 } else { 5213 /* This instruction accesses a memory location but doesn't 5214 * actually load it into a register. 5215 */ 5216 load_reg = -1; 5217 } 5218 5219 /* Check whether we can read the memory, with second call for fetch 5220 * case to simulate the register fill. 5221 */ 5222 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5223 BPF_SIZE(insn->code), BPF_READ, -1, true); 5224 if (!err && load_reg >= 0) 5225 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5226 BPF_SIZE(insn->code), BPF_READ, load_reg, 5227 true); 5228 if (err) 5229 return err; 5230 5231 /* Check whether we can write into the same memory. */ 5232 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5233 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5234 if (err) 5235 return err; 5236 5237 return 0; 5238 } 5239 5240 /* When register 'regno' is used to read the stack (either directly or through 5241 * a helper function) make sure that it's within stack boundary and, depending 5242 * on the access type, that all elements of the stack are initialized. 5243 * 5244 * 'off' includes 'regno->off', but not its dynamic part (if any). 5245 * 5246 * All registers that have been spilled on the stack in the slots within the 5247 * read offsets are marked as read. 5248 */ 5249 static int check_stack_range_initialized( 5250 struct bpf_verifier_env *env, int regno, int off, 5251 int access_size, bool zero_size_allowed, 5252 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5253 { 5254 struct bpf_reg_state *reg = reg_state(env, regno); 5255 struct bpf_func_state *state = func(env, reg); 5256 int err, min_off, max_off, i, j, slot, spi; 5257 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5258 enum bpf_access_type bounds_check_type; 5259 /* Some accesses can write anything into the stack, others are 5260 * read-only. 5261 */ 5262 bool clobber = false; 5263 5264 if (access_size == 0 && !zero_size_allowed) { 5265 verbose(env, "invalid zero-sized read\n"); 5266 return -EACCES; 5267 } 5268 5269 if (type == ACCESS_HELPER) { 5270 /* The bounds checks for writes are more permissive than for 5271 * reads. However, if raw_mode is not set, we'll do extra 5272 * checks below. 5273 */ 5274 bounds_check_type = BPF_WRITE; 5275 clobber = true; 5276 } else { 5277 bounds_check_type = BPF_READ; 5278 } 5279 err = check_stack_access_within_bounds(env, regno, off, access_size, 5280 type, bounds_check_type); 5281 if (err) 5282 return err; 5283 5284 5285 if (tnum_is_const(reg->var_off)) { 5286 min_off = max_off = reg->var_off.value + off; 5287 } else { 5288 /* Variable offset is prohibited for unprivileged mode for 5289 * simplicity since it requires corresponding support in 5290 * Spectre masking for stack ALU. 5291 * See also retrieve_ptr_limit(). 5292 */ 5293 if (!env->bypass_spec_v1) { 5294 char tn_buf[48]; 5295 5296 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5297 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5298 regno, err_extra, tn_buf); 5299 return -EACCES; 5300 } 5301 /* Only initialized buffer on stack is allowed to be accessed 5302 * with variable offset. With uninitialized buffer it's hard to 5303 * guarantee that whole memory is marked as initialized on 5304 * helper return since specific bounds are unknown what may 5305 * cause uninitialized stack leaking. 5306 */ 5307 if (meta && meta->raw_mode) 5308 meta = NULL; 5309 5310 min_off = reg->smin_value + off; 5311 max_off = reg->smax_value + off; 5312 } 5313 5314 if (meta && meta->raw_mode) { 5315 meta->access_size = access_size; 5316 meta->regno = regno; 5317 return 0; 5318 } 5319 5320 for (i = min_off; i < max_off + access_size; i++) { 5321 u8 *stype; 5322 5323 slot = -i - 1; 5324 spi = slot / BPF_REG_SIZE; 5325 if (state->allocated_stack <= slot) 5326 goto err; 5327 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5328 if (*stype == STACK_MISC) 5329 goto mark; 5330 if (*stype == STACK_ZERO) { 5331 if (clobber) { 5332 /* helper can write anything into the stack */ 5333 *stype = STACK_MISC; 5334 } 5335 goto mark; 5336 } 5337 5338 if (is_spilled_reg(&state->stack[spi]) && 5339 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5340 env->allow_ptr_leaks)) { 5341 if (clobber) { 5342 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5343 for (j = 0; j < BPF_REG_SIZE; j++) 5344 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5345 } 5346 goto mark; 5347 } 5348 5349 err: 5350 if (tnum_is_const(reg->var_off)) { 5351 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5352 err_extra, regno, min_off, i - min_off, access_size); 5353 } else { 5354 char tn_buf[48]; 5355 5356 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5357 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5358 err_extra, regno, tn_buf, i - min_off, access_size); 5359 } 5360 return -EACCES; 5361 mark: 5362 /* reading any byte out of 8-byte 'spill_slot' will cause 5363 * the whole slot to be marked as 'read' 5364 */ 5365 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5366 state->stack[spi].spilled_ptr.parent, 5367 REG_LIVE_READ64); 5368 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5369 * be sure that whether stack slot is written to or not. Hence, 5370 * we must still conservatively propagate reads upwards even if 5371 * helper may write to the entire memory range. 5372 */ 5373 } 5374 return update_stack_depth(env, state, min_off); 5375 } 5376 5377 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5378 int access_size, bool zero_size_allowed, 5379 struct bpf_call_arg_meta *meta) 5380 { 5381 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5382 u32 *max_access; 5383 5384 switch (base_type(reg->type)) { 5385 case PTR_TO_PACKET: 5386 case PTR_TO_PACKET_META: 5387 return check_packet_access(env, regno, reg->off, access_size, 5388 zero_size_allowed); 5389 case PTR_TO_MAP_KEY: 5390 if (meta && meta->raw_mode) { 5391 verbose(env, "R%d cannot write into %s\n", regno, 5392 reg_type_str(env, reg->type)); 5393 return -EACCES; 5394 } 5395 return check_mem_region_access(env, regno, reg->off, access_size, 5396 reg->map_ptr->key_size, false); 5397 case PTR_TO_MAP_VALUE: 5398 if (check_map_access_type(env, regno, reg->off, access_size, 5399 meta && meta->raw_mode ? BPF_WRITE : 5400 BPF_READ)) 5401 return -EACCES; 5402 return check_map_access(env, regno, reg->off, access_size, 5403 zero_size_allowed, ACCESS_HELPER); 5404 case PTR_TO_MEM: 5405 if (type_is_rdonly_mem(reg->type)) { 5406 if (meta && meta->raw_mode) { 5407 verbose(env, "R%d cannot write into %s\n", regno, 5408 reg_type_str(env, reg->type)); 5409 return -EACCES; 5410 } 5411 } 5412 return check_mem_region_access(env, regno, reg->off, 5413 access_size, reg->mem_size, 5414 zero_size_allowed); 5415 case PTR_TO_BUF: 5416 if (type_is_rdonly_mem(reg->type)) { 5417 if (meta && meta->raw_mode) { 5418 verbose(env, "R%d cannot write into %s\n", regno, 5419 reg_type_str(env, reg->type)); 5420 return -EACCES; 5421 } 5422 5423 max_access = &env->prog->aux->max_rdonly_access; 5424 } else { 5425 max_access = &env->prog->aux->max_rdwr_access; 5426 } 5427 return check_buffer_access(env, reg, regno, reg->off, 5428 access_size, zero_size_allowed, 5429 max_access); 5430 case PTR_TO_STACK: 5431 return check_stack_range_initialized( 5432 env, 5433 regno, reg->off, access_size, 5434 zero_size_allowed, ACCESS_HELPER, meta); 5435 case PTR_TO_CTX: 5436 /* in case the function doesn't know how to access the context, 5437 * (because we are in a program of type SYSCALL for example), we 5438 * can not statically check its size. 5439 * Dynamically check it now. 5440 */ 5441 if (!env->ops->convert_ctx_access) { 5442 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5443 int offset = access_size - 1; 5444 5445 /* Allow zero-byte read from PTR_TO_CTX */ 5446 if (access_size == 0) 5447 return zero_size_allowed ? 0 : -EACCES; 5448 5449 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5450 atype, -1, false); 5451 } 5452 5453 fallthrough; 5454 default: /* scalar_value or invalid ptr */ 5455 /* Allow zero-byte read from NULL, regardless of pointer type */ 5456 if (zero_size_allowed && access_size == 0 && 5457 register_is_null(reg)) 5458 return 0; 5459 5460 verbose(env, "R%d type=%s ", regno, 5461 reg_type_str(env, reg->type)); 5462 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5463 return -EACCES; 5464 } 5465 } 5466 5467 static int check_mem_size_reg(struct bpf_verifier_env *env, 5468 struct bpf_reg_state *reg, u32 regno, 5469 bool zero_size_allowed, 5470 struct bpf_call_arg_meta *meta) 5471 { 5472 int err; 5473 5474 /* This is used to refine r0 return value bounds for helpers 5475 * that enforce this value as an upper bound on return values. 5476 * See do_refine_retval_range() for helpers that can refine 5477 * the return value. C type of helper is u32 so we pull register 5478 * bound from umax_value however, if negative verifier errors 5479 * out. Only upper bounds can be learned because retval is an 5480 * int type and negative retvals are allowed. 5481 */ 5482 meta->msize_max_value = reg->umax_value; 5483 5484 /* The register is SCALAR_VALUE; the access check 5485 * happens using its boundaries. 5486 */ 5487 if (!tnum_is_const(reg->var_off)) 5488 /* For unprivileged variable accesses, disable raw 5489 * mode so that the program is required to 5490 * initialize all the memory that the helper could 5491 * just partially fill up. 5492 */ 5493 meta = NULL; 5494 5495 if (reg->smin_value < 0) { 5496 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5497 regno); 5498 return -EACCES; 5499 } 5500 5501 if (reg->umin_value == 0) { 5502 err = check_helper_mem_access(env, regno - 1, 0, 5503 zero_size_allowed, 5504 meta); 5505 if (err) 5506 return err; 5507 } 5508 5509 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5510 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5511 regno); 5512 return -EACCES; 5513 } 5514 err = check_helper_mem_access(env, regno - 1, 5515 reg->umax_value, 5516 zero_size_allowed, meta); 5517 if (!err) 5518 err = mark_chain_precision(env, regno); 5519 return err; 5520 } 5521 5522 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5523 u32 regno, u32 mem_size) 5524 { 5525 bool may_be_null = type_may_be_null(reg->type); 5526 struct bpf_reg_state saved_reg; 5527 struct bpf_call_arg_meta meta; 5528 int err; 5529 5530 if (register_is_null(reg)) 5531 return 0; 5532 5533 memset(&meta, 0, sizeof(meta)); 5534 /* Assuming that the register contains a value check if the memory 5535 * access is safe. Temporarily save and restore the register's state as 5536 * the conversion shouldn't be visible to a caller. 5537 */ 5538 if (may_be_null) { 5539 saved_reg = *reg; 5540 mark_ptr_not_null_reg(reg); 5541 } 5542 5543 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5544 /* Check access for BPF_WRITE */ 5545 meta.raw_mode = true; 5546 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5547 5548 if (may_be_null) 5549 *reg = saved_reg; 5550 5551 return err; 5552 } 5553 5554 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5555 u32 regno) 5556 { 5557 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5558 bool may_be_null = type_may_be_null(mem_reg->type); 5559 struct bpf_reg_state saved_reg; 5560 struct bpf_call_arg_meta meta; 5561 int err; 5562 5563 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5564 5565 memset(&meta, 0, sizeof(meta)); 5566 5567 if (may_be_null) { 5568 saved_reg = *mem_reg; 5569 mark_ptr_not_null_reg(mem_reg); 5570 } 5571 5572 err = check_mem_size_reg(env, reg, regno, true, &meta); 5573 /* Check access for BPF_WRITE */ 5574 meta.raw_mode = true; 5575 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5576 5577 if (may_be_null) 5578 *mem_reg = saved_reg; 5579 return err; 5580 } 5581 5582 /* Implementation details: 5583 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 5584 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 5585 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5586 * Two separate bpf_obj_new will also have different reg->id. 5587 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 5588 * clears reg->id after value_or_null->value transition, since the verifier only 5589 * cares about the range of access to valid map value pointer and doesn't care 5590 * about actual address of the map element. 5591 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5592 * reg->id > 0 after value_or_null->value transition. By doing so 5593 * two bpf_map_lookups will be considered two different pointers that 5594 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 5595 * returned from bpf_obj_new. 5596 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5597 * dead-locks. 5598 * Since only one bpf_spin_lock is allowed the checks are simpler than 5599 * reg_is_refcounted() logic. The verifier needs to remember only 5600 * one spin_lock instead of array of acquired_refs. 5601 * cur_state->active_lock remembers which map value element or allocated 5602 * object got locked and clears it after bpf_spin_unlock. 5603 */ 5604 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5605 bool is_lock) 5606 { 5607 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5608 struct bpf_verifier_state *cur = env->cur_state; 5609 bool is_const = tnum_is_const(reg->var_off); 5610 u64 val = reg->var_off.value; 5611 struct bpf_map *map = NULL; 5612 struct btf *btf = NULL; 5613 struct btf_record *rec; 5614 5615 if (!is_const) { 5616 verbose(env, 5617 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5618 regno); 5619 return -EINVAL; 5620 } 5621 if (reg->type == PTR_TO_MAP_VALUE) { 5622 map = reg->map_ptr; 5623 if (!map->btf) { 5624 verbose(env, 5625 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5626 map->name); 5627 return -EINVAL; 5628 } 5629 } else { 5630 btf = reg->btf; 5631 } 5632 5633 rec = reg_btf_record(reg); 5634 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 5635 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 5636 map ? map->name : "kptr"); 5637 return -EINVAL; 5638 } 5639 if (rec->spin_lock_off != val + reg->off) { 5640 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 5641 val + reg->off, rec->spin_lock_off); 5642 return -EINVAL; 5643 } 5644 if (is_lock) { 5645 if (cur->active_lock.ptr) { 5646 verbose(env, 5647 "Locking two bpf_spin_locks are not allowed\n"); 5648 return -EINVAL; 5649 } 5650 if (map) 5651 cur->active_lock.ptr = map; 5652 else 5653 cur->active_lock.ptr = btf; 5654 cur->active_lock.id = reg->id; 5655 } else { 5656 struct bpf_func_state *fstate = cur_func(env); 5657 void *ptr; 5658 int i; 5659 5660 if (map) 5661 ptr = map; 5662 else 5663 ptr = btf; 5664 5665 if (!cur->active_lock.ptr) { 5666 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5667 return -EINVAL; 5668 } 5669 if (cur->active_lock.ptr != ptr || 5670 cur->active_lock.id != reg->id) { 5671 verbose(env, "bpf_spin_unlock of different lock\n"); 5672 return -EINVAL; 5673 } 5674 cur->active_lock.ptr = NULL; 5675 cur->active_lock.id = 0; 5676 5677 for (i = 0; i < fstate->acquired_refs; i++) { 5678 int err; 5679 5680 /* Complain on error because this reference state cannot 5681 * be freed before this point, as bpf_spin_lock critical 5682 * section does not allow functions that release the 5683 * allocated object immediately. 5684 */ 5685 if (!fstate->refs[i].release_on_unlock) 5686 continue; 5687 err = release_reference(env, fstate->refs[i].id); 5688 if (err) { 5689 verbose(env, "failed to release release_on_unlock reference"); 5690 return err; 5691 } 5692 } 5693 } 5694 return 0; 5695 } 5696 5697 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5698 struct bpf_call_arg_meta *meta) 5699 { 5700 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5701 bool is_const = tnum_is_const(reg->var_off); 5702 struct bpf_map *map = reg->map_ptr; 5703 u64 val = reg->var_off.value; 5704 5705 if (!is_const) { 5706 verbose(env, 5707 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5708 regno); 5709 return -EINVAL; 5710 } 5711 if (!map->btf) { 5712 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5713 map->name); 5714 return -EINVAL; 5715 } 5716 if (!btf_record_has_field(map->record, BPF_TIMER)) { 5717 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 5718 return -EINVAL; 5719 } 5720 if (map->record->timer_off != val + reg->off) { 5721 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5722 val + reg->off, map->record->timer_off); 5723 return -EINVAL; 5724 } 5725 if (meta->map_ptr) { 5726 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5727 return -EFAULT; 5728 } 5729 meta->map_uid = reg->map_uid; 5730 meta->map_ptr = map; 5731 return 0; 5732 } 5733 5734 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5735 struct bpf_call_arg_meta *meta) 5736 { 5737 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5738 struct bpf_map *map_ptr = reg->map_ptr; 5739 struct btf_field *kptr_field; 5740 u32 kptr_off; 5741 5742 if (!tnum_is_const(reg->var_off)) { 5743 verbose(env, 5744 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5745 regno); 5746 return -EINVAL; 5747 } 5748 if (!map_ptr->btf) { 5749 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5750 map_ptr->name); 5751 return -EINVAL; 5752 } 5753 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 5754 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5755 return -EINVAL; 5756 } 5757 5758 meta->map_ptr = map_ptr; 5759 kptr_off = reg->off + reg->var_off.value; 5760 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 5761 if (!kptr_field) { 5762 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5763 return -EACCES; 5764 } 5765 if (kptr_field->type != BPF_KPTR_REF) { 5766 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5767 return -EACCES; 5768 } 5769 meta->kptr_field = kptr_field; 5770 return 0; 5771 } 5772 5773 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5774 { 5775 return type == ARG_CONST_SIZE || 5776 type == ARG_CONST_SIZE_OR_ZERO; 5777 } 5778 5779 static bool arg_type_is_release(enum bpf_arg_type type) 5780 { 5781 return type & OBJ_RELEASE; 5782 } 5783 5784 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5785 { 5786 return base_type(type) == ARG_PTR_TO_DYNPTR; 5787 } 5788 5789 static int int_ptr_type_to_size(enum bpf_arg_type type) 5790 { 5791 if (type == ARG_PTR_TO_INT) 5792 return sizeof(u32); 5793 else if (type == ARG_PTR_TO_LONG) 5794 return sizeof(u64); 5795 5796 return -EINVAL; 5797 } 5798 5799 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5800 const struct bpf_call_arg_meta *meta, 5801 enum bpf_arg_type *arg_type) 5802 { 5803 if (!meta->map_ptr) { 5804 /* kernel subsystem misconfigured verifier */ 5805 verbose(env, "invalid map_ptr to access map->type\n"); 5806 return -EACCES; 5807 } 5808 5809 switch (meta->map_ptr->map_type) { 5810 case BPF_MAP_TYPE_SOCKMAP: 5811 case BPF_MAP_TYPE_SOCKHASH: 5812 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5813 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5814 } else { 5815 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5816 return -EINVAL; 5817 } 5818 break; 5819 case BPF_MAP_TYPE_BLOOM_FILTER: 5820 if (meta->func_id == BPF_FUNC_map_peek_elem) 5821 *arg_type = ARG_PTR_TO_MAP_VALUE; 5822 break; 5823 default: 5824 break; 5825 } 5826 return 0; 5827 } 5828 5829 struct bpf_reg_types { 5830 const enum bpf_reg_type types[10]; 5831 u32 *btf_id; 5832 }; 5833 5834 static const struct bpf_reg_types sock_types = { 5835 .types = { 5836 PTR_TO_SOCK_COMMON, 5837 PTR_TO_SOCKET, 5838 PTR_TO_TCP_SOCK, 5839 PTR_TO_XDP_SOCK, 5840 }, 5841 }; 5842 5843 #ifdef CONFIG_NET 5844 static const struct bpf_reg_types btf_id_sock_common_types = { 5845 .types = { 5846 PTR_TO_SOCK_COMMON, 5847 PTR_TO_SOCKET, 5848 PTR_TO_TCP_SOCK, 5849 PTR_TO_XDP_SOCK, 5850 PTR_TO_BTF_ID, 5851 PTR_TO_BTF_ID | PTR_TRUSTED, 5852 }, 5853 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5854 }; 5855 #endif 5856 5857 static const struct bpf_reg_types mem_types = { 5858 .types = { 5859 PTR_TO_STACK, 5860 PTR_TO_PACKET, 5861 PTR_TO_PACKET_META, 5862 PTR_TO_MAP_KEY, 5863 PTR_TO_MAP_VALUE, 5864 PTR_TO_MEM, 5865 PTR_TO_MEM | MEM_RINGBUF, 5866 PTR_TO_BUF, 5867 }, 5868 }; 5869 5870 static const struct bpf_reg_types int_ptr_types = { 5871 .types = { 5872 PTR_TO_STACK, 5873 PTR_TO_PACKET, 5874 PTR_TO_PACKET_META, 5875 PTR_TO_MAP_KEY, 5876 PTR_TO_MAP_VALUE, 5877 }, 5878 }; 5879 5880 static const struct bpf_reg_types spin_lock_types = { 5881 .types = { 5882 PTR_TO_MAP_VALUE, 5883 PTR_TO_BTF_ID | MEM_ALLOC, 5884 } 5885 }; 5886 5887 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5888 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5889 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5890 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 5891 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5892 static const struct bpf_reg_types btf_ptr_types = { 5893 .types = { 5894 PTR_TO_BTF_ID, 5895 PTR_TO_BTF_ID | PTR_TRUSTED, 5896 }, 5897 }; 5898 static const struct bpf_reg_types percpu_btf_ptr_types = { 5899 .types = { 5900 PTR_TO_BTF_ID | MEM_PERCPU, 5901 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 5902 } 5903 }; 5904 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5905 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5906 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5907 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5908 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5909 static const struct bpf_reg_types dynptr_types = { 5910 .types = { 5911 PTR_TO_STACK, 5912 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL, 5913 } 5914 }; 5915 5916 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5917 [ARG_PTR_TO_MAP_KEY] = &mem_types, 5918 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 5919 [ARG_CONST_SIZE] = &scalar_types, 5920 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5921 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5922 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5923 [ARG_PTR_TO_CTX] = &context_types, 5924 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5925 #ifdef CONFIG_NET 5926 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5927 #endif 5928 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5929 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5930 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5931 [ARG_PTR_TO_MEM] = &mem_types, 5932 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 5933 [ARG_PTR_TO_INT] = &int_ptr_types, 5934 [ARG_PTR_TO_LONG] = &int_ptr_types, 5935 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5936 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5937 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5938 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5939 [ARG_PTR_TO_TIMER] = &timer_types, 5940 [ARG_PTR_TO_KPTR] = &kptr_types, 5941 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 5942 }; 5943 5944 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5945 enum bpf_arg_type arg_type, 5946 const u32 *arg_btf_id, 5947 struct bpf_call_arg_meta *meta) 5948 { 5949 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5950 enum bpf_reg_type expected, type = reg->type; 5951 const struct bpf_reg_types *compatible; 5952 int i, j; 5953 5954 compatible = compatible_reg_types[base_type(arg_type)]; 5955 if (!compatible) { 5956 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5957 return -EFAULT; 5958 } 5959 5960 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5961 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5962 * 5963 * Same for MAYBE_NULL: 5964 * 5965 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5966 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5967 * 5968 * Therefore we fold these flags depending on the arg_type before comparison. 5969 */ 5970 if (arg_type & MEM_RDONLY) 5971 type &= ~MEM_RDONLY; 5972 if (arg_type & PTR_MAYBE_NULL) 5973 type &= ~PTR_MAYBE_NULL; 5974 5975 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5976 expected = compatible->types[i]; 5977 if (expected == NOT_INIT) 5978 break; 5979 5980 if (type == expected) 5981 goto found; 5982 } 5983 5984 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5985 for (j = 0; j + 1 < i; j++) 5986 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5987 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5988 return -EACCES; 5989 5990 found: 5991 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 5992 /* For bpf_sk_release, it needs to match against first member 5993 * 'struct sock_common', hence make an exception for it. This 5994 * allows bpf_sk_release to work for multiple socket types. 5995 */ 5996 bool strict_type_match = arg_type_is_release(arg_type) && 5997 meta->func_id != BPF_FUNC_sk_release; 5998 5999 if (!arg_btf_id) { 6000 if (!compatible->btf_id) { 6001 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6002 return -EFAULT; 6003 } 6004 arg_btf_id = compatible->btf_id; 6005 } 6006 6007 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6008 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6009 return -EACCES; 6010 } else { 6011 if (arg_btf_id == BPF_PTR_POISON) { 6012 verbose(env, "verifier internal error:"); 6013 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6014 regno); 6015 return -EACCES; 6016 } 6017 6018 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6019 btf_vmlinux, *arg_btf_id, 6020 strict_type_match)) { 6021 verbose(env, "R%d is of type %s but %s is expected\n", 6022 regno, kernel_type_name(reg->btf, reg->btf_id), 6023 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6024 return -EACCES; 6025 } 6026 } 6027 } else if (type_is_alloc(reg->type)) { 6028 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6029 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6030 return -EFAULT; 6031 } 6032 } 6033 6034 return 0; 6035 } 6036 6037 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6038 const struct bpf_reg_state *reg, int regno, 6039 enum bpf_arg_type arg_type) 6040 { 6041 enum bpf_reg_type type = reg->type; 6042 bool fixed_off_ok = false; 6043 6044 switch ((u32)type) { 6045 /* Pointer types where reg offset is explicitly allowed: */ 6046 case PTR_TO_STACK: 6047 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 6048 verbose(env, "cannot pass in dynptr at an offset\n"); 6049 return -EINVAL; 6050 } 6051 fallthrough; 6052 case PTR_TO_PACKET: 6053 case PTR_TO_PACKET_META: 6054 case PTR_TO_MAP_KEY: 6055 case PTR_TO_MAP_VALUE: 6056 case PTR_TO_MEM: 6057 case PTR_TO_MEM | MEM_RDONLY: 6058 case PTR_TO_MEM | MEM_RINGBUF: 6059 case PTR_TO_BUF: 6060 case PTR_TO_BUF | MEM_RDONLY: 6061 case SCALAR_VALUE: 6062 /* Some of the argument types nevertheless require a 6063 * zero register offset. 6064 */ 6065 if (base_type(arg_type) != ARG_PTR_TO_RINGBUF_MEM) 6066 return 0; 6067 break; 6068 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6069 * fixed offset. 6070 */ 6071 case PTR_TO_BTF_ID: 6072 case PTR_TO_BTF_ID | MEM_ALLOC: 6073 case PTR_TO_BTF_ID | PTR_TRUSTED: 6074 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6075 /* When referenced PTR_TO_BTF_ID is passed to release function, 6076 * it's fixed offset must be 0. In the other cases, fixed offset 6077 * can be non-zero. 6078 */ 6079 if (arg_type_is_release(arg_type) && reg->off) { 6080 verbose(env, "R%d must have zero offset when passed to release func\n", 6081 regno); 6082 return -EINVAL; 6083 } 6084 /* For arg is release pointer, fixed_off_ok must be false, but 6085 * we already checked and rejected reg->off != 0 above, so set 6086 * to true to allow fixed offset for all other cases. 6087 */ 6088 fixed_off_ok = true; 6089 break; 6090 default: 6091 break; 6092 } 6093 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 6094 } 6095 6096 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6097 { 6098 struct bpf_func_state *state = func(env, reg); 6099 int spi = get_spi(reg->off); 6100 6101 return state->stack[spi].spilled_ptr.id; 6102 } 6103 6104 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6105 struct bpf_call_arg_meta *meta, 6106 const struct bpf_func_proto *fn) 6107 { 6108 u32 regno = BPF_REG_1 + arg; 6109 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6110 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6111 enum bpf_reg_type type = reg->type; 6112 u32 *arg_btf_id = NULL; 6113 int err = 0; 6114 6115 if (arg_type == ARG_DONTCARE) 6116 return 0; 6117 6118 err = check_reg_arg(env, regno, SRC_OP); 6119 if (err) 6120 return err; 6121 6122 if (arg_type == ARG_ANYTHING) { 6123 if (is_pointer_value(env, regno)) { 6124 verbose(env, "R%d leaks addr into helper function\n", 6125 regno); 6126 return -EACCES; 6127 } 6128 return 0; 6129 } 6130 6131 if (type_is_pkt_pointer(type) && 6132 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6133 verbose(env, "helper access to the packet is not allowed\n"); 6134 return -EACCES; 6135 } 6136 6137 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6138 err = resolve_map_arg_type(env, meta, &arg_type); 6139 if (err) 6140 return err; 6141 } 6142 6143 if (register_is_null(reg) && type_may_be_null(arg_type)) 6144 /* A NULL register has a SCALAR_VALUE type, so skip 6145 * type checking. 6146 */ 6147 goto skip_type_check; 6148 6149 /* arg_btf_id and arg_size are in a union. */ 6150 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6151 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6152 arg_btf_id = fn->arg_btf_id[arg]; 6153 6154 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6155 if (err) 6156 return err; 6157 6158 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6159 if (err) 6160 return err; 6161 6162 skip_type_check: 6163 if (arg_type_is_release(arg_type)) { 6164 if (arg_type_is_dynptr(arg_type)) { 6165 struct bpf_func_state *state = func(env, reg); 6166 int spi = get_spi(reg->off); 6167 6168 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 6169 !state->stack[spi].spilled_ptr.id) { 6170 verbose(env, "arg %d is an unacquired reference\n", regno); 6171 return -EINVAL; 6172 } 6173 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6174 verbose(env, "R%d must be referenced when passed to release function\n", 6175 regno); 6176 return -EINVAL; 6177 } 6178 if (meta->release_regno) { 6179 verbose(env, "verifier internal error: more than one release argument\n"); 6180 return -EFAULT; 6181 } 6182 meta->release_regno = regno; 6183 } 6184 6185 if (reg->ref_obj_id) { 6186 if (meta->ref_obj_id) { 6187 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6188 regno, reg->ref_obj_id, 6189 meta->ref_obj_id); 6190 return -EFAULT; 6191 } 6192 meta->ref_obj_id = reg->ref_obj_id; 6193 } 6194 6195 switch (base_type(arg_type)) { 6196 case ARG_CONST_MAP_PTR: 6197 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6198 if (meta->map_ptr) { 6199 /* Use map_uid (which is unique id of inner map) to reject: 6200 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6201 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6202 * if (inner_map1 && inner_map2) { 6203 * timer = bpf_map_lookup_elem(inner_map1); 6204 * if (timer) 6205 * // mismatch would have been allowed 6206 * bpf_timer_init(timer, inner_map2); 6207 * } 6208 * 6209 * Comparing map_ptr is enough to distinguish normal and outer maps. 6210 */ 6211 if (meta->map_ptr != reg->map_ptr || 6212 meta->map_uid != reg->map_uid) { 6213 verbose(env, 6214 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6215 meta->map_uid, reg->map_uid); 6216 return -EINVAL; 6217 } 6218 } 6219 meta->map_ptr = reg->map_ptr; 6220 meta->map_uid = reg->map_uid; 6221 break; 6222 case ARG_PTR_TO_MAP_KEY: 6223 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6224 * check that [key, key + map->key_size) are within 6225 * stack limits and initialized 6226 */ 6227 if (!meta->map_ptr) { 6228 /* in function declaration map_ptr must come before 6229 * map_key, so that it's verified and known before 6230 * we have to check map_key here. Otherwise it means 6231 * that kernel subsystem misconfigured verifier 6232 */ 6233 verbose(env, "invalid map_ptr to access map->key\n"); 6234 return -EACCES; 6235 } 6236 err = check_helper_mem_access(env, regno, 6237 meta->map_ptr->key_size, false, 6238 NULL); 6239 break; 6240 case ARG_PTR_TO_MAP_VALUE: 6241 if (type_may_be_null(arg_type) && register_is_null(reg)) 6242 return 0; 6243 6244 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6245 * check [value, value + map->value_size) validity 6246 */ 6247 if (!meta->map_ptr) { 6248 /* kernel subsystem misconfigured verifier */ 6249 verbose(env, "invalid map_ptr to access map->value\n"); 6250 return -EACCES; 6251 } 6252 meta->raw_mode = arg_type & MEM_UNINIT; 6253 err = check_helper_mem_access(env, regno, 6254 meta->map_ptr->value_size, false, 6255 meta); 6256 break; 6257 case ARG_PTR_TO_PERCPU_BTF_ID: 6258 if (!reg->btf_id) { 6259 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6260 return -EACCES; 6261 } 6262 meta->ret_btf = reg->btf; 6263 meta->ret_btf_id = reg->btf_id; 6264 break; 6265 case ARG_PTR_TO_SPIN_LOCK: 6266 if (meta->func_id == BPF_FUNC_spin_lock) { 6267 if (process_spin_lock(env, regno, true)) 6268 return -EACCES; 6269 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6270 if (process_spin_lock(env, regno, false)) 6271 return -EACCES; 6272 } else { 6273 verbose(env, "verifier internal error\n"); 6274 return -EFAULT; 6275 } 6276 break; 6277 case ARG_PTR_TO_TIMER: 6278 if (process_timer_func(env, regno, meta)) 6279 return -EACCES; 6280 break; 6281 case ARG_PTR_TO_FUNC: 6282 meta->subprogno = reg->subprogno; 6283 break; 6284 case ARG_PTR_TO_MEM: 6285 /* The access to this pointer is only checked when we hit the 6286 * next is_mem_size argument below. 6287 */ 6288 meta->raw_mode = arg_type & MEM_UNINIT; 6289 if (arg_type & MEM_FIXED_SIZE) { 6290 err = check_helper_mem_access(env, regno, 6291 fn->arg_size[arg], false, 6292 meta); 6293 } 6294 break; 6295 case ARG_CONST_SIZE: 6296 err = check_mem_size_reg(env, reg, regno, false, meta); 6297 break; 6298 case ARG_CONST_SIZE_OR_ZERO: 6299 err = check_mem_size_reg(env, reg, regno, true, meta); 6300 break; 6301 case ARG_PTR_TO_DYNPTR: 6302 /* We only need to check for initialized / uninitialized helper 6303 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the 6304 * assumption is that if it is, that a helper function 6305 * initialized the dynptr on behalf of the BPF program. 6306 */ 6307 if (base_type(reg->type) == PTR_TO_DYNPTR) 6308 break; 6309 if (arg_type & MEM_UNINIT) { 6310 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6311 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6312 return -EINVAL; 6313 } 6314 6315 /* We only support one dynptr being uninitialized at the moment, 6316 * which is sufficient for the helper functions we have right now. 6317 */ 6318 if (meta->uninit_dynptr_regno) { 6319 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6320 return -EFAULT; 6321 } 6322 6323 meta->uninit_dynptr_regno = regno; 6324 } else if (!is_dynptr_reg_valid_init(env, reg)) { 6325 verbose(env, 6326 "Expected an initialized dynptr as arg #%d\n", 6327 arg + 1); 6328 return -EINVAL; 6329 } else if (!is_dynptr_type_expected(env, reg, arg_type)) { 6330 const char *err_extra = ""; 6331 6332 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6333 case DYNPTR_TYPE_LOCAL: 6334 err_extra = "local"; 6335 break; 6336 case DYNPTR_TYPE_RINGBUF: 6337 err_extra = "ringbuf"; 6338 break; 6339 default: 6340 err_extra = "<unknown>"; 6341 break; 6342 } 6343 verbose(env, 6344 "Expected a dynptr of type %s as arg #%d\n", 6345 err_extra, arg + 1); 6346 return -EINVAL; 6347 } 6348 break; 6349 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6350 if (!tnum_is_const(reg->var_off)) { 6351 verbose(env, "R%d is not a known constant'\n", 6352 regno); 6353 return -EACCES; 6354 } 6355 meta->mem_size = reg->var_off.value; 6356 err = mark_chain_precision(env, regno); 6357 if (err) 6358 return err; 6359 break; 6360 case ARG_PTR_TO_INT: 6361 case ARG_PTR_TO_LONG: 6362 { 6363 int size = int_ptr_type_to_size(arg_type); 6364 6365 err = check_helper_mem_access(env, regno, size, false, meta); 6366 if (err) 6367 return err; 6368 err = check_ptr_alignment(env, reg, 0, size, true); 6369 break; 6370 } 6371 case ARG_PTR_TO_CONST_STR: 6372 { 6373 struct bpf_map *map = reg->map_ptr; 6374 int map_off; 6375 u64 map_addr; 6376 char *str_ptr; 6377 6378 if (!bpf_map_is_rdonly(map)) { 6379 verbose(env, "R%d does not point to a readonly map'\n", regno); 6380 return -EACCES; 6381 } 6382 6383 if (!tnum_is_const(reg->var_off)) { 6384 verbose(env, "R%d is not a constant address'\n", regno); 6385 return -EACCES; 6386 } 6387 6388 if (!map->ops->map_direct_value_addr) { 6389 verbose(env, "no direct value access support for this map type\n"); 6390 return -EACCES; 6391 } 6392 6393 err = check_map_access(env, regno, reg->off, 6394 map->value_size - reg->off, false, 6395 ACCESS_HELPER); 6396 if (err) 6397 return err; 6398 6399 map_off = reg->off + reg->var_off.value; 6400 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6401 if (err) { 6402 verbose(env, "direct value access on string failed\n"); 6403 return err; 6404 } 6405 6406 str_ptr = (char *)(long)(map_addr); 6407 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6408 verbose(env, "string is not zero-terminated\n"); 6409 return -EINVAL; 6410 } 6411 break; 6412 } 6413 case ARG_PTR_TO_KPTR: 6414 if (process_kptr_func(env, regno, meta)) 6415 return -EACCES; 6416 break; 6417 } 6418 6419 return err; 6420 } 6421 6422 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6423 { 6424 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6425 enum bpf_prog_type type = resolve_prog_type(env->prog); 6426 6427 if (func_id != BPF_FUNC_map_update_elem) 6428 return false; 6429 6430 /* It's not possible to get access to a locked struct sock in these 6431 * contexts, so updating is safe. 6432 */ 6433 switch (type) { 6434 case BPF_PROG_TYPE_TRACING: 6435 if (eatype == BPF_TRACE_ITER) 6436 return true; 6437 break; 6438 case BPF_PROG_TYPE_SOCKET_FILTER: 6439 case BPF_PROG_TYPE_SCHED_CLS: 6440 case BPF_PROG_TYPE_SCHED_ACT: 6441 case BPF_PROG_TYPE_XDP: 6442 case BPF_PROG_TYPE_SK_REUSEPORT: 6443 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6444 case BPF_PROG_TYPE_SK_LOOKUP: 6445 return true; 6446 default: 6447 break; 6448 } 6449 6450 verbose(env, "cannot update sockmap in this context\n"); 6451 return false; 6452 } 6453 6454 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6455 { 6456 return env->prog->jit_requested && 6457 bpf_jit_supports_subprog_tailcalls(); 6458 } 6459 6460 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6461 struct bpf_map *map, int func_id) 6462 { 6463 if (!map) 6464 return 0; 6465 6466 /* We need a two way check, first is from map perspective ... */ 6467 switch (map->map_type) { 6468 case BPF_MAP_TYPE_PROG_ARRAY: 6469 if (func_id != BPF_FUNC_tail_call) 6470 goto error; 6471 break; 6472 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6473 if (func_id != BPF_FUNC_perf_event_read && 6474 func_id != BPF_FUNC_perf_event_output && 6475 func_id != BPF_FUNC_skb_output && 6476 func_id != BPF_FUNC_perf_event_read_value && 6477 func_id != BPF_FUNC_xdp_output) 6478 goto error; 6479 break; 6480 case BPF_MAP_TYPE_RINGBUF: 6481 if (func_id != BPF_FUNC_ringbuf_output && 6482 func_id != BPF_FUNC_ringbuf_reserve && 6483 func_id != BPF_FUNC_ringbuf_query && 6484 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6485 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6486 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6487 goto error; 6488 break; 6489 case BPF_MAP_TYPE_USER_RINGBUF: 6490 if (func_id != BPF_FUNC_user_ringbuf_drain) 6491 goto error; 6492 break; 6493 case BPF_MAP_TYPE_STACK_TRACE: 6494 if (func_id != BPF_FUNC_get_stackid) 6495 goto error; 6496 break; 6497 case BPF_MAP_TYPE_CGROUP_ARRAY: 6498 if (func_id != BPF_FUNC_skb_under_cgroup && 6499 func_id != BPF_FUNC_current_task_under_cgroup) 6500 goto error; 6501 break; 6502 case BPF_MAP_TYPE_CGROUP_STORAGE: 6503 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6504 if (func_id != BPF_FUNC_get_local_storage) 6505 goto error; 6506 break; 6507 case BPF_MAP_TYPE_DEVMAP: 6508 case BPF_MAP_TYPE_DEVMAP_HASH: 6509 if (func_id != BPF_FUNC_redirect_map && 6510 func_id != BPF_FUNC_map_lookup_elem) 6511 goto error; 6512 break; 6513 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6514 * appear. 6515 */ 6516 case BPF_MAP_TYPE_CPUMAP: 6517 if (func_id != BPF_FUNC_redirect_map) 6518 goto error; 6519 break; 6520 case BPF_MAP_TYPE_XSKMAP: 6521 if (func_id != BPF_FUNC_redirect_map && 6522 func_id != BPF_FUNC_map_lookup_elem) 6523 goto error; 6524 break; 6525 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6526 case BPF_MAP_TYPE_HASH_OF_MAPS: 6527 if (func_id != BPF_FUNC_map_lookup_elem) 6528 goto error; 6529 break; 6530 case BPF_MAP_TYPE_SOCKMAP: 6531 if (func_id != BPF_FUNC_sk_redirect_map && 6532 func_id != BPF_FUNC_sock_map_update && 6533 func_id != BPF_FUNC_map_delete_elem && 6534 func_id != BPF_FUNC_msg_redirect_map && 6535 func_id != BPF_FUNC_sk_select_reuseport && 6536 func_id != BPF_FUNC_map_lookup_elem && 6537 !may_update_sockmap(env, func_id)) 6538 goto error; 6539 break; 6540 case BPF_MAP_TYPE_SOCKHASH: 6541 if (func_id != BPF_FUNC_sk_redirect_hash && 6542 func_id != BPF_FUNC_sock_hash_update && 6543 func_id != BPF_FUNC_map_delete_elem && 6544 func_id != BPF_FUNC_msg_redirect_hash && 6545 func_id != BPF_FUNC_sk_select_reuseport && 6546 func_id != BPF_FUNC_map_lookup_elem && 6547 !may_update_sockmap(env, func_id)) 6548 goto error; 6549 break; 6550 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6551 if (func_id != BPF_FUNC_sk_select_reuseport) 6552 goto error; 6553 break; 6554 case BPF_MAP_TYPE_QUEUE: 6555 case BPF_MAP_TYPE_STACK: 6556 if (func_id != BPF_FUNC_map_peek_elem && 6557 func_id != BPF_FUNC_map_pop_elem && 6558 func_id != BPF_FUNC_map_push_elem) 6559 goto error; 6560 break; 6561 case BPF_MAP_TYPE_SK_STORAGE: 6562 if (func_id != BPF_FUNC_sk_storage_get && 6563 func_id != BPF_FUNC_sk_storage_delete) 6564 goto error; 6565 break; 6566 case BPF_MAP_TYPE_INODE_STORAGE: 6567 if (func_id != BPF_FUNC_inode_storage_get && 6568 func_id != BPF_FUNC_inode_storage_delete) 6569 goto error; 6570 break; 6571 case BPF_MAP_TYPE_TASK_STORAGE: 6572 if (func_id != BPF_FUNC_task_storage_get && 6573 func_id != BPF_FUNC_task_storage_delete) 6574 goto error; 6575 break; 6576 case BPF_MAP_TYPE_CGRP_STORAGE: 6577 if (func_id != BPF_FUNC_cgrp_storage_get && 6578 func_id != BPF_FUNC_cgrp_storage_delete) 6579 goto error; 6580 break; 6581 case BPF_MAP_TYPE_BLOOM_FILTER: 6582 if (func_id != BPF_FUNC_map_peek_elem && 6583 func_id != BPF_FUNC_map_push_elem) 6584 goto error; 6585 break; 6586 default: 6587 break; 6588 } 6589 6590 /* ... and second from the function itself. */ 6591 switch (func_id) { 6592 case BPF_FUNC_tail_call: 6593 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6594 goto error; 6595 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6596 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6597 return -EINVAL; 6598 } 6599 break; 6600 case BPF_FUNC_perf_event_read: 6601 case BPF_FUNC_perf_event_output: 6602 case BPF_FUNC_perf_event_read_value: 6603 case BPF_FUNC_skb_output: 6604 case BPF_FUNC_xdp_output: 6605 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6606 goto error; 6607 break; 6608 case BPF_FUNC_ringbuf_output: 6609 case BPF_FUNC_ringbuf_reserve: 6610 case BPF_FUNC_ringbuf_query: 6611 case BPF_FUNC_ringbuf_reserve_dynptr: 6612 case BPF_FUNC_ringbuf_submit_dynptr: 6613 case BPF_FUNC_ringbuf_discard_dynptr: 6614 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6615 goto error; 6616 break; 6617 case BPF_FUNC_user_ringbuf_drain: 6618 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6619 goto error; 6620 break; 6621 case BPF_FUNC_get_stackid: 6622 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6623 goto error; 6624 break; 6625 case BPF_FUNC_current_task_under_cgroup: 6626 case BPF_FUNC_skb_under_cgroup: 6627 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6628 goto error; 6629 break; 6630 case BPF_FUNC_redirect_map: 6631 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6632 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6633 map->map_type != BPF_MAP_TYPE_CPUMAP && 6634 map->map_type != BPF_MAP_TYPE_XSKMAP) 6635 goto error; 6636 break; 6637 case BPF_FUNC_sk_redirect_map: 6638 case BPF_FUNC_msg_redirect_map: 6639 case BPF_FUNC_sock_map_update: 6640 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6641 goto error; 6642 break; 6643 case BPF_FUNC_sk_redirect_hash: 6644 case BPF_FUNC_msg_redirect_hash: 6645 case BPF_FUNC_sock_hash_update: 6646 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6647 goto error; 6648 break; 6649 case BPF_FUNC_get_local_storage: 6650 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6651 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6652 goto error; 6653 break; 6654 case BPF_FUNC_sk_select_reuseport: 6655 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6656 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6657 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6658 goto error; 6659 break; 6660 case BPF_FUNC_map_pop_elem: 6661 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6662 map->map_type != BPF_MAP_TYPE_STACK) 6663 goto error; 6664 break; 6665 case BPF_FUNC_map_peek_elem: 6666 case BPF_FUNC_map_push_elem: 6667 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6668 map->map_type != BPF_MAP_TYPE_STACK && 6669 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6670 goto error; 6671 break; 6672 case BPF_FUNC_map_lookup_percpu_elem: 6673 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6674 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6675 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6676 goto error; 6677 break; 6678 case BPF_FUNC_sk_storage_get: 6679 case BPF_FUNC_sk_storage_delete: 6680 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6681 goto error; 6682 break; 6683 case BPF_FUNC_inode_storage_get: 6684 case BPF_FUNC_inode_storage_delete: 6685 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6686 goto error; 6687 break; 6688 case BPF_FUNC_task_storage_get: 6689 case BPF_FUNC_task_storage_delete: 6690 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6691 goto error; 6692 break; 6693 case BPF_FUNC_cgrp_storage_get: 6694 case BPF_FUNC_cgrp_storage_delete: 6695 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 6696 goto error; 6697 break; 6698 default: 6699 break; 6700 } 6701 6702 return 0; 6703 error: 6704 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6705 map->map_type, func_id_name(func_id), func_id); 6706 return -EINVAL; 6707 } 6708 6709 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6710 { 6711 int count = 0; 6712 6713 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6714 count++; 6715 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6716 count++; 6717 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6718 count++; 6719 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6720 count++; 6721 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6722 count++; 6723 6724 /* We only support one arg being in raw mode at the moment, 6725 * which is sufficient for the helper functions we have 6726 * right now. 6727 */ 6728 return count <= 1; 6729 } 6730 6731 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6732 { 6733 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6734 bool has_size = fn->arg_size[arg] != 0; 6735 bool is_next_size = false; 6736 6737 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6738 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6739 6740 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6741 return is_next_size; 6742 6743 return has_size == is_next_size || is_next_size == is_fixed; 6744 } 6745 6746 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6747 { 6748 /* bpf_xxx(..., buf, len) call will access 'len' 6749 * bytes from memory 'buf'. Both arg types need 6750 * to be paired, so make sure there's no buggy 6751 * helper function specification. 