1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 }; 265 266 struct btf *btf_vmlinux; 267 268 static DEFINE_MUTEX(bpf_verifier_lock); 269 270 static const struct bpf_line_info * 271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 272 { 273 const struct bpf_line_info *linfo; 274 const struct bpf_prog *prog; 275 u32 i, nr_linfo; 276 277 prog = env->prog; 278 nr_linfo = prog->aux->nr_linfo; 279 280 if (!nr_linfo || insn_off >= prog->len) 281 return NULL; 282 283 linfo = prog->aux->linfo; 284 for (i = 1; i < nr_linfo; i++) 285 if (insn_off < linfo[i].insn_off) 286 break; 287 288 return &linfo[i - 1]; 289 } 290 291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 292 va_list args) 293 { 294 unsigned int n; 295 296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 297 298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 299 "verifier log line truncated - local buffer too short\n"); 300 301 n = min(log->len_total - log->len_used - 1, n); 302 log->kbuf[n] = '\0'; 303 304 if (log->level == BPF_LOG_KERNEL) { 305 pr_err("BPF:%s\n", log->kbuf); 306 return; 307 } 308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 309 log->len_used += n; 310 else 311 log->ubuf = NULL; 312 } 313 314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 315 { 316 char zero = 0; 317 318 if (!bpf_verifier_log_needed(log)) 319 return; 320 321 log->len_used = new_pos; 322 if (put_user(zero, log->ubuf + new_pos)) 323 log->ubuf = NULL; 324 } 325 326 /* log_level controls verbosity level of eBPF verifier. 327 * bpf_verifier_log_write() is used to dump the verification trace to the log, 328 * so the user can figure out what's wrong with the program 329 */ 330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 331 const char *fmt, ...) 332 { 333 va_list args; 334 335 if (!bpf_verifier_log_needed(&env->log)) 336 return; 337 338 va_start(args, fmt); 339 bpf_verifier_vlog(&env->log, fmt, args); 340 va_end(args); 341 } 342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 343 344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 345 { 346 struct bpf_verifier_env *env = private_data; 347 va_list args; 348 349 if (!bpf_verifier_log_needed(&env->log)) 350 return; 351 352 va_start(args, fmt); 353 bpf_verifier_vlog(&env->log, fmt, args); 354 va_end(args); 355 } 356 357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 358 const char *fmt, ...) 359 { 360 va_list args; 361 362 if (!bpf_verifier_log_needed(log)) 363 return; 364 365 va_start(args, fmt); 366 bpf_verifier_vlog(log, fmt, args); 367 va_end(args); 368 } 369 370 static const char *ltrim(const char *s) 371 { 372 while (isspace(*s)) 373 s++; 374 375 return s; 376 } 377 378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 379 u32 insn_off, 380 const char *prefix_fmt, ...) 381 { 382 const struct bpf_line_info *linfo; 383 384 if (!bpf_verifier_log_needed(&env->log)) 385 return; 386 387 linfo = find_linfo(env, insn_off); 388 if (!linfo || linfo == env->prev_linfo) 389 return; 390 391 if (prefix_fmt) { 392 va_list args; 393 394 va_start(args, prefix_fmt); 395 bpf_verifier_vlog(&env->log, prefix_fmt, args); 396 va_end(args); 397 } 398 399 verbose(env, "%s\n", 400 ltrim(btf_name_by_offset(env->prog->aux->btf, 401 linfo->line_off))); 402 403 env->prev_linfo = linfo; 404 } 405 406 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 407 struct bpf_reg_state *reg, 408 struct tnum *range, const char *ctx, 409 const char *reg_name) 410 { 411 char tn_buf[48]; 412 413 verbose(env, "At %s the register %s ", ctx, reg_name); 414 if (!tnum_is_unknown(reg->var_off)) { 415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 416 verbose(env, "has value %s", tn_buf); 417 } else { 418 verbose(env, "has unknown scalar value"); 419 } 420 tnum_strn(tn_buf, sizeof(tn_buf), *range); 421 verbose(env, " should have been in %s\n", tn_buf); 422 } 423 424 static bool type_is_pkt_pointer(enum bpf_reg_type type) 425 { 426 return type == PTR_TO_PACKET || 427 type == PTR_TO_PACKET_META; 428 } 429 430 static bool type_is_sk_pointer(enum bpf_reg_type type) 431 { 432 return type == PTR_TO_SOCKET || 433 type == PTR_TO_SOCK_COMMON || 434 type == PTR_TO_TCP_SOCK || 435 type == PTR_TO_XDP_SOCK; 436 } 437 438 static bool reg_type_not_null(enum bpf_reg_type type) 439 { 440 return type == PTR_TO_SOCKET || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_MAP_VALUE || 443 type == PTR_TO_MAP_KEY || 444 type == PTR_TO_SOCK_COMMON; 445 } 446 447 static bool reg_type_may_be_null(enum bpf_reg_type type) 448 { 449 return type == PTR_TO_MAP_VALUE_OR_NULL || 450 type == PTR_TO_SOCKET_OR_NULL || 451 type == PTR_TO_SOCK_COMMON_OR_NULL || 452 type == PTR_TO_TCP_SOCK_OR_NULL || 453 type == PTR_TO_BTF_ID_OR_NULL || 454 type == PTR_TO_MEM_OR_NULL || 455 type == PTR_TO_RDONLY_BUF_OR_NULL || 456 type == PTR_TO_RDWR_BUF_OR_NULL; 457 } 458 459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 460 { 461 return reg->type == PTR_TO_MAP_VALUE && 462 map_value_has_spin_lock(reg->map_ptr); 463 } 464 465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 466 { 467 return type == PTR_TO_SOCKET || 468 type == PTR_TO_SOCKET_OR_NULL || 469 type == PTR_TO_TCP_SOCK || 470 type == PTR_TO_TCP_SOCK_OR_NULL || 471 type == PTR_TO_MEM || 472 type == PTR_TO_MEM_OR_NULL; 473 } 474 475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 476 { 477 return type == ARG_PTR_TO_SOCK_COMMON; 478 } 479 480 static bool arg_type_may_be_null(enum bpf_arg_type type) 481 { 482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 483 type == ARG_PTR_TO_MEM_OR_NULL || 484 type == ARG_PTR_TO_CTX_OR_NULL || 485 type == ARG_PTR_TO_SOCKET_OR_NULL || 486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 487 type == ARG_PTR_TO_STACK_OR_NULL; 488 } 489 490 /* Determine whether the function releases some resources allocated by another 491 * function call. The first reference type argument will be assumed to be 492 * released by release_reference(). 493 */ 494 static bool is_release_function(enum bpf_func_id func_id) 495 { 496 return func_id == BPF_FUNC_sk_release || 497 func_id == BPF_FUNC_ringbuf_submit || 498 func_id == BPF_FUNC_ringbuf_discard; 499 } 500 501 static bool may_be_acquire_function(enum bpf_func_id func_id) 502 { 503 return func_id == BPF_FUNC_sk_lookup_tcp || 504 func_id == BPF_FUNC_sk_lookup_udp || 505 func_id == BPF_FUNC_skc_lookup_tcp || 506 func_id == BPF_FUNC_map_lookup_elem || 507 func_id == BPF_FUNC_ringbuf_reserve; 508 } 509 510 static bool is_acquire_function(enum bpf_func_id func_id, 511 const struct bpf_map *map) 512 { 513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 514 515 if (func_id == BPF_FUNC_sk_lookup_tcp || 516 func_id == BPF_FUNC_sk_lookup_udp || 517 func_id == BPF_FUNC_skc_lookup_tcp || 518 func_id == BPF_FUNC_ringbuf_reserve) 519 return true; 520 521 if (func_id == BPF_FUNC_map_lookup_elem && 522 (map_type == BPF_MAP_TYPE_SOCKMAP || 523 map_type == BPF_MAP_TYPE_SOCKHASH)) 524 return true; 525 526 return false; 527 } 528 529 static bool is_ptr_cast_function(enum bpf_func_id func_id) 530 { 531 return func_id == BPF_FUNC_tcp_sock || 532 func_id == BPF_FUNC_sk_fullsock || 533 func_id == BPF_FUNC_skc_to_tcp_sock || 534 func_id == BPF_FUNC_skc_to_tcp6_sock || 535 func_id == BPF_FUNC_skc_to_udp6_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 541 { 542 return BPF_CLASS(insn->code) == BPF_STX && 543 BPF_MODE(insn->code) == BPF_ATOMIC && 544 insn->imm == BPF_CMPXCHG; 545 } 546 547 /* string representation of 'enum bpf_reg_type' */ 548 static const char * const reg_type_str[] = { 549 [NOT_INIT] = "?", 550 [SCALAR_VALUE] = "inv", 551 [PTR_TO_CTX] = "ctx", 552 [CONST_PTR_TO_MAP] = "map_ptr", 553 [PTR_TO_MAP_VALUE] = "map_value", 554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 555 [PTR_TO_STACK] = "fp", 556 [PTR_TO_PACKET] = "pkt", 557 [PTR_TO_PACKET_META] = "pkt_meta", 558 [PTR_TO_PACKET_END] = "pkt_end", 559 [PTR_TO_FLOW_KEYS] = "flow_keys", 560 [PTR_TO_SOCKET] = "sock", 561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 562 [PTR_TO_SOCK_COMMON] = "sock_common", 563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 564 [PTR_TO_TCP_SOCK] = "tcp_sock", 565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 566 [PTR_TO_TP_BUFFER] = "tp_buffer", 567 [PTR_TO_XDP_SOCK] = "xdp_sock", 568 [PTR_TO_BTF_ID] = "ptr_", 569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 571 [PTR_TO_MEM] = "mem", 572 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 573 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 575 [PTR_TO_RDWR_BUF] = "rdwr_buf", 576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 577 [PTR_TO_FUNC] = "func", 578 [PTR_TO_MAP_KEY] = "map_key", 579 }; 580 581 static char slot_type_char[] = { 582 [STACK_INVALID] = '?', 583 [STACK_SPILL] = 'r', 584 [STACK_MISC] = 'm', 585 [STACK_ZERO] = '0', 586 }; 587 588 static void print_liveness(struct bpf_verifier_env *env, 589 enum bpf_reg_liveness live) 590 { 591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 592 verbose(env, "_"); 593 if (live & REG_LIVE_READ) 594 verbose(env, "r"); 595 if (live & REG_LIVE_WRITTEN) 596 verbose(env, "w"); 597 if (live & REG_LIVE_DONE) 598 verbose(env, "D"); 599 } 600 601 static struct bpf_func_state *func(struct bpf_verifier_env *env, 602 const struct bpf_reg_state *reg) 603 { 604 struct bpf_verifier_state *cur = env->cur_state; 605 606 return cur->frame[reg->frameno]; 607 } 608 609 static const char *kernel_type_name(const struct btf* btf, u32 id) 610 { 611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 612 } 613 614 static void print_verifier_state(struct bpf_verifier_env *env, 615 const struct bpf_func_state *state) 616 { 617 const struct bpf_reg_state *reg; 618 enum bpf_reg_type t; 619 int i; 620 621 if (state->frameno) 622 verbose(env, " frame%d:", state->frameno); 623 for (i = 0; i < MAX_BPF_REG; i++) { 624 reg = &state->regs[i]; 625 t = reg->type; 626 if (t == NOT_INIT) 627 continue; 628 verbose(env, " R%d", i); 629 print_liveness(env, reg->live); 630 verbose(env, "=%s", reg_type_str[t]); 631 if (t == SCALAR_VALUE && reg->precise) 632 verbose(env, "P"); 633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 634 tnum_is_const(reg->var_off)) { 635 /* reg->off should be 0 for SCALAR_VALUE */ 636 verbose(env, "%lld", reg->var_off.value + reg->off); 637 } else { 638 if (t == PTR_TO_BTF_ID || 639 t == PTR_TO_BTF_ID_OR_NULL || 640 t == PTR_TO_PERCPU_BTF_ID) 641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 642 verbose(env, "(id=%d", reg->id); 643 if (reg_type_may_be_refcounted_or_null(t)) 644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 645 if (t != SCALAR_VALUE) 646 verbose(env, ",off=%d", reg->off); 647 if (type_is_pkt_pointer(t)) 648 verbose(env, ",r=%d", reg->range); 649 else if (t == CONST_PTR_TO_MAP || 650 t == PTR_TO_MAP_KEY || 651 t == PTR_TO_MAP_VALUE || 652 t == PTR_TO_MAP_VALUE_OR_NULL) 653 verbose(env, ",ks=%d,vs=%d", 654 reg->map_ptr->key_size, 655 reg->map_ptr->value_size); 656 if (tnum_is_const(reg->var_off)) { 657 /* Typically an immediate SCALAR_VALUE, but 658 * could be a pointer whose offset is too big 659 * for reg->off 660 */ 661 verbose(env, ",imm=%llx", reg->var_off.value); 662 } else { 663 if (reg->smin_value != reg->umin_value && 664 reg->smin_value != S64_MIN) 665 verbose(env, ",smin_value=%lld", 666 (long long)reg->smin_value); 667 if (reg->smax_value != reg->umax_value && 668 reg->smax_value != S64_MAX) 669 verbose(env, ",smax_value=%lld", 670 (long long)reg->smax_value); 671 if (reg->umin_value != 0) 672 verbose(env, ",umin_value=%llu", 673 (unsigned long long)reg->umin_value); 674 if (reg->umax_value != U64_MAX) 675 verbose(env, ",umax_value=%llu", 676 (unsigned long long)reg->umax_value); 677 if (!tnum_is_unknown(reg->var_off)) { 678 char tn_buf[48]; 679 680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 681 verbose(env, ",var_off=%s", tn_buf); 682 } 683 if (reg->s32_min_value != reg->smin_value && 684 reg->s32_min_value != S32_MIN) 685 verbose(env, ",s32_min_value=%d", 686 (int)(reg->s32_min_value)); 687 if (reg->s32_max_value != reg->smax_value && 688 reg->s32_max_value != S32_MAX) 689 verbose(env, ",s32_max_value=%d", 690 (int)(reg->s32_max_value)); 691 if (reg->u32_min_value != reg->umin_value && 692 reg->u32_min_value != U32_MIN) 693 verbose(env, ",u32_min_value=%d", 694 (int)(reg->u32_min_value)); 695 if (reg->u32_max_value != reg->umax_value && 696 reg->u32_max_value != U32_MAX) 697 verbose(env, ",u32_max_value=%d", 698 (int)(reg->u32_max_value)); 699 } 700 verbose(env, ")"); 701 } 702 } 703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 704 char types_buf[BPF_REG_SIZE + 1]; 705 bool valid = false; 706 int j; 707 708 for (j = 0; j < BPF_REG_SIZE; j++) { 709 if (state->stack[i].slot_type[j] != STACK_INVALID) 710 valid = true; 711 types_buf[j] = slot_type_char[ 712 state->stack[i].slot_type[j]]; 713 } 714 types_buf[BPF_REG_SIZE] = 0; 715 if (!valid) 716 continue; 717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 718 print_liveness(env, state->stack[i].spilled_ptr.live); 719 if (state->stack[i].slot_type[0] == STACK_SPILL) { 720 reg = &state->stack[i].spilled_ptr; 721 t = reg->type; 722 verbose(env, "=%s", reg_type_str[t]); 723 if (t == SCALAR_VALUE && reg->precise) 724 verbose(env, "P"); 725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 726 verbose(env, "%lld", reg->var_off.value + reg->off); 727 } else { 728 verbose(env, "=%s", types_buf); 729 } 730 } 731 if (state->acquired_refs && state->refs[0].id) { 732 verbose(env, " refs=%d", state->refs[0].id); 733 for (i = 1; i < state->acquired_refs; i++) 734 if (state->refs[i].id) 735 verbose(env, ",%d", state->refs[i].id); 736 } 737 verbose(env, "\n"); 738 } 739 740 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 741 * small to hold src. This is different from krealloc since we don't want to preserve 742 * the contents of dst. 743 * 744 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 745 * not be allocated. 746 */ 747 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 748 { 749 size_t bytes; 750 751 if (ZERO_OR_NULL_PTR(src)) 752 goto out; 753 754 if (unlikely(check_mul_overflow(n, size, &bytes))) 755 return NULL; 756 757 if (ksize(dst) < bytes) { 758 kfree(dst); 759 dst = kmalloc_track_caller(bytes, flags); 760 if (!dst) 761 return NULL; 762 } 763 764 memcpy(dst, src, bytes); 765 out: 766 return dst ? dst : ZERO_SIZE_PTR; 767 } 768 769 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 770 * small to hold new_n items. new items are zeroed out if the array grows. 771 * 772 * Contrary to krealloc_array, does not free arr if new_n is zero. 773 */ 774 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 775 { 776 if (!new_n || old_n == new_n) 777 goto out; 778 779 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 780 if (!arr) 781 return NULL; 782 783 if (new_n > old_n) 784 memset(arr + old_n * size, 0, (new_n - old_n) * size); 785 786 out: 787 return arr ? arr : ZERO_SIZE_PTR; 788 } 789 790 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 791 { 792 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 793 sizeof(struct bpf_reference_state), GFP_KERNEL); 794 if (!dst->refs) 795 return -ENOMEM; 796 797 dst->acquired_refs = src->acquired_refs; 798 return 0; 799 } 800 801 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 802 { 803 size_t n = src->allocated_stack / BPF_REG_SIZE; 804 805 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 806 GFP_KERNEL); 807 if (!dst->stack) 808 return -ENOMEM; 809 810 dst->allocated_stack = src->allocated_stack; 811 return 0; 812 } 813 814 static int resize_reference_state(struct bpf_func_state *state, size_t n) 815 { 816 state->refs = realloc_array(state->refs, state->acquired_refs, n, 817 sizeof(struct bpf_reference_state)); 818 if (!state->refs) 819 return -ENOMEM; 820 821 state->acquired_refs = n; 822 return 0; 823 } 824 825 static int grow_stack_state(struct bpf_func_state *state, int size) 826 { 827 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 828 829 if (old_n >= n) 830 return 0; 831 832 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 833 if (!state->stack) 834 return -ENOMEM; 835 836 state->allocated_stack = size; 837 return 0; 838 } 839 840 /* Acquire a pointer id from the env and update the state->refs to include 841 * this new pointer reference. 842 * On success, returns a valid pointer id to associate with the register 843 * On failure, returns a negative errno. 844 */ 845 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 846 { 847 struct bpf_func_state *state = cur_func(env); 848 int new_ofs = state->acquired_refs; 849 int id, err; 850 851 err = resize_reference_state(state, state->acquired_refs + 1); 852 if (err) 853 return err; 854 id = ++env->id_gen; 855 state->refs[new_ofs].id = id; 856 state->refs[new_ofs].insn_idx = insn_idx; 857 858 return id; 859 } 860 861 /* release function corresponding to acquire_reference_state(). Idempotent. */ 862 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 863 { 864 int i, last_idx; 865 866 last_idx = state->acquired_refs - 1; 867 for (i = 0; i < state->acquired_refs; i++) { 868 if (state->refs[i].id == ptr_id) { 869 if (last_idx && i != last_idx) 870 memcpy(&state->refs[i], &state->refs[last_idx], 871 sizeof(*state->refs)); 872 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 873 state->acquired_refs--; 874 return 0; 875 } 876 } 877 return -EINVAL; 878 } 879 880 static void free_func_state(struct bpf_func_state *state) 881 { 882 if (!state) 883 return; 884 kfree(state->refs); 885 kfree(state->stack); 886 kfree(state); 887 } 888 889 static void clear_jmp_history(struct bpf_verifier_state *state) 890 { 891 kfree(state->jmp_history); 892 state->jmp_history = NULL; 893 state->jmp_history_cnt = 0; 894 } 895 896 static void free_verifier_state(struct bpf_verifier_state *state, 897 bool free_self) 898 { 899 int i; 900 901 for (i = 0; i <= state->curframe; i++) { 902 free_func_state(state->frame[i]); 903 state->frame[i] = NULL; 904 } 905 clear_jmp_history(state); 906 if (free_self) 907 kfree(state); 908 } 909 910 /* copy verifier state from src to dst growing dst stack space 911 * when necessary to accommodate larger src stack 912 */ 913 static int copy_func_state(struct bpf_func_state *dst, 914 const struct bpf_func_state *src) 915 { 916 int err; 917 918 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 919 err = copy_reference_state(dst, src); 920 if (err) 921 return err; 922 return copy_stack_state(dst, src); 923 } 924 925 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 926 const struct bpf_verifier_state *src) 927 { 928 struct bpf_func_state *dst; 929 int i, err; 930 931 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 932 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 933 GFP_USER); 934 if (!dst_state->jmp_history) 935 return -ENOMEM; 936 dst_state->jmp_history_cnt = src->jmp_history_cnt; 937 938 /* if dst has more stack frames then src frame, free them */ 939 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 940 free_func_state(dst_state->frame[i]); 941 dst_state->frame[i] = NULL; 942 } 943 dst_state->speculative = src->speculative; 944 dst_state->curframe = src->curframe; 945 dst_state->active_spin_lock = src->active_spin_lock; 946 dst_state->branches = src->branches; 947 dst_state->parent = src->parent; 948 dst_state->first_insn_idx = src->first_insn_idx; 949 dst_state->last_insn_idx = src->last_insn_idx; 950 for (i = 0; i <= src->curframe; i++) { 951 dst = dst_state->frame[i]; 952 if (!dst) { 953 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 954 if (!dst) 955 return -ENOMEM; 956 dst_state->frame[i] = dst; 957 } 958 err = copy_func_state(dst, src->frame[i]); 959 if (err) 960 return err; 961 } 962 return 0; 963 } 964 965 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 966 { 967 while (st) { 968 u32 br = --st->branches; 969 970 /* WARN_ON(br > 1) technically makes sense here, 971 * but see comment in push_stack(), hence: 972 */ 973 WARN_ONCE((int)br < 0, 974 "BUG update_branch_counts:branches_to_explore=%d\n", 975 br); 976 if (br) 977 break; 978 st = st->parent; 979 } 980 } 981 982 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 983 int *insn_idx, bool pop_log) 984 { 985 struct bpf_verifier_state *cur = env->cur_state; 986 struct bpf_verifier_stack_elem *elem, *head = env->head; 987 int err; 988 989 if (env->head == NULL) 990 return -ENOENT; 991 992 if (cur) { 993 err = copy_verifier_state(cur, &head->st); 994 if (err) 995 return err; 996 } 997 if (pop_log) 998 bpf_vlog_reset(&env->log, head->log_pos); 999 if (insn_idx) 1000 *insn_idx = head->insn_idx; 1001 if (prev_insn_idx) 1002 *prev_insn_idx = head->prev_insn_idx; 1003 elem = head->next; 1004 free_verifier_state(&head->st, false); 1005 kfree(head); 1006 env->head = elem; 1007 env->stack_size--; 1008 return 0; 1009 } 1010 1011 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1012 int insn_idx, int prev_insn_idx, 1013 bool speculative) 1014 { 1015 struct bpf_verifier_state *cur = env->cur_state; 1016 struct bpf_verifier_stack_elem *elem; 1017 int err; 1018 1019 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1020 if (!elem) 1021 goto err; 1022 1023 elem->insn_idx = insn_idx; 1024 elem->prev_insn_idx = prev_insn_idx; 1025 elem->next = env->head; 1026 elem->log_pos = env->log.len_used; 1027 env->head = elem; 1028 env->stack_size++; 1029 err = copy_verifier_state(&elem->st, cur); 1030 if (err) 1031 goto err; 1032 elem->st.speculative |= speculative; 1033 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1034 verbose(env, "The sequence of %d jumps is too complex.\n", 1035 env->stack_size); 1036 goto err; 1037 } 1038 if (elem->st.parent) { 1039 ++elem->st.parent->branches; 1040 /* WARN_ON(branches > 2) technically makes sense here, 1041 * but 1042 * 1. speculative states will bump 'branches' for non-branch 1043 * instructions 1044 * 2. is_state_visited() heuristics may decide not to create 1045 * a new state for a sequence of branches and all such current 1046 * and cloned states will be pointing to a single parent state 1047 * which might have large 'branches' count. 1048 */ 1049 } 1050 return &elem->st; 1051 err: 1052 free_verifier_state(env->cur_state, true); 1053 env->cur_state = NULL; 1054 /* pop all elements and return */ 1055 while (!pop_stack(env, NULL, NULL, false)); 1056 return NULL; 1057 } 1058 1059 #define CALLER_SAVED_REGS 6 1060 static const int caller_saved[CALLER_SAVED_REGS] = { 1061 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1062 }; 1063 1064 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1065 struct bpf_reg_state *reg); 1066 1067 /* This helper doesn't clear reg->id */ 1068 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1069 { 1070 reg->var_off = tnum_const(imm); 1071 reg->smin_value = (s64)imm; 1072 reg->smax_value = (s64)imm; 1073 reg->umin_value = imm; 1074 reg->umax_value = imm; 1075 1076 reg->s32_min_value = (s32)imm; 1077 reg->s32_max_value = (s32)imm; 1078 reg->u32_min_value = (u32)imm; 1079 reg->u32_max_value = (u32)imm; 1080 } 1081 1082 /* Mark the unknown part of a register (variable offset or scalar value) as 1083 * known to have the value @imm. 1084 */ 1085 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1086 { 1087 /* Clear id, off, and union(map_ptr, range) */ 1088 memset(((u8 *)reg) + sizeof(reg->type), 0, 1089 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1090 ___mark_reg_known(reg, imm); 1091 } 1092 1093 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1094 { 1095 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1096 reg->s32_min_value = (s32)imm; 1097 reg->s32_max_value = (s32)imm; 1098 reg->u32_min_value = (u32)imm; 1099 reg->u32_max_value = (u32)imm; 1100 } 1101 1102 /* Mark the 'variable offset' part of a register as zero. This should be 1103 * used only on registers holding a pointer type. 1104 */ 1105 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1106 { 1107 __mark_reg_known(reg, 0); 1108 } 1109 1110 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1111 { 1112 __mark_reg_known(reg, 0); 1113 reg->type = SCALAR_VALUE; 1114 } 1115 1116 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1117 struct bpf_reg_state *regs, u32 regno) 1118 { 1119 if (WARN_ON(regno >= MAX_BPF_REG)) { 1120 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1121 /* Something bad happened, let's kill all regs */ 1122 for (regno = 0; regno < MAX_BPF_REG; regno++) 1123 __mark_reg_not_init(env, regs + regno); 1124 return; 1125 } 1126 __mark_reg_known_zero(regs + regno); 1127 } 1128 1129 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1130 { 1131 switch (reg->type) { 1132 case PTR_TO_MAP_VALUE_OR_NULL: { 1133 const struct bpf_map *map = reg->map_ptr; 1134 1135 if (map->inner_map_meta) { 1136 reg->type = CONST_PTR_TO_MAP; 1137 reg->map_ptr = map->inner_map_meta; 1138 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1139 reg->type = PTR_TO_XDP_SOCK; 1140 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1141 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1142 reg->type = PTR_TO_SOCKET; 1143 } else { 1144 reg->type = PTR_TO_MAP_VALUE; 1145 } 1146 break; 1147 } 1148 case PTR_TO_SOCKET_OR_NULL: 1149 reg->type = PTR_TO_SOCKET; 1150 break; 1151 case PTR_TO_SOCK_COMMON_OR_NULL: 1152 reg->type = PTR_TO_SOCK_COMMON; 1153 break; 1154 case PTR_TO_TCP_SOCK_OR_NULL: 1155 reg->type = PTR_TO_TCP_SOCK; 1156 break; 1157 case PTR_TO_BTF_ID_OR_NULL: 1158 reg->type = PTR_TO_BTF_ID; 1159 break; 1160 case PTR_TO_MEM_OR_NULL: 1161 reg->type = PTR_TO_MEM; 1162 break; 1163 case PTR_TO_RDONLY_BUF_OR_NULL: 1164 reg->type = PTR_TO_RDONLY_BUF; 1165 break; 1166 case PTR_TO_RDWR_BUF_OR_NULL: 1167 reg->type = PTR_TO_RDWR_BUF; 1168 break; 1169 default: 1170 WARN_ONCE(1, "unknown nullable register type"); 1171 } 1172 } 1173 1174 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1175 { 1176 return type_is_pkt_pointer(reg->type); 1177 } 1178 1179 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1180 { 1181 return reg_is_pkt_pointer(reg) || 1182 reg->type == PTR_TO_PACKET_END; 1183 } 1184 1185 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1186 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1187 enum bpf_reg_type which) 1188 { 1189 /* The register can already have a range from prior markings. 1190 * This is fine as long as it hasn't been advanced from its 1191 * origin. 1192 */ 1193 return reg->type == which && 1194 reg->id == 0 && 1195 reg->off == 0 && 1196 tnum_equals_const(reg->var_off, 0); 1197 } 1198 1199 /* Reset the min/max bounds of a register */ 1200 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1201 { 1202 reg->smin_value = S64_MIN; 1203 reg->smax_value = S64_MAX; 1204 reg->umin_value = 0; 1205 reg->umax_value = U64_MAX; 1206 1207 reg->s32_min_value = S32_MIN; 1208 reg->s32_max_value = S32_MAX; 1209 reg->u32_min_value = 0; 1210 reg->u32_max_value = U32_MAX; 1211 } 1212 1213 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1214 { 1215 reg->smin_value = S64_MIN; 1216 reg->smax_value = S64_MAX; 1217 reg->umin_value = 0; 1218 reg->umax_value = U64_MAX; 1219 } 1220 1221 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1222 { 1223 reg->s32_min_value = S32_MIN; 1224 reg->s32_max_value = S32_MAX; 1225 reg->u32_min_value = 0; 1226 reg->u32_max_value = U32_MAX; 1227 } 1228 1229 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1230 { 1231 struct tnum var32_off = tnum_subreg(reg->var_off); 1232 1233 /* min signed is max(sign bit) | min(other bits) */ 1234 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1235 var32_off.value | (var32_off.mask & S32_MIN)); 1236 /* max signed is min(sign bit) | max(other bits) */ 1237 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1238 var32_off.value | (var32_off.mask & S32_MAX)); 1239 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1240 reg->u32_max_value = min(reg->u32_max_value, 1241 (u32)(var32_off.value | var32_off.mask)); 1242 } 1243 1244 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1245 { 1246 /* min signed is max(sign bit) | min(other bits) */ 1247 reg->smin_value = max_t(s64, reg->smin_value, 1248 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1249 /* max signed is min(sign bit) | max(other bits) */ 1250 reg->smax_value = min_t(s64, reg->smax_value, 1251 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1252 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1253 reg->umax_value = min(reg->umax_value, 1254 reg->var_off.value | reg->var_off.mask); 1255 } 1256 1257 static void __update_reg_bounds(struct bpf_reg_state *reg) 1258 { 1259 __update_reg32_bounds(reg); 1260 __update_reg64_bounds(reg); 1261 } 1262 1263 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1264 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1265 { 1266 /* Learn sign from signed bounds. 1267 * If we cannot cross the sign boundary, then signed and unsigned bounds 1268 * are the same, so combine. This works even in the negative case, e.g. 1269 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1270 */ 1271 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1272 reg->s32_min_value = reg->u32_min_value = 1273 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1274 reg->s32_max_value = reg->u32_max_value = 1275 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1276 return; 1277 } 1278 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1279 * boundary, so we must be careful. 1280 */ 1281 if ((s32)reg->u32_max_value >= 0) { 1282 /* Positive. We can't learn anything from the smin, but smax 1283 * is positive, hence safe. 1284 */ 1285 reg->s32_min_value = reg->u32_min_value; 1286 reg->s32_max_value = reg->u32_max_value = 1287 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1288 } else if ((s32)reg->u32_min_value < 0) { 1289 /* Negative. We can't learn anything from the smax, but smin 1290 * is negative, hence safe. 1291 */ 1292 reg->s32_min_value = reg->u32_min_value = 1293 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1294 reg->s32_max_value = reg->u32_max_value; 1295 } 1296 } 1297 1298 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1299 { 1300 /* Learn sign from signed bounds. 1301 * If we cannot cross the sign boundary, then signed and unsigned bounds 1302 * are the same, so combine. This works even in the negative case, e.g. 1303 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1304 */ 1305 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1306 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1307 reg->umin_value); 1308 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1309 reg->umax_value); 1310 return; 1311 } 1312 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1313 * boundary, so we must be careful. 1314 */ 1315 if ((s64)reg->umax_value >= 0) { 1316 /* Positive. We can't learn anything from the smin, but smax 1317 * is positive, hence safe. 1318 */ 1319 reg->smin_value = reg->umin_value; 1320 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1321 reg->umax_value); 1322 } else if ((s64)reg->umin_value < 0) { 1323 /* Negative. We can't learn anything from the smax, but smin 1324 * is negative, hence safe. 1325 */ 1326 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1327 reg->umin_value); 1328 reg->smax_value = reg->umax_value; 1329 } 1330 } 1331 1332 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1333 { 1334 __reg32_deduce_bounds(reg); 1335 __reg64_deduce_bounds(reg); 1336 } 1337 1338 /* Attempts to improve var_off based on unsigned min/max information */ 1339 static void __reg_bound_offset(struct bpf_reg_state *reg) 1340 { 1341 struct tnum var64_off = tnum_intersect(reg->var_off, 1342 tnum_range(reg->umin_value, 1343 reg->umax_value)); 1344 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1345 tnum_range(reg->u32_min_value, 1346 reg->u32_max_value)); 1347 1348 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1349 } 1350 1351 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1352 { 1353 reg->umin_value = reg->u32_min_value; 1354 reg->umax_value = reg->u32_max_value; 1355 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1356 * but must be positive otherwise set to worse case bounds 1357 * and refine later from tnum. 1358 */ 1359 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1360 reg->smax_value = reg->s32_max_value; 1361 else 1362 reg->smax_value = U32_MAX; 1363 if (reg->s32_min_value >= 0) 1364 reg->smin_value = reg->s32_min_value; 1365 else 1366 reg->smin_value = 0; 1367 } 1368 1369 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1370 { 1371 /* special case when 64-bit register has upper 32-bit register 1372 * zeroed. Typically happens after zext or <<32, >>32 sequence 1373 * allowing us to use 32-bit bounds directly, 1374 */ 1375 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1376 __reg_assign_32_into_64(reg); 1377 } else { 1378 /* Otherwise the best we can do is push lower 32bit known and 1379 * unknown bits into register (var_off set from jmp logic) 1380 * then learn as much as possible from the 64-bit tnum 1381 * known and unknown bits. The previous smin/smax bounds are 1382 * invalid here because of jmp32 compare so mark them unknown 1383 * so they do not impact tnum bounds calculation. 1384 */ 1385 __mark_reg64_unbounded(reg); 1386 __update_reg_bounds(reg); 1387 } 1388 1389 /* Intersecting with the old var_off might have improved our bounds 1390 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1391 * then new var_off is (0; 0x7f...fc) which improves our umax. 1392 */ 1393 __reg_deduce_bounds(reg); 1394 __reg_bound_offset(reg); 1395 __update_reg_bounds(reg); 1396 } 1397 1398 static bool __reg64_bound_s32(s64 a) 1399 { 1400 return a > S32_MIN && a < S32_MAX; 1401 } 1402 1403 static bool __reg64_bound_u32(u64 a) 1404 { 1405 return a > U32_MIN && a < U32_MAX; 1406 } 1407 1408 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1409 { 1410 __mark_reg32_unbounded(reg); 1411 1412 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1413 reg->s32_min_value = (s32)reg->smin_value; 1414 reg->s32_max_value = (s32)reg->smax_value; 1415 } 1416 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1417 reg->u32_min_value = (u32)reg->umin_value; 1418 reg->u32_max_value = (u32)reg->umax_value; 1419 } 1420 1421 /* Intersecting with the old var_off might have improved our bounds 1422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1423 * then new var_off is (0; 0x7f...fc) which improves our umax. 1424 */ 1425 __reg_deduce_bounds(reg); 1426 __reg_bound_offset(reg); 1427 __update_reg_bounds(reg); 1428 } 1429 1430 /* Mark a register as having a completely unknown (scalar) value. */ 1431 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1432 struct bpf_reg_state *reg) 1433 { 1434 /* 1435 * Clear type, id, off, and union(map_ptr, range) and 1436 * padding between 'type' and union 1437 */ 1438 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1439 reg->type = SCALAR_VALUE; 1440 reg->var_off = tnum_unknown; 1441 reg->frameno = 0; 1442 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1443 __mark_reg_unbounded(reg); 1444 } 1445 1446 static void mark_reg_unknown(struct bpf_verifier_env *env, 1447 struct bpf_reg_state *regs, u32 regno) 1448 { 1449 if (WARN_ON(regno >= MAX_BPF_REG)) { 1450 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1451 /* Something bad happened, let's kill all regs except FP */ 1452 for (regno = 0; regno < BPF_REG_FP; regno++) 1453 __mark_reg_not_init(env, regs + regno); 1454 return; 1455 } 1456 __mark_reg_unknown(env, regs + regno); 1457 } 1458 1459 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1460 struct bpf_reg_state *reg) 1461 { 1462 __mark_reg_unknown(env, reg); 1463 reg->type = NOT_INIT; 1464 } 1465 1466 static void mark_reg_not_init(struct bpf_verifier_env *env, 1467 struct bpf_reg_state *regs, u32 regno) 1468 { 1469 if (WARN_ON(regno >= MAX_BPF_REG)) { 1470 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1471 /* Something bad happened, let's kill all regs except FP */ 1472 for (regno = 0; regno < BPF_REG_FP; regno++) 1473 __mark_reg_not_init(env, regs + regno); 1474 return; 1475 } 1476 __mark_reg_not_init(env, regs + regno); 1477 } 1478 1479 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1480 struct bpf_reg_state *regs, u32 regno, 1481 enum bpf_reg_type reg_type, 1482 struct btf *btf, u32 btf_id) 1483 { 1484 if (reg_type == SCALAR_VALUE) { 1485 mark_reg_unknown(env, regs, regno); 1486 return; 1487 } 1488 mark_reg_known_zero(env, regs, regno); 1489 regs[regno].type = PTR_TO_BTF_ID; 1490 regs[regno].btf = btf; 1491 regs[regno].btf_id = btf_id; 1492 } 1493 1494 #define DEF_NOT_SUBREG (0) 1495 static void init_reg_state(struct bpf_verifier_env *env, 1496 struct bpf_func_state *state) 1497 { 1498 struct bpf_reg_state *regs = state->regs; 1499 int i; 1500 1501 for (i = 0; i < MAX_BPF_REG; i++) { 1502 mark_reg_not_init(env, regs, i); 1503 regs[i].live = REG_LIVE_NONE; 1504 regs[i].parent = NULL; 1505 regs[i].subreg_def = DEF_NOT_SUBREG; 1506 } 1507 1508 /* frame pointer */ 1509 regs[BPF_REG_FP].type = PTR_TO_STACK; 1510 mark_reg_known_zero(env, regs, BPF_REG_FP); 1511 regs[BPF_REG_FP].frameno = state->frameno; 1512 } 1513 1514 #define BPF_MAIN_FUNC (-1) 1515 static void init_func_state(struct bpf_verifier_env *env, 1516 struct bpf_func_state *state, 1517 int callsite, int frameno, int subprogno) 1518 { 1519 state->callsite = callsite; 1520 state->frameno = frameno; 1521 state->subprogno = subprogno; 1522 init_reg_state(env, state); 1523 } 1524 1525 enum reg_arg_type { 1526 SRC_OP, /* register is used as source operand */ 1527 DST_OP, /* register is used as destination operand */ 1528 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1529 }; 1530 1531 static int cmp_subprogs(const void *a, const void *b) 1532 { 1533 return ((struct bpf_subprog_info *)a)->start - 1534 ((struct bpf_subprog_info *)b)->start; 1535 } 1536 1537 static int find_subprog(struct bpf_verifier_env *env, int off) 1538 { 1539 struct bpf_subprog_info *p; 1540 1541 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1542 sizeof(env->subprog_info[0]), cmp_subprogs); 1543 if (!p) 1544 return -ENOENT; 1545 return p - env->subprog_info; 1546 1547 } 1548 1549 static int add_subprog(struct bpf_verifier_env *env, int off) 1550 { 1551 int insn_cnt = env->prog->len; 1552 int ret; 1553 1554 if (off >= insn_cnt || off < 0) { 1555 verbose(env, "call to invalid destination\n"); 1556 return -EINVAL; 1557 } 1558 ret = find_subprog(env, off); 1559 if (ret >= 0) 1560 return ret; 1561 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1562 verbose(env, "too many subprograms\n"); 1563 return -E2BIG; 1564 } 1565 /* determine subprog starts. The end is one before the next starts */ 1566 env->subprog_info[env->subprog_cnt++].start = off; 1567 sort(env->subprog_info, env->subprog_cnt, 1568 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1569 return env->subprog_cnt - 1; 1570 } 1571 1572 struct bpf_kfunc_desc { 1573 struct btf_func_model func_model; 1574 u32 func_id; 1575 s32 imm; 1576 }; 1577 1578 #define MAX_KFUNC_DESCS 256 1579 struct bpf_kfunc_desc_tab { 1580 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1581 u32 nr_descs; 1582 }; 1583 1584 static int kfunc_desc_cmp_by_id(const void *a, const void *b) 1585 { 1586 const struct bpf_kfunc_desc *d0 = a; 1587 const struct bpf_kfunc_desc *d1 = b; 1588 1589 /* func_id is not greater than BTF_MAX_TYPE */ 1590 return d0->func_id - d1->func_id; 1591 } 1592 1593 static const struct bpf_kfunc_desc * 1594 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id) 1595 { 1596 struct bpf_kfunc_desc desc = { 1597 .func_id = func_id, 1598 }; 1599 struct bpf_kfunc_desc_tab *tab; 1600 1601 tab = prog->aux->kfunc_tab; 1602 return bsearch(&desc, tab->descs, tab->nr_descs, 1603 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id); 1604 } 1605 1606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id) 1607 { 1608 const struct btf_type *func, *func_proto; 1609 struct bpf_kfunc_desc_tab *tab; 1610 struct bpf_prog_aux *prog_aux; 1611 struct bpf_kfunc_desc *desc; 1612 const char *func_name; 1613 unsigned long addr; 1614 int err; 1615 1616 prog_aux = env->prog->aux; 1617 tab = prog_aux->kfunc_tab; 1618 if (!tab) { 1619 if (!btf_vmlinux) { 1620 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1621 return -ENOTSUPP; 1622 } 1623 1624 if (!env->prog->jit_requested) { 1625 verbose(env, "JIT is required for calling kernel function\n"); 1626 return -ENOTSUPP; 1627 } 1628 1629 if (!bpf_jit_supports_kfunc_call()) { 1630 verbose(env, "JIT does not support calling kernel function\n"); 1631 return -ENOTSUPP; 1632 } 1633 1634 if (!env->prog->gpl_compatible) { 1635 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1636 return -EINVAL; 1637 } 1638 1639 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1640 if (!tab) 1641 return -ENOMEM; 1642 prog_aux->kfunc_tab = tab; 1643 } 1644 1645 if (find_kfunc_desc(env->prog, func_id)) 1646 return 0; 1647 1648 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1649 verbose(env, "too many different kernel function calls\n"); 1650 return -E2BIG; 1651 } 1652 1653 func = btf_type_by_id(btf_vmlinux, func_id); 1654 if (!func || !btf_type_is_func(func)) { 1655 verbose(env, "kernel btf_id %u is not a function\n", 1656 func_id); 1657 return -EINVAL; 1658 } 1659 func_proto = btf_type_by_id(btf_vmlinux, func->type); 1660 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1661 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1662 func_id); 1663 return -EINVAL; 1664 } 1665 1666 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 1667 addr = kallsyms_lookup_name(func_name); 1668 if (!addr) { 1669 verbose(env, "cannot find address for kernel function %s\n", 1670 func_name); 1671 return -EINVAL; 1672 } 1673 1674 desc = &tab->descs[tab->nr_descs++]; 1675 desc->func_id = func_id; 1676 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base; 1677 err = btf_distill_func_proto(&env->log, btf_vmlinux, 1678 func_proto, func_name, 1679 &desc->func_model); 1680 if (!err) 1681 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1682 kfunc_desc_cmp_by_id, NULL); 1683 return err; 1684 } 1685 1686 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1687 { 1688 const struct bpf_kfunc_desc *d0 = a; 1689 const struct bpf_kfunc_desc *d1 = b; 1690 1691 if (d0->imm > d1->imm) 1692 return 1; 1693 else if (d0->imm < d1->imm) 1694 return -1; 1695 return 0; 1696 } 1697 1698 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1699 { 1700 struct bpf_kfunc_desc_tab *tab; 1701 1702 tab = prog->aux->kfunc_tab; 1703 if (!tab) 1704 return; 1705 1706 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1707 kfunc_desc_cmp_by_imm, NULL); 1708 } 1709 1710 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1711 { 1712 return !!prog->aux->kfunc_tab; 1713 } 1714 1715 const struct btf_func_model * 1716 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1717 const struct bpf_insn *insn) 1718 { 1719 const struct bpf_kfunc_desc desc = { 1720 .imm = insn->imm, 1721 }; 1722 const struct bpf_kfunc_desc *res; 1723 struct bpf_kfunc_desc_tab *tab; 1724 1725 tab = prog->aux->kfunc_tab; 1726 res = bsearch(&desc, tab->descs, tab->nr_descs, 1727 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1728 1729 return res ? &res->func_model : NULL; 1730 } 1731 1732 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1733 { 1734 struct bpf_subprog_info *subprog = env->subprog_info; 1735 struct bpf_insn *insn = env->prog->insnsi; 1736 int i, ret, insn_cnt = env->prog->len; 1737 1738 /* Add entry function. */ 1739 ret = add_subprog(env, 0); 1740 if (ret) 1741 return ret; 1742 1743 for (i = 0; i < insn_cnt; i++, insn++) { 1744 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1745 !bpf_pseudo_kfunc_call(insn)) 1746 continue; 1747 1748 if (!env->bpf_capable) { 1749 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1750 return -EPERM; 1751 } 1752 1753 if (bpf_pseudo_func(insn)) { 1754 ret = add_subprog(env, i + insn->imm + 1); 1755 if (ret >= 0) 1756 /* remember subprog */ 1757 insn[1].imm = ret; 1758 } else if (bpf_pseudo_call(insn)) { 1759 ret = add_subprog(env, i + insn->imm + 1); 1760 } else { 1761 ret = add_kfunc_call(env, insn->imm); 1762 } 1763 1764 if (ret < 0) 1765 return ret; 1766 } 1767 1768 /* Add a fake 'exit' subprog which could simplify subprog iteration 1769 * logic. 'subprog_cnt' should not be increased. 1770 */ 1771 subprog[env->subprog_cnt].start = insn_cnt; 1772 1773 if (env->log.level & BPF_LOG_LEVEL2) 1774 for (i = 0; i < env->subprog_cnt; i++) 1775 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1776 1777 return 0; 1778 } 1779 1780 static int check_subprogs(struct bpf_verifier_env *env) 1781 { 1782 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1783 struct bpf_subprog_info *subprog = env->subprog_info; 1784 struct bpf_insn *insn = env->prog->insnsi; 1785 int insn_cnt = env->prog->len; 1786 1787 /* now check that all jumps are within the same subprog */ 1788 subprog_start = subprog[cur_subprog].start; 1789 subprog_end = subprog[cur_subprog + 1].start; 1790 for (i = 0; i < insn_cnt; i++) { 1791 u8 code = insn[i].code; 1792 1793 if (code == (BPF_JMP | BPF_CALL) && 1794 insn[i].imm == BPF_FUNC_tail_call && 1795 insn[i].src_reg != BPF_PSEUDO_CALL) 1796 subprog[cur_subprog].has_tail_call = true; 1797 if (BPF_CLASS(code) == BPF_LD && 1798 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1799 subprog[cur_subprog].has_ld_abs = true; 1800 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1801 goto next; 1802 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1803 goto next; 1804 off = i + insn[i].off + 1; 1805 if (off < subprog_start || off >= subprog_end) { 1806 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1807 return -EINVAL; 1808 } 1809 next: 1810 if (i == subprog_end - 1) { 1811 /* to avoid fall-through from one subprog into another 1812 * the last insn of the subprog should be either exit 1813 * or unconditional jump back 1814 */ 1815 if (code != (BPF_JMP | BPF_EXIT) && 1816 code != (BPF_JMP | BPF_JA)) { 1817 verbose(env, "last insn is not an exit or jmp\n"); 1818 return -EINVAL; 1819 } 1820 subprog_start = subprog_end; 1821 cur_subprog++; 1822 if (cur_subprog < env->subprog_cnt) 1823 subprog_end = subprog[cur_subprog + 1].start; 1824 } 1825 } 1826 return 0; 1827 } 1828 1829 /* Parentage chain of this register (or stack slot) should take care of all 1830 * issues like callee-saved registers, stack slot allocation time, etc. 1831 */ 1832 static int mark_reg_read(struct bpf_verifier_env *env, 1833 const struct bpf_reg_state *state, 1834 struct bpf_reg_state *parent, u8 flag) 1835 { 1836 bool writes = parent == state->parent; /* Observe write marks */ 1837 int cnt = 0; 1838 1839 while (parent) { 1840 /* if read wasn't screened by an earlier write ... */ 1841 if (writes && state->live & REG_LIVE_WRITTEN) 1842 break; 1843 if (parent->live & REG_LIVE_DONE) { 1844 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1845 reg_type_str[parent->type], 1846 parent->var_off.value, parent->off); 1847 return -EFAULT; 1848 } 1849 /* The first condition is more likely to be true than the 1850 * second, checked it first. 1851 */ 1852 if ((parent->live & REG_LIVE_READ) == flag || 1853 parent->live & REG_LIVE_READ64) 1854 /* The parentage chain never changes and 1855 * this parent was already marked as LIVE_READ. 1856 * There is no need to keep walking the chain again and 1857 * keep re-marking all parents as LIVE_READ. 1858 * This case happens when the same register is read 1859 * multiple times without writes into it in-between. 1860 * Also, if parent has the stronger REG_LIVE_READ64 set, 1861 * then no need to set the weak REG_LIVE_READ32. 1862 */ 1863 break; 1864 /* ... then we depend on parent's value */ 1865 parent->live |= flag; 1866 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1867 if (flag == REG_LIVE_READ64) 1868 parent->live &= ~REG_LIVE_READ32; 1869 state = parent; 1870 parent = state->parent; 1871 writes = true; 1872 cnt++; 1873 } 1874 1875 if (env->longest_mark_read_walk < cnt) 1876 env->longest_mark_read_walk = cnt; 1877 return 0; 1878 } 1879 1880 /* This function is supposed to be used by the following 32-bit optimization 1881 * code only. It returns TRUE if the source or destination register operates 1882 * on 64-bit, otherwise return FALSE. 1883 */ 1884 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1885 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1886 { 1887 u8 code, class, op; 1888 1889 code = insn->code; 1890 class = BPF_CLASS(code); 1891 op = BPF_OP(code); 1892 if (class == BPF_JMP) { 1893 /* BPF_EXIT for "main" will reach here. Return TRUE 1894 * conservatively. 1895 */ 1896 if (op == BPF_EXIT) 1897 return true; 1898 if (op == BPF_CALL) { 1899 /* BPF to BPF call will reach here because of marking 1900 * caller saved clobber with DST_OP_NO_MARK for which we 1901 * don't care the register def because they are anyway 1902 * marked as NOT_INIT already. 1903 */ 1904 if (insn->src_reg == BPF_PSEUDO_CALL) 1905 return false; 1906 /* Helper call will reach here because of arg type 1907 * check, conservatively return TRUE. 1908 */ 1909 if (t == SRC_OP) 1910 return true; 1911 1912 return false; 1913 } 1914 } 1915 1916 if (class == BPF_ALU64 || class == BPF_JMP || 1917 /* BPF_END always use BPF_ALU class. */ 1918 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1919 return true; 1920 1921 if (class == BPF_ALU || class == BPF_JMP32) 1922 return false; 1923 1924 if (class == BPF_LDX) { 1925 if (t != SRC_OP) 1926 return BPF_SIZE(code) == BPF_DW; 1927 /* LDX source must be ptr. */ 1928 return true; 1929 } 1930 1931 if (class == BPF_STX) { 1932 /* BPF_STX (including atomic variants) has multiple source 1933 * operands, one of which is a ptr. Check whether the caller is 1934 * asking about it. 1935 */ 1936 if (t == SRC_OP && reg->type != SCALAR_VALUE) 1937 return true; 1938 return BPF_SIZE(code) == BPF_DW; 1939 } 1940 1941 if (class == BPF_LD) { 1942 u8 mode = BPF_MODE(code); 1943 1944 /* LD_IMM64 */ 1945 if (mode == BPF_IMM) 1946 return true; 1947 1948 /* Both LD_IND and LD_ABS return 32-bit data. */ 1949 if (t != SRC_OP) 1950 return false; 1951 1952 /* Implicit ctx ptr. */ 1953 if (regno == BPF_REG_6) 1954 return true; 1955 1956 /* Explicit source could be any width. */ 1957 return true; 1958 } 1959 1960 if (class == BPF_ST) 1961 /* The only source register for BPF_ST is a ptr. */ 1962 return true; 1963 1964 /* Conservatively return true at default. */ 1965 return true; 1966 } 1967 1968 /* Return the regno defined by the insn, or -1. */ 1969 static int insn_def_regno(const struct bpf_insn *insn) 1970 { 1971 switch (BPF_CLASS(insn->code)) { 1972 case BPF_JMP: 1973 case BPF_JMP32: 1974 case BPF_ST: 1975 return -1; 1976 case BPF_STX: 1977 if (BPF_MODE(insn->code) == BPF_ATOMIC && 1978 (insn->imm & BPF_FETCH)) { 1979 if (insn->imm == BPF_CMPXCHG) 1980 return BPF_REG_0; 1981 else 1982 return insn->src_reg; 1983 } else { 1984 return -1; 1985 } 1986 default: 1987 return insn->dst_reg; 1988 } 1989 } 1990 1991 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1992 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1993 { 1994 int dst_reg = insn_def_regno(insn); 1995 1996 if (dst_reg == -1) 1997 return false; 1998 1999 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2000 } 2001 2002 static void mark_insn_zext(struct bpf_verifier_env *env, 2003 struct bpf_reg_state *reg) 2004 { 2005 s32 def_idx = reg->subreg_def; 2006 2007 if (def_idx == DEF_NOT_SUBREG) 2008 return; 2009 2010 env->insn_aux_data[def_idx - 1].zext_dst = true; 2011 /* The dst will be zero extended, so won't be sub-register anymore. */ 2012 reg->subreg_def = DEF_NOT_SUBREG; 2013 } 2014 2015 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2016 enum reg_arg_type t) 2017 { 2018 struct bpf_verifier_state *vstate = env->cur_state; 2019 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2020 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2021 struct bpf_reg_state *reg, *regs = state->regs; 2022 bool rw64; 2023 2024 if (regno >= MAX_BPF_REG) { 2025 verbose(env, "R%d is invalid\n", regno); 2026 return -EINVAL; 2027 } 2028 2029 reg = ®s[regno]; 2030 rw64 = is_reg64(env, insn, regno, reg, t); 2031 if (t == SRC_OP) { 2032 /* check whether register used as source operand can be read */ 2033 if (reg->type == NOT_INIT) { 2034 verbose(env, "R%d !read_ok\n", regno); 2035 return -EACCES; 2036 } 2037 /* We don't need to worry about FP liveness because it's read-only */ 2038 if (regno == BPF_REG_FP) 2039 return 0; 2040 2041 if (rw64) 2042 mark_insn_zext(env, reg); 2043 2044 return mark_reg_read(env, reg, reg->parent, 2045 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2046 } else { 2047 /* check whether register used as dest operand can be written to */ 2048 if (regno == BPF_REG_FP) { 2049 verbose(env, "frame pointer is read only\n"); 2050 return -EACCES; 2051 } 2052 reg->live |= REG_LIVE_WRITTEN; 2053 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2054 if (t == DST_OP) 2055 mark_reg_unknown(env, regs, regno); 2056 } 2057 return 0; 2058 } 2059 2060 /* for any branch, call, exit record the history of jmps in the given state */ 2061 static int push_jmp_history(struct bpf_verifier_env *env, 2062 struct bpf_verifier_state *cur) 2063 { 2064 u32 cnt = cur->jmp_history_cnt; 2065 struct bpf_idx_pair *p; 2066 2067 cnt++; 2068 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2069 if (!p) 2070 return -ENOMEM; 2071 p[cnt - 1].idx = env->insn_idx; 2072 p[cnt - 1].prev_idx = env->prev_insn_idx; 2073 cur->jmp_history = p; 2074 cur->jmp_history_cnt = cnt; 2075 return 0; 2076 } 2077 2078 /* Backtrack one insn at a time. If idx is not at the top of recorded 2079 * history then previous instruction came from straight line execution. 