xref: /openbmc/linux/kernel/bpf/verifier.c (revision 35267cea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 };
265 
266 struct btf *btf_vmlinux;
267 
268 static DEFINE_MUTEX(bpf_verifier_lock);
269 
270 static const struct bpf_line_info *
271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272 {
273 	const struct bpf_line_info *linfo;
274 	const struct bpf_prog *prog;
275 	u32 i, nr_linfo;
276 
277 	prog = env->prog;
278 	nr_linfo = prog->aux->nr_linfo;
279 
280 	if (!nr_linfo || insn_off >= prog->len)
281 		return NULL;
282 
283 	linfo = prog->aux->linfo;
284 	for (i = 1; i < nr_linfo; i++)
285 		if (insn_off < linfo[i].insn_off)
286 			break;
287 
288 	return &linfo[i - 1];
289 }
290 
291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 		       va_list args)
293 {
294 	unsigned int n;
295 
296 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297 
298 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 		  "verifier log line truncated - local buffer too short\n");
300 
301 	n = min(log->len_total - log->len_used - 1, n);
302 	log->kbuf[n] = '\0';
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		pr_err("BPF:%s\n", log->kbuf);
306 		return;
307 	}
308 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 		log->len_used += n;
310 	else
311 		log->ubuf = NULL;
312 }
313 
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 	char zero = 0;
317 
318 	if (!bpf_verifier_log_needed(log))
319 		return;
320 
321 	log->len_used = new_pos;
322 	if (put_user(zero, log->ubuf + new_pos))
323 		log->ubuf = NULL;
324 }
325 
326 /* log_level controls verbosity level of eBPF verifier.
327  * bpf_verifier_log_write() is used to dump the verification trace to the log,
328  * so the user can figure out what's wrong with the program
329  */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 					   const char *fmt, ...)
332 {
333 	va_list args;
334 
335 	if (!bpf_verifier_log_needed(&env->log))
336 		return;
337 
338 	va_start(args, fmt);
339 	bpf_verifier_vlog(&env->log, fmt, args);
340 	va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343 
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 	struct bpf_verifier_env *env = private_data;
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(&env->log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(&env->log, fmt, args);
354 	va_end(args);
355 }
356 
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 			    const char *fmt, ...)
359 {
360 	va_list args;
361 
362 	if (!bpf_verifier_log_needed(log))
363 		return;
364 
365 	va_start(args, fmt);
366 	bpf_verifier_vlog(log, fmt, args);
367 	va_end(args);
368 }
369 
370 static const char *ltrim(const char *s)
371 {
372 	while (isspace(*s))
373 		s++;
374 
375 	return s;
376 }
377 
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 					 u32 insn_off,
380 					 const char *prefix_fmt, ...)
381 {
382 	const struct bpf_line_info *linfo;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	linfo = find_linfo(env, insn_off);
388 	if (!linfo || linfo == env->prev_linfo)
389 		return;
390 
391 	if (prefix_fmt) {
392 		va_list args;
393 
394 		va_start(args, prefix_fmt);
395 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 		va_end(args);
397 	}
398 
399 	verbose(env, "%s\n",
400 		ltrim(btf_name_by_offset(env->prog->aux->btf,
401 					 linfo->line_off)));
402 
403 	env->prev_linfo = linfo;
404 }
405 
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 				   struct bpf_reg_state *reg,
408 				   struct tnum *range, const char *ctx,
409 				   const char *reg_name)
410 {
411 	char tn_buf[48];
412 
413 	verbose(env, "At %s the register %s ", ctx, reg_name);
414 	if (!tnum_is_unknown(reg->var_off)) {
415 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 		verbose(env, "has value %s", tn_buf);
417 	} else {
418 		verbose(env, "has unknown scalar value");
419 	}
420 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 	verbose(env, " should have been in %s\n", tn_buf);
422 }
423 
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_PACKET ||
427 	       type == PTR_TO_PACKET_META;
428 }
429 
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 	return type == PTR_TO_SOCKET ||
433 		type == PTR_TO_SOCK_COMMON ||
434 		type == PTR_TO_TCP_SOCK ||
435 		type == PTR_TO_XDP_SOCK;
436 }
437 
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_MAP_VALUE ||
443 		type == PTR_TO_MAP_KEY ||
444 		type == PTR_TO_SOCK_COMMON;
445 }
446 
447 static bool reg_type_may_be_null(enum bpf_reg_type type)
448 {
449 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 	       type == PTR_TO_SOCKET_OR_NULL ||
451 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
453 	       type == PTR_TO_BTF_ID_OR_NULL ||
454 	       type == PTR_TO_MEM_OR_NULL ||
455 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 	       type == PTR_TO_RDWR_BUF_OR_NULL;
457 }
458 
459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460 {
461 	return reg->type == PTR_TO_MAP_VALUE &&
462 		map_value_has_spin_lock(reg->map_ptr);
463 }
464 
465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466 {
467 	return type == PTR_TO_SOCKET ||
468 		type == PTR_TO_SOCKET_OR_NULL ||
469 		type == PTR_TO_TCP_SOCK ||
470 		type == PTR_TO_TCP_SOCK_OR_NULL ||
471 		type == PTR_TO_MEM ||
472 		type == PTR_TO_MEM_OR_NULL;
473 }
474 
475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_SOCK_COMMON;
478 }
479 
480 static bool arg_type_may_be_null(enum bpf_arg_type type)
481 {
482 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 	       type == ARG_PTR_TO_MEM_OR_NULL ||
484 	       type == ARG_PTR_TO_CTX_OR_NULL ||
485 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 	       type == ARG_PTR_TO_STACK_OR_NULL;
488 }
489 
490 /* Determine whether the function releases some resources allocated by another
491  * function call. The first reference type argument will be assumed to be
492  * released by release_reference().
493  */
494 static bool is_release_function(enum bpf_func_id func_id)
495 {
496 	return func_id == BPF_FUNC_sk_release ||
497 	       func_id == BPF_FUNC_ringbuf_submit ||
498 	       func_id == BPF_FUNC_ringbuf_discard;
499 }
500 
501 static bool may_be_acquire_function(enum bpf_func_id func_id)
502 {
503 	return func_id == BPF_FUNC_sk_lookup_tcp ||
504 		func_id == BPF_FUNC_sk_lookup_udp ||
505 		func_id == BPF_FUNC_skc_lookup_tcp ||
506 		func_id == BPF_FUNC_map_lookup_elem ||
507 	        func_id == BPF_FUNC_ringbuf_reserve;
508 }
509 
510 static bool is_acquire_function(enum bpf_func_id func_id,
511 				const struct bpf_map *map)
512 {
513 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514 
515 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 	    func_id == BPF_FUNC_sk_lookup_udp ||
517 	    func_id == BPF_FUNC_skc_lookup_tcp ||
518 	    func_id == BPF_FUNC_ringbuf_reserve)
519 		return true;
520 
521 	if (func_id == BPF_FUNC_map_lookup_elem &&
522 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 	     map_type == BPF_MAP_TYPE_SOCKHASH))
524 		return true;
525 
526 	return false;
527 }
528 
529 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 {
531 	return func_id == BPF_FUNC_tcp_sock ||
532 		func_id == BPF_FUNC_sk_fullsock ||
533 		func_id == BPF_FUNC_skc_to_tcp_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 		func_id == BPF_FUNC_skc_to_udp6_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541 {
542 	return BPF_CLASS(insn->code) == BPF_STX &&
543 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
544 	       insn->imm == BPF_CMPXCHG;
545 }
546 
547 /* string representation of 'enum bpf_reg_type' */
548 static const char * const reg_type_str[] = {
549 	[NOT_INIT]		= "?",
550 	[SCALAR_VALUE]		= "inv",
551 	[PTR_TO_CTX]		= "ctx",
552 	[CONST_PTR_TO_MAP]	= "map_ptr",
553 	[PTR_TO_MAP_VALUE]	= "map_value",
554 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 	[PTR_TO_STACK]		= "fp",
556 	[PTR_TO_PACKET]		= "pkt",
557 	[PTR_TO_PACKET_META]	= "pkt_meta",
558 	[PTR_TO_PACKET_END]	= "pkt_end",
559 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
560 	[PTR_TO_SOCKET]		= "sock",
561 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 	[PTR_TO_SOCK_COMMON]	= "sock_common",
563 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
565 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
567 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
568 	[PTR_TO_BTF_ID]		= "ptr_",
569 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
570 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
571 	[PTR_TO_MEM]		= "mem",
572 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
573 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
574 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
576 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 	[PTR_TO_FUNC]		= "func",
578 	[PTR_TO_MAP_KEY]	= "map_key",
579 };
580 
581 static char slot_type_char[] = {
582 	[STACK_INVALID]	= '?',
583 	[STACK_SPILL]	= 'r',
584 	[STACK_MISC]	= 'm',
585 	[STACK_ZERO]	= '0',
586 };
587 
588 static void print_liveness(struct bpf_verifier_env *env,
589 			   enum bpf_reg_liveness live)
590 {
591 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 	    verbose(env, "_");
593 	if (live & REG_LIVE_READ)
594 		verbose(env, "r");
595 	if (live & REG_LIVE_WRITTEN)
596 		verbose(env, "w");
597 	if (live & REG_LIVE_DONE)
598 		verbose(env, "D");
599 }
600 
601 static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 				   const struct bpf_reg_state *reg)
603 {
604 	struct bpf_verifier_state *cur = env->cur_state;
605 
606 	return cur->frame[reg->frameno];
607 }
608 
609 static const char *kernel_type_name(const struct btf* btf, u32 id)
610 {
611 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612 }
613 
614 static void print_verifier_state(struct bpf_verifier_env *env,
615 				 const struct bpf_func_state *state)
616 {
617 	const struct bpf_reg_state *reg;
618 	enum bpf_reg_type t;
619 	int i;
620 
621 	if (state->frameno)
622 		verbose(env, " frame%d:", state->frameno);
623 	for (i = 0; i < MAX_BPF_REG; i++) {
624 		reg = &state->regs[i];
625 		t = reg->type;
626 		if (t == NOT_INIT)
627 			continue;
628 		verbose(env, " R%d", i);
629 		print_liveness(env, reg->live);
630 		verbose(env, "=%s", reg_type_str[t]);
631 		if (t == SCALAR_VALUE && reg->precise)
632 			verbose(env, "P");
633 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 		    tnum_is_const(reg->var_off)) {
635 			/* reg->off should be 0 for SCALAR_VALUE */
636 			verbose(env, "%lld", reg->var_off.value + reg->off);
637 		} else {
638 			if (t == PTR_TO_BTF_ID ||
639 			    t == PTR_TO_BTF_ID_OR_NULL ||
640 			    t == PTR_TO_PERCPU_BTF_ID)
641 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 			verbose(env, "(id=%d", reg->id);
643 			if (reg_type_may_be_refcounted_or_null(t))
644 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 			if (t != SCALAR_VALUE)
646 				verbose(env, ",off=%d", reg->off);
647 			if (type_is_pkt_pointer(t))
648 				verbose(env, ",r=%d", reg->range);
649 			else if (t == CONST_PTR_TO_MAP ||
650 				 t == PTR_TO_MAP_KEY ||
651 				 t == PTR_TO_MAP_VALUE ||
652 				 t == PTR_TO_MAP_VALUE_OR_NULL)
653 				verbose(env, ",ks=%d,vs=%d",
654 					reg->map_ptr->key_size,
655 					reg->map_ptr->value_size);
656 			if (tnum_is_const(reg->var_off)) {
657 				/* Typically an immediate SCALAR_VALUE, but
658 				 * could be a pointer whose offset is too big
659 				 * for reg->off
660 				 */
661 				verbose(env, ",imm=%llx", reg->var_off.value);
662 			} else {
663 				if (reg->smin_value != reg->umin_value &&
664 				    reg->smin_value != S64_MIN)
665 					verbose(env, ",smin_value=%lld",
666 						(long long)reg->smin_value);
667 				if (reg->smax_value != reg->umax_value &&
668 				    reg->smax_value != S64_MAX)
669 					verbose(env, ",smax_value=%lld",
670 						(long long)reg->smax_value);
671 				if (reg->umin_value != 0)
672 					verbose(env, ",umin_value=%llu",
673 						(unsigned long long)reg->umin_value);
674 				if (reg->umax_value != U64_MAX)
675 					verbose(env, ",umax_value=%llu",
676 						(unsigned long long)reg->umax_value);
677 				if (!tnum_is_unknown(reg->var_off)) {
678 					char tn_buf[48];
679 
680 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 					verbose(env, ",var_off=%s", tn_buf);
682 				}
683 				if (reg->s32_min_value != reg->smin_value &&
684 				    reg->s32_min_value != S32_MIN)
685 					verbose(env, ",s32_min_value=%d",
686 						(int)(reg->s32_min_value));
687 				if (reg->s32_max_value != reg->smax_value &&
688 				    reg->s32_max_value != S32_MAX)
689 					verbose(env, ",s32_max_value=%d",
690 						(int)(reg->s32_max_value));
691 				if (reg->u32_min_value != reg->umin_value &&
692 				    reg->u32_min_value != U32_MIN)
693 					verbose(env, ",u32_min_value=%d",
694 						(int)(reg->u32_min_value));
695 				if (reg->u32_max_value != reg->umax_value &&
696 				    reg->u32_max_value != U32_MAX)
697 					verbose(env, ",u32_max_value=%d",
698 						(int)(reg->u32_max_value));
699 			}
700 			verbose(env, ")");
701 		}
702 	}
703 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 		char types_buf[BPF_REG_SIZE + 1];
705 		bool valid = false;
706 		int j;
707 
708 		for (j = 0; j < BPF_REG_SIZE; j++) {
709 			if (state->stack[i].slot_type[j] != STACK_INVALID)
710 				valid = true;
711 			types_buf[j] = slot_type_char[
712 					state->stack[i].slot_type[j]];
713 		}
714 		types_buf[BPF_REG_SIZE] = 0;
715 		if (!valid)
716 			continue;
717 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 		print_liveness(env, state->stack[i].spilled_ptr.live);
719 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 			reg = &state->stack[i].spilled_ptr;
721 			t = reg->type;
722 			verbose(env, "=%s", reg_type_str[t]);
723 			if (t == SCALAR_VALUE && reg->precise)
724 				verbose(env, "P");
725 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 				verbose(env, "%lld", reg->var_off.value + reg->off);
727 		} else {
728 			verbose(env, "=%s", types_buf);
729 		}
730 	}
731 	if (state->acquired_refs && state->refs[0].id) {
732 		verbose(env, " refs=%d", state->refs[0].id);
733 		for (i = 1; i < state->acquired_refs; i++)
734 			if (state->refs[i].id)
735 				verbose(env, ",%d", state->refs[i].id);
736 	}
737 	verbose(env, "\n");
738 }
739 
740 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
741  * small to hold src. This is different from krealloc since we don't want to preserve
742  * the contents of dst.
743  *
744  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
745  * not be allocated.
746  */
747 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
748 {
749 	size_t bytes;
750 
751 	if (ZERO_OR_NULL_PTR(src))
752 		goto out;
753 
754 	if (unlikely(check_mul_overflow(n, size, &bytes)))
755 		return NULL;
756 
757 	if (ksize(dst) < bytes) {
758 		kfree(dst);
759 		dst = kmalloc_track_caller(bytes, flags);
760 		if (!dst)
761 			return NULL;
762 	}
763 
764 	memcpy(dst, src, bytes);
765 out:
766 	return dst ? dst : ZERO_SIZE_PTR;
767 }
768 
769 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
770  * small to hold new_n items. new items are zeroed out if the array grows.
771  *
772  * Contrary to krealloc_array, does not free arr if new_n is zero.
773  */
774 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
775 {
776 	if (!new_n || old_n == new_n)
777 		goto out;
778 
779 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
780 	if (!arr)
781 		return NULL;
782 
783 	if (new_n > old_n)
784 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
785 
786 out:
787 	return arr ? arr : ZERO_SIZE_PTR;
788 }
789 
790 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
791 {
792 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
793 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
794 	if (!dst->refs)
795 		return -ENOMEM;
796 
797 	dst->acquired_refs = src->acquired_refs;
798 	return 0;
799 }
800 
801 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
802 {
803 	size_t n = src->allocated_stack / BPF_REG_SIZE;
804 
805 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
806 				GFP_KERNEL);
807 	if (!dst->stack)
808 		return -ENOMEM;
809 
810 	dst->allocated_stack = src->allocated_stack;
811 	return 0;
812 }
813 
814 static int resize_reference_state(struct bpf_func_state *state, size_t n)
815 {
816 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
817 				    sizeof(struct bpf_reference_state));
818 	if (!state->refs)
819 		return -ENOMEM;
820 
821 	state->acquired_refs = n;
822 	return 0;
823 }
824 
825 static int grow_stack_state(struct bpf_func_state *state, int size)
826 {
827 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
828 
829 	if (old_n >= n)
830 		return 0;
831 
832 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
833 	if (!state->stack)
834 		return -ENOMEM;
835 
836 	state->allocated_stack = size;
837 	return 0;
838 }
839 
840 /* Acquire a pointer id from the env and update the state->refs to include
841  * this new pointer reference.
842  * On success, returns a valid pointer id to associate with the register
843  * On failure, returns a negative errno.
844  */
845 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
846 {
847 	struct bpf_func_state *state = cur_func(env);
848 	int new_ofs = state->acquired_refs;
849 	int id, err;
850 
851 	err = resize_reference_state(state, state->acquired_refs + 1);
852 	if (err)
853 		return err;
854 	id = ++env->id_gen;
855 	state->refs[new_ofs].id = id;
856 	state->refs[new_ofs].insn_idx = insn_idx;
857 
858 	return id;
859 }
860 
861 /* release function corresponding to acquire_reference_state(). Idempotent. */
862 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
863 {
864 	int i, last_idx;
865 
866 	last_idx = state->acquired_refs - 1;
867 	for (i = 0; i < state->acquired_refs; i++) {
868 		if (state->refs[i].id == ptr_id) {
869 			if (last_idx && i != last_idx)
870 				memcpy(&state->refs[i], &state->refs[last_idx],
871 				       sizeof(*state->refs));
872 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
873 			state->acquired_refs--;
874 			return 0;
875 		}
876 	}
877 	return -EINVAL;
878 }
879 
880 static void free_func_state(struct bpf_func_state *state)
881 {
882 	if (!state)
883 		return;
884 	kfree(state->refs);
885 	kfree(state->stack);
886 	kfree(state);
887 }
888 
889 static void clear_jmp_history(struct bpf_verifier_state *state)
890 {
891 	kfree(state->jmp_history);
892 	state->jmp_history = NULL;
893 	state->jmp_history_cnt = 0;
894 }
895 
896 static void free_verifier_state(struct bpf_verifier_state *state,
897 				bool free_self)
898 {
899 	int i;
900 
901 	for (i = 0; i <= state->curframe; i++) {
902 		free_func_state(state->frame[i]);
903 		state->frame[i] = NULL;
904 	}
905 	clear_jmp_history(state);
906 	if (free_self)
907 		kfree(state);
908 }
909 
910 /* copy verifier state from src to dst growing dst stack space
911  * when necessary to accommodate larger src stack
912  */
913 static int copy_func_state(struct bpf_func_state *dst,
914 			   const struct bpf_func_state *src)
915 {
916 	int err;
917 
918 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
919 	err = copy_reference_state(dst, src);
920 	if (err)
921 		return err;
922 	return copy_stack_state(dst, src);
923 }
924 
925 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
926 			       const struct bpf_verifier_state *src)
927 {
928 	struct bpf_func_state *dst;
929 	int i, err;
930 
931 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
932 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
933 					    GFP_USER);
934 	if (!dst_state->jmp_history)
935 		return -ENOMEM;
936 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
937 
938 	/* if dst has more stack frames then src frame, free them */
939 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
940 		free_func_state(dst_state->frame[i]);
941 		dst_state->frame[i] = NULL;
942 	}
943 	dst_state->speculative = src->speculative;
944 	dst_state->curframe = src->curframe;
945 	dst_state->active_spin_lock = src->active_spin_lock;
946 	dst_state->branches = src->branches;
947 	dst_state->parent = src->parent;
948 	dst_state->first_insn_idx = src->first_insn_idx;
949 	dst_state->last_insn_idx = src->last_insn_idx;
950 	for (i = 0; i <= src->curframe; i++) {
951 		dst = dst_state->frame[i];
952 		if (!dst) {
953 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
954 			if (!dst)
955 				return -ENOMEM;
956 			dst_state->frame[i] = dst;
957 		}
958 		err = copy_func_state(dst, src->frame[i]);
959 		if (err)
960 			return err;
961 	}
962 	return 0;
963 }
964 
965 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
966 {
967 	while (st) {
968 		u32 br = --st->branches;
969 
970 		/* WARN_ON(br > 1) technically makes sense here,
971 		 * but see comment in push_stack(), hence:
972 		 */
973 		WARN_ONCE((int)br < 0,
974 			  "BUG update_branch_counts:branches_to_explore=%d\n",
975 			  br);
976 		if (br)
977 			break;
978 		st = st->parent;
979 	}
980 }
981 
982 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
983 		     int *insn_idx, bool pop_log)
984 {
985 	struct bpf_verifier_state *cur = env->cur_state;
986 	struct bpf_verifier_stack_elem *elem, *head = env->head;
987 	int err;
988 
989 	if (env->head == NULL)
990 		return -ENOENT;
991 
992 	if (cur) {
993 		err = copy_verifier_state(cur, &head->st);
994 		if (err)
995 			return err;
996 	}
997 	if (pop_log)
998 		bpf_vlog_reset(&env->log, head->log_pos);
999 	if (insn_idx)
1000 		*insn_idx = head->insn_idx;
1001 	if (prev_insn_idx)
1002 		*prev_insn_idx = head->prev_insn_idx;
1003 	elem = head->next;
1004 	free_verifier_state(&head->st, false);
1005 	kfree(head);
1006 	env->head = elem;
1007 	env->stack_size--;
1008 	return 0;
1009 }
1010 
1011 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1012 					     int insn_idx, int prev_insn_idx,
1013 					     bool speculative)
1014 {
1015 	struct bpf_verifier_state *cur = env->cur_state;
1016 	struct bpf_verifier_stack_elem *elem;
1017 	int err;
1018 
1019 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1020 	if (!elem)
1021 		goto err;
1022 
1023 	elem->insn_idx = insn_idx;
1024 	elem->prev_insn_idx = prev_insn_idx;
1025 	elem->next = env->head;
1026 	elem->log_pos = env->log.len_used;
1027 	env->head = elem;
1028 	env->stack_size++;
1029 	err = copy_verifier_state(&elem->st, cur);
1030 	if (err)
1031 		goto err;
1032 	elem->st.speculative |= speculative;
1033 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034 		verbose(env, "The sequence of %d jumps is too complex.\n",
1035 			env->stack_size);
1036 		goto err;
1037 	}
1038 	if (elem->st.parent) {
1039 		++elem->st.parent->branches;
1040 		/* WARN_ON(branches > 2) technically makes sense here,
1041 		 * but
1042 		 * 1. speculative states will bump 'branches' for non-branch
1043 		 * instructions
1044 		 * 2. is_state_visited() heuristics may decide not to create
1045 		 * a new state for a sequence of branches and all such current
1046 		 * and cloned states will be pointing to a single parent state
1047 		 * which might have large 'branches' count.
1048 		 */
1049 	}
1050 	return &elem->st;
1051 err:
1052 	free_verifier_state(env->cur_state, true);
1053 	env->cur_state = NULL;
1054 	/* pop all elements and return */
1055 	while (!pop_stack(env, NULL, NULL, false));
1056 	return NULL;
1057 }
1058 
1059 #define CALLER_SAVED_REGS 6
1060 static const int caller_saved[CALLER_SAVED_REGS] = {
1061 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062 };
1063 
1064 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065 				struct bpf_reg_state *reg);
1066 
1067 /* This helper doesn't clear reg->id */
1068 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069 {
1070 	reg->var_off = tnum_const(imm);
1071 	reg->smin_value = (s64)imm;
1072 	reg->smax_value = (s64)imm;
1073 	reg->umin_value = imm;
1074 	reg->umax_value = imm;
1075 
1076 	reg->s32_min_value = (s32)imm;
1077 	reg->s32_max_value = (s32)imm;
1078 	reg->u32_min_value = (u32)imm;
1079 	reg->u32_max_value = (u32)imm;
1080 }
1081 
1082 /* Mark the unknown part of a register (variable offset or scalar value) as
1083  * known to have the value @imm.
1084  */
1085 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086 {
1087 	/* Clear id, off, and union(map_ptr, range) */
1088 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1089 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090 	___mark_reg_known(reg, imm);
1091 }
1092 
1093 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094 {
1095 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096 	reg->s32_min_value = (s32)imm;
1097 	reg->s32_max_value = (s32)imm;
1098 	reg->u32_min_value = (u32)imm;
1099 	reg->u32_max_value = (u32)imm;
1100 }
1101 
1102 /* Mark the 'variable offset' part of a register as zero.  This should be
1103  * used only on registers holding a pointer type.
1104  */
1105 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1106 {
1107 	__mark_reg_known(reg, 0);
1108 }
1109 
1110 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111 {
1112 	__mark_reg_known(reg, 0);
1113 	reg->type = SCALAR_VALUE;
1114 }
1115 
1116 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117 				struct bpf_reg_state *regs, u32 regno)
1118 {
1119 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1120 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1121 		/* Something bad happened, let's kill all regs */
1122 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1123 			__mark_reg_not_init(env, regs + regno);
1124 		return;
1125 	}
1126 	__mark_reg_known_zero(regs + regno);
1127 }
1128 
1129 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130 {
1131 	switch (reg->type) {
1132 	case PTR_TO_MAP_VALUE_OR_NULL: {
1133 		const struct bpf_map *map = reg->map_ptr;
1134 
1135 		if (map->inner_map_meta) {
1136 			reg->type = CONST_PTR_TO_MAP;
1137 			reg->map_ptr = map->inner_map_meta;
1138 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139 			reg->type = PTR_TO_XDP_SOCK;
1140 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142 			reg->type = PTR_TO_SOCKET;
1143 		} else {
1144 			reg->type = PTR_TO_MAP_VALUE;
1145 		}
1146 		break;
1147 	}
1148 	case PTR_TO_SOCKET_OR_NULL:
1149 		reg->type = PTR_TO_SOCKET;
1150 		break;
1151 	case PTR_TO_SOCK_COMMON_OR_NULL:
1152 		reg->type = PTR_TO_SOCK_COMMON;
1153 		break;
1154 	case PTR_TO_TCP_SOCK_OR_NULL:
1155 		reg->type = PTR_TO_TCP_SOCK;
1156 		break;
1157 	case PTR_TO_BTF_ID_OR_NULL:
1158 		reg->type = PTR_TO_BTF_ID;
1159 		break;
1160 	case PTR_TO_MEM_OR_NULL:
1161 		reg->type = PTR_TO_MEM;
1162 		break;
1163 	case PTR_TO_RDONLY_BUF_OR_NULL:
1164 		reg->type = PTR_TO_RDONLY_BUF;
1165 		break;
1166 	case PTR_TO_RDWR_BUF_OR_NULL:
1167 		reg->type = PTR_TO_RDWR_BUF;
1168 		break;
1169 	default:
1170 		WARN_ONCE(1, "unknown nullable register type");
1171 	}
1172 }
1173 
1174 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175 {
1176 	return type_is_pkt_pointer(reg->type);
1177 }
1178 
1179 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180 {
1181 	return reg_is_pkt_pointer(reg) ||
1182 	       reg->type == PTR_TO_PACKET_END;
1183 }
1184 
1185 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187 				    enum bpf_reg_type which)
1188 {
1189 	/* The register can already have a range from prior markings.
1190 	 * This is fine as long as it hasn't been advanced from its
1191 	 * origin.
1192 	 */
1193 	return reg->type == which &&
1194 	       reg->id == 0 &&
1195 	       reg->off == 0 &&
1196 	       tnum_equals_const(reg->var_off, 0);
1197 }
1198 
1199 /* Reset the min/max bounds of a register */
1200 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201 {
1202 	reg->smin_value = S64_MIN;
1203 	reg->smax_value = S64_MAX;
1204 	reg->umin_value = 0;
1205 	reg->umax_value = U64_MAX;
1206 
1207 	reg->s32_min_value = S32_MIN;
1208 	reg->s32_max_value = S32_MAX;
1209 	reg->u32_min_value = 0;
1210 	reg->u32_max_value = U32_MAX;
1211 }
1212 
1213 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214 {
1215 	reg->smin_value = S64_MIN;
1216 	reg->smax_value = S64_MAX;
1217 	reg->umin_value = 0;
1218 	reg->umax_value = U64_MAX;
1219 }
1220 
1221 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222 {
1223 	reg->s32_min_value = S32_MIN;
1224 	reg->s32_max_value = S32_MAX;
1225 	reg->u32_min_value = 0;
1226 	reg->u32_max_value = U32_MAX;
1227 }
1228 
1229 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230 {
1231 	struct tnum var32_off = tnum_subreg(reg->var_off);
1232 
1233 	/* min signed is max(sign bit) | min(other bits) */
1234 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235 			var32_off.value | (var32_off.mask & S32_MIN));
1236 	/* max signed is min(sign bit) | max(other bits) */
1237 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238 			var32_off.value | (var32_off.mask & S32_MAX));
1239 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240 	reg->u32_max_value = min(reg->u32_max_value,
1241 				 (u32)(var32_off.value | var32_off.mask));
1242 }
1243 
1244 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1245 {
1246 	/* min signed is max(sign bit) | min(other bits) */
1247 	reg->smin_value = max_t(s64, reg->smin_value,
1248 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249 	/* max signed is min(sign bit) | max(other bits) */
1250 	reg->smax_value = min_t(s64, reg->smax_value,
1251 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253 	reg->umax_value = min(reg->umax_value,
1254 			      reg->var_off.value | reg->var_off.mask);
1255 }
1256 
1257 static void __update_reg_bounds(struct bpf_reg_state *reg)
1258 {
1259 	__update_reg32_bounds(reg);
1260 	__update_reg64_bounds(reg);
1261 }
1262 
1263 /* Uses signed min/max values to inform unsigned, and vice-versa */
1264 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265 {
1266 	/* Learn sign from signed bounds.
1267 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1268 	 * are the same, so combine.  This works even in the negative case, e.g.
1269 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270 	 */
1271 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272 		reg->s32_min_value = reg->u32_min_value =
1273 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274 		reg->s32_max_value = reg->u32_max_value =
1275 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276 		return;
1277 	}
1278 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1279 	 * boundary, so we must be careful.
1280 	 */
1281 	if ((s32)reg->u32_max_value >= 0) {
1282 		/* Positive.  We can't learn anything from the smin, but smax
1283 		 * is positive, hence safe.
1284 		 */
1285 		reg->s32_min_value = reg->u32_min_value;
1286 		reg->s32_max_value = reg->u32_max_value =
1287 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288 	} else if ((s32)reg->u32_min_value < 0) {
1289 		/* Negative.  We can't learn anything from the smax, but smin
1290 		 * is negative, hence safe.
1291 		 */
1292 		reg->s32_min_value = reg->u32_min_value =
1293 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 		reg->s32_max_value = reg->u32_max_value;
1295 	}
1296 }
1297 
1298 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1299 {
1300 	/* Learn sign from signed bounds.
1301 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1302 	 * are the same, so combine.  This works even in the negative case, e.g.
1303 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304 	 */
1305 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307 							  reg->umin_value);
1308 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309 							  reg->umax_value);
1310 		return;
1311 	}
1312 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1313 	 * boundary, so we must be careful.
1314 	 */
1315 	if ((s64)reg->umax_value >= 0) {
1316 		/* Positive.  We can't learn anything from the smin, but smax
1317 		 * is positive, hence safe.
1318 		 */
1319 		reg->smin_value = reg->umin_value;
1320 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321 							  reg->umax_value);
1322 	} else if ((s64)reg->umin_value < 0) {
1323 		/* Negative.  We can't learn anything from the smax, but smin
1324 		 * is negative, hence safe.
1325 		 */
1326 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 							  reg->umin_value);
1328 		reg->smax_value = reg->umax_value;
1329 	}
1330 }
1331 
1332 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333 {
1334 	__reg32_deduce_bounds(reg);
1335 	__reg64_deduce_bounds(reg);
1336 }
1337 
1338 /* Attempts to improve var_off based on unsigned min/max information */
1339 static void __reg_bound_offset(struct bpf_reg_state *reg)
1340 {
1341 	struct tnum var64_off = tnum_intersect(reg->var_off,
1342 					       tnum_range(reg->umin_value,
1343 							  reg->umax_value));
1344 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345 						tnum_range(reg->u32_min_value,
1346 							   reg->u32_max_value));
1347 
1348 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1349 }
1350 
1351 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1352 {
1353 	reg->umin_value = reg->u32_min_value;
1354 	reg->umax_value = reg->u32_max_value;
1355 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356 	 * but must be positive otherwise set to worse case bounds
1357 	 * and refine later from tnum.
1358 	 */
1359 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1360 		reg->smax_value = reg->s32_max_value;
1361 	else
1362 		reg->smax_value = U32_MAX;
1363 	if (reg->s32_min_value >= 0)
1364 		reg->smin_value = reg->s32_min_value;
1365 	else
1366 		reg->smin_value = 0;
1367 }
1368 
1369 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370 {
1371 	/* special case when 64-bit register has upper 32-bit register
1372 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1373 	 * allowing us to use 32-bit bounds directly,
1374 	 */
1375 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376 		__reg_assign_32_into_64(reg);
1377 	} else {
1378 		/* Otherwise the best we can do is push lower 32bit known and
1379 		 * unknown bits into register (var_off set from jmp logic)
1380 		 * then learn as much as possible from the 64-bit tnum
1381 		 * known and unknown bits. The previous smin/smax bounds are
1382 		 * invalid here because of jmp32 compare so mark them unknown
1383 		 * so they do not impact tnum bounds calculation.
1384 		 */
1385 		__mark_reg64_unbounded(reg);
1386 		__update_reg_bounds(reg);
1387 	}
1388 
1389 	/* Intersecting with the old var_off might have improved our bounds
1390 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1392 	 */
1393 	__reg_deduce_bounds(reg);
1394 	__reg_bound_offset(reg);
1395 	__update_reg_bounds(reg);
1396 }
1397 
1398 static bool __reg64_bound_s32(s64 a)
1399 {
1400 	return a > S32_MIN && a < S32_MAX;
1401 }
1402 
1403 static bool __reg64_bound_u32(u64 a)
1404 {
1405 	return a > U32_MIN && a < U32_MAX;
1406 }
1407 
1408 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409 {
1410 	__mark_reg32_unbounded(reg);
1411 
1412 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1413 		reg->s32_min_value = (s32)reg->smin_value;
1414 		reg->s32_max_value = (s32)reg->smax_value;
1415 	}
1416 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1417 		reg->u32_min_value = (u32)reg->umin_value;
1418 		reg->u32_max_value = (u32)reg->umax_value;
1419 	}
1420 
1421 	/* Intersecting with the old var_off might have improved our bounds
1422 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1424 	 */
1425 	__reg_deduce_bounds(reg);
1426 	__reg_bound_offset(reg);
1427 	__update_reg_bounds(reg);
1428 }
1429 
1430 /* Mark a register as having a completely unknown (scalar) value. */
1431 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432 			       struct bpf_reg_state *reg)
1433 {
1434 	/*
1435 	 * Clear type, id, off, and union(map_ptr, range) and
1436 	 * padding between 'type' and union
1437 	 */
1438 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1439 	reg->type = SCALAR_VALUE;
1440 	reg->var_off = tnum_unknown;
1441 	reg->frameno = 0;
1442 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1443 	__mark_reg_unbounded(reg);
1444 }
1445 
1446 static void mark_reg_unknown(struct bpf_verifier_env *env,
1447 			     struct bpf_reg_state *regs, u32 regno)
1448 {
1449 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1450 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1451 		/* Something bad happened, let's kill all regs except FP */
1452 		for (regno = 0; regno < BPF_REG_FP; regno++)
1453 			__mark_reg_not_init(env, regs + regno);
1454 		return;
1455 	}
1456 	__mark_reg_unknown(env, regs + regno);
1457 }
1458 
1459 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460 				struct bpf_reg_state *reg)
1461 {
1462 	__mark_reg_unknown(env, reg);
1463 	reg->type = NOT_INIT;
1464 }
1465 
1466 static void mark_reg_not_init(struct bpf_verifier_env *env,
1467 			      struct bpf_reg_state *regs, u32 regno)
1468 {
1469 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1470 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1471 		/* Something bad happened, let's kill all regs except FP */
1472 		for (regno = 0; regno < BPF_REG_FP; regno++)
1473 			__mark_reg_not_init(env, regs + regno);
1474 		return;
1475 	}
1476 	__mark_reg_not_init(env, regs + regno);
1477 }
1478 
1479 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480 			    struct bpf_reg_state *regs, u32 regno,
1481 			    enum bpf_reg_type reg_type,
1482 			    struct btf *btf, u32 btf_id)
1483 {
1484 	if (reg_type == SCALAR_VALUE) {
1485 		mark_reg_unknown(env, regs, regno);
1486 		return;
1487 	}
1488 	mark_reg_known_zero(env, regs, regno);
1489 	regs[regno].type = PTR_TO_BTF_ID;
1490 	regs[regno].btf = btf;
1491 	regs[regno].btf_id = btf_id;
1492 }
1493 
1494 #define DEF_NOT_SUBREG	(0)
1495 static void init_reg_state(struct bpf_verifier_env *env,
1496 			   struct bpf_func_state *state)
1497 {
1498 	struct bpf_reg_state *regs = state->regs;
1499 	int i;
1500 
1501 	for (i = 0; i < MAX_BPF_REG; i++) {
1502 		mark_reg_not_init(env, regs, i);
1503 		regs[i].live = REG_LIVE_NONE;
1504 		regs[i].parent = NULL;
1505 		regs[i].subreg_def = DEF_NOT_SUBREG;
1506 	}
1507 
1508 	/* frame pointer */
1509 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1510 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1511 	regs[BPF_REG_FP].frameno = state->frameno;
1512 }
1513 
1514 #define BPF_MAIN_FUNC (-1)
1515 static void init_func_state(struct bpf_verifier_env *env,
1516 			    struct bpf_func_state *state,
1517 			    int callsite, int frameno, int subprogno)
1518 {
1519 	state->callsite = callsite;
1520 	state->frameno = frameno;
1521 	state->subprogno = subprogno;
1522 	init_reg_state(env, state);
1523 }
1524 
1525 enum reg_arg_type {
1526 	SRC_OP,		/* register is used as source operand */
1527 	DST_OP,		/* register is used as destination operand */
1528 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1529 };
1530 
1531 static int cmp_subprogs(const void *a, const void *b)
1532 {
1533 	return ((struct bpf_subprog_info *)a)->start -
1534 	       ((struct bpf_subprog_info *)b)->start;
1535 }
1536 
1537 static int find_subprog(struct bpf_verifier_env *env, int off)
1538 {
1539 	struct bpf_subprog_info *p;
1540 
1541 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1543 	if (!p)
1544 		return -ENOENT;
1545 	return p - env->subprog_info;
1546 
1547 }
1548 
1549 static int add_subprog(struct bpf_verifier_env *env, int off)
1550 {
1551 	int insn_cnt = env->prog->len;
1552 	int ret;
1553 
1554 	if (off >= insn_cnt || off < 0) {
1555 		verbose(env, "call to invalid destination\n");
1556 		return -EINVAL;
1557 	}
1558 	ret = find_subprog(env, off);
1559 	if (ret >= 0)
1560 		return ret;
1561 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1562 		verbose(env, "too many subprograms\n");
1563 		return -E2BIG;
1564 	}
1565 	/* determine subprog starts. The end is one before the next starts */
1566 	env->subprog_info[env->subprog_cnt++].start = off;
1567 	sort(env->subprog_info, env->subprog_cnt,
1568 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1569 	return env->subprog_cnt - 1;
1570 }
1571 
1572 struct bpf_kfunc_desc {
1573 	struct btf_func_model func_model;
1574 	u32 func_id;
1575 	s32 imm;
1576 };
1577 
1578 #define MAX_KFUNC_DESCS 256
1579 struct bpf_kfunc_desc_tab {
1580 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581 	u32 nr_descs;
1582 };
1583 
1584 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585 {
1586 	const struct bpf_kfunc_desc *d0 = a;
1587 	const struct bpf_kfunc_desc *d1 = b;
1588 
1589 	/* func_id is not greater than BTF_MAX_TYPE */
1590 	return d0->func_id - d1->func_id;
1591 }
1592 
1593 static const struct bpf_kfunc_desc *
1594 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595 {
1596 	struct bpf_kfunc_desc desc = {
1597 		.func_id = func_id,
1598 	};
1599 	struct bpf_kfunc_desc_tab *tab;
1600 
1601 	tab = prog->aux->kfunc_tab;
1602 	return bsearch(&desc, tab->descs, tab->nr_descs,
1603 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604 }
1605 
1606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607 {
1608 	const struct btf_type *func, *func_proto;
1609 	struct bpf_kfunc_desc_tab *tab;
1610 	struct bpf_prog_aux *prog_aux;
1611 	struct bpf_kfunc_desc *desc;
1612 	const char *func_name;
1613 	unsigned long addr;
1614 	int err;
1615 
1616 	prog_aux = env->prog->aux;
1617 	tab = prog_aux->kfunc_tab;
1618 	if (!tab) {
1619 		if (!btf_vmlinux) {
1620 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621 			return -ENOTSUPP;
1622 		}
1623 
1624 		if (!env->prog->jit_requested) {
1625 			verbose(env, "JIT is required for calling kernel function\n");
1626 			return -ENOTSUPP;
1627 		}
1628 
1629 		if (!bpf_jit_supports_kfunc_call()) {
1630 			verbose(env, "JIT does not support calling kernel function\n");
1631 			return -ENOTSUPP;
1632 		}
1633 
1634 		if (!env->prog->gpl_compatible) {
1635 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636 			return -EINVAL;
1637 		}
1638 
1639 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640 		if (!tab)
1641 			return -ENOMEM;
1642 		prog_aux->kfunc_tab = tab;
1643 	}
1644 
1645 	if (find_kfunc_desc(env->prog, func_id))
1646 		return 0;
1647 
1648 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649 		verbose(env, "too many different kernel function calls\n");
1650 		return -E2BIG;
1651 	}
1652 
1653 	func = btf_type_by_id(btf_vmlinux, func_id);
1654 	if (!func || !btf_type_is_func(func)) {
1655 		verbose(env, "kernel btf_id %u is not a function\n",
1656 			func_id);
1657 		return -EINVAL;
1658 	}
1659 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662 			func_id);
1663 		return -EINVAL;
1664 	}
1665 
1666 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667 	addr = kallsyms_lookup_name(func_name);
1668 	if (!addr) {
1669 		verbose(env, "cannot find address for kernel function %s\n",
1670 			func_name);
1671 		return -EINVAL;
1672 	}
1673 
1674 	desc = &tab->descs[tab->nr_descs++];
1675 	desc->func_id = func_id;
1676 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678 				     func_proto, func_name,
1679 				     &desc->func_model);
1680 	if (!err)
1681 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682 		     kfunc_desc_cmp_by_id, NULL);
1683 	return err;
1684 }
1685 
1686 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687 {
1688 	const struct bpf_kfunc_desc *d0 = a;
1689 	const struct bpf_kfunc_desc *d1 = b;
1690 
1691 	if (d0->imm > d1->imm)
1692 		return 1;
1693 	else if (d0->imm < d1->imm)
1694 		return -1;
1695 	return 0;
1696 }
1697 
1698 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699 {
1700 	struct bpf_kfunc_desc_tab *tab;
1701 
1702 	tab = prog->aux->kfunc_tab;
1703 	if (!tab)
1704 		return;
1705 
1706 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707 	     kfunc_desc_cmp_by_imm, NULL);
1708 }
1709 
1710 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711 {
1712 	return !!prog->aux->kfunc_tab;
1713 }
1714 
1715 const struct btf_func_model *
1716 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717 			 const struct bpf_insn *insn)
1718 {
1719 	const struct bpf_kfunc_desc desc = {
1720 		.imm = insn->imm,
1721 	};
1722 	const struct bpf_kfunc_desc *res;
1723 	struct bpf_kfunc_desc_tab *tab;
1724 
1725 	tab = prog->aux->kfunc_tab;
1726 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1727 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728 
1729 	return res ? &res->func_model : NULL;
1730 }
1731 
1732 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1733 {
1734 	struct bpf_subprog_info *subprog = env->subprog_info;
1735 	struct bpf_insn *insn = env->prog->insnsi;
1736 	int i, ret, insn_cnt = env->prog->len;
1737 
1738 	/* Add entry function. */
1739 	ret = add_subprog(env, 0);
1740 	if (ret)
1741 		return ret;
1742 
1743 	for (i = 0; i < insn_cnt; i++, insn++) {
1744 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745 		    !bpf_pseudo_kfunc_call(insn))
1746 			continue;
1747 
1748 		if (!env->bpf_capable) {
1749 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1750 			return -EPERM;
1751 		}
1752 
1753 		if (bpf_pseudo_func(insn)) {
1754 			ret = add_subprog(env, i + insn->imm + 1);
1755 			if (ret >= 0)
1756 				/* remember subprog */
1757 				insn[1].imm = ret;
1758 		} else if (bpf_pseudo_call(insn)) {
1759 			ret = add_subprog(env, i + insn->imm + 1);
1760 		} else {
1761 			ret = add_kfunc_call(env, insn->imm);
1762 		}
1763 
1764 		if (ret < 0)
1765 			return ret;
1766 	}
1767 
1768 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1769 	 * logic. 'subprog_cnt' should not be increased.
1770 	 */
1771 	subprog[env->subprog_cnt].start = insn_cnt;
1772 
1773 	if (env->log.level & BPF_LOG_LEVEL2)
1774 		for (i = 0; i < env->subprog_cnt; i++)
1775 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1776 
1777 	return 0;
1778 }
1779 
1780 static int check_subprogs(struct bpf_verifier_env *env)
1781 {
1782 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783 	struct bpf_subprog_info *subprog = env->subprog_info;
1784 	struct bpf_insn *insn = env->prog->insnsi;
1785 	int insn_cnt = env->prog->len;
1786 
1787 	/* now check that all jumps are within the same subprog */
1788 	subprog_start = subprog[cur_subprog].start;
1789 	subprog_end = subprog[cur_subprog + 1].start;
1790 	for (i = 0; i < insn_cnt; i++) {
1791 		u8 code = insn[i].code;
1792 
1793 		if (code == (BPF_JMP | BPF_CALL) &&
1794 		    insn[i].imm == BPF_FUNC_tail_call &&
1795 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1796 			subprog[cur_subprog].has_tail_call = true;
1797 		if (BPF_CLASS(code) == BPF_LD &&
1798 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799 			subprog[cur_subprog].has_ld_abs = true;
1800 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1801 			goto next;
1802 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803 			goto next;
1804 		off = i + insn[i].off + 1;
1805 		if (off < subprog_start || off >= subprog_end) {
1806 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807 			return -EINVAL;
1808 		}
1809 next:
1810 		if (i == subprog_end - 1) {
1811 			/* to avoid fall-through from one subprog into another
1812 			 * the last insn of the subprog should be either exit
1813 			 * or unconditional jump back
1814 			 */
1815 			if (code != (BPF_JMP | BPF_EXIT) &&
1816 			    code != (BPF_JMP | BPF_JA)) {
1817 				verbose(env, "last insn is not an exit or jmp\n");
1818 				return -EINVAL;
1819 			}
1820 			subprog_start = subprog_end;
1821 			cur_subprog++;
1822 			if (cur_subprog < env->subprog_cnt)
1823 				subprog_end = subprog[cur_subprog + 1].start;
1824 		}
1825 	}
1826 	return 0;
1827 }
1828 
1829 /* Parentage chain of this register (or stack slot) should take care of all
1830  * issues like callee-saved registers, stack slot allocation time, etc.
1831  */
1832 static int mark_reg_read(struct bpf_verifier_env *env,
1833 			 const struct bpf_reg_state *state,
1834 			 struct bpf_reg_state *parent, u8 flag)
1835 {
1836 	bool writes = parent == state->parent; /* Observe write marks */
1837 	int cnt = 0;
1838 
1839 	while (parent) {
1840 		/* if read wasn't screened by an earlier write ... */
1841 		if (writes && state->live & REG_LIVE_WRITTEN)
1842 			break;
1843 		if (parent->live & REG_LIVE_DONE) {
1844 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845 				reg_type_str[parent->type],
1846 				parent->var_off.value, parent->off);
1847 			return -EFAULT;
1848 		}
1849 		/* The first condition is more likely to be true than the
1850 		 * second, checked it first.
1851 		 */
1852 		if ((parent->live & REG_LIVE_READ) == flag ||
1853 		    parent->live & REG_LIVE_READ64)
1854 			/* The parentage chain never changes and
1855 			 * this parent was already marked as LIVE_READ.
1856 			 * There is no need to keep walking the chain again and
1857 			 * keep re-marking all parents as LIVE_READ.
1858 			 * This case happens when the same register is read
1859 			 * multiple times without writes into it in-between.
1860 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1861 			 * then no need to set the weak REG_LIVE_READ32.
1862 			 */
1863 			break;
1864 		/* ... then we depend on parent's value */
1865 		parent->live |= flag;
1866 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867 		if (flag == REG_LIVE_READ64)
1868 			parent->live &= ~REG_LIVE_READ32;
1869 		state = parent;
1870 		parent = state->parent;
1871 		writes = true;
1872 		cnt++;
1873 	}
1874 
1875 	if (env->longest_mark_read_walk < cnt)
1876 		env->longest_mark_read_walk = cnt;
1877 	return 0;
1878 }
1879 
1880 /* This function is supposed to be used by the following 32-bit optimization
1881  * code only. It returns TRUE if the source or destination register operates
1882  * on 64-bit, otherwise return FALSE.
1883  */
1884 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886 {
1887 	u8 code, class, op;
1888 
1889 	code = insn->code;
1890 	class = BPF_CLASS(code);
1891 	op = BPF_OP(code);
1892 	if (class == BPF_JMP) {
1893 		/* BPF_EXIT for "main" will reach here. Return TRUE
1894 		 * conservatively.
1895 		 */
1896 		if (op == BPF_EXIT)
1897 			return true;
1898 		if (op == BPF_CALL) {
1899 			/* BPF to BPF call will reach here because of marking
1900 			 * caller saved clobber with DST_OP_NO_MARK for which we
1901 			 * don't care the register def because they are anyway
1902 			 * marked as NOT_INIT already.
1903 			 */
1904 			if (insn->src_reg == BPF_PSEUDO_CALL)
1905 				return false;
1906 			/* Helper call will reach here because of arg type
1907 			 * check, conservatively return TRUE.
1908 			 */
1909 			if (t == SRC_OP)
1910 				return true;
1911 
1912 			return false;
1913 		}
1914 	}
1915 
1916 	if (class == BPF_ALU64 || class == BPF_JMP ||
1917 	    /* BPF_END always use BPF_ALU class. */
1918 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919 		return true;
1920 
1921 	if (class == BPF_ALU || class == BPF_JMP32)
1922 		return false;
1923 
1924 	if (class == BPF_LDX) {
1925 		if (t != SRC_OP)
1926 			return BPF_SIZE(code) == BPF_DW;
1927 		/* LDX source must be ptr. */
1928 		return true;
1929 	}
1930 
1931 	if (class == BPF_STX) {
1932 		/* BPF_STX (including atomic variants) has multiple source
1933 		 * operands, one of which is a ptr. Check whether the caller is
1934 		 * asking about it.