6752 */ 6753 if (arg_type_is_mem_size(fn->arg1_type) || 6754 check_args_pair_invalid(fn, 0) || 6755 check_args_pair_invalid(fn, 1) || 6756 check_args_pair_invalid(fn, 2) || 6757 check_args_pair_invalid(fn, 3) || 6758 check_args_pair_invalid(fn, 4)) 6759 return false; 6760 6761 return true; 6762 } 6763 6764 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6765 { 6766 int i; 6767 6768 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6769 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 6770 return !!fn->arg_btf_id[i]; 6771 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 6772 return fn->arg_btf_id[i] == BPF_PTR_POISON; 6773 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6774 /* arg_btf_id and arg_size are in a union. */ 6775 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6776 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6777 return false; 6778 } 6779 6780 return true; 6781 } 6782 6783 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 6784 { 6785 return check_raw_mode_ok(fn) && 6786 check_arg_pair_ok(fn) && 6787 check_btf_id_ok(fn) ? 0 : -EINVAL; 6788 } 6789 6790 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6791 * are now invalid, so turn them into unknown SCALAR_VALUE. 6792 */ 6793 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6794 { 6795 struct bpf_func_state *state; 6796 struct bpf_reg_state *reg; 6797 6798 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6799 if (reg_is_pkt_pointer_any(reg)) 6800 __mark_reg_unknown(env, reg); 6801 })); 6802 } 6803 6804 enum { 6805 AT_PKT_END = -1, 6806 BEYOND_PKT_END = -2, 6807 }; 6808 6809 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6810 { 6811 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6812 struct bpf_reg_state *reg = &state->regs[regn]; 6813 6814 if (reg->type != PTR_TO_PACKET) 6815 /* PTR_TO_PACKET_META is not supported yet */ 6816 return; 6817 6818 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6819 * How far beyond pkt_end it goes is unknown. 6820 * if (!range_open) it's the case of pkt >= pkt_end 6821 * if (range_open) it's the case of pkt > pkt_end 6822 * hence this pointer is at least 1 byte bigger than pkt_end 6823 */ 6824 if (range_open) 6825 reg->range = BEYOND_PKT_END; 6826 else 6827 reg->range = AT_PKT_END; 6828 } 6829 6830 /* The pointer with the specified id has released its reference to kernel 6831 * resources. Identify all copies of the same pointer and clear the reference. 6832 */ 6833 static int release_reference(struct bpf_verifier_env *env, 6834 int ref_obj_id) 6835 { 6836 struct bpf_func_state *state; 6837 struct bpf_reg_state *reg; 6838 int err; 6839 6840 err = release_reference_state(cur_func(env), ref_obj_id); 6841 if (err) 6842 return err; 6843 6844 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6845 if (reg->ref_obj_id == ref_obj_id) { 6846 if (!env->allow_ptr_leaks) 6847 __mark_reg_not_init(env, reg); 6848 else 6849 __mark_reg_unknown(env, reg); 6850 } 6851 })); 6852 6853 return 0; 6854 } 6855 6856 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6857 struct bpf_reg_state *regs) 6858 { 6859 int i; 6860 6861 /* after the call registers r0 - r5 were scratched */ 6862 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6863 mark_reg_not_init(env, regs, caller_saved[i]); 6864 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6865 } 6866 } 6867 6868 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6869 struct bpf_func_state *caller, 6870 struct bpf_func_state *callee, 6871 int insn_idx); 6872 6873 static int set_callee_state(struct bpf_verifier_env *env, 6874 struct bpf_func_state *caller, 6875 struct bpf_func_state *callee, int insn_idx); 6876 6877 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6878 int *insn_idx, int subprog, 6879 set_callee_state_fn set_callee_state_cb) 6880 { 6881 struct bpf_verifier_state *state = env->cur_state; 6882 struct bpf_func_info_aux *func_info_aux; 6883 struct bpf_func_state *caller, *callee; 6884 int err; 6885 bool is_global = false; 6886 6887 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6888 verbose(env, "the call stack of %d frames is too deep\n", 6889 state->curframe + 2); 6890 return -E2BIG; 6891 } 6892 6893 caller = state->frame[state->curframe]; 6894 if (state->frame[state->curframe + 1]) { 6895 verbose(env, "verifier bug. Frame %d already allocated\n", 6896 state->curframe + 1); 6897 return -EFAULT; 6898 } 6899 6900 func_info_aux = env->prog->aux->func_info_aux; 6901 if (func_info_aux) 6902 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6903 err = btf_check_subprog_call(env, subprog, caller->regs); 6904 if (err == -EFAULT) 6905 return err; 6906 if (is_global) { 6907 if (err) { 6908 verbose(env, "Caller passes invalid args into func#%d\n", 6909 subprog); 6910 return err; 6911 } else { 6912 if (env->log.level & BPF_LOG_LEVEL) 6913 verbose(env, 6914 "Func#%d is global and valid. Skipping.\n", 6915 subprog); 6916 clear_caller_saved_regs(env, caller->regs); 6917 6918 /* All global functions return a 64-bit SCALAR_VALUE */ 6919 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6920 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6921 6922 /* continue with next insn after call */ 6923 return 0; 6924 } 6925 } 6926 6927 /* set_callee_state is used for direct subprog calls, but we are 6928 * interested in validating only BPF helpers that can call subprogs as 6929 * callbacks 6930 */ 6931 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) { 6932 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n", 6933 func_id_name(insn->imm), insn->imm); 6934 return -EFAULT; 6935 } 6936 6937 if (insn->code == (BPF_JMP | BPF_CALL) && 6938 insn->src_reg == 0 && 6939 insn->imm == BPF_FUNC_timer_set_callback) { 6940 struct bpf_verifier_state *async_cb; 6941 6942 /* there is no real recursion here. timer callbacks are async */ 6943 env->subprog_info[subprog].is_async_cb = true; 6944 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6945 *insn_idx, subprog); 6946 if (!async_cb) 6947 return -EFAULT; 6948 callee = async_cb->frame[0]; 6949 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6950 6951 /* Convert bpf_timer_set_callback() args into timer callback args */ 6952 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6953 if (err) 6954 return err; 6955 6956 clear_caller_saved_regs(env, caller->regs); 6957 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6958 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6959 /* continue with next insn after call */ 6960 return 0; 6961 } 6962 6963 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6964 if (!callee) 6965 return -ENOMEM; 6966 state->frame[state->curframe + 1] = callee; 6967 6968 /* callee cannot access r0, r6 - r9 for reading and has to write 6969 * into its own stack before reading from it. 6970 * callee can read/write into caller's stack 6971 */ 6972 init_func_state(env, callee, 6973 /* remember the callsite, it will be used by bpf_exit */ 6974 *insn_idx /* callsite */, 6975 state->curframe + 1 /* frameno within this callchain */, 6976 subprog /* subprog number within this prog */); 6977 6978 /* Transfer references to the callee */ 6979 err = copy_reference_state(callee, caller); 6980 if (err) 6981 return err; 6982 6983 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6984 if (err) 6985 return err; 6986 6987 clear_caller_saved_regs(env, caller->regs); 6988 6989 /* only increment it after check_reg_arg() finished */ 6990 state->curframe++; 6991 6992 /* and go analyze first insn of the callee */ 6993 *insn_idx = env->subprog_info[subprog].start - 1; 6994 6995 if (env->log.level & BPF_LOG_LEVEL) { 6996 verbose(env, "caller:\n"); 6997 print_verifier_state(env, caller, true); 6998 verbose(env, "callee:\n"); 6999 print_verifier_state(env, callee, true); 7000 } 7001 return 0; 7002 } 7003 7004 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7005 struct bpf_func_state *caller, 7006 struct bpf_func_state *callee) 7007 { 7008 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7009 * void *callback_ctx, u64 flags); 7010 * callback_fn(struct bpf_map *map, void *key, void *value, 7011 * void *callback_ctx); 7012 */ 7013 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7014 7015 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7016 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7017 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7018 7019 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7020 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7021 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7022 7023 /* pointer to stack or null */ 7024 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7025 7026 /* unused */ 7027 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7028 return 0; 7029 } 7030 7031 static int set_callee_state(struct bpf_verifier_env *env, 7032 struct bpf_func_state *caller, 7033 struct bpf_func_state *callee, int insn_idx) 7034 { 7035 int i; 7036 7037 /* copy r1 - r5 args that callee can access. The copy includes parent 7038 * pointers, which connects us up to the liveness chain 7039 */ 7040 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7041 callee->regs[i] = caller->regs[i]; 7042 return 0; 7043 } 7044 7045 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7046 int *insn_idx) 7047 { 7048 int subprog, target_insn; 7049 7050 target_insn = *insn_idx + insn->imm + 1; 7051 subprog = find_subprog(env, target_insn); 7052 if (subprog < 0) { 7053 verbose(env, "verifier bug. No program starts at insn %d\n", 7054 target_insn); 7055 return -EFAULT; 7056 } 7057 7058 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7059 } 7060 7061 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7062 struct bpf_func_state *caller, 7063 struct bpf_func_state *callee, 7064 int insn_idx) 7065 { 7066 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7067 struct bpf_map *map; 7068 int err; 7069 7070 if (bpf_map_ptr_poisoned(insn_aux)) { 7071 verbose(env, "tail_call abusing map_ptr\n"); 7072 return -EINVAL; 7073 } 7074 7075 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7076 if (!map->ops->map_set_for_each_callback_args || 7077 !map->ops->map_for_each_callback) { 7078 verbose(env, "callback function not allowed for map\n"); 7079 return -ENOTSUPP; 7080 } 7081 7082 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7083 if (err) 7084 return err; 7085 7086 callee->in_callback_fn = true; 7087 callee->callback_ret_range = tnum_range(0, 1); 7088 return 0; 7089 } 7090 7091 static int set_loop_callback_state(struct bpf_verifier_env *env, 7092 struct bpf_func_state *caller, 7093 struct bpf_func_state *callee, 7094 int insn_idx) 7095 { 7096 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7097 * u64 flags); 7098 * callback_fn(u32 index, void *callback_ctx); 7099 */ 7100 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7101 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7102 7103 /* unused */ 7104 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7105 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7106 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7107 7108 callee->in_callback_fn = true; 7109 callee->callback_ret_range = tnum_range(0, 1); 7110 return 0; 7111 } 7112 7113 static int set_timer_callback_state(struct bpf_verifier_env *env, 7114 struct bpf_func_state *caller, 7115 struct bpf_func_state *callee, 7116 int insn_idx) 7117 { 7118 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7119 7120 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7121 * callback_fn(struct bpf_map *map, void *key, void *value); 7122 */ 7123 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7124 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7125 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7126 7127 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7128 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7129 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7130 7131 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7132 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7133 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7134 7135 /* unused */ 7136 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7137 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7138 callee->in_async_callback_fn = true; 7139 callee->callback_ret_range = tnum_range(0, 1); 7140 return 0; 7141 } 7142 7143 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7144 struct bpf_func_state *caller, 7145 struct bpf_func_state *callee, 7146 int insn_idx) 7147 { 7148 /* bpf_find_vma(struct task_struct *task, u64 addr, 7149 * void *callback_fn, void *callback_ctx, u64 flags) 7150 * (callback_fn)(struct task_struct *task, 7151 * struct vm_area_struct *vma, void *callback_ctx); 7152 */ 7153 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7154 7155 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7156 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7157 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7158 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7159 7160 /* pointer to stack or null */ 7161 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7162 7163 /* unused */ 7164 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7165 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7166 callee->in_callback_fn = true; 7167 callee->callback_ret_range = tnum_range(0, 1); 7168 return 0; 7169 } 7170 7171 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7172 struct bpf_func_state *caller, 7173 struct bpf_func_state *callee, 7174 int insn_idx) 7175 { 7176 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7177 * callback_ctx, u64 flags); 7178 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx); 7179 */ 7180 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7181 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL; 7182 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7183 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7184 7185 /* unused */ 7186 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7187 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7188 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7189 7190 callee->in_callback_fn = true; 7191 callee->callback_ret_range = tnum_range(0, 1); 7192 return 0; 7193 } 7194 7195 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7196 { 7197 struct bpf_verifier_state *state = env->cur_state; 7198 struct bpf_func_state *caller, *callee; 7199 struct bpf_reg_state *r0; 7200 int err; 7201 7202 callee = state->frame[state->curframe]; 7203 r0 = &callee->regs[BPF_REG_0]; 7204 if (r0->type == PTR_TO_STACK) { 7205 /* technically it's ok to return caller's stack pointer 7206 * (or caller's caller's pointer) back to the caller, 7207 * since these pointers are valid. Only current stack 7208 * pointer will be invalid as soon as function exits, 7209 * but let's be conservative 7210 */ 7211 verbose(env, "cannot return stack pointer to the caller\n"); 7212 return -EINVAL; 7213 } 7214 7215 state->curframe--; 7216 caller = state->frame[state->curframe]; 7217 if (callee->in_callback_fn) { 7218 /* enforce R0 return value range [0, 1]. */ 7219 struct tnum range = callee->callback_ret_range; 7220 7221 if (r0->type != SCALAR_VALUE) { 7222 verbose(env, "R0 not a scalar value\n"); 7223 return -EACCES; 7224 } 7225 if (!tnum_in(range, r0->var_off)) { 7226 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7227 return -EINVAL; 7228 } 7229 } else { 7230 /* return to the caller whatever r0 had in the callee */ 7231 caller->regs[BPF_REG_0] = *r0; 7232 } 7233 7234 /* callback_fn frame should have released its own additions to parent's 7235 * reference state at this point, or check_reference_leak would 7236 * complain, hence it must be the same as the caller. There is no need 7237 * to copy it back. 7238 */ 7239 if (!callee->in_callback_fn) { 7240 /* Transfer references to the caller */ 7241 err = copy_reference_state(caller, callee); 7242 if (err) 7243 return err; 7244 } 7245 7246 *insn_idx = callee->callsite + 1; 7247 if (env->log.level & BPF_LOG_LEVEL) { 7248 verbose(env, "returning from callee:\n"); 7249 print_verifier_state(env, callee, true); 7250 verbose(env, "to caller at %d:\n", *insn_idx); 7251 print_verifier_state(env, caller, true); 7252 } 7253 /* clear everything in the callee */ 7254 free_func_state(callee); 7255 state->frame[state->curframe + 1] = NULL; 7256 return 0; 7257 } 7258 7259 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7260 int func_id, 7261 struct bpf_call_arg_meta *meta) 7262 { 7263 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7264 7265 if (ret_type != RET_INTEGER || 7266 (func_id != BPF_FUNC_get_stack && 7267 func_id != BPF_FUNC_get_task_stack && 7268 func_id != BPF_FUNC_probe_read_str && 7269 func_id != BPF_FUNC_probe_read_kernel_str && 7270 func_id != BPF_FUNC_probe_read_user_str)) 7271 return; 7272 7273 ret_reg->smax_value = meta->msize_max_value; 7274 ret_reg->s32_max_value = meta->msize_max_value; 7275 ret_reg->smin_value = -MAX_ERRNO; 7276 ret_reg->s32_min_value = -MAX_ERRNO; 7277 reg_bounds_sync(ret_reg); 7278 } 7279 7280 static int 7281 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7282 int func_id, int insn_idx) 7283 { 7284 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7285 struct bpf_map *map = meta->map_ptr; 7286 7287 if (func_id != BPF_FUNC_tail_call && 7288 func_id != BPF_FUNC_map_lookup_elem && 7289 func_id != BPF_FUNC_map_update_elem && 7290 func_id != BPF_FUNC_map_delete_elem && 7291 func_id != BPF_FUNC_map_push_elem && 7292 func_id != BPF_FUNC_map_pop_elem && 7293 func_id != BPF_FUNC_map_peek_elem && 7294 func_id != BPF_FUNC_for_each_map_elem && 7295 func_id != BPF_FUNC_redirect_map && 7296 func_id != BPF_FUNC_map_lookup_percpu_elem) 7297 return 0; 7298 7299 if (map == NULL) { 7300 verbose(env, "kernel subsystem misconfigured verifier\n"); 7301 return -EINVAL; 7302 } 7303 7304 /* In case of read-only, some additional restrictions 7305 * need to be applied in order to prevent altering the 7306 * state of the map from program side. 7307 */ 7308 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7309 (func_id == BPF_FUNC_map_delete_elem || 7310 func_id == BPF_FUNC_map_update_elem || 7311 func_id == BPF_FUNC_map_push_elem || 7312 func_id == BPF_FUNC_map_pop_elem)) { 7313 verbose(env, "write into map forbidden\n"); 7314 return -EACCES; 7315 } 7316 7317 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7318 bpf_map_ptr_store(aux, meta->map_ptr, 7319 !meta->map_ptr->bypass_spec_v1); 7320 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7321 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7322 !meta->map_ptr->bypass_spec_v1); 7323 return 0; 7324 } 7325 7326 static int 7327 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7328 int func_id, int insn_idx) 7329 { 7330 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7331 struct bpf_reg_state *regs = cur_regs(env), *reg; 7332 struct bpf_map *map = meta->map_ptr; 7333 u64 val, max; 7334 int err; 7335 7336 if (func_id != BPF_FUNC_tail_call) 7337 return 0; 7338 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7339 verbose(env, "kernel subsystem misconfigured verifier\n"); 7340 return -EINVAL; 7341 } 7342 7343 reg = ®s[BPF_REG_3]; 7344 val = reg->var_off.value; 7345 max = map->max_entries; 7346 7347 if (!(register_is_const(reg) && val < max)) { 7348 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7349 return 0; 7350 } 7351 7352 err = mark_chain_precision(env, BPF_REG_3); 7353 if (err) 7354 return err; 7355 if (bpf_map_key_unseen(aux)) 7356 bpf_map_key_store(aux, val); 7357 else if (!bpf_map_key_poisoned(aux) && 7358 bpf_map_key_immediate(aux) != val) 7359 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7360 return 0; 7361 } 7362 7363 static int check_reference_leak(struct bpf_verifier_env *env) 7364 { 7365 struct bpf_func_state *state = cur_func(env); 7366 bool refs_lingering = false; 7367 int i; 7368 7369 if (state->frameno && !state->in_callback_fn) 7370 return 0; 7371 7372 for (i = 0; i < state->acquired_refs; i++) { 7373 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7374 continue; 7375 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7376 state->refs[i].id, state->refs[i].insn_idx); 7377 refs_lingering = true; 7378 } 7379 return refs_lingering ? -EINVAL : 0; 7380 } 7381 7382 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7383 struct bpf_reg_state *regs) 7384 { 7385 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7386 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7387 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7388 int err, fmt_map_off, num_args; 7389 u64 fmt_addr; 7390 char *fmt; 7391 7392 /* data must be an array of u64 */ 7393 if (data_len_reg->var_off.value % 8) 7394 return -EINVAL; 7395 num_args = data_len_reg->var_off.value / 8; 7396 7397 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7398 * and map_direct_value_addr is set. 7399 */ 7400 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7401 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7402 fmt_map_off); 7403 if (err) { 7404 verbose(env, "verifier bug\n"); 7405 return -EFAULT; 7406 } 7407 fmt = (char *)(long)fmt_addr + fmt_map_off; 7408 7409 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7410 * can focus on validating the format specifiers. 7411 */ 7412 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7413 if (err < 0) 7414 verbose(env, "Invalid format string\n"); 7415 7416 return err; 7417 } 7418 7419 static int check_get_func_ip(struct bpf_verifier_env *env) 7420 { 7421 enum bpf_prog_type type = resolve_prog_type(env->prog); 7422 int func_id = BPF_FUNC_get_func_ip; 7423 7424 if (type == BPF_PROG_TYPE_TRACING) { 7425 if (!bpf_prog_has_trampoline(env->prog)) { 7426 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7427 func_id_name(func_id), func_id); 7428 return -ENOTSUPP; 7429 } 7430 return 0; 7431 } else if (type == BPF_PROG_TYPE_KPROBE) { 7432 return 0; 7433 } 7434 7435 verbose(env, "func %s#%d not supported for program type %d\n", 7436 func_id_name(func_id), func_id, type); 7437 return -ENOTSUPP; 7438 } 7439 7440 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7441 { 7442 return &env->insn_aux_data[env->insn_idx]; 7443 } 7444 7445 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7446 { 7447 struct bpf_reg_state *regs = cur_regs(env); 7448 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7449 bool reg_is_null = register_is_null(reg); 7450 7451 if (reg_is_null) 7452 mark_chain_precision(env, BPF_REG_4); 7453 7454 return reg_is_null; 7455 } 7456 7457 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7458 { 7459 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7460 7461 if (!state->initialized) { 7462 state->initialized = 1; 7463 state->fit_for_inline = loop_flag_is_zero(env); 7464 state->callback_subprogno = subprogno; 7465 return; 7466 } 7467 7468 if (!state->fit_for_inline) 7469 return; 7470 7471 state->fit_for_inline = (loop_flag_is_zero(env) && 7472 state->callback_subprogno == subprogno); 7473 } 7474 7475 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7476 int *insn_idx_p) 7477 { 7478 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7479 const struct bpf_func_proto *fn = NULL; 7480 enum bpf_return_type ret_type; 7481 enum bpf_type_flag ret_flag; 7482 struct bpf_reg_state *regs; 7483 struct bpf_call_arg_meta meta; 7484 int insn_idx = *insn_idx_p; 7485 bool changes_data; 7486 int i, err, func_id; 7487 7488 /* find function prototype */ 7489 func_id = insn->imm; 7490 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7491 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7492 func_id); 7493 return -EINVAL; 7494 } 7495 7496 if (env->ops->get_func_proto) 7497 fn = env->ops->get_func_proto(func_id, env->prog); 7498 if (!fn) { 7499 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7500 func_id); 7501 return -EINVAL; 7502 } 7503 7504 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7505 if (!env->prog->gpl_compatible && fn->gpl_only) { 7506 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7507 return -EINVAL; 7508 } 7509 7510 if (fn->allowed && !fn->allowed(env->prog)) { 7511 verbose(env, "helper call is not allowed in probe\n"); 7512 return -EINVAL; 7513 } 7514 7515 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7516 changes_data = bpf_helper_changes_pkt_data(fn->func); 7517 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7518 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7519 func_id_name(func_id), func_id); 7520 return -EINVAL; 7521 } 7522 7523 memset(&meta, 0, sizeof(meta)); 7524 meta.pkt_access = fn->pkt_access; 7525 7526 err = check_func_proto(fn, func_id); 7527 if (err) { 7528 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7529 func_id_name(func_id), func_id); 7530 return err; 7531 } 7532 7533 meta.func_id = func_id; 7534 /* check args */ 7535 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7536 err = check_func_arg(env, i, &meta, fn); 7537 if (err) 7538 return err; 7539 } 7540 7541 err = record_func_map(env, &meta, func_id, insn_idx); 7542 if (err) 7543 return err; 7544 7545 err = record_func_key(env, &meta, func_id, insn_idx); 7546 if (err) 7547 return err; 7548 7549 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7550 * is inferred from register state. 7551 */ 7552 for (i = 0; i < meta.access_size; i++) { 7553 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7554 BPF_WRITE, -1, false); 7555 if (err) 7556 return err; 7557 } 7558 7559 regs = cur_regs(env); 7560 7561 if (meta.uninit_dynptr_regno) { 7562 /* we write BPF_DW bits (8 bytes) at a time */ 7563 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7564 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7565 i, BPF_DW, BPF_WRITE, -1, false); 7566 if (err) 7567 return err; 7568 } 7569 7570 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7571 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7572 insn_idx); 7573 if (err) 7574 return err; 7575 } 7576 7577 if (meta.release_regno) { 7578 err = -EINVAL; 7579 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7580 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7581 else if (meta.ref_obj_id) 7582 err = release_reference(env, meta.ref_obj_id); 7583 /* meta.ref_obj_id can only be 0 if register that is meant to be 7584 * released is NULL, which must be > R0. 7585 */ 7586 else if (register_is_null(®s[meta.release_regno])) 7587 err = 0; 7588 if (err) { 7589 verbose(env, "func %s#%d reference has not been acquired before\n", 7590 func_id_name(func_id), func_id); 7591 return err; 7592 } 7593 } 7594 7595 switch (func_id) { 7596 case BPF_FUNC_tail_call: 7597 err = check_reference_leak(env); 7598 if (err) { 7599 verbose(env, "tail_call would lead to reference leak\n"); 7600 return err; 7601 } 7602 break; 7603 case BPF_FUNC_get_local_storage: 7604 /* check that flags argument in get_local_storage(map, flags) is 0, 7605 * this is required because get_local_storage() can't return an error. 7606 */ 7607 if (!register_is_null(®s[BPF_REG_2])) { 7608 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7609 return -EINVAL; 7610 } 7611 break; 7612 case BPF_FUNC_for_each_map_elem: 7613 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7614 set_map_elem_callback_state); 7615 break; 7616 case BPF_FUNC_timer_set_callback: 7617 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7618 set_timer_callback_state); 7619 break; 7620 case BPF_FUNC_find_vma: 7621 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7622 set_find_vma_callback_state); 7623 break; 7624 case BPF_FUNC_snprintf: 7625 err = check_bpf_snprintf_call(env, regs); 7626 break; 7627 case BPF_FUNC_loop: 7628 update_loop_inline_state(env, meta.subprogno); 7629 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7630 set_loop_callback_state); 7631 break; 7632 case BPF_FUNC_dynptr_from_mem: 7633 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7634 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7635 reg_type_str(env, regs[BPF_REG_1].type)); 7636 return -EACCES; 7637 } 7638 break; 7639 case BPF_FUNC_set_retval: 7640 if (prog_type == BPF_PROG_TYPE_LSM && 7641 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7642 if (!env->prog->aux->attach_func_proto->type) { 7643 /* Make sure programs that attach to void 7644 * hooks don't try to modify return value. 7645 */ 7646 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7647 return -EINVAL; 7648 } 7649 } 7650 break; 7651 case BPF_FUNC_dynptr_data: 7652 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7653 if (arg_type_is_dynptr(fn->arg_type[i])) { 7654 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7655 7656 if (meta.ref_obj_id) { 7657 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7658 return -EFAULT; 7659 } 7660 7661 if (base_type(reg->type) != PTR_TO_DYNPTR) 7662 /* Find the id of the dynptr we're 7663 * tracking the reference of 7664 */ 7665 meta.ref_obj_id = stack_slot_get_id(env, reg); 7666 break; 7667 } 7668 } 7669 if (i == MAX_BPF_FUNC_REG_ARGS) { 7670 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7671 return -EFAULT; 7672 } 7673 break; 7674 case BPF_FUNC_user_ringbuf_drain: 7675 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7676 set_user_ringbuf_callback_state); 7677 break; 7678 } 7679 7680 if (err) 7681 return err; 7682 7683 /* reset caller saved regs */ 7684 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7685 mark_reg_not_init(env, regs, caller_saved[i]); 7686 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7687 } 7688 7689 /* helper call returns 64-bit value. */ 7690 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7691 7692 /* update return register (already marked as written above) */ 7693 ret_type = fn->ret_type; 7694 ret_flag = type_flag(ret_type); 7695 7696 switch (base_type(ret_type)) { 7697 case RET_INTEGER: 7698 /* sets type to SCALAR_VALUE */ 7699 mark_reg_unknown(env, regs, BPF_REG_0); 7700 break; 7701 case RET_VOID: 7702 regs[BPF_REG_0].type = NOT_INIT; 7703 break; 7704 case RET_PTR_TO_MAP_VALUE: 7705 /* There is no offset yet applied, variable or fixed */ 7706 mark_reg_known_zero(env, regs, BPF_REG_0); 7707 /* remember map_ptr, so that check_map_access() 7708 * can check 'value_size' boundary of memory access 7709 * to map element returned from bpf_map_lookup_elem() 7710 */ 7711 if (meta.map_ptr == NULL) { 7712 verbose(env, 7713 "kernel subsystem misconfigured verifier\n"); 7714 return -EINVAL; 7715 } 7716 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7717 regs[BPF_REG_0].map_uid = meta.map_uid; 7718 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7719 if (!type_may_be_null(ret_type) && 7720 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 7721 regs[BPF_REG_0].id = ++env->id_gen; 7722 } 7723 break; 7724 case RET_PTR_TO_SOCKET: 7725 mark_reg_known_zero(env, regs, BPF_REG_0); 7726 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7727 break; 7728 case RET_PTR_TO_SOCK_COMMON: 7729 mark_reg_known_zero(env, regs, BPF_REG_0); 7730 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7731 break; 7732 case RET_PTR_TO_TCP_SOCK: 7733 mark_reg_known_zero(env, regs, BPF_REG_0); 7734 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7735 break; 7736 case RET_PTR_TO_MEM: 7737 mark_reg_known_zero(env, regs, BPF_REG_0); 7738 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7739 regs[BPF_REG_0].mem_size = meta.mem_size; 7740 break; 7741 case RET_PTR_TO_MEM_OR_BTF_ID: 7742 { 7743 const struct btf_type *t; 7744 7745 mark_reg_known_zero(env, regs, BPF_REG_0); 7746 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7747 if (!btf_type_is_struct(t)) { 7748 u32 tsize; 7749 const struct btf_type *ret; 7750 const char *tname; 7751 7752 /* resolve the type size of ksym. */ 7753 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7754 if (IS_ERR(ret)) { 7755 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7756 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7757 tname, PTR_ERR(ret)); 7758 return -EINVAL; 7759 } 7760 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7761 regs[BPF_REG_0].mem_size = tsize; 7762 } else { 7763 /* MEM_RDONLY may be carried from ret_flag, but it 7764 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7765 * it will confuse the check of PTR_TO_BTF_ID in 7766 * check_mem_access(). 7767 */ 7768 ret_flag &= ~MEM_RDONLY; 7769 7770 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7771 regs[BPF_REG_0].btf = meta.ret_btf; 7772 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7773 } 7774 break; 7775 } 7776 case RET_PTR_TO_BTF_ID: 7777 { 7778 struct btf *ret_btf; 7779 int ret_btf_id; 7780 7781 mark_reg_known_zero(env, regs, BPF_REG_0); 7782 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7783 if (func_id == BPF_FUNC_kptr_xchg) { 7784 ret_btf = meta.kptr_field->kptr.btf; 7785 ret_btf_id = meta.kptr_field->kptr.btf_id; 7786 } else { 7787 if (fn->ret_btf_id == BPF_PTR_POISON) { 7788 verbose(env, "verifier internal error:"); 7789 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 7790 func_id_name(func_id)); 7791 return -EINVAL; 7792 } 7793 ret_btf = btf_vmlinux; 7794 ret_btf_id = *fn->ret_btf_id; 7795 } 7796 if (ret_btf_id == 0) { 7797 verbose(env, "invalid return type %u of func %s#%d\n", 7798 base_type(ret_type), func_id_name(func_id), 7799 func_id); 7800 return -EINVAL; 7801 } 7802 regs[BPF_REG_0].btf = ret_btf; 7803 regs[BPF_REG_0].btf_id = ret_btf_id; 7804 break; 7805 } 7806 default: 7807 verbose(env, "unknown return type %u of func %s#%d\n", 7808 base_type(ret_type), func_id_name(func_id), func_id); 7809 return -EINVAL; 7810 } 7811 7812 if (type_may_be_null(regs[BPF_REG_0].type)) 7813 regs[BPF_REG_0].id = ++env->id_gen; 7814 7815 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 7816 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 7817 func_id_name(func_id), func_id); 7818 return -EFAULT; 7819 } 7820 7821 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 7822 /* For release_reference() */ 7823 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7824 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7825 int id = acquire_reference_state(env, insn_idx); 7826 7827 if (id < 0) 7828 return id; 7829 /* For mark_ptr_or_null_reg() */ 7830 regs[BPF_REG_0].id = id; 7831 /* For release_reference() */ 7832 regs[BPF_REG_0].ref_obj_id = id; 7833 } 7834 7835 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7836 7837 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7838 if (err) 7839 return err; 7840 7841 if ((func_id == BPF_FUNC_get_stack || 7842 func_id == BPF_FUNC_get_task_stack) && 7843 !env->prog->has_callchain_buf) { 7844 const char *err_str; 7845 7846 #ifdef CONFIG_PERF_EVENTS 7847 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7848 err_str = "cannot get callchain buffer for func %s#%d\n"; 7849 #else 7850 err = -ENOTSUPP; 7851 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7852 #endif 7853 if (err) { 7854 verbose(env, err_str, func_id_name(func_id), func_id); 7855 return err; 7856 } 7857 7858 env->prog->has_callchain_buf = true; 7859 } 7860 7861 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7862 env->prog->call_get_stack = true; 7863 7864 if (func_id == BPF_FUNC_get_func_ip) { 7865 if (check_get_func_ip(env)) 7866 return -ENOTSUPP; 7867 env->prog->call_get_func_ip = true; 7868 } 7869 7870 if (changes_data) 7871 clear_all_pkt_pointers(env); 7872 return 0; 7873 } 7874 7875 /* mark_btf_func_reg_size() is used when the reg size is determined by 7876 * the BTF func_proto's return value size and argument. 7877 */ 7878 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7879 size_t reg_size) 7880 { 7881 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7882 7883 if (regno == BPF_REG_0) { 7884 /* Function return value */ 7885 reg->live |= REG_LIVE_WRITTEN; 7886 reg->subreg_def = reg_size == sizeof(u64) ? 7887 DEF_NOT_SUBREG : env->insn_idx + 1; 7888 } else { 7889 /* Function argument */ 7890 if (reg_size == sizeof(u64)) { 7891 mark_insn_zext(env, reg); 7892 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7893 } else { 7894 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7895 } 7896 } 7897 } 7898 7899 struct bpf_kfunc_call_arg_meta { 7900 /* In parameters */ 7901 struct btf *btf; 7902 u32 func_id; 7903 u32 kfunc_flags; 7904 const struct btf_type *func_proto; 7905 const char *func_name; 7906 /* Out parameters */ 7907 u32 ref_obj_id; 7908 u8 release_regno; 7909 bool r0_rdonly; 7910 u64 r0_size; 7911 struct { 7912 u64 value; 7913 bool found; 7914 } arg_constant; 7915 struct { 7916 struct btf *btf; 7917 u32 btf_id; 7918 } arg_obj_drop; 7919 struct { 7920 struct btf_field *field; 7921 } arg_list_head; 7922 }; 7923 7924 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 7925 { 7926 return meta->kfunc_flags & KF_ACQUIRE; 7927 } 7928 7929 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 7930 { 7931 return meta->kfunc_flags & KF_RET_NULL; 7932 } 7933 7934 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 7935 { 7936 return meta->kfunc_flags & KF_RELEASE; 7937 } 7938 7939 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 7940 { 7941 return meta->kfunc_flags & KF_TRUSTED_ARGS; 7942 } 7943 7944 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 7945 { 7946 return meta->kfunc_flags & KF_SLEEPABLE; 7947 } 7948 7949 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 7950 { 7951 return meta->kfunc_flags & KF_DESTRUCTIVE; 7952 } 7953 7954 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 7955 { 7956 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 7957 } 7958 7959 static bool is_trusted_reg(const struct bpf_reg_state *reg) 7960 { 7961 /* A referenced register is always trusted. */ 7962 if (reg->ref_obj_id) 7963 return true; 7964 7965 /* If a register is not referenced, it is trusted if it has either the 7966 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 7967 * other type modifiers may be safe, but we elect to take an opt-in 7968 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 7969 * not. 7970 * 7971 * Eventually, we should make PTR_TRUSTED the single source of truth 7972 * for whether a register is trusted. 7973 */ 7974 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 7975 !bpf_type_has_unsafe_modifiers(reg->type); 7976 } 7977 7978 static bool __kfunc_param_match_suffix(const struct btf *btf, 7979 const struct btf_param *arg, 7980 const char *suffix) 7981 { 7982 int suffix_len = strlen(suffix), len; 7983 const char *param_name; 7984 7985 /* In the future, this can be ported to use BTF tagging */ 7986 param_name = btf_name_by_offset(btf, arg->name_off); 7987 if (str_is_empty(param_name)) 7988 return false; 7989 len = strlen(param_name); 7990 if (len < suffix_len) 7991 return false; 7992 param_name += len - suffix_len; 7993 return !strncmp(param_name, suffix, suffix_len); 7994 } 7995 7996 static bool is_kfunc_arg_mem_size(const struct btf *btf, 7997 const struct btf_param *arg, 7998 const struct bpf_reg_state *reg) 7999 { 8000 const struct btf_type *t; 8001 8002 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8003 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8004 return false; 8005 8006 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8007 } 8008 8009 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8010 { 8011 return __kfunc_param_match_suffix(btf, arg, "__k"); 8012 } 8013 8014 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8015 { 8016 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8017 } 8018 8019 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8020 { 8021 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8022 } 8023 8024 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8025 const struct btf_param *arg, 8026 const char *name) 8027 { 8028 int len, target_len = strlen(name); 8029 const char *param_name; 8030 8031 param_name = btf_name_by_offset(btf, arg->name_off); 8032 if (str_is_empty(param_name)) 8033 return false; 8034 len = strlen(param_name); 8035 if (len != target_len) 8036 return false; 8037 if (strcmp(param_name, name)) 8038 return false; 8039 8040 return true; 8041 } 8042 8043 enum { 8044 KF_ARG_DYNPTR_ID, 8045 KF_ARG_LIST_HEAD_ID, 8046 KF_ARG_LIST_NODE_ID, 8047 }; 8048 8049 BTF_ID_LIST(kf_arg_btf_ids) 8050 BTF_ID(struct, bpf_dynptr_kern) 8051 BTF_ID(struct, bpf_list_head) 8052 BTF_ID(struct, bpf_list_node) 8053 8054 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8055 const struct btf_param *arg, int type) 8056 { 8057 const struct btf_type *t; 8058 u32 res_id; 8059 8060 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8061 if (!t) 8062 return false; 8063 if (!btf_type_is_ptr(t)) 8064 return false; 8065 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8066 if (!t) 8067 return false; 8068 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8069 } 8070 8071 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8072 { 8073 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8074 } 8075 8076 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8077 { 8078 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8079 } 8080 8081 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8082 { 8083 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8084 } 8085 8086 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8087 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8088 const struct btf *btf, 8089 const struct btf_type *t, int rec) 8090 { 8091 const struct btf_type *member_type; 8092 const struct btf_member *member; 8093 u32 i; 8094 8095 if (!btf_type_is_struct(t)) 8096 return false; 8097 8098 for_each_member(i, t, member) { 8099 const struct btf_array *array; 8100 8101 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8102 if (btf_type_is_struct(member_type)) { 8103 if (rec >= 3) { 8104 verbose(env, "max struct nesting depth exceeded\n"); 8105 return false; 8106 } 8107 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8108 return false; 8109 continue; 8110 } 8111 if (btf_type_is_array(member_type)) { 8112 array = btf_array(member_type); 8113 if (!array->nelems) 8114 return false; 8115 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8116 if (!btf_type_is_scalar(member_type)) 8117 return false; 8118 continue; 8119 } 8120 if (!btf_type_is_scalar(member_type)) 8121 return false; 8122 } 8123 return true; 8124 } 8125 8126 8127 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8128 #ifdef CONFIG_NET 8129 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8130 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8131 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8132 #endif 8133 }; 8134 8135 enum kfunc_ptr_arg_type { 8136 KF_ARG_PTR_TO_CTX, 8137 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8138 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8139 KF_ARG_PTR_TO_DYNPTR, 8140 KF_ARG_PTR_TO_LIST_HEAD, 8141 KF_ARG_PTR_TO_LIST_NODE, 8142 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8143 KF_ARG_PTR_TO_MEM, 8144 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8145 }; 8146 8147 enum special_kfunc_type { 8148 KF_bpf_obj_new_impl, 8149 KF_bpf_obj_drop_impl, 8150 KF_bpf_list_push_front, 8151 KF_bpf_list_push_back, 8152 KF_bpf_list_pop_front, 8153 KF_bpf_list_pop_back, 8154 }; 8155 8156 BTF_SET_START(special_kfunc_set) 8157 BTF_ID(func, bpf_obj_new_impl) 8158 BTF_ID(func, bpf_obj_drop_impl) 8159 BTF_ID(func, bpf_list_push_front) 8160 BTF_ID(func, bpf_list_push_back) 8161 BTF_ID(func, bpf_list_pop_front) 8162 BTF_ID(func, bpf_list_pop_back) 8163 BTF_SET_END(special_kfunc_set) 8164 8165 BTF_ID_LIST(special_kfunc_list) 8166 BTF_ID(func, bpf_obj_new_impl) 8167 BTF_ID(func, bpf_obj_drop_impl) 8168 BTF_ID(func, bpf_list_push_front) 8169 BTF_ID(func, bpf_list_push_back) 8170 BTF_ID(func, bpf_list_pop_front) 8171 BTF_ID(func, bpf_list_pop_back) 8172 8173 static enum kfunc_ptr_arg_type 8174 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8175 struct bpf_kfunc_call_arg_meta *meta, 8176 const struct btf_type *t, const struct btf_type *ref_t, 8177 const char *ref_tname, const struct btf_param *args, 8178 int argno, int nargs) 8179 { 8180 u32 regno = argno + 1; 8181 struct bpf_reg_state *regs = cur_regs(env); 8182 struct bpf_reg_state *reg = ®s[regno]; 8183 bool arg_mem_size = false; 8184 8185 /* In this function, we verify the kfunc's BTF as per the argument type, 8186 * leaving the rest of the verification with respect to the register 8187 * type to our caller. When a set of conditions hold in the BTF type of 8188 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8189 */ 8190 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8191 return KF_ARG_PTR_TO_CTX; 8192 8193 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8194 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8195 8196 if (is_kfunc_arg_kptr_get(meta, argno)) { 8197 if (!btf_type_is_ptr(ref_t)) { 8198 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8199 return -EINVAL; 8200 } 8201 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8202 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8203 if (!btf_type_is_struct(ref_t)) { 8204 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8205 meta->func_name, btf_type_str(ref_t), ref_tname); 8206 return -EINVAL; 8207 } 8208 return KF_ARG_PTR_TO_KPTR; 8209 } 8210 8211 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8212 return KF_ARG_PTR_TO_DYNPTR; 8213 8214 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8215 return KF_ARG_PTR_TO_LIST_HEAD; 8216 8217 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8218 return KF_ARG_PTR_TO_LIST_NODE; 8219 8220 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8221 if (!btf_type_is_struct(ref_t)) { 8222 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8223 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8224 return -EINVAL; 8225 } 8226 return KF_ARG_PTR_TO_BTF_ID; 8227 } 8228 8229 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8230 arg_mem_size = true; 8231 8232 /* This is the catch all argument type of register types supported by 8233 * check_helper_mem_access. However, we only allow when argument type is 8234 * pointer to scalar, or struct composed (recursively) of scalars. When 8235 * arg_mem_size is true, the pointer can be void *. 