2080 */ 2081 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2082 u32 *history) 2083 { 2084 u32 cnt = *history; 2085 2086 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2087 i = st->jmp_history[cnt - 1].prev_idx; 2088 (*history)--; 2089 } else { 2090 i--; 2091 } 2092 return i; 2093 } 2094 2095 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2096 { 2097 const struct btf_type *func; 2098 2099 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2100 return NULL; 2101 2102 func = btf_type_by_id(btf_vmlinux, insn->imm); 2103 return btf_name_by_offset(btf_vmlinux, func->name_off); 2104 } 2105 2106 /* For given verifier state backtrack_insn() is called from the last insn to 2107 * the first insn. Its purpose is to compute a bitmask of registers and 2108 * stack slots that needs precision in the parent verifier state. 2109 */ 2110 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2111 u32 *reg_mask, u64 *stack_mask) 2112 { 2113 const struct bpf_insn_cbs cbs = { 2114 .cb_call = disasm_kfunc_name, 2115 .cb_print = verbose, 2116 .private_data = env, 2117 }; 2118 struct bpf_insn *insn = env->prog->insnsi + idx; 2119 u8 class = BPF_CLASS(insn->code); 2120 u8 opcode = BPF_OP(insn->code); 2121 u8 mode = BPF_MODE(insn->code); 2122 u32 dreg = 1u << insn->dst_reg; 2123 u32 sreg = 1u << insn->src_reg; 2124 u32 spi; 2125 2126 if (insn->code == 0) 2127 return 0; 2128 if (env->log.level & BPF_LOG_LEVEL) { 2129 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2130 verbose(env, "%d: ", idx); 2131 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2132 } 2133 2134 if (class == BPF_ALU || class == BPF_ALU64) { 2135 if (!(*reg_mask & dreg)) 2136 return 0; 2137 if (opcode == BPF_MOV) { 2138 if (BPF_SRC(insn->code) == BPF_X) { 2139 /* dreg = sreg 2140 * dreg needs precision after this insn 2141 * sreg needs precision before this insn 2142 */ 2143 *reg_mask &= ~dreg; 2144 *reg_mask |= sreg; 2145 } else { 2146 /* dreg = K 2147 * dreg needs precision after this insn. 2148 * Corresponding register is already marked 2149 * as precise=true in this verifier state. 2150 * No further markings in parent are necessary 2151 */ 2152 *reg_mask &= ~dreg; 2153 } 2154 } else { 2155 if (BPF_SRC(insn->code) == BPF_X) { 2156 /* dreg += sreg 2157 * both dreg and sreg need precision 2158 * before this insn 2159 */ 2160 *reg_mask |= sreg; 2161 } /* else dreg += K 2162 * dreg still needs precision before this insn 2163 */ 2164 } 2165 } else if (class == BPF_LDX) { 2166 if (!(*reg_mask & dreg)) 2167 return 0; 2168 *reg_mask &= ~dreg; 2169 2170 /* scalars can only be spilled into stack w/o losing precision. 2171 * Load from any other memory can be zero extended. 2172 * The desire to keep that precision is already indicated 2173 * by 'precise' mark in corresponding register of this state. 2174 * No further tracking necessary. 2175 */ 2176 if (insn->src_reg != BPF_REG_FP) 2177 return 0; 2178 if (BPF_SIZE(insn->code) != BPF_DW) 2179 return 0; 2180 2181 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2182 * that [fp - off] slot contains scalar that needs to be 2183 * tracked with precision 2184 */ 2185 spi = (-insn->off - 1) / BPF_REG_SIZE; 2186 if (spi >= 64) { 2187 verbose(env, "BUG spi %d\n", spi); 2188 WARN_ONCE(1, "verifier backtracking bug"); 2189 return -EFAULT; 2190 } 2191 *stack_mask |= 1ull << spi; 2192 } else if (class == BPF_STX || class == BPF_ST) { 2193 if (*reg_mask & dreg) 2194 /* stx & st shouldn't be using _scalar_ dst_reg 2195 * to access memory. It means backtracking 2196 * encountered a case of pointer subtraction. 2197 */ 2198 return -ENOTSUPP; 2199 /* scalars can only be spilled into stack */ 2200 if (insn->dst_reg != BPF_REG_FP) 2201 return 0; 2202 if (BPF_SIZE(insn->code) != BPF_DW) 2203 return 0; 2204 spi = (-insn->off - 1) / BPF_REG_SIZE; 2205 if (spi >= 64) { 2206 verbose(env, "BUG spi %d\n", spi); 2207 WARN_ONCE(1, "verifier backtracking bug"); 2208 return -EFAULT; 2209 } 2210 if (!(*stack_mask & (1ull << spi))) 2211 return 0; 2212 *stack_mask &= ~(1ull << spi); 2213 if (class == BPF_STX) 2214 *reg_mask |= sreg; 2215 } else if (class == BPF_JMP || class == BPF_JMP32) { 2216 if (opcode == BPF_CALL) { 2217 if (insn->src_reg == BPF_PSEUDO_CALL) 2218 return -ENOTSUPP; 2219 /* regular helper call sets R0 */ 2220 *reg_mask &= ~1; 2221 if (*reg_mask & 0x3f) { 2222 /* if backtracing was looking for registers R1-R5 2223 * they should have been found already. 2224 */ 2225 verbose(env, "BUG regs %x\n", *reg_mask); 2226 WARN_ONCE(1, "verifier backtracking bug"); 2227 return -EFAULT; 2228 } 2229 } else if (opcode == BPF_EXIT) { 2230 return -ENOTSUPP; 2231 } 2232 } else if (class == BPF_LD) { 2233 if (!(*reg_mask & dreg)) 2234 return 0; 2235 *reg_mask &= ~dreg; 2236 /* It's ld_imm64 or ld_abs or ld_ind. 2237 * For ld_imm64 no further tracking of precision 2238 * into parent is necessary 2239 */ 2240 if (mode == BPF_IND || mode == BPF_ABS) 2241 /* to be analyzed */ 2242 return -ENOTSUPP; 2243 } 2244 return 0; 2245 } 2246 2247 /* the scalar precision tracking algorithm: 2248 * . at the start all registers have precise=false. 2249 * . scalar ranges are tracked as normal through alu and jmp insns. 2250 * . once precise value of the scalar register is used in: 2251 * . ptr + scalar alu 2252 * . if (scalar cond K|scalar) 2253 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2254 * backtrack through the verifier states and mark all registers and 2255 * stack slots with spilled constants that these scalar regisers 2256 * should be precise. 2257 * . during state pruning two registers (or spilled stack slots) 2258 * are equivalent if both are not precise. 2259 * 2260 * Note the verifier cannot simply walk register parentage chain, 2261 * since many different registers and stack slots could have been 2262 * used to compute single precise scalar. 2263 * 2264 * The approach of starting with precise=true for all registers and then 2265 * backtrack to mark a register as not precise when the verifier detects 2266 * that program doesn't care about specific value (e.g., when helper 2267 * takes register as ARG_ANYTHING parameter) is not safe. 2268 * 2269 * It's ok to walk single parentage chain of the verifier states. 2270 * It's possible that this backtracking will go all the way till 1st insn. 2271 * All other branches will be explored for needing precision later. 2272 * 2273 * The backtracking needs to deal with cases like: 2274 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2275 * r9 -= r8 2276 * r5 = r9 2277 * if r5 > 0x79f goto pc+7 2278 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2279 * r5 += 1 2280 * ... 2281 * call bpf_perf_event_output#25 2282 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2283 * 2284 * and this case: 2285 * r6 = 1 2286 * call foo // uses callee's r6 inside to compute r0 2287 * r0 += r6 2288 * if r0 == 0 goto 2289 * 2290 * to track above reg_mask/stack_mask needs to be independent for each frame. 2291 * 2292 * Also if parent's curframe > frame where backtracking started, 2293 * the verifier need to mark registers in both frames, otherwise callees 2294 * may incorrectly prune callers. This is similar to 2295 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2296 * 2297 * For now backtracking falls back into conservative marking. 2298 */ 2299 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2300 struct bpf_verifier_state *st) 2301 { 2302 struct bpf_func_state *func; 2303 struct bpf_reg_state *reg; 2304 int i, j; 2305 2306 /* big hammer: mark all scalars precise in this path. 2307 * pop_stack may still get !precise scalars. 2308 */ 2309 for (; st; st = st->parent) 2310 for (i = 0; i <= st->curframe; i++) { 2311 func = st->frame[i]; 2312 for (j = 0; j < BPF_REG_FP; j++) { 2313 reg = &func->regs[j]; 2314 if (reg->type != SCALAR_VALUE) 2315 continue; 2316 reg->precise = true; 2317 } 2318 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2319 if (func->stack[j].slot_type[0] != STACK_SPILL) 2320 continue; 2321 reg = &func->stack[j].spilled_ptr; 2322 if (reg->type != SCALAR_VALUE) 2323 continue; 2324 reg->precise = true; 2325 } 2326 } 2327 } 2328 2329 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2330 int spi) 2331 { 2332 struct bpf_verifier_state *st = env->cur_state; 2333 int first_idx = st->first_insn_idx; 2334 int last_idx = env->insn_idx; 2335 struct bpf_func_state *func; 2336 struct bpf_reg_state *reg; 2337 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2338 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2339 bool skip_first = true; 2340 bool new_marks = false; 2341 int i, err; 2342 2343 if (!env->bpf_capable) 2344 return 0; 2345 2346 func = st->frame[st->curframe]; 2347 if (regno >= 0) { 2348 reg = &func->regs[regno]; 2349 if (reg->type != SCALAR_VALUE) { 2350 WARN_ONCE(1, "backtracing misuse"); 2351 return -EFAULT; 2352 } 2353 if (!reg->precise) 2354 new_marks = true; 2355 else 2356 reg_mask = 0; 2357 reg->precise = true; 2358 } 2359 2360 while (spi >= 0) { 2361 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2362 stack_mask = 0; 2363 break; 2364 } 2365 reg = &func->stack[spi].spilled_ptr; 2366 if (reg->type != SCALAR_VALUE) { 2367 stack_mask = 0; 2368 break; 2369 } 2370 if (!reg->precise) 2371 new_marks = true; 2372 else 2373 stack_mask = 0; 2374 reg->precise = true; 2375 break; 2376 } 2377 2378 if (!new_marks) 2379 return 0; 2380 if (!reg_mask && !stack_mask) 2381 return 0; 2382 for (;;) { 2383 DECLARE_BITMAP(mask, 64); 2384 u32 history = st->jmp_history_cnt; 2385 2386 if (env->log.level & BPF_LOG_LEVEL) 2387 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2388 for (i = last_idx;;) { 2389 if (skip_first) { 2390 err = 0; 2391 skip_first = false; 2392 } else { 2393 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2394 } 2395 if (err == -ENOTSUPP) { 2396 mark_all_scalars_precise(env, st); 2397 return 0; 2398 } else if (err) { 2399 return err; 2400 } 2401 if (!reg_mask && !stack_mask) 2402 /* Found assignment(s) into tracked register in this state. 2403 * Since this state is already marked, just return. 2404 * Nothing to be tracked further in the parent state. 2405 */ 2406 return 0; 2407 if (i == first_idx) 2408 break; 2409 i = get_prev_insn_idx(st, i, &history); 2410 if (i >= env->prog->len) { 2411 /* This can happen if backtracking reached insn 0 2412 * and there are still reg_mask or stack_mask 2413 * to backtrack. 2414 * It means the backtracking missed the spot where 2415 * particular register was initialized with a constant. 2416 */ 2417 verbose(env, "BUG backtracking idx %d\n", i); 2418 WARN_ONCE(1, "verifier backtracking bug"); 2419 return -EFAULT; 2420 } 2421 } 2422 st = st->parent; 2423 if (!st) 2424 break; 2425 2426 new_marks = false; 2427 func = st->frame[st->curframe]; 2428 bitmap_from_u64(mask, reg_mask); 2429 for_each_set_bit(i, mask, 32) { 2430 reg = &func->regs[i]; 2431 if (reg->type != SCALAR_VALUE) { 2432 reg_mask &= ~(1u << i); 2433 continue; 2434 } 2435 if (!reg->precise) 2436 new_marks = true; 2437 reg->precise = true; 2438 } 2439 2440 bitmap_from_u64(mask, stack_mask); 2441 for_each_set_bit(i, mask, 64) { 2442 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2443 /* the sequence of instructions: 2444 * 2: (bf) r3 = r10 2445 * 3: (7b) *(u64 *)(r3 -8) = r0 2446 * 4: (79) r4 = *(u64 *)(r10 -8) 2447 * doesn't contain jmps. It's backtracked 2448 * as a single block. 2449 * During backtracking insn 3 is not recognized as 2450 * stack access, so at the end of backtracking 2451 * stack slot fp-8 is still marked in stack_mask. 2452 * However the parent state may not have accessed 2453 * fp-8 and it's "unallocated" stack space. 2454 * In such case fallback to conservative. 2455 */ 2456 mark_all_scalars_precise(env, st); 2457 return 0; 2458 } 2459 2460 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2461 stack_mask &= ~(1ull << i); 2462 continue; 2463 } 2464 reg = &func->stack[i].spilled_ptr; 2465 if (reg->type != SCALAR_VALUE) { 2466 stack_mask &= ~(1ull << i); 2467 continue; 2468 } 2469 if (!reg->precise) 2470 new_marks = true; 2471 reg->precise = true; 2472 } 2473 if (env->log.level & BPF_LOG_LEVEL) { 2474 print_verifier_state(env, func); 2475 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2476 new_marks ? "didn't have" : "already had", 2477 reg_mask, stack_mask); 2478 } 2479 2480 if (!reg_mask && !stack_mask) 2481 break; 2482 if (!new_marks) 2483 break; 2484 2485 last_idx = st->last_insn_idx; 2486 first_idx = st->first_insn_idx; 2487 } 2488 return 0; 2489 } 2490 2491 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2492 { 2493 return __mark_chain_precision(env, regno, -1); 2494 } 2495 2496 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2497 { 2498 return __mark_chain_precision(env, -1, spi); 2499 } 2500 2501 static bool is_spillable_regtype(enum bpf_reg_type type) 2502 { 2503 switch (type) { 2504 case PTR_TO_MAP_VALUE: 2505 case PTR_TO_MAP_VALUE_OR_NULL: 2506 case PTR_TO_STACK: 2507 case PTR_TO_CTX: 2508 case PTR_TO_PACKET: 2509 case PTR_TO_PACKET_META: 2510 case PTR_TO_PACKET_END: 2511 case PTR_TO_FLOW_KEYS: 2512 case CONST_PTR_TO_MAP: 2513 case PTR_TO_SOCKET: 2514 case PTR_TO_SOCKET_OR_NULL: 2515 case PTR_TO_SOCK_COMMON: 2516 case PTR_TO_SOCK_COMMON_OR_NULL: 2517 case PTR_TO_TCP_SOCK: 2518 case PTR_TO_TCP_SOCK_OR_NULL: 2519 case PTR_TO_XDP_SOCK: 2520 case PTR_TO_BTF_ID: 2521 case PTR_TO_BTF_ID_OR_NULL: 2522 case PTR_TO_RDONLY_BUF: 2523 case PTR_TO_RDONLY_BUF_OR_NULL: 2524 case PTR_TO_RDWR_BUF: 2525 case PTR_TO_RDWR_BUF_OR_NULL: 2526 case PTR_TO_PERCPU_BTF_ID: 2527 case PTR_TO_MEM: 2528 case PTR_TO_MEM_OR_NULL: 2529 case PTR_TO_FUNC: 2530 case PTR_TO_MAP_KEY: 2531 return true; 2532 default: 2533 return false; 2534 } 2535 } 2536 2537 /* Does this register contain a constant zero? */ 2538 static bool register_is_null(struct bpf_reg_state *reg) 2539 { 2540 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2541 } 2542 2543 static bool register_is_const(struct bpf_reg_state *reg) 2544 { 2545 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2546 } 2547 2548 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2549 { 2550 return tnum_is_unknown(reg->var_off) && 2551 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2552 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2553 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2554 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2555 } 2556 2557 static bool register_is_bounded(struct bpf_reg_state *reg) 2558 { 2559 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2560 } 2561 2562 static bool __is_pointer_value(bool allow_ptr_leaks, 2563 const struct bpf_reg_state *reg) 2564 { 2565 if (allow_ptr_leaks) 2566 return false; 2567 2568 return reg->type != SCALAR_VALUE; 2569 } 2570 2571 static void save_register_state(struct bpf_func_state *state, 2572 int spi, struct bpf_reg_state *reg) 2573 { 2574 int i; 2575 2576 state->stack[spi].spilled_ptr = *reg; 2577 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2578 2579 for (i = 0; i < BPF_REG_SIZE; i++) 2580 state->stack[spi].slot_type[i] = STACK_SPILL; 2581 } 2582 2583 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2584 * stack boundary and alignment are checked in check_mem_access() 2585 */ 2586 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2587 /* stack frame we're writing to */ 2588 struct bpf_func_state *state, 2589 int off, int size, int value_regno, 2590 int insn_idx) 2591 { 2592 struct bpf_func_state *cur; /* state of the current function */ 2593 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2594 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2595 struct bpf_reg_state *reg = NULL; 2596 2597 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2598 if (err) 2599 return err; 2600 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2601 * so it's aligned access and [off, off + size) are within stack limits 2602 */ 2603 if (!env->allow_ptr_leaks && 2604 state->stack[spi].slot_type[0] == STACK_SPILL && 2605 size != BPF_REG_SIZE) { 2606 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2607 return -EACCES; 2608 } 2609 2610 cur = env->cur_state->frame[env->cur_state->curframe]; 2611 if (value_regno >= 0) 2612 reg = &cur->regs[value_regno]; 2613 if (!env->bypass_spec_v4) { 2614 bool sanitize = reg && is_spillable_regtype(reg->type); 2615 2616 for (i = 0; i < size; i++) { 2617 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2618 sanitize = true; 2619 break; 2620 } 2621 } 2622 2623 if (sanitize) 2624 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2625 } 2626 2627 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2628 !register_is_null(reg) && env->bpf_capable) { 2629 if (dst_reg != BPF_REG_FP) { 2630 /* The backtracking logic can only recognize explicit 2631 * stack slot address like [fp - 8]. Other spill of 2632 * scalar via different register has to be conservative. 2633 * Backtrack from here and mark all registers as precise 2634 * that contributed into 'reg' being a constant. 2635 */ 2636 err = mark_chain_precision(env, value_regno); 2637 if (err) 2638 return err; 2639 } 2640 save_register_state(state, spi, reg); 2641 } else if (reg && is_spillable_regtype(reg->type)) { 2642 /* register containing pointer is being spilled into stack */ 2643 if (size != BPF_REG_SIZE) { 2644 verbose_linfo(env, insn_idx, "; "); 2645 verbose(env, "invalid size of register spill\n"); 2646 return -EACCES; 2647 } 2648 if (state != cur && reg->type == PTR_TO_STACK) { 2649 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2650 return -EINVAL; 2651 } 2652 save_register_state(state, spi, reg); 2653 } else { 2654 u8 type = STACK_MISC; 2655 2656 /* regular write of data into stack destroys any spilled ptr */ 2657 state->stack[spi].spilled_ptr.type = NOT_INIT; 2658 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2659 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2660 for (i = 0; i < BPF_REG_SIZE; i++) 2661 state->stack[spi].slot_type[i] = STACK_MISC; 2662 2663 /* only mark the slot as written if all 8 bytes were written 2664 * otherwise read propagation may incorrectly stop too soon 2665 * when stack slots are partially written. 2666 * This heuristic means that read propagation will be 2667 * conservative, since it will add reg_live_read marks 2668 * to stack slots all the way to first state when programs 2669 * writes+reads less than 8 bytes 2670 */ 2671 if (size == BPF_REG_SIZE) 2672 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2673 2674 /* when we zero initialize stack slots mark them as such */ 2675 if (reg && register_is_null(reg)) { 2676 /* backtracking doesn't work for STACK_ZERO yet. */ 2677 err = mark_chain_precision(env, value_regno); 2678 if (err) 2679 return err; 2680 type = STACK_ZERO; 2681 } 2682 2683 /* Mark slots affected by this stack write. */ 2684 for (i = 0; i < size; i++) 2685 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2686 type; 2687 } 2688 return 0; 2689 } 2690 2691 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2692 * known to contain a variable offset. 2693 * This function checks whether the write is permitted and conservatively 2694 * tracks the effects of the write, considering that each stack slot in the 2695 * dynamic range is potentially written to. 2696 * 2697 * 'off' includes 'regno->off'. 2698 * 'value_regno' can be -1, meaning that an unknown value is being written to 2699 * the stack. 2700 * 2701 * Spilled pointers in range are not marked as written because we don't know 2702 * what's going to be actually written. This means that read propagation for 2703 * future reads cannot be terminated by this write. 2704 * 2705 * For privileged programs, uninitialized stack slots are considered 2706 * initialized by this write (even though we don't know exactly what offsets 2707 * are going to be written to). The idea is that we don't want the verifier to 2708 * reject future reads that access slots written to through variable offsets. 2709 */ 2710 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2711 /* func where register points to */ 2712 struct bpf_func_state *state, 2713 int ptr_regno, int off, int size, 2714 int value_regno, int insn_idx) 2715 { 2716 struct bpf_func_state *cur; /* state of the current function */ 2717 int min_off, max_off; 2718 int i, err; 2719 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2720 bool writing_zero = false; 2721 /* set if the fact that we're writing a zero is used to let any 2722 * stack slots remain STACK_ZERO 2723 */ 2724 bool zero_used = false; 2725 2726 cur = env->cur_state->frame[env->cur_state->curframe]; 2727 ptr_reg = &cur->regs[ptr_regno]; 2728 min_off = ptr_reg->smin_value + off; 2729 max_off = ptr_reg->smax_value + off + size; 2730 if (value_regno >= 0) 2731 value_reg = &cur->regs[value_regno]; 2732 if (value_reg && register_is_null(value_reg)) 2733 writing_zero = true; 2734 2735 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2736 if (err) 2737 return err; 2738 2739 2740 /* Variable offset writes destroy any spilled pointers in range. */ 2741 for (i = min_off; i < max_off; i++) { 2742 u8 new_type, *stype; 2743 int slot, spi; 2744 2745 slot = -i - 1; 2746 spi = slot / BPF_REG_SIZE; 2747 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2748 2749 if (!env->allow_ptr_leaks 2750 && *stype != NOT_INIT 2751 && *stype != SCALAR_VALUE) { 2752 /* Reject the write if there's are spilled pointers in 2753 * range. If we didn't reject here, the ptr status 2754 * would be erased below (even though not all slots are 2755 * actually overwritten), possibly opening the door to 2756 * leaks. 2757 */ 2758 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2759 insn_idx, i); 2760 return -EINVAL; 2761 } 2762 2763 /* Erase all spilled pointers. */ 2764 state->stack[spi].spilled_ptr.type = NOT_INIT; 2765 2766 /* Update the slot type. */ 2767 new_type = STACK_MISC; 2768 if (writing_zero && *stype == STACK_ZERO) { 2769 new_type = STACK_ZERO; 2770 zero_used = true; 2771 } 2772 /* If the slot is STACK_INVALID, we check whether it's OK to 2773 * pretend that it will be initialized by this write. The slot 2774 * might not actually be written to, and so if we mark it as 2775 * initialized future reads might leak uninitialized memory. 2776 * For privileged programs, we will accept such reads to slots 2777 * that may or may not be written because, if we're reject 2778 * them, the error would be too confusing. 2779 */ 2780 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2781 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2782 insn_idx, i); 2783 return -EINVAL; 2784 } 2785 *stype = new_type; 2786 } 2787 if (zero_used) { 2788 /* backtracking doesn't work for STACK_ZERO yet. */ 2789 err = mark_chain_precision(env, value_regno); 2790 if (err) 2791 return err; 2792 } 2793 return 0; 2794 } 2795 2796 /* When register 'dst_regno' is assigned some values from stack[min_off, 2797 * max_off), we set the register's type according to the types of the 2798 * respective stack slots. If all the stack values are known to be zeros, then 2799 * so is the destination reg. Otherwise, the register is considered to be 2800 * SCALAR. This function does not deal with register filling; the caller must 2801 * ensure that all spilled registers in the stack range have been marked as 2802 * read. 2803 */ 2804 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2805 /* func where src register points to */ 2806 struct bpf_func_state *ptr_state, 2807 int min_off, int max_off, int dst_regno) 2808 { 2809 struct bpf_verifier_state *vstate = env->cur_state; 2810 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2811 int i, slot, spi; 2812 u8 *stype; 2813 int zeros = 0; 2814 2815 for (i = min_off; i < max_off; i++) { 2816 slot = -i - 1; 2817 spi = slot / BPF_REG_SIZE; 2818 stype = ptr_state->stack[spi].slot_type; 2819 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2820 break; 2821 zeros++; 2822 } 2823 if (zeros == max_off - min_off) { 2824 /* any access_size read into register is zero extended, 2825 * so the whole register == const_zero 2826 */ 2827 __mark_reg_const_zero(&state->regs[dst_regno]); 2828 /* backtracking doesn't support STACK_ZERO yet, 2829 * so mark it precise here, so that later 2830 * backtracking can stop here. 2831 * Backtracking may not need this if this register 2832 * doesn't participate in pointer adjustment. 2833 * Forward propagation of precise flag is not 2834 * necessary either. This mark is only to stop 2835 * backtracking. Any register that contributed 2836 * to const 0 was marked precise before spill. 2837 */ 2838 state->regs[dst_regno].precise = true; 2839 } else { 2840 /* have read misc data from the stack */ 2841 mark_reg_unknown(env, state->regs, dst_regno); 2842 } 2843 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2844 } 2845 2846 /* Read the stack at 'off' and put the results into the register indicated by 2847 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2848 * spilled reg. 2849 * 2850 * 'dst_regno' can be -1, meaning that the read value is not going to a 2851 * register. 2852 * 2853 * The access is assumed to be within the current stack bounds. 2854 */ 2855 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2856 /* func where src register points to */ 2857 struct bpf_func_state *reg_state, 2858 int off, int size, int dst_regno) 2859 { 2860 struct bpf_verifier_state *vstate = env->cur_state; 2861 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2862 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2863 struct bpf_reg_state *reg; 2864 u8 *stype; 2865 2866 stype = reg_state->stack[spi].slot_type; 2867 reg = ®_state->stack[spi].spilled_ptr; 2868 2869 if (stype[0] == STACK_SPILL) { 2870 if (size != BPF_REG_SIZE) { 2871 if (reg->type != SCALAR_VALUE) { 2872 verbose_linfo(env, env->insn_idx, "; "); 2873 verbose(env, "invalid size of register fill\n"); 2874 return -EACCES; 2875 } 2876 if (dst_regno >= 0) { 2877 mark_reg_unknown(env, state->regs, dst_regno); 2878 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2879 } 2880 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2881 return 0; 2882 } 2883 for (i = 1; i < BPF_REG_SIZE; i++) { 2884 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2885 verbose(env, "corrupted spill memory\n"); 2886 return -EACCES; 2887 } 2888 } 2889 2890 if (dst_regno >= 0) { 2891 /* restore register state from stack */ 2892 state->regs[dst_regno] = *reg; 2893 /* mark reg as written since spilled pointer state likely 2894 * has its liveness marks cleared by is_state_visited() 2895 * which resets stack/reg liveness for state transitions 2896 */ 2897 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2898 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2899 /* If dst_regno==-1, the caller is asking us whether 2900 * it is acceptable to use this value as a SCALAR_VALUE 2901 * (e.g. for XADD). 2902 * We must not allow unprivileged callers to do that 2903 * with spilled pointers. 2904 */ 2905 verbose(env, "leaking pointer from stack off %d\n", 2906 off); 2907 return -EACCES; 2908 } 2909 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2910 } else { 2911 u8 type; 2912 2913 for (i = 0; i < size; i++) { 2914 type = stype[(slot - i) % BPF_REG_SIZE]; 2915 if (type == STACK_MISC) 2916 continue; 2917 if (type == STACK_ZERO) 2918 continue; 2919 verbose(env, "invalid read from stack off %d+%d size %d\n", 2920 off, i, size); 2921 return -EACCES; 2922 } 2923 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2924 if (dst_regno >= 0) 2925 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 2926 } 2927 return 0; 2928 } 2929 2930 enum stack_access_src { 2931 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 2932 ACCESS_HELPER = 2, /* the access is performed by a helper */ 2933 }; 2934 2935 static int check_stack_range_initialized(struct bpf_verifier_env *env, 2936 int regno, int off, int access_size, 2937 bool zero_size_allowed, 2938 enum stack_access_src type, 2939 struct bpf_call_arg_meta *meta); 2940 2941 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2942 { 2943 return cur_regs(env) + regno; 2944 } 2945 2946 /* Read the stack at 'ptr_regno + off' and put the result into the register 2947 * 'dst_regno'. 2948 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 2949 * but not its variable offset. 2950 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 2951 * 2952 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 2953 * filling registers (i.e. reads of spilled register cannot be detected when 2954 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 2955 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 2956 * offset; for a fixed offset check_stack_read_fixed_off should be used 2957 * instead. 2958 */ 2959 static int check_stack_read_var_off(struct bpf_verifier_env *env, 2960 int ptr_regno, int off, int size, int dst_regno) 2961 { 2962 /* The state of the source register. */ 2963 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2964 struct bpf_func_state *ptr_state = func(env, reg); 2965 int err; 2966 int min_off, max_off; 2967 2968 /* Note that we pass a NULL meta, so raw access will not be permitted. 2969 */ 2970 err = check_stack_range_initialized(env, ptr_regno, off, size, 2971 false, ACCESS_DIRECT, NULL); 2972 if (err) 2973 return err; 2974 2975 min_off = reg->smin_value + off; 2976 max_off = reg->smax_value + off; 2977 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 2978 return 0; 2979 } 2980 2981 /* check_stack_read dispatches to check_stack_read_fixed_off or 2982 * check_stack_read_var_off. 2983 * 2984 * The caller must ensure that the offset falls within the allocated stack 2985 * bounds. 2986 * 2987 * 'dst_regno' is a register which will receive the value from the stack. It 2988 * can be -1, meaning that the read value is not going to a register. 2989 */ 2990 static int check_stack_read(struct bpf_verifier_env *env, 2991 int ptr_regno, int off, int size, 2992 int dst_regno) 2993 { 2994 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2995 struct bpf_func_state *state = func(env, reg); 2996 int err; 2997 /* Some accesses are only permitted with a static offset. */ 2998 bool var_off = !tnum_is_const(reg->var_off); 2999 3000 /* The offset is required to be static when reads don't go to a 3001 * register, in order to not leak pointers (see 3002 * check_stack_read_fixed_off). 3003 */ 3004 if (dst_regno < 0 && var_off) { 3005 char tn_buf[48]; 3006 3007 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3008 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3009 tn_buf, off, size); 3010 return -EACCES; 3011 } 3012 /* Variable offset is prohibited for unprivileged mode for simplicity 3013 * since it requires corresponding support in Spectre masking for stack 3014 * ALU. See also retrieve_ptr_limit(). 3015 */ 3016 if (!env->bypass_spec_v1 && var_off) { 3017 char tn_buf[48]; 3018 3019 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3020 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3021 ptr_regno, tn_buf); 3022 return -EACCES; 3023 } 3024 3025 if (!var_off) { 3026 off += reg->var_off.value; 3027 err = check_stack_read_fixed_off(env, state, off, size, 3028 dst_regno); 3029 } else { 3030 /* Variable offset stack reads need more conservative handling 3031 * than fixed offset ones. Note that dst_regno >= 0 on this 3032 * branch. 3033 */ 3034 err = check_stack_read_var_off(env, ptr_regno, off, size, 3035 dst_regno); 3036 } 3037 return err; 3038 } 3039 3040 3041 /* check_stack_write dispatches to check_stack_write_fixed_off or 3042 * check_stack_write_var_off. 3043 * 3044 * 'ptr_regno' is the register used as a pointer into the stack. 3045 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3046 * 'value_regno' is the register whose value we're writing to the stack. It can 3047 * be -1, meaning that we're not writing from a register. 3048 * 3049 * The caller must ensure that the offset falls within the maximum stack size. 3050 */ 3051 static int check_stack_write(struct bpf_verifier_env *env, 3052 int ptr_regno, int off, int size, 3053 int value_regno, int insn_idx) 3054 { 3055 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3056 struct bpf_func_state *state = func(env, reg); 3057 int err; 3058 3059 if (tnum_is_const(reg->var_off)) { 3060 off += reg->var_off.value; 3061 err = check_stack_write_fixed_off(env, state, off, size, 3062 value_regno, insn_idx); 3063 } else { 3064 /* Variable offset stack reads need more conservative handling 3065 * than fixed offset ones. 3066 */ 3067 err = check_stack_write_var_off(env, state, 3068 ptr_regno, off, size, 3069 value_regno, insn_idx); 3070 } 3071 return err; 3072 } 3073 3074 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3075 int off, int size, enum bpf_access_type type) 3076 { 3077 struct bpf_reg_state *regs = cur_regs(env); 3078 struct bpf_map *map = regs[regno].map_ptr; 3079 u32 cap = bpf_map_flags_to_cap(map); 3080 3081 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3082 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3083 map->value_size, off, size); 3084 return -EACCES; 3085 } 3086 3087 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3088 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3089 map->value_size, off, size); 3090 return -EACCES; 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3097 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3098 int off, int size, u32 mem_size, 3099 bool zero_size_allowed) 3100 { 3101 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3102 struct bpf_reg_state *reg; 3103 3104 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3105 return 0; 3106 3107 reg = &cur_regs(env)[regno]; 3108 switch (reg->type) { 3109 case PTR_TO_MAP_KEY: 3110 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3111 mem_size, off, size); 3112 break; 3113 case PTR_TO_MAP_VALUE: 3114 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3115 mem_size, off, size); 3116 break; 3117 case PTR_TO_PACKET: 3118 case PTR_TO_PACKET_META: 3119 case PTR_TO_PACKET_END: 3120 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3121 off, size, regno, reg->id, off, mem_size); 3122 break; 3123 case PTR_TO_MEM: 3124 default: 3125 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3126 mem_size, off, size); 3127 } 3128 3129 return -EACCES; 3130 } 3131 3132 /* check read/write into a memory region with possible variable offset */ 3133 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3134 int off, int size, u32 mem_size, 3135 bool zero_size_allowed) 3136 { 3137 struct bpf_verifier_state *vstate = env->cur_state; 3138 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3139 struct bpf_reg_state *reg = &state->regs[regno]; 3140 int err; 3141 3142 /* We may have adjusted the register pointing to memory region, so we 3143 * need to try adding each of min_value and max_value to off 3144 * to make sure our theoretical access will be safe. 3145 */ 3146 if (env->log.level & BPF_LOG_LEVEL) 3147 print_verifier_state(env, state); 3148 3149 /* The minimum value is only important with signed 3150 * comparisons where we can't assume the floor of a 3151 * value is 0. If we are using signed variables for our 3152 * index'es we need to make sure that whatever we use 3153 * will have a set floor within our range. 3154 */ 3155 if (reg->smin_value < 0 && 3156 (reg->smin_value == S64_MIN || 3157 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3158 reg->smin_value + off < 0)) { 3159 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3160 regno); 3161 return -EACCES; 3162 } 3163 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3164 mem_size, zero_size_allowed); 3165 if (err) { 3166 verbose(env, "R%d min value is outside of the allowed memory range\n", 3167 regno); 3168 return err; 3169 } 3170 3171 /* If we haven't set a max value then we need to bail since we can't be 3172 * sure we won't do bad things. 3173 * If reg->umax_value + off could overflow, treat that as unbounded too. 3174 */ 3175 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3176 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3177 regno); 3178 return -EACCES; 3179 } 3180 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3181 mem_size, zero_size_allowed); 3182 if (err) { 3183 verbose(env, "R%d max value is outside of the allowed memory range\n", 3184 regno); 3185 return err; 3186 } 3187 3188 return 0; 3189 } 3190 3191 /* check read/write into a map element with possible variable offset */ 3192 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3193 int off, int size, bool zero_size_allowed) 3194 { 3195 struct bpf_verifier_state *vstate = env->cur_state; 3196 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3197 struct bpf_reg_state *reg = &state->regs[regno]; 3198 struct bpf_map *map = reg->map_ptr; 3199 int err; 3200 3201 err = check_mem_region_access(env, regno, off, size, map->value_size, 3202 zero_size_allowed); 3203 if (err) 3204 return err; 3205 3206 if (map_value_has_spin_lock(map)) { 3207 u32 lock = map->spin_lock_off; 3208 3209 /* if any part of struct bpf_spin_lock can be touched by 3210 * load/store reject this program. 3211 * To check that [x1, x2) overlaps with [y1, y2) 3212 * it is sufficient to check x1 < y2 && y1 < x2. 3213 */ 3214 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3215 lock < reg->umax_value + off + size) { 3216 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3217 return -EACCES; 3218 } 3219 } 3220 return err; 3221 } 3222 3223 #define MAX_PACKET_OFF 0xffff 3224 3225 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3226 { 3227 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3228 } 3229 3230 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3231 const struct bpf_call_arg_meta *meta, 3232 enum bpf_access_type t) 3233 { 3234 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3235 3236 switch (prog_type) { 3237 /* Program types only with direct read access go here! */ 3238 case BPF_PROG_TYPE_LWT_IN: 3239 case BPF_PROG_TYPE_LWT_OUT: 3240 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3241 case BPF_PROG_TYPE_SK_REUSEPORT: 3242 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3243 case BPF_PROG_TYPE_CGROUP_SKB: 3244 if (t == BPF_WRITE) 3245 return false; 3246 fallthrough; 3247 3248 /* Program types with direct read + write access go here! */ 3249 case BPF_PROG_TYPE_SCHED_CLS: 3250 case BPF_PROG_TYPE_SCHED_ACT: 3251 case BPF_PROG_TYPE_XDP: 3252 case BPF_PROG_TYPE_LWT_XMIT: 3253 case BPF_PROG_TYPE_SK_SKB: 3254 case BPF_PROG_TYPE_SK_MSG: 3255 if (meta) 3256 return meta->pkt_access; 3257 3258 env->seen_direct_write = true; 3259 return true; 3260 3261 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3262 if (t == BPF_WRITE) 3263 env->seen_direct_write = true; 3264 3265 return true; 3266 3267 default: 3268 return false; 3269 } 3270 } 3271 3272 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3273 int size, bool zero_size_allowed) 3274 { 3275 struct bpf_reg_state *regs = cur_regs(env); 3276 struct bpf_reg_state *reg = ®s[regno]; 3277 int err; 3278 3279 /* We may have added a variable offset to the packet pointer; but any 3280 * reg->range we have comes after that. We are only checking the fixed 3281 * offset. 3282 */ 3283 3284 /* We don't allow negative numbers, because we aren't tracking enough 3285 * detail to prove they're safe. 3286 */ 3287 if (reg->smin_value < 0) { 3288 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3289 regno); 3290 return -EACCES; 3291 } 3292 3293 err = reg->range < 0 ? -EINVAL : 3294 __check_mem_access(env, regno, off, size, reg->range, 3295 zero_size_allowed); 3296 if (err) { 3297 verbose(env, "R%d offset is outside of the packet\n", regno); 3298 return err; 3299 } 3300 3301 /* __check_mem_access has made sure "off + size - 1" is within u16. 3302 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3303 * otherwise find_good_pkt_pointers would have refused to set range info 3304 * that __check_mem_access would have rejected this pkt access. 3305 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3306 */ 3307 env->prog->aux->max_pkt_offset = 3308 max_t(u32, env->prog->aux->max_pkt_offset, 3309 off + reg->umax_value + size - 1); 3310 3311 return err; 3312 } 3313 3314 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3315 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3316 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3317 struct btf **btf, u32 *btf_id) 3318 { 3319 struct bpf_insn_access_aux info = { 3320 .reg_type = *reg_type, 3321 .log = &env->log, 3322 }; 3323 3324 if (env->ops->is_valid_access && 3325 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3326 /* A non zero info.ctx_field_size indicates that this field is a 3327 * candidate for later verifier transformation to load the whole 3328 * field and then apply a mask when accessed with a narrower 3329 * access than actual ctx access size. A zero info.ctx_field_size 3330 * will only allow for whole field access and rejects any other 3331 * type of narrower access. 3332 */ 3333 *reg_type = info.reg_type; 3334 3335 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3336 *btf = info.btf; 3337 *btf_id = info.btf_id; 3338 } else { 3339 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3340 } 3341 /* remember the offset of last byte accessed in ctx */ 3342 if (env->prog->aux->max_ctx_offset < off + size) 3343 env->prog->aux->max_ctx_offset = off + size; 3344 return 0; 3345 } 3346 3347 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3348 return -EACCES; 3349 } 3350 3351 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3352 int size) 3353 { 3354 if (size < 0 || off < 0 || 3355 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3356 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3357 off, size); 3358 return -EACCES; 3359 } 3360 return 0; 3361 } 3362 3363 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3364 u32 regno, int off, int size, 3365 enum bpf_access_type t) 3366 { 3367 struct bpf_reg_state *regs = cur_regs(env); 3368 struct bpf_reg_state *reg = ®s[regno]; 3369 struct bpf_insn_access_aux info = {}; 3370 bool valid; 3371 3372 if (reg->smin_value < 0) { 3373 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3374 regno); 3375 return -EACCES; 3376 } 3377 3378 switch (reg->type) { 3379 case PTR_TO_SOCK_COMMON: 3380 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3381 break; 3382 case PTR_TO_SOCKET: 3383 valid = bpf_sock_is_valid_access(off, size, t, &info); 3384 break; 3385 case PTR_TO_TCP_SOCK: 3386 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3387 break; 3388 case PTR_TO_XDP_SOCK: 3389 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3390 break; 3391 default: 3392 valid = false; 3393 } 3394 3395 3396 if (valid) { 3397 env->insn_aux_data[insn_idx].ctx_field_size = 3398 info.ctx_field_size; 3399 return 0; 3400 } 3401 3402 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3403 regno, reg_type_str[reg->type], off, size); 3404 3405 return -EACCES; 3406 } 3407 3408 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3409 { 3410 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3411 } 3412 3413 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3414 { 3415 const struct bpf_reg_state *reg = reg_state(env, regno); 3416 3417 return reg->type == PTR_TO_CTX; 3418 } 3419 3420 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3421 { 3422 const struct bpf_reg_state *reg = reg_state(env, regno); 3423 3424 return type_is_sk_pointer(reg->type); 3425 } 3426 3427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3428 { 3429 const struct bpf_reg_state *reg = reg_state(env, regno); 3430 3431 return type_is_pkt_pointer(reg->type); 3432 } 3433 3434 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3435 { 3436 const struct bpf_reg_state *reg = reg_state(env, regno); 3437 3438 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3439 return reg->type == PTR_TO_FLOW_KEYS; 3440 } 3441 3442 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3443 const struct bpf_reg_state *reg, 3444 int off, int size, bool strict) 3445 { 3446 struct tnum reg_off; 3447 int ip_align; 3448 3449 /* Byte size accesses are always allowed. */ 3450 if (!strict || size == 1) 3451 return 0; 3452 3453 /* For platforms that do not have a Kconfig enabling 3454 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3455 * NET_IP_ALIGN is universally set to '2'. And on platforms 3456 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3457 * to this code only in strict mode where we want to emulate 3458 * the NET_IP_ALIGN==2 checking. Therefore use an 3459 * unconditional IP align value of '2'. 3460 */ 3461 ip_align = 2; 3462 3463 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3464 if (!tnum_is_aligned(reg_off, size)) { 3465 char tn_buf[48]; 3466 3467 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3468 verbose(env, 3469 "misaligned packet access off %d+%s+%d+%d size %d\n", 3470 ip_align, tn_buf, reg->off, off, size); 3471 return -EACCES; 3472 } 3473 3474 return 0; 3475 } 3476 3477 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3478 const struct bpf_reg_state *reg, 3479 const char *pointer_desc, 3480 int off, int size, bool strict) 3481 { 3482 struct tnum reg_off; 3483 3484 /* Byte size accesses are always allowed. */ 3485 if (!strict || size == 1) 3486 return 0; 3487 3488 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3489 if (!tnum_is_aligned(reg_off, size)) { 3490 char tn_buf[48]; 3491 3492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3493 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3494 pointer_desc, tn_buf, reg->off, off, size); 3495 return -EACCES; 3496 } 3497 3498 return 0; 3499 } 3500 3501 static int check_ptr_alignment(struct bpf_verifier_env *env, 3502 const struct bpf_reg_state *reg, int off, 3503 int size, bool strict_alignment_once) 3504 { 3505 bool strict = env->strict_alignment || strict_alignment_once; 3506 const char *pointer_desc = ""; 3507 3508 switch (reg->type) { 3509 case PTR_TO_PACKET: 3510 case PTR_TO_PACKET_META: 3511 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3512 * right in front, treat it the very same way. 3513 */ 3514 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3515 case PTR_TO_FLOW_KEYS: 3516 pointer_desc = "flow keys "; 3517 break; 3518 case PTR_TO_MAP_KEY: 3519 pointer_desc = "key "; 3520 break; 3521 case PTR_TO_MAP_VALUE: 3522 pointer_desc = "value "; 3523 break; 3524 case PTR_TO_CTX: 3525 pointer_desc = "context "; 3526 break; 3527 case PTR_TO_STACK: 3528 pointer_desc = "stack "; 3529 /* The stack spill tracking logic in check_stack_write_fixed_off() 3530 * and check_stack_read_fixed_off() relies on stack accesses being 3531 * aligned. 3532 */ 3533 strict = true; 3534 break; 3535 case PTR_TO_SOCKET: 3536 pointer_desc = "sock "; 3537 break; 3538 case PTR_TO_SOCK_COMMON: 3539 pointer_desc = "sock_common "; 3540 break; 3541 case PTR_TO_TCP_SOCK: 3542 pointer_desc = "tcp_sock "; 3543 break; 3544 case PTR_TO_XDP_SOCK: 3545 pointer_desc = "xdp_sock "; 3546 break; 3547 default: 3548 break; 3549 } 3550 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3551 strict); 3552 } 3553 3554 static int update_stack_depth(struct bpf_verifier_env *env, 3555 const struct bpf_func_state *func, 3556 int off) 3557 { 3558 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3559 3560 if (stack >= -off) 3561 return 0; 3562 3563 /* update known max for given subprogram */ 3564 env->subprog_info[func->subprogno].stack_depth = -off; 3565 return 0; 3566 } 3567 3568 /* starting from main bpf function walk all instructions of the function 3569 * and recursively walk all callees that given function can call. 3570 * Ignore jump and exit insns. 3571 * Since recursion is prevented by check_cfg() this algorithm 3572 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3573 */ 3574 static int check_max_stack_depth(struct bpf_verifier_env *env) 3575 { 3576 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3577 struct bpf_subprog_info *subprog = env->subprog_info; 3578 struct bpf_insn *insn = env->prog->insnsi; 3579 bool tail_call_reachable = false; 3580 int ret_insn[MAX_CALL_FRAMES]; 3581 int ret_prog[MAX_CALL_FRAMES]; 3582 int j; 3583 3584 process_func: 3585 /* protect against potential stack overflow that might happen when 3586 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3587 * depth for such case down to 256 so that the worst case scenario 3588 * would result in 8k stack size (32 which is tailcall limit * 256 = 3589 * 8k). 3590 * 3591 * To get the idea what might happen, see an example: 3592 * func1 -> sub rsp, 128 3593 * subfunc1 -> sub rsp, 256 3594 * tailcall1 -> add rsp, 256 3595 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3596 * subfunc2 -> sub rsp, 64 3597 * subfunc22 -> sub rsp, 128 3598 * tailcall2 -> add rsp, 128 3599 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3600 * 3601 * tailcall will unwind the current stack frame but it will not get rid 3602 * of caller's stack as shown on the example above. 3603 */ 3604 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3605 verbose(env, 3606 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3607 depth); 3608 return -EACCES; 3609 } 3610 /* round up to 32-bytes, since this is granularity 3611 * of interpreter stack size 3612 */ 3613 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3614 if (depth > MAX_BPF_STACK) { 3615 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3616 frame + 1, depth); 3617 return -EACCES; 3618 } 3619 continue_func: 3620 subprog_end = subprog[idx + 1].start; 3621 for (; i < subprog_end; i++) { 3622 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3623 continue; 3624 /* remember insn and function to return to */ 3625 ret_insn[frame] = i + 1; 3626 ret_prog[frame] = idx; 3627 3628 /* find the callee */ 3629 i = i + insn[i].imm + 1; 3630 idx = find_subprog(env, i); 3631 if (idx < 0) { 3632 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3633 i); 3634 return -EFAULT; 3635 } 3636 3637 if (subprog[idx].has_tail_call) 3638 tail_call_reachable = true; 3639 3640 frame++; 3641 if (frame >= MAX_CALL_FRAMES) { 3642 verbose(env, "the call stack of %d frames is too deep !