1935 		 */
1936 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1937 			return true;
1938 		return BPF_SIZE(code) == BPF_DW;
1939 	}
1940 
1941 	if (class == BPF_LD) {
1942 		u8 mode = BPF_MODE(code);
1943 
1944 		/* LD_IMM64 */
1945 		if (mode == BPF_IMM)
1946 			return true;
1947 
1948 		/* Both LD_IND and LD_ABS return 32-bit data. */
1949 		if (t != SRC_OP)
1950 			return  false;
1951 
1952 		/* Implicit ctx ptr. */
1953 		if (regno == BPF_REG_6)
1954 			return true;
1955 
1956 		/* Explicit source could be any width. */
1957 		return true;
1958 	}
1959 
1960 	if (class == BPF_ST)
1961 		/* The only source register for BPF_ST is a ptr. */
1962 		return true;
1963 
1964 	/* Conservatively return true at default. */
1965 	return true;
1966 }
1967 
1968 /* Return the regno defined by the insn, or -1. */
1969 static int insn_def_regno(const struct bpf_insn *insn)
1970 {
1971 	switch (BPF_CLASS(insn->code)) {
1972 	case BPF_JMP:
1973 	case BPF_JMP32:
1974 	case BPF_ST:
1975 		return -1;
1976 	case BPF_STX:
1977 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978 		    (insn->imm & BPF_FETCH)) {
1979 			if (insn->imm == BPF_CMPXCHG)
1980 				return BPF_REG_0;
1981 			else
1982 				return insn->src_reg;
1983 		} else {
1984 			return -1;
1985 		}
1986 	default:
1987 		return insn->dst_reg;
1988 	}
1989 }
1990 
1991 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993 {
1994 	int dst_reg = insn_def_regno(insn);
1995 
1996 	if (dst_reg == -1)
1997 		return false;
1998 
1999 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2000 }
2001 
2002 static void mark_insn_zext(struct bpf_verifier_env *env,
2003 			   struct bpf_reg_state *reg)
2004 {
2005 	s32 def_idx = reg->subreg_def;
2006 
2007 	if (def_idx == DEF_NOT_SUBREG)
2008 		return;
2009 
2010 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2011 	/* The dst will be zero extended, so won't be sub-register anymore. */
2012 	reg->subreg_def = DEF_NOT_SUBREG;
2013 }
2014 
2015 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2016 			 enum reg_arg_type t)
2017 {
2018 	struct bpf_verifier_state *vstate = env->cur_state;
2019 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2020 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2021 	struct bpf_reg_state *reg, *regs = state->regs;
2022 	bool rw64;
2023 
2024 	if (regno >= MAX_BPF_REG) {
2025 		verbose(env, "R%d is invalid\n", regno);
2026 		return -EINVAL;
2027 	}
2028 
2029 	reg = &regs[regno];
2030 	rw64 = is_reg64(env, insn, regno, reg, t);
2031 	if (t == SRC_OP) {
2032 		/* check whether register used as source operand can be read */
2033 		if (reg->type == NOT_INIT) {
2034 			verbose(env, "R%d !read_ok\n", regno);
2035 			return -EACCES;
2036 		}
2037 		/* We don't need to worry about FP liveness because it's read-only */
2038 		if (regno == BPF_REG_FP)
2039 			return 0;
2040 
2041 		if (rw64)
2042 			mark_insn_zext(env, reg);
2043 
2044 		return mark_reg_read(env, reg, reg->parent,
2045 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2046 	} else {
2047 		/* check whether register used as dest operand can be written to */
2048 		if (regno == BPF_REG_FP) {
2049 			verbose(env, "frame pointer is read only\n");
2050 			return -EACCES;
2051 		}
2052 		reg->live |= REG_LIVE_WRITTEN;
2053 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2054 		if (t == DST_OP)
2055 			mark_reg_unknown(env, regs, regno);
2056 	}
2057 	return 0;
2058 }
2059 
2060 /* for any branch, call, exit record the history of jmps in the given state */
2061 static int push_jmp_history(struct bpf_verifier_env *env,
2062 			    struct bpf_verifier_state *cur)
2063 {
2064 	u32 cnt = cur->jmp_history_cnt;
2065 	struct bpf_idx_pair *p;
2066 
2067 	cnt++;
2068 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069 	if (!p)
2070 		return -ENOMEM;
2071 	p[cnt - 1].idx = env->insn_idx;
2072 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2073 	cur->jmp_history = p;
2074 	cur->jmp_history_cnt = cnt;
2075 	return 0;
2076 }
2077 
2078 /* Backtrack one insn at a time. If idx is not at the top of recorded
2079  * history then previous instruction came from straight line execution.
2080  */
2081 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082 			     u32 *history)
2083 {
2084 	u32 cnt = *history;
2085 
2086 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087 		i = st->jmp_history[cnt - 1].prev_idx;
2088 		(*history)--;
2089 	} else {
2090 		i--;
2091 	}
2092 	return i;
2093 }
2094 
2095 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096 {
2097 	const struct btf_type *func;
2098 
2099 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100 		return NULL;
2101 
2102 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2103 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2104 }
2105 
2106 /* For given verifier state backtrack_insn() is called from the last insn to
2107  * the first insn. Its purpose is to compute a bitmask of registers and
2108  * stack slots that needs precision in the parent verifier state.
2109  */
2110 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111 			  u32 *reg_mask, u64 *stack_mask)
2112 {
2113 	const struct bpf_insn_cbs cbs = {
2114 		.cb_call	= disasm_kfunc_name,
2115 		.cb_print	= verbose,
2116 		.private_data	= env,
2117 	};
2118 	struct bpf_insn *insn = env->prog->insnsi + idx;
2119 	u8 class = BPF_CLASS(insn->code);
2120 	u8 opcode = BPF_OP(insn->code);
2121 	u8 mode = BPF_MODE(insn->code);
2122 	u32 dreg = 1u << insn->dst_reg;
2123 	u32 sreg = 1u << insn->src_reg;
2124 	u32 spi;
2125 
2126 	if (insn->code == 0)
2127 		return 0;
2128 	if (env->log.level & BPF_LOG_LEVEL) {
2129 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130 		verbose(env, "%d: ", idx);
2131 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132 	}
2133 
2134 	if (class == BPF_ALU || class == BPF_ALU64) {
2135 		if (!(*reg_mask & dreg))
2136 			return 0;
2137 		if (opcode == BPF_MOV) {
2138 			if (BPF_SRC(insn->code) == BPF_X) {
2139 				/* dreg = sreg
2140 				 * dreg needs precision after this insn
2141 				 * sreg needs precision before this insn
2142 				 */
2143 				*reg_mask &= ~dreg;
2144 				*reg_mask |= sreg;
2145 			} else {
2146 				/* dreg = K
2147 				 * dreg needs precision after this insn.
2148 				 * Corresponding register is already marked
2149 				 * as precise=true in this verifier state.
2150 				 * No further markings in parent are necessary
2151 				 */
2152 				*reg_mask &= ~dreg;
2153 			}
2154 		} else {
2155 			if (BPF_SRC(insn->code) == BPF_X) {
2156 				/* dreg += sreg
2157 				 * both dreg and sreg need precision
2158 				 * before this insn
2159 				 */
2160 				*reg_mask |= sreg;
2161 			} /* else dreg += K
2162 			   * dreg still needs precision before this insn
2163 			   */
2164 		}
2165 	} else if (class == BPF_LDX) {
2166 		if (!(*reg_mask & dreg))
2167 			return 0;
2168 		*reg_mask &= ~dreg;
2169 
2170 		/* scalars can only be spilled into stack w/o losing precision.
2171 		 * Load from any other memory can be zero extended.
2172 		 * The desire to keep that precision is already indicated
2173 		 * by 'precise' mark in corresponding register of this state.
2174 		 * No further tracking necessary.
2175 		 */
2176 		if (insn->src_reg != BPF_REG_FP)
2177 			return 0;
2178 		if (BPF_SIZE(insn->code) != BPF_DW)
2179 			return 0;
2180 
2181 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182 		 * that [fp - off] slot contains scalar that needs to be
2183 		 * tracked with precision
2184 		 */
2185 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2186 		if (spi >= 64) {
2187 			verbose(env, "BUG spi %d\n", spi);
2188 			WARN_ONCE(1, "verifier backtracking bug");
2189 			return -EFAULT;
2190 		}
2191 		*stack_mask |= 1ull << spi;
2192 	} else if (class == BPF_STX || class == BPF_ST) {
2193 		if (*reg_mask & dreg)
2194 			/* stx & st shouldn't be using _scalar_ dst_reg
2195 			 * to access memory. It means backtracking
2196 			 * encountered a case of pointer subtraction.
2197 			 */
2198 			return -ENOTSUPP;
2199 		/* scalars can only be spilled into stack */
2200 		if (insn->dst_reg != BPF_REG_FP)
2201 			return 0;
2202 		if (BPF_SIZE(insn->code) != BPF_DW)
2203 			return 0;
2204 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2205 		if (spi >= 64) {
2206 			verbose(env, "BUG spi %d\n", spi);
2207 			WARN_ONCE(1, "verifier backtracking bug");
2208 			return -EFAULT;
2209 		}
2210 		if (!(*stack_mask & (1ull << spi)))
2211 			return 0;
2212 		*stack_mask &= ~(1ull << spi);
2213 		if (class == BPF_STX)
2214 			*reg_mask |= sreg;
2215 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2216 		if (opcode == BPF_CALL) {
2217 			if (insn->src_reg == BPF_PSEUDO_CALL)
2218 				return -ENOTSUPP;
2219 			/* regular helper call sets R0 */
2220 			*reg_mask &= ~1;
2221 			if (*reg_mask & 0x3f) {
2222 				/* if backtracing was looking for registers R1-R5
2223 				 * they should have been found already.
2224 				 */
2225 				verbose(env, "BUG regs %x\n", *reg_mask);
2226 				WARN_ONCE(1, "verifier backtracking bug");
2227 				return -EFAULT;
2228 			}
2229 		} else if (opcode == BPF_EXIT) {
2230 			return -ENOTSUPP;
2231 		}
2232 	} else if (class == BPF_LD) {
2233 		if (!(*reg_mask & dreg))
2234 			return 0;
2235 		*reg_mask &= ~dreg;
2236 		/* It's ld_imm64 or ld_abs or ld_ind.
2237 		 * For ld_imm64 no further tracking of precision
2238 		 * into parent is necessary
2239 		 */
2240 		if (mode == BPF_IND || mode == BPF_ABS)
2241 			/* to be analyzed */
2242 			return -ENOTSUPP;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /* the scalar precision tracking algorithm:
2248  * . at the start all registers have precise=false.
2249  * . scalar ranges are tracked as normal through alu and jmp insns.
2250  * . once precise value of the scalar register is used in:
2251  *   .  ptr + scalar alu
2252  *   . if (scalar cond K|scalar)
2253  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2254  *   backtrack through the verifier states and mark all registers and
2255  *   stack slots with spilled constants that these scalar regisers
2256  *   should be precise.
2257  * . during state pruning two registers (or spilled stack slots)
2258  *   are equivalent if both are not precise.
2259  *
2260  * Note the verifier cannot simply walk register parentage chain,
2261  * since many different registers and stack slots could have been
2262  * used to compute single precise scalar.
2263  *
2264  * The approach of starting with precise=true for all registers and then
2265  * backtrack to mark a register as not precise when the verifier detects
2266  * that program doesn't care about specific value (e.g., when helper
2267  * takes register as ARG_ANYTHING parameter) is not safe.
2268  *
2269  * It's ok to walk single parentage chain of the verifier states.
2270  * It's possible that this backtracking will go all the way till 1st insn.
2271  * All other branches will be explored for needing precision later.
2272  *
2273  * The backtracking needs to deal with cases like:
2274  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275  * r9 -= r8
2276  * r5 = r9
2277  * if r5 > 0x79f goto pc+7
2278  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279  * r5 += 1
2280  * ...
2281  * call bpf_perf_event_output#25
2282  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283  *
2284  * and this case:
2285  * r6 = 1
2286  * call foo // uses callee's r6 inside to compute r0
2287  * r0 += r6
2288  * if r0 == 0 goto
2289  *
2290  * to track above reg_mask/stack_mask needs to be independent for each frame.
2291  *
2292  * Also if parent's curframe > frame where backtracking started,
2293  * the verifier need to mark registers in both frames, otherwise callees
2294  * may incorrectly prune callers. This is similar to
2295  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296  *
2297  * For now backtracking falls back into conservative marking.
2298  */
2299 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300 				     struct bpf_verifier_state *st)
2301 {
2302 	struct bpf_func_state *func;
2303 	struct bpf_reg_state *reg;
2304 	int i, j;
2305 
2306 	/* big hammer: mark all scalars precise in this path.
2307 	 * pop_stack may still get !precise scalars.
2308 	 */
2309 	for (; st; st = st->parent)
2310 		for (i = 0; i <= st->curframe; i++) {
2311 			func = st->frame[i];
2312 			for (j = 0; j < BPF_REG_FP; j++) {
2313 				reg = &func->regs[j];
2314 				if (reg->type != SCALAR_VALUE)
2315 					continue;
2316 				reg->precise = true;
2317 			}
2318 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2320 					continue;
2321 				reg = &func->stack[j].spilled_ptr;
2322 				if (reg->type != SCALAR_VALUE)
2323 					continue;
2324 				reg->precise = true;
2325 			}
2326 		}
2327 }
2328 
2329 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330 				  int spi)
2331 {
2332 	struct bpf_verifier_state *st = env->cur_state;
2333 	int first_idx = st->first_insn_idx;
2334 	int last_idx = env->insn_idx;
2335 	struct bpf_func_state *func;
2336 	struct bpf_reg_state *reg;
2337 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2339 	bool skip_first = true;
2340 	bool new_marks = false;
2341 	int i, err;
2342 
2343 	if (!env->bpf_capable)
2344 		return 0;
2345 
2346 	func = st->frame[st->curframe];
2347 	if (regno >= 0) {
2348 		reg = &func->regs[regno];
2349 		if (reg->type != SCALAR_VALUE) {
2350 			WARN_ONCE(1, "backtracing misuse");
2351 			return -EFAULT;
2352 		}
2353 		if (!reg->precise)
2354 			new_marks = true;
2355 		else
2356 			reg_mask = 0;
2357 		reg->precise = true;
2358 	}
2359 
2360 	while (spi >= 0) {
2361 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362 			stack_mask = 0;
2363 			break;
2364 		}
2365 		reg = &func->stack[spi].spilled_ptr;
2366 		if (reg->type != SCALAR_VALUE) {
2367 			stack_mask = 0;
2368 			break;
2369 		}
2370 		if (!reg->precise)
2371 			new_marks = true;
2372 		else
2373 			stack_mask = 0;
2374 		reg->precise = true;
2375 		break;
2376 	}
2377 
2378 	if (!new_marks)
2379 		return 0;
2380 	if (!reg_mask && !stack_mask)
2381 		return 0;
2382 	for (;;) {
2383 		DECLARE_BITMAP(mask, 64);
2384 		u32 history = st->jmp_history_cnt;
2385 
2386 		if (env->log.level & BPF_LOG_LEVEL)
2387 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388 		for (i = last_idx;;) {
2389 			if (skip_first) {
2390 				err = 0;
2391 				skip_first = false;
2392 			} else {
2393 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2394 			}
2395 			if (err == -ENOTSUPP) {
2396 				mark_all_scalars_precise(env, st);
2397 				return 0;
2398 			} else if (err) {
2399 				return err;
2400 			}
2401 			if (!reg_mask && !stack_mask)
2402 				/* Found assignment(s) into tracked register in this state.
2403 				 * Since this state is already marked, just return.
2404 				 * Nothing to be tracked further in the parent state.
2405 				 */
2406 				return 0;
2407 			if (i == first_idx)
2408 				break;
2409 			i = get_prev_insn_idx(st, i, &history);
2410 			if (i >= env->prog->len) {
2411 				/* This can happen if backtracking reached insn 0
2412 				 * and there are still reg_mask or stack_mask
2413 				 * to backtrack.
2414 				 * It means the backtracking missed the spot where
2415 				 * particular register was initialized with a constant.
2416 				 */
2417 				verbose(env, "BUG backtracking idx %d\n", i);
2418 				WARN_ONCE(1, "verifier backtracking bug");
2419 				return -EFAULT;
2420 			}
2421 		}
2422 		st = st->parent;
2423 		if (!st)
2424 			break;
2425 
2426 		new_marks = false;
2427 		func = st->frame[st->curframe];
2428 		bitmap_from_u64(mask, reg_mask);
2429 		for_each_set_bit(i, mask, 32) {
2430 			reg = &func->regs[i];
2431 			if (reg->type != SCALAR_VALUE) {
2432 				reg_mask &= ~(1u << i);
2433 				continue;
2434 			}
2435 			if (!reg->precise)
2436 				new_marks = true;
2437 			reg->precise = true;
2438 		}
2439 
2440 		bitmap_from_u64(mask, stack_mask);
2441 		for_each_set_bit(i, mask, 64) {
2442 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2443 				/* the sequence of instructions:
2444 				 * 2: (bf) r3 = r10
2445 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2446 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2447 				 * doesn't contain jmps. It's backtracked
2448 				 * as a single block.
2449 				 * During backtracking insn 3 is not recognized as
2450 				 * stack access, so at the end of backtracking
2451 				 * stack slot fp-8 is still marked in stack_mask.
2452 				 * However the parent state may not have accessed
2453 				 * fp-8 and it's "unallocated" stack space.
2454 				 * In such case fallback to conservative.
2455 				 */
2456 				mark_all_scalars_precise(env, st);
2457 				return 0;
2458 			}
2459 
2460 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461 				stack_mask &= ~(1ull << i);
2462 				continue;
2463 			}
2464 			reg = &func->stack[i].spilled_ptr;
2465 			if (reg->type != SCALAR_VALUE) {
2466 				stack_mask &= ~(1ull << i);
2467 				continue;
2468 			}
2469 			if (!reg->precise)
2470 				new_marks = true;
2471 			reg->precise = true;
2472 		}
2473 		if (env->log.level & BPF_LOG_LEVEL) {
2474 			print_verifier_state(env, func);
2475 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476 				new_marks ? "didn't have" : "already had",
2477 				reg_mask, stack_mask);
2478 		}
2479 
2480 		if (!reg_mask && !stack_mask)
2481 			break;
2482 		if (!new_marks)
2483 			break;
2484 
2485 		last_idx = st->last_insn_idx;
2486 		first_idx = st->first_insn_idx;
2487 	}
2488 	return 0;
2489 }
2490 
2491 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492 {
2493 	return __mark_chain_precision(env, regno, -1);
2494 }
2495 
2496 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497 {
2498 	return __mark_chain_precision(env, -1, spi);
2499 }
2500 
2501 static bool is_spillable_regtype(enum bpf_reg_type type)
2502 {
2503 	switch (type) {
2504 	case PTR_TO_MAP_VALUE:
2505 	case PTR_TO_MAP_VALUE_OR_NULL:
2506 	case PTR_TO_STACK:
2507 	case PTR_TO_CTX:
2508 	case PTR_TO_PACKET:
2509 	case PTR_TO_PACKET_META:
2510 	case PTR_TO_PACKET_END:
2511 	case PTR_TO_FLOW_KEYS:
2512 	case CONST_PTR_TO_MAP:
2513 	case PTR_TO_SOCKET:
2514 	case PTR_TO_SOCKET_OR_NULL:
2515 	case PTR_TO_SOCK_COMMON:
2516 	case PTR_TO_SOCK_COMMON_OR_NULL:
2517 	case PTR_TO_TCP_SOCK:
2518 	case PTR_TO_TCP_SOCK_OR_NULL:
2519 	case PTR_TO_XDP_SOCK:
2520 	case PTR_TO_BTF_ID:
2521 	case PTR_TO_BTF_ID_OR_NULL:
2522 	case PTR_TO_RDONLY_BUF:
2523 	case PTR_TO_RDONLY_BUF_OR_NULL:
2524 	case PTR_TO_RDWR_BUF:
2525 	case PTR_TO_RDWR_BUF_OR_NULL:
2526 	case PTR_TO_PERCPU_BTF_ID:
2527 	case PTR_TO_MEM:
2528 	case PTR_TO_MEM_OR_NULL:
2529 	case PTR_TO_FUNC:
2530 	case PTR_TO_MAP_KEY:
2531 		return true;
2532 	default:
2533 		return false;
2534 	}
2535 }
2536 
2537 /* Does this register contain a constant zero? */
2538 static bool register_is_null(struct bpf_reg_state *reg)
2539 {
2540 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541 }
2542 
2543 static bool register_is_const(struct bpf_reg_state *reg)
2544 {
2545 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546 }
2547 
2548 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549 {
2550 	return tnum_is_unknown(reg->var_off) &&
2551 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555 }
2556 
2557 static bool register_is_bounded(struct bpf_reg_state *reg)
2558 {
2559 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560 }
2561 
2562 static bool __is_pointer_value(bool allow_ptr_leaks,
2563 			       const struct bpf_reg_state *reg)
2564 {
2565 	if (allow_ptr_leaks)
2566 		return false;
2567 
2568 	return reg->type != SCALAR_VALUE;
2569 }
2570 
2571 static void save_register_state(struct bpf_func_state *state,
2572 				int spi, struct bpf_reg_state *reg)
2573 {
2574 	int i;
2575 
2576 	state->stack[spi].spilled_ptr = *reg;
2577 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578 
2579 	for (i = 0; i < BPF_REG_SIZE; i++)
2580 		state->stack[spi].slot_type[i] = STACK_SPILL;
2581 }
2582 
2583 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2584  * stack boundary and alignment are checked in check_mem_access()
2585  */
2586 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587 				       /* stack frame we're writing to */
2588 				       struct bpf_func_state *state,
2589 				       int off, int size, int value_regno,
2590 				       int insn_idx)
2591 {
2592 	struct bpf_func_state *cur; /* state of the current function */
2593 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2594 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2595 	struct bpf_reg_state *reg = NULL;
2596 
2597 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2598 	if (err)
2599 		return err;
2600 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601 	 * so it's aligned access and [off, off + size) are within stack limits
2602 	 */
2603 	if (!env->allow_ptr_leaks &&
2604 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2605 	    size != BPF_REG_SIZE) {
2606 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607 		return -EACCES;
2608 	}
2609 
2610 	cur = env->cur_state->frame[env->cur_state->curframe];
2611 	if (value_regno >= 0)
2612 		reg = &cur->regs[value_regno];
2613 	if (!env->bypass_spec_v4) {
2614 		bool sanitize = reg && is_spillable_regtype(reg->type);
2615 
2616 		for (i = 0; i < size; i++) {
2617 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2618 				sanitize = true;
2619 				break;
2620 			}
2621 		}
2622 
2623 		if (sanitize)
2624 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2625 	}
2626 
2627 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2628 	    !register_is_null(reg) && env->bpf_capable) {
2629 		if (dst_reg != BPF_REG_FP) {
2630 			/* The backtracking logic can only recognize explicit
2631 			 * stack slot address like [fp - 8]. Other spill of
2632 			 * scalar via different register has to be conservative.
2633 			 * Backtrack from here and mark all registers as precise
2634 			 * that contributed into 'reg' being a constant.
2635 			 */
2636 			err = mark_chain_precision(env, value_regno);
2637 			if (err)
2638 				return err;
2639 		}
2640 		save_register_state(state, spi, reg);
2641 	} else if (reg && is_spillable_regtype(reg->type)) {
2642 		/* register containing pointer is being spilled into stack */
2643 		if (size != BPF_REG_SIZE) {
2644 			verbose_linfo(env, insn_idx, "; ");
2645 			verbose(env, "invalid size of register spill\n");
2646 			return -EACCES;
2647 		}
2648 		if (state != cur && reg->type == PTR_TO_STACK) {
2649 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2650 			return -EINVAL;
2651 		}
2652 		save_register_state(state, spi, reg);
2653 	} else {
2654 		u8 type = STACK_MISC;
2655 
2656 		/* regular write of data into stack destroys any spilled ptr */
2657 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2658 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2659 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2660 			for (i = 0; i < BPF_REG_SIZE; i++)
2661 				state->stack[spi].slot_type[i] = STACK_MISC;
2662 
2663 		/* only mark the slot as written if all 8 bytes were written
2664 		 * otherwise read propagation may incorrectly stop too soon
2665 		 * when stack slots are partially written.
2666 		 * This heuristic means that read propagation will be
2667 		 * conservative, since it will add reg_live_read marks
2668 		 * to stack slots all the way to first state when programs
2669 		 * writes+reads less than 8 bytes
2670 		 */
2671 		if (size == BPF_REG_SIZE)
2672 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2673 
2674 		/* when we zero initialize stack slots mark them as such */
2675 		if (reg && register_is_null(reg)) {
2676 			/* backtracking doesn't work for STACK_ZERO yet. */
2677 			err = mark_chain_precision(env, value_regno);
2678 			if (err)
2679 				return err;
2680 			type = STACK_ZERO;
2681 		}
2682 
2683 		/* Mark slots affected by this stack write. */
2684 		for (i = 0; i < size; i++)
2685 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2686 				type;
2687 	}
2688 	return 0;
2689 }
2690 
2691 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2692  * known to contain a variable offset.
2693  * This function checks whether the write is permitted and conservatively
2694  * tracks the effects of the write, considering that each stack slot in the
2695  * dynamic range is potentially written to.
2696  *
2697  * 'off' includes 'regno->off'.
2698  * 'value_regno' can be -1, meaning that an unknown value is being written to
2699  * the stack.
2700  *
2701  * Spilled pointers in range are not marked as written because we don't know
2702  * what's going to be actually written. This means that read propagation for
2703  * future reads cannot be terminated by this write.
2704  *
2705  * For privileged programs, uninitialized stack slots are considered
2706  * initialized by this write (even though we don't know exactly what offsets
2707  * are going to be written to). The idea is that we don't want the verifier to
2708  * reject future reads that access slots written to through variable offsets.
2709  */
2710 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2711 				     /* func where register points to */
2712 				     struct bpf_func_state *state,
2713 				     int ptr_regno, int off, int size,
2714 				     int value_regno, int insn_idx)
2715 {
2716 	struct bpf_func_state *cur; /* state of the current function */
2717 	int min_off, max_off;
2718 	int i, err;
2719 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2720 	bool writing_zero = false;
2721 	/* set if the fact that we're writing a zero is used to let any
2722 	 * stack slots remain STACK_ZERO
2723 	 */
2724 	bool zero_used = false;
2725 
2726 	cur = env->cur_state->frame[env->cur_state->curframe];
2727 	ptr_reg = &cur->regs[ptr_regno];
2728 	min_off = ptr_reg->smin_value + off;
2729 	max_off = ptr_reg->smax_value + off + size;
2730 	if (value_regno >= 0)
2731 		value_reg = &cur->regs[value_regno];
2732 	if (value_reg && register_is_null(value_reg))
2733 		writing_zero = true;
2734 
2735 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2736 	if (err)
2737 		return err;
2738 
2739 
2740 	/* Variable offset writes destroy any spilled pointers in range. */
2741 	for (i = min_off; i < max_off; i++) {
2742 		u8 new_type, *stype;
2743 		int slot, spi;
2744 
2745 		slot = -i - 1;
2746 		spi = slot / BPF_REG_SIZE;
2747 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2748 
2749 		if (!env->allow_ptr_leaks
2750 				&& *stype != NOT_INIT
2751 				&& *stype != SCALAR_VALUE) {
2752 			/* Reject the write if there's are spilled pointers in
2753 			 * range. If we didn't reject here, the ptr status
2754 			 * would be erased below (even though not all slots are
2755 			 * actually overwritten), possibly opening the door to
2756 			 * leaks.
2757 			 */
2758 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2759 				insn_idx, i);
2760 			return -EINVAL;
2761 		}
2762 
2763 		/* Erase all spilled pointers. */
2764 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2765 
2766 		/* Update the slot type. */
2767 		new_type = STACK_MISC;
2768 		if (writing_zero && *stype == STACK_ZERO) {
2769 			new_type = STACK_ZERO;
2770 			zero_used = true;
2771 		}
2772 		/* If the slot is STACK_INVALID, we check whether it's OK to
2773 		 * pretend that it will be initialized by this write. The slot
2774 		 * might not actually be written to, and so if we mark it as
2775 		 * initialized future reads might leak uninitialized memory.
2776 		 * For privileged programs, we will accept such reads to slots
2777 		 * that may or may not be written because, if we're reject
2778 		 * them, the error would be too confusing.
2779 		 */
2780 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2781 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2782 					insn_idx, i);
2783 			return -EINVAL;
2784 		}
2785 		*stype = new_type;
2786 	}
2787 	if (zero_used) {
2788 		/* backtracking doesn't work for STACK_ZERO yet. */
2789 		err = mark_chain_precision(env, value_regno);
2790 		if (err)
2791 			return err;
2792 	}
2793 	return 0;
2794 }
2795 
2796 /* When register 'dst_regno' is assigned some values from stack[min_off,
2797  * max_off), we set the register's type according to the types of the
2798  * respective stack slots. If all the stack values are known to be zeros, then
2799  * so is the destination reg. Otherwise, the register is considered to be
2800  * SCALAR. This function does not deal with register filling; the caller must
2801  * ensure that all spilled registers in the stack range have been marked as
2802  * read.
2803  */
2804 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2805 				/* func where src register points to */
2806 				struct bpf_func_state *ptr_state,
2807 				int min_off, int max_off, int dst_regno)
2808 {
2809 	struct bpf_verifier_state *vstate = env->cur_state;
2810 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2811 	int i, slot, spi;
2812 	u8 *stype;
2813 	int zeros = 0;
2814 
2815 	for (i = min_off; i < max_off; i++) {
2816 		slot = -i - 1;
2817 		spi = slot / BPF_REG_SIZE;
2818 		stype = ptr_state->stack[spi].slot_type;
2819 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2820 			break;
2821 		zeros++;
2822 	}
2823 	if (zeros == max_off - min_off) {
2824 		/* any access_size read into register is zero extended,
2825 		 * so the whole register == const_zero
2826 		 */
2827 		__mark_reg_const_zero(&state->regs[dst_regno]);
2828 		/* backtracking doesn't support STACK_ZERO yet,
2829 		 * so mark it precise here, so that later
2830 		 * backtracking can stop here.
2831 		 * Backtracking may not need this if this register
2832 		 * doesn't participate in pointer adjustment.
2833 		 * Forward propagation of precise flag is not
2834 		 * necessary either. This mark is only to stop
2835 		 * backtracking. Any register that contributed
2836 		 * to const 0 was marked precise before spill.
2837 		 */
2838 		state->regs[dst_regno].precise = true;
2839 	} else {
2840 		/* have read misc data from the stack */
2841 		mark_reg_unknown(env, state->regs, dst_regno);
2842 	}
2843 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2844 }
2845 
2846 /* Read the stack at 'off' and put the results into the register indicated by
2847  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2848  * spilled reg.
2849  *
2850  * 'dst_regno' can be -1, meaning that the read value is not going to a
2851  * register.
2852  *
2853  * The access is assumed to be within the current stack bounds.
2854  */
2855 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2856 				      /* func where src register points to */
2857 				      struct bpf_func_state *reg_state,
2858 				      int off, int size, int dst_regno)
2859 {
2860 	struct bpf_verifier_state *vstate = env->cur_state;
2861 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2862 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2863 	struct bpf_reg_state *reg;
2864 	u8 *stype;
2865 
2866 	stype = reg_state->stack[spi].slot_type;
2867 	reg = &reg_state->stack[spi].spilled_ptr;
2868 
2869 	if (stype[0] == STACK_SPILL) {
2870 		if (size != BPF_REG_SIZE) {
2871 			if (reg->type != SCALAR_VALUE) {
2872 				verbose_linfo(env, env->insn_idx, "; ");
2873 				verbose(env, "invalid size of register fill\n");
2874 				return -EACCES;
2875 			}
2876 			if (dst_regno >= 0) {
2877 				mark_reg_unknown(env, state->regs, dst_regno);
2878 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2879 			}
2880 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2881 			return 0;
2882 		}
2883 		for (i = 1; i < BPF_REG_SIZE; i++) {
2884 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2885 				verbose(env, "corrupted spill memory\n");
2886 				return -EACCES;
2887 			}
2888 		}
2889 
2890 		if (dst_regno >= 0) {
2891 			/* restore register state from stack */
2892 			state->regs[dst_regno] = *reg;
2893 			/* mark reg as written since spilled pointer state likely
2894 			 * has its liveness marks cleared by is_state_visited()
2895 			 * which resets stack/reg liveness for state transitions
2896 			 */
2897 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2898 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2899 			/* If dst_regno==-1, the caller is asking us whether
2900 			 * it is acceptable to use this value as a SCALAR_VALUE
2901 			 * (e.g. for XADD).
2902 			 * We must not allow unprivileged callers to do that
2903 			 * with spilled pointers.
2904 			 */
2905 			verbose(env, "leaking pointer from stack off %d\n",
2906 				off);
2907 			return -EACCES;
2908 		}
2909 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2910 	} else {
2911 		u8 type;
2912 
2913 		for (i = 0; i < size; i++) {
2914 			type = stype[(slot - i) % BPF_REG_SIZE];
2915 			if (type == STACK_MISC)
2916 				continue;
2917 			if (type == STACK_ZERO)
2918 				continue;
2919 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2920 				off, i, size);
2921 			return -EACCES;
2922 		}
2923 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2924 		if (dst_regno >= 0)
2925 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2926 	}
2927 	return 0;
2928 }
2929 
2930 enum stack_access_src {
2931 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2932 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2933 };
2934 
2935 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2936 					 int regno, int off, int access_size,
2937 					 bool zero_size_allowed,
2938 					 enum stack_access_src type,
2939 					 struct bpf_call_arg_meta *meta);
2940 
2941 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2942 {
2943 	return cur_regs(env) + regno;
2944 }
2945 
2946 /* Read the stack at 'ptr_regno + off' and put the result into the register
2947  * 'dst_regno'.
2948  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2949  * but not its variable offset.
2950  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2951  *
2952  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2953  * filling registers (i.e. reads of spilled register cannot be detected when
2954  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2955  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2956  * offset; for a fixed offset check_stack_read_fixed_off should be used
2957  * instead.
2958  */
2959 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2960 				    int ptr_regno, int off, int size, int dst_regno)
2961 {
2962 	/* The state of the source register. */
2963 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2964 	struct bpf_func_state *ptr_state = func(env, reg);
2965 	int err;
2966 	int min_off, max_off;
2967 
2968 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2969 	 */
2970 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2971 					    false, ACCESS_DIRECT, NULL);
2972 	if (err)
2973 		return err;
2974 
2975 	min_off = reg->smin_value + off;
2976 	max_off = reg->smax_value + off;
2977 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2978 	return 0;
2979 }
2980 
2981 /* check_stack_read dispatches to check_stack_read_fixed_off or
2982  * check_stack_read_var_off.
2983  *
2984  * The caller must ensure that the offset falls within the allocated stack
2985  * bounds.
2986  *
2987  * 'dst_regno' is a register which will receive the value from the stack. It
2988  * can be -1, meaning that the read value is not going to a register.
2989  */
2990 static int check_stack_read(struct bpf_verifier_env *env,
2991 			    int ptr_regno, int off, int size,
2992 			    int dst_regno)
2993 {
2994 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2995 	struct bpf_func_state *state = func(env, reg);
2996 	int err;
2997 	/* Some accesses are only permitted with a static offset. */
2998 	bool var_off = !tnum_is_const(reg->var_off);
2999 
3000 	/* The offset is required to be static when reads don't go to a
3001 	 * register, in order to not leak pointers (see
3002 	 * check_stack_read_fixed_off).
3003 	 */
3004 	if (dst_regno < 0 && var_off) {
3005 		char tn_buf[48];
3006 
3007 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3008 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3009 			tn_buf, off, size);
3010 		return -EACCES;
3011 	}
3012 	/* Variable offset is prohibited for unprivileged mode for simplicity
3013 	 * since it requires corresponding support in Spectre masking for stack
3014 	 * ALU. See also retrieve_ptr_limit().
3015 	 */
3016 	if (!env->bypass_spec_v1 && var_off) {
3017 		char tn_buf[48];
3018 
3019 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3020 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3021 				ptr_regno, tn_buf);
3022 		return -EACCES;
3023 	}
3024 
3025 	if (!var_off) {
3026 		off += reg->var_off.value;
3027 		err = check_stack_read_fixed_off(env, state, off, size,
3028 						 dst_regno);
3029 	} else {
3030 		/* Variable offset stack reads need more conservative handling
3031 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3032 		 * branch.
3033 		 */
3034 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3035 					       dst_regno);
3036 	}
3037 	return err;
3038 }
3039 
3040 
3041 /* check_stack_write dispatches to check_stack_write_fixed_off or
3042  * check_stack_write_var_off.
3043  *
3044  * 'ptr_regno' is the register used as a pointer into the stack.
3045  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3046  * 'value_regno' is the register whose value we're writing to the stack. It can
3047  * be -1, meaning that we're not writing from a register.
3048  *
3049  * The caller must ensure that the offset falls within the maximum stack size.
3050  */
3051 static int check_stack_write(struct bpf_verifier_env *env,
3052 			     int ptr_regno, int off, int size,
3053 			     int value_regno, int insn_idx)
3054 {
3055 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3056 	struct bpf_func_state *state = func(env, reg);
3057 	int err;
3058 
3059 	if (tnum_is_const(reg->var_off)) {
3060 		off += reg->var_off.value;
3061 		err = check_stack_write_fixed_off(env, state, off, size,
3062 						  value_regno, insn_idx);
3063 	} else {
3064 		/* Variable offset stack reads need more conservative handling
3065 		 * than fixed offset ones.
3066 		 */
3067 		err = check_stack_write_var_off(env, state,
3068 						ptr_regno, off, size,
3069 						value_regno, insn_idx);
3070 	}
3071 	return err;
3072 }
3073 
3074 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3075 				 int off, int size, enum bpf_access_type type)
3076 {
3077 	struct bpf_reg_state *regs = cur_regs(env);
3078 	struct bpf_map *map = regs[regno].map_ptr;
3079 	u32 cap = bpf_map_flags_to_cap(map);
3080 
3081 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3082 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3083 			map->value_size, off, size);
3084 		return -EACCES;
3085 	}
3086 
3087 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3088 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3089 			map->value_size, off, size);
3090 		return -EACCES;
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3097 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3098 			      int off, int size, u32 mem_size,
3099 			      bool zero_size_allowed)
3100 {
3101 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3102 	struct bpf_reg_state *reg;
3103 
3104 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3105 		return 0;
3106 
3107 	reg = &cur_regs(env)[regno];
3108 	switch (reg->type) {
3109 	case PTR_TO_MAP_KEY:
3110 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3111 			mem_size, off, size);
3112 		break;
3113 	case PTR_TO_MAP_VALUE:
3114 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3115 			mem_size, off, size);
3116 		break;
3117 	case PTR_TO_PACKET:
3118 	case PTR_TO_PACKET_META:
3119 	case PTR_TO_PACKET_END:
3120 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3121 			off, size, regno, reg->id, off, mem_size);
3122 		break;
3123 	case PTR_TO_MEM:
3124 	default:
3125 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3126 			mem_size, off, size);
3127 	}
3128 
3129 	return -EACCES;
3130 }
3131 
3132 /* check read/write into a memory region with possible variable offset */
3133 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3134 				   int off, int size, u32 mem_size,
3135 				   bool zero_size_allowed)
3136 {
3137 	struct bpf_verifier_state *vstate = env->cur_state;
3138 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3139 	struct bpf_reg_state *reg = &state->regs[regno];
3140 	int err;
3141 
3142 	/* We may have adjusted the register pointing to memory region, so we
3143 	 * need to try adding each of min_value and max_value to off
3144 	 * to make sure our theoretical access will be safe.
3145 	 */
3146 	if (env->log.level & BPF_LOG_LEVEL)
3147 		print_verifier_state(env, state);
3148 
3149 	/* The minimum value is only important with signed
3150 	 * comparisons where we can't assume the floor of a
3151 	 * value is 0.  If we are using signed variables for our
3152 	 * index'es we need to make sure that whatever we use
3153 	 * will have a set floor within our range.
3154 	 */
3155 	if (reg->smin_value < 0 &&
3156 	    (reg->smin_value == S64_MIN ||
3157 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3158 	      reg->smin_value + off < 0)) {
3159 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3160 			regno);
3161 		return -EACCES;
3162 	}
3163 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3164 				 mem_size, zero_size_allowed);
3165 	if (err) {
3166 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3167 			regno);
3168 		return err;
3169 	}
3170 
3171 	/* If we haven't set a max value then we need to bail since we can't be
3172 	 * sure we won't do bad things.
3173 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3174 	 */
3175 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3176 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3177 			regno);
3178 		return -EACCES;
3179 	}
3180 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3181 				 mem_size, zero_size_allowed);
3182 	if (err) {
3183 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3184 			regno);
3185 		return err;
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 /* check read/write into a map element with possible variable offset */
3192 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3193 			    int off, int size, bool zero_size_allowed)
3194 {
3195 	struct bpf_verifier_state *vstate = env->cur_state;
3196 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3197 	struct bpf_reg_state *reg = &state->regs[regno];
3198 	struct bpf_map *map = reg->map_ptr;
3199 	int err;
3200 
3201 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3202 				      zero_size_allowed);
3203 	if (err)
3204 		return err;
3205 
3206 	if (map_value_has_spin_lock(map)) {
3207 		u32 lock = map->spin_lock_off;
3208 
3209 		/* if any part of struct bpf_spin_lock can be touched by
3210 		 * load/store reject this program.
3211 		 * To check that [x1, x2) overlaps with [y1, y2)
3212 		 * it is sufficient to check x1 < y2 && y1 < x2.
3213 		 */
3214 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3215 		     lock < reg->umax_value + off + size) {
3216 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3217 			return -EACCES;
3218 		}
3219 	}
3220 	return err;
3221 }
3222 
3223 #define MAX_PACKET_OFF 0xffff
3224 
3225 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3226 {
3227 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3228 }
3229 
3230 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3231 				       const struct bpf_call_arg_meta *meta,
3232 				       enum bpf_access_type t)
3233 {
3234 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3235 
3236 	switch (prog_type) {
3237 	/* Program types only with direct read access go here! */
3238 	case BPF_PROG_TYPE_LWT_IN:
3239 	case BPF_PROG_TYPE_LWT_OUT:
3240 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3241 	case BPF_PROG_TYPE_SK_REUSEPORT:
3242 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3243 	case BPF_PROG_TYPE_CGROUP_SKB:
3244 		if (t == BPF_WRITE)
3245 			return false;
3246 		fallthrough;
3247 
3248 	/* Program types with direct read + write access go here! */
3249 	case BPF_PROG_TYPE_SCHED_CLS:
3250 	case BPF_PROG_TYPE_SCHED_ACT:
3251 	case BPF_PROG_TYPE_XDP:
3252 	case BPF_PROG_TYPE_LWT_XMIT:
3253 	case BPF_PROG_TYPE_SK_SKB:
3254 	case BPF_PROG_TYPE_SK_MSG:
3255 		if (meta)
3256 			return meta->pkt_access;
3257 
3258 		env->seen_direct_write = true;
3259 		return true;
3260 
3261 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3262 		if (t == BPF_WRITE)
3263 			env->seen_direct_write = true;
3264 
3265 		return true;
3266 
3267 	default:
3268 		return false;
3269 	}
3270 }
3271 
3272 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3273 			       int size, bool zero_size_allowed)
3274 {
3275 	struct bpf_reg_state *regs = cur_regs(env);
3276 	struct bpf_reg_state *reg = &regs[regno];
3277 	int err;
3278 
3279 	/* We may have added a variable offset to the packet pointer; but any
3280 	 * reg->range we have comes after that.  We are only checking the fixed
3281 	 * offset.
3282 	 */
3283 
3284 	/* We don't allow negative numbers, because we aren't tracking enough
3285 	 * detail to prove they're safe.
3286 	 */
3287 	if (reg->smin_value < 0) {
3288 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3289 			regno);
3290 		return -EACCES;
3291 	}
3292 
3293 	err = reg->range < 0 ? -EINVAL :
3294 	      __check_mem_access(env, regno, off, size, reg->range,
3295 				 zero_size_allowed);
3296 	if (err) {
3297 		verbose(env, "R%d offset is outside of the packet\n", regno);
3298 		return err;
3299 	}
3300 
3301 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3302 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3303 	 * otherwise find_good_pkt_pointers would have refused to set range info
3304 	 * that __check_mem_access would have rejected this pkt access.
3305 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3306 	 */
3307 	env->prog->aux->max_pkt_offset =
3308 		max_t(u32, env->prog->aux->max_pkt_offset,
3309 		      off + reg->umax_value + size - 1);
3310 
3311 	return err;
3312 }
3313 
3314 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3315 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3316 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3317 			    struct btf **btf, u32 *btf_id)
3318 {
3319 	struct bpf_insn_access_aux info = {
3320 		.reg_type = *reg_type,
3321 		.log = &env->log,
3322 	};
3323 
3324 	if (env->ops->is_valid_access &&
3325 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3326 		/* A non zero info.ctx_field_size indicates that this field is a
3327 		 * candidate for later verifier transformation to load the whole
3328 		 * field and then apply a mask when accessed with a narrower
3329 		 * access than actual ctx access size. A zero info.ctx_field_size
3330 		 * will only allow for whole field access and rejects any other
3331 		 * type of narrower access.
3332 		 */
3333 		*reg_type = info.reg_type;
3334 
3335 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3336 			*btf = info.btf;
3337 			*btf_id = info.btf_id;
3338 		} else {
3339 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3340 		}
3341 		/* remember the offset of last byte accessed in ctx */
3342 		if (env->prog->aux->max_ctx_offset < off + size)
3343 			env->prog->aux->max_ctx_offset = off + size;
3344 		return 0;
3345 	}
3346 
3347 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3348 	return -EACCES;
3349 }
3350 
3351 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3352 				  int size)
3353 {
3354 	if (size < 0 || off < 0 ||
3355 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3356 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3357 			off, size);
3358 		return -EACCES;
3359 	}
3360 	return 0;
3361 }
3362 
3363 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3364 			     u32 regno, int off, int size,
3365 			     enum bpf_access_type t)
3366 {
3367 	struct bpf_reg_state *regs = cur_regs(env);
3368 	struct bpf_reg_state *reg = &regs[regno];
3369 	struct bpf_insn_access_aux info = {};
3370 	bool valid;
3371 
3372 	if (reg->smin_value < 0) {
3373 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3374 			regno);
3375 		return -EACCES;
3376 	}
3377 
3378 	switch (reg->type) {
3379 	case PTR_TO_SOCK_COMMON:
3380 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3381 		break;
3382 	case PTR_TO_SOCKET:
3383 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3384 		break;
3385 	case PTR_TO_TCP_SOCK:
3386 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3387 		break;
3388 	case PTR_TO_XDP_SOCK:
3389 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3390 		break;
3391 	default:
3392 		valid = false;
3393 	}
3394 
3395 
3396 	if (valid) {
3397 		env->insn_aux_data[insn_idx].ctx_field_size =
3398 			info.ctx_field_size;
3399 		return 0;
3400 	}
3401 
3402 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3403 		regno, reg_type_str[reg->type], off, size);
3404 
3405 	return -EACCES;
3406 }
3407 
3408 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3409 {
3410 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3411 }
3412 
3413 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3414 {
3415 	const struct bpf_reg_state *reg = reg_state(env, regno);
3416 
3417 	return reg->type == PTR_TO_CTX;
3418 }
3419 
3420 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3421 {
3422 	const struct bpf_reg_state *reg = reg_state(env, regno);
3423 
3424 	return type_is_sk_pointer(reg->type);
3425 }
3426 
3427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3428 {
3429 	const struct bpf_reg_state *reg = reg_state(env, regno);
3430 
3431 	return type_is_pkt_pointer(reg->type);
3432 }
3433 
3434 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3435 {
3436 	const struct bpf_reg_state *reg = reg_state(env, regno);
3437 
3438 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3439 	return reg->type == PTR_TO_FLOW_KEYS;
3440 }
3441 
3442 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3443 				   const struct bpf_reg_state *reg,
3444 				   int off, int size, bool strict)
3445 {
3446 	struct tnum reg_off;
3447 	int ip_align;
3448 
3449 	/* Byte size accesses are always allowed. */
3450 	if (!strict || size == 1)
3451 		return 0;
3452 
3453 	/* For platforms that do not have a Kconfig enabling
3454 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3455 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3456 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3457 	 * to this code only in strict mode where we want to emulate
3458 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3459 	 * unconditional IP align value of '2'.
3460 	 */
3461 	ip_align = 2;
3462 
3463 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3464 	if (!tnum_is_aligned(reg_off, size)) {
3465 		char tn_buf[48];
3466 
3467 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3468 		verbose(env,
3469 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3470 			ip_align, tn_buf, reg->off, off, size);
3471 		return -EACCES;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3478 				       const struct bpf_reg_state *reg,
3479 				       const char *pointer_desc,
3480 				       int off, int size, bool strict)
3481 {
3482 	struct tnum reg_off;
3483 
3484 	/* Byte size accesses are always allowed. */
3485 	if (!strict || size == 1)
3486 		return 0;
3487 
3488 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3489 	if (!tnum_is_aligned(reg_off, size)) {
3490 		char tn_buf[48];
3491 
3492 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3493 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3494 			pointer_desc, tn_buf, reg->off, off, size);
3495 		return -EACCES;
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static int check_ptr_alignment(struct bpf_verifier_env *env,
3502 			       const struct bpf_reg_state *reg, int off,
3503 			       int size, bool strict_alignment_once)
3504 {
3505 	bool strict = env->strict_alignment || strict_alignment_once;
3506 	const char *pointer_desc = "";
3507 
3508 	switch (reg->type) {
3509 	case PTR_TO_PACKET:
3510 	case PTR_TO_PACKET_META:
3511 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3512 		 * right in front, treat it the very same way.
3513 		 */
3514 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3515 	case PTR_TO_FLOW_KEYS:
3516 		pointer_desc = "flow keys ";
3517 		break;
3518 	case PTR_TO_MAP_KEY:
3519 		pointer_desc = "key ";
3520 		break;
3521 	case PTR_TO_MAP_VALUE:
3522 		pointer_desc = "value ";
3523 		break;
3524 	case PTR_TO_CTX:
3525 		pointer_desc = "context ";
3526 		break;
3527 	case PTR_TO_STACK:
3528 		pointer_desc = "stack ";
3529 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3530 		 * and check_stack_read_fixed_off() relies on stack accesses being
3531 		 * aligned.
3532 		 */
3533 		strict = true;
3534 		break;
3535 	case PTR_TO_SOCKET:
3536 		pointer_desc = "sock ";
3537 		break;
3538 	case PTR_TO_SOCK_COMMON:
3539 		pointer_desc = "sock_common ";
3540 		break;
3541 	case PTR_TO_TCP_SOCK:
3542 		pointer_desc = "tcp_sock ";
3543 		break;
3544 	case PTR_TO_XDP_SOCK:
3545 		pointer_desc = "xdp_sock ";
3546 		break;
3547 	default:
3548 		break;
3549 	}
3550 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3551 					   strict);
3552 }
3553 
3554 static int update_stack_depth(struct bpf_verifier_env *env,
3555 			      const struct bpf_func_state *func,
3556 			      int off)
3557 {
3558 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3559 
3560 	if (stack >= -off)
3561 		return 0;
3562 
3563 	/* update known max for given subprogram */
3564 	env->subprog_info[func->subprogno].stack_depth = -off;
3565 	return 0;
3566 }
3567 
3568 /* starting from main bpf function walk all instructions of the function
3569  * and recursively walk all callees that given function can call.
3570  * Ignore jump and exit insns.
3571  * Since recursion is prevented by check_cfg() this algorithm
3572  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3573  */
3574 static int check_max_stack_depth(struct bpf_verifier_env *env)
3575 {
3576 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3577 	struct bpf_subprog_info *subprog = env->subprog_info;
3578 	struct bpf_insn *insn = env->prog->insnsi;
3579 	bool tail_call_reachable = false;
3580 	int ret_insn[MAX_CALL_FRAMES];
3581 	int ret_prog[MAX_CALL_FRAMES];
3582 	int j;
3583 
3584 process_func:
3585 	/* protect against potential stack overflow that might happen when
3586 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3587 	 * depth for such case down to 256 so that the worst case scenario
3588 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3589 	 * 8k).
3590 	 *
3591 	 * To get the idea what might happen, see an example:
3592 	 * func1 -> sub rsp, 128
3593 	 *  subfunc1 -> sub rsp, 256
3594 	 *  tailcall1 -> add rsp, 256
3595 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3596 	 *   subfunc2 -> sub rsp, 64
3597 	 *   subfunc22 -> sub rsp, 128
3598 	 *   tailcall2 -> add rsp, 128
3599 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3600 	 *
3601 	 * tailcall will unwind the current stack frame but it will not get rid
3602 	 * of caller's stack as shown on the example above.