8236 */ 8237 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 8238 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 8239 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 8240 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 8241 return -EINVAL; 8242 } 8243 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 8244 } 8245 8246 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 8247 struct bpf_reg_state *reg, 8248 const struct btf_type *ref_t, 8249 const char *ref_tname, u32 ref_id, 8250 struct bpf_kfunc_call_arg_meta *meta, 8251 int argno) 8252 { 8253 const struct btf_type *reg_ref_t; 8254 bool strict_type_match = false; 8255 const struct btf *reg_btf; 8256 const char *reg_ref_tname; 8257 u32 reg_ref_id; 8258 8259 if (base_type(reg->type) == PTR_TO_BTF_ID) { 8260 reg_btf = reg->btf; 8261 reg_ref_id = reg->btf_id; 8262 } else { 8263 reg_btf = btf_vmlinux; 8264 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 8265 } 8266 8267 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id)) 8268 strict_type_match = true; 8269 8270 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 8271 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 8272 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 8273 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 8274 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 8275 btf_type_str(reg_ref_t), reg_ref_tname); 8276 return -EINVAL; 8277 } 8278 return 0; 8279 } 8280 8281 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 8282 struct bpf_reg_state *reg, 8283 const struct btf_type *ref_t, 8284 const char *ref_tname, 8285 struct bpf_kfunc_call_arg_meta *meta, 8286 int argno) 8287 { 8288 struct btf_field *kptr_field; 8289 8290 /* check_func_arg_reg_off allows var_off for 8291 * PTR_TO_MAP_VALUE, but we need fixed offset to find 8292 * off_desc. 8293 */ 8294 if (!tnum_is_const(reg->var_off)) { 8295 verbose(env, "arg#0 must have constant offset\n"); 8296 return -EINVAL; 8297 } 8298 8299 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 8300 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 8301 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 8302 reg->off + reg->var_off.value); 8303 return -EINVAL; 8304 } 8305 8306 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 8307 kptr_field->kptr.btf_id, true)) { 8308 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 8309 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8310 return -EINVAL; 8311 } 8312 return 0; 8313 } 8314 8315 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id) 8316 { 8317 struct bpf_func_state *state = cur_func(env); 8318 struct bpf_reg_state *reg; 8319 int i; 8320 8321 /* bpf_spin_lock only allows calling list_push and list_pop, no BPF 8322 * subprogs, no global functions. This means that the references would 8323 * not be released inside the critical section but they may be added to 8324 * the reference state, and the acquired_refs are never copied out for a 8325 * different frame as BPF to BPF calls don't work in bpf_spin_lock 8326 * critical sections. 8327 */ 8328 if (!ref_obj_id) { 8329 verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n"); 8330 return -EFAULT; 8331 } 8332 for (i = 0; i < state->acquired_refs; i++) { 8333 if (state->refs[i].id == ref_obj_id) { 8334 if (state->refs[i].release_on_unlock) { 8335 verbose(env, "verifier internal error: expected false release_on_unlock"); 8336 return -EFAULT; 8337 } 8338 state->refs[i].release_on_unlock = true; 8339 /* Now mark everyone sharing same ref_obj_id as untrusted */ 8340 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8341 if (reg->ref_obj_id == ref_obj_id) 8342 reg->type |= PTR_UNTRUSTED; 8343 })); 8344 return 0; 8345 } 8346 } 8347 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 8348 return -EFAULT; 8349 } 8350 8351 /* Implementation details: 8352 * 8353 * Each register points to some region of memory, which we define as an 8354 * allocation. Each allocation may embed a bpf_spin_lock which protects any 8355 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 8356 * allocation. The lock and the data it protects are colocated in the same 8357 * memory region. 8358 * 8359 * Hence, everytime a register holds a pointer value pointing to such 8360 * allocation, the verifier preserves a unique reg->id for it. 8361 * 8362 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 8363 * bpf_spin_lock is called. 8364 * 8365 * To enable this, lock state in the verifier captures two values: 8366 * active_lock.ptr = Register's type specific pointer 8367 * active_lock.id = A unique ID for each register pointer value 8368 * 8369 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 8370 * supported register types. 8371 * 8372 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 8373 * allocated objects is the reg->btf pointer. 8374 * 8375 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 8376 * can establish the provenance of the map value statically for each distinct 8377 * lookup into such maps. They always contain a single map value hence unique 8378 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 8379 * 8380 * So, in case of global variables, they use array maps with max_entries = 1, 8381 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 8382 * into the same map value as max_entries is 1, as described above). 8383 * 8384 * In case of inner map lookups, the inner map pointer has same map_ptr as the 8385 * outer map pointer (in verifier context), but each lookup into an inner map 8386 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 8387 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 8388 * will get different reg->id assigned to each lookup, hence different 8389 * active_lock.id. 8390 * 8391 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 8392 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 8393 * returned from bpf_obj_new. Each allocation receives a new reg->id. 8394 */ 8395 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8396 { 8397 void *ptr; 8398 u32 id; 8399 8400 switch ((int)reg->type) { 8401 case PTR_TO_MAP_VALUE: 8402 ptr = reg->map_ptr; 8403 break; 8404 case PTR_TO_BTF_ID | MEM_ALLOC: 8405 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 8406 ptr = reg->btf; 8407 break; 8408 default: 8409 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 8410 return -EFAULT; 8411 } 8412 id = reg->id; 8413 8414 if (!env->cur_state->active_lock.ptr) 8415 return -EINVAL; 8416 if (env->cur_state->active_lock.ptr != ptr || 8417 env->cur_state->active_lock.id != id) { 8418 verbose(env, "held lock and object are not in the same allocation\n"); 8419 return -EINVAL; 8420 } 8421 return 0; 8422 } 8423 8424 static bool is_bpf_list_api_kfunc(u32 btf_id) 8425 { 8426 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 8427 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 8428 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 8429 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 8430 } 8431 8432 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 8433 struct bpf_reg_state *reg, u32 regno, 8434 struct bpf_kfunc_call_arg_meta *meta) 8435 { 8436 struct btf_field *field; 8437 struct btf_record *rec; 8438 u32 list_head_off; 8439 8440 if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) { 8441 verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n"); 8442 return -EFAULT; 8443 } 8444 8445 if (!tnum_is_const(reg->var_off)) { 8446 verbose(env, 8447 "R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n", 8448 regno); 8449 return -EINVAL; 8450 } 8451 8452 rec = reg_btf_record(reg); 8453 list_head_off = reg->off + reg->var_off.value; 8454 field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD); 8455 if (!field) { 8456 verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off); 8457 return -EINVAL; 8458 } 8459 8460 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 8461 if (check_reg_allocation_locked(env, reg)) { 8462 verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n", 8463 rec->spin_lock_off); 8464 return -EINVAL; 8465 } 8466 8467 if (meta->arg_list_head.field) { 8468 verbose(env, "verifier internal error: repeating bpf_list_head arg\n"); 8469 return -EFAULT; 8470 } 8471 meta->arg_list_head.field = field; 8472 return 0; 8473 } 8474 8475 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 8476 struct bpf_reg_state *reg, u32 regno, 8477 struct bpf_kfunc_call_arg_meta *meta) 8478 { 8479 const struct btf_type *et, *t; 8480 struct btf_field *field; 8481 struct btf_record *rec; 8482 u32 list_node_off; 8483 8484 if (meta->btf != btf_vmlinux || 8485 (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] && 8486 meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) { 8487 verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n"); 8488 return -EFAULT; 8489 } 8490 8491 if (!tnum_is_const(reg->var_off)) { 8492 verbose(env, 8493 "R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n", 8494 regno); 8495 return -EINVAL; 8496 } 8497 8498 rec = reg_btf_record(reg); 8499 list_node_off = reg->off + reg->var_off.value; 8500 field = btf_record_find(rec, list_node_off, BPF_LIST_NODE); 8501 if (!field || field->offset != list_node_off) { 8502 verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off); 8503 return -EINVAL; 8504 } 8505 8506 field = meta->arg_list_head.field; 8507 8508 et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id); 8509 t = btf_type_by_id(reg->btf, reg->btf_id); 8510 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf, 8511 field->list_head.value_btf_id, true)) { 8512 verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d " 8513 "in struct %s, but arg is at offset=%d in struct %s\n", 8514 field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off), 8515 list_node_off, btf_name_by_offset(reg->btf, t->name_off)); 8516 return -EINVAL; 8517 } 8518 8519 if (list_node_off != field->list_head.node_offset) { 8520 verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n", 8521 list_node_off, field->list_head.node_offset, 8522 btf_name_by_offset(field->list_head.btf, et->name_off)); 8523 return -EINVAL; 8524 } 8525 /* Set arg#1 for expiration after unlock */ 8526 return ref_set_release_on_unlock(env, reg->ref_obj_id); 8527 } 8528 8529 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 8530 { 8531 const char *func_name = meta->func_name, *ref_tname; 8532 const struct btf *btf = meta->btf; 8533 const struct btf_param *args; 8534 u32 i, nargs; 8535 int ret; 8536 8537 args = (const struct btf_param *)(meta->func_proto + 1); 8538 nargs = btf_type_vlen(meta->func_proto); 8539 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 8540 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 8541 MAX_BPF_FUNC_REG_ARGS); 8542 return -EINVAL; 8543 } 8544 8545 /* Check that BTF function arguments match actual types that the 8546 * verifier sees. 8547 */ 8548 for (i = 0; i < nargs; i++) { 8549 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 8550 const struct btf_type *t, *ref_t, *resolve_ret; 8551 enum bpf_arg_type arg_type = ARG_DONTCARE; 8552 u32 regno = i + 1, ref_id, type_size; 8553 bool is_ret_buf_sz = false; 8554 int kf_arg_type; 8555 8556 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 8557 8558 if (is_kfunc_arg_ignore(btf, &args[i])) 8559 continue; 8560 8561 if (btf_type_is_scalar(t)) { 8562 if (reg->type != SCALAR_VALUE) { 8563 verbose(env, "R%d is not a scalar\n", regno); 8564 return -EINVAL; 8565 } 8566 8567 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 8568 if (meta->arg_constant.found) { 8569 verbose(env, "verifier internal error: only one constant argument permitted\n"); 8570 return -EFAULT; 8571 } 8572 if (!tnum_is_const(reg->var_off)) { 8573 verbose(env, "R%d must be a known constant\n", regno); 8574 return -EINVAL; 8575 } 8576 ret = mark_chain_precision(env, regno); 8577 if (ret < 0) 8578 return ret; 8579 meta->arg_constant.found = true; 8580 meta->arg_constant.value = reg->var_off.value; 8581 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 8582 meta->r0_rdonly = true; 8583 is_ret_buf_sz = true; 8584 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 8585 is_ret_buf_sz = true; 8586 } 8587 8588 if (is_ret_buf_sz) { 8589 if (meta->r0_size) { 8590 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 8591 return -EINVAL; 8592 } 8593 8594 if (!tnum_is_const(reg->var_off)) { 8595 verbose(env, "R%d is not a const\n", regno); 8596 return -EINVAL; 8597 } 8598 8599 meta->r0_size = reg->var_off.value; 8600 ret = mark_chain_precision(env, regno); 8601 if (ret) 8602 return ret; 8603 } 8604 continue; 8605 } 8606 8607 if (!btf_type_is_ptr(t)) { 8608 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 8609 return -EINVAL; 8610 } 8611 8612 if (reg->ref_obj_id) { 8613 if (is_kfunc_release(meta) && meta->ref_obj_id) { 8614 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8615 regno, reg->ref_obj_id, 8616 meta->ref_obj_id); 8617 return -EFAULT; 8618 } 8619 meta->ref_obj_id = reg->ref_obj_id; 8620 if (is_kfunc_release(meta)) 8621 meta->release_regno = regno; 8622 } 8623 8624 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 8625 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 8626 8627 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 8628 if (kf_arg_type < 0) 8629 return kf_arg_type; 8630 8631 switch (kf_arg_type) { 8632 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8633 case KF_ARG_PTR_TO_BTF_ID: 8634 if (!is_kfunc_trusted_args(meta)) 8635 break; 8636 8637 if (!is_trusted_reg(reg)) { 8638 verbose(env, "R%d must be referenced or trusted\n", regno); 8639 return -EINVAL; 8640 } 8641 fallthrough; 8642 case KF_ARG_PTR_TO_CTX: 8643 /* Trusted arguments have the same offset checks as release arguments */ 8644 arg_type |= OBJ_RELEASE; 8645 break; 8646 case KF_ARG_PTR_TO_KPTR: 8647 case KF_ARG_PTR_TO_DYNPTR: 8648 case KF_ARG_PTR_TO_LIST_HEAD: 8649 case KF_ARG_PTR_TO_LIST_NODE: 8650 case KF_ARG_PTR_TO_MEM: 8651 case KF_ARG_PTR_TO_MEM_SIZE: 8652 /* Trusted by default */ 8653 break; 8654 default: 8655 WARN_ON_ONCE(1); 8656 return -EFAULT; 8657 } 8658 8659 if (is_kfunc_release(meta) && reg->ref_obj_id) 8660 arg_type |= OBJ_RELEASE; 8661 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 8662 if (ret < 0) 8663 return ret; 8664 8665 switch (kf_arg_type) { 8666 case KF_ARG_PTR_TO_CTX: 8667 if (reg->type != PTR_TO_CTX) { 8668 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 8669 return -EINVAL; 8670 } 8671 break; 8672 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8673 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8674 verbose(env, "arg#%d expected pointer to allocated object\n", i); 8675 return -EINVAL; 8676 } 8677 if (!reg->ref_obj_id) { 8678 verbose(env, "allocated object must be referenced\n"); 8679 return -EINVAL; 8680 } 8681 if (meta->btf == btf_vmlinux && 8682 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 8683 meta->arg_obj_drop.btf = reg->btf; 8684 meta->arg_obj_drop.btf_id = reg->btf_id; 8685 } 8686 break; 8687 case KF_ARG_PTR_TO_KPTR: 8688 if (reg->type != PTR_TO_MAP_VALUE) { 8689 verbose(env, "arg#0 expected pointer to map value\n"); 8690 return -EINVAL; 8691 } 8692 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 8693 if (ret < 0) 8694 return ret; 8695 break; 8696 case KF_ARG_PTR_TO_DYNPTR: 8697 if (reg->type != PTR_TO_STACK) { 8698 verbose(env, "arg#%d expected pointer to stack\n", i); 8699 return -EINVAL; 8700 } 8701 8702 if (!is_dynptr_reg_valid_init(env, reg)) { 8703 verbose(env, "arg#%d pointer type %s %s must be valid and initialized\n", 8704 i, btf_type_str(ref_t), ref_tname); 8705 return -EINVAL; 8706 } 8707 8708 if (!is_dynptr_type_expected(env, reg, ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) { 8709 verbose(env, "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n", 8710 i, btf_type_str(ref_t), ref_tname); 8711 return -EINVAL; 8712 } 8713 break; 8714 case KF_ARG_PTR_TO_LIST_HEAD: 8715 if (reg->type != PTR_TO_MAP_VALUE && 8716 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8717 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 8718 return -EINVAL; 8719 } 8720 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 8721 verbose(env, "allocated object must be referenced\n"); 8722 return -EINVAL; 8723 } 8724 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 8725 if (ret < 0) 8726 return ret; 8727 break; 8728 case KF_ARG_PTR_TO_LIST_NODE: 8729 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8730 verbose(env, "arg#%d expected pointer to allocated object\n", i); 8731 return -EINVAL; 8732 } 8733 if (!reg->ref_obj_id) { 8734 verbose(env, "allocated object must be referenced\n"); 8735 return -EINVAL; 8736 } 8737 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 8738 if (ret < 0) 8739 return ret; 8740 break; 8741 case KF_ARG_PTR_TO_BTF_ID: 8742 /* Only base_type is checked, further checks are done here */ 8743 if ((base_type(reg->type) != PTR_TO_BTF_ID || 8744 bpf_type_has_unsafe_modifiers(reg->type)) && 8745 !reg2btf_ids[base_type(reg->type)]) { 8746 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 8747 verbose(env, "expected %s or socket\n", 8748 reg_type_str(env, base_type(reg->type) | 8749 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 8750 return -EINVAL; 8751 } 8752 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 8753 if (ret < 0) 8754 return ret; 8755 break; 8756 case KF_ARG_PTR_TO_MEM: 8757 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 8758 if (IS_ERR(resolve_ret)) { 8759 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 8760 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 8761 return -EINVAL; 8762 } 8763 ret = check_mem_reg(env, reg, regno, type_size); 8764 if (ret < 0) 8765 return ret; 8766 break; 8767 case KF_ARG_PTR_TO_MEM_SIZE: 8768 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 8769 if (ret < 0) { 8770 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 8771 return ret; 8772 } 8773 /* Skip next '__sz' argument */ 8774 i++; 8775 break; 8776 } 8777 } 8778 8779 if (is_kfunc_release(meta) && !meta->release_regno) { 8780 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 8781 func_name); 8782 return -EINVAL; 8783 } 8784 8785 return 0; 8786 } 8787 8788 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8789 int *insn_idx_p) 8790 { 8791 const struct btf_type *t, *func, *func_proto, *ptr_type; 8792 struct bpf_reg_state *regs = cur_regs(env); 8793 const char *func_name, *ptr_type_name; 8794 struct bpf_kfunc_call_arg_meta meta; 8795 u32 i, nargs, func_id, ptr_type_id; 8796 int err, insn_idx = *insn_idx_p; 8797 const struct btf_param *args; 8798 struct btf *desc_btf; 8799 u32 *kfunc_flags; 8800 8801 /* skip for now, but return error when we find this in fixup_kfunc_call */ 8802 if (!insn->imm) 8803 return 0; 8804 8805 desc_btf = find_kfunc_desc_btf(env, insn->off); 8806 if (IS_ERR(desc_btf)) 8807 return PTR_ERR(desc_btf); 8808 8809 func_id = insn->imm; 8810 func = btf_type_by_id(desc_btf, func_id); 8811 func_name = btf_name_by_offset(desc_btf, func->name_off); 8812 func_proto = btf_type_by_id(desc_btf, func->type); 8813 8814 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 8815 if (!kfunc_flags) { 8816 verbose(env, "calling kernel function %s is not allowed\n", 8817 func_name); 8818 return -EACCES; 8819 } 8820 8821 /* Prepare kfunc call metadata */ 8822 memset(&meta, 0, sizeof(meta)); 8823 meta.btf = desc_btf; 8824 meta.func_id = func_id; 8825 meta.kfunc_flags = *kfunc_flags; 8826 meta.func_proto = func_proto; 8827 meta.func_name = func_name; 8828 8829 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 8830 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 8831 return -EACCES; 8832 } 8833 8834 if (is_kfunc_sleepable(&meta) && !env->prog->aux->sleepable) { 8835 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 8836 return -EACCES; 8837 } 8838 8839 /* Check the arguments */ 8840 err = check_kfunc_args(env, &meta); 8841 if (err < 0) 8842 return err; 8843 /* In case of release function, we get register number of refcounted 8844 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 8845 */ 8846 if (meta.release_regno) { 8847 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 8848 if (err) { 8849 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 8850 func_name, func_id); 8851 return err; 8852 } 8853 } 8854 8855 for (i = 0; i < CALLER_SAVED_REGS; i++) 8856 mark_reg_not_init(env, regs, caller_saved[i]); 8857 8858 /* Check return type */ 8859 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 8860 8861 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 8862 /* Only exception is bpf_obj_new_impl */ 8863 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 8864 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 8865 return -EINVAL; 8866 } 8867 } 8868 8869 if (btf_type_is_scalar(t)) { 8870 mark_reg_unknown(env, regs, BPF_REG_0); 8871 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 8872 } else if (btf_type_is_ptr(t)) { 8873 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 8874 8875 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 8876 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 8877 const struct btf_type *ret_t; 8878 struct btf *ret_btf; 8879 u32 ret_btf_id; 8880 8881 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 8882 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 8883 return -EINVAL; 8884 } 8885 8886 ret_btf = env->prog->aux->btf; 8887 ret_btf_id = meta.arg_constant.value; 8888 8889 /* This may be NULL due to user not supplying a BTF */ 8890 if (!ret_btf) { 8891 verbose(env, "bpf_obj_new requires prog BTF\n"); 8892 return -EINVAL; 8893 } 8894 8895 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 8896 if (!ret_t || !__btf_type_is_struct(ret_t)) { 8897 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 8898 return -EINVAL; 8899 } 8900 8901 mark_reg_known_zero(env, regs, BPF_REG_0); 8902 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 8903 regs[BPF_REG_0].btf = ret_btf; 8904 regs[BPF_REG_0].btf_id = ret_btf_id; 8905 8906 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 8907 env->insn_aux_data[insn_idx].kptr_struct_meta = 8908 btf_find_struct_meta(ret_btf, ret_btf_id); 8909 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 8910 env->insn_aux_data[insn_idx].kptr_struct_meta = 8911 btf_find_struct_meta(meta.arg_obj_drop.btf, 8912 meta.arg_obj_drop.btf_id); 8913 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 8914 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 8915 struct btf_field *field = meta.arg_list_head.field; 8916 8917 mark_reg_known_zero(env, regs, BPF_REG_0); 8918 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 8919 regs[BPF_REG_0].btf = field->list_head.btf; 8920 regs[BPF_REG_0].btf_id = field->list_head.value_btf_id; 8921 regs[BPF_REG_0].off = field->list_head.node_offset; 8922 } else { 8923 verbose(env, "kernel function %s unhandled dynamic return type\n", 8924 meta.func_name); 8925 return -EFAULT; 8926 } 8927 } else if (!__btf_type_is_struct(ptr_type)) { 8928 if (!meta.r0_size) { 8929 ptr_type_name = btf_name_by_offset(desc_btf, 8930 ptr_type->name_off); 8931 verbose(env, 8932 "kernel function %s returns pointer type %s %s is not supported\n", 8933 func_name, 8934 btf_type_str(ptr_type), 8935 ptr_type_name); 8936 return -EINVAL; 8937 } 8938 8939 mark_reg_known_zero(env, regs, BPF_REG_0); 8940 regs[BPF_REG_0].type = PTR_TO_MEM; 8941 regs[BPF_REG_0].mem_size = meta.r0_size; 8942 8943 if (meta.r0_rdonly) 8944 regs[BPF_REG_0].type |= MEM_RDONLY; 8945 8946 /* Ensures we don't access the memory after a release_reference() */ 8947 if (meta.ref_obj_id) 8948 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8949 } else { 8950 mark_reg_known_zero(env, regs, BPF_REG_0); 8951 regs[BPF_REG_0].btf = desc_btf; 8952 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 8953 regs[BPF_REG_0].btf_id = ptr_type_id; 8954 } 8955 8956 if (is_kfunc_ret_null(&meta)) { 8957 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 8958 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 8959 regs[BPF_REG_0].id = ++env->id_gen; 8960 } 8961 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 8962 if (is_kfunc_acquire(&meta)) { 8963 int id = acquire_reference_state(env, insn_idx); 8964 8965 if (id < 0) 8966 return id; 8967 if (is_kfunc_ret_null(&meta)) 8968 regs[BPF_REG_0].id = id; 8969 regs[BPF_REG_0].ref_obj_id = id; 8970 } 8971 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 8972 regs[BPF_REG_0].id = ++env->id_gen; 8973 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 8974 8975 nargs = btf_type_vlen(func_proto); 8976 args = (const struct btf_param *)(func_proto + 1); 8977 for (i = 0; i < nargs; i++) { 8978 u32 regno = i + 1; 8979 8980 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 8981 if (btf_type_is_ptr(t)) 8982 mark_btf_func_reg_size(env, regno, sizeof(void *)); 8983 else 8984 /* scalar. ensured by btf_check_kfunc_arg_match() */ 8985 mark_btf_func_reg_size(env, regno, t->size); 8986 } 8987 8988 return 0; 8989 } 8990 8991 static bool signed_add_overflows(s64 a, s64 b) 8992 { 8993 /* Do the add in u64, where overflow is well-defined */ 8994 s64 res = (s64)((u64)a + (u64)b); 8995 8996 if (b < 0) 8997 return res > a; 8998 return res < a; 8999 } 9000 9001 static bool signed_add32_overflows(s32 a, s32 b) 9002 { 9003 /* Do the add in u32, where overflow is well-defined */ 9004 s32 res = (s32)((u32)a + (u32)b); 9005 9006 if (b < 0) 9007 return res > a; 9008 return res < a; 9009 } 9010 9011 static bool signed_sub_overflows(s64 a, s64 b) 9012 { 9013 /* Do the sub in u64, where overflow is well-defined */ 9014 s64 res = (s64)((u64)a - (u64)b); 9015 9016 if (b < 0) 9017 return res < a; 9018 return res > a; 9019 } 9020 9021 static bool signed_sub32_overflows(s32 a, s32 b) 9022 { 9023 /* Do the sub in u32, where overflow is well-defined */ 9024 s32 res = (s32)((u32)a - (u32)b); 9025 9026 if (b < 0) 9027 return res < a; 9028 return res > a; 9029 } 9030 9031 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 9032 const struct bpf_reg_state *reg, 9033 enum bpf_reg_type type) 9034 { 9035 bool known = tnum_is_const(reg->var_off); 9036 s64 val = reg->var_off.value; 9037 s64 smin = reg->smin_value; 9038 9039 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 9040 verbose(env, "math between %s pointer and %lld is not allowed\n", 9041 reg_type_str(env, type), val); 9042 return false; 9043 } 9044 9045 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 9046 verbose(env, "%s pointer offset %d is not allowed\n", 9047 reg_type_str(env, type), reg->off); 9048 return false; 9049 } 9050 9051 if (smin == S64_MIN) { 9052 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 9053 reg_type_str(env, type)); 9054 return false; 9055 } 9056 9057 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 9058 verbose(env, "value %lld makes %s pointer be out of bounds\n", 9059 smin, reg_type_str(env, type)); 9060 return false; 9061 } 9062 9063 return true; 9064 } 9065 9066 enum { 9067 REASON_BOUNDS = -1, 9068 REASON_TYPE = -2, 9069 REASON_PATHS = -3, 9070 REASON_LIMIT = -4, 9071 REASON_STACK = -5, 9072 }; 9073 9074 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 9075 u32 *alu_limit, bool mask_to_left) 9076 { 9077 u32 max = 0, ptr_limit = 0; 9078 9079 switch (ptr_reg->type) { 9080 case PTR_TO_STACK: 9081 /* Offset 0 is out-of-bounds, but acceptable start for the 9082 * left direction, see BPF_REG_FP. Also, unknown scalar 9083 * offset where we would need to deal with min/max bounds is 9084 * currently prohibited for unprivileged. 9085 */ 9086 max = MAX_BPF_STACK + mask_to_left; 9087 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 9088 break; 9089 case PTR_TO_MAP_VALUE: 9090 max = ptr_reg->map_ptr->value_size; 9091 ptr_limit = (mask_to_left ? 9092 ptr_reg->smin_value : 9093 ptr_reg->umax_value) + ptr_reg->off; 9094 break; 9095 default: 9096 return REASON_TYPE; 9097 } 9098 9099 if (ptr_limit >= max) 9100 return REASON_LIMIT; 9101 *alu_limit = ptr_limit; 9102 return 0; 9103 } 9104 9105 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 9106 const struct bpf_insn *insn) 9107 { 9108 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 9109 } 9110 9111 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 9112 u32 alu_state, u32 alu_limit) 9113 { 9114 /* If we arrived here from different branches with different 9115 * state or limits to sanitize, then this won't work. 9116 */ 9117 if (aux->alu_state && 9118 (aux->alu_state != alu_state || 9119 aux->alu_limit != alu_limit)) 9120 return REASON_PATHS; 9121 9122 /* Corresponding fixup done in do_misc_fixups(). */ 9123 aux->alu_state = alu_state; 9124 aux->alu_limit = alu_limit; 9125 return 0; 9126 } 9127 9128 static int sanitize_val_alu(struct bpf_verifier_env *env, 9129 struct bpf_insn *insn) 9130 { 9131 struct bpf_insn_aux_data *aux = cur_aux(env); 9132 9133 if (can_skip_alu_sanitation(env, insn)) 9134 return 0; 9135 9136 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 9137 } 9138 9139 static bool sanitize_needed(u8 opcode) 9140 { 9141 return opcode == BPF_ADD || opcode == BPF_SUB; 9142 } 9143 9144 struct bpf_sanitize_info { 9145 struct bpf_insn_aux_data aux; 9146 bool mask_to_left; 9147 }; 9148 9149 static struct bpf_verifier_state * 9150 sanitize_speculative_path(struct bpf_verifier_env *env, 9151 const struct bpf_insn *insn, 9152 u32 next_idx, u32 curr_idx) 9153 { 9154 struct bpf_verifier_state *branch; 9155 struct bpf_reg_state *regs; 9156 9157 branch = push_stack(env, next_idx, curr_idx, true); 9158 if (branch && insn) { 9159 regs = branch->frame[branch->curframe]->regs; 9160 if (BPF_SRC(insn->code) == BPF_K) { 9161 mark_reg_unknown(env, regs, insn->dst_reg); 9162 } else if (BPF_SRC(insn->code) == BPF_X) { 9163 mark_reg_unknown(env, regs, insn->dst_reg); 9164 mark_reg_unknown(env, regs, insn->src_reg); 9165 } 9166 } 9167 return branch; 9168 } 9169 9170 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 9171 struct bpf_insn *insn, 9172 const struct bpf_reg_state *ptr_reg, 9173 const struct bpf_reg_state *off_reg, 9174 struct bpf_reg_state *dst_reg, 9175 struct bpf_sanitize_info *info, 9176 const bool commit_window) 9177 { 9178 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 9179 struct bpf_verifier_state *vstate = env->cur_state; 9180 bool off_is_imm = tnum_is_const(off_reg->var_off); 9181 bool off_is_neg = off_reg->smin_value < 0; 9182 bool ptr_is_dst_reg = ptr_reg == dst_reg; 9183 u8 opcode = BPF_OP(insn->code); 9184 u32 alu_state, alu_limit; 9185 struct bpf_reg_state tmp; 9186 bool ret; 9187 int err; 9188 9189 if (can_skip_alu_sanitation(env, insn)) 9190 return 0; 9191 9192 /* We already marked aux for masking from non-speculative 9193 * paths, thus we got here in the first place. We only care 9194 * to explore bad access from here. 9195 */ 9196 if (vstate->speculative) 9197 goto do_sim; 9198 9199 if (!commit_window) { 9200 if (!tnum_is_const(off_reg->var_off) && 9201 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 9202 return REASON_BOUNDS; 9203 9204 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 9205 (opcode == BPF_SUB && !off_is_neg); 9206 } 9207 9208 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 9209 if (err < 0) 9210 return err; 9211 9212 if (commit_window) { 9213 /* In commit phase we narrow the masking window based on 9214 * the observed pointer move after the simulated operation. 9215 */ 9216 alu_state = info->aux.alu_state; 9217 alu_limit = abs(info->aux.alu_limit - alu_limit); 9218 } else { 9219 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 9220 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 9221 alu_state |= ptr_is_dst_reg ? 9222 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 9223 9224 /* Limit pruning on unknown scalars to enable deep search for 9225 * potential masking differences from other program paths. 9226 */ 9227 if (!off_is_imm) 9228 env->explore_alu_limits = true; 9229 } 9230 9231 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 9232 if (err < 0) 9233 return err; 9234 do_sim: 9235 /* If we're in commit phase, we're done here given we already 9236 * pushed the truncated dst_reg into the speculative verification 9237 * stack. 9238 * 9239 * Also, when register is a known constant, we rewrite register-based 9240 * operation to immediate-based, and thus do not need masking (and as 9241 * a consequence, do not need to simulate the zero-truncation either). 9242 */ 9243 if (commit_window || off_is_imm) 9244 return 0; 9245 9246 /* Simulate and find potential out-of-bounds access under 9247 * speculative execution from truncation as a result of 9248 * masking when off was not within expected range. If off 9249 * sits in dst, then we temporarily need to move ptr there 9250 * to simulate dst (== 0) +/-= ptr. Needed, for example, 9251 * for cases where we use K-based arithmetic in one direction 9252 * and truncated reg-based in the other in order to explore 9253 * bad access. 9254 */ 9255 if (!ptr_is_dst_reg) { 9256 tmp = *dst_reg; 9257 *dst_reg = *ptr_reg; 9258 } 9259 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 9260 env->insn_idx); 9261 if (!ptr_is_dst_reg && ret) 9262 *dst_reg = tmp; 9263 return !ret ? REASON_STACK : 0; 9264 } 9265 9266 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 9267 { 9268 struct bpf_verifier_state *vstate = env->cur_state; 9269 9270 /* If we simulate paths under speculation, we don't update the 9271 * insn as 'seen' such that when we verify unreachable paths in 9272 * the non-speculative domain, sanitize_dead_code() can still 9273 * rewrite/sanitize them. 9274 */ 9275 if (!vstate->speculative) 9276 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9277 } 9278 9279 static int sanitize_err(struct bpf_verifier_env *env, 9280 const struct bpf_insn *insn, int reason, 9281 const struct bpf_reg_state *off_reg, 9282 const struct bpf_reg_state *dst_reg) 9283 { 9284 static const char *err = "pointer arithmetic with it prohibited for !root"; 9285 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 9286 u32 dst = insn->dst_reg, src = insn->src_reg; 9287 9288 switch (reason) { 9289 case REASON_BOUNDS: 9290 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 9291 off_reg == dst_reg ? dst : src, err); 9292 break; 9293 case REASON_TYPE: 9294 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 9295 off_reg == dst_reg ? src : dst, err); 9296 break; 9297 case REASON_PATHS: 9298 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 9299 dst, op, err); 9300 break; 9301 case REASON_LIMIT: 9302 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 9303 dst, op, err); 9304 break; 9305 case REASON_STACK: 9306 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 9307 dst, err); 9308 break; 9309 default: 9310 verbose(env, "verifier internal error: unknown reason (%d)\n", 9311 reason); 9312 break; 9313 } 9314 9315 return -EACCES; 9316 } 9317 9318 /* check that stack access falls within stack limits and that 'reg' doesn't 9319 * have a variable offset. 9320 * 9321 * Variable offset is prohibited for unprivileged mode for simplicity since it 9322 * requires corresponding support in Spectre masking for stack ALU. See also 9323 * retrieve_ptr_limit(). 9324 * 9325 * 9326 * 'off' includes 'reg->off'. 9327 */ 9328 static int check_stack_access_for_ptr_arithmetic( 9329 struct bpf_verifier_env *env, 9330 int regno, 9331 const struct bpf_reg_state *reg, 9332 int off) 9333 { 9334 if (!tnum_is_const(reg->var_off)) { 9335 char tn_buf[48]; 9336 9337 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 9338 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 9339 regno, tn_buf, off); 9340 return -EACCES; 9341 } 9342 9343 if (off >= 0 || off < -MAX_BPF_STACK) { 9344 verbose(env, "R%d stack pointer arithmetic goes out of range, " 9345 "prohibited for !root; off=%d\n", regno, off); 9346 return -EACCES; 9347 } 9348 9349 return 0; 9350 } 9351 9352 static int sanitize_check_bounds(struct bpf_verifier_env *env, 9353 const struct bpf_insn *insn, 9354 const struct bpf_reg_state *dst_reg) 9355 { 9356 u32 dst = insn->dst_reg; 9357 9358 /* For unprivileged we require that resulting offset must be in bounds 9359 * in order to be able to sanitize access later on. 9360 */ 9361 if (env->bypass_spec_v1) 9362 return 0; 9363 9364 switch (dst_reg->type) { 9365 case PTR_TO_STACK: 9366 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 9367 dst_reg->off + dst_reg->var_off.value)) 9368 return -EACCES; 9369 break; 9370 case PTR_TO_MAP_VALUE: 9371 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 9372 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 9373 "prohibited for !root\n", dst); 9374 return -EACCES; 9375 } 9376 break; 9377 default: 9378 break; 9379 } 9380 9381 return 0; 9382 } 9383 9384 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 9385 * Caller should also handle BPF_MOV case separately. 9386 * If we return -EACCES, caller may want to try again treating pointer as a 9387 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 9388 */ 9389 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 9390 struct bpf_insn *insn, 9391 const struct bpf_reg_state *ptr_reg, 9392 const struct bpf_reg_state *off_reg) 9393 { 9394 struct bpf_verifier_state *vstate = env->cur_state; 9395 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9396 struct bpf_reg_state *regs = state->regs, *dst_reg; 9397 bool known = tnum_is_const(off_reg->var_off); 9398 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 9399 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 9400 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 9401 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 9402 struct bpf_sanitize_info info = {}; 9403 u8 opcode = BPF_OP(insn->code); 9404 u32 dst = insn->dst_reg; 9405 int ret; 9406 9407 dst_reg = ®s[dst]; 9408 9409 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 9410 smin_val > smax_val || umin_val > umax_val) { 9411 /* Taint dst register if offset had invalid bounds derived from 9412 * e.g. dead branches. 9413 */ 9414 __mark_reg_unknown(env, dst_reg); 9415 return 0; 9416 } 9417 9418 if (BPF_CLASS(insn->code) != BPF_ALU64) { 9419 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 9420 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9421 __mark_reg_unknown(env, dst_reg); 9422 return 0; 9423 } 9424 9425 verbose(env, 9426 "R%d 32-bit pointer arithmetic prohibited\n", 9427 dst); 9428 return -EACCES; 9429 } 9430 9431 if (ptr_reg->type & PTR_MAYBE_NULL) { 9432 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 9433 dst, reg_type_str(env, ptr_reg->type)); 9434 return -EACCES; 9435 } 9436 9437 switch (base_type(ptr_reg->type)) { 9438 case CONST_PTR_TO_MAP: 9439 /* smin_val represents the known value */ 9440 if (known && smin_val == 0 && opcode == BPF_ADD) 9441 break; 9442 fallthrough; 9443 case PTR_TO_PACKET_END: 9444 case PTR_TO_SOCKET: 9445 case PTR_TO_SOCK_COMMON: 9446 case PTR_TO_TCP_SOCK: 9447 case PTR_TO_XDP_SOCK: 9448 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 9449 dst, reg_type_str(env, ptr_reg->type)); 9450 return -EACCES; 9451 default: 9452 break; 9453 } 9454 9455 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 9456 * The id may be overwritten later if we create a new variable offset. 9457 */ 9458 dst_reg->type = ptr_reg->type; 9459 dst_reg->id = ptr_reg->id; 9460 9461 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 9462 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 9463 return -EINVAL; 9464 9465 /* pointer types do not carry 32-bit bounds at the moment. */ 9466 __mark_reg32_unbounded(dst_reg); 9467 9468 if (sanitize_needed(opcode)) { 9469 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 9470 &info, false); 9471 if (ret < 0) 9472 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9473 } 9474 9475 switch (opcode) { 9476 case BPF_ADD: 9477 /* We can take a fixed offset as long as it doesn't overflow 9478 * the s32 'off' field 9479 */ 9480 if (known && (ptr_reg->off + smin_val == 9481 (s64)(s32)(ptr_reg->off + smin_val))) { 9482 /* pointer += K. Accumulate it into fixed offset */ 9483 dst_reg->smin_value = smin_ptr; 9484 dst_reg->smax_value = smax_ptr; 9485 dst_reg->umin_value = umin_ptr; 9486 dst_reg->umax_value = umax_ptr; 9487 dst_reg->var_off = ptr_reg->var_off; 9488 dst_reg->off = ptr_reg->off + smin_val; 9489 dst_reg->raw = ptr_reg->raw; 9490 break; 9491 } 9492 /* A new variable offset is created. Note that off_reg->off 9493 * == 0, since it's a scalar. 9494 * dst_reg gets the pointer type and since some positive 9495 * integer value was added to the pointer, give it a new 'id' 9496 * if it's a PTR_TO_PACKET. 