\n", 3643 frame); 3644 return -E2BIG; 3645 } 3646 goto process_func; 3647 } 3648 /* if tail call got detected across bpf2bpf calls then mark each of the 3649 * currently present subprog frames as tail call reachable subprogs; 3650 * this info will be utilized by JIT so that we will be preserving the 3651 * tail call counter throughout bpf2bpf calls combined with tailcalls 3652 */ 3653 if (tail_call_reachable) 3654 for (j = 0; j < frame; j++) 3655 subprog[ret_prog[j]].tail_call_reachable = true; 3656 if (subprog[0].tail_call_reachable) 3657 env->prog->aux->tail_call_reachable = true; 3658 3659 /* end of for() loop means the last insn of the 'subprog' 3660 * was reached. Doesn't matter whether it was JA or EXIT 3661 */ 3662 if (frame == 0) 3663 return 0; 3664 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3665 frame--; 3666 i = ret_insn[frame]; 3667 idx = ret_prog[frame]; 3668 goto continue_func; 3669 } 3670 3671 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3672 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3673 const struct bpf_insn *insn, int idx) 3674 { 3675 int start = idx + insn->imm + 1, subprog; 3676 3677 subprog = find_subprog(env, start); 3678 if (subprog < 0) { 3679 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3680 start); 3681 return -EFAULT; 3682 } 3683 return env->subprog_info[subprog].stack_depth; 3684 } 3685 #endif 3686 3687 int check_ctx_reg(struct bpf_verifier_env *env, 3688 const struct bpf_reg_state *reg, int regno) 3689 { 3690 /* Access to ctx or passing it to a helper is only allowed in 3691 * its original, unmodified form. 3692 */ 3693 3694 if (reg->off) { 3695 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3696 regno, reg->off); 3697 return -EACCES; 3698 } 3699 3700 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3701 char tn_buf[48]; 3702 3703 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3704 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3705 return -EACCES; 3706 } 3707 3708 return 0; 3709 } 3710 3711 static int __check_buffer_access(struct bpf_verifier_env *env, 3712 const char *buf_info, 3713 const struct bpf_reg_state *reg, 3714 int regno, int off, int size) 3715 { 3716 if (off < 0) { 3717 verbose(env, 3718 "R%d invalid %s buffer access: off=%d, size=%d\n", 3719 regno, buf_info, off, size); 3720 return -EACCES; 3721 } 3722 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3723 char tn_buf[48]; 3724 3725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3726 verbose(env, 3727 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3728 regno, off, tn_buf); 3729 return -EACCES; 3730 } 3731 3732 return 0; 3733 } 3734 3735 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3736 const struct bpf_reg_state *reg, 3737 int regno, int off, int size) 3738 { 3739 int err; 3740 3741 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3742 if (err) 3743 return err; 3744 3745 if (off + size > env->prog->aux->max_tp_access) 3746 env->prog->aux->max_tp_access = off + size; 3747 3748 return 0; 3749 } 3750 3751 static int check_buffer_access(struct bpf_verifier_env *env, 3752 const struct bpf_reg_state *reg, 3753 int regno, int off, int size, 3754 bool zero_size_allowed, 3755 const char *buf_info, 3756 u32 *max_access) 3757 { 3758 int err; 3759 3760 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3761 if (err) 3762 return err; 3763 3764 if (off + size > *max_access) 3765 *max_access = off + size; 3766 3767 return 0; 3768 } 3769 3770 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3771 static void zext_32_to_64(struct bpf_reg_state *reg) 3772 { 3773 reg->var_off = tnum_subreg(reg->var_off); 3774 __reg_assign_32_into_64(reg); 3775 } 3776 3777 /* truncate register to smaller size (in bytes) 3778 * must be called with size < BPF_REG_SIZE 3779 */ 3780 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3781 { 3782 u64 mask; 3783 3784 /* clear high bits in bit representation */ 3785 reg->var_off = tnum_cast(reg->var_off, size); 3786 3787 /* fix arithmetic bounds */ 3788 mask = ((u64)1 << (size * 8)) - 1; 3789 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3790 reg->umin_value &= mask; 3791 reg->umax_value &= mask; 3792 } else { 3793 reg->umin_value = 0; 3794 reg->umax_value = mask; 3795 } 3796 reg->smin_value = reg->umin_value; 3797 reg->smax_value = reg->umax_value; 3798 3799 /* If size is smaller than 32bit register the 32bit register 3800 * values are also truncated so we push 64-bit bounds into 3801 * 32-bit bounds. Above were truncated < 32-bits already. 3802 */ 3803 if (size >= 4) 3804 return; 3805 __reg_combine_64_into_32(reg); 3806 } 3807 3808 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3809 { 3810 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3811 } 3812 3813 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3814 { 3815 void *ptr; 3816 u64 addr; 3817 int err; 3818 3819 err = map->ops->map_direct_value_addr(map, &addr, off); 3820 if (err) 3821 return err; 3822 ptr = (void *)(long)addr + off; 3823 3824 switch (size) { 3825 case sizeof(u8): 3826 *val = (u64)*(u8 *)ptr; 3827 break; 3828 case sizeof(u16): 3829 *val = (u64)*(u16 *)ptr; 3830 break; 3831 case sizeof(u32): 3832 *val = (u64)*(u32 *)ptr; 3833 break; 3834 case sizeof(u64): 3835 *val = *(u64 *)ptr; 3836 break; 3837 default: 3838 return -EINVAL; 3839 } 3840 return 0; 3841 } 3842 3843 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3844 struct bpf_reg_state *regs, 3845 int regno, int off, int size, 3846 enum bpf_access_type atype, 3847 int value_regno) 3848 { 3849 struct bpf_reg_state *reg = regs + regno; 3850 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3851 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3852 u32 btf_id; 3853 int ret; 3854 3855 if (off < 0) { 3856 verbose(env, 3857 "R%d is ptr_%s invalid negative access: off=%d\n", 3858 regno, tname, off); 3859 return -EACCES; 3860 } 3861 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3862 char tn_buf[48]; 3863 3864 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3865 verbose(env, 3866 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3867 regno, tname, off, tn_buf); 3868 return -EACCES; 3869 } 3870 3871 if (env->ops->btf_struct_access) { 3872 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3873 off, size, atype, &btf_id); 3874 } else { 3875 if (atype != BPF_READ) { 3876 verbose(env, "only read is supported\n"); 3877 return -EACCES; 3878 } 3879 3880 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3881 atype, &btf_id); 3882 } 3883 3884 if (ret < 0) 3885 return ret; 3886 3887 if (atype == BPF_READ && value_regno >= 0) 3888 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3889 3890 return 0; 3891 } 3892 3893 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3894 struct bpf_reg_state *regs, 3895 int regno, int off, int size, 3896 enum bpf_access_type atype, 3897 int value_regno) 3898 { 3899 struct bpf_reg_state *reg = regs + regno; 3900 struct bpf_map *map = reg->map_ptr; 3901 const struct btf_type *t; 3902 const char *tname; 3903 u32 btf_id; 3904 int ret; 3905 3906 if (!btf_vmlinux) { 3907 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3908 return -ENOTSUPP; 3909 } 3910 3911 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3912 verbose(env, "map_ptr access not supported for map type %d\n", 3913 map->map_type); 3914 return -ENOTSUPP; 3915 } 3916 3917 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3918 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3919 3920 if (!env->allow_ptr_to_map_access) { 3921 verbose(env, 3922 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3923 tname); 3924 return -EPERM; 3925 } 3926 3927 if (off < 0) { 3928 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3929 regno, tname, off); 3930 return -EACCES; 3931 } 3932 3933 if (atype != BPF_READ) { 3934 verbose(env, "only read from %s is supported\n", tname); 3935 return -EACCES; 3936 } 3937 3938 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 3939 if (ret < 0) 3940 return ret; 3941 3942 if (value_regno >= 0) 3943 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 3944 3945 return 0; 3946 } 3947 3948 /* Check that the stack access at the given offset is within bounds. The 3949 * maximum valid offset is -1. 3950 * 3951 * The minimum valid offset is -MAX_BPF_STACK for writes, and 3952 * -state->allocated_stack for reads. 3953 */ 3954 static int check_stack_slot_within_bounds(int off, 3955 struct bpf_func_state *state, 3956 enum bpf_access_type t) 3957 { 3958 int min_valid_off; 3959 3960 if (t == BPF_WRITE) 3961 min_valid_off = -MAX_BPF_STACK; 3962 else 3963 min_valid_off = -state->allocated_stack; 3964 3965 if (off < min_valid_off || off > -1) 3966 return -EACCES; 3967 return 0; 3968 } 3969 3970 /* Check that the stack access at 'regno + off' falls within the maximum stack 3971 * bounds. 3972 * 3973 * 'off' includes `regno->offset`, but not its dynamic part (if any). 3974 */ 3975 static int check_stack_access_within_bounds( 3976 struct bpf_verifier_env *env, 3977 int regno, int off, int access_size, 3978 enum stack_access_src src, enum bpf_access_type type) 3979 { 3980 struct bpf_reg_state *regs = cur_regs(env); 3981 struct bpf_reg_state *reg = regs + regno; 3982 struct bpf_func_state *state = func(env, reg); 3983 int min_off, max_off; 3984 int err; 3985 char *err_extra; 3986 3987 if (src == ACCESS_HELPER) 3988 /* We don't know if helpers are reading or writing (or both). */ 3989 err_extra = " indirect access to"; 3990 else if (type == BPF_READ) 3991 err_extra = " read from"; 3992 else 3993 err_extra = " write to"; 3994 3995 if (tnum_is_const(reg->var_off)) { 3996 min_off = reg->var_off.value + off; 3997 if (access_size > 0) 3998 max_off = min_off + access_size - 1; 3999 else 4000 max_off = min_off; 4001 } else { 4002 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4003 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4004 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4005 err_extra, regno); 4006 return -EACCES; 4007 } 4008 min_off = reg->smin_value + off; 4009 if (access_size > 0) 4010 max_off = reg->smax_value + off + access_size - 1; 4011 else 4012 max_off = min_off; 4013 } 4014 4015 err = check_stack_slot_within_bounds(min_off, state, type); 4016 if (!err) 4017 err = check_stack_slot_within_bounds(max_off, state, type); 4018 4019 if (err) { 4020 if (tnum_is_const(reg->var_off)) { 4021 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4022 err_extra, regno, off, access_size); 4023 } else { 4024 char tn_buf[48]; 4025 4026 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4027 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4028 err_extra, regno, tn_buf, access_size); 4029 } 4030 } 4031 return err; 4032 } 4033 4034 /* check whether memory at (regno + off) is accessible for t = (read | write) 4035 * if t==write, value_regno is a register which value is stored into memory 4036 * if t==read, value_regno is a register which will receive the value from memory 4037 * if t==write && value_regno==-1, some unknown value is stored into memory 4038 * if t==read && value_regno==-1, don't care what we read from memory 4039 */ 4040 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4041 int off, int bpf_size, enum bpf_access_type t, 4042 int value_regno, bool strict_alignment_once) 4043 { 4044 struct bpf_reg_state *regs = cur_regs(env); 4045 struct bpf_reg_state *reg = regs + regno; 4046 struct bpf_func_state *state; 4047 int size, err = 0; 4048 4049 size = bpf_size_to_bytes(bpf_size); 4050 if (size < 0) 4051 return size; 4052 4053 /* alignment checks will add in reg->off themselves */ 4054 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4055 if (err) 4056 return err; 4057 4058 /* for access checks, reg->off is just part of off */ 4059 off += reg->off; 4060 4061 if (reg->type == PTR_TO_MAP_KEY) { 4062 if (t == BPF_WRITE) { 4063 verbose(env, "write to change key R%d not allowed\n", regno); 4064 return -EACCES; 4065 } 4066 4067 err = check_mem_region_access(env, regno, off, size, 4068 reg->map_ptr->key_size, false); 4069 if (err) 4070 return err; 4071 if (value_regno >= 0) 4072 mark_reg_unknown(env, regs, value_regno); 4073 } else if (reg->type == PTR_TO_MAP_VALUE) { 4074 if (t == BPF_WRITE && value_regno >= 0 && 4075 is_pointer_value(env, value_regno)) { 4076 verbose(env, "R%d leaks addr into map\n", value_regno); 4077 return -EACCES; 4078 } 4079 err = check_map_access_type(env, regno, off, size, t); 4080 if (err) 4081 return err; 4082 err = check_map_access(env, regno, off, size, false); 4083 if (!err && t == BPF_READ && value_regno >= 0) { 4084 struct bpf_map *map = reg->map_ptr; 4085 4086 /* if map is read-only, track its contents as scalars */ 4087 if (tnum_is_const(reg->var_off) && 4088 bpf_map_is_rdonly(map) && 4089 map->ops->map_direct_value_addr) { 4090 int map_off = off + reg->var_off.value; 4091 u64 val = 0; 4092 4093 err = bpf_map_direct_read(map, map_off, size, 4094 &val); 4095 if (err) 4096 return err; 4097 4098 regs[value_regno].type = SCALAR_VALUE; 4099 __mark_reg_known(®s[value_regno], val); 4100 } else { 4101 mark_reg_unknown(env, regs, value_regno); 4102 } 4103 } 4104 } else if (reg->type == PTR_TO_MEM) { 4105 if (t == BPF_WRITE && value_regno >= 0 && 4106 is_pointer_value(env, value_regno)) { 4107 verbose(env, "R%d leaks addr into mem\n", value_regno); 4108 return -EACCES; 4109 } 4110 err = check_mem_region_access(env, regno, off, size, 4111 reg->mem_size, false); 4112 if (!err && t == BPF_READ && value_regno >= 0) 4113 mark_reg_unknown(env, regs, value_regno); 4114 } else if (reg->type == PTR_TO_CTX) { 4115 enum bpf_reg_type reg_type = SCALAR_VALUE; 4116 struct btf *btf = NULL; 4117 u32 btf_id = 0; 4118 4119 if (t == BPF_WRITE && value_regno >= 0 && 4120 is_pointer_value(env, value_regno)) { 4121 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4122 return -EACCES; 4123 } 4124 4125 err = check_ctx_reg(env, reg, regno); 4126 if (err < 0) 4127 return err; 4128 4129 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4130 if (err) 4131 verbose_linfo(env, insn_idx, "; "); 4132 if (!err && t == BPF_READ && value_regno >= 0) { 4133 /* ctx access returns either a scalar, or a 4134 * PTR_TO_PACKET[_META,_END]. In the latter 4135 * case, we know the offset is zero. 4136 */ 4137 if (reg_type == SCALAR_VALUE) { 4138 mark_reg_unknown(env, regs, value_regno); 4139 } else { 4140 mark_reg_known_zero(env, regs, 4141 value_regno); 4142 if (reg_type_may_be_null(reg_type)) 4143 regs[value_regno].id = ++env->id_gen; 4144 /* A load of ctx field could have different 4145 * actual load size with the one encoded in the 4146 * insn. When the dst is PTR, it is for sure not 4147 * a sub-register. 4148 */ 4149 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4150 if (reg_type == PTR_TO_BTF_ID || 4151 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4152 regs[value_regno].btf = btf; 4153 regs[value_regno].btf_id = btf_id; 4154 } 4155 } 4156 regs[value_regno].type = reg_type; 4157 } 4158 4159 } else if (reg->type == PTR_TO_STACK) { 4160 /* Basic bounds checks. */ 4161 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4162 if (err) 4163 return err; 4164 4165 state = func(env, reg); 4166 err = update_stack_depth(env, state, off); 4167 if (err) 4168 return err; 4169 4170 if (t == BPF_READ) 4171 err = check_stack_read(env, regno, off, size, 4172 value_regno); 4173 else 4174 err = check_stack_write(env, regno, off, size, 4175 value_regno, insn_idx); 4176 } else if (reg_is_pkt_pointer(reg)) { 4177 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4178 verbose(env, "cannot write into packet\n"); 4179 return -EACCES; 4180 } 4181 if (t == BPF_WRITE && value_regno >= 0 && 4182 is_pointer_value(env, value_regno)) { 4183 verbose(env, "R%d leaks addr into packet\n", 4184 value_regno); 4185 return -EACCES; 4186 } 4187 err = check_packet_access(env, regno, off, size, false); 4188 if (!err && t == BPF_READ && value_regno >= 0) 4189 mark_reg_unknown(env, regs, value_regno); 4190 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4191 if (t == BPF_WRITE && value_regno >= 0 && 4192 is_pointer_value(env, value_regno)) { 4193 verbose(env, "R%d leaks addr into flow keys\n", 4194 value_regno); 4195 return -EACCES; 4196 } 4197 4198 err = check_flow_keys_access(env, off, size); 4199 if (!err && t == BPF_READ && value_regno >= 0) 4200 mark_reg_unknown(env, regs, value_regno); 4201 } else if (type_is_sk_pointer(reg->type)) { 4202 if (t == BPF_WRITE) { 4203 verbose(env, "R%d cannot write into %s\n", 4204 regno, reg_type_str[reg->type]); 4205 return -EACCES; 4206 } 4207 err = check_sock_access(env, insn_idx, regno, off, size, t); 4208 if (!err && value_regno >= 0) 4209 mark_reg_unknown(env, regs, value_regno); 4210 } else if (reg->type == PTR_TO_TP_BUFFER) { 4211 err = check_tp_buffer_access(env, reg, regno, off, size); 4212 if (!err && t == BPF_READ && value_regno >= 0) 4213 mark_reg_unknown(env, regs, value_regno); 4214 } else if (reg->type == PTR_TO_BTF_ID) { 4215 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4216 value_regno); 4217 } else if (reg->type == CONST_PTR_TO_MAP) { 4218 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4219 value_regno); 4220 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4221 if (t == BPF_WRITE) { 4222 verbose(env, "R%d cannot write into %s\n", 4223 regno, reg_type_str[reg->type]); 4224 return -EACCES; 4225 } 4226 err = check_buffer_access(env, reg, regno, off, size, false, 4227 "rdonly", 4228 &env->prog->aux->max_rdonly_access); 4229 if (!err && value_regno >= 0) 4230 mark_reg_unknown(env, regs, value_regno); 4231 } else if (reg->type == PTR_TO_RDWR_BUF) { 4232 err = check_buffer_access(env, reg, regno, off, size, false, 4233 "rdwr", 4234 &env->prog->aux->max_rdwr_access); 4235 if (!err && t == BPF_READ && value_regno >= 0) 4236 mark_reg_unknown(env, regs, value_regno); 4237 } else { 4238 verbose(env, "R%d invalid mem access '%s'\n", regno, 4239 reg_type_str[reg->type]); 4240 return -EACCES; 4241 } 4242 4243 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4244 regs[value_regno].type == SCALAR_VALUE) { 4245 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4246 coerce_reg_to_size(®s[value_regno], size); 4247 } 4248 return err; 4249 } 4250 4251 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4252 { 4253 int load_reg; 4254 int err; 4255 4256 switch (insn->imm) { 4257 case BPF_ADD: 4258 case BPF_ADD | BPF_FETCH: 4259 case BPF_AND: 4260 case BPF_AND | BPF_FETCH: 4261 case BPF_OR: 4262 case BPF_OR | BPF_FETCH: 4263 case BPF_XOR: 4264 case BPF_XOR | BPF_FETCH: 4265 case BPF_XCHG: 4266 case BPF_CMPXCHG: 4267 break; 4268 default: 4269 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4270 return -EINVAL; 4271 } 4272 4273 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4274 verbose(env, "invalid atomic operand size\n"); 4275 return -EINVAL; 4276 } 4277 4278 /* check src1 operand */ 4279 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4280 if (err) 4281 return err; 4282 4283 /* check src2 operand */ 4284 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4285 if (err) 4286 return err; 4287 4288 if (insn->imm == BPF_CMPXCHG) { 4289 /* Check comparison of R0 with memory location */ 4290 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4291 if (err) 4292 return err; 4293 } 4294 4295 if (is_pointer_value(env, insn->src_reg)) { 4296 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4297 return -EACCES; 4298 } 4299 4300 if (is_ctx_reg(env, insn->dst_reg) || 4301 is_pkt_reg(env, insn->dst_reg) || 4302 is_flow_key_reg(env, insn->dst_reg) || 4303 is_sk_reg(env, insn->dst_reg)) { 4304 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4305 insn->dst_reg, 4306 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4307 return -EACCES; 4308 } 4309 4310 if (insn->imm & BPF_FETCH) { 4311 if (insn->imm == BPF_CMPXCHG) 4312 load_reg = BPF_REG_0; 4313 else 4314 load_reg = insn->src_reg; 4315 4316 /* check and record load of old value */ 4317 err = check_reg_arg(env, load_reg, DST_OP); 4318 if (err) 4319 return err; 4320 } else { 4321 /* This instruction accesses a memory location but doesn't 4322 * actually load it into a register. 4323 */ 4324 load_reg = -1; 4325 } 4326 4327 /* check whether we can read the memory */ 4328 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4329 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4330 if (err) 4331 return err; 4332 4333 /* check whether we can write into the same memory */ 4334 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4335 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4336 if (err) 4337 return err; 4338 4339 return 0; 4340 } 4341 4342 /* When register 'regno' is used to read the stack (either directly or through 4343 * a helper function) make sure that it's within stack boundary and, depending 4344 * on the access type, that all elements of the stack are initialized. 4345 * 4346 * 'off' includes 'regno->off', but not its dynamic part (if any). 4347 * 4348 * All registers that have been spilled on the stack in the slots within the 4349 * read offsets are marked as read. 4350 */ 4351 static int check_stack_range_initialized( 4352 struct bpf_verifier_env *env, int regno, int off, 4353 int access_size, bool zero_size_allowed, 4354 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4355 { 4356 struct bpf_reg_state *reg = reg_state(env, regno); 4357 struct bpf_func_state *state = func(env, reg); 4358 int err, min_off, max_off, i, j, slot, spi; 4359 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4360 enum bpf_access_type bounds_check_type; 4361 /* Some accesses can write anything into the stack, others are 4362 * read-only. 4363 */ 4364 bool clobber = false; 4365 4366 if (access_size == 0 && !zero_size_allowed) { 4367 verbose(env, "invalid zero-sized read\n"); 4368 return -EACCES; 4369 } 4370 4371 if (type == ACCESS_HELPER) { 4372 /* The bounds checks for writes are more permissive than for 4373 * reads. However, if raw_mode is not set, we'll do extra 4374 * checks below. 4375 */ 4376 bounds_check_type = BPF_WRITE; 4377 clobber = true; 4378 } else { 4379 bounds_check_type = BPF_READ; 4380 } 4381 err = check_stack_access_within_bounds(env, regno, off, access_size, 4382 type, bounds_check_type); 4383 if (err) 4384 return err; 4385 4386 4387 if (tnum_is_const(reg->var_off)) { 4388 min_off = max_off = reg->var_off.value + off; 4389 } else { 4390 /* Variable offset is prohibited for unprivileged mode for 4391 * simplicity since it requires corresponding support in 4392 * Spectre masking for stack ALU. 4393 * See also retrieve_ptr_limit(). 4394 */ 4395 if (!env->bypass_spec_v1) { 4396 char tn_buf[48]; 4397 4398 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4399 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4400 regno, err_extra, tn_buf); 4401 return -EACCES; 4402 } 4403 /* Only initialized buffer on stack is allowed to be accessed 4404 * with variable offset. With uninitialized buffer it's hard to 4405 * guarantee that whole memory is marked as initialized on 4406 * helper return since specific bounds are unknown what may 4407 * cause uninitialized stack leaking. 4408 */ 4409 if (meta && meta->raw_mode) 4410 meta = NULL; 4411 4412 min_off = reg->smin_value + off; 4413 max_off = reg->smax_value + off; 4414 } 4415 4416 if (meta && meta->raw_mode) { 4417 meta->access_size = access_size; 4418 meta->regno = regno; 4419 return 0; 4420 } 4421 4422 for (i = min_off; i < max_off + access_size; i++) { 4423 u8 *stype; 4424 4425 slot = -i - 1; 4426 spi = slot / BPF_REG_SIZE; 4427 if (state->allocated_stack <= slot) 4428 goto err; 4429 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4430 if (*stype == STACK_MISC) 4431 goto mark; 4432 if (*stype == STACK_ZERO) { 4433 if (clobber) { 4434 /* helper can write anything into the stack */ 4435 *stype = STACK_MISC; 4436 } 4437 goto mark; 4438 } 4439 4440 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4441 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4442 goto mark; 4443 4444 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4445 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4446 env->allow_ptr_leaks)) { 4447 if (clobber) { 4448 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4449 for (j = 0; j < BPF_REG_SIZE; j++) 4450 state->stack[spi].slot_type[j] = STACK_MISC; 4451 } 4452 goto mark; 4453 } 4454 4455 err: 4456 if (tnum_is_const(reg->var_off)) { 4457 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4458 err_extra, regno, min_off, i - min_off, access_size); 4459 } else { 4460 char tn_buf[48]; 4461 4462 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4463 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4464 err_extra, regno, tn_buf, i - min_off, access_size); 4465 } 4466 return -EACCES; 4467 mark: 4468 /* reading any byte out of 8-byte 'spill_slot' will cause 4469 * the whole slot to be marked as 'read' 4470 */ 4471 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4472 state->stack[spi].spilled_ptr.parent, 4473 REG_LIVE_READ64); 4474 } 4475 return update_stack_depth(env, state, min_off); 4476 } 4477 4478 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4479 int access_size, bool zero_size_allowed, 4480 struct bpf_call_arg_meta *meta) 4481 { 4482 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4483 4484 switch (reg->type) { 4485 case PTR_TO_PACKET: 4486 case PTR_TO_PACKET_META: 4487 return check_packet_access(env, regno, reg->off, access_size, 4488 zero_size_allowed); 4489 case PTR_TO_MAP_KEY: 4490 return check_mem_region_access(env, regno, reg->off, access_size, 4491 reg->map_ptr->key_size, false); 4492 case PTR_TO_MAP_VALUE: 4493 if (check_map_access_type(env, regno, reg->off, access_size, 4494 meta && meta->raw_mode ? BPF_WRITE : 4495 BPF_READ)) 4496 return -EACCES; 4497 return check_map_access(env, regno, reg->off, access_size, 4498 zero_size_allowed); 4499 case PTR_TO_MEM: 4500 return check_mem_region_access(env, regno, reg->off, 4501 access_size, reg->mem_size, 4502 zero_size_allowed); 4503 case PTR_TO_RDONLY_BUF: 4504 if (meta && meta->raw_mode) 4505 return -EACCES; 4506 return check_buffer_access(env, reg, regno, reg->off, 4507 access_size, zero_size_allowed, 4508 "rdonly", 4509 &env->prog->aux->max_rdonly_access); 4510 case PTR_TO_RDWR_BUF: 4511 return check_buffer_access(env, reg, regno, reg->off, 4512 access_size, zero_size_allowed, 4513 "rdwr", 4514 &env->prog->aux->max_rdwr_access); 4515 case PTR_TO_STACK: 4516 return check_stack_range_initialized( 4517 env, 4518 regno, reg->off, access_size, 4519 zero_size_allowed, ACCESS_HELPER, meta); 4520 default: /* scalar_value or invalid ptr */ 4521 /* Allow zero-byte read from NULL, regardless of pointer type */ 4522 if (zero_size_allowed && access_size == 0 && 4523 register_is_null(reg)) 4524 return 0; 4525 4526 verbose(env, "R%d type=%s expected=%s\n", regno, 4527 reg_type_str[reg->type], 4528 reg_type_str[PTR_TO_STACK]); 4529 return -EACCES; 4530 } 4531 } 4532 4533 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4534 u32 regno, u32 mem_size) 4535 { 4536 if (register_is_null(reg)) 4537 return 0; 4538 4539 if (reg_type_may_be_null(reg->type)) { 4540 /* Assuming that the register contains a value check if the memory 4541 * access is safe. Temporarily save and restore the register's state as 4542 * the conversion shouldn't be visible to a caller. 4543 */ 4544 const struct bpf_reg_state saved_reg = *reg; 4545 int rv; 4546 4547 mark_ptr_not_null_reg(reg); 4548 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4549 *reg = saved_reg; 4550 return rv; 4551 } 4552 4553 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4554 } 4555 4556 /* Implementation details: 4557 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4558 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4559 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4560 * value_or_null->value transition, since the verifier only cares about 4561 * the range of access to valid map value pointer and doesn't care about actual 4562 * address of the map element. 4563 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4564 * reg->id > 0 after value_or_null->value transition. By doing so 4565 * two bpf_map_lookups will be considered two different pointers that 4566 * point to different bpf_spin_locks. 4567 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4568 * dead-locks. 4569 * Since only one bpf_spin_lock is allowed the checks are simpler than 4570 * reg_is_refcounted() logic. The verifier needs to remember only 4571 * one spin_lock instead of array of acquired_refs. 4572 * cur_state->active_spin_lock remembers which map value element got locked 4573 * and clears it after bpf_spin_unlock. 4574 */ 4575 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4576 bool is_lock) 4577 { 4578 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4579 struct bpf_verifier_state *cur = env->cur_state; 4580 bool is_const = tnum_is_const(reg->var_off); 4581 struct bpf_map *map = reg->map_ptr; 4582 u64 val = reg->var_off.value; 4583 4584 if (!is_const) { 4585 verbose(env, 4586 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4587 regno); 4588 return -EINVAL; 4589 } 4590 if (!map->btf) { 4591 verbose(env, 4592 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4593 map->name); 4594 return -EINVAL; 4595 } 4596 if (!map_value_has_spin_lock(map)) { 4597 if (map->spin_lock_off == -E2BIG) 4598 verbose(env, 4599 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4600 map->name); 4601 else if (map->spin_lock_off == -ENOENT) 4602 verbose(env, 4603 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4604 map->name); 4605 else 4606 verbose(env, 4607 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4608 map->name); 4609 return -EINVAL; 4610 } 4611 if (map->spin_lock_off != val + reg->off) { 4612 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4613 val + reg->off); 4614 return -EINVAL; 4615 } 4616 if (is_lock) { 4617 if (cur->active_spin_lock) { 4618 verbose(env, 4619 "Locking two bpf_spin_locks are not allowed\n"); 4620 return -EINVAL; 4621 } 4622 cur->active_spin_lock = reg->id; 4623 } else { 4624 if (!cur->active_spin_lock) { 4625 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4626 return -EINVAL; 4627 } 4628 if (cur->active_spin_lock != reg->id) { 4629 verbose(env, "bpf_spin_unlock of different lock\n"); 4630 return -EINVAL; 4631 } 4632 cur->active_spin_lock = 0; 4633 } 4634 return 0; 4635 } 4636 4637 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4638 { 4639 return type == ARG_PTR_TO_MEM || 4640 type == ARG_PTR_TO_MEM_OR_NULL || 4641 type == ARG_PTR_TO_UNINIT_MEM; 4642 } 4643 4644 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4645 { 4646 return type == ARG_CONST_SIZE || 4647 type == ARG_CONST_SIZE_OR_ZERO; 4648 } 4649 4650 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4651 { 4652 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4653 } 4654 4655 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4656 { 4657 return type == ARG_PTR_TO_INT || 4658 type == ARG_PTR_TO_LONG; 4659 } 4660 4661 static int int_ptr_type_to_size(enum bpf_arg_type type) 4662 { 4663 if (type == ARG_PTR_TO_INT) 4664 return sizeof(u32); 4665 else if (type == ARG_PTR_TO_LONG) 4666 return sizeof(u64); 4667 4668 return -EINVAL; 4669 } 4670 4671 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4672 const struct bpf_call_arg_meta *meta, 4673 enum bpf_arg_type *arg_type) 4674 { 4675 if (!meta->map_ptr) { 4676 /* kernel subsystem misconfigured verifier */ 4677 verbose(env, "invalid map_ptr to access map->type\n"); 4678 return -EACCES; 4679 } 4680 4681 switch (meta->map_ptr->map_type) { 4682 case BPF_MAP_TYPE_SOCKMAP: 4683 case BPF_MAP_TYPE_SOCKHASH: 4684 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4685 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4686 } else { 4687 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4688 return -EINVAL; 4689 } 4690 break; 4691 4692 default: 4693 break; 4694 } 4695 return 0; 4696 } 4697 4698 struct bpf_reg_types { 4699 const enum bpf_reg_type types[10]; 4700 u32 *btf_id; 4701 }; 4702 4703 static const struct bpf_reg_types map_key_value_types = { 4704 .types = { 4705 PTR_TO_STACK, 4706 PTR_TO_PACKET, 4707 PTR_TO_PACKET_META, 4708 PTR_TO_MAP_KEY, 4709 PTR_TO_MAP_VALUE, 4710 }, 4711 }; 4712 4713 static const struct bpf_reg_types sock_types = { 4714 .types = { 4715 PTR_TO_SOCK_COMMON, 4716 PTR_TO_SOCKET, 4717 PTR_TO_TCP_SOCK, 4718 PTR_TO_XDP_SOCK, 4719 }, 4720 }; 4721 4722 #ifdef CONFIG_NET 4723 static const struct bpf_reg_types btf_id_sock_common_types = { 4724 .types = { 4725 PTR_TO_SOCK_COMMON, 4726 PTR_TO_SOCKET, 4727 PTR_TO_TCP_SOCK, 4728 PTR_TO_XDP_SOCK, 4729 PTR_TO_BTF_ID, 4730 }, 4731 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4732 }; 4733 #endif 4734 4735 static const struct bpf_reg_types mem_types = { 4736 .types = { 4737 PTR_TO_STACK, 4738 PTR_TO_PACKET, 4739 PTR_TO_PACKET_META, 4740 PTR_TO_MAP_KEY, 4741 PTR_TO_MAP_VALUE, 4742 PTR_TO_MEM, 4743 PTR_TO_RDONLY_BUF, 4744 PTR_TO_RDWR_BUF, 4745 }, 4746 }; 4747 4748 static const struct bpf_reg_types int_ptr_types = { 4749 .types = { 4750 PTR_TO_STACK, 4751 PTR_TO_PACKET, 4752 PTR_TO_PACKET_META, 4753 PTR_TO_MAP_KEY, 4754 PTR_TO_MAP_VALUE, 4755 }, 4756 }; 4757 4758 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4759 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4760 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4761 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4762 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4763 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4764 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4765 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4766 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 4767 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 4768 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 4769 4770 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4771 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4772 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4773 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4774 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4775 [ARG_CONST_SIZE] = &scalar_types, 4776 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4777 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4778 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4779 [ARG_PTR_TO_CTX] = &context_types, 4780 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4781 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4782 #ifdef CONFIG_NET 4783 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4784 #endif 4785 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4786 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4787 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4788 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4789 [ARG_PTR_TO_MEM] = &mem_types, 4790 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4791 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4792 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4793 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4794 [ARG_PTR_TO_INT] = &int_ptr_types, 4795 [ARG_PTR_TO_LONG] = &int_ptr_types, 4796 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4797 [ARG_PTR_TO_FUNC] = &func_ptr_types, 4798 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 4799 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 4800 }; 4801 4802 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4803 enum bpf_arg_type arg_type, 4804 const u32 *arg_btf_id) 4805 { 4806 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4807 enum bpf_reg_type expected, type = reg->type; 4808 const struct bpf_reg_types *compatible; 4809 int i, j; 4810 4811 compatible = compatible_reg_types[arg_type]; 4812 if (!compatible) { 4813 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4814 return -EFAULT; 4815 } 4816 4817 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4818 expected = compatible->types[i]; 4819 if (expected == NOT_INIT) 4820 break; 4821 4822 if (type == expected) 4823 goto found; 4824 } 4825 4826 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4827 for (j = 0; j + 1 < i; j++) 4828 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4829 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4830 return -EACCES; 4831 4832 found: 4833 if (type == PTR_TO_BTF_ID) { 4834 if (!arg_btf_id) { 4835 if (!compatible->btf_id) { 4836 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4837 return -EFAULT; 4838 } 4839 arg_btf_id = compatible->btf_id; 4840 } 4841 4842 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4843 btf_vmlinux, *arg_btf_id)) { 4844 verbose(env, "R%d is of type %s but %s is expected\n", 4845 regno, kernel_type_name(reg->btf, reg->btf_id), 4846 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4847 return -EACCES; 4848 } 4849 4850 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4851 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4852 regno); 4853 return -EACCES; 4854 } 4855 } 4856 4857 return 0; 4858 } 4859 4860 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4861 struct bpf_call_arg_meta *meta, 4862 const struct bpf_func_proto *fn) 4863 { 4864 u32 regno = BPF_REG_1 + arg; 4865 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4866 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4867 enum bpf_reg_type type = reg->type; 4868 int err = 0; 4869 4870 if (arg_type == ARG_DONTCARE) 4871 return 0; 4872 4873 err = check_reg_arg(env, regno, SRC_OP); 4874 if (err) 4875 return err; 4876 4877 if (arg_type == ARG_ANYTHING) { 4878 if (is_pointer_value(env, regno)) { 4879 verbose(env, "R%d leaks addr into helper function\n", 4880 regno); 4881 return -EACCES; 4882 } 4883 return 0; 4884 } 4885 4886 if (type_is_pkt_pointer(type) && 4887 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4888 verbose(env, "helper access to the packet is not allowed\n"); 4889 return -EACCES; 4890 } 4891 4892 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4893 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4894 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4895 err = resolve_map_arg_type(env, meta, &arg_type); 4896 if (err) 4897 return err; 4898 } 4899 4900 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4901 /* A NULL register has a SCALAR_VALUE type, so skip 4902 * type checking. 4903 */ 4904 goto skip_type_check; 4905 4906 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4907 if (err) 4908 return err; 4909 4910 if (type == PTR_TO_CTX) { 4911 err = check_ctx_reg(env, reg, regno); 4912 if (err < 0) 4913 return err; 4914 } 4915 4916 skip_type_check: 4917 if (reg->ref_obj_id) { 4918 if (meta->ref_obj_id) { 4919 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4920 regno, reg->ref_obj_id, 4921 meta->ref_obj_id); 4922 return -EFAULT; 4923 } 4924 meta->ref_obj_id = reg->ref_obj_id; 4925 } 4926 4927 if (arg_type == ARG_CONST_MAP_PTR) { 4928 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4929 meta->map_ptr = reg->map_ptr; 4930 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4931 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4932 * check that [key, key + map->key_size) are within 4933 * stack limits and initialized 4934 */ 4935 if (!meta->map_ptr) { 4936 /* in function declaration map_ptr must come before 4937 * map_key, so that it's verified and known before 4938 * we have to check map_key here. Otherwise it means 4939 * that kernel subsystem misconfigured verifier 4940 */ 4941 verbose(env, "invalid map_ptr to access map->key\n"); 4942 return -EACCES; 4943 } 4944 err = check_helper_mem_access(env, regno, 4945 meta->map_ptr->key_size, false, 4946 NULL); 4947 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4948 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4949 !register_is_null(reg)) || 4950 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4951 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4952 * check [value, value + map->value_size) validity 4953 */ 4954 if (!meta->map_ptr) { 4955 /* kernel subsystem misconfigured verifier */ 4956 verbose(env, "invalid map_ptr to access map->value\n"); 4957 return -EACCES; 4958 } 4959 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4960 err = check_helper_mem_access(env, regno, 4961 meta->map_ptr->value_size, false, 4962 meta); 4963 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4964 if (!reg->btf_id) { 4965 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4966 return -EACCES; 4967 } 4968 meta->ret_btf = reg->btf; 4969 meta->ret_btf_id = reg->btf_id; 4970 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4971 if (meta->func_id == BPF_FUNC_spin_lock) { 4972 if (process_spin_lock(env, regno, true)) 4973 return -EACCES; 4974 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4975 if (process_spin_lock(env, regno, false)) 4976 return -EACCES; 4977 } else { 4978 verbose(env, "verifier internal error\n"); 4979 return -EFAULT; 4980 } 4981 } else if (arg_type == ARG_PTR_TO_FUNC) { 4982 meta->subprogno = reg->subprogno; 4983 } else if (arg_type_is_mem_ptr(arg_type)) { 4984 /* The access to this pointer is only checked when we hit the 4985 * next is_mem_size argument below. 4986 */ 4987 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4988 } else if (arg_type_is_mem_size(arg_type)) { 4989 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4990 4991 /* This is used to refine r0 return value bounds for helpers 4992 * that enforce this value as an upper bound on return values. 4993 * See do_refine_retval_range() for helpers that can refine 4994 * the return value. C type of helper is u32 so we pull register 4995 * bound from umax_value however, if negative verifier errors 4996 * out. Only upper bounds can be learned because retval is an 4997 * int type and negative retvals are allowed. 4998 */ 4999 meta->msize_max_value = reg->umax_value; 5000 5001 /* The register is SCALAR_VALUE; the access check 5002 * happens using its boundaries. 5003 */ 5004 if (!tnum_is_const(reg->var_off)) 5005 /* For unprivileged variable accesses, disable raw 5006 * mode so that the program is required to 5007 * initialize all the memory that the helper could 5008 * just partially fill up. 5009 */ 5010 meta = NULL; 5011 5012 if (reg->smin_value < 0) { 5013 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5014 regno); 5015 return -EACCES; 5016 } 5017 5018 if (reg->umin_value == 0) { 5019 err = check_helper_mem_access(env, regno - 1, 0, 5020 zero_size_allowed, 5021 meta); 5022 if (err) 5023 return err; 5024 } 5025 5026 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5027 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5028 regno); 5029 return -EACCES; 5030 } 5031 err = check_helper_mem_access(env, regno - 1, 5032 reg->umax_value, 5033 zero_size_allowed, meta); 5034 if (!err) 5035 err = mark_chain_precision(env, regno); 5036 } else if (arg_type_is_alloc_size(arg_type)) { 5037 if (!tnum_is_const(reg->var_off)) { 5038 verbose(env, "R%d is not a known constant'\n", 5039 regno); 5040 return -EACCES; 5041 } 5042 meta->mem_size = reg->var_off.value; 5043 } else if (arg_type_is_int_ptr(arg_type)) { 5044 int size = int_ptr_type_to_size(arg_type); 5045 5046 err = check_helper_mem_access(env, regno, size, false, meta); 5047 if (err) 5048 return err; 5049 err = check_ptr_alignment(env, reg, 0, size, true); 5050 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5051 struct bpf_map *map = reg->map_ptr; 5052 int map_off; 5053 u64 map_addr; 5054 char *str_ptr; 5055 5056 if (!bpf_map_is_rdonly(map)) { 5057 verbose(env, "R%d does not point to a readonly map'\n", regno); 5058 return -EACCES; 5059 } 5060 5061 if (!tnum_is_const(reg->var_off)) { 5062 verbose(env, "R%d is not a constant address'\n", regno); 5063 return -EACCES; 5064 } 5065 5066 if (!map->ops->map_direct_value_addr) { 5067 verbose(env, "no direct value access support for this map type\n"); 5068 return -EACCES; 5069 } 5070 5071 err = check_map_access(env, regno, reg->off, 5072 map->value_size - reg->off, false); 5073 if (err) 5074 return err; 5075 5076 map_off = reg->off + reg->var_off.value; 5077 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5078 if (err) { 5079 verbose(env, "direct value access on string failed\n"); 5080 return err; 5081 } 5082 5083 str_ptr = (char *)(long)(map_addr); 5084 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5085 verbose(env, "string is not zero-terminated\n"); 5086 return -EINVAL; 5087 } 5088 } 5089 5090 return err; 5091 } 5092 5093 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5094 { 5095 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5096 enum bpf_prog_type type = resolve_prog_type(env->prog); 5097 5098 if (func_id != BPF_FUNC_map_update_elem) 5099 return false; 5100 5101 /* It's not possible to get access to a locked struct sock in these 5102 * contexts, so updating is safe. 5103 */ 5104 switch (type) { 5105 case BPF_PROG_TYPE_TRACING: 5106 if (eatype == BPF_TRACE_ITER) 5107 return true; 5108 break; 5109 case BPF_PROG_TYPE_SOCKET_FILTER: 5110 case BPF_PROG_TYPE_SCHED_CLS: 5111 case BPF_PROG_TYPE_SCHED_ACT: 5112 case BPF_PROG_TYPE_XDP: 5113 case BPF_PROG_TYPE_SK_REUSEPORT: 5114 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5115 case BPF_PROG_TYPE_SK_LOOKUP: 5116 return true; 5117 default: 5118 break; 5119 } 5120 5121 verbose(env, "cannot update sockmap in this context\n"); 5122 return false; 5123 } 5124 5125 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5126 { 5127 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5128 } 5129 5130 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5131 struct bpf_map *map, int func_id) 5132 { 5133 if (!map) 5134 return 0; 5135 5136 /* We need a two way check, first is from map perspective ... */ 5137 switch (map->map_type) { 5138 case BPF_MAP_TYPE_PROG_ARRAY: 5139 if (func_id != BPF_FUNC_tail_call) 5140 goto error; 5141 break; 5142 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5143 if (func_id != BPF_FUNC_perf_event_read && 5144 func_id != BPF_FUNC_perf_event_output && 5145 func_id != BPF_FUNC_skb_output && 5146 func_id != BPF_FUNC_perf_event_read_value && 5147 func_id != BPF_FUNC_xdp_output) 5148 goto error; 5149 break; 5150 case BPF_MAP_TYPE_RINGBUF: 5151 if (func_id != BPF_FUNC_ringbuf_output && 5152 func_id != BPF_FUNC_ringbuf_reserve && 5153 func_id != BPF_FUNC_ringbuf_submit && 5154 func_id != BPF_FUNC_ringbuf_discard && 5155 func_id != BPF_FUNC_ringbuf_query) 5156 goto error; 5157 break; 5158 case BPF_MAP_TYPE_STACK_TRACE: 5159 if (func_id != BPF_FUNC_get_stackid) 5160 goto error; 5161 break; 5162 case BPF_MAP_TYPE_CGROUP_ARRAY: 5163 if (func_id != BPF_FUNC_skb_under_cgroup && 5164 func_id != BPF_FUNC_current_task_under_cgroup) 5165 goto error; 5166 break; 5167 case BPF_MAP_TYPE_CGROUP_STORAGE: 5168 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5169 if (func_id != BPF_FUNC_get_local_storage) 5170 goto error; 5171 break; 5172 case BPF_MAP_TYPE_DEVMAP: 5173 case BPF_MAP_TYPE_DEVMAP_HASH: 5174 if (func_id != BPF_FUNC_redirect_map && 5175 func_id != BPF_FUNC_map_lookup_elem) 5176 goto error; 5177 break; 5178 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5179 * appear. 5180 */ 5181 case BPF_MAP_TYPE_CPUMAP: 5182 if (func_id != BPF_FUNC_redirect_map) 5183 goto error; 5184 break; 5185 case BPF_MAP_TYPE_XSKMAP: 5186 if (func_id != BPF_FUNC_redirect_map && 5187 func_id != BPF_FUNC_map_lookup_elem) 5188 goto error; 5189 break; 5190 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5191 case BPF_MAP_TYPE_HASH_OF_MAPS: 5192 if (func_id != BPF_FUNC_map_lookup_elem) 5193 goto error; 5194 break; 5195 case BPF_MAP_TYPE_SOCKMAP: 5196 if (func_id != BPF_FUNC_sk_redirect_map && 5197 func_id != BPF_FUNC_sock_map_update && 5198 func_id != BPF_FUNC_map_delete_elem && 5199 func_id != BPF_FUNC_msg_redirect_map && 5200 func_id != BPF_FUNC_sk_select_reuseport && 5201 func_id != BPF_FUNC_map_lookup_elem && 5202 !may_update_sockmap(env, func_id)) 5203 goto error; 5204 break; 5205 case BPF_MAP_TYPE_SOCKHASH: 5206 if (func_id != BPF_FUNC_sk_redirect_hash && 5207 func_id != BPF_FUNC_sock_hash_update && 5208 func_id != BPF_FUNC_map_delete_elem && 5209 func_id != BPF_FUNC_msg_redirect_hash && 5210 func_id != BPF_FUNC_sk_select_reuseport && 5211 func_id != BPF_FUNC_map_lookup_elem && 5212 !may_update_sockmap(env, func_id)) 5213 goto error; 5214 break; 5215 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5216 if (func_id != BPF_FUNC_sk_select_reuseport) 5217 goto error; 5218 break; 5219 case BPF_MAP_TYPE_QUEUE: 5220 case BPF_MAP_TYPE_STACK: 5221 if (func_id != BPF_FUNC_map_peek_elem && 5222 func_id != BPF_FUNC_map_pop_elem && 5223 func_id != BPF_FUNC_map_push_elem) 5224 goto error; 5225 break; 5226 case BPF_MAP_TYPE_SK_STORAGE: 5227 if (func_id != BPF_FUNC_sk_storage_get && 5228 func_id != BPF_FUNC_sk_storage_delete) 5229 goto error; 5230 break; 5231 case BPF_MAP_TYPE_INODE_STORAGE: 5232 if (func_id != BPF_FUNC_inode_storage_get && 5233 func_id != BPF_FUNC_inode_storage_delete) 5234 goto error; 5235 break; 5236 case BPF_MAP_TYPE_TASK_STORAGE: 5237 if (func_id != BPF_FUNC_task_storage_get && 5238 func_id != BPF_FUNC_task_storage_delete) 5239 goto error; 5240 break; 5241 default: 5242 break; 5243 } 5244 5245 /* ... and second from the function itself. */ 5246 switch (func_id) { 5247 case BPF_FUNC_tail_call: 5248 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5249 goto error; 5250 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5251 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5252 return -EINVAL; 5253 } 5254 break; 5255 case BPF_FUNC_perf_event_read: 5256 case BPF_FUNC_perf_event_output: 5257 case BPF_FUNC_perf_event_read_value: 5258 case BPF_FUNC_skb_output: 5259 case BPF_FUNC_xdp_output: 5260 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5261 goto error; 5262 break; 5263 case BPF_FUNC_get_stackid: 5264 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5265 goto error; 5266 break; 5267 case BPF_FUNC_current_task_under_cgroup: 5268 case BPF_FUNC_skb_under_cgroup: 5269 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5270 goto error; 5271 break; 5272 case BPF_FUNC_redirect_map: 5273 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5274 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5275 map->map_type != BPF_MAP_TYPE_CPUMAP && 5276 map->map_type != BPF_MAP_TYPE_XSKMAP) 5277 goto error; 5278 break; 5279 case BPF_FUNC_sk_redirect_map: 5280 case BPF_FUNC_msg_redirect_map: 5281 case BPF_FUNC_sock_map_update: 5282 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5283 goto error; 5284 break; 5285 case BPF_FUNC_sk_redirect_hash: 5286 case BPF_FUNC_msg_redirect_hash: 5287 case BPF_FUNC_sock_hash_update: 5288 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5289 goto error; 5290 break; 5291 case BPF_FUNC_get_local_storage: 5292 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5293 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5294 goto error; 5295 break; 5296 case BPF_FUNC_sk_select_reuseport: 5297 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5298 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5299 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5300 goto error; 5301 break; 5302 case BPF_FUNC_map_peek_elem: 5303 case BPF_FUNC_map_pop_elem: 5304 case BPF_FUNC_map_push_elem: 5305 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5306 map->map_type != BPF_MAP_TYPE_STACK) 5307 goto error; 5308 break; 5309 case BPF_FUNC_sk_storage_get: 5310 case BPF_FUNC_sk_storage_delete: 5311 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5312 goto error; 5313 break; 5314 case BPF_FUNC_inode_storage_get: 5315 case BPF_FUNC_inode_storage_delete: 5316 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5317 goto error; 5318 break; 5319 case BPF_FUNC_task_storage_get: 5320 case BPF_FUNC_task_storage_delete: 5321 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5322 goto error; 5323 break; 5324 default: 5325 break; 5326 } 5327 5328 return 0; 5329 error: 5330 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5331 map->map_type, func_id_name(func_id), func_id); 5332 return -EINVAL; 5333 } 5334 5335 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5336 { 5337 int count = 0; 5338 5339 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5340 count++; 5341 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5342 count++; 5343 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5344 count++; 5345 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5346 count++; 5347 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5348 count++; 5349 5350 /* We only support one arg being in raw mode at the moment, 5351 * which is sufficient for the helper functions we have 5352 * right now. 5353 */ 5354 return count <= 1; 5355 } 5356 5357 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5358 enum bpf_arg_type arg_next) 5359 { 5360 return (arg_type_is_mem_ptr(arg_curr) && 5361 !arg_type_is_mem_size(arg_next)) || 5362 (!arg_type_is_mem_ptr(arg_curr) && 5363 arg_type_is_mem_size(arg_next)); 5364 } 5365 5366 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5367 { 5368 /* bpf_xxx(..., buf, len) call will access 'len' 5369 * bytes from memory 'buf'. Both arg types need 5370 * to be paired, so make sure there's no buggy 5371 * helper function specification. 