3603 	 */
3604 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3605 		verbose(env,
3606 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3607 			depth);
3608 		return -EACCES;
3609 	}
3610 	/* round up to 32-bytes, since this is granularity
3611 	 * of interpreter stack size
3612 	 */
3613 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3614 	if (depth > MAX_BPF_STACK) {
3615 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3616 			frame + 1, depth);
3617 		return -EACCES;
3618 	}
3619 continue_func:
3620 	subprog_end = subprog[idx + 1].start;
3621 	for (; i < subprog_end; i++) {
3622 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3623 			continue;
3624 		/* remember insn and function to return to */
3625 		ret_insn[frame] = i + 1;
3626 		ret_prog[frame] = idx;
3627 
3628 		/* find the callee */
3629 		i = i + insn[i].imm + 1;
3630 		idx = find_subprog(env, i);
3631 		if (idx < 0) {
3632 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3633 				  i);
3634 			return -EFAULT;
3635 		}
3636 
3637 		if (subprog[idx].has_tail_call)
3638 			tail_call_reachable = true;
3639 
3640 		frame++;
3641 		if (frame >= MAX_CALL_FRAMES) {
3642 			verbose(env, "the call stack of %d frames is too deep !\n",
3643 				frame);
3644 			return -E2BIG;
3645 		}
3646 		goto process_func;
3647 	}
3648 	/* if tail call got detected across bpf2bpf calls then mark each of the
3649 	 * currently present subprog frames as tail call reachable subprogs;
3650 	 * this info will be utilized by JIT so that we will be preserving the
3651 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3652 	 */
3653 	if (tail_call_reachable)
3654 		for (j = 0; j < frame; j++)
3655 			subprog[ret_prog[j]].tail_call_reachable = true;
3656 	if (subprog[0].tail_call_reachable)
3657 		env->prog->aux->tail_call_reachable = true;
3658 
3659 	/* end of for() loop means the last insn of the 'subprog'
3660 	 * was reached. Doesn't matter whether it was JA or EXIT
3661 	 */
3662 	if (frame == 0)
3663 		return 0;
3664 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3665 	frame--;
3666 	i = ret_insn[frame];
3667 	idx = ret_prog[frame];
3668 	goto continue_func;
3669 }
3670 
3671 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3672 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3673 				  const struct bpf_insn *insn, int idx)
3674 {
3675 	int start = idx + insn->imm + 1, subprog;
3676 
3677 	subprog = find_subprog(env, start);
3678 	if (subprog < 0) {
3679 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3680 			  start);
3681 		return -EFAULT;
3682 	}
3683 	return env->subprog_info[subprog].stack_depth;
3684 }
3685 #endif
3686 
3687 int check_ctx_reg(struct bpf_verifier_env *env,
3688 		  const struct bpf_reg_state *reg, int regno)
3689 {
3690 	/* Access to ctx or passing it to a helper is only allowed in
3691 	 * its original, unmodified form.
3692 	 */
3693 
3694 	if (reg->off) {
3695 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3696 			regno, reg->off);
3697 		return -EACCES;
3698 	}
3699 
3700 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3701 		char tn_buf[48];
3702 
3703 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3704 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3705 		return -EACCES;
3706 	}
3707 
3708 	return 0;
3709 }
3710 
3711 static int __check_buffer_access(struct bpf_verifier_env *env,
3712 				 const char *buf_info,
3713 				 const struct bpf_reg_state *reg,
3714 				 int regno, int off, int size)
3715 {
3716 	if (off < 0) {
3717 		verbose(env,
3718 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3719 			regno, buf_info, off, size);
3720 		return -EACCES;
3721 	}
3722 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723 		char tn_buf[48];
3724 
3725 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726 		verbose(env,
3727 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3728 			regno, off, tn_buf);
3729 		return -EACCES;
3730 	}
3731 
3732 	return 0;
3733 }
3734 
3735 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3736 				  const struct bpf_reg_state *reg,
3737 				  int regno, int off, int size)
3738 {
3739 	int err;
3740 
3741 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3742 	if (err)
3743 		return err;
3744 
3745 	if (off + size > env->prog->aux->max_tp_access)
3746 		env->prog->aux->max_tp_access = off + size;
3747 
3748 	return 0;
3749 }
3750 
3751 static int check_buffer_access(struct bpf_verifier_env *env,
3752 			       const struct bpf_reg_state *reg,
3753 			       int regno, int off, int size,
3754 			       bool zero_size_allowed,
3755 			       const char *buf_info,
3756 			       u32 *max_access)
3757 {
3758 	int err;
3759 
3760 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3761 	if (err)
3762 		return err;
3763 
3764 	if (off + size > *max_access)
3765 		*max_access = off + size;
3766 
3767 	return 0;
3768 }
3769 
3770 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3771 static void zext_32_to_64(struct bpf_reg_state *reg)
3772 {
3773 	reg->var_off = tnum_subreg(reg->var_off);
3774 	__reg_assign_32_into_64(reg);
3775 }
3776 
3777 /* truncate register to smaller size (in bytes)
3778  * must be called with size < BPF_REG_SIZE
3779  */
3780 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3781 {
3782 	u64 mask;
3783 
3784 	/* clear high bits in bit representation */
3785 	reg->var_off = tnum_cast(reg->var_off, size);
3786 
3787 	/* fix arithmetic bounds */
3788 	mask = ((u64)1 << (size * 8)) - 1;
3789 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3790 		reg->umin_value &= mask;
3791 		reg->umax_value &= mask;
3792 	} else {
3793 		reg->umin_value = 0;
3794 		reg->umax_value = mask;
3795 	}
3796 	reg->smin_value = reg->umin_value;
3797 	reg->smax_value = reg->umax_value;
3798 
3799 	/* If size is smaller than 32bit register the 32bit register
3800 	 * values are also truncated so we push 64-bit bounds into
3801 	 * 32-bit bounds. Above were truncated < 32-bits already.
3802 	 */
3803 	if (size >= 4)
3804 		return;
3805 	__reg_combine_64_into_32(reg);
3806 }
3807 
3808 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3809 {
3810 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3811 }
3812 
3813 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3814 {
3815 	void *ptr;
3816 	u64 addr;
3817 	int err;
3818 
3819 	err = map->ops->map_direct_value_addr(map, &addr, off);
3820 	if (err)
3821 		return err;
3822 	ptr = (void *)(long)addr + off;
3823 
3824 	switch (size) {
3825 	case sizeof(u8):
3826 		*val = (u64)*(u8 *)ptr;
3827 		break;
3828 	case sizeof(u16):
3829 		*val = (u64)*(u16 *)ptr;
3830 		break;
3831 	case sizeof(u32):
3832 		*val = (u64)*(u32 *)ptr;
3833 		break;
3834 	case sizeof(u64):
3835 		*val = *(u64 *)ptr;
3836 		break;
3837 	default:
3838 		return -EINVAL;
3839 	}
3840 	return 0;
3841 }
3842 
3843 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3844 				   struct bpf_reg_state *regs,
3845 				   int regno, int off, int size,
3846 				   enum bpf_access_type atype,
3847 				   int value_regno)
3848 {
3849 	struct bpf_reg_state *reg = regs + regno;
3850 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3851 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3852 	u32 btf_id;
3853 	int ret;
3854 
3855 	if (off < 0) {
3856 		verbose(env,
3857 			"R%d is ptr_%s invalid negative access: off=%d\n",
3858 			regno, tname, off);
3859 		return -EACCES;
3860 	}
3861 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3862 		char tn_buf[48];
3863 
3864 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3865 		verbose(env,
3866 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3867 			regno, tname, off, tn_buf);
3868 		return -EACCES;
3869 	}
3870 
3871 	if (env->ops->btf_struct_access) {
3872 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3873 						  off, size, atype, &btf_id);
3874 	} else {
3875 		if (atype != BPF_READ) {
3876 			verbose(env, "only read is supported\n");
3877 			return -EACCES;
3878 		}
3879 
3880 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3881 					atype, &btf_id);
3882 	}
3883 
3884 	if (ret < 0)
3885 		return ret;
3886 
3887 	if (atype == BPF_READ && value_regno >= 0)
3888 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3889 
3890 	return 0;
3891 }
3892 
3893 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3894 				   struct bpf_reg_state *regs,
3895 				   int regno, int off, int size,
3896 				   enum bpf_access_type atype,
3897 				   int value_regno)
3898 {
3899 	struct bpf_reg_state *reg = regs + regno;
3900 	struct bpf_map *map = reg->map_ptr;
3901 	const struct btf_type *t;
3902 	const char *tname;
3903 	u32 btf_id;
3904 	int ret;
3905 
3906 	if (!btf_vmlinux) {
3907 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3908 		return -ENOTSUPP;
3909 	}
3910 
3911 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3912 		verbose(env, "map_ptr access not supported for map type %d\n",
3913 			map->map_type);
3914 		return -ENOTSUPP;
3915 	}
3916 
3917 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3918 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3919 
3920 	if (!env->allow_ptr_to_map_access) {
3921 		verbose(env,
3922 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3923 			tname);
3924 		return -EPERM;
3925 	}
3926 
3927 	if (off < 0) {
3928 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3929 			regno, tname, off);
3930 		return -EACCES;
3931 	}
3932 
3933 	if (atype != BPF_READ) {
3934 		verbose(env, "only read from %s is supported\n", tname);
3935 		return -EACCES;
3936 	}
3937 
3938 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3939 	if (ret < 0)
3940 		return ret;
3941 
3942 	if (value_regno >= 0)
3943 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3944 
3945 	return 0;
3946 }
3947 
3948 /* Check that the stack access at the given offset is within bounds. The
3949  * maximum valid offset is -1.
3950  *
3951  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3952  * -state->allocated_stack for reads.
3953  */
3954 static int check_stack_slot_within_bounds(int off,
3955 					  struct bpf_func_state *state,
3956 					  enum bpf_access_type t)
3957 {
3958 	int min_valid_off;
3959 
3960 	if (t == BPF_WRITE)
3961 		min_valid_off = -MAX_BPF_STACK;
3962 	else
3963 		min_valid_off = -state->allocated_stack;
3964 
3965 	if (off < min_valid_off || off > -1)
3966 		return -EACCES;
3967 	return 0;
3968 }
3969 
3970 /* Check that the stack access at 'regno + off' falls within the maximum stack
3971  * bounds.
3972  *
3973  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3974  */
3975 static int check_stack_access_within_bounds(
3976 		struct bpf_verifier_env *env,
3977 		int regno, int off, int access_size,
3978 		enum stack_access_src src, enum bpf_access_type type)
3979 {
3980 	struct bpf_reg_state *regs = cur_regs(env);
3981 	struct bpf_reg_state *reg = regs + regno;
3982 	struct bpf_func_state *state = func(env, reg);
3983 	int min_off, max_off;
3984 	int err;
3985 	char *err_extra;
3986 
3987 	if (src == ACCESS_HELPER)
3988 		/* We don't know if helpers are reading or writing (or both). */
3989 		err_extra = " indirect access to";
3990 	else if (type == BPF_READ)
3991 		err_extra = " read from";
3992 	else
3993 		err_extra = " write to";
3994 
3995 	if (tnum_is_const(reg->var_off)) {
3996 		min_off = reg->var_off.value + off;
3997 		if (access_size > 0)
3998 			max_off = min_off + access_size - 1;
3999 		else
4000 			max_off = min_off;
4001 	} else {
4002 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4003 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4004 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4005 				err_extra, regno);
4006 			return -EACCES;
4007 		}
4008 		min_off = reg->smin_value + off;
4009 		if (access_size > 0)
4010 			max_off = reg->smax_value + off + access_size - 1;
4011 		else
4012 			max_off = min_off;
4013 	}
4014 
4015 	err = check_stack_slot_within_bounds(min_off, state, type);
4016 	if (!err)
4017 		err = check_stack_slot_within_bounds(max_off, state, type);
4018 
4019 	if (err) {
4020 		if (tnum_is_const(reg->var_off)) {
4021 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4022 				err_extra, regno, off, access_size);
4023 		} else {
4024 			char tn_buf[48];
4025 
4026 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4027 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4028 				err_extra, regno, tn_buf, access_size);
4029 		}
4030 	}
4031 	return err;
4032 }
4033 
4034 /* check whether memory at (regno + off) is accessible for t = (read | write)
4035  * if t==write, value_regno is a register which value is stored into memory
4036  * if t==read, value_regno is a register which will receive the value from memory
4037  * if t==write && value_regno==-1, some unknown value is stored into memory
4038  * if t==read && value_regno==-1, don't care what we read from memory
4039  */
4040 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4041 			    int off, int bpf_size, enum bpf_access_type t,
4042 			    int value_regno, bool strict_alignment_once)
4043 {
4044 	struct bpf_reg_state *regs = cur_regs(env);
4045 	struct bpf_reg_state *reg = regs + regno;
4046 	struct bpf_func_state *state;
4047 	int size, err = 0;
4048 
4049 	size = bpf_size_to_bytes(bpf_size);
4050 	if (size < 0)
4051 		return size;
4052 
4053 	/* alignment checks will add in reg->off themselves */
4054 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4055 	if (err)
4056 		return err;
4057 
4058 	/* for access checks, reg->off is just part of off */
4059 	off += reg->off;
4060 
4061 	if (reg->type == PTR_TO_MAP_KEY) {
4062 		if (t == BPF_WRITE) {
4063 			verbose(env, "write to change key R%d not allowed\n", regno);
4064 			return -EACCES;
4065 		}
4066 
4067 		err = check_mem_region_access(env, regno, off, size,
4068 					      reg->map_ptr->key_size, false);
4069 		if (err)
4070 			return err;
4071 		if (value_regno >= 0)
4072 			mark_reg_unknown(env, regs, value_regno);
4073 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4074 		if (t == BPF_WRITE && value_regno >= 0 &&
4075 		    is_pointer_value(env, value_regno)) {
4076 			verbose(env, "R%d leaks addr into map\n", value_regno);
4077 			return -EACCES;
4078 		}
4079 		err = check_map_access_type(env, regno, off, size, t);
4080 		if (err)
4081 			return err;
4082 		err = check_map_access(env, regno, off, size, false);
4083 		if (!err && t == BPF_READ && value_regno >= 0) {
4084 			struct bpf_map *map = reg->map_ptr;
4085 
4086 			/* if map is read-only, track its contents as scalars */
4087 			if (tnum_is_const(reg->var_off) &&
4088 			    bpf_map_is_rdonly(map) &&
4089 			    map->ops->map_direct_value_addr) {
4090 				int map_off = off + reg->var_off.value;
4091 				u64 val = 0;
4092 
4093 				err = bpf_map_direct_read(map, map_off, size,
4094 							  &val);
4095 				if (err)
4096 					return err;
4097 
4098 				regs[value_regno].type = SCALAR_VALUE;
4099 				__mark_reg_known(&regs[value_regno], val);
4100 			} else {
4101 				mark_reg_unknown(env, regs, value_regno);
4102 			}
4103 		}
4104 	} else if (reg->type == PTR_TO_MEM) {
4105 		if (t == BPF_WRITE && value_regno >= 0 &&
4106 		    is_pointer_value(env, value_regno)) {
4107 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4108 			return -EACCES;
4109 		}
4110 		err = check_mem_region_access(env, regno, off, size,
4111 					      reg->mem_size, false);
4112 		if (!err && t == BPF_READ && value_regno >= 0)
4113 			mark_reg_unknown(env, regs, value_regno);
4114 	} else if (reg->type == PTR_TO_CTX) {
4115 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4116 		struct btf *btf = NULL;
4117 		u32 btf_id = 0;
4118 
4119 		if (t == BPF_WRITE && value_regno >= 0 &&
4120 		    is_pointer_value(env, value_regno)) {
4121 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4122 			return -EACCES;
4123 		}
4124 
4125 		err = check_ctx_reg(env, reg, regno);
4126 		if (err < 0)
4127 			return err;
4128 
4129 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4130 		if (err)
4131 			verbose_linfo(env, insn_idx, "; ");
4132 		if (!err && t == BPF_READ && value_regno >= 0) {
4133 			/* ctx access returns either a scalar, or a
4134 			 * PTR_TO_PACKET[_META,_END]. In the latter
4135 			 * case, we know the offset is zero.
4136 			 */
4137 			if (reg_type == SCALAR_VALUE) {
4138 				mark_reg_unknown(env, regs, value_regno);
4139 			} else {
4140 				mark_reg_known_zero(env, regs,
4141 						    value_regno);
4142 				if (reg_type_may_be_null(reg_type))
4143 					regs[value_regno].id = ++env->id_gen;
4144 				/* A load of ctx field could have different
4145 				 * actual load size with the one encoded in the
4146 				 * insn. When the dst is PTR, it is for sure not
4147 				 * a sub-register.
4148 				 */
4149 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4150 				if (reg_type == PTR_TO_BTF_ID ||
4151 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4152 					regs[value_regno].btf = btf;
4153 					regs[value_regno].btf_id = btf_id;
4154 				}
4155 			}
4156 			regs[value_regno].type = reg_type;
4157 		}
4158 
4159 	} else if (reg->type == PTR_TO_STACK) {
4160 		/* Basic bounds checks. */
4161 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4162 		if (err)
4163 			return err;
4164 
4165 		state = func(env, reg);
4166 		err = update_stack_depth(env, state, off);
4167 		if (err)
4168 			return err;
4169 
4170 		if (t == BPF_READ)
4171 			err = check_stack_read(env, regno, off, size,
4172 					       value_regno);
4173 		else
4174 			err = check_stack_write(env, regno, off, size,
4175 						value_regno, insn_idx);
4176 	} else if (reg_is_pkt_pointer(reg)) {
4177 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4178 			verbose(env, "cannot write into packet\n");
4179 			return -EACCES;
4180 		}
4181 		if (t == BPF_WRITE && value_regno >= 0 &&
4182 		    is_pointer_value(env, value_regno)) {
4183 			verbose(env, "R%d leaks addr into packet\n",
4184 				value_regno);
4185 			return -EACCES;
4186 		}
4187 		err = check_packet_access(env, regno, off, size, false);
4188 		if (!err && t == BPF_READ && value_regno >= 0)
4189 			mark_reg_unknown(env, regs, value_regno);
4190 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4191 		if (t == BPF_WRITE && value_regno >= 0 &&
4192 		    is_pointer_value(env, value_regno)) {
4193 			verbose(env, "R%d leaks addr into flow keys\n",
4194 				value_regno);
4195 			return -EACCES;
4196 		}
4197 
4198 		err = check_flow_keys_access(env, off, size);
4199 		if (!err && t == BPF_READ && value_regno >= 0)
4200 			mark_reg_unknown(env, regs, value_regno);
4201 	} else if (type_is_sk_pointer(reg->type)) {
4202 		if (t == BPF_WRITE) {
4203 			verbose(env, "R%d cannot write into %s\n",
4204 				regno, reg_type_str[reg->type]);
4205 			return -EACCES;
4206 		}
4207 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4208 		if (!err && value_regno >= 0)
4209 			mark_reg_unknown(env, regs, value_regno);
4210 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4211 		err = check_tp_buffer_access(env, reg, regno, off, size);
4212 		if (!err && t == BPF_READ && value_regno >= 0)
4213 			mark_reg_unknown(env, regs, value_regno);
4214 	} else if (reg->type == PTR_TO_BTF_ID) {
4215 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4216 					      value_regno);
4217 	} else if (reg->type == CONST_PTR_TO_MAP) {
4218 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4219 					      value_regno);
4220 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4221 		if (t == BPF_WRITE) {
4222 			verbose(env, "R%d cannot write into %s\n",
4223 				regno, reg_type_str[reg->type]);
4224 			return -EACCES;
4225 		}
4226 		err = check_buffer_access(env, reg, regno, off, size, false,
4227 					  "rdonly",
4228 					  &env->prog->aux->max_rdonly_access);
4229 		if (!err && value_regno >= 0)
4230 			mark_reg_unknown(env, regs, value_regno);
4231 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4232 		err = check_buffer_access(env, reg, regno, off, size, false,
4233 					  "rdwr",
4234 					  &env->prog->aux->max_rdwr_access);
4235 		if (!err && t == BPF_READ && value_regno >= 0)
4236 			mark_reg_unknown(env, regs, value_regno);
4237 	} else {
4238 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4239 			reg_type_str[reg->type]);
4240 		return -EACCES;
4241 	}
4242 
4243 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4244 	    regs[value_regno].type == SCALAR_VALUE) {
4245 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4246 		coerce_reg_to_size(&regs[value_regno], size);
4247 	}
4248 	return err;
4249 }
4250 
4251 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4252 {
4253 	int load_reg;
4254 	int err;
4255 
4256 	switch (insn->imm) {
4257 	case BPF_ADD:
4258 	case BPF_ADD | BPF_FETCH:
4259 	case BPF_AND:
4260 	case BPF_AND | BPF_FETCH:
4261 	case BPF_OR:
4262 	case BPF_OR | BPF_FETCH:
4263 	case BPF_XOR:
4264 	case BPF_XOR | BPF_FETCH:
4265 	case BPF_XCHG:
4266 	case BPF_CMPXCHG:
4267 		break;
4268 	default:
4269 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4270 		return -EINVAL;
4271 	}
4272 
4273 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4274 		verbose(env, "invalid atomic operand size\n");
4275 		return -EINVAL;
4276 	}
4277 
4278 	/* check src1 operand */
4279 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4280 	if (err)
4281 		return err;
4282 
4283 	/* check src2 operand */
4284 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4285 	if (err)
4286 		return err;
4287 
4288 	if (insn->imm == BPF_CMPXCHG) {
4289 		/* Check comparison of R0 with memory location */
4290 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4291 		if (err)
4292 			return err;
4293 	}
4294 
4295 	if (is_pointer_value(env, insn->src_reg)) {
4296 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4297 		return -EACCES;
4298 	}
4299 
4300 	if (is_ctx_reg(env, insn->dst_reg) ||
4301 	    is_pkt_reg(env, insn->dst_reg) ||
4302 	    is_flow_key_reg(env, insn->dst_reg) ||
4303 	    is_sk_reg(env, insn->dst_reg)) {
4304 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4305 			insn->dst_reg,
4306 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4307 		return -EACCES;
4308 	}
4309 
4310 	if (insn->imm & BPF_FETCH) {
4311 		if (insn->imm == BPF_CMPXCHG)
4312 			load_reg = BPF_REG_0;
4313 		else
4314 			load_reg = insn->src_reg;
4315 
4316 		/* check and record load of old value */
4317 		err = check_reg_arg(env, load_reg, DST_OP);
4318 		if (err)
4319 			return err;
4320 	} else {
4321 		/* This instruction accesses a memory location but doesn't
4322 		 * actually load it into a register.
4323 		 */
4324 		load_reg = -1;
4325 	}
4326 
4327 	/* check whether we can read the memory */
4328 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4329 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4330 	if (err)
4331 		return err;
4332 
4333 	/* check whether we can write into the same memory */
4334 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4335 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4336 	if (err)
4337 		return err;
4338 
4339 	return 0;
4340 }
4341 
4342 /* When register 'regno' is used to read the stack (either directly or through
4343  * a helper function) make sure that it's within stack boundary and, depending
4344  * on the access type, that all elements of the stack are initialized.
4345  *
4346  * 'off' includes 'regno->off', but not its dynamic part (if any).
4347  *
4348  * All registers that have been spilled on the stack in the slots within the
4349  * read offsets are marked as read.
4350  */
4351 static int check_stack_range_initialized(
4352 		struct bpf_verifier_env *env, int regno, int off,
4353 		int access_size, bool zero_size_allowed,
4354 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4355 {
4356 	struct bpf_reg_state *reg = reg_state(env, regno);
4357 	struct bpf_func_state *state = func(env, reg);
4358 	int err, min_off, max_off, i, j, slot, spi;
4359 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4360 	enum bpf_access_type bounds_check_type;
4361 	/* Some accesses can write anything into the stack, others are
4362 	 * read-only.
4363 	 */
4364 	bool clobber = false;
4365 
4366 	if (access_size == 0 && !zero_size_allowed) {
4367 		verbose(env, "invalid zero-sized read\n");
4368 		return -EACCES;
4369 	}
4370 
4371 	if (type == ACCESS_HELPER) {
4372 		/* The bounds checks for writes are more permissive than for
4373 		 * reads. However, if raw_mode is not set, we'll do extra
4374 		 * checks below.
4375 		 */
4376 		bounds_check_type = BPF_WRITE;
4377 		clobber = true;
4378 	} else {
4379 		bounds_check_type = BPF_READ;
4380 	}
4381 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4382 					       type, bounds_check_type);
4383 	if (err)
4384 		return err;
4385 
4386 
4387 	if (tnum_is_const(reg->var_off)) {
4388 		min_off = max_off = reg->var_off.value + off;
4389 	} else {
4390 		/* Variable offset is prohibited for unprivileged mode for
4391 		 * simplicity since it requires corresponding support in
4392 		 * Spectre masking for stack ALU.
4393 		 * See also retrieve_ptr_limit().
4394 		 */
4395 		if (!env->bypass_spec_v1) {
4396 			char tn_buf[48];
4397 
4398 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4399 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4400 				regno, err_extra, tn_buf);
4401 			return -EACCES;
4402 		}
4403 		/* Only initialized buffer on stack is allowed to be accessed
4404 		 * with variable offset. With uninitialized buffer it's hard to
4405 		 * guarantee that whole memory is marked as initialized on
4406 		 * helper return since specific bounds are unknown what may
4407 		 * cause uninitialized stack leaking.
4408 		 */
4409 		if (meta && meta->raw_mode)
4410 			meta = NULL;
4411 
4412 		min_off = reg->smin_value + off;
4413 		max_off = reg->smax_value + off;
4414 	}
4415 
4416 	if (meta && meta->raw_mode) {
4417 		meta->access_size = access_size;
4418 		meta->regno = regno;
4419 		return 0;
4420 	}
4421 
4422 	for (i = min_off; i < max_off + access_size; i++) {
4423 		u8 *stype;
4424 
4425 		slot = -i - 1;
4426 		spi = slot / BPF_REG_SIZE;
4427 		if (state->allocated_stack <= slot)
4428 			goto err;
4429 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4430 		if (*stype == STACK_MISC)
4431 			goto mark;
4432 		if (*stype == STACK_ZERO) {
4433 			if (clobber) {
4434 				/* helper can write anything into the stack */
4435 				*stype = STACK_MISC;
4436 			}
4437 			goto mark;
4438 		}
4439 
4440 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4441 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4442 			goto mark;
4443 
4444 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4445 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4446 		     env->allow_ptr_leaks)) {
4447 			if (clobber) {
4448 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4449 				for (j = 0; j < BPF_REG_SIZE; j++)
4450 					state->stack[spi].slot_type[j] = STACK_MISC;
4451 			}
4452 			goto mark;
4453 		}
4454 
4455 err:
4456 		if (tnum_is_const(reg->var_off)) {
4457 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4458 				err_extra, regno, min_off, i - min_off, access_size);
4459 		} else {
4460 			char tn_buf[48];
4461 
4462 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4463 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4464 				err_extra, regno, tn_buf, i - min_off, access_size);
4465 		}
4466 		return -EACCES;
4467 mark:
4468 		/* reading any byte out of 8-byte 'spill_slot' will cause
4469 		 * the whole slot to be marked as 'read'
4470 		 */
4471 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4472 			      state->stack[spi].spilled_ptr.parent,
4473 			      REG_LIVE_READ64);
4474 	}
4475 	return update_stack_depth(env, state, min_off);
4476 }
4477 
4478 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4479 				   int access_size, bool zero_size_allowed,
4480 				   struct bpf_call_arg_meta *meta)
4481 {
4482 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4483 
4484 	switch (reg->type) {
4485 	case PTR_TO_PACKET:
4486 	case PTR_TO_PACKET_META:
4487 		return check_packet_access(env, regno, reg->off, access_size,
4488 					   zero_size_allowed);
4489 	case PTR_TO_MAP_KEY:
4490 		return check_mem_region_access(env, regno, reg->off, access_size,
4491 					       reg->map_ptr->key_size, false);
4492 	case PTR_TO_MAP_VALUE:
4493 		if (check_map_access_type(env, regno, reg->off, access_size,
4494 					  meta && meta->raw_mode ? BPF_WRITE :
4495 					  BPF_READ))
4496 			return -EACCES;
4497 		return check_map_access(env, regno, reg->off, access_size,
4498 					zero_size_allowed);
4499 	case PTR_TO_MEM:
4500 		return check_mem_region_access(env, regno, reg->off,
4501 					       access_size, reg->mem_size,
4502 					       zero_size_allowed);
4503 	case PTR_TO_RDONLY_BUF:
4504 		if (meta && meta->raw_mode)
4505 			return -EACCES;
4506 		return check_buffer_access(env, reg, regno, reg->off,
4507 					   access_size, zero_size_allowed,
4508 					   "rdonly",
4509 					   &env->prog->aux->max_rdonly_access);
4510 	case PTR_TO_RDWR_BUF:
4511 		return check_buffer_access(env, reg, regno, reg->off,
4512 					   access_size, zero_size_allowed,
4513 					   "rdwr",
4514 					   &env->prog->aux->max_rdwr_access);
4515 	case PTR_TO_STACK:
4516 		return check_stack_range_initialized(
4517 				env,
4518 				regno, reg->off, access_size,
4519 				zero_size_allowed, ACCESS_HELPER, meta);
4520 	default: /* scalar_value or invalid ptr */
4521 		/* Allow zero-byte read from NULL, regardless of pointer type */
4522 		if (zero_size_allowed && access_size == 0 &&
4523 		    register_is_null(reg))
4524 			return 0;
4525 
4526 		verbose(env, "R%d type=%s expected=%s\n", regno,
4527 			reg_type_str[reg->type],
4528 			reg_type_str[PTR_TO_STACK]);
4529 		return -EACCES;
4530 	}
4531 }
4532 
4533 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4534 		   u32 regno, u32 mem_size)
4535 {
4536 	if (register_is_null(reg))
4537 		return 0;
4538 
4539 	if (reg_type_may_be_null(reg->type)) {
4540 		/* Assuming that the register contains a value check if the memory
4541 		 * access is safe. Temporarily save and restore the register's state as
4542 		 * the conversion shouldn't be visible to a caller.
4543 		 */
4544 		const struct bpf_reg_state saved_reg = *reg;
4545 		int rv;
4546 
4547 		mark_ptr_not_null_reg(reg);
4548 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4549 		*reg = saved_reg;
4550 		return rv;
4551 	}
4552 
4553 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4554 }
4555 
4556 /* Implementation details:
4557  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4558  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4559  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4560  * value_or_null->value transition, since the verifier only cares about
4561  * the range of access to valid map value pointer and doesn't care about actual
4562  * address of the map element.
4563  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4564  * reg->id > 0 after value_or_null->value transition. By doing so
4565  * two bpf_map_lookups will be considered two different pointers that
4566  * point to different bpf_spin_locks.
4567  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4568  * dead-locks.
4569  * Since only one bpf_spin_lock is allowed the checks are simpler than
4570  * reg_is_refcounted() logic. The verifier needs to remember only
4571  * one spin_lock instead of array of acquired_refs.
4572  * cur_state->active_spin_lock remembers which map value element got locked
4573  * and clears it after bpf_spin_unlock.
4574  */
4575 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4576 			     bool is_lock)
4577 {
4578 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4579 	struct bpf_verifier_state *cur = env->cur_state;
4580 	bool is_const = tnum_is_const(reg->var_off);
4581 	struct bpf_map *map = reg->map_ptr;
4582 	u64 val = reg->var_off.value;
4583 
4584 	if (!is_const) {
4585 		verbose(env,
4586 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4587 			regno);
4588 		return -EINVAL;
4589 	}
4590 	if (!map->btf) {
4591 		verbose(env,
4592 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4593 			map->name);
4594 		return -EINVAL;
4595 	}
4596 	if (!map_value_has_spin_lock(map)) {
4597 		if (map->spin_lock_off == -E2BIG)
4598 			verbose(env,
4599 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4600 				map->name);
4601 		else if (map->spin_lock_off == -ENOENT)
4602 			verbose(env,
4603 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4604 				map->name);
4605 		else
4606 			verbose(env,
4607 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4608 				map->name);
4609 		return -EINVAL;
4610 	}
4611 	if (map->spin_lock_off != val + reg->off) {
4612 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4613 			val + reg->off);
4614 		return -EINVAL;
4615 	}
4616 	if (is_lock) {
4617 		if (cur->active_spin_lock) {
4618 			verbose(env,
4619 				"Locking two bpf_spin_locks are not allowed\n");
4620 			return -EINVAL;
4621 		}
4622 		cur->active_spin_lock = reg->id;
4623 	} else {
4624 		if (!cur->active_spin_lock) {
4625 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4626 			return -EINVAL;
4627 		}
4628 		if (cur->active_spin_lock != reg->id) {
4629 			verbose(env, "bpf_spin_unlock of different lock\n");
4630 			return -EINVAL;
4631 		}
4632 		cur->active_spin_lock = 0;
4633 	}
4634 	return 0;
4635 }
4636 
4637 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4638 {
4639 	return type == ARG_PTR_TO_MEM ||
4640 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4641 	       type == ARG_PTR_TO_UNINIT_MEM;
4642 }
4643 
4644 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4645 {
4646 	return type == ARG_CONST_SIZE ||
4647 	       type == ARG_CONST_SIZE_OR_ZERO;
4648 }
4649 
4650 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4651 {
4652 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4653 }
4654 
4655 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4656 {
4657 	return type == ARG_PTR_TO_INT ||
4658 	       type == ARG_PTR_TO_LONG;
4659 }
4660 
4661 static int int_ptr_type_to_size(enum bpf_arg_type type)
4662 {
4663 	if (type == ARG_PTR_TO_INT)
4664 		return sizeof(u32);
4665 	else if (type == ARG_PTR_TO_LONG)
4666 		return sizeof(u64);
4667 
4668 	return -EINVAL;
4669 }
4670 
4671 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4672 				 const struct bpf_call_arg_meta *meta,
4673 				 enum bpf_arg_type *arg_type)
4674 {
4675 	if (!meta->map_ptr) {
4676 		/* kernel subsystem misconfigured verifier */
4677 		verbose(env, "invalid map_ptr to access map->type\n");
4678 		return -EACCES;
4679 	}
4680 
4681 	switch (meta->map_ptr->map_type) {
4682 	case BPF_MAP_TYPE_SOCKMAP:
4683 	case BPF_MAP_TYPE_SOCKHASH:
4684 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4685 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4686 		} else {
4687 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4688 			return -EINVAL;
4689 		}
4690 		break;
4691 
4692 	default:
4693 		break;
4694 	}
4695 	return 0;
4696 }
4697 
4698 struct bpf_reg_types {
4699 	const enum bpf_reg_type types[10];
4700 	u32 *btf_id;
4701 };
4702 
4703 static const struct bpf_reg_types map_key_value_types = {
4704 	.types = {
4705 		PTR_TO_STACK,
4706 		PTR_TO_PACKET,
4707 		PTR_TO_PACKET_META,
4708 		PTR_TO_MAP_KEY,
4709 		PTR_TO_MAP_VALUE,
4710 	},
4711 };
4712 
4713 static const struct bpf_reg_types sock_types = {
4714 	.types = {
4715 		PTR_TO_SOCK_COMMON,
4716 		PTR_TO_SOCKET,
4717 		PTR_TO_TCP_SOCK,
4718 		PTR_TO_XDP_SOCK,
4719 	},
4720 };
4721 
4722 #ifdef CONFIG_NET
4723 static const struct bpf_reg_types btf_id_sock_common_types = {
4724 	.types = {
4725 		PTR_TO_SOCK_COMMON,
4726 		PTR_TO_SOCKET,
4727 		PTR_TO_TCP_SOCK,
4728 		PTR_TO_XDP_SOCK,
4729 		PTR_TO_BTF_ID,
4730 	},
4731 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4732 };
4733 #endif
4734 
4735 static const struct bpf_reg_types mem_types = {
4736 	.types = {
4737 		PTR_TO_STACK,
4738 		PTR_TO_PACKET,
4739 		PTR_TO_PACKET_META,
4740 		PTR_TO_MAP_KEY,
4741 		PTR_TO_MAP_VALUE,
4742 		PTR_TO_MEM,
4743 		PTR_TO_RDONLY_BUF,
4744 		PTR_TO_RDWR_BUF,
4745 	},
4746 };
4747 
4748 static const struct bpf_reg_types int_ptr_types = {
4749 	.types = {
4750 		PTR_TO_STACK,
4751 		PTR_TO_PACKET,
4752 		PTR_TO_PACKET_META,
4753 		PTR_TO_MAP_KEY,
4754 		PTR_TO_MAP_VALUE,
4755 	},
4756 };
4757 
4758 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4759 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4760 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4761 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4762 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4763 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4764 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4765 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4766 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4767 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4768 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4769 
4770 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4771 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4772 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4773 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4774 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4775 	[ARG_CONST_SIZE]		= &scalar_types,
4776 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4777 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4778 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4779 	[ARG_PTR_TO_CTX]		= &context_types,
4780 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4781 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4782 #ifdef CONFIG_NET
4783 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4784 #endif
4785 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4786 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4787 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4788 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4789 	[ARG_PTR_TO_MEM]		= &mem_types,
4790 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4791 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4792 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4793 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4794 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4795 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4796 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4797 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4798 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4799 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4800 };
4801 
4802 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4803 			  enum bpf_arg_type arg_type,
4804 			  const u32 *arg_btf_id)
4805 {
4806 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4807 	enum bpf_reg_type expected, type = reg->type;
4808 	const struct bpf_reg_types *compatible;
4809 	int i, j;
4810 
4811 	compatible = compatible_reg_types[arg_type];
4812 	if (!compatible) {
4813 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4814 		return -EFAULT;
4815 	}
4816 
4817 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4818 		expected = compatible->types[i];
4819 		if (expected == NOT_INIT)
4820 			break;
4821 
4822 		if (type == expected)
4823 			goto found;
4824 	}
4825 
4826 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4827 	for (j = 0; j + 1 < i; j++)
4828 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4829 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4830 	return -EACCES;
4831 
4832 found:
4833 	if (type == PTR_TO_BTF_ID) {
4834 		if (!arg_btf_id) {
4835 			if (!compatible->btf_id) {
4836 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4837 				return -EFAULT;
4838 			}
4839 			arg_btf_id = compatible->btf_id;
4840 		}
4841 
4842 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4843 					  btf_vmlinux, *arg_btf_id)) {
4844 			verbose(env, "R%d is of type %s but %s is expected\n",
4845 				regno, kernel_type_name(reg->btf, reg->btf_id),
4846 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4847 			return -EACCES;
4848 		}
4849 
4850 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4851 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4852 				regno);
4853 			return -EACCES;
4854 		}
4855 	}
4856 
4857 	return 0;
4858 }
4859 
4860 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4861 			  struct bpf_call_arg_meta *meta,
4862 			  const struct bpf_func_proto *fn)
4863 {
4864 	u32 regno = BPF_REG_1 + arg;
4865 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4866 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4867 	enum bpf_reg_type type = reg->type;
4868 	int err = 0;
4869 
4870 	if (arg_type == ARG_DONTCARE)
4871 		return 0;
4872 
4873 	err = check_reg_arg(env, regno, SRC_OP);
4874 	if (err)
4875 		return err;
4876 
4877 	if (arg_type == ARG_ANYTHING) {
4878 		if (is_pointer_value(env, regno)) {
4879 			verbose(env, "R%d leaks addr into helper function\n",
4880 				regno);
4881 			return -EACCES;
4882 		}
4883 		return 0;
4884 	}
4885 
4886 	if (type_is_pkt_pointer(type) &&
4887 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4888 		verbose(env, "helper access to the packet is not allowed\n");
4889 		return -EACCES;
4890 	}
4891 
4892 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4893 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4894 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4895 		err = resolve_map_arg_type(env, meta, &arg_type);
4896 		if (err)
4897 			return err;
4898 	}
4899 
4900 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4901 		/* A NULL register has a SCALAR_VALUE type, so skip
4902 		 * type checking.
4903 		 */
4904 		goto skip_type_check;
4905 
4906 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4907 	if (err)
4908 		return err;
4909 
4910 	if (type == PTR_TO_CTX) {
4911 		err = check_ctx_reg(env, reg, regno);
4912 		if (err < 0)
4913 			return err;
4914 	}
4915 
4916 skip_type_check:
4917 	if (reg->ref_obj_id) {
4918 		if (meta->ref_obj_id) {
4919 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4920 				regno, reg->ref_obj_id,
4921 				meta->ref_obj_id);
4922 			return -EFAULT;
4923 		}
4924 		meta->ref_obj_id = reg->ref_obj_id;
4925 	}
4926 
4927 	if (arg_type == ARG_CONST_MAP_PTR) {
4928 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4929 		meta->map_ptr = reg->map_ptr;
4930 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4931 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4932 		 * check that [key, key + map->key_size) are within
4933 		 * stack limits and initialized
4934 		 */
4935 		if (!meta->map_ptr) {
4936 			/* in function declaration map_ptr must come before
4937 			 * map_key, so that it's verified and known before
4938 			 * we have to check map_key here. Otherwise it means
4939 			 * that kernel subsystem misconfigured verifier
4940 			 */
4941 			verbose(env, "invalid map_ptr to access map->key\n");
4942 			return -EACCES;
4943 		}
4944 		err = check_helper_mem_access(env, regno,
4945 					      meta->map_ptr->key_size, false,
4946 					      NULL);
4947 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4948 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4949 		    !register_is_null(reg)) ||
4950 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4951 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4952 		 * check [value, value + map->value_size) validity
4953 		 */
4954 		if (!meta->map_ptr) {
4955 			/* kernel subsystem misconfigured verifier */
4956 			verbose(env, "invalid map_ptr to access map->value\n");
4957 			return -EACCES;
4958 		}
4959 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4960 		err = check_helper_mem_access(env, regno,
4961 					      meta->map_ptr->value_size, false,
4962 					      meta);
4963 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4964 		if (!reg->btf_id) {
4965 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4966 			return -EACCES;
4967 		}
4968 		meta->ret_btf = reg->btf;
4969 		meta->ret_btf_id = reg->btf_id;
4970 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4971 		if (meta->func_id == BPF_FUNC_spin_lock) {
4972 			if (process_spin_lock(env, regno, true))
4973 				return -EACCES;
4974 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4975 			if (process_spin_lock(env, regno, false))
4976 				return -EACCES;
4977 		} else {
4978 			verbose(env, "verifier internal error\n");
4979 			return -EFAULT;
4980 		}
4981 	} else if (arg_type == ARG_PTR_TO_FUNC) {
4982 		meta->subprogno = reg->subprogno;
4983 	} else if (arg_type_is_mem_ptr(arg_type)) {
4984 		/* The access to this pointer is only checked when we hit the
4985 		 * next is_mem_size argument below.
4986 		 */
4987 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4988 	} else if (arg_type_is_mem_size(arg_type)) {
4989 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4990 
4991 		/* This is used to refine r0 return value bounds for helpers
4992 		 * that enforce this value as an upper bound on return values.
4993 		 * See do_refine_retval_range() for helpers that can refine
4994 		 * the return value. C type of helper is u32 so we pull register
4995 		 * bound from umax_value however, if negative verifier errors
4996 		 * out. Only upper bounds can be learned because retval is an
4997 		 * int type and negative retvals are allowed.
4998 		 */
4999 		meta->msize_max_value = reg->umax_value;
5000 
5001 		/* The register is SCALAR_VALUE; the access check
5002 		 * happens using its boundaries.
5003 		 */
5004 		if (!tnum_is_const(reg->var_off))
5005 			/* For unprivileged variable accesses, disable raw
5006 			 * mode so that the program is required to
5007 			 * initialize all the memory that the helper could
5008 			 * just partially fill up.
5009 			 */
5010 			meta = NULL;
5011 
5012 		if (reg->smin_value < 0) {
5013 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5014 				regno);
5015 			return -EACCES;
5016 		}
5017 
5018 		if (reg->umin_value == 0) {
5019 			err = check_helper_mem_access(env, regno - 1, 0,
5020 						      zero_size_allowed,
5021 						      meta);
5022 			if (err)
5023 				return err;
5024 		}
5025 
5026 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5027 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5028 				regno);
5029 			return -EACCES;
5030 		}
5031 		err = check_helper_mem_access(env, regno - 1,
5032 					      reg->umax_value,
5033 					      zero_size_allowed, meta);
5034 		if (!err)
5035 			err = mark_chain_precision(env, regno);
5036 	} else if (arg_type_is_alloc_size(arg_type)) {
5037 		if (!tnum_is_const(reg->var_off)) {
5038 			verbose(env, "R%d is not a known constant'\n",
5039 				regno);
5040 			return -EACCES;
5041 		}
5042 		meta->mem_size = reg->var_off.value;
5043 	} else if (arg_type_is_int_ptr(arg_type)) {
5044 		int size = int_ptr_type_to_size(arg_type);
5045 
5046 		err = check_helper_mem_access(env, regno, size, false, meta);
5047 		if (err)
5048 			return err;
5049 		err = check_ptr_alignment(env, reg, 0, size, true);
5050 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5051 		struct bpf_map *map = reg->map_ptr;
5052 		int map_off;
5053 		u64 map_addr;
5054 		char *str_ptr;
5055 
5056 		if (!bpf_map_is_rdonly(map)) {
5057 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5058 			return -EACCES;
5059 		}
5060 
5061 		if (!tnum_is_const(reg->var_off)) {
5062 			verbose(env, "R%d is not a constant address'\n", regno);
5063 			return -EACCES;
5064 		}
5065 
5066 		if (!map->ops->map_direct_value_addr) {
5067 			verbose(env, "no direct value access support for this map type\n");
5068 			return -EACCES;
5069 		}
5070 
5071 		err = check_map_access(env, regno, reg->off,
5072 				       map->value_size - reg->off, false);
5073 		if (err)
5074 			return err;
5075 
5076 		map_off = reg->off + reg->var_off.value;
5077 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5078 		if (err) {
5079 			verbose(env, "direct value access on string failed\n");
5080 			return err;
5081 		}
5082 
5083 		str_ptr = (char *)(long)(map_addr);
5084 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5085 			verbose(env, "string is not zero-terminated\n");
5086 			return -EINVAL;
5087 		}
5088 	}
5089 
5090 	return err;
5091 }
5092 
5093 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5094 {
5095 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5096 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5097 
5098 	if (func_id != BPF_FUNC_map_update_elem)
5099 		return false;
5100 
5101 	/* It's not possible to get access to a locked struct sock in these
5102 	 * contexts, so updating is safe.
5103 	 */
5104 	switch (type) {
5105 	case BPF_PROG_TYPE_TRACING:
5106 		if (eatype == BPF_TRACE_ITER)
5107 			return true;
5108 		break;
5109 	case BPF_PROG_TYPE_SOCKET_FILTER:
5110 	case BPF_PROG_TYPE_SCHED_CLS:
5111 	case BPF_PROG_TYPE_SCHED_ACT:
5112 	case BPF_PROG_TYPE_XDP:
5113 	case BPF_PROG_TYPE_SK_REUSEPORT:
5114 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5115 	case BPF_PROG_TYPE_SK_LOOKUP:
5116 		return true;
5117 	default:
5118 		break;
5119 	}
5120 
5121 	verbose(env, "cannot update sockmap in this context\n");
5122 	return false;
5123 }
5124 
5125 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5126 {
5127 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5128 }
5129 
5130 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5131 					struct bpf_map *map, int func_id)
5132 {
5133 	if (!map)
5134 		return 0;
5135 
5136 	/* We need a two way check, first is from map perspective ... */
5137 	switch (map->map_type) {
5138 	case BPF_MAP_TYPE_PROG_ARRAY:
5139 		if (func_id != BPF_FUNC_tail_call)
5140 			goto error;
5141 		break;
5142 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5143 		if (func_id != BPF_FUNC_perf_event_read &&
5144 		    func_id != BPF_FUNC_perf_event_output &&
5145 		    func_id != BPF_FUNC_skb_output &&
5146 		    func_id != BPF_FUNC_perf_event_read_value &&
5147 		    func_id != BPF_FUNC_xdp_output)
5148 			goto error;
5149 		break;
5150 	case BPF_MAP_TYPE_RINGBUF:
5151 		if (func_id != BPF_FUNC_ringbuf_output &&
5152 		    func_id != BPF_FUNC_ringbuf_reserve &&
5153 		    func_id != BPF_FUNC_ringbuf_submit &&
5154 		    func_id != BPF_FUNC_ringbuf_discard &&
5155 		    func_id != BPF_FUNC_ringbuf_query)
5156 			goto error;
5157 		break;
5158 	case BPF_MAP_TYPE_STACK_TRACE:
5159 		if (func_id != BPF_FUNC_get_stackid)
5160 			goto error;
5161 		break;
5162 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5163 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5164 		    func_id != BPF_FUNC_current_task_under_cgroup)
5165 			goto error;
5166 		break;
5167 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5168 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5169 		if (func_id != BPF_FUNC_get_local_storage)
5170 			goto error;
5171 		break;
5172 	case BPF_MAP_TYPE_DEVMAP:
5173 	case BPF_MAP_TYPE_DEVMAP_HASH:
5174 		if (func_id != BPF_FUNC_redirect_map &&
5175 		    func_id != BPF_FUNC_map_lookup_elem)
5176 			goto error;
5177 		break;
5178 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5179 	 * appear.
5180 	 */
5181 	case BPF_MAP_TYPE_CPUMAP:
5182 		if (func_id != BPF_FUNC_redirect_map)
5183 			goto error;
5184 		break;
5185 	case BPF_MAP_TYPE_XSKMAP:
5186 		if (func_id != BPF_FUNC_redirect_map &&
5187 		    func_id != BPF_FUNC_map_lookup_elem)
5188 			goto error;
5189 		break;
5190 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5191 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5192 		if (func_id != BPF_FUNC_map_lookup_elem)
5193 			goto error;
5194 		break;
5195 	case BPF_MAP_TYPE_SOCKMAP:
5196 		if (func_id != BPF_FUNC_sk_redirect_map &&
5197 		    func_id != BPF_FUNC_sock_map_update &&
5198 		    func_id != BPF_FUNC_map_delete_elem &&
5199 		    func_id != BPF_FUNC_msg_redirect_map &&
5200 		    func_id != BPF_FUNC_sk_select_reuseport &&
5201 		    func_id != BPF_FUNC_map_lookup_elem &&
5202 		    !may_update_sockmap(env, func_id))
5203 			goto error;
5204 		break;
5205 	case BPF_MAP_TYPE_SOCKHASH:
5206 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5207 		    func_id != BPF_FUNC_sock_hash_update &&
5208 		    func_id != BPF_FUNC_map_delete_elem &&
5209 		    func_id != BPF_FUNC_msg_redirect_hash &&
5210 		    func_id != BPF_FUNC_sk_select_reuseport &&
5211 		    func_id != BPF_FUNC_map_lookup_elem &&
5212 		    !may_update_sockmap(env, func_id))
5213 			goto error;
5214 		break;
5215 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5216 		if (func_id != BPF_FUNC_sk_select_reuseport)
5217 			goto error;
5218 		break;
5219 	case BPF_MAP_TYPE_QUEUE:
5220 	case BPF_MAP_TYPE_STACK:
5221 		if (func_id != BPF_FUNC_map_peek_elem &&
5222 		    func_id != BPF_FUNC_map_pop_elem &&
5223 		    func_id != BPF_FUNC_map_push_elem)
5224 			goto error;
5225 		break;
5226 	case BPF_MAP_TYPE_SK_STORAGE:
5227 		if (func_id != BPF_FUNC_sk_storage_get &&
5228 		    func_id != BPF_FUNC_sk_storage_delete)
5229 			goto error;
5230 		break;
5231 	case BPF_MAP_TYPE_INODE_STORAGE:
5232 		if (func_id != BPF_FUNC_inode_storage_get &&
5233 		    func_id != BPF_FUNC_inode_storage_delete)
5234 			goto error;
5235 		break;
5236 	case BPF_MAP_TYPE_TASK_STORAGE:
5237 		if (func_id != BPF_FUNC_task_storage_get &&
5238 		    func_id != BPF_FUNC_task_storage_delete)
5239 			goto error;
5240 		break;
5241 	default:
5242 		break;
5243 	}
5244 
5245 	/* ... and second from the function itself. */
5246 	switch (func_id) {
5247 	case BPF_FUNC_tail_call:
5248 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5249 			goto error;
5250 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5251 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5252 			return -EINVAL;
5253 		}
5254 		break;
5255 	case BPF_FUNC_perf_event_read:
5256 	case BPF_FUNC_perf_event_output:
5257 	case BPF_FUNC_perf_event_read_value:
5258 	case BPF_FUNC_skb_output:
5259 	case BPF_FUNC_xdp_output:
5260 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5261 			goto error;
5262 		break;
5263 	case BPF_FUNC_get_stackid:
5264 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5265 			goto error;
5266 		break;
5267 	case BPF_FUNC_current_task_under_cgroup:
5268 	case BPF_FUNC_skb_under_cgroup:
5269 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5270 			goto error;
5271 		break;
5272 	case BPF_FUNC_redirect_map:
5273 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5274 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5275 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5276 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5277 			goto error;
5278 		break;
5279 	case BPF_FUNC_sk_redirect_map:
5280 	case BPF_FUNC_msg_redirect_map:
5281 	case BPF_FUNC_sock_map_update:
5282 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5283 			goto error;
5284 		break;
5285 	case BPF_FUNC_sk_redirect_hash:
5286 	case BPF_FUNC_msg_redirect_hash:
5287 	case BPF_FUNC_sock_hash_update:
5288 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5289 			goto error;
5290 		break;
5291 	case BPF_FUNC_get_local_storage:
5292 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5293 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5294 			goto error;
5295 		break;
5296 	case BPF_FUNC_sk_select_reuseport:
5297 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5298 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5299 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5300 			goto error;
5301 		break;
5302 	case BPF_FUNC_map_peek_elem:
5303 	case BPF_FUNC_map_pop_elem:
5304 	case BPF_FUNC_map_push_elem:
5305 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5306 		    map->map_type != BPF_MAP_TYPE_STACK)
5307 			goto error;
5308 		break;
5309 	case BPF_FUNC_sk_storage_get:
5310 	case BPF_FUNC_sk_storage_delete:
5311 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5312 			goto error;
5313 		break;
5314 	case BPF_FUNC_inode_storage_get:
5315 	case BPF_FUNC_inode_storage_delete:
5316 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5317 			goto error;
5318 		break;
5319 	case BPF_FUNC_task_storage_get:
5320 	case BPF_FUNC_task_storage_delete:
5321 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5322 			goto error;
5323 		break;
5324 	default:
5325 		break;
5326 	}
5327 
5328 	return 0;
5329 error:
5330 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5331 		map->map_type, func_id_name(func_id), func_id);
5332 	return -EINVAL;
5333 }
5334 
5335 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5336 {
5337 	int count = 0;
5338 
5339 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5340 		count++;
5341 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5342 		count++;
5343 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5344 		count++;
5345 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5346 		count++;
5347 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5348 		count++;
5349 
5350 	/* We only support one arg being in raw mode at the moment,
5351 	 * which is sufficient for the helper functions we have
5352 	 * right now.