9497 * this creates a new 'base' pointer, off_reg (variable) gets 9498 * added into the variable offset, and we copy the fixed offset 9499 * from ptr_reg. 9500 */ 9501 if (signed_add_overflows(smin_ptr, smin_val) || 9502 signed_add_overflows(smax_ptr, smax_val)) { 9503 dst_reg->smin_value = S64_MIN; 9504 dst_reg->smax_value = S64_MAX; 9505 } else { 9506 dst_reg->smin_value = smin_ptr + smin_val; 9507 dst_reg->smax_value = smax_ptr + smax_val; 9508 } 9509 if (umin_ptr + umin_val < umin_ptr || 9510 umax_ptr + umax_val < umax_ptr) { 9511 dst_reg->umin_value = 0; 9512 dst_reg->umax_value = U64_MAX; 9513 } else { 9514 dst_reg->umin_value = umin_ptr + umin_val; 9515 dst_reg->umax_value = umax_ptr + umax_val; 9516 } 9517 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 9518 dst_reg->off = ptr_reg->off; 9519 dst_reg->raw = ptr_reg->raw; 9520 if (reg_is_pkt_pointer(ptr_reg)) { 9521 dst_reg->id = ++env->id_gen; 9522 /* something was added to pkt_ptr, set range to zero */ 9523 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9524 } 9525 break; 9526 case BPF_SUB: 9527 if (dst_reg == off_reg) { 9528 /* scalar -= pointer. Creates an unknown scalar */ 9529 verbose(env, "R%d tried to subtract pointer from scalar\n", 9530 dst); 9531 return -EACCES; 9532 } 9533 /* We don't allow subtraction from FP, because (according to 9534 * test_verifier.c test "invalid fp arithmetic", JITs might not 9535 * be able to deal with it. 9536 */ 9537 if (ptr_reg->type == PTR_TO_STACK) { 9538 verbose(env, "R%d subtraction from stack pointer prohibited\n", 9539 dst); 9540 return -EACCES; 9541 } 9542 if (known && (ptr_reg->off - smin_val == 9543 (s64)(s32)(ptr_reg->off - smin_val))) { 9544 /* pointer -= K. Subtract it from fixed offset */ 9545 dst_reg->smin_value = smin_ptr; 9546 dst_reg->smax_value = smax_ptr; 9547 dst_reg->umin_value = umin_ptr; 9548 dst_reg->umax_value = umax_ptr; 9549 dst_reg->var_off = ptr_reg->var_off; 9550 dst_reg->id = ptr_reg->id; 9551 dst_reg->off = ptr_reg->off - smin_val; 9552 dst_reg->raw = ptr_reg->raw; 9553 break; 9554 } 9555 /* A new variable offset is created. If the subtrahend is known 9556 * nonnegative, then any reg->range we had before is still good. 9557 */ 9558 if (signed_sub_overflows(smin_ptr, smax_val) || 9559 signed_sub_overflows(smax_ptr, smin_val)) { 9560 /* Overflow possible, we know nothing */ 9561 dst_reg->smin_value = S64_MIN; 9562 dst_reg->smax_value = S64_MAX; 9563 } else { 9564 dst_reg->smin_value = smin_ptr - smax_val; 9565 dst_reg->smax_value = smax_ptr - smin_val; 9566 } 9567 if (umin_ptr < umax_val) { 9568 /* Overflow possible, we know nothing */ 9569 dst_reg->umin_value = 0; 9570 dst_reg->umax_value = U64_MAX; 9571 } else { 9572 /* Cannot overflow (as long as bounds are consistent) */ 9573 dst_reg->umin_value = umin_ptr - umax_val; 9574 dst_reg->umax_value = umax_ptr - umin_val; 9575 } 9576 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 9577 dst_reg->off = ptr_reg->off; 9578 dst_reg->raw = ptr_reg->raw; 9579 if (reg_is_pkt_pointer(ptr_reg)) { 9580 dst_reg->id = ++env->id_gen; 9581 /* something was added to pkt_ptr, set range to zero */ 9582 if (smin_val < 0) 9583 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9584 } 9585 break; 9586 case BPF_AND: 9587 case BPF_OR: 9588 case BPF_XOR: 9589 /* bitwise ops on pointers are troublesome, prohibit. */ 9590 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 9591 dst, bpf_alu_string[opcode >> 4]); 9592 return -EACCES; 9593 default: 9594 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 9595 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 9596 dst, bpf_alu_string[opcode >> 4]); 9597 return -EACCES; 9598 } 9599 9600 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 9601 return -EINVAL; 9602 reg_bounds_sync(dst_reg); 9603 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 9604 return -EACCES; 9605 if (sanitize_needed(opcode)) { 9606 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 9607 &info, true); 9608 if (ret < 0) 9609 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9610 } 9611 9612 return 0; 9613 } 9614 9615 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 9616 struct bpf_reg_state *src_reg) 9617 { 9618 s32 smin_val = src_reg->s32_min_value; 9619 s32 smax_val = src_reg->s32_max_value; 9620 u32 umin_val = src_reg->u32_min_value; 9621 u32 umax_val = src_reg->u32_max_value; 9622 9623 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 9624 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 9625 dst_reg->s32_min_value = S32_MIN; 9626 dst_reg->s32_max_value = S32_MAX; 9627 } else { 9628 dst_reg->s32_min_value += smin_val; 9629 dst_reg->s32_max_value += smax_val; 9630 } 9631 if (dst_reg->u32_min_value + umin_val < umin_val || 9632 dst_reg->u32_max_value + umax_val < umax_val) { 9633 dst_reg->u32_min_value = 0; 9634 dst_reg->u32_max_value = U32_MAX; 9635 } else { 9636 dst_reg->u32_min_value += umin_val; 9637 dst_reg->u32_max_value += umax_val; 9638 } 9639 } 9640 9641 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 9642 struct bpf_reg_state *src_reg) 9643 { 9644 s64 smin_val = src_reg->smin_value; 9645 s64 smax_val = src_reg->smax_value; 9646 u64 umin_val = src_reg->umin_value; 9647 u64 umax_val = src_reg->umax_value; 9648 9649 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 9650 signed_add_overflows(dst_reg->smax_value, smax_val)) { 9651 dst_reg->smin_value = S64_MIN; 9652 dst_reg->smax_value = S64_MAX; 9653 } else { 9654 dst_reg->smin_value += smin_val; 9655 dst_reg->smax_value += smax_val; 9656 } 9657 if (dst_reg->umin_value + umin_val < umin_val || 9658 dst_reg->umax_value + umax_val < umax_val) { 9659 dst_reg->umin_value = 0; 9660 dst_reg->umax_value = U64_MAX; 9661 } else { 9662 dst_reg->umin_value += umin_val; 9663 dst_reg->umax_value += umax_val; 9664 } 9665 } 9666 9667 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 9668 struct bpf_reg_state *src_reg) 9669 { 9670 s32 smin_val = src_reg->s32_min_value; 9671 s32 smax_val = src_reg->s32_max_value; 9672 u32 umin_val = src_reg->u32_min_value; 9673 u32 umax_val = src_reg->u32_max_value; 9674 9675 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 9676 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 9677 /* Overflow possible, we know nothing */ 9678 dst_reg->s32_min_value = S32_MIN; 9679 dst_reg->s32_max_value = S32_MAX; 9680 } else { 9681 dst_reg->s32_min_value -= smax_val; 9682 dst_reg->s32_max_value -= smin_val; 9683 } 9684 if (dst_reg->u32_min_value < umax_val) { 9685 /* Overflow possible, we know nothing */ 9686 dst_reg->u32_min_value = 0; 9687 dst_reg->u32_max_value = U32_MAX; 9688 } else { 9689 /* Cannot overflow (as long as bounds are consistent) */ 9690 dst_reg->u32_min_value -= umax_val; 9691 dst_reg->u32_max_value -= umin_val; 9692 } 9693 } 9694 9695 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 9696 struct bpf_reg_state *src_reg) 9697 { 9698 s64 smin_val = src_reg->smin_value; 9699 s64 smax_val = src_reg->smax_value; 9700 u64 umin_val = src_reg->umin_value; 9701 u64 umax_val = src_reg->umax_value; 9702 9703 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 9704 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 9705 /* Overflow possible, we know nothing */ 9706 dst_reg->smin_value = S64_MIN; 9707 dst_reg->smax_value = S64_MAX; 9708 } else { 9709 dst_reg->smin_value -= smax_val; 9710 dst_reg->smax_value -= smin_val; 9711 } 9712 if (dst_reg->umin_value < umax_val) { 9713 /* Overflow possible, we know nothing */ 9714 dst_reg->umin_value = 0; 9715 dst_reg->umax_value = U64_MAX; 9716 } else { 9717 /* Cannot overflow (as long as bounds are consistent) */ 9718 dst_reg->umin_value -= umax_val; 9719 dst_reg->umax_value -= umin_val; 9720 } 9721 } 9722 9723 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 9724 struct bpf_reg_state *src_reg) 9725 { 9726 s32 smin_val = src_reg->s32_min_value; 9727 u32 umin_val = src_reg->u32_min_value; 9728 u32 umax_val = src_reg->u32_max_value; 9729 9730 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 9731 /* Ain't nobody got time to multiply that sign */ 9732 __mark_reg32_unbounded(dst_reg); 9733 return; 9734 } 9735 /* Both values are positive, so we can work with unsigned and 9736 * copy the result to signed (unless it exceeds S32_MAX). 9737 */ 9738 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 9739 /* Potential overflow, we know nothing */ 9740 __mark_reg32_unbounded(dst_reg); 9741 return; 9742 } 9743 dst_reg->u32_min_value *= umin_val; 9744 dst_reg->u32_max_value *= umax_val; 9745 if (dst_reg->u32_max_value > S32_MAX) { 9746 /* Overflow possible, we know nothing */ 9747 dst_reg->s32_min_value = S32_MIN; 9748 dst_reg->s32_max_value = S32_MAX; 9749 } else { 9750 dst_reg->s32_min_value = dst_reg->u32_min_value; 9751 dst_reg->s32_max_value = dst_reg->u32_max_value; 9752 } 9753 } 9754 9755 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 9756 struct bpf_reg_state *src_reg) 9757 { 9758 s64 smin_val = src_reg->smin_value; 9759 u64 umin_val = src_reg->umin_value; 9760 u64 umax_val = src_reg->umax_value; 9761 9762 if (smin_val < 0 || dst_reg->smin_value < 0) { 9763 /* Ain't nobody got time to multiply that sign */ 9764 __mark_reg64_unbounded(dst_reg); 9765 return; 9766 } 9767 /* Both values are positive, so we can work with unsigned and 9768 * copy the result to signed (unless it exceeds S64_MAX). 9769 */ 9770 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 9771 /* Potential overflow, we know nothing */ 9772 __mark_reg64_unbounded(dst_reg); 9773 return; 9774 } 9775 dst_reg->umin_value *= umin_val; 9776 dst_reg->umax_value *= umax_val; 9777 if (dst_reg->umax_value > S64_MAX) { 9778 /* Overflow possible, we know nothing */ 9779 dst_reg->smin_value = S64_MIN; 9780 dst_reg->smax_value = S64_MAX; 9781 } else { 9782 dst_reg->smin_value = dst_reg->umin_value; 9783 dst_reg->smax_value = dst_reg->umax_value; 9784 } 9785 } 9786 9787 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 9788 struct bpf_reg_state *src_reg) 9789 { 9790 bool src_known = tnum_subreg_is_const(src_reg->var_off); 9791 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 9792 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 9793 s32 smin_val = src_reg->s32_min_value; 9794 u32 umax_val = src_reg->u32_max_value; 9795 9796 if (src_known && dst_known) { 9797 __mark_reg32_known(dst_reg, var32_off.value); 9798 return; 9799 } 9800 9801 /* We get our minimum from the var_off, since that's inherently 9802 * bitwise. Our maximum is the minimum of the operands' maxima. 9803 */ 9804 dst_reg->u32_min_value = var32_off.value; 9805 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 9806 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 9807 /* Lose signed bounds when ANDing negative numbers, 9808 * ain't nobody got time for that. 9809 */ 9810 dst_reg->s32_min_value = S32_MIN; 9811 dst_reg->s32_max_value = S32_MAX; 9812 } else { 9813 /* ANDing two positives gives a positive, so safe to 9814 * cast result into s64. 9815 */ 9816 dst_reg->s32_min_value = dst_reg->u32_min_value; 9817 dst_reg->s32_max_value = dst_reg->u32_max_value; 9818 } 9819 } 9820 9821 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 9822 struct bpf_reg_state *src_reg) 9823 { 9824 bool src_known = tnum_is_const(src_reg->var_off); 9825 bool dst_known = tnum_is_const(dst_reg->var_off); 9826 s64 smin_val = src_reg->smin_value; 9827 u64 umax_val = src_reg->umax_value; 9828 9829 if (src_known && dst_known) { 9830 __mark_reg_known(dst_reg, dst_reg->var_off.value); 9831 return; 9832 } 9833 9834 /* We get our minimum from the var_off, since that's inherently 9835 * bitwise. Our maximum is the minimum of the operands' maxima. 9836 */ 9837 dst_reg->umin_value = dst_reg->var_off.value; 9838 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 9839 if (dst_reg->smin_value < 0 || smin_val < 0) { 9840 /* Lose signed bounds when ANDing negative numbers, 9841 * ain't nobody got time for that. 9842 */ 9843 dst_reg->smin_value = S64_MIN; 9844 dst_reg->smax_value = S64_MAX; 9845 } else { 9846 /* ANDing two positives gives a positive, so safe to 9847 * cast result into s64. 9848 */ 9849 dst_reg->smin_value = dst_reg->umin_value; 9850 dst_reg->smax_value = dst_reg->umax_value; 9851 } 9852 /* We may learn something more from the var_off */ 9853 __update_reg_bounds(dst_reg); 9854 } 9855 9856 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 9857 struct bpf_reg_state *src_reg) 9858 { 9859 bool src_known = tnum_subreg_is_const(src_reg->var_off); 9860 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 9861 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 9862 s32 smin_val = src_reg->s32_min_value; 9863 u32 umin_val = src_reg->u32_min_value; 9864 9865 if (src_known && dst_known) { 9866 __mark_reg32_known(dst_reg, var32_off.value); 9867 return; 9868 } 9869 9870 /* We get our maximum from the var_off, and our minimum is the 9871 * maximum of the operands' minima 9872 */ 9873 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 9874 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 9875 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 9876 /* Lose signed bounds when ORing negative numbers, 9877 * ain't nobody got time for that. 9878 */ 9879 dst_reg->s32_min_value = S32_MIN; 9880 dst_reg->s32_max_value = S32_MAX; 9881 } else { 9882 /* ORing two positives gives a positive, so safe to 9883 * cast result into s64. 9884 */ 9885 dst_reg->s32_min_value = dst_reg->u32_min_value; 9886 dst_reg->s32_max_value = dst_reg->u32_max_value; 9887 } 9888 } 9889 9890 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 9891 struct bpf_reg_state *src_reg) 9892 { 9893 bool src_known = tnum_is_const(src_reg->var_off); 9894 bool dst_known = tnum_is_const(dst_reg->var_off); 9895 s64 smin_val = src_reg->smin_value; 9896 u64 umin_val = src_reg->umin_value; 9897 9898 if (src_known && dst_known) { 9899 __mark_reg_known(dst_reg, dst_reg->var_off.value); 9900 return; 9901 } 9902 9903 /* We get our maximum from the var_off, and our minimum is the 9904 * maximum of the operands' minima 9905 */ 9906 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 9907 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 9908 if (dst_reg->smin_value < 0 || smin_val < 0) { 9909 /* Lose signed bounds when ORing negative numbers, 9910 * ain't nobody got time for that. 9911 */ 9912 dst_reg->smin_value = S64_MIN; 9913 dst_reg->smax_value = S64_MAX; 9914 } else { 9915 /* ORing two positives gives a positive, so safe to 9916 * cast result into s64. 9917 */ 9918 dst_reg->smin_value = dst_reg->umin_value; 9919 dst_reg->smax_value = dst_reg->umax_value; 9920 } 9921 /* We may learn something more from the var_off */ 9922 __update_reg_bounds(dst_reg); 9923 } 9924 9925 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 9926 struct bpf_reg_state *src_reg) 9927 { 9928 bool src_known = tnum_subreg_is_const(src_reg->var_off); 9929 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 9930 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 9931 s32 smin_val = src_reg->s32_min_value; 9932 9933 if (src_known && dst_known) { 9934 __mark_reg32_known(dst_reg, var32_off.value); 9935 return; 9936 } 9937 9938 /* We get both minimum and maximum from the var32_off. */ 9939 dst_reg->u32_min_value = var32_off.value; 9940 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 9941 9942 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 9943 /* XORing two positive sign numbers gives a positive, 9944 * so safe to cast u32 result into s32. 9945 */ 9946 dst_reg->s32_min_value = dst_reg->u32_min_value; 9947 dst_reg->s32_max_value = dst_reg->u32_max_value; 9948 } else { 9949 dst_reg->s32_min_value = S32_MIN; 9950 dst_reg->s32_max_value = S32_MAX; 9951 } 9952 } 9953 9954 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 9955 struct bpf_reg_state *src_reg) 9956 { 9957 bool src_known = tnum_is_const(src_reg->var_off); 9958 bool dst_known = tnum_is_const(dst_reg->var_off); 9959 s64 smin_val = src_reg->smin_value; 9960 9961 if (src_known && dst_known) { 9962 /* dst_reg->var_off.value has been updated earlier */ 9963 __mark_reg_known(dst_reg, dst_reg->var_off.value); 9964 return; 9965 } 9966 9967 /* We get both minimum and maximum from the var_off. */ 9968 dst_reg->umin_value = dst_reg->var_off.value; 9969 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 9970 9971 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 9972 /* XORing two positive sign numbers gives a positive, 9973 * so safe to cast u64 result into s64. 9974 */ 9975 dst_reg->smin_value = dst_reg->umin_value; 9976 dst_reg->smax_value = dst_reg->umax_value; 9977 } else { 9978 dst_reg->smin_value = S64_MIN; 9979 dst_reg->smax_value = S64_MAX; 9980 } 9981 9982 __update_reg_bounds(dst_reg); 9983 } 9984 9985 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 9986 u64 umin_val, u64 umax_val) 9987 { 9988 /* We lose all sign bit information (except what we can pick 9989 * up from var_off) 9990 */ 9991 dst_reg->s32_min_value = S32_MIN; 9992 dst_reg->s32_max_value = S32_MAX; 9993 /* If we might shift our top bit out, then we know nothing */ 9994 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 9995 dst_reg->u32_min_value = 0; 9996 dst_reg->u32_max_value = U32_MAX; 9997 } else { 9998 dst_reg->u32_min_value <<= umin_val; 9999 dst_reg->u32_max_value <<= umax_val; 10000 } 10001 } 10002 10003 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10004 struct bpf_reg_state *src_reg) 10005 { 10006 u32 umax_val = src_reg->u32_max_value; 10007 u32 umin_val = src_reg->u32_min_value; 10008 /* u32 alu operation will zext upper bits */ 10009 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10010 10011 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10012 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 10013 /* Not required but being careful mark reg64 bounds as unknown so 10014 * that we are forced to pick them up from tnum and zext later and 10015 * if some path skips this step we are still safe. 10016 */ 10017 __mark_reg64_unbounded(dst_reg); 10018 __update_reg32_bounds(dst_reg); 10019 } 10020 10021 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 10022 u64 umin_val, u64 umax_val) 10023 { 10024 /* Special case <<32 because it is a common compiler pattern to sign 10025 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 10026 * positive we know this shift will also be positive so we can track 10027 * bounds correctly. Otherwise we lose all sign bit information except 10028 * what we can pick up from var_off. Perhaps we can generalize this 10029 * later to shifts of any length. 10030 */ 10031 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 10032 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 10033 else 10034 dst_reg->smax_value = S64_MAX; 10035 10036 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 10037 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 10038 else 10039 dst_reg->smin_value = S64_MIN; 10040 10041 /* If we might shift our top bit out, then we know nothing */ 10042 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 10043 dst_reg->umin_value = 0; 10044 dst_reg->umax_value = U64_MAX; 10045 } else { 10046 dst_reg->umin_value <<= umin_val; 10047 dst_reg->umax_value <<= umax_val; 10048 } 10049 } 10050 10051 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 10052 struct bpf_reg_state *src_reg) 10053 { 10054 u64 umax_val = src_reg->umax_value; 10055 u64 umin_val = src_reg->umin_value; 10056 10057 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 10058 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 10059 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10060 10061 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 10062 /* We may learn something more from the var_off */ 10063 __update_reg_bounds(dst_reg); 10064 } 10065 10066 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 10067 struct bpf_reg_state *src_reg) 10068 { 10069 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10070 u32 umax_val = src_reg->u32_max_value; 10071 u32 umin_val = src_reg->u32_min_value; 10072 10073 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10074 * be negative, then either: 10075 * 1) src_reg might be zero, so the sign bit of the result is 10076 * unknown, so we lose our signed bounds 10077 * 2) it's known negative, thus the unsigned bounds capture the 10078 * signed bounds 10079 * 3) the signed bounds cross zero, so they tell us nothing 10080 * about the result 10081 * If the value in dst_reg is known nonnegative, then again the 10082 * unsigned bounds capture the signed bounds. 10083 * Thus, in all cases it suffices to blow away our signed bounds 10084 * and rely on inferring new ones from the unsigned bounds and 10085 * var_off of the result. 10086 */ 10087 dst_reg->s32_min_value = S32_MIN; 10088 dst_reg->s32_max_value = S32_MAX; 10089 10090 dst_reg->var_off = tnum_rshift(subreg, umin_val); 10091 dst_reg->u32_min_value >>= umax_val; 10092 dst_reg->u32_max_value >>= umin_val; 10093 10094 __mark_reg64_unbounded(dst_reg); 10095 __update_reg32_bounds(dst_reg); 10096 } 10097 10098 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 10099 struct bpf_reg_state *src_reg) 10100 { 10101 u64 umax_val = src_reg->umax_value; 10102 u64 umin_val = src_reg->umin_value; 10103 10104 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10105 * be negative, then either: 10106 * 1) src_reg might be zero, so the sign bit of the result is 10107 * unknown, so we lose our signed bounds 10108 * 2) it's known negative, thus the unsigned bounds capture the 10109 * signed bounds 10110 * 3) the signed bounds cross zero, so they tell us nothing 10111 * about the result 10112 * If the value in dst_reg is known nonnegative, then again the 10113 * unsigned bounds capture the signed bounds. 10114 * Thus, in all cases it suffices to blow away our signed bounds 10115 * and rely on inferring new ones from the unsigned bounds and 10116 * var_off of the result. 10117 */ 10118 dst_reg->smin_value = S64_MIN; 10119 dst_reg->smax_value = S64_MAX; 10120 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 10121 dst_reg->umin_value >>= umax_val; 10122 dst_reg->umax_value >>= umin_val; 10123 10124 /* Its not easy to operate on alu32 bounds here because it depends 10125 * on bits being shifted in. Take easy way out and mark unbounded 10126 * so we can recalculate later from tnum. 10127 */ 10128 __mark_reg32_unbounded(dst_reg); 10129 __update_reg_bounds(dst_reg); 10130 } 10131 10132 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 10133 struct bpf_reg_state *src_reg) 10134 { 10135 u64 umin_val = src_reg->u32_min_value; 10136 10137 /* Upon reaching here, src_known is true and 10138 * umax_val is equal to umin_val. 10139 */ 10140 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 10141 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 10142 10143 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 10144 10145 /* blow away the dst_reg umin_value/umax_value and rely on 10146 * dst_reg var_off to refine the result. 10147 */ 10148 dst_reg->u32_min_value = 0; 10149 dst_reg->u32_max_value = U32_MAX; 10150 10151 __mark_reg64_unbounded(dst_reg); 10152 __update_reg32_bounds(dst_reg); 10153 } 10154 10155 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 10156 struct bpf_reg_state *src_reg) 10157 { 10158 u64 umin_val = src_reg->umin_value; 10159 10160 /* Upon reaching here, src_known is true and umax_val is equal 10161 * to umin_val. 10162 */ 10163 dst_reg->smin_value >>= umin_val; 10164 dst_reg->smax_value >>= umin_val; 10165 10166 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 10167 10168 /* blow away the dst_reg umin_value/umax_value and rely on 10169 * dst_reg var_off to refine the result. 10170 */ 10171 dst_reg->umin_value = 0; 10172 dst_reg->umax_value = U64_MAX; 10173 10174 /* Its not easy to operate on alu32 bounds here because it depends 10175 * on bits being shifted in from upper 32-bits. Take easy way out 10176 * and mark unbounded so we can recalculate later from tnum. 10177 */ 10178 __mark_reg32_unbounded(dst_reg); 10179 __update_reg_bounds(dst_reg); 10180 } 10181 10182 /* WARNING: This function does calculations on 64-bit values, but the actual 10183 * execution may occur on 32-bit values. Therefore, things like bitshifts 10184 * need extra checks in the 32-bit case. 10185 */ 10186 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 10187 struct bpf_insn *insn, 10188 struct bpf_reg_state *dst_reg, 10189 struct bpf_reg_state src_reg) 10190 { 10191 struct bpf_reg_state *regs = cur_regs(env); 10192 u8 opcode = BPF_OP(insn->code); 10193 bool src_known; 10194 s64 smin_val, smax_val; 10195 u64 umin_val, umax_val; 10196 s32 s32_min_val, s32_max_val; 10197 u32 u32_min_val, u32_max_val; 10198 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 10199 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 10200 int ret; 10201 10202 smin_val = src_reg.smin_value; 10203 smax_val = src_reg.smax_value; 10204 umin_val = src_reg.umin_value; 10205 umax_val = src_reg.umax_value; 10206 10207 s32_min_val = src_reg.s32_min_value; 10208 s32_max_val = src_reg.s32_max_value; 10209 u32_min_val = src_reg.u32_min_value; 10210 u32_max_val = src_reg.u32_max_value; 10211 10212 if (alu32) { 10213 src_known = tnum_subreg_is_const(src_reg.var_off); 10214 if ((src_known && 10215 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 10216 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 10217 /* Taint dst register if offset had invalid bounds 10218 * derived from e.g. dead branches. 10219 */ 10220 __mark_reg_unknown(env, dst_reg); 10221 return 0; 10222 } 10223 } else { 10224 src_known = tnum_is_const(src_reg.var_off); 10225 if ((src_known && 10226 (smin_val != smax_val || umin_val != umax_val)) || 10227 smin_val > smax_val || umin_val > umax_val) { 10228 /* Taint dst register if offset had invalid bounds 10229 * derived from e.g. dead branches. 10230 */ 10231 __mark_reg_unknown(env, dst_reg); 10232 return 0; 10233 } 10234 } 10235 10236 if (!src_known && 10237 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 10238 __mark_reg_unknown(env, dst_reg); 10239 return 0; 10240 } 10241 10242 if (sanitize_needed(opcode)) { 10243 ret = sanitize_val_alu(env, insn); 10244 if (ret < 0) 10245 return sanitize_err(env, insn, ret, NULL, NULL); 10246 } 10247 10248 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 10249 * There are two classes of instructions: The first class we track both 10250 * alu32 and alu64 sign/unsigned bounds independently this provides the 10251 * greatest amount of precision when alu operations are mixed with jmp32 10252 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 10253 * and BPF_OR. This is possible because these ops have fairly easy to 10254 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 10255 * See alu32 verifier tests for examples. The second class of 10256 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 10257 * with regards to tracking sign/unsigned bounds because the bits may 10258 * cross subreg boundaries in the alu64 case. When this happens we mark 10259 * the reg unbounded in the subreg bound space and use the resulting 10260 * tnum to calculate an approximation of the sign/unsigned bounds. 10261 */ 10262 switch (opcode) { 10263 case BPF_ADD: 10264 scalar32_min_max_add(dst_reg, &src_reg); 10265 scalar_min_max_add(dst_reg, &src_reg); 10266 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 10267 break; 10268 case BPF_SUB: 10269 scalar32_min_max_sub(dst_reg, &src_reg); 10270 scalar_min_max_sub(dst_reg, &src_reg); 10271 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 10272 break; 10273 case BPF_MUL: 10274 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 10275 scalar32_min_max_mul(dst_reg, &src_reg); 10276 scalar_min_max_mul(dst_reg, &src_reg); 10277 break; 10278 case BPF_AND: 10279 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 10280 scalar32_min_max_and(dst_reg, &src_reg); 10281 scalar_min_max_and(dst_reg, &src_reg); 10282 break; 10283 case BPF_OR: 10284 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 10285 scalar32_min_max_or(dst_reg, &src_reg); 10286 scalar_min_max_or(dst_reg, &src_reg); 10287 break; 10288 case BPF_XOR: 10289 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 10290 scalar32_min_max_xor(dst_reg, &src_reg); 10291 scalar_min_max_xor(dst_reg, &src_reg); 10292 break; 10293 case BPF_LSH: 10294 if (umax_val >= insn_bitness) { 10295 /* Shifts greater than 31 or 63 are undefined. 10296 * This includes shifts by a negative number. 10297 */ 10298 mark_reg_unknown(env, regs, insn->dst_reg); 10299 break; 10300 } 10301 if (alu32) 10302 scalar32_min_max_lsh(dst_reg, &src_reg); 10303 else 10304 scalar_min_max_lsh(dst_reg, &src_reg); 10305 break; 10306 case BPF_RSH: 10307 if (umax_val >= insn_bitness) { 10308 /* Shifts greater than 31 or 63 are undefined. 10309 * This includes shifts by a negative number. 10310 */ 10311 mark_reg_unknown(env, regs, insn->dst_reg); 10312 break; 10313 } 10314 if (alu32) 10315 scalar32_min_max_rsh(dst_reg, &src_reg); 10316 else 10317 scalar_min_max_rsh(dst_reg, &src_reg); 10318 break; 10319 case BPF_ARSH: 10320 if (umax_val >= insn_bitness) { 10321 /* Shifts greater than 31 or 63 are undefined. 10322 * This includes shifts by a negative number. 10323 */ 10324 mark_reg_unknown(env, regs, insn->dst_reg); 10325 break; 10326 } 10327 if (alu32) 10328 scalar32_min_max_arsh(dst_reg, &src_reg); 10329 else 10330 scalar_min_max_arsh(dst_reg, &src_reg); 10331 break; 10332 default: 10333 mark_reg_unknown(env, regs, insn->dst_reg); 10334 break; 10335 } 10336 10337 /* ALU32 ops are zero extended into 64bit register */ 10338 if (alu32) 10339 zext_32_to_64(dst_reg); 10340 reg_bounds_sync(dst_reg); 10341 return 0; 10342 } 10343 10344 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 10345 * and var_off. 10346 */ 10347 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 10348 struct bpf_insn *insn) 10349 { 10350 struct bpf_verifier_state *vstate = env->cur_state; 10351 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10352 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 10353 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 10354 u8 opcode = BPF_OP(insn->code); 10355 int err; 10356 10357 dst_reg = ®s[insn->dst_reg]; 10358 src_reg = NULL; 10359 if (dst_reg->type != SCALAR_VALUE) 10360 ptr_reg = dst_reg; 10361 else 10362 /* Make sure ID is cleared otherwise dst_reg min/max could be 10363 * incorrectly propagated into other registers by find_equal_scalars() 10364 */ 10365 dst_reg->id = 0; 10366 if (BPF_SRC(insn->code) == BPF_X) { 10367 src_reg = ®s[insn->src_reg]; 10368 if (src_reg->type != SCALAR_VALUE) { 10369 if (dst_reg->type != SCALAR_VALUE) { 10370 /* Combining two pointers by any ALU op yields 10371 * an arbitrary scalar. Disallow all math except 10372 * pointer subtraction 10373 */ 10374 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10375 mark_reg_unknown(env, regs, insn->dst_reg); 10376 return 0; 10377 } 10378 verbose(env, "R%d pointer %s pointer prohibited\n", 10379 insn->dst_reg, 10380 bpf_alu_string[opcode >> 4]); 10381 return -EACCES; 10382 } else { 10383 /* scalar += pointer 10384 * This is legal, but we have to reverse our 10385 * src/dest handling in computing the range 10386 */ 10387 err = mark_chain_precision(env, insn->dst_reg); 10388 if (err) 10389 return err; 10390 return adjust_ptr_min_max_vals(env, insn, 10391 src_reg, dst_reg); 10392 } 10393 } else if (ptr_reg) { 10394 /* pointer += scalar */ 10395 err = mark_chain_precision(env, insn->src_reg); 10396 if (err) 10397 return err; 10398 return adjust_ptr_min_max_vals(env, insn, 10399 dst_reg, src_reg); 10400 } else if (dst_reg->precise) { 10401 /* if dst_reg is precise, src_reg should be precise as well */ 10402 err = mark_chain_precision(env, insn->src_reg); 10403 if (err) 10404 return err; 10405 } 10406 } else { 10407 /* Pretend the src is a reg with a known value, since we only 10408 * need to be able to read from this state. 10409 */ 10410 off_reg.type = SCALAR_VALUE; 10411 __mark_reg_known(&off_reg, insn->imm); 10412 src_reg = &off_reg; 10413 if (ptr_reg) /* pointer += K */ 10414 return adjust_ptr_min_max_vals(env, insn, 10415 ptr_reg, src_reg); 10416 } 10417 10418 /* Got here implies adding two SCALAR_VALUEs */ 10419 if (WARN_ON_ONCE(ptr_reg)) { 10420 print_verifier_state(env, state, true); 10421 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 10422 return -EINVAL; 10423 } 10424 if (WARN_ON(!src_reg)) { 10425 print_verifier_state(env, state, true); 10426 verbose(env, "verifier internal error: no src_reg\n"); 10427 return -EINVAL; 10428 } 10429 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 10430 } 10431 10432 /* check validity of 32-bit and 64-bit arithmetic operations */ 10433 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 10434 { 10435 struct bpf_reg_state *regs = cur_regs(env); 10436 u8 opcode = BPF_OP(insn->code); 10437 int err; 10438 10439 if (opcode == BPF_END || opcode == BPF_NEG) { 10440 if (opcode == BPF_NEG) { 10441 if (BPF_SRC(insn->code) != BPF_K || 10442 insn->src_reg != BPF_REG_0 || 10443 insn->off != 0 || insn->imm != 0) { 10444 verbose(env, "BPF_NEG uses reserved fields\n"); 10445 return -EINVAL; 10446 } 10447 } else { 10448 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 10449 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 10450 BPF_CLASS(insn->code) == BPF_ALU64) { 10451 verbose(env, "BPF_END uses reserved fields\n"); 10452 return -EINVAL; 10453 } 10454 } 10455 10456 /* check src operand */ 10457 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10458 if (err) 10459 return err; 10460 10461 if (is_pointer_value(env, insn->dst_reg)) { 10462 verbose(env, "R%d pointer arithmetic prohibited\n", 10463 insn->dst_reg); 10464 return -EACCES; 10465 } 10466 10467 /* check dest operand */ 10468 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10469 if (err) 10470 return err; 10471 10472 } else if (opcode == BPF_MOV) { 10473 10474 if (BPF_SRC(insn->code) == BPF_X) { 10475 if (insn->imm != 0 || insn->off != 0) { 10476 verbose(env, "BPF_MOV uses reserved fields\n"); 10477 return -EINVAL; 10478 } 10479 10480 /* check src operand */ 10481 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10482 if (err) 10483 return err; 10484 } else { 10485 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10486 verbose(env, "BPF_MOV uses reserved fields\n"); 10487 return -EINVAL; 10488 } 10489 } 10490 10491 /* check dest operand, mark as required later */ 10492 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10493 if (err) 10494 return err; 10495 10496 if (BPF_SRC(insn->code) == BPF_X) { 10497 struct bpf_reg_state *src_reg = regs + insn->src_reg; 10498 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 10499 10500 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10501 /* case: R1 = R2 10502 * copy register state to dest reg 10503 */ 10504 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 10505 /* Assign src and dst registers the same ID 10506 * that will be used by find_equal_scalars() 10507 * to propagate min/max range. 10508 */ 10509 src_reg->id = ++env->id_gen; 10510 *dst_reg = *src_reg; 10511 dst_reg->live |= REG_LIVE_WRITTEN; 10512 dst_reg->subreg_def = DEF_NOT_SUBREG; 10513 } else { 10514 /* R1 = (u32) R2 */ 10515 if (is_pointer_value(env, insn->src_reg)) { 10516 verbose(env, 10517 "R%d partial copy of pointer\n", 10518 insn->src_reg); 10519 return -EACCES; 10520 } else if (src_reg->type == SCALAR_VALUE) { 10521 *dst_reg = *src_reg; 10522 /* Make sure ID is cleared otherwise 10523 * dst_reg min/max could be incorrectly 10524 * propagated into src_reg by find_equal_scalars() 10525 */ 10526 dst_reg->id = 0; 10527 dst_reg->live |= REG_LIVE_WRITTEN; 10528 dst_reg->subreg_def = env->insn_idx + 1; 10529 } else { 10530 mark_reg_unknown(env, regs, 10531 insn->dst_reg); 10532 } 10533 zext_32_to_64(dst_reg); 10534 reg_bounds_sync(dst_reg); 10535 } 10536 } else { 10537 /* case: R = imm 10538 * remember the value we stored into this reg 10539 */ 10540 /* clear any state __mark_reg_known doesn't set */ 10541 mark_reg_unknown(env, regs, insn->dst_reg); 10542 regs[insn->dst_reg].type = SCALAR_VALUE; 10543 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10544 __mark_reg_known(regs + insn->dst_reg, 10545 insn->imm); 10546 } else { 10547 __mark_reg_known(regs + insn->dst_reg, 10548 (u32)insn->imm); 10549 } 10550 } 10551 10552 } else if (opcode > BPF_END) { 10553 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 10554 return -EINVAL; 10555 10556 } else { /* all other ALU ops: and, sub, xor, add, ... */ 10557 10558 if (BPF_SRC(insn->code) == BPF_X) { 10559 if (insn->imm != 0 || insn->off != 0) { 10560 verbose(env, "BPF_ALU uses reserved fields\n"); 10561 return -EINVAL; 10562 } 10563 /* check src1 operand */ 10564 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10565 if (err) 10566 return err; 10567 } else { 10568 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10569 verbose(env, "BPF_ALU uses reserved fields\n"); 10570 return -EINVAL; 10571 } 10572 } 10573 10574 /* check src2 operand */ 10575 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10576 if (err) 10577 return err; 10578 10579 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 10580 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 10581 verbose(env, "div by zero\n"); 10582 return -EINVAL; 10583 } 10584 10585 if ((opcode == BPF_LSH || opcode == BPF_RSH || 10586 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 10587 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 10588 10589 if (insn->imm < 0 || insn->imm >= size) { 10590 verbose(env, "invalid shift %d\n", insn->imm); 10591 return -EINVAL; 10592 } 10593 } 10594 10595 /* check dest operand */ 10596 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10597 if (err) 10598 return err; 10599 10600 return adjust_reg_min_max_vals(env, insn); 10601 } 10602 10603 return 0; 10604 } 10605 10606 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 10607 struct bpf_reg_state *dst_reg, 10608 enum bpf_reg_type type, 10609 bool range_right_open) 10610 { 10611 struct bpf_func_state *state; 10612 struct bpf_reg_state *reg; 10613 int new_range; 10614 10615 if (dst_reg->off < 0 || 10616 (dst_reg->off == 0 && range_right_open)) 10617 /* This doesn't give us any range */ 10618 return; 10619 10620 if (dst_reg->umax_value > MAX_PACKET_OFF || 10621 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 10622 /* Risk of overflow. For instance, ptr + (1<<63) may be less 10623 * than pkt_end, but that's because it's also less than pkt. 10624 */ 10625 return; 10626 10627 new_range = dst_reg->off; 10628 if (range_right_open) 10629 new_range++; 10630 10631 /* Examples for register markings: 10632 * 10633 * pkt_data in dst register: 10634 * 10635 * r2 = r3; 10636 * r2 += 8; 10637 * if (r2 > pkt_end) goto <handle exception> 10638 * <access okay> 10639 * 10640 * r2 = r3; 10641 * r2 += 8; 10642 * if (r2 < pkt_end) goto <access okay> 10643 * <handle exception> 10644 * 10645 * Where: 10646 * r2 == dst_reg, pkt_end == src_reg 10647 * r2=pkt(id=n,off=8,r=0) 10648 * r3=pkt(id=n,off=0,r=0) 10649 * 10650 * pkt_data in src register: 10651 * 10652 * r2 = r3; 10653 * r2 += 8; 10654 * if (pkt_end >= r2) goto <access okay> 10655 * <handle exception> 10656 * 10657 * r2 = r3; 10658 * r2 += 8; 10659 * if (pkt_end <= r2) goto <handle exception> 10660 * <access okay> 10661 * 10662 * Where: 10663 * pkt_end == dst_reg, r2 == src_reg 10664 * r2=pkt(id=n,off=8,r=0) 10665 * r3=pkt(id=n,off=0,r=0) 10666 * 10667 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 10668 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 10669 * and [r3, r3 + 8-1) respectively is safe to access depending on 10670 * the check. 10671 */ 10672 10673 /* If our ids match, then we must have the same max_value. And we 10674 * don't care about the other reg's fixed offset, since if it's too big 10675 * the range won't allow anything. 10676 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 10677 */ 10678 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10679 if (reg->type == type && reg->id == dst_reg->id) 10680 /* keep the maximum range already checked */ 10681 reg->range = max(reg->range, new_range); 10682 })); 10683 } 10684 10685 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 10686 { 10687 struct tnum subreg = tnum_subreg(reg->var_off); 10688 s32 sval = (s32)val; 10689 10690 switch (opcode) { 10691 case BPF_JEQ: 10692 if (tnum_is_const(subreg)) 10693 return !!tnum_equals_const(subreg, val); 10694 break; 10695 case BPF_JNE: 10696 if (tnum_is_const(subreg)) 10697 return !tnum_equals_const(subreg, val); 10698 break; 10699 case BPF_JSET: 10700 if ((~subreg.mask & subreg.value) & val) 10701 return 1; 10702 if (!((subreg.mask | subreg.value) & val)) 10703 return 0; 10704 break; 10705 case BPF_JGT: 10706 if (reg->u32_min_value > val) 10707 return 1; 10708 else if (reg->u32_max_value <= val) 10709 return 0; 10710 break; 10711 case BPF_JSGT: 10712 if (reg->s32_min_value > sval) 10713 return 1; 10714 else if (reg->s32_max_value <= sval) 10715 return 0; 10716 break; 10717 case BPF_JLT: 10718 if (reg->u32_max_value < val) 10719 return 1; 10720 else if (reg->u32_min_value >= val) 10721 return 0; 10722 break; 10723 case BPF_JSLT: 10724 if (reg->s32_max_value < sval) 10725 return 1; 10726 else if (reg->s32_min_value >= sval) 10727 return 0; 10728 break; 10729 case BPF_JGE: 10730 if (reg->u32_min_value >= val) 10731 return 1; 10732 else if (reg->u32_max_value < val) 10733 return 0; 10734 break; 10735 case BPF_JSGE: 10736 if (reg->s32_min_value >= sval) 10737 return 1; 10738 else if (reg->s32_max_value < sval) 10739 return 0; 10740 break; 10741 case BPF_JLE: 10742 if (reg->u32_max_value <= val) 10743 return 1; 10744 else if (reg->u32_min_value > val) 10745 return 0; 10746 break; 10747 case BPF_JSLE: 10748 if (reg->s32_max_value <= sval) 10749 return 1; 10750 else if (reg->s32_min_value > sval) 10751 return 0; 10752 break; 10753 } 10754 10755 return -1; 10756 } 10757 10758 10759 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 10760 { 10761 s64 sval = (s64)val; 10762 10763 switch (opcode) { 10764 case BPF_JEQ: 10765 if (tnum_is_const(reg->var_off)) 10766 return !!tnum_equals_const(reg->var_off, val); 10767 break; 10768 case BPF_JNE: 10769 if (tnum_is_const(reg->var_off)) 10770 return !tnum_equals_const(reg->var_off, val); 10771 break; 10772 case BPF_JSET: 10773 if ((~reg->var_off.mask & reg->var_off.value) & val) 10774 return 1; 10775 if (!((reg->var_off.mask | reg->var_off.value) & val)) 10776 return 0; 10777 break; 10778 case BPF_JGT: 10779 if (reg->umin_value > val) 10780 return 1; 10781 else if (reg->umax_value <= val) 10782 return 0; 10783 break; 10784 case BPF_JSGT: 10785 if (reg->smin_value > sval) 10786 return 1; 10787 else if (reg->smax_value <= sval) 10788 return 0; 10789 break; 10790 case BPF_JLT: 10791 if (reg->umax_value < val) 10792 return 1; 10793 else if (reg->umin_value >= val) 10794 return 0; 10795 break; 10796 case BPF_JSLT: 10797 if (reg->smax_value < sval) 10798 return 1; 10799 else if (reg->smin_value >= sval) 10800 return 0; 10801 break; 10802 case BPF_JGE: 10803 if (reg->umin_value >= val) 10804 return 1; 10805 else if (reg->umax_value < val) 10806 return 0; 10807 break; 10808 case BPF_JSGE: 10809 if (reg->smin_value >= sval) 10810 return 1; 10811 else if (reg->smax_value < sval) 10812 return 0; 10813 break; 10814 case BPF_JLE: 10815 if (reg->umax_value <= val) 10816 return 1; 10817 else if (reg->umin_value > val) 10818 return 0; 10819 break; 10820 case BPF_JSLE: 10821 if (reg->smax_value <= sval) 10822 return 1; 10823 else if (reg->smin_value > sval) 10824 return 0; 10825 break; 10826 } 10827 10828 return -1; 10829 } 10830 10831 /* compute branch direction of the expression "if (reg opcode val) goto target;" 10832 * and return: 10833 * 1 - branch will be taken and "goto target" will be executed 10834 * 0 - branch will not be taken and fall-through to next insn 10835 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 10836 * range [0,10] 10837 */ 10838 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 10839 bool is_jmp32) 10840 { 10841 if (__is_pointer_value(false, reg)) { 10842 if (!reg_type_not_null(reg->type)) 10843 return -1; 10844 10845 /* If pointer is valid tests against zero will fail so we can 10846 * use this to direct branch taken. 10847 */ 10848 if (val != 0) 10849 return -1; 10850 10851 switch (opcode) { 10852 case BPF_JEQ: 10853 return 0; 10854 case BPF_JNE: 10855 return 1; 10856 default: 10857 return -1; 10858 } 10859 } 10860 10861 if (is_jmp32) 10862 return is_branch32_taken(reg, val, opcode); 10863 return is_branch64_taken(reg, val, opcode); 10864 } 10865 10866 static int flip_opcode(u32 opcode) 10867 { 10868 /* How can we transform "a <op> b" into "b <op> a"? */ 10869 static const u8 opcode_flip[16] = { 10870 /* these stay the same */ 10871 [BPF_JEQ >> 4] = BPF_JEQ, 10872 [BPF_JNE >> 4] = BPF_JNE, 10873 [BPF_JSET >> 4] = BPF_JSET, 10874 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 10875 [BPF_JGE >> 4] = BPF_JLE, 10876 [BPF_JGT >> 4] = BPF_JLT, 10877 [BPF_JLE >> 4] = BPF_JGE, 10878 [BPF_JLT >> 4] = BPF_JGT, 10879 [BPF_JSGE >> 4] = BPF_JSLE, 10880 [BPF_JSGT >> 4] = BPF_JSLT, 10881 [BPF_JSLE >> 4] = BPF_JSGE, 10882 [BPF_JSLT >> 4] = BPF_JSGT 10883 }; 10884 return opcode_flip[opcode >> 4]; 10885 } 10886 10887 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 10888 struct bpf_reg_state *src_reg, 10889 u8 opcode) 10890 { 10891 struct bpf_reg_state *pkt; 10892 10893 if (src_reg->type == PTR_TO_PACKET_END) { 10894 pkt = dst_reg; 10895 } else if (dst_reg->type == PTR_TO_PACKET_END) { 10896 pkt = src_reg; 10897 opcode = flip_opcode(opcode); 10898 } else { 10899 return -1; 10900 } 10901 10902 if (pkt->range >= 0) 10903 return -1; 10904 10905 switch (opcode) { 10906 case BPF_JLE: 10907 /* pkt <= pkt_end */ 10908 fallthrough; 10909 case BPF_JGT: 10910 /* pkt > pkt_end */ 10911 if (pkt->range == BEYOND_PKT_END) 10912 /* pkt has at last one extra byte beyond pkt_end */ 10913 return opcode == BPF_JGT; 10914 break; 10915 case BPF_JLT: 10916 /* pkt < pkt_end */ 10917 fallthrough; 10918 case BPF_JGE: 10919 /* pkt >= pkt_end */ 10920 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 10921 return opcode == BPF_JGE; 10922 break; 10923 } 10924 return -1; 10925 } 10926 10927 /* Adjusts the register min/max values in the case that the dst_reg is the 10928 * variable register that we are working on, and src_reg is a constant or we're 10929 * simply doing a BPF_K check. 10930 * In JEQ/JNE cases we also adjust the var_off values. 10931 */ 10932 static void reg_set_min_max(struct bpf_reg_state *true_reg, 10933 struct bpf_reg_state *false_reg, 10934 u64 val, u32 val32, 10935 u8 opcode, bool is_jmp32) 10936 { 10937 struct tnum false_32off = tnum_subreg(false_reg->var_off); 10938 struct tnum false_64off = false_reg->var_off; 10939 struct tnum true_32off = tnum_subreg(true_reg->var_off); 10940 struct tnum true_64off = true_reg->var_off; 10941 s64 sval = (s64)val; 10942 s32 sval32 = (s32)val32; 10943 10944 /* If the dst_reg is a pointer, we can't learn anything about its 10945 * variable offset from the compare (unless src_reg were a pointer into 10946 * the same object, but we don't bother with that. 10947 * Since false_reg and true_reg have the same type by construction, we 10948 * only need to check one of them for pointerness. 10949 */ 10950 if (__is_pointer_value(false, false_reg)) 10951 return; 10952 10953 switch (opcode) { 10954 /* JEQ/JNE comparison doesn't change the register equivalence. 10955 * 10956 * r1 = r2; 10957 * if (r1 == 42) goto label; 10958 * ... 10959 * label: // here both r1 and r2 are known to be 42. 