1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 191 { 192 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 193 } 194 195 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 196 { 197 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 198 } 199 200 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 201 const struct bpf_map *map, bool unpriv) 202 { 203 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 204 unpriv |= bpf_map_ptr_unpriv(aux); 205 aux->map_ptr_state = (unsigned long)map | 206 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 207 } 208 209 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_key_state & BPF_MAP_KEY_POISON; 212 } 213 214 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 215 { 216 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 217 } 218 219 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 220 { 221 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 222 } 223 224 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 225 { 226 bool poisoned = bpf_map_key_poisoned(aux); 227 228 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 229 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 230 } 231 232 static bool bpf_pseudo_call(const struct bpf_insn *insn) 233 { 234 return insn->code == (BPF_JMP | BPF_CALL) && 235 insn->src_reg == BPF_PSEUDO_CALL; 236 } 237 238 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 239 { 240 return insn->code == (BPF_JMP | BPF_CALL) && 241 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 242 } 243 244 struct bpf_call_arg_meta { 245 struct bpf_map *map_ptr; 246 bool raw_mode; 247 bool pkt_access; 248 int regno; 249 int access_size; 250 int mem_size; 251 u64 msize_max_value; 252 int ref_obj_id; 253 int map_uid; 254 int func_id; 255 struct btf *btf; 256 u32 btf_id; 257 struct btf *ret_btf; 258 u32 ret_btf_id; 259 u32 subprogno; 260 }; 261 262 struct btf *btf_vmlinux; 263 264 static DEFINE_MUTEX(bpf_verifier_lock); 265 266 static const struct bpf_line_info * 267 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 268 { 269 const struct bpf_line_info *linfo; 270 const struct bpf_prog *prog; 271 u32 i, nr_linfo; 272 273 prog = env->prog; 274 nr_linfo = prog->aux->nr_linfo; 275 276 if (!nr_linfo || insn_off >= prog->len) 277 return NULL; 278 279 linfo = prog->aux->linfo; 280 for (i = 1; i < nr_linfo; i++) 281 if (insn_off < linfo[i].insn_off) 282 break; 283 284 return &linfo[i - 1]; 285 } 286 287 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 288 va_list args) 289 { 290 unsigned int n; 291 292 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 293 294 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 295 "verifier log line truncated - local buffer too short\n"); 296 297 if (log->level == BPF_LOG_KERNEL) { 298 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 299 300 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 301 return; 302 } 303 304 n = min(log->len_total - log->len_used - 1, n); 305 log->kbuf[n] = '\0'; 306 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 307 log->len_used += n; 308 else 309 log->ubuf = NULL; 310 } 311 312 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 313 { 314 char zero = 0; 315 316 if (!bpf_verifier_log_needed(log)) 317 return; 318 319 log->len_used = new_pos; 320 if (put_user(zero, log->ubuf + new_pos)) 321 log->ubuf = NULL; 322 } 323 324 /* log_level controls verbosity level of eBPF verifier. 325 * bpf_verifier_log_write() is used to dump the verification trace to the log, 326 * so the user can figure out what's wrong with the program 327 */ 328 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 329 const char *fmt, ...) 330 { 331 va_list args; 332 333 if (!bpf_verifier_log_needed(&env->log)) 334 return; 335 336 va_start(args, fmt); 337 bpf_verifier_vlog(&env->log, fmt, args); 338 va_end(args); 339 } 340 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 341 342 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 343 { 344 struct bpf_verifier_env *env = private_data; 345 va_list args; 346 347 if (!bpf_verifier_log_needed(&env->log)) 348 return; 349 350 va_start(args, fmt); 351 bpf_verifier_vlog(&env->log, fmt, args); 352 va_end(args); 353 } 354 355 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 356 const char *fmt, ...) 357 { 358 va_list args; 359 360 if (!bpf_verifier_log_needed(log)) 361 return; 362 363 va_start(args, fmt); 364 bpf_verifier_vlog(log, fmt, args); 365 va_end(args); 366 } 367 368 static const char *ltrim(const char *s) 369 { 370 while (isspace(*s)) 371 s++; 372 373 return s; 374 } 375 376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 377 u32 insn_off, 378 const char *prefix_fmt, ...) 379 { 380 const struct bpf_line_info *linfo; 381 382 if (!bpf_verifier_log_needed(&env->log)) 383 return; 384 385 linfo = find_linfo(env, insn_off); 386 if (!linfo || linfo == env->prev_linfo) 387 return; 388 389 if (prefix_fmt) { 390 va_list args; 391 392 va_start(args, prefix_fmt); 393 bpf_verifier_vlog(&env->log, prefix_fmt, args); 394 va_end(args); 395 } 396 397 verbose(env, "%s\n", 398 ltrim(btf_name_by_offset(env->prog->aux->btf, 399 linfo->line_off))); 400 401 env->prev_linfo = linfo; 402 } 403 404 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 405 struct bpf_reg_state *reg, 406 struct tnum *range, const char *ctx, 407 const char *reg_name) 408 { 409 char tn_buf[48]; 410 411 verbose(env, "At %s the register %s ", ctx, reg_name); 412 if (!tnum_is_unknown(reg->var_off)) { 413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 414 verbose(env, "has value %s", tn_buf); 415 } else { 416 verbose(env, "has unknown scalar value"); 417 } 418 tnum_strn(tn_buf, sizeof(tn_buf), *range); 419 verbose(env, " should have been in %s\n", tn_buf); 420 } 421 422 static bool type_is_pkt_pointer(enum bpf_reg_type type) 423 { 424 return type == PTR_TO_PACKET || 425 type == PTR_TO_PACKET_META; 426 } 427 428 static bool type_is_sk_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_SOCKET || 431 type == PTR_TO_SOCK_COMMON || 432 type == PTR_TO_TCP_SOCK || 433 type == PTR_TO_XDP_SOCK; 434 } 435 436 static bool reg_type_not_null(enum bpf_reg_type type) 437 { 438 return type == PTR_TO_SOCKET || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_MAP_VALUE || 441 type == PTR_TO_MAP_KEY || 442 type == PTR_TO_SOCK_COMMON; 443 } 444 445 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 446 { 447 return reg->type == PTR_TO_MAP_VALUE && 448 map_value_has_spin_lock(reg->map_ptr); 449 } 450 451 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 452 { 453 return base_type(type) == PTR_TO_SOCKET || 454 base_type(type) == PTR_TO_TCP_SOCK || 455 base_type(type) == PTR_TO_MEM; 456 } 457 458 static bool type_is_rdonly_mem(u32 type) 459 { 460 return type & MEM_RDONLY; 461 } 462 463 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 464 { 465 return type == ARG_PTR_TO_SOCK_COMMON; 466 } 467 468 static bool type_may_be_null(u32 type) 469 { 470 return type & PTR_MAYBE_NULL; 471 } 472 473 /* Determine whether the function releases some resources allocated by another 474 * function call. The first reference type argument will be assumed to be 475 * released by release_reference(). 