5353 	 */
5354 	return count <= 1;
5355 }
5356 
5357 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5358 				    enum bpf_arg_type arg_next)
5359 {
5360 	return (arg_type_is_mem_ptr(arg_curr) &&
5361 	        !arg_type_is_mem_size(arg_next)) ||
5362 	       (!arg_type_is_mem_ptr(arg_curr) &&
5363 		arg_type_is_mem_size(arg_next));
5364 }
5365 
5366 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5367 {
5368 	/* bpf_xxx(..., buf, len) call will access 'len'
5369 	 * bytes from memory 'buf'. Both arg types need
5370 	 * to be paired, so make sure there's no buggy
5371 	 * helper function specification.
5372 	 */
5373 	if (arg_type_is_mem_size(fn->arg1_type) ||
5374 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5375 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5376 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5377 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5378 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5379 		return false;
5380 
5381 	return true;
5382 }
5383 
5384 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5385 {
5386 	int count = 0;
5387 
5388 	if (arg_type_may_be_refcounted(fn->arg1_type))
5389 		count++;
5390 	if (arg_type_may_be_refcounted(fn->arg2_type))
5391 		count++;
5392 	if (arg_type_may_be_refcounted(fn->arg3_type))
5393 		count++;
5394 	if (arg_type_may_be_refcounted(fn->arg4_type))
5395 		count++;
5396 	if (arg_type_may_be_refcounted(fn->arg5_type))
5397 		count++;
5398 
5399 	/* A reference acquiring function cannot acquire
5400 	 * another refcounted ptr.
5401 	 */
5402 	if (may_be_acquire_function(func_id) && count)
5403 		return false;
5404 
5405 	/* We only support one arg being unreferenced at the moment,
5406 	 * which is sufficient for the helper functions we have right now.
5407 	 */
5408 	return count <= 1;
5409 }
5410 
5411 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5412 {
5413 	int i;
5414 
5415 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5416 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5417 			return false;
5418 
5419 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5420 			return false;
5421 	}
5422 
5423 	return true;
5424 }
5425 
5426 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5427 {
5428 	return check_raw_mode_ok(fn) &&
5429 	       check_arg_pair_ok(fn) &&
5430 	       check_btf_id_ok(fn) &&
5431 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5432 }
5433 
5434 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5435  * are now invalid, so turn them into unknown SCALAR_VALUE.
5436  */
5437 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5438 				     struct bpf_func_state *state)
5439 {
5440 	struct bpf_reg_state *regs = state->regs, *reg;
5441 	int i;
5442 
5443 	for (i = 0; i < MAX_BPF_REG; i++)
5444 		if (reg_is_pkt_pointer_any(&regs[i]))
5445 			mark_reg_unknown(env, regs, i);
5446 
5447 	bpf_for_each_spilled_reg(i, state, reg) {
5448 		if (!reg)
5449 			continue;
5450 		if (reg_is_pkt_pointer_any(reg))
5451 			__mark_reg_unknown(env, reg);
5452 	}
5453 }
5454 
5455 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5456 {
5457 	struct bpf_verifier_state *vstate = env->cur_state;
5458 	int i;
5459 
5460 	for (i = 0; i <= vstate->curframe; i++)
5461 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5462 }
5463 
5464 enum {
5465 	AT_PKT_END = -1,
5466 	BEYOND_PKT_END = -2,
5467 };
5468 
5469 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5470 {
5471 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5472 	struct bpf_reg_state *reg = &state->regs[regn];
5473 
5474 	if (reg->type != PTR_TO_PACKET)
5475 		/* PTR_TO_PACKET_META is not supported yet */
5476 		return;
5477 
5478 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5479 	 * How far beyond pkt_end it goes is unknown.
5480 	 * if (!range_open) it's the case of pkt >= pkt_end
5481 	 * if (range_open) it's the case of pkt > pkt_end
5482 	 * hence this pointer is at least 1 byte bigger than pkt_end
5483 	 */
5484 	if (range_open)
5485 		reg->range = BEYOND_PKT_END;
5486 	else
5487 		reg->range = AT_PKT_END;
5488 }
5489 
5490 static void release_reg_references(struct bpf_verifier_env *env,
5491 				   struct bpf_func_state *state,
5492 				   int ref_obj_id)
5493 {
5494 	struct bpf_reg_state *regs = state->regs, *reg;
5495 	int i;
5496 
5497 	for (i = 0; i < MAX_BPF_REG; i++)
5498 		if (regs[i].ref_obj_id == ref_obj_id)
5499 			mark_reg_unknown(env, regs, i);
5500 
5501 	bpf_for_each_spilled_reg(i, state, reg) {
5502 		if (!reg)
5503 			continue;
5504 		if (reg->ref_obj_id == ref_obj_id)
5505 			__mark_reg_unknown(env, reg);
5506 	}
5507 }
5508 
5509 /* The pointer with the specified id has released its reference to kernel
5510  * resources. Identify all copies of the same pointer and clear the reference.
5511  */
5512 static int release_reference(struct bpf_verifier_env *env,
5513 			     int ref_obj_id)
5514 {
5515 	struct bpf_verifier_state *vstate = env->cur_state;
5516 	int err;
5517 	int i;
5518 
5519 	err = release_reference_state(cur_func(env), ref_obj_id);
5520 	if (err)
5521 		return err;
5522 
5523 	for (i = 0; i <= vstate->curframe; i++)
5524 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5525 
5526 	return 0;
5527 }
5528 
5529 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5530 				    struct bpf_reg_state *regs)
5531 {
5532 	int i;
5533 
5534 	/* after the call registers r0 - r5 were scratched */
5535 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5536 		mark_reg_not_init(env, regs, caller_saved[i]);
5537 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5538 	}
5539 }
5540 
5541 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5542 				   struct bpf_func_state *caller,
5543 				   struct bpf_func_state *callee,
5544 				   int insn_idx);
5545 
5546 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5547 			     int *insn_idx, int subprog,
5548 			     set_callee_state_fn set_callee_state_cb)
5549 {
5550 	struct bpf_verifier_state *state = env->cur_state;
5551 	struct bpf_func_info_aux *func_info_aux;
5552 	struct bpf_func_state *caller, *callee;
5553 	int err;
5554 	bool is_global = false;
5555 
5556 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5557 		verbose(env, "the call stack of %d frames is too deep\n",
5558 			state->curframe + 2);
5559 		return -E2BIG;
5560 	}
5561 
5562 	caller = state->frame[state->curframe];
5563 	if (state->frame[state->curframe + 1]) {
5564 		verbose(env, "verifier bug. Frame %d already allocated\n",
5565 			state->curframe + 1);
5566 		return -EFAULT;
5567 	}
5568 
5569 	func_info_aux = env->prog->aux->func_info_aux;
5570 	if (func_info_aux)
5571 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5572 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5573 	if (err == -EFAULT)
5574 		return err;
5575 	if (is_global) {
5576 		if (err) {
5577 			verbose(env, "Caller passes invalid args into func#%d\n",
5578 				subprog);
5579 			return err;
5580 		} else {
5581 			if (env->log.level & BPF_LOG_LEVEL)
5582 				verbose(env,
5583 					"Func#%d is global and valid. Skipping.\n",
5584 					subprog);
5585 			clear_caller_saved_regs(env, caller->regs);
5586 
5587 			/* All global functions return a 64-bit SCALAR_VALUE */
5588 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5589 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5590 
5591 			/* continue with next insn after call */
5592 			return 0;
5593 		}
5594 	}
5595 
5596 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5597 	if (!callee)
5598 		return -ENOMEM;
5599 	state->frame[state->curframe + 1] = callee;
5600 
5601 	/* callee cannot access r0, r6 - r9 for reading and has to write
5602 	 * into its own stack before reading from it.
5603 	 * callee can read/write into caller's stack
5604 	 */
5605 	init_func_state(env, callee,
5606 			/* remember the callsite, it will be used by bpf_exit */
5607 			*insn_idx /* callsite */,
5608 			state->curframe + 1 /* frameno within this callchain */,
5609 			subprog /* subprog number within this prog */);
5610 
5611 	/* Transfer references to the callee */
5612 	err = copy_reference_state(callee, caller);
5613 	if (err)
5614 		return err;
5615 
5616 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5617 	if (err)
5618 		return err;
5619 
5620 	clear_caller_saved_regs(env, caller->regs);
5621 
5622 	/* only increment it after check_reg_arg() finished */
5623 	state->curframe++;
5624 
5625 	/* and go analyze first insn of the callee */
5626 	*insn_idx = env->subprog_info[subprog].start - 1;
5627 
5628 	if (env->log.level & BPF_LOG_LEVEL) {
5629 		verbose(env, "caller:\n");
5630 		print_verifier_state(env, caller);
5631 		verbose(env, "callee:\n");
5632 		print_verifier_state(env, callee);
5633 	}
5634 	return 0;
5635 }
5636 
5637 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5638 				   struct bpf_func_state *caller,
5639 				   struct bpf_func_state *callee)
5640 {
5641 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5642 	 *      void *callback_ctx, u64 flags);
5643 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5644 	 *      void *callback_ctx);
5645 	 */
5646 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5647 
5648 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5649 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5650 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5651 
5652 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5653 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5654 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5655 
5656 	/* pointer to stack or null */
5657 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5658 
5659 	/* unused */
5660 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5661 	return 0;
5662 }
5663 
5664 static int set_callee_state(struct bpf_verifier_env *env,
5665 			    struct bpf_func_state *caller,
5666 			    struct bpf_func_state *callee, int insn_idx)
5667 {
5668 	int i;
5669 
5670 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5671 	 * pointers, which connects us up to the liveness chain
5672 	 */
5673 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5674 		callee->regs[i] = caller->regs[i];
5675 	return 0;
5676 }
5677 
5678 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5679 			   int *insn_idx)
5680 {
5681 	int subprog, target_insn;
5682 
5683 	target_insn = *insn_idx + insn->imm + 1;
5684 	subprog = find_subprog(env, target_insn);
5685 	if (subprog < 0) {
5686 		verbose(env, "verifier bug. No program starts at insn %d\n",
5687 			target_insn);
5688 		return -EFAULT;
5689 	}
5690 
5691 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5692 }
5693 
5694 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5695 				       struct bpf_func_state *caller,
5696 				       struct bpf_func_state *callee,
5697 				       int insn_idx)
5698 {
5699 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5700 	struct bpf_map *map;
5701 	int err;
5702 
5703 	if (bpf_map_ptr_poisoned(insn_aux)) {
5704 		verbose(env, "tail_call abusing map_ptr\n");
5705 		return -EINVAL;
5706 	}
5707 
5708 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5709 	if (!map->ops->map_set_for_each_callback_args ||
5710 	    !map->ops->map_for_each_callback) {
5711 		verbose(env, "callback function not allowed for map\n");
5712 		return -ENOTSUPP;
5713 	}
5714 
5715 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5716 	if (err)
5717 		return err;
5718 
5719 	callee->in_callback_fn = true;
5720 	return 0;
5721 }
5722 
5723 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5724 {
5725 	struct bpf_verifier_state *state = env->cur_state;
5726 	struct bpf_func_state *caller, *callee;
5727 	struct bpf_reg_state *r0;
5728 	int err;
5729 
5730 	callee = state->frame[state->curframe];
5731 	r0 = &callee->regs[BPF_REG_0];
5732 	if (r0->type == PTR_TO_STACK) {
5733 		/* technically it's ok to return caller's stack pointer
5734 		 * (or caller's caller's pointer) back to the caller,
5735 		 * since these pointers are valid. Only current stack
5736 		 * pointer will be invalid as soon as function exits,
5737 		 * but let's be conservative
5738 		 */
5739 		verbose(env, "cannot return stack pointer to the caller\n");
5740 		return -EINVAL;
5741 	}
5742 
5743 	state->curframe--;
5744 	caller = state->frame[state->curframe];
5745 	if (callee->in_callback_fn) {
5746 		/* enforce R0 return value range [0, 1]. */
5747 		struct tnum range = tnum_range(0, 1);
5748 
5749 		if (r0->type != SCALAR_VALUE) {
5750 			verbose(env, "R0 not a scalar value\n");
5751 			return -EACCES;
5752 		}
5753 		if (!tnum_in(range, r0->var_off)) {
5754 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5755 			return -EINVAL;
5756 		}
5757 	} else {
5758 		/* return to the caller whatever r0 had in the callee */
5759 		caller->regs[BPF_REG_0] = *r0;
5760 	}
5761 
5762 	/* Transfer references to the caller */
5763 	err = copy_reference_state(caller, callee);
5764 	if (err)
5765 		return err;
5766 
5767 	*insn_idx = callee->callsite + 1;
5768 	if (env->log.level & BPF_LOG_LEVEL) {
5769 		verbose(env, "returning from callee:\n");
5770 		print_verifier_state(env, callee);
5771 		verbose(env, "to caller at %d:\n", *insn_idx);
5772 		print_verifier_state(env, caller);
5773 	}
5774 	/* clear everything in the callee */
5775 	free_func_state(callee);
5776 	state->frame[state->curframe + 1] = NULL;
5777 	return 0;
5778 }
5779 
5780 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5781 				   int func_id,
5782 				   struct bpf_call_arg_meta *meta)
5783 {
5784 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5785 
5786 	if (ret_type != RET_INTEGER ||
5787 	    (func_id != BPF_FUNC_get_stack &&
5788 	     func_id != BPF_FUNC_get_task_stack &&
5789 	     func_id != BPF_FUNC_probe_read_str &&
5790 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5791 	     func_id != BPF_FUNC_probe_read_user_str))
5792 		return;
5793 
5794 	ret_reg->smax_value = meta->msize_max_value;
5795 	ret_reg->s32_max_value = meta->msize_max_value;
5796 	ret_reg->smin_value = -MAX_ERRNO;
5797 	ret_reg->s32_min_value = -MAX_ERRNO;
5798 	__reg_deduce_bounds(ret_reg);
5799 	__reg_bound_offset(ret_reg);
5800 	__update_reg_bounds(ret_reg);
5801 }
5802 
5803 static int
5804 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5805 		int func_id, int insn_idx)
5806 {
5807 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5808 	struct bpf_map *map = meta->map_ptr;
5809 
5810 	if (func_id != BPF_FUNC_tail_call &&
5811 	    func_id != BPF_FUNC_map_lookup_elem &&
5812 	    func_id != BPF_FUNC_map_update_elem &&
5813 	    func_id != BPF_FUNC_map_delete_elem &&
5814 	    func_id != BPF_FUNC_map_push_elem &&
5815 	    func_id != BPF_FUNC_map_pop_elem &&
5816 	    func_id != BPF_FUNC_map_peek_elem &&
5817 	    func_id != BPF_FUNC_for_each_map_elem &&
5818 	    func_id != BPF_FUNC_redirect_map)
5819 		return 0;
5820 
5821 	if (map == NULL) {
5822 		verbose(env, "kernel subsystem misconfigured verifier\n");
5823 		return -EINVAL;
5824 	}
5825 
5826 	/* In case of read-only, some additional restrictions
5827 	 * need to be applied in order to prevent altering the
5828 	 * state of the map from program side.
5829 	 */
5830 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5831 	    (func_id == BPF_FUNC_map_delete_elem ||
5832 	     func_id == BPF_FUNC_map_update_elem ||
5833 	     func_id == BPF_FUNC_map_push_elem ||
5834 	     func_id == BPF_FUNC_map_pop_elem)) {
5835 		verbose(env, "write into map forbidden\n");
5836 		return -EACCES;
5837 	}
5838 
5839 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5840 		bpf_map_ptr_store(aux, meta->map_ptr,
5841 				  !meta->map_ptr->bypass_spec_v1);
5842 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5843 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5844 				  !meta->map_ptr->bypass_spec_v1);
5845 	return 0;
5846 }
5847 
5848 static int
5849 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5850 		int func_id, int insn_idx)
5851 {
5852 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5853 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5854 	struct bpf_map *map = meta->map_ptr;
5855 	struct tnum range;
5856 	u64 val;
5857 	int err;
5858 
5859 	if (func_id != BPF_FUNC_tail_call)
5860 		return 0;
5861 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5862 		verbose(env, "kernel subsystem misconfigured verifier\n");
5863 		return -EINVAL;
5864 	}
5865 
5866 	range = tnum_range(0, map->max_entries - 1);
5867 	reg = &regs[BPF_REG_3];
5868 
5869 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5870 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5871 		return 0;
5872 	}
5873 
5874 	err = mark_chain_precision(env, BPF_REG_3);
5875 	if (err)
5876 		return err;
5877 
5878 	val = reg->var_off.value;
5879 	if (bpf_map_key_unseen(aux))
5880 		bpf_map_key_store(aux, val);
5881 	else if (!bpf_map_key_poisoned(aux) &&
5882 		  bpf_map_key_immediate(aux) != val)
5883 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5884 	return 0;
5885 }
5886 
5887 static int check_reference_leak(struct bpf_verifier_env *env)
5888 {
5889 	struct bpf_func_state *state = cur_func(env);
5890 	int i;
5891 
5892 	for (i = 0; i < state->acquired_refs; i++) {
5893 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5894 			state->refs[i].id, state->refs[i].insn_idx);
5895 	}
5896 	return state->acquired_refs ? -EINVAL : 0;
5897 }
5898 
5899 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5900 				   struct bpf_reg_state *regs)
5901 {
5902 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5903 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5904 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
5905 	int err, fmt_map_off, num_args;
5906 	u64 fmt_addr;
5907 	char *fmt;
5908 
5909 	/* data must be an array of u64 */
5910 	if (data_len_reg->var_off.value % 8)
5911 		return -EINVAL;
5912 	num_args = data_len_reg->var_off.value / 8;
5913 
5914 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5915 	 * and map_direct_value_addr is set.
5916 	 */
5917 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5918 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5919 						  fmt_map_off);
5920 	if (err) {
5921 		verbose(env, "verifier bug\n");
5922 		return -EFAULT;
5923 	}
5924 	fmt = (char *)(long)fmt_addr + fmt_map_off;
5925 
5926 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5927 	 * can focus on validating the format specifiers.
5928 	 */
5929 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5930 	if (err < 0)
5931 		verbose(env, "Invalid format string\n");
5932 
5933 	return err;
5934 }
5935 
5936 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5937 			     int *insn_idx_p)
5938 {
5939 	const struct bpf_func_proto *fn = NULL;
5940 	struct bpf_reg_state *regs;
5941 	struct bpf_call_arg_meta meta;
5942 	int insn_idx = *insn_idx_p;
5943 	bool changes_data;
5944 	int i, err, func_id;
5945 
5946 	/* find function prototype */
5947 	func_id = insn->imm;
5948 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5949 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5950 			func_id);
5951 		return -EINVAL;
5952 	}
5953 
5954 	if (env->ops->get_func_proto)
5955 		fn = env->ops->get_func_proto(func_id, env->prog);
5956 	if (!fn) {
5957 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5958 			func_id);
5959 		return -EINVAL;
5960 	}
5961 
5962 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5963 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5964 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5965 		return -EINVAL;
5966 	}
5967 
5968 	if (fn->allowed && !fn->allowed(env->prog)) {
5969 		verbose(env, "helper call is not allowed in probe\n");
5970 		return -EINVAL;
5971 	}
5972 
5973 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5974 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5975 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5976 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5977 			func_id_name(func_id), func_id);
5978 		return -EINVAL;
5979 	}
5980 
5981 	memset(&meta, 0, sizeof(meta));
5982 	meta.pkt_access = fn->pkt_access;
5983 
5984 	err = check_func_proto(fn, func_id);
5985 	if (err) {
5986 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5987 			func_id_name(func_id), func_id);
5988 		return err;
5989 	}
5990 
5991 	meta.func_id = func_id;
5992 	/* check args */
5993 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5994 		err = check_func_arg(env, i, &meta, fn);
5995 		if (err)
5996 			return err;
5997 	}
5998 
5999 	err = record_func_map(env, &meta, func_id, insn_idx);
6000 	if (err)
6001 		return err;
6002 
6003 	err = record_func_key(env, &meta, func_id, insn_idx);
6004 	if (err)
6005 		return err;
6006 
6007 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6008 	 * is inferred from register state.
6009 	 */
6010 	for (i = 0; i < meta.access_size; i++) {
6011 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6012 				       BPF_WRITE, -1, false);
6013 		if (err)
6014 			return err;
6015 	}
6016 
6017 	if (func_id == BPF_FUNC_tail_call) {
6018 		err = check_reference_leak(env);
6019 		if (err) {
6020 			verbose(env, "tail_call would lead to reference leak\n");
6021 			return err;
6022 		}
6023 	} else if (is_release_function(func_id)) {
6024 		err = release_reference(env, meta.ref_obj_id);
6025 		if (err) {
6026 			verbose(env, "func %s#%d reference has not been acquired before\n",
6027 				func_id_name(func_id), func_id);
6028 			return err;
6029 		}
6030 	}
6031 
6032 	regs = cur_regs(env);
6033 
6034 	/* check that flags argument in get_local_storage(map, flags) is 0,
6035 	 * this is required because get_local_storage() can't return an error.
6036 	 */
6037 	if (func_id == BPF_FUNC_get_local_storage &&
6038 	    !register_is_null(&regs[BPF_REG_2])) {
6039 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6040 		return -EINVAL;
6041 	}
6042 
6043 	if (func_id == BPF_FUNC_for_each_map_elem) {
6044 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6045 					set_map_elem_callback_state);
6046 		if (err < 0)
6047 			return -EINVAL;
6048 	}
6049 
6050 	if (func_id == BPF_FUNC_snprintf) {
6051 		err = check_bpf_snprintf_call(env, regs);
6052 		if (err < 0)
6053 			return err;
6054 	}
6055 
6056 	/* reset caller saved regs */
6057 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6058 		mark_reg_not_init(env, regs, caller_saved[i]);
6059 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6060 	}
6061 
6062 	/* helper call returns 64-bit value. */
6063 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6064 
6065 	/* update return register (already marked as written above) */
6066 	if (fn->ret_type == RET_INTEGER) {
6067 		/* sets type to SCALAR_VALUE */
6068 		mark_reg_unknown(env, regs, BPF_REG_0);
6069 	} else if (fn->ret_type == RET_VOID) {
6070 		regs[BPF_REG_0].type = NOT_INIT;
6071 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6072 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6073 		/* There is no offset yet applied, variable or fixed */
6074 		mark_reg_known_zero(env, regs, BPF_REG_0);
6075 		/* remember map_ptr, so that check_map_access()
6076 		 * can check 'value_size' boundary of memory access
6077 		 * to map element returned from bpf_map_lookup_elem()
6078 		 */
6079 		if (meta.map_ptr == NULL) {
6080 			verbose(env,
6081 				"kernel subsystem misconfigured verifier\n");
6082 			return -EINVAL;
6083 		}
6084 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6085 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6086 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6087 			if (map_value_has_spin_lock(meta.map_ptr))
6088 				regs[BPF_REG_0].id = ++env->id_gen;
6089 		} else {
6090 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6091 		}
6092 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6093 		mark_reg_known_zero(env, regs, BPF_REG_0);
6094 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6095 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6096 		mark_reg_known_zero(env, regs, BPF_REG_0);
6097 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6098 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6099 		mark_reg_known_zero(env, regs, BPF_REG_0);
6100 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6101 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6102 		mark_reg_known_zero(env, regs, BPF_REG_0);
6103 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6104 		regs[BPF_REG_0].mem_size = meta.mem_size;
6105 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6106 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6107 		const struct btf_type *t;
6108 
6109 		mark_reg_known_zero(env, regs, BPF_REG_0);
6110 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6111 		if (!btf_type_is_struct(t)) {
6112 			u32 tsize;
6113 			const struct btf_type *ret;
6114 			const char *tname;
6115 
6116 			/* resolve the type size of ksym. */
6117 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6118 			if (IS_ERR(ret)) {
6119 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6120 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6121 					tname, PTR_ERR(ret));
6122 				return -EINVAL;
6123 			}
6124 			regs[BPF_REG_0].type =
6125 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6126 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6127 			regs[BPF_REG_0].mem_size = tsize;
6128 		} else {
6129 			regs[BPF_REG_0].type =
6130 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6131 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6132 			regs[BPF_REG_0].btf = meta.ret_btf;
6133 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6134 		}
6135 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6136 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6137 		int ret_btf_id;
6138 
6139 		mark_reg_known_zero(env, regs, BPF_REG_0);
6140 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6141 						     PTR_TO_BTF_ID :
6142 						     PTR_TO_BTF_ID_OR_NULL;
6143 		ret_btf_id = *fn->ret_btf_id;
6144 		if (ret_btf_id == 0) {
6145 			verbose(env, "invalid return type %d of func %s#%d\n",
6146 				fn->ret_type, func_id_name(func_id), func_id);
6147 			return -EINVAL;
6148 		}
6149 		/* current BPF helper definitions are only coming from
6150 		 * built-in code with type IDs from  vmlinux BTF
6151 		 */
6152 		regs[BPF_REG_0].btf = btf_vmlinux;
6153 		regs[BPF_REG_0].btf_id = ret_btf_id;
6154 	} else {
6155 		verbose(env, "unknown return type %d of func %s#%d\n",
6156 			fn->ret_type, func_id_name(func_id), func_id);
6157 		return -EINVAL;
6158 	}
6159 
6160 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6161 		regs[BPF_REG_0].id = ++env->id_gen;
6162 
6163 	if (is_ptr_cast_function(func_id)) {
6164 		/* For release_reference() */
6165 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6166 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6167 		int id = acquire_reference_state(env, insn_idx);
6168 
6169 		if (id < 0)
6170 			return id;
6171 		/* For mark_ptr_or_null_reg() */
6172 		regs[BPF_REG_0].id = id;
6173 		/* For release_reference() */
6174 		regs[BPF_REG_0].ref_obj_id = id;
6175 	}
6176 
6177 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6178 
6179 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6180 	if (err)
6181 		return err;
6182 
6183 	if ((func_id == BPF_FUNC_get_stack ||
6184 	     func_id == BPF_FUNC_get_task_stack) &&
6185 	    !env->prog->has_callchain_buf) {
6186 		const char *err_str;
6187 
6188 #ifdef CONFIG_PERF_EVENTS
6189 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6190 		err_str = "cannot get callchain buffer for func %s#%d\n";
6191 #else
6192 		err = -ENOTSUPP;
6193 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6194 #endif
6195 		if (err) {
6196 			verbose(env, err_str, func_id_name(func_id), func_id);
6197 			return err;
6198 		}
6199 
6200 		env->prog->has_callchain_buf = true;
6201 	}
6202 
6203 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6204 		env->prog->call_get_stack = true;
6205 
6206 	if (changes_data)
6207 		clear_all_pkt_pointers(env);
6208 	return 0;
6209 }
6210 
6211 /* mark_btf_func_reg_size() is used when the reg size is determined by
6212  * the BTF func_proto's return value size and argument.
6213  */
6214 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6215 				   size_t reg_size)
6216 {
6217 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6218 
6219 	if (regno == BPF_REG_0) {
6220 		/* Function return value */
6221 		reg->live |= REG_LIVE_WRITTEN;
6222 		reg->subreg_def = reg_size == sizeof(u64) ?
6223 			DEF_NOT_SUBREG : env->insn_idx + 1;
6224 	} else {
6225 		/* Function argument */
6226 		if (reg_size == sizeof(u64)) {
6227 			mark_insn_zext(env, reg);
6228 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6229 		} else {
6230 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6231 		}
6232 	}
6233 }
6234 
6235 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6236 {
6237 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6238 	struct bpf_reg_state *regs = cur_regs(env);
6239 	const char *func_name, *ptr_type_name;
6240 	u32 i, nargs, func_id, ptr_type_id;
6241 	const struct btf_param *args;
6242 	int err;
6243 
6244 	func_id = insn->imm;
6245 	func = btf_type_by_id(btf_vmlinux, func_id);
6246 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6247 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6248 
6249 	if (!env->ops->check_kfunc_call ||
6250 	    !env->ops->check_kfunc_call(func_id)) {
6251 		verbose(env, "calling kernel function %s is not allowed\n",
6252 			func_name);
6253 		return -EACCES;
6254 	}
6255 
6256 	/* Check the arguments */
6257 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6258 	if (err)
6259 		return err;
6260 
6261 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6262 		mark_reg_not_init(env, regs, caller_saved[i]);
6263 
6264 	/* Check return type */
6265 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6266 	if (btf_type_is_scalar(t)) {
6267 		mark_reg_unknown(env, regs, BPF_REG_0);
6268 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6269 	} else if (btf_type_is_ptr(t)) {
6270 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6271 						   &ptr_type_id);
6272 		if (!btf_type_is_struct(ptr_type)) {
6273 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6274 							   ptr_type->name_off);
6275 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6276 				func_name, btf_type_str(ptr_type),
6277 				ptr_type_name);
6278 			return -EINVAL;
6279 		}
6280 		mark_reg_known_zero(env, regs, BPF_REG_0);
6281 		regs[BPF_REG_0].btf = btf_vmlinux;
6282 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6283 		regs[BPF_REG_0].btf_id = ptr_type_id;
6284 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6285 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6286 
6287 	nargs = btf_type_vlen(func_proto);
6288 	args = (const struct btf_param *)(func_proto + 1);
6289 	for (i = 0; i < nargs; i++) {
6290 		u32 regno = i + 1;
6291 
6292 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6293 		if (btf_type_is_ptr(t))
6294 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6295 		else
6296 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6297 			mark_btf_func_reg_size(env, regno, t->size);
6298 	}
6299 
6300 	return 0;
6301 }
6302 
6303 static bool signed_add_overflows(s64 a, s64 b)
6304 {
6305 	/* Do the add in u64, where overflow is well-defined */
6306 	s64 res = (s64)((u64)a + (u64)b);
6307 
6308 	if (b < 0)
6309 		return res > a;
6310 	return res < a;
6311 }
6312 
6313 static bool signed_add32_overflows(s32 a, s32 b)
6314 {
6315 	/* Do the add in u32, where overflow is well-defined */
6316 	s32 res = (s32)((u32)a + (u32)b);
6317 
6318 	if (b < 0)
6319 		return res > a;
6320 	return res < a;
6321 }
6322 
6323 static bool signed_sub_overflows(s64 a, s64 b)
6324 {
6325 	/* Do the sub in u64, where overflow is well-defined */
6326 	s64 res = (s64)((u64)a - (u64)b);
6327 
6328 	if (b < 0)
6329 		return res < a;
6330 	return res > a;
6331 }
6332 
6333 static bool signed_sub32_overflows(s32 a, s32 b)
6334 {
6335 	/* Do the sub in u32, where overflow is well-defined */
6336 	s32 res = (s32)((u32)a - (u32)b);
6337 
6338 	if (b < 0)
6339 		return res < a;
6340 	return res > a;
6341 }
6342 
6343 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6344 				  const struct bpf_reg_state *reg,
6345 				  enum bpf_reg_type type)
6346 {
6347 	bool known = tnum_is_const(reg->var_off);
6348 	s64 val = reg->var_off.value;
6349 	s64 smin = reg->smin_value;
6350 
6351 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6352 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6353 			reg_type_str[type], val);
6354 		return false;
6355 	}
6356 
6357 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6358 		verbose(env, "%s pointer offset %d is not allowed\n",
6359 			reg_type_str[type], reg->off);
6360 		return false;
6361 	}
6362 
6363 	if (smin == S64_MIN) {
6364 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6365 			reg_type_str[type]);
6366 		return false;
6367 	}
6368 
6369 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6370 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6371 			smin, reg_type_str[type]);
6372 		return false;
6373 	}
6374 
6375 	return true;
6376 }
6377 
6378 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6379 {
6380 	return &env->insn_aux_data[env->insn_idx];
6381 }
6382 
6383 enum {
6384 	REASON_BOUNDS	= -1,
6385 	REASON_TYPE	= -2,
6386 	REASON_PATHS	= -3,
6387 	REASON_LIMIT	= -4,
6388 	REASON_STACK	= -5,
6389 };
6390 
6391 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6392 			      u32 *alu_limit, bool mask_to_left)
6393 {
6394 	u32 max = 0, ptr_limit = 0;
6395 
6396 	switch (ptr_reg->type) {
6397 	case PTR_TO_STACK:
6398 		/* Offset 0 is out-of-bounds, but acceptable start for the
6399 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6400 		 * offset where we would need to deal with min/max bounds is
6401 		 * currently prohibited for unprivileged.
6402 		 */
6403 		max = MAX_BPF_STACK + mask_to_left;
6404 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6405 		break;
6406 	case PTR_TO_MAP_VALUE:
6407 		max = ptr_reg->map_ptr->value_size;
6408 		ptr_limit = (mask_to_left ?
6409 			     ptr_reg->smin_value :
6410 			     ptr_reg->umax_value) + ptr_reg->off;
6411 		break;
6412 	default:
6413 		return REASON_TYPE;
6414 	}
6415 
6416 	if (ptr_limit >= max)
6417 		return REASON_LIMIT;
6418 	*alu_limit = ptr_limit;
6419 	return 0;
6420 }
6421 
6422 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6423 				    const struct bpf_insn *insn)
6424 {
6425 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6426 }
6427 
6428 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6429 				       u32 alu_state, u32 alu_limit)
6430 {
6431 	/* If we arrived here from different branches with different
6432 	 * state or limits to sanitize, then this won't work.
6433 	 */
6434 	if (aux->alu_state &&
6435 	    (aux->alu_state != alu_state ||
6436 	     aux->alu_limit != alu_limit))
6437 		return REASON_PATHS;
6438 
6439 	/* Corresponding fixup done in do_misc_fixups(). */
6440 	aux->alu_state = alu_state;
6441 	aux->alu_limit = alu_limit;
6442 	return 0;
6443 }
6444 
6445 static int sanitize_val_alu(struct bpf_verifier_env *env,
6446 			    struct bpf_insn *insn)
6447 {
6448 	struct bpf_insn_aux_data *aux = cur_aux(env);
6449 
6450 	if (can_skip_alu_sanitation(env, insn))
6451 		return 0;
6452 
6453 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6454 }
6455 
6456 static bool sanitize_needed(u8 opcode)
6457 {
6458 	return opcode == BPF_ADD || opcode == BPF_SUB;
6459 }
6460 
6461 struct bpf_sanitize_info {
6462 	struct bpf_insn_aux_data aux;
6463 	bool mask_to_left;
6464 };
6465 
6466 static struct bpf_verifier_state *
6467 sanitize_speculative_path(struct bpf_verifier_env *env,
6468 			  const struct bpf_insn *insn,
6469 			  u32 next_idx, u32 curr_idx)
6470 {
6471 	struct bpf_verifier_state *branch;
6472 	struct bpf_reg_state *regs;
6473 
6474 	branch = push_stack(env, next_idx, curr_idx, true);
6475 	if (branch && insn) {
6476 		regs = branch->frame[branch->curframe]->regs;
6477 		if (BPF_SRC(insn->code) == BPF_K) {
6478 			mark_reg_unknown(env, regs, insn->dst_reg);
6479 		} else if (BPF_SRC(insn->code) == BPF_X) {
6480 			mark_reg_unknown(env, regs, insn->dst_reg);
6481 			mark_reg_unknown(env, regs, insn->src_reg);
6482 		}
6483 	}
6484 	return branch;
6485 }
6486 
6487 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6488 			    struct bpf_insn *insn,
6489 			    const struct bpf_reg_state *ptr_reg,
6490 			    const struct bpf_reg_state *off_reg,
6491 			    struct bpf_reg_state *dst_reg,
6492 			    struct bpf_sanitize_info *info,
6493 			    const bool commit_window)
6494 {
6495 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6496 	struct bpf_verifier_state *vstate = env->cur_state;
6497 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6498 	bool off_is_neg = off_reg->smin_value < 0;
6499 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6500 	u8 opcode = BPF_OP(insn->code);
6501 	u32 alu_state, alu_limit;
6502 	struct bpf_reg_state tmp;
6503 	bool ret;
6504 	int err;
6505 
6506 	if (can_skip_alu_sanitation(env, insn))
6507 		return 0;
6508 
6509 	/* We already marked aux for masking from non-speculative
6510 	 * paths, thus we got here in the first place. We only care
6511 	 * to explore bad access from here.
6512 	 */
6513 	if (vstate->speculative)
6514 		goto do_sim;
6515 
6516 	if (!commit_window) {
6517 		if (!tnum_is_const(off_reg->var_off) &&
6518 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6519 			return REASON_BOUNDS;
6520 
6521 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6522 				     (opcode == BPF_SUB && !off_is_neg);
6523 	}
6524 
6525 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6526 	if (err < 0)
6527 		return err;
6528 
6529 	if (commit_window) {
6530 		/* In commit phase we narrow the masking window based on
6531 		 * the observed pointer move after the simulated operation.
6532 		 */
6533 		alu_state = info->aux.alu_state;
6534 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6535 	} else {
6536 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6537 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6538 		alu_state |= ptr_is_dst_reg ?
6539 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6540 
6541 		/* Limit pruning on unknown scalars to enable deep search for
6542 		 * potential masking differences from other program paths.
6543 		 */
6544 		if (!off_is_imm)
6545 			env->explore_alu_limits = true;
6546 	}
6547 
6548 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6549 	if (err < 0)
6550 		return err;
6551 do_sim:
6552 	/* If we're in commit phase, we're done here given we already
6553 	 * pushed the truncated dst_reg into the speculative verification
6554 	 * stack.
6555 	 *
6556 	 * Also, when register is a known constant, we rewrite register-based
6557 	 * operation to immediate-based, and thus do not need masking (and as
6558 	 * a consequence, do not need to simulate the zero-truncation either).
6559 	 */
6560 	if (commit_window || off_is_imm)
6561 		return 0;
6562 
6563 	/* Simulate and find potential out-of-bounds access under
6564 	 * speculative execution from truncation as a result of
6565 	 * masking when off was not within expected range. If off
6566 	 * sits in dst, then we temporarily need to move ptr there
6567 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6568 	 * for cases where we use K-based arithmetic in one direction
6569 	 * and truncated reg-based in the other in order to explore
6570 	 * bad access.
6571 	 */
6572 	if (!ptr_is_dst_reg) {
6573 		tmp = *dst_reg;
6574 		*dst_reg = *ptr_reg;
6575 	}
6576 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6577 					env->insn_idx);
6578 	if (!ptr_is_dst_reg && ret)
6579 		*dst_reg = tmp;
6580 	return !ret ? REASON_STACK : 0;
6581 }
6582 
6583 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6584 {
6585 	struct bpf_verifier_state *vstate = env->cur_state;
6586 
6587 	/* If we simulate paths under speculation, we don't update the
6588 	 * insn as 'seen' such that when we verify unreachable paths in
6589 	 * the non-speculative domain, sanitize_dead_code() can still
6590 	 * rewrite/sanitize them.
6591 	 */
6592 	if (!vstate->speculative)
6593 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6594 }
6595 
6596 static int sanitize_err(struct bpf_verifier_env *env,
6597 			const struct bpf_insn *insn, int reason,
6598 			const struct bpf_reg_state *off_reg,
6599 			const struct bpf_reg_state *dst_reg)
6600 {
6601 	static const char *err = "pointer arithmetic with it prohibited for !root";
6602 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6603 	u32 dst = insn->dst_reg, src = insn->src_reg;
6604 
6605 	switch (reason) {
6606 	case REASON_BOUNDS:
6607 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6608 			off_reg == dst_reg ? dst : src, err);
6609 		break;
6610 	case REASON_TYPE:
6611 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6612 			off_reg == dst_reg ? src : dst, err);
6613 		break;
6614 	case REASON_PATHS:
6615 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6616 			dst, op, err);
6617 		break;
6618 	case REASON_LIMIT:
6619 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6620 			dst, op, err);
6621 		break;
6622 	case REASON_STACK:
6623 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6624 			dst, err);
6625 		break;
6626 	default:
6627 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6628 			reason);
6629 		break;
6630 	}
6631 
6632 	return -EACCES;
6633 }
6634 
6635 /* check that stack access falls within stack limits and that 'reg' doesn't
6636  * have a variable offset.
6637  *
6638  * Variable offset is prohibited for unprivileged mode for simplicity since it
6639  * requires corresponding support in Spectre masking for stack ALU.  See also
6640  * retrieve_ptr_limit().
6641  *
6642  *
6643  * 'off' includes 'reg->off'.
6644  */
6645 static int check_stack_access_for_ptr_arithmetic(
6646 				struct bpf_verifier_env *env,
6647 				int regno,
6648 				const struct bpf_reg_state *reg,
6649 				int off)
6650 {
6651 	if (!tnum_is_const(reg->var_off)) {
6652 		char tn_buf[48];
6653 
6654 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6655 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6656 			regno, tn_buf, off);
6657 		return -EACCES;
6658 	}
6659 
6660 	if (off >= 0 || off < -MAX_BPF_STACK) {
6661 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6662 			"prohibited for !root; off=%d\n", regno, off);
6663 		return -EACCES;
6664 	}
6665 
6666 	return 0;
6667 }
6668 
6669 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6670 				 const struct bpf_insn *insn,
6671 				 const struct bpf_reg_state *dst_reg)
6672 {
6673 	u32 dst = insn->dst_reg;
6674 
6675 	/* For unprivileged we require that resulting offset must be in bounds
6676 	 * in order to be able to sanitize access later on.
6677 	 */
6678 	if (env->bypass_spec_v1)
6679 		return 0;
6680 
6681 	switch (dst_reg->type) {
6682 	case PTR_TO_STACK:
6683 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6684 					dst_reg->off + dst_reg->var_off.value))
6685 			return -EACCES;
6686 		break;
6687 	case PTR_TO_MAP_VALUE:
6688 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6689 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6690 				"prohibited for !root\n", dst);
6691 			return -EACCES;
6692 		}
6693 		break;
6694 	default:
6695 		break;
6696 	}
6697 
6698 	return 0;
6699 }
6700 
6701 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6702  * Caller should also handle BPF_MOV case separately.
6703  * If we return -EACCES, caller may want to try again treating pointer as a
6704  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6705  */
6706 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6707 				   struct bpf_insn *insn,
6708 				   const struct bpf_reg_state *ptr_reg,
6709 				   const struct bpf_reg_state *off_reg)
6710 {
6711 	struct bpf_verifier_state *vstate = env->cur_state;
6712 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6713 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6714 	bool known = tnum_is_const(off_reg->var_off);
6715 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6716 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6717 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6718 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6719 	struct bpf_sanitize_info info = {};
6720 	u8 opcode = BPF_OP(insn->code);
6721 	u32 dst = insn->dst_reg;
6722 	int ret;
6723 
6724 	dst_reg = &regs[dst];
6725 
6726 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6727 	    smin_val > smax_val || umin_val > umax_val) {
6728 		/* Taint dst register if offset had invalid bounds derived from
6729 		 * e.g. dead branches.
6730 		 */
6731 		__mark_reg_unknown(env, dst_reg);
6732 		return 0;
6733 	}
6734 
6735 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6736 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6737 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6738 			__mark_reg_unknown(env, dst_reg);
6739 			return 0;
6740 		}
6741 
6742 		verbose(env,
6743 			"R%d 32-bit pointer arithmetic prohibited\n",
6744 			dst);
6745 		return -EACCES;
6746 	}
6747 
6748 	switch (ptr_reg->type) {
6749 	case PTR_TO_MAP_VALUE_OR_NULL:
6750 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6751 			dst, reg_type_str[ptr_reg->type]);
6752 		return -EACCES;
6753 	case CONST_PTR_TO_MAP:
6754 		/* smin_val represents the known value */
6755 		if (known && smin_val == 0 && opcode == BPF_ADD)
6756 			break;
6757 		fallthrough;
6758 	case PTR_TO_PACKET_END:
6759 	case PTR_TO_SOCKET:
6760 	case PTR_TO_SOCKET_OR_NULL:
6761 	case PTR_TO_SOCK_COMMON:
6762 	case PTR_TO_SOCK_COMMON_OR_NULL:
6763 	case PTR_TO_TCP_SOCK:
6764 	case PTR_TO_TCP_SOCK_OR_NULL:
6765 	case PTR_TO_XDP_SOCK:
6766 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6767 			dst, reg_type_str[ptr_reg->type]);
6768 		return -EACCES;
6769 	default:
6770 		break;
6771 	}
6772 
6773 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6774 	 * The id may be overwritten later if we create a new variable offset.
6775 	 */
6776 	dst_reg->type = ptr_reg->type;
6777 	dst_reg->id = ptr_reg->id;
6778 
6779 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6780 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6781 		return -EINVAL;
6782 
6783 	/* pointer types do not carry 32-bit bounds at the moment. */
6784 	__mark_reg32_unbounded(dst_reg);
6785 
6786 	if (sanitize_needed(opcode)) {
6787 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6788 				       &info, false);
6789 		if (ret < 0)
6790 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6791 	}
6792 
6793 	switch (opcode) {
6794 	case BPF_ADD:
6795 		/* We can take a fixed offset as long as it doesn't overflow
6796 		 * the s32 'off' field
6797 		 */
6798 		if (known && (ptr_reg->off + smin_val ==
6799 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6800 			/* pointer += K.  Accumulate it into fixed offset */
6801 			dst_reg->smin_value = smin_ptr;
6802 			dst_reg->smax_value = smax_ptr;
6803 			dst_reg->umin_value = umin_ptr;
6804 			dst_reg->umax_value = umax_ptr;
6805 			dst_reg->var_off = ptr_reg->var_off;
6806 			dst_reg->off = ptr_reg->off + smin_val;
6807 			dst_reg->raw = ptr_reg->raw;
6808 			break;
6809 		}
6810 		/* A new variable offset is created.  Note that off_reg->off
6811 		 * == 0, since it's a scalar.
6812 		 * dst_reg gets the pointer type and since some positive
6813 		 * integer value was added to the pointer, give it a new 'id'
6814 		 * if it's a PTR_TO_PACKET.
6815 		 * this creates a new 'base' pointer, off_reg (variable) gets
6816 		 * added into the variable offset, and we copy the fixed offset
6817 		 * from ptr_reg.
6818 		 */
6819 		if (signed_add_overflows(smin_ptr, smin_val) ||
6820 		    signed_add_overflows(smax_ptr, smax_val)) {
6821 			dst_reg->smin_value = S64_MIN;
6822 			dst_reg->smax_value = S64_MAX;
6823 		} else {
6824 			dst_reg->smin_value = smin_ptr + smin_val;
6825 			dst_reg->smax_value = smax_ptr + smax_val;
6826 		}
6827 		if (umin_ptr + umin_val < umin_ptr ||
6828 		    umax_ptr + umax_val < umax_ptr) {
6829 			dst_reg->umin_value = 0;
6830 			dst_reg->umax_value = U64_MAX;
6831 		} else {
6832 			dst_reg->umin_value = umin_ptr + umin_val;
6833 			dst_reg->umax_value = umax_ptr + umax_val;
6834 		}
6835 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6836 		dst_reg->off = ptr_reg->off;
6837 		dst_reg->raw = ptr_reg->raw;
6838 		if (reg_is_pkt_pointer(ptr_reg)) {
6839 			dst_reg->id = ++env->id_gen;
6840 			/* something was added to pkt_ptr, set range to zero */
6841 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6842 		}
6843 		break;
6844 	case BPF_SUB:
6845 		if (dst_reg == off_reg) {
6846 			/* scalar -= pointer.  Creates an unknown scalar */
6847 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6848 				dst);
6849 			return -EACCES;
6850 		}
6851 		/* We don't allow subtraction from FP, because (according to
6852 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6853 		 * be able to deal with it.
6854 		 */
6855 		if (ptr_reg->type == PTR_TO_STACK) {
6856 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6857 				dst);
6858 			return -EACCES;
6859 		}
6860 		if (known && (ptr_reg->off - smin_val ==
6861 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6862 			/* pointer -= K.  Subtract it from fixed offset */
6863 			dst_reg->smin_value = smin_ptr;
6864 			dst_reg->smax_value = smax_ptr;
6865 			dst_reg->umin_value = umin_ptr;
6866 			dst_reg->umax_value = umax_ptr;
6867 			dst_reg->var_off = ptr_reg->var_off;
6868 			dst_reg->id = ptr_reg->id;
6869 			dst_reg->off = ptr_reg->off - smin_val;
6870 			dst_reg->raw = ptr_reg->raw;
6871 			break;
6872 		}
6873 		/* A new variable offset is created.  If the subtrahend is known
6874 		 * nonnegative, then any reg->range we had before is still good.
6875 		 */
6876 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6877 		    signed_sub_overflows(smax_ptr, smin_val)) {
6878 			/* Overflow possible, we know nothing */
6879 			dst_reg->smin_value = S64_MIN;
6880 			dst_reg->smax_value = S64_MAX;
6881 		} else {
6882 			dst_reg->smin_value = smin_ptr - smax_val;
6883 			dst_reg->smax_value = smax_ptr - smin_val;
6884 		}
6885 		if (umin_ptr < umax_val) {
6886 			/* Overflow possible, we know nothing */
6887 			dst_reg->umin_value = 0;
6888 			dst_reg->umax_value = U64_MAX;
6889 		} else {
6890 			/* Cannot overflow (as long as bounds are consistent) */
6891 			dst_reg->umin_value = umin_ptr - umax_val;
6892 			dst_reg->umax_value = umax_ptr - umin_val;
6893 		}
6894 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6895 		dst_reg->off = ptr_reg->off;
6896 		dst_reg->raw = ptr_reg->raw;
6897 		if (reg_is_pkt_pointer(ptr_reg)) {
6898 			dst_reg->id = ++env->id_gen;
6899 			/* something was added to pkt_ptr, set range to zero */
6900 			if (smin_val < 0)
6901 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6902 		}
6903 		break;
6904 	case BPF_AND:
6905 	case BPF_OR:
6906 	case BPF_XOR:
6907 		/* bitwise ops on pointers are troublesome, prohibit. */
6908 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6909 			dst, bpf_alu_string[opcode >> 4]);
6910 		return -EACCES;
6911 	default:
6912 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6913 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6914 			dst, bpf_alu_string[opcode >> 4]);
6915 		return -EACCES;
6916 	}
6917 
6918 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6919 		return -EINVAL;
6920 
6921 	__update_reg_bounds(dst_reg);
6922 	__reg_deduce_bounds(dst_reg);
6923 	__reg_bound_offset(dst_reg);
6924 
6925 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6926 		return -EACCES;
6927 	if (sanitize_needed(opcode)) {
6928 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6929 				       &info, true);
6930 		if (ret < 0)
6931 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6932 	}
6933 
6934 	return 0;
6935 }
6936 
6937 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6938 				 struct bpf_reg_state *src_reg)
6939 {
6940 	s32 smin_val = src_reg->s32_min_value;
6941 	s32 smax_val = src_reg->s32_max_value;
6942 	u32 umin_val = src_reg->u32_min_value;
6943 	u32 umax_val = src_reg->u32_max_value;
6944 
6945 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6946 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6947 		dst_reg->s32_min_value = S32_MIN;
6948 		dst_reg->s32_max_value = S32_MAX;
6949 	} else {
6950 		dst_reg->s32_min_value += smin_val;
6951 		dst_reg->s32_max_value += smax_val;
6952 	}
6953 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6954 	    dst_reg->u32_max_value + umax_val < umax_val) {
6955 		dst_reg->u32_min_value = 0;
6956 		dst_reg->u32_max_value = U32_MAX;
6957 	} else {
6958 		dst_reg->u32_min_value += umin_val;
6959 		dst_reg->u32_max_value += umax_val;
6960 	}
6961 }
6962 
6963 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6964 			       struct bpf_reg_state *src_reg)
6965 {
6966 	s64 smin_val = src_reg->smin_value;
6967 	s64 smax_val = src_reg->smax_value;
6968 	u64 umin_val = src_reg->umin_value;
6969 	u64 umax_val = src_reg->umax_value;
6970 
6971 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6972 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6973 		dst_reg->smin_value = S64_MIN;
6974 		dst_reg->smax_value = S64_MAX;
6975 	} else {
6976 		dst_reg->smin_value += smin_val;
6977 		dst_reg->smax_value += smax_val;
6978 	}
6979 	if (dst_reg->umin_value + umin_val < umin_val ||
6980 	    dst_reg->umax_value + umax_val < umax_val) {
6981 		dst_reg->umin_value = 0;
6982 		dst_reg->umax_value = U64_MAX;
6983 	} else {
6984 		dst_reg->umin_value += umin_val;
6985 		dst_reg->umax_value += umax_val;
6986 	}
6987 }
6988 
6989 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6990 				 struct bpf_reg_state *src_reg)
6991 {
6992 	s32 smin_val = src_reg->s32_min_value;
6993 	s32 smax_val = src_reg->s32_max_value;
6994 	u32 umin_val = src_reg->u32_min_value;
6995 	u32 umax_val = src_reg->u32_max_value;
6996 
6997 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6998 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6999 		/* Overflow possible, we know nothing */
7000 		dst_reg->s32_min_value = S32_MIN;
7001 		dst_reg->s32_max_value = S32_MAX;
7002 	} else {
7003 		dst_reg->s32_min_value -= smax_val;
7004 		dst_reg->s32_max_value -= smin_val;
7005 	}
7006 	if (dst_reg->u32_min_value < umax_val) {
7007 		/* Overflow possible, we know nothing */
7008 		dst_reg->u32_min_value = 0;
7009 		dst_reg->u32_max_value = U32_MAX;
7010 	} else {
7011 		/* Cannot overflow (as long as bounds are consistent) */
7012 		dst_reg->u32_min_value -= umax_val;
7013 		dst_reg->u32_max_value -= umin_val;
7014 	}
7015 }
7016 
7017 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7018 			       struct bpf_reg_state *src_reg)
7019 {
7020 	s64 smin_val = src_reg->smin_value;
7021 	s64 smax_val = src_reg->smax_value;
7022 	u64 umin_val = src_reg->umin_value;
7023 	u64 umax_val = src_reg->umax_value;
7024 
7025 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7026 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7027 		/* Overflow possible, we know nothing */
7028 		dst_reg->smin_value = S64_MIN;
7029 		dst_reg->smax_value = S64_MAX;
7030 	} else {
7031 		dst_reg->smin_value -= smax_val;
7032 		dst_reg->smax_value -= smin_val;
7033 	}
7034 	if (dst_reg->umin_value < umax_val) {
7035 		/* Overflow possible, we know nothing */
7036 		dst_reg->umin_value = 0;
7037 		dst_reg->umax_value = U64_MAX;
7038 	} else {
7039 		/* Cannot overflow (as long as bounds are consistent) */
7040 		dst_reg->umin_value -= umax_val;
7041 		dst_reg->umax_value -= umin_val;
7042 	}
7043 }
7044 
7045 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7046 				 struct bpf_reg_state *src_reg)
7047 {
7048 	s32 smin_val = src_reg->s32_min_value;
7049 	u32 umin_val = src_reg->u32_min_value;
7050 	u32 umax_val = src_reg->u32_max_value;
7051 
7052 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7053 		/* Ain't nobody got time to multiply that sign */
7054 		__mark_reg32_unbounded(dst_reg);
7055 		return;
7056 	}
7057 	/* Both values are positive, so we can work with unsigned and
7058 	 * copy the result to signed (unless it exceeds S32_MAX).