10960 * 10961 * Hence when marking register as known preserve it's ID. 10962 */ 10963 case BPF_JEQ: 10964 if (is_jmp32) { 10965 __mark_reg32_known(true_reg, val32); 10966 true_32off = tnum_subreg(true_reg->var_off); 10967 } else { 10968 ___mark_reg_known(true_reg, val); 10969 true_64off = true_reg->var_off; 10970 } 10971 break; 10972 case BPF_JNE: 10973 if (is_jmp32) { 10974 __mark_reg32_known(false_reg, val32); 10975 false_32off = tnum_subreg(false_reg->var_off); 10976 } else { 10977 ___mark_reg_known(false_reg, val); 10978 false_64off = false_reg->var_off; 10979 } 10980 break; 10981 case BPF_JSET: 10982 if (is_jmp32) { 10983 false_32off = tnum_and(false_32off, tnum_const(~val32)); 10984 if (is_power_of_2(val32)) 10985 true_32off = tnum_or(true_32off, 10986 tnum_const(val32)); 10987 } else { 10988 false_64off = tnum_and(false_64off, tnum_const(~val)); 10989 if (is_power_of_2(val)) 10990 true_64off = tnum_or(true_64off, 10991 tnum_const(val)); 10992 } 10993 break; 10994 case BPF_JGE: 10995 case BPF_JGT: 10996 { 10997 if (is_jmp32) { 10998 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 10999 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 11000 11001 false_reg->u32_max_value = min(false_reg->u32_max_value, 11002 false_umax); 11003 true_reg->u32_min_value = max(true_reg->u32_min_value, 11004 true_umin); 11005 } else { 11006 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 11007 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 11008 11009 false_reg->umax_value = min(false_reg->umax_value, false_umax); 11010 true_reg->umin_value = max(true_reg->umin_value, true_umin); 11011 } 11012 break; 11013 } 11014 case BPF_JSGE: 11015 case BPF_JSGT: 11016 { 11017 if (is_jmp32) { 11018 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 11019 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 11020 11021 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 11022 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 11023 } else { 11024 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 11025 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 11026 11027 false_reg->smax_value = min(false_reg->smax_value, false_smax); 11028 true_reg->smin_value = max(true_reg->smin_value, true_smin); 11029 } 11030 break; 11031 } 11032 case BPF_JLE: 11033 case BPF_JLT: 11034 { 11035 if (is_jmp32) { 11036 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 11037 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 11038 11039 false_reg->u32_min_value = max(false_reg->u32_min_value, 11040 false_umin); 11041 true_reg->u32_max_value = min(true_reg->u32_max_value, 11042 true_umax); 11043 } else { 11044 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 11045 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 11046 11047 false_reg->umin_value = max(false_reg->umin_value, false_umin); 11048 true_reg->umax_value = min(true_reg->umax_value, true_umax); 11049 } 11050 break; 11051 } 11052 case BPF_JSLE: 11053 case BPF_JSLT: 11054 { 11055 if (is_jmp32) { 11056 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 11057 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 11058 11059 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 11060 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 11061 } else { 11062 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 11063 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 11064 11065 false_reg->smin_value = max(false_reg->smin_value, false_smin); 11066 true_reg->smax_value = min(true_reg->smax_value, true_smax); 11067 } 11068 break; 11069 } 11070 default: 11071 return; 11072 } 11073 11074 if (is_jmp32) { 11075 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 11076 tnum_subreg(false_32off)); 11077 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 11078 tnum_subreg(true_32off)); 11079 __reg_combine_32_into_64(false_reg); 11080 __reg_combine_32_into_64(true_reg); 11081 } else { 11082 false_reg->var_off = false_64off; 11083 true_reg->var_off = true_64off; 11084 __reg_combine_64_into_32(false_reg); 11085 __reg_combine_64_into_32(true_reg); 11086 } 11087 } 11088 11089 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 11090 * the variable reg. 11091 */ 11092 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 11093 struct bpf_reg_state *false_reg, 11094 u64 val, u32 val32, 11095 u8 opcode, bool is_jmp32) 11096 { 11097 opcode = flip_opcode(opcode); 11098 /* This uses zero as "not present in table"; luckily the zero opcode, 11099 * BPF_JA, can't get here. 11100 */ 11101 if (opcode) 11102 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 11103 } 11104 11105 /* Regs are known to be equal, so intersect their min/max/var_off */ 11106 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 11107 struct bpf_reg_state *dst_reg) 11108 { 11109 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 11110 dst_reg->umin_value); 11111 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 11112 dst_reg->umax_value); 11113 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 11114 dst_reg->smin_value); 11115 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 11116 dst_reg->smax_value); 11117 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 11118 dst_reg->var_off); 11119 reg_bounds_sync(src_reg); 11120 reg_bounds_sync(dst_reg); 11121 } 11122 11123 static void reg_combine_min_max(struct bpf_reg_state *true_src, 11124 struct bpf_reg_state *true_dst, 11125 struct bpf_reg_state *false_src, 11126 struct bpf_reg_state *false_dst, 11127 u8 opcode) 11128 { 11129 switch (opcode) { 11130 case BPF_JEQ: 11131 __reg_combine_min_max(true_src, true_dst); 11132 break; 11133 case BPF_JNE: 11134 __reg_combine_min_max(false_src, false_dst); 11135 break; 11136 } 11137 } 11138 11139 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 11140 struct bpf_reg_state *reg, u32 id, 11141 bool is_null) 11142 { 11143 if (type_may_be_null(reg->type) && reg->id == id && 11144 !WARN_ON_ONCE(!reg->id)) { 11145 /* Old offset (both fixed and variable parts) should have been 11146 * known-zero, because we don't allow pointer arithmetic on 11147 * pointers that might be NULL. If we see this happening, don't 11148 * convert the register. 11149 * 11150 * But in some cases, some helpers that return local kptrs 11151 * advance offset for the returned pointer. In those cases, it 11152 * is fine to expect to see reg->off. 11153 */ 11154 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 11155 return; 11156 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off)) 11157 return; 11158 if (is_null) { 11159 reg->type = SCALAR_VALUE; 11160 /* We don't need id and ref_obj_id from this point 11161 * onwards anymore, thus we should better reset it, 11162 * so that state pruning has chances to take effect. 11163 */ 11164 reg->id = 0; 11165 reg->ref_obj_id = 0; 11166 11167 return; 11168 } 11169 11170 mark_ptr_not_null_reg(reg); 11171 11172 if (!reg_may_point_to_spin_lock(reg)) { 11173 /* For not-NULL ptr, reg->ref_obj_id will be reset 11174 * in release_reference(). 11175 * 11176 * reg->id is still used by spin_lock ptr. Other 11177 * than spin_lock ptr type, reg->id can be reset. 11178 */ 11179 reg->id = 0; 11180 } 11181 } 11182 } 11183 11184 /* The logic is similar to find_good_pkt_pointers(), both could eventually 11185 * be folded together at some point. 11186 */ 11187 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 11188 bool is_null) 11189 { 11190 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11191 struct bpf_reg_state *regs = state->regs, *reg; 11192 u32 ref_obj_id = regs[regno].ref_obj_id; 11193 u32 id = regs[regno].id; 11194 11195 if (ref_obj_id && ref_obj_id == id && is_null) 11196 /* regs[regno] is in the " == NULL" branch. 11197 * No one could have freed the reference state before 11198 * doing the NULL check. 11199 */ 11200 WARN_ON_ONCE(release_reference_state(state, id)); 11201 11202 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11203 mark_ptr_or_null_reg(state, reg, id, is_null); 11204 })); 11205 } 11206 11207 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 11208 struct bpf_reg_state *dst_reg, 11209 struct bpf_reg_state *src_reg, 11210 struct bpf_verifier_state *this_branch, 11211 struct bpf_verifier_state *other_branch) 11212 { 11213 if (BPF_SRC(insn->code) != BPF_X) 11214 return false; 11215 11216 /* Pointers are always 64-bit. */ 11217 if (BPF_CLASS(insn->code) == BPF_JMP32) 11218 return false; 11219 11220 switch (BPF_OP(insn->code)) { 11221 case BPF_JGT: 11222 if ((dst_reg->type == PTR_TO_PACKET && 11223 src_reg->type == PTR_TO_PACKET_END) || 11224 (dst_reg->type == PTR_TO_PACKET_META && 11225 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11226 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 11227 find_good_pkt_pointers(this_branch, dst_reg, 11228 dst_reg->type, false); 11229 mark_pkt_end(other_branch, insn->dst_reg, true); 11230 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11231 src_reg->type == PTR_TO_PACKET) || 11232 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11233 src_reg->type == PTR_TO_PACKET_META)) { 11234 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 11235 find_good_pkt_pointers(other_branch, src_reg, 11236 src_reg->type, true); 11237 mark_pkt_end(this_branch, insn->src_reg, false); 11238 } else { 11239 return false; 11240 } 11241 break; 11242 case BPF_JLT: 11243 if ((dst_reg->type == PTR_TO_PACKET && 11244 src_reg->type == PTR_TO_PACKET_END) || 11245 (dst_reg->type == PTR_TO_PACKET_META && 11246 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11247 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 11248 find_good_pkt_pointers(other_branch, dst_reg, 11249 dst_reg->type, true); 11250 mark_pkt_end(this_branch, insn->dst_reg, false); 11251 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11252 src_reg->type == PTR_TO_PACKET) || 11253 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11254 src_reg->type == PTR_TO_PACKET_META)) { 11255 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 11256 find_good_pkt_pointers(this_branch, src_reg, 11257 src_reg->type, false); 11258 mark_pkt_end(other_branch, insn->src_reg, true); 11259 } else { 11260 return false; 11261 } 11262 break; 11263 case BPF_JGE: 11264 if ((dst_reg->type == PTR_TO_PACKET && 11265 src_reg->type == PTR_TO_PACKET_END) || 11266 (dst_reg->type == PTR_TO_PACKET_META && 11267 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11268 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 11269 find_good_pkt_pointers(this_branch, dst_reg, 11270 dst_reg->type, true); 11271 mark_pkt_end(other_branch, insn->dst_reg, false); 11272 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11273 src_reg->type == PTR_TO_PACKET) || 11274 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11275 src_reg->type == PTR_TO_PACKET_META)) { 11276 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 11277 find_good_pkt_pointers(other_branch, src_reg, 11278 src_reg->type, false); 11279 mark_pkt_end(this_branch, insn->src_reg, true); 11280 } else { 11281 return false; 11282 } 11283 break; 11284 case BPF_JLE: 11285 if ((dst_reg->type == PTR_TO_PACKET && 11286 src_reg->type == PTR_TO_PACKET_END) || 11287 (dst_reg->type == PTR_TO_PACKET_META && 11288 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11289 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 11290 find_good_pkt_pointers(other_branch, dst_reg, 11291 dst_reg->type, false); 11292 mark_pkt_end(this_branch, insn->dst_reg, true); 11293 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11294 src_reg->type == PTR_TO_PACKET) || 11295 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11296 src_reg->type == PTR_TO_PACKET_META)) { 11297 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 11298 find_good_pkt_pointers(this_branch, src_reg, 11299 src_reg->type, true); 11300 mark_pkt_end(other_branch, insn->src_reg, false); 11301 } else { 11302 return false; 11303 } 11304 break; 11305 default: 11306 return false; 11307 } 11308 11309 return true; 11310 } 11311 11312 static void find_equal_scalars(struct bpf_verifier_state *vstate, 11313 struct bpf_reg_state *known_reg) 11314 { 11315 struct bpf_func_state *state; 11316 struct bpf_reg_state *reg; 11317 11318 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11319 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 11320 *reg = *known_reg; 11321 })); 11322 } 11323 11324 static int check_cond_jmp_op(struct bpf_verifier_env *env, 11325 struct bpf_insn *insn, int *insn_idx) 11326 { 11327 struct bpf_verifier_state *this_branch = env->cur_state; 11328 struct bpf_verifier_state *other_branch; 11329 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 11330 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 11331 struct bpf_reg_state *eq_branch_regs; 11332 u8 opcode = BPF_OP(insn->code); 11333 bool is_jmp32; 11334 int pred = -1; 11335 int err; 11336 11337 /* Only conditional jumps are expected to reach here. */ 11338 if (opcode == BPF_JA || opcode > BPF_JSLE) { 11339 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 11340 return -EINVAL; 11341 } 11342 11343 if (BPF_SRC(insn->code) == BPF_X) { 11344 if (insn->imm != 0) { 11345 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11346 return -EINVAL; 11347 } 11348 11349 /* check src1 operand */ 11350 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11351 if (err) 11352 return err; 11353 11354 if (is_pointer_value(env, insn->src_reg)) { 11355 verbose(env, "R%d pointer comparison prohibited\n", 11356 insn->src_reg); 11357 return -EACCES; 11358 } 11359 src_reg = ®s[insn->src_reg]; 11360 } else { 11361 if (insn->src_reg != BPF_REG_0) { 11362 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11363 return -EINVAL; 11364 } 11365 } 11366 11367 /* check src2 operand */ 11368 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11369 if (err) 11370 return err; 11371 11372 dst_reg = ®s[insn->dst_reg]; 11373 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 11374 11375 if (BPF_SRC(insn->code) == BPF_K) { 11376 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 11377 } else if (src_reg->type == SCALAR_VALUE && 11378 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 11379 pred = is_branch_taken(dst_reg, 11380 tnum_subreg(src_reg->var_off).value, 11381 opcode, 11382 is_jmp32); 11383 } else if (src_reg->type == SCALAR_VALUE && 11384 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 11385 pred = is_branch_taken(dst_reg, 11386 src_reg->var_off.value, 11387 opcode, 11388 is_jmp32); 11389 } else if (reg_is_pkt_pointer_any(dst_reg) && 11390 reg_is_pkt_pointer_any(src_reg) && 11391 !is_jmp32) { 11392 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 11393 } 11394 11395 if (pred >= 0) { 11396 /* If we get here with a dst_reg pointer type it is because 11397 * above is_branch_taken() special cased the 0 comparison. 11398 */ 11399 if (!__is_pointer_value(false, dst_reg)) 11400 err = mark_chain_precision(env, insn->dst_reg); 11401 if (BPF_SRC(insn->code) == BPF_X && !err && 11402 !__is_pointer_value(false, src_reg)) 11403 err = mark_chain_precision(env, insn->src_reg); 11404 if (err) 11405 return err; 11406 } 11407 11408 if (pred == 1) { 11409 /* Only follow the goto, ignore fall-through. If needed, push 11410 * the fall-through branch for simulation under speculative 11411 * execution. 11412 */ 11413 if (!env->bypass_spec_v1 && 11414 !sanitize_speculative_path(env, insn, *insn_idx + 1, 11415 *insn_idx)) 11416 return -EFAULT; 11417 *insn_idx += insn->off; 11418 return 0; 11419 } else if (pred == 0) { 11420 /* Only follow the fall-through branch, since that's where the 11421 * program will go. If needed, push the goto branch for 11422 * simulation under speculative execution. 11423 */ 11424 if (!env->bypass_spec_v1 && 11425 !sanitize_speculative_path(env, insn, 11426 *insn_idx + insn->off + 1, 11427 *insn_idx)) 11428 return -EFAULT; 11429 return 0; 11430 } 11431 11432 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 11433 false); 11434 if (!other_branch) 11435 return -EFAULT; 11436 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 11437 11438 /* detect if we are comparing against a constant value so we can adjust 11439 * our min/max values for our dst register. 11440 * this is only legit if both are scalars (or pointers to the same 11441 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 11442 * because otherwise the different base pointers mean the offsets aren't 11443 * comparable. 11444 */ 11445 if (BPF_SRC(insn->code) == BPF_X) { 11446 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 11447 11448 if (dst_reg->type == SCALAR_VALUE && 11449 src_reg->type == SCALAR_VALUE) { 11450 if (tnum_is_const(src_reg->var_off) || 11451 (is_jmp32 && 11452 tnum_is_const(tnum_subreg(src_reg->var_off)))) 11453 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11454 dst_reg, 11455 src_reg->var_off.value, 11456 tnum_subreg(src_reg->var_off).value, 11457 opcode, is_jmp32); 11458 else if (tnum_is_const(dst_reg->var_off) || 11459 (is_jmp32 && 11460 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 11461 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 11462 src_reg, 11463 dst_reg->var_off.value, 11464 tnum_subreg(dst_reg->var_off).value, 11465 opcode, is_jmp32); 11466 else if (!is_jmp32 && 11467 (opcode == BPF_JEQ || opcode == BPF_JNE)) 11468 /* Comparing for equality, we can combine knowledge */ 11469 reg_combine_min_max(&other_branch_regs[insn->src_reg], 11470 &other_branch_regs[insn->dst_reg], 11471 src_reg, dst_reg, opcode); 11472 if (src_reg->id && 11473 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 11474 find_equal_scalars(this_branch, src_reg); 11475 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 11476 } 11477 11478 } 11479 } else if (dst_reg->type == SCALAR_VALUE) { 11480 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11481 dst_reg, insn->imm, (u32)insn->imm, 11482 opcode, is_jmp32); 11483 } 11484 11485 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 11486 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 11487 find_equal_scalars(this_branch, dst_reg); 11488 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 11489 } 11490 11491 /* if one pointer register is compared to another pointer 11492 * register check if PTR_MAYBE_NULL could be lifted. 11493 * E.g. register A - maybe null 11494 * register B - not null 11495 * for JNE A, B, ... - A is not null in the false branch; 11496 * for JEQ A, B, ... - A is not null in the true branch. 11497 */ 11498 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 11499 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 11500 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) { 11501 eq_branch_regs = NULL; 11502 switch (opcode) { 11503 case BPF_JEQ: 11504 eq_branch_regs = other_branch_regs; 11505 break; 11506 case BPF_JNE: 11507 eq_branch_regs = regs; 11508 break; 11509 default: 11510 /* do nothing */ 11511 break; 11512 } 11513 if (eq_branch_regs) { 11514 if (type_may_be_null(src_reg->type)) 11515 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 11516 else 11517 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 11518 } 11519 } 11520 11521 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 11522 * NOTE: these optimizations below are related with pointer comparison 11523 * which will never be JMP32. 11524 */ 11525 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 11526 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 11527 type_may_be_null(dst_reg->type)) { 11528 /* Mark all identical registers in each branch as either 11529 * safe or unknown depending R == 0 or R != 0 conditional. 11530 */ 11531 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 11532 opcode == BPF_JNE); 11533 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 11534 opcode == BPF_JEQ); 11535 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 11536 this_branch, other_branch) && 11537 is_pointer_value(env, insn->dst_reg)) { 11538 verbose(env, "R%d pointer comparison prohibited\n", 11539 insn->dst_reg); 11540 return -EACCES; 11541 } 11542 if (env->log.level & BPF_LOG_LEVEL) 11543 print_insn_state(env, this_branch->frame[this_branch->curframe]); 11544 return 0; 11545 } 11546 11547 /* verify BPF_LD_IMM64 instruction */ 11548 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 11549 { 11550 struct bpf_insn_aux_data *aux = cur_aux(env); 11551 struct bpf_reg_state *regs = cur_regs(env); 11552 struct bpf_reg_state *dst_reg; 11553 struct bpf_map *map; 11554 int err; 11555 11556 if (BPF_SIZE(insn->code) != BPF_DW) { 11557 verbose(env, "invalid BPF_LD_IMM insn\n"); 11558 return -EINVAL; 11559 } 11560 if (insn->off != 0) { 11561 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 11562 return -EINVAL; 11563 } 11564 11565 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11566 if (err) 11567 return err; 11568 11569 dst_reg = ®s[insn->dst_reg]; 11570 if (insn->src_reg == 0) { 11571 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 11572 11573 dst_reg->type = SCALAR_VALUE; 11574 __mark_reg_known(®s[insn->dst_reg], imm); 11575 return 0; 11576 } 11577 11578 /* All special src_reg cases are listed below. From this point onwards 11579 * we either succeed and assign a corresponding dst_reg->type after 11580 * zeroing the offset, or fail and reject the program. 11581 */ 11582 mark_reg_known_zero(env, regs, insn->dst_reg); 11583 11584 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 11585 dst_reg->type = aux->btf_var.reg_type; 11586 switch (base_type(dst_reg->type)) { 11587 case PTR_TO_MEM: 11588 dst_reg->mem_size = aux->btf_var.mem_size; 11589 break; 11590 case PTR_TO_BTF_ID: 11591 dst_reg->btf = aux->btf_var.btf; 11592 dst_reg->btf_id = aux->btf_var.btf_id; 11593 break; 11594 default: 11595 verbose(env, "bpf verifier is misconfigured\n"); 11596 return -EFAULT; 11597 } 11598 return 0; 11599 } 11600 11601 if (insn->src_reg == BPF_PSEUDO_FUNC) { 11602 struct bpf_prog_aux *aux = env->prog->aux; 11603 u32 subprogno = find_subprog(env, 11604 env->insn_idx + insn->imm + 1); 11605 11606 if (!aux->func_info) { 11607 verbose(env, "missing btf func_info\n"); 11608 return -EINVAL; 11609 } 11610 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 11611 verbose(env, "callback function not static\n"); 11612 return -EINVAL; 11613 } 11614 11615 dst_reg->type = PTR_TO_FUNC; 11616 dst_reg->subprogno = subprogno; 11617 return 0; 11618 } 11619 11620 map = env->used_maps[aux->map_index]; 11621 dst_reg->map_ptr = map; 11622 11623 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 11624 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 11625 dst_reg->type = PTR_TO_MAP_VALUE; 11626 dst_reg->off = aux->map_off; 11627 WARN_ON_ONCE(map->max_entries != 1); 11628 /* We want reg->id to be same (0) as map_value is not distinct */ 11629 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 11630 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 11631 dst_reg->type = CONST_PTR_TO_MAP; 11632 } else { 11633 verbose(env, "bpf verifier is misconfigured\n"); 11634 return -EINVAL; 11635 } 11636 11637 return 0; 11638 } 11639 11640 static bool may_access_skb(enum bpf_prog_type type) 11641 { 11642 switch (type) { 11643 case BPF_PROG_TYPE_SOCKET_FILTER: 11644 case BPF_PROG_TYPE_SCHED_CLS: 11645 case BPF_PROG_TYPE_SCHED_ACT: 11646 return true; 11647 default: 11648 return false; 11649 } 11650 } 11651 11652 /* verify safety of LD_ABS|LD_IND instructions: 11653 * - they can only appear in the programs where ctx == skb 11654 * - since they are wrappers of function calls, they scratch R1-R5 registers, 11655 * preserve R6-R9, and store return value into R0 11656 * 11657 * Implicit input: 11658 * ctx == skb == R6 == CTX 11659 * 11660 * Explicit input: 11661 * SRC == any register 11662 * IMM == 32-bit immediate 11663 * 11664 * Output: 11665 * R0 - 8/16/32-bit skb data converted to cpu endianness 11666 */ 11667 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 11668 { 11669 struct bpf_reg_state *regs = cur_regs(env); 11670 static const int ctx_reg = BPF_REG_6; 11671 u8 mode = BPF_MODE(insn->code); 11672 int i, err; 11673 11674 if (!may_access_skb(resolve_prog_type(env->prog))) { 11675 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 11676 return -EINVAL; 11677 } 11678 11679 if (!env->ops->gen_ld_abs) { 11680 verbose(env, "bpf verifier is misconfigured\n"); 11681 return -EINVAL; 11682 } 11683 11684 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 11685 BPF_SIZE(insn->code) == BPF_DW || 11686 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 11687 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 11688 return -EINVAL; 11689 } 11690 11691 /* check whether implicit source operand (register R6) is readable */ 11692 err = check_reg_arg(env, ctx_reg, SRC_OP); 11693 if (err) 11694 return err; 11695 11696 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 11697 * gen_ld_abs() may terminate the program at runtime, leading to 11698 * reference leak. 11699 */ 11700 err = check_reference_leak(env); 11701 if (err) { 11702 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 11703 return err; 11704 } 11705 11706 if (env->cur_state->active_lock.ptr) { 11707 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 11708 return -EINVAL; 11709 } 11710 11711 if (regs[ctx_reg].type != PTR_TO_CTX) { 11712 verbose(env, 11713 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 11714 return -EINVAL; 11715 } 11716 11717 if (mode == BPF_IND) { 11718 /* check explicit source operand */ 11719 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11720 if (err) 11721 return err; 11722 } 11723 11724 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 11725 if (err < 0) 11726 return err; 11727 11728 /* reset caller saved regs to unreadable */ 11729 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11730 mark_reg_not_init(env, regs, caller_saved[i]); 11731 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11732 } 11733 11734 /* mark destination R0 register as readable, since it contains 11735 * the value fetched from the packet. 11736 * Already marked as written above. 11737 */ 11738 mark_reg_unknown(env, regs, BPF_REG_0); 11739 /* ld_abs load up to 32-bit skb data. */ 11740 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 11741 return 0; 11742 } 11743 11744 static int check_return_code(struct bpf_verifier_env *env) 11745 { 11746 struct tnum enforce_attach_type_range = tnum_unknown; 11747 const struct bpf_prog *prog = env->prog; 11748 struct bpf_reg_state *reg; 11749 struct tnum range = tnum_range(0, 1); 11750 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11751 int err; 11752 struct bpf_func_state *frame = env->cur_state->frame[0]; 11753 const bool is_subprog = frame->subprogno; 11754 11755 /* LSM and struct_ops func-ptr's return type could be "void" */ 11756 if (!is_subprog) { 11757 switch (prog_type) { 11758 case BPF_PROG_TYPE_LSM: 11759 if (prog->expected_attach_type == BPF_LSM_CGROUP) 11760 /* See below, can be 0 or 0-1 depending on hook. */ 11761 break; 11762 fallthrough; 11763 case BPF_PROG_TYPE_STRUCT_OPS: 11764 if (!prog->aux->attach_func_proto->type) 11765 return 0; 11766 break; 11767 default: 11768 break; 11769 } 11770 } 11771 11772 /* eBPF calling convention is such that R0 is used 11773 * to return the value from eBPF program. 11774 * Make sure that it's readable at this time 11775 * of bpf_exit, which means that program wrote 11776 * something into it earlier 11777 */ 11778 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 11779 if (err) 11780 return err; 11781 11782 if (is_pointer_value(env, BPF_REG_0)) { 11783 verbose(env, "R0 leaks addr as return value\n"); 11784 return -EACCES; 11785 } 11786 11787 reg = cur_regs(env) + BPF_REG_0; 11788 11789 if (frame->in_async_callback_fn) { 11790 /* enforce return zero from async callbacks like timer */ 11791 if (reg->type != SCALAR_VALUE) { 11792 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 11793 reg_type_str(env, reg->type)); 11794 return -EINVAL; 11795 } 11796 11797 if (!tnum_in(tnum_const(0), reg->var_off)) { 11798 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 11799 return -EINVAL; 11800 } 11801 return 0; 11802 } 11803 11804 if (is_subprog) { 11805 if (reg->type != SCALAR_VALUE) { 11806 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 11807 reg_type_str(env, reg->type)); 11808 return -EINVAL; 11809 } 11810 return 0; 11811 } 11812 11813 switch (prog_type) { 11814 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 11815 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 11816 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 11817 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 11818 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 11819 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 11820 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 11821 range = tnum_range(1, 1); 11822 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 11823 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 11824 range = tnum_range(0, 3); 11825 break; 11826 case BPF_PROG_TYPE_CGROUP_SKB: 11827 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 11828 range = tnum_range(0, 3); 11829 enforce_attach_type_range = tnum_range(2, 3); 11830 } 11831 break; 11832 case BPF_PROG_TYPE_CGROUP_SOCK: 11833 case BPF_PROG_TYPE_SOCK_OPS: 11834 case BPF_PROG_TYPE_CGROUP_DEVICE: 11835 case BPF_PROG_TYPE_CGROUP_SYSCTL: 11836 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 11837 break; 11838 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11839 if (!env->prog->aux->attach_btf_id) 11840 return 0; 11841 range = tnum_const(0); 11842 break; 11843 case BPF_PROG_TYPE_TRACING: 11844 switch (env->prog->expected_attach_type) { 11845 case BPF_TRACE_FENTRY: 11846 case BPF_TRACE_FEXIT: 11847 range = tnum_const(0); 11848 break; 11849 case BPF_TRACE_RAW_TP: 11850 case BPF_MODIFY_RETURN: 11851 return 0; 11852 case BPF_TRACE_ITER: 11853 break; 11854 default: 11855 return -ENOTSUPP; 11856 } 11857 break; 11858 case BPF_PROG_TYPE_SK_LOOKUP: 11859 range = tnum_range(SK_DROP, SK_PASS); 11860 break; 11861 11862 case BPF_PROG_TYPE_LSM: 11863 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 11864 /* Regular BPF_PROG_TYPE_LSM programs can return 11865 * any value. 11866 */ 11867 return 0; 11868 } 11869 if (!env->prog->aux->attach_func_proto->type) { 11870 /* Make sure programs that attach to void 11871 * hooks don't try to modify return value. 11872 */ 11873 range = tnum_range(1, 1); 11874 } 11875 break; 11876 11877 case BPF_PROG_TYPE_EXT: 11878 /* freplace program can return anything as its return value 11879 * depends on the to-be-replaced kernel func or bpf program. 11880 */ 11881 default: 11882 return 0; 11883 } 11884 11885 if (reg->type != SCALAR_VALUE) { 11886 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 11887 reg_type_str(env, reg->type)); 11888 return -EINVAL; 11889 } 11890 11891 if (!tnum_in(range, reg->var_off)) { 11892 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 11893 if (prog->expected_attach_type == BPF_LSM_CGROUP && 11894 prog_type == BPF_PROG_TYPE_LSM && 11895 !prog->aux->attach_func_proto->type) 11896 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11897 return -EINVAL; 11898 } 11899 11900 if (!tnum_is_unknown(enforce_attach_type_range) && 11901 tnum_in(enforce_attach_type_range, reg->var_off)) 11902 env->prog->enforce_expected_attach_type = 1; 11903 return 0; 11904 } 11905 11906 /* non-recursive DFS pseudo code 11907 * 1 procedure DFS-iterative(G,v): 11908 * 2 label v as discovered 11909 * 3 let S be a stack 11910 * 4 S.push(v) 11911 * 5 while S is not empty 11912 * 6 t <- S.peek() 11913 * 7 if t is what we're looking for: 11914 * 8 return t 11915 * 9 for all edges e in G.adjacentEdges(t) do 11916 * 10 if edge e is already labelled 11917 * 11 continue with the next edge 11918 * 12 w <- G.adjacentVertex(t,e) 11919 * 13 if vertex w is not discovered and not explored 11920 * 14 label e as tree-edge 11921 * 15 label w as discovered 11922 * 16 S.push(w) 11923 * 17 continue at 5 11924 * 18 else if vertex w is discovered 11925 * 19 label e as back-edge 11926 * 20 else 11927 * 21 // vertex w is explored 11928 * 22 label e as forward- or cross-edge 11929 * 23 label t as explored 11930 * 24 S.pop() 11931 * 11932 * convention: 11933 * 0x10 - discovered 11934 * 0x11 - discovered and fall-through edge labelled 11935 * 0x12 - discovered and fall-through and branch edges labelled 11936 * 0x20 - explored 11937 */ 11938 11939 enum { 11940 DISCOVERED = 0x10, 11941 EXPLORED = 0x20, 11942 FALLTHROUGH = 1, 11943 BRANCH = 2, 11944 }; 11945 11946 static u32 state_htab_size(struct bpf_verifier_env *env) 11947 { 11948 return env->prog->len; 11949 } 11950 11951 static struct bpf_verifier_state_list **explored_state( 11952 struct bpf_verifier_env *env, 11953 int idx) 11954 { 11955 struct bpf_verifier_state *cur = env->cur_state; 11956 struct bpf_func_state *state = cur->frame[cur->curframe]; 11957 11958 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 11959 } 11960 11961 static void init_explored_state(struct bpf_verifier_env *env, int idx) 11962 { 11963 env->insn_aux_data[idx].prune_point = true; 11964 } 11965 11966 enum { 11967 DONE_EXPLORING = 0, 11968 KEEP_EXPLORING = 1, 11969 }; 11970 11971 /* t, w, e - match pseudo-code above: 11972 * t - index of current instruction 11973 * w - next instruction 11974 * e - edge 11975 */ 11976 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 11977 bool loop_ok) 11978 { 11979 int *insn_stack = env->cfg.insn_stack; 11980 int *insn_state = env->cfg.insn_state; 11981 11982 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 11983 return DONE_EXPLORING; 11984 11985 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 11986 return DONE_EXPLORING; 11987 11988 if (w < 0 || w >= env->prog->len) { 11989 verbose_linfo(env, t, "%d: ", t); 11990 verbose(env, "jump out of range from insn %d to %d\n", t, w); 11991 return -EINVAL; 11992 } 11993 11994 if (e == BRANCH) 11995 /* mark branch target for state pruning */ 11996 init_explored_state(env, w); 11997 11998 if (insn_state[w] == 0) { 11999 /* tree-edge */ 12000 insn_state[t] = DISCOVERED | e; 12001 insn_state[w] = DISCOVERED; 12002 if (env->cfg.cur_stack >= env->prog->len) 12003 return -E2BIG; 12004 insn_stack[env->cfg.cur_stack++] = w; 12005 return KEEP_EXPLORING; 12006 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 12007 if (loop_ok && env->bpf_capable) 12008 return DONE_EXPLORING; 12009 verbose_linfo(env, t, "%d: ", t); 12010 verbose_linfo(env, w, "%d: ", w); 12011 verbose(env, "back-edge from insn %d to %d\n", t, w); 12012 return -EINVAL; 12013 } else if (insn_state[w] == EXPLORED) { 12014 /* forward- or cross-edge */ 12015 insn_state[t] = DISCOVERED | e; 12016 } else { 12017 verbose(env, "insn state internal bug\n"); 12018 return -EFAULT; 12019 } 12020 return DONE_EXPLORING; 12021 } 12022 12023 static int visit_func_call_insn(int t, int insn_cnt, 12024 struct bpf_insn *insns, 12025 struct bpf_verifier_env *env, 12026 bool visit_callee) 12027 { 12028 int ret; 12029 12030 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 12031 if (ret) 12032 return ret; 12033 12034 if (t + 1 < insn_cnt) 12035 init_explored_state(env, t + 1); 12036 if (visit_callee) { 12037 init_explored_state(env, t); 12038 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 12039 /* It's ok to allow recursion from CFG point of 12040 * view. __check_func_call() will do the actual 12041 * check. 12042 */ 12043 bpf_pseudo_func(insns + t)); 12044 } 12045 return ret; 12046 } 12047 12048 /* Visits the instruction at index t and returns one of the following: 12049 * < 0 - an error occurred 12050 * DONE_EXPLORING - the instruction was fully explored 12051 * KEEP_EXPLORING - there is still work to be done before it is fully explored 12052 */ 12053 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 12054 { 12055 struct bpf_insn *insns = env->prog->insnsi; 12056 int ret; 12057 12058 if (bpf_pseudo_func(insns + t)) 12059 return visit_func_call_insn(t, insn_cnt, insns, env, true); 12060 12061 /* All non-branch instructions have a single fall-through edge. */ 12062 if (BPF_CLASS(insns[t].code) != BPF_JMP && 12063 BPF_CLASS(insns[t].code) != BPF_JMP32) 12064 return push_insn(t, t + 1, FALLTHROUGH, env, false); 12065 12066 switch (BPF_OP(insns[t].code)) { 12067 case BPF_EXIT: 12068 return DONE_EXPLORING; 12069 12070 case BPF_CALL: 12071 if (insns[t].imm == BPF_FUNC_timer_set_callback) 12072 /* Mark this call insn to trigger is_state_visited() check 12073 * before call itself is processed by __check_func_call(). 12074 * Otherwise new async state will be pushed for further 12075 * exploration. 12076 */ 12077 init_explored_state(env, t); 12078 return visit_func_call_insn(t, insn_cnt, insns, env, 12079 insns[t].src_reg == BPF_PSEUDO_CALL); 12080 12081 case BPF_JA: 12082 if (BPF_SRC(insns[t].code) != BPF_K) 12083 return -EINVAL; 12084 12085 /* unconditional jump with single edge */ 12086 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 12087 true); 12088 if (ret) 12089 return ret; 12090 12091 /* unconditional jmp is not a good pruning point, 12092 * but it's marked, since backtracking needs 12093 * to record jmp history in is_state_visited(). 12094 */ 12095 init_explored_state(env, t + insns[t].off + 1); 12096 /* tell verifier to check for equivalent states 12097 * after every call and jump 12098 */ 12099 if (t + 1 < insn_cnt) 12100 init_explored_state(env, t + 1); 12101 12102 return ret; 12103 12104 default: 12105 /* conditional jump with two edges */ 12106 init_explored_state(env, t); 12107 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 12108 if (ret) 12109 return ret; 12110 12111 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 12112 } 12113 } 12114 12115 /* non-recursive depth-first-search to detect loops in BPF program 12116 * loop == back-edge in directed graph 12117 */ 12118 static int check_cfg(struct bpf_verifier_env *env) 12119 { 12120 int insn_cnt = env->prog->len; 12121 int *insn_stack, *insn_state; 12122 int ret = 0; 12123 int i; 12124 12125 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12126 if (!insn_state) 12127 return -ENOMEM; 12128 12129 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12130 if (!insn_stack) { 12131 kvfree(insn_state); 12132 return -ENOMEM; 12133 } 12134 12135 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 12136 insn_stack[0] = 0; /* 0 is the first instruction */ 12137 env->cfg.cur_stack = 1; 12138 12139 while (env->cfg.cur_stack > 0) { 12140 int t = insn_stack[env->cfg.cur_stack - 1]; 12141 12142 ret = visit_insn(t, insn_cnt, env); 12143 switch (ret) { 12144 case DONE_EXPLORING: 12145 insn_state[t] = EXPLORED; 12146 env->cfg.cur_stack--; 12147 break; 12148 case KEEP_EXPLORING: 12149 break; 12150 default: 12151 if (ret > 0) { 12152 verbose(env, "visit_insn internal bug\n"); 12153 ret = -EFAULT; 12154 } 12155 goto err_free; 12156 } 12157 } 12158 12159 if (env->cfg.cur_stack < 0) { 12160 verbose(env, "pop stack internal bug\n"); 12161 ret = -EFAULT; 12162 goto err_free; 12163 } 12164 12165 for (i = 0; i < insn_cnt; i++) { 12166 if (insn_state[i] != EXPLORED) { 12167 verbose(env, "unreachable insn %d\n", i); 12168 ret = -EINVAL; 12169 goto err_free; 12170 } 12171 } 12172 ret = 0; /* cfg looks good */ 12173 12174 err_free: 12175 kvfree(insn_state); 12176 kvfree(insn_stack); 12177 env->cfg.insn_state = env->cfg.insn_stack = NULL; 12178 return ret; 12179 } 12180 12181 static int check_abnormal_return(struct bpf_verifier_env *env) 12182 { 12183 int i; 12184 12185 for (i = 1; i < env->subprog_cnt; i++) { 12186 if (env->subprog_info[i].has_ld_abs) { 12187 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 12188 return -EINVAL; 12189 } 12190 if (env->subprog_info[i].has_tail_call) { 12191 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 12192 return -EINVAL; 12193 } 12194 } 12195 return 0; 12196 } 12197 12198 /* The minimum supported BTF func info size */ 12199 #define MIN_BPF_FUNCINFO_SIZE 8 12200 #define MAX_FUNCINFO_REC_SIZE 252 12201 12202 static int check_btf_func(struct bpf_verifier_env *env, 12203 const union bpf_attr *attr, 12204 bpfptr_t uattr) 12205 { 12206 const struct btf_type *type, *func_proto, *ret_type; 12207 u32 i, nfuncs, urec_size, min_size; 12208 u32 krec_size = sizeof(struct bpf_func_info); 12209 struct bpf_func_info *krecord; 12210 struct bpf_func_info_aux *info_aux = NULL; 12211 struct bpf_prog *prog; 12212 const struct btf *btf; 12213 bpfptr_t urecord; 12214 u32 prev_offset = 0; 12215 bool scalar_return; 12216 int ret = -ENOMEM; 12217 12218 nfuncs = attr->func_info_cnt; 12219 if (!nfuncs) { 12220 if (check_abnormal_return(env)) 12221 return -EINVAL; 12222 return 0; 12223 } 12224 12225 if (nfuncs != env->subprog_cnt) { 12226 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 12227 return -EINVAL; 12228 } 12229 12230 urec_size = attr->func_info_rec_size; 12231 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 12232 urec_size > MAX_FUNCINFO_REC_SIZE || 12233 urec_size % sizeof(u32)) { 12234 verbose(env, "invalid func info rec size %u\n", urec_size); 12235 return -EINVAL; 12236 } 12237 12238 prog = env->prog; 12239 btf = prog->aux->btf; 12240 12241 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 12242 min_size = min_t(u32, krec_size, urec_size); 12243 12244 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 12245 if (!krecord) 12246 return -ENOMEM; 12247 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 12248 if (!info_aux) 12249 goto err_free; 12250 12251 for (i = 0; i < nfuncs; i++) { 12252 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 12253 if (ret) { 12254 if (ret == -E2BIG) { 12255 verbose(env, "nonzero tailing record in func info"); 12256 /* set the size kernel expects so loader can zero 12257 * out the rest of the record. 12258 */ 12259 if (copy_to_bpfptr_offset(uattr, 12260 offsetof(union bpf_attr, func_info_rec_size), 12261 &min_size, sizeof(min_size))) 12262 ret = -EFAULT; 12263 } 12264 goto err_free; 12265 } 12266 12267 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 12268 ret = -EFAULT; 12269 goto err_free; 12270 } 12271 12272 /* check insn_off */ 12273 ret = -EINVAL; 12274 if (i == 0) { 12275 if (krecord[i].insn_off) { 12276 verbose(env, 12277 "nonzero insn_off %u for the first func info record", 12278 krecord[i].insn_off); 12279 goto err_free; 12280 } 12281 } else if (krecord[i].insn_off <= prev_offset) { 12282 verbose(env, 12283 "same or smaller insn offset (%u) than previous func info record (%u)", 12284 krecord[i].insn_off, prev_offset); 12285 goto err_free; 12286 } 12287 12288 if (env->subprog_info[i].start != krecord[i].insn_off) { 12289 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 12290 goto err_free; 12291 } 12292 12293 /* check type_id */ 12294 type = btf_type_by_id(btf, krecord[i].type_id); 12295 if (!type || !btf_type_is_func(type)) { 12296 verbose(env, "invalid type id %d in func info", 12297 krecord[i].type_id); 12298 goto err_free; 12299 } 12300 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 12301 12302 func_proto = btf_type_by_id(btf, type->type); 12303 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 12304 /* btf_func_check() already verified it during BTF load */ 12305 goto err_free; 12306 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 12307 scalar_return = 12308 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 12309 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 12310 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 12311 goto err_free; 12312 } 12313 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 12314 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 12315 goto err_free; 12316 } 12317 12318 prev_offset = krecord[i].insn_off; 12319 bpfptr_add(&urecord, urec_size); 12320 } 12321 12322 prog->aux->func_info = krecord; 12323 prog->aux->func_info_cnt = nfuncs; 12324 prog->aux->func_info_aux = info_aux; 12325 return 0; 12326 12327 err_free: 12328 kvfree(krecord); 12329 kfree(info_aux); 12330 return ret; 12331 } 12332 12333 static void adjust_btf_func(struct bpf_verifier_env *env) 12334 { 12335 struct bpf_prog_aux *aux = env->prog->aux; 12336 int i; 12337 12338 if (!aux->func_info) 12339 return; 12340 12341 for (i = 0; i < env->subprog_cnt; i++) 12342 aux->func_info[i].insn_off = env->subprog_info[i].start; 12343 } 12344 12345 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 12346 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 12347 12348 static int check_btf_line(struct bpf_verifier_env *env, 12349 const union bpf_attr *attr, 12350 bpfptr_t uattr) 12351 { 12352 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 12353 struct bpf_subprog_info *sub; 12354 struct bpf_line_info *linfo; 12355 struct bpf_prog *prog; 12356 const struct btf *btf; 12357 bpfptr_t ulinfo; 12358 int err; 12359 12360 nr_linfo = attr->line_info_cnt; 12361 if (!nr_linfo) 12362 return 0; 12363 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 12364 return -EINVAL; 12365 12366 rec_size = attr->line_info_rec_size; 12367 if (rec_size < MIN_BPF_LINEINFO_SIZE || 12368 rec_size > MAX_LINEINFO_REC_SIZE || 12369 rec_size & (sizeof(u32) - 1)) 12370 return -EINVAL; 12371 12372 /* Need to zero it in case the userspace may 12373 * pass in a smaller bpf_line_info object. 12374 */ 12375 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 12376 GFP_KERNEL | __GFP_NOWARN); 12377 if (!linfo) 12378 return -ENOMEM; 12379 12380 prog = env->prog; 12381 btf = prog->aux->btf; 12382 12383 s = 0; 12384 sub = env->subprog_info; 12385 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 12386 expected_size = sizeof(struct bpf_line_info); 12387 ncopy = min_t(u32, expected_size, rec_size); 12388 for (i = 0; i < nr_linfo; i++) { 12389 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 12390 if (err) { 12391 if (err == -E2BIG) { 12392 verbose(env, "nonzero tailing record in line_info"); 12393 if (copy_to_bpfptr_offset(uattr, 12394 offsetof(union bpf_attr, line_info_rec_size), 12395 &expected_size, sizeof(expected_size))) 12396 err = -EFAULT; 12397 } 12398 goto err_free; 12399 } 12400 12401 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 12402 err = -EFAULT; 12403 goto err_free; 12404 } 12405 12406 /* 12407 * Check insn_off to ensure 12408 * 1) strictly increasing AND 12409 * 2) bounded by prog->len 12410 * 12411 * The linfo[0].insn_off == 0 check logically falls into 12412 * the later "missing bpf_line_info for func..." case 12413 * because the first linfo[0].insn_off must be the 12414 * first sub also and the first sub must have 12415 * subprog_info[0].start == 0. 