476 */ 477 static bool is_release_function(enum bpf_func_id func_id) 478 { 479 return func_id == BPF_FUNC_sk_release || 480 func_id == BPF_FUNC_ringbuf_submit || 481 func_id == BPF_FUNC_ringbuf_discard; 482 } 483 484 static bool may_be_acquire_function(enum bpf_func_id func_id) 485 { 486 return func_id == BPF_FUNC_sk_lookup_tcp || 487 func_id == BPF_FUNC_sk_lookup_udp || 488 func_id == BPF_FUNC_skc_lookup_tcp || 489 func_id == BPF_FUNC_map_lookup_elem || 490 func_id == BPF_FUNC_ringbuf_reserve; 491 } 492 493 static bool is_acquire_function(enum bpf_func_id func_id, 494 const struct bpf_map *map) 495 { 496 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 497 498 if (func_id == BPF_FUNC_sk_lookup_tcp || 499 func_id == BPF_FUNC_sk_lookup_udp || 500 func_id == BPF_FUNC_skc_lookup_tcp || 501 func_id == BPF_FUNC_ringbuf_reserve) 502 return true; 503 504 if (func_id == BPF_FUNC_map_lookup_elem && 505 (map_type == BPF_MAP_TYPE_SOCKMAP || 506 map_type == BPF_MAP_TYPE_SOCKHASH)) 507 return true; 508 509 return false; 510 } 511 512 static bool is_ptr_cast_function(enum bpf_func_id func_id) 513 { 514 return func_id == BPF_FUNC_tcp_sock || 515 func_id == BPF_FUNC_sk_fullsock || 516 func_id == BPF_FUNC_skc_to_tcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp6_sock || 518 func_id == BPF_FUNC_skc_to_udp6_sock || 519 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 520 func_id == BPF_FUNC_skc_to_tcp_request_sock; 521 } 522 523 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 524 { 525 return BPF_CLASS(insn->code) == BPF_STX && 526 BPF_MODE(insn->code) == BPF_ATOMIC && 527 insn->imm == BPF_CMPXCHG; 528 } 529 530 /* string representation of 'enum bpf_reg_type' 531 * 532 * Note that reg_type_str() can not appear more than once in a single verbose() 533 * statement. 534 */ 535 static const char *reg_type_str(struct bpf_verifier_env *env, 536 enum bpf_reg_type type) 537 { 538 char postfix[16] = {0}, prefix[16] = {0}; 539 static const char * const str[] = { 540 [NOT_INIT] = "?", 541 [SCALAR_VALUE] = "inv", 542 [PTR_TO_CTX] = "ctx", 543 [CONST_PTR_TO_MAP] = "map_ptr", 544 [PTR_TO_MAP_VALUE] = "map_value", 545 [PTR_TO_STACK] = "fp", 546 [PTR_TO_PACKET] = "pkt", 547 [PTR_TO_PACKET_META] = "pkt_meta", 548 [PTR_TO_PACKET_END] = "pkt_end", 549 [PTR_TO_FLOW_KEYS] = "flow_keys", 550 [PTR_TO_SOCKET] = "sock", 551 [PTR_TO_SOCK_COMMON] = "sock_common", 552 [PTR_TO_TCP_SOCK] = "tcp_sock", 553 [PTR_TO_TP_BUFFER] = "tp_buffer", 554 [PTR_TO_XDP_SOCK] = "xdp_sock", 555 [PTR_TO_BTF_ID] = "ptr_", 556 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 557 [PTR_TO_MEM] = "mem", 558 [PTR_TO_BUF] = "buf", 559 [PTR_TO_FUNC] = "func", 560 [PTR_TO_MAP_KEY] = "map_key", 561 }; 562 563 if (type & PTR_MAYBE_NULL) { 564 if (base_type(type) == PTR_TO_BTF_ID || 565 base_type(type) == PTR_TO_PERCPU_BTF_ID) 566 strncpy(postfix, "or_null_", 16); 567 else 568 strncpy(postfix, "_or_null", 16); 569 } 570 571 if (type & MEM_RDONLY) 572 strncpy(prefix, "rdonly_", 16); 573 574 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 575 prefix, str[base_type(type)], postfix); 576 return env->type_str_buf; 577 } 578 579 static char slot_type_char[] = { 580 [STACK_INVALID] = '?', 581 [STACK_SPILL] = 'r', 582 [STACK_MISC] = 'm', 583 [STACK_ZERO] = '0', 584 }; 585 586 static void print_liveness(struct bpf_verifier_env *env, 587 enum bpf_reg_liveness live) 588 { 589 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 590 verbose(env, "_"); 591 if (live & REG_LIVE_READ) 592 verbose(env, "r"); 593 if (live & REG_LIVE_WRITTEN) 594 verbose(env, "w"); 595 if (live & REG_LIVE_DONE) 596 verbose(env, "D"); 597 } 598 599 static struct bpf_func_state *func(struct bpf_verifier_env *env, 600 const struct bpf_reg_state *reg) 601 { 602 struct bpf_verifier_state *cur = env->cur_state; 603 604 return cur->frame[reg->frameno]; 605 } 606 607 static const char *kernel_type_name(const struct btf* btf, u32 id) 608 { 609 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 610 } 611 612 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 613 { 614 env->scratched_regs |= 1U << regno; 615 } 616 617 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 618 { 619 env->scratched_stack_slots |= 1UL << spi; 620 } 621 622 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 623 { 624 return (env->scratched_regs >> regno) & 1; 625 } 626 627 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 628 { 629 return (env->scratched_stack_slots >> regno) & 1; 630 } 631 632 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 633 { 634 return env->scratched_regs || env->scratched_stack_slots; 635 } 636 637 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 638 { 639 env->scratched_regs = 0U; 640 env->scratched_stack_slots = 0UL; 641 } 642 643 /* Used for printing the entire verifier state. */ 644 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 645 { 646 env->scratched_regs = ~0U; 647 env->scratched_stack_slots = ~0UL; 648 } 649 650 /* The reg state of a pointer or a bounded scalar was saved when 651 * it was spilled to the stack. 652 */ 653 static bool is_spilled_reg(const struct bpf_stack_state *stack) 654 { 655 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 656 } 657 658 static void scrub_spilled_slot(u8 *stype) 659 { 660 if (*stype != STACK_INVALID) 661 *stype = STACK_MISC; 662 } 663 664 static void print_verifier_state(struct bpf_verifier_env *env, 665 const struct bpf_func_state *state, 666 bool print_all) 667 { 668 const struct bpf_reg_state *reg; 669 enum bpf_reg_type t; 670 int i; 671 672 if (state->frameno) 673 verbose(env, " frame%d:", state->frameno); 674 for (i = 0; i < MAX_BPF_REG; i++) { 675 reg = &state->regs[i]; 676 t = reg->type; 677 if (t == NOT_INIT) 678 continue; 679 if (!print_all && !reg_scratched(env, i)) 680 continue; 681 verbose(env, " R%d", i); 682 print_liveness(env, reg->live); 683 verbose(env, "=%s", reg_type_str(env, t)); 684 if (t == SCALAR_VALUE && reg->precise) 685 verbose(env, "P"); 686 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 687 tnum_is_const(reg->var_off)) { 688 /* reg->off should be 0 for SCALAR_VALUE */ 689 verbose(env, "%lld", reg->var_off.value + reg->off); 690 } else { 691 if (base_type(t) == PTR_TO_BTF_ID || 692 base_type(t) == PTR_TO_PERCPU_BTF_ID) 693 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 694 verbose(env, "(id=%d", reg->id); 695 if (reg_type_may_be_refcounted_or_null(t)) 696 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 697 if (t != SCALAR_VALUE) 698 verbose(env, ",off=%d", reg->off); 699 if (type_is_pkt_pointer(t)) 700 verbose(env, ",r=%d", reg->range); 701 else if (base_type(t) == CONST_PTR_TO_MAP || 702 base_type(t) == PTR_TO_MAP_KEY || 703 base_type(t) == PTR_TO_MAP_VALUE) 704 verbose(env, ",ks=%d,vs=%d", 705 reg->map_ptr->key_size, 706 reg->map_ptr->value_size); 707 if (tnum_is_const(reg->var_off)) { 708 /* Typically an immediate SCALAR_VALUE, but 709 * could be a pointer whose offset is too big 710 * for reg->off 711 */ 712 verbose(env, ",imm=%llx", reg->var_off.value); 713 } else { 714 if (reg->smin_value != reg->umin_value && 715 reg->smin_value != S64_MIN) 716 verbose(env, ",smin_value=%lld", 717 (long long)reg->smin_value); 718 if (reg->smax_value != reg->umax_value && 719 reg->smax_value != S64_MAX) 720 verbose(env, ",smax_value=%lld", 721 (long long)reg->smax_value); 722 if (reg->umin_value != 0) 723 verbose(env, ",umin_value=%llu", 724 (unsigned long long)reg->umin_value); 725 if (reg->umax_value != U64_MAX) 726 verbose(env, ",umax_value=%llu", 727 (unsigned long long)reg->umax_value); 728 if (!tnum_is_unknown(reg->var_off)) { 729 char tn_buf[48]; 730 731 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 732 verbose(env, ",var_off=%s", tn_buf); 733 } 734 if (reg->s32_min_value != reg->smin_value && 735 reg->s32_min_value != S32_MIN) 736 verbose(env, ",s32_min_value=%d", 737 (int)(reg->s32_min_value)); 738 if (reg->s32_max_value != reg->smax_value && 739 reg->s32_max_value != S32_MAX) 740 verbose(env, ",s32_max_value=%d", 741 (int)(reg->s32_max_value)); 