7059 	 */
7060 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7061 		/* Potential overflow, we know nothing */
7062 		__mark_reg32_unbounded(dst_reg);
7063 		return;
7064 	}
7065 	dst_reg->u32_min_value *= umin_val;
7066 	dst_reg->u32_max_value *= umax_val;
7067 	if (dst_reg->u32_max_value > S32_MAX) {
7068 		/* Overflow possible, we know nothing */
7069 		dst_reg->s32_min_value = S32_MIN;
7070 		dst_reg->s32_max_value = S32_MAX;
7071 	} else {
7072 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7073 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7074 	}
7075 }
7076 
7077 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7078 			       struct bpf_reg_state *src_reg)
7079 {
7080 	s64 smin_val = src_reg->smin_value;
7081 	u64 umin_val = src_reg->umin_value;
7082 	u64 umax_val = src_reg->umax_value;
7083 
7084 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7085 		/* Ain't nobody got time to multiply that sign */
7086 		__mark_reg64_unbounded(dst_reg);
7087 		return;
7088 	}
7089 	/* Both values are positive, so we can work with unsigned and
7090 	 * copy the result to signed (unless it exceeds S64_MAX).
7091 	 */
7092 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7093 		/* Potential overflow, we know nothing */
7094 		__mark_reg64_unbounded(dst_reg);
7095 		return;
7096 	}
7097 	dst_reg->umin_value *= umin_val;
7098 	dst_reg->umax_value *= umax_val;
7099 	if (dst_reg->umax_value > S64_MAX) {
7100 		/* Overflow possible, we know nothing */
7101 		dst_reg->smin_value = S64_MIN;
7102 		dst_reg->smax_value = S64_MAX;
7103 	} else {
7104 		dst_reg->smin_value = dst_reg->umin_value;
7105 		dst_reg->smax_value = dst_reg->umax_value;
7106 	}
7107 }
7108 
7109 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7110 				 struct bpf_reg_state *src_reg)
7111 {
7112 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7113 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7114 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7115 	s32 smin_val = src_reg->s32_min_value;
7116 	u32 umax_val = src_reg->u32_max_value;
7117 
7118 	if (src_known && dst_known) {
7119 		__mark_reg32_known(dst_reg, var32_off.value);
7120 		return;
7121 	}
7122 
7123 	/* We get our minimum from the var_off, since that's inherently
7124 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7125 	 */
7126 	dst_reg->u32_min_value = var32_off.value;
7127 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7128 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7129 		/* Lose signed bounds when ANDing negative numbers,
7130 		 * ain't nobody got time for that.
7131 		 */
7132 		dst_reg->s32_min_value = S32_MIN;
7133 		dst_reg->s32_max_value = S32_MAX;
7134 	} else {
7135 		/* ANDing two positives gives a positive, so safe to
7136 		 * cast result into s64.
7137 		 */
7138 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7139 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7140 	}
7141 }
7142 
7143 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7144 			       struct bpf_reg_state *src_reg)
7145 {
7146 	bool src_known = tnum_is_const(src_reg->var_off);
7147 	bool dst_known = tnum_is_const(dst_reg->var_off);
7148 	s64 smin_val = src_reg->smin_value;
7149 	u64 umax_val = src_reg->umax_value;
7150 
7151 	if (src_known && dst_known) {
7152 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7153 		return;
7154 	}
7155 
7156 	/* We get our minimum from the var_off, since that's inherently
7157 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7158 	 */
7159 	dst_reg->umin_value = dst_reg->var_off.value;
7160 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7161 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7162 		/* Lose signed bounds when ANDing negative numbers,
7163 		 * ain't nobody got time for that.
7164 		 */
7165 		dst_reg->smin_value = S64_MIN;
7166 		dst_reg->smax_value = S64_MAX;
7167 	} else {
7168 		/* ANDing two positives gives a positive, so safe to
7169 		 * cast result into s64.
7170 		 */
7171 		dst_reg->smin_value = dst_reg->umin_value;
7172 		dst_reg->smax_value = dst_reg->umax_value;
7173 	}
7174 	/* We may learn something more from the var_off */
7175 	__update_reg_bounds(dst_reg);
7176 }
7177 
7178 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7179 				struct bpf_reg_state *src_reg)
7180 {
7181 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7182 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7183 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7184 	s32 smin_val = src_reg->s32_min_value;
7185 	u32 umin_val = src_reg->u32_min_value;
7186 
7187 	if (src_known && dst_known) {
7188 		__mark_reg32_known(dst_reg, var32_off.value);
7189 		return;
7190 	}
7191 
7192 	/* We get our maximum from the var_off, and our minimum is the
7193 	 * maximum of the operands' minima
7194 	 */
7195 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7196 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7197 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7198 		/* Lose signed bounds when ORing negative numbers,
7199 		 * ain't nobody got time for that.
7200 		 */
7201 		dst_reg->s32_min_value = S32_MIN;
7202 		dst_reg->s32_max_value = S32_MAX;
7203 	} else {
7204 		/* ORing two positives gives a positive, so safe to
7205 		 * cast result into s64.
7206 		 */
7207 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7208 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7209 	}
7210 }
7211 
7212 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7213 			      struct bpf_reg_state *src_reg)
7214 {
7215 	bool src_known = tnum_is_const(src_reg->var_off);
7216 	bool dst_known = tnum_is_const(dst_reg->var_off);
7217 	s64 smin_val = src_reg->smin_value;
7218 	u64 umin_val = src_reg->umin_value;
7219 
7220 	if (src_known && dst_known) {
7221 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7222 		return;
7223 	}
7224 
7225 	/* We get our maximum from the var_off, and our minimum is the
7226 	 * maximum of the operands' minima
7227 	 */
7228 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7229 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7230 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7231 		/* Lose signed bounds when ORing negative numbers,
7232 		 * ain't nobody got time for that.
7233 		 */
7234 		dst_reg->smin_value = S64_MIN;
7235 		dst_reg->smax_value = S64_MAX;
7236 	} else {
7237 		/* ORing two positives gives a positive, so safe to
7238 		 * cast result into s64.
7239 		 */
7240 		dst_reg->smin_value = dst_reg->umin_value;
7241 		dst_reg->smax_value = dst_reg->umax_value;
7242 	}
7243 	/* We may learn something more from the var_off */
7244 	__update_reg_bounds(dst_reg);
7245 }
7246 
7247 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7248 				 struct bpf_reg_state *src_reg)
7249 {
7250 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7251 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7252 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7253 	s32 smin_val = src_reg->s32_min_value;
7254 
7255 	if (src_known && dst_known) {
7256 		__mark_reg32_known(dst_reg, var32_off.value);
7257 		return;
7258 	}
7259 
7260 	/* We get both minimum and maximum from the var32_off. */
7261 	dst_reg->u32_min_value = var32_off.value;
7262 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7263 
7264 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7265 		/* XORing two positive sign numbers gives a positive,
7266 		 * so safe to cast u32 result into s32.
7267 		 */
7268 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7269 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7270 	} else {
7271 		dst_reg->s32_min_value = S32_MIN;
7272 		dst_reg->s32_max_value = S32_MAX;
7273 	}
7274 }
7275 
7276 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7277 			       struct bpf_reg_state *src_reg)
7278 {
7279 	bool src_known = tnum_is_const(src_reg->var_off);
7280 	bool dst_known = tnum_is_const(dst_reg->var_off);
7281 	s64 smin_val = src_reg->smin_value;
7282 
7283 	if (src_known && dst_known) {
7284 		/* dst_reg->var_off.value has been updated earlier */
7285 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7286 		return;
7287 	}
7288 
7289 	/* We get both minimum and maximum from the var_off. */
7290 	dst_reg->umin_value = dst_reg->var_off.value;
7291 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7292 
7293 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7294 		/* XORing two positive sign numbers gives a positive,
7295 		 * so safe to cast u64 result into s64.
7296 		 */
7297 		dst_reg->smin_value = dst_reg->umin_value;
7298 		dst_reg->smax_value = dst_reg->umax_value;
7299 	} else {
7300 		dst_reg->smin_value = S64_MIN;
7301 		dst_reg->smax_value = S64_MAX;
7302 	}
7303 
7304 	__update_reg_bounds(dst_reg);
7305 }
7306 
7307 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7308 				   u64 umin_val, u64 umax_val)
7309 {
7310 	/* We lose all sign bit information (except what we can pick
7311 	 * up from var_off)
7312 	 */
7313 	dst_reg->s32_min_value = S32_MIN;
7314 	dst_reg->s32_max_value = S32_MAX;
7315 	/* If we might shift our top bit out, then we know nothing */
7316 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7317 		dst_reg->u32_min_value = 0;
7318 		dst_reg->u32_max_value = U32_MAX;
7319 	} else {
7320 		dst_reg->u32_min_value <<= umin_val;
7321 		dst_reg->u32_max_value <<= umax_val;
7322 	}
7323 }
7324 
7325 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7326 				 struct bpf_reg_state *src_reg)
7327 {
7328 	u32 umax_val = src_reg->u32_max_value;
7329 	u32 umin_val = src_reg->u32_min_value;
7330 	/* u32 alu operation will zext upper bits */
7331 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7332 
7333 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7334 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7335 	/* Not required but being careful mark reg64 bounds as unknown so
7336 	 * that we are forced to pick them up from tnum and zext later and
7337 	 * if some path skips this step we are still safe.
7338 	 */
7339 	__mark_reg64_unbounded(dst_reg);
7340 	__update_reg32_bounds(dst_reg);
7341 }
7342 
7343 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7344 				   u64 umin_val, u64 umax_val)
7345 {
7346 	/* Special case <<32 because it is a common compiler pattern to sign
7347 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7348 	 * positive we know this shift will also be positive so we can track
7349 	 * bounds correctly. Otherwise we lose all sign bit information except
7350 	 * what we can pick up from var_off. Perhaps we can generalize this
7351 	 * later to shifts of any length.
7352 	 */
7353 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7354 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7355 	else
7356 		dst_reg->smax_value = S64_MAX;
7357 
7358 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7359 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7360 	else
7361 		dst_reg->smin_value = S64_MIN;
7362 
7363 	/* If we might shift our top bit out, then we know nothing */
7364 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7365 		dst_reg->umin_value = 0;
7366 		dst_reg->umax_value = U64_MAX;
7367 	} else {
7368 		dst_reg->umin_value <<= umin_val;
7369 		dst_reg->umax_value <<= umax_val;
7370 	}
7371 }
7372 
7373 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7374 			       struct bpf_reg_state *src_reg)
7375 {
7376 	u64 umax_val = src_reg->umax_value;
7377 	u64 umin_val = src_reg->umin_value;
7378 
7379 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7380 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7381 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7382 
7383 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7384 	/* We may learn something more from the var_off */
7385 	__update_reg_bounds(dst_reg);
7386 }
7387 
7388 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7389 				 struct bpf_reg_state *src_reg)
7390 {
7391 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7392 	u32 umax_val = src_reg->u32_max_value;
7393 	u32 umin_val = src_reg->u32_min_value;
7394 
7395 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7396 	 * be negative, then either:
7397 	 * 1) src_reg might be zero, so the sign bit of the result is
7398 	 *    unknown, so we lose our signed bounds
7399 	 * 2) it's known negative, thus the unsigned bounds capture the
7400 	 *    signed bounds
7401 	 * 3) the signed bounds cross zero, so they tell us nothing
7402 	 *    about the result
7403 	 * If the value in dst_reg is known nonnegative, then again the
7404 	 * unsigned bounds capture the signed bounds.
7405 	 * Thus, in all cases it suffices to blow away our signed bounds
7406 	 * and rely on inferring new ones from the unsigned bounds and
7407 	 * var_off of the result.
7408 	 */
7409 	dst_reg->s32_min_value = S32_MIN;
7410 	dst_reg->s32_max_value = S32_MAX;
7411 
7412 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7413 	dst_reg->u32_min_value >>= umax_val;
7414 	dst_reg->u32_max_value >>= umin_val;
7415 
7416 	__mark_reg64_unbounded(dst_reg);
7417 	__update_reg32_bounds(dst_reg);
7418 }
7419 
7420 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7421 			       struct bpf_reg_state *src_reg)
7422 {
7423 	u64 umax_val = src_reg->umax_value;
7424 	u64 umin_val = src_reg->umin_value;
7425 
7426 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7427 	 * be negative, then either:
7428 	 * 1) src_reg might be zero, so the sign bit of the result is
7429 	 *    unknown, so we lose our signed bounds
7430 	 * 2) it's known negative, thus the unsigned bounds capture the
7431 	 *    signed bounds
7432 	 * 3) the signed bounds cross zero, so they tell us nothing
7433 	 *    about the result
7434 	 * If the value in dst_reg is known nonnegative, then again the
7435 	 * unsigned bounds capture the signed bounds.
7436 	 * Thus, in all cases it suffices to blow away our signed bounds
7437 	 * and rely on inferring new ones from the unsigned bounds and
7438 	 * var_off of the result.
7439 	 */
7440 	dst_reg->smin_value = S64_MIN;
7441 	dst_reg->smax_value = S64_MAX;
7442 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7443 	dst_reg->umin_value >>= umax_val;
7444 	dst_reg->umax_value >>= umin_val;
7445 
7446 	/* Its not easy to operate on alu32 bounds here because it depends
7447 	 * on bits being shifted in. Take easy way out and mark unbounded
7448 	 * so we can recalculate later from tnum.
7449 	 */
7450 	__mark_reg32_unbounded(dst_reg);
7451 	__update_reg_bounds(dst_reg);
7452 }
7453 
7454 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7455 				  struct bpf_reg_state *src_reg)
7456 {
7457 	u64 umin_val = src_reg->u32_min_value;
7458 
7459 	/* Upon reaching here, src_known is true and
7460 	 * umax_val is equal to umin_val.
7461 	 */
7462 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7463 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7464 
7465 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7466 
7467 	/* blow away the dst_reg umin_value/umax_value and rely on
7468 	 * dst_reg var_off to refine the result.
7469 	 */
7470 	dst_reg->u32_min_value = 0;
7471 	dst_reg->u32_max_value = U32_MAX;
7472 
7473 	__mark_reg64_unbounded(dst_reg);
7474 	__update_reg32_bounds(dst_reg);
7475 }
7476 
7477 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7478 				struct bpf_reg_state *src_reg)
7479 {
7480 	u64 umin_val = src_reg->umin_value;
7481 
7482 	/* Upon reaching here, src_known is true and umax_val is equal
7483 	 * to umin_val.
7484 	 */
7485 	dst_reg->smin_value >>= umin_val;
7486 	dst_reg->smax_value >>= umin_val;
7487 
7488 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7489 
7490 	/* blow away the dst_reg umin_value/umax_value and rely on
7491 	 * dst_reg var_off to refine the result.
7492 	 */
7493 	dst_reg->umin_value = 0;
7494 	dst_reg->umax_value = U64_MAX;
7495 
7496 	/* Its not easy to operate on alu32 bounds here because it depends
7497 	 * on bits being shifted in from upper 32-bits. Take easy way out
7498 	 * and mark unbounded so we can recalculate later from tnum.
7499 	 */
7500 	__mark_reg32_unbounded(dst_reg);
7501 	__update_reg_bounds(dst_reg);
7502 }
7503 
7504 /* WARNING: This function does calculations on 64-bit values, but the actual
7505  * execution may occur on 32-bit values. Therefore, things like bitshifts
7506  * need extra checks in the 32-bit case.
7507  */
7508 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7509 				      struct bpf_insn *insn,
7510 				      struct bpf_reg_state *dst_reg,
7511 				      struct bpf_reg_state src_reg)
7512 {
7513 	struct bpf_reg_state *regs = cur_regs(env);
7514 	u8 opcode = BPF_OP(insn->code);
7515 	bool src_known;
7516 	s64 smin_val, smax_val;
7517 	u64 umin_val, umax_val;
7518 	s32 s32_min_val, s32_max_val;
7519 	u32 u32_min_val, u32_max_val;
7520 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7521 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7522 	int ret;
7523 
7524 	smin_val = src_reg.smin_value;
7525 	smax_val = src_reg.smax_value;
7526 	umin_val = src_reg.umin_value;
7527 	umax_val = src_reg.umax_value;
7528 
7529 	s32_min_val = src_reg.s32_min_value;
7530 	s32_max_val = src_reg.s32_max_value;
7531 	u32_min_val = src_reg.u32_min_value;
7532 	u32_max_val = src_reg.u32_max_value;
7533 
7534 	if (alu32) {
7535 		src_known = tnum_subreg_is_const(src_reg.var_off);
7536 		if ((src_known &&
7537 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7538 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7539 			/* Taint dst register if offset had invalid bounds
7540 			 * derived from e.g. dead branches.
7541 			 */
7542 			__mark_reg_unknown(env, dst_reg);
7543 			return 0;
7544 		}
7545 	} else {
7546 		src_known = tnum_is_const(src_reg.var_off);
7547 		if ((src_known &&
7548 		     (smin_val != smax_val || umin_val != umax_val)) ||
7549 		    smin_val > smax_val || umin_val > umax_val) {
7550 			/* Taint dst register if offset had invalid bounds
7551 			 * derived from e.g. dead branches.
7552 			 */
7553 			__mark_reg_unknown(env, dst_reg);
7554 			return 0;
7555 		}
7556 	}
7557 
7558 	if (!src_known &&
7559 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7560 		__mark_reg_unknown(env, dst_reg);
7561 		return 0;
7562 	}
7563 
7564 	if (sanitize_needed(opcode)) {
7565 		ret = sanitize_val_alu(env, insn);
7566 		if (ret < 0)
7567 			return sanitize_err(env, insn, ret, NULL, NULL);
7568 	}
7569 
7570 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7571 	 * There are two classes of instructions: The first class we track both
7572 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7573 	 * greatest amount of precision when alu operations are mixed with jmp32
7574 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7575 	 * and BPF_OR. This is possible because these ops have fairly easy to
7576 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7577 	 * See alu32 verifier tests for examples. The second class of
7578 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7579 	 * with regards to tracking sign/unsigned bounds because the bits may
7580 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7581 	 * the reg unbounded in the subreg bound space and use the resulting
7582 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7583 	 */
7584 	switch (opcode) {
7585 	case BPF_ADD:
7586 		scalar32_min_max_add(dst_reg, &src_reg);
7587 		scalar_min_max_add(dst_reg, &src_reg);
7588 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7589 		break;
7590 	case BPF_SUB:
7591 		scalar32_min_max_sub(dst_reg, &src_reg);
7592 		scalar_min_max_sub(dst_reg, &src_reg);
7593 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7594 		break;
7595 	case BPF_MUL:
7596 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7597 		scalar32_min_max_mul(dst_reg, &src_reg);
7598 		scalar_min_max_mul(dst_reg, &src_reg);
7599 		break;
7600 	case BPF_AND:
7601 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7602 		scalar32_min_max_and(dst_reg, &src_reg);
7603 		scalar_min_max_and(dst_reg, &src_reg);
7604 		break;
7605 	case BPF_OR:
7606 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7607 		scalar32_min_max_or(dst_reg, &src_reg);
7608 		scalar_min_max_or(dst_reg, &src_reg);
7609 		break;
7610 	case BPF_XOR:
7611 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7612 		scalar32_min_max_xor(dst_reg, &src_reg);
7613 		scalar_min_max_xor(dst_reg, &src_reg);
7614 		break;
7615 	case BPF_LSH:
7616 		if (umax_val >= insn_bitness) {
7617 			/* Shifts greater than 31 or 63 are undefined.
7618 			 * This includes shifts by a negative number.
7619 			 */
7620 			mark_reg_unknown(env, regs, insn->dst_reg);
7621 			break;
7622 		}
7623 		if (alu32)
7624 			scalar32_min_max_lsh(dst_reg, &src_reg);
7625 		else
7626 			scalar_min_max_lsh(dst_reg, &src_reg);
7627 		break;
7628 	case BPF_RSH:
7629 		if (umax_val >= insn_bitness) {
7630 			/* Shifts greater than 31 or 63 are undefined.
7631 			 * This includes shifts by a negative number.
7632 			 */
7633 			mark_reg_unknown(env, regs, insn->dst_reg);
7634 			break;
7635 		}
7636 		if (alu32)
7637 			scalar32_min_max_rsh(dst_reg, &src_reg);
7638 		else
7639 			scalar_min_max_rsh(dst_reg, &src_reg);
7640 		break;
7641 	case BPF_ARSH:
7642 		if (umax_val >= insn_bitness) {
7643 			/* Shifts greater than 31 or 63 are undefined.
7644 			 * This includes shifts by a negative number.
7645 			 */
7646 			mark_reg_unknown(env, regs, insn->dst_reg);
7647 			break;
7648 		}
7649 		if (alu32)
7650 			scalar32_min_max_arsh(dst_reg, &src_reg);
7651 		else
7652 			scalar_min_max_arsh(dst_reg, &src_reg);
7653 		break;
7654 	default:
7655 		mark_reg_unknown(env, regs, insn->dst_reg);
7656 		break;
7657 	}
7658 
7659 	/* ALU32 ops are zero extended into 64bit register */
7660 	if (alu32)
7661 		zext_32_to_64(dst_reg);
7662 
7663 	__update_reg_bounds(dst_reg);
7664 	__reg_deduce_bounds(dst_reg);
7665 	__reg_bound_offset(dst_reg);
7666 	return 0;
7667 }
7668 
7669 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7670  * and var_off.
7671  */
7672 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7673 				   struct bpf_insn *insn)
7674 {
7675 	struct bpf_verifier_state *vstate = env->cur_state;
7676 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7677 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7678 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7679 	u8 opcode = BPF_OP(insn->code);
7680 	int err;
7681 
7682 	dst_reg = &regs[insn->dst_reg];
7683 	src_reg = NULL;
7684 	if (dst_reg->type != SCALAR_VALUE)
7685 		ptr_reg = dst_reg;
7686 	else
7687 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7688 		 * incorrectly propagated into other registers by find_equal_scalars()
7689 		 */
7690 		dst_reg->id = 0;
7691 	if (BPF_SRC(insn->code) == BPF_X) {
7692 		src_reg = &regs[insn->src_reg];
7693 		if (src_reg->type != SCALAR_VALUE) {
7694 			if (dst_reg->type != SCALAR_VALUE) {
7695 				/* Combining two pointers by any ALU op yields
7696 				 * an arbitrary scalar. Disallow all math except
7697 				 * pointer subtraction
7698 				 */
7699 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7700 					mark_reg_unknown(env, regs, insn->dst_reg);
7701 					return 0;
7702 				}
7703 				verbose(env, "R%d pointer %s pointer prohibited\n",
7704 					insn->dst_reg,
7705 					bpf_alu_string[opcode >> 4]);
7706 				return -EACCES;
7707 			} else {
7708 				/* scalar += pointer
7709 				 * This is legal, but we have to reverse our
7710 				 * src/dest handling in computing the range
7711 				 */
7712 				err = mark_chain_precision(env, insn->dst_reg);
7713 				if (err)
7714 					return err;
7715 				return adjust_ptr_min_max_vals(env, insn,
7716 							       src_reg, dst_reg);
7717 			}
7718 		} else if (ptr_reg) {
7719 			/* pointer += scalar */
7720 			err = mark_chain_precision(env, insn->src_reg);
7721 			if (err)
7722 				return err;
7723 			return adjust_ptr_min_max_vals(env, insn,
7724 						       dst_reg, src_reg);
7725 		}
7726 	} else {
7727 		/* Pretend the src is a reg with a known value, since we only
7728 		 * need to be able to read from this state.
7729 		 */
7730 		off_reg.type = SCALAR_VALUE;
7731 		__mark_reg_known(&off_reg, insn->imm);
7732 		src_reg = &off_reg;
7733 		if (ptr_reg) /* pointer += K */
7734 			return adjust_ptr_min_max_vals(env, insn,
7735 						       ptr_reg, src_reg);
7736 	}
7737 
7738 	/* Got here implies adding two SCALAR_VALUEs */
7739 	if (WARN_ON_ONCE(ptr_reg)) {
7740 		print_verifier_state(env, state);
7741 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7742 		return -EINVAL;
7743 	}
7744 	if (WARN_ON(!src_reg)) {
7745 		print_verifier_state(env, state);
7746 		verbose(env, "verifier internal error: no src_reg\n");
7747 		return -EINVAL;
7748 	}
7749 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7750 }
7751 
7752 /* check validity of 32-bit and 64-bit arithmetic operations */
7753 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7754 {
7755 	struct bpf_reg_state *regs = cur_regs(env);
7756 	u8 opcode = BPF_OP(insn->code);
7757 	int err;
7758 
7759 	if (opcode == BPF_END || opcode == BPF_NEG) {
7760 		if (opcode == BPF_NEG) {
7761 			if (BPF_SRC(insn->code) != 0 ||
7762 			    insn->src_reg != BPF_REG_0 ||
7763 			    insn->off != 0 || insn->imm != 0) {
7764 				verbose(env, "BPF_NEG uses reserved fields\n");
7765 				return -EINVAL;
7766 			}
7767 		} else {
7768 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7769 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7770 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7771 				verbose(env, "BPF_END uses reserved fields\n");
7772 				return -EINVAL;
7773 			}
7774 		}
7775 
7776 		/* check src operand */
7777 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7778 		if (err)
7779 			return err;
7780 
7781 		if (is_pointer_value(env, insn->dst_reg)) {
7782 			verbose(env, "R%d pointer arithmetic prohibited\n",
7783 				insn->dst_reg);
7784 			return -EACCES;
7785 		}
7786 
7787 		/* check dest operand */
7788 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7789 		if (err)
7790 			return err;
7791 
7792 	} else if (opcode == BPF_MOV) {
7793 
7794 		if (BPF_SRC(insn->code) == BPF_X) {
7795 			if (insn->imm != 0 || insn->off != 0) {
7796 				verbose(env, "BPF_MOV uses reserved fields\n");
7797 				return -EINVAL;
7798 			}
7799 
7800 			/* check src operand */
7801 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7802 			if (err)
7803 				return err;
7804 		} else {
7805 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7806 				verbose(env, "BPF_MOV uses reserved fields\n");
7807 				return -EINVAL;
7808 			}
7809 		}
7810 
7811 		/* check dest operand, mark as required later */
7812 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7813 		if (err)
7814 			return err;
7815 
7816 		if (BPF_SRC(insn->code) == BPF_X) {
7817 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7818 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7819 
7820 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7821 				/* case: R1 = R2
7822 				 * copy register state to dest reg
7823 				 */
7824 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7825 					/* Assign src and dst registers the same ID
7826 					 * that will be used by find_equal_scalars()
7827 					 * to propagate min/max range.
7828 					 */
7829 					src_reg->id = ++env->id_gen;
7830 				*dst_reg = *src_reg;
7831 				dst_reg->live |= REG_LIVE_WRITTEN;
7832 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7833 			} else {
7834 				/* R1 = (u32) R2 */
7835 				if (is_pointer_value(env, insn->src_reg)) {
7836 					verbose(env,
7837 						"R%d partial copy of pointer\n",
7838 						insn->src_reg);
7839 					return -EACCES;
7840 				} else if (src_reg->type == SCALAR_VALUE) {
7841 					*dst_reg = *src_reg;
7842 					/* Make sure ID is cleared otherwise
7843 					 * dst_reg min/max could be incorrectly
7844 					 * propagated into src_reg by find_equal_scalars()
7845 					 */
7846 					dst_reg->id = 0;
7847 					dst_reg->live |= REG_LIVE_WRITTEN;
7848 					dst_reg->subreg_def = env->insn_idx + 1;
7849 				} else {
7850 					mark_reg_unknown(env, regs,
7851 							 insn->dst_reg);
7852 				}
7853 				zext_32_to_64(dst_reg);
7854 			}
7855 		} else {
7856 			/* case: R = imm
7857 			 * remember the value we stored into this reg
7858 			 */
7859 			/* clear any state __mark_reg_known doesn't set */
7860 			mark_reg_unknown(env, regs, insn->dst_reg);
7861 			regs[insn->dst_reg].type = SCALAR_VALUE;
7862 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7863 				__mark_reg_known(regs + insn->dst_reg,
7864 						 insn->imm);
7865 			} else {
7866 				__mark_reg_known(regs + insn->dst_reg,
7867 						 (u32)insn->imm);
7868 			}
7869 		}
7870 
7871 	} else if (opcode > BPF_END) {
7872 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7873 		return -EINVAL;
7874 
7875 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7876 
7877 		if (BPF_SRC(insn->code) == BPF_X) {
7878 			if (insn->imm != 0 || insn->off != 0) {
7879 				verbose(env, "BPF_ALU uses reserved fields\n");
7880 				return -EINVAL;
7881 			}
7882 			/* check src1 operand */
7883 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7884 			if (err)
7885 				return err;
7886 		} else {
7887 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7888 				verbose(env, "BPF_ALU uses reserved fields\n");
7889 				return -EINVAL;
7890 			}
7891 		}
7892 
7893 		/* check src2 operand */
7894 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7895 		if (err)
7896 			return err;
7897 
7898 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7899 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7900 			verbose(env, "div by zero\n");
7901 			return -EINVAL;
7902 		}
7903 
7904 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7905 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7906 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7907 
7908 			if (insn->imm < 0 || insn->imm >= size) {
7909 				verbose(env, "invalid shift %d\n", insn->imm);
7910 				return -EINVAL;
7911 			}
7912 		}
7913 
7914 		/* check dest operand */
7915 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7916 		if (err)
7917 			return err;
7918 
7919 		return adjust_reg_min_max_vals(env, insn);
7920 	}
7921 
7922 	return 0;
7923 }
7924 
7925 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7926 				     struct bpf_reg_state *dst_reg,
7927 				     enum bpf_reg_type type, int new_range)
7928 {
7929 	struct bpf_reg_state *reg;
7930 	int i;
7931 
7932 	for (i = 0; i < MAX_BPF_REG; i++) {
7933 		reg = &state->regs[i];
7934 		if (reg->type == type && reg->id == dst_reg->id)
7935 			/* keep the maximum range already checked */
7936 			reg->range = max(reg->range, new_range);
7937 	}
7938 
7939 	bpf_for_each_spilled_reg(i, state, reg) {
7940 		if (!reg)
7941 			continue;
7942 		if (reg->type == type && reg->id == dst_reg->id)
7943 			reg->range = max(reg->range, new_range);
7944 	}
7945 }
7946 
7947 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7948 				   struct bpf_reg_state *dst_reg,
7949 				   enum bpf_reg_type type,
7950 				   bool range_right_open)
7951 {
7952 	int new_range, i;
7953 
7954 	if (dst_reg->off < 0 ||
7955 	    (dst_reg->off == 0 && range_right_open))
7956 		/* This doesn't give us any range */
7957 		return;
7958 
7959 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7960 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7961 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7962 		 * than pkt_end, but that's because it's also less than pkt.
7963 		 */
7964 		return;
7965 
7966 	new_range = dst_reg->off;
7967 	if (range_right_open)
7968 		new_range--;
7969 
7970 	/* Examples for register markings:
7971 	 *
7972 	 * pkt_data in dst register:
7973 	 *
7974 	 *   r2 = r3;
7975 	 *   r2 += 8;
7976 	 *   if (r2 > pkt_end) goto <handle exception>
7977 	 *   <access okay>
7978 	 *
7979 	 *   r2 = r3;
7980 	 *   r2 += 8;
7981 	 *   if (r2 < pkt_end) goto <access okay>
7982 	 *   <handle exception>
7983 	 *
7984 	 *   Where:
7985 	 *     r2 == dst_reg, pkt_end == src_reg
7986 	 *     r2=pkt(id=n,off=8,r=0)
7987 	 *     r3=pkt(id=n,off=0,r=0)
7988 	 *
7989 	 * pkt_data in src register:
7990 	 *
7991 	 *   r2 = r3;
7992 	 *   r2 += 8;
7993 	 *   if (pkt_end >= r2) goto <access okay>
7994 	 *   <handle exception>
7995 	 *
7996 	 *   r2 = r3;
7997 	 *   r2 += 8;
7998 	 *   if (pkt_end <= r2) goto <handle exception>
7999 	 *   <access okay>
8000 	 *
8001 	 *   Where:
8002 	 *     pkt_end == dst_reg, r2 == src_reg
8003 	 *     r2=pkt(id=n,off=8,r=0)
8004 	 *     r3=pkt(id=n,off=0,r=0)
8005 	 *
8006 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8007 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8008 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8009 	 * the check.
8010 	 */
8011 
8012 	/* If our ids match, then we must have the same max_value.  And we
8013 	 * don't care about the other reg's fixed offset, since if it's too big
8014 	 * the range won't allow anything.
8015 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8016 	 */
8017 	for (i = 0; i <= vstate->curframe; i++)
8018 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8019 					 new_range);
8020 }
8021 
8022 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8023 {
8024 	struct tnum subreg = tnum_subreg(reg->var_off);
8025 	s32 sval = (s32)val;
8026 
8027 	switch (opcode) {
8028 	case BPF_JEQ:
8029 		if (tnum_is_const(subreg))
8030 			return !!tnum_equals_const(subreg, val);
8031 		break;
8032 	case BPF_JNE:
8033 		if (tnum_is_const(subreg))
8034 			return !tnum_equals_const(subreg, val);
8035 		break;
8036 	case BPF_JSET:
8037 		if ((~subreg.mask & subreg.value) & val)
8038 			return 1;
8039 		if (!((subreg.mask | subreg.value) & val))
8040 			return 0;
8041 		break;
8042 	case BPF_JGT:
8043 		if (reg->u32_min_value > val)
8044 			return 1;
8045 		else if (reg->u32_max_value <= val)
8046 			return 0;
8047 		break;
8048 	case BPF_JSGT:
8049 		if (reg->s32_min_value > sval)
8050 			return 1;
8051 		else if (reg->s32_max_value <= sval)
8052 			return 0;
8053 		break;
8054 	case BPF_JLT:
8055 		if (reg->u32_max_value < val)
8056 			return 1;
8057 		else if (reg->u32_min_value >= val)
8058 			return 0;
8059 		break;
8060 	case BPF_JSLT:
8061 		if (reg->s32_max_value < sval)
8062 			return 1;
8063 		else if (reg->s32_min_value >= sval)
8064 			return 0;
8065 		break;
8066 	case BPF_JGE:
8067 		if (reg->u32_min_value >= val)
8068 			return 1;
8069 		else if (reg->u32_max_value < val)
8070 			return 0;
8071 		break;
8072 	case BPF_JSGE:
8073 		if (reg->s32_min_value >= sval)
8074 			return 1;
8075 		else if (reg->s32_max_value < sval)
8076 			return 0;
8077 		break;
8078 	case BPF_JLE:
8079 		if (reg->u32_max_value <= val)
8080 			return 1;
8081 		else if (reg->u32_min_value > val)
8082 			return 0;
8083 		break;
8084 	case BPF_JSLE:
8085 		if (reg->s32_max_value <= sval)
8086 			return 1;
8087 		else if (reg->s32_min_value > sval)
8088 			return 0;
8089 		break;
8090 	}
8091 
8092 	return -1;
8093 }
8094 
8095 
8096 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8097 {
8098 	s64 sval = (s64)val;
8099 
8100 	switch (opcode) {
8101 	case BPF_JEQ:
8102 		if (tnum_is_const(reg->var_off))
8103 			return !!tnum_equals_const(reg->var_off, val);
8104 		break;
8105 	case BPF_JNE:
8106 		if (tnum_is_const(reg->var_off))
8107 			return !tnum_equals_const(reg->var_off, val);
8108 		break;
8109 	case BPF_JSET:
8110 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8111 			return 1;
8112 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8113 			return 0;
8114 		break;
8115 	case BPF_JGT:
8116 		if (reg->umin_value > val)
8117 			return 1;
8118 		else if (reg->umax_value <= val)
8119 			return 0;
8120 		break;
8121 	case BPF_JSGT:
8122 		if (reg->smin_value > sval)
8123 			return 1;
8124 		else if (reg->smax_value <= sval)
8125 			return 0;
8126 		break;
8127 	case BPF_JLT:
8128 		if (reg->umax_value < val)
8129 			return 1;
8130 		else if (reg->umin_value >= val)
8131 			return 0;
8132 		break;
8133 	case BPF_JSLT:
8134 		if (reg->smax_value < sval)
8135 			return 1;
8136 		else if (reg->smin_value >= sval)
8137 			return 0;
8138 		break;
8139 	case BPF_JGE:
8140 		if (reg->umin_value >= val)
8141 			return 1;
8142 		else if (reg->umax_value < val)
8143 			return 0;
8144 		break;
8145 	case BPF_JSGE:
8146 		if (reg->smin_value >= sval)
8147 			return 1;
8148 		else if (reg->smax_value < sval)
8149 			return 0;
8150 		break;
8151 	case BPF_JLE:
8152 		if (reg->umax_value <= val)
8153 			return 1;
8154 		else if (reg->umin_value > val)
8155 			return 0;
8156 		break;
8157 	case BPF_JSLE:
8158 		if (reg->smax_value <= sval)
8159 			return 1;
8160 		else if (reg->smin_value > sval)
8161 			return 0;
8162 		break;
8163 	}
8164 
8165 	return -1;
8166 }
8167 
8168 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8169  * and return:
8170  *  1 - branch will be taken and "goto target" will be executed
8171  *  0 - branch will not be taken and fall-through to next insn
8172  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8173  *      range [0,10]
8174  */
8175 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8176 			   bool is_jmp32)
8177 {
8178 	if (__is_pointer_value(false, reg)) {
8179 		if (!reg_type_not_null(reg->type))
8180 			return -1;
8181 
8182 		/* If pointer is valid tests against zero will fail so we can
8183 		 * use this to direct branch taken.
8184 		 */
8185 		if (val != 0)
8186 			return -1;
8187 
8188 		switch (opcode) {
8189 		case BPF_JEQ:
8190 			return 0;
8191 		case BPF_JNE:
8192 			return 1;
8193 		default:
8194 			return -1;
8195 		}
8196 	}
8197 
8198 	if (is_jmp32)
8199 		return is_branch32_taken(reg, val, opcode);
8200 	return is_branch64_taken(reg, val, opcode);
8201 }
8202 
8203 static int flip_opcode(u32 opcode)
8204 {
8205 	/* How can we transform "a <op> b" into "b <op> a"? */
8206 	static const u8 opcode_flip[16] = {
8207 		/* these stay the same */
8208 		[BPF_JEQ  >> 4] = BPF_JEQ,
8209 		[BPF_JNE  >> 4] = BPF_JNE,
8210 		[BPF_JSET >> 4] = BPF_JSET,
8211 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8212 		[BPF_JGE  >> 4] = BPF_JLE,
8213 		[BPF_JGT  >> 4] = BPF_JLT,
8214 		[BPF_JLE  >> 4] = BPF_JGE,
8215 		[BPF_JLT  >> 4] = BPF_JGT,
8216 		[BPF_JSGE >> 4] = BPF_JSLE,
8217 		[BPF_JSGT >> 4] = BPF_JSLT,
8218 		[BPF_JSLE >> 4] = BPF_JSGE,
8219 		[BPF_JSLT >> 4] = BPF_JSGT
8220 	};
8221 	return opcode_flip[opcode >> 4];
8222 }
8223 
8224 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8225 				   struct bpf_reg_state *src_reg,
8226 				   u8 opcode)
8227 {
8228 	struct bpf_reg_state *pkt;
8229 
8230 	if (src_reg->type == PTR_TO_PACKET_END) {
8231 		pkt = dst_reg;
8232 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8233 		pkt = src_reg;
8234 		opcode = flip_opcode(opcode);
8235 	} else {
8236 		return -1;
8237 	}
8238 
8239 	if (pkt->range >= 0)
8240 		return -1;
8241 
8242 	switch (opcode) {
8243 	case BPF_JLE:
8244 		/* pkt <= pkt_end */
8245 		fallthrough;
8246 	case BPF_JGT:
8247 		/* pkt > pkt_end */
8248 		if (pkt->range == BEYOND_PKT_END)
8249 			/* pkt has at last one extra byte beyond pkt_end */
8250 			return opcode == BPF_JGT;
8251 		break;
8252 	case BPF_JLT:
8253 		/* pkt < pkt_end */
8254 		fallthrough;
8255 	case BPF_JGE:
8256 		/* pkt >= pkt_end */
8257 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8258 			return opcode == BPF_JGE;
8259 		break;
8260 	}
8261 	return -1;
8262 }
8263 
8264 /* Adjusts the register min/max values in the case that the dst_reg is the
8265  * variable register that we are working on, and src_reg is a constant or we're
8266  * simply doing a BPF_K check.
8267  * In JEQ/JNE cases we also adjust the var_off values.
8268  */
8269 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8270 			    struct bpf_reg_state *false_reg,
8271 			    u64 val, u32 val32,
8272 			    u8 opcode, bool is_jmp32)
8273 {
8274 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8275 	struct tnum false_64off = false_reg->var_off;
8276 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8277 	struct tnum true_64off = true_reg->var_off;
8278 	s64 sval = (s64)val;
8279 	s32 sval32 = (s32)val32;
8280 
8281 	/* If the dst_reg is a pointer, we can't learn anything about its
8282 	 * variable offset from the compare (unless src_reg were a pointer into
8283 	 * the same object, but we don't bother with that.
8284 	 * Since false_reg and true_reg have the same type by construction, we
8285 	 * only need to check one of them for pointerness.
8286 	 */
8287 	if (__is_pointer_value(false, false_reg))
8288 		return;
8289 
8290 	switch (opcode) {
8291 	case BPF_JEQ:
8292 	case BPF_JNE:
8293 	{
8294 		struct bpf_reg_state *reg =
8295 			opcode == BPF_JEQ ? true_reg : false_reg;
8296 
8297 		/* JEQ/JNE comparison doesn't change the register equivalence.
8298 		 * r1 = r2;
8299 		 * if (r1 == 42) goto label;
8300 		 * ...
8301 		 * label: // here both r1 and r2 are known to be 42.
8302 		 *
8303 		 * Hence when marking register as known preserve it's ID.
8304 		 */
8305 		if (is_jmp32)
8306 			__mark_reg32_known(reg, val32);
8307 		else
8308 			___mark_reg_known(reg, val);
8309 		break;
8310 	}
8311 	case BPF_JSET:
8312 		if (is_jmp32) {
8313 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8314 			if (is_power_of_2(val32))
8315 				true_32off = tnum_or(true_32off,
8316 						     tnum_const(val32));
8317 		} else {
8318 			false_64off = tnum_and(false_64off, tnum_const(~val));
8319 			if (is_power_of_2(val))
8320 				true_64off = tnum_or(true_64off,
8321 						     tnum_const(val));
8322 		}
8323 		break;
8324 	case BPF_JGE:
8325 	case BPF_JGT:
8326 	{
8327 		if (is_jmp32) {
8328 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8329 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8330 
8331 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8332 						       false_umax);
8333 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8334 						      true_umin);
8335 		} else {
8336 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8337 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8338 
8339 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8340 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8341 		}
8342 		break;
8343 	}
8344 	case BPF_JSGE:
8345 	case BPF_JSGT:
8346 	{
8347 		if (is_jmp32) {
8348 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8349 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8350 
8351 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8352 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8353 		} else {
8354 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8355 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8356 
8357 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8358 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8359 		}
8360 		break;
8361 	}
8362 	case BPF_JLE:
8363 	case BPF_JLT:
8364 	{
8365 		if (is_jmp32) {
8366 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8367 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8368 
8369 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8370 						       false_umin);
8371 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8372 						      true_umax);
8373 		} else {
8374 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8375 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8376 
8377 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8378 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8379 		}
8380 		break;
8381 	}
8382 	case BPF_JSLE:
8383 	case BPF_JSLT:
8384 	{
8385 		if (is_jmp32) {
8386 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8387 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8388 
8389 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8390 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8391 		} else {
8392 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8393 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8394 
8395 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8396 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8397 		}
8398 		break;
8399 	}
8400 	default:
8401 		return;
8402 	}
8403 
8404 	if (is_jmp32) {
8405 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8406 					     tnum_subreg(false_32off));
8407 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8408 					    tnum_subreg(true_32off));
8409 		__reg_combine_32_into_64(false_reg);
8410 		__reg_combine_32_into_64(true_reg);
8411 	} else {
8412 		false_reg->var_off = false_64off;
8413 		true_reg->var_off = true_64off;
8414 		__reg_combine_64_into_32(false_reg);
8415 		__reg_combine_64_into_32(true_reg);
8416 	}
8417 }
8418 
8419 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8420  * the variable reg.
8421  */
8422 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8423 				struct bpf_reg_state *false_reg,
8424 				u64 val, u32 val32,
8425 				u8 opcode, bool is_jmp32)
8426 {
8427 	opcode = flip_opcode(opcode);
8428 	/* This uses zero as "not present in table"; luckily the zero opcode,
8429 	 * BPF_JA, can't get here.
8430 	 */
8431 	if (opcode)
8432 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8433 }
8434 
8435 /* Regs are known to be equal, so intersect their min/max/var_off */
8436 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8437 				  struct bpf_reg_state *dst_reg)
8438 {
8439 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8440 							dst_reg->umin_value);
8441 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8442 							dst_reg->umax_value);
8443 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8444 							dst_reg->smin_value);
8445 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8446 							dst_reg->smax_value);
8447 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8448 							     dst_reg->var_off);
8449 	/* We might have learned new bounds from the var_off. */
8450 	__update_reg_bounds(src_reg);
8451 	__update_reg_bounds(dst_reg);
8452 	/* We might have learned something about the sign bit. */
8453 	__reg_deduce_bounds(src_reg);
8454 	__reg_deduce_bounds(dst_reg);
8455 	/* We might have learned some bits from the bounds. */
8456 	__reg_bound_offset(src_reg);
8457 	__reg_bound_offset(dst_reg);
8458 	/* Intersecting with the old var_off might have improved our bounds
8459 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8460 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8461 	 */
8462 	__update_reg_bounds(src_reg);
8463 	__update_reg_bounds(dst_reg);
8464 }
8465 
8466 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8467 				struct bpf_reg_state *true_dst,
8468 				struct bpf_reg_state *false_src,
8469 				struct bpf_reg_state *false_dst,
8470 				u8 opcode)
8471 {
8472 	switch (opcode) {
8473 	case BPF_JEQ:
8474 		__reg_combine_min_max(true_src, true_dst);
8475 		break;
8476 	case BPF_JNE:
8477 		__reg_combine_min_max(false_src, false_dst);
8478 		break;
8479 	}
8480 }
8481 
8482 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8483 				 struct bpf_reg_state *reg, u32 id,
8484 				 bool is_null)
8485 {
8486 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8487 	    !WARN_ON_ONCE(!reg->id)) {
8488 		/* Old offset (both fixed and variable parts) should
8489 		 * have been known-zero, because we don't allow pointer
8490 		 * arithmetic on pointers that might be NULL.
8491 		 */
8492 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8493 				 !tnum_equals_const(reg->var_off, 0) ||
8494 				 reg->off)) {
8495 			__mark_reg_known_zero(reg);
8496 			reg->off = 0;
8497 		}
8498 		if (is_null) {
8499 			reg->type = SCALAR_VALUE;
8500 			/* We don't need id and ref_obj_id from this point
8501 			 * onwards anymore, thus we should better reset it,
8502 			 * so that state pruning has chances to take effect.
8503 			 */
8504 			reg->id = 0;
8505 			reg->ref_obj_id = 0;
8506 
8507 			return;
8508 		}
8509 
8510 		mark_ptr_not_null_reg(reg);
8511 
8512 		if (!reg_may_point_to_spin_lock(reg)) {
8513 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8514 			 * in release_reg_references().
8515 			 *
8516 			 * reg->id is still used by spin_lock ptr. Other
8517 			 * than spin_lock ptr type, reg->id can be reset.
8518 			 */
8519 			reg->id = 0;
8520 		}
8521 	}
8522 }
8523 
8524 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8525 				    bool is_null)
8526 {
8527 	struct bpf_reg_state *reg;
8528 	int i;
8529 
8530 	for (i = 0; i < MAX_BPF_REG; i++)
8531 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8532 
8533 	bpf_for_each_spilled_reg(i, state, reg) {
8534 		if (!reg)
8535 			continue;
8536 		mark_ptr_or_null_reg(state, reg, id, is_null);
8537 	}
8538 }
8539 
8540 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8541  * be folded together at some point.
8542  */
8543 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8544 				  bool is_null)
8545 {
8546 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8547 	struct bpf_reg_state *regs = state->regs;
8548 	u32 ref_obj_id = regs[regno].ref_obj_id;
8549 	u32 id = regs[regno].id;
8550 	int i;
8551 
8552 	if (ref_obj_id && ref_obj_id == id && is_null)
8553 		/* regs[regno] is in the " == NULL" branch.
8554 		 * No one could have freed the reference state before
8555 		 * doing the NULL check.