12416 */ 12417 if ((i && linfo[i].insn_off <= prev_offset) || 12418 linfo[i].insn_off >= prog->len) { 12419 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 12420 i, linfo[i].insn_off, prev_offset, 12421 prog->len); 12422 err = -EINVAL; 12423 goto err_free; 12424 } 12425 12426 if (!prog->insnsi[linfo[i].insn_off].code) { 12427 verbose(env, 12428 "Invalid insn code at line_info[%u].insn_off\n", 12429 i); 12430 err = -EINVAL; 12431 goto err_free; 12432 } 12433 12434 if (!btf_name_by_offset(btf, linfo[i].line_off) || 12435 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 12436 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 12437 err = -EINVAL; 12438 goto err_free; 12439 } 12440 12441 if (s != env->subprog_cnt) { 12442 if (linfo[i].insn_off == sub[s].start) { 12443 sub[s].linfo_idx = i; 12444 s++; 12445 } else if (sub[s].start < linfo[i].insn_off) { 12446 verbose(env, "missing bpf_line_info for func#%u\n", s); 12447 err = -EINVAL; 12448 goto err_free; 12449 } 12450 } 12451 12452 prev_offset = linfo[i].insn_off; 12453 bpfptr_add(&ulinfo, rec_size); 12454 } 12455 12456 if (s != env->subprog_cnt) { 12457 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 12458 env->subprog_cnt - s, s); 12459 err = -EINVAL; 12460 goto err_free; 12461 } 12462 12463 prog->aux->linfo = linfo; 12464 prog->aux->nr_linfo = nr_linfo; 12465 12466 return 0; 12467 12468 err_free: 12469 kvfree(linfo); 12470 return err; 12471 } 12472 12473 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 12474 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 12475 12476 static int check_core_relo(struct bpf_verifier_env *env, 12477 const union bpf_attr *attr, 12478 bpfptr_t uattr) 12479 { 12480 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 12481 struct bpf_core_relo core_relo = {}; 12482 struct bpf_prog *prog = env->prog; 12483 const struct btf *btf = prog->aux->btf; 12484 struct bpf_core_ctx ctx = { 12485 .log = &env->log, 12486 .btf = btf, 12487 }; 12488 bpfptr_t u_core_relo; 12489 int err; 12490 12491 nr_core_relo = attr->core_relo_cnt; 12492 if (!nr_core_relo) 12493 return 0; 12494 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 12495 return -EINVAL; 12496 12497 rec_size = attr->core_relo_rec_size; 12498 if (rec_size < MIN_CORE_RELO_SIZE || 12499 rec_size > MAX_CORE_RELO_SIZE || 12500 rec_size % sizeof(u32)) 12501 return -EINVAL; 12502 12503 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 12504 expected_size = sizeof(struct bpf_core_relo); 12505 ncopy = min_t(u32, expected_size, rec_size); 12506 12507 /* Unlike func_info and line_info, copy and apply each CO-RE 12508 * relocation record one at a time. 12509 */ 12510 for (i = 0; i < nr_core_relo; i++) { 12511 /* future proofing when sizeof(bpf_core_relo) changes */ 12512 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 12513 if (err) { 12514 if (err == -E2BIG) { 12515 verbose(env, "nonzero tailing record in core_relo"); 12516 if (copy_to_bpfptr_offset(uattr, 12517 offsetof(union bpf_attr, core_relo_rec_size), 12518 &expected_size, sizeof(expected_size))) 12519 err = -EFAULT; 12520 } 12521 break; 12522 } 12523 12524 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 12525 err = -EFAULT; 12526 break; 12527 } 12528 12529 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 12530 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 12531 i, core_relo.insn_off, prog->len); 12532 err = -EINVAL; 12533 break; 12534 } 12535 12536 err = bpf_core_apply(&ctx, &core_relo, i, 12537 &prog->insnsi[core_relo.insn_off / 8]); 12538 if (err) 12539 break; 12540 bpfptr_add(&u_core_relo, rec_size); 12541 } 12542 return err; 12543 } 12544 12545 static int check_btf_info(struct bpf_verifier_env *env, 12546 const union bpf_attr *attr, 12547 bpfptr_t uattr) 12548 { 12549 struct btf *btf; 12550 int err; 12551 12552 if (!attr->func_info_cnt && !attr->line_info_cnt) { 12553 if (check_abnormal_return(env)) 12554 return -EINVAL; 12555 return 0; 12556 } 12557 12558 btf = btf_get_by_fd(attr->prog_btf_fd); 12559 if (IS_ERR(btf)) 12560 return PTR_ERR(btf); 12561 if (btf_is_kernel(btf)) { 12562 btf_put(btf); 12563 return -EACCES; 12564 } 12565 env->prog->aux->btf = btf; 12566 12567 err = check_btf_func(env, attr, uattr); 12568 if (err) 12569 return err; 12570 12571 err = check_btf_line(env, attr, uattr); 12572 if (err) 12573 return err; 12574 12575 err = check_core_relo(env, attr, uattr); 12576 if (err) 12577 return err; 12578 12579 return 0; 12580 } 12581 12582 /* check %cur's range satisfies %old's */ 12583 static bool range_within(struct bpf_reg_state *old, 12584 struct bpf_reg_state *cur) 12585 { 12586 return old->umin_value <= cur->umin_value && 12587 old->umax_value >= cur->umax_value && 12588 old->smin_value <= cur->smin_value && 12589 old->smax_value >= cur->smax_value && 12590 old->u32_min_value <= cur->u32_min_value && 12591 old->u32_max_value >= cur->u32_max_value && 12592 old->s32_min_value <= cur->s32_min_value && 12593 old->s32_max_value >= cur->s32_max_value; 12594 } 12595 12596 /* If in the old state two registers had the same id, then they need to have 12597 * the same id in the new state as well. But that id could be different from 12598 * the old state, so we need to track the mapping from old to new ids. 12599 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 12600 * regs with old id 5 must also have new id 9 for the new state to be safe. But 12601 * regs with a different old id could still have new id 9, we don't care about 12602 * that. 12603 * So we look through our idmap to see if this old id has been seen before. If 12604 * so, we require the new id to match; otherwise, we add the id pair to the map. 12605 */ 12606 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 12607 { 12608 unsigned int i; 12609 12610 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 12611 if (!idmap[i].old) { 12612 /* Reached an empty slot; haven't seen this id before */ 12613 idmap[i].old = old_id; 12614 idmap[i].cur = cur_id; 12615 return true; 12616 } 12617 if (idmap[i].old == old_id) 12618 return idmap[i].cur == cur_id; 12619 } 12620 /* We ran out of idmap slots, which should be impossible */ 12621 WARN_ON_ONCE(1); 12622 return false; 12623 } 12624 12625 static void clean_func_state(struct bpf_verifier_env *env, 12626 struct bpf_func_state *st) 12627 { 12628 enum bpf_reg_liveness live; 12629 int i, j; 12630 12631 for (i = 0; i < BPF_REG_FP; i++) { 12632 live = st->regs[i].live; 12633 /* liveness must not touch this register anymore */ 12634 st->regs[i].live |= REG_LIVE_DONE; 12635 if (!(live & REG_LIVE_READ)) 12636 /* since the register is unused, clear its state 12637 * to make further comparison simpler 12638 */ 12639 __mark_reg_not_init(env, &st->regs[i]); 12640 } 12641 12642 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 12643 live = st->stack[i].spilled_ptr.live; 12644 /* liveness must not touch this stack slot anymore */ 12645 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 12646 if (!(live & REG_LIVE_READ)) { 12647 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 12648 for (j = 0; j < BPF_REG_SIZE; j++) 12649 st->stack[i].slot_type[j] = STACK_INVALID; 12650 } 12651 } 12652 } 12653 12654 static void clean_verifier_state(struct bpf_verifier_env *env, 12655 struct bpf_verifier_state *st) 12656 { 12657 int i; 12658 12659 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 12660 /* all regs in this state in all frames were already marked */ 12661 return; 12662 12663 for (i = 0; i <= st->curframe; i++) 12664 clean_func_state(env, st->frame[i]); 12665 } 12666 12667 /* the parentage chains form a tree. 12668 * the verifier states are added to state lists at given insn and 12669 * pushed into state stack for future exploration. 12670 * when the verifier reaches bpf_exit insn some of the verifer states 12671 * stored in the state lists have their final liveness state already, 12672 * but a lot of states will get revised from liveness point of view when 12673 * the verifier explores other branches. 12674 * Example: 12675 * 1: r0 = 1 12676 * 2: if r1 == 100 goto pc+1 12677 * 3: r0 = 2 12678 * 4: exit 12679 * when the verifier reaches exit insn the register r0 in the state list of 12680 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 12681 * of insn 2 and goes exploring further. At the insn 4 it will walk the 12682 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 12683 * 12684 * Since the verifier pushes the branch states as it sees them while exploring 12685 * the program the condition of walking the branch instruction for the second 12686 * time means that all states below this branch were already explored and 12687 * their final liveness marks are already propagated. 12688 * Hence when the verifier completes the search of state list in is_state_visited() 12689 * we can call this clean_live_states() function to mark all liveness states 12690 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 12691 * will not be used. 12692 * This function also clears the registers and stack for states that !READ 12693 * to simplify state merging. 12694 * 12695 * Important note here that walking the same branch instruction in the callee 12696 * doesn't meant that the states are DONE. The verifier has to compare 12697 * the callsites 12698 */ 12699 static void clean_live_states(struct bpf_verifier_env *env, int insn, 12700 struct bpf_verifier_state *cur) 12701 { 12702 struct bpf_verifier_state_list *sl; 12703 int i; 12704 12705 sl = *explored_state(env, insn); 12706 while (sl) { 12707 if (sl->state.branches) 12708 goto next; 12709 if (sl->state.insn_idx != insn || 12710 sl->state.curframe != cur->curframe) 12711 goto next; 12712 for (i = 0; i <= cur->curframe; i++) 12713 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 12714 goto next; 12715 clean_verifier_state(env, &sl->state); 12716 next: 12717 sl = sl->next; 12718 } 12719 } 12720 12721 /* Returns true if (rold safe implies rcur safe) */ 12722 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 12723 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 12724 { 12725 bool equal; 12726 12727 if (!(rold->live & REG_LIVE_READ)) 12728 /* explored state didn't use this */ 12729 return true; 12730 12731 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 12732 12733 if (rold->type == PTR_TO_STACK) 12734 /* two stack pointers are equal only if they're pointing to 12735 * the same stack frame, since fp-8 in foo != fp-8 in bar 12736 */ 12737 return equal && rold->frameno == rcur->frameno; 12738 12739 if (equal) 12740 return true; 12741 12742 if (rold->type == NOT_INIT) 12743 /* explored state can't have used this */ 12744 return true; 12745 if (rcur->type == NOT_INIT) 12746 return false; 12747 switch (base_type(rold->type)) { 12748 case SCALAR_VALUE: 12749 if (env->explore_alu_limits) 12750 return false; 12751 if (rcur->type == SCALAR_VALUE) { 12752 if (!rold->precise) 12753 return true; 12754 /* new val must satisfy old val knowledge */ 12755 return range_within(rold, rcur) && 12756 tnum_in(rold->var_off, rcur->var_off); 12757 } else { 12758 /* We're trying to use a pointer in place of a scalar. 12759 * Even if the scalar was unbounded, this could lead to 12760 * pointer leaks because scalars are allowed to leak 12761 * while pointers are not. We could make this safe in 12762 * special cases if root is calling us, but it's 12763 * probably not worth the hassle. 12764 */ 12765 return false; 12766 } 12767 case PTR_TO_MAP_KEY: 12768 case PTR_TO_MAP_VALUE: 12769 /* a PTR_TO_MAP_VALUE could be safe to use as a 12770 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 12771 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 12772 * checked, doing so could have affected others with the same 12773 * id, and we can't check for that because we lost the id when 12774 * we converted to a PTR_TO_MAP_VALUE. 12775 */ 12776 if (type_may_be_null(rold->type)) { 12777 if (!type_may_be_null(rcur->type)) 12778 return false; 12779 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 12780 return false; 12781 /* Check our ids match any regs they're supposed to */ 12782 return check_ids(rold->id, rcur->id, idmap); 12783 } 12784 12785 /* If the new min/max/var_off satisfy the old ones and 12786 * everything else matches, we are OK. 12787 * 'id' is not compared, since it's only used for maps with 12788 * bpf_spin_lock inside map element and in such cases if 12789 * the rest of the prog is valid for one map element then 12790 * it's valid for all map elements regardless of the key 12791 * used in bpf_map_lookup() 12792 */ 12793 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 12794 range_within(rold, rcur) && 12795 tnum_in(rold->var_off, rcur->var_off); 12796 case PTR_TO_PACKET_META: 12797 case PTR_TO_PACKET: 12798 if (rcur->type != rold->type) 12799 return false; 12800 /* We must have at least as much range as the old ptr 12801 * did, so that any accesses which were safe before are 12802 * still safe. This is true even if old range < old off, 12803 * since someone could have accessed through (ptr - k), or 12804 * even done ptr -= k in a register, to get a safe access. 12805 */ 12806 if (rold->range > rcur->range) 12807 return false; 12808 /* If the offsets don't match, we can't trust our alignment; 12809 * nor can we be sure that we won't fall out of range. 12810 */ 12811 if (rold->off != rcur->off) 12812 return false; 12813 /* id relations must be preserved */ 12814 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 12815 return false; 12816 /* new val must satisfy old val knowledge */ 12817 return range_within(rold, rcur) && 12818 tnum_in(rold->var_off, rcur->var_off); 12819 case PTR_TO_CTX: 12820 case CONST_PTR_TO_MAP: 12821 case PTR_TO_PACKET_END: 12822 case PTR_TO_FLOW_KEYS: 12823 case PTR_TO_SOCKET: 12824 case PTR_TO_SOCK_COMMON: 12825 case PTR_TO_TCP_SOCK: 12826 case PTR_TO_XDP_SOCK: 12827 /* Only valid matches are exact, which memcmp() above 12828 * would have accepted 12829 */ 12830 default: 12831 /* Don't know what's going on, just say it's not safe */ 12832 return false; 12833 } 12834 12835 /* Shouldn't get here; if we do, say it's not safe */ 12836 WARN_ON_ONCE(1); 12837 return false; 12838 } 12839 12840 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 12841 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 12842 { 12843 int i, spi; 12844 12845 /* walk slots of the explored stack and ignore any additional 12846 * slots in the current stack, since explored(safe) state 12847 * didn't use them 12848 */ 12849 for (i = 0; i < old->allocated_stack; i++) { 12850 spi = i / BPF_REG_SIZE; 12851 12852 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 12853 i += BPF_REG_SIZE - 1; 12854 /* explored state didn't use this */ 12855 continue; 12856 } 12857 12858 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 12859 continue; 12860 12861 /* explored stack has more populated slots than current stack 12862 * and these slots were used 12863 */ 12864 if (i >= cur->allocated_stack) 12865 return false; 12866 12867 /* if old state was safe with misc data in the stack 12868 * it will be safe with zero-initialized stack. 12869 * The opposite is not true 12870 */ 12871 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 12872 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 12873 continue; 12874 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 12875 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 12876 /* Ex: old explored (safe) state has STACK_SPILL in 12877 * this stack slot, but current has STACK_MISC -> 12878 * this verifier states are not equivalent, 12879 * return false to continue verification of this path 12880 */ 12881 return false; 12882 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 12883 continue; 12884 if (!is_spilled_reg(&old->stack[spi])) 12885 continue; 12886 if (!regsafe(env, &old->stack[spi].spilled_ptr, 12887 &cur->stack[spi].spilled_ptr, idmap)) 12888 /* when explored and current stack slot are both storing 12889 * spilled registers, check that stored pointers types 12890 * are the same as well. 12891 * Ex: explored safe path could have stored 12892 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 12893 * but current path has stored: 12894 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 12895 * such verifier states are not equivalent. 12896 * return false to continue verification of this path 12897 */ 12898 return false; 12899 } 12900 return true; 12901 } 12902 12903 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 12904 { 12905 if (old->acquired_refs != cur->acquired_refs) 12906 return false; 12907 return !memcmp(old->refs, cur->refs, 12908 sizeof(*old->refs) * old->acquired_refs); 12909 } 12910 12911 /* compare two verifier states 12912 * 12913 * all states stored in state_list are known to be valid, since 12914 * verifier reached 'bpf_exit' instruction through them 12915 * 12916 * this function is called when verifier exploring different branches of 12917 * execution popped from the state stack. If it sees an old state that has 12918 * more strict register state and more strict stack state then this execution 12919 * branch doesn't need to be explored further, since verifier already 12920 * concluded that more strict state leads to valid finish. 12921 * 12922 * Therefore two states are equivalent if register state is more conservative 12923 * and explored stack state is more conservative than the current one. 12924 * Example: 12925 * explored current 12926 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 12927 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 12928 * 12929 * In other words if current stack state (one being explored) has more 12930 * valid slots than old one that already passed validation, it means 12931 * the verifier can stop exploring and conclude that current state is valid too 12932 * 12933 * Similarly with registers. If explored state has register type as invalid 12934 * whereas register type in current state is meaningful, it means that 12935 * the current state will reach 'bpf_exit' instruction safely 12936 */ 12937 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 12938 struct bpf_func_state *cur) 12939 { 12940 int i; 12941 12942 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 12943 for (i = 0; i < MAX_BPF_REG; i++) 12944 if (!regsafe(env, &old->regs[i], &cur->regs[i], 12945 env->idmap_scratch)) 12946 return false; 12947 12948 if (!stacksafe(env, old, cur, env->idmap_scratch)) 12949 return false; 12950 12951 if (!refsafe(old, cur)) 12952 return false; 12953 12954 return true; 12955 } 12956 12957 static bool states_equal(struct bpf_verifier_env *env, 12958 struct bpf_verifier_state *old, 12959 struct bpf_verifier_state *cur) 12960 { 12961 int i; 12962 12963 if (old->curframe != cur->curframe) 12964 return false; 12965 12966 /* Verification state from speculative execution simulation 12967 * must never prune a non-speculative execution one. 12968 */ 12969 if (old->speculative && !cur->speculative) 12970 return false; 12971 12972 if (old->active_lock.ptr != cur->active_lock.ptr || 12973 old->active_lock.id != cur->active_lock.id) 12974 return false; 12975 12976 /* for states to be equal callsites have to be the same 12977 * and all frame states need to be equivalent 12978 */ 12979 for (i = 0; i <= old->curframe; i++) { 12980 if (old->frame[i]->callsite != cur->frame[i]->callsite) 12981 return false; 12982 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 12983 return false; 12984 } 12985 return true; 12986 } 12987 12988 /* Return 0 if no propagation happened. Return negative error code if error 12989 * happened. Otherwise, return the propagated bit. 12990 */ 12991 static int propagate_liveness_reg(struct bpf_verifier_env *env, 12992 struct bpf_reg_state *reg, 12993 struct bpf_reg_state *parent_reg) 12994 { 12995 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 12996 u8 flag = reg->live & REG_LIVE_READ; 12997 int err; 12998 12999 /* When comes here, read flags of PARENT_REG or REG could be any of 13000 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 13001 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 13002 */ 13003 if (parent_flag == REG_LIVE_READ64 || 13004 /* Or if there is no read flag from REG. */ 13005 !flag || 13006 /* Or if the read flag from REG is the same as PARENT_REG. */ 13007 parent_flag == flag) 13008 return 0; 13009 13010 err = mark_reg_read(env, reg, parent_reg, flag); 13011 if (err) 13012 return err; 13013 13014 return flag; 13015 } 13016 13017 /* A write screens off any subsequent reads; but write marks come from the 13018 * straight-line code between a state and its parent. When we arrive at an 13019 * equivalent state (jump target or such) we didn't arrive by the straight-line 13020 * code, so read marks in the state must propagate to the parent regardless 13021 * of the state's write marks. That's what 'parent == state->parent' comparison 13022 * in mark_reg_read() is for. 13023 */ 13024 static int propagate_liveness(struct bpf_verifier_env *env, 13025 const struct bpf_verifier_state *vstate, 13026 struct bpf_verifier_state *vparent) 13027 { 13028 struct bpf_reg_state *state_reg, *parent_reg; 13029 struct bpf_func_state *state, *parent; 13030 int i, frame, err = 0; 13031 13032 if (vparent->curframe != vstate->curframe) { 13033 WARN(1, "propagate_live: parent frame %d current frame %d\n", 13034 vparent->curframe, vstate->curframe); 13035 return -EFAULT; 13036 } 13037 /* Propagate read liveness of registers... */ 13038 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 13039 for (frame = 0; frame <= vstate->curframe; frame++) { 13040 parent = vparent->frame[frame]; 13041 state = vstate->frame[frame]; 13042 parent_reg = parent->regs; 13043 state_reg = state->regs; 13044 /* We don't need to worry about FP liveness, it's read-only */ 13045 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 13046 err = propagate_liveness_reg(env, &state_reg[i], 13047 &parent_reg[i]); 13048 if (err < 0) 13049 return err; 13050 if (err == REG_LIVE_READ64) 13051 mark_insn_zext(env, &parent_reg[i]); 13052 } 13053 13054 /* Propagate stack slots. */ 13055 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 13056 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 13057 parent_reg = &parent->stack[i].spilled_ptr; 13058 state_reg = &state->stack[i].spilled_ptr; 13059 err = propagate_liveness_reg(env, state_reg, 13060 parent_reg); 13061 if (err < 0) 13062 return err; 13063 } 13064 } 13065 return 0; 13066 } 13067 13068 /* find precise scalars in the previous equivalent state and 13069 * propagate them into the current state 13070 */ 13071 static int propagate_precision(struct bpf_verifier_env *env, 13072 const struct bpf_verifier_state *old) 13073 { 13074 struct bpf_reg_state *state_reg; 13075 struct bpf_func_state *state; 13076 int i, err = 0, fr; 13077 13078 for (fr = old->curframe; fr >= 0; fr--) { 13079 state = old->frame[fr]; 13080 state_reg = state->regs; 13081 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 13082 if (state_reg->type != SCALAR_VALUE || 13083 !state_reg->precise) 13084 continue; 13085 if (env->log.level & BPF_LOG_LEVEL2) 13086 verbose(env, "frame %d: propagating r%d\n", i, fr); 13087 err = mark_chain_precision_frame(env, fr, i); 13088 if (err < 0) 13089 return err; 13090 } 13091 13092 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 13093 if (!is_spilled_reg(&state->stack[i])) 13094 continue; 13095 state_reg = &state->stack[i].spilled_ptr; 13096 if (state_reg->type != SCALAR_VALUE || 13097 !state_reg->precise) 13098 continue; 13099 if (env->log.level & BPF_LOG_LEVEL2) 13100 verbose(env, "frame %d: propagating fp%d\n", 13101 (-i - 1) * BPF_REG_SIZE, fr); 13102 err = mark_chain_precision_stack_frame(env, fr, i); 13103 if (err < 0) 13104 return err; 13105 } 13106 } 13107 return 0; 13108 } 13109 13110 static bool states_maybe_looping(struct bpf_verifier_state *old, 13111 struct bpf_verifier_state *cur) 13112 { 13113 struct bpf_func_state *fold, *fcur; 13114 int i, fr = cur->curframe; 13115 13116 if (old->curframe != fr) 13117 return false; 13118 13119 fold = old->frame[fr]; 13120 fcur = cur->frame[fr]; 13121 for (i = 0; i < MAX_BPF_REG; i++) 13122 if (memcmp(&fold->regs[i], &fcur->regs[i], 13123 offsetof(struct bpf_reg_state, parent))) 13124 return false; 13125 return true; 13126 } 13127 13128 13129 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 13130 { 13131 struct bpf_verifier_state_list *new_sl; 13132 struct bpf_verifier_state_list *sl, **pprev; 13133 struct bpf_verifier_state *cur = env->cur_state, *new; 13134 int i, j, err, states_cnt = 0; 13135 bool add_new_state = env->test_state_freq ? true : false; 13136 13137 cur->last_insn_idx = env->prev_insn_idx; 13138 if (!env->insn_aux_data[insn_idx].prune_point) 13139 /* this 'insn_idx' instruction wasn't marked, so we will not 13140 * be doing state search here 13141 */ 13142 return 0; 13143 13144 /* bpf progs typically have pruning point every 4 instructions 13145 * http://vger.kernel.org/bpfconf2019.html#session-1 13146 * Do not add new state for future pruning if the verifier hasn't seen 13147 * at least 2 jumps and at least 8 instructions. 13148 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 13149 * In tests that amounts to up to 50% reduction into total verifier 13150 * memory consumption and 20% verifier time speedup. 13151 */ 13152 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 13153 env->insn_processed - env->prev_insn_processed >= 8) 13154 add_new_state = true; 13155 13156 pprev = explored_state(env, insn_idx); 13157 sl = *pprev; 13158 13159 clean_live_states(env, insn_idx, cur); 13160 13161 while (sl) { 13162 states_cnt++; 13163 if (sl->state.insn_idx != insn_idx) 13164 goto next; 13165 13166 if (sl->state.branches) { 13167 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 13168 13169 if (frame->in_async_callback_fn && 13170 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 13171 /* Different async_entry_cnt means that the verifier is 13172 * processing another entry into async callback. 13173 * Seeing the same state is not an indication of infinite 13174 * loop or infinite recursion. 13175 * But finding the same state doesn't mean that it's safe 13176 * to stop processing the current state. The previous state 13177 * hasn't yet reached bpf_exit, since state.branches > 0. 13178 * Checking in_async_callback_fn alone is not enough either. 13179 * Since the verifier still needs to catch infinite loops 13180 * inside async callbacks. 13181 */ 13182 } else if (states_maybe_looping(&sl->state, cur) && 13183 states_equal(env, &sl->state, cur)) { 13184 verbose_linfo(env, insn_idx, "; "); 13185 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 13186 return -EINVAL; 13187 } 13188 /* if the verifier is processing a loop, avoid adding new state 13189 * too often, since different loop iterations have distinct 13190 * states and may not help future pruning. 13191 * This threshold shouldn't be too low to make sure that 13192 * a loop with large bound will be rejected quickly. 13193 * The most abusive loop will be: 13194 * r1 += 1 13195 * if r1 < 1000000 goto pc-2 13196 * 1M insn_procssed limit / 100 == 10k peak states. 13197 * This threshold shouldn't be too high either, since states 13198 * at the end of the loop are likely to be useful in pruning. 13199 */ 13200 if (env->jmps_processed - env->prev_jmps_processed < 20 && 13201 env->insn_processed - env->prev_insn_processed < 100) 13202 add_new_state = false; 13203 goto miss; 13204 } 13205 if (states_equal(env, &sl->state, cur)) { 13206 sl->hit_cnt++; 13207 /* reached equivalent register/stack state, 13208 * prune the search. 13209 * Registers read by the continuation are read by us. 13210 * If we have any write marks in env->cur_state, they 13211 * will prevent corresponding reads in the continuation 13212 * from reaching our parent (an explored_state). Our 13213 * own state will get the read marks recorded, but 13214 * they'll be immediately forgotten as we're pruning 13215 * this state and will pop a new one. 13216 */ 13217 err = propagate_liveness(env, &sl->state, cur); 13218 13219 /* if previous state reached the exit with precision and 13220 * current state is equivalent to it (except precsion marks) 13221 * the precision needs to be propagated back in 13222 * the current state. 13223 */ 13224 err = err ? : push_jmp_history(env, cur); 13225 err = err ? : propagate_precision(env, &sl->state); 13226 if (err) 13227 return err; 13228 return 1; 13229 } 13230 miss: 13231 /* when new state is not going to be added do not increase miss count. 13232 * Otherwise several loop iterations will remove the state 13233 * recorded earlier. The goal of these heuristics is to have 13234 * states from some iterations of the loop (some in the beginning 13235 * and some at the end) to help pruning. 13236 */ 13237 if (add_new_state) 13238 sl->miss_cnt++; 13239 /* heuristic to determine whether this state is beneficial 13240 * to keep checking from state equivalence point of view. 13241 * Higher numbers increase max_states_per_insn and verification time, 13242 * but do not meaningfully decrease insn_processed. 13243 */ 13244 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 13245 /* the state is unlikely to be useful. Remove it to 13246 * speed up verification 13247 */ 13248 *pprev = sl->next; 13249 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 13250 u32 br = sl->state.branches; 13251 13252 WARN_ONCE(br, 13253 "BUG live_done but branches_to_explore %d\n", 13254 br); 13255 free_verifier_state(&sl->state, false); 13256 kfree(sl); 13257 env->peak_states--; 13258 } else { 13259 /* cannot free this state, since parentage chain may 13260 * walk it later. Add it for free_list instead to 13261 * be freed at the end of verification 13262 */ 13263 sl->next = env->free_list; 13264 env->free_list = sl; 13265 } 13266 sl = *pprev; 13267 continue; 13268 } 13269 next: 13270 pprev = &sl->next; 13271 sl = *pprev; 13272 } 13273 13274 if (env->max_states_per_insn < states_cnt) 13275 env->max_states_per_insn = states_cnt; 13276 13277 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 13278 return push_jmp_history(env, cur); 13279 13280 if (!add_new_state) 13281 return push_jmp_history(env, cur); 13282 13283 /* There were no equivalent states, remember the current one. 13284 * Technically the current state is not proven to be safe yet, 13285 * but it will either reach outer most bpf_exit (which means it's safe) 13286 * or it will be rejected. When there are no loops the verifier won't be 13287 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 13288 * again on the way to bpf_exit. 13289 * When looping the sl->state.branches will be > 0 and this state 13290 * will not be considered for equivalence until branches == 0. 13291 */ 13292 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 13293 if (!new_sl) 13294 return -ENOMEM; 13295 env->total_states++; 13296 env->peak_states++; 13297 env->prev_jmps_processed = env->jmps_processed; 13298 env->prev_insn_processed = env->insn_processed; 13299 13300 /* forget precise markings we inherited, see __mark_chain_precision */ 13301 if (env->bpf_capable) 13302 mark_all_scalars_imprecise(env, cur); 13303 13304 /* add new state to the head of linked list */ 13305 new = &new_sl->state; 13306 err = copy_verifier_state(new, cur); 13307 if (err) { 13308 free_verifier_state(new, false); 13309 kfree(new_sl); 13310 return err; 13311 } 13312 new->insn_idx = insn_idx; 13313 WARN_ONCE(new->branches != 1, 13314 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 13315 13316 cur->parent = new; 13317 cur->first_insn_idx = insn_idx; 13318 clear_jmp_history(cur); 13319 new_sl->next = *explored_state(env, insn_idx); 13320 *explored_state(env, insn_idx) = new_sl; 13321 /* connect new state to parentage chain. Current frame needs all 13322 * registers connected. Only r6 - r9 of the callers are alive (pushed 13323 * to the stack implicitly by JITs) so in callers' frames connect just 13324 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 13325 * the state of the call instruction (with WRITTEN set), and r0 comes 13326 * from callee with its full parentage chain, anyway. 13327 */ 13328 /* clear write marks in current state: the writes we did are not writes 13329 * our child did, so they don't screen off its reads from us. 13330 * (There are no read marks in current state, because reads always mark 13331 * their parent and current state never has children yet. Only 13332 * explored_states can get read marks.) 13333 */ 13334 for (j = 0; j <= cur->curframe; j++) { 13335 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 13336 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 13337 for (i = 0; i < BPF_REG_FP; i++) 13338 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 13339 } 13340 13341 /* all stack frames are accessible from callee, clear them all */ 13342 for (j = 0; j <= cur->curframe; j++) { 13343 struct bpf_func_state *frame = cur->frame[j]; 13344 struct bpf_func_state *newframe = new->frame[j]; 13345 13346 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 13347 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 13348 frame->stack[i].spilled_ptr.parent = 13349 &newframe->stack[i].spilled_ptr; 13350 } 13351 } 13352 return 0; 13353 } 13354 13355 /* Return true if it's OK to have the same insn return a different type. */ 13356 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 13357 { 13358 switch (base_type(type)) { 13359 case PTR_TO_CTX: 13360 case PTR_TO_SOCKET: 13361 case PTR_TO_SOCK_COMMON: 13362 case PTR_TO_TCP_SOCK: 13363 case PTR_TO_XDP_SOCK: 13364 case PTR_TO_BTF_ID: 13365 return false; 13366 default: 13367 return true; 13368 } 13369 } 13370 13371 /* If an instruction was previously used with particular pointer types, then we 13372 * need to be careful to avoid cases such as the below, where it may be ok 13373 * for one branch accessing the pointer, but not ok for the other branch: 13374 * 13375 * R1 = sock_ptr 13376 * goto X; 13377 * ... 13378 * R1 = some_other_valid_ptr; 13379 * goto X; 13380 * ... 13381 * R2 = *(u32 *)(R1 + 0); 13382 */ 13383 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 13384 { 13385 return src != prev && (!reg_type_mismatch_ok(src) || 13386 !reg_type_mismatch_ok(prev)); 13387 } 13388 13389 static int do_check(struct bpf_verifier_env *env) 13390 { 13391 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13392 struct bpf_verifier_state *state = env->cur_state; 13393 struct bpf_insn *insns = env->prog->insnsi; 13394 struct bpf_reg_state *regs; 13395 int insn_cnt = env->prog->len; 13396 bool do_print_state = false; 13397 int prev_insn_idx = -1; 13398 13399 for (;;) { 13400 struct bpf_insn *insn; 13401 u8 class; 13402 int err; 13403 13404 env->prev_insn_idx = prev_insn_idx; 13405 if (env->insn_idx >= insn_cnt) { 13406 verbose(env, "invalid insn idx %d insn_cnt %d\n", 13407 env->insn_idx, insn_cnt); 13408 return -EFAULT; 13409 } 13410 13411 insn = &insns[env->insn_idx]; 13412 class = BPF_CLASS(insn->code); 13413 13414 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 13415 verbose(env, 13416 "BPF program is too large. Processed %d insn\n", 13417 env->insn_processed); 13418 return -E2BIG; 13419 } 13420 13421 err = is_state_visited(env, env->insn_idx); 13422 if (err < 0) 13423 return err; 13424 if (err == 1) { 13425 /* found equivalent state, can prune the search */ 13426 if (env->log.level & BPF_LOG_LEVEL) { 13427 if (do_print_state) 13428 verbose(env, "\nfrom %d to %d%s: safe\n", 13429 env->prev_insn_idx, env->insn_idx, 13430 env->cur_state->speculative ? 13431 " (speculative execution)" : ""); 13432 else 13433 verbose(env, "%d: safe\n", env->insn_idx); 13434 } 13435 goto process_bpf_exit; 13436 } 13437 13438 if (signal_pending(current)) 13439 return -EAGAIN; 13440 13441 if (need_resched()) 13442 cond_resched(); 13443 13444 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 13445 verbose(env, "\nfrom %d to %d%s:", 13446 env->prev_insn_idx, env->insn_idx, 13447 env->cur_state->speculative ? 13448 " (speculative execution)" : ""); 13449 print_verifier_state(env, state->frame[state->curframe], true); 13450 do_print_state = false; 13451 } 13452 13453 if (env->log.level & BPF_LOG_LEVEL) { 13454 const struct bpf_insn_cbs cbs = { 13455 .cb_call = disasm_kfunc_name, 13456 .cb_print = verbose, 13457 .private_data = env, 13458 }; 13459 13460 if (verifier_state_scratched(env)) 13461 print_insn_state(env, state->frame[state->curframe]); 13462 13463 verbose_linfo(env, env->insn_idx, "; "); 13464 env->prev_log_len = env->log.len_used; 13465 verbose(env, "%d: ", env->insn_idx); 13466 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 13467 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 13468 env->prev_log_len = env->log.len_used; 13469 } 13470 13471 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13472 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 13473 env->prev_insn_idx); 13474 if (err) 13475 return err; 13476 } 13477 13478 regs = cur_regs(env); 13479 sanitize_mark_insn_seen(env); 13480 prev_insn_idx = env->insn_idx; 13481 13482 if (class == BPF_ALU || class == BPF_ALU64) { 13483 err = check_alu_op(env, insn); 13484 if (err) 13485 return err; 13486 13487 } else if (class == BPF_LDX) { 13488 enum bpf_reg_type *prev_src_type, src_reg_type; 13489 13490 /* check for reserved fields is already done */ 13491 13492 /* check src operand */ 13493 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13494 if (err) 13495 return err; 13496 13497 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13498 if (err) 13499 return err; 13500 13501 src_reg_type = regs[insn->src_reg].type; 13502 13503 /* check that memory (src_reg + off) is readable, 13504 * the state of dst_reg will be updated by this func 13505 */ 13506 err = check_mem_access(env, env->insn_idx, insn->src_reg, 13507 insn->off, BPF_SIZE(insn->code), 13508 BPF_READ, insn->dst_reg, false); 13509 if (err) 13510 return err; 13511 13512 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13513 13514 if (*prev_src_type == NOT_INIT) { 13515 /* saw a valid insn 13516 * dst_reg = *(u32 *)(src_reg + off) 13517 * save type to validate intersecting paths 13518 */ 13519 *prev_src_type = src_reg_type; 13520 13521 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 13522 /* ABuser program is trying to use the same insn 13523 * dst_reg = *(u32*) (src_reg + off) 13524 * with different pointer types: 13525 * src_reg == ctx in one branch and 13526 * src_reg == stack|map in some other branch. 13527 * Reject it. 13528 */ 13529 verbose(env, "same insn cannot be used with different pointers\n"); 13530 return -EINVAL; 13531 } 13532 13533 } else if (class == BPF_STX) { 13534 enum bpf_reg_type *prev_dst_type, dst_reg_type; 13535 13536 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 13537 err = check_atomic(env, env->insn_idx, insn); 13538 if (err) 13539 return err; 13540 env->insn_idx++; 13541 continue; 13542 } 13543 13544 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 13545 verbose(env, "BPF_STX uses reserved fields\n"); 13546 return -EINVAL; 13547 } 13548 13549 /* check src1 operand */ 13550 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13551 if (err) 13552 return err; 13553 /* check src2 operand */ 13554 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13555 if (err) 13556 return err; 13557 13558 dst_reg_type = regs[insn->dst_reg].type; 13559 13560 /* check that memory (dst_reg + off) is writeable */ 13561 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13562 insn->off, BPF_SIZE(insn->code), 13563 BPF_WRITE, insn->src_reg, false); 13564 if (err) 13565 return err; 13566 13567 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13568 13569 if (*prev_dst_type == NOT_INIT) { 13570 *prev_dst_type = dst_reg_type; 13571 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 13572 verbose(env, "same insn cannot be used with different pointers\n"); 13573 return -EINVAL; 13574 } 13575 13576 } else if (class == BPF_ST) { 13577 if (BPF_MODE(insn->code) != BPF_MEM || 13578 insn->src_reg != BPF_REG_0) { 13579 verbose(env, "BPF_ST uses reserved fields\n"); 13580 return -EINVAL; 13581 } 13582 /* check src operand */ 13583 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13584 if (err) 13585 return err; 13586 13587 if (is_ctx_reg(env, insn->dst_reg)) { 13588 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 13589 insn->dst_reg, 13590 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 13591 return -EACCES; 13592 } 13593 13594 /* check that memory (dst_reg + off) is writeable */ 13595 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13596 insn->off, BPF_SIZE(insn->code), 13597 BPF_WRITE, -1, false); 13598 if (err) 13599 return err; 13600 13601 } else if (class == BPF_JMP || class == BPF_JMP32) { 13602 u8 opcode = BPF_OP(insn->code); 13603 13604 env->jmps_processed++; 13605 if (opcode == BPF_CALL) { 13606 if (BPF_SRC(insn->code) != BPF_K || 13607 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 13608 && insn->off != 0) || 13609 (insn->src_reg != BPF_REG_0 && 13610 insn->src_reg != BPF_PSEUDO_CALL && 13611 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 13612 insn->dst_reg != BPF_REG_0 || 13613 class == BPF_JMP32) { 13614 verbose(env, "BPF_CALL uses reserved fields\n"); 13615 return -EINVAL; 13616 } 13617 13618 if (env->cur_state->active_lock.ptr) { 13619 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 13620 (insn->src_reg == BPF_PSEUDO_CALL) || 13621 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 13622 (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) { 13623 verbose(env, "function calls are not allowed while holding a lock\n"); 13624 return -EINVAL; 13625 } 13626 } 13627 if (insn->src_reg == BPF_PSEUDO_CALL) 13628 err = check_func_call(env, insn, &env->insn_idx); 13629 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 13630 err = check_kfunc_call(env, insn, &env->insn_idx); 13631 else 13632 err = check_helper_call(env, insn, &env->insn_idx); 13633 if (err) 13634 return err; 13635 } else if (opcode == BPF_JA) { 13636 if (BPF_SRC(insn->code) != BPF_K || 13637 insn->imm != 0 || 13638 insn->src_reg != BPF_REG_0 || 13639 insn->dst_reg != BPF_REG_0 || 13640 class == BPF_JMP32) { 13641 verbose(env, "BPF_JA uses reserved fields\n"); 13642 return -EINVAL; 13643 } 13644 13645 env->insn_idx += insn->off + 1; 13646 continue; 13647 13648 } else if (opcode == BPF_EXIT) { 13649 if (BPF_SRC(insn->code) != BPF_K || 13650 insn->imm != 0 || 13651 insn->src_reg != BPF_REG_0 || 13652 insn->dst_reg != BPF_REG_0 || 13653 class == BPF_JMP32) { 13654 verbose(env, "BPF_EXIT uses reserved fields\n"); 13655 return -EINVAL; 13656 } 13657 13658 if (env->cur_state->active_lock.ptr) { 13659 verbose(env, "bpf_spin_unlock is missing\n"); 13660 return -EINVAL; 13661 } 13662 13663 /* We must do check_reference_leak here before 13664 * prepare_func_exit to handle the case when 13665 * state->curframe > 0, it may be a callback 13666 * function, for which reference_state must 13667 * match caller reference state when it exits. 13668 */ 13669 err = check_reference_leak(env); 13670 if (err) 13671 return err; 13672 13673 if (state->curframe) { 13674 /* exit from nested function */ 13675 err = prepare_func_exit(env, &env->insn_idx); 13676 if (err) 13677 return err; 13678 do_print_state = true; 13679 continue; 13680 } 13681 13682 err = check_return_code(env); 13683 if (err) 13684 return err; 13685 process_bpf_exit: 13686 mark_verifier_state_scratched(env); 13687 update_branch_counts(env, env->cur_state); 13688 err = pop_stack(env, &prev_insn_idx, 13689 &env->insn_idx, pop_log); 13690 if (err < 0) { 13691 if (err != -ENOENT) 13692 return err; 13693 break; 13694 } else { 13695 do_print_state = true; 13696 continue; 13697 } 13698 } else { 13699 err = check_cond_jmp_op(env, insn, &env->insn_idx); 13700 if (err) 13701 return err; 13702 } 13703 } else if (class == BPF_LD) { 13704 u8 mode = BPF_MODE(insn->code); 13705 13706 if (mode == BPF_ABS || mode == BPF_IND) { 13707 err = check_ld_abs(env, insn); 13708 if (err) 13709 return err; 13710 13711 } else if (mode == BPF_IMM) { 13712 err = check_ld_imm(env, insn); 13713 if (err) 13714 return err; 13715 13716 env->insn_idx++; 13717 sanitize_mark_insn_seen(env); 13718 } else { 13719 verbose(env, "invalid BPF_LD mode\n"); 13720 return -EINVAL; 13721 } 13722 } else { 13723 verbose(env, "unknown insn class %d\n", class); 13724 return -EINVAL; 13725 } 13726 13727 env->insn_idx++; 13728 } 13729 13730 return 0; 13731 } 13732 13733 static int find_btf_percpu_datasec(struct btf *btf) 13734 { 13735 const struct btf_type *t; 13736 const char *tname; 13737 int i, n; 13738 13739 /* 13740 * Both vmlinux and module each have their own ".data..percpu" 13741 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 13742 * types to look at only module's own BTF types. 13743 */ 13744 n = btf_nr_types(btf); 13745 if (btf_is_module(btf)) 13746 i = btf_nr_types(btf_vmlinux); 13747 else 13748 i = 1; 13749 13750 for(; i < n; i++) { 13751 t = btf_type_by_id(btf, i); 13752 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 13753 continue; 13754 13755 tname = btf_name_by_offset(btf, t->name_off); 13756 if (!strcmp(tname, ".data..percpu")) 13757 return i; 13758 } 13759 13760 return -ENOENT; 13761 } 13762 13763 /* replace pseudo btf_id with kernel symbol address */ 13764 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 13765 struct bpf_insn *insn, 13766 struct bpf_insn_aux_data *aux) 13767 { 13768 const struct btf_var_secinfo *vsi; 13769 const struct btf_type *datasec; 13770 struct btf_mod_pair *btf_mod; 13771 const struct btf_type *t; 13772 const char *sym_name; 13773 bool percpu = false; 13774 u32 type, id = insn->imm; 13775 struct btf *btf; 13776 s32 datasec_id; 13777 u64 addr; 13778 int i, btf_fd, err; 13779 13780 btf_fd = insn[1].imm; 13781 if (btf_fd) { 13782 btf = btf_get_by_fd(btf_fd); 13783 if (IS_ERR(btf)) { 13784 verbose(env, "invalid module BTF object FD specified.