5372 */ 5373 if (arg_type_is_mem_size(fn->arg1_type) || 5374 arg_type_is_mem_ptr(fn->arg5_type) || 5375 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5376 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5377 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5378 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5379 return false; 5380 5381 return true; 5382 } 5383 5384 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5385 { 5386 int count = 0; 5387 5388 if (arg_type_may_be_refcounted(fn->arg1_type)) 5389 count++; 5390 if (arg_type_may_be_refcounted(fn->arg2_type)) 5391 count++; 5392 if (arg_type_may_be_refcounted(fn->arg3_type)) 5393 count++; 5394 if (arg_type_may_be_refcounted(fn->arg4_type)) 5395 count++; 5396 if (arg_type_may_be_refcounted(fn->arg5_type)) 5397 count++; 5398 5399 /* A reference acquiring function cannot acquire 5400 * another refcounted ptr. 5401 */ 5402 if (may_be_acquire_function(func_id) && count) 5403 return false; 5404 5405 /* We only support one arg being unreferenced at the moment, 5406 * which is sufficient for the helper functions we have right now. 5407 */ 5408 return count <= 1; 5409 } 5410 5411 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5412 { 5413 int i; 5414 5415 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5416 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5417 return false; 5418 5419 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5420 return false; 5421 } 5422 5423 return true; 5424 } 5425 5426 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5427 { 5428 return check_raw_mode_ok(fn) && 5429 check_arg_pair_ok(fn) && 5430 check_btf_id_ok(fn) && 5431 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5432 } 5433 5434 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5435 * are now invalid, so turn them into unknown SCALAR_VALUE. 5436 */ 5437 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5438 struct bpf_func_state *state) 5439 { 5440 struct bpf_reg_state *regs = state->regs, *reg; 5441 int i; 5442 5443 for (i = 0; i < MAX_BPF_REG; i++) 5444 if (reg_is_pkt_pointer_any(®s[i])) 5445 mark_reg_unknown(env, regs, i); 5446 5447 bpf_for_each_spilled_reg(i, state, reg) { 5448 if (!reg) 5449 continue; 5450 if (reg_is_pkt_pointer_any(reg)) 5451 __mark_reg_unknown(env, reg); 5452 } 5453 } 5454 5455 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5456 { 5457 struct bpf_verifier_state *vstate = env->cur_state; 5458 int i; 5459 5460 for (i = 0; i <= vstate->curframe; i++) 5461 __clear_all_pkt_pointers(env, vstate->frame[i]); 5462 } 5463 5464 enum { 5465 AT_PKT_END = -1, 5466 BEYOND_PKT_END = -2, 5467 }; 5468 5469 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5470 { 5471 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5472 struct bpf_reg_state *reg = &state->regs[regn]; 5473 5474 if (reg->type != PTR_TO_PACKET) 5475 /* PTR_TO_PACKET_META is not supported yet */ 5476 return; 5477 5478 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5479 * How far beyond pkt_end it goes is unknown. 5480 * if (!range_open) it's the case of pkt >= pkt_end 5481 * if (range_open) it's the case of pkt > pkt_end 5482 * hence this pointer is at least 1 byte bigger than pkt_end 5483 */ 5484 if (range_open) 5485 reg->range = BEYOND_PKT_END; 5486 else 5487 reg->range = AT_PKT_END; 5488 } 5489 5490 static void release_reg_references(struct bpf_verifier_env *env, 5491 struct bpf_func_state *state, 5492 int ref_obj_id) 5493 { 5494 struct bpf_reg_state *regs = state->regs, *reg; 5495 int i; 5496 5497 for (i = 0; i < MAX_BPF_REG; i++) 5498 if (regs[i].ref_obj_id == ref_obj_id) 5499 mark_reg_unknown(env, regs, i); 5500 5501 bpf_for_each_spilled_reg(i, state, reg) { 5502 if (!reg) 5503 continue; 5504 if (reg->ref_obj_id == ref_obj_id) 5505 __mark_reg_unknown(env, reg); 5506 } 5507 } 5508 5509 /* The pointer with the specified id has released its reference to kernel 5510 * resources. Identify all copies of the same pointer and clear the reference. 5511 */ 5512 static int release_reference(struct bpf_verifier_env *env, 5513 int ref_obj_id) 5514 { 5515 struct bpf_verifier_state *vstate = env->cur_state; 5516 int err; 5517 int i; 5518 5519 err = release_reference_state(cur_func(env), ref_obj_id); 5520 if (err) 5521 return err; 5522 5523 for (i = 0; i <= vstate->curframe; i++) 5524 release_reg_references(env, vstate->frame[i], ref_obj_id); 5525 5526 return 0; 5527 } 5528 5529 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5530 struct bpf_reg_state *regs) 5531 { 5532 int i; 5533 5534 /* after the call registers r0 - r5 were scratched */ 5535 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5536 mark_reg_not_init(env, regs, caller_saved[i]); 5537 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5538 } 5539 } 5540 5541 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5542 struct bpf_func_state *caller, 5543 struct bpf_func_state *callee, 5544 int insn_idx); 5545 5546 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5547 int *insn_idx, int subprog, 5548 set_callee_state_fn set_callee_state_cb) 5549 { 5550 struct bpf_verifier_state *state = env->cur_state; 5551 struct bpf_func_info_aux *func_info_aux; 5552 struct bpf_func_state *caller, *callee; 5553 int err; 5554 bool is_global = false; 5555 5556 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5557 verbose(env, "the call stack of %d frames is too deep\n", 5558 state->curframe + 2); 5559 return -E2BIG; 5560 } 5561 5562 caller = state->frame[state->curframe]; 5563 if (state->frame[state->curframe + 1]) { 5564 verbose(env, "verifier bug. Frame %d already allocated\n", 5565 state->curframe + 1); 5566 return -EFAULT; 5567 } 5568 5569 func_info_aux = env->prog->aux->func_info_aux; 5570 if (func_info_aux) 5571 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5572 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5573 if (err == -EFAULT) 5574 return err; 5575 if (is_global) { 5576 if (err) { 5577 verbose(env, "Caller passes invalid args into func#%d\n", 5578 subprog); 5579 return err; 5580 } else { 5581 if (env->log.level & BPF_LOG_LEVEL) 5582 verbose(env, 5583 "Func#%d is global and valid. Skipping.\n", 5584 subprog); 5585 clear_caller_saved_regs(env, caller->regs); 5586 5587 /* All global functions return a 64-bit SCALAR_VALUE */ 5588 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5589 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5590 5591 /* continue with next insn after call */ 5592 return 0; 5593 } 5594 } 5595 5596 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5597 if (!callee) 5598 return -ENOMEM; 5599 state->frame[state->curframe + 1] = callee; 5600 5601 /* callee cannot access r0, r6 - r9 for reading and has to write 5602 * into its own stack before reading from it. 5603 * callee can read/write into caller's stack 5604 */ 5605 init_func_state(env, callee, 5606 /* remember the callsite, it will be used by bpf_exit */ 5607 *insn_idx /* callsite */, 5608 state->curframe + 1 /* frameno within this callchain */, 5609 subprog /* subprog number within this prog */); 5610 5611 /* Transfer references to the callee */ 5612 err = copy_reference_state(callee, caller); 5613 if (err) 5614 return err; 5615 5616 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5617 if (err) 5618 return err; 5619 5620 clear_caller_saved_regs(env, caller->regs); 5621 5622 /* only increment it after check_reg_arg() finished */ 5623 state->curframe++; 5624 5625 /* and go analyze first insn of the callee */ 5626 *insn_idx = env->subprog_info[subprog].start - 1; 5627 5628 if (env->log.level & BPF_LOG_LEVEL) { 5629 verbose(env, "caller:\n"); 5630 print_verifier_state(env, caller); 5631 verbose(env, "callee:\n"); 5632 print_verifier_state(env, callee); 5633 } 5634 return 0; 5635 } 5636 5637 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 5638 struct bpf_func_state *caller, 5639 struct bpf_func_state *callee) 5640 { 5641 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 5642 * void *callback_ctx, u64 flags); 5643 * callback_fn(struct bpf_map *map, void *key, void *value, 5644 * void *callback_ctx); 5645 */ 5646 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 5647 5648 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5649 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5650 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5651 5652 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5653 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5654 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5655 5656 /* pointer to stack or null */ 5657 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 5658 5659 /* unused */ 5660 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5661 return 0; 5662 } 5663 5664 static int set_callee_state(struct bpf_verifier_env *env, 5665 struct bpf_func_state *caller, 5666 struct bpf_func_state *callee, int insn_idx) 5667 { 5668 int i; 5669 5670 /* copy r1 - r5 args that callee can access. The copy includes parent 5671 * pointers, which connects us up to the liveness chain 5672 */ 5673 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5674 callee->regs[i] = caller->regs[i]; 5675 return 0; 5676 } 5677 5678 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5679 int *insn_idx) 5680 { 5681 int subprog, target_insn; 5682 5683 target_insn = *insn_idx + insn->imm + 1; 5684 subprog = find_subprog(env, target_insn); 5685 if (subprog < 0) { 5686 verbose(env, "verifier bug. No program starts at insn %d\n", 5687 target_insn); 5688 return -EFAULT; 5689 } 5690 5691 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 5692 } 5693 5694 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 5695 struct bpf_func_state *caller, 5696 struct bpf_func_state *callee, 5697 int insn_idx) 5698 { 5699 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 5700 struct bpf_map *map; 5701 int err; 5702 5703 if (bpf_map_ptr_poisoned(insn_aux)) { 5704 verbose(env, "tail_call abusing map_ptr\n"); 5705 return -EINVAL; 5706 } 5707 5708 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 5709 if (!map->ops->map_set_for_each_callback_args || 5710 !map->ops->map_for_each_callback) { 5711 verbose(env, "callback function not allowed for map\n"); 5712 return -ENOTSUPP; 5713 } 5714 5715 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 5716 if (err) 5717 return err; 5718 5719 callee->in_callback_fn = true; 5720 return 0; 5721 } 5722 5723 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5724 { 5725 struct bpf_verifier_state *state = env->cur_state; 5726 struct bpf_func_state *caller, *callee; 5727 struct bpf_reg_state *r0; 5728 int err; 5729 5730 callee = state->frame[state->curframe]; 5731 r0 = &callee->regs[BPF_REG_0]; 5732 if (r0->type == PTR_TO_STACK) { 5733 /* technically it's ok to return caller's stack pointer 5734 * (or caller's caller's pointer) back to the caller, 5735 * since these pointers are valid. Only current stack 5736 * pointer will be invalid as soon as function exits, 5737 * but let's be conservative 5738 */ 5739 verbose(env, "cannot return stack pointer to the caller\n"); 5740 return -EINVAL; 5741 } 5742 5743 state->curframe--; 5744 caller = state->frame[state->curframe]; 5745 if (callee->in_callback_fn) { 5746 /* enforce R0 return value range [0, 1]. */ 5747 struct tnum range = tnum_range(0, 1); 5748 5749 if (r0->type != SCALAR_VALUE) { 5750 verbose(env, "R0 not a scalar value\n"); 5751 return -EACCES; 5752 } 5753 if (!tnum_in(range, r0->var_off)) { 5754 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 5755 return -EINVAL; 5756 } 5757 } else { 5758 /* return to the caller whatever r0 had in the callee */ 5759 caller->regs[BPF_REG_0] = *r0; 5760 } 5761 5762 /* Transfer references to the caller */ 5763 err = copy_reference_state(caller, callee); 5764 if (err) 5765 return err; 5766 5767 *insn_idx = callee->callsite + 1; 5768 if (env->log.level & BPF_LOG_LEVEL) { 5769 verbose(env, "returning from callee:\n"); 5770 print_verifier_state(env, callee); 5771 verbose(env, "to caller at %d:\n", *insn_idx); 5772 print_verifier_state(env, caller); 5773 } 5774 /* clear everything in the callee */ 5775 free_func_state(callee); 5776 state->frame[state->curframe + 1] = NULL; 5777 return 0; 5778 } 5779 5780 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 5781 int func_id, 5782 struct bpf_call_arg_meta *meta) 5783 { 5784 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 5785 5786 if (ret_type != RET_INTEGER || 5787 (func_id != BPF_FUNC_get_stack && 5788 func_id != BPF_FUNC_get_task_stack && 5789 func_id != BPF_FUNC_probe_read_str && 5790 func_id != BPF_FUNC_probe_read_kernel_str && 5791 func_id != BPF_FUNC_probe_read_user_str)) 5792 return; 5793 5794 ret_reg->smax_value = meta->msize_max_value; 5795 ret_reg->s32_max_value = meta->msize_max_value; 5796 ret_reg->smin_value = -MAX_ERRNO; 5797 ret_reg->s32_min_value = -MAX_ERRNO; 5798 __reg_deduce_bounds(ret_reg); 5799 __reg_bound_offset(ret_reg); 5800 __update_reg_bounds(ret_reg); 5801 } 5802 5803 static int 5804 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5805 int func_id, int insn_idx) 5806 { 5807 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5808 struct bpf_map *map = meta->map_ptr; 5809 5810 if (func_id != BPF_FUNC_tail_call && 5811 func_id != BPF_FUNC_map_lookup_elem && 5812 func_id != BPF_FUNC_map_update_elem && 5813 func_id != BPF_FUNC_map_delete_elem && 5814 func_id != BPF_FUNC_map_push_elem && 5815 func_id != BPF_FUNC_map_pop_elem && 5816 func_id != BPF_FUNC_map_peek_elem && 5817 func_id != BPF_FUNC_for_each_map_elem && 5818 func_id != BPF_FUNC_redirect_map) 5819 return 0; 5820 5821 if (map == NULL) { 5822 verbose(env, "kernel subsystem misconfigured verifier\n"); 5823 return -EINVAL; 5824 } 5825 5826 /* In case of read-only, some additional restrictions 5827 * need to be applied in order to prevent altering the 5828 * state of the map from program side. 5829 */ 5830 if ((map->map_flags & BPF_F_RDONLY_PROG) && 5831 (func_id == BPF_FUNC_map_delete_elem || 5832 func_id == BPF_FUNC_map_update_elem || 5833 func_id == BPF_FUNC_map_push_elem || 5834 func_id == BPF_FUNC_map_pop_elem)) { 5835 verbose(env, "write into map forbidden\n"); 5836 return -EACCES; 5837 } 5838 5839 if (!BPF_MAP_PTR(aux->map_ptr_state)) 5840 bpf_map_ptr_store(aux, meta->map_ptr, 5841 !meta->map_ptr->bypass_spec_v1); 5842 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 5843 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 5844 !meta->map_ptr->bypass_spec_v1); 5845 return 0; 5846 } 5847 5848 static int 5849 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5850 int func_id, int insn_idx) 5851 { 5852 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5853 struct bpf_reg_state *regs = cur_regs(env), *reg; 5854 struct bpf_map *map = meta->map_ptr; 5855 struct tnum range; 5856 u64 val; 5857 int err; 5858 5859 if (func_id != BPF_FUNC_tail_call) 5860 return 0; 5861 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5862 verbose(env, "kernel subsystem misconfigured verifier\n"); 5863 return -EINVAL; 5864 } 5865 5866 range = tnum_range(0, map->max_entries - 1); 5867 reg = ®s[BPF_REG_3]; 5868 5869 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5870 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5871 return 0; 5872 } 5873 5874 err = mark_chain_precision(env, BPF_REG_3); 5875 if (err) 5876 return err; 5877 5878 val = reg->var_off.value; 5879 if (bpf_map_key_unseen(aux)) 5880 bpf_map_key_store(aux, val); 5881 else if (!bpf_map_key_poisoned(aux) && 5882 bpf_map_key_immediate(aux) != val) 5883 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5884 return 0; 5885 } 5886 5887 static int check_reference_leak(struct bpf_verifier_env *env) 5888 { 5889 struct bpf_func_state *state = cur_func(env); 5890 int i; 5891 5892 for (i = 0; i < state->acquired_refs; i++) { 5893 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5894 state->refs[i].id, state->refs[i].insn_idx); 5895 } 5896 return state->acquired_refs ? -EINVAL : 0; 5897 } 5898 5899 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 5900 struct bpf_reg_state *regs) 5901 { 5902 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 5903 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 5904 struct bpf_map *fmt_map = fmt_reg->map_ptr; 5905 int err, fmt_map_off, num_args; 5906 u64 fmt_addr; 5907 char *fmt; 5908 5909 /* data must be an array of u64 */ 5910 if (data_len_reg->var_off.value % 8) 5911 return -EINVAL; 5912 num_args = data_len_reg->var_off.value / 8; 5913 5914 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 5915 * and map_direct_value_addr is set. 5916 */ 5917 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 5918 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 5919 fmt_map_off); 5920 if (err) { 5921 verbose(env, "verifier bug\n"); 5922 return -EFAULT; 5923 } 5924 fmt = (char *)(long)fmt_addr + fmt_map_off; 5925 5926 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 5927 * can focus on validating the format specifiers. 5928 */ 5929 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 5930 if (err < 0) 5931 verbose(env, "Invalid format string\n"); 5932 5933 return err; 5934 } 5935 5936 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5937 int *insn_idx_p) 5938 { 5939 const struct bpf_func_proto *fn = NULL; 5940 struct bpf_reg_state *regs; 5941 struct bpf_call_arg_meta meta; 5942 int insn_idx = *insn_idx_p; 5943 bool changes_data; 5944 int i, err, func_id; 5945 5946 /* find function prototype */ 5947 func_id = insn->imm; 5948 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5949 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5950 func_id); 5951 return -EINVAL; 5952 } 5953 5954 if (env->ops->get_func_proto) 5955 fn = env->ops->get_func_proto(func_id, env->prog); 5956 if (!fn) { 5957 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5958 func_id); 5959 return -EINVAL; 5960 } 5961 5962 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5963 if (!env->prog->gpl_compatible && fn->gpl_only) { 5964 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5965 return -EINVAL; 5966 } 5967 5968 if (fn->allowed && !fn->allowed(env->prog)) { 5969 verbose(env, "helper call is not allowed in probe\n"); 5970 return -EINVAL; 5971 } 5972 5973 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5974 changes_data = bpf_helper_changes_pkt_data(fn->func); 5975 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5976 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5977 func_id_name(func_id), func_id); 5978 return -EINVAL; 5979 } 5980 5981 memset(&meta, 0, sizeof(meta)); 5982 meta.pkt_access = fn->pkt_access; 5983 5984 err = check_func_proto(fn, func_id); 5985 if (err) { 5986 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5987 func_id_name(func_id), func_id); 5988 return err; 5989 } 5990 5991 meta.func_id = func_id; 5992 /* check args */ 5993 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 5994 err = check_func_arg(env, i, &meta, fn); 5995 if (err) 5996 return err; 5997 } 5998 5999 err = record_func_map(env, &meta, func_id, insn_idx); 6000 if (err) 6001 return err; 6002 6003 err = record_func_key(env, &meta, func_id, insn_idx); 6004 if (err) 6005 return err; 6006 6007 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6008 * is inferred from register state. 6009 */ 6010 for (i = 0; i < meta.access_size; i++) { 6011 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6012 BPF_WRITE, -1, false); 6013 if (err) 6014 return err; 6015 } 6016 6017 if (func_id == BPF_FUNC_tail_call) { 6018 err = check_reference_leak(env); 6019 if (err) { 6020 verbose(env, "tail_call would lead to reference leak\n"); 6021 return err; 6022 } 6023 } else if (is_release_function(func_id)) { 6024 err = release_reference(env, meta.ref_obj_id); 6025 if (err) { 6026 verbose(env, "func %s#%d reference has not been acquired before\n", 6027 func_id_name(func_id), func_id); 6028 return err; 6029 } 6030 } 6031 6032 regs = cur_regs(env); 6033 6034 /* check that flags argument in get_local_storage(map, flags) is 0, 6035 * this is required because get_local_storage() can't return an error. 6036 */ 6037 if (func_id == BPF_FUNC_get_local_storage && 6038 !register_is_null(®s[BPF_REG_2])) { 6039 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6040 return -EINVAL; 6041 } 6042 6043 if (func_id == BPF_FUNC_for_each_map_elem) { 6044 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6045 set_map_elem_callback_state); 6046 if (err < 0) 6047 return -EINVAL; 6048 } 6049 6050 if (func_id == BPF_FUNC_snprintf) { 6051 err = check_bpf_snprintf_call(env, regs); 6052 if (err < 0) 6053 return err; 6054 } 6055 6056 /* reset caller saved regs */ 6057 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6058 mark_reg_not_init(env, regs, caller_saved[i]); 6059 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6060 } 6061 6062 /* helper call returns 64-bit value. */ 6063 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6064 6065 /* update return register (already marked as written above) */ 6066 if (fn->ret_type == RET_INTEGER) { 6067 /* sets type to SCALAR_VALUE */ 6068 mark_reg_unknown(env, regs, BPF_REG_0); 6069 } else if (fn->ret_type == RET_VOID) { 6070 regs[BPF_REG_0].type = NOT_INIT; 6071 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6072 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6073 /* There is no offset yet applied, variable or fixed */ 6074 mark_reg_known_zero(env, regs, BPF_REG_0); 6075 /* remember map_ptr, so that check_map_access() 6076 * can check 'value_size' boundary of memory access 6077 * to map element returned from bpf_map_lookup_elem() 6078 */ 6079 if (meta.map_ptr == NULL) { 6080 verbose(env, 6081 "kernel subsystem misconfigured verifier\n"); 6082 return -EINVAL; 6083 } 6084 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6085 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6086 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6087 if (map_value_has_spin_lock(meta.map_ptr)) 6088 regs[BPF_REG_0].id = ++env->id_gen; 6089 } else { 6090 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6091 } 6092 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6093 mark_reg_known_zero(env, regs, BPF_REG_0); 6094 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6095 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6096 mark_reg_known_zero(env, regs, BPF_REG_0); 6097 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6098 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6099 mark_reg_known_zero(env, regs, BPF_REG_0); 6100 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6101 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6102 mark_reg_known_zero(env, regs, BPF_REG_0); 6103 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6104 regs[BPF_REG_0].mem_size = meta.mem_size; 6105 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6106 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6107 const struct btf_type *t; 6108 6109 mark_reg_known_zero(env, regs, BPF_REG_0); 6110 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6111 if (!btf_type_is_struct(t)) { 6112 u32 tsize; 6113 const struct btf_type *ret; 6114 const char *tname; 6115 6116 /* resolve the type size of ksym. */ 6117 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6118 if (IS_ERR(ret)) { 6119 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6120 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6121 tname, PTR_ERR(ret)); 6122 return -EINVAL; 6123 } 6124 regs[BPF_REG_0].type = 6125 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6126 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6127 regs[BPF_REG_0].mem_size = tsize; 6128 } else { 6129 regs[BPF_REG_0].type = 6130 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6131 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6132 regs[BPF_REG_0].btf = meta.ret_btf; 6133 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6134 } 6135 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6136 fn->ret_type == RET_PTR_TO_BTF_ID) { 6137 int ret_btf_id; 6138 6139 mark_reg_known_zero(env, regs, BPF_REG_0); 6140 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6141 PTR_TO_BTF_ID : 6142 PTR_TO_BTF_ID_OR_NULL; 6143 ret_btf_id = *fn->ret_btf_id; 6144 if (ret_btf_id == 0) { 6145 verbose(env, "invalid return type %d of func %s#%d\n", 6146 fn->ret_type, func_id_name(func_id), func_id); 6147 return -EINVAL; 6148 } 6149 /* current BPF helper definitions are only coming from 6150 * built-in code with type IDs from vmlinux BTF 6151 */ 6152 regs[BPF_REG_0].btf = btf_vmlinux; 6153 regs[BPF_REG_0].btf_id = ret_btf_id; 6154 } else { 6155 verbose(env, "unknown return type %d of func %s#%d\n", 6156 fn->ret_type, func_id_name(func_id), func_id); 6157 return -EINVAL; 6158 } 6159 6160 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6161 regs[BPF_REG_0].id = ++env->id_gen; 6162 6163 if (is_ptr_cast_function(func_id)) { 6164 /* For release_reference() */ 6165 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6166 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6167 int id = acquire_reference_state(env, insn_idx); 6168 6169 if (id < 0) 6170 return id; 6171 /* For mark_ptr_or_null_reg() */ 6172 regs[BPF_REG_0].id = id; 6173 /* For release_reference() */ 6174 regs[BPF_REG_0].ref_obj_id = id; 6175 } 6176 6177 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6178 6179 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6180 if (err) 6181 return err; 6182 6183 if ((func_id == BPF_FUNC_get_stack || 6184 func_id == BPF_FUNC_get_task_stack) && 6185 !env->prog->has_callchain_buf) { 6186 const char *err_str; 6187 6188 #ifdef CONFIG_PERF_EVENTS 6189 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6190 err_str = "cannot get callchain buffer for func %s#%d\n"; 6191 #else 6192 err = -ENOTSUPP; 6193 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6194 #endif 6195 if (err) { 6196 verbose(env, err_str, func_id_name(func_id), func_id); 6197 return err; 6198 } 6199 6200 env->prog->has_callchain_buf = true; 6201 } 6202 6203 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6204 env->prog->call_get_stack = true; 6205 6206 if (changes_data) 6207 clear_all_pkt_pointers(env); 6208 return 0; 6209 } 6210 6211 /* mark_btf_func_reg_size() is used when the reg size is determined by 6212 * the BTF func_proto's return value size and argument. 6213 */ 6214 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6215 size_t reg_size) 6216 { 6217 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6218 6219 if (regno == BPF_REG_0) { 6220 /* Function return value */ 6221 reg->live |= REG_LIVE_WRITTEN; 6222 reg->subreg_def = reg_size == sizeof(u64) ? 6223 DEF_NOT_SUBREG : env->insn_idx + 1; 6224 } else { 6225 /* Function argument */ 6226 if (reg_size == sizeof(u64)) { 6227 mark_insn_zext(env, reg); 6228 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6229 } else { 6230 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6231 } 6232 } 6233 } 6234 6235 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6236 { 6237 const struct btf_type *t, *func, *func_proto, *ptr_type; 6238 struct bpf_reg_state *regs = cur_regs(env); 6239 const char *func_name, *ptr_type_name; 6240 u32 i, nargs, func_id, ptr_type_id; 6241 const struct btf_param *args; 6242 int err; 6243 6244 func_id = insn->imm; 6245 func = btf_type_by_id(btf_vmlinux, func_id); 6246 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 6247 func_proto = btf_type_by_id(btf_vmlinux, func->type); 6248 6249 if (!env->ops->check_kfunc_call || 6250 !env->ops->check_kfunc_call(func_id)) { 6251 verbose(env, "calling kernel function %s is not allowed\n", 6252 func_name); 6253 return -EACCES; 6254 } 6255 6256 /* Check the arguments */ 6257 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs); 6258 if (err) 6259 return err; 6260 6261 for (i = 0; i < CALLER_SAVED_REGS; i++) 6262 mark_reg_not_init(env, regs, caller_saved[i]); 6263 6264 /* Check return type */ 6265 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL); 6266 if (btf_type_is_scalar(t)) { 6267 mark_reg_unknown(env, regs, BPF_REG_0); 6268 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6269 } else if (btf_type_is_ptr(t)) { 6270 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type, 6271 &ptr_type_id); 6272 if (!btf_type_is_struct(ptr_type)) { 6273 ptr_type_name = btf_name_by_offset(btf_vmlinux, 6274 ptr_type->name_off); 6275 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6276 func_name, btf_type_str(ptr_type), 6277 ptr_type_name); 6278 return -EINVAL; 6279 } 6280 mark_reg_known_zero(env, regs, BPF_REG_0); 6281 regs[BPF_REG_0].btf = btf_vmlinux; 6282 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6283 regs[BPF_REG_0].btf_id = ptr_type_id; 6284 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6285 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6286 6287 nargs = btf_type_vlen(func_proto); 6288 args = (const struct btf_param *)(func_proto + 1); 6289 for (i = 0; i < nargs; i++) { 6290 u32 regno = i + 1; 6291 6292 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL); 6293 if (btf_type_is_ptr(t)) 6294 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6295 else 6296 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6297 mark_btf_func_reg_size(env, regno, t->size); 6298 } 6299 6300 return 0; 6301 } 6302 6303 static bool signed_add_overflows(s64 a, s64 b) 6304 { 6305 /* Do the add in u64, where overflow is well-defined */ 6306 s64 res = (s64)((u64)a + (u64)b); 6307 6308 if (b < 0) 6309 return res > a; 6310 return res < a; 6311 } 6312 6313 static bool signed_add32_overflows(s32 a, s32 b) 6314 { 6315 /* Do the add in u32, where overflow is well-defined */ 6316 s32 res = (s32)((u32)a + (u32)b); 6317 6318 if (b < 0) 6319 return res > a; 6320 return res < a; 6321 } 6322 6323 static bool signed_sub_overflows(s64 a, s64 b) 6324 { 6325 /* Do the sub in u64, where overflow is well-defined */ 6326 s64 res = (s64)((u64)a - (u64)b); 6327 6328 if (b < 0) 6329 return res < a; 6330 return res > a; 6331 } 6332 6333 static bool signed_sub32_overflows(s32 a, s32 b) 6334 { 6335 /* Do the sub in u32, where overflow is well-defined */ 6336 s32 res = (s32)((u32)a - (u32)b); 6337 6338 if (b < 0) 6339 return res < a; 6340 return res > a; 6341 } 6342 6343 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6344 const struct bpf_reg_state *reg, 6345 enum bpf_reg_type type) 6346 { 6347 bool known = tnum_is_const(reg->var_off); 6348 s64 val = reg->var_off.value; 6349 s64 smin = reg->smin_value; 6350 6351 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6352 verbose(env, "math between %s pointer and %lld is not allowed\n", 6353 reg_type_str[type], val); 6354 return false; 6355 } 6356 6357 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6358 verbose(env, "%s pointer offset %d is not allowed\n", 6359 reg_type_str[type], reg->off); 6360 return false; 6361 } 6362 6363 if (smin == S64_MIN) { 6364 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6365 reg_type_str[type]); 6366 return false; 6367 } 6368 6369 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6370 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6371 smin, reg_type_str[type]); 6372 return false; 6373 } 6374 6375 return true; 6376 } 6377 6378 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6379 { 6380 return &env->insn_aux_data[env->insn_idx]; 6381 } 6382 6383 enum { 6384 REASON_BOUNDS = -1, 6385 REASON_TYPE = -2, 6386 REASON_PATHS = -3, 6387 REASON_LIMIT = -4, 6388 REASON_STACK = -5, 6389 }; 6390 6391 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6392 u32 *alu_limit, bool mask_to_left) 6393 { 6394 u32 max = 0, ptr_limit = 0; 6395 6396 switch (ptr_reg->type) { 6397 case PTR_TO_STACK: 6398 /* Offset 0 is out-of-bounds, but acceptable start for the 6399 * left direction, see BPF_REG_FP. Also, unknown scalar 6400 * offset where we would need to deal with min/max bounds is 6401 * currently prohibited for unprivileged. 6402 */ 6403 max = MAX_BPF_STACK + mask_to_left; 6404 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6405 break; 6406 case PTR_TO_MAP_VALUE: 6407 max = ptr_reg->map_ptr->value_size; 6408 ptr_limit = (mask_to_left ? 6409 ptr_reg->smin_value : 6410 ptr_reg->umax_value) + ptr_reg->off; 6411 break; 6412 default: 6413 return REASON_TYPE; 6414 } 6415 6416 if (ptr_limit >= max) 6417 return REASON_LIMIT; 6418 *alu_limit = ptr_limit; 6419 return 0; 6420 } 6421 6422 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6423 const struct bpf_insn *insn) 6424 { 6425 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6426 } 6427 6428 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6429 u32 alu_state, u32 alu_limit) 6430 { 6431 /* If we arrived here from different branches with different 6432 * state or limits to sanitize, then this won't work. 6433 */ 6434 if (aux->alu_state && 6435 (aux->alu_state != alu_state || 6436 aux->alu_limit != alu_limit)) 6437 return REASON_PATHS; 6438 6439 /* Corresponding fixup done in do_misc_fixups(). */ 6440 aux->alu_state = alu_state; 6441 aux->alu_limit = alu_limit; 6442 return 0; 6443 } 6444 6445 static int sanitize_val_alu(struct bpf_verifier_env *env, 6446 struct bpf_insn *insn) 6447 { 6448 struct bpf_insn_aux_data *aux = cur_aux(env); 6449 6450 if (can_skip_alu_sanitation(env, insn)) 6451 return 0; 6452 6453 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6454 } 6455 6456 static bool sanitize_needed(u8 opcode) 6457 { 6458 return opcode == BPF_ADD || opcode == BPF_SUB; 6459 } 6460 6461 struct bpf_sanitize_info { 6462 struct bpf_insn_aux_data aux; 6463 bool mask_to_left; 6464 }; 6465 6466 static struct bpf_verifier_state * 6467 sanitize_speculative_path(struct bpf_verifier_env *env, 6468 const struct bpf_insn *insn, 6469 u32 next_idx, u32 curr_idx) 6470 { 6471 struct bpf_verifier_state *branch; 6472 struct bpf_reg_state *regs; 6473 6474 branch = push_stack(env, next_idx, curr_idx, true); 6475 if (branch && insn) { 6476 regs = branch->frame[branch->curframe]->regs; 6477 if (BPF_SRC(insn->code) == BPF_K) { 6478 mark_reg_unknown(env, regs, insn->dst_reg); 6479 } else if (BPF_SRC(insn->code) == BPF_X) { 6480 mark_reg_unknown(env, regs, insn->dst_reg); 6481 mark_reg_unknown(env, regs, insn->src_reg); 6482 } 6483 } 6484 return branch; 6485 } 6486 6487 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6488 struct bpf_insn *insn, 6489 const struct bpf_reg_state *ptr_reg, 6490 const struct bpf_reg_state *off_reg, 6491 struct bpf_reg_state *dst_reg, 6492 struct bpf_sanitize_info *info, 6493 const bool commit_window) 6494 { 6495 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6496 struct bpf_verifier_state *vstate = env->cur_state; 6497 bool off_is_imm = tnum_is_const(off_reg->var_off); 6498 bool off_is_neg = off_reg->smin_value < 0; 6499 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6500 u8 opcode = BPF_OP(insn->code); 6501 u32 alu_state, alu_limit; 6502 struct bpf_reg_state tmp; 6503 bool ret; 6504 int err; 6505 6506 if (can_skip_alu_sanitation(env, insn)) 6507 return 0; 6508 6509 /* We already marked aux for masking from non-speculative 6510 * paths, thus we got here in the first place. We only care 6511 * to explore bad access from here. 6512 */ 6513 if (vstate->speculative) 6514 goto do_sim; 6515 6516 if (!commit_window) { 6517 if (!tnum_is_const(off_reg->var_off) && 6518 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6519 return REASON_BOUNDS; 6520 6521 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6522 (opcode == BPF_SUB && !off_is_neg); 6523 } 6524 6525 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 6526 if (err < 0) 6527 return err; 6528 6529 if (commit_window) { 6530 /* In commit phase we narrow the masking window based on 6531 * the observed pointer move after the simulated operation. 6532 */ 6533 alu_state = info->aux.alu_state; 6534 alu_limit = abs(info->aux.alu_limit - alu_limit); 6535 } else { 6536 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6537 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6538 alu_state |= ptr_is_dst_reg ? 6539 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6540 6541 /* Limit pruning on unknown scalars to enable deep search for 6542 * potential masking differences from other program paths. 6543 */ 6544 if (!off_is_imm) 6545 env->explore_alu_limits = true; 6546 } 6547 6548 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 6549 if (err < 0) 6550 return err; 6551 do_sim: 6552 /* If we're in commit phase, we're done here given we already 6553 * pushed the truncated dst_reg into the speculative verification 6554 * stack. 6555 * 6556 * Also, when register is a known constant, we rewrite register-based 6557 * operation to immediate-based, and thus do not need masking (and as 6558 * a consequence, do not need to simulate the zero-truncation either). 6559 */ 6560 if (commit_window || off_is_imm) 6561 return 0; 6562 6563 /* Simulate and find potential out-of-bounds access under 6564 * speculative execution from truncation as a result of 6565 * masking when off was not within expected range. If off 6566 * sits in dst, then we temporarily need to move ptr there 6567 * to simulate dst (== 0) +/-= ptr. Needed, for example, 6568 * for cases where we use K-based arithmetic in one direction 6569 * and truncated reg-based in the other in order to explore 6570 * bad access. 6571 */ 6572 if (!ptr_is_dst_reg) { 6573 tmp = *dst_reg; 6574 *dst_reg = *ptr_reg; 6575 } 6576 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 6577 env->insn_idx); 6578 if (!ptr_is_dst_reg && ret) 6579 *dst_reg = tmp; 6580 return !ret ? REASON_STACK : 0; 6581 } 6582 6583 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 6584 { 6585 struct bpf_verifier_state *vstate = env->cur_state; 6586 6587 /* If we simulate paths under speculation, we don't update the 6588 * insn as 'seen' such that when we verify unreachable paths in 6589 * the non-speculative domain, sanitize_dead_code() can still 6590 * rewrite/sanitize them. 6591 */ 6592 if (!vstate->speculative) 6593 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 6594 } 6595 6596 static int sanitize_err(struct bpf_verifier_env *env, 6597 const struct bpf_insn *insn, int reason, 6598 const struct bpf_reg_state *off_reg, 6599 const struct bpf_reg_state *dst_reg) 6600 { 6601 static const char *err = "pointer arithmetic with it prohibited for !root"; 6602 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 6603 u32 dst = insn->dst_reg, src = insn->src_reg; 6604 6605 switch (reason) { 6606 case REASON_BOUNDS: 6607 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 6608 off_reg == dst_reg ? dst : src, err); 6609 break; 6610 case REASON_TYPE: 6611 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 6612 off_reg == dst_reg ? src : dst, err); 6613 break; 6614 case REASON_PATHS: 6615 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 6616 dst, op, err); 6617 break; 6618 case REASON_LIMIT: 6619 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 6620 dst, op, err); 6621 break; 6622 case REASON_STACK: 6623 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 6624 dst, err); 6625 break; 6626 default: 6627 verbose(env, "verifier internal error: unknown reason (%d)\n", 6628 reason); 6629 break; 6630 } 6631 6632 return -EACCES; 6633 } 6634 6635 /* check that stack access falls within stack limits and that 'reg' doesn't 6636 * have a variable offset. 6637 * 6638 * Variable offset is prohibited for unprivileged mode for simplicity since it 6639 * requires corresponding support in Spectre masking for stack ALU. See also 6640 * retrieve_ptr_limit(). 6641 * 6642 * 6643 * 'off' includes 'reg->off'. 6644 */ 6645 static int check_stack_access_for_ptr_arithmetic( 6646 struct bpf_verifier_env *env, 6647 int regno, 6648 const struct bpf_reg_state *reg, 6649 int off) 6650 { 6651 if (!tnum_is_const(reg->var_off)) { 6652 char tn_buf[48]; 6653 6654 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6655 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 6656 regno, tn_buf, off); 6657 return -EACCES; 6658 } 6659 6660 if (off >= 0 || off < -MAX_BPF_STACK) { 6661 verbose(env, "R%d stack pointer arithmetic goes out of range, " 6662 "prohibited for !root; off=%d\n", regno, off); 6663 return -EACCES; 6664 } 6665 6666 return 0; 6667 } 6668 6669 static int sanitize_check_bounds(struct bpf_verifier_env *env, 6670 const struct bpf_insn *insn, 6671 const struct bpf_reg_state *dst_reg) 6672 { 6673 u32 dst = insn->dst_reg; 6674 6675 /* For unprivileged we require that resulting offset must be in bounds 6676 * in order to be able to sanitize access later on. 6677 */ 6678 if (env->bypass_spec_v1) 6679 return 0; 6680 6681 switch (dst_reg->type) { 6682 case PTR_TO_STACK: 6683 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 6684 dst_reg->off + dst_reg->var_off.value)) 6685 return -EACCES; 6686 break; 6687 case PTR_TO_MAP_VALUE: 6688 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 6689 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6690 "prohibited for !root\n", dst); 6691 return -EACCES; 6692 } 6693 break; 6694 default: 6695 break; 6696 } 6697 6698 return 0; 6699 } 6700 6701 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 6702 * Caller should also handle BPF_MOV case separately. 6703 * If we return -EACCES, caller may want to try again treating pointer as a 6704 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 6705 */ 6706 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 6707 struct bpf_insn *insn, 6708 const struct bpf_reg_state *ptr_reg, 6709 const struct bpf_reg_state *off_reg) 6710 { 6711 struct bpf_verifier_state *vstate = env->cur_state; 6712 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6713 struct bpf_reg_state *regs = state->regs, *dst_reg; 6714 bool known = tnum_is_const(off_reg->var_off); 6715 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 6716 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 6717 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 6718 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 6719 struct bpf_sanitize_info info = {}; 6720 u8 opcode = BPF_OP(insn->code); 6721 u32 dst = insn->dst_reg; 6722 int ret; 6723 6724 dst_reg = ®s[dst]; 6725 6726 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 6727 smin_val > smax_val || umin_val > umax_val) { 6728 /* Taint dst register if offset had invalid bounds derived from 6729 * e.g. dead branches. 6730 */ 6731 __mark_reg_unknown(env, dst_reg); 6732 return 0; 6733 } 6734 6735 if (BPF_CLASS(insn->code) != BPF_ALU64) { 6736 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 6737 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6738 __mark_reg_unknown(env, dst_reg); 6739 return 0; 6740 } 6741 6742 verbose(env, 6743 "R%d 32-bit pointer arithmetic prohibited\n", 6744 dst); 6745 return -EACCES; 6746 } 6747 6748 switch (ptr_reg->type) { 6749 case PTR_TO_MAP_VALUE_OR_NULL: 6750 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 6751 dst, reg_type_str[ptr_reg->type]); 6752 return -EACCES; 6753 case CONST_PTR_TO_MAP: 6754 /* smin_val represents the known value */ 6755 if (known && smin_val == 0 && opcode == BPF_ADD) 6756 break; 6757 fallthrough; 6758 case PTR_TO_PACKET_END: 6759 case PTR_TO_SOCKET: 6760 case PTR_TO_SOCKET_OR_NULL: 6761 case PTR_TO_SOCK_COMMON: 6762 case PTR_TO_SOCK_COMMON_OR_NULL: 6763 case PTR_TO_TCP_SOCK: 6764 case PTR_TO_TCP_SOCK_OR_NULL: 6765 case PTR_TO_XDP_SOCK: 6766 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 6767 dst, reg_type_str[ptr_reg->type]); 6768 return -EACCES; 6769 default: 6770 break; 6771 } 6772 6773 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 6774 * The id may be overwritten later if we create a new variable offset. 6775 */ 6776 dst_reg->type = ptr_reg->type; 6777 dst_reg->id = ptr_reg->id; 6778 6779 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 6780 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 6781 return -EINVAL; 6782 6783 /* pointer types do not carry 32-bit bounds at the moment. */ 6784 __mark_reg32_unbounded(dst_reg); 6785 6786 if (sanitize_needed(opcode)) { 6787 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 6788 &info, false); 6789 if (ret < 0) 6790 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6791 } 6792 6793 switch (opcode) { 6794 case BPF_ADD: 6795 /* We can take a fixed offset as long as it doesn't overflow 6796 * the s32 'off' field 6797 */ 6798 if (known && (ptr_reg->off + smin_val == 6799 (s64)(s32)(ptr_reg->off + smin_val))) { 6800 /* pointer += K. Accumulate it into fixed offset */ 6801 dst_reg->smin_value = smin_ptr; 6802 dst_reg->smax_value = smax_ptr; 6803 dst_reg->umin_value = umin_ptr; 6804 dst_reg->umax_value = umax_ptr; 6805 dst_reg->var_off = ptr_reg->var_off; 6806 dst_reg->off = ptr_reg->off + smin_val; 6807 dst_reg->raw = ptr_reg->raw; 6808 break; 6809 } 6810 /* A new variable offset is created. Note that off_reg->off 6811 * == 0, since it's a scalar. 6812 * dst_reg gets the pointer type and since some positive 6813 * integer value was added to the pointer, give it a new 'id' 6814 * if it's a PTR_TO_PACKET. 6815 * this creates a new 'base' pointer, off_reg (variable) gets 6816 * added into the variable offset, and we copy the fixed offset 6817 * from ptr_reg. 6818 */ 6819 if (signed_add_overflows(smin_ptr, smin_val) || 6820 signed_add_overflows(smax_ptr, smax_val)) { 6821 dst_reg->smin_value = S64_MIN; 6822 dst_reg->smax_value = S64_MAX; 6823 } else { 6824 dst_reg->smin_value = smin_ptr + smin_val; 6825 dst_reg->smax_value = smax_ptr + smax_val; 6826 } 6827 if (umin_ptr + umin_val < umin_ptr || 6828 umax_ptr + umax_val < umax_ptr) { 6829 dst_reg->umin_value = 0; 6830 dst_reg->umax_value = U64_MAX; 6831 } else { 6832 dst_reg->umin_value = umin_ptr + umin_val; 6833 dst_reg->umax_value = umax_ptr + umax_val; 6834 } 6835 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 6836 dst_reg->off = ptr_reg->off; 6837 dst_reg->raw = ptr_reg->raw; 6838 if (reg_is_pkt_pointer(ptr_reg)) { 6839 dst_reg->id = ++env->id_gen; 6840 /* something was added to pkt_ptr, set range to zero */ 6841 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6842 } 6843 break; 6844 case BPF_SUB: 6845 if (dst_reg == off_reg) { 6846 /* scalar -= pointer. Creates an unknown scalar */ 6847 verbose(env, "R%d tried to subtract pointer from scalar\n", 6848 dst); 6849 return -EACCES; 6850 } 6851 /* We don't allow subtraction from FP, because (according to 6852 * test_verifier.c test "invalid fp arithmetic", JITs might not 6853 * be able to deal with it. 6854 */ 6855 if (ptr_reg->type == PTR_TO_STACK) { 6856 verbose(env, "R%d subtraction from stack pointer prohibited\n", 6857 dst); 6858 return -EACCES; 6859 } 6860 if (known && (ptr_reg->off - smin_val == 6861 (s64)(s32)(ptr_reg->off - smin_val))) { 6862 /* pointer -= K. Subtract it from fixed offset */ 6863 dst_reg->smin_value = smin_ptr; 6864 dst_reg->smax_value = smax_ptr; 6865 dst_reg->umin_value = umin_ptr; 6866 dst_reg->umax_value = umax_ptr; 6867 dst_reg->var_off = ptr_reg->var_off; 6868 dst_reg->id = ptr_reg->id; 6869 dst_reg->off = ptr_reg->off - smin_val; 6870 dst_reg->raw = ptr_reg->raw; 6871 break; 6872 } 6873 /* A new variable offset is created. If the subtrahend is known 6874 * nonnegative, then any reg->range we had before is still good. 6875 */ 6876 if (signed_sub_overflows(smin_ptr, smax_val) || 6877 signed_sub_overflows(smax_ptr, smin_val)) { 6878 /* Overflow possible, we know nothing */ 6879 dst_reg->smin_value = S64_MIN; 6880 dst_reg->smax_value = S64_MAX; 6881 } else { 6882 dst_reg->smin_value = smin_ptr - smax_val; 6883 dst_reg->smax_value = smax_ptr - smin_val; 6884 } 6885 if (umin_ptr < umax_val) { 6886 /* Overflow possible, we know nothing */ 6887 dst_reg->umin_value = 0; 6888 dst_reg->umax_value = U64_MAX; 6889 } else { 6890 /* Cannot overflow (as long as bounds are consistent) */ 6891 dst_reg->umin_value = umin_ptr - umax_val; 6892 dst_reg->umax_value = umax_ptr - umin_val; 6893 } 6894 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 6895 dst_reg->off = ptr_reg->off; 6896 dst_reg->raw = ptr_reg->raw; 6897 if (reg_is_pkt_pointer(ptr_reg)) { 6898 dst_reg->id = ++env->id_gen; 6899 /* something was added to pkt_ptr, set range to zero */ 6900 if (smin_val < 0) 6901 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6902 } 6903 break; 6904 case BPF_AND: 6905 case BPF_OR: 6906 case BPF_XOR: 6907 /* bitwise ops on pointers are troublesome, prohibit. */ 6908 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 6909 dst, bpf_alu_string[opcode >> 4]); 6910 return -EACCES; 6911 default: 6912 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 6913 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 6914 dst, bpf_alu_string[opcode >> 4]); 6915 return -EACCES; 6916 } 6917 6918 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 6919 return -EINVAL; 6920 6921 __update_reg_bounds(dst_reg); 6922 __reg_deduce_bounds(dst_reg); 6923 __reg_bound_offset(dst_reg); 6924 6925 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 6926 return -EACCES; 6927 if (sanitize_needed(opcode)) { 6928 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 6929 &info, true); 6930 if (ret < 0) 6931 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6932 } 6933 6934 return 0; 6935 } 6936 6937 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 6938 struct bpf_reg_state *src_reg) 6939 { 6940 s32 smin_val = src_reg->s32_min_value; 6941 s32 smax_val = src_reg->s32_max_value; 6942 u32 umin_val = src_reg->u32_min_value; 6943 u32 umax_val = src_reg->u32_max_value; 6944 6945 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 6946 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 6947 dst_reg->s32_min_value = S32_MIN; 6948 dst_reg->s32_max_value = S32_MAX; 6949 } else { 6950 dst_reg->s32_min_value += smin_val; 6951 dst_reg->s32_max_value += smax_val; 6952 } 6953 if (dst_reg->u32_min_value + umin_val < umin_val || 6954 dst_reg->u32_max_value + umax_val < umax_val) { 6955 dst_reg->u32_min_value = 0; 6956 dst_reg->u32_max_value = U32_MAX; 6957 } else { 6958 dst_reg->u32_min_value += umin_val; 6959 dst_reg->u32_max_value += umax_val; 6960 } 6961 } 6962 6963 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 6964 struct bpf_reg_state *src_reg) 6965 { 6966 s64 smin_val = src_reg->smin_value; 6967 s64 smax_val = src_reg->smax_value; 6968 u64 umin_val = src_reg->umin_value; 6969 u64 umax_val = src_reg->umax_value; 6970 6971 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 6972 signed_add_overflows(dst_reg->smax_value, smax_val)) { 6973 dst_reg->smin_value = S64_MIN; 6974 dst_reg->smax_value = S64_MAX; 6975 } else { 6976 dst_reg->smin_value += smin_val; 6977 dst_reg->smax_value += smax_val; 6978 } 6979 if (dst_reg->umin_value + umin_val < umin_val || 6980 dst_reg->umax_value + umax_val < umax_val) { 6981 dst_reg->umin_value = 0; 6982 dst_reg->umax_value = U64_MAX; 6983 } else { 6984 dst_reg->umin_value += umin_val; 6985 dst_reg->umax_value += umax_val; 6986 } 6987 } 6988 6989 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 6990 struct bpf_reg_state *src_reg) 6991 { 6992 s32 smin_val = src_reg->s32_min_value; 6993 s32 smax_val = src_reg->s32_max_value; 6994 u32 umin_val = src_reg->u32_min_value; 6995 u32 umax_val = src_reg->u32_max_value; 6996 6997 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 6998 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 6999 /* Overflow possible, we know nothing */ 7000 dst_reg->s32_min_value = S32_MIN; 7001 dst_reg->s32_max_value = S32_MAX; 7002 } else { 7003 dst_reg->s32_min_value -= smax_val; 7004 dst_reg->s32_max_value -= smin_val; 7005 } 7006 if (dst_reg->u32_min_value < umax_val) { 7007 /* Overflow possible, we know nothing */ 7008 dst_reg->u32_min_value = 0; 7009 dst_reg->u32_max_value = U32_MAX; 7010 } else { 7011 /* Cannot overflow (as long as bounds are consistent) */ 7012 dst_reg->u32_min_value -= umax_val; 7013 dst_reg->u32_max_value -= umin_val; 7014 } 7015 } 7016 7017 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7018 struct bpf_reg_state *src_reg) 7019 { 7020 s64 smin_val = src_reg->smin_value; 7021 s64 smax_val = src_reg->smax_value; 7022 u64 umin_val = src_reg->umin_value; 7023 u64 umax_val = src_reg->umax_value; 7024 7025 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7026 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7027 /* Overflow possible, we know nothing */ 7028 dst_reg->smin_value = S64_MIN; 7029 dst_reg->smax_value = S64_MAX; 7030 } else { 7031 dst_reg->smin_value -= smax_val; 7032 dst_reg->smax_value -= smin_val; 7033 } 7034 if (dst_reg->umin_value < umax_val) { 7035 /* Overflow possible, we know nothing */ 7036 dst_reg->umin_value = 0; 7037 dst_reg->umax_value = U64_MAX; 7038 } else { 7039 /* Cannot overflow (as long as bounds are consistent) */ 7040 dst_reg->umin_value -= umax_val; 7041 dst_reg->umax_value -= umin_val; 7042 } 7043 } 7044 7045 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7046 struct bpf_reg_state *src_reg) 7047 { 7048 s32 smin_val = src_reg->s32_min_value; 7049 u32 umin_val = src_reg->u32_min_value; 7050 u32 umax_val = src_reg->u32_max_value; 7051 7052 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7053 /* Ain't nobody got time to multiply that sign */ 7054 __mark_reg32_unbounded(dst_reg); 7055 return; 7056 } 7057 /* Both values are positive, so we can work with unsigned and 7058 * copy the result to signed (unless it exceeds S32_MAX). 