8556 		 */
8557 		WARN_ON_ONCE(release_reference_state(state, id));
8558 
8559 	for (i = 0; i <= vstate->curframe; i++)
8560 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8561 }
8562 
8563 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8564 				   struct bpf_reg_state *dst_reg,
8565 				   struct bpf_reg_state *src_reg,
8566 				   struct bpf_verifier_state *this_branch,
8567 				   struct bpf_verifier_state *other_branch)
8568 {
8569 	if (BPF_SRC(insn->code) != BPF_X)
8570 		return false;
8571 
8572 	/* Pointers are always 64-bit. */
8573 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8574 		return false;
8575 
8576 	switch (BPF_OP(insn->code)) {
8577 	case BPF_JGT:
8578 		if ((dst_reg->type == PTR_TO_PACKET &&
8579 		     src_reg->type == PTR_TO_PACKET_END) ||
8580 		    (dst_reg->type == PTR_TO_PACKET_META &&
8581 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8582 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8583 			find_good_pkt_pointers(this_branch, dst_reg,
8584 					       dst_reg->type, false);
8585 			mark_pkt_end(other_branch, insn->dst_reg, true);
8586 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8587 			    src_reg->type == PTR_TO_PACKET) ||
8588 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8589 			    src_reg->type == PTR_TO_PACKET_META)) {
8590 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8591 			find_good_pkt_pointers(other_branch, src_reg,
8592 					       src_reg->type, true);
8593 			mark_pkt_end(this_branch, insn->src_reg, false);
8594 		} else {
8595 			return false;
8596 		}
8597 		break;
8598 	case BPF_JLT:
8599 		if ((dst_reg->type == PTR_TO_PACKET &&
8600 		     src_reg->type == PTR_TO_PACKET_END) ||
8601 		    (dst_reg->type == PTR_TO_PACKET_META &&
8602 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8603 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8604 			find_good_pkt_pointers(other_branch, dst_reg,
8605 					       dst_reg->type, true);
8606 			mark_pkt_end(this_branch, insn->dst_reg, false);
8607 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8608 			    src_reg->type == PTR_TO_PACKET) ||
8609 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8610 			    src_reg->type == PTR_TO_PACKET_META)) {
8611 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8612 			find_good_pkt_pointers(this_branch, src_reg,
8613 					       src_reg->type, false);
8614 			mark_pkt_end(other_branch, insn->src_reg, true);
8615 		} else {
8616 			return false;
8617 		}
8618 		break;
8619 	case BPF_JGE:
8620 		if ((dst_reg->type == PTR_TO_PACKET &&
8621 		     src_reg->type == PTR_TO_PACKET_END) ||
8622 		    (dst_reg->type == PTR_TO_PACKET_META &&
8623 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8624 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8625 			find_good_pkt_pointers(this_branch, dst_reg,
8626 					       dst_reg->type, true);
8627 			mark_pkt_end(other_branch, insn->dst_reg, false);
8628 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8629 			    src_reg->type == PTR_TO_PACKET) ||
8630 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8631 			    src_reg->type == PTR_TO_PACKET_META)) {
8632 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8633 			find_good_pkt_pointers(other_branch, src_reg,
8634 					       src_reg->type, false);
8635 			mark_pkt_end(this_branch, insn->src_reg, true);
8636 		} else {
8637 			return false;
8638 		}
8639 		break;
8640 	case BPF_JLE:
8641 		if ((dst_reg->type == PTR_TO_PACKET &&
8642 		     src_reg->type == PTR_TO_PACKET_END) ||
8643 		    (dst_reg->type == PTR_TO_PACKET_META &&
8644 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8645 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8646 			find_good_pkt_pointers(other_branch, dst_reg,
8647 					       dst_reg->type, false);
8648 			mark_pkt_end(this_branch, insn->dst_reg, true);
8649 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8650 			    src_reg->type == PTR_TO_PACKET) ||
8651 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8652 			    src_reg->type == PTR_TO_PACKET_META)) {
8653 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8654 			find_good_pkt_pointers(this_branch, src_reg,
8655 					       src_reg->type, true);
8656 			mark_pkt_end(other_branch, insn->src_reg, false);
8657 		} else {
8658 			return false;
8659 		}
8660 		break;
8661 	default:
8662 		return false;
8663 	}
8664 
8665 	return true;
8666 }
8667 
8668 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8669 			       struct bpf_reg_state *known_reg)
8670 {
8671 	struct bpf_func_state *state;
8672 	struct bpf_reg_state *reg;
8673 	int i, j;
8674 
8675 	for (i = 0; i <= vstate->curframe; i++) {
8676 		state = vstate->frame[i];
8677 		for (j = 0; j < MAX_BPF_REG; j++) {
8678 			reg = &state->regs[j];
8679 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8680 				*reg = *known_reg;
8681 		}
8682 
8683 		bpf_for_each_spilled_reg(j, state, reg) {
8684 			if (!reg)
8685 				continue;
8686 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8687 				*reg = *known_reg;
8688 		}
8689 	}
8690 }
8691 
8692 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8693 			     struct bpf_insn *insn, int *insn_idx)
8694 {
8695 	struct bpf_verifier_state *this_branch = env->cur_state;
8696 	struct bpf_verifier_state *other_branch;
8697 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8698 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8699 	u8 opcode = BPF_OP(insn->code);
8700 	bool is_jmp32;
8701 	int pred = -1;
8702 	int err;
8703 
8704 	/* Only conditional jumps are expected to reach here. */
8705 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8706 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8707 		return -EINVAL;
8708 	}
8709 
8710 	if (BPF_SRC(insn->code) == BPF_X) {
8711 		if (insn->imm != 0) {
8712 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8713 			return -EINVAL;
8714 		}
8715 
8716 		/* check src1 operand */
8717 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8718 		if (err)
8719 			return err;
8720 
8721 		if (is_pointer_value(env, insn->src_reg)) {
8722 			verbose(env, "R%d pointer comparison prohibited\n",
8723 				insn->src_reg);
8724 			return -EACCES;
8725 		}
8726 		src_reg = &regs[insn->src_reg];
8727 	} else {
8728 		if (insn->src_reg != BPF_REG_0) {
8729 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8730 			return -EINVAL;
8731 		}
8732 	}
8733 
8734 	/* check src2 operand */
8735 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8736 	if (err)
8737 		return err;
8738 
8739 	dst_reg = &regs[insn->dst_reg];
8740 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8741 
8742 	if (BPF_SRC(insn->code) == BPF_K) {
8743 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8744 	} else if (src_reg->type == SCALAR_VALUE &&
8745 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8746 		pred = is_branch_taken(dst_reg,
8747 				       tnum_subreg(src_reg->var_off).value,
8748 				       opcode,
8749 				       is_jmp32);
8750 	} else if (src_reg->type == SCALAR_VALUE &&
8751 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8752 		pred = is_branch_taken(dst_reg,
8753 				       src_reg->var_off.value,
8754 				       opcode,
8755 				       is_jmp32);
8756 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8757 		   reg_is_pkt_pointer_any(src_reg) &&
8758 		   !is_jmp32) {
8759 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8760 	}
8761 
8762 	if (pred >= 0) {
8763 		/* If we get here with a dst_reg pointer type it is because
8764 		 * above is_branch_taken() special cased the 0 comparison.
8765 		 */
8766 		if (!__is_pointer_value(false, dst_reg))
8767 			err = mark_chain_precision(env, insn->dst_reg);
8768 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8769 		    !__is_pointer_value(false, src_reg))
8770 			err = mark_chain_precision(env, insn->src_reg);
8771 		if (err)
8772 			return err;
8773 	}
8774 
8775 	if (pred == 1) {
8776 		/* Only follow the goto, ignore fall-through. If needed, push
8777 		 * the fall-through branch for simulation under speculative
8778 		 * execution.
8779 		 */
8780 		if (!env->bypass_spec_v1 &&
8781 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
8782 					       *insn_idx))
8783 			return -EFAULT;
8784 		*insn_idx += insn->off;
8785 		return 0;
8786 	} else if (pred == 0) {
8787 		/* Only follow the fall-through branch, since that's where the
8788 		 * program will go. If needed, push the goto branch for
8789 		 * simulation under speculative execution.
8790 		 */
8791 		if (!env->bypass_spec_v1 &&
8792 		    !sanitize_speculative_path(env, insn,
8793 					       *insn_idx + insn->off + 1,
8794 					       *insn_idx))
8795 			return -EFAULT;
8796 		return 0;
8797 	}
8798 
8799 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8800 				  false);
8801 	if (!other_branch)
8802 		return -EFAULT;
8803 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8804 
8805 	/* detect if we are comparing against a constant value so we can adjust
8806 	 * our min/max values for our dst register.
8807 	 * this is only legit if both are scalars (or pointers to the same
8808 	 * object, I suppose, but we don't support that right now), because
8809 	 * otherwise the different base pointers mean the offsets aren't
8810 	 * comparable.
8811 	 */
8812 	if (BPF_SRC(insn->code) == BPF_X) {
8813 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8814 
8815 		if (dst_reg->type == SCALAR_VALUE &&
8816 		    src_reg->type == SCALAR_VALUE) {
8817 			if (tnum_is_const(src_reg->var_off) ||
8818 			    (is_jmp32 &&
8819 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8820 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8821 						dst_reg,
8822 						src_reg->var_off.value,
8823 						tnum_subreg(src_reg->var_off).value,
8824 						opcode, is_jmp32);
8825 			else if (tnum_is_const(dst_reg->var_off) ||
8826 				 (is_jmp32 &&
8827 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8828 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8829 						    src_reg,
8830 						    dst_reg->var_off.value,
8831 						    tnum_subreg(dst_reg->var_off).value,
8832 						    opcode, is_jmp32);
8833 			else if (!is_jmp32 &&
8834 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8835 				/* Comparing for equality, we can combine knowledge */
8836 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8837 						    &other_branch_regs[insn->dst_reg],
8838 						    src_reg, dst_reg, opcode);
8839 			if (src_reg->id &&
8840 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8841 				find_equal_scalars(this_branch, src_reg);
8842 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8843 			}
8844 
8845 		}
8846 	} else if (dst_reg->type == SCALAR_VALUE) {
8847 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8848 					dst_reg, insn->imm, (u32)insn->imm,
8849 					opcode, is_jmp32);
8850 	}
8851 
8852 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8853 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8854 		find_equal_scalars(this_branch, dst_reg);
8855 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8856 	}
8857 
8858 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8859 	 * NOTE: these optimizations below are related with pointer comparison
8860 	 *       which will never be JMP32.
8861 	 */
8862 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8863 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8864 	    reg_type_may_be_null(dst_reg->type)) {
8865 		/* Mark all identical registers in each branch as either
8866 		 * safe or unknown depending R == 0 or R != 0 conditional.
8867 		 */
8868 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8869 				      opcode == BPF_JNE);
8870 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8871 				      opcode == BPF_JEQ);
8872 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8873 					   this_branch, other_branch) &&
8874 		   is_pointer_value(env, insn->dst_reg)) {
8875 		verbose(env, "R%d pointer comparison prohibited\n",
8876 			insn->dst_reg);
8877 		return -EACCES;
8878 	}
8879 	if (env->log.level & BPF_LOG_LEVEL)
8880 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8881 	return 0;
8882 }
8883 
8884 /* verify BPF_LD_IMM64 instruction */
8885 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8886 {
8887 	struct bpf_insn_aux_data *aux = cur_aux(env);
8888 	struct bpf_reg_state *regs = cur_regs(env);
8889 	struct bpf_reg_state *dst_reg;
8890 	struct bpf_map *map;
8891 	int err;
8892 
8893 	if (BPF_SIZE(insn->code) != BPF_DW) {
8894 		verbose(env, "invalid BPF_LD_IMM insn\n");
8895 		return -EINVAL;
8896 	}
8897 	if (insn->off != 0) {
8898 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8899 		return -EINVAL;
8900 	}
8901 
8902 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8903 	if (err)
8904 		return err;
8905 
8906 	dst_reg = &regs[insn->dst_reg];
8907 	if (insn->src_reg == 0) {
8908 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8909 
8910 		dst_reg->type = SCALAR_VALUE;
8911 		__mark_reg_known(&regs[insn->dst_reg], imm);
8912 		return 0;
8913 	}
8914 
8915 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8916 		mark_reg_known_zero(env, regs, insn->dst_reg);
8917 
8918 		dst_reg->type = aux->btf_var.reg_type;
8919 		switch (dst_reg->type) {
8920 		case PTR_TO_MEM:
8921 			dst_reg->mem_size = aux->btf_var.mem_size;
8922 			break;
8923 		case PTR_TO_BTF_ID:
8924 		case PTR_TO_PERCPU_BTF_ID:
8925 			dst_reg->btf = aux->btf_var.btf;
8926 			dst_reg->btf_id = aux->btf_var.btf_id;
8927 			break;
8928 		default:
8929 			verbose(env, "bpf verifier is misconfigured\n");
8930 			return -EFAULT;
8931 		}
8932 		return 0;
8933 	}
8934 
8935 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8936 		struct bpf_prog_aux *aux = env->prog->aux;
8937 		u32 subprogno = insn[1].imm;
8938 
8939 		if (!aux->func_info) {
8940 			verbose(env, "missing btf func_info\n");
8941 			return -EINVAL;
8942 		}
8943 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8944 			verbose(env, "callback function not static\n");
8945 			return -EINVAL;
8946 		}
8947 
8948 		dst_reg->type = PTR_TO_FUNC;
8949 		dst_reg->subprogno = subprogno;
8950 		return 0;
8951 	}
8952 
8953 	map = env->used_maps[aux->map_index];
8954 	mark_reg_known_zero(env, regs, insn->dst_reg);
8955 	dst_reg->map_ptr = map;
8956 
8957 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8958 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
8959 		dst_reg->type = PTR_TO_MAP_VALUE;
8960 		dst_reg->off = aux->map_off;
8961 		if (map_value_has_spin_lock(map))
8962 			dst_reg->id = ++env->id_gen;
8963 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8964 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
8965 		dst_reg->type = CONST_PTR_TO_MAP;
8966 	} else {
8967 		verbose(env, "bpf verifier is misconfigured\n");
8968 		return -EINVAL;
8969 	}
8970 
8971 	return 0;
8972 }
8973 
8974 static bool may_access_skb(enum bpf_prog_type type)
8975 {
8976 	switch (type) {
8977 	case BPF_PROG_TYPE_SOCKET_FILTER:
8978 	case BPF_PROG_TYPE_SCHED_CLS:
8979 	case BPF_PROG_TYPE_SCHED_ACT:
8980 		return true;
8981 	default:
8982 		return false;
8983 	}
8984 }
8985 
8986 /* verify safety of LD_ABS|LD_IND instructions:
8987  * - they can only appear in the programs where ctx == skb
8988  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8989  *   preserve R6-R9, and store return value into R0
8990  *
8991  * Implicit input:
8992  *   ctx == skb == R6 == CTX
8993  *
8994  * Explicit input:
8995  *   SRC == any register
8996  *   IMM == 32-bit immediate
8997  *
8998  * Output:
8999  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9000  */
9001 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9002 {
9003 	struct bpf_reg_state *regs = cur_regs(env);
9004 	static const int ctx_reg = BPF_REG_6;
9005 	u8 mode = BPF_MODE(insn->code);
9006 	int i, err;
9007 
9008 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9009 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9010 		return -EINVAL;
9011 	}
9012 
9013 	if (!env->ops->gen_ld_abs) {
9014 		verbose(env, "bpf verifier is misconfigured\n");
9015 		return -EINVAL;
9016 	}
9017 
9018 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9019 	    BPF_SIZE(insn->code) == BPF_DW ||
9020 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9021 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9022 		return -EINVAL;
9023 	}
9024 
9025 	/* check whether implicit source operand (register R6) is readable */
9026 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9027 	if (err)
9028 		return err;
9029 
9030 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9031 	 * gen_ld_abs() may terminate the program at runtime, leading to
9032 	 * reference leak.
9033 	 */
9034 	err = check_reference_leak(env);
9035 	if (err) {
9036 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9037 		return err;
9038 	}
9039 
9040 	if (env->cur_state->active_spin_lock) {
9041 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9042 		return -EINVAL;
9043 	}
9044 
9045 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9046 		verbose(env,
9047 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9048 		return -EINVAL;
9049 	}
9050 
9051 	if (mode == BPF_IND) {
9052 		/* check explicit source operand */
9053 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9054 		if (err)
9055 			return err;
9056 	}
9057 
9058 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9059 	if (err < 0)
9060 		return err;
9061 
9062 	/* reset caller saved regs to unreadable */
9063 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9064 		mark_reg_not_init(env, regs, caller_saved[i]);
9065 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9066 	}
9067 
9068 	/* mark destination R0 register as readable, since it contains
9069 	 * the value fetched from the packet.
9070 	 * Already marked as written above.
9071 	 */
9072 	mark_reg_unknown(env, regs, BPF_REG_0);
9073 	/* ld_abs load up to 32-bit skb data. */
9074 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9075 	return 0;
9076 }
9077 
9078 static int check_return_code(struct bpf_verifier_env *env)
9079 {
9080 	struct tnum enforce_attach_type_range = tnum_unknown;
9081 	const struct bpf_prog *prog = env->prog;
9082 	struct bpf_reg_state *reg;
9083 	struct tnum range = tnum_range(0, 1);
9084 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9085 	int err;
9086 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
9087 
9088 	/* LSM and struct_ops func-ptr's return type could be "void" */
9089 	if (!is_subprog &&
9090 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9091 	     prog_type == BPF_PROG_TYPE_LSM) &&
9092 	    !prog->aux->attach_func_proto->type)
9093 		return 0;
9094 
9095 	/* eBPF calling convention is such that R0 is used
9096 	 * to return the value from eBPF program.
9097 	 * Make sure that it's readable at this time
9098 	 * of bpf_exit, which means that program wrote
9099 	 * something into it earlier
9100 	 */
9101 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9102 	if (err)
9103 		return err;
9104 
9105 	if (is_pointer_value(env, BPF_REG_0)) {
9106 		verbose(env, "R0 leaks addr as return value\n");
9107 		return -EACCES;
9108 	}
9109 
9110 	reg = cur_regs(env) + BPF_REG_0;
9111 	if (is_subprog) {
9112 		if (reg->type != SCALAR_VALUE) {
9113 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9114 				reg_type_str[reg->type]);
9115 			return -EINVAL;
9116 		}
9117 		return 0;
9118 	}
9119 
9120 	switch (prog_type) {
9121 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9122 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9123 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9124 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9125 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9126 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9127 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9128 			range = tnum_range(1, 1);
9129 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9130 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9131 			range = tnum_range(0, 3);
9132 		break;
9133 	case BPF_PROG_TYPE_CGROUP_SKB:
9134 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9135 			range = tnum_range(0, 3);
9136 			enforce_attach_type_range = tnum_range(2, 3);
9137 		}
9138 		break;
9139 	case BPF_PROG_TYPE_CGROUP_SOCK:
9140 	case BPF_PROG_TYPE_SOCK_OPS:
9141 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9142 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9143 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9144 		break;
9145 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9146 		if (!env->prog->aux->attach_btf_id)
9147 			return 0;
9148 		range = tnum_const(0);
9149 		break;
9150 	case BPF_PROG_TYPE_TRACING:
9151 		switch (env->prog->expected_attach_type) {
9152 		case BPF_TRACE_FENTRY:
9153 		case BPF_TRACE_FEXIT:
9154 			range = tnum_const(0);
9155 			break;
9156 		case BPF_TRACE_RAW_TP:
9157 		case BPF_MODIFY_RETURN:
9158 			return 0;
9159 		case BPF_TRACE_ITER:
9160 			break;
9161 		default:
9162 			return -ENOTSUPP;
9163 		}
9164 		break;
9165 	case BPF_PROG_TYPE_SK_LOOKUP:
9166 		range = tnum_range(SK_DROP, SK_PASS);
9167 		break;
9168 	case BPF_PROG_TYPE_EXT:
9169 		/* freplace program can return anything as its return value
9170 		 * depends on the to-be-replaced kernel func or bpf program.
9171 		 */
9172 	default:
9173 		return 0;
9174 	}
9175 
9176 	if (reg->type != SCALAR_VALUE) {
9177 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9178 			reg_type_str[reg->type]);
9179 		return -EINVAL;
9180 	}
9181 
9182 	if (!tnum_in(range, reg->var_off)) {
9183 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9184 		return -EINVAL;
9185 	}
9186 
9187 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9188 	    tnum_in(enforce_attach_type_range, reg->var_off))
9189 		env->prog->enforce_expected_attach_type = 1;
9190 	return 0;
9191 }
9192 
9193 /* non-recursive DFS pseudo code
9194  * 1  procedure DFS-iterative(G,v):
9195  * 2      label v as discovered
9196  * 3      let S be a stack
9197  * 4      S.push(v)
9198  * 5      while S is not empty
9199  * 6            t <- S.pop()
9200  * 7            if t is what we're looking for:
9201  * 8                return t
9202  * 9            for all edges e in G.adjacentEdges(t) do
9203  * 10               if edge e is already labelled
9204  * 11                   continue with the next edge
9205  * 12               w <- G.adjacentVertex(t,e)
9206  * 13               if vertex w is not discovered and not explored
9207  * 14                   label e as tree-edge
9208  * 15                   label w as discovered
9209  * 16                   S.push(w)
9210  * 17                   continue at 5
9211  * 18               else if vertex w is discovered
9212  * 19                   label e as back-edge
9213  * 20               else
9214  * 21                   // vertex w is explored
9215  * 22                   label e as forward- or cross-edge
9216  * 23           label t as explored
9217  * 24           S.pop()
9218  *
9219  * convention:
9220  * 0x10 - discovered
9221  * 0x11 - discovered and fall-through edge labelled
9222  * 0x12 - discovered and fall-through and branch edges labelled
9223  * 0x20 - explored
9224  */
9225 
9226 enum {
9227 	DISCOVERED = 0x10,
9228 	EXPLORED = 0x20,
9229 	FALLTHROUGH = 1,
9230 	BRANCH = 2,
9231 };
9232 
9233 static u32 state_htab_size(struct bpf_verifier_env *env)
9234 {
9235 	return env->prog->len;
9236 }
9237 
9238 static struct bpf_verifier_state_list **explored_state(
9239 					struct bpf_verifier_env *env,
9240 					int idx)
9241 {
9242 	struct bpf_verifier_state *cur = env->cur_state;
9243 	struct bpf_func_state *state = cur->frame[cur->curframe];
9244 
9245 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9246 }
9247 
9248 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9249 {
9250 	env->insn_aux_data[idx].prune_point = true;
9251 }
9252 
9253 enum {
9254 	DONE_EXPLORING = 0,
9255 	KEEP_EXPLORING = 1,
9256 };
9257 
9258 /* t, w, e - match pseudo-code above:
9259  * t - index of current instruction
9260  * w - next instruction
9261  * e - edge
9262  */
9263 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9264 		     bool loop_ok)
9265 {
9266 	int *insn_stack = env->cfg.insn_stack;
9267 	int *insn_state = env->cfg.insn_state;
9268 
9269 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9270 		return DONE_EXPLORING;
9271 
9272 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9273 		return DONE_EXPLORING;
9274 
9275 	if (w < 0 || w >= env->prog->len) {
9276 		verbose_linfo(env, t, "%d: ", t);
9277 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9278 		return -EINVAL;
9279 	}
9280 
9281 	if (e == BRANCH)
9282 		/* mark branch target for state pruning */
9283 		init_explored_state(env, w);
9284 
9285 	if (insn_state[w] == 0) {
9286 		/* tree-edge */
9287 		insn_state[t] = DISCOVERED | e;
9288 		insn_state[w] = DISCOVERED;
9289 		if (env->cfg.cur_stack >= env->prog->len)
9290 			return -E2BIG;
9291 		insn_stack[env->cfg.cur_stack++] = w;
9292 		return KEEP_EXPLORING;
9293 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9294 		if (loop_ok && env->bpf_capable)
9295 			return DONE_EXPLORING;
9296 		verbose_linfo(env, t, "%d: ", t);
9297 		verbose_linfo(env, w, "%d: ", w);
9298 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9299 		return -EINVAL;
9300 	} else if (insn_state[w] == EXPLORED) {
9301 		/* forward- or cross-edge */
9302 		insn_state[t] = DISCOVERED | e;
9303 	} else {
9304 		verbose(env, "insn state internal bug\n");
9305 		return -EFAULT;
9306 	}
9307 	return DONE_EXPLORING;
9308 }
9309 
9310 static int visit_func_call_insn(int t, int insn_cnt,
9311 				struct bpf_insn *insns,
9312 				struct bpf_verifier_env *env,
9313 				bool visit_callee)
9314 {
9315 	int ret;
9316 
9317 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9318 	if (ret)
9319 		return ret;
9320 
9321 	if (t + 1 < insn_cnt)
9322 		init_explored_state(env, t + 1);
9323 	if (visit_callee) {
9324 		init_explored_state(env, t);
9325 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9326 				env, false);
9327 	}
9328 	return ret;
9329 }
9330 
9331 /* Visits the instruction at index t and returns one of the following:
9332  *  < 0 - an error occurred
9333  *  DONE_EXPLORING - the instruction was fully explored
9334  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9335  */
9336 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9337 {
9338 	struct bpf_insn *insns = env->prog->insnsi;
9339 	int ret;
9340 
9341 	if (bpf_pseudo_func(insns + t))
9342 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9343 
9344 	/* All non-branch instructions have a single fall-through edge. */
9345 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9346 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9347 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9348 
9349 	switch (BPF_OP(insns[t].code)) {
9350 	case BPF_EXIT:
9351 		return DONE_EXPLORING;
9352 
9353 	case BPF_CALL:
9354 		return visit_func_call_insn(t, insn_cnt, insns, env,
9355 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9356 
9357 	case BPF_JA:
9358 		if (BPF_SRC(insns[t].code) != BPF_K)
9359 			return -EINVAL;
9360 
9361 		/* unconditional jump with single edge */
9362 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9363 				true);
9364 		if (ret)
9365 			return ret;
9366 
9367 		/* unconditional jmp is not a good pruning point,
9368 		 * but it's marked, since backtracking needs
9369 		 * to record jmp history in is_state_visited().
9370 		 */
9371 		init_explored_state(env, t + insns[t].off + 1);
9372 		/* tell verifier to check for equivalent states
9373 		 * after every call and jump
9374 		 */
9375 		if (t + 1 < insn_cnt)
9376 			init_explored_state(env, t + 1);
9377 
9378 		return ret;
9379 
9380 	default:
9381 		/* conditional jump with two edges */
9382 		init_explored_state(env, t);
9383 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9384 		if (ret)
9385 			return ret;
9386 
9387 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9388 	}
9389 }
9390 
9391 /* non-recursive depth-first-search to detect loops in BPF program
9392  * loop == back-edge in directed graph
9393  */
9394 static int check_cfg(struct bpf_verifier_env *env)
9395 {
9396 	int insn_cnt = env->prog->len;
9397 	int *insn_stack, *insn_state;
9398 	int ret = 0;
9399 	int i;
9400 
9401 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9402 	if (!insn_state)
9403 		return -ENOMEM;
9404 
9405 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9406 	if (!insn_stack) {
9407 		kvfree(insn_state);
9408 		return -ENOMEM;
9409 	}
9410 
9411 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9412 	insn_stack[0] = 0; /* 0 is the first instruction */
9413 	env->cfg.cur_stack = 1;
9414 
9415 	while (env->cfg.cur_stack > 0) {
9416 		int t = insn_stack[env->cfg.cur_stack - 1];
9417 
9418 		ret = visit_insn(t, insn_cnt, env);
9419 		switch (ret) {
9420 		case DONE_EXPLORING:
9421 			insn_state[t] = EXPLORED;
9422 			env->cfg.cur_stack--;
9423 			break;
9424 		case KEEP_EXPLORING:
9425 			break;
9426 		default:
9427 			if (ret > 0) {
9428 				verbose(env, "visit_insn internal bug\n");
9429 				ret = -EFAULT;
9430 			}
9431 			goto err_free;
9432 		}
9433 	}
9434 
9435 	if (env->cfg.cur_stack < 0) {
9436 		verbose(env, "pop stack internal bug\n");
9437 		ret = -EFAULT;
9438 		goto err_free;
9439 	}
9440 
9441 	for (i = 0; i < insn_cnt; i++) {
9442 		if (insn_state[i] != EXPLORED) {
9443 			verbose(env, "unreachable insn %d\n", i);
9444 			ret = -EINVAL;
9445 			goto err_free;
9446 		}
9447 	}
9448 	ret = 0; /* cfg looks good */
9449 
9450 err_free:
9451 	kvfree(insn_state);
9452 	kvfree(insn_stack);
9453 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9454 	return ret;
9455 }
9456 
9457 static int check_abnormal_return(struct bpf_verifier_env *env)
9458 {
9459 	int i;
9460 
9461 	for (i = 1; i < env->subprog_cnt; i++) {
9462 		if (env->subprog_info[i].has_ld_abs) {
9463 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9464 			return -EINVAL;
9465 		}
9466 		if (env->subprog_info[i].has_tail_call) {
9467 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9468 			return -EINVAL;
9469 		}
9470 	}
9471 	return 0;
9472 }
9473 
9474 /* The minimum supported BTF func info size */
9475 #define MIN_BPF_FUNCINFO_SIZE	8
9476 #define MAX_FUNCINFO_REC_SIZE	252
9477 
9478 static int check_btf_func(struct bpf_verifier_env *env,
9479 			  const union bpf_attr *attr,
9480 			  bpfptr_t uattr)
9481 {
9482 	const struct btf_type *type, *func_proto, *ret_type;
9483 	u32 i, nfuncs, urec_size, min_size;
9484 	u32 krec_size = sizeof(struct bpf_func_info);
9485 	struct bpf_func_info *krecord;
9486 	struct bpf_func_info_aux *info_aux = NULL;
9487 	struct bpf_prog *prog;
9488 	const struct btf *btf;
9489 	bpfptr_t urecord;
9490 	u32 prev_offset = 0;
9491 	bool scalar_return;
9492 	int ret = -ENOMEM;
9493 
9494 	nfuncs = attr->func_info_cnt;
9495 	if (!nfuncs) {
9496 		if (check_abnormal_return(env))
9497 			return -EINVAL;
9498 		return 0;
9499 	}
9500 
9501 	if (nfuncs != env->subprog_cnt) {
9502 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9503 		return -EINVAL;
9504 	}
9505 
9506 	urec_size = attr->func_info_rec_size;
9507 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9508 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9509 	    urec_size % sizeof(u32)) {
9510 		verbose(env, "invalid func info rec size %u\n", urec_size);
9511 		return -EINVAL;
9512 	}
9513 
9514 	prog = env->prog;
9515 	btf = prog->aux->btf;
9516 
9517 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9518 	min_size = min_t(u32, krec_size, urec_size);
9519 
9520 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9521 	if (!krecord)
9522 		return -ENOMEM;
9523 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9524 	if (!info_aux)
9525 		goto err_free;
9526 
9527 	for (i = 0; i < nfuncs; i++) {
9528 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9529 		if (ret) {
9530 			if (ret == -E2BIG) {
9531 				verbose(env, "nonzero tailing record in func info");
9532 				/* set the size kernel expects so loader can zero
9533 				 * out the rest of the record.
9534 				 */
9535 				if (copy_to_bpfptr_offset(uattr,
9536 							  offsetof(union bpf_attr, func_info_rec_size),
9537 							  &min_size, sizeof(min_size)))
9538 					ret = -EFAULT;
9539 			}
9540 			goto err_free;
9541 		}
9542 
9543 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9544 			ret = -EFAULT;
9545 			goto err_free;
9546 		}
9547 
9548 		/* check insn_off */
9549 		ret = -EINVAL;
9550 		if (i == 0) {
9551 			if (krecord[i].insn_off) {
9552 				verbose(env,
9553 					"nonzero insn_off %u for the first func info record",
9554 					krecord[i].insn_off);
9555 				goto err_free;
9556 			}
9557 		} else if (krecord[i].insn_off <= prev_offset) {
9558 			verbose(env,
9559 				"same or smaller insn offset (%u) than previous func info record (%u)",
9560 				krecord[i].insn_off, prev_offset);
9561 			goto err_free;
9562 		}
9563 
9564 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9565 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9566 			goto err_free;
9567 		}
9568 
9569 		/* check type_id */
9570 		type = btf_type_by_id(btf, krecord[i].type_id);
9571 		if (!type || !btf_type_is_func(type)) {
9572 			verbose(env, "invalid type id %d in func info",
9573 				krecord[i].type_id);
9574 			goto err_free;
9575 		}
9576 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9577 
9578 		func_proto = btf_type_by_id(btf, type->type);
9579 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9580 			/* btf_func_check() already verified it during BTF load */
9581 			goto err_free;
9582 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9583 		scalar_return =
9584 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9585 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9586 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9587 			goto err_free;
9588 		}
9589 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9590 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9591 			goto err_free;
9592 		}
9593 
9594 		prev_offset = krecord[i].insn_off;
9595 		bpfptr_add(&urecord, urec_size);
9596 	}
9597 
9598 	prog->aux->func_info = krecord;
9599 	prog->aux->func_info_cnt = nfuncs;
9600 	prog->aux->func_info_aux = info_aux;
9601 	return 0;
9602 
9603 err_free:
9604 	kvfree(krecord);
9605 	kfree(info_aux);
9606 	return ret;
9607 }
9608 
9609 static void adjust_btf_func(struct bpf_verifier_env *env)
9610 {
9611 	struct bpf_prog_aux *aux = env->prog->aux;
9612 	int i;
9613 
9614 	if (!aux->func_info)
9615 		return;
9616 
9617 	for (i = 0; i < env->subprog_cnt; i++)
9618 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9619 }
9620 
9621 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9622 		sizeof(((struct bpf_line_info *)(0))->line_col))
9623 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9624 
9625 static int check_btf_line(struct bpf_verifier_env *env,
9626 			  const union bpf_attr *attr,
9627 			  bpfptr_t uattr)
9628 {
9629 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9630 	struct bpf_subprog_info *sub;
9631 	struct bpf_line_info *linfo;
9632 	struct bpf_prog *prog;
9633 	const struct btf *btf;
9634 	bpfptr_t ulinfo;
9635 	int err;
9636 
9637 	nr_linfo = attr->line_info_cnt;
9638 	if (!nr_linfo)
9639 		return 0;
9640 
9641 	rec_size = attr->line_info_rec_size;
9642 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9643 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9644 	    rec_size & (sizeof(u32) - 1))
9645 		return -EINVAL;
9646 
9647 	/* Need to zero it in case the userspace may
9648 	 * pass in a smaller bpf_line_info object.
9649 	 */
9650 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9651 			 GFP_KERNEL | __GFP_NOWARN);
9652 	if (!linfo)
9653 		return -ENOMEM;
9654 
9655 	prog = env->prog;
9656 	btf = prog->aux->btf;
9657 
9658 	s = 0;
9659 	sub = env->subprog_info;
9660 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9661 	expected_size = sizeof(struct bpf_line_info);
9662 	ncopy = min_t(u32, expected_size, rec_size);
9663 	for (i = 0; i < nr_linfo; i++) {
9664 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9665 		if (err) {
9666 			if (err == -E2BIG) {
9667 				verbose(env, "nonzero tailing record in line_info");
9668 				if (copy_to_bpfptr_offset(uattr,
9669 							  offsetof(union bpf_attr, line_info_rec_size),
9670 							  &expected_size, sizeof(expected_size)))
9671 					err = -EFAULT;
9672 			}
9673 			goto err_free;
9674 		}
9675 
9676 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9677 			err = -EFAULT;
9678 			goto err_free;
9679 		}
9680 
9681 		/*
9682 		 * Check insn_off to ensure
9683 		 * 1) strictly increasing AND
9684 		 * 2) bounded by prog->len
9685 		 *
9686 		 * The linfo[0].insn_off == 0 check logically falls into
9687 		 * the later "missing bpf_line_info for func..." case
9688 		 * because the first linfo[0].insn_off must be the
9689 		 * first sub also and the first sub must have
9690 		 * subprog_info[0].start == 0.
9691 		 */
9692 		if ((i && linfo[i].insn_off <= prev_offset) ||
9693 		    linfo[i].insn_off >= prog->len) {
9694 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9695 				i, linfo[i].insn_off, prev_offset,
9696 				prog->len);
9697 			err = -EINVAL;
9698 			goto err_free;
9699 		}
9700 
9701 		if (!prog->insnsi[linfo[i].insn_off].code) {
9702 			verbose(env,
9703 				"Invalid insn code at line_info[%u].insn_off\n",
9704 				i);
9705 			err = -EINVAL;
9706 			goto err_free;
9707 		}
9708 
9709 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9710 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9711 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9712 			err = -EINVAL;
9713 			goto err_free;
9714 		}
9715 
9716 		if (s != env->subprog_cnt) {
9717 			if (linfo[i].insn_off == sub[s].start) {
9718 				sub[s].linfo_idx = i;
9719 				s++;
9720 			} else if (sub[s].start < linfo[i].insn_off) {
9721 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9722 				err = -EINVAL;
9723 				goto err_free;
9724 			}
9725 		}
9726 
9727 		prev_offset = linfo[i].insn_off;
9728 		bpfptr_add(&ulinfo, rec_size);
9729 	}
9730 
9731 	if (s != env->subprog_cnt) {
9732 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9733 			env->subprog_cnt - s, s);
9734 		err = -EINVAL;
9735 		goto err_free;
9736 	}
9737 
9738 	prog->aux->linfo = linfo;
9739 	prog->aux->nr_linfo = nr_linfo;
9740 
9741 	return 0;
9742 
9743 err_free:
9744 	kvfree(linfo);
9745 	return err;
9746 }
9747 
9748 static int check_btf_info(struct bpf_verifier_env *env,
9749 			  const union bpf_attr *attr,
9750 			  bpfptr_t uattr)
9751 {
9752 	struct btf *btf;
9753 	int err;
9754 
9755 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9756 		if (check_abnormal_return(env))
9757 			return -EINVAL;
9758 		return 0;
9759 	}
9760 
9761 	btf = btf_get_by_fd(attr->prog_btf_fd);
9762 	if (IS_ERR(btf))
9763 		return PTR_ERR(btf);
9764 	if (btf_is_kernel(btf)) {
9765 		btf_put(btf);
9766 		return -EACCES;
9767 	}
9768 	env->prog->aux->btf = btf;
9769 
9770 	err = check_btf_func(env, attr, uattr);
9771 	if (err)
9772 		return err;
9773 
9774 	err = check_btf_line(env, attr, uattr);
9775 	if (err)
9776 		return err;
9777 
9778 	return 0;
9779 }
9780 
9781 /* check %cur's range satisfies %old's */
9782 static bool range_within(struct bpf_reg_state *old,
9783 			 struct bpf_reg_state *cur)
9784 {
9785 	return old->umin_value <= cur->umin_value &&
9786 	       old->umax_value >= cur->umax_value &&
9787 	       old->smin_value <= cur->smin_value &&
9788 	       old->smax_value >= cur->smax_value &&
9789 	       old->u32_min_value <= cur->u32_min_value &&
9790 	       old->u32_max_value >= cur->u32_max_value &&
9791 	       old->s32_min_value <= cur->s32_min_value &&
9792 	       old->s32_max_value >= cur->s32_max_value;
9793 }
9794 
9795 /* If in the old state two registers had the same id, then they need to have
9796  * the same id in the new state as well.  But that id could be different from
9797  * the old state, so we need to track the mapping from old to new ids.
9798  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9799  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9800  * regs with a different old id could still have new id 9, we don't care about
9801  * that.
9802  * So we look through our idmap to see if this old id has been seen before.  If
9803  * so, we require the new id to match; otherwise, we add the id pair to the map.
9804  */
9805 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9806 {
9807 	unsigned int i;
9808 
9809 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9810 		if (!idmap[i].old) {
9811 			/* Reached an empty slot; haven't seen this id before */
9812 			idmap[i].old = old_id;
9813 			idmap[i].cur = cur_id;
9814 			return true;
9815 		}
9816 		if (idmap[i].old == old_id)
9817 			return idmap[i].cur == cur_id;
9818 	}
9819 	/* We ran out of idmap slots, which should be impossible */
9820 	WARN_ON_ONCE(1);
9821 	return false;
9822 }
9823 
9824 static void clean_func_state(struct bpf_verifier_env *env,
9825 			     struct bpf_func_state *st)
9826 {
9827 	enum bpf_reg_liveness live;
9828 	int i, j;
9829 
9830 	for (i = 0; i < BPF_REG_FP; i++) {
9831 		live = st->regs[i].live;
9832 		/* liveness must not touch this register anymore */
9833 		st->regs[i].live |= REG_LIVE_DONE;
9834 		if (!(live & REG_LIVE_READ))
9835 			/* since the register is unused, clear its state
9836 			 * to make further comparison simpler
9837 			 */
9838 			__mark_reg_not_init(env, &st->regs[i]);
9839 	}
9840 
9841 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9842 		live = st->stack[i].spilled_ptr.live;
9843 		/* liveness must not touch this stack slot anymore */
9844 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9845 		if (!(live & REG_LIVE_READ)) {
9846 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9847 			for (j = 0; j < BPF_REG_SIZE; j++)
9848 				st->stack[i].slot_type[j] = STACK_INVALID;
9849 		}
9850 	}
9851 }
9852 
9853 static void clean_verifier_state(struct bpf_verifier_env *env,
9854 				 struct bpf_verifier_state *st)
9855 {
9856 	int i;
9857 
9858 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9859 		/* all regs in this state in all frames were already marked */
9860 		return;
9861 
9862 	for (i = 0; i <= st->curframe; i++)
9863 		clean_func_state(env, st->frame[i]);
9864 }
9865 
9866 /* the parentage chains form a tree.
9867  * the verifier states are added to state lists at given insn and
9868  * pushed into state stack for future exploration.
9869  * when the verifier reaches bpf_exit insn some of the verifer states
9870  * stored in the state lists have their final liveness state already,
9871  * but a lot of states will get revised from liveness point of view when
9872  * the verifier explores other branches.
9873  * Example:
9874  * 1: r0 = 1
9875  * 2: if r1 == 100 goto pc+1
9876  * 3: r0 = 2
9877  * 4: exit
9878  * when the verifier reaches exit insn the register r0 in the state list of
9879  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9880  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9881  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9882  *
9883  * Since the verifier pushes the branch states as it sees them while exploring
9884  * the program the condition of walking the branch instruction for the second
9885  * time means that all states below this branch were already explored and
9886  * their final liveness marks are already propagated.
9887  * Hence when the verifier completes the search of state list in is_state_visited()
9888  * we can call this clean_live_states() function to mark all liveness states
9889  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9890  * will not be used.
9891  * This function also clears the registers and stack for states that !READ
9892  * to simplify state merging.
9893  *
9894  * Important note here that walking the same branch instruction in the callee
9895  * doesn't meant that the states are DONE. The verifier has to compare
9896  * the callsites
9897  */
9898 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9899 			      struct bpf_verifier_state *cur)
9900 {
9901 	struct bpf_verifier_state_list *sl;
9902 	int i;
9903 
9904 	sl = *explored_state(env, insn);
9905 	while (sl) {
9906 		if (sl->state.branches)
9907 			goto next;
9908 		if (sl->state.insn_idx != insn ||
9909 		    sl->state.curframe != cur->curframe)
9910 			goto next;
9911 		for (i = 0; i <= cur->curframe; i++)
9912 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9913 				goto next;
9914 		clean_verifier_state(env, &sl->state);
9915 next:
9916 		sl = sl->next;
9917 	}
9918 }
9919 
9920 /* Returns true if (rold safe implies rcur safe) */
9921 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9922 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9923 {
9924 	bool equal;
9925 
9926 	if (!(rold->live & REG_LIVE_READ))
9927 		/* explored state didn't use this */
9928 		return true;
9929 
9930 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9931 
9932 	if (rold->type == PTR_TO_STACK)
9933 		/* two stack pointers are equal only if they're pointing to
9934 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9935 		 */
9936 		return equal && rold->frameno == rcur->frameno;
9937 
9938 	if (equal)
9939 		return true;
9940 
9941 	if (rold->type == NOT_INIT)
9942 		/* explored state can't have used this */
9943 		return true;
9944 	if (rcur->type == NOT_INIT)
9945 		return false;
9946 	switch (rold->type) {
9947 	case SCALAR_VALUE:
9948 		if (env->explore_alu_limits)
9949 			return false;
9950 		if (rcur->type == SCALAR_VALUE) {
9951 			if (!rold->precise && !rcur->precise)
9952 				return true;
9953 			/* new val must satisfy old val knowledge */
9954 			return range_within(rold, rcur) &&
9955 			       tnum_in(rold->var_off, rcur->var_off);
9956 		} else {
9957 			/* We're trying to use a pointer in place of a scalar.
9958 			 * Even if the scalar was unbounded, this could lead to
9959 			 * pointer leaks because scalars are allowed to leak
9960 			 * while pointers are not. We could make this safe in
9961 			 * special cases if root is calling us, but it's
9962 			 * probably not worth the hassle.
9963 			 */
9964 			return false;
9965 		}
9966 	case PTR_TO_MAP_KEY:
9967 	case PTR_TO_MAP_VALUE:
9968 		/* If the new min/max/var_off satisfy the old ones and
9969 		 * everything else matches, we are OK.
9970 		 * 'id' is not compared, since it's only used for maps with
9971 		 * bpf_spin_lock inside map element and in such cases if
9972 		 * the rest of the prog is valid for one map element then
9973 		 * it's valid for all map elements regardless of the key
9974 		 * used in bpf_map_lookup()
9975 		 */
9976 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9977 		       range_within(rold, rcur) &&
9978 		       tnum_in(rold->var_off, rcur->var_off);
9979 	case PTR_TO_MAP_VALUE_OR_NULL:
9980 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9981 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9982 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9983 		 * checked, doing so could have affected others with the same
9984 		 * id, and we can't check for that because we lost the id when
9985 		 * we converted to a PTR_TO_MAP_VALUE.
9986 		 */
9987 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9988 			return false;
9989 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9990 			return false;
9991 		/* Check our ids match any regs they're supposed to */
9992 		return check_ids(rold->id, rcur->id, idmap);
9993 	case PTR_TO_PACKET_META:
9994 	case PTR_TO_PACKET:
9995 		if (rcur->type != rold->type)
9996 			return false;
9997 		/* We must have at least as much range as the old ptr
9998 		 * did, so that any accesses which were safe before are
9999 		 * still safe.  This is true even if old range < old off,
10000 		 * since someone could have accessed through (ptr - k), or
10001 		 * even done ptr -= k in a register, to get a safe access.
10002 		 */
10003 		if (rold->range > rcur->range)
10004 			return false;
10005 		/* If the offsets don't match, we can't trust our alignment;
10006 		 * nor can we be sure that we won't fall out of range.
10007 		 */
10008 		if (rold->off != rcur->off)
10009 			return false;
10010 		/* id relations must be preserved */
10011 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10012 			return false;
10013 		/* new val must satisfy old val knowledge */
10014 		return range_within(rold, rcur) &&
10015 		       tnum_in(rold->var_off, rcur->var_off);
10016 	case PTR_TO_CTX:
10017 	case CONST_PTR_TO_MAP:
10018 	case PTR_TO_PACKET_END:
10019 	case PTR_TO_FLOW_KEYS:
10020 	case PTR_TO_SOCKET:
10021 	case PTR_TO_SOCKET_OR_NULL:
10022 	case PTR_TO_SOCK_COMMON:
10023 	case PTR_TO_SOCK_COMMON_OR_NULL:
10024 	case PTR_TO_TCP_SOCK:
10025 	case PTR_TO_TCP_SOCK_OR_NULL:
10026 	case PTR_TO_XDP_SOCK:
10027 		/* Only valid matches are exact, which memcmp() above
10028 		 * would have accepted
10029 		 */
10030 	default:
10031 		/* Don't know what's going on, just say it's not safe */
10032 		return false;
10033 	}
10034 
10035 	/* Shouldn't get here; if we do, say it's not safe */
10036 	WARN_ON_ONCE(1);
10037 	return false;
10038 }
10039 
10040 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10041 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10042 {
10043 	int i, spi;
10044 
10045 	/* walk slots of the explored stack and ignore any additional
10046 	 * slots in the current stack, since explored(safe) state
10047 	 * didn't use them
10048 	 */
10049 	for (i = 0; i < old->allocated_stack; i++) {
10050 		spi = i / BPF_REG_SIZE;
10051 
10052 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10053 			i += BPF_REG_SIZE - 1;
10054 			/* explored state didn't use this */
10055 			continue;
10056 		}
10057 
10058 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10059 			continue;
10060 
10061 		/* explored stack has more populated slots than current stack
10062 		 * and these slots were used
10063 		 */
10064 		if (i >= cur->allocated_stack)
10065 			return false;
10066 
10067 		/* if old state was safe with misc data in the stack
10068 		 * it will be safe with zero-initialized stack.
10069 		 * The opposite is not true
10070 		 */
10071 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10072 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10073 			continue;
10074 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10075 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10076 			/* Ex: old explored (safe) state has STACK_SPILL in
10077 			 * this stack slot, but current has STACK_MISC ->
10078 			 * this verifier states are not equivalent,
10079 			 * return false to continue verification of this path
10080 			 */
10081 			return false;
10082 		if (i % BPF_REG_SIZE)
10083 			continue;
10084 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10085 			continue;
10086 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10087 			     &cur->stack[spi].spilled_ptr, idmap))
10088 			/* when explored and current stack slot are both storing
10089 			 * spilled registers, check that stored pointers types
10090 			 * are the same as well.
10091 			 * Ex: explored safe path could have stored
10092 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10093 			 * but current path has stored:
10094 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10095 			 * such verifier states are not equivalent.
10096 			 * return false to continue verification of this path
10097 			 */
10098 			return false;
10099 	}
10100 	return true;
10101 }
10102 
10103 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10104 {
10105 	if (old->acquired_refs != cur->acquired_refs)
10106 		return false;
10107 	return !memcmp(old->refs, cur->refs,
10108 		       sizeof(*old->refs) * old->acquired_refs);
10109 }
10110 
10111 /* compare two verifier states
10112  *
10113  * all states stored in state_list are known to be valid, since
10114  * verifier reached 'bpf_exit' instruction through them
10115  *
10116  * this function is called when verifier exploring different branches of
10117  * execution popped from the state stack. If it sees an old state that has
10118  * more strict register state and more strict stack state then this execution
10119  * branch doesn't need to be explored further, since verifier already
10120  * concluded that more strict state leads to valid finish.
10121  *
10122  * Therefore two states are equivalent if register state is more conservative
10123  * and explored stack state is more conservative than the current one.
10124  * Example:
10125  *       explored                   current
10126  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10127  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10128  *
10129  * In other words if current stack state (one being explored) has more
10130  * valid slots than old one that already passed validation, it means
10131  * the verifier can stop exploring and conclude that current state is valid too
10132  *
10133  * Similarly with registers. If explored state has register type as invalid
10134  * whereas register type in current state is meaningful, it means that
10135  * the current state will reach 'bpf_exit' instruction safely
10136  */
10137 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10138 			      struct bpf_func_state *cur)
10139 {
10140 	int i;
10141 
10142 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10143 	for (i = 0; i < MAX_BPF_REG; i++)
10144 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10145 			     env->idmap_scratch))
10146 			return false;
10147 
10148 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10149 		return false;
10150 
10151 	if (!refsafe(old, cur))
10152 		return false;
10153 
10154 	return true;
10155 }
10156 
10157 static bool states_equal(struct bpf_verifier_env *env,
10158 			 struct bpf_verifier_state *old,
10159 			 struct bpf_verifier_state *cur)
10160 {
10161 	int i;
10162 
10163 	if (old->curframe != cur->curframe)
10164 		return false;
10165 
10166 	/* Verification state from speculative execution simulation
10167 	 * must never prune a non-speculative execution one.
10168 	 */
10169 	if (old->speculative && !cur->speculative)
10170 		return false;
10171 
10172 	if (old->active_spin_lock != cur->active_spin_lock)
10173 		return false;
10174 
10175 	/* for states to be equal callsites have to be the same
10176 	 * and all frame states need to be equivalent
10177 	 */
10178 	for (i = 0; i <= old->curframe; i++) {
10179 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10180 			return false;
10181 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10182 			return false;
10183 	}
10184 	return true;
10185 }
10186 
10187 /* Return 0 if no propagation happened. Return negative error code if error
10188  * happened. Otherwise, return the propagated bit.
10189  */
10190 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10191 				  struct bpf_reg_state *reg,
10192 				  struct bpf_reg_state *parent_reg)
10193 {
10194 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10195 	u8 flag = reg->live & REG_LIVE_READ;
10196 	int err;
10197 
10198 	/* When comes here, read flags of PARENT_REG or REG could be any of
10199 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10200 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10201 	 */
10202 	if (parent_flag == REG_LIVE_READ64 ||
10203 	    /* Or if there is no read flag from REG. */
10204 	    !flag ||
10205 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10206 	    parent_flag == flag)
10207 		return 0;
10208 
10209 	err = mark_reg_read(env, reg, parent_reg, flag);
10210 	if (err)
10211 		return err;
10212 
10213 	return flag;
10214 }
10215 
10216 /* A write screens off any subsequent reads; but write marks come from the
10217  * straight-line code between a state and its parent.  When we arrive at an
10218  * equivalent state (jump target or such) we didn't arrive by the straight-line
10219  * code, so read marks in the state must propagate to the parent regardless
10220  * of the state's write marks. That's what 'parent == state->parent' comparison
10221  * in mark_reg_read() is for.