742 if (reg->u32_min_value != reg->umin_value && 743 reg->u32_min_value != U32_MIN) 744 verbose(env, ",u32_min_value=%d", 745 (int)(reg->u32_min_value)); 746 if (reg->u32_max_value != reg->umax_value && 747 reg->u32_max_value != U32_MAX) 748 verbose(env, ",u32_max_value=%d", 749 (int)(reg->u32_max_value)); 750 } 751 verbose(env, ")"); 752 } 753 } 754 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 755 char types_buf[BPF_REG_SIZE + 1]; 756 bool valid = false; 757 int j; 758 759 for (j = 0; j < BPF_REG_SIZE; j++) { 760 if (state->stack[i].slot_type[j] != STACK_INVALID) 761 valid = true; 762 types_buf[j] = slot_type_char[ 763 state->stack[i].slot_type[j]]; 764 } 765 types_buf[BPF_REG_SIZE] = 0; 766 if (!valid) 767 continue; 768 if (!print_all && !stack_slot_scratched(env, i)) 769 continue; 770 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 771 print_liveness(env, state->stack[i].spilled_ptr.live); 772 if (is_spilled_reg(&state->stack[i])) { 773 reg = &state->stack[i].spilled_ptr; 774 t = reg->type; 775 verbose(env, "=%s", reg_type_str(env, t)); 776 if (t == SCALAR_VALUE && reg->precise) 777 verbose(env, "P"); 778 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 779 verbose(env, "%lld", reg->var_off.value + reg->off); 780 } else { 781 verbose(env, "=%s", types_buf); 782 } 783 } 784 if (state->acquired_refs && state->refs[0].id) { 785 verbose(env, " refs=%d", state->refs[0].id); 786 for (i = 1; i < state->acquired_refs; i++) 787 if (state->refs[i].id) 788 verbose(env, ",%d", state->refs[i].id); 789 } 790 if (state->in_callback_fn) 791 verbose(env, " cb"); 792 if (state->in_async_callback_fn) 793 verbose(env, " async_cb"); 794 verbose(env, "\n"); 795 mark_verifier_state_clean(env); 796 } 797 798 static inline u32 vlog_alignment(u32 pos) 799 { 800 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 801 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 802 } 803 804 static void print_insn_state(struct bpf_verifier_env *env, 805 const struct bpf_func_state *state) 806 { 807 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 808 /* remove new line character */ 809 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 810 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 811 } else { 812 verbose(env, "%d:", env->insn_idx); 813 } 814 print_verifier_state(env, state, false); 815 } 816 817 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 818 * small to hold src. This is different from krealloc since we don't want to preserve 819 * the contents of dst. 820 * 821 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 822 * not be allocated. 823 */ 824 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 825 { 826 size_t bytes; 827 828 if (ZERO_OR_NULL_PTR(src)) 829 goto out; 830 831 if (unlikely(check_mul_overflow(n, size, &bytes))) 832 return NULL; 833 834 if (ksize(dst) < bytes) { 835 kfree(dst); 836 dst = kmalloc_track_caller(bytes, flags); 837 if (!dst) 838 return NULL; 839 } 840 841 memcpy(dst, src, bytes); 842 out: 843 return dst ? dst : ZERO_SIZE_PTR; 844 } 845 846 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 847 * small to hold new_n items. new items are zeroed out if the array grows. 848 * 849 * Contrary to krealloc_array, does not free arr if new_n is zero. 850 */ 851 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 852 { 853 if (!new_n || old_n == new_n) 854 goto out; 855 856 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 857 if (!arr) 858 return NULL; 859 860 if (new_n > old_n) 861 memset(arr + old_n * size, 0, (new_n - old_n) * size); 862 863 out: 864 return arr ? arr : ZERO_SIZE_PTR; 865 } 866 867 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 868 { 869 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 870 sizeof(struct bpf_reference_state), GFP_KERNEL); 871 if (!dst->refs) 872 return -ENOMEM; 873 874 dst->acquired_refs = src->acquired_refs; 875 return 0; 876 } 877 878 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 879 { 880 size_t n = src->allocated_stack / BPF_REG_SIZE; 881 882 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 883 GFP_KERNEL); 884 if (!dst->stack) 885 return -ENOMEM; 886 887 dst->allocated_stack = src->allocated_stack; 888 return 0; 889 } 890 891 static int resize_reference_state(struct bpf_func_state *state, size_t n) 892 { 893 state->refs = realloc_array(state->refs, state->acquired_refs, n, 894 sizeof(struct bpf_reference_state)); 895 if (!state->refs) 896 return -ENOMEM; 897 898 state->acquired_refs = n; 899 return 0; 900 } 901 902 static int grow_stack_state(struct bpf_func_state *state, int size) 903 { 904 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 905 906 if (old_n >= n) 907 return 0; 908 909 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 910 if (!state->stack) 911 return -ENOMEM; 912 913 state->allocated_stack = size; 914 return 0; 915 } 916 917 /* Acquire a pointer id from the env and update the state->refs to include 918 * this new pointer reference. 919 * On success, returns a valid pointer id to associate with the register 920 * On failure, returns a negative errno. 921 */ 922 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 923 { 924 struct bpf_func_state *state = cur_func(env); 925 int new_ofs = state->acquired_refs; 926 int id, err; 927 928 err = resize_reference_state(state, state->acquired_refs + 1); 929 if (err) 930 return err; 931 id = ++env->id_gen; 932 state->refs[new_ofs].id = id; 933 state->refs[new_ofs].insn_idx = insn_idx; 934 935 return id; 936 } 937 938 /* release function corresponding to acquire_reference_state(). Idempotent. */ 939 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 940 { 941 int i, last_idx; 942 943 last_idx = state->acquired_refs - 1; 944 for (i = 0; i < state->acquired_refs; i++) { 945 if (state->refs[i].id == ptr_id) { 946 if (last_idx && i != last_idx) 947 memcpy(&state->refs[i], &state->refs[last_idx], 948 sizeof(*state->refs)); 949 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 950 state->acquired_refs--; 951 return 0; 952 } 953 } 954 return -EINVAL; 955 } 956 957 static void free_func_state(struct bpf_func_state *state) 958 { 959 if (!state) 960 return; 961 kfree(state->refs); 962 kfree(state->stack); 963 kfree(state); 964 } 965 966 static void clear_jmp_history(struct bpf_verifier_state *state) 967 { 968 kfree(state->jmp_history); 969 state->jmp_history = NULL; 970 state->jmp_history_cnt = 0; 971 } 972 973 static void free_verifier_state(struct bpf_verifier_state *state, 974 bool free_self) 975 { 976 int i; 977 978 for (i = 0; i <= state->curframe; i++) { 979 free_func_state(state->frame[i]); 980 state->frame[i] = NULL; 981 } 982 clear_jmp_history(state); 983 if (free_self) 984 kfree(state); 985 } 986 987 /* copy verifier state from src to dst growing dst stack space 988 * when necessary to accommodate larger src stack 989 */ 990 static int copy_func_state(struct bpf_func_state *dst, 991 const struct bpf_func_state *src) 992 { 993 int err; 994 995 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 996 err = copy_reference_state(dst, src); 997 if (err) 998 return err; 999 return copy_stack_state(dst, src); 1000 } 1001 1002 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1003 const struct bpf_verifier_state *src) 1004 { 1005 struct bpf_func_state *dst; 1006 int i, err; 1007 1008 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1009 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1010 GFP_USER); 1011 if (!dst_state->jmp_history) 1012 return -ENOMEM; 1013 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1014 1015 /* if dst has more stack frames then src frame, free