7059 */ 7060 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7061 /* Potential overflow, we know nothing */ 7062 __mark_reg32_unbounded(dst_reg); 7063 return; 7064 } 7065 dst_reg->u32_min_value *= umin_val; 7066 dst_reg->u32_max_value *= umax_val; 7067 if (dst_reg->u32_max_value > S32_MAX) { 7068 /* Overflow possible, we know nothing */ 7069 dst_reg->s32_min_value = S32_MIN; 7070 dst_reg->s32_max_value = S32_MAX; 7071 } else { 7072 dst_reg->s32_min_value = dst_reg->u32_min_value; 7073 dst_reg->s32_max_value = dst_reg->u32_max_value; 7074 } 7075 } 7076 7077 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7078 struct bpf_reg_state *src_reg) 7079 { 7080 s64 smin_val = src_reg->smin_value; 7081 u64 umin_val = src_reg->umin_value; 7082 u64 umax_val = src_reg->umax_value; 7083 7084 if (smin_val < 0 || dst_reg->smin_value < 0) { 7085 /* Ain't nobody got time to multiply that sign */ 7086 __mark_reg64_unbounded(dst_reg); 7087 return; 7088 } 7089 /* Both values are positive, so we can work with unsigned and 7090 * copy the result to signed (unless it exceeds S64_MAX). 7091 */ 7092 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7093 /* Potential overflow, we know nothing */ 7094 __mark_reg64_unbounded(dst_reg); 7095 return; 7096 } 7097 dst_reg->umin_value *= umin_val; 7098 dst_reg->umax_value *= umax_val; 7099 if (dst_reg->umax_value > S64_MAX) { 7100 /* Overflow possible, we know nothing */ 7101 dst_reg->smin_value = S64_MIN; 7102 dst_reg->smax_value = S64_MAX; 7103 } else { 7104 dst_reg->smin_value = dst_reg->umin_value; 7105 dst_reg->smax_value = dst_reg->umax_value; 7106 } 7107 } 7108 7109 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7110 struct bpf_reg_state *src_reg) 7111 { 7112 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7113 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7114 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7115 s32 smin_val = src_reg->s32_min_value; 7116 u32 umax_val = src_reg->u32_max_value; 7117 7118 if (src_known && dst_known) { 7119 __mark_reg32_known(dst_reg, var32_off.value); 7120 return; 7121 } 7122 7123 /* We get our minimum from the var_off, since that's inherently 7124 * bitwise. Our maximum is the minimum of the operands' maxima. 7125 */ 7126 dst_reg->u32_min_value = var32_off.value; 7127 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7128 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7129 /* Lose signed bounds when ANDing negative numbers, 7130 * ain't nobody got time for that. 7131 */ 7132 dst_reg->s32_min_value = S32_MIN; 7133 dst_reg->s32_max_value = S32_MAX; 7134 } else { 7135 /* ANDing two positives gives a positive, so safe to 7136 * cast result into s64. 7137 */ 7138 dst_reg->s32_min_value = dst_reg->u32_min_value; 7139 dst_reg->s32_max_value = dst_reg->u32_max_value; 7140 } 7141 } 7142 7143 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7144 struct bpf_reg_state *src_reg) 7145 { 7146 bool src_known = tnum_is_const(src_reg->var_off); 7147 bool dst_known = tnum_is_const(dst_reg->var_off); 7148 s64 smin_val = src_reg->smin_value; 7149 u64 umax_val = src_reg->umax_value; 7150 7151 if (src_known && dst_known) { 7152 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7153 return; 7154 } 7155 7156 /* We get our minimum from the var_off, since that's inherently 7157 * bitwise. Our maximum is the minimum of the operands' maxima. 7158 */ 7159 dst_reg->umin_value = dst_reg->var_off.value; 7160 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7161 if (dst_reg->smin_value < 0 || smin_val < 0) { 7162 /* Lose signed bounds when ANDing negative numbers, 7163 * ain't nobody got time for that. 7164 */ 7165 dst_reg->smin_value = S64_MIN; 7166 dst_reg->smax_value = S64_MAX; 7167 } else { 7168 /* ANDing two positives gives a positive, so safe to 7169 * cast result into s64. 7170 */ 7171 dst_reg->smin_value = dst_reg->umin_value; 7172 dst_reg->smax_value = dst_reg->umax_value; 7173 } 7174 /* We may learn something more from the var_off */ 7175 __update_reg_bounds(dst_reg); 7176 } 7177 7178 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7179 struct bpf_reg_state *src_reg) 7180 { 7181 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7182 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7183 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7184 s32 smin_val = src_reg->s32_min_value; 7185 u32 umin_val = src_reg->u32_min_value; 7186 7187 if (src_known && dst_known) { 7188 __mark_reg32_known(dst_reg, var32_off.value); 7189 return; 7190 } 7191 7192 /* We get our maximum from the var_off, and our minimum is the 7193 * maximum of the operands' minima 7194 */ 7195 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7196 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7197 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7198 /* Lose signed bounds when ORing negative numbers, 7199 * ain't nobody got time for that. 7200 */ 7201 dst_reg->s32_min_value = S32_MIN; 7202 dst_reg->s32_max_value = S32_MAX; 7203 } else { 7204 /* ORing two positives gives a positive, so safe to 7205 * cast result into s64. 7206 */ 7207 dst_reg->s32_min_value = dst_reg->u32_min_value; 7208 dst_reg->s32_max_value = dst_reg->u32_max_value; 7209 } 7210 } 7211 7212 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7213 struct bpf_reg_state *src_reg) 7214 { 7215 bool src_known = tnum_is_const(src_reg->var_off); 7216 bool dst_known = tnum_is_const(dst_reg->var_off); 7217 s64 smin_val = src_reg->smin_value; 7218 u64 umin_val = src_reg->umin_value; 7219 7220 if (src_known && dst_known) { 7221 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7222 return; 7223 } 7224 7225 /* We get our maximum from the var_off, and our minimum is the 7226 * maximum of the operands' minima 7227 */ 7228 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7229 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7230 if (dst_reg->smin_value < 0 || smin_val < 0) { 7231 /* Lose signed bounds when ORing negative numbers, 7232 * ain't nobody got time for that. 7233 */ 7234 dst_reg->smin_value = S64_MIN; 7235 dst_reg->smax_value = S64_MAX; 7236 } else { 7237 /* ORing two positives gives a positive, so safe to 7238 * cast result into s64. 7239 */ 7240 dst_reg->smin_value = dst_reg->umin_value; 7241 dst_reg->smax_value = dst_reg->umax_value; 7242 } 7243 /* We may learn something more from the var_off */ 7244 __update_reg_bounds(dst_reg); 7245 } 7246 7247 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7248 struct bpf_reg_state *src_reg) 7249 { 7250 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7251 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7252 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7253 s32 smin_val = src_reg->s32_min_value; 7254 7255 if (src_known && dst_known) { 7256 __mark_reg32_known(dst_reg, var32_off.value); 7257 return; 7258 } 7259 7260 /* We get both minimum and maximum from the var32_off. */ 7261 dst_reg->u32_min_value = var32_off.value; 7262 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7263 7264 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7265 /* XORing two positive sign numbers gives a positive, 7266 * so safe to cast u32 result into s32. 7267 */ 7268 dst_reg->s32_min_value = dst_reg->u32_min_value; 7269 dst_reg->s32_max_value = dst_reg->u32_max_value; 7270 } else { 7271 dst_reg->s32_min_value = S32_MIN; 7272 dst_reg->s32_max_value = S32_MAX; 7273 } 7274 } 7275 7276 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7277 struct bpf_reg_state *src_reg) 7278 { 7279 bool src_known = tnum_is_const(src_reg->var_off); 7280 bool dst_known = tnum_is_const(dst_reg->var_off); 7281 s64 smin_val = src_reg->smin_value; 7282 7283 if (src_known && dst_known) { 7284 /* dst_reg->var_off.value has been updated earlier */ 7285 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7286 return; 7287 } 7288 7289 /* We get both minimum and maximum from the var_off. */ 7290 dst_reg->umin_value = dst_reg->var_off.value; 7291 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7292 7293 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7294 /* XORing two positive sign numbers gives a positive, 7295 * so safe to cast u64 result into s64. 7296 */ 7297 dst_reg->smin_value = dst_reg->umin_value; 7298 dst_reg->smax_value = dst_reg->umax_value; 7299 } else { 7300 dst_reg->smin_value = S64_MIN; 7301 dst_reg->smax_value = S64_MAX; 7302 } 7303 7304 __update_reg_bounds(dst_reg); 7305 } 7306 7307 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7308 u64 umin_val, u64 umax_val) 7309 { 7310 /* We lose all sign bit information (except what we can pick 7311 * up from var_off) 7312 */ 7313 dst_reg->s32_min_value = S32_MIN; 7314 dst_reg->s32_max_value = S32_MAX; 7315 /* If we might shift our top bit out, then we know nothing */ 7316 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7317 dst_reg->u32_min_value = 0; 7318 dst_reg->u32_max_value = U32_MAX; 7319 } else { 7320 dst_reg->u32_min_value <<= umin_val; 7321 dst_reg->u32_max_value <<= umax_val; 7322 } 7323 } 7324 7325 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7326 struct bpf_reg_state *src_reg) 7327 { 7328 u32 umax_val = src_reg->u32_max_value; 7329 u32 umin_val = src_reg->u32_min_value; 7330 /* u32 alu operation will zext upper bits */ 7331 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7332 7333 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7334 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7335 /* Not required but being careful mark reg64 bounds as unknown so 7336 * that we are forced to pick them up from tnum and zext later and 7337 * if some path skips this step we are still safe. 7338 */ 7339 __mark_reg64_unbounded(dst_reg); 7340 __update_reg32_bounds(dst_reg); 7341 } 7342 7343 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7344 u64 umin_val, u64 umax_val) 7345 { 7346 /* Special case <<32 because it is a common compiler pattern to sign 7347 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7348 * positive we know this shift will also be positive so we can track 7349 * bounds correctly. Otherwise we lose all sign bit information except 7350 * what we can pick up from var_off. Perhaps we can generalize this 7351 * later to shifts of any length. 7352 */ 7353 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7354 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7355 else 7356 dst_reg->smax_value = S64_MAX; 7357 7358 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7359 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7360 else 7361 dst_reg->smin_value = S64_MIN; 7362 7363 /* If we might shift our top bit out, then we know nothing */ 7364 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7365 dst_reg->umin_value = 0; 7366 dst_reg->umax_value = U64_MAX; 7367 } else { 7368 dst_reg->umin_value <<= umin_val; 7369 dst_reg->umax_value <<= umax_val; 7370 } 7371 } 7372 7373 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7374 struct bpf_reg_state *src_reg) 7375 { 7376 u64 umax_val = src_reg->umax_value; 7377 u64 umin_val = src_reg->umin_value; 7378 7379 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7380 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7381 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7382 7383 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7384 /* We may learn something more from the var_off */ 7385 __update_reg_bounds(dst_reg); 7386 } 7387 7388 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7389 struct bpf_reg_state *src_reg) 7390 { 7391 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7392 u32 umax_val = src_reg->u32_max_value; 7393 u32 umin_val = src_reg->u32_min_value; 7394 7395 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7396 * be negative, then either: 7397 * 1) src_reg might be zero, so the sign bit of the result is 7398 * unknown, so we lose our signed bounds 7399 * 2) it's known negative, thus the unsigned bounds capture the 7400 * signed bounds 7401 * 3) the signed bounds cross zero, so they tell us nothing 7402 * about the result 7403 * If the value in dst_reg is known nonnegative, then again the 7404 * unsigned bounds capture the signed bounds. 7405 * Thus, in all cases it suffices to blow away our signed bounds 7406 * and rely on inferring new ones from the unsigned bounds and 7407 * var_off of the result. 7408 */ 7409 dst_reg->s32_min_value = S32_MIN; 7410 dst_reg->s32_max_value = S32_MAX; 7411 7412 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7413 dst_reg->u32_min_value >>= umax_val; 7414 dst_reg->u32_max_value >>= umin_val; 7415 7416 __mark_reg64_unbounded(dst_reg); 7417 __update_reg32_bounds(dst_reg); 7418 } 7419 7420 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7421 struct bpf_reg_state *src_reg) 7422 { 7423 u64 umax_val = src_reg->umax_value; 7424 u64 umin_val = src_reg->umin_value; 7425 7426 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7427 * be negative, then either: 7428 * 1) src_reg might be zero, so the sign bit of the result is 7429 * unknown, so we lose our signed bounds 7430 * 2) it's known negative, thus the unsigned bounds capture the 7431 * signed bounds 7432 * 3) the signed bounds cross zero, so they tell us nothing 7433 * about the result 7434 * If the value in dst_reg is known nonnegative, then again the 7435 * unsigned bounds capture the signed bounds. 7436 * Thus, in all cases it suffices to blow away our signed bounds 7437 * and rely on inferring new ones from the unsigned bounds and 7438 * var_off of the result. 7439 */ 7440 dst_reg->smin_value = S64_MIN; 7441 dst_reg->smax_value = S64_MAX; 7442 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7443 dst_reg->umin_value >>= umax_val; 7444 dst_reg->umax_value >>= umin_val; 7445 7446 /* Its not easy to operate on alu32 bounds here because it depends 7447 * on bits being shifted in. Take easy way out and mark unbounded 7448 * so we can recalculate later from tnum. 7449 */ 7450 __mark_reg32_unbounded(dst_reg); 7451 __update_reg_bounds(dst_reg); 7452 } 7453 7454 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7455 struct bpf_reg_state *src_reg) 7456 { 7457 u64 umin_val = src_reg->u32_min_value; 7458 7459 /* Upon reaching here, src_known is true and 7460 * umax_val is equal to umin_val. 7461 */ 7462 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7463 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7464 7465 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7466 7467 /* blow away the dst_reg umin_value/umax_value and rely on 7468 * dst_reg var_off to refine the result. 7469 */ 7470 dst_reg->u32_min_value = 0; 7471 dst_reg->u32_max_value = U32_MAX; 7472 7473 __mark_reg64_unbounded(dst_reg); 7474 __update_reg32_bounds(dst_reg); 7475 } 7476 7477 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7478 struct bpf_reg_state *src_reg) 7479 { 7480 u64 umin_val = src_reg->umin_value; 7481 7482 /* Upon reaching here, src_known is true and umax_val is equal 7483 * to umin_val. 7484 */ 7485 dst_reg->smin_value >>= umin_val; 7486 dst_reg->smax_value >>= umin_val; 7487 7488 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7489 7490 /* blow away the dst_reg umin_value/umax_value and rely on 7491 * dst_reg var_off to refine the result. 7492 */ 7493 dst_reg->umin_value = 0; 7494 dst_reg->umax_value = U64_MAX; 7495 7496 /* Its not easy to operate on alu32 bounds here because it depends 7497 * on bits being shifted in from upper 32-bits. Take easy way out 7498 * and mark unbounded so we can recalculate later from tnum. 7499 */ 7500 __mark_reg32_unbounded(dst_reg); 7501 __update_reg_bounds(dst_reg); 7502 } 7503 7504 /* WARNING: This function does calculations on 64-bit values, but the actual 7505 * execution may occur on 32-bit values. Therefore, things like bitshifts 7506 * need extra checks in the 32-bit case. 7507 */ 7508 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7509 struct bpf_insn *insn, 7510 struct bpf_reg_state *dst_reg, 7511 struct bpf_reg_state src_reg) 7512 { 7513 struct bpf_reg_state *regs = cur_regs(env); 7514 u8 opcode = BPF_OP(insn->code); 7515 bool src_known; 7516 s64 smin_val, smax_val; 7517 u64 umin_val, umax_val; 7518 s32 s32_min_val, s32_max_val; 7519 u32 u32_min_val, u32_max_val; 7520 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7521 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7522 int ret; 7523 7524 smin_val = src_reg.smin_value; 7525 smax_val = src_reg.smax_value; 7526 umin_val = src_reg.umin_value; 7527 umax_val = src_reg.umax_value; 7528 7529 s32_min_val = src_reg.s32_min_value; 7530 s32_max_val = src_reg.s32_max_value; 7531 u32_min_val = src_reg.u32_min_value; 7532 u32_max_val = src_reg.u32_max_value; 7533 7534 if (alu32) { 7535 src_known = tnum_subreg_is_const(src_reg.var_off); 7536 if ((src_known && 7537 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7538 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7539 /* Taint dst register if offset had invalid bounds 7540 * derived from e.g. dead branches. 7541 */ 7542 __mark_reg_unknown(env, dst_reg); 7543 return 0; 7544 } 7545 } else { 7546 src_known = tnum_is_const(src_reg.var_off); 7547 if ((src_known && 7548 (smin_val != smax_val || umin_val != umax_val)) || 7549 smin_val > smax_val || umin_val > umax_val) { 7550 /* Taint dst register if offset had invalid bounds 7551 * derived from e.g. dead branches. 7552 */ 7553 __mark_reg_unknown(env, dst_reg); 7554 return 0; 7555 } 7556 } 7557 7558 if (!src_known && 7559 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 7560 __mark_reg_unknown(env, dst_reg); 7561 return 0; 7562 } 7563 7564 if (sanitize_needed(opcode)) { 7565 ret = sanitize_val_alu(env, insn); 7566 if (ret < 0) 7567 return sanitize_err(env, insn, ret, NULL, NULL); 7568 } 7569 7570 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 7571 * There are two classes of instructions: The first class we track both 7572 * alu32 and alu64 sign/unsigned bounds independently this provides the 7573 * greatest amount of precision when alu operations are mixed with jmp32 7574 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 7575 * and BPF_OR. This is possible because these ops have fairly easy to 7576 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 7577 * See alu32 verifier tests for examples. The second class of 7578 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 7579 * with regards to tracking sign/unsigned bounds because the bits may 7580 * cross subreg boundaries in the alu64 case. When this happens we mark 7581 * the reg unbounded in the subreg bound space and use the resulting 7582 * tnum to calculate an approximation of the sign/unsigned bounds. 7583 */ 7584 switch (opcode) { 7585 case BPF_ADD: 7586 scalar32_min_max_add(dst_reg, &src_reg); 7587 scalar_min_max_add(dst_reg, &src_reg); 7588 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 7589 break; 7590 case BPF_SUB: 7591 scalar32_min_max_sub(dst_reg, &src_reg); 7592 scalar_min_max_sub(dst_reg, &src_reg); 7593 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 7594 break; 7595 case BPF_MUL: 7596 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 7597 scalar32_min_max_mul(dst_reg, &src_reg); 7598 scalar_min_max_mul(dst_reg, &src_reg); 7599 break; 7600 case BPF_AND: 7601 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 7602 scalar32_min_max_and(dst_reg, &src_reg); 7603 scalar_min_max_and(dst_reg, &src_reg); 7604 break; 7605 case BPF_OR: 7606 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 7607 scalar32_min_max_or(dst_reg, &src_reg); 7608 scalar_min_max_or(dst_reg, &src_reg); 7609 break; 7610 case BPF_XOR: 7611 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 7612 scalar32_min_max_xor(dst_reg, &src_reg); 7613 scalar_min_max_xor(dst_reg, &src_reg); 7614 break; 7615 case BPF_LSH: 7616 if (umax_val >= insn_bitness) { 7617 /* Shifts greater than 31 or 63 are undefined. 7618 * This includes shifts by a negative number. 7619 */ 7620 mark_reg_unknown(env, regs, insn->dst_reg); 7621 break; 7622 } 7623 if (alu32) 7624 scalar32_min_max_lsh(dst_reg, &src_reg); 7625 else 7626 scalar_min_max_lsh(dst_reg, &src_reg); 7627 break; 7628 case BPF_RSH: 7629 if (umax_val >= insn_bitness) { 7630 /* Shifts greater than 31 or 63 are undefined. 7631 * This includes shifts by a negative number. 7632 */ 7633 mark_reg_unknown(env, regs, insn->dst_reg); 7634 break; 7635 } 7636 if (alu32) 7637 scalar32_min_max_rsh(dst_reg, &src_reg); 7638 else 7639 scalar_min_max_rsh(dst_reg, &src_reg); 7640 break; 7641 case BPF_ARSH: 7642 if (umax_val >= insn_bitness) { 7643 /* Shifts greater than 31 or 63 are undefined. 7644 * This includes shifts by a negative number. 7645 */ 7646 mark_reg_unknown(env, regs, insn->dst_reg); 7647 break; 7648 } 7649 if (alu32) 7650 scalar32_min_max_arsh(dst_reg, &src_reg); 7651 else 7652 scalar_min_max_arsh(dst_reg, &src_reg); 7653 break; 7654 default: 7655 mark_reg_unknown(env, regs, insn->dst_reg); 7656 break; 7657 } 7658 7659 /* ALU32 ops are zero extended into 64bit register */ 7660 if (alu32) 7661 zext_32_to_64(dst_reg); 7662 7663 __update_reg_bounds(dst_reg); 7664 __reg_deduce_bounds(dst_reg); 7665 __reg_bound_offset(dst_reg); 7666 return 0; 7667 } 7668 7669 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 7670 * and var_off. 7671 */ 7672 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 7673 struct bpf_insn *insn) 7674 { 7675 struct bpf_verifier_state *vstate = env->cur_state; 7676 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7677 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 7678 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 7679 u8 opcode = BPF_OP(insn->code); 7680 int err; 7681 7682 dst_reg = ®s[insn->dst_reg]; 7683 src_reg = NULL; 7684 if (dst_reg->type != SCALAR_VALUE) 7685 ptr_reg = dst_reg; 7686 else 7687 /* Make sure ID is cleared otherwise dst_reg min/max could be 7688 * incorrectly propagated into other registers by find_equal_scalars() 7689 */ 7690 dst_reg->id = 0; 7691 if (BPF_SRC(insn->code) == BPF_X) { 7692 src_reg = ®s[insn->src_reg]; 7693 if (src_reg->type != SCALAR_VALUE) { 7694 if (dst_reg->type != SCALAR_VALUE) { 7695 /* Combining two pointers by any ALU op yields 7696 * an arbitrary scalar. Disallow all math except 7697 * pointer subtraction 7698 */ 7699 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7700 mark_reg_unknown(env, regs, insn->dst_reg); 7701 return 0; 7702 } 7703 verbose(env, "R%d pointer %s pointer prohibited\n", 7704 insn->dst_reg, 7705 bpf_alu_string[opcode >> 4]); 7706 return -EACCES; 7707 } else { 7708 /* scalar += pointer 7709 * This is legal, but we have to reverse our 7710 * src/dest handling in computing the range 7711 */ 7712 err = mark_chain_precision(env, insn->dst_reg); 7713 if (err) 7714 return err; 7715 return adjust_ptr_min_max_vals(env, insn, 7716 src_reg, dst_reg); 7717 } 7718 } else if (ptr_reg) { 7719 /* pointer += scalar */ 7720 err = mark_chain_precision(env, insn->src_reg); 7721 if (err) 7722 return err; 7723 return adjust_ptr_min_max_vals(env, insn, 7724 dst_reg, src_reg); 7725 } 7726 } else { 7727 /* Pretend the src is a reg with a known value, since we only 7728 * need to be able to read from this state. 7729 */ 7730 off_reg.type = SCALAR_VALUE; 7731 __mark_reg_known(&off_reg, insn->imm); 7732 src_reg = &off_reg; 7733 if (ptr_reg) /* pointer += K */ 7734 return adjust_ptr_min_max_vals(env, insn, 7735 ptr_reg, src_reg); 7736 } 7737 7738 /* Got here implies adding two SCALAR_VALUEs */ 7739 if (WARN_ON_ONCE(ptr_reg)) { 7740 print_verifier_state(env, state); 7741 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 7742 return -EINVAL; 7743 } 7744 if (WARN_ON(!src_reg)) { 7745 print_verifier_state(env, state); 7746 verbose(env, "verifier internal error: no src_reg\n"); 7747 return -EINVAL; 7748 } 7749 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 7750 } 7751 7752 /* check validity of 32-bit and 64-bit arithmetic operations */ 7753 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 7754 { 7755 struct bpf_reg_state *regs = cur_regs(env); 7756 u8 opcode = BPF_OP(insn->code); 7757 int err; 7758 7759 if (opcode == BPF_END || opcode == BPF_NEG) { 7760 if (opcode == BPF_NEG) { 7761 if (BPF_SRC(insn->code) != 0 || 7762 insn->src_reg != BPF_REG_0 || 7763 insn->off != 0 || insn->imm != 0) { 7764 verbose(env, "BPF_NEG uses reserved fields\n"); 7765 return -EINVAL; 7766 } 7767 } else { 7768 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 7769 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 7770 BPF_CLASS(insn->code) == BPF_ALU64) { 7771 verbose(env, "BPF_END uses reserved fields\n"); 7772 return -EINVAL; 7773 } 7774 } 7775 7776 /* check src operand */ 7777 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7778 if (err) 7779 return err; 7780 7781 if (is_pointer_value(env, insn->dst_reg)) { 7782 verbose(env, "R%d pointer arithmetic prohibited\n", 7783 insn->dst_reg); 7784 return -EACCES; 7785 } 7786 7787 /* check dest operand */ 7788 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7789 if (err) 7790 return err; 7791 7792 } else if (opcode == BPF_MOV) { 7793 7794 if (BPF_SRC(insn->code) == BPF_X) { 7795 if (insn->imm != 0 || insn->off != 0) { 7796 verbose(env, "BPF_MOV uses reserved fields\n"); 7797 return -EINVAL; 7798 } 7799 7800 /* check src operand */ 7801 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7802 if (err) 7803 return err; 7804 } else { 7805 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7806 verbose(env, "BPF_MOV uses reserved fields\n"); 7807 return -EINVAL; 7808 } 7809 } 7810 7811 /* check dest operand, mark as required later */ 7812 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7813 if (err) 7814 return err; 7815 7816 if (BPF_SRC(insn->code) == BPF_X) { 7817 struct bpf_reg_state *src_reg = regs + insn->src_reg; 7818 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 7819 7820 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7821 /* case: R1 = R2 7822 * copy register state to dest reg 7823 */ 7824 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 7825 /* Assign src and dst registers the same ID 7826 * that will be used by find_equal_scalars() 7827 * to propagate min/max range. 7828 */ 7829 src_reg->id = ++env->id_gen; 7830 *dst_reg = *src_reg; 7831 dst_reg->live |= REG_LIVE_WRITTEN; 7832 dst_reg->subreg_def = DEF_NOT_SUBREG; 7833 } else { 7834 /* R1 = (u32) R2 */ 7835 if (is_pointer_value(env, insn->src_reg)) { 7836 verbose(env, 7837 "R%d partial copy of pointer\n", 7838 insn->src_reg); 7839 return -EACCES; 7840 } else if (src_reg->type == SCALAR_VALUE) { 7841 *dst_reg = *src_reg; 7842 /* Make sure ID is cleared otherwise 7843 * dst_reg min/max could be incorrectly 7844 * propagated into src_reg by find_equal_scalars() 7845 */ 7846 dst_reg->id = 0; 7847 dst_reg->live |= REG_LIVE_WRITTEN; 7848 dst_reg->subreg_def = env->insn_idx + 1; 7849 } else { 7850 mark_reg_unknown(env, regs, 7851 insn->dst_reg); 7852 } 7853 zext_32_to_64(dst_reg); 7854 } 7855 } else { 7856 /* case: R = imm 7857 * remember the value we stored into this reg 7858 */ 7859 /* clear any state __mark_reg_known doesn't set */ 7860 mark_reg_unknown(env, regs, insn->dst_reg); 7861 regs[insn->dst_reg].type = SCALAR_VALUE; 7862 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7863 __mark_reg_known(regs + insn->dst_reg, 7864 insn->imm); 7865 } else { 7866 __mark_reg_known(regs + insn->dst_reg, 7867 (u32)insn->imm); 7868 } 7869 } 7870 7871 } else if (opcode > BPF_END) { 7872 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 7873 return -EINVAL; 7874 7875 } else { /* all other ALU ops: and, sub, xor, add, ... */ 7876 7877 if (BPF_SRC(insn->code) == BPF_X) { 7878 if (insn->imm != 0 || insn->off != 0) { 7879 verbose(env, "BPF_ALU uses reserved fields\n"); 7880 return -EINVAL; 7881 } 7882 /* check src1 operand */ 7883 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7884 if (err) 7885 return err; 7886 } else { 7887 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7888 verbose(env, "BPF_ALU uses reserved fields\n"); 7889 return -EINVAL; 7890 } 7891 } 7892 7893 /* check src2 operand */ 7894 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7895 if (err) 7896 return err; 7897 7898 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 7899 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 7900 verbose(env, "div by zero\n"); 7901 return -EINVAL; 7902 } 7903 7904 if ((opcode == BPF_LSH || opcode == BPF_RSH || 7905 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 7906 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 7907 7908 if (insn->imm < 0 || insn->imm >= size) { 7909 verbose(env, "invalid shift %d\n", insn->imm); 7910 return -EINVAL; 7911 } 7912 } 7913 7914 /* check dest operand */ 7915 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7916 if (err) 7917 return err; 7918 7919 return adjust_reg_min_max_vals(env, insn); 7920 } 7921 7922 return 0; 7923 } 7924 7925 static void __find_good_pkt_pointers(struct bpf_func_state *state, 7926 struct bpf_reg_state *dst_reg, 7927 enum bpf_reg_type type, int new_range) 7928 { 7929 struct bpf_reg_state *reg; 7930 int i; 7931 7932 for (i = 0; i < MAX_BPF_REG; i++) { 7933 reg = &state->regs[i]; 7934 if (reg->type == type && reg->id == dst_reg->id) 7935 /* keep the maximum range already checked */ 7936 reg->range = max(reg->range, new_range); 7937 } 7938 7939 bpf_for_each_spilled_reg(i, state, reg) { 7940 if (!reg) 7941 continue; 7942 if (reg->type == type && reg->id == dst_reg->id) 7943 reg->range = max(reg->range, new_range); 7944 } 7945 } 7946 7947 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 7948 struct bpf_reg_state *dst_reg, 7949 enum bpf_reg_type type, 7950 bool range_right_open) 7951 { 7952 int new_range, i; 7953 7954 if (dst_reg->off < 0 || 7955 (dst_reg->off == 0 && range_right_open)) 7956 /* This doesn't give us any range */ 7957 return; 7958 7959 if (dst_reg->umax_value > MAX_PACKET_OFF || 7960 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 7961 /* Risk of overflow. For instance, ptr + (1<<63) may be less 7962 * than pkt_end, but that's because it's also less than pkt. 7963 */ 7964 return; 7965 7966 new_range = dst_reg->off; 7967 if (range_right_open) 7968 new_range--; 7969 7970 /* Examples for register markings: 7971 * 7972 * pkt_data in dst register: 7973 * 7974 * r2 = r3; 7975 * r2 += 8; 7976 * if (r2 > pkt_end) goto <handle exception> 7977 * <access okay> 7978 * 7979 * r2 = r3; 7980 * r2 += 8; 7981 * if (r2 < pkt_end) goto <access okay> 7982 * <handle exception> 7983 * 7984 * Where: 7985 * r2 == dst_reg, pkt_end == src_reg 7986 * r2=pkt(id=n,off=8,r=0) 7987 * r3=pkt(id=n,off=0,r=0) 7988 * 7989 * pkt_data in src register: 7990 * 7991 * r2 = r3; 7992 * r2 += 8; 7993 * if (pkt_end >= r2) goto <access okay> 7994 * <handle exception> 7995 * 7996 * r2 = r3; 7997 * r2 += 8; 7998 * if (pkt_end <= r2) goto <handle exception> 7999 * <access okay> 8000 * 8001 * Where: 8002 * pkt_end == dst_reg, r2 == src_reg 8003 * r2=pkt(id=n,off=8,r=0) 8004 * r3=pkt(id=n,off=0,r=0) 8005 * 8006 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8007 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8008 * and [r3, r3 + 8-1) respectively is safe to access depending on 8009 * the check. 8010 */ 8011 8012 /* If our ids match, then we must have the same max_value. And we 8013 * don't care about the other reg's fixed offset, since if it's too big 8014 * the range won't allow anything. 8015 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8016 */ 8017 for (i = 0; i <= vstate->curframe; i++) 8018 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8019 new_range); 8020 } 8021 8022 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8023 { 8024 struct tnum subreg = tnum_subreg(reg->var_off); 8025 s32 sval = (s32)val; 8026 8027 switch (opcode) { 8028 case BPF_JEQ: 8029 if (tnum_is_const(subreg)) 8030 return !!tnum_equals_const(subreg, val); 8031 break; 8032 case BPF_JNE: 8033 if (tnum_is_const(subreg)) 8034 return !tnum_equals_const(subreg, val); 8035 break; 8036 case BPF_JSET: 8037 if ((~subreg.mask & subreg.value) & val) 8038 return 1; 8039 if (!((subreg.mask | subreg.value) & val)) 8040 return 0; 8041 break; 8042 case BPF_JGT: 8043 if (reg->u32_min_value > val) 8044 return 1; 8045 else if (reg->u32_max_value <= val) 8046 return 0; 8047 break; 8048 case BPF_JSGT: 8049 if (reg->s32_min_value > sval) 8050 return 1; 8051 else if (reg->s32_max_value <= sval) 8052 return 0; 8053 break; 8054 case BPF_JLT: 8055 if (reg->u32_max_value < val) 8056 return 1; 8057 else if (reg->u32_min_value >= val) 8058 return 0; 8059 break; 8060 case BPF_JSLT: 8061 if (reg->s32_max_value < sval) 8062 return 1; 8063 else if (reg->s32_min_value >= sval) 8064 return 0; 8065 break; 8066 case BPF_JGE: 8067 if (reg->u32_min_value >= val) 8068 return 1; 8069 else if (reg->u32_max_value < val) 8070 return 0; 8071 break; 8072 case BPF_JSGE: 8073 if (reg->s32_min_value >= sval) 8074 return 1; 8075 else if (reg->s32_max_value < sval) 8076 return 0; 8077 break; 8078 case BPF_JLE: 8079 if (reg->u32_max_value <= val) 8080 return 1; 8081 else if (reg->u32_min_value > val) 8082 return 0; 8083 break; 8084 case BPF_JSLE: 8085 if (reg->s32_max_value <= sval) 8086 return 1; 8087 else if (reg->s32_min_value > sval) 8088 return 0; 8089 break; 8090 } 8091 8092 return -1; 8093 } 8094 8095 8096 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8097 { 8098 s64 sval = (s64)val; 8099 8100 switch (opcode) { 8101 case BPF_JEQ: 8102 if (tnum_is_const(reg->var_off)) 8103 return !!tnum_equals_const(reg->var_off, val); 8104 break; 8105 case BPF_JNE: 8106 if (tnum_is_const(reg->var_off)) 8107 return !tnum_equals_const(reg->var_off, val); 8108 break; 8109 case BPF_JSET: 8110 if ((~reg->var_off.mask & reg->var_off.value) & val) 8111 return 1; 8112 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8113 return 0; 8114 break; 8115 case BPF_JGT: 8116 if (reg->umin_value > val) 8117 return 1; 8118 else if (reg->umax_value <= val) 8119 return 0; 8120 break; 8121 case BPF_JSGT: 8122 if (reg->smin_value > sval) 8123 return 1; 8124 else if (reg->smax_value <= sval) 8125 return 0; 8126 break; 8127 case BPF_JLT: 8128 if (reg->umax_value < val) 8129 return 1; 8130 else if (reg->umin_value >= val) 8131 return 0; 8132 break; 8133 case BPF_JSLT: 8134 if (reg->smax_value < sval) 8135 return 1; 8136 else if (reg->smin_value >= sval) 8137 return 0; 8138 break; 8139 case BPF_JGE: 8140 if (reg->umin_value >= val) 8141 return 1; 8142 else if (reg->umax_value < val) 8143 return 0; 8144 break; 8145 case BPF_JSGE: 8146 if (reg->smin_value >= sval) 8147 return 1; 8148 else if (reg->smax_value < sval) 8149 return 0; 8150 break; 8151 case BPF_JLE: 8152 if (reg->umax_value <= val) 8153 return 1; 8154 else if (reg->umin_value > val) 8155 return 0; 8156 break; 8157 case BPF_JSLE: 8158 if (reg->smax_value <= sval) 8159 return 1; 8160 else if (reg->smin_value > sval) 8161 return 0; 8162 break; 8163 } 8164 8165 return -1; 8166 } 8167 8168 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8169 * and return: 8170 * 1 - branch will be taken and "goto target" will be executed 8171 * 0 - branch will not be taken and fall-through to next insn 8172 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8173 * range [0,10] 8174 */ 8175 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8176 bool is_jmp32) 8177 { 8178 if (__is_pointer_value(false, reg)) { 8179 if (!reg_type_not_null(reg->type)) 8180 return -1; 8181 8182 /* If pointer is valid tests against zero will fail so we can 8183 * use this to direct branch taken. 8184 */ 8185 if (val != 0) 8186 return -1; 8187 8188 switch (opcode) { 8189 case BPF_JEQ: 8190 return 0; 8191 case BPF_JNE: 8192 return 1; 8193 default: 8194 return -1; 8195 } 8196 } 8197 8198 if (is_jmp32) 8199 return is_branch32_taken(reg, val, opcode); 8200 return is_branch64_taken(reg, val, opcode); 8201 } 8202 8203 static int flip_opcode(u32 opcode) 8204 { 8205 /* How can we transform "a <op> b" into "b <op> a"? */ 8206 static const u8 opcode_flip[16] = { 8207 /* these stay the same */ 8208 [BPF_JEQ >> 4] = BPF_JEQ, 8209 [BPF_JNE >> 4] = BPF_JNE, 8210 [BPF_JSET >> 4] = BPF_JSET, 8211 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8212 [BPF_JGE >> 4] = BPF_JLE, 8213 [BPF_JGT >> 4] = BPF_JLT, 8214 [BPF_JLE >> 4] = BPF_JGE, 8215 [BPF_JLT >> 4] = BPF_JGT, 8216 [BPF_JSGE >> 4] = BPF_JSLE, 8217 [BPF_JSGT >> 4] = BPF_JSLT, 8218 [BPF_JSLE >> 4] = BPF_JSGE, 8219 [BPF_JSLT >> 4] = BPF_JSGT 8220 }; 8221 return opcode_flip[opcode >> 4]; 8222 } 8223 8224 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8225 struct bpf_reg_state *src_reg, 8226 u8 opcode) 8227 { 8228 struct bpf_reg_state *pkt; 8229 8230 if (src_reg->type == PTR_TO_PACKET_END) { 8231 pkt = dst_reg; 8232 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8233 pkt = src_reg; 8234 opcode = flip_opcode(opcode); 8235 } else { 8236 return -1; 8237 } 8238 8239 if (pkt->range >= 0) 8240 return -1; 8241 8242 switch (opcode) { 8243 case BPF_JLE: 8244 /* pkt <= pkt_end */ 8245 fallthrough; 8246 case BPF_JGT: 8247 /* pkt > pkt_end */ 8248 if (pkt->range == BEYOND_PKT_END) 8249 /* pkt has at last one extra byte beyond pkt_end */ 8250 return opcode == BPF_JGT; 8251 break; 8252 case BPF_JLT: 8253 /* pkt < pkt_end */ 8254 fallthrough; 8255 case BPF_JGE: 8256 /* pkt >= pkt_end */ 8257 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8258 return opcode == BPF_JGE; 8259 break; 8260 } 8261 return -1; 8262 } 8263 8264 /* Adjusts the register min/max values in the case that the dst_reg is the 8265 * variable register that we are working on, and src_reg is a constant or we're 8266 * simply doing a BPF_K check. 8267 * In JEQ/JNE cases we also adjust the var_off values. 8268 */ 8269 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8270 struct bpf_reg_state *false_reg, 8271 u64 val, u32 val32, 8272 u8 opcode, bool is_jmp32) 8273 { 8274 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8275 struct tnum false_64off = false_reg->var_off; 8276 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8277 struct tnum true_64off = true_reg->var_off; 8278 s64 sval = (s64)val; 8279 s32 sval32 = (s32)val32; 8280 8281 /* If the dst_reg is a pointer, we can't learn anything about its 8282 * variable offset from the compare (unless src_reg were a pointer into 8283 * the same object, but we don't bother with that. 8284 * Since false_reg and true_reg have the same type by construction, we 8285 * only need to check one of them for pointerness. 8286 */ 8287 if (__is_pointer_value(false, false_reg)) 8288 return; 8289 8290 switch (opcode) { 8291 case BPF_JEQ: 8292 case BPF_JNE: 8293 { 8294 struct bpf_reg_state *reg = 8295 opcode == BPF_JEQ ? true_reg : false_reg; 8296 8297 /* JEQ/JNE comparison doesn't change the register equivalence. 8298 * r1 = r2; 8299 * if (r1 == 42) goto label; 8300 * ... 8301 * label: // here both r1 and r2 are known to be 42. 8302 * 8303 * Hence when marking register as known preserve it's ID. 8304 */ 8305 if (is_jmp32) 8306 __mark_reg32_known(reg, val32); 8307 else 8308 ___mark_reg_known(reg, val); 8309 break; 8310 } 8311 case BPF_JSET: 8312 if (is_jmp32) { 8313 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8314 if (is_power_of_2(val32)) 8315 true_32off = tnum_or(true_32off, 8316 tnum_const(val32)); 8317 } else { 8318 false_64off = tnum_and(false_64off, tnum_const(~val)); 8319 if (is_power_of_2(val)) 8320 true_64off = tnum_or(true_64off, 8321 tnum_const(val)); 8322 } 8323 break; 8324 case BPF_JGE: 8325 case BPF_JGT: 8326 { 8327 if (is_jmp32) { 8328 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8329 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8330 8331 false_reg->u32_max_value = min(false_reg->u32_max_value, 8332 false_umax); 8333 true_reg->u32_min_value = max(true_reg->u32_min_value, 8334 true_umin); 8335 } else { 8336 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8337 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8338 8339 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8340 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8341 } 8342 break; 8343 } 8344 case BPF_JSGE: 8345 case BPF_JSGT: 8346 { 8347 if (is_jmp32) { 8348 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8349 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8350 8351 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8352 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8353 } else { 8354 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8355 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8356 8357 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8358 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8359 } 8360 break; 8361 } 8362 case BPF_JLE: 8363 case BPF_JLT: 8364 { 8365 if (is_jmp32) { 8366 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8367 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8368 8369 false_reg->u32_min_value = max(false_reg->u32_min_value, 8370 false_umin); 8371 true_reg->u32_max_value = min(true_reg->u32_max_value, 8372 true_umax); 8373 } else { 8374 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8375 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8376 8377 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8378 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8379 } 8380 break; 8381 } 8382 case BPF_JSLE: 8383 case BPF_JSLT: 8384 { 8385 if (is_jmp32) { 8386 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8387 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8388 8389 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8390 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8391 } else { 8392 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8393 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8394 8395 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8396 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8397 } 8398 break; 8399 } 8400 default: 8401 return; 8402 } 8403 8404 if (is_jmp32) { 8405 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8406 tnum_subreg(false_32off)); 8407 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8408 tnum_subreg(true_32off)); 8409 __reg_combine_32_into_64(false_reg); 8410 __reg_combine_32_into_64(true_reg); 8411 } else { 8412 false_reg->var_off = false_64off; 8413 true_reg->var_off = true_64off; 8414 __reg_combine_64_into_32(false_reg); 8415 __reg_combine_64_into_32(true_reg); 8416 } 8417 } 8418 8419 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8420 * the variable reg. 8421 */ 8422 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8423 struct bpf_reg_state *false_reg, 8424 u64 val, u32 val32, 8425 u8 opcode, bool is_jmp32) 8426 { 8427 opcode = flip_opcode(opcode); 8428 /* This uses zero as "not present in table"; luckily the zero opcode, 8429 * BPF_JA, can't get here. 8430 */ 8431 if (opcode) 8432 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8433 } 8434 8435 /* Regs are known to be equal, so intersect their min/max/var_off */ 8436 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8437 struct bpf_reg_state *dst_reg) 8438 { 8439 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8440 dst_reg->umin_value); 8441 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8442 dst_reg->umax_value); 8443 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8444 dst_reg->smin_value); 8445 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8446 dst_reg->smax_value); 8447 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8448 dst_reg->var_off); 8449 /* We might have learned new bounds from the var_off. */ 8450 __update_reg_bounds(src_reg); 8451 __update_reg_bounds(dst_reg); 8452 /* We might have learned something about the sign bit. */ 8453 __reg_deduce_bounds(src_reg); 8454 __reg_deduce_bounds(dst_reg); 8455 /* We might have learned some bits from the bounds. */ 8456 __reg_bound_offset(src_reg); 8457 __reg_bound_offset(dst_reg); 8458 /* Intersecting with the old var_off might have improved our bounds 8459 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8460 * then new var_off is (0; 0x7f...fc) which improves our umax. 8461 */ 8462 __update_reg_bounds(src_reg); 8463 __update_reg_bounds(dst_reg); 8464 } 8465 8466 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8467 struct bpf_reg_state *true_dst, 8468 struct bpf_reg_state *false_src, 8469 struct bpf_reg_state *false_dst, 8470 u8 opcode) 8471 { 8472 switch (opcode) { 8473 case BPF_JEQ: 8474 __reg_combine_min_max(true_src, true_dst); 8475 break; 8476 case BPF_JNE: 8477 __reg_combine_min_max(false_src, false_dst); 8478 break; 8479 } 8480 } 8481 8482 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8483 struct bpf_reg_state *reg, u32 id, 8484 bool is_null) 8485 { 8486 if (reg_type_may_be_null(reg->type) && reg->id == id && 8487 !WARN_ON_ONCE(!reg->id)) { 8488 /* Old offset (both fixed and variable parts) should 8489 * have been known-zero, because we don't allow pointer 8490 * arithmetic on pointers that might be NULL. 8491 */ 8492 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8493 !tnum_equals_const(reg->var_off, 0) || 8494 reg->off)) { 8495 __mark_reg_known_zero(reg); 8496 reg->off = 0; 8497 } 8498 if (is_null) { 8499 reg->type = SCALAR_VALUE; 8500 /* We don't need id and ref_obj_id from this point 8501 * onwards anymore, thus we should better reset it, 8502 * so that state pruning has chances to take effect. 8503 */ 8504 reg->id = 0; 8505 reg->ref_obj_id = 0; 8506 8507 return; 8508 } 8509 8510 mark_ptr_not_null_reg(reg); 8511 8512 if (!reg_may_point_to_spin_lock(reg)) { 8513 /* For not-NULL ptr, reg->ref_obj_id will be reset 8514 * in release_reg_references(). 8515 * 8516 * reg->id is still used by spin_lock ptr. Other 8517 * than spin_lock ptr type, reg->id can be reset. 8518 */ 8519 reg->id = 0; 8520 } 8521 } 8522 } 8523 8524 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8525 bool is_null) 8526 { 8527 struct bpf_reg_state *reg; 8528 int i; 8529 8530 for (i = 0; i < MAX_BPF_REG; i++) 8531 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8532 8533 bpf_for_each_spilled_reg(i, state, reg) { 8534 if (!reg) 8535 continue; 8536 mark_ptr_or_null_reg(state, reg, id, is_null); 8537 } 8538 } 8539 8540 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8541 * be folded together at some point. 8542 */ 8543 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 8544 bool is_null) 8545 { 8546 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8547 struct bpf_reg_state *regs = state->regs; 8548 u32 ref_obj_id = regs[regno].ref_obj_id; 8549 u32 id = regs[regno].id; 8550 int i; 8551 8552 if (ref_obj_id && ref_obj_id == id && is_null) 8553 /* regs[regno] is in the " == NULL" branch. 8554 * No one could have freed the reference state before 8555 * doing the NULL check. 