10222  */
10223 static int propagate_liveness(struct bpf_verifier_env *env,
10224 			      const struct bpf_verifier_state *vstate,
10225 			      struct bpf_verifier_state *vparent)
10226 {
10227 	struct bpf_reg_state *state_reg, *parent_reg;
10228 	struct bpf_func_state *state, *parent;
10229 	int i, frame, err = 0;
10230 
10231 	if (vparent->curframe != vstate->curframe) {
10232 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10233 		     vparent->curframe, vstate->curframe);
10234 		return -EFAULT;
10235 	}
10236 	/* Propagate read liveness of registers... */
10237 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10238 	for (frame = 0; frame <= vstate->curframe; frame++) {
10239 		parent = vparent->frame[frame];
10240 		state = vstate->frame[frame];
10241 		parent_reg = parent->regs;
10242 		state_reg = state->regs;
10243 		/* We don't need to worry about FP liveness, it's read-only */
10244 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10245 			err = propagate_liveness_reg(env, &state_reg[i],
10246 						     &parent_reg[i]);
10247 			if (err < 0)
10248 				return err;
10249 			if (err == REG_LIVE_READ64)
10250 				mark_insn_zext(env, &parent_reg[i]);
10251 		}
10252 
10253 		/* Propagate stack slots. */
10254 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10255 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10256 			parent_reg = &parent->stack[i].spilled_ptr;
10257 			state_reg = &state->stack[i].spilled_ptr;
10258 			err = propagate_liveness_reg(env, state_reg,
10259 						     parent_reg);
10260 			if (err < 0)
10261 				return err;
10262 		}
10263 	}
10264 	return 0;
10265 }
10266 
10267 /* find precise scalars in the previous equivalent state and
10268  * propagate them into the current state
10269  */
10270 static int propagate_precision(struct bpf_verifier_env *env,
10271 			       const struct bpf_verifier_state *old)
10272 {
10273 	struct bpf_reg_state *state_reg;
10274 	struct bpf_func_state *state;
10275 	int i, err = 0;
10276 
10277 	state = old->frame[old->curframe];
10278 	state_reg = state->regs;
10279 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10280 		if (state_reg->type != SCALAR_VALUE ||
10281 		    !state_reg->precise)
10282 			continue;
10283 		if (env->log.level & BPF_LOG_LEVEL2)
10284 			verbose(env, "propagating r%d\n", i);
10285 		err = mark_chain_precision(env, i);
10286 		if (err < 0)
10287 			return err;
10288 	}
10289 
10290 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10291 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10292 			continue;
10293 		state_reg = &state->stack[i].spilled_ptr;
10294 		if (state_reg->type != SCALAR_VALUE ||
10295 		    !state_reg->precise)
10296 			continue;
10297 		if (env->log.level & BPF_LOG_LEVEL2)
10298 			verbose(env, "propagating fp%d\n",
10299 				(-i - 1) * BPF_REG_SIZE);
10300 		err = mark_chain_precision_stack(env, i);
10301 		if (err < 0)
10302 			return err;
10303 	}
10304 	return 0;
10305 }
10306 
10307 static bool states_maybe_looping(struct bpf_verifier_state *old,
10308 				 struct bpf_verifier_state *cur)
10309 {
10310 	struct bpf_func_state *fold, *fcur;
10311 	int i, fr = cur->curframe;
10312 
10313 	if (old->curframe != fr)
10314 		return false;
10315 
10316 	fold = old->frame[fr];
10317 	fcur = cur->frame[fr];
10318 	for (i = 0; i < MAX_BPF_REG; i++)
10319 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10320 			   offsetof(struct bpf_reg_state, parent)))
10321 			return false;
10322 	return true;
10323 }
10324 
10325 
10326 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10327 {
10328 	struct bpf_verifier_state_list *new_sl;
10329 	struct bpf_verifier_state_list *sl, **pprev;
10330 	struct bpf_verifier_state *cur = env->cur_state, *new;
10331 	int i, j, err, states_cnt = 0;
10332 	bool add_new_state = env->test_state_freq ? true : false;
10333 
10334 	cur->last_insn_idx = env->prev_insn_idx;
10335 	if (!env->insn_aux_data[insn_idx].prune_point)
10336 		/* this 'insn_idx' instruction wasn't marked, so we will not
10337 		 * be doing state search here
10338 		 */
10339 		return 0;
10340 
10341 	/* bpf progs typically have pruning point every 4 instructions
10342 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10343 	 * Do not add new state for future pruning if the verifier hasn't seen
10344 	 * at least 2 jumps and at least 8 instructions.
10345 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10346 	 * In tests that amounts to up to 50% reduction into total verifier
10347 	 * memory consumption and 20% verifier time speedup.
10348 	 */
10349 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10350 	    env->insn_processed - env->prev_insn_processed >= 8)
10351 		add_new_state = true;
10352 
10353 	pprev = explored_state(env, insn_idx);
10354 	sl = *pprev;
10355 
10356 	clean_live_states(env, insn_idx, cur);
10357 
10358 	while (sl) {
10359 		states_cnt++;
10360 		if (sl->state.insn_idx != insn_idx)
10361 			goto next;
10362 		if (sl->state.branches) {
10363 			if (states_maybe_looping(&sl->state, cur) &&
10364 			    states_equal(env, &sl->state, cur)) {
10365 				verbose_linfo(env, insn_idx, "; ");
10366 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10367 				return -EINVAL;
10368 			}
10369 			/* if the verifier is processing a loop, avoid adding new state
10370 			 * too often, since different loop iterations have distinct
10371 			 * states and may not help future pruning.
10372 			 * This threshold shouldn't be too low to make sure that
10373 			 * a loop with large bound will be rejected quickly.
10374 			 * The most abusive loop will be:
10375 			 * r1 += 1
10376 			 * if r1 < 1000000 goto pc-2
10377 			 * 1M insn_procssed limit / 100 == 10k peak states.
10378 			 * This threshold shouldn't be too high either, since states
10379 			 * at the end of the loop are likely to be useful in pruning.
10380 			 */
10381 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10382 			    env->insn_processed - env->prev_insn_processed < 100)
10383 				add_new_state = false;
10384 			goto miss;
10385 		}
10386 		if (states_equal(env, &sl->state, cur)) {
10387 			sl->hit_cnt++;
10388 			/* reached equivalent register/stack state,
10389 			 * prune the search.
10390 			 * Registers read by the continuation are read by us.
10391 			 * If we have any write marks in env->cur_state, they
10392 			 * will prevent corresponding reads in the continuation
10393 			 * from reaching our parent (an explored_state).  Our
10394 			 * own state will get the read marks recorded, but
10395 			 * they'll be immediately forgotten as we're pruning
10396 			 * this state and will pop a new one.
10397 			 */
10398 			err = propagate_liveness(env, &sl->state, cur);
10399 
10400 			/* if previous state reached the exit with precision and
10401 			 * current state is equivalent to it (except precsion marks)
10402 			 * the precision needs to be propagated back in
10403 			 * the current state.
10404 			 */
10405 			err = err ? : push_jmp_history(env, cur);
10406 			err = err ? : propagate_precision(env, &sl->state);
10407 			if (err)
10408 				return err;
10409 			return 1;
10410 		}
10411 miss:
10412 		/* when new state is not going to be added do not increase miss count.
10413 		 * Otherwise several loop iterations will remove the state
10414 		 * recorded earlier. The goal of these heuristics is to have
10415 		 * states from some iterations of the loop (some in the beginning
10416 		 * and some at the end) to help pruning.
10417 		 */
10418 		if (add_new_state)
10419 			sl->miss_cnt++;
10420 		/* heuristic to determine whether this state is beneficial
10421 		 * to keep checking from state equivalence point of view.
10422 		 * Higher numbers increase max_states_per_insn and verification time,
10423 		 * but do not meaningfully decrease insn_processed.
10424 		 */
10425 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10426 			/* the state is unlikely to be useful. Remove it to
10427 			 * speed up verification
10428 			 */
10429 			*pprev = sl->next;
10430 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10431 				u32 br = sl->state.branches;
10432 
10433 				WARN_ONCE(br,
10434 					  "BUG live_done but branches_to_explore %d\n",
10435 					  br);
10436 				free_verifier_state(&sl->state, false);
10437 				kfree(sl);
10438 				env->peak_states--;
10439 			} else {
10440 				/* cannot free this state, since parentage chain may
10441 				 * walk it later. Add it for free_list instead to
10442 				 * be freed at the end of verification
10443 				 */
10444 				sl->next = env->free_list;
10445 				env->free_list = sl;
10446 			}
10447 			sl = *pprev;
10448 			continue;
10449 		}
10450 next:
10451 		pprev = &sl->next;
10452 		sl = *pprev;
10453 	}
10454 
10455 	if (env->max_states_per_insn < states_cnt)
10456 		env->max_states_per_insn = states_cnt;
10457 
10458 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10459 		return push_jmp_history(env, cur);
10460 
10461 	if (!add_new_state)
10462 		return push_jmp_history(env, cur);
10463 
10464 	/* There were no equivalent states, remember the current one.
10465 	 * Technically the current state is not proven to be safe yet,
10466 	 * but it will either reach outer most bpf_exit (which means it's safe)
10467 	 * or it will be rejected. When there are no loops the verifier won't be
10468 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10469 	 * again on the way to bpf_exit.
10470 	 * When looping the sl->state.branches will be > 0 and this state
10471 	 * will not be considered for equivalence until branches == 0.
10472 	 */
10473 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10474 	if (!new_sl)
10475 		return -ENOMEM;
10476 	env->total_states++;
10477 	env->peak_states++;
10478 	env->prev_jmps_processed = env->jmps_processed;
10479 	env->prev_insn_processed = env->insn_processed;
10480 
10481 	/* add new state to the head of linked list */
10482 	new = &new_sl->state;
10483 	err = copy_verifier_state(new, cur);
10484 	if (err) {
10485 		free_verifier_state(new, false);
10486 		kfree(new_sl);
10487 		return err;
10488 	}
10489 	new->insn_idx = insn_idx;
10490 	WARN_ONCE(new->branches != 1,
10491 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10492 
10493 	cur->parent = new;
10494 	cur->first_insn_idx = insn_idx;
10495 	clear_jmp_history(cur);
10496 	new_sl->next = *explored_state(env, insn_idx);
10497 	*explored_state(env, insn_idx) = new_sl;
10498 	/* connect new state to parentage chain. Current frame needs all
10499 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10500 	 * to the stack implicitly by JITs) so in callers' frames connect just
10501 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10502 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10503 	 * from callee with its full parentage chain, anyway.
10504 	 */
10505 	/* clear write marks in current state: the writes we did are not writes
10506 	 * our child did, so they don't screen off its reads from us.
10507 	 * (There are no read marks in current state, because reads always mark
10508 	 * their parent and current state never has children yet.  Only
10509 	 * explored_states can get read marks.)
10510 	 */
10511 	for (j = 0; j <= cur->curframe; j++) {
10512 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10513 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10514 		for (i = 0; i < BPF_REG_FP; i++)
10515 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10516 	}
10517 
10518 	/* all stack frames are accessible from callee, clear them all */
10519 	for (j = 0; j <= cur->curframe; j++) {
10520 		struct bpf_func_state *frame = cur->frame[j];
10521 		struct bpf_func_state *newframe = new->frame[j];
10522 
10523 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10524 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10525 			frame->stack[i].spilled_ptr.parent =
10526 						&newframe->stack[i].spilled_ptr;
10527 		}
10528 	}
10529 	return 0;
10530 }
10531 
10532 /* Return true if it's OK to have the same insn return a different type. */
10533 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10534 {
10535 	switch (type) {
10536 	case PTR_TO_CTX:
10537 	case PTR_TO_SOCKET:
10538 	case PTR_TO_SOCKET_OR_NULL:
10539 	case PTR_TO_SOCK_COMMON:
10540 	case PTR_TO_SOCK_COMMON_OR_NULL:
10541 	case PTR_TO_TCP_SOCK:
10542 	case PTR_TO_TCP_SOCK_OR_NULL:
10543 	case PTR_TO_XDP_SOCK:
10544 	case PTR_TO_BTF_ID:
10545 	case PTR_TO_BTF_ID_OR_NULL:
10546 		return false;
10547 	default:
10548 		return true;
10549 	}
10550 }
10551 
10552 /* If an instruction was previously used with particular pointer types, then we
10553  * need to be careful to avoid cases such as the below, where it may be ok
10554  * for one branch accessing the pointer, but not ok for the other branch:
10555  *
10556  * R1 = sock_ptr
10557  * goto X;
10558  * ...
10559  * R1 = some_other_valid_ptr;
10560  * goto X;
10561  * ...
10562  * R2 = *(u32 *)(R1 + 0);
10563  */
10564 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10565 {
10566 	return src != prev && (!reg_type_mismatch_ok(src) ||
10567 			       !reg_type_mismatch_ok(prev));
10568 }
10569 
10570 static int do_check(struct bpf_verifier_env *env)
10571 {
10572 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10573 	struct bpf_verifier_state *state = env->cur_state;
10574 	struct bpf_insn *insns = env->prog->insnsi;
10575 	struct bpf_reg_state *regs;
10576 	int insn_cnt = env->prog->len;
10577 	bool do_print_state = false;
10578 	int prev_insn_idx = -1;
10579 
10580 	for (;;) {
10581 		struct bpf_insn *insn;
10582 		u8 class;
10583 		int err;
10584 
10585 		env->prev_insn_idx = prev_insn_idx;
10586 		if (env->insn_idx >= insn_cnt) {
10587 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10588 				env->insn_idx, insn_cnt);
10589 			return -EFAULT;
10590 		}
10591 
10592 		insn = &insns[env->insn_idx];
10593 		class = BPF_CLASS(insn->code);
10594 
10595 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10596 			verbose(env,
10597 				"BPF program is too large. Processed %d insn\n",
10598 				env->insn_processed);
10599 			return -E2BIG;
10600 		}
10601 
10602 		err = is_state_visited(env, env->insn_idx);
10603 		if (err < 0)
10604 			return err;
10605 		if (err == 1) {
10606 			/* found equivalent state, can prune the search */
10607 			if (env->log.level & BPF_LOG_LEVEL) {
10608 				if (do_print_state)
10609 					verbose(env, "\nfrom %d to %d%s: safe\n",
10610 						env->prev_insn_idx, env->insn_idx,
10611 						env->cur_state->speculative ?
10612 						" (speculative execution)" : "");
10613 				else
10614 					verbose(env, "%d: safe\n", env->insn_idx);
10615 			}
10616 			goto process_bpf_exit;
10617 		}
10618 
10619 		if (signal_pending(current))
10620 			return -EAGAIN;
10621 
10622 		if (need_resched())
10623 			cond_resched();
10624 
10625 		if (env->log.level & BPF_LOG_LEVEL2 ||
10626 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10627 			if (env->log.level & BPF_LOG_LEVEL2)
10628 				verbose(env, "%d:", env->insn_idx);
10629 			else
10630 				verbose(env, "\nfrom %d to %d%s:",
10631 					env->prev_insn_idx, env->insn_idx,
10632 					env->cur_state->speculative ?
10633 					" (speculative execution)" : "");
10634 			print_verifier_state(env, state->frame[state->curframe]);
10635 			do_print_state = false;
10636 		}
10637 
10638 		if (env->log.level & BPF_LOG_LEVEL) {
10639 			const struct bpf_insn_cbs cbs = {
10640 				.cb_call	= disasm_kfunc_name,
10641 				.cb_print	= verbose,
10642 				.private_data	= env,
10643 			};
10644 
10645 			verbose_linfo(env, env->insn_idx, "; ");
10646 			verbose(env, "%d: ", env->insn_idx);
10647 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10648 		}
10649 
10650 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10651 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10652 							   env->prev_insn_idx);
10653 			if (err)
10654 				return err;
10655 		}
10656 
10657 		regs = cur_regs(env);
10658 		sanitize_mark_insn_seen(env);
10659 		prev_insn_idx = env->insn_idx;
10660 
10661 		if (class == BPF_ALU || class == BPF_ALU64) {
10662 			err = check_alu_op(env, insn);
10663 			if (err)
10664 				return err;
10665 
10666 		} else if (class == BPF_LDX) {
10667 			enum bpf_reg_type *prev_src_type, src_reg_type;
10668 
10669 			/* check for reserved fields is already done */
10670 
10671 			/* check src operand */
10672 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10673 			if (err)
10674 				return err;
10675 
10676 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10677 			if (err)
10678 				return err;
10679 
10680 			src_reg_type = regs[insn->src_reg].type;
10681 
10682 			/* check that memory (src_reg + off) is readable,
10683 			 * the state of dst_reg will be updated by this func
10684 			 */
10685 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10686 					       insn->off, BPF_SIZE(insn->code),
10687 					       BPF_READ, insn->dst_reg, false);
10688 			if (err)
10689 				return err;
10690 
10691 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10692 
10693 			if (*prev_src_type == NOT_INIT) {
10694 				/* saw a valid insn
10695 				 * dst_reg = *(u32 *)(src_reg + off)
10696 				 * save type to validate intersecting paths
10697 				 */
10698 				*prev_src_type = src_reg_type;
10699 
10700 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10701 				/* ABuser program is trying to use the same insn
10702 				 * dst_reg = *(u32*) (src_reg + off)
10703 				 * with different pointer types:
10704 				 * src_reg == ctx in one branch and
10705 				 * src_reg == stack|map in some other branch.
10706 				 * Reject it.
10707 				 */
10708 				verbose(env, "same insn cannot be used with different pointers\n");
10709 				return -EINVAL;
10710 			}
10711 
10712 		} else if (class == BPF_STX) {
10713 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10714 
10715 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10716 				err = check_atomic(env, env->insn_idx, insn);
10717 				if (err)
10718 					return err;
10719 				env->insn_idx++;
10720 				continue;
10721 			}
10722 
10723 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10724 				verbose(env, "BPF_STX uses reserved fields\n");
10725 				return -EINVAL;
10726 			}
10727 
10728 			/* check src1 operand */
10729 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10730 			if (err)
10731 				return err;
10732 			/* check src2 operand */
10733 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10734 			if (err)
10735 				return err;
10736 
10737 			dst_reg_type = regs[insn->dst_reg].type;
10738 
10739 			/* check that memory (dst_reg + off) is writeable */
10740 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10741 					       insn->off, BPF_SIZE(insn->code),
10742 					       BPF_WRITE, insn->src_reg, false);
10743 			if (err)
10744 				return err;
10745 
10746 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10747 
10748 			if (*prev_dst_type == NOT_INIT) {
10749 				*prev_dst_type = dst_reg_type;
10750 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10751 				verbose(env, "same insn cannot be used with different pointers\n");
10752 				return -EINVAL;
10753 			}
10754 
10755 		} else if (class == BPF_ST) {
10756 			if (BPF_MODE(insn->code) != BPF_MEM ||
10757 			    insn->src_reg != BPF_REG_0) {
10758 				verbose(env, "BPF_ST uses reserved fields\n");
10759 				return -EINVAL;
10760 			}
10761 			/* check src operand */
10762 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10763 			if (err)
10764 				return err;
10765 
10766 			if (is_ctx_reg(env, insn->dst_reg)) {
10767 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10768 					insn->dst_reg,
10769 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10770 				return -EACCES;
10771 			}
10772 
10773 			/* check that memory (dst_reg + off) is writeable */
10774 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10775 					       insn->off, BPF_SIZE(insn->code),
10776 					       BPF_WRITE, -1, false);
10777 			if (err)
10778 				return err;
10779 
10780 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10781 			u8 opcode = BPF_OP(insn->code);
10782 
10783 			env->jmps_processed++;
10784 			if (opcode == BPF_CALL) {
10785 				if (BPF_SRC(insn->code) != BPF_K ||
10786 				    insn->off != 0 ||
10787 				    (insn->src_reg != BPF_REG_0 &&
10788 				     insn->src_reg != BPF_PSEUDO_CALL &&
10789 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10790 				    insn->dst_reg != BPF_REG_0 ||
10791 				    class == BPF_JMP32) {
10792 					verbose(env, "BPF_CALL uses reserved fields\n");
10793 					return -EINVAL;
10794 				}
10795 
10796 				if (env->cur_state->active_spin_lock &&
10797 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10798 				     insn->imm != BPF_FUNC_spin_unlock)) {
10799 					verbose(env, "function calls are not allowed while holding a lock\n");
10800 					return -EINVAL;
10801 				}
10802 				if (insn->src_reg == BPF_PSEUDO_CALL)
10803 					err = check_func_call(env, insn, &env->insn_idx);
10804 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10805 					err = check_kfunc_call(env, insn);
10806 				else
10807 					err = check_helper_call(env, insn, &env->insn_idx);
10808 				if (err)
10809 					return err;
10810 			} else if (opcode == BPF_JA) {
10811 				if (BPF_SRC(insn->code) != BPF_K ||
10812 				    insn->imm != 0 ||
10813 				    insn->src_reg != BPF_REG_0 ||
10814 				    insn->dst_reg != BPF_REG_0 ||
10815 				    class == BPF_JMP32) {
10816 					verbose(env, "BPF_JA uses reserved fields\n");
10817 					return -EINVAL;
10818 				}
10819 
10820 				env->insn_idx += insn->off + 1;
10821 				continue;
10822 
10823 			} else if (opcode == BPF_EXIT) {
10824 				if (BPF_SRC(insn->code) != BPF_K ||
10825 				    insn->imm != 0 ||
10826 				    insn->src_reg != BPF_REG_0 ||
10827 				    insn->dst_reg != BPF_REG_0 ||
10828 				    class == BPF_JMP32) {
10829 					verbose(env, "BPF_EXIT uses reserved fields\n");
10830 					return -EINVAL;
10831 				}
10832 
10833 				if (env->cur_state->active_spin_lock) {
10834 					verbose(env, "bpf_spin_unlock is missing\n");
10835 					return -EINVAL;
10836 				}
10837 
10838 				if (state->curframe) {
10839 					/* exit from nested function */
10840 					err = prepare_func_exit(env, &env->insn_idx);
10841 					if (err)
10842 						return err;
10843 					do_print_state = true;
10844 					continue;
10845 				}
10846 
10847 				err = check_reference_leak(env);
10848 				if (err)
10849 					return err;
10850 
10851 				err = check_return_code(env);
10852 				if (err)
10853 					return err;
10854 process_bpf_exit:
10855 				update_branch_counts(env, env->cur_state);
10856 				err = pop_stack(env, &prev_insn_idx,
10857 						&env->insn_idx, pop_log);
10858 				if (err < 0) {
10859 					if (err != -ENOENT)
10860 						return err;
10861 					break;
10862 				} else {
10863 					do_print_state = true;
10864 					continue;
10865 				}
10866 			} else {
10867 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10868 				if (err)
10869 					return err;
10870 			}
10871 		} else if (class == BPF_LD) {
10872 			u8 mode = BPF_MODE(insn->code);
10873 
10874 			if (mode == BPF_ABS || mode == BPF_IND) {
10875 				err = check_ld_abs(env, insn);
10876 				if (err)
10877 					return err;
10878 
10879 			} else if (mode == BPF_IMM) {
10880 				err = check_ld_imm(env, insn);
10881 				if (err)
10882 					return err;
10883 
10884 				env->insn_idx++;
10885 				sanitize_mark_insn_seen(env);
10886 			} else {
10887 				verbose(env, "invalid BPF_LD mode\n");
10888 				return -EINVAL;
10889 			}
10890 		} else {
10891 			verbose(env, "unknown insn class %d\n", class);
10892 			return -EINVAL;
10893 		}
10894 
10895 		env->insn_idx++;
10896 	}
10897 
10898 	return 0;
10899 }
10900 
10901 static int find_btf_percpu_datasec(struct btf *btf)
10902 {
10903 	const struct btf_type *t;
10904 	const char *tname;
10905 	int i, n;
10906 
10907 	/*
10908 	 * Both vmlinux and module each have their own ".data..percpu"
10909 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10910 	 * types to look at only module's own BTF types.
10911 	 */
10912 	n = btf_nr_types(btf);
10913 	if (btf_is_module(btf))
10914 		i = btf_nr_types(btf_vmlinux);
10915 	else
10916 		i = 1;
10917 
10918 	for(; i < n; i++) {
10919 		t = btf_type_by_id(btf, i);
10920 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10921 			continue;
10922 
10923 		tname = btf_name_by_offset(btf, t->name_off);
10924 		if (!strcmp(tname, ".data..percpu"))
10925 			return i;
10926 	}
10927 
10928 	return -ENOENT;
10929 }
10930 
10931 /* replace pseudo btf_id with kernel symbol address */
10932 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10933 			       struct bpf_insn *insn,
10934 			       struct bpf_insn_aux_data *aux)
10935 {
10936 	const struct btf_var_secinfo *vsi;
10937 	const struct btf_type *datasec;
10938 	struct btf_mod_pair *btf_mod;
10939 	const struct btf_type *t;
10940 	const char *sym_name;
10941 	bool percpu = false;
10942 	u32 type, id = insn->imm;
10943 	struct btf *btf;
10944 	s32 datasec_id;
10945 	u64 addr;
10946 	int i, btf_fd, err;
10947 
10948 	btf_fd = insn[1].imm;
10949 	if (btf_fd) {
10950 		btf = btf_get_by_fd(btf_fd);
10951 		if (IS_ERR(btf)) {
10952 			verbose(env, "invalid module BTF object FD specified.\n");
10953 			return -EINVAL;
10954 		}
10955 	} else {
10956 		if (!btf_vmlinux) {
10957 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10958 			return -EINVAL;
10959 		}
10960 		btf = btf_vmlinux;
10961 		btf_get(btf);
10962 	}
10963 
10964 	t = btf_type_by_id(btf, id);
10965 	if (!t) {
10966 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10967 		err = -ENOENT;
10968 		goto err_put;
10969 	}
10970 
10971 	if (!btf_type_is_var(t)) {
10972 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10973 		err = -EINVAL;
10974 		goto err_put;
10975 	}
10976 
10977 	sym_name = btf_name_by_offset(btf, t->name_off);
10978 	addr = kallsyms_lookup_name(sym_name);
10979 	if (!addr) {
10980 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10981 			sym_name);
10982 		err = -ENOENT;
10983 		goto err_put;
10984 	}
10985 
10986 	datasec_id = find_btf_percpu_datasec(btf);
10987 	if (datasec_id > 0) {
10988 		datasec = btf_type_by_id(btf, datasec_id);
10989 		for_each_vsi(i, datasec, vsi) {
10990 			if (vsi->type == id) {
10991 				percpu = true;
10992 				break;
10993 			}
10994 		}
10995 	}
10996 
10997 	insn[0].imm = (u32)addr;
10998 	insn[1].imm = addr >> 32;
10999 
11000 	type = t->type;
11001 	t = btf_type_skip_modifiers(btf, type, NULL);
11002 	if (percpu) {
11003 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11004 		aux->btf_var.btf = btf;
11005 		aux->btf_var.btf_id = type;
11006 	} else if (!btf_type_is_struct(t)) {
11007 		const struct btf_type *ret;
11008 		const char *tname;
11009 		u32 tsize;
11010 
11011 		/* resolve the type size of ksym. */
11012 		ret = btf_resolve_size(btf, t, &tsize);
11013 		if (IS_ERR(ret)) {
11014 			tname = btf_name_by_offset(btf, t->name_off);
11015 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11016 				tname, PTR_ERR(ret));
11017 			err = -EINVAL;
11018 			goto err_put;
11019 		}
11020 		aux->btf_var.reg_type = PTR_TO_MEM;
11021 		aux->btf_var.mem_size = tsize;
11022 	} else {
11023 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11024 		aux->btf_var.btf = btf;
11025 		aux->btf_var.btf_id = type;
11026 	}
11027 
11028 	/* check whether we recorded this BTF (and maybe module) already */
11029 	for (i = 0; i < env->used_btf_cnt; i++) {
11030 		if (env->used_btfs[i].btf == btf) {
11031 			btf_put(btf);
11032 			return 0;
11033 		}
11034 	}
11035 
11036 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11037 		err = -E2BIG;
11038 		goto err_put;
11039 	}
11040 
11041 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11042 	btf_mod->btf = btf;
11043 	btf_mod->module = NULL;
11044 
11045 	/* if we reference variables from kernel module, bump its refcount */
11046 	if (btf_is_module(btf)) {
11047 		btf_mod->module = btf_try_get_module(btf);
11048 		if (!btf_mod->module) {
11049 			err = -ENXIO;
11050 			goto err_put;
11051 		}
11052 	}
11053 
11054 	env->used_btf_cnt++;
11055 
11056 	return 0;
11057 err_put:
11058 	btf_put(btf);
11059 	return err;
11060 }
11061 
11062 static int check_map_prealloc(struct bpf_map *map)
11063 {
11064 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11065 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11066 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11067 		!(map->map_flags & BPF_F_NO_PREALLOC);
11068 }
11069 
11070 static bool is_tracing_prog_type(enum bpf_prog_type type)
11071 {
11072 	switch (type) {
11073 	case BPF_PROG_TYPE_KPROBE:
11074 	case BPF_PROG_TYPE_TRACEPOINT:
11075 	case BPF_PROG_TYPE_PERF_EVENT:
11076 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11077 		return true;
11078 	default:
11079 		return false;
11080 	}
11081 }
11082 
11083 static bool is_preallocated_map(struct bpf_map *map)
11084 {
11085 	if (!check_map_prealloc(map))
11086 		return false;
11087 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11088 		return false;
11089 	return true;
11090 }
11091 
11092 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11093 					struct bpf_map *map,
11094 					struct bpf_prog *prog)
11095 
11096 {
11097 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11098 	/*
11099 	 * Validate that trace type programs use preallocated hash maps.
11100 	 *
11101 	 * For programs attached to PERF events this is mandatory as the
11102 	 * perf NMI can hit any arbitrary code sequence.
11103 	 *
11104 	 * All other trace types using preallocated hash maps are unsafe as
11105 	 * well because tracepoint or kprobes can be inside locked regions
11106 	 * of the memory allocator or at a place where a recursion into the
11107 	 * memory allocator would see inconsistent state.
11108 	 *
11109 	 * On RT enabled kernels run-time allocation of all trace type
11110 	 * programs is strictly prohibited due to lock type constraints. On
11111 	 * !RT kernels it is allowed for backwards compatibility reasons for
11112 	 * now, but warnings are emitted so developers are made aware of
11113 	 * the unsafety and can fix their programs before this is enforced.
11114 	 */
11115 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11116 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11117 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11118 			return -EINVAL;
11119 		}
11120 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11121 			verbose(env, "trace type programs can only use preallocated hash map\n");
11122 			return -EINVAL;
11123 		}
11124 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11125 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11126 	}
11127 
11128 	if (map_value_has_spin_lock(map)) {
11129 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11130 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11131 			return -EINVAL;
11132 		}
11133 
11134 		if (is_tracing_prog_type(prog_type)) {
11135 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11136 			return -EINVAL;
11137 		}
11138 
11139 		if (prog->aux->sleepable) {
11140 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11141 			return -EINVAL;
11142 		}
11143 	}
11144 
11145 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11146 	    !bpf_offload_prog_map_match(prog, map)) {
11147 		verbose(env, "offload device mismatch between prog and map\n");
11148 		return -EINVAL;
11149 	}
11150 
11151 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11152 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11153 		return -EINVAL;
11154 	}
11155 
11156 	if (prog->aux->sleepable)
11157 		switch (map->map_type) {
11158 		case BPF_MAP_TYPE_HASH:
11159 		case BPF_MAP_TYPE_LRU_HASH:
11160 		case BPF_MAP_TYPE_ARRAY:
11161 		case BPF_MAP_TYPE_PERCPU_HASH:
11162 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11163 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11164 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11165 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11166 			if (!is_preallocated_map(map)) {
11167 				verbose(env,
11168 					"Sleepable programs can only use preallocated maps\n");
11169 				return -EINVAL;
11170 			}
11171 			break;
11172 		case BPF_MAP_TYPE_RINGBUF:
11173 			break;
11174 		default:
11175 			verbose(env,
11176 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11177 			return -EINVAL;
11178 		}
11179 
11180 	return 0;
11181 }
11182 
11183 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11184 {
11185 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11186 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11187 }
11188 
11189 /* find and rewrite pseudo imm in ld_imm64 instructions:
11190  *
11191  * 1. if it accesses map FD, replace it with actual map pointer.
11192  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11193  *
11194  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11195  */
11196 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11197 {
11198 	struct bpf_insn *insn = env->prog->insnsi;
11199 	int insn_cnt = env->prog->len;
11200 	int i, j, err;
11201 
11202 	err = bpf_prog_calc_tag(env->prog);
11203 	if (err)
11204 		return err;
11205 
11206 	for (i = 0; i < insn_cnt; i++, insn++) {
11207 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11208 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11209 			verbose(env, "BPF_LDX uses reserved fields\n");
11210 			return -EINVAL;
11211 		}
11212 
11213 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11214 			struct bpf_insn_aux_data *aux;
11215 			struct bpf_map *map;
11216 			struct fd f;
11217 			u64 addr;
11218 			u32 fd;
11219 
11220 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11221 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11222 			    insn[1].off != 0) {
11223 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11224 				return -EINVAL;
11225 			}
11226 
11227 			if (insn[0].src_reg == 0)
11228 				/* valid generic load 64-bit imm */
11229 				goto next_insn;
11230 
11231 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11232 				aux = &env->insn_aux_data[i];
11233 				err = check_pseudo_btf_id(env, insn, aux);
11234 				if (err)
11235 					return err;
11236 				goto next_insn;
11237 			}
11238 
11239 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11240 				aux = &env->insn_aux_data[i];
11241 				aux->ptr_type = PTR_TO_FUNC;
11242 				goto next_insn;
11243 			}
11244 
11245 			/* In final convert_pseudo_ld_imm64() step, this is
11246 			 * converted into regular 64-bit imm load insn.
11247 			 */
11248 			switch (insn[0].src_reg) {
11249 			case BPF_PSEUDO_MAP_VALUE:
11250 			case BPF_PSEUDO_MAP_IDX_VALUE:
11251 				break;
11252 			case BPF_PSEUDO_MAP_FD:
11253 			case BPF_PSEUDO_MAP_IDX:
11254 				if (insn[1].imm == 0)
11255 					break;
11256 				fallthrough;
11257 			default:
11258 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11259 				return -EINVAL;
11260 			}
11261 
11262 			switch (insn[0].src_reg) {
11263 			case BPF_PSEUDO_MAP_IDX_VALUE:
11264 			case BPF_PSEUDO_MAP_IDX:
11265 				if (bpfptr_is_null(env->fd_array)) {
11266 					verbose(env, "fd_idx without fd_array is invalid\n");
11267 					return -EPROTO;
11268 				}
11269 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11270 							    insn[0].imm * sizeof(fd),
11271 							    sizeof(fd)))
11272 					return -EFAULT;
11273 				break;
11274 			default:
11275 				fd = insn[0].imm;
11276 				break;
11277 			}
11278 
11279 			f = fdget(fd);
11280 			map = __bpf_map_get(f);
11281 			if (IS_ERR(map)) {
11282 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11283 					insn[0].imm);
11284 				return PTR_ERR(map);
11285 			}
11286 
11287 			err = check_map_prog_compatibility(env, map, env->prog);
11288 			if (err) {
11289 				fdput(f);
11290 				return err;
11291 			}
11292 
11293 			aux = &env->insn_aux_data[i];
11294 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11295 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11296 				addr = (unsigned long)map;
11297 			} else {
11298 				u32 off = insn[1].imm;
11299 
11300 				if (off >= BPF_MAX_VAR_OFF) {
11301 					verbose(env, "direct value offset of %u is not allowed\n", off);
11302 					fdput(f);
11303 					return -EINVAL;
11304 				}
11305 
11306 				if (!map->ops->map_direct_value_addr) {
11307 					verbose(env, "no direct value access support for this map type\n");
11308 					fdput(f);
11309 					return -EINVAL;
11310 				}
11311 
11312 				err = map->ops->map_direct_value_addr(map, &addr, off);
11313 				if (err) {
11314 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11315 						map->value_size, off);
11316 					fdput(f);
11317 					return err;
11318 				}
11319 
11320 				aux->map_off = off;
11321 				addr += off;
11322 			}
11323 
11324 			insn[0].imm = (u32)addr;
11325 			insn[1].imm = addr >> 32;
11326 
11327 			/* check whether we recorded this map already */
11328 			for (j = 0; j < env->used_map_cnt; j++) {
11329 				if (env->used_maps[j] == map) {
11330 					aux->map_index = j;
11331 					fdput(f);
11332 					goto next_insn;
11333 				}
11334 			}
11335 
11336 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11337 				fdput(f);
11338 				return -E2BIG;
11339 			}
11340 
11341 			/* hold the map. If the program is rejected by verifier,
11342 			 * the map will be released by release_maps() or it
11343 			 * will be used by the valid program until it's unloaded
11344 			 * and all maps are released in free_used_maps()
11345 			 */
11346 			bpf_map_inc(map);
11347 
11348 			aux->map_index = env->used_map_cnt;
11349 			env->used_maps[env->used_map_cnt++] = map;
11350 
11351 			if (bpf_map_is_cgroup_storage(map) &&
11352 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11353 				verbose(env, "only one cgroup storage of each type is allowed\n");
11354 				fdput(f);
11355 				return -EBUSY;
11356 			}
11357 
11358 			fdput(f);
11359 next_insn:
11360 			insn++;
11361 			i++;
11362 			continue;
11363 		}
11364 
11365 		/* Basic sanity check before we invest more work here. */
11366 		if (!bpf_opcode_in_insntable(insn->code)) {
11367 			verbose(env, "unknown opcode %02x\n", insn->code);
11368 			return -EINVAL;
11369 		}
11370 	}
11371 
11372 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11373 	 * 'struct bpf_map *' into a register instead of user map_fd.
11374 	 * These pointers will be used later by verifier to validate map access.
11375 	 */
11376 	return 0;
11377 }
11378 
11379 /* drop refcnt of maps used by the rejected program */
11380 static void release_maps(struct bpf_verifier_env *env)
11381 {
11382 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11383 			     env->used_map_cnt);
11384 }
11385 
11386 /* drop refcnt of maps used by the rejected program */
11387 static void release_btfs(struct bpf_verifier_env *env)
11388 {
11389 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11390 			     env->used_btf_cnt);
11391 }
11392 
11393 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11394 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11395 {
11396 	struct bpf_insn *insn = env->prog->insnsi;
11397 	int insn_cnt = env->prog->len;
11398 	int i;
11399 
11400 	for (i = 0; i < insn_cnt; i++, insn++) {
11401 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11402 			continue;
11403 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11404 			continue;
11405 		insn->src_reg = 0;
11406 	}
11407 }
11408 
11409 /* single env->prog->insni[off] instruction was replaced with the range
11410  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11411  * [0, off) and [off, end) to new locations, so the patched range stays zero
11412  */
11413 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11414 				struct bpf_prog *new_prog, u32 off, u32 cnt)
11415 {
11416 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11417 	struct bpf_insn *insn = new_prog->insnsi;
11418 	u32 old_seen = old_data[off].seen;
11419 	u32 prog_len;
11420 	int i;
11421 
11422 	/* aux info at OFF always needs adjustment, no matter fast path
11423 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11424 	 * original insn at old prog.
11425 	 */
11426 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11427 
11428 	if (cnt == 1)
11429 		return 0;
11430 	prog_len = new_prog->len;
11431 	new_data = vzalloc(array_size(prog_len,
11432 				      sizeof(struct bpf_insn_aux_data)));
11433 	if (!new_data)
11434 		return -ENOMEM;
11435 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11436 	memcpy(new_data + off + cnt - 1, old_data + off,
11437 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11438 	for (i = off; i < off + cnt - 1; i++) {
11439 		/* Expand insni[off]'s seen count to the patched range. */
11440 		new_data[i].seen = old_seen;
11441 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11442 	}
11443 	env->insn_aux_data = new_data;
11444 	vfree(old_data);
11445 	return 0;
11446 }
11447 
11448 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11449 {
11450 	int i;
11451 
11452 	if (len == 1)
11453 		return;
11454 	/* NOTE: fake 'exit' subprog should be updated as well. */
11455 	for (i = 0; i <= env->subprog_cnt; i++) {
11456 		if (env->subprog_info[i].start <= off)
11457 			continue;
11458 		env->subprog_info[i].start += len - 1;
11459 	}
11460 }
11461 
11462 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11463 {
11464 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11465 	int i, sz = prog->aux->size_poke_tab;
11466 	struct bpf_jit_poke_descriptor *desc;
11467 
11468 	for (i = 0; i < sz; i++) {
11469 		desc = &tab[i];
11470 		if (desc->insn_idx <= off)
11471 			continue;
11472 		desc->insn_idx += len - 1;
11473 	}
11474 }
11475 
11476 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11477 					    const struct bpf_insn *patch, u32 len)
11478 {
11479 	struct bpf_prog *new_prog;
11480 
11481 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11482 	if (IS_ERR(new_prog)) {
11483 		if (PTR_ERR(new_prog) == -ERANGE)
11484 			verbose(env,
11485 				"insn %d cannot be patched due to 16-bit range\n",
11486 				env->insn_aux_data[off].orig_idx);
11487 		return NULL;
11488 	}
11489 	if (adjust_insn_aux_data(env, new_prog, off, len))
11490 		return NULL;
11491 	adjust_subprog_starts(env, off, len);
11492 	adjust_poke_descs(new_prog, off, len);
11493 	return new_prog;
11494 }
11495 
11496 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11497 					      u32 off, u32 cnt)
11498 {
11499 	int i, j;
11500 
11501 	/* find first prog starting at or after off (first to remove) */
11502 	for (i = 0; i < env->subprog_cnt; i++)
11503 		if (env->subprog_info[i].start >= off)
11504 			break;
11505 	/* find first prog starting at or after off + cnt (first to stay) */
11506 	for (j = i; j < env->subprog_cnt; j++)
11507 		if (env->subprog_info[j].start >= off + cnt)
11508 			break;
11509 	/* if j doesn't start exactly at off + cnt, we are just removing
11510 	 * the front of previous prog
11511 	 */
11512 	if (env->subprog_info[j].start != off + cnt)
11513 		j--;
11514 
11515 	if (j > i) {
11516 		struct bpf_prog_aux *aux = env->prog->aux;
11517 		int move;
11518 
11519 		/* move fake 'exit' subprog as well */
11520 		move = env->subprog_cnt + 1 - j;
11521 
11522 		memmove(env->subprog_info + i,
11523 			env->subprog_info + j,
11524 			sizeof(*env->subprog_info) * move);
11525 		env->subprog_cnt -= j - i;
11526 
11527 		/* remove func_info */
11528 		if (aux->func_info) {
11529 			move = aux->func_info_cnt - j;
11530 
11531 			memmove(aux->func_info + i,
11532 				aux->func_info + j,
11533 				sizeof(*aux->func_info) * move);
11534 			aux->func_info_cnt -= j - i;
11535 			/* func_info->insn_off is set after all code rewrites,
11536 			 * in adjust_btf_func() - no need to adjust
11537 			 */
11538 		}
11539 	} else {
11540 		/* convert i from "first prog to remove" to "first to adjust" */
11541 		if (env->subprog_info[i].start == off)
11542 			i++;
11543 	}
11544 
11545 	/* update fake 'exit' subprog as well */
11546 	for (; i <= env->subprog_cnt; i++)
11547 		env->subprog_info[i].start -= cnt;
11548 
11549 	return 0;
11550 }
11551 
11552 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11553 				      u32 cnt)
11554 {
11555 	struct bpf_prog *prog = env->prog;
11556 	u32 i, l_off, l_cnt, nr_linfo;
11557 	struct bpf_line_info *linfo;
11558 
11559 	nr_linfo = prog->aux->nr_linfo;
11560 	if (!nr_linfo)
11561 		return 0;
11562 
11563 	linfo = prog->aux->linfo;
11564 
11565 	/* find first line info to remove, count lines to be removed */
11566 	for (i = 0; i < nr_linfo; i++)
11567 		if (linfo[i].insn_off >= off)
11568 			break;
11569 
11570 	l_off = i;
11571 	l_cnt = 0;
11572 	for (; i < nr_linfo; i++)
11573 		if (linfo[i].insn_off < off + cnt)
11574 			l_cnt++;
11575 		else
11576 			break;
11577 
11578 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11579 	 * last removed linfo.  prog is already modified, so prog->len == off
11580 	 * means no live instructions after (tail of the program was removed).
11581 	 */
11582 	if (prog->len != off && l_cnt &&
11583 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11584 		l_cnt--;
11585 		linfo[--i].insn_off = off + cnt;
11586 	}
11587 
11588 	/* remove the line info which refer to the removed instructions */
11589 	if (l_cnt) {
11590 		memmove(linfo + l_off, linfo + i,
11591 			sizeof(*linfo) * (nr_linfo - i));
11592 
11593 		prog->aux->nr_linfo -= l_cnt;
11594 		nr_linfo = prog->aux->nr_linfo;
11595 	}
11596 
11597 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11598 	for (i = l_off; i < nr_linfo; i++)
11599 		linfo[i].insn_off -= cnt;
11600 
11601 	/* fix up all subprogs (incl. 'exit') which start >= off */
11602 	for (i = 0; i <= env->subprog_cnt; i++)
11603 		if (env->subprog_info[i].linfo_idx > l_off) {
11604 			/* program may have started in the removed region but
11605 			 * may not be fully removed
11606 			 */
11607 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11608 				env->subprog_info[i].linfo_idx -= l_cnt;
11609 			else
11610 				env->subprog_info[i].linfo_idx = l_off;
11611 		}
11612 
11613 	return 0;
11614 }
11615 
11616 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11617 {
11618 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11619 	unsigned int orig_prog_len = env->prog->len;
11620 	int err;
11621 
11622 	if (bpf_prog_is_dev_bound(env->prog->aux))
11623 		bpf_prog_offload_remove_insns(env, off, cnt);
11624 
11625 	err = bpf_remove_insns(env->prog, off, cnt);
11626 	if (err)
11627 		return err;
11628 
11629 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11630 	if (err)
11631 		return err;
11632 
11633 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11634 	if (err)
11635 		return err;
11636 
11637 	memmove(aux_data + off,	aux_data + off + cnt,
11638 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11639 
11640 	return 0;
11641 }
11642 
11643 /* The verifier does more data flow analysis than llvm and will not
11644  * explore branches that are dead at run time. Malicious programs can
11645  * have dead code too. Therefore replace all dead at-run-time code
11646  * with 'ja -1'.
11647  *
11648  * Just nops are not optimal, e.g. if they would sit at the end of the
11649  * program and through another bug we would manage to jump there, then
11650  * we'd execute beyond program memory otherwise. Returning exception
11651  * code also wouldn't work since we can have subprogs where the dead
11652  * code could be located.
11653  */
11654 static void sanitize_dead_code(struct bpf_verifier_env *env)
11655 {
11656 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11657 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11658 	struct bpf_insn *insn = env->prog->insnsi;
11659 	const int insn_cnt = env->prog->len;
11660 	int i;
11661 
11662 	for (i = 0; i < insn_cnt; i++) {
11663 		if (aux_data[i].seen)
11664 			continue;
11665 		memcpy(insn + i, &trap, sizeof(trap));
11666 	}
11667 }
11668 
11669 static bool insn_is_cond_jump(u8 code)
11670 {
11671 	u8 op;
11672 
11673 	if (BPF_CLASS(code) == BPF_JMP32)
11674 		return true;
11675 
11676 	if (BPF_CLASS(code) != BPF_JMP)
11677 		return false;
11678 
11679 	op = BPF_OP(code);
11680 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11681 }
11682 
11683 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11684 {
11685 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11686 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11687 	struct bpf_insn *insn = env->prog->insnsi;
11688 	const int insn_cnt = env->prog->len;
11689 	int i;
11690 
11691 	for (i = 0; i < insn_cnt; i++, insn++) {
11692 		if (!insn_is_cond_jump(insn->code))
11693 			continue;
11694 
11695 		if (!aux_data[i + 1].seen)
11696 			ja.off = insn->off;
11697 		else if (!aux_data[i + 1 + insn->off].seen)
11698 			ja.off = 0;
11699 		else
11700 			continue;
11701 
11702 		if (bpf_prog_is_dev_bound(env->prog->aux))
11703 			bpf_prog_offload_replace_insn(env, i, &ja);
11704 
11705 		memcpy(insn, &ja, sizeof(ja));
11706 	}
11707 }
11708 
11709 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11710 {
11711 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11712 	int insn_cnt = env->prog->len;
11713 	int i, err;
11714 
11715 	for (i = 0; i < insn_cnt; i++) {
11716 		int j;
11717 
11718 		j = 0;
11719 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11720 			j++;
11721 		if (!j)
11722 			continue;
11723 
11724 		err = verifier_remove_insns(env, i, j);
11725 		if (err)
11726 			return err;
11727 		insn_cnt = env->prog->len;
11728 	}
11729 
11730 	return 0;
11731 }
11732 
11733 static int opt_remove_nops(struct bpf_verifier_env *env)
11734 {
11735 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11736 	struct bpf_insn *insn = env->prog->insnsi;
11737 	int insn_cnt = env->prog->len;
11738 	int i, err;
11739 
11740 	for (i = 0; i < insn_cnt; i++) {
11741 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11742 			continue;
11743 
11744 		err = verifier_remove_insns(env, i, 1);
11745 		if (err)
11746 			return err;
11747 		insn_cnt--;
11748 		i--;
11749 	}
11750 
11751 	return 0;
11752 }
11753 
11754 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11755 					 const union bpf_attr *attr)
11756 {
11757 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11758 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11759 	int i, patch_len, delta = 0, len = env->prog->len;
11760 	struct bpf_insn *insns = env->prog->insnsi;
11761 	struct bpf_prog *new_prog;
11762 	bool rnd_hi32;
11763 
11764 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11765 	zext_patch[1] = BPF_ZEXT_REG(0);
11766 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11767 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11768 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11769 	for (i = 0; i < len; i++) {
11770 		int adj_idx = i + delta;
11771 		struct bpf_insn insn;
11772 		int load_reg;
11773 
11774 		insn = insns[adj_idx];
11775 		load_reg = insn_def_regno(&insn);
11776 		if (!aux[adj_idx].zext_dst) {
11777 			u8 code, class;
11778 			u32 imm_rnd;
11779 
11780 			if (!rnd_hi32)
11781 				continue;
11782 
11783 			code = insn.code;
11784 			class = BPF_CLASS(code);
11785 			if (load_reg == -1)
11786 				continue;
11787 
11788 			/* NOTE: arg "reg" (the fourth one) is only used for
11789 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11790 			 *       here.
11791 			 */
11792 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11793 				if (class == BPF_LD &&
11794 				    BPF_MODE(code) == BPF_IMM)
11795 					i++;
11796 				continue;
11797 			}
11798 
11799 			/* ctx load could be transformed into wider load. */
11800 			if (class == BPF_LDX &&
11801 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11802 				continue;
11803 
11804 			imm_rnd = get_random_int();
11805 			rnd_hi32_patch[0] = insn;
11806 			rnd_hi32_patch[1].imm = imm_rnd;
11807 			rnd_hi32_patch[3].dst_reg = load_reg;
11808 			patch = rnd_hi32_patch;
11809 			patch_len = 4;
11810 			goto apply_patch_buffer;
11811 		}
11812 
11813 		/* Add in an zero-extend instruction if a) the JIT has requested
11814 		 * it or b) it's a CMPXCHG.