\n"); 13785 return -EINVAL; 13786 } 13787 } else { 13788 if (!btf_vmlinux) { 13789 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 13790 return -EINVAL; 13791 } 13792 btf = btf_vmlinux; 13793 btf_get(btf); 13794 } 13795 13796 t = btf_type_by_id(btf, id); 13797 if (!t) { 13798 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 13799 err = -ENOENT; 13800 goto err_put; 13801 } 13802 13803 if (!btf_type_is_var(t)) { 13804 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 13805 err = -EINVAL; 13806 goto err_put; 13807 } 13808 13809 sym_name = btf_name_by_offset(btf, t->name_off); 13810 addr = kallsyms_lookup_name(sym_name); 13811 if (!addr) { 13812 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 13813 sym_name); 13814 err = -ENOENT; 13815 goto err_put; 13816 } 13817 13818 datasec_id = find_btf_percpu_datasec(btf); 13819 if (datasec_id > 0) { 13820 datasec = btf_type_by_id(btf, datasec_id); 13821 for_each_vsi(i, datasec, vsi) { 13822 if (vsi->type == id) { 13823 percpu = true; 13824 break; 13825 } 13826 } 13827 } 13828 13829 insn[0].imm = (u32)addr; 13830 insn[1].imm = addr >> 32; 13831 13832 type = t->type; 13833 t = btf_type_skip_modifiers(btf, type, NULL); 13834 if (percpu) { 13835 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 13836 aux->btf_var.btf = btf; 13837 aux->btf_var.btf_id = type; 13838 } else if (!btf_type_is_struct(t)) { 13839 const struct btf_type *ret; 13840 const char *tname; 13841 u32 tsize; 13842 13843 /* resolve the type size of ksym. */ 13844 ret = btf_resolve_size(btf, t, &tsize); 13845 if (IS_ERR(ret)) { 13846 tname = btf_name_by_offset(btf, t->name_off); 13847 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 13848 tname, PTR_ERR(ret)); 13849 err = -EINVAL; 13850 goto err_put; 13851 } 13852 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 13853 aux->btf_var.mem_size = tsize; 13854 } else { 13855 aux->btf_var.reg_type = PTR_TO_BTF_ID; 13856 aux->btf_var.btf = btf; 13857 aux->btf_var.btf_id = type; 13858 } 13859 13860 /* check whether we recorded this BTF (and maybe module) already */ 13861 for (i = 0; i < env->used_btf_cnt; i++) { 13862 if (env->used_btfs[i].btf == btf) { 13863 btf_put(btf); 13864 return 0; 13865 } 13866 } 13867 13868 if (env->used_btf_cnt >= MAX_USED_BTFS) { 13869 err = -E2BIG; 13870 goto err_put; 13871 } 13872 13873 btf_mod = &env->used_btfs[env->used_btf_cnt]; 13874 btf_mod->btf = btf; 13875 btf_mod->module = NULL; 13876 13877 /* if we reference variables from kernel module, bump its refcount */ 13878 if (btf_is_module(btf)) { 13879 btf_mod->module = btf_try_get_module(btf); 13880 if (!btf_mod->module) { 13881 err = -ENXIO; 13882 goto err_put; 13883 } 13884 } 13885 13886 env->used_btf_cnt++; 13887 13888 return 0; 13889 err_put: 13890 btf_put(btf); 13891 return err; 13892 } 13893 13894 static bool is_tracing_prog_type(enum bpf_prog_type type) 13895 { 13896 switch (type) { 13897 case BPF_PROG_TYPE_KPROBE: 13898 case BPF_PROG_TYPE_TRACEPOINT: 13899 case BPF_PROG_TYPE_PERF_EVENT: 13900 case BPF_PROG_TYPE_RAW_TRACEPOINT: 13901 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 13902 return true; 13903 default: 13904 return false; 13905 } 13906 } 13907 13908 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 13909 struct bpf_map *map, 13910 struct bpf_prog *prog) 13911 13912 { 13913 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13914 13915 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) { 13916 if (is_tracing_prog_type(prog_type)) { 13917 verbose(env, "tracing progs cannot use bpf_list_head yet\n"); 13918 return -EINVAL; 13919 } 13920 } 13921 13922 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 13923 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 13924 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 13925 return -EINVAL; 13926 } 13927 13928 if (is_tracing_prog_type(prog_type)) { 13929 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 13930 return -EINVAL; 13931 } 13932 13933 if (prog->aux->sleepable) { 13934 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 13935 return -EINVAL; 13936 } 13937 } 13938 13939 if (btf_record_has_field(map->record, BPF_TIMER)) { 13940 if (is_tracing_prog_type(prog_type)) { 13941 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 13942 return -EINVAL; 13943 } 13944 } 13945 13946 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 13947 !bpf_offload_prog_map_match(prog, map)) { 13948 verbose(env, "offload device mismatch between prog and map\n"); 13949 return -EINVAL; 13950 } 13951 13952 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 13953 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 13954 return -EINVAL; 13955 } 13956 13957 if (prog->aux->sleepable) 13958 switch (map->map_type) { 13959 case BPF_MAP_TYPE_HASH: 13960 case BPF_MAP_TYPE_LRU_HASH: 13961 case BPF_MAP_TYPE_ARRAY: 13962 case BPF_MAP_TYPE_PERCPU_HASH: 13963 case BPF_MAP_TYPE_PERCPU_ARRAY: 13964 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 13965 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 13966 case BPF_MAP_TYPE_HASH_OF_MAPS: 13967 case BPF_MAP_TYPE_RINGBUF: 13968 case BPF_MAP_TYPE_USER_RINGBUF: 13969 case BPF_MAP_TYPE_INODE_STORAGE: 13970 case BPF_MAP_TYPE_SK_STORAGE: 13971 case BPF_MAP_TYPE_TASK_STORAGE: 13972 break; 13973 default: 13974 verbose(env, 13975 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 13976 return -EINVAL; 13977 } 13978 13979 return 0; 13980 } 13981 13982 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 13983 { 13984 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 13985 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 13986 } 13987 13988 /* find and rewrite pseudo imm in ld_imm64 instructions: 13989 * 13990 * 1. if it accesses map FD, replace it with actual map pointer. 13991 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 13992 * 13993 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 13994 */ 13995 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 13996 { 13997 struct bpf_insn *insn = env->prog->insnsi; 13998 int insn_cnt = env->prog->len; 13999 int i, j, err; 14000 14001 err = bpf_prog_calc_tag(env->prog); 14002 if (err) 14003 return err; 14004 14005 for (i = 0; i < insn_cnt; i++, insn++) { 14006 if (BPF_CLASS(insn->code) == BPF_LDX && 14007 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 14008 verbose(env, "BPF_LDX uses reserved fields\n"); 14009 return -EINVAL; 14010 } 14011 14012 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 14013 struct bpf_insn_aux_data *aux; 14014 struct bpf_map *map; 14015 struct fd f; 14016 u64 addr; 14017 u32 fd; 14018 14019 if (i == insn_cnt - 1 || insn[1].code != 0 || 14020 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 14021 insn[1].off != 0) { 14022 verbose(env, "invalid bpf_ld_imm64 insn\n"); 14023 return -EINVAL; 14024 } 14025 14026 if (insn[0].src_reg == 0) 14027 /* valid generic load 64-bit imm */ 14028 goto next_insn; 14029 14030 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 14031 aux = &env->insn_aux_data[i]; 14032 err = check_pseudo_btf_id(env, insn, aux); 14033 if (err) 14034 return err; 14035 goto next_insn; 14036 } 14037 14038 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 14039 aux = &env->insn_aux_data[i]; 14040 aux->ptr_type = PTR_TO_FUNC; 14041 goto next_insn; 14042 } 14043 14044 /* In final convert_pseudo_ld_imm64() step, this is 14045 * converted into regular 64-bit imm load insn. 14046 */ 14047 switch (insn[0].src_reg) { 14048 case BPF_PSEUDO_MAP_VALUE: 14049 case BPF_PSEUDO_MAP_IDX_VALUE: 14050 break; 14051 case BPF_PSEUDO_MAP_FD: 14052 case BPF_PSEUDO_MAP_IDX: 14053 if (insn[1].imm == 0) 14054 break; 14055 fallthrough; 14056 default: 14057 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 14058 return -EINVAL; 14059 } 14060 14061 switch (insn[0].src_reg) { 14062 case BPF_PSEUDO_MAP_IDX_VALUE: 14063 case BPF_PSEUDO_MAP_IDX: 14064 if (bpfptr_is_null(env->fd_array)) { 14065 verbose(env, "fd_idx without fd_array is invalid\n"); 14066 return -EPROTO; 14067 } 14068 if (copy_from_bpfptr_offset(&fd, env->fd_array, 14069 insn[0].imm * sizeof(fd), 14070 sizeof(fd))) 14071 return -EFAULT; 14072 break; 14073 default: 14074 fd = insn[0].imm; 14075 break; 14076 } 14077 14078 f = fdget(fd); 14079 map = __bpf_map_get(f); 14080 if (IS_ERR(map)) { 14081 verbose(env, "fd %d is not pointing to valid bpf_map\n", 14082 insn[0].imm); 14083 return PTR_ERR(map); 14084 } 14085 14086 err = check_map_prog_compatibility(env, map, env->prog); 14087 if (err) { 14088 fdput(f); 14089 return err; 14090 } 14091 14092 aux = &env->insn_aux_data[i]; 14093 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 14094 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 14095 addr = (unsigned long)map; 14096 } else { 14097 u32 off = insn[1].imm; 14098 14099 if (off >= BPF_MAX_VAR_OFF) { 14100 verbose(env, "direct value offset of %u is not allowed\n", off); 14101 fdput(f); 14102 return -EINVAL; 14103 } 14104 14105 if (!map->ops->map_direct_value_addr) { 14106 verbose(env, "no direct value access support for this map type\n"); 14107 fdput(f); 14108 return -EINVAL; 14109 } 14110 14111 err = map->ops->map_direct_value_addr(map, &addr, off); 14112 if (err) { 14113 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 14114 map->value_size, off); 14115 fdput(f); 14116 return err; 14117 } 14118 14119 aux->map_off = off; 14120 addr += off; 14121 } 14122 14123 insn[0].imm = (u32)addr; 14124 insn[1].imm = addr >> 32; 14125 14126 /* check whether we recorded this map already */ 14127 for (j = 0; j < env->used_map_cnt; j++) { 14128 if (env->used_maps[j] == map) { 14129 aux->map_index = j; 14130 fdput(f); 14131 goto next_insn; 14132 } 14133 } 14134 14135 if (env->used_map_cnt >= MAX_USED_MAPS) { 14136 fdput(f); 14137 return -E2BIG; 14138 } 14139 14140 /* hold the map. If the program is rejected by verifier, 14141 * the map will be released by release_maps() or it 14142 * will be used by the valid program until it's unloaded 14143 * and all maps are released in free_used_maps() 14144 */ 14145 bpf_map_inc(map); 14146 14147 aux->map_index = env->used_map_cnt; 14148 env->used_maps[env->used_map_cnt++] = map; 14149 14150 if (bpf_map_is_cgroup_storage(map) && 14151 bpf_cgroup_storage_assign(env->prog->aux, map)) { 14152 verbose(env, "only one cgroup storage of each type is allowed\n"); 14153 fdput(f); 14154 return -EBUSY; 14155 } 14156 14157 fdput(f); 14158 next_insn: 14159 insn++; 14160 i++; 14161 continue; 14162 } 14163 14164 /* Basic sanity check before we invest more work here. */ 14165 if (!bpf_opcode_in_insntable(insn->code)) { 14166 verbose(env, "unknown opcode %02x\n", insn->code); 14167 return -EINVAL; 14168 } 14169 } 14170 14171 /* now all pseudo BPF_LD_IMM64 instructions load valid 14172 * 'struct bpf_map *' into a register instead of user map_fd. 14173 * These pointers will be used later by verifier to validate map access. 14174 */ 14175 return 0; 14176 } 14177 14178 /* drop refcnt of maps used by the rejected program */ 14179 static void release_maps(struct bpf_verifier_env *env) 14180 { 14181 __bpf_free_used_maps(env->prog->aux, env->used_maps, 14182 env->used_map_cnt); 14183 } 14184 14185 /* drop refcnt of maps used by the rejected program */ 14186 static void release_btfs(struct bpf_verifier_env *env) 14187 { 14188 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 14189 env->used_btf_cnt); 14190 } 14191 14192 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 14193 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 14194 { 14195 struct bpf_insn *insn = env->prog->insnsi; 14196 int insn_cnt = env->prog->len; 14197 int i; 14198 14199 for (i = 0; i < insn_cnt; i++, insn++) { 14200 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 14201 continue; 14202 if (insn->src_reg == BPF_PSEUDO_FUNC) 14203 continue; 14204 insn->src_reg = 0; 14205 } 14206 } 14207 14208 /* single env->prog->insni[off] instruction was replaced with the range 14209 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 14210 * [0, off) and [off, end) to new locations, so the patched range stays zero 14211 */ 14212 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 14213 struct bpf_insn_aux_data *new_data, 14214 struct bpf_prog *new_prog, u32 off, u32 cnt) 14215 { 14216 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 14217 struct bpf_insn *insn = new_prog->insnsi; 14218 u32 old_seen = old_data[off].seen; 14219 u32 prog_len; 14220 int i; 14221 14222 /* aux info at OFF always needs adjustment, no matter fast path 14223 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 14224 * original insn at old prog. 14225 */ 14226 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 14227 14228 if (cnt == 1) 14229 return; 14230 prog_len = new_prog->len; 14231 14232 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 14233 memcpy(new_data + off + cnt - 1, old_data + off, 14234 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 14235 for (i = off; i < off + cnt - 1; i++) { 14236 /* Expand insni[off]'s seen count to the patched range. */ 14237 new_data[i].seen = old_seen; 14238 new_data[i].zext_dst = insn_has_def32(env, insn + i); 14239 } 14240 env->insn_aux_data = new_data; 14241 vfree(old_data); 14242 } 14243 14244 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 14245 { 14246 int i; 14247 14248 if (len == 1) 14249 return; 14250 /* NOTE: fake 'exit' subprog should be updated as well. */ 14251 for (i = 0; i <= env->subprog_cnt; i++) { 14252 if (env->subprog_info[i].start <= off) 14253 continue; 14254 env->subprog_info[i].start += len - 1; 14255 } 14256 } 14257 14258 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 14259 { 14260 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 14261 int i, sz = prog->aux->size_poke_tab; 14262 struct bpf_jit_poke_descriptor *desc; 14263 14264 for (i = 0; i < sz; i++) { 14265 desc = &tab[i]; 14266 if (desc->insn_idx <= off) 14267 continue; 14268 desc->insn_idx += len - 1; 14269 } 14270 } 14271 14272 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 14273 const struct bpf_insn *patch, u32 len) 14274 { 14275 struct bpf_prog *new_prog; 14276 struct bpf_insn_aux_data *new_data = NULL; 14277 14278 if (len > 1) { 14279 new_data = vzalloc(array_size(env->prog->len + len - 1, 14280 sizeof(struct bpf_insn_aux_data))); 14281 if (!new_data) 14282 return NULL; 14283 } 14284 14285 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 14286 if (IS_ERR(new_prog)) { 14287 if (PTR_ERR(new_prog) == -ERANGE) 14288 verbose(env, 14289 "insn %d cannot be patched due to 16-bit range\n", 14290 env->insn_aux_data[off].orig_idx); 14291 vfree(new_data); 14292 return NULL; 14293 } 14294 adjust_insn_aux_data(env, new_data, new_prog, off, len); 14295 adjust_subprog_starts(env, off, len); 14296 adjust_poke_descs(new_prog, off, len); 14297 return new_prog; 14298 } 14299 14300 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 14301 u32 off, u32 cnt) 14302 { 14303 int i, j; 14304 14305 /* find first prog starting at or after off (first to remove) */ 14306 for (i = 0; i < env->subprog_cnt; i++) 14307 if (env->subprog_info[i].start >= off) 14308 break; 14309 /* find first prog starting at or after off + cnt (first to stay) */ 14310 for (j = i; j < env->subprog_cnt; j++) 14311 if (env->subprog_info[j].start >= off + cnt) 14312 break; 14313 /* if j doesn't start exactly at off + cnt, we are just removing 14314 * the front of previous prog 14315 */ 14316 if (env->subprog_info[j].start != off + cnt) 14317 j--; 14318 14319 if (j > i) { 14320 struct bpf_prog_aux *aux = env->prog->aux; 14321 int move; 14322 14323 /* move fake 'exit' subprog as well */ 14324 move = env->subprog_cnt + 1 - j; 14325 14326 memmove(env->subprog_info + i, 14327 env->subprog_info + j, 14328 sizeof(*env->subprog_info) * move); 14329 env->subprog_cnt -= j - i; 14330 14331 /* remove func_info */ 14332 if (aux->func_info) { 14333 move = aux->func_info_cnt - j; 14334 14335 memmove(aux->func_info + i, 14336 aux->func_info + j, 14337 sizeof(*aux->func_info) * move); 14338 aux->func_info_cnt -= j - i; 14339 /* func_info->insn_off is set after all code rewrites, 14340 * in adjust_btf_func() - no need to adjust 14341 */ 14342 } 14343 } else { 14344 /* convert i from "first prog to remove" to "first to adjust" */ 14345 if (env->subprog_info[i].start == off) 14346 i++; 14347 } 14348 14349 /* update fake 'exit' subprog as well */ 14350 for (; i <= env->subprog_cnt; i++) 14351 env->subprog_info[i].start -= cnt; 14352 14353 return 0; 14354 } 14355 14356 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 14357 u32 cnt) 14358 { 14359 struct bpf_prog *prog = env->prog; 14360 u32 i, l_off, l_cnt, nr_linfo; 14361 struct bpf_line_info *linfo; 14362 14363 nr_linfo = prog->aux->nr_linfo; 14364 if (!nr_linfo) 14365 return 0; 14366 14367 linfo = prog->aux->linfo; 14368 14369 /* find first line info to remove, count lines to be removed */ 14370 for (i = 0; i < nr_linfo; i++) 14371 if (linfo[i].insn_off >= off) 14372 break; 14373 14374 l_off = i; 14375 l_cnt = 0; 14376 for (; i < nr_linfo; i++) 14377 if (linfo[i].insn_off < off + cnt) 14378 l_cnt++; 14379 else 14380 break; 14381 14382 /* First live insn doesn't match first live linfo, it needs to "inherit" 14383 * last removed linfo. prog is already modified, so prog->len == off 14384 * means no live instructions after (tail of the program was removed). 14385 */ 14386 if (prog->len != off && l_cnt && 14387 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 14388 l_cnt--; 14389 linfo[--i].insn_off = off + cnt; 14390 } 14391 14392 /* remove the line info which refer to the removed instructions */ 14393 if (l_cnt) { 14394 memmove(linfo + l_off, linfo + i, 14395 sizeof(*linfo) * (nr_linfo - i)); 14396 14397 prog->aux->nr_linfo -= l_cnt; 14398 nr_linfo = prog->aux->nr_linfo; 14399 } 14400 14401 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 14402 for (i = l_off; i < nr_linfo; i++) 14403 linfo[i].insn_off -= cnt; 14404 14405 /* fix up all subprogs (incl. 'exit') which start >= off */ 14406 for (i = 0; i <= env->subprog_cnt; i++) 14407 if (env->subprog_info[i].linfo_idx > l_off) { 14408 /* program may have started in the removed region but 14409 * may not be fully removed 14410 */ 14411 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 14412 env->subprog_info[i].linfo_idx -= l_cnt; 14413 else 14414 env->subprog_info[i].linfo_idx = l_off; 14415 } 14416 14417 return 0; 14418 } 14419 14420 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 14421 { 14422 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14423 unsigned int orig_prog_len = env->prog->len; 14424 int err; 14425 14426 if (bpf_prog_is_dev_bound(env->prog->aux)) 14427 bpf_prog_offload_remove_insns(env, off, cnt); 14428 14429 err = bpf_remove_insns(env->prog, off, cnt); 14430 if (err) 14431 return err; 14432 14433 err = adjust_subprog_starts_after_remove(env, off, cnt); 14434 if (err) 14435 return err; 14436 14437 err = bpf_adj_linfo_after_remove(env, off, cnt); 14438 if (err) 14439 return err; 14440 14441 memmove(aux_data + off, aux_data + off + cnt, 14442 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 14443 14444 return 0; 14445 } 14446 14447 /* The verifier does more data flow analysis than llvm and will not 14448 * explore branches that are dead at run time. Malicious programs can 14449 * have dead code too. Therefore replace all dead at-run-time code 14450 * with 'ja -1'. 14451 * 14452 * Just nops are not optimal, e.g. if they would sit at the end of the 14453 * program and through another bug we would manage to jump there, then 14454 * we'd execute beyond program memory otherwise. Returning exception 14455 * code also wouldn't work since we can have subprogs where the dead 14456 * code could be located. 14457 */ 14458 static void sanitize_dead_code(struct bpf_verifier_env *env) 14459 { 14460 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14461 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 14462 struct bpf_insn *insn = env->prog->insnsi; 14463 const int insn_cnt = env->prog->len; 14464 int i; 14465 14466 for (i = 0; i < insn_cnt; i++) { 14467 if (aux_data[i].seen) 14468 continue; 14469 memcpy(insn + i, &trap, sizeof(trap)); 14470 aux_data[i].zext_dst = false; 14471 } 14472 } 14473 14474 static bool insn_is_cond_jump(u8 code) 14475 { 14476 u8 op; 14477 14478 if (BPF_CLASS(code) == BPF_JMP32) 14479 return true; 14480 14481 if (BPF_CLASS(code) != BPF_JMP) 14482 return false; 14483 14484 op = BPF_OP(code); 14485 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 14486 } 14487 14488 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 14489 { 14490 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14491 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14492 struct bpf_insn *insn = env->prog->insnsi; 14493 const int insn_cnt = env->prog->len; 14494 int i; 14495 14496 for (i = 0; i < insn_cnt; i++, insn++) { 14497 if (!insn_is_cond_jump(insn->code)) 14498 continue; 14499 14500 if (!aux_data[i + 1].seen) 14501 ja.off = insn->off; 14502 else if (!aux_data[i + 1 + insn->off].seen) 14503 ja.off = 0; 14504 else 14505 continue; 14506 14507 if (bpf_prog_is_dev_bound(env->prog->aux)) 14508 bpf_prog_offload_replace_insn(env, i, &ja); 14509 14510 memcpy(insn, &ja, sizeof(ja)); 14511 } 14512 } 14513 14514 static int opt_remove_dead_code(struct bpf_verifier_env *env) 14515 { 14516 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14517 int insn_cnt = env->prog->len; 14518 int i, err; 14519 14520 for (i = 0; i < insn_cnt; i++) { 14521 int j; 14522 14523 j = 0; 14524 while (i + j < insn_cnt && !aux_data[i + j].seen) 14525 j++; 14526 if (!j) 14527 continue; 14528 14529 err = verifier_remove_insns(env, i, j); 14530 if (err) 14531 return err; 14532 insn_cnt = env->prog->len; 14533 } 14534 14535 return 0; 14536 } 14537 14538 static int opt_remove_nops(struct bpf_verifier_env *env) 14539 { 14540 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14541 struct bpf_insn *insn = env->prog->insnsi; 14542 int insn_cnt = env->prog->len; 14543 int i, err; 14544 14545 for (i = 0; i < insn_cnt; i++) { 14546 if (memcmp(&insn[i], &ja, sizeof(ja))) 14547 continue; 14548 14549 err = verifier_remove_insns(env, i, 1); 14550 if (err) 14551 return err; 14552 insn_cnt--; 14553 i--; 14554 } 14555 14556 return 0; 14557 } 14558 14559 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 14560 const union bpf_attr *attr) 14561 { 14562 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 14563 struct bpf_insn_aux_data *aux = env->insn_aux_data; 14564 int i, patch_len, delta = 0, len = env->prog->len; 14565 struct bpf_insn *insns = env->prog->insnsi; 14566 struct bpf_prog *new_prog; 14567 bool rnd_hi32; 14568 14569 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 14570 zext_patch[1] = BPF_ZEXT_REG(0); 14571 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 14572 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 14573 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 14574 for (i = 0; i < len; i++) { 14575 int adj_idx = i + delta; 14576 struct bpf_insn insn; 14577 int load_reg; 14578 14579 insn = insns[adj_idx]; 14580 load_reg = insn_def_regno(&insn); 14581 if (!aux[adj_idx].zext_dst) { 14582 u8 code, class; 14583 u32 imm_rnd; 14584 14585 if (!rnd_hi32) 14586 continue; 14587 14588 code = insn.code; 14589 class = BPF_CLASS(code); 14590 if (load_reg == -1) 14591 continue; 14592 14593 /* NOTE: arg "reg" (the fourth one) is only used for 14594 * BPF_STX + SRC_OP, so it is safe to pass NULL 14595 * here. 14596 */ 14597 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 14598 if (class == BPF_LD && 14599 BPF_MODE(code) == BPF_IMM) 14600 i++; 14601 continue; 14602 } 14603 14604 /* ctx load could be transformed into wider load. */ 14605 if (class == BPF_LDX && 14606 aux[adj_idx].ptr_type == PTR_TO_CTX) 14607 continue; 14608 14609 imm_rnd = get_random_u32(); 14610 rnd_hi32_patch[0] = insn; 14611 rnd_hi32_patch[1].imm = imm_rnd; 14612 rnd_hi32_patch[3].dst_reg = load_reg; 14613 patch = rnd_hi32_patch; 14614 patch_len = 4; 14615 goto apply_patch_buffer; 14616 } 14617 14618 /* Add in an zero-extend instruction if a) the JIT has requested 14619 * it or b) it's a CMPXCHG. 14620 * 14621 * The latter is because: BPF_CMPXCHG always loads a value into 14622 * R0, therefore always zero-extends. However some archs' 14623 * equivalent instruction only does this load when the 14624 * comparison is successful. This detail of CMPXCHG is 14625 * orthogonal to the general zero-extension behaviour of the 14626 * CPU, so it's treated independently of bpf_jit_needs_zext. 14627 */ 14628 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 14629 continue; 14630 14631 if (WARN_ON(load_reg == -1)) { 14632 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 14633 return -EFAULT; 14634 } 14635 14636 zext_patch[0] = insn; 14637 zext_patch[1].dst_reg = load_reg; 14638 zext_patch[1].src_reg = load_reg; 14639 patch = zext_patch; 14640 patch_len = 2; 14641 apply_patch_buffer: 14642 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 14643 if (!new_prog) 14644 return -ENOMEM; 14645 env->prog = new_prog; 14646 insns = new_prog->insnsi; 14647 aux = env->insn_aux_data; 14648 delta += patch_len - 1; 14649 } 14650 14651 return 0; 14652 } 14653 14654 /* convert load instructions that access fields of a context type into a 14655 * sequence of instructions that access fields of the underlying structure: 14656 * struct __sk_buff -> struct sk_buff 14657 * struct bpf_sock_ops -> struct sock 14658 */ 14659 static int convert_ctx_accesses(struct bpf_verifier_env *env) 14660 { 14661 const struct bpf_verifier_ops *ops = env->ops; 14662 int i, cnt, size, ctx_field_size, delta = 0; 14663 const int insn_cnt = env->prog->len; 14664 struct bpf_insn insn_buf[16], *insn; 14665 u32 target_size, size_default, off; 14666 struct bpf_prog *new_prog; 14667 enum bpf_access_type type; 14668 bool is_narrower_load; 14669 14670 if (ops->gen_prologue || env->seen_direct_write) { 14671 if (!ops->gen_prologue) { 14672 verbose(env, "bpf verifier is misconfigured\n"); 14673 return -EINVAL; 14674 } 14675 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 14676 env->prog); 14677 if (cnt >= ARRAY_SIZE(insn_buf)) { 14678 verbose(env, "bpf verifier is misconfigured\n"); 14679 return -EINVAL; 14680 } else if (cnt) { 14681 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 14682 if (!new_prog) 14683 return -ENOMEM; 14684 14685 env->prog = new_prog; 14686 delta += cnt - 1; 14687 } 14688 } 14689 14690 if (bpf_prog_is_dev_bound(env->prog->aux)) 14691 return 0; 14692 14693 insn = env->prog->insnsi + delta; 14694 14695 for (i = 0; i < insn_cnt; i++, insn++) { 14696 bpf_convert_ctx_access_t convert_ctx_access; 14697 bool ctx_access; 14698 14699 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 14700 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 14701 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 14702 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 14703 type = BPF_READ; 14704 ctx_access = true; 14705 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 14706 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 14707 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 14708 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 14709 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 14710 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 14711 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 14712 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 14713 type = BPF_WRITE; 14714 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 14715 } else { 14716 continue; 14717 } 14718 14719 if (type == BPF_WRITE && 14720 env->insn_aux_data[i + delta].sanitize_stack_spill) { 14721 struct bpf_insn patch[] = { 14722 *insn, 14723 BPF_ST_NOSPEC(), 14724 }; 14725 14726 cnt = ARRAY_SIZE(patch); 14727 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 14728 if (!new_prog) 14729 return -ENOMEM; 14730 14731 delta += cnt - 1; 14732 env->prog = new_prog; 14733 insn = new_prog->insnsi + i + delta; 14734 continue; 14735 } 14736 14737 if (!ctx_access) 14738 continue; 14739 14740 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 14741 case PTR_TO_CTX: 14742 if (!ops->convert_ctx_access) 14743 continue; 14744 convert_ctx_access = ops->convert_ctx_access; 14745 break; 14746 case PTR_TO_SOCKET: 14747 case PTR_TO_SOCK_COMMON: 14748 convert_ctx_access = bpf_sock_convert_ctx_access; 14749 break; 14750 case PTR_TO_TCP_SOCK: 14751 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 14752 break; 14753 case PTR_TO_XDP_SOCK: 14754 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 14755 break; 14756 case PTR_TO_BTF_ID: 14757 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 14758 case PTR_TO_BTF_ID | PTR_TRUSTED: 14759 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 14760 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 14761 * be said once it is marked PTR_UNTRUSTED, hence we must handle 14762 * any faults for loads into such types. BPF_WRITE is disallowed 14763 * for this case. 14764 */ 14765 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 14766 case PTR_TO_BTF_ID | PTR_UNTRUSTED | PTR_TRUSTED: 14767 case PTR_TO_BTF_ID | PTR_UNTRUSTED | MEM_ALLOC | PTR_TRUSTED: 14768 if (type == BPF_READ) { 14769 insn->code = BPF_LDX | BPF_PROBE_MEM | 14770 BPF_SIZE((insn)->code); 14771 env->prog->aux->num_exentries++; 14772 } 14773 continue; 14774 default: 14775 continue; 14776 } 14777 14778 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 14779 size = BPF_LDST_BYTES(insn); 14780 14781 /* If the read access is a narrower load of the field, 14782 * convert to a 4/8-byte load, to minimum program type specific 14783 * convert_ctx_access changes. If conversion is successful, 14784 * we will apply proper mask to the result. 14785 */ 14786 is_narrower_load = size < ctx_field_size; 14787 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 14788 off = insn->off; 14789 if (is_narrower_load) { 14790 u8 size_code; 14791 14792 if (type == BPF_WRITE) { 14793 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 14794 return -EINVAL; 14795 } 14796 14797 size_code = BPF_H; 14798 if (ctx_field_size == 4) 14799 size_code = BPF_W; 14800 else if (ctx_field_size == 8) 14801 size_code = BPF_DW; 14802 14803 insn->off = off & ~(size_default - 1); 14804 insn->code = BPF_LDX | BPF_MEM | size_code; 14805 } 14806 14807 target_size = 0; 14808 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 14809 &target_size); 14810 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 14811 (ctx_field_size && !target_size)) { 14812 verbose(env, "bpf verifier is misconfigured\n"); 14813 return -EINVAL; 14814 } 14815 14816 if (is_narrower_load && size < target_size) { 14817 u8 shift = bpf_ctx_narrow_access_offset( 14818 off, size, size_default) * 8; 14819 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 14820 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 14821 return -EINVAL; 14822 } 14823 if (ctx_field_size <= 4) { 14824 if (shift) 14825 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 14826 insn->dst_reg, 14827 shift); 14828 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 14829 (1 << size * 8) - 1); 14830 } else { 14831 if (shift) 14832 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 14833 insn->dst_reg, 14834 shift); 14835 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 14836 (1ULL << size * 8) - 1); 14837 } 14838 } 14839 14840 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14841 if (!new_prog) 14842 return -ENOMEM; 14843 14844 delta += cnt - 1; 14845 14846 /* keep walking new program and skip insns we just inserted */ 14847 env->prog = new_prog; 14848 insn = new_prog->insnsi + i + delta; 14849 } 14850 14851 return 0; 14852 } 14853 14854 static int jit_subprogs(struct bpf_verifier_env *env) 14855 { 14856 struct bpf_prog *prog = env->prog, **func, *tmp; 14857 int i, j, subprog_start, subprog_end = 0, len, subprog; 14858 struct bpf_map *map_ptr; 14859 struct bpf_insn *insn; 14860 void *old_bpf_func; 14861 int err, num_exentries; 14862 14863 if (env->subprog_cnt <= 1) 14864 return 0; 14865 14866 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 14867 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 14868 continue; 14869 14870 /* Upon error here we cannot fall back to interpreter but 14871 * need a hard reject of the program. Thus -EFAULT is 14872 * propagated in any case. 14873 */ 14874 subprog = find_subprog(env, i + insn->imm + 1); 14875 if (subprog < 0) { 14876 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 14877 i + insn->imm + 1); 14878 return -EFAULT; 14879 } 14880 /* temporarily remember subprog id inside insn instead of 14881 * aux_data, since next loop will split up all insns into funcs 14882 */ 14883 insn->off = subprog; 14884 /* remember original imm in case JIT fails and fallback 14885 * to interpreter will be needed 14886 */ 14887 env->insn_aux_data[i].call_imm = insn->imm; 14888 /* point imm to __bpf_call_base+1 from JITs point of view */ 14889 insn->imm = 1; 14890 if (bpf_pseudo_func(insn)) 14891 /* jit (e.g. x86_64) may emit fewer instructions 14892 * if it learns a u32 imm is the same as a u64 imm. 14893 * Force a non zero here. 14894 */ 14895 insn[1].imm = 1; 14896 } 14897 14898 err = bpf_prog_alloc_jited_linfo(prog); 14899 if (err) 14900 goto out_undo_insn; 14901 14902 err = -ENOMEM; 14903 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 14904 if (!func) 14905 goto out_undo_insn; 14906 14907 for (i = 0; i < env->subprog_cnt; i++) { 14908 subprog_start = subprog_end; 14909 subprog_end = env->subprog_info[i + 1].start; 14910 14911 len = subprog_end - subprog_start; 14912 /* bpf_prog_run() doesn't call subprogs directly, 14913 * hence main prog stats include the runtime of subprogs. 14914 * subprogs don't have IDs and not reachable via prog_get_next_id 14915 * func[i]->stats will never be accessed and stays NULL 14916 */ 14917 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 14918 if (!func[i]) 14919 goto out_free; 14920 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 14921 len * sizeof(struct bpf_insn)); 14922 func[i]->type = prog->type; 14923 func[i]->len = len; 14924 if (bpf_prog_calc_tag(func[i])) 14925 goto out_free; 14926 func[i]->is_func = 1; 14927 func[i]->aux->func_idx = i; 14928 /* Below members will be freed only at prog->aux */ 14929 func[i]->aux->btf = prog->aux->btf; 14930 func[i]->aux->func_info = prog->aux->func_info; 14931 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 14932 func[i]->aux->poke_tab = prog->aux->poke_tab; 14933 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 14934 14935 for (j = 0; j < prog->aux->size_poke_tab; j++) { 14936 struct bpf_jit_poke_descriptor *poke; 14937 14938 poke = &prog->aux->poke_tab[j]; 14939 if (poke->insn_idx < subprog_end && 14940 poke->insn_idx >= subprog_start) 14941 poke->aux = func[i]->aux; 14942 } 14943 14944 func[i]->aux->name[0] = 'F'; 14945 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 14946 func[i]->jit_requested = 1; 14947 func[i]->blinding_requested = prog->blinding_requested; 14948 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 14949 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 14950 func[i]->aux->linfo = prog->aux->linfo; 14951 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 14952 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 14953 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 14954 num_exentries = 0; 14955 insn = func[i]->insnsi; 14956 for (j = 0; j < func[i]->len; j++, insn++) { 14957 if (BPF_CLASS(insn->code) == BPF_LDX && 14958 BPF_MODE(insn->code) == BPF_PROBE_MEM) 14959 num_exentries++; 14960 } 14961 func[i]->aux->num_exentries = num_exentries; 14962 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 14963 func[i] = bpf_int_jit_compile(func[i]); 14964 if (!func[i]->jited) { 14965 err = -ENOTSUPP; 14966 goto out_free; 14967 } 14968 cond_resched(); 14969 } 14970 14971 /* at this point all bpf functions were successfully JITed 14972 * now populate all bpf_calls with correct addresses and 14973 * run last pass of JIT 14974 */ 14975 for (i = 0; i < env->subprog_cnt; i++) { 14976 insn = func[i]->insnsi; 14977 for (j = 0; j < func[i]->len; j++, insn++) { 14978 if (bpf_pseudo_func(insn)) { 14979 subprog = insn->off; 14980 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 14981 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 14982 continue; 14983 } 14984 if (!bpf_pseudo_call(insn)) 14985 continue; 14986 subprog = insn->off; 14987 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 14988 } 14989 14990 /* we use the aux data to keep a list of the start addresses 14991 * of the JITed images for each function in the program 14992 * 14993 * for some architectures, such as powerpc64, the imm field 14994 * might not be large enough to hold the offset of the start 14995 * address of the callee's JITed image from __bpf_call_base 14996 * 14997 * in such cases, we can lookup the start address of a callee 14998 * by using its subprog id, available from the off field of 14999 * the call instruction, as an index for this list 15000 */ 15001 func[i]->aux->func = func; 15002 func[i]->aux->func_cnt = env->subprog_cnt; 15003 } 15004 for (i = 0; i < env->subprog_cnt; i++) { 15005 old_bpf_func = func[i]->bpf_func; 15006 tmp = bpf_int_jit_compile(func[i]); 15007 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 15008 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 15009 err = -ENOTSUPP; 15010 goto out_free; 15011 } 15012 cond_resched(); 15013 } 15014 15015 /* finally lock prog and jit images for all functions and 15016 * populate kallsysm 15017 */ 15018 for (i = 0; i < env->subprog_cnt; i++) { 15019 bpf_prog_lock_ro(func[i]); 15020 bpf_prog_kallsyms_add(func[i]); 15021 } 15022 15023 /* Last step: make now unused interpreter insns from main 15024 * prog consistent for later dump requests, so they can 15025 * later look the same as if they were interpreted only. 15026 */ 15027 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15028 if (bpf_pseudo_func(insn)) { 15029 insn[0].imm = env->insn_aux_data[i].call_imm; 15030 insn[1].imm = insn->off; 15031 insn->off = 0; 15032 continue; 15033 } 15034 if (!bpf_pseudo_call(insn)) 15035 continue; 15036 insn->off = env->insn_aux_data[i].call_imm; 15037 subprog = find_subprog(env, i + insn->off + 1); 15038 insn->imm = subprog; 15039 } 15040 15041 prog->jited = 1; 15042 prog->bpf_func = func[0]->bpf_func; 15043 prog->jited_len = func[0]->jited_len; 15044 prog->aux->func = func; 15045 prog->aux->func_cnt = env->subprog_cnt; 15046 bpf_prog_jit_attempt_done(prog); 15047 return 0; 15048 out_free: 15049 /* We failed JIT'ing, so at this point we need to unregister poke 15050 * descriptors from subprogs, so that kernel is not attempting to 15051 * patch it anymore as we're freeing the subprog JIT memory. 15052 */ 15053 for (i = 0; i < prog->aux->size_poke_tab; i++) { 15054 map_ptr = prog->aux->poke_tab[i].tail_call.map; 15055 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 15056 } 15057 /* At this point we're guaranteed that poke descriptors are not 15058 * live anymore. We can just unlink its descriptor table as it's 15059 * released with the main prog. 15060 */ 15061 for (i = 0; i < env->subprog_cnt; i++) { 15062 if (!func[i]) 15063 continue; 15064 func[i]->aux->poke_tab = NULL; 15065 bpf_jit_free(func[i]); 15066 } 15067 kfree(func); 15068 out_undo_insn: 15069 /* cleanup main prog to be interpreted */ 15070 prog->jit_requested = 0; 15071 prog->blinding_requested = 0; 15072 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15073 if (!bpf_pseudo_call(insn)) 15074 continue; 15075 insn->off = 0; 15076 insn->imm = env->insn_aux_data[i].call_imm; 15077 } 15078 bpf_prog_jit_attempt_done(prog); 15079 return err; 15080 } 15081 15082 static int fixup_call_args(struct bpf_verifier_env *env) 15083 { 15084 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15085 struct bpf_prog *prog = env->prog; 15086 struct bpf_insn *insn = prog->insnsi; 15087 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 15088 int i, depth; 15089 #endif 15090 int err = 0; 15091 15092 if (env->prog->jit_requested && 15093 !bpf_prog_is_dev_bound(env->prog->aux)) { 15094 err = jit_subprogs(env); 15095 if (err == 0) 15096 return 0; 15097 if (err == -EFAULT) 15098 return err; 15099 } 15100 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15101 if (has_kfunc_call) { 15102 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 15103 return -EINVAL; 15104 } 15105 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 15106 /* When JIT fails the progs with bpf2bpf calls and tail_calls 15107 * have to be rejected, since interpreter doesn't support them yet. 15108 */ 15109 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 15110 return -EINVAL; 15111 } 15112 for (i = 0; i < prog->len; i++, insn++) { 15113 if (bpf_pseudo_func(insn)) { 15114 /* When JIT fails the progs with callback calls 15115 * have to be rejected, since interpreter doesn't support them yet. 15116 */ 15117 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 15118 return -EINVAL; 15119 } 15120 15121 if (!bpf_pseudo_call(insn)) 15122 continue; 15123 depth = get_callee_stack_depth(env, insn, i); 15124 if (depth < 0) 15125 return depth; 15126 bpf_patch_call_args(insn, depth); 15127 } 15128 err = 0; 15129 #endif 15130 return err; 15131 } 15132 15133 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 15134 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 15135 { 15136 const struct bpf_kfunc_desc *desc; 15137 15138 if (!insn->imm) { 15139 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 15140 return -EINVAL; 15141 } 15142 15143 /* insn->imm has the btf func_id. Replace it with 15144 * an address (relative to __bpf_base_call). 15145 */ 15146 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 15147 if (!desc) { 15148 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 15149 insn->imm); 15150 return -EFAULT; 15151 } 15152 15153 *cnt = 0; 15154 insn->imm = desc->imm; 15155 if (insn->off) 15156 return 0; 15157 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 15158 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15159 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15160 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 15161 15162 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 15163 insn_buf[1] = addr[0]; 15164 insn_buf[2] = addr[1]; 15165 insn_buf[3] = *insn; 15166 *cnt = 4; 15167 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 15168 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15169 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15170 15171 insn_buf[0] = addr[0]; 15172 insn_buf[1] = addr[1]; 15173 insn_buf[2] = *insn; 15174 *cnt = 3; 15175 } 15176 return 0; 15177 } 15178 15179 /* Do various post-verification rewrites in a single program pass. 15180 * These rewrites simplify JIT and interpreter implementations. 15181 */ 15182 static int do_misc_fixups(struct bpf_verifier_env *env) 15183 { 15184 struct bpf_prog *prog = env->prog; 15185 enum bpf_attach_type eatype = prog->expected_attach_type; 15186 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15187 struct bpf_insn *insn = prog->insnsi; 15188 const struct bpf_func_proto *fn; 15189 const int insn_cnt = prog->len; 15190 const struct bpf_map_ops *ops; 15191 struct bpf_insn_aux_data *aux; 15192 struct bpf_insn insn_buf[16]; 15193 struct bpf_prog *new_prog; 15194 struct bpf_map *map_ptr; 15195 int i, ret, cnt, delta = 0; 15196 15197 for (i = 0; i < insn_cnt; i++, insn++) { 15198 /* Make divide-by-zero exceptions impossible. */ 15199 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 15200 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 15201 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 15202 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 15203 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 15204 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 15205 struct bpf_insn *patchlet; 15206 struct bpf_insn chk_and_div[] = { 15207 /* [R,W]x div 0 -> 0 */ 15208 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15209 BPF_JNE | BPF_K, insn->src_reg, 15210 0, 2, 0), 15211 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 15212 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15213 *insn, 15214 }; 15215 struct bpf_insn chk_and_mod[] = { 15216 /* [R,W]x mod 0 -> [R,W]x */ 15217 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15218 BPF_JEQ | BPF_K, insn->src_reg, 15219 0, 1 + (is64 ? 0 : 1), 0), 15220 *insn, 15221 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15222 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 15223 }; 15224 15225 patchlet = isdiv ? chk_and_div : chk_and_mod; 15226 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 15227 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 15228 15229 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 15230 if (!new_prog) 15231 return -ENOMEM; 15232 15233 delta += cnt - 1; 15234 env->prog = prog = new_prog; 15235 insn = new_prog->insnsi + i + delta; 15236 continue; 15237 } 15238 15239 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 15240 if (BPF_CLASS(insn->code) == BPF_LD && 15241 (BPF_MODE(insn->code) == BPF_ABS || 15242 BPF_MODE(insn->code) == BPF_IND)) { 15243 cnt = env->ops->gen_ld_abs(insn, insn_buf); 15244 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15245 verbose(env, "bpf verifier is misconfigured\n"); 15246 return -EINVAL; 15247 } 15248 15249 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15250 if (!new_prog) 15251 return -ENOMEM; 15252 15253 delta += cnt - 1; 15254 env->prog = prog = new_prog; 15255 insn = new_prog->insnsi + i + delta; 15256 continue; 15257 } 15258 15259 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 15260 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 15261 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 15262 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 15263 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 15264 struct bpf_insn *patch = &insn_buf[0]; 15265 bool issrc, isneg, isimm; 15266 u32 off_reg; 15267 15268 aux = &env->insn_aux_data[i + delta]; 15269 if (!aux->alu_state || 15270 aux->alu_state == BPF_ALU_NON_POINTER) 15271 continue; 15272 15273 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 15274 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 15275 BPF_ALU_SANITIZE_SRC; 15276 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 15277 15278 off_reg = issrc ? insn->src_reg : insn->dst_reg; 15279 if (isimm) { 15280 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15281 } else { 15282 if (isneg) 15283 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15284 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15285 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 15286 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 15287 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 15288 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 15289 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 15290 } 15291 if (!issrc) 15292 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 15293 insn->src_reg = BPF_REG_AX; 15294 if (isneg) 15295 insn->code = insn->code == code_add ? 