8556 */ 8557 WARN_ON_ONCE(release_reference_state(state, id)); 8558 8559 for (i = 0; i <= vstate->curframe; i++) 8560 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 8561 } 8562 8563 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 8564 struct bpf_reg_state *dst_reg, 8565 struct bpf_reg_state *src_reg, 8566 struct bpf_verifier_state *this_branch, 8567 struct bpf_verifier_state *other_branch) 8568 { 8569 if (BPF_SRC(insn->code) != BPF_X) 8570 return false; 8571 8572 /* Pointers are always 64-bit. */ 8573 if (BPF_CLASS(insn->code) == BPF_JMP32) 8574 return false; 8575 8576 switch (BPF_OP(insn->code)) { 8577 case BPF_JGT: 8578 if ((dst_reg->type == PTR_TO_PACKET && 8579 src_reg->type == PTR_TO_PACKET_END) || 8580 (dst_reg->type == PTR_TO_PACKET_META && 8581 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8582 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 8583 find_good_pkt_pointers(this_branch, dst_reg, 8584 dst_reg->type, false); 8585 mark_pkt_end(other_branch, insn->dst_reg, true); 8586 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8587 src_reg->type == PTR_TO_PACKET) || 8588 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8589 src_reg->type == PTR_TO_PACKET_META)) { 8590 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 8591 find_good_pkt_pointers(other_branch, src_reg, 8592 src_reg->type, true); 8593 mark_pkt_end(this_branch, insn->src_reg, false); 8594 } else { 8595 return false; 8596 } 8597 break; 8598 case BPF_JLT: 8599 if ((dst_reg->type == PTR_TO_PACKET && 8600 src_reg->type == PTR_TO_PACKET_END) || 8601 (dst_reg->type == PTR_TO_PACKET_META && 8602 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8603 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 8604 find_good_pkt_pointers(other_branch, dst_reg, 8605 dst_reg->type, true); 8606 mark_pkt_end(this_branch, insn->dst_reg, false); 8607 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8608 src_reg->type == PTR_TO_PACKET) || 8609 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8610 src_reg->type == PTR_TO_PACKET_META)) { 8611 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 8612 find_good_pkt_pointers(this_branch, src_reg, 8613 src_reg->type, false); 8614 mark_pkt_end(other_branch, insn->src_reg, true); 8615 } else { 8616 return false; 8617 } 8618 break; 8619 case BPF_JGE: 8620 if ((dst_reg->type == PTR_TO_PACKET && 8621 src_reg->type == PTR_TO_PACKET_END) || 8622 (dst_reg->type == PTR_TO_PACKET_META && 8623 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8624 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 8625 find_good_pkt_pointers(this_branch, dst_reg, 8626 dst_reg->type, true); 8627 mark_pkt_end(other_branch, insn->dst_reg, false); 8628 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8629 src_reg->type == PTR_TO_PACKET) || 8630 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8631 src_reg->type == PTR_TO_PACKET_META)) { 8632 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 8633 find_good_pkt_pointers(other_branch, src_reg, 8634 src_reg->type, false); 8635 mark_pkt_end(this_branch, insn->src_reg, true); 8636 } else { 8637 return false; 8638 } 8639 break; 8640 case BPF_JLE: 8641 if ((dst_reg->type == PTR_TO_PACKET && 8642 src_reg->type == PTR_TO_PACKET_END) || 8643 (dst_reg->type == PTR_TO_PACKET_META && 8644 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8645 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 8646 find_good_pkt_pointers(other_branch, dst_reg, 8647 dst_reg->type, false); 8648 mark_pkt_end(this_branch, insn->dst_reg, true); 8649 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8650 src_reg->type == PTR_TO_PACKET) || 8651 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8652 src_reg->type == PTR_TO_PACKET_META)) { 8653 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 8654 find_good_pkt_pointers(this_branch, src_reg, 8655 src_reg->type, true); 8656 mark_pkt_end(other_branch, insn->src_reg, false); 8657 } else { 8658 return false; 8659 } 8660 break; 8661 default: 8662 return false; 8663 } 8664 8665 return true; 8666 } 8667 8668 static void find_equal_scalars(struct bpf_verifier_state *vstate, 8669 struct bpf_reg_state *known_reg) 8670 { 8671 struct bpf_func_state *state; 8672 struct bpf_reg_state *reg; 8673 int i, j; 8674 8675 for (i = 0; i <= vstate->curframe; i++) { 8676 state = vstate->frame[i]; 8677 for (j = 0; j < MAX_BPF_REG; j++) { 8678 reg = &state->regs[j]; 8679 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8680 *reg = *known_reg; 8681 } 8682 8683 bpf_for_each_spilled_reg(j, state, reg) { 8684 if (!reg) 8685 continue; 8686 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8687 *reg = *known_reg; 8688 } 8689 } 8690 } 8691 8692 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8693 struct bpf_insn *insn, int *insn_idx) 8694 { 8695 struct bpf_verifier_state *this_branch = env->cur_state; 8696 struct bpf_verifier_state *other_branch; 8697 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8698 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8699 u8 opcode = BPF_OP(insn->code); 8700 bool is_jmp32; 8701 int pred = -1; 8702 int err; 8703 8704 /* Only conditional jumps are expected to reach here. */ 8705 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8706 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8707 return -EINVAL; 8708 } 8709 8710 if (BPF_SRC(insn->code) == BPF_X) { 8711 if (insn->imm != 0) { 8712 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8713 return -EINVAL; 8714 } 8715 8716 /* check src1 operand */ 8717 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8718 if (err) 8719 return err; 8720 8721 if (is_pointer_value(env, insn->src_reg)) { 8722 verbose(env, "R%d pointer comparison prohibited\n", 8723 insn->src_reg); 8724 return -EACCES; 8725 } 8726 src_reg = ®s[insn->src_reg]; 8727 } else { 8728 if (insn->src_reg != BPF_REG_0) { 8729 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8730 return -EINVAL; 8731 } 8732 } 8733 8734 /* check src2 operand */ 8735 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8736 if (err) 8737 return err; 8738 8739 dst_reg = ®s[insn->dst_reg]; 8740 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 8741 8742 if (BPF_SRC(insn->code) == BPF_K) { 8743 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 8744 } else if (src_reg->type == SCALAR_VALUE && 8745 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 8746 pred = is_branch_taken(dst_reg, 8747 tnum_subreg(src_reg->var_off).value, 8748 opcode, 8749 is_jmp32); 8750 } else if (src_reg->type == SCALAR_VALUE && 8751 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 8752 pred = is_branch_taken(dst_reg, 8753 src_reg->var_off.value, 8754 opcode, 8755 is_jmp32); 8756 } else if (reg_is_pkt_pointer_any(dst_reg) && 8757 reg_is_pkt_pointer_any(src_reg) && 8758 !is_jmp32) { 8759 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 8760 } 8761 8762 if (pred >= 0) { 8763 /* If we get here with a dst_reg pointer type it is because 8764 * above is_branch_taken() special cased the 0 comparison. 8765 */ 8766 if (!__is_pointer_value(false, dst_reg)) 8767 err = mark_chain_precision(env, insn->dst_reg); 8768 if (BPF_SRC(insn->code) == BPF_X && !err && 8769 !__is_pointer_value(false, src_reg)) 8770 err = mark_chain_precision(env, insn->src_reg); 8771 if (err) 8772 return err; 8773 } 8774 8775 if (pred == 1) { 8776 /* Only follow the goto, ignore fall-through. If needed, push 8777 * the fall-through branch for simulation under speculative 8778 * execution. 8779 */ 8780 if (!env->bypass_spec_v1 && 8781 !sanitize_speculative_path(env, insn, *insn_idx + 1, 8782 *insn_idx)) 8783 return -EFAULT; 8784 *insn_idx += insn->off; 8785 return 0; 8786 } else if (pred == 0) { 8787 /* Only follow the fall-through branch, since that's where the 8788 * program will go. If needed, push the goto branch for 8789 * simulation under speculative execution. 8790 */ 8791 if (!env->bypass_spec_v1 && 8792 !sanitize_speculative_path(env, insn, 8793 *insn_idx + insn->off + 1, 8794 *insn_idx)) 8795 return -EFAULT; 8796 return 0; 8797 } 8798 8799 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 8800 false); 8801 if (!other_branch) 8802 return -EFAULT; 8803 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 8804 8805 /* detect if we are comparing against a constant value so we can adjust 8806 * our min/max values for our dst register. 8807 * this is only legit if both are scalars (or pointers to the same 8808 * object, I suppose, but we don't support that right now), because 8809 * otherwise the different base pointers mean the offsets aren't 8810 * comparable. 8811 */ 8812 if (BPF_SRC(insn->code) == BPF_X) { 8813 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 8814 8815 if (dst_reg->type == SCALAR_VALUE && 8816 src_reg->type == SCALAR_VALUE) { 8817 if (tnum_is_const(src_reg->var_off) || 8818 (is_jmp32 && 8819 tnum_is_const(tnum_subreg(src_reg->var_off)))) 8820 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8821 dst_reg, 8822 src_reg->var_off.value, 8823 tnum_subreg(src_reg->var_off).value, 8824 opcode, is_jmp32); 8825 else if (tnum_is_const(dst_reg->var_off) || 8826 (is_jmp32 && 8827 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 8828 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 8829 src_reg, 8830 dst_reg->var_off.value, 8831 tnum_subreg(dst_reg->var_off).value, 8832 opcode, is_jmp32); 8833 else if (!is_jmp32 && 8834 (opcode == BPF_JEQ || opcode == BPF_JNE)) 8835 /* Comparing for equality, we can combine knowledge */ 8836 reg_combine_min_max(&other_branch_regs[insn->src_reg], 8837 &other_branch_regs[insn->dst_reg], 8838 src_reg, dst_reg, opcode); 8839 if (src_reg->id && 8840 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 8841 find_equal_scalars(this_branch, src_reg); 8842 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 8843 } 8844 8845 } 8846 } else if (dst_reg->type == SCALAR_VALUE) { 8847 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8848 dst_reg, insn->imm, (u32)insn->imm, 8849 opcode, is_jmp32); 8850 } 8851 8852 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 8853 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 8854 find_equal_scalars(this_branch, dst_reg); 8855 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 8856 } 8857 8858 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 8859 * NOTE: these optimizations below are related with pointer comparison 8860 * which will never be JMP32. 8861 */ 8862 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 8863 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 8864 reg_type_may_be_null(dst_reg->type)) { 8865 /* Mark all identical registers in each branch as either 8866 * safe or unknown depending R == 0 or R != 0 conditional. 8867 */ 8868 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 8869 opcode == BPF_JNE); 8870 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 8871 opcode == BPF_JEQ); 8872 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 8873 this_branch, other_branch) && 8874 is_pointer_value(env, insn->dst_reg)) { 8875 verbose(env, "R%d pointer comparison prohibited\n", 8876 insn->dst_reg); 8877 return -EACCES; 8878 } 8879 if (env->log.level & BPF_LOG_LEVEL) 8880 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 8881 return 0; 8882 } 8883 8884 /* verify BPF_LD_IMM64 instruction */ 8885 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 8886 { 8887 struct bpf_insn_aux_data *aux = cur_aux(env); 8888 struct bpf_reg_state *regs = cur_regs(env); 8889 struct bpf_reg_state *dst_reg; 8890 struct bpf_map *map; 8891 int err; 8892 8893 if (BPF_SIZE(insn->code) != BPF_DW) { 8894 verbose(env, "invalid BPF_LD_IMM insn\n"); 8895 return -EINVAL; 8896 } 8897 if (insn->off != 0) { 8898 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 8899 return -EINVAL; 8900 } 8901 8902 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8903 if (err) 8904 return err; 8905 8906 dst_reg = ®s[insn->dst_reg]; 8907 if (insn->src_reg == 0) { 8908 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 8909 8910 dst_reg->type = SCALAR_VALUE; 8911 __mark_reg_known(®s[insn->dst_reg], imm); 8912 return 0; 8913 } 8914 8915 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 8916 mark_reg_known_zero(env, regs, insn->dst_reg); 8917 8918 dst_reg->type = aux->btf_var.reg_type; 8919 switch (dst_reg->type) { 8920 case PTR_TO_MEM: 8921 dst_reg->mem_size = aux->btf_var.mem_size; 8922 break; 8923 case PTR_TO_BTF_ID: 8924 case PTR_TO_PERCPU_BTF_ID: 8925 dst_reg->btf = aux->btf_var.btf; 8926 dst_reg->btf_id = aux->btf_var.btf_id; 8927 break; 8928 default: 8929 verbose(env, "bpf verifier is misconfigured\n"); 8930 return -EFAULT; 8931 } 8932 return 0; 8933 } 8934 8935 if (insn->src_reg == BPF_PSEUDO_FUNC) { 8936 struct bpf_prog_aux *aux = env->prog->aux; 8937 u32 subprogno = insn[1].imm; 8938 8939 if (!aux->func_info) { 8940 verbose(env, "missing btf func_info\n"); 8941 return -EINVAL; 8942 } 8943 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 8944 verbose(env, "callback function not static\n"); 8945 return -EINVAL; 8946 } 8947 8948 dst_reg->type = PTR_TO_FUNC; 8949 dst_reg->subprogno = subprogno; 8950 return 0; 8951 } 8952 8953 map = env->used_maps[aux->map_index]; 8954 mark_reg_known_zero(env, regs, insn->dst_reg); 8955 dst_reg->map_ptr = map; 8956 8957 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 8958 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 8959 dst_reg->type = PTR_TO_MAP_VALUE; 8960 dst_reg->off = aux->map_off; 8961 if (map_value_has_spin_lock(map)) 8962 dst_reg->id = ++env->id_gen; 8963 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 8964 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 8965 dst_reg->type = CONST_PTR_TO_MAP; 8966 } else { 8967 verbose(env, "bpf verifier is misconfigured\n"); 8968 return -EINVAL; 8969 } 8970 8971 return 0; 8972 } 8973 8974 static bool may_access_skb(enum bpf_prog_type type) 8975 { 8976 switch (type) { 8977 case BPF_PROG_TYPE_SOCKET_FILTER: 8978 case BPF_PROG_TYPE_SCHED_CLS: 8979 case BPF_PROG_TYPE_SCHED_ACT: 8980 return true; 8981 default: 8982 return false; 8983 } 8984 } 8985 8986 /* verify safety of LD_ABS|LD_IND instructions: 8987 * - they can only appear in the programs where ctx == skb 8988 * - since they are wrappers of function calls, they scratch R1-R5 registers, 8989 * preserve R6-R9, and store return value into R0 8990 * 8991 * Implicit input: 8992 * ctx == skb == R6 == CTX 8993 * 8994 * Explicit input: 8995 * SRC == any register 8996 * IMM == 32-bit immediate 8997 * 8998 * Output: 8999 * R0 - 8/16/32-bit skb data converted to cpu endianness 9000 */ 9001 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9002 { 9003 struct bpf_reg_state *regs = cur_regs(env); 9004 static const int ctx_reg = BPF_REG_6; 9005 u8 mode = BPF_MODE(insn->code); 9006 int i, err; 9007 9008 if (!may_access_skb(resolve_prog_type(env->prog))) { 9009 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9010 return -EINVAL; 9011 } 9012 9013 if (!env->ops->gen_ld_abs) { 9014 verbose(env, "bpf verifier is misconfigured\n"); 9015 return -EINVAL; 9016 } 9017 9018 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9019 BPF_SIZE(insn->code) == BPF_DW || 9020 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9021 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9022 return -EINVAL; 9023 } 9024 9025 /* check whether implicit source operand (register R6) is readable */ 9026 err = check_reg_arg(env, ctx_reg, SRC_OP); 9027 if (err) 9028 return err; 9029 9030 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9031 * gen_ld_abs() may terminate the program at runtime, leading to 9032 * reference leak. 9033 */ 9034 err = check_reference_leak(env); 9035 if (err) { 9036 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9037 return err; 9038 } 9039 9040 if (env->cur_state->active_spin_lock) { 9041 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9042 return -EINVAL; 9043 } 9044 9045 if (regs[ctx_reg].type != PTR_TO_CTX) { 9046 verbose(env, 9047 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9048 return -EINVAL; 9049 } 9050 9051 if (mode == BPF_IND) { 9052 /* check explicit source operand */ 9053 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9054 if (err) 9055 return err; 9056 } 9057 9058 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9059 if (err < 0) 9060 return err; 9061 9062 /* reset caller saved regs to unreadable */ 9063 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9064 mark_reg_not_init(env, regs, caller_saved[i]); 9065 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9066 } 9067 9068 /* mark destination R0 register as readable, since it contains 9069 * the value fetched from the packet. 9070 * Already marked as written above. 9071 */ 9072 mark_reg_unknown(env, regs, BPF_REG_0); 9073 /* ld_abs load up to 32-bit skb data. */ 9074 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9075 return 0; 9076 } 9077 9078 static int check_return_code(struct bpf_verifier_env *env) 9079 { 9080 struct tnum enforce_attach_type_range = tnum_unknown; 9081 const struct bpf_prog *prog = env->prog; 9082 struct bpf_reg_state *reg; 9083 struct tnum range = tnum_range(0, 1); 9084 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9085 int err; 9086 const bool is_subprog = env->cur_state->frame[0]->subprogno; 9087 9088 /* LSM and struct_ops func-ptr's return type could be "void" */ 9089 if (!is_subprog && 9090 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9091 prog_type == BPF_PROG_TYPE_LSM) && 9092 !prog->aux->attach_func_proto->type) 9093 return 0; 9094 9095 /* eBPF calling convention is such that R0 is used 9096 * to return the value from eBPF program. 9097 * Make sure that it's readable at this time 9098 * of bpf_exit, which means that program wrote 9099 * something into it earlier 9100 */ 9101 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9102 if (err) 9103 return err; 9104 9105 if (is_pointer_value(env, BPF_REG_0)) { 9106 verbose(env, "R0 leaks addr as return value\n"); 9107 return -EACCES; 9108 } 9109 9110 reg = cur_regs(env) + BPF_REG_0; 9111 if (is_subprog) { 9112 if (reg->type != SCALAR_VALUE) { 9113 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9114 reg_type_str[reg->type]); 9115 return -EINVAL; 9116 } 9117 return 0; 9118 } 9119 9120 switch (prog_type) { 9121 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9122 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9123 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9124 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9125 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9126 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9127 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9128 range = tnum_range(1, 1); 9129 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9130 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9131 range = tnum_range(0, 3); 9132 break; 9133 case BPF_PROG_TYPE_CGROUP_SKB: 9134 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9135 range = tnum_range(0, 3); 9136 enforce_attach_type_range = tnum_range(2, 3); 9137 } 9138 break; 9139 case BPF_PROG_TYPE_CGROUP_SOCK: 9140 case BPF_PROG_TYPE_SOCK_OPS: 9141 case BPF_PROG_TYPE_CGROUP_DEVICE: 9142 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9143 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9144 break; 9145 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9146 if (!env->prog->aux->attach_btf_id) 9147 return 0; 9148 range = tnum_const(0); 9149 break; 9150 case BPF_PROG_TYPE_TRACING: 9151 switch (env->prog->expected_attach_type) { 9152 case BPF_TRACE_FENTRY: 9153 case BPF_TRACE_FEXIT: 9154 range = tnum_const(0); 9155 break; 9156 case BPF_TRACE_RAW_TP: 9157 case BPF_MODIFY_RETURN: 9158 return 0; 9159 case BPF_TRACE_ITER: 9160 break; 9161 default: 9162 return -ENOTSUPP; 9163 } 9164 break; 9165 case BPF_PROG_TYPE_SK_LOOKUP: 9166 range = tnum_range(SK_DROP, SK_PASS); 9167 break; 9168 case BPF_PROG_TYPE_EXT: 9169 /* freplace program can return anything as its return value 9170 * depends on the to-be-replaced kernel func or bpf program. 9171 */ 9172 default: 9173 return 0; 9174 } 9175 9176 if (reg->type != SCALAR_VALUE) { 9177 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9178 reg_type_str[reg->type]); 9179 return -EINVAL; 9180 } 9181 9182 if (!tnum_in(range, reg->var_off)) { 9183 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9184 return -EINVAL; 9185 } 9186 9187 if (!tnum_is_unknown(enforce_attach_type_range) && 9188 tnum_in(enforce_attach_type_range, reg->var_off)) 9189 env->prog->enforce_expected_attach_type = 1; 9190 return 0; 9191 } 9192 9193 /* non-recursive DFS pseudo code 9194 * 1 procedure DFS-iterative(G,v): 9195 * 2 label v as discovered 9196 * 3 let S be a stack 9197 * 4 S.push(v) 9198 * 5 while S is not empty 9199 * 6 t <- S.pop() 9200 * 7 if t is what we're looking for: 9201 * 8 return t 9202 * 9 for all edges e in G.adjacentEdges(t) do 9203 * 10 if edge e is already labelled 9204 * 11 continue with the next edge 9205 * 12 w <- G.adjacentVertex(t,e) 9206 * 13 if vertex w is not discovered and not explored 9207 * 14 label e as tree-edge 9208 * 15 label w as discovered 9209 * 16 S.push(w) 9210 * 17 continue at 5 9211 * 18 else if vertex w is discovered 9212 * 19 label e as back-edge 9213 * 20 else 9214 * 21 // vertex w is explored 9215 * 22 label e as forward- or cross-edge 9216 * 23 label t as explored 9217 * 24 S.pop() 9218 * 9219 * convention: 9220 * 0x10 - discovered 9221 * 0x11 - discovered and fall-through edge labelled 9222 * 0x12 - discovered and fall-through and branch edges labelled 9223 * 0x20 - explored 9224 */ 9225 9226 enum { 9227 DISCOVERED = 0x10, 9228 EXPLORED = 0x20, 9229 FALLTHROUGH = 1, 9230 BRANCH = 2, 9231 }; 9232 9233 static u32 state_htab_size(struct bpf_verifier_env *env) 9234 { 9235 return env->prog->len; 9236 } 9237 9238 static struct bpf_verifier_state_list **explored_state( 9239 struct bpf_verifier_env *env, 9240 int idx) 9241 { 9242 struct bpf_verifier_state *cur = env->cur_state; 9243 struct bpf_func_state *state = cur->frame[cur->curframe]; 9244 9245 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9246 } 9247 9248 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9249 { 9250 env->insn_aux_data[idx].prune_point = true; 9251 } 9252 9253 enum { 9254 DONE_EXPLORING = 0, 9255 KEEP_EXPLORING = 1, 9256 }; 9257 9258 /* t, w, e - match pseudo-code above: 9259 * t - index of current instruction 9260 * w - next instruction 9261 * e - edge 9262 */ 9263 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9264 bool loop_ok) 9265 { 9266 int *insn_stack = env->cfg.insn_stack; 9267 int *insn_state = env->cfg.insn_state; 9268 9269 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9270 return DONE_EXPLORING; 9271 9272 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9273 return DONE_EXPLORING; 9274 9275 if (w < 0 || w >= env->prog->len) { 9276 verbose_linfo(env, t, "%d: ", t); 9277 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9278 return -EINVAL; 9279 } 9280 9281 if (e == BRANCH) 9282 /* mark branch target for state pruning */ 9283 init_explored_state(env, w); 9284 9285 if (insn_state[w] == 0) { 9286 /* tree-edge */ 9287 insn_state[t] = DISCOVERED | e; 9288 insn_state[w] = DISCOVERED; 9289 if (env->cfg.cur_stack >= env->prog->len) 9290 return -E2BIG; 9291 insn_stack[env->cfg.cur_stack++] = w; 9292 return KEEP_EXPLORING; 9293 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9294 if (loop_ok && env->bpf_capable) 9295 return DONE_EXPLORING; 9296 verbose_linfo(env, t, "%d: ", t); 9297 verbose_linfo(env, w, "%d: ", w); 9298 verbose(env, "back-edge from insn %d to %d\n", t, w); 9299 return -EINVAL; 9300 } else if (insn_state[w] == EXPLORED) { 9301 /* forward- or cross-edge */ 9302 insn_state[t] = DISCOVERED | e; 9303 } else { 9304 verbose(env, "insn state internal bug\n"); 9305 return -EFAULT; 9306 } 9307 return DONE_EXPLORING; 9308 } 9309 9310 static int visit_func_call_insn(int t, int insn_cnt, 9311 struct bpf_insn *insns, 9312 struct bpf_verifier_env *env, 9313 bool visit_callee) 9314 { 9315 int ret; 9316 9317 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9318 if (ret) 9319 return ret; 9320 9321 if (t + 1 < insn_cnt) 9322 init_explored_state(env, t + 1); 9323 if (visit_callee) { 9324 init_explored_state(env, t); 9325 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 9326 env, false); 9327 } 9328 return ret; 9329 } 9330 9331 /* Visits the instruction at index t and returns one of the following: 9332 * < 0 - an error occurred 9333 * DONE_EXPLORING - the instruction was fully explored 9334 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9335 */ 9336 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9337 { 9338 struct bpf_insn *insns = env->prog->insnsi; 9339 int ret; 9340 9341 if (bpf_pseudo_func(insns + t)) 9342 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9343 9344 /* All non-branch instructions have a single fall-through edge. */ 9345 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9346 BPF_CLASS(insns[t].code) != BPF_JMP32) 9347 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9348 9349 switch (BPF_OP(insns[t].code)) { 9350 case BPF_EXIT: 9351 return DONE_EXPLORING; 9352 9353 case BPF_CALL: 9354 return visit_func_call_insn(t, insn_cnt, insns, env, 9355 insns[t].src_reg == BPF_PSEUDO_CALL); 9356 9357 case BPF_JA: 9358 if (BPF_SRC(insns[t].code) != BPF_K) 9359 return -EINVAL; 9360 9361 /* unconditional jump with single edge */ 9362 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9363 true); 9364 if (ret) 9365 return ret; 9366 9367 /* unconditional jmp is not a good pruning point, 9368 * but it's marked, since backtracking needs 9369 * to record jmp history in is_state_visited(). 9370 */ 9371 init_explored_state(env, t + insns[t].off + 1); 9372 /* tell verifier to check for equivalent states 9373 * after every call and jump 9374 */ 9375 if (t + 1 < insn_cnt) 9376 init_explored_state(env, t + 1); 9377 9378 return ret; 9379 9380 default: 9381 /* conditional jump with two edges */ 9382 init_explored_state(env, t); 9383 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9384 if (ret) 9385 return ret; 9386 9387 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9388 } 9389 } 9390 9391 /* non-recursive depth-first-search to detect loops in BPF program 9392 * loop == back-edge in directed graph 9393 */ 9394 static int check_cfg(struct bpf_verifier_env *env) 9395 { 9396 int insn_cnt = env->prog->len; 9397 int *insn_stack, *insn_state; 9398 int ret = 0; 9399 int i; 9400 9401 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9402 if (!insn_state) 9403 return -ENOMEM; 9404 9405 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9406 if (!insn_stack) { 9407 kvfree(insn_state); 9408 return -ENOMEM; 9409 } 9410 9411 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9412 insn_stack[0] = 0; /* 0 is the first instruction */ 9413 env->cfg.cur_stack = 1; 9414 9415 while (env->cfg.cur_stack > 0) { 9416 int t = insn_stack[env->cfg.cur_stack - 1]; 9417 9418 ret = visit_insn(t, insn_cnt, env); 9419 switch (ret) { 9420 case DONE_EXPLORING: 9421 insn_state[t] = EXPLORED; 9422 env->cfg.cur_stack--; 9423 break; 9424 case KEEP_EXPLORING: 9425 break; 9426 default: 9427 if (ret > 0) { 9428 verbose(env, "visit_insn internal bug\n"); 9429 ret = -EFAULT; 9430 } 9431 goto err_free; 9432 } 9433 } 9434 9435 if (env->cfg.cur_stack < 0) { 9436 verbose(env, "pop stack internal bug\n"); 9437 ret = -EFAULT; 9438 goto err_free; 9439 } 9440 9441 for (i = 0; i < insn_cnt; i++) { 9442 if (insn_state[i] != EXPLORED) { 9443 verbose(env, "unreachable insn %d\n", i); 9444 ret = -EINVAL; 9445 goto err_free; 9446 } 9447 } 9448 ret = 0; /* cfg looks good */ 9449 9450 err_free: 9451 kvfree(insn_state); 9452 kvfree(insn_stack); 9453 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9454 return ret; 9455 } 9456 9457 static int check_abnormal_return(struct bpf_verifier_env *env) 9458 { 9459 int i; 9460 9461 for (i = 1; i < env->subprog_cnt; i++) { 9462 if (env->subprog_info[i].has_ld_abs) { 9463 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9464 return -EINVAL; 9465 } 9466 if (env->subprog_info[i].has_tail_call) { 9467 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9468 return -EINVAL; 9469 } 9470 } 9471 return 0; 9472 } 9473 9474 /* The minimum supported BTF func info size */ 9475 #define MIN_BPF_FUNCINFO_SIZE 8 9476 #define MAX_FUNCINFO_REC_SIZE 252 9477 9478 static int check_btf_func(struct bpf_verifier_env *env, 9479 const union bpf_attr *attr, 9480 bpfptr_t uattr) 9481 { 9482 const struct btf_type *type, *func_proto, *ret_type; 9483 u32 i, nfuncs, urec_size, min_size; 9484 u32 krec_size = sizeof(struct bpf_func_info); 9485 struct bpf_func_info *krecord; 9486 struct bpf_func_info_aux *info_aux = NULL; 9487 struct bpf_prog *prog; 9488 const struct btf *btf; 9489 bpfptr_t urecord; 9490 u32 prev_offset = 0; 9491 bool scalar_return; 9492 int ret = -ENOMEM; 9493 9494 nfuncs = attr->func_info_cnt; 9495 if (!nfuncs) { 9496 if (check_abnormal_return(env)) 9497 return -EINVAL; 9498 return 0; 9499 } 9500 9501 if (nfuncs != env->subprog_cnt) { 9502 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9503 return -EINVAL; 9504 } 9505 9506 urec_size = attr->func_info_rec_size; 9507 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9508 urec_size > MAX_FUNCINFO_REC_SIZE || 9509 urec_size % sizeof(u32)) { 9510 verbose(env, "invalid func info rec size %u\n", urec_size); 9511 return -EINVAL; 9512 } 9513 9514 prog = env->prog; 9515 btf = prog->aux->btf; 9516 9517 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 9518 min_size = min_t(u32, krec_size, urec_size); 9519 9520 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 9521 if (!krecord) 9522 return -ENOMEM; 9523 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 9524 if (!info_aux) 9525 goto err_free; 9526 9527 for (i = 0; i < nfuncs; i++) { 9528 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 9529 if (ret) { 9530 if (ret == -E2BIG) { 9531 verbose(env, "nonzero tailing record in func info"); 9532 /* set the size kernel expects so loader can zero 9533 * out the rest of the record. 9534 */ 9535 if (copy_to_bpfptr_offset(uattr, 9536 offsetof(union bpf_attr, func_info_rec_size), 9537 &min_size, sizeof(min_size))) 9538 ret = -EFAULT; 9539 } 9540 goto err_free; 9541 } 9542 9543 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 9544 ret = -EFAULT; 9545 goto err_free; 9546 } 9547 9548 /* check insn_off */ 9549 ret = -EINVAL; 9550 if (i == 0) { 9551 if (krecord[i].insn_off) { 9552 verbose(env, 9553 "nonzero insn_off %u for the first func info record", 9554 krecord[i].insn_off); 9555 goto err_free; 9556 } 9557 } else if (krecord[i].insn_off <= prev_offset) { 9558 verbose(env, 9559 "same or smaller insn offset (%u) than previous func info record (%u)", 9560 krecord[i].insn_off, prev_offset); 9561 goto err_free; 9562 } 9563 9564 if (env->subprog_info[i].start != krecord[i].insn_off) { 9565 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 9566 goto err_free; 9567 } 9568 9569 /* check type_id */ 9570 type = btf_type_by_id(btf, krecord[i].type_id); 9571 if (!type || !btf_type_is_func(type)) { 9572 verbose(env, "invalid type id %d in func info", 9573 krecord[i].type_id); 9574 goto err_free; 9575 } 9576 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 9577 9578 func_proto = btf_type_by_id(btf, type->type); 9579 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 9580 /* btf_func_check() already verified it during BTF load */ 9581 goto err_free; 9582 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 9583 scalar_return = 9584 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 9585 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 9586 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 9587 goto err_free; 9588 } 9589 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 9590 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 9591 goto err_free; 9592 } 9593 9594 prev_offset = krecord[i].insn_off; 9595 bpfptr_add(&urecord, urec_size); 9596 } 9597 9598 prog->aux->func_info = krecord; 9599 prog->aux->func_info_cnt = nfuncs; 9600 prog->aux->func_info_aux = info_aux; 9601 return 0; 9602 9603 err_free: 9604 kvfree(krecord); 9605 kfree(info_aux); 9606 return ret; 9607 } 9608 9609 static void adjust_btf_func(struct bpf_verifier_env *env) 9610 { 9611 struct bpf_prog_aux *aux = env->prog->aux; 9612 int i; 9613 9614 if (!aux->func_info) 9615 return; 9616 9617 for (i = 0; i < env->subprog_cnt; i++) 9618 aux->func_info[i].insn_off = env->subprog_info[i].start; 9619 } 9620 9621 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 9622 sizeof(((struct bpf_line_info *)(0))->line_col)) 9623 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 9624 9625 static int check_btf_line(struct bpf_verifier_env *env, 9626 const union bpf_attr *attr, 9627 bpfptr_t uattr) 9628 { 9629 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 9630 struct bpf_subprog_info *sub; 9631 struct bpf_line_info *linfo; 9632 struct bpf_prog *prog; 9633 const struct btf *btf; 9634 bpfptr_t ulinfo; 9635 int err; 9636 9637 nr_linfo = attr->line_info_cnt; 9638 if (!nr_linfo) 9639 return 0; 9640 9641 rec_size = attr->line_info_rec_size; 9642 if (rec_size < MIN_BPF_LINEINFO_SIZE || 9643 rec_size > MAX_LINEINFO_REC_SIZE || 9644 rec_size & (sizeof(u32) - 1)) 9645 return -EINVAL; 9646 9647 /* Need to zero it in case the userspace may 9648 * pass in a smaller bpf_line_info object. 9649 */ 9650 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 9651 GFP_KERNEL | __GFP_NOWARN); 9652 if (!linfo) 9653 return -ENOMEM; 9654 9655 prog = env->prog; 9656 btf = prog->aux->btf; 9657 9658 s = 0; 9659 sub = env->subprog_info; 9660 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 9661 expected_size = sizeof(struct bpf_line_info); 9662 ncopy = min_t(u32, expected_size, rec_size); 9663 for (i = 0; i < nr_linfo; i++) { 9664 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 9665 if (err) { 9666 if (err == -E2BIG) { 9667 verbose(env, "nonzero tailing record in line_info"); 9668 if (copy_to_bpfptr_offset(uattr, 9669 offsetof(union bpf_attr, line_info_rec_size), 9670 &expected_size, sizeof(expected_size))) 9671 err = -EFAULT; 9672 } 9673 goto err_free; 9674 } 9675 9676 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 9677 err = -EFAULT; 9678 goto err_free; 9679 } 9680 9681 /* 9682 * Check insn_off to ensure 9683 * 1) strictly increasing AND 9684 * 2) bounded by prog->len 9685 * 9686 * The linfo[0].insn_off == 0 check logically falls into 9687 * the later "missing bpf_line_info for func..." case 9688 * because the first linfo[0].insn_off must be the 9689 * first sub also and the first sub must have 9690 * subprog_info[0].start == 0. 9691 */ 9692 if ((i && linfo[i].insn_off <= prev_offset) || 9693 linfo[i].insn_off >= prog->len) { 9694 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 9695 i, linfo[i].insn_off, prev_offset, 9696 prog->len); 9697 err = -EINVAL; 9698 goto err_free; 9699 } 9700 9701 if (!prog->insnsi[linfo[i].insn_off].code) { 9702 verbose(env, 9703 "Invalid insn code at line_info[%u].insn_off\n", 9704 i); 9705 err = -EINVAL; 9706 goto err_free; 9707 } 9708 9709 if (!btf_name_by_offset(btf, linfo[i].line_off) || 9710 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 9711 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 9712 err = -EINVAL; 9713 goto err_free; 9714 } 9715 9716 if (s != env->subprog_cnt) { 9717 if (linfo[i].insn_off == sub[s].start) { 9718 sub[s].linfo_idx = i; 9719 s++; 9720 } else if (sub[s].start < linfo[i].insn_off) { 9721 verbose(env, "missing bpf_line_info for func#%u\n", s); 9722 err = -EINVAL; 9723 goto err_free; 9724 } 9725 } 9726 9727 prev_offset = linfo[i].insn_off; 9728 bpfptr_add(&ulinfo, rec_size); 9729 } 9730 9731 if (s != env->subprog_cnt) { 9732 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 9733 env->subprog_cnt - s, s); 9734 err = -EINVAL; 9735 goto err_free; 9736 } 9737 9738 prog->aux->linfo = linfo; 9739 prog->aux->nr_linfo = nr_linfo; 9740 9741 return 0; 9742 9743 err_free: 9744 kvfree(linfo); 9745 return err; 9746 } 9747 9748 static int check_btf_info(struct bpf_verifier_env *env, 9749 const union bpf_attr *attr, 9750 bpfptr_t uattr) 9751 { 9752 struct btf *btf; 9753 int err; 9754 9755 if (!attr->func_info_cnt && !attr->line_info_cnt) { 9756 if (check_abnormal_return(env)) 9757 return -EINVAL; 9758 return 0; 9759 } 9760 9761 btf = btf_get_by_fd(attr->prog_btf_fd); 9762 if (IS_ERR(btf)) 9763 return PTR_ERR(btf); 9764 if (btf_is_kernel(btf)) { 9765 btf_put(btf); 9766 return -EACCES; 9767 } 9768 env->prog->aux->btf = btf; 9769 9770 err = check_btf_func(env, attr, uattr); 9771 if (err) 9772 return err; 9773 9774 err = check_btf_line(env, attr, uattr); 9775 if (err) 9776 return err; 9777 9778 return 0; 9779 } 9780 9781 /* check %cur's range satisfies %old's */ 9782 static bool range_within(struct bpf_reg_state *old, 9783 struct bpf_reg_state *cur) 9784 { 9785 return old->umin_value <= cur->umin_value && 9786 old->umax_value >= cur->umax_value && 9787 old->smin_value <= cur->smin_value && 9788 old->smax_value >= cur->smax_value && 9789 old->u32_min_value <= cur->u32_min_value && 9790 old->u32_max_value >= cur->u32_max_value && 9791 old->s32_min_value <= cur->s32_min_value && 9792 old->s32_max_value >= cur->s32_max_value; 9793 } 9794 9795 /* If in the old state two registers had the same id, then they need to have 9796 * the same id in the new state as well. But that id could be different from 9797 * the old state, so we need to track the mapping from old to new ids. 9798 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 9799 * regs with old id 5 must also have new id 9 for the new state to be safe. But 9800 * regs with a different old id could still have new id 9, we don't care about 9801 * that. 9802 * So we look through our idmap to see if this old id has been seen before. If 9803 * so, we require the new id to match; otherwise, we add the id pair to the map. 9804 */ 9805 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 9806 { 9807 unsigned int i; 9808 9809 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 9810 if (!idmap[i].old) { 9811 /* Reached an empty slot; haven't seen this id before */ 9812 idmap[i].old = old_id; 9813 idmap[i].cur = cur_id; 9814 return true; 9815 } 9816 if (idmap[i].old == old_id) 9817 return idmap[i].cur == cur_id; 9818 } 9819 /* We ran out of idmap slots, which should be impossible */ 9820 WARN_ON_ONCE(1); 9821 return false; 9822 } 9823 9824 static void clean_func_state(struct bpf_verifier_env *env, 9825 struct bpf_func_state *st) 9826 { 9827 enum bpf_reg_liveness live; 9828 int i, j; 9829 9830 for (i = 0; i < BPF_REG_FP; i++) { 9831 live = st->regs[i].live; 9832 /* liveness must not touch this register anymore */ 9833 st->regs[i].live |= REG_LIVE_DONE; 9834 if (!(live & REG_LIVE_READ)) 9835 /* since the register is unused, clear its state 9836 * to make further comparison simpler 9837 */ 9838 __mark_reg_not_init(env, &st->regs[i]); 9839 } 9840 9841 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 9842 live = st->stack[i].spilled_ptr.live; 9843 /* liveness must not touch this stack slot anymore */ 9844 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 9845 if (!(live & REG_LIVE_READ)) { 9846 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 9847 for (j = 0; j < BPF_REG_SIZE; j++) 9848 st->stack[i].slot_type[j] = STACK_INVALID; 9849 } 9850 } 9851 } 9852 9853 static void clean_verifier_state(struct bpf_verifier_env *env, 9854 struct bpf_verifier_state *st) 9855 { 9856 int i; 9857 9858 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 9859 /* all regs in this state in all frames were already marked */ 9860 return; 9861 9862 for (i = 0; i <= st->curframe; i++) 9863 clean_func_state(env, st->frame[i]); 9864 } 9865 9866 /* the parentage chains form a tree. 9867 * the verifier states are added to state lists at given insn and 9868 * pushed into state stack for future exploration. 9869 * when the verifier reaches bpf_exit insn some of the verifer states 9870 * stored in the state lists have their final liveness state already, 9871 * but a lot of states will get revised from liveness point of view when 9872 * the verifier explores other branches. 9873 * Example: 9874 * 1: r0 = 1 9875 * 2: if r1 == 100 goto pc+1 9876 * 3: r0 = 2 9877 * 4: exit 9878 * when the verifier reaches exit insn the register r0 in the state list of 9879 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 9880 * of insn 2 and goes exploring further. At the insn 4 it will walk the 9881 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 9882 * 9883 * Since the verifier pushes the branch states as it sees them while exploring 9884 * the program the condition of walking the branch instruction for the second 9885 * time means that all states below this branch were already explored and 9886 * their final liveness marks are already propagated. 9887 * Hence when the verifier completes the search of state list in is_state_visited() 9888 * we can call this clean_live_states() function to mark all liveness states 9889 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 9890 * will not be used. 9891 * This function also clears the registers and stack for states that !READ 9892 * to simplify state merging. 9893 * 9894 * Important note here that walking the same branch instruction in the callee 9895 * doesn't meant that the states are DONE. The verifier has to compare 9896 * the callsites 9897 */ 9898 static void clean_live_states(struct bpf_verifier_env *env, int insn, 9899 struct bpf_verifier_state *cur) 9900 { 9901 struct bpf_verifier_state_list *sl; 9902 int i; 9903 9904 sl = *explored_state(env, insn); 9905 while (sl) { 9906 if (sl->state.branches) 9907 goto next; 9908 if (sl->state.insn_idx != insn || 9909 sl->state.curframe != cur->curframe) 9910 goto next; 9911 for (i = 0; i <= cur->curframe; i++) 9912 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 9913 goto next; 9914 clean_verifier_state(env, &sl->state); 9915 next: 9916 sl = sl->next; 9917 } 9918 } 9919 9920 /* Returns true if (rold safe implies rcur safe) */ 9921 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 9922 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 9923 { 9924 bool equal; 9925 9926 if (!(rold->live & REG_LIVE_READ)) 9927 /* explored state didn't use this */ 9928 return true; 9929 9930 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 9931 9932 if (rold->type == PTR_TO_STACK) 9933 /* two stack pointers are equal only if they're pointing to 9934 * the same stack frame, since fp-8 in foo != fp-8 in bar 9935 */ 9936 return equal && rold->frameno == rcur->frameno; 9937 9938 if (equal) 9939 return true; 9940 9941 if (rold->type == NOT_INIT) 9942 /* explored state can't have used this */ 9943 return true; 9944 if (rcur->type == NOT_INIT) 9945 return false; 9946 switch (rold->type) { 9947 case SCALAR_VALUE: 9948 if (env->explore_alu_limits) 9949 return false; 9950 if (rcur->type == SCALAR_VALUE) { 9951 if (!rold->precise && !rcur->precise) 9952 return true; 9953 /* new val must satisfy old val knowledge */ 9954 return range_within(rold, rcur) && 9955 tnum_in(rold->var_off, rcur->var_off); 9956 } else { 9957 /* We're trying to use a pointer in place of a scalar. 9958 * Even if the scalar was unbounded, this could lead to 9959 * pointer leaks because scalars are allowed to leak 9960 * while pointers are not. We could make this safe in 9961 * special cases if root is calling us, but it's 9962 * probably not worth the hassle. 9963 */ 9964 return false; 9965 } 9966 case PTR_TO_MAP_KEY: 9967 case PTR_TO_MAP_VALUE: 9968 /* If the new min/max/var_off satisfy the old ones and 9969 * everything else matches, we are OK. 9970 * 'id' is not compared, since it's only used for maps with 9971 * bpf_spin_lock inside map element and in such cases if 9972 * the rest of the prog is valid for one map element then 9973 * it's valid for all map elements regardless of the key 9974 * used in bpf_map_lookup() 9975 */ 9976 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 9977 range_within(rold, rcur) && 9978 tnum_in(rold->var_off, rcur->var_off); 9979 case PTR_TO_MAP_VALUE_OR_NULL: 9980 /* a PTR_TO_MAP_VALUE could be safe to use as a 9981 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 9982 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 9983 * checked, doing so could have affected others with the same 9984 * id, and we can't check for that because we lost the id when 9985 * we converted to a PTR_TO_MAP_VALUE. 9986 */ 9987 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 9988 return false; 9989 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 9990 return false; 9991 /* Check our ids match any regs they're supposed to */ 9992 return check_ids(rold->id, rcur->id, idmap); 9993 case PTR_TO_PACKET_META: 9994 case PTR_TO_PACKET: 9995 if (rcur->type != rold->type) 9996 return false; 9997 /* We must have at least as much range as the old ptr 9998 * did, so that any accesses which were safe before are 9999 * still safe. This is true even if old range < old off, 10000 * since someone could have accessed through (ptr - k), or 10001 * even done ptr -= k in a register, to get a safe access. 10002 */ 10003 if (rold->range > rcur->range) 10004 return false; 10005 /* If the offsets don't match, we can't trust our alignment; 10006 * nor can we be sure that we won't fall out of range. 10007 */ 10008 if (rold->off != rcur->off) 10009 return false; 10010 /* id relations must be preserved */ 10011 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10012 return false; 10013 /* new val must satisfy old val knowledge */ 10014 return range_within(rold, rcur) && 10015 tnum_in(rold->var_off, rcur->var_off); 10016 case PTR_TO_CTX: 10017 case CONST_PTR_TO_MAP: 10018 case PTR_TO_PACKET_END: 10019 case PTR_TO_FLOW_KEYS: 10020 case PTR_TO_SOCKET: 10021 case PTR_TO_SOCKET_OR_NULL: 10022 case PTR_TO_SOCK_COMMON: 10023 case PTR_TO_SOCK_COMMON_OR_NULL: 10024 case PTR_TO_TCP_SOCK: 10025 case PTR_TO_TCP_SOCK_OR_NULL: 10026 case PTR_TO_XDP_SOCK: 10027 /* Only valid matches are exact, which memcmp() above 10028 * would have accepted 10029 */ 10030 default: 10031 /* Don't know what's going on, just say it's not safe */ 10032 return false; 10033 } 10034 10035 /* Shouldn't get here; if we do, say it's not safe */ 10036 WARN_ON_ONCE(1); 10037 return false; 10038 } 10039 10040 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10041 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10042 { 10043 int i, spi; 10044 10045 /* walk slots of the explored stack and ignore any additional 10046 * slots in the current stack, since explored(safe) state 10047 * didn't use them 10048 */ 10049 for (i = 0; i < old->allocated_stack; i++) { 10050 spi = i / BPF_REG_SIZE; 10051 10052 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10053 i += BPF_REG_SIZE - 1; 10054 /* explored state didn't use this */ 10055 continue; 10056 } 10057 10058 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10059 continue; 10060 10061 /* explored stack has more populated slots than current stack 10062 * and these slots were used 10063 */ 10064 if (i >= cur->allocated_stack) 10065 return false; 10066 10067 /* if old state was safe with misc data in the stack 10068 * it will be safe with zero-initialized stack. 10069 * The opposite is not true 10070 */ 10071 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10072 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10073 continue; 10074 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10075 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10076 /* Ex: old explored (safe) state has STACK_SPILL in 10077 * this stack slot, but current has STACK_MISC -> 10078 * this verifier states are not equivalent, 10079 * return false to continue verification of this path 10080 */ 10081 return false; 10082 if (i % BPF_REG_SIZE) 10083 continue; 10084 if (old->stack[spi].slot_type[0] != STACK_SPILL) 10085 continue; 10086 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10087 &cur->stack[spi].spilled_ptr, idmap)) 10088 /* when explored and current stack slot are both storing 10089 * spilled registers, check that stored pointers types 10090 * are the same as well. 10091 * Ex: explored safe path could have stored 10092 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10093 * but current path has stored: 10094 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10095 * such verifier states are not equivalent. 10096 * return false to continue verification of this path 10097 */ 10098 return false; 10099 } 10100 return true; 10101 } 10102 10103 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10104 { 10105 if (old->acquired_refs != cur->acquired_refs) 10106 return false; 10107 return !memcmp(old->refs, cur->refs, 10108 sizeof(*old->refs) * old->acquired_refs); 10109 } 10110 10111 /* compare two verifier states 10112 * 10113 * all states stored in state_list are known to be valid, since 10114 * verifier reached 'bpf_exit' instruction through them 10115 * 10116 * this function is called when verifier exploring different branches of 10117 * execution popped from the state stack. If it sees an old state that has 10118 * more strict register state and more strict stack state then this execution 10119 * branch doesn't need to be explored further, since verifier already 10120 * concluded that more strict state leads to valid finish. 10121 * 10122 * Therefore two states are equivalent if register state is more conservative 10123 * and explored stack state is more conservative than the current one. 10124 * Example: 10125 * explored current 10126 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10127 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10128 * 10129 * In other words if current stack state (one being explored) has more 10130 * valid slots than old one that already passed validation, it means 10131 * the verifier can stop exploring and conclude that current state is valid too 10132 * 10133 * Similarly with registers. If explored state has register type as invalid 10134 * whereas register type in current state is meaningful, it means that 10135 * the current state will reach 'bpf_exit' instruction safely 10136 */ 10137 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10138 struct bpf_func_state *cur) 10139 { 10140 int i; 10141 10142 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10143 for (i = 0; i < MAX_BPF_REG; i++) 10144 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10145 env->idmap_scratch)) 10146 return false; 10147 10148 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10149 return false; 10150 10151 if (!refsafe(old, cur)) 10152 return false; 10153 10154 return true; 10155 } 10156 10157 static bool states_equal(struct bpf_verifier_env *env, 10158 struct bpf_verifier_state *old, 10159 struct bpf_verifier_state *cur) 10160 { 10161 int i; 10162 10163 if (old->curframe != cur->curframe) 10164 return false; 10165 10166 /* Verification state from speculative execution simulation 10167 * must never prune a non-speculative execution one. 10168 */ 10169 if (old->speculative && !cur->speculative) 10170 return false; 10171 10172 if (old->active_spin_lock != cur->active_spin_lock) 10173 return false; 10174 10175 /* for states to be equal callsites have to be the same 10176 * and all frame states need to be equivalent 10177 */ 10178 for (i = 0; i <= old->curframe; i++) { 10179 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10180 return false; 10181 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10182 return false; 10183 } 10184 return true; 10185 } 10186 10187 /* Return 0 if no propagation happened. Return negative error code if error 10188 * happened. Otherwise, return the propagated bit. 10189 */ 10190 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10191 struct bpf_reg_state *reg, 10192 struct bpf_reg_state *parent_reg) 10193 { 10194 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10195 u8 flag = reg->live & REG_LIVE_READ; 10196 int err; 10197 10198 /* When comes here, read flags of PARENT_REG or REG could be any of 10199 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10200 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10201 */ 10202 if (parent_flag == REG_LIVE_READ64 || 10203 /* Or if there is no read flag from REG. */ 10204 !flag || 10205 /* Or if the read flag from REG is the same as PARENT_REG. */ 10206 parent_flag == flag) 10207 return 0; 10208 10209 err = mark_reg_read(env, reg, parent_reg, flag); 10210 if (err) 10211 return err; 10212 10213 return flag; 10214 } 10215 10216 /* A write screens off any subsequent reads; but write marks come from the 10217 * straight-line code between a state and its parent. When we arrive at an 10218 * equivalent state (jump target or such) we didn't arrive by the straight-line 10219 * code, so read marks in the state must propagate to the parent regardless 10220 * of the state's write marks. That's what 'parent == state->parent' comparison 10221 * in mark_reg_read() is for. 10222 */ 10223 static int propagate_liveness(struct bpf_verifier_env *env, 10224 const struct bpf_verifier_state *vstate, 10225 struct bpf_verifier_state *vparent) 10226 { 10227 struct bpf_reg_state *state_reg, *parent_reg; 10228 struct bpf_func_state *state, *parent; 10229 int i, frame, err = 0; 10230 10231 if (vparent->curframe != vstate->curframe) { 10232 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10233 vparent->curframe, vstate->curframe); 10234 return -EFAULT; 10235 } 10236 /* Propagate read liveness of registers... */ 10237 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10238 for (frame = 0; frame <= vstate->curframe; frame++) { 10239 parent = vparent->frame[frame]; 10240 state = vstate->frame[frame]; 10241 parent_reg = parent->regs; 10242 state_reg = state->regs; 10243 /* We don't need to worry about FP liveness, it's read-only */ 10244 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10245 err = propagate_liveness_reg(env, &state_reg[i], 10246 &parent_reg[i]); 10247 if (err < 0) 10248 return err; 10249 if (err == REG_LIVE_READ64) 10250 mark_insn_zext(env, &parent_reg[i]); 10251 } 10252 10253 /* Propagate stack slots. */ 10254 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10255 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10256 parent_reg = &parent->stack[i].spilled_ptr; 10257 state_reg = &state->stack[i].spilled_ptr; 10258 err = propagate_liveness_reg(env, state_reg, 10259 parent_reg); 10260 if (err < 0) 10261 return err; 10262 } 10263 } 10264 return 0; 10265 } 10266 10267 /* find precise scalars in the previous equivalent state and 10268 * propagate them into the current state 10269 */ 10270 static int propagate_precision(struct bpf_verifier_env *env, 10271 const struct bpf_verifier_state *old) 10272 { 10273 struct bpf_reg_state *state_reg; 10274 struct bpf_func_state *state; 10275 int i, err = 0; 10276 10277 state = old->frame[old->curframe]; 10278 state_reg = state->regs; 10279 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10280 if (state_reg->type != SCALAR_VALUE || 10281 !state_reg->precise) 10282 continue; 10283 if (env->log.level & BPF_LOG_LEVEL2) 10284 verbose(env, "propagating r%d\n", i); 10285 err = mark_chain_precision(env, i); 10286 if (err < 0) 10287 return err; 10288 } 10289 10290 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10291 if (state->stack[i].slot_type[0] != STACK_SPILL) 10292 continue; 10293 state_reg = &state->stack[i].spilled_ptr; 10294 if (state_reg->type != SCALAR_VALUE || 10295 !state_reg->precise) 10296 continue; 10297 if (env->log.level & BPF_LOG_LEVEL2) 10298 verbose(env, "propagating fp%d\n", 10299 (-i - 1) * BPF_REG_SIZE); 10300 err = mark_chain_precision_stack(env, i); 10301 if (err < 0) 10302 return err; 10303 } 10304 return 0; 10305 } 10306 10307 static bool states_maybe_looping(struct bpf_verifier_state *old, 10308 struct bpf_verifier_state *cur) 10309 { 10310 struct bpf_func_state *fold, *fcur; 10311 int i, fr = cur->curframe; 10312 10313 if (old->curframe != fr) 10314 return false; 10315 10316 fold = old->frame[fr]; 10317 fcur = cur->frame[fr]; 10318 for (i = 0; i < MAX_BPF_REG; i++) 10319 if (memcmp(&fold->regs[i], &fcur->regs[i], 10320 offsetof(struct bpf_reg_state, parent))) 10321 return false; 10322 return true; 10323 } 10324 10325 10326 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10327 { 10328 struct bpf_verifier_state_list *new_sl; 10329 struct bpf_verifier_state_list *sl, **pprev; 10330 struct bpf_verifier_state *cur = env->cur_state, *new; 10331 int i, j, err, states_cnt = 0; 10332 bool add_new_state = env->test_state_freq ? true : false; 10333 10334 cur->last_insn_idx = env->prev_insn_idx; 10335 if (!env->insn_aux_data[insn_idx].prune_point) 10336 /* this 'insn_idx' instruction wasn't marked, so we will not 10337 * be doing state search here 10338 */ 10339 return 0; 10340 10341 /* bpf progs typically have pruning point every 4 instructions 10342 * http://vger.kernel.org/bpfconf2019.html#session-1 10343 * Do not add new state for future pruning if the verifier hasn't seen 10344 * at least 2 jumps and at least 8 instructions. 