them */ 1016 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1017 free_func_state(dst_state->frame[i]); 1018 dst_state->frame[i] = NULL; 1019 } 1020 dst_state->speculative = src->speculative; 1021 dst_state->curframe = src->curframe; 1022 dst_state->active_spin_lock = src->active_spin_lock; 1023 dst_state->branches = src->branches; 1024 dst_state->parent = src->parent; 1025 dst_state->first_insn_idx = src->first_insn_idx; 1026 dst_state->last_insn_idx = src->last_insn_idx; 1027 for (i = 0; i <= src->curframe; i++) { 1028 dst = dst_state->frame[i]; 1029 if (!dst) { 1030 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1031 if (!dst) 1032 return -ENOMEM; 1033 dst_state->frame[i] = dst; 1034 } 1035 err = copy_func_state(dst, src->frame[i]); 1036 if (err) 1037 return err; 1038 } 1039 return 0; 1040 } 1041 1042 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1043 { 1044 while (st) { 1045 u32 br = --st->branches; 1046 1047 /* WARN_ON(br > 1) technically makes sense here, 1048 * but see comment in push_stack(), hence: 1049 */ 1050 WARN_ONCE((int)br < 0, 1051 "BUG update_branch_counts:branches_to_explore=%d\n", 1052 br); 1053 if (br) 1054 break; 1055 st = st->parent; 1056 } 1057 } 1058 1059 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1060 int *insn_idx, bool pop_log) 1061 { 1062 struct bpf_verifier_state *cur = env->cur_state; 1063 struct bpf_verifier_stack_elem *elem, *head = env->head; 1064 int err; 1065 1066 if (env->head == NULL) 1067 return -ENOENT; 1068 1069 if (cur) { 1070 err = copy_verifier_state(cur, &head->st); 1071 if (err) 1072 return err; 1073 } 1074 if (pop_log) 1075 bpf_vlog_reset(&env->log, head->log_pos); 1076 if (insn_idx) 1077 *insn_idx = head->insn_idx; 1078 if (prev_insn_idx) 1079 *prev_insn_idx = head->prev_insn_idx; 1080 elem = head->next; 1081 free_verifier_state(&head->st, false); 1082 kfree(head); 1083 env->head = elem; 1084 env->stack_size--; 1085 return 0; 1086 } 1087 1088 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1089 int insn_idx, int prev_insn_idx, 1090 bool speculative) 1091 { 1092 struct bpf_verifier_state *cur = env->cur_state; 1093 struct bpf_verifier_stack_elem *elem; 1094 int err; 1095 1096 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1097 if (!elem) 1098 goto err; 1099 1100 elem->insn_idx = insn_idx; 1101 elem->prev_insn_idx = prev_insn_idx; 1102 elem->next = env->head; 1103 elem->log_pos = env->log.len_used; 1104 env->head = elem; 1105 env->stack_size++; 1106 err = copy_verifier_state(&elem->st, cur); 1107 if (err) 1108 goto err; 1109 elem->st.speculative |= speculative; 1110 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1111 verbose(env, "The sequence of %d jumps is too complex.\n", 1112 env->stack_size); 1113 goto err; 1114 } 1115 if (elem->st.parent) { 1116 ++elem->st.parent->branches; 1117 /* WARN_ON(branches > 2) technically makes sense here, 1118 * but 1119 * 1. speculative states will bump 'branches' for non-branch 1120 * instructions 1121 * 2. is_state_visited() heuristics may decide not to create 1122 * a new state for a sequence of branches and all such current 1123 * and cloned states will be pointing to a single parent state 1124 * which might have large 'branches' count. 1125 */ 1126 } 1127 return &elem->st; 1128 err: 1129 free_verifier_state(env->cur_state, true); 1130 env->cur_state = NULL; 1131 /* pop all elements and return */ 1132 while (!pop_stack(env, NULL, NULL, false)); 1133 return NULL; 1134 } 1135 1136 #define CALLER_SAVED_REGS 6 1137 static const int caller_saved[CALLER_SAVED_REGS] = { 1138 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1139 }; 1140 1141 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1142 struct bpf_reg_state *reg); 1143 1144 /* This helper doesn't clear reg->id */ 1145 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1146 { 1147 reg->var_off = tnum_const(imm); 1148 reg->smin_value = (s64)imm; 1149 reg->smax_value = (s64)imm; 1150 reg->umin_value = imm; 1151 reg->umax_value = imm; 1152 1153 reg->s32_min_value = (s32)imm; 1154 reg->s32_max_value = (s32)imm; 1155 reg->u32_min_value = (u32)imm; 1156 reg->u32_max_value = (u32)imm; 1157 } 1158 1159 /* Mark the unknown part of a register (variable offset or scalar value) as 1160 * known to have the value @imm. 1161 */ 1162 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1163 { 1164 /* Clear id, off, and union(map_ptr, range) */ 1165 memset(((u8 *)reg) + sizeof(reg->type), 0, 1166 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1167 ___mark_reg_known(reg, imm); 1168 } 1169 1170 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1171 { 1172 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1173 reg->s32_min_value = (s32)imm; 1174 reg->s32_max_value = (s32)imm; 1175 reg->u32_min_value = (u32)imm; 1176 reg->u32_max_value = (u32)imm; 1177 } 1178 1179 /* Mark the 'variable offset' part of a register as zero. This should be 1180 * used only on registers holding a pointer type. 1181 */ 1182 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1183 { 1184 __mark_reg_known(reg, 0); 1185 } 1186 1187 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1188 { 1189 __mark_reg_known(reg, 0); 1190 reg->type = SCALAR_VALUE; 1191 } 1192 1193 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1194 struct bpf_reg_state *regs, u32 regno) 1195 { 1196 if (WARN_ON(regno >= MAX_BPF_REG)) { 1197 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1198 /* Something bad happened, let's kill all regs */ 1199 for (regno = 0; regno < MAX_BPF_REG; regno++) 1200 __mark_reg_not_init(env, regs + regno); 1201 return; 1202 } 1203 __mark_reg_known_zero(regs + regno); 1204 } 1205 1206 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1207 { 1208 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1209 const struct bpf_map *map = reg->map_ptr; 1210 1211 if (map->inner_map_meta) { 1212 reg->type = CONST_PTR_TO_MAP; 1213 reg->map_ptr = map->inner_map_meta; 1214 /* transfer reg's id which is unique for every map_lookup_elem 1215 * as UID of the inner map. 1216 */ 1217 if (map_value_has_timer(map->inner_map_meta)) 1218 reg->map_uid = reg->id; 1219 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1220 reg->type = PTR_TO_XDP_SOCK; 1221 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1222 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1223 reg->type = PTR_TO_SOCKET; 1224 } else { 1225 reg->type = PTR_TO_MAP_VALUE; 1226 } 1227 return; 1228 } 1229 1230 reg->type &= ~PTR_MAYBE_NULL; 1231 } 1232 1233 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1234 { 1235 return type_is_pkt_pointer(reg->type); 1236 } 1237 1238 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1239 { 1240 return reg_is_pkt_pointer(reg) || 1241 reg->type == PTR_TO_PACKET_END; 1242 } 1243 1244 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1245 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1246 enum bpf_reg_type which) 1247 { 1248 /* The register can already have a range from prior markings. 1249 * This is fine as long as it hasn't been advanced from its 1250 * origin. 