11815 		 *
11816 		 * The latter is because: BPF_CMPXCHG always loads a value into
11817 		 * R0, therefore always zero-extends. However some archs'
11818 		 * equivalent instruction only does this load when the
11819 		 * comparison is successful. This detail of CMPXCHG is
11820 		 * orthogonal to the general zero-extension behaviour of the
11821 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11822 		 */
11823 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11824 			continue;
11825 
11826 		if (WARN_ON(load_reg == -1)) {
11827 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11828 			return -EFAULT;
11829 		}
11830 
11831 		zext_patch[0] = insn;
11832 		zext_patch[1].dst_reg = load_reg;
11833 		zext_patch[1].src_reg = load_reg;
11834 		patch = zext_patch;
11835 		patch_len = 2;
11836 apply_patch_buffer:
11837 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11838 		if (!new_prog)
11839 			return -ENOMEM;
11840 		env->prog = new_prog;
11841 		insns = new_prog->insnsi;
11842 		aux = env->insn_aux_data;
11843 		delta += patch_len - 1;
11844 	}
11845 
11846 	return 0;
11847 }
11848 
11849 /* convert load instructions that access fields of a context type into a
11850  * sequence of instructions that access fields of the underlying structure:
11851  *     struct __sk_buff    -> struct sk_buff
11852  *     struct bpf_sock_ops -> struct sock
11853  */
11854 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11855 {
11856 	const struct bpf_verifier_ops *ops = env->ops;
11857 	int i, cnt, size, ctx_field_size, delta = 0;
11858 	const int insn_cnt = env->prog->len;
11859 	struct bpf_insn insn_buf[16], *insn;
11860 	u32 target_size, size_default, off;
11861 	struct bpf_prog *new_prog;
11862 	enum bpf_access_type type;
11863 	bool is_narrower_load;
11864 
11865 	if (ops->gen_prologue || env->seen_direct_write) {
11866 		if (!ops->gen_prologue) {
11867 			verbose(env, "bpf verifier is misconfigured\n");
11868 			return -EINVAL;
11869 		}
11870 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11871 					env->prog);
11872 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11873 			verbose(env, "bpf verifier is misconfigured\n");
11874 			return -EINVAL;
11875 		} else if (cnt) {
11876 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11877 			if (!new_prog)
11878 				return -ENOMEM;
11879 
11880 			env->prog = new_prog;
11881 			delta += cnt - 1;
11882 		}
11883 	}
11884 
11885 	if (bpf_prog_is_dev_bound(env->prog->aux))
11886 		return 0;
11887 
11888 	insn = env->prog->insnsi + delta;
11889 
11890 	for (i = 0; i < insn_cnt; i++, insn++) {
11891 		bpf_convert_ctx_access_t convert_ctx_access;
11892 		bool ctx_access;
11893 
11894 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11895 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11896 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11897 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11898 			type = BPF_READ;
11899 			ctx_access = true;
11900 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11901 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11902 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11903 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11904 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11905 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11906 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11907 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11908 			type = BPF_WRITE;
11909 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11910 		} else {
11911 			continue;
11912 		}
11913 
11914 		if (type == BPF_WRITE &&
11915 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
11916 			struct bpf_insn patch[] = {
11917 				*insn,
11918 				BPF_ST_NOSPEC(),
11919 			};
11920 
11921 			cnt = ARRAY_SIZE(patch);
11922 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11923 			if (!new_prog)
11924 				return -ENOMEM;
11925 
11926 			delta    += cnt - 1;
11927 			env->prog = new_prog;
11928 			insn      = new_prog->insnsi + i + delta;
11929 			continue;
11930 		}
11931 
11932 		if (!ctx_access)
11933 			continue;
11934 
11935 		switch (env->insn_aux_data[i + delta].ptr_type) {
11936 		case PTR_TO_CTX:
11937 			if (!ops->convert_ctx_access)
11938 				continue;
11939 			convert_ctx_access = ops->convert_ctx_access;
11940 			break;
11941 		case PTR_TO_SOCKET:
11942 		case PTR_TO_SOCK_COMMON:
11943 			convert_ctx_access = bpf_sock_convert_ctx_access;
11944 			break;
11945 		case PTR_TO_TCP_SOCK:
11946 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11947 			break;
11948 		case PTR_TO_XDP_SOCK:
11949 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11950 			break;
11951 		case PTR_TO_BTF_ID:
11952 			if (type == BPF_READ) {
11953 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11954 					BPF_SIZE((insn)->code);
11955 				env->prog->aux->num_exentries++;
11956 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11957 				verbose(env, "Writes through BTF pointers are not allowed\n");
11958 				return -EINVAL;
11959 			}
11960 			continue;
11961 		default:
11962 			continue;
11963 		}
11964 
11965 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11966 		size = BPF_LDST_BYTES(insn);
11967 
11968 		/* If the read access is a narrower load of the field,
11969 		 * convert to a 4/8-byte load, to minimum program type specific
11970 		 * convert_ctx_access changes. If conversion is successful,
11971 		 * we will apply proper mask to the result.
11972 		 */
11973 		is_narrower_load = size < ctx_field_size;
11974 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11975 		off = insn->off;
11976 		if (is_narrower_load) {
11977 			u8 size_code;
11978 
11979 			if (type == BPF_WRITE) {
11980 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11981 				return -EINVAL;
11982 			}
11983 
11984 			size_code = BPF_H;
11985 			if (ctx_field_size == 4)
11986 				size_code = BPF_W;
11987 			else if (ctx_field_size == 8)
11988 				size_code = BPF_DW;
11989 
11990 			insn->off = off & ~(size_default - 1);
11991 			insn->code = BPF_LDX | BPF_MEM | size_code;
11992 		}
11993 
11994 		target_size = 0;
11995 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11996 					 &target_size);
11997 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11998 		    (ctx_field_size && !target_size)) {
11999 			verbose(env, "bpf verifier is misconfigured\n");
12000 			return -EINVAL;
12001 		}
12002 
12003 		if (is_narrower_load && size < target_size) {
12004 			u8 shift = bpf_ctx_narrow_access_offset(
12005 				off, size, size_default) * 8;
12006 			if (ctx_field_size <= 4) {
12007 				if (shift)
12008 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12009 									insn->dst_reg,
12010 									shift);
12011 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12012 								(1 << size * 8) - 1);
12013 			} else {
12014 				if (shift)
12015 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12016 									insn->dst_reg,
12017 									shift);
12018 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12019 								(1ULL << size * 8) - 1);
12020 			}
12021 		}
12022 
12023 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12024 		if (!new_prog)
12025 			return -ENOMEM;
12026 
12027 		delta += cnt - 1;
12028 
12029 		/* keep walking new program and skip insns we just inserted */
12030 		env->prog = new_prog;
12031 		insn      = new_prog->insnsi + i + delta;
12032 	}
12033 
12034 	return 0;
12035 }
12036 
12037 static int jit_subprogs(struct bpf_verifier_env *env)
12038 {
12039 	struct bpf_prog *prog = env->prog, **func, *tmp;
12040 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12041 	struct bpf_map *map_ptr;
12042 	struct bpf_insn *insn;
12043 	void *old_bpf_func;
12044 	int err, num_exentries;
12045 
12046 	if (env->subprog_cnt <= 1)
12047 		return 0;
12048 
12049 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12050 		if (bpf_pseudo_func(insn)) {
12051 			env->insn_aux_data[i].call_imm = insn->imm;
12052 			/* subprog is encoded in insn[1].imm */
12053 			continue;
12054 		}
12055 
12056 		if (!bpf_pseudo_call(insn))
12057 			continue;
12058 		/* Upon error here we cannot fall back to interpreter but
12059 		 * need a hard reject of the program. Thus -EFAULT is
12060 		 * propagated in any case.
12061 		 */
12062 		subprog = find_subprog(env, i + insn->imm + 1);
12063 		if (subprog < 0) {
12064 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12065 				  i + insn->imm + 1);
12066 			return -EFAULT;
12067 		}
12068 		/* temporarily remember subprog id inside insn instead of
12069 		 * aux_data, since next loop will split up all insns into funcs
12070 		 */
12071 		insn->off = subprog;
12072 		/* remember original imm in case JIT fails and fallback
12073 		 * to interpreter will be needed
12074 		 */
12075 		env->insn_aux_data[i].call_imm = insn->imm;
12076 		/* point imm to __bpf_call_base+1 from JITs point of view */
12077 		insn->imm = 1;
12078 	}
12079 
12080 	err = bpf_prog_alloc_jited_linfo(prog);
12081 	if (err)
12082 		goto out_undo_insn;
12083 
12084 	err = -ENOMEM;
12085 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12086 	if (!func)
12087 		goto out_undo_insn;
12088 
12089 	for (i = 0; i < env->subprog_cnt; i++) {
12090 		subprog_start = subprog_end;
12091 		subprog_end = env->subprog_info[i + 1].start;
12092 
12093 		len = subprog_end - subprog_start;
12094 		/* BPF_PROG_RUN doesn't call subprogs directly,
12095 		 * hence main prog stats include the runtime of subprogs.
12096 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12097 		 * func[i]->stats will never be accessed and stays NULL
12098 		 */
12099 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12100 		if (!func[i])
12101 			goto out_free;
12102 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12103 		       len * sizeof(struct bpf_insn));
12104 		func[i]->type = prog->type;
12105 		func[i]->len = len;
12106 		if (bpf_prog_calc_tag(func[i]))
12107 			goto out_free;
12108 		func[i]->is_func = 1;
12109 		func[i]->aux->func_idx = i;
12110 		/* Below members will be freed only at prog->aux */
12111 		func[i]->aux->btf = prog->aux->btf;
12112 		func[i]->aux->func_info = prog->aux->func_info;
12113 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12114 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12115 
12116 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12117 			struct bpf_jit_poke_descriptor *poke;
12118 
12119 			poke = &prog->aux->poke_tab[j];
12120 			if (poke->insn_idx < subprog_end &&
12121 			    poke->insn_idx >= subprog_start)
12122 				poke->aux = func[i]->aux;
12123 		}
12124 
12125 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12126 		 * Long term would need debug info to populate names
12127 		 */
12128 		func[i]->aux->name[0] = 'F';
12129 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12130 		func[i]->jit_requested = 1;
12131 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12132 		func[i]->aux->linfo = prog->aux->linfo;
12133 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12134 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12135 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12136 		num_exentries = 0;
12137 		insn = func[i]->insnsi;
12138 		for (j = 0; j < func[i]->len; j++, insn++) {
12139 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12140 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12141 				num_exentries++;
12142 		}
12143 		func[i]->aux->num_exentries = num_exentries;
12144 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12145 		func[i] = bpf_int_jit_compile(func[i]);
12146 		if (!func[i]->jited) {
12147 			err = -ENOTSUPP;
12148 			goto out_free;
12149 		}
12150 		cond_resched();
12151 	}
12152 
12153 	/* at this point all bpf functions were successfully JITed
12154 	 * now populate all bpf_calls with correct addresses and
12155 	 * run last pass of JIT
12156 	 */
12157 	for (i = 0; i < env->subprog_cnt; i++) {
12158 		insn = func[i]->insnsi;
12159 		for (j = 0; j < func[i]->len; j++, insn++) {
12160 			if (bpf_pseudo_func(insn)) {
12161 				subprog = insn[1].imm;
12162 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12163 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12164 				continue;
12165 			}
12166 			if (!bpf_pseudo_call(insn))
12167 				continue;
12168 			subprog = insn->off;
12169 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12170 				    __bpf_call_base;
12171 		}
12172 
12173 		/* we use the aux data to keep a list of the start addresses
12174 		 * of the JITed images for each function in the program
12175 		 *
12176 		 * for some architectures, such as powerpc64, the imm field
12177 		 * might not be large enough to hold the offset of the start
12178 		 * address of the callee's JITed image from __bpf_call_base
12179 		 *
12180 		 * in such cases, we can lookup the start address of a callee
12181 		 * by using its subprog id, available from the off field of
12182 		 * the call instruction, as an index for this list
12183 		 */
12184 		func[i]->aux->func = func;
12185 		func[i]->aux->func_cnt = env->subprog_cnt;
12186 	}
12187 	for (i = 0; i < env->subprog_cnt; i++) {
12188 		old_bpf_func = func[i]->bpf_func;
12189 		tmp = bpf_int_jit_compile(func[i]);
12190 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12191 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12192 			err = -ENOTSUPP;
12193 			goto out_free;
12194 		}
12195 		cond_resched();
12196 	}
12197 
12198 	/* finally lock prog and jit images for all functions and
12199 	 * populate kallsysm
12200 	 */
12201 	for (i = 0; i < env->subprog_cnt; i++) {
12202 		bpf_prog_lock_ro(func[i]);
12203 		bpf_prog_kallsyms_add(func[i]);
12204 	}
12205 
12206 	/* Last step: make now unused interpreter insns from main
12207 	 * prog consistent for later dump requests, so they can
12208 	 * later look the same as if they were interpreted only.
12209 	 */
12210 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12211 		if (bpf_pseudo_func(insn)) {
12212 			insn[0].imm = env->insn_aux_data[i].call_imm;
12213 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12214 			continue;
12215 		}
12216 		if (!bpf_pseudo_call(insn))
12217 			continue;
12218 		insn->off = env->insn_aux_data[i].call_imm;
12219 		subprog = find_subprog(env, i + insn->off + 1);
12220 		insn->imm = subprog;
12221 	}
12222 
12223 	prog->jited = 1;
12224 	prog->bpf_func = func[0]->bpf_func;
12225 	prog->aux->func = func;
12226 	prog->aux->func_cnt = env->subprog_cnt;
12227 	bpf_prog_jit_attempt_done(prog);
12228 	return 0;
12229 out_free:
12230 	/* We failed JIT'ing, so at this point we need to unregister poke
12231 	 * descriptors from subprogs, so that kernel is not attempting to
12232 	 * patch it anymore as we're freeing the subprog JIT memory.
12233 	 */
12234 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12235 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12236 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12237 	}
12238 	/* At this point we're guaranteed that poke descriptors are not
12239 	 * live anymore. We can just unlink its descriptor table as it's
12240 	 * released with the main prog.
12241 	 */
12242 	for (i = 0; i < env->subprog_cnt; i++) {
12243 		if (!func[i])
12244 			continue;
12245 		func[i]->aux->poke_tab = NULL;
12246 		bpf_jit_free(func[i]);
12247 	}
12248 	kfree(func);
12249 out_undo_insn:
12250 	/* cleanup main prog to be interpreted */
12251 	prog->jit_requested = 0;
12252 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12253 		if (!bpf_pseudo_call(insn))
12254 			continue;
12255 		insn->off = 0;
12256 		insn->imm = env->insn_aux_data[i].call_imm;
12257 	}
12258 	bpf_prog_jit_attempt_done(prog);
12259 	return err;
12260 }
12261 
12262 static int fixup_call_args(struct bpf_verifier_env *env)
12263 {
12264 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12265 	struct bpf_prog *prog = env->prog;
12266 	struct bpf_insn *insn = prog->insnsi;
12267 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12268 	int i, depth;
12269 #endif
12270 	int err = 0;
12271 
12272 	if (env->prog->jit_requested &&
12273 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12274 		err = jit_subprogs(env);
12275 		if (err == 0)
12276 			return 0;
12277 		if (err == -EFAULT)
12278 			return err;
12279 	}
12280 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12281 	if (has_kfunc_call) {
12282 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12283 		return -EINVAL;
12284 	}
12285 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12286 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12287 		 * have to be rejected, since interpreter doesn't support them yet.
12288 		 */
12289 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12290 		return -EINVAL;
12291 	}
12292 	for (i = 0; i < prog->len; i++, insn++) {
12293 		if (bpf_pseudo_func(insn)) {
12294 			/* When JIT fails the progs with callback calls
12295 			 * have to be rejected, since interpreter doesn't support them yet.
12296 			 */
12297 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12298 			return -EINVAL;
12299 		}
12300 
12301 		if (!bpf_pseudo_call(insn))
12302 			continue;
12303 		depth = get_callee_stack_depth(env, insn, i);
12304 		if (depth < 0)
12305 			return depth;
12306 		bpf_patch_call_args(insn, depth);
12307 	}
12308 	err = 0;
12309 #endif
12310 	return err;
12311 }
12312 
12313 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12314 			    struct bpf_insn *insn)
12315 {
12316 	const struct bpf_kfunc_desc *desc;
12317 
12318 	/* insn->imm has the btf func_id. Replace it with
12319 	 * an address (relative to __bpf_base_call).
12320 	 */
12321 	desc = find_kfunc_desc(env->prog, insn->imm);
12322 	if (!desc) {
12323 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12324 			insn->imm);
12325 		return -EFAULT;
12326 	}
12327 
12328 	insn->imm = desc->imm;
12329 
12330 	return 0;
12331 }
12332 
12333 /* Do various post-verification rewrites in a single program pass.
12334  * These rewrites simplify JIT and interpreter implementations.
12335  */
12336 static int do_misc_fixups(struct bpf_verifier_env *env)
12337 {
12338 	struct bpf_prog *prog = env->prog;
12339 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12340 	struct bpf_insn *insn = prog->insnsi;
12341 	const struct bpf_func_proto *fn;
12342 	const int insn_cnt = prog->len;
12343 	const struct bpf_map_ops *ops;
12344 	struct bpf_insn_aux_data *aux;
12345 	struct bpf_insn insn_buf[16];
12346 	struct bpf_prog *new_prog;
12347 	struct bpf_map *map_ptr;
12348 	int i, ret, cnt, delta = 0;
12349 
12350 	for (i = 0; i < insn_cnt; i++, insn++) {
12351 		/* Make divide-by-zero exceptions impossible. */
12352 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12353 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12354 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12355 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12356 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12357 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12358 			struct bpf_insn *patchlet;
12359 			struct bpf_insn chk_and_div[] = {
12360 				/* [R,W]x div 0 -> 0 */
12361 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12362 					     BPF_JNE | BPF_K, insn->src_reg,
12363 					     0, 2, 0),
12364 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12365 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12366 				*insn,
12367 			};
12368 			struct bpf_insn chk_and_mod[] = {
12369 				/* [R,W]x mod 0 -> [R,W]x */
12370 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12371 					     BPF_JEQ | BPF_K, insn->src_reg,
12372 					     0, 1 + (is64 ? 0 : 1), 0),
12373 				*insn,
12374 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12375 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12376 			};
12377 
12378 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12379 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12380 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12381 
12382 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12383 			if (!new_prog)
12384 				return -ENOMEM;
12385 
12386 			delta    += cnt - 1;
12387 			env->prog = prog = new_prog;
12388 			insn      = new_prog->insnsi + i + delta;
12389 			continue;
12390 		}
12391 
12392 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12393 		if (BPF_CLASS(insn->code) == BPF_LD &&
12394 		    (BPF_MODE(insn->code) == BPF_ABS ||
12395 		     BPF_MODE(insn->code) == BPF_IND)) {
12396 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12397 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12398 				verbose(env, "bpf verifier is misconfigured\n");
12399 				return -EINVAL;
12400 			}
12401 
12402 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12403 			if (!new_prog)
12404 				return -ENOMEM;
12405 
12406 			delta    += cnt - 1;
12407 			env->prog = prog = new_prog;
12408 			insn      = new_prog->insnsi + i + delta;
12409 			continue;
12410 		}
12411 
12412 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12413 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12414 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12415 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12416 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12417 			struct bpf_insn *patch = &insn_buf[0];
12418 			bool issrc, isneg, isimm;
12419 			u32 off_reg;
12420 
12421 			aux = &env->insn_aux_data[i + delta];
12422 			if (!aux->alu_state ||
12423 			    aux->alu_state == BPF_ALU_NON_POINTER)
12424 				continue;
12425 
12426 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12427 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12428 				BPF_ALU_SANITIZE_SRC;
12429 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12430 
12431 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12432 			if (isimm) {
12433 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12434 			} else {
12435 				if (isneg)
12436 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12437 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12438 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12439 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12440 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12441 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12442 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12443 			}
12444 			if (!issrc)
12445 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12446 			insn->src_reg = BPF_REG_AX;
12447 			if (isneg)
12448 				insn->code = insn->code == code_add ?
12449 					     code_sub : code_add;
12450 			*patch++ = *insn;
12451 			if (issrc && isneg && !isimm)
12452 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12453 			cnt = patch - insn_buf;
12454 
12455 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12456 			if (!new_prog)
12457 				return -ENOMEM;
12458 
12459 			delta    += cnt - 1;
12460 			env->prog = prog = new_prog;
12461 			insn      = new_prog->insnsi + i + delta;
12462 			continue;
12463 		}
12464 
12465 		if (insn->code != (BPF_JMP | BPF_CALL))
12466 			continue;
12467 		if (insn->src_reg == BPF_PSEUDO_CALL)
12468 			continue;
12469 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12470 			ret = fixup_kfunc_call(env, insn);
12471 			if (ret)
12472 				return ret;
12473 			continue;
12474 		}
12475 
12476 		if (insn->imm == BPF_FUNC_get_route_realm)
12477 			prog->dst_needed = 1;
12478 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12479 			bpf_user_rnd_init_once();
12480 		if (insn->imm == BPF_FUNC_override_return)
12481 			prog->kprobe_override = 1;
12482 		if (insn->imm == BPF_FUNC_tail_call) {
12483 			/* If we tail call into other programs, we
12484 			 * cannot make any assumptions since they can
12485 			 * be replaced dynamically during runtime in
12486 			 * the program array.
12487 			 */
12488 			prog->cb_access = 1;
12489 			if (!allow_tail_call_in_subprogs(env))
12490 				prog->aux->stack_depth = MAX_BPF_STACK;
12491 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12492 
12493 			/* mark bpf_tail_call as different opcode to avoid
12494 			 * conditional branch in the interpreter for every normal
12495 			 * call and to prevent accidental JITing by JIT compiler
12496 			 * that doesn't support bpf_tail_call yet
12497 			 */
12498 			insn->imm = 0;
12499 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12500 
12501 			aux = &env->insn_aux_data[i + delta];
12502 			if (env->bpf_capable && !expect_blinding &&
12503 			    prog->jit_requested &&
12504 			    !bpf_map_key_poisoned(aux) &&
12505 			    !bpf_map_ptr_poisoned(aux) &&
12506 			    !bpf_map_ptr_unpriv(aux)) {
12507 				struct bpf_jit_poke_descriptor desc = {
12508 					.reason = BPF_POKE_REASON_TAIL_CALL,
12509 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12510 					.tail_call.key = bpf_map_key_immediate(aux),
12511 					.insn_idx = i + delta,
12512 				};
12513 
12514 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12515 				if (ret < 0) {
12516 					verbose(env, "adding tail call poke descriptor failed\n");
12517 					return ret;
12518 				}
12519 
12520 				insn->imm = ret + 1;
12521 				continue;
12522 			}
12523 
12524 			if (!bpf_map_ptr_unpriv(aux))
12525 				continue;
12526 
12527 			/* instead of changing every JIT dealing with tail_call
12528 			 * emit two extra insns:
12529 			 * if (index >= max_entries) goto out;
12530 			 * index &= array->index_mask;
12531 			 * to avoid out-of-bounds cpu speculation
12532 			 */
12533 			if (bpf_map_ptr_poisoned(aux)) {
12534 				verbose(env, "tail_call abusing map_ptr\n");
12535 				return -EINVAL;
12536 			}
12537 
12538 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12539 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12540 						  map_ptr->max_entries, 2);
12541 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12542 						    container_of(map_ptr,
12543 								 struct bpf_array,
12544 								 map)->index_mask);
12545 			insn_buf[2] = *insn;
12546 			cnt = 3;
12547 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12548 			if (!new_prog)
12549 				return -ENOMEM;
12550 
12551 			delta    += cnt - 1;
12552 			env->prog = prog = new_prog;
12553 			insn      = new_prog->insnsi + i + delta;
12554 			continue;
12555 		}
12556 
12557 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12558 		 * and other inlining handlers are currently limited to 64 bit
12559 		 * only.
12560 		 */
12561 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12562 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12563 		     insn->imm == BPF_FUNC_map_update_elem ||
12564 		     insn->imm == BPF_FUNC_map_delete_elem ||
12565 		     insn->imm == BPF_FUNC_map_push_elem   ||
12566 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12567 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12568 		     insn->imm == BPF_FUNC_redirect_map)) {
12569 			aux = &env->insn_aux_data[i + delta];
12570 			if (bpf_map_ptr_poisoned(aux))
12571 				goto patch_call_imm;
12572 
12573 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12574 			ops = map_ptr->ops;
12575 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12576 			    ops->map_gen_lookup) {
12577 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12578 				if (cnt == -EOPNOTSUPP)
12579 					goto patch_map_ops_generic;
12580 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12581 					verbose(env, "bpf verifier is misconfigured\n");
12582 					return -EINVAL;
12583 				}
12584 
12585 				new_prog = bpf_patch_insn_data(env, i + delta,
12586 							       insn_buf, cnt);
12587 				if (!new_prog)
12588 					return -ENOMEM;
12589 
12590 				delta    += cnt - 1;
12591 				env->prog = prog = new_prog;
12592 				insn      = new_prog->insnsi + i + delta;
12593 				continue;
12594 			}
12595 
12596 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12597 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12598 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12599 				     (int (*)(struct bpf_map *map, void *key))NULL));
12600 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12601 				     (int (*)(struct bpf_map *map, void *key, void *value,
12602 					      u64 flags))NULL));
12603 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12604 				     (int (*)(struct bpf_map *map, void *value,
12605 					      u64 flags))NULL));
12606 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12607 				     (int (*)(struct bpf_map *map, void *value))NULL));
12608 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12609 				     (int (*)(struct bpf_map *map, void *value))NULL));
12610 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12611 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12612 
12613 patch_map_ops_generic:
12614 			switch (insn->imm) {
12615 			case BPF_FUNC_map_lookup_elem:
12616 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12617 					    __bpf_call_base;
12618 				continue;
12619 			case BPF_FUNC_map_update_elem:
12620 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12621 					    __bpf_call_base;
12622 				continue;
12623 			case BPF_FUNC_map_delete_elem:
12624 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12625 					    __bpf_call_base;
12626 				continue;
12627 			case BPF_FUNC_map_push_elem:
12628 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12629 					    __bpf_call_base;
12630 				continue;
12631 			case BPF_FUNC_map_pop_elem:
12632 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12633 					    __bpf_call_base;
12634 				continue;
12635 			case BPF_FUNC_map_peek_elem:
12636 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12637 					    __bpf_call_base;
12638 				continue;
12639 			case BPF_FUNC_redirect_map:
12640 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12641 					    __bpf_call_base;
12642 				continue;
12643 			}
12644 
12645 			goto patch_call_imm;
12646 		}
12647 
12648 		/* Implement bpf_jiffies64 inline. */
12649 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12650 		    insn->imm == BPF_FUNC_jiffies64) {
12651 			struct bpf_insn ld_jiffies_addr[2] = {
12652 				BPF_LD_IMM64(BPF_REG_0,
12653 					     (unsigned long)&jiffies),
12654 			};
12655 
12656 			insn_buf[0] = ld_jiffies_addr[0];
12657 			insn_buf[1] = ld_jiffies_addr[1];
12658 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12659 						  BPF_REG_0, 0);
12660 			cnt = 3;
12661 
12662 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12663 						       cnt);
12664 			if (!new_prog)
12665 				return -ENOMEM;
12666 
12667 			delta    += cnt - 1;
12668 			env->prog = prog = new_prog;
12669 			insn      = new_prog->insnsi + i + delta;
12670 			continue;
12671 		}
12672 
12673 patch_call_imm:
12674 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12675 		/* all functions that have prototype and verifier allowed
12676 		 * programs to call them, must be real in-kernel functions
12677 		 */
12678 		if (!fn->func) {
12679 			verbose(env,
12680 				"kernel subsystem misconfigured func %s#%d\n",
12681 				func_id_name(insn->imm), insn->imm);
12682 			return -EFAULT;
12683 		}
12684 		insn->imm = fn->func - __bpf_call_base;
12685 	}
12686 
12687 	/* Since poke tab is now finalized, publish aux to tracker. */
12688 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12689 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12690 		if (!map_ptr->ops->map_poke_track ||
12691 		    !map_ptr->ops->map_poke_untrack ||
12692 		    !map_ptr->ops->map_poke_run) {
12693 			verbose(env, "bpf verifier is misconfigured\n");
12694 			return -EINVAL;
12695 		}
12696 
12697 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12698 		if (ret < 0) {
12699 			verbose(env, "tracking tail call prog failed\n");
12700 			return ret;
12701 		}
12702 	}
12703 
12704 	sort_kfunc_descs_by_imm(env->prog);
12705 
12706 	return 0;
12707 }
12708 
12709 static void free_states(struct bpf_verifier_env *env)
12710 {
12711 	struct bpf_verifier_state_list *sl, *sln;
12712 	int i;
12713 
12714 	sl = env->free_list;
12715 	while (sl) {
12716 		sln = sl->next;
12717 		free_verifier_state(&sl->state, false);
12718 		kfree(sl);
12719 		sl = sln;
12720 	}
12721 	env->free_list = NULL;
12722 
12723 	if (!env->explored_states)
12724 		return;
12725 
12726 	for (i = 0; i < state_htab_size(env); i++) {
12727 		sl = env->explored_states[i];
12728 
12729 		while (sl) {
12730 			sln = sl->next;
12731 			free_verifier_state(&sl->state, false);
12732 			kfree(sl);
12733 			sl = sln;
12734 		}
12735 		env->explored_states[i] = NULL;
12736 	}
12737 }
12738 
12739 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12740 {
12741 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12742 	struct bpf_verifier_state *state;
12743 	struct bpf_reg_state *regs;
12744 	int ret, i;
12745 
12746 	env->prev_linfo = NULL;
12747 	env->pass_cnt++;
12748 
12749 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12750 	if (!state)
12751 		return -ENOMEM;
12752 	state->curframe = 0;
12753 	state->speculative = false;
12754 	state->branches = 1;
12755 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12756 	if (!state->frame[0]) {
12757 		kfree(state);
12758 		return -ENOMEM;
12759 	}
12760 	env->cur_state = state;
12761 	init_func_state(env, state->frame[0],
12762 			BPF_MAIN_FUNC /* callsite */,
12763 			0 /* frameno */,
12764 			subprog);
12765 
12766 	regs = state->frame[state->curframe]->regs;
12767 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12768 		ret = btf_prepare_func_args(env, subprog, regs);
12769 		if (ret)
12770 			goto out;
12771 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12772 			if (regs[i].type == PTR_TO_CTX)
12773 				mark_reg_known_zero(env, regs, i);
12774 			else if (regs[i].type == SCALAR_VALUE)
12775 				mark_reg_unknown(env, regs, i);
12776 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12777 				const u32 mem_size = regs[i].mem_size;
12778 
12779 				mark_reg_known_zero(env, regs, i);
12780 				regs[i].mem_size = mem_size;
12781 				regs[i].id = ++env->id_gen;
12782 			}
12783 		}
12784 	} else {
12785 		/* 1st arg to a function */
12786 		regs[BPF_REG_1].type = PTR_TO_CTX;
12787 		mark_reg_known_zero(env, regs, BPF_REG_1);
12788 		ret = btf_check_subprog_arg_match(env, subprog, regs);
12789 		if (ret == -EFAULT)
12790 			/* unlikely verifier bug. abort.
12791 			 * ret == 0 and ret < 0 are sadly acceptable for
12792 			 * main() function due to backward compatibility.
12793 			 * Like socket filter program may be written as:
12794 			 * int bpf_prog(struct pt_regs *ctx)
12795 			 * and never dereference that ctx in the program.
12796 			 * 'struct pt_regs' is a type mismatch for socket
12797 			 * filter that should be using 'struct __sk_buff'.
12798 			 */
12799 			goto out;
12800 	}
12801 
12802 	ret = do_check(env);
12803 out:
12804 	/* check for NULL is necessary, since cur_state can be freed inside
12805 	 * do_check() under memory pressure.
12806 	 */
12807 	if (env->cur_state) {
12808 		free_verifier_state(env->cur_state, true);
12809 		env->cur_state = NULL;
12810 	}
12811 	while (!pop_stack(env, NULL, NULL, false));
12812 	if (!ret && pop_log)
12813 		bpf_vlog_reset(&env->log, 0);
12814 	free_states(env);
12815 	return ret;
12816 }
12817 
12818 /* Verify all global functions in a BPF program one by one based on their BTF.
12819  * All global functions must pass verification. Otherwise the whole program is rejected.
12820  * Consider:
12821  * int bar(int);
12822  * int foo(int f)
12823  * {
12824  *    return bar(f);
12825  * }
12826  * int bar(int b)
12827  * {
12828  *    ...
12829  * }
12830  * foo() will be verified first for R1=any_scalar_value. During verification it
12831  * will be assumed that bar() already verified successfully and call to bar()
12832  * from foo() will be checked for type match only. Later bar() will be verified
12833  * independently to check that it's safe for R1=any_scalar_value.
12834  */
12835 static int do_check_subprogs(struct bpf_verifier_env *env)
12836 {
12837 	struct bpf_prog_aux *aux = env->prog->aux;
12838 	int i, ret;
12839 
12840 	if (!aux->func_info)
12841 		return 0;
12842 
12843 	for (i = 1; i < env->subprog_cnt; i++) {
12844 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12845 			continue;
12846 		env->insn_idx = env->subprog_info[i].start;
12847 		WARN_ON_ONCE(env->insn_idx == 0);
12848 		ret = do_check_common(env, i);
12849 		if (ret) {
12850 			return ret;
12851 		} else if (env->log.level & BPF_LOG_LEVEL) {
12852 			verbose(env,
12853 				"Func#%d is safe for any args that match its prototype\n",
12854 				i);
12855 		}
12856 	}
12857 	return 0;
12858 }
12859 
12860 static int do_check_main(struct bpf_verifier_env *env)
12861 {
12862 	int ret;
12863 
12864 	env->insn_idx = 0;
12865 	ret = do_check_common(env, 0);
12866 	if (!ret)
12867 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12868 	return ret;
12869 }
12870 
12871 
12872 static void print_verification_stats(struct bpf_verifier_env *env)
12873 {
12874 	int i;
12875 
12876 	if (env->log.level & BPF_LOG_STATS) {
12877 		verbose(env, "verification time %lld usec\n",
12878 			div_u64(env->verification_time, 1000));
12879 		verbose(env, "stack depth ");
12880 		for (i = 0; i < env->subprog_cnt; i++) {
12881 			u32 depth = env->subprog_info[i].stack_depth;
12882 
12883 			verbose(env, "%d", depth);
12884 			if (i + 1 < env->subprog_cnt)
12885 				verbose(env, "+");
12886 		}
12887 		verbose(env, "\n");
12888 	}
12889 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12890 		"total_states %d peak_states %d mark_read %d\n",
12891 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12892 		env->max_states_per_insn, env->total_states,
12893 		env->peak_states, env->longest_mark_read_walk);
12894 }
12895 
12896 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12897 {
12898 	const struct btf_type *t, *func_proto;
12899 	const struct bpf_struct_ops *st_ops;
12900 	const struct btf_member *member;
12901 	struct bpf_prog *prog = env->prog;
12902 	u32 btf_id, member_idx;
12903 	const char *mname;
12904 
12905 	if (!prog->gpl_compatible) {
12906 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12907 		return -EINVAL;
12908 	}
12909 
12910 	btf_id = prog->aux->attach_btf_id;
12911 	st_ops = bpf_struct_ops_find(btf_id);
12912 	if (!st_ops) {
12913 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12914 			btf_id);
12915 		return -ENOTSUPP;
12916 	}
12917 
12918 	t = st_ops->type;
12919 	member_idx = prog->expected_attach_type;
12920 	if (member_idx >= btf_type_vlen(t)) {
12921 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12922 			member_idx, st_ops->name);
12923 		return -EINVAL;
12924 	}
12925 
12926 	member = &btf_type_member(t)[member_idx];
12927 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12928 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12929 					       NULL);
12930 	if (!func_proto) {
12931 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12932 			mname, member_idx, st_ops->name);
12933 		return -EINVAL;
12934 	}
12935 
12936 	if (st_ops->check_member) {
12937 		int err = st_ops->check_member(t, member);
12938 
12939 		if (err) {
12940 			verbose(env, "attach to unsupported member %s of struct %s\n",
12941 				mname, st_ops->name);
12942 			return err;
12943 		}
12944 	}
12945 
12946 	prog->aux->attach_func_proto = func_proto;
12947 	prog->aux->attach_func_name = mname;
12948 	env->ops = st_ops->verifier_ops;
12949 
12950 	return 0;
12951 }
12952 #define SECURITY_PREFIX "security_"
12953 
12954 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12955 {
12956 	if (within_error_injection_list(addr) ||
12957 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12958 		return 0;
12959 
12960 	return -EINVAL;
12961 }
12962 
12963 /* list of non-sleepable functions that are otherwise on
12964  * ALLOW_ERROR_INJECTION list
12965  */
12966 BTF_SET_START(btf_non_sleepable_error_inject)
12967 /* Three functions below can be called from sleepable and non-sleepable context.
12968  * Assume non-sleepable from bpf safety point of view.
12969  */
12970 BTF_ID(func, __add_to_page_cache_locked)
12971 BTF_ID(func, should_fail_alloc_page)
12972 BTF_ID(func, should_failslab)
12973 BTF_SET_END(btf_non_sleepable_error_inject)
12974 
12975 static int check_non_sleepable_error_inject(u32 btf_id)
12976 {
12977 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12978 }
12979 
12980 int bpf_check_attach_target(struct bpf_verifier_log *log,
12981 			    const struct bpf_prog *prog,
12982 			    const struct bpf_prog *tgt_prog,
12983 			    u32 btf_id,
12984 			    struct bpf_attach_target_info *tgt_info)
12985 {
12986 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12987 	const char prefix[] = "btf_trace_";
12988 	int ret = 0, subprog = -1, i;
12989 	const struct btf_type *t;
12990 	bool conservative = true;
12991 	const char *tname;
12992 	struct btf *btf;
12993 	long addr = 0;
12994 
12995 	if (!btf_id) {
12996 		bpf_log(log, "Tracing programs must provide btf_id\n");
12997 		return -EINVAL;
12998 	}
12999 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13000 	if (!btf) {
13001 		bpf_log(log,
13002 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13003 		return -EINVAL;
13004 	}
13005 	t = btf_type_by_id(btf, btf_id);
13006 	if (!t) {
13007 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13008 		return -EINVAL;
13009 	}
13010 	tname = btf_name_by_offset(btf, t->name_off);
13011 	if (!tname) {
13012 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13013 		return -EINVAL;
13014 	}
13015 	if (tgt_prog) {
13016 		struct bpf_prog_aux *aux = tgt_prog->aux;
13017 
13018 		for (i = 0; i < aux->func_info_cnt; i++)
13019 			if (aux->func_info[i].type_id == btf_id) {
13020 				subprog = i;
13021 				break;
13022 			}
13023 		if (subprog == -1) {
13024 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13025 			return -EINVAL;
13026 		}
13027 		conservative = aux->func_info_aux[subprog].unreliable;
13028 		if (prog_extension) {
13029 			if (conservative) {
13030 				bpf_log(log,
13031 					"Cannot replace static functions\n");
13032 				return -EINVAL;
13033 			}
13034 			if (!prog->jit_requested) {
13035 				bpf_log(log,
13036 					"Extension programs should be JITed\n");
13037 				return -EINVAL;
13038 			}
13039 		}
13040 		if (!tgt_prog->jited) {
13041 			bpf_log(log, "Can attach to only JITed progs\n");
13042 			return -EINVAL;
13043 		}
13044 		if (tgt_prog->type == prog->type) {
13045 			/* Cannot fentry/fexit another fentry/fexit program.
13046 			 * Cannot attach program extension to another extension.
13047 			 * It's ok to attach fentry/fexit to extension program.
13048 			 */
13049 			bpf_log(log, "Cannot recursively attach\n");
13050 			return -EINVAL;
13051 		}
13052 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13053 		    prog_extension &&
13054 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13055 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13056 			/* Program extensions can extend all program types
13057 			 * except fentry/fexit. The reason is the following.
13058 			 * The fentry/fexit programs are used for performance
13059 			 * analysis, stats and can be attached to any program
13060 			 * type except themselves. When extension program is
13061 			 * replacing XDP function it is necessary to allow
13062 			 * performance analysis of all functions. Both original
13063 			 * XDP program and its program extension. Hence
13064 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13065 			 * allowed. If extending of fentry/fexit was allowed it
13066 			 * would be possible to create long call chain
13067 			 * fentry->extension->fentry->extension beyond
13068 			 * reasonable stack size. Hence extending fentry is not
13069 			 * allowed.
13070 			 */
13071 			bpf_log(log, "Cannot extend fentry/fexit\n");
13072 			return -EINVAL;
13073 		}
13074 	} else {
13075 		if (prog_extension) {
13076 			bpf_log(log, "Cannot replace kernel functions\n");
13077 			return -EINVAL;
13078 		}
13079 	}
13080 
13081 	switch (prog->expected_attach_type) {
13082 	case BPF_TRACE_RAW_TP:
13083 		if (tgt_prog) {
13084 			bpf_log(log,
13085 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13086 			return -EINVAL;
13087 		}
13088 		if (!btf_type_is_typedef(t)) {
13089 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13090 				btf_id);
13091 			return -EINVAL;
13092 		}
13093 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13094 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13095 				btf_id, tname);
13096 			return -EINVAL;
13097 		}
13098 		tname += sizeof(prefix) - 1;
13099 		t = btf_type_by_id(btf, t->type);
13100 		if (!btf_type_is_ptr(t))
13101 			/* should never happen in valid vmlinux build */
13102 			return -EINVAL;
13103 		t = btf_type_by_id(btf, t->type);
13104 		if (!btf_type_is_func_proto(t))
13105 			/* should never happen in valid vmlinux build */
13106 			return -EINVAL;
13107 
13108 		break;
13109 	case BPF_TRACE_ITER:
13110 		if (!btf_type_is_func(t)) {
13111 			bpf_log(log, "attach_btf_id %u is not a function\n",
13112 				btf_id);
13113 			return -EINVAL;
13114 		}
13115 		t = btf_type_by_id(btf, t->type);
13116 		if (!btf_type_is_func_proto(t))
13117 			return -EINVAL;
13118 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13119 		if (ret)
13120 			return ret;
13121 		break;
13122 	default:
13123 		if (!prog_extension)
13124 			return -EINVAL;
13125 		fallthrough;
13126 	case BPF_MODIFY_RETURN:
13127 	case BPF_LSM_MAC:
13128 	case BPF_TRACE_FENTRY:
13129 	case BPF_TRACE_FEXIT:
13130 		if (!btf_type_is_func(t)) {
13131 			bpf_log(log, "attach_btf_id %u is not a function\n",
13132 				btf_id);
13133 			return -EINVAL;
13134 		}
13135 		if (prog_extension &&
13136 		    btf_check_type_match(log, prog, btf, t))
13137 			return -EINVAL;
13138 		t = btf_type_by_id(btf, t->type);
13139 		if (!btf_type_is_func_proto(t))
13140 			return -EINVAL;
13141 
13142 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13143 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13144 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13145 			return -EINVAL;
13146 
13147 		if (tgt_prog && conservative)
13148 			t = NULL;
13149 
13150 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13151 		if (ret < 0)
13152 			return ret;
13153 
13154 		if (tgt_prog) {
13155 			if (subprog == 0)
13156 				addr = (long) tgt_prog->bpf_func;
13157 			else
13158 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13159 		} else {
13160 			addr = kallsyms_lookup_name(tname);
13161 			if (!addr) {
13162 				bpf_log(log,
13163 					"The address of function %s cannot be found\n",
13164 					tname);
13165 				return -ENOENT;
13166 			}
13167 		}
13168 
13169 		if (prog->aux->sleepable) {
13170 			ret = -EINVAL;
13171 			switch (prog->type) {
13172 			case BPF_PROG_TYPE_TRACING:
13173 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13174 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13175 				 */
13176 				if (!check_non_sleepable_error_inject(btf_id) &&
13177 				    within_error_injection_list(addr))
13178 					ret = 0;
13179 				break;
13180 			case BPF_PROG_TYPE_LSM:
13181 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13182 				 * Only some of them are sleepable.
13183 				 */
13184 				if (bpf_lsm_is_sleepable_hook(btf_id))
13185 					ret = 0;
13186 				break;
13187 			default:
13188 				break;
13189 			}
13190 			if (ret) {
13191 				bpf_log(log, "%s is not sleepable\n", tname);
13192 				return ret;
13193 			}
13194 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13195 			if (tgt_prog) {
13196 				bpf_log(log, "can't modify return codes of BPF programs\n");
13197 				return -EINVAL;
13198 			}
13199 			ret = check_attach_modify_return(addr, tname);
13200 			if (ret) {
13201 				bpf_log(log, "%s() is not modifiable\n", tname);
13202 				return ret;
13203 			}
13204 		}
13205 
13206 		break;
13207 	}
13208 	tgt_info->tgt_addr = addr;
13209 	tgt_info->tgt_name = tname;
13210 	tgt_info->tgt_type = t;
13211 	return 0;
13212 }
13213 
13214 BTF_SET_START(btf_id_deny)
13215 BTF_ID_UNUSED
13216 #ifdef CONFIG_SMP
13217 BTF_ID(func, migrate_disable)
13218 BTF_ID(func, migrate_enable)
13219 #endif
13220 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13221 BTF_ID(func, rcu_read_unlock_strict)
13222 #endif
13223 BTF_SET_END(btf_id_deny)
13224 
13225 static int check_attach_btf_id(struct bpf_verifier_env *env)
13226 {
13227 	struct bpf_prog *prog = env->prog;
13228 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13229 	struct bpf_attach_target_info tgt_info = {};
13230 	u32 btf_id = prog->aux->attach_btf_id;
13231 	struct bpf_trampoline *tr;
13232 	int ret;
13233 	u64 key;
13234 
13235 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13236 		if (prog->aux->sleepable)
13237 			/* attach_btf_id checked to be zero already */
13238 			return 0;
13239 		verbose(env, "Syscall programs can only be sleepable\n");
13240 		return -EINVAL;
13241 	}
13242 
13243 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13244 	    prog->type != BPF_PROG_TYPE_LSM) {
13245 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13246 		return -EINVAL;
13247 	}
13248 
13249 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13250 		return check_struct_ops_btf_id(env);
13251 
13252 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13253 	    prog->type != BPF_PROG_TYPE_LSM &&
13254 	    prog->type != BPF_PROG_TYPE_EXT)
13255 		return 0;
13256 
13257 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13258 	if (ret)
13259 		return ret;
13260 
13261 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13262 		/* to make freplace equivalent to their targets, they need to
13263 		 * inherit env->ops and expected_attach_type for the rest of the
13264 		 * verification
13265 		 */
13266 		env->ops = bpf_verifier_ops[tgt_prog->type];
13267 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13268 	}
13269 
13270 	/* store info about the attachment target that will be used later */
13271 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13272 	prog->aux->attach_func_name = tgt_info.tgt_name;
13273 
13274 	if (tgt_prog) {
13275 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13276 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13277 	}
13278 
13279 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13280 		prog->aux->attach_btf_trace = true;
13281 		return 0;
13282 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13283 		if (!bpf_iter_prog_supported(prog))
13284 			return -EINVAL;
13285 		return 0;
13286 	}
13287 
13288 	if (prog->type == BPF_PROG_TYPE_LSM) {
13289 		ret = bpf_lsm_verify_prog(&env->log, prog);
13290 		if (ret < 0)
13291 			return ret;
13292 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13293 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13294 		return -EINVAL;
13295 	}
13296 
13297 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13298 	tr = bpf_trampoline_get(key, &tgt_info);
13299 	if (!tr)
13300 		return -ENOMEM;
13301 
13302 	prog->aux->dst_trampoline = tr;
13303 	return 0;
13304 }
13305 
13306 struct btf *bpf_get_btf_vmlinux(void)
13307 {
13308 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13309 		mutex_lock(&bpf_verifier_lock);
13310 		if (!btf_vmlinux)
13311 			btf_vmlinux = btf_parse_vmlinux();
13312 		mutex_unlock(&bpf_verifier_lock);
13313 	}
13314 	return btf_vmlinux;
13315 }
13316 
13317 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13318 {
13319 	u64 start_time = ktime_get_ns();
13320 	struct bpf_verifier_env *env;
13321 	struct bpf_verifier_log *log;
13322 	int i, len, ret = -EINVAL;
13323 	bool is_priv;
13324 
13325 	/* no program is valid */
13326 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13327 		return -EINVAL;
13328 
13329 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13330 	 * allocate/free it every time bpf_check() is called
13331 	 */
13332 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13333 	if (!env)
13334 		return -ENOMEM;
13335 	log = &env->log;
13336 
13337 	len = (*prog)->len;
13338 	env->insn_aux_data =
13339 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13340 	ret = -ENOMEM;
13341 	if (!env->insn_aux_data)
13342 		goto err_free_env;
13343 	for (i = 0; i < len; i++)
13344 		env->insn_aux_data[i].orig_idx = i;
13345 	env->prog = *prog;
13346 	env->ops = bpf_verifier_ops[env->prog->type];
13347 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13348 	is_priv = bpf_capable();
13349 
13350 	bpf_get_btf_vmlinux();
13351 
13352 	/* grab the mutex to protect few globals used by verifier */
13353 	if (!is_priv)
13354 		mutex_lock(&bpf_verifier_lock);
13355 
13356 	if (attr->log_level || attr->log_buf || attr->log_size) {
13357 		/* user requested verbose verifier output
13358 		 * and supplied buffer to store the verification trace
13359 		 */
13360 		log->level = attr->log_level;
13361 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13362 		log->len_total = attr->log_size;
13363 
13364 		ret = -EINVAL;
13365 		/* log attributes have to be sane */
13366 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13367 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13368 			goto err_unlock;
13369 	}
13370 
13371 	if (IS_ERR(btf_vmlinux)) {
13372 		/* Either gcc or pahole or kernel are broken. */
13373 		verbose(env, "in-kernel BTF is malformed\n");
13374 		ret = PTR_ERR(btf_vmlinux);
13375 		goto skip_full_check;
13376 	}
13377 
13378 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13379 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13380 		env->strict_alignment = true;
13381 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13382 		env->strict_alignment = false;
13383 
13384 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13385 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13386 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13387 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13388 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13389 	env->bpf_capable = bpf_capable();
13390 
13391 	if (is_priv)
13392 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13393 
13394 	env->explored_states = kvcalloc(state_htab_size(env),
13395 				       sizeof(struct bpf_verifier_state_list *),
13396 				       GFP_USER);
13397 	ret = -ENOMEM;
13398 	if (!env->explored_states)
13399 		goto skip_full_check;
13400 
13401 	ret = add_subprog_and_kfunc(env);
13402 	if (ret < 0)
13403 		goto skip_full_check;
13404 
13405 	ret = check_subprogs(env);
13406 	if (ret < 0)
13407 		goto skip_full_check;
13408 
13409 	ret = check_btf_info(env, attr, uattr);
13410 	if (ret < 0)
13411 		goto skip_full_check;
13412 
13413 	ret = check_attach_btf_id(env);
13414 	if (ret)
13415 		goto skip_full_check;
13416 
13417 	ret = resolve_pseudo_ldimm64(env);
13418 	if (ret < 0)
13419 		goto skip_full_check;
13420 
13421 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13422 		ret = bpf_prog_offload_verifier_prep(env->prog);
13423 		if (ret)
13424 			goto skip_full_check;
13425 	}
13426 
13427 	ret = check_cfg(env);
13428 	if (ret < 0)
13429 		goto skip_full_check;
13430 
13431 	ret = do_check_subprogs(env);
13432 	ret = ret ?: do_check_main(env);
13433 
13434 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13435 		ret = bpf_prog_offload_finalize(env);
13436 
13437 skip_full_check:
13438 	kvfree(env->explored_states);
13439 
13440 	if (ret == 0)
13441 		ret = check_max_stack_depth(env);
13442 
13443 	/* instruction rewrites happen after this point */
13444 	if (is_priv) {
13445 		if (ret == 0)
13446 			opt_hard_wire_dead_code_branches(env);
13447 		if (ret == 0)
13448 			ret = opt_remove_dead_code(env);
13449 		if (ret == 0)
13450 			ret = opt_remove_nops(env);
13451 	} else {
13452 		if (ret == 0)
13453 			sanitize_dead_code(env);
13454 	}
13455 
13456 	if (ret == 0)
13457 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13458 		ret = convert_ctx_accesses(env);
13459 
13460 	if (ret == 0)
13461 		ret = do_misc_fixups(env);
13462 
13463 	/* do 32-bit optimization after insn patching has done so those patched
13464 	 * insns could be handled correctly.
13465 	 */
13466 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13467 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13468 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13469 								     : false;
13470 	}
13471 
13472 	if (ret == 0)
13473 		ret = fixup_call_args(env);
13474 
13475 	env->verification_time = ktime_get_ns() - start_time;
13476 	print_verification_stats(env);
13477 
13478 	if (log->level && bpf_verifier_log_full(log))
13479 		ret = -ENOSPC;
13480 	if (log->level && !log->ubuf) {
13481 		ret = -EFAULT;
13482 		goto err_release_maps;
13483 	}
13484 
13485 	if (ret)
13486 		goto err_release_maps;
13487 
13488 	if (env->used_map_cnt) {
13489 		/* if program passed verifier, update used_maps in bpf_prog_info */
13490 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13491 							  sizeof(env->used_maps[0]),
13492 							  GFP_KERNEL);
13493 
13494 		if (!env->prog->aux->used_maps) {
13495 			ret = -ENOMEM;
13496 			goto err_release_maps;
13497 		}
13498 
13499 		memcpy(env->prog->aux->used_maps, env->used_maps,
13500 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13501 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13502 	}
13503 	if (env->used_btf_cnt) {
13504 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13505 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13506 							  sizeof(env->used_btfs[0]),
13507 							  GFP_KERNEL);
13508 		if (!env->prog->aux->used_btfs) {
13509 			ret = -ENOMEM;
13510 			goto err_release_maps;
13511 		}
13512 
13513 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13514 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13515 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13516 	}
13517 	if (env->used_map_cnt || env->used_btf_cnt) {
13518 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13519 		 * bpf_ld_imm64 instructions
13520 		 */
13521 		convert_pseudo_ld_imm64(env);
13522 	}
13523 
13524 	adjust_btf_func(env);
13525 
13526 err_release_maps:
13527 	if (!env->prog->aux->used_maps)
13528 		/* if we didn't copy map pointers into bpf_prog_info, release
13529 		 * them now. Otherwise free_used_maps() will release them.
13530 		 */
13531 		release_maps(env);
13532 	if (!env->prog->aux->used_btfs)
13533 		release_btfs(env);
13534 
13535 	/* extension progs temporarily inherit the attach_type of their targets
13536 	   for verification purposes, so set it back to zero before returning
13537 	 */
13538 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13539 		env->prog->expected_attach_type = 0;
13540 
13541 	*prog = env->prog;
13542 err_unlock:
13543 	if (!is_priv)
13544 		mutex_unlock(&bpf_verifier_lock);
13545 	vfree(env->insn_aux_data);
13546 err_free_env:
13547 	kfree(env);
13548 	return ret;
13549 }
13550