10345 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10346 * In tests that amounts to up to 50% reduction into total verifier 10347 * memory consumption and 20% verifier time speedup. 10348 */ 10349 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10350 env->insn_processed - env->prev_insn_processed >= 8) 10351 add_new_state = true; 10352 10353 pprev = explored_state(env, insn_idx); 10354 sl = *pprev; 10355 10356 clean_live_states(env, insn_idx, cur); 10357 10358 while (sl) { 10359 states_cnt++; 10360 if (sl->state.insn_idx != insn_idx) 10361 goto next; 10362 if (sl->state.branches) { 10363 if (states_maybe_looping(&sl->state, cur) && 10364 states_equal(env, &sl->state, cur)) { 10365 verbose_linfo(env, insn_idx, "; "); 10366 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10367 return -EINVAL; 10368 } 10369 /* if the verifier is processing a loop, avoid adding new state 10370 * too often, since different loop iterations have distinct 10371 * states and may not help future pruning. 10372 * This threshold shouldn't be too low to make sure that 10373 * a loop with large bound will be rejected quickly. 10374 * The most abusive loop will be: 10375 * r1 += 1 10376 * if r1 < 1000000 goto pc-2 10377 * 1M insn_procssed limit / 100 == 10k peak states. 10378 * This threshold shouldn't be too high either, since states 10379 * at the end of the loop are likely to be useful in pruning. 10380 */ 10381 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10382 env->insn_processed - env->prev_insn_processed < 100) 10383 add_new_state = false; 10384 goto miss; 10385 } 10386 if (states_equal(env, &sl->state, cur)) { 10387 sl->hit_cnt++; 10388 /* reached equivalent register/stack state, 10389 * prune the search. 10390 * Registers read by the continuation are read by us. 10391 * If we have any write marks in env->cur_state, they 10392 * will prevent corresponding reads in the continuation 10393 * from reaching our parent (an explored_state). Our 10394 * own state will get the read marks recorded, but 10395 * they'll be immediately forgotten as we're pruning 10396 * this state and will pop a new one. 10397 */ 10398 err = propagate_liveness(env, &sl->state, cur); 10399 10400 /* if previous state reached the exit with precision and 10401 * current state is equivalent to it (except precsion marks) 10402 * the precision needs to be propagated back in 10403 * the current state. 10404 */ 10405 err = err ? : push_jmp_history(env, cur); 10406 err = err ? : propagate_precision(env, &sl->state); 10407 if (err) 10408 return err; 10409 return 1; 10410 } 10411 miss: 10412 /* when new state is not going to be added do not increase miss count. 10413 * Otherwise several loop iterations will remove the state 10414 * recorded earlier. The goal of these heuristics is to have 10415 * states from some iterations of the loop (some in the beginning 10416 * and some at the end) to help pruning. 10417 */ 10418 if (add_new_state) 10419 sl->miss_cnt++; 10420 /* heuristic to determine whether this state is beneficial 10421 * to keep checking from state equivalence point of view. 10422 * Higher numbers increase max_states_per_insn and verification time, 10423 * but do not meaningfully decrease insn_processed. 10424 */ 10425 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10426 /* the state is unlikely to be useful. Remove it to 10427 * speed up verification 10428 */ 10429 *pprev = sl->next; 10430 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10431 u32 br = sl->state.branches; 10432 10433 WARN_ONCE(br, 10434 "BUG live_done but branches_to_explore %d\n", 10435 br); 10436 free_verifier_state(&sl->state, false); 10437 kfree(sl); 10438 env->peak_states--; 10439 } else { 10440 /* cannot free this state, since parentage chain may 10441 * walk it later. Add it for free_list instead to 10442 * be freed at the end of verification 10443 */ 10444 sl->next = env->free_list; 10445 env->free_list = sl; 10446 } 10447 sl = *pprev; 10448 continue; 10449 } 10450 next: 10451 pprev = &sl->next; 10452 sl = *pprev; 10453 } 10454 10455 if (env->max_states_per_insn < states_cnt) 10456 env->max_states_per_insn = states_cnt; 10457 10458 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10459 return push_jmp_history(env, cur); 10460 10461 if (!add_new_state) 10462 return push_jmp_history(env, cur); 10463 10464 /* There were no equivalent states, remember the current one. 10465 * Technically the current state is not proven to be safe yet, 10466 * but it will either reach outer most bpf_exit (which means it's safe) 10467 * or it will be rejected. When there are no loops the verifier won't be 10468 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10469 * again on the way to bpf_exit. 10470 * When looping the sl->state.branches will be > 0 and this state 10471 * will not be considered for equivalence until branches == 0. 10472 */ 10473 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10474 if (!new_sl) 10475 return -ENOMEM; 10476 env->total_states++; 10477 env->peak_states++; 10478 env->prev_jmps_processed = env->jmps_processed; 10479 env->prev_insn_processed = env->insn_processed; 10480 10481 /* add new state to the head of linked list */ 10482 new = &new_sl->state; 10483 err = copy_verifier_state(new, cur); 10484 if (err) { 10485 free_verifier_state(new, false); 10486 kfree(new_sl); 10487 return err; 10488 } 10489 new->insn_idx = insn_idx; 10490 WARN_ONCE(new->branches != 1, 10491 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10492 10493 cur->parent = new; 10494 cur->first_insn_idx = insn_idx; 10495 clear_jmp_history(cur); 10496 new_sl->next = *explored_state(env, insn_idx); 10497 *explored_state(env, insn_idx) = new_sl; 10498 /* connect new state to parentage chain. Current frame needs all 10499 * registers connected. Only r6 - r9 of the callers are alive (pushed 10500 * to the stack implicitly by JITs) so in callers' frames connect just 10501 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 10502 * the state of the call instruction (with WRITTEN set), and r0 comes 10503 * from callee with its full parentage chain, anyway. 10504 */ 10505 /* clear write marks in current state: the writes we did are not writes 10506 * our child did, so they don't screen off its reads from us. 10507 * (There are no read marks in current state, because reads always mark 10508 * their parent and current state never has children yet. Only 10509 * explored_states can get read marks.) 10510 */ 10511 for (j = 0; j <= cur->curframe; j++) { 10512 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 10513 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 10514 for (i = 0; i < BPF_REG_FP; i++) 10515 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 10516 } 10517 10518 /* all stack frames are accessible from callee, clear them all */ 10519 for (j = 0; j <= cur->curframe; j++) { 10520 struct bpf_func_state *frame = cur->frame[j]; 10521 struct bpf_func_state *newframe = new->frame[j]; 10522 10523 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 10524 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 10525 frame->stack[i].spilled_ptr.parent = 10526 &newframe->stack[i].spilled_ptr; 10527 } 10528 } 10529 return 0; 10530 } 10531 10532 /* Return true if it's OK to have the same insn return a different type. */ 10533 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 10534 { 10535 switch (type) { 10536 case PTR_TO_CTX: 10537 case PTR_TO_SOCKET: 10538 case PTR_TO_SOCKET_OR_NULL: 10539 case PTR_TO_SOCK_COMMON: 10540 case PTR_TO_SOCK_COMMON_OR_NULL: 10541 case PTR_TO_TCP_SOCK: 10542 case PTR_TO_TCP_SOCK_OR_NULL: 10543 case PTR_TO_XDP_SOCK: 10544 case PTR_TO_BTF_ID: 10545 case PTR_TO_BTF_ID_OR_NULL: 10546 return false; 10547 default: 10548 return true; 10549 } 10550 } 10551 10552 /* If an instruction was previously used with particular pointer types, then we 10553 * need to be careful to avoid cases such as the below, where it may be ok 10554 * for one branch accessing the pointer, but not ok for the other branch: 10555 * 10556 * R1 = sock_ptr 10557 * goto X; 10558 * ... 10559 * R1 = some_other_valid_ptr; 10560 * goto X; 10561 * ... 10562 * R2 = *(u32 *)(R1 + 0); 10563 */ 10564 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 10565 { 10566 return src != prev && (!reg_type_mismatch_ok(src) || 10567 !reg_type_mismatch_ok(prev)); 10568 } 10569 10570 static int do_check(struct bpf_verifier_env *env) 10571 { 10572 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10573 struct bpf_verifier_state *state = env->cur_state; 10574 struct bpf_insn *insns = env->prog->insnsi; 10575 struct bpf_reg_state *regs; 10576 int insn_cnt = env->prog->len; 10577 bool do_print_state = false; 10578 int prev_insn_idx = -1; 10579 10580 for (;;) { 10581 struct bpf_insn *insn; 10582 u8 class; 10583 int err; 10584 10585 env->prev_insn_idx = prev_insn_idx; 10586 if (env->insn_idx >= insn_cnt) { 10587 verbose(env, "invalid insn idx %d insn_cnt %d\n", 10588 env->insn_idx, insn_cnt); 10589 return -EFAULT; 10590 } 10591 10592 insn = &insns[env->insn_idx]; 10593 class = BPF_CLASS(insn->code); 10594 10595 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 10596 verbose(env, 10597 "BPF program is too large. Processed %d insn\n", 10598 env->insn_processed); 10599 return -E2BIG; 10600 } 10601 10602 err = is_state_visited(env, env->insn_idx); 10603 if (err < 0) 10604 return err; 10605 if (err == 1) { 10606 /* found equivalent state, can prune the search */ 10607 if (env->log.level & BPF_LOG_LEVEL) { 10608 if (do_print_state) 10609 verbose(env, "\nfrom %d to %d%s: safe\n", 10610 env->prev_insn_idx, env->insn_idx, 10611 env->cur_state->speculative ? 10612 " (speculative execution)" : ""); 10613 else 10614 verbose(env, "%d: safe\n", env->insn_idx); 10615 } 10616 goto process_bpf_exit; 10617 } 10618 10619 if (signal_pending(current)) 10620 return -EAGAIN; 10621 10622 if (need_resched()) 10623 cond_resched(); 10624 10625 if (env->log.level & BPF_LOG_LEVEL2 || 10626 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 10627 if (env->log.level & BPF_LOG_LEVEL2) 10628 verbose(env, "%d:", env->insn_idx); 10629 else 10630 verbose(env, "\nfrom %d to %d%s:", 10631 env->prev_insn_idx, env->insn_idx, 10632 env->cur_state->speculative ? 10633 " (speculative execution)" : ""); 10634 print_verifier_state(env, state->frame[state->curframe]); 10635 do_print_state = false; 10636 } 10637 10638 if (env->log.level & BPF_LOG_LEVEL) { 10639 const struct bpf_insn_cbs cbs = { 10640 .cb_call = disasm_kfunc_name, 10641 .cb_print = verbose, 10642 .private_data = env, 10643 }; 10644 10645 verbose_linfo(env, env->insn_idx, "; "); 10646 verbose(env, "%d: ", env->insn_idx); 10647 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 10648 } 10649 10650 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10651 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 10652 env->prev_insn_idx); 10653 if (err) 10654 return err; 10655 } 10656 10657 regs = cur_regs(env); 10658 sanitize_mark_insn_seen(env); 10659 prev_insn_idx = env->insn_idx; 10660 10661 if (class == BPF_ALU || class == BPF_ALU64) { 10662 err = check_alu_op(env, insn); 10663 if (err) 10664 return err; 10665 10666 } else if (class == BPF_LDX) { 10667 enum bpf_reg_type *prev_src_type, src_reg_type; 10668 10669 /* check for reserved fields is already done */ 10670 10671 /* check src operand */ 10672 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10673 if (err) 10674 return err; 10675 10676 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10677 if (err) 10678 return err; 10679 10680 src_reg_type = regs[insn->src_reg].type; 10681 10682 /* check that memory (src_reg + off) is readable, 10683 * the state of dst_reg will be updated by this func 10684 */ 10685 err = check_mem_access(env, env->insn_idx, insn->src_reg, 10686 insn->off, BPF_SIZE(insn->code), 10687 BPF_READ, insn->dst_reg, false); 10688 if (err) 10689 return err; 10690 10691 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10692 10693 if (*prev_src_type == NOT_INIT) { 10694 /* saw a valid insn 10695 * dst_reg = *(u32 *)(src_reg + off) 10696 * save type to validate intersecting paths 10697 */ 10698 *prev_src_type = src_reg_type; 10699 10700 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 10701 /* ABuser program is trying to use the same insn 10702 * dst_reg = *(u32*) (src_reg + off) 10703 * with different pointer types: 10704 * src_reg == ctx in one branch and 10705 * src_reg == stack|map in some other branch. 10706 * Reject it. 10707 */ 10708 verbose(env, "same insn cannot be used with different pointers\n"); 10709 return -EINVAL; 10710 } 10711 10712 } else if (class == BPF_STX) { 10713 enum bpf_reg_type *prev_dst_type, dst_reg_type; 10714 10715 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 10716 err = check_atomic(env, env->insn_idx, insn); 10717 if (err) 10718 return err; 10719 env->insn_idx++; 10720 continue; 10721 } 10722 10723 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 10724 verbose(env, "BPF_STX uses reserved fields\n"); 10725 return -EINVAL; 10726 } 10727 10728 /* check src1 operand */ 10729 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10730 if (err) 10731 return err; 10732 /* check src2 operand */ 10733 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10734 if (err) 10735 return err; 10736 10737 dst_reg_type = regs[insn->dst_reg].type; 10738 10739 /* check that memory (dst_reg + off) is writeable */ 10740 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10741 insn->off, BPF_SIZE(insn->code), 10742 BPF_WRITE, insn->src_reg, false); 10743 if (err) 10744 return err; 10745 10746 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10747 10748 if (*prev_dst_type == NOT_INIT) { 10749 *prev_dst_type = dst_reg_type; 10750 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 10751 verbose(env, "same insn cannot be used with different pointers\n"); 10752 return -EINVAL; 10753 } 10754 10755 } else if (class == BPF_ST) { 10756 if (BPF_MODE(insn->code) != BPF_MEM || 10757 insn->src_reg != BPF_REG_0) { 10758 verbose(env, "BPF_ST uses reserved fields\n"); 10759 return -EINVAL; 10760 } 10761 /* check src operand */ 10762 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10763 if (err) 10764 return err; 10765 10766 if (is_ctx_reg(env, insn->dst_reg)) { 10767 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 10768 insn->dst_reg, 10769 reg_type_str[reg_state(env, insn->dst_reg)->type]); 10770 return -EACCES; 10771 } 10772 10773 /* check that memory (dst_reg + off) is writeable */ 10774 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10775 insn->off, BPF_SIZE(insn->code), 10776 BPF_WRITE, -1, false); 10777 if (err) 10778 return err; 10779 10780 } else if (class == BPF_JMP || class == BPF_JMP32) { 10781 u8 opcode = BPF_OP(insn->code); 10782 10783 env->jmps_processed++; 10784 if (opcode == BPF_CALL) { 10785 if (BPF_SRC(insn->code) != BPF_K || 10786 insn->off != 0 || 10787 (insn->src_reg != BPF_REG_0 && 10788 insn->src_reg != BPF_PSEUDO_CALL && 10789 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 10790 insn->dst_reg != BPF_REG_0 || 10791 class == BPF_JMP32) { 10792 verbose(env, "BPF_CALL uses reserved fields\n"); 10793 return -EINVAL; 10794 } 10795 10796 if (env->cur_state->active_spin_lock && 10797 (insn->src_reg == BPF_PSEUDO_CALL || 10798 insn->imm != BPF_FUNC_spin_unlock)) { 10799 verbose(env, "function calls are not allowed while holding a lock\n"); 10800 return -EINVAL; 10801 } 10802 if (insn->src_reg == BPF_PSEUDO_CALL) 10803 err = check_func_call(env, insn, &env->insn_idx); 10804 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 10805 err = check_kfunc_call(env, insn); 10806 else 10807 err = check_helper_call(env, insn, &env->insn_idx); 10808 if (err) 10809 return err; 10810 } else if (opcode == BPF_JA) { 10811 if (BPF_SRC(insn->code) != BPF_K || 10812 insn->imm != 0 || 10813 insn->src_reg != BPF_REG_0 || 10814 insn->dst_reg != BPF_REG_0 || 10815 class == BPF_JMP32) { 10816 verbose(env, "BPF_JA uses reserved fields\n"); 10817 return -EINVAL; 10818 } 10819 10820 env->insn_idx += insn->off + 1; 10821 continue; 10822 10823 } else if (opcode == BPF_EXIT) { 10824 if (BPF_SRC(insn->code) != BPF_K || 10825 insn->imm != 0 || 10826 insn->src_reg != BPF_REG_0 || 10827 insn->dst_reg != BPF_REG_0 || 10828 class == BPF_JMP32) { 10829 verbose(env, "BPF_EXIT uses reserved fields\n"); 10830 return -EINVAL; 10831 } 10832 10833 if (env->cur_state->active_spin_lock) { 10834 verbose(env, "bpf_spin_unlock is missing\n"); 10835 return -EINVAL; 10836 } 10837 10838 if (state->curframe) { 10839 /* exit from nested function */ 10840 err = prepare_func_exit(env, &env->insn_idx); 10841 if (err) 10842 return err; 10843 do_print_state = true; 10844 continue; 10845 } 10846 10847 err = check_reference_leak(env); 10848 if (err) 10849 return err; 10850 10851 err = check_return_code(env); 10852 if (err) 10853 return err; 10854 process_bpf_exit: 10855 update_branch_counts(env, env->cur_state); 10856 err = pop_stack(env, &prev_insn_idx, 10857 &env->insn_idx, pop_log); 10858 if (err < 0) { 10859 if (err != -ENOENT) 10860 return err; 10861 break; 10862 } else { 10863 do_print_state = true; 10864 continue; 10865 } 10866 } else { 10867 err = check_cond_jmp_op(env, insn, &env->insn_idx); 10868 if (err) 10869 return err; 10870 } 10871 } else if (class == BPF_LD) { 10872 u8 mode = BPF_MODE(insn->code); 10873 10874 if (mode == BPF_ABS || mode == BPF_IND) { 10875 err = check_ld_abs(env, insn); 10876 if (err) 10877 return err; 10878 10879 } else if (mode == BPF_IMM) { 10880 err = check_ld_imm(env, insn); 10881 if (err) 10882 return err; 10883 10884 env->insn_idx++; 10885 sanitize_mark_insn_seen(env); 10886 } else { 10887 verbose(env, "invalid BPF_LD mode\n"); 10888 return -EINVAL; 10889 } 10890 } else { 10891 verbose(env, "unknown insn class %d\n", class); 10892 return -EINVAL; 10893 } 10894 10895 env->insn_idx++; 10896 } 10897 10898 return 0; 10899 } 10900 10901 static int find_btf_percpu_datasec(struct btf *btf) 10902 { 10903 const struct btf_type *t; 10904 const char *tname; 10905 int i, n; 10906 10907 /* 10908 * Both vmlinux and module each have their own ".data..percpu" 10909 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 10910 * types to look at only module's own BTF types. 10911 */ 10912 n = btf_nr_types(btf); 10913 if (btf_is_module(btf)) 10914 i = btf_nr_types(btf_vmlinux); 10915 else 10916 i = 1; 10917 10918 for(; i < n; i++) { 10919 t = btf_type_by_id(btf, i); 10920 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 10921 continue; 10922 10923 tname = btf_name_by_offset(btf, t->name_off); 10924 if (!strcmp(tname, ".data..percpu")) 10925 return i; 10926 } 10927 10928 return -ENOENT; 10929 } 10930 10931 /* replace pseudo btf_id with kernel symbol address */ 10932 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 10933 struct bpf_insn *insn, 10934 struct bpf_insn_aux_data *aux) 10935 { 10936 const struct btf_var_secinfo *vsi; 10937 const struct btf_type *datasec; 10938 struct btf_mod_pair *btf_mod; 10939 const struct btf_type *t; 10940 const char *sym_name; 10941 bool percpu = false; 10942 u32 type, id = insn->imm; 10943 struct btf *btf; 10944 s32 datasec_id; 10945 u64 addr; 10946 int i, btf_fd, err; 10947 10948 btf_fd = insn[1].imm; 10949 if (btf_fd) { 10950 btf = btf_get_by_fd(btf_fd); 10951 if (IS_ERR(btf)) { 10952 verbose(env, "invalid module BTF object FD specified.\n"); 10953 return -EINVAL; 10954 } 10955 } else { 10956 if (!btf_vmlinux) { 10957 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 10958 return -EINVAL; 10959 } 10960 btf = btf_vmlinux; 10961 btf_get(btf); 10962 } 10963 10964 t = btf_type_by_id(btf, id); 10965 if (!t) { 10966 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 10967 err = -ENOENT; 10968 goto err_put; 10969 } 10970 10971 if (!btf_type_is_var(t)) { 10972 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 10973 err = -EINVAL; 10974 goto err_put; 10975 } 10976 10977 sym_name = btf_name_by_offset(btf, t->name_off); 10978 addr = kallsyms_lookup_name(sym_name); 10979 if (!addr) { 10980 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 10981 sym_name); 10982 err = -ENOENT; 10983 goto err_put; 10984 } 10985 10986 datasec_id = find_btf_percpu_datasec(btf); 10987 if (datasec_id > 0) { 10988 datasec = btf_type_by_id(btf, datasec_id); 10989 for_each_vsi(i, datasec, vsi) { 10990 if (vsi->type == id) { 10991 percpu = true; 10992 break; 10993 } 10994 } 10995 } 10996 10997 insn[0].imm = (u32)addr; 10998 insn[1].imm = addr >> 32; 10999 11000 type = t->type; 11001 t = btf_type_skip_modifiers(btf, type, NULL); 11002 if (percpu) { 11003 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11004 aux->btf_var.btf = btf; 11005 aux->btf_var.btf_id = type; 11006 } else if (!btf_type_is_struct(t)) { 11007 const struct btf_type *ret; 11008 const char *tname; 11009 u32 tsize; 11010 11011 /* resolve the type size of ksym. */ 11012 ret = btf_resolve_size(btf, t, &tsize); 11013 if (IS_ERR(ret)) { 11014 tname = btf_name_by_offset(btf, t->name_off); 11015 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11016 tname, PTR_ERR(ret)); 11017 err = -EINVAL; 11018 goto err_put; 11019 } 11020 aux->btf_var.reg_type = PTR_TO_MEM; 11021 aux->btf_var.mem_size = tsize; 11022 } else { 11023 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11024 aux->btf_var.btf = btf; 11025 aux->btf_var.btf_id = type; 11026 } 11027 11028 /* check whether we recorded this BTF (and maybe module) already */ 11029 for (i = 0; i < env->used_btf_cnt; i++) { 11030 if (env->used_btfs[i].btf == btf) { 11031 btf_put(btf); 11032 return 0; 11033 } 11034 } 11035 11036 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11037 err = -E2BIG; 11038 goto err_put; 11039 } 11040 11041 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11042 btf_mod->btf = btf; 11043 btf_mod->module = NULL; 11044 11045 /* if we reference variables from kernel module, bump its refcount */ 11046 if (btf_is_module(btf)) { 11047 btf_mod->module = btf_try_get_module(btf); 11048 if (!btf_mod->module) { 11049 err = -ENXIO; 11050 goto err_put; 11051 } 11052 } 11053 11054 env->used_btf_cnt++; 11055 11056 return 0; 11057 err_put: 11058 btf_put(btf); 11059 return err; 11060 } 11061 11062 static int check_map_prealloc(struct bpf_map *map) 11063 { 11064 return (map->map_type != BPF_MAP_TYPE_HASH && 11065 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11066 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11067 !(map->map_flags & BPF_F_NO_PREALLOC); 11068 } 11069 11070 static bool is_tracing_prog_type(enum bpf_prog_type type) 11071 { 11072 switch (type) { 11073 case BPF_PROG_TYPE_KPROBE: 11074 case BPF_PROG_TYPE_TRACEPOINT: 11075 case BPF_PROG_TYPE_PERF_EVENT: 11076 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11077 return true; 11078 default: 11079 return false; 11080 } 11081 } 11082 11083 static bool is_preallocated_map(struct bpf_map *map) 11084 { 11085 if (!check_map_prealloc(map)) 11086 return false; 11087 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11088 return false; 11089 return true; 11090 } 11091 11092 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11093 struct bpf_map *map, 11094 struct bpf_prog *prog) 11095 11096 { 11097 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11098 /* 11099 * Validate that trace type programs use preallocated hash maps. 11100 * 11101 * For programs attached to PERF events this is mandatory as the 11102 * perf NMI can hit any arbitrary code sequence. 11103 * 11104 * All other trace types using preallocated hash maps are unsafe as 11105 * well because tracepoint or kprobes can be inside locked regions 11106 * of the memory allocator or at a place where a recursion into the 11107 * memory allocator would see inconsistent state. 11108 * 11109 * On RT enabled kernels run-time allocation of all trace type 11110 * programs is strictly prohibited due to lock type constraints. On 11111 * !RT kernels it is allowed for backwards compatibility reasons for 11112 * now, but warnings are emitted so developers are made aware of 11113 * the unsafety and can fix their programs before this is enforced. 11114 */ 11115 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11116 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11117 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11118 return -EINVAL; 11119 } 11120 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11121 verbose(env, "trace type programs can only use preallocated hash map\n"); 11122 return -EINVAL; 11123 } 11124 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11125 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11126 } 11127 11128 if (map_value_has_spin_lock(map)) { 11129 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11130 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11131 return -EINVAL; 11132 } 11133 11134 if (is_tracing_prog_type(prog_type)) { 11135 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11136 return -EINVAL; 11137 } 11138 11139 if (prog->aux->sleepable) { 11140 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11141 return -EINVAL; 11142 } 11143 } 11144 11145 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11146 !bpf_offload_prog_map_match(prog, map)) { 11147 verbose(env, "offload device mismatch between prog and map\n"); 11148 return -EINVAL; 11149 } 11150 11151 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11152 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11153 return -EINVAL; 11154 } 11155 11156 if (prog->aux->sleepable) 11157 switch (map->map_type) { 11158 case BPF_MAP_TYPE_HASH: 11159 case BPF_MAP_TYPE_LRU_HASH: 11160 case BPF_MAP_TYPE_ARRAY: 11161 case BPF_MAP_TYPE_PERCPU_HASH: 11162 case BPF_MAP_TYPE_PERCPU_ARRAY: 11163 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11164 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11165 case BPF_MAP_TYPE_HASH_OF_MAPS: 11166 if (!is_preallocated_map(map)) { 11167 verbose(env, 11168 "Sleepable programs can only use preallocated maps\n"); 11169 return -EINVAL; 11170 } 11171 break; 11172 case BPF_MAP_TYPE_RINGBUF: 11173 break; 11174 default: 11175 verbose(env, 11176 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11177 return -EINVAL; 11178 } 11179 11180 return 0; 11181 } 11182 11183 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11184 { 11185 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11186 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11187 } 11188 11189 /* find and rewrite pseudo imm in ld_imm64 instructions: 11190 * 11191 * 1. if it accesses map FD, replace it with actual map pointer. 11192 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11193 * 11194 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11195 */ 11196 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11197 { 11198 struct bpf_insn *insn = env->prog->insnsi; 11199 int insn_cnt = env->prog->len; 11200 int i, j, err; 11201 11202 err = bpf_prog_calc_tag(env->prog); 11203 if (err) 11204 return err; 11205 11206 for (i = 0; i < insn_cnt; i++, insn++) { 11207 if (BPF_CLASS(insn->code) == BPF_LDX && 11208 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11209 verbose(env, "BPF_LDX uses reserved fields\n"); 11210 return -EINVAL; 11211 } 11212 11213 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11214 struct bpf_insn_aux_data *aux; 11215 struct bpf_map *map; 11216 struct fd f; 11217 u64 addr; 11218 u32 fd; 11219 11220 if (i == insn_cnt - 1 || insn[1].code != 0 || 11221 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11222 insn[1].off != 0) { 11223 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11224 return -EINVAL; 11225 } 11226 11227 if (insn[0].src_reg == 0) 11228 /* valid generic load 64-bit imm */ 11229 goto next_insn; 11230 11231 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11232 aux = &env->insn_aux_data[i]; 11233 err = check_pseudo_btf_id(env, insn, aux); 11234 if (err) 11235 return err; 11236 goto next_insn; 11237 } 11238 11239 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11240 aux = &env->insn_aux_data[i]; 11241 aux->ptr_type = PTR_TO_FUNC; 11242 goto next_insn; 11243 } 11244 11245 /* In final convert_pseudo_ld_imm64() step, this is 11246 * converted into regular 64-bit imm load insn. 11247 */ 11248 switch (insn[0].src_reg) { 11249 case BPF_PSEUDO_MAP_VALUE: 11250 case BPF_PSEUDO_MAP_IDX_VALUE: 11251 break; 11252 case BPF_PSEUDO_MAP_FD: 11253 case BPF_PSEUDO_MAP_IDX: 11254 if (insn[1].imm == 0) 11255 break; 11256 fallthrough; 11257 default: 11258 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11259 return -EINVAL; 11260 } 11261 11262 switch (insn[0].src_reg) { 11263 case BPF_PSEUDO_MAP_IDX_VALUE: 11264 case BPF_PSEUDO_MAP_IDX: 11265 if (bpfptr_is_null(env->fd_array)) { 11266 verbose(env, "fd_idx without fd_array is invalid\n"); 11267 return -EPROTO; 11268 } 11269 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11270 insn[0].imm * sizeof(fd), 11271 sizeof(fd))) 11272 return -EFAULT; 11273 break; 11274 default: 11275 fd = insn[0].imm; 11276 break; 11277 } 11278 11279 f = fdget(fd); 11280 map = __bpf_map_get(f); 11281 if (IS_ERR(map)) { 11282 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11283 insn[0].imm); 11284 return PTR_ERR(map); 11285 } 11286 11287 err = check_map_prog_compatibility(env, map, env->prog); 11288 if (err) { 11289 fdput(f); 11290 return err; 11291 } 11292 11293 aux = &env->insn_aux_data[i]; 11294 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11295 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11296 addr = (unsigned long)map; 11297 } else { 11298 u32 off = insn[1].imm; 11299 11300 if (off >= BPF_MAX_VAR_OFF) { 11301 verbose(env, "direct value offset of %u is not allowed\n", off); 11302 fdput(f); 11303 return -EINVAL; 11304 } 11305 11306 if (!map->ops->map_direct_value_addr) { 11307 verbose(env, "no direct value access support for this map type\n"); 11308 fdput(f); 11309 return -EINVAL; 11310 } 11311 11312 err = map->ops->map_direct_value_addr(map, &addr, off); 11313 if (err) { 11314 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11315 map->value_size, off); 11316 fdput(f); 11317 return err; 11318 } 11319 11320 aux->map_off = off; 11321 addr += off; 11322 } 11323 11324 insn[0].imm = (u32)addr; 11325 insn[1].imm = addr >> 32; 11326 11327 /* check whether we recorded this map already */ 11328 for (j = 0; j < env->used_map_cnt; j++) { 11329 if (env->used_maps[j] == map) { 11330 aux->map_index = j; 11331 fdput(f); 11332 goto next_insn; 11333 } 11334 } 11335 11336 if (env->used_map_cnt >= MAX_USED_MAPS) { 11337 fdput(f); 11338 return -E2BIG; 11339 } 11340 11341 /* hold the map. If the program is rejected by verifier, 11342 * the map will be released by release_maps() or it 11343 * will be used by the valid program until it's unloaded 11344 * and all maps are released in free_used_maps() 11345 */ 11346 bpf_map_inc(map); 11347 11348 aux->map_index = env->used_map_cnt; 11349 env->used_maps[env->used_map_cnt++] = map; 11350 11351 if (bpf_map_is_cgroup_storage(map) && 11352 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11353 verbose(env, "only one cgroup storage of each type is allowed\n"); 11354 fdput(f); 11355 return -EBUSY; 11356 } 11357 11358 fdput(f); 11359 next_insn: 11360 insn++; 11361 i++; 11362 continue; 11363 } 11364 11365 /* Basic sanity check before we invest more work here. */ 11366 if (!bpf_opcode_in_insntable(insn->code)) { 11367 verbose(env, "unknown opcode %02x\n", insn->code); 11368 return -EINVAL; 11369 } 11370 } 11371 11372 /* now all pseudo BPF_LD_IMM64 instructions load valid 11373 * 'struct bpf_map *' into a register instead of user map_fd. 11374 * These pointers will be used later by verifier to validate map access. 11375 */ 11376 return 0; 11377 } 11378 11379 /* drop refcnt of maps used by the rejected program */ 11380 static void release_maps(struct bpf_verifier_env *env) 11381 { 11382 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11383 env->used_map_cnt); 11384 } 11385 11386 /* drop refcnt of maps used by the rejected program */ 11387 static void release_btfs(struct bpf_verifier_env *env) 11388 { 11389 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11390 env->used_btf_cnt); 11391 } 11392 11393 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11394 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11395 { 11396 struct bpf_insn *insn = env->prog->insnsi; 11397 int insn_cnt = env->prog->len; 11398 int i; 11399 11400 for (i = 0; i < insn_cnt; i++, insn++) { 11401 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11402 continue; 11403 if (insn->src_reg == BPF_PSEUDO_FUNC) 11404 continue; 11405 insn->src_reg = 0; 11406 } 11407 } 11408 11409 /* single env->prog->insni[off] instruction was replaced with the range 11410 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11411 * [0, off) and [off, end) to new locations, so the patched range stays zero 11412 */ 11413 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 11414 struct bpf_prog *new_prog, u32 off, u32 cnt) 11415 { 11416 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 11417 struct bpf_insn *insn = new_prog->insnsi; 11418 u32 old_seen = old_data[off].seen; 11419 u32 prog_len; 11420 int i; 11421 11422 /* aux info at OFF always needs adjustment, no matter fast path 11423 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11424 * original insn at old prog. 11425 */ 11426 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11427 11428 if (cnt == 1) 11429 return 0; 11430 prog_len = new_prog->len; 11431 new_data = vzalloc(array_size(prog_len, 11432 sizeof(struct bpf_insn_aux_data))); 11433 if (!new_data) 11434 return -ENOMEM; 11435 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11436 memcpy(new_data + off + cnt - 1, old_data + off, 11437 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11438 for (i = off; i < off + cnt - 1; i++) { 11439 /* Expand insni[off]'s seen count to the patched range. */ 11440 new_data[i].seen = old_seen; 11441 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11442 } 11443 env->insn_aux_data = new_data; 11444 vfree(old_data); 11445 return 0; 11446 } 11447 11448 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11449 { 11450 int i; 11451 11452 if (len == 1) 11453 return; 11454 /* NOTE: fake 'exit' subprog should be updated as well. */ 11455 for (i = 0; i <= env->subprog_cnt; i++) { 11456 if (env->subprog_info[i].start <= off) 11457 continue; 11458 env->subprog_info[i].start += len - 1; 11459 } 11460 } 11461 11462 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 11463 { 11464 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11465 int i, sz = prog->aux->size_poke_tab; 11466 struct bpf_jit_poke_descriptor *desc; 11467 11468 for (i = 0; i < sz; i++) { 11469 desc = &tab[i]; 11470 if (desc->insn_idx <= off) 11471 continue; 11472 desc->insn_idx += len - 1; 11473 } 11474 } 11475 11476 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11477 const struct bpf_insn *patch, u32 len) 11478 { 11479 struct bpf_prog *new_prog; 11480 11481 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11482 if (IS_ERR(new_prog)) { 11483 if (PTR_ERR(new_prog) == -ERANGE) 11484 verbose(env, 11485 "insn %d cannot be patched due to 16-bit range\n", 11486 env->insn_aux_data[off].orig_idx); 11487 return NULL; 11488 } 11489 if (adjust_insn_aux_data(env, new_prog, off, len)) 11490 return NULL; 11491 adjust_subprog_starts(env, off, len); 11492 adjust_poke_descs(new_prog, off, len); 11493 return new_prog; 11494 } 11495 11496 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 11497 u32 off, u32 cnt) 11498 { 11499 int i, j; 11500 11501 /* find first prog starting at or after off (first to remove) */ 11502 for (i = 0; i < env->subprog_cnt; i++) 11503 if (env->subprog_info[i].start >= off) 11504 break; 11505 /* find first prog starting at or after off + cnt (first to stay) */ 11506 for (j = i; j < env->subprog_cnt; j++) 11507 if (env->subprog_info[j].start >= off + cnt) 11508 break; 11509 /* if j doesn't start exactly at off + cnt, we are just removing 11510 * the front of previous prog 11511 */ 11512 if (env->subprog_info[j].start != off + cnt) 11513 j--; 11514 11515 if (j > i) { 11516 struct bpf_prog_aux *aux = env->prog->aux; 11517 int move; 11518 11519 /* move fake 'exit' subprog as well */ 11520 move = env->subprog_cnt + 1 - j; 11521 11522 memmove(env->subprog_info + i, 11523 env->subprog_info + j, 11524 sizeof(*env->subprog_info) * move); 11525 env->subprog_cnt -= j - i; 11526 11527 /* remove func_info */ 11528 if (aux->func_info) { 11529 move = aux->func_info_cnt - j; 11530 11531 memmove(aux->func_info + i, 11532 aux->func_info + j, 11533 sizeof(*aux->func_info) * move); 11534 aux->func_info_cnt -= j - i; 11535 /* func_info->insn_off is set after all code rewrites, 11536 * in adjust_btf_func() - no need to adjust 11537 */ 11538 } 11539 } else { 11540 /* convert i from "first prog to remove" to "first to adjust" */ 11541 if (env->subprog_info[i].start == off) 11542 i++; 11543 } 11544 11545 /* update fake 'exit' subprog as well */ 11546 for (; i <= env->subprog_cnt; i++) 11547 env->subprog_info[i].start -= cnt; 11548 11549 return 0; 11550 } 11551 11552 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 11553 u32 cnt) 11554 { 11555 struct bpf_prog *prog = env->prog; 11556 u32 i, l_off, l_cnt, nr_linfo; 11557 struct bpf_line_info *linfo; 11558 11559 nr_linfo = prog->aux->nr_linfo; 11560 if (!nr_linfo) 11561 return 0; 11562 11563 linfo = prog->aux->linfo; 11564 11565 /* find first line info to remove, count lines to be removed */ 11566 for (i = 0; i < nr_linfo; i++) 11567 if (linfo[i].insn_off >= off) 11568 break; 11569 11570 l_off = i; 11571 l_cnt = 0; 11572 for (; i < nr_linfo; i++) 11573 if (linfo[i].insn_off < off + cnt) 11574 l_cnt++; 11575 else 11576 break; 11577 11578 /* First live insn doesn't match first live linfo, it needs to "inherit" 11579 * last removed linfo. prog is already modified, so prog->len == off 11580 * means no live instructions after (tail of the program was removed). 11581 */ 11582 if (prog->len != off && l_cnt && 11583 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 11584 l_cnt--; 11585 linfo[--i].insn_off = off + cnt; 11586 } 11587 11588 /* remove the line info which refer to the removed instructions */ 11589 if (l_cnt) { 11590 memmove(linfo + l_off, linfo + i, 11591 sizeof(*linfo) * (nr_linfo - i)); 11592 11593 prog->aux->nr_linfo -= l_cnt; 11594 nr_linfo = prog->aux->nr_linfo; 11595 } 11596 11597 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 11598 for (i = l_off; i < nr_linfo; i++) 11599 linfo[i].insn_off -= cnt; 11600 11601 /* fix up all subprogs (incl. 'exit') which start >= off */ 11602 for (i = 0; i <= env->subprog_cnt; i++) 11603 if (env->subprog_info[i].linfo_idx > l_off) { 11604 /* program may have started in the removed region but 11605 * may not be fully removed 11606 */ 11607 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 11608 env->subprog_info[i].linfo_idx -= l_cnt; 11609 else 11610 env->subprog_info[i].linfo_idx = l_off; 11611 } 11612 11613 return 0; 11614 } 11615 11616 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 11617 { 11618 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11619 unsigned int orig_prog_len = env->prog->len; 11620 int err; 11621 11622 if (bpf_prog_is_dev_bound(env->prog->aux)) 11623 bpf_prog_offload_remove_insns(env, off, cnt); 11624 11625 err = bpf_remove_insns(env->prog, off, cnt); 11626 if (err) 11627 return err; 11628 11629 err = adjust_subprog_starts_after_remove(env, off, cnt); 11630 if (err) 11631 return err; 11632 11633 err = bpf_adj_linfo_after_remove(env, off, cnt); 11634 if (err) 11635 return err; 11636 11637 memmove(aux_data + off, aux_data + off + cnt, 11638 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 11639 11640 return 0; 11641 } 11642 11643 /* The verifier does more data flow analysis than llvm and will not 11644 * explore branches that are dead at run time. Malicious programs can 11645 * have dead code too. Therefore replace all dead at-run-time code 11646 * with 'ja -1'. 11647 * 11648 * Just nops are not optimal, e.g. if they would sit at the end of the 11649 * program and through another bug we would manage to jump there, then 11650 * we'd execute beyond program memory otherwise. Returning exception 11651 * code also wouldn't work since we can have subprogs where the dead 11652 * code could be located. 11653 */ 11654 static void sanitize_dead_code(struct bpf_verifier_env *env) 11655 { 11656 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11657 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 11658 struct bpf_insn *insn = env->prog->insnsi; 11659 const int insn_cnt = env->prog->len; 11660 int i; 11661 11662 for (i = 0; i < insn_cnt; i++) { 11663 if (aux_data[i].seen) 11664 continue; 11665 memcpy(insn + i, &trap, sizeof(trap)); 11666 } 11667 } 11668 11669 static bool insn_is_cond_jump(u8 code) 11670 { 11671 u8 op; 11672 11673 if (BPF_CLASS(code) == BPF_JMP32) 11674 return true; 11675 11676 if (BPF_CLASS(code) != BPF_JMP) 11677 return false; 11678 11679 op = BPF_OP(code); 11680 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 11681 } 11682 11683 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 11684 { 11685 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11686 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11687 struct bpf_insn *insn = env->prog->insnsi; 11688 const int insn_cnt = env->prog->len; 11689 int i; 11690 11691 for (i = 0; i < insn_cnt; i++, insn++) { 11692 if (!insn_is_cond_jump(insn->code)) 11693 continue; 11694 11695 if (!aux_data[i + 1].seen) 11696 ja.off = insn->off; 11697 else if (!aux_data[i + 1 + insn->off].seen) 11698 ja.off = 0; 11699 else 11700 continue; 11701 11702 if (bpf_prog_is_dev_bound(env->prog->aux)) 11703 bpf_prog_offload_replace_insn(env, i, &ja); 11704 11705 memcpy(insn, &ja, sizeof(ja)); 11706 } 11707 } 11708 11709 static int opt_remove_dead_code(struct bpf_verifier_env *env) 11710 { 11711 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11712 int insn_cnt = env->prog->len; 11713 int i, err; 11714 11715 for (i = 0; i < insn_cnt; i++) { 11716 int j; 11717 11718 j = 0; 11719 while (i + j < insn_cnt && !aux_data[i + j].seen) 11720 j++; 11721 if (!j) 11722 continue; 11723 11724 err = verifier_remove_insns(env, i, j); 11725 if (err) 11726 return err; 11727 insn_cnt = env->prog->len; 11728 } 11729 11730 return 0; 11731 } 11732 11733 static int opt_remove_nops(struct bpf_verifier_env *env) 11734 { 11735 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11736 struct bpf_insn *insn = env->prog->insnsi; 11737 int insn_cnt = env->prog->len; 11738 int i, err; 11739 11740 for (i = 0; i < insn_cnt; i++) { 11741 if (memcmp(&insn[i], &ja, sizeof(ja))) 11742 continue; 11743 11744 err = verifier_remove_insns(env, i, 1); 11745 if (err) 11746 return err; 11747 insn_cnt--; 11748 i--; 11749 } 11750 11751 return 0; 11752 } 11753 11754 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 11755 const union bpf_attr *attr) 11756 { 11757 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 11758 struct bpf_insn_aux_data *aux = env->insn_aux_data; 11759 int i, patch_len, delta = 0, len = env->prog->len; 11760 struct bpf_insn *insns = env->prog->insnsi; 11761 struct bpf_prog *new_prog; 11762 bool rnd_hi32; 11763 11764 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 11765 zext_patch[1] = BPF_ZEXT_REG(0); 11766 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 11767 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 11768 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 11769 for (i = 0; i < len; i++) { 11770 int adj_idx = i + delta; 11771 struct bpf_insn insn; 11772 int load_reg; 11773 11774 insn = insns[adj_idx]; 11775 load_reg = insn_def_regno(&insn); 11776 if (!aux[adj_idx].zext_dst) { 11777 u8 code, class; 11778 u32 imm_rnd; 11779 11780 if (!rnd_hi32) 11781 continue; 11782 11783 code = insn.code; 11784 class = BPF_CLASS(code); 11785 if (load_reg == -1) 11786 continue; 11787 11788 /* NOTE: arg "reg" (the fourth one) is only used for 11789 * BPF_STX + SRC_OP, so it is safe to pass NULL 11790 * here. 11791 */ 11792 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 11793 if (class == BPF_LD && 11794 BPF_MODE(code) == BPF_IMM) 11795 i++; 11796 continue; 11797 } 11798 11799 /* ctx load could be transformed into wider load. */ 11800 if (class == BPF_LDX && 11801 aux[adj_idx].ptr_type == PTR_TO_CTX) 11802 continue; 11803 11804 imm_rnd = get_random_int(); 11805 rnd_hi32_patch[0] = insn; 11806 rnd_hi32_patch[1].imm = imm_rnd; 11807 rnd_hi32_patch[3].dst_reg = load_reg; 11808 patch = rnd_hi32_patch; 11809 patch_len = 4; 11810 goto apply_patch_buffer; 11811 } 11812 11813 /* Add in an zero-extend instruction if a) the JIT has requested 11814 * it or b) it's a CMPXCHG. 11815 * 11816 * The latter is because: BPF_CMPXCHG always loads a value into 11817 * R0, therefore always zero-extends. However some archs' 11818 * equivalent instruction only does this load when the 11819 * comparison is successful. This detail of CMPXCHG is 11820 * orthogonal to the general zero-extension behaviour of the 11821 * CPU, so it's treated independently of bpf_jit_needs_zext. 11822 */ 11823 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 11824 continue; 11825 11826 if (WARN_ON(load_reg == -1)) { 11827 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 11828 return -EFAULT; 11829 } 11830 11831 zext_patch[0] = insn; 11832 zext_patch[1].dst_reg = load_reg; 11833 zext_patch[1].src_reg = load_reg; 11834 patch = zext_patch; 11835 patch_len = 2; 11836 apply_patch_buffer: 11837 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 11838 if (!new_prog) 11839 return -ENOMEM; 11840 env->prog = new_prog; 11841 insns = new_prog->insnsi; 11842 aux = env->insn_aux_data; 11843 delta += patch_len - 1; 11844 } 11845 11846 return 0; 11847 } 11848 11849 /* convert load instructions that access fields of a context type into a 11850 * sequence of instructions that access fields of the underlying structure: 11851 * struct __sk_buff -> struct sk_buff 11852 * struct bpf_sock_ops -> struct sock 11853 */ 11854 static int convert_ctx_accesses(struct bpf_verifier_env *env) 11855 { 11856 const struct bpf_verifier_ops *ops = env->ops; 11857 int i, cnt, size, ctx_field_size, delta = 0; 11858 const int insn_cnt = env->prog->len; 11859 struct bpf_insn insn_buf[16], *insn; 11860 u32 target_size, size_default, off; 11861 struct bpf_prog *new_prog; 11862 enum bpf_access_type type; 11863 bool is_narrower_load; 11864 11865 if (ops->gen_prologue || env->seen_direct_write) { 11866 if (!ops->gen_prologue) { 11867 verbose(env, "bpf verifier is misconfigured\n"); 11868 return -EINVAL; 11869 } 11870 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 11871 env->prog); 11872 if (cnt >= ARRAY_SIZE(insn_buf)) { 11873 verbose(env, "bpf verifier is misconfigured\n"); 11874 return -EINVAL; 11875 } else if (cnt) { 11876 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 11877 if (!new_prog) 11878 return -ENOMEM; 11879 11880 env->prog = new_prog; 11881 delta += cnt - 1; 11882 } 11883 } 11884 11885 if (bpf_prog_is_dev_bound(env->prog->aux)) 11886 return 0; 11887 11888 insn = env->prog->insnsi + delta; 11889 11890 for (i = 0; i < insn_cnt; i++, insn++) { 11891 bpf_convert_ctx_access_t convert_ctx_access; 11892 bool ctx_access; 11893 11894 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 11895 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 11896 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 11897 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 11898 type = BPF_READ; 11899 ctx_access = true; 11900 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 11901 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 11902 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 11903 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 11904 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 11905 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 11906 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 11907 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 11908 type = BPF_WRITE; 11909 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 11910 } else { 11911 continue; 11912 } 11913 11914 if (type == BPF_WRITE && 11915 env->insn_aux_data[i + delta].sanitize_stack_spill) { 11916 struct bpf_insn patch[] = { 11917 *insn, 11918 BPF_ST_NOSPEC(), 11919 }; 11920 11921 cnt = ARRAY_SIZE(patch); 11922 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 11923 if (!new_prog) 11924 return -ENOMEM; 11925 11926 delta += cnt - 1; 11927 env->prog = new_prog; 11928 insn = new_prog->insnsi + i + delta; 11929 continue; 11930 } 11931 11932 if (!ctx_access) 11933 continue; 11934 11935 switch (env->insn_aux_data[i + delta].ptr_type) { 11936 case PTR_TO_CTX: 11937 if (!ops->convert_ctx_access) 11938 continue; 11939 convert_ctx_access = ops->convert_ctx_access; 11940 break; 11941 case PTR_TO_SOCKET: 11942 case PTR_TO_SOCK_COMMON: 11943 convert_ctx_access = bpf_sock_convert_ctx_access; 11944 break; 11945 case PTR_TO_TCP_SOCK: 11946 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 11947 break; 11948 case PTR_TO_XDP_SOCK: 11949 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 11950 break; 11951 case PTR_TO_BTF_ID: 11952 if (type == BPF_READ) { 11953 insn->code = BPF_LDX | BPF_PROBE_MEM | 11954 BPF_SIZE((insn)->code); 11955 env->prog->aux->num_exentries++; 11956 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 11957 verbose(env, "Writes through BTF pointers are not allowed\n"); 11958 return -EINVAL; 11959 } 11960 continue; 11961 default: 11962 continue; 11963 } 11964 11965 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 11966 size = BPF_LDST_BYTES(insn); 11967 11968 /* If the read access is a narrower load of the field, 11969 * convert to a 4/8-byte load, to minimum program type specific 11970 * convert_ctx_access changes. If conversion is successful, 11971 * we will apply proper mask to the result. 