1251 */ 1252 return reg->type == which && 1253 reg->id == 0 && 1254 reg->off == 0 && 1255 tnum_equals_const(reg->var_off, 0); 1256 } 1257 1258 /* Reset the min/max bounds of a register */ 1259 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1260 { 1261 reg->smin_value = S64_MIN; 1262 reg->smax_value = S64_MAX; 1263 reg->umin_value = 0; 1264 reg->umax_value = U64_MAX; 1265 1266 reg->s32_min_value = S32_MIN; 1267 reg->s32_max_value = S32_MAX; 1268 reg->u32_min_value = 0; 1269 reg->u32_max_value = U32_MAX; 1270 } 1271 1272 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1273 { 1274 reg->smin_value = S64_MIN; 1275 reg->smax_value = S64_MAX; 1276 reg->umin_value = 0; 1277 reg->umax_value = U64_MAX; 1278 } 1279 1280 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1281 { 1282 reg->s32_min_value = S32_MIN; 1283 reg->s32_max_value = S32_MAX; 1284 reg->u32_min_value = 0; 1285 reg->u32_max_value = U32_MAX; 1286 } 1287 1288 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1289 { 1290 struct tnum var32_off = tnum_subreg(reg->var_off); 1291 1292 /* min signed is max(sign bit) | min(other bits) */ 1293 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1294 var32_off.value | (var32_off.mask & S32_MIN)); 1295 /* max signed is min(sign bit) | max(other bits) */ 1296 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1297 var32_off.value | (var32_off.mask & S32_MAX)); 1298 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1299 reg->u32_max_value = min(reg->u32_max_value, 1300 (u32)(var32_off.value | var32_off.mask)); 1301 } 1302 1303 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1304 { 1305 /* min signed is max(sign bit) | min(other bits) */ 1306 reg->smin_value = max_t(s64, reg->smin_value, 1307 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1308 /* max signed is min(sign bit) | max(other bits) */ 1309 reg->smax_value = min_t(s64, reg->smax_value, 1310 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1311 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1312 reg->umax_value = min(reg->umax_value, 1313 reg->var_off.value | reg->var_off.mask); 1314 } 1315 1316 static void __update_reg_bounds(struct bpf_reg_state *reg) 1317 { 1318 __update_reg32_bounds(reg); 1319 __update_reg64_bounds(reg); 1320 } 1321 1322 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1323 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1324 { 1325 /* Learn sign from signed bounds. 1326 * If we cannot cross the sign boundary, then signed and unsigned bounds 1327 * are the same, so combine. This works even in the negative case, e.g. 1328 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1329 */ 1330 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1331 reg->s32_min_value = reg->u32_min_value = 1332 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1333 reg->s32_max_value = reg->u32_max_value = 1334 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1335 return; 1336 } 1337 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1338 * boundary, so we must be careful. 1339 */ 1340 if ((s32)reg->u32_max_value >= 0) { 1341 /* Positive. We can't learn anything from the smin, but smax 1342 * is positive, hence safe. 1343 */ 1344 reg->s32_min_value = reg->u32_min_value; 1345 reg->s32_max_value = reg->u32_max_value = 1346 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1347 } else if ((s32)reg->u32_min_value < 0) { 1348 /* Negative. We can't learn anything from the smax, but smin 1349 * is negative, hence safe. 1350 */ 1351 reg->s32_min_value = reg->u32_min_value = 1352 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1353 reg->s32_max_value = reg->u32_max_value; 1354 } 1355 } 1356 1357 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1358 { 1359 /* Learn sign from signed bounds. 1360 * If we cannot cross the sign boundary, then signed and unsigned bounds 1361 * are the same, so combine. This works even in the negative case, e.g. 1362 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1363 */ 1364 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1365 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1366 reg->umin_value); 1367 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1368 reg->umax_value); 1369 return; 1370 } 1371 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1372 * boundary, so we must be careful. 1373 */ 1374 if ((s64)reg->umax_value >= 0) { 1375 /* Positive. We can't learn anything from the smin, but smax 1376 * is positive, hence safe. 1377 */ 1378 reg->smin_value = reg->umin_value; 1379 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1380 reg->umax_value); 1381 } else if ((s64)reg->umin_value < 0) { 1382 /* Negative. We can't learn anything from the smax, but smin 1383 * is negative, hence safe. 1384 */ 1385 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1386 reg->umin_value); 1387 reg->smax_value = reg->umax_value; 1388 } 1389 } 1390 1391 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1392 { 1393 __reg32_deduce_bounds(reg); 1394 __reg64_deduce_bounds(reg); 1395 } 1396 1397 /* Attempts to improve var_off based on unsigned min/max information */ 1398 static void __reg_bound_offset(struct bpf_reg_state *reg) 1399 { 1400 struct tnum var64_off = tnum_intersect(reg->var_off, 1401 tnum_range(reg->umin_value, 1402 reg->umax_value)); 1403 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1404 tnum_range(reg->u32_min_value, 1405 reg->u32_max_value)); 1406 1407 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1408 } 1409 1410 static bool __reg32_bound_s64(s32 a) 1411 { 1412 return a >= 0 && a <= S32_MAX; 1413 } 1414 1415 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1416 { 1417 reg->umin_value = reg->u32_min_value; 1418 reg->umax_value = reg->u32_max_value; 1419 1420 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1421 * be positive otherwise set to worse case bounds and refine later 1422 * from tnum. 1423 */ 1424 if (__reg32_bound_s64(reg->s32_min_value) && 1425 __reg32_bound_s64(reg->s32_max_value)) { 1426 reg->smin_value = reg->s32_min_value; 1427 reg->smax_value = reg->s32_max_value; 1428 } else { 1429 reg->smin_value = 0; 1430 reg->smax_value = U32_MAX; 1431 } 1432 } 1433 1434 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1435 { 1436 /* special case when 64-bit register has upper 32-bit register 1437 * zeroed. Typically happens after zext or <<32, >>32 sequence 1438 * allowing us to use 32-bit bounds directly, 1439 */ 1440 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1441 __reg_assign_32_into_64(reg); 1442 } else { 1443 /* Otherwise the best we can do is push lower 32bit known and 1444 * unknown bits into register (var_off set from jmp logic) 1445 * then learn as much as possible from the 64-bit tnum 1446 * known and unknown bits. The previous smin/smax bounds are 1447 * invalid here because of jmp32 compare so mark them unknown 1448 * so they do not impact tnum bounds calculation. 1449 */ 1450 __mark_reg64_unbounded(reg); 1451 __update_reg_bounds(reg); 1452 } 1453 1454 /* Intersecting with the old var_off might have improved our bounds 1455 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1456 * then new var_off is (0; 0x7f...fc) which improves our umax. 1457 */ 1458 __reg_deduce_bounds(reg); 1459 __reg_bound_offset(reg); 1460 __update_reg_bounds(reg); 1461 } 1462 1463 static bool __reg64_bound_s32(s64 a) 1464 { 1465 return a >= S32_MIN && a <= S32_MAX; 1466 } 1467 1468 static bool __reg64_bound_u32(u64 a) 1469 { 1470 return a >= U32_MIN && a <= U32_MAX; 1471 } 1472 1473 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1474 { 1475 __mark_reg32_unbounded(reg); 1476 1477 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1478 reg->s32_min_value = (s32)reg->smin_value; 1479 reg->s32_max_value = (s32)reg->smax_value; 1480 } 1481 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1482 reg->u32_min_value = (u32)reg->umin_value; 1483 reg->u32_max_value = (u32)reg->umax_value; 1484 } 1485 1486 /* Intersecting with the old var_off might have improved our bounds 1487 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1488 * then new var_off is (0; 0x7f...fc) which improves our umax. 1489 */ 1490 __reg_deduce_bounds(reg); 1491 __reg_bound_offset(reg); 1492 __update_reg_bounds(reg); 1493 } 1494 1495 /* Mark a register as having a completely unknown (scalar) value. */ 1496 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1497 struct bpf_reg_state *reg) 1498 { 1499 /* 1500 * Clear type, id, off, and union(map_ptr, range) and 1501 * padding between 'type' and union 1502 */ 1503 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1504 reg->type = SCALAR_VALUE; 1505 reg->var_off = tnum_unknown; 1506 reg->frameno = 0; 1507 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1508 __mark_reg_unbounded(reg); 1509 } 1510 1511 static void mark_reg_unknown(struct bpf_verifier_env *env, 1512 struct bpf_reg_state *regs, u32 regno) 1513 { 1514 if (WARN_ON(regno >= MAX_BPF_REG)) { 1515 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1516 /* Something bad happened, let's kill all regs except FP */ 1517 for (regno = 0; regno < BPF_REG_FP; regno++) 1518 __mark_reg_not_init(env, regs + regno); 1519 return; 1520 } 1521 __mark_reg_unknown(env, regs + regno); 1522 } 1523 1524 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1525 struct bpf_reg_state *reg) 1526 { 1527 __mark_reg_unknown(env, reg); 1528 reg->type = NOT_INIT; 1529 } 1530 1531 static void mark_reg_not_init(struct bpf_verifier_env *env, 1532 struct bpf_reg_state *regs, u32 regno) 1533 { 1534 if (WARN_ON(regno >= MAX_BPF_REG)) { 1535 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1536 /* Something bad happened, let's kill all regs except FP */ 1537 for (regno = 0; regno < BPF_REG_FP; regno++) 1538 __mark_reg_not_init(env, regs + regno); 1539 return; 1540 } 1541 __mark_reg_not_init(env, regs + regno); 1542 } 1543 1544 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1545 struct bpf_reg_state *regs, u32 regno, 1546 enum bpf_reg_type reg_type, 1547 struct btf *btf, u32 btf_id) 1548 { 1549 if (reg_type == SCALAR_VALUE) { 1550 mark_reg_unknown(env, regs, regno); 1551 return; 1552 } 1553 mark_reg_known_zero(env, regs, regno); 1554 regs[regno].type = PTR_TO_BTF_ID; 1555 regs[regno].btf = btf; 1556 regs[regno].btf_id = btf_id; 1557 } 1558 1559 #define DEF_NOT_SUBREG (0) 1560 static void init_reg_state(struct bpf_verifier_env *env, 1561 struct bpf_func_state *state) 1562 { 1563 struct bpf_reg_state *regs = state->regs; 1564 int i; 1565 1566 for (i = 0; i < MAX_BPF_REG; i++) { 1567 mark_reg_not_init(env, regs, i); 1568 regs[i].live = REG_LIVE_NONE; 1569 regs[i].parent = NULL; 1570 regs[i].subreg_def = DEF_NOT_SUBREG; 1571 } 1572 1573 /* frame pointer */ 1574 regs[BPF_REG_FP].type = PTR_TO_STACK; 1575 mark_reg_known_zero(env, regs, BPF_REG_FP); 1576 regs[BPF_REG_FP].frameno = state->frameno; 1577 } 1578 1579 #define BPF_MAIN_FUNC (-1) 1580 static void init_func_state(struct bpf_verifier_env *env, 1581 struct bpf_func_state *state, 1582 int callsite, int frameno, int subprogno) 1583 { 1584 state->callsite = callsite; 1585 state->frameno = frameno; 1586 state->subprogno = subprogno; 1587 init_reg_state(env, state); 1588 mark_verifier_state_scratched(env); 1589 } 1590 1591 /* Similar to push_stack(), but for async callbacks */ 1592 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1593 int insn_idx, int prev_insn_idx, 1594 int subprog) 1595 { 1596 struct bpf_verifier_stack_elem *elem; 1597 struct bpf_func_state *frame; 1598 1599 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1600 if (!elem) 1601 goto err; 1602 1603 elem->insn_idx = insn_idx; 1604 elem->prev_insn_idx = prev_insn_idx; 1605 elem->next = env->head; 1606 elem->log_pos = env->log.len_used; 1607 env->head = elem; 1608 env->stack_size++; 1609 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1610 verbose(env, 1611 "The sequence of %d jumps is too complex for async cb.\n", 1612 env->stack_size); 1613 goto err; 1614 } 1615 /* Unlike push_stack() do not copy_verifier_state(). 1616 * The caller state doesn't matter. 1617 * This is async callback. It starts in a fresh stack. 1618 * Initialize it similar to do_check_common(). 1619 */ 1620 elem->st.branches = 1; 1621 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1622 if (!frame) 1623 goto err; 1624 init_func_state(env, frame, 1625 BPF_MAIN_FUNC /* callsite */, 1626 0 /* frameno within this callchain */, 1627 subprog /* subprog number within this prog */); 1628 elem->st.frame[0] = frame; 1629 return &elem->st; 1630 err: 1631 free_verifier_state(env->cur_state, true); 1632 env->cur_state = NULL; 1633 /* pop all elements and return */ 1634 while (!pop_stack(env, NULL, NULL, false)); 1635 return NULL; 1636 } 1637 1638 1639 enum reg_arg_type { 1640 SRC_OP, /* register is used as source operand */ 1641 DST_OP, /* register is used as destination operand */ 1642 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1643 }; 1644 1645 static int cmp_subprogs(const void *a, const void *b) 1646 { 1647 return ((struct bpf_subprog_info *)a)->start - 1648 ((struct bpf_subprog_info *)b)->start; 1649 } 1650 1651 static int find_subprog(struct bpf_verifier_env *env, int off) 1652 { 1653 struct bpf_subprog_info *p; 1654 1655 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1656 sizeof(env->subprog_info[0]), cmp_subprogs); 1657 if (!p) 1658 return -ENOENT; 1659 return p - env->subprog_info; 1660 1661 } 1662 1663 static int add_subprog(struct bpf_verifier_env *env, int off) 1664 { 1665 int insn_cnt = env->prog->len; 1666 int ret; 1667 1668 if (off >= insn_cnt || off < 0) { 1669 verbose(env, "call to invalid destination\n"); 1670 return -EINVAL; 1671 } 1672 ret = find_subprog(env, off); 1673 if (ret >= 0) 1674 return ret; 1675 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1676 verbose(env, "too many subprograms\n"); 1677 return -E2BIG; 1678 } 1679 /* determine subprog starts. The end is one before the next starts */ 1680 env->subprog_info[env->subprog_cnt++].start = off; 1681 sort(env->subprog_info, env->subprog_cnt, 1682 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1683 return env->subprog_cnt - 1; 1684 } 1685 1686 #define MAX_KFUNC_DESCS 256 1687 #define MAX_KFUNC_BTFS 256 1688 1689 struct bpf_kfunc_desc { 1690 struct btf_func_model func_model; 1691 u32 func_id; 1692 s32 imm; 1693 u16 offset; 1694 }; 1695 1696 struct bpf_kfunc_btf { 1697 struct btf *btf; 1698 struct module *module; 1699 u16 offset; 1700 }; 1701 1702 struct bpf_kfunc_desc_tab { 1703 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1704 u32 nr_descs; 1705 }; 1706 1707 struct bpf_kfunc_btf_tab { 1708 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1709 u32 nr_descs; 1710 }; 1711 1712 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1713 { 1714 const struct bpf_kfunc_desc *d0 = a; 1715 const struct bpf_kfunc_desc *d1 = b; 1716 1717 /* func_id is not greater than BTF_MAX_TYPE */ 1718 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1719 } 1720 1721 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1722 { 1723 const struct bpf_kfunc_btf *d0 = a; 1724 const struct bpf_kfunc_btf *d1 = b; 1725 1726 return d0->offset - d1->offset; 1727 } 1728 1729 static const struct bpf_kfunc_desc * 1730 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1731 { 1732 struct bpf_kfunc_desc desc = { 1733 .func_id = func_id, 1734 .offset = offset, 1735 }; 1736 struct bpf_kfunc_desc_tab *tab; 1737 1738 tab = prog->aux->kfunc_tab; 1739 return bsearch(&desc, tab->descs, tab->nr_descs, 1740 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1741 } 1742 1743 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1744 s16 offset, struct module **btf_modp) 1745 { 1746 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1747 struct