15296 code_sub : code_add; 15297 *patch++ = *insn; 15298 if (issrc && isneg && !isimm) 15299 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15300 cnt = patch - insn_buf; 15301 15302 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15303 if (!new_prog) 15304 return -ENOMEM; 15305 15306 delta += cnt - 1; 15307 env->prog = prog = new_prog; 15308 insn = new_prog->insnsi + i + delta; 15309 continue; 15310 } 15311 15312 if (insn->code != (BPF_JMP | BPF_CALL)) 15313 continue; 15314 if (insn->src_reg == BPF_PSEUDO_CALL) 15315 continue; 15316 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15317 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 15318 if (ret) 15319 return ret; 15320 if (cnt == 0) 15321 continue; 15322 15323 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15324 if (!new_prog) 15325 return -ENOMEM; 15326 15327 delta += cnt - 1; 15328 env->prog = prog = new_prog; 15329 insn = new_prog->insnsi + i + delta; 15330 continue; 15331 } 15332 15333 if (insn->imm == BPF_FUNC_get_route_realm) 15334 prog->dst_needed = 1; 15335 if (insn->imm == BPF_FUNC_get_prandom_u32) 15336 bpf_user_rnd_init_once(); 15337 if (insn->imm == BPF_FUNC_override_return) 15338 prog->kprobe_override = 1; 15339 if (insn->imm == BPF_FUNC_tail_call) { 15340 /* If we tail call into other programs, we 15341 * cannot make any assumptions since they can 15342 * be replaced dynamically during runtime in 15343 * the program array. 15344 */ 15345 prog->cb_access = 1; 15346 if (!allow_tail_call_in_subprogs(env)) 15347 prog->aux->stack_depth = MAX_BPF_STACK; 15348 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 15349 15350 /* mark bpf_tail_call as different opcode to avoid 15351 * conditional branch in the interpreter for every normal 15352 * call and to prevent accidental JITing by JIT compiler 15353 * that doesn't support bpf_tail_call yet 15354 */ 15355 insn->imm = 0; 15356 insn->code = BPF_JMP | BPF_TAIL_CALL; 15357 15358 aux = &env->insn_aux_data[i + delta]; 15359 if (env->bpf_capable && !prog->blinding_requested && 15360 prog->jit_requested && 15361 !bpf_map_key_poisoned(aux) && 15362 !bpf_map_ptr_poisoned(aux) && 15363 !bpf_map_ptr_unpriv(aux)) { 15364 struct bpf_jit_poke_descriptor desc = { 15365 .reason = BPF_POKE_REASON_TAIL_CALL, 15366 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 15367 .tail_call.key = bpf_map_key_immediate(aux), 15368 .insn_idx = i + delta, 15369 }; 15370 15371 ret = bpf_jit_add_poke_descriptor(prog, &desc); 15372 if (ret < 0) { 15373 verbose(env, "adding tail call poke descriptor failed\n"); 15374 return ret; 15375 } 15376 15377 insn->imm = ret + 1; 15378 continue; 15379 } 15380 15381 if (!bpf_map_ptr_unpriv(aux)) 15382 continue; 15383 15384 /* instead of changing every JIT dealing with tail_call 15385 * emit two extra insns: 15386 * if (index >= max_entries) goto out; 15387 * index &= array->index_mask; 15388 * to avoid out-of-bounds cpu speculation 15389 */ 15390 if (bpf_map_ptr_poisoned(aux)) { 15391 verbose(env, "tail_call abusing map_ptr\n"); 15392 return -EINVAL; 15393 } 15394 15395 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15396 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 15397 map_ptr->max_entries, 2); 15398 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 15399 container_of(map_ptr, 15400 struct bpf_array, 15401 map)->index_mask); 15402 insn_buf[2] = *insn; 15403 cnt = 3; 15404 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15405 if (!new_prog) 15406 return -ENOMEM; 15407 15408 delta += cnt - 1; 15409 env->prog = prog = new_prog; 15410 insn = new_prog->insnsi + i + delta; 15411 continue; 15412 } 15413 15414 if (insn->imm == BPF_FUNC_timer_set_callback) { 15415 /* The verifier will process callback_fn as many times as necessary 15416 * with different maps and the register states prepared by 15417 * set_timer_callback_state will be accurate. 15418 * 15419 * The following use case is valid: 15420 * map1 is shared by prog1, prog2, prog3. 15421 * prog1 calls bpf_timer_init for some map1 elements 15422 * prog2 calls bpf_timer_set_callback for some map1 elements. 15423 * Those that were not bpf_timer_init-ed will return -EINVAL. 15424 * prog3 calls bpf_timer_start for some map1 elements. 15425 * Those that were not both bpf_timer_init-ed and 15426 * bpf_timer_set_callback-ed will return -EINVAL. 15427 */ 15428 struct bpf_insn ld_addrs[2] = { 15429 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 15430 }; 15431 15432 insn_buf[0] = ld_addrs[0]; 15433 insn_buf[1] = ld_addrs[1]; 15434 insn_buf[2] = *insn; 15435 cnt = 3; 15436 15437 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15438 if (!new_prog) 15439 return -ENOMEM; 15440 15441 delta += cnt - 1; 15442 env->prog = prog = new_prog; 15443 insn = new_prog->insnsi + i + delta; 15444 goto patch_call_imm; 15445 } 15446 15447 if (insn->imm == BPF_FUNC_task_storage_get || 15448 insn->imm == BPF_FUNC_sk_storage_get || 15449 insn->imm == BPF_FUNC_inode_storage_get || 15450 insn->imm == BPF_FUNC_cgrp_storage_get) { 15451 if (env->prog->aux->sleepable) 15452 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 15453 else 15454 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 15455 insn_buf[1] = *insn; 15456 cnt = 2; 15457 15458 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15459 if (!new_prog) 15460 return -ENOMEM; 15461 15462 delta += cnt - 1; 15463 env->prog = prog = new_prog; 15464 insn = new_prog->insnsi + i + delta; 15465 goto patch_call_imm; 15466 } 15467 15468 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 15469 * and other inlining handlers are currently limited to 64 bit 15470 * only. 15471 */ 15472 if (prog->jit_requested && BITS_PER_LONG == 64 && 15473 (insn->imm == BPF_FUNC_map_lookup_elem || 15474 insn->imm == BPF_FUNC_map_update_elem || 15475 insn->imm == BPF_FUNC_map_delete_elem || 15476 insn->imm == BPF_FUNC_map_push_elem || 15477 insn->imm == BPF_FUNC_map_pop_elem || 15478 insn->imm == BPF_FUNC_map_peek_elem || 15479 insn->imm == BPF_FUNC_redirect_map || 15480 insn->imm == BPF_FUNC_for_each_map_elem || 15481 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 15482 aux = &env->insn_aux_data[i + delta]; 15483 if (bpf_map_ptr_poisoned(aux)) 15484 goto patch_call_imm; 15485 15486 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15487 ops = map_ptr->ops; 15488 if (insn->imm == BPF_FUNC_map_lookup_elem && 15489 ops->map_gen_lookup) { 15490 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 15491 if (cnt == -EOPNOTSUPP) 15492 goto patch_map_ops_generic; 15493 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15494 verbose(env, "bpf verifier is misconfigured\n"); 15495 return -EINVAL; 15496 } 15497 15498 new_prog = bpf_patch_insn_data(env, i + delta, 15499 insn_buf, cnt); 15500 if (!new_prog) 15501 return -ENOMEM; 15502 15503 delta += cnt - 1; 15504 env->prog = prog = new_prog; 15505 insn = new_prog->insnsi + i + delta; 15506 continue; 15507 } 15508 15509 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 15510 (void *(*)(struct bpf_map *map, void *key))NULL)); 15511 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 15512 (int (*)(struct bpf_map *map, void *key))NULL)); 15513 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 15514 (int (*)(struct bpf_map *map, void *key, void *value, 15515 u64 flags))NULL)); 15516 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 15517 (int (*)(struct bpf_map *map, void *value, 15518 u64 flags))NULL)); 15519 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 15520 (int (*)(struct bpf_map *map, void *value))NULL)); 15521 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 15522 (int (*)(struct bpf_map *map, void *value))NULL)); 15523 BUILD_BUG_ON(!__same_type(ops->map_redirect, 15524 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 15525 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 15526 (int (*)(struct bpf_map *map, 15527 bpf_callback_t callback_fn, 15528 void *callback_ctx, 15529 u64 flags))NULL)); 15530 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 15531 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 15532 15533 patch_map_ops_generic: 15534 switch (insn->imm) { 15535 case BPF_FUNC_map_lookup_elem: 15536 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 15537 continue; 15538 case BPF_FUNC_map_update_elem: 15539 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 15540 continue; 15541 case BPF_FUNC_map_delete_elem: 15542 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 15543 continue; 15544 case BPF_FUNC_map_push_elem: 15545 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 15546 continue; 15547 case BPF_FUNC_map_pop_elem: 15548 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 15549 continue; 15550 case BPF_FUNC_map_peek_elem: 15551 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 15552 continue; 15553 case BPF_FUNC_redirect_map: 15554 insn->imm = BPF_CALL_IMM(ops->map_redirect); 15555 continue; 15556 case BPF_FUNC_for_each_map_elem: 15557 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 15558 continue; 15559 case BPF_FUNC_map_lookup_percpu_elem: 15560 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 15561 continue; 15562 } 15563 15564 goto patch_call_imm; 15565 } 15566 15567 /* Implement bpf_jiffies64 inline. */ 15568 if (prog->jit_requested && BITS_PER_LONG == 64 && 15569 insn->imm == BPF_FUNC_jiffies64) { 15570 struct bpf_insn ld_jiffies_addr[2] = { 15571 BPF_LD_IMM64(BPF_REG_0, 15572 (unsigned long)&jiffies), 15573 }; 15574 15575 insn_buf[0] = ld_jiffies_addr[0]; 15576 insn_buf[1] = ld_jiffies_addr[1]; 15577 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 15578 BPF_REG_0, 0); 15579 cnt = 3; 15580 15581 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 15582 cnt); 15583 if (!new_prog) 15584 return -ENOMEM; 15585 15586 delta += cnt - 1; 15587 env->prog = prog = new_prog; 15588 insn = new_prog->insnsi + i + delta; 15589 continue; 15590 } 15591 15592 /* Implement bpf_get_func_arg inline. */ 15593 if (prog_type == BPF_PROG_TYPE_TRACING && 15594 insn->imm == BPF_FUNC_get_func_arg) { 15595 /* Load nr_args from ctx - 8 */ 15596 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15597 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 15598 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 15599 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 15600 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 15601 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15602 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 15603 insn_buf[7] = BPF_JMP_A(1); 15604 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 15605 cnt = 9; 15606 15607 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15608 if (!new_prog) 15609 return -ENOMEM; 15610 15611 delta += cnt - 1; 15612 env->prog = prog = new_prog; 15613 insn = new_prog->insnsi + i + delta; 15614 continue; 15615 } 15616 15617 /* Implement bpf_get_func_ret inline. */ 15618 if (prog_type == BPF_PROG_TYPE_TRACING && 15619 insn->imm == BPF_FUNC_get_func_ret) { 15620 if (eatype == BPF_TRACE_FEXIT || 15621 eatype == BPF_MODIFY_RETURN) { 15622 /* Load nr_args from ctx - 8 */ 15623 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15624 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 15625 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 15626 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15627 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 15628 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 15629 cnt = 6; 15630 } else { 15631 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 15632 cnt = 1; 15633 } 15634 15635 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15636 if (!new_prog) 15637 return -ENOMEM; 15638 15639 delta += cnt - 1; 15640 env->prog = prog = new_prog; 15641 insn = new_prog->insnsi + i + delta; 15642 continue; 15643 } 15644 15645 /* Implement get_func_arg_cnt inline. */ 15646 if (prog_type == BPF_PROG_TYPE_TRACING && 15647 insn->imm == BPF_FUNC_get_func_arg_cnt) { 15648 /* Load nr_args from ctx - 8 */ 15649 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15650 15651 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 15652 if (!new_prog) 15653 return -ENOMEM; 15654 15655 env->prog = prog = new_prog; 15656 insn = new_prog->insnsi + i + delta; 15657 continue; 15658 } 15659 15660 /* Implement bpf_get_func_ip inline. */ 15661 if (prog_type == BPF_PROG_TYPE_TRACING && 15662 insn->imm == BPF_FUNC_get_func_ip) { 15663 /* Load IP address from ctx - 16 */ 15664 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 15665 15666 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 15667 if (!new_prog) 15668 return -ENOMEM; 15669 15670 env->prog = prog = new_prog; 15671 insn = new_prog->insnsi + i + delta; 15672 continue; 15673 } 15674 15675 patch_call_imm: 15676 fn = env->ops->get_func_proto(insn->imm, env->prog); 15677 /* all functions that have prototype and verifier allowed 15678 * programs to call them, must be real in-kernel functions 15679 */ 15680 if (!fn->func) { 15681 verbose(env, 15682 "kernel subsystem misconfigured func %s#%d\n", 15683 func_id_name(insn->imm), insn->imm); 15684 return -EFAULT; 15685 } 15686 insn->imm = fn->func - __bpf_call_base; 15687 } 15688 15689 /* Since poke tab is now finalized, publish aux to tracker. */ 15690 for (i = 0; i < prog->aux->size_poke_tab; i++) { 15691 map_ptr = prog->aux->poke_tab[i].tail_call.map; 15692 if (!map_ptr->ops->map_poke_track || 15693 !map_ptr->ops->map_poke_untrack || 15694 !map_ptr->ops->map_poke_run) { 15695 verbose(env, "bpf verifier is misconfigured\n"); 15696 return -EINVAL; 15697 } 15698 15699 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 15700 if (ret < 0) { 15701 verbose(env, "tracking tail call prog failed\n"); 15702 return ret; 15703 } 15704 } 15705 15706 sort_kfunc_descs_by_imm(env->prog); 15707 15708 return 0; 15709 } 15710 15711 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 15712 int position, 15713 s32 stack_base, 15714 u32 callback_subprogno, 15715 u32 *cnt) 15716 { 15717 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 15718 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 15719 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 15720 int reg_loop_max = BPF_REG_6; 15721 int reg_loop_cnt = BPF_REG_7; 15722 int reg_loop_ctx = BPF_REG_8; 15723 15724 struct bpf_prog *new_prog; 15725 u32 callback_start; 15726 u32 call_insn_offset; 15727 s32 callback_offset; 15728 15729 /* This represents an inlined version of bpf_iter.c:bpf_loop, 15730 * be careful to modify this code in sync. 15731 */ 15732 struct bpf_insn insn_buf[] = { 15733 /* Return error and jump to the end of the patch if 15734 * expected number of iterations is too big. 15735 */ 15736 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 15737 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 15738 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 15739 /* spill R6, R7, R8 to use these as loop vars */ 15740 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 15741 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 15742 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 15743 /* initialize loop vars */ 15744 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 15745 BPF_MOV32_IMM(reg_loop_cnt, 0), 15746 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 15747 /* loop header, 15748 * if reg_loop_cnt >= reg_loop_max skip the loop body 15749 */ 15750 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 15751 /* callback call, 15752 * correct callback offset would be set after patching 15753 */ 15754 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 15755 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 15756 BPF_CALL_REL(0), 15757 /* increment loop counter */ 15758 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 15759 /* jump to loop header if callback returned 0 */ 15760 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 15761 /* return value of bpf_loop, 15762 * set R0 to the number of iterations 15763 */ 15764 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 15765 /* restore original values of R6, R7, R8 */ 15766 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 15767 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 15768 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 15769 }; 15770 15771 *cnt = ARRAY_SIZE(insn_buf); 15772 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 15773 if (!new_prog) 15774 return new_prog; 15775 15776 /* callback start is known only after patching */ 15777 callback_start = env->subprog_info[callback_subprogno].start; 15778 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 15779 call_insn_offset = position + 12; 15780 callback_offset = callback_start - call_insn_offset - 1; 15781 new_prog->insnsi[call_insn_offset].imm = callback_offset; 15782 15783 return new_prog; 15784 } 15785 15786 static bool is_bpf_loop_call(struct bpf_insn *insn) 15787 { 15788 return insn->code == (BPF_JMP | BPF_CALL) && 15789 insn->src_reg == 0 && 15790 insn->imm == BPF_FUNC_loop; 15791 } 15792 15793 /* For all sub-programs in the program (including main) check 15794 * insn_aux_data to see if there are bpf_loop calls that require 15795 * inlining. If such calls are found the calls are replaced with a 15796 * sequence of instructions produced by `inline_bpf_loop` function and 15797 * subprog stack_depth is increased by the size of 3 registers. 15798 * This stack space is used to spill values of the R6, R7, R8. These 15799 * registers are used to store the loop bound, counter and context 15800 * variables. 15801 */ 15802 static int optimize_bpf_loop(struct bpf_verifier_env *env) 15803 { 15804 struct bpf_subprog_info *subprogs = env->subprog_info; 15805 int i, cur_subprog = 0, cnt, delta = 0; 15806 struct bpf_insn *insn = env->prog->insnsi; 15807 int insn_cnt = env->prog->len; 15808 u16 stack_depth = subprogs[cur_subprog].stack_depth; 15809 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 15810 u16 stack_depth_extra = 0; 15811 15812 for (i = 0; i < insn_cnt; i++, insn++) { 15813 struct bpf_loop_inline_state *inline_state = 15814 &env->insn_aux_data[i + delta].loop_inline_state; 15815 15816 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 15817 struct bpf_prog *new_prog; 15818 15819 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 15820 new_prog = inline_bpf_loop(env, 15821 i + delta, 15822 -(stack_depth + stack_depth_extra), 15823 inline_state->callback_subprogno, 15824 &cnt); 15825 if (!new_prog) 15826 return -ENOMEM; 15827 15828 delta += cnt - 1; 15829 env->prog = new_prog; 15830 insn = new_prog->insnsi + i + delta; 15831 } 15832 15833 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 15834 subprogs[cur_subprog].stack_depth += stack_depth_extra; 15835 cur_subprog++; 15836 stack_depth = subprogs[cur_subprog].stack_depth; 15837 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 15838 stack_depth_extra = 0; 15839 } 15840 } 15841 15842 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 15843 15844 return 0; 15845 } 15846 15847 static void free_states(struct bpf_verifier_env *env) 15848 { 15849 struct bpf_verifier_state_list *sl, *sln; 15850 int i; 15851 15852 sl = env->free_list; 15853 while (sl) { 15854 sln = sl->next; 15855 free_verifier_state(&sl->state, false); 15856 kfree(sl); 15857 sl = sln; 15858 } 15859 env->free_list = NULL; 15860 15861 if (!env->explored_states) 15862 return; 15863 15864 for (i = 0; i < state_htab_size(env); i++) { 15865 sl = env->explored_states[i]; 15866 15867 while (sl) { 15868 sln = sl->next; 15869 free_verifier_state(&sl->state, false); 15870 kfree(sl); 15871 sl = sln; 15872 } 15873 env->explored_states[i] = NULL; 15874 } 15875 } 15876 15877 static int do_check_common(struct bpf_verifier_env *env, int subprog) 15878 { 15879 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 15880 struct bpf_verifier_state *state; 15881 struct bpf_reg_state *regs; 15882 int ret, i; 15883 15884 env->prev_linfo = NULL; 15885 env->pass_cnt++; 15886 15887 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 15888 if (!state) 15889 return -ENOMEM; 15890 state->curframe = 0; 15891 state->speculative = false; 15892 state->branches = 1; 15893 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 15894 if (!state->frame[0]) { 15895 kfree(state); 15896 return -ENOMEM; 15897 } 15898 env->cur_state = state; 15899 init_func_state(env, state->frame[0], 15900 BPF_MAIN_FUNC /* callsite */, 15901 0 /* frameno */, 15902 subprog); 15903 state->first_insn_idx = env->subprog_info[subprog].start; 15904 state->last_insn_idx = -1; 15905 15906 regs = state->frame[state->curframe]->regs; 15907 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 15908 ret = btf_prepare_func_args(env, subprog, regs); 15909 if (ret) 15910 goto out; 15911 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 15912 if (regs[i].type == PTR_TO_CTX) 15913 mark_reg_known_zero(env, regs, i); 15914 else if (regs[i].type == SCALAR_VALUE) 15915 mark_reg_unknown(env, regs, i); 15916 else if (base_type(regs[i].type) == PTR_TO_MEM) { 15917 const u32 mem_size = regs[i].mem_size; 15918 15919 mark_reg_known_zero(env, regs, i); 15920 regs[i].mem_size = mem_size; 15921 regs[i].id = ++env->id_gen; 15922 } 15923 } 15924 } else { 15925 /* 1st arg to a function */ 15926 regs[BPF_REG_1].type = PTR_TO_CTX; 15927 mark_reg_known_zero(env, regs, BPF_REG_1); 15928 ret = btf_check_subprog_arg_match(env, subprog, regs); 15929 if (ret == -EFAULT) 15930 /* unlikely verifier bug. abort. 15931 * ret == 0 and ret < 0 are sadly acceptable for 15932 * main() function due to backward compatibility. 15933 * Like socket filter program may be written as: 15934 * int bpf_prog(struct pt_regs *ctx) 15935 * and never dereference that ctx in the program. 15936 * 'struct pt_regs' is a type mismatch for socket 15937 * filter that should be using 'struct __sk_buff'. 15938 */ 15939 goto out; 15940 } 15941 15942 ret = do_check(env); 15943 out: 15944 /* check for NULL is necessary, since cur_state can be freed inside 15945 * do_check() under memory pressure. 15946 */ 15947 if (env->cur_state) { 15948 free_verifier_state(env->cur_state, true); 15949 env->cur_state = NULL; 15950 } 15951 while (!pop_stack(env, NULL, NULL, false)); 15952 if (!ret && pop_log) 15953 bpf_vlog_reset(&env->log, 0); 15954 free_states(env); 15955 return ret; 15956 } 15957 15958 /* Verify all global functions in a BPF program one by one based on their BTF. 15959 * All global functions must pass verification. Otherwise the whole program is rejected. 15960 * Consider: 15961 * int bar(int); 15962 * int foo(int f) 15963 * { 15964 * return bar(f); 15965 * } 15966 * int bar(int b) 15967 * { 15968 * ... 15969 * } 15970 * foo() will be verified first for R1=any_scalar_value. During verification it 15971 * will be assumed that bar() already verified successfully and call to bar() 15972 * from foo() will be checked for type match only. Later bar() will be verified 15973 * independently to check that it's safe for R1=any_scalar_value. 15974 */ 15975 static int do_check_subprogs(struct bpf_verifier_env *env) 15976 { 15977 struct bpf_prog_aux *aux = env->prog->aux; 15978 int i, ret; 15979 15980 if (!aux->func_info) 15981 return 0; 15982 15983 for (i = 1; i < env->subprog_cnt; i++) { 15984 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 15985 continue; 15986 env->insn_idx = env->subprog_info[i].start; 15987 WARN_ON_ONCE(env->insn_idx == 0); 15988 ret = do_check_common(env, i); 15989 if (ret) { 15990 return ret; 15991 } else if (env->log.level & BPF_LOG_LEVEL) { 15992 verbose(env, 15993 "Func#%d is safe for any args that match its prototype\n", 15994 i); 15995 } 15996 } 15997 return 0; 15998 } 15999 16000 static int do_check_main(struct bpf_verifier_env *env) 16001 { 16002 int ret; 16003 16004 env->insn_idx = 0; 16005 ret = do_check_common(env, 0); 16006 if (!ret) 16007 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16008 return ret; 16009 } 16010 16011 16012 static void print_verification_stats(struct bpf_verifier_env *env) 16013 { 16014 int i; 16015 16016 if (env->log.level & BPF_LOG_STATS) { 16017 verbose(env, "verification time %lld usec\n", 16018 div_u64(env->verification_time, 1000)); 16019 verbose(env, "stack depth "); 16020 for (i = 0; i < env->subprog_cnt; i++) { 16021 u32 depth = env->subprog_info[i].stack_depth; 16022 16023 verbose(env, "%d", depth); 16024 if (i + 1 < env->subprog_cnt) 16025 verbose(env, "+"); 16026 } 16027 verbose(env, "\n"); 16028 } 16029 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 16030 "total_states %d peak_states %d mark_read %d\n", 16031 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 16032 env->max_states_per_insn, env->total_states, 16033 env->peak_states, env->longest_mark_read_walk); 16034 } 16035 16036 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 16037 { 16038 const struct btf_type *t, *func_proto; 16039 const struct bpf_struct_ops *st_ops; 16040 const struct btf_member *member; 16041 struct bpf_prog *prog = env->prog; 16042 u32 btf_id, member_idx; 16043 const char *mname; 16044 16045 if (!prog->gpl_compatible) { 16046 verbose(env, "struct ops programs must have a GPL compatible license\n"); 16047 return -EINVAL; 16048 } 16049 16050 btf_id = prog->aux->attach_btf_id; 16051 st_ops = bpf_struct_ops_find(btf_id); 16052 if (!st_ops) { 16053 verbose(env, "attach_btf_id %u is not a supported struct\n", 16054 btf_id); 16055 return -ENOTSUPP; 16056 } 16057 16058 t = st_ops->type; 16059 member_idx = prog->expected_attach_type; 16060 if (member_idx >= btf_type_vlen(t)) { 16061 verbose(env, "attach to invalid member idx %u of struct %s\n", 16062 member_idx, st_ops->name); 16063 return -EINVAL; 16064 } 16065 16066 member = &btf_type_member(t)[member_idx]; 16067 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 16068 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 16069 NULL); 16070 if (!func_proto) { 16071 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 16072 mname, member_idx, st_ops->name); 16073 return -EINVAL; 16074 } 16075 16076 if (st_ops->check_member) { 16077 int err = st_ops->check_member(t, member); 16078 16079 if (err) { 16080 verbose(env, "attach to unsupported member %s of struct %s\n", 16081 mname, st_ops->name); 16082 return err; 16083 } 16084 } 16085 16086 prog->aux->attach_func_proto = func_proto; 16087 prog->aux->attach_func_name = mname; 16088 env->ops = st_ops->verifier_ops; 16089 16090 return 0; 16091 } 16092 #define SECURITY_PREFIX "security_" 16093 16094 static int check_attach_modify_return(unsigned long addr, const char *func_name) 16095 { 16096 if (within_error_injection_list(addr) || 16097 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 16098 return 0; 16099 16100 return -EINVAL; 16101 } 16102 16103 /* list of non-sleepable functions that are otherwise on 16104 * ALLOW_ERROR_INJECTION list 16105 */ 16106 BTF_SET_START(btf_non_sleepable_error_inject) 16107 /* Three functions below can be called from sleepable and non-sleepable context. 16108 * Assume non-sleepable from bpf safety point of view. 16109 */ 16110 BTF_ID(func, __filemap_add_folio) 16111 BTF_ID(func, should_fail_alloc_page) 16112 BTF_ID(func, should_failslab) 16113 BTF_SET_END(btf_non_sleepable_error_inject) 16114 16115 static int check_non_sleepable_error_inject(u32 btf_id) 16116 { 16117 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 16118 } 16119 16120 int bpf_check_attach_target(struct bpf_verifier_log *log, 16121 const struct bpf_prog *prog, 16122 const struct bpf_prog *tgt_prog, 16123 u32 btf_id, 16124 struct bpf_attach_target_info *tgt_info) 16125 { 16126 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 16127 const char prefix[] = "btf_trace_"; 16128 int ret = 0, subprog = -1, i; 16129 const struct btf_type *t; 16130 bool conservative = true; 16131 const char *tname; 16132 struct btf *btf; 16133 long addr = 0; 16134 16135 if (!btf_id) { 16136 bpf_log(log, "Tracing programs must provide btf_id\n"); 16137 return -EINVAL; 16138 } 16139 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 16140 if (!btf) { 16141 bpf_log(log, 16142 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 16143 return -EINVAL; 16144 } 16145 t = btf_type_by_id(btf, btf_id); 16146 if (!t) { 16147 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 16148 return -EINVAL; 16149 } 16150 tname = btf_name_by_offset(btf, t->name_off); 16151 if (!tname) { 16152 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 16153 return -EINVAL; 16154 } 16155 if (tgt_prog) { 16156 struct bpf_prog_aux *aux = tgt_prog->aux; 16157 16158 for (i = 0; i < aux->func_info_cnt; i++) 16159 if (aux->func_info[i].type_id == btf_id) { 16160 subprog = i; 16161 break; 16162 } 16163 if (subprog == -1) { 16164 bpf_log(log, "Subprog %s doesn't exist\n", tname); 16165 return -EINVAL; 16166 } 16167 conservative = aux->func_info_aux[subprog].unreliable; 16168 if (prog_extension) { 16169 if (conservative) { 16170 bpf_log(log, 16171 "Cannot replace static functions\n"); 16172 return -EINVAL; 16173 } 16174 if (!prog->jit_requested) { 16175 bpf_log(log, 16176 "Extension programs should be JITed\n"); 16177 return -EINVAL; 16178 } 16179 } 16180 if (!tgt_prog->jited) { 16181 bpf_log(log, "Can attach to only JITed progs\n"); 16182 return -EINVAL; 16183 } 16184 if (tgt_prog->type == prog->type) { 16185 /* Cannot fentry/fexit another fentry/fexit program. 16186 * Cannot attach program extension to another extension. 16187 * It's ok to attach fentry/fexit to extension program. 16188 */ 16189 bpf_log(log, "Cannot recursively attach\n"); 16190 return -EINVAL; 16191 } 16192 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 16193 prog_extension && 16194 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 16195 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 16196 /* Program extensions can extend all program types 16197 * except fentry/fexit. The reason is the following. 16198 * The fentry/fexit programs are used for performance 16199 * analysis, stats and can be attached to any program 16200 * type except themselves. When extension program is 16201 * replacing XDP function it is necessary to allow 16202 * performance analysis of all functions. Both original 16203 * XDP program and its program extension. Hence 16204 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 16205 * allowed. If extending of fentry/fexit was allowed it 16206 * would be possible to create long call chain 16207 * fentry->extension->fentry->extension beyond 16208 * reasonable stack size. Hence extending fentry is not 16209 * allowed. 16210 */ 16211 bpf_log(log, "Cannot extend fentry/fexit\n"); 16212 return -EINVAL; 16213 } 16214 } else { 16215 if (prog_extension) { 16216 bpf_log(log, "Cannot replace kernel functions\n"); 16217 return -EINVAL; 16218 } 16219 } 16220 16221 switch (prog->expected_attach_type) { 16222 case BPF_TRACE_RAW_TP: 16223 if (tgt_prog) { 16224 bpf_log(log, 16225 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 16226 return -EINVAL; 16227 } 16228 if (!btf_type_is_typedef(t)) { 16229 bpf_log(log, "attach_btf_id %u is not a typedef\n", 16230 btf_id); 16231 return -EINVAL; 16232 } 16233 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 16234 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 16235 btf_id, tname); 16236 return -EINVAL; 16237 } 16238 tname += sizeof(prefix) - 1; 16239 t = btf_type_by_id(btf, t->type); 16240 if (!btf_type_is_ptr(t)) 16241 /* should never happen in valid vmlinux build */ 16242 return -EINVAL; 16243 t = btf_type_by_id(btf, t->type); 16244 if (!btf_type_is_func_proto(t)) 16245 /* should never happen in valid vmlinux build */ 16246 return -EINVAL; 16247 16248 break; 16249 case BPF_TRACE_ITER: 16250 if (!btf_type_is_func(t)) { 16251 bpf_log(log, "attach_btf_id %u is not a function\n", 16252 btf_id); 16253 return -EINVAL; 16254 } 16255 t = btf_type_by_id(btf, t->type); 16256 if (!btf_type_is_func_proto(t)) 16257 return -EINVAL; 16258 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16259 if (ret) 16260 return ret; 16261 break; 16262 default: 16263 if (!prog_extension) 16264 return -EINVAL; 16265 fallthrough; 16266 case BPF_MODIFY_RETURN: 16267 case BPF_LSM_MAC: 16268 case BPF_LSM_CGROUP: 16269 case BPF_TRACE_FENTRY: 16270 case BPF_TRACE_FEXIT: 16271 if (!btf_type_is_func(t)) { 16272 bpf_log(log, "attach_btf_id %u is not a function\n", 16273 btf_id); 16274 return -EINVAL; 16275 } 16276 if (prog_extension && 16277 btf_check_type_match(log, prog, btf, t)) 16278 return -EINVAL; 16279 t = btf_type_by_id(btf, t->type); 16280 if (!btf_type_is_func_proto(t)) 16281 return -EINVAL; 16282 16283 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 16284 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 16285 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 16286 return -EINVAL; 16287 16288 if (tgt_prog && conservative) 16289 t = NULL; 16290 16291 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16292 if (ret < 0) 16293 return ret; 16294 16295 if (tgt_prog) { 16296 if (subprog == 0) 16297 addr = (long) tgt_prog->bpf_func; 16298 else 16299 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 16300 } else { 16301 addr = kallsyms_lookup_name(tname); 16302 if (!addr) { 16303 bpf_log(log, 16304 "The address of function %s cannot be found\n", 16305 tname); 16306 return -ENOENT; 16307 } 16308 } 16309 16310 if (prog->aux->sleepable) { 16311 ret = -EINVAL; 16312 switch (prog->type) { 16313 case BPF_PROG_TYPE_TRACING: 16314 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 16315 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 16316 */ 16317 if (!check_non_sleepable_error_inject(btf_id) && 16318 within_error_injection_list(addr)) 16319 ret = 0; 16320 break; 16321 case BPF_PROG_TYPE_LSM: 16322 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 16323 * Only some of them are sleepable. 16324 */ 16325 if (bpf_lsm_is_sleepable_hook(btf_id)) 16326 ret = 0; 16327 break; 16328 default: 16329 break; 16330 } 16331 if (ret) { 16332 bpf_log(log, "%s is not sleepable\n", tname); 16333 return ret; 16334 } 16335 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 16336 if (tgt_prog) { 16337 bpf_log(log, "can't modify return codes of BPF programs\n"); 16338 return -EINVAL; 16339 } 16340 ret = check_attach_modify_return(addr, tname); 16341 if (ret) { 16342 bpf_log(log, "%s() is not modifiable\n", tname); 16343 return ret; 16344 } 16345 } 16346 16347 break; 16348 } 16349 tgt_info->tgt_addr = addr; 16350 tgt_info->tgt_name = tname; 16351 tgt_info->tgt_type = t; 16352 return 0; 16353 } 16354 16355 BTF_SET_START(btf_id_deny) 16356 BTF_ID_UNUSED 16357 #ifdef CONFIG_SMP 16358 BTF_ID(func, migrate_disable) 16359 BTF_ID(func, migrate_enable) 16360 #endif 16361 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 16362 BTF_ID(func, rcu_read_unlock_strict) 16363 #endif 16364 BTF_SET_END(btf_id_deny) 16365 16366 static int check_attach_btf_id(struct bpf_verifier_env *env) 16367 { 16368 struct bpf_prog *prog = env->prog; 16369 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 16370 struct bpf_attach_target_info tgt_info = {}; 16371 u32 btf_id = prog->aux->attach_btf_id; 16372 struct bpf_trampoline *tr; 16373 int ret; 16374 u64 key; 16375 16376 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 16377 if (prog->aux->sleepable) 16378 /* attach_btf_id checked to be zero already */ 16379 return 0; 16380 verbose(env, "Syscall programs can only be sleepable\n"); 16381 return -EINVAL; 16382 } 16383 16384 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 16385 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 16386 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 16387 return -EINVAL; 16388 } 16389 16390 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 16391 return check_struct_ops_btf_id(env); 16392 16393 if (prog->type != BPF_PROG_TYPE_TRACING && 16394 prog->type != BPF_PROG_TYPE_LSM && 16395 prog->type != BPF_PROG_TYPE_EXT) 16396 return 0; 16397 16398 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 16399 if (ret) 16400 return ret; 16401 16402 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 16403 /* to make freplace equivalent to their targets, they need to 16404 * inherit env->ops and expected_attach_type for the rest of the 16405 * verification 16406 */ 16407 env->ops = bpf_verifier_ops[tgt_prog->type]; 16408 prog->expected_attach_type = tgt_prog->expected_attach_type; 16409 } 16410 16411 /* store info about the attachment target that will be used later */ 16412 prog->aux->attach_func_proto = tgt_info.tgt_type; 16413 prog->aux->attach_func_name = tgt_info.tgt_name; 16414 16415 if (tgt_prog) { 16416 prog->aux->saved_dst_prog_type = tgt_prog->type; 16417 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 16418 } 16419 16420 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 16421 prog->aux->attach_btf_trace = true; 16422 return 0; 16423 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 16424 if (!bpf_iter_prog_supported(prog)) 16425 return -EINVAL; 16426 return 0; 16427 } 16428 16429 if (prog->type == BPF_PROG_TYPE_LSM) { 16430 ret = bpf_lsm_verify_prog(&env->log, prog); 16431 if (ret < 0) 16432 return ret; 16433 } else if (prog->type == BPF_PROG_TYPE_TRACING && 16434 btf_id_set_contains(&btf_id_deny, btf_id)) { 16435 return -EINVAL; 16436 } 16437 16438 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 16439 tr = bpf_trampoline_get(key, &tgt_info); 16440 if (!tr) 16441 return -ENOMEM; 16442 16443 prog->aux->dst_trampoline = tr; 16444 return 0; 16445 } 16446 16447 struct btf *bpf_get_btf_vmlinux(void) 16448 { 16449 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 16450 mutex_lock(&bpf_verifier_lock); 16451 if (!btf_vmlinux) 16452 btf_vmlinux = btf_parse_vmlinux(); 16453 mutex_unlock(&bpf_verifier_lock); 16454 } 16455 return btf_vmlinux; 16456 } 16457 16458 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 16459 { 16460 u64 start_time = ktime_get_ns(); 16461 struct bpf_verifier_env *env; 16462 struct bpf_verifier_log *log; 16463 int i, len, ret = -EINVAL; 16464 bool is_priv; 16465 16466 /* no program is valid */ 16467 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 16468 return -EINVAL; 16469 16470 /* 'struct bpf_verifier_env' can be global, but since it's not small, 16471 * allocate/free it every time bpf_check() is called 16472 */ 16473 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 16474 if (!env) 16475 return -ENOMEM; 16476 log = &env->log; 16477 16478 len = (*prog)->len; 16479 env->insn_aux_data = 16480 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 16481 ret = -ENOMEM; 16482 if (!env->insn_aux_data) 16483 goto err_free_env; 16484 for (i = 0; i < len; i++) 16485 env->insn_aux_data[i].orig_idx = i; 16486 env->prog = *prog; 16487 env->ops = bpf_verifier_ops[env->prog->type]; 16488 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 16489 is_priv = bpf_capable(); 16490 16491 bpf_get_btf_vmlinux(); 16492 16493 /* grab the mutex to protect few globals used by verifier */ 16494 if (!is_priv) 16495 mutex_lock(&bpf_verifier_lock); 16496 16497 if (attr->log_level || attr->log_buf || attr->log_size) { 16498 /* user requested verbose verifier output 16499 * and supplied buffer to store the verification trace 16500 */ 16501 log->level = attr->log_level; 16502 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 16503 log->len_total = attr->log_size; 16504 16505 /* log attributes have to be sane */ 16506 if (!bpf_verifier_log_attr_valid(log)) { 16507 ret = -EINVAL; 16508 goto err_unlock; 16509 } 16510 } 16511 16512 mark_verifier_state_clean(env); 16513 16514 if (IS_ERR(btf_vmlinux)) { 16515 /* Either gcc or pahole or kernel are broken. */ 16516 verbose(env, "in-kernel BTF is malformed\n"); 16517 ret = PTR_ERR(btf_vmlinux); 16518 goto skip_full_check; 16519 } 16520 16521 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 16522 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 16523 env->strict_alignment = true; 16524 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 16525 env->strict_alignment = false; 16526 16527 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 16528 env->allow_uninit_stack = bpf_allow_uninit_stack(); 16529 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 16530 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 16531 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 16532 env->bpf_capable = bpf_capable(); 16533 16534 if (is_priv) 16535 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 16536 16537 env->explored_states = kvcalloc(state_htab_size(env), 16538 sizeof(struct bpf_verifier_state_list *), 16539 GFP_USER); 16540 ret = -ENOMEM; 16541 if (!env->explored_states) 16542 goto skip_full_check; 16543 16544 ret = add_subprog_and_kfunc(env); 16545 if (ret < 0) 16546 goto skip_full_check; 16547 16548 ret = check_subprogs(env); 16549 if (ret < 0) 16550 goto skip_full_check; 16551 16552 ret = check_btf_info(env, attr, uattr); 16553 if (ret < 0) 16554 goto skip_full_check; 16555 16556 ret = check_attach_btf_id(env); 16557 if (ret) 16558 goto skip_full_check; 16559 16560 ret = resolve_pseudo_ldimm64(env); 16561 if (ret < 0) 16562 goto skip_full_check; 16563 16564 if (bpf_prog_is_dev_bound(env->prog->aux)) { 16565 ret = bpf_prog_offload_verifier_prep(env->prog); 16566 if (ret) 16567 goto skip_full_check; 16568 } 16569 16570 ret = check_cfg(env); 16571 if (ret < 0) 16572 goto skip_full_check; 16573 16574 ret = do_check_subprogs(env); 16575 ret = ret ?: do_check_main(env); 16576 16577 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 16578 ret = bpf_prog_offload_finalize(env); 16579 16580 skip_full_check: 16581 kvfree(env->explored_states); 16582 16583 if (ret == 0) 16584 ret = check_max_stack_depth(env); 16585 16586 /* instruction rewrites happen after this point */ 16587 if (ret == 0) 16588 ret = optimize_bpf_loop(env); 16589 16590 if (is_priv) { 16591 if (ret == 0) 16592 opt_hard_wire_dead_code_branches(env); 16593 if (ret == 0) 16594 ret = opt_remove_dead_code(env); 16595 if (ret == 0) 16596 ret = opt_remove_nops(env); 16597 } else { 16598 if (ret == 0) 16599 sanitize_dead_code(env); 16600 } 16601 16602 if (ret == 0) 16603 /* program is valid, convert *(u32*)(ctx + off) accesses */ 16604 ret = convert_ctx_accesses(env); 16605 16606 if (ret == 0) 16607 ret = do_misc_fixups(env); 16608 16609 /* do 32-bit optimization after insn patching has done so those patched 16610 * insns could be handled correctly. 16611 */ 16612 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 16613 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 16614 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 16615 : false; 16616 } 16617 16618 if (ret == 0) 16619 ret = fixup_call_args(env); 16620 16621 env->verification_time = ktime_get_ns() - start_time; 16622 print_verification_stats(env); 16623 env->prog->aux->verified_insns = env->insn_processed; 16624 16625 if (log->level && bpf_verifier_log_full(log)) 16626 ret = -ENOSPC; 16627 if (log->level && !log->ubuf) { 16628 ret = -EFAULT; 16629 goto err_release_maps; 16630 } 16631 16632 if (ret) 16633 goto err_release_maps; 16634 16635 if (env->used_map_cnt) { 16636 /* if program passed verifier, update used_maps in bpf_prog_info */ 16637 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 16638 sizeof(env->used_maps[0]), 16639 GFP_KERNEL); 16640 16641 if (!env->prog->aux->used_maps) { 16642 ret = -ENOMEM; 16643 goto err_release_maps; 16644 } 16645 16646 memcpy(env->prog->aux->used_maps, env->used_maps, 16647 sizeof(env->used_maps[0]) * env->used_map_cnt); 16648 env->prog->aux->used_map_cnt = env->used_map_cnt; 16649 } 16650 if (env->used_btf_cnt) { 16651 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 16652 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 16653 sizeof(env->used_btfs[0]), 16654 GFP_KERNEL); 16655 if (!env->prog->aux->used_btfs) { 16656 ret = -ENOMEM; 16657 goto err_release_maps; 16658 } 16659 16660 memcpy(env->prog->aux->used_btfs, env->used_btfs, 16661 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 16662 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 16663 } 16664 if (env->used_map_cnt || env->used_btf_cnt) { 16665 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 16666 * bpf_ld_imm64 instructions 16667 */ 16668 convert_pseudo_ld_imm64(env); 16669 } 16670 16671 adjust_btf_func(env); 16672 16673 err_release_maps: 16674 if (!env->prog->aux->used_maps) 16675 /* if we didn't copy map pointers into bpf_prog_info, release 16676 * them now. Otherwise free_used_maps() will release them. 16677 */ 16678 release_maps(env); 16679 if (!env->prog->aux->used_btfs) 16680 release_btfs(env); 16681 16682 /* extension progs temporarily inherit the attach_type of their targets 16683 for verification purposes, so set it back to zero before returning 16684 */ 16685 if (env->prog->type == BPF_PROG_TYPE_EXT) 16686 env->prog->expected_attach_type = 0; 16687 16688 *prog = env->prog; 16689 err_unlock: 16690 if (!is_priv) 16691 mutex_unlock(&bpf_verifier_lock); 16692 vfree(env->insn_aux_data); 16693 err_free_env: 16694 kfree(env); 16695 return ret; 16696 } 16697