11972 */ 11973 is_narrower_load = size < ctx_field_size; 11974 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 11975 off = insn->off; 11976 if (is_narrower_load) { 11977 u8 size_code; 11978 11979 if (type == BPF_WRITE) { 11980 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 11981 return -EINVAL; 11982 } 11983 11984 size_code = BPF_H; 11985 if (ctx_field_size == 4) 11986 size_code = BPF_W; 11987 else if (ctx_field_size == 8) 11988 size_code = BPF_DW; 11989 11990 insn->off = off & ~(size_default - 1); 11991 insn->code = BPF_LDX | BPF_MEM | size_code; 11992 } 11993 11994 target_size = 0; 11995 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 11996 &target_size); 11997 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 11998 (ctx_field_size && !target_size)) { 11999 verbose(env, "bpf verifier is misconfigured\n"); 12000 return -EINVAL; 12001 } 12002 12003 if (is_narrower_load && size < target_size) { 12004 u8 shift = bpf_ctx_narrow_access_offset( 12005 off, size, size_default) * 8; 12006 if (ctx_field_size <= 4) { 12007 if (shift) 12008 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12009 insn->dst_reg, 12010 shift); 12011 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12012 (1 << size * 8) - 1); 12013 } else { 12014 if (shift) 12015 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12016 insn->dst_reg, 12017 shift); 12018 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12019 (1ULL << size * 8) - 1); 12020 } 12021 } 12022 12023 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12024 if (!new_prog) 12025 return -ENOMEM; 12026 12027 delta += cnt - 1; 12028 12029 /* keep walking new program and skip insns we just inserted */ 12030 env->prog = new_prog; 12031 insn = new_prog->insnsi + i + delta; 12032 } 12033 12034 return 0; 12035 } 12036 12037 static int jit_subprogs(struct bpf_verifier_env *env) 12038 { 12039 struct bpf_prog *prog = env->prog, **func, *tmp; 12040 int i, j, subprog_start, subprog_end = 0, len, subprog; 12041 struct bpf_map *map_ptr; 12042 struct bpf_insn *insn; 12043 void *old_bpf_func; 12044 int err, num_exentries; 12045 12046 if (env->subprog_cnt <= 1) 12047 return 0; 12048 12049 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12050 if (bpf_pseudo_func(insn)) { 12051 env->insn_aux_data[i].call_imm = insn->imm; 12052 /* subprog is encoded in insn[1].imm */ 12053 continue; 12054 } 12055 12056 if (!bpf_pseudo_call(insn)) 12057 continue; 12058 /* Upon error here we cannot fall back to interpreter but 12059 * need a hard reject of the program. Thus -EFAULT is 12060 * propagated in any case. 12061 */ 12062 subprog = find_subprog(env, i + insn->imm + 1); 12063 if (subprog < 0) { 12064 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12065 i + insn->imm + 1); 12066 return -EFAULT; 12067 } 12068 /* temporarily remember subprog id inside insn instead of 12069 * aux_data, since next loop will split up all insns into funcs 12070 */ 12071 insn->off = subprog; 12072 /* remember original imm in case JIT fails and fallback 12073 * to interpreter will be needed 12074 */ 12075 env->insn_aux_data[i].call_imm = insn->imm; 12076 /* point imm to __bpf_call_base+1 from JITs point of view */ 12077 insn->imm = 1; 12078 } 12079 12080 err = bpf_prog_alloc_jited_linfo(prog); 12081 if (err) 12082 goto out_undo_insn; 12083 12084 err = -ENOMEM; 12085 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12086 if (!func) 12087 goto out_undo_insn; 12088 12089 for (i = 0; i < env->subprog_cnt; i++) { 12090 subprog_start = subprog_end; 12091 subprog_end = env->subprog_info[i + 1].start; 12092 12093 len = subprog_end - subprog_start; 12094 /* BPF_PROG_RUN doesn't call subprogs directly, 12095 * hence main prog stats include the runtime of subprogs. 12096 * subprogs don't have IDs and not reachable via prog_get_next_id 12097 * func[i]->stats will never be accessed and stays NULL 12098 */ 12099 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12100 if (!func[i]) 12101 goto out_free; 12102 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12103 len * sizeof(struct bpf_insn)); 12104 func[i]->type = prog->type; 12105 func[i]->len = len; 12106 if (bpf_prog_calc_tag(func[i])) 12107 goto out_free; 12108 func[i]->is_func = 1; 12109 func[i]->aux->func_idx = i; 12110 /* Below members will be freed only at prog->aux */ 12111 func[i]->aux->btf = prog->aux->btf; 12112 func[i]->aux->func_info = prog->aux->func_info; 12113 func[i]->aux->poke_tab = prog->aux->poke_tab; 12114 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12115 12116 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12117 struct bpf_jit_poke_descriptor *poke; 12118 12119 poke = &prog->aux->poke_tab[j]; 12120 if (poke->insn_idx < subprog_end && 12121 poke->insn_idx >= subprog_start) 12122 poke->aux = func[i]->aux; 12123 } 12124 12125 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12126 * Long term would need debug info to populate names 12127 */ 12128 func[i]->aux->name[0] = 'F'; 12129 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12130 func[i]->jit_requested = 1; 12131 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12132 func[i]->aux->linfo = prog->aux->linfo; 12133 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12134 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12135 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12136 num_exentries = 0; 12137 insn = func[i]->insnsi; 12138 for (j = 0; j < func[i]->len; j++, insn++) { 12139 if (BPF_CLASS(insn->code) == BPF_LDX && 12140 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12141 num_exentries++; 12142 } 12143 func[i]->aux->num_exentries = num_exentries; 12144 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12145 func[i] = bpf_int_jit_compile(func[i]); 12146 if (!func[i]->jited) { 12147 err = -ENOTSUPP; 12148 goto out_free; 12149 } 12150 cond_resched(); 12151 } 12152 12153 /* at this point all bpf functions were successfully JITed 12154 * now populate all bpf_calls with correct addresses and 12155 * run last pass of JIT 12156 */ 12157 for (i = 0; i < env->subprog_cnt; i++) { 12158 insn = func[i]->insnsi; 12159 for (j = 0; j < func[i]->len; j++, insn++) { 12160 if (bpf_pseudo_func(insn)) { 12161 subprog = insn[1].imm; 12162 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12163 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12164 continue; 12165 } 12166 if (!bpf_pseudo_call(insn)) 12167 continue; 12168 subprog = insn->off; 12169 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 12170 __bpf_call_base; 12171 } 12172 12173 /* we use the aux data to keep a list of the start addresses 12174 * of the JITed images for each function in the program 12175 * 12176 * for some architectures, such as powerpc64, the imm field 12177 * might not be large enough to hold the offset of the start 12178 * address of the callee's JITed image from __bpf_call_base 12179 * 12180 * in such cases, we can lookup the start address of a callee 12181 * by using its subprog id, available from the off field of 12182 * the call instruction, as an index for this list 12183 */ 12184 func[i]->aux->func = func; 12185 func[i]->aux->func_cnt = env->subprog_cnt; 12186 } 12187 for (i = 0; i < env->subprog_cnt; i++) { 12188 old_bpf_func = func[i]->bpf_func; 12189 tmp = bpf_int_jit_compile(func[i]); 12190 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12191 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12192 err = -ENOTSUPP; 12193 goto out_free; 12194 } 12195 cond_resched(); 12196 } 12197 12198 /* finally lock prog and jit images for all functions and 12199 * populate kallsysm 12200 */ 12201 for (i = 0; i < env->subprog_cnt; i++) { 12202 bpf_prog_lock_ro(func[i]); 12203 bpf_prog_kallsyms_add(func[i]); 12204 } 12205 12206 /* Last step: make now unused interpreter insns from main 12207 * prog consistent for later dump requests, so they can 12208 * later look the same as if they were interpreted only. 12209 */ 12210 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12211 if (bpf_pseudo_func(insn)) { 12212 insn[0].imm = env->insn_aux_data[i].call_imm; 12213 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12214 continue; 12215 } 12216 if (!bpf_pseudo_call(insn)) 12217 continue; 12218 insn->off = env->insn_aux_data[i].call_imm; 12219 subprog = find_subprog(env, i + insn->off + 1); 12220 insn->imm = subprog; 12221 } 12222 12223 prog->jited = 1; 12224 prog->bpf_func = func[0]->bpf_func; 12225 prog->aux->func = func; 12226 prog->aux->func_cnt = env->subprog_cnt; 12227 bpf_prog_jit_attempt_done(prog); 12228 return 0; 12229 out_free: 12230 /* We failed JIT'ing, so at this point we need to unregister poke 12231 * descriptors from subprogs, so that kernel is not attempting to 12232 * patch it anymore as we're freeing the subprog JIT memory. 12233 */ 12234 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12235 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12236 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12237 } 12238 /* At this point we're guaranteed that poke descriptors are not 12239 * live anymore. We can just unlink its descriptor table as it's 12240 * released with the main prog. 12241 */ 12242 for (i = 0; i < env->subprog_cnt; i++) { 12243 if (!func[i]) 12244 continue; 12245 func[i]->aux->poke_tab = NULL; 12246 bpf_jit_free(func[i]); 12247 } 12248 kfree(func); 12249 out_undo_insn: 12250 /* cleanup main prog to be interpreted */ 12251 prog->jit_requested = 0; 12252 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12253 if (!bpf_pseudo_call(insn)) 12254 continue; 12255 insn->off = 0; 12256 insn->imm = env->insn_aux_data[i].call_imm; 12257 } 12258 bpf_prog_jit_attempt_done(prog); 12259 return err; 12260 } 12261 12262 static int fixup_call_args(struct bpf_verifier_env *env) 12263 { 12264 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12265 struct bpf_prog *prog = env->prog; 12266 struct bpf_insn *insn = prog->insnsi; 12267 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12268 int i, depth; 12269 #endif 12270 int err = 0; 12271 12272 if (env->prog->jit_requested && 12273 !bpf_prog_is_dev_bound(env->prog->aux)) { 12274 err = jit_subprogs(env); 12275 if (err == 0) 12276 return 0; 12277 if (err == -EFAULT) 12278 return err; 12279 } 12280 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12281 if (has_kfunc_call) { 12282 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12283 return -EINVAL; 12284 } 12285 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12286 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12287 * have to be rejected, since interpreter doesn't support them yet. 12288 */ 12289 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12290 return -EINVAL; 12291 } 12292 for (i = 0; i < prog->len; i++, insn++) { 12293 if (bpf_pseudo_func(insn)) { 12294 /* When JIT fails the progs with callback calls 12295 * have to be rejected, since interpreter doesn't support them yet. 12296 */ 12297 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12298 return -EINVAL; 12299 } 12300 12301 if (!bpf_pseudo_call(insn)) 12302 continue; 12303 depth = get_callee_stack_depth(env, insn, i); 12304 if (depth < 0) 12305 return depth; 12306 bpf_patch_call_args(insn, depth); 12307 } 12308 err = 0; 12309 #endif 12310 return err; 12311 } 12312 12313 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12314 struct bpf_insn *insn) 12315 { 12316 const struct bpf_kfunc_desc *desc; 12317 12318 /* insn->imm has the btf func_id. Replace it with 12319 * an address (relative to __bpf_base_call). 12320 */ 12321 desc = find_kfunc_desc(env->prog, insn->imm); 12322 if (!desc) { 12323 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12324 insn->imm); 12325 return -EFAULT; 12326 } 12327 12328 insn->imm = desc->imm; 12329 12330 return 0; 12331 } 12332 12333 /* Do various post-verification rewrites in a single program pass. 12334 * These rewrites simplify JIT and interpreter implementations. 12335 */ 12336 static int do_misc_fixups(struct bpf_verifier_env *env) 12337 { 12338 struct bpf_prog *prog = env->prog; 12339 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12340 struct bpf_insn *insn = prog->insnsi; 12341 const struct bpf_func_proto *fn; 12342 const int insn_cnt = prog->len; 12343 const struct bpf_map_ops *ops; 12344 struct bpf_insn_aux_data *aux; 12345 struct bpf_insn insn_buf[16]; 12346 struct bpf_prog *new_prog; 12347 struct bpf_map *map_ptr; 12348 int i, ret, cnt, delta = 0; 12349 12350 for (i = 0; i < insn_cnt; i++, insn++) { 12351 /* Make divide-by-zero exceptions impossible. */ 12352 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12353 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12354 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12355 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12356 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12357 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12358 struct bpf_insn *patchlet; 12359 struct bpf_insn chk_and_div[] = { 12360 /* [R,W]x div 0 -> 0 */ 12361 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12362 BPF_JNE | BPF_K, insn->src_reg, 12363 0, 2, 0), 12364 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12365 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12366 *insn, 12367 }; 12368 struct bpf_insn chk_and_mod[] = { 12369 /* [R,W]x mod 0 -> [R,W]x */ 12370 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12371 BPF_JEQ | BPF_K, insn->src_reg, 12372 0, 1 + (is64 ? 0 : 1), 0), 12373 *insn, 12374 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12375 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12376 }; 12377 12378 patchlet = isdiv ? chk_and_div : chk_and_mod; 12379 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12380 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12381 12382 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12383 if (!new_prog) 12384 return -ENOMEM; 12385 12386 delta += cnt - 1; 12387 env->prog = prog = new_prog; 12388 insn = new_prog->insnsi + i + delta; 12389 continue; 12390 } 12391 12392 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12393 if (BPF_CLASS(insn->code) == BPF_LD && 12394 (BPF_MODE(insn->code) == BPF_ABS || 12395 BPF_MODE(insn->code) == BPF_IND)) { 12396 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12397 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12398 verbose(env, "bpf verifier is misconfigured\n"); 12399 return -EINVAL; 12400 } 12401 12402 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12403 if (!new_prog) 12404 return -ENOMEM; 12405 12406 delta += cnt - 1; 12407 env->prog = prog = new_prog; 12408 insn = new_prog->insnsi + i + delta; 12409 continue; 12410 } 12411 12412 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12413 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12414 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12415 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12416 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12417 struct bpf_insn *patch = &insn_buf[0]; 12418 bool issrc, isneg, isimm; 12419 u32 off_reg; 12420 12421 aux = &env->insn_aux_data[i + delta]; 12422 if (!aux->alu_state || 12423 aux->alu_state == BPF_ALU_NON_POINTER) 12424 continue; 12425 12426 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12427 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12428 BPF_ALU_SANITIZE_SRC; 12429 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12430 12431 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12432 if (isimm) { 12433 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12434 } else { 12435 if (isneg) 12436 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12437 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12438 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12439 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12440 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12441 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12442 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12443 } 12444 if (!issrc) 12445 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12446 insn->src_reg = BPF_REG_AX; 12447 if (isneg) 12448 insn->code = insn->code == code_add ? 12449 code_sub : code_add; 12450 *patch++ = *insn; 12451 if (issrc && isneg && !isimm) 12452 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12453 cnt = patch - insn_buf; 12454 12455 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12456 if (!new_prog) 12457 return -ENOMEM; 12458 12459 delta += cnt - 1; 12460 env->prog = prog = new_prog; 12461 insn = new_prog->insnsi + i + delta; 12462 continue; 12463 } 12464 12465 if (insn->code != (BPF_JMP | BPF_CALL)) 12466 continue; 12467 if (insn->src_reg == BPF_PSEUDO_CALL) 12468 continue; 12469 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12470 ret = fixup_kfunc_call(env, insn); 12471 if (ret) 12472 return ret; 12473 continue; 12474 } 12475 12476 if (insn->imm == BPF_FUNC_get_route_realm) 12477 prog->dst_needed = 1; 12478 if (insn->imm == BPF_FUNC_get_prandom_u32) 12479 bpf_user_rnd_init_once(); 12480 if (insn->imm == BPF_FUNC_override_return) 12481 prog->kprobe_override = 1; 12482 if (insn->imm == BPF_FUNC_tail_call) { 12483 /* If we tail call into other programs, we 12484 * cannot make any assumptions since they can 12485 * be replaced dynamically during runtime in 12486 * the program array. 12487 */ 12488 prog->cb_access = 1; 12489 if (!allow_tail_call_in_subprogs(env)) 12490 prog->aux->stack_depth = MAX_BPF_STACK; 12491 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 12492 12493 /* mark bpf_tail_call as different opcode to avoid 12494 * conditional branch in the interpreter for every normal 12495 * call and to prevent accidental JITing by JIT compiler 12496 * that doesn't support bpf_tail_call yet 12497 */ 12498 insn->imm = 0; 12499 insn->code = BPF_JMP | BPF_TAIL_CALL; 12500 12501 aux = &env->insn_aux_data[i + delta]; 12502 if (env->bpf_capable && !expect_blinding && 12503 prog->jit_requested && 12504 !bpf_map_key_poisoned(aux) && 12505 !bpf_map_ptr_poisoned(aux) && 12506 !bpf_map_ptr_unpriv(aux)) { 12507 struct bpf_jit_poke_descriptor desc = { 12508 .reason = BPF_POKE_REASON_TAIL_CALL, 12509 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 12510 .tail_call.key = bpf_map_key_immediate(aux), 12511 .insn_idx = i + delta, 12512 }; 12513 12514 ret = bpf_jit_add_poke_descriptor(prog, &desc); 12515 if (ret < 0) { 12516 verbose(env, "adding tail call poke descriptor failed\n"); 12517 return ret; 12518 } 12519 12520 insn->imm = ret + 1; 12521 continue; 12522 } 12523 12524 if (!bpf_map_ptr_unpriv(aux)) 12525 continue; 12526 12527 /* instead of changing every JIT dealing with tail_call 12528 * emit two extra insns: 12529 * if (index >= max_entries) goto out; 12530 * index &= array->index_mask; 12531 * to avoid out-of-bounds cpu speculation 12532 */ 12533 if (bpf_map_ptr_poisoned(aux)) { 12534 verbose(env, "tail_call abusing map_ptr\n"); 12535 return -EINVAL; 12536 } 12537 12538 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12539 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 12540 map_ptr->max_entries, 2); 12541 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 12542 container_of(map_ptr, 12543 struct bpf_array, 12544 map)->index_mask); 12545 insn_buf[2] = *insn; 12546 cnt = 3; 12547 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12548 if (!new_prog) 12549 return -ENOMEM; 12550 12551 delta += cnt - 1; 12552 env->prog = prog = new_prog; 12553 insn = new_prog->insnsi + i + delta; 12554 continue; 12555 } 12556 12557 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 12558 * and other inlining handlers are currently limited to 64 bit 12559 * only. 12560 */ 12561 if (prog->jit_requested && BITS_PER_LONG == 64 && 12562 (insn->imm == BPF_FUNC_map_lookup_elem || 12563 insn->imm == BPF_FUNC_map_update_elem || 12564 insn->imm == BPF_FUNC_map_delete_elem || 12565 insn->imm == BPF_FUNC_map_push_elem || 12566 insn->imm == BPF_FUNC_map_pop_elem || 12567 insn->imm == BPF_FUNC_map_peek_elem || 12568 insn->imm == BPF_FUNC_redirect_map)) { 12569 aux = &env->insn_aux_data[i + delta]; 12570 if (bpf_map_ptr_poisoned(aux)) 12571 goto patch_call_imm; 12572 12573 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12574 ops = map_ptr->ops; 12575 if (insn->imm == BPF_FUNC_map_lookup_elem && 12576 ops->map_gen_lookup) { 12577 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 12578 if (cnt == -EOPNOTSUPP) 12579 goto patch_map_ops_generic; 12580 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12581 verbose(env, "bpf verifier is misconfigured\n"); 12582 return -EINVAL; 12583 } 12584 12585 new_prog = bpf_patch_insn_data(env, i + delta, 12586 insn_buf, cnt); 12587 if (!new_prog) 12588 return -ENOMEM; 12589 12590 delta += cnt - 1; 12591 env->prog = prog = new_prog; 12592 insn = new_prog->insnsi + i + delta; 12593 continue; 12594 } 12595 12596 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 12597 (void *(*)(struct bpf_map *map, void *key))NULL)); 12598 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 12599 (int (*)(struct bpf_map *map, void *key))NULL)); 12600 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 12601 (int (*)(struct bpf_map *map, void *key, void *value, 12602 u64 flags))NULL)); 12603 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 12604 (int (*)(struct bpf_map *map, void *value, 12605 u64 flags))NULL)); 12606 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 12607 (int (*)(struct bpf_map *map, void *value))NULL)); 12608 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 12609 (int (*)(struct bpf_map *map, void *value))NULL)); 12610 BUILD_BUG_ON(!__same_type(ops->map_redirect, 12611 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 12612 12613 patch_map_ops_generic: 12614 switch (insn->imm) { 12615 case BPF_FUNC_map_lookup_elem: 12616 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 12617 __bpf_call_base; 12618 continue; 12619 case BPF_FUNC_map_update_elem: 12620 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 12621 __bpf_call_base; 12622 continue; 12623 case BPF_FUNC_map_delete_elem: 12624 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 12625 __bpf_call_base; 12626 continue; 12627 case BPF_FUNC_map_push_elem: 12628 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 12629 __bpf_call_base; 12630 continue; 12631 case BPF_FUNC_map_pop_elem: 12632 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 12633 __bpf_call_base; 12634 continue; 12635 case BPF_FUNC_map_peek_elem: 12636 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 12637 __bpf_call_base; 12638 continue; 12639 case BPF_FUNC_redirect_map: 12640 insn->imm = BPF_CAST_CALL(ops->map_redirect) - 12641 __bpf_call_base; 12642 continue; 12643 } 12644 12645 goto patch_call_imm; 12646 } 12647 12648 /* Implement bpf_jiffies64 inline. */ 12649 if (prog->jit_requested && BITS_PER_LONG == 64 && 12650 insn->imm == BPF_FUNC_jiffies64) { 12651 struct bpf_insn ld_jiffies_addr[2] = { 12652 BPF_LD_IMM64(BPF_REG_0, 12653 (unsigned long)&jiffies), 12654 }; 12655 12656 insn_buf[0] = ld_jiffies_addr[0]; 12657 insn_buf[1] = ld_jiffies_addr[1]; 12658 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 12659 BPF_REG_0, 0); 12660 cnt = 3; 12661 12662 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 12663 cnt); 12664 if (!new_prog) 12665 return -ENOMEM; 12666 12667 delta += cnt - 1; 12668 env->prog = prog = new_prog; 12669 insn = new_prog->insnsi + i + delta; 12670 continue; 12671 } 12672 12673 patch_call_imm: 12674 fn = env->ops->get_func_proto(insn->imm, env->prog); 12675 /* all functions that have prototype and verifier allowed 12676 * programs to call them, must be real in-kernel functions 12677 */ 12678 if (!fn->func) { 12679 verbose(env, 12680 "kernel subsystem misconfigured func %s#%d\n", 12681 func_id_name(insn->imm), insn->imm); 12682 return -EFAULT; 12683 } 12684 insn->imm = fn->func - __bpf_call_base; 12685 } 12686 12687 /* Since poke tab is now finalized, publish aux to tracker. */ 12688 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12689 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12690 if (!map_ptr->ops->map_poke_track || 12691 !map_ptr->ops->map_poke_untrack || 12692 !map_ptr->ops->map_poke_run) { 12693 verbose(env, "bpf verifier is misconfigured\n"); 12694 return -EINVAL; 12695 } 12696 12697 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 12698 if (ret < 0) { 12699 verbose(env, "tracking tail call prog failed\n"); 12700 return ret; 12701 } 12702 } 12703 12704 sort_kfunc_descs_by_imm(env->prog); 12705 12706 return 0; 12707 } 12708 12709 static void free_states(struct bpf_verifier_env *env) 12710 { 12711 struct bpf_verifier_state_list *sl, *sln; 12712 int i; 12713 12714 sl = env->free_list; 12715 while (sl) { 12716 sln = sl->next; 12717 free_verifier_state(&sl->state, false); 12718 kfree(sl); 12719 sl = sln; 12720 } 12721 env->free_list = NULL; 12722 12723 if (!env->explored_states) 12724 return; 12725 12726 for (i = 0; i < state_htab_size(env); i++) { 12727 sl = env->explored_states[i]; 12728 12729 while (sl) { 12730 sln = sl->next; 12731 free_verifier_state(&sl->state, false); 12732 kfree(sl); 12733 sl = sln; 12734 } 12735 env->explored_states[i] = NULL; 12736 } 12737 } 12738 12739 static int do_check_common(struct bpf_verifier_env *env, int subprog) 12740 { 12741 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12742 struct bpf_verifier_state *state; 12743 struct bpf_reg_state *regs; 12744 int ret, i; 12745 12746 env->prev_linfo = NULL; 12747 env->pass_cnt++; 12748 12749 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 12750 if (!state) 12751 return -ENOMEM; 12752 state->curframe = 0; 12753 state->speculative = false; 12754 state->branches = 1; 12755 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 12756 if (!state->frame[0]) { 12757 kfree(state); 12758 return -ENOMEM; 12759 } 12760 env->cur_state = state; 12761 init_func_state(env, state->frame[0], 12762 BPF_MAIN_FUNC /* callsite */, 12763 0 /* frameno */, 12764 subprog); 12765 12766 regs = state->frame[state->curframe]->regs; 12767 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 12768 ret = btf_prepare_func_args(env, subprog, regs); 12769 if (ret) 12770 goto out; 12771 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 12772 if (regs[i].type == PTR_TO_CTX) 12773 mark_reg_known_zero(env, regs, i); 12774 else if (regs[i].type == SCALAR_VALUE) 12775 mark_reg_unknown(env, regs, i); 12776 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 12777 const u32 mem_size = regs[i].mem_size; 12778 12779 mark_reg_known_zero(env, regs, i); 12780 regs[i].mem_size = mem_size; 12781 regs[i].id = ++env->id_gen; 12782 } 12783 } 12784 } else { 12785 /* 1st arg to a function */ 12786 regs[BPF_REG_1].type = PTR_TO_CTX; 12787 mark_reg_known_zero(env, regs, BPF_REG_1); 12788 ret = btf_check_subprog_arg_match(env, subprog, regs); 12789 if (ret == -EFAULT) 12790 /* unlikely verifier bug. abort. 12791 * ret == 0 and ret < 0 are sadly acceptable for 12792 * main() function due to backward compatibility. 12793 * Like socket filter program may be written as: 12794 * int bpf_prog(struct pt_regs *ctx) 12795 * and never dereference that ctx in the program. 12796 * 'struct pt_regs' is a type mismatch for socket 12797 * filter that should be using 'struct __sk_buff'. 12798 */ 12799 goto out; 12800 } 12801 12802 ret = do_check(env); 12803 out: 12804 /* check for NULL is necessary, since cur_state can be freed inside 12805 * do_check() under memory pressure. 12806 */ 12807 if (env->cur_state) { 12808 free_verifier_state(env->cur_state, true); 12809 env->cur_state = NULL; 12810 } 12811 while (!pop_stack(env, NULL, NULL, false)); 12812 if (!ret && pop_log) 12813 bpf_vlog_reset(&env->log, 0); 12814 free_states(env); 12815 return ret; 12816 } 12817 12818 /* Verify all global functions in a BPF program one by one based on their BTF. 12819 * All global functions must pass verification. Otherwise the whole program is rejected. 12820 * Consider: 12821 * int bar(int); 12822 * int foo(int f) 12823 * { 12824 * return bar(f); 12825 * } 12826 * int bar(int b) 12827 * { 12828 * ... 12829 * } 12830 * foo() will be verified first for R1=any_scalar_value. During verification it 12831 * will be assumed that bar() already verified successfully and call to bar() 12832 * from foo() will be checked for type match only. Later bar() will be verified 12833 * independently to check that it's safe for R1=any_scalar_value. 12834 */ 12835 static int do_check_subprogs(struct bpf_verifier_env *env) 12836 { 12837 struct bpf_prog_aux *aux = env->prog->aux; 12838 int i, ret; 12839 12840 if (!aux->func_info) 12841 return 0; 12842 12843 for (i = 1; i < env->subprog_cnt; i++) { 12844 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 12845 continue; 12846 env->insn_idx = env->subprog_info[i].start; 12847 WARN_ON_ONCE(env->insn_idx == 0); 12848 ret = do_check_common(env, i); 12849 if (ret) { 12850 return ret; 12851 } else if (env->log.level & BPF_LOG_LEVEL) { 12852 verbose(env, 12853 "Func#%d is safe for any args that match its prototype\n", 12854 i); 12855 } 12856 } 12857 return 0; 12858 } 12859 12860 static int do_check_main(struct bpf_verifier_env *env) 12861 { 12862 int ret; 12863 12864 env->insn_idx = 0; 12865 ret = do_check_common(env, 0); 12866 if (!ret) 12867 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 12868 return ret; 12869 } 12870 12871 12872 static void print_verification_stats(struct bpf_verifier_env *env) 12873 { 12874 int i; 12875 12876 if (env->log.level & BPF_LOG_STATS) { 12877 verbose(env, "verification time %lld usec\n", 12878 div_u64(env->verification_time, 1000)); 12879 verbose(env, "stack depth "); 12880 for (i = 0; i < env->subprog_cnt; i++) { 12881 u32 depth = env->subprog_info[i].stack_depth; 12882 12883 verbose(env, "%d", depth); 12884 if (i + 1 < env->subprog_cnt) 12885 verbose(env, "+"); 12886 } 12887 verbose(env, "\n"); 12888 } 12889 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 12890 "total_states %d peak_states %d mark_read %d\n", 12891 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 12892 env->max_states_per_insn, env->total_states, 12893 env->peak_states, env->longest_mark_read_walk); 12894 } 12895 12896 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 12897 { 12898 const struct btf_type *t, *func_proto; 12899 const struct bpf_struct_ops *st_ops; 12900 const struct btf_member *member; 12901 struct bpf_prog *prog = env->prog; 12902 u32 btf_id, member_idx; 12903 const char *mname; 12904 12905 if (!prog->gpl_compatible) { 12906 verbose(env, "struct ops programs must have a GPL compatible license\n"); 12907 return -EINVAL; 12908 } 12909 12910 btf_id = prog->aux->attach_btf_id; 12911 st_ops = bpf_struct_ops_find(btf_id); 12912 if (!st_ops) { 12913 verbose(env, "attach_btf_id %u is not a supported struct\n", 12914 btf_id); 12915 return -ENOTSUPP; 12916 } 12917 12918 t = st_ops->type; 12919 member_idx = prog->expected_attach_type; 12920 if (member_idx >= btf_type_vlen(t)) { 12921 verbose(env, "attach to invalid member idx %u of struct %s\n", 12922 member_idx, st_ops->name); 12923 return -EINVAL; 12924 } 12925 12926 member = &btf_type_member(t)[member_idx]; 12927 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 12928 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 12929 NULL); 12930 if (!func_proto) { 12931 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 12932 mname, member_idx, st_ops->name); 12933 return -EINVAL; 12934 } 12935 12936 if (st_ops->check_member) { 12937 int err = st_ops->check_member(t, member); 12938 12939 if (err) { 12940 verbose(env, "attach to unsupported member %s of struct %s\n", 12941 mname, st_ops->name); 12942 return err; 12943 } 12944 } 12945 12946 prog->aux->attach_func_proto = func_proto; 12947 prog->aux->attach_func_name = mname; 12948 env->ops = st_ops->verifier_ops; 12949 12950 return 0; 12951 } 12952 #define SECURITY_PREFIX "security_" 12953 12954 static int check_attach_modify_return(unsigned long addr, const char *func_name) 12955 { 12956 if (within_error_injection_list(addr) || 12957 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 12958 return 0; 12959 12960 return -EINVAL; 12961 } 12962 12963 /* list of non-sleepable functions that are otherwise on 12964 * ALLOW_ERROR_INJECTION list 12965 */ 12966 BTF_SET_START(btf_non_sleepable_error_inject) 12967 /* Three functions below can be called from sleepable and non-sleepable context. 12968 * Assume non-sleepable from bpf safety point of view. 12969 */ 12970 BTF_ID(func, __add_to_page_cache_locked) 12971 BTF_ID(func, should_fail_alloc_page) 12972 BTF_ID(func, should_failslab) 12973 BTF_SET_END(btf_non_sleepable_error_inject) 12974 12975 static int check_non_sleepable_error_inject(u32 btf_id) 12976 { 12977 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 12978 } 12979 12980 int bpf_check_attach_target(struct bpf_verifier_log *log, 12981 const struct bpf_prog *prog, 12982 const struct bpf_prog *tgt_prog, 12983 u32 btf_id, 12984 struct bpf_attach_target_info *tgt_info) 12985 { 12986 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 12987 const char prefix[] = "btf_trace_"; 12988 int ret = 0, subprog = -1, i; 12989 const struct btf_type *t; 12990 bool conservative = true; 12991 const char *tname; 12992 struct btf *btf; 12993 long addr = 0; 12994 12995 if (!btf_id) { 12996 bpf_log(log, "Tracing programs must provide btf_id\n"); 12997 return -EINVAL; 12998 } 12999 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13000 if (!btf) { 13001 bpf_log(log, 13002 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13003 return -EINVAL; 13004 } 13005 t = btf_type_by_id(btf, btf_id); 13006 if (!t) { 13007 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13008 return -EINVAL; 13009 } 13010 tname = btf_name_by_offset(btf, t->name_off); 13011 if (!tname) { 13012 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13013 return -EINVAL; 13014 } 13015 if (tgt_prog) { 13016 struct bpf_prog_aux *aux = tgt_prog->aux; 13017 13018 for (i = 0; i < aux->func_info_cnt; i++) 13019 if (aux->func_info[i].type_id == btf_id) { 13020 subprog = i; 13021 break; 13022 } 13023 if (subprog == -1) { 13024 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13025 return -EINVAL; 13026 } 13027 conservative = aux->func_info_aux[subprog].unreliable; 13028 if (prog_extension) { 13029 if (conservative) { 13030 bpf_log(log, 13031 "Cannot replace static functions\n"); 13032 return -EINVAL; 13033 } 13034 if (!prog->jit_requested) { 13035 bpf_log(log, 13036 "Extension programs should be JITed\n"); 13037 return -EINVAL; 13038 } 13039 } 13040 if (!tgt_prog->jited) { 13041 bpf_log(log, "Can attach to only JITed progs\n"); 13042 return -EINVAL; 13043 } 13044 if (tgt_prog->type == prog->type) { 13045 /* Cannot fentry/fexit another fentry/fexit program. 13046 * Cannot attach program extension to another extension. 13047 * It's ok to attach fentry/fexit to extension program. 13048 */ 13049 bpf_log(log, "Cannot recursively attach\n"); 13050 return -EINVAL; 13051 } 13052 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13053 prog_extension && 13054 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13055 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13056 /* Program extensions can extend all program types 13057 * except fentry/fexit. The reason is the following. 13058 * The fentry/fexit programs are used for performance 13059 * analysis, stats and can be attached to any program 13060 * type except themselves. When extension program is 13061 * replacing XDP function it is necessary to allow 13062 * performance analysis of all functions. Both original 13063 * XDP program and its program extension. Hence 13064 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13065 * allowed. If extending of fentry/fexit was allowed it 13066 * would be possible to create long call chain 13067 * fentry->extension->fentry->extension beyond 13068 * reasonable stack size. Hence extending fentry is not 13069 * allowed. 13070 */ 13071 bpf_log(log, "Cannot extend fentry/fexit\n"); 13072 return -EINVAL; 13073 } 13074 } else { 13075 if (prog_extension) { 13076 bpf_log(log, "Cannot replace kernel functions\n"); 13077 return -EINVAL; 13078 } 13079 } 13080 13081 switch (prog->expected_attach_type) { 13082 case BPF_TRACE_RAW_TP: 13083 if (tgt_prog) { 13084 bpf_log(log, 13085 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13086 return -EINVAL; 13087 } 13088 if (!btf_type_is_typedef(t)) { 13089 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13090 btf_id); 13091 return -EINVAL; 13092 } 13093 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13094 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13095 btf_id, tname); 13096 return -EINVAL; 13097 } 13098 tname += sizeof(prefix) - 1; 13099 t = btf_type_by_id(btf, t->type); 13100 if (!btf_type_is_ptr(t)) 13101 /* should never happen in valid vmlinux build */ 13102 return -EINVAL; 13103 t = btf_type_by_id(btf, t->type); 13104 if (!btf_type_is_func_proto(t)) 13105 /* should never happen in valid vmlinux build */ 13106 return -EINVAL; 13107 13108 break; 13109 case BPF_TRACE_ITER: 13110 if (!btf_type_is_func(t)) { 13111 bpf_log(log, "attach_btf_id %u is not a function\n", 13112 btf_id); 13113 return -EINVAL; 13114 } 13115 t = btf_type_by_id(btf, t->type); 13116 if (!btf_type_is_func_proto(t)) 13117 return -EINVAL; 13118 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13119 if (ret) 13120 return ret; 13121 break; 13122 default: 13123 if (!prog_extension) 13124 return -EINVAL; 13125 fallthrough; 13126 case BPF_MODIFY_RETURN: 13127 case BPF_LSM_MAC: 13128 case BPF_TRACE_FENTRY: 13129 case BPF_TRACE_FEXIT: 13130 if (!btf_type_is_func(t)) { 13131 bpf_log(log, "attach_btf_id %u is not a function\n", 13132 btf_id); 13133 return -EINVAL; 13134 } 13135 if (prog_extension && 13136 btf_check_type_match(log, prog, btf, t)) 13137 return -EINVAL; 13138 t = btf_type_by_id(btf, t->type); 13139 if (!btf_type_is_func_proto(t)) 13140 return -EINVAL; 13141 13142 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13143 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13144 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13145 return -EINVAL; 13146 13147 if (tgt_prog && conservative) 13148 t = NULL; 13149 13150 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13151 if (ret < 0) 13152 return ret; 13153 13154 if (tgt_prog) { 13155 if (subprog == 0) 13156 addr = (long) tgt_prog->bpf_func; 13157 else 13158 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13159 } else { 13160 addr = kallsyms_lookup_name(tname); 13161 if (!addr) { 13162 bpf_log(log, 13163 "The address of function %s cannot be found\n", 13164 tname); 13165 return -ENOENT; 13166 } 13167 } 13168 13169 if (prog->aux->sleepable) { 13170 ret = -EINVAL; 13171 switch (prog->type) { 13172 case BPF_PROG_TYPE_TRACING: 13173 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13174 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13175 */ 13176 if (!check_non_sleepable_error_inject(btf_id) && 13177 within_error_injection_list(addr)) 13178 ret = 0; 13179 break; 13180 case BPF_PROG_TYPE_LSM: 13181 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13182 * Only some of them are sleepable. 13183 */ 13184 if (bpf_lsm_is_sleepable_hook(btf_id)) 13185 ret = 0; 13186 break; 13187 default: 13188 break; 13189 } 13190 if (ret) { 13191 bpf_log(log, "%s is not sleepable\n", tname); 13192 return ret; 13193 } 13194 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13195 if (tgt_prog) { 13196 bpf_log(log, "can't modify return codes of BPF programs\n"); 13197 return -EINVAL; 13198 } 13199 ret = check_attach_modify_return(addr, tname); 13200 if (ret) { 13201 bpf_log(log, "%s() is not modifiable\n", tname); 13202 return ret; 13203 } 13204 } 13205 13206 break; 13207 } 13208 tgt_info->tgt_addr = addr; 13209 tgt_info->tgt_name = tname; 13210 tgt_info->tgt_type = t; 13211 return 0; 13212 } 13213 13214 BTF_SET_START(btf_id_deny) 13215 BTF_ID_UNUSED 13216 #ifdef CONFIG_SMP 13217 BTF_ID(func, migrate_disable) 13218 BTF_ID(func, migrate_enable) 13219 #endif 13220 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13221 BTF_ID(func, rcu_read_unlock_strict) 13222 #endif 13223 BTF_SET_END(btf_id_deny) 13224 13225 static int check_attach_btf_id(struct bpf_verifier_env *env) 13226 { 13227 struct bpf_prog *prog = env->prog; 13228 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13229 struct bpf_attach_target_info tgt_info = {}; 13230 u32 btf_id = prog->aux->attach_btf_id; 13231 struct bpf_trampoline *tr; 13232 int ret; 13233 u64 key; 13234 13235 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13236 if (prog->aux->sleepable) 13237 /* attach_btf_id checked to be zero already */ 13238 return 0; 13239 verbose(env, "Syscall programs can only be sleepable\n"); 13240 return -EINVAL; 13241 } 13242 13243 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13244 prog->type != BPF_PROG_TYPE_LSM) { 13245 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13246 return -EINVAL; 13247 } 13248 13249 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13250 return check_struct_ops_btf_id(env); 13251 13252 if (prog->type != BPF_PROG_TYPE_TRACING && 13253 prog->type != BPF_PROG_TYPE_LSM && 13254 prog->type != BPF_PROG_TYPE_EXT) 13255 return 0; 13256 13257 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13258 if (ret) 13259 return ret; 13260 13261 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13262 /* to make freplace equivalent to their targets, they need to 13263 * inherit env->ops and expected_attach_type for the rest of the 13264 * verification 13265 */ 13266 env->ops = bpf_verifier_ops[tgt_prog->type]; 13267 prog->expected_attach_type = tgt_prog->expected_attach_type; 13268 } 13269 13270 /* store info about the attachment target that will be used later */ 13271 prog->aux->attach_func_proto = tgt_info.tgt_type; 13272 prog->aux->attach_func_name = tgt_info.tgt_name; 13273 13274 if (tgt_prog) { 13275 prog->aux->saved_dst_prog_type = tgt_prog->type; 13276 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13277 } 13278 13279 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13280 prog->aux->attach_btf_trace = true; 13281 return 0; 13282 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13283 if (!bpf_iter_prog_supported(prog)) 13284 return -EINVAL; 13285 return 0; 13286 } 13287 13288 if (prog->type == BPF_PROG_TYPE_LSM) { 13289 ret = bpf_lsm_verify_prog(&env->log, prog); 13290 if (ret < 0) 13291 return ret; 13292 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13293 btf_id_set_contains(&btf_id_deny, btf_id)) { 13294 return -EINVAL; 13295 } 13296 13297 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13298 tr = bpf_trampoline_get(key, &tgt_info); 13299 if (!tr) 13300 return -ENOMEM; 13301 13302 prog->aux->dst_trampoline = tr; 13303 return 0; 13304 } 13305 13306 struct btf *bpf_get_btf_vmlinux(void) 13307 { 13308 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13309 mutex_lock(&bpf_verifier_lock); 13310 if (!btf_vmlinux) 13311 btf_vmlinux = btf_parse_vmlinux(); 13312 mutex_unlock(&bpf_verifier_lock); 13313 } 13314 return btf_vmlinux; 13315 } 13316 13317 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13318 { 13319 u64 start_time = ktime_get_ns(); 13320 struct bpf_verifier_env *env; 13321 struct bpf_verifier_log *log; 13322 int i, len, ret = -EINVAL; 13323 bool is_priv; 13324 13325 /* no program is valid */ 13326 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13327 return -EINVAL; 13328 13329 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13330 * allocate/free it every time bpf_check() is called 13331 */ 13332 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13333 if (!env) 13334 return -ENOMEM; 13335 log = &env->log; 13336 13337 len = (*prog)->len; 13338 env->insn_aux_data = 13339 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13340 ret = -ENOMEM; 13341 if (!env->insn_aux_data) 13342 goto err_free_env; 13343 for (i = 0; i < len; i++) 13344 env->insn_aux_data[i].orig_idx = i; 13345 env->prog = *prog; 13346 env->ops = bpf_verifier_ops[env->prog->type]; 13347 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13348 is_priv = bpf_capable(); 13349 13350 bpf_get_btf_vmlinux(); 13351 13352 /* grab the mutex to protect few globals used by verifier */ 13353 if (!is_priv) 13354 mutex_lock(&bpf_verifier_lock); 13355 13356 if (attr->log_level || attr->log_buf || attr->log_size) { 13357 /* user requested verbose verifier output 13358 * and supplied buffer to store the verification trace 13359 */ 13360 log->level = attr->log_level; 13361 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13362 log->len_total = attr->log_size; 13363 13364 ret = -EINVAL; 13365 /* log attributes have to be sane */ 13366 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13367 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13368 goto err_unlock; 13369 } 13370 13371 if (IS_ERR(btf_vmlinux)) { 13372 /* Either gcc or pahole or kernel are broken. */ 13373 verbose(env, "in-kernel BTF is malformed\n"); 13374 ret = PTR_ERR(btf_vmlinux); 13375 goto skip_full_check; 13376 } 13377 13378 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13379 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13380 env->strict_alignment = true; 13381 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13382 env->strict_alignment = false; 13383 13384 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13385 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13386 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13387 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13388 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13389 env->bpf_capable = bpf_capable(); 13390 13391 if (is_priv) 13392 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13393 13394 env->explored_states = kvcalloc(state_htab_size(env), 13395 sizeof(struct bpf_verifier_state_list *), 13396 GFP_USER); 13397 ret = -ENOMEM; 13398 if (!env->explored_states) 13399 goto skip_full_check; 13400 13401 ret = add_subprog_and_kfunc(env); 13402 if (ret < 0) 13403 goto skip_full_check; 13404 13405 ret = check_subprogs(env); 13406 if (ret < 0) 13407 goto skip_full_check; 13408 13409 ret = check_btf_info(env, attr, uattr); 13410 if (ret < 0) 13411 goto skip_full_check; 13412 13413 ret = check_attach_btf_id(env); 13414 if (ret) 13415 goto skip_full_check; 13416 13417 ret = resolve_pseudo_ldimm64(env); 13418 if (ret < 0) 13419 goto skip_full_check; 13420 13421 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13422 ret = bpf_prog_offload_verifier_prep(env->prog); 13423 if (ret) 13424 goto skip_full_check; 13425 } 13426 13427 ret = check_cfg(env); 13428 if (ret < 0) 13429 goto skip_full_check; 13430 13431 ret = do_check_subprogs(env); 13432 ret = ret ?: do_check_main(env); 13433 13434 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 13435 ret = bpf_prog_offload_finalize(env); 13436 13437 skip_full_check: 13438 kvfree(env->explored_states); 13439 13440 if (ret == 0) 13441 ret = check_max_stack_depth(env); 13442 13443 /* instruction rewrites happen after this point */ 13444 if (is_priv) { 13445 if (ret == 0) 13446 opt_hard_wire_dead_code_branches(env); 13447 if (ret == 0) 13448 ret = opt_remove_dead_code(env); 13449 if (ret == 0) 13450 ret = opt_remove_nops(env); 13451 } else { 13452 if (ret == 0) 13453 sanitize_dead_code(env); 13454 } 13455 13456 if (ret == 0) 13457 /* program is valid, convert *(u32*)(ctx + off) accesses */ 13458 ret = convert_ctx_accesses(env); 13459 13460 if (ret == 0) 13461 ret = do_misc_fixups(env); 13462 13463 /* do 32-bit optimization after insn patching has done so those patched 13464 * insns could be handled correctly. 13465 */ 13466 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 13467 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 13468 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 13469 : false; 13470 } 13471 13472 if (ret == 0) 13473 ret = fixup_call_args(env); 13474 13475 env->verification_time = ktime_get_ns() - start_time; 13476 print_verification_stats(env); 13477 13478 if (log->level && bpf_verifier_log_full(log)) 13479 ret = -ENOSPC; 13480 if (log->level && !log->ubuf) { 13481 ret = -EFAULT; 13482 goto err_release_maps; 13483 } 13484 13485 if (ret) 13486 goto err_release_maps; 13487 13488 if (env->used_map_cnt) { 13489 /* if program passed verifier, update used_maps in bpf_prog_info */ 13490 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 13491 sizeof(env->used_maps[0]), 13492 GFP_KERNEL); 13493 13494 if (!env->prog->aux->used_maps) { 13495 ret = -ENOMEM; 13496 goto err_release_maps; 13497 } 13498 13499 memcpy(env->prog->aux->used_maps, env->used_maps, 13500 sizeof(env->used_maps[0]) * env->used_map_cnt); 13501 env->prog->aux->used_map_cnt = env->used_map_cnt; 13502 } 13503 if (env->used_btf_cnt) { 13504 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 13505 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 13506 sizeof(env->used_btfs[0]), 13507 GFP_KERNEL); 13508 if (!env->prog->aux->used_btfs) { 13509 ret = -ENOMEM; 13510 goto err_release_maps; 13511 } 13512 13513 memcpy(env->prog->aux->used_btfs, env->used_btfs, 13514 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 13515 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 13516 } 13517 if (env->used_map_cnt || env->used_btf_cnt) { 13518 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 13519 * bpf_ld_imm64 instructions 13520 */ 13521 convert_pseudo_ld_imm64(env); 13522 } 13523 13524 adjust_btf_func(env); 13525 13526 err_release_maps: 13527 if (!env->prog->aux->used_maps) 13528 /* if we didn't copy map pointers into bpf_prog_info, release 13529 * them now. Otherwise free_used_maps() will release them. 13530 */ 13531 release_maps(env); 13532 if (!env->prog->aux->used_btfs) 13533 release_btfs(env); 13534 13535 /* extension progs temporarily inherit the attach_type of their targets 13536 for verification purposes, so set it back to zero before returning 13537 */ 13538 if (env->prog->type == BPF_PROG_TYPE_EXT) 13539 env->prog->expected_attach_type = 0; 13540 13541 *prog = env->prog; 13542 err_unlock: 13543 if (!is_priv) 13544 mutex_unlock(&bpf_verifier_lock); 13545 vfree(env->insn_aux_data); 13546 err_free_env: 13547 kfree(env); 13548 return ret; 13549 } 13550