bpf_kfunc_btf_tab *tab; 1748 struct bpf_kfunc_btf *b; 1749 struct module *mod; 1750 struct btf *btf; 1751 int btf_fd; 1752 1753 tab = env->prog->aux->kfunc_btf_tab; 1754 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1755 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1756 if (!b) { 1757 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1758 verbose(env, "too many different module BTFs\n"); 1759 return ERR_PTR(-E2BIG); 1760 } 1761 1762 if (bpfptr_is_null(env->fd_array)) { 1763 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1764 return ERR_PTR(-EPROTO); 1765 } 1766 1767 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1768 offset * sizeof(btf_fd), 1769 sizeof(btf_fd))) 1770 return ERR_PTR(-EFAULT); 1771 1772 btf = btf_get_by_fd(btf_fd); 1773 if (IS_ERR(btf)) { 1774 verbose(env, "invalid module BTF fd specified\n"); 1775 return btf; 1776 } 1777 1778 if (!btf_is_module(btf)) { 1779 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1780 btf_put(btf); 1781 return ERR_PTR(-EINVAL); 1782 } 1783 1784 mod = btf_try_get_module(btf); 1785 if (!mod) { 1786 btf_put(btf); 1787 return ERR_PTR(-ENXIO); 1788 } 1789 1790 b = &tab->descs[tab->nr_descs++]; 1791 b->btf = btf; 1792 b->module = mod; 1793 b->offset = offset; 1794 1795 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1796 kfunc_btf_cmp_by_off, NULL); 1797 } 1798 if (btf_modp) 1799 *btf_modp = b->module; 1800 return b->btf; 1801 } 1802 1803 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1804 { 1805 if (!tab) 1806 return; 1807 1808 while (tab->nr_descs--) { 1809 module_put(tab->descs[tab->nr_descs].module); 1810 btf_put(tab->descs[tab->nr_descs].btf); 1811 } 1812 kfree(tab); 1813 } 1814 1815 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1816 u32 func_id, s16 offset, 1817 struct module **btf_modp) 1818 { 1819 if (offset) { 1820 if (offset < 0) { 1821 /* In the future, this can be allowed to increase limit 1822 * of fd index into fd_array, interpreted as u16. 1823 */ 1824 verbose(env, "negative offset disallowed for kernel module function call\n"); 1825 return ERR_PTR(-EINVAL); 1826 } 1827 1828 return __find_kfunc_desc_btf(env, offset, btf_modp); 1829 } 1830 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1831 } 1832 1833 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1834 { 1835 const struct btf_type *func, *func_proto; 1836 struct bpf_kfunc_btf_tab *btf_tab; 1837 struct bpf_kfunc_desc_tab *tab; 1838 struct bpf_prog_aux *prog_aux; 1839 struct bpf_kfunc_desc *desc; 1840 const char *func_name; 1841 struct btf *desc_btf; 1842 unsigned long addr; 1843 int err; 1844 1845 prog_aux = env->prog->aux; 1846 tab = prog_aux->kfunc_tab; 1847 btf_tab = prog_aux->kfunc_btf_tab; 1848 if (!tab) { 1849 if (!btf_vmlinux) { 1850 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1851 return -ENOTSUPP; 1852 } 1853 1854 if (!env->prog->jit_requested) { 1855 verbose(env, "JIT is required for calling kernel function\n"); 1856 return -ENOTSUPP; 1857 } 1858 1859 if (!bpf_jit_supports_kfunc_call()) { 1860 verbose(env, "JIT does not support calling kernel function\n"); 1861 return -ENOTSUPP; 1862 } 1863 1864 if (!env->prog->gpl_compatible) { 1865 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1866 return -EINVAL; 1867 } 1868 1869 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1870 if (!tab) 1871 return -ENOMEM; 1872 prog_aux->kfunc_tab = tab; 1873 } 1874 1875 /* func_id == 0 is always invalid, but instead of returning an error, be 1876 * conservative and wait until the code elimination pass before returning 1877 * error, so that invalid calls that get pruned out can be in BPF programs 1878 * loaded from userspace. It is also required that offset be untouched 1879 * for such calls. 1880 */ 1881 if (!func_id && !offset) 1882 return 0; 1883 1884 if (!btf_tab && offset) { 1885 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1886 if (!btf_tab) 1887 return -ENOMEM; 1888 prog_aux->kfunc_btf_tab = btf_tab; 1889 } 1890 1891 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); 1892 if (IS_ERR(desc_btf)) { 1893 verbose(env, "failed to find BTF for kernel function\n"); 1894 return PTR_ERR(desc_btf); 1895 } 1896 1897 if (find_kfunc_desc(env->prog, func_id, offset)) 1898 return 0; 1899 1900 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1901 verbose(env, "too many different kernel function calls\n"); 1902 return -E2BIG; 1903 } 1904 1905 func = btf_type_by_id(desc_btf, func_id); 1906 if (!func || !btf_type_is_func(func)) { 1907 verbose(env, "kernel btf_id %u is not a function\n", 1908 func_id); 1909 return -EINVAL; 1910 } 1911 func_proto = btf_type_by_id(desc_btf, func->type); 1912 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1913 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1914 func_id); 1915 return -EINVAL; 1916 } 1917 1918 func_name = btf_name_by_offset(desc_btf, func->name_off); 1919 addr = kallsyms_lookup_name(func_name); 1920 if (!addr) { 1921 verbose(env, "cannot find address for kernel function %s\n", 1922 func_name); 1923 return -EINVAL; 1924 } 1925 1926 desc = &tab->descs[tab->nr_descs++]; 1927 desc->func_id = func_id; 1928 desc->imm = BPF_CALL_IMM(addr); 1929 desc->offset = offset; 1930 err = btf_distill_func_proto(&env->log, desc_btf, 1931 func_proto, func_name, 1932 &desc->func_model); 1933 if (!err) 1934 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1935 kfunc_desc_cmp_by_id_off, NULL); 1936 return err; 1937 } 1938 1939 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1940 { 1941 const struct bpf_kfunc_desc *d0 = a; 1942 const struct bpf_kfunc_desc *d1 = b; 1943 1944 if (d0->imm > d1->imm) 1945 return 1; 1946 else if (d0->imm < d1->imm) 1947 return -1; 1948 return 0; 1949 } 1950 1951 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1952 { 1953 struct bpf_kfunc_desc_tab *tab; 1954 1955 tab = prog->aux->kfunc_tab; 1956 if (!tab) 1957 return; 1958 1959 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1960 kfunc_desc_cmp_by_imm, NULL); 1961 } 1962 1963 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1964 { 1965 return !!prog->aux->kfunc_tab; 1966 } 1967 1968 const struct btf_func_model * 1969 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1970 const struct bpf_insn *insn) 1971 { 1972 const struct bpf_kfunc_desc desc = { 1973 .imm = insn->imm, 1974 }; 1975 const struct bpf_kfunc_desc *res; 1976 struct bpf_kfunc_desc_tab *tab; 1977 1978 tab = prog->aux->kfunc_tab; 1979 res = bsearch(&desc, tab->descs, tab->nr_descs, 1980 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1981 1982 return res ? &res->func_model : NULL; 1983 } 1984 1985 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1986 { 1987 struct bpf_subprog_info *subprog = env->subprog_info; 1988 struct bpf_insn *insn = env->prog->insnsi; 1989 int i, ret, insn_cnt = env->prog->len; 1990 1991 /* Add entry function. */ 1992 ret = add_subprog(env, 0); 1993 if (ret) 1994 return ret; 1995 1996 for (i = 0; i < insn_cnt; i++, insn++) { 1997 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1998 !bpf_pseudo_kfunc_call(insn)) 1999 continue; 2000 2001 if (!env->bpf_capable) { 2002 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2003 return -EPERM; 2004 } 2005 2006 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2007 ret = add_subprog(env, i + insn->imm + 1); 2008 else 2009 ret = add_kfunc_call(env, insn->imm, insn->off); 2010 2011 if (ret < 0) 2012 return ret; 2013 } 2014 2015 /* Add a fake 'exit' subprog which could simplify subprog iteration 2016 * logic. 'subprog_cnt' should not be increased. 2017 */ 2018 subprog[env->subprog_cnt].start = insn_cnt; 2019 2020 if (env->log.level & BPF_LOG_LEVEL2) 2021 for (i = 0; i < env->subprog_cnt; i++) 2022 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2023 2024 return 0; 2025 } 2026 2027 static int check_subprogs(struct bpf_verifier_env *env) 2028 { 2029 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2030 struct bpf_subprog_info *subprog = env->subprog_info; 2031 struct bpf_insn *insn = env->prog->insnsi; 2032 int insn_cnt = env->prog->len; 2033 2034 /* now check that all jumps are within the same subprog */ 2035 subprog_start = subprog[cur_subprog].start; 2036 subprog_end = subprog[cur_subprog + 1].start; 2037 for (i = 0; i < insn_cnt; i++) { 2038 u8 code = insn[i].code; 2039 2040 if (code == (BPF_JMP | BPF_CALL) && 2041 insn[i].imm == BPF_FUNC_tail_call && 2042 insn[i].src_reg != BPF_PSEUDO_CALL) 2043 subprog[cur_subprog].has_tail_call = true; 2044 if (BPF_CLASS(code) == BPF_LD && 2045 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2046 subprog[cur_subprog].has_ld_abs = true; 2047 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2048 goto next; 2049 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2050 goto next; 2051 off = i + insn[i].off + 1; 2052 if (off < subprog_start || off >= subprog_end) { 2053 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2054 return -EINVAL; 2055 } 2056 next: 2057 if (i == subprog_end - 1) { 2058 /* to avoid fall-through from one subprog into another 2059 * the last insn of the subprog should be either exit 2060 * or unconditional jump back 2061 */ 2062 if (code != (BPF_JMP | BPF_EXIT) && 2063 code != (BPF_JMP | BPF_JA)) { 2064 verbose(env, "last insn is not an exit or jmp\n"); 2065 return -EINVAL; 2066 } 2067 subprog_start = subprog_end; 2068 cur_subprog++; 2069 if (cur_subprog < env->subprog_cnt) 2070 subprog_end = subprog[cur_subprog + 1].start; 2071 } 2072 } 2073 return 0; 2074 } 2075 2076 /* Parentage chain of this register (or stack slot) should take care of all 2077 * issues like callee-saved registers, stack slot allocation time, etc. 2078 */ 2079 static int mark_reg_read(struct bpf_verifier_env *env, 2080 const struct bpf_reg_state *state, 2081 struct bpf_reg_state *parent, u8 flag) 2082 { 2083 bool writes = parent == state->parent; /* Observe write marks */ 2084 int cnt = 0; 2085 2086 while (parent) { 2087 /* if read wasn't screened by an earlier write ... */ 2088 if (writes && state->live & REG_LIVE_WRITTEN) 2089 break; 2090 if (parent->live & REG_LIVE_DONE) { 2091 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2092 reg_type_str(env, parent->type), 2093 parent->var_off.value, parent->off); 2094 return -EFAULT; 2095 } 2096 /* The first condition is more likely to be true than the 2097 * second, checked it first. 2098 */ 2099 if ((parent->live & REG_LIVE_READ) == flag || 2100 parent->live & REG_LIVE_READ64) 2101 /* The parentage chain never changes and 2102 * this parent was already marked as LIVE_READ. 2103 * There is no need to keep walking the chain again and 2104 * keep re-marking all parents as LIVE_READ. 2105 * This case happens when the same register is read 2106 * multiple times without writes into it in-between. 2107 * Also, if parent has the stronger REG_LIVE_READ64 set, 2108 * then no need to set the weak REG_LIVE_READ32. 2109 */ 2110 break; 2111 /* ... then we depend on parent's value */ 2112 parent->live |= flag; 2113 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2114 if (flag == REG_LIVE_READ64) 2115 parent->live &= ~REG_LIVE_READ32; 2116 state = parent; 2117 parent = state->parent; 2118 writes = true; 2119 cnt++; 2120 } 2121 2122 if (env->longest_mark_read_walk < cnt) 2123 env->longest_mark_read_walk = cnt; 2124 return 0; 2125 } 2126 2127 /* This function is supposed to be used by the following 32-bit optimization 2128 * code only. It returns TRUE if the source or destination register operates 2129 * on 64-bit, otherwise return FALSE. 2130 */ 2131 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2132 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2133 { 2134 u8 code, class, op; 2135 2136 code = insn->code; 2137 class = BPF_CLASS(code); 2138 op = BPF_OP(code); 2139 if (class == BPF_JMP) { 2140 /* BPF_EXIT for "main" will reach here. Return TRUE 2141 * conservatively. 2142 */ 2143 if (op == BPF_EXIT) 2144 return true; 2145 if (op == BPF_CALL) { 2146 /* BPF to BPF call will reach here because of marking 2147 * caller saved clobber with DST_OP_NO_MARK for which we 2148 * don't care the register def because they are anyway 2149 * marked as NOT_INIT already. 2150 */ 2151 if (insn->src_reg == BPF_PSEUDO_CALL) 2152 return false; 2153 /* Helper call will reach here because of arg type 2154 * check, conservatively return TRUE. 2155 */ 2156 if (t == SRC_OP) 2157 return true; 2158 2159 return false; 2160 } 2161 } 2162 2163 if (class == BPF_ALU64 || class == BPF_JMP || 2164 /* BPF_END always use BPF_ALU class. */ 2165 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2166 return true; 2167 2168 if (class == BPF_ALU || class == BPF_JMP32) 2169 return false; 2170 2171 if (class == BPF_LDX) { 2172 if (t != SRC_OP) 2173 return BPF_SIZE(code) == BPF_DW; 2174 /* LDX source must be ptr. */ 2175 return true; 2176 } 2177 2178 if (class == BPF_STX) { 2179 /* BPF_STX (including atomic variants) has multiple source 2180 * operands, one of which is a ptr. Check whether the caller is 2181 * asking about it. 2182 */ 2183 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2184 return true; 2185 return BPF_SIZE(code) == BPF_DW; 2186 } 2187 2188 if (class == BPF_LD) { 2189 u8 mode = BPF_MODE(code); 2190 2191 /* LD_IMM64 */ 2192 if (mode == BPF_IMM) 2193 return true; 2194 2195 /* Both LD_IND and LD_ABS return 32-bit data. */ 2196 if (t != SRC_OP) 2197 return false; 2198 2199 /* Implicit ctx ptr. */ 2200 if (regno == BPF_REG_6) 2201 return true; 2202 2203 /* Explicit source could be any width. */ 2204 return true; 2205 } 2206 2207 if (class == BPF_ST) 2208 /* The only source register for BPF_ST is a ptr. */ 2209 return true; 2210 2211 /* Conservatively return true at default. */ 2212 return true; 2213 } 2214 2215 /* Return the regno defined by the insn, or -1. */ 2216 static int insn_def_regno(const struct bpf_insn *insn) 2217 { 2218 switch (BPF_CLASS(insn->code)) { 2219 case BPF_JMP: 2220 case BPF_JMP32: 2221 case BPF_ST: 2222 return -1; 2223 case BPF_STX: 2224 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2225 (insn->imm & BPF_FETCH)) { 2226 if (insn->imm == BPF_CMPXCHG) 2227 return BPF_REG_0; 2228 else 2229 return insn->src_reg; 2230 } else { 2231 return -1; 2232 } 2233 default: 2234 return insn->dst_reg; 2235 } 2236 } 2237 2238 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2239 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2240 { 2241 int dst_reg = insn_def_regno(insn); 2242 2243 if (dst_reg == -1) 2244 return false; 2245 2246 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2247 } 2248 2249 static void mark_insn_zext(struct bpf_verifier_env *env, 2250 struct bpf_reg_state *reg) 2251 { 2252 s32 def_idx = reg->subreg_def; 2253 2254 if (def_idx == DEF_NOT_SUBREG) 2255 return; 2256 2257 env->insn_aux_data[def_idx - 1].zext_dst = true; 2258 /* The dst will be zero extended, so won't be sub-register anymore. */ 2259 reg->subreg_def = DEF_NOT_SUBREG; 2260 } 2261 2262 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2263 enum reg_arg_type t) 2264 { 2265 struct bpf_verifier_state *vstate = env->cur_state; 2266 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2267 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2268 struct bpf_reg_state *reg, *regs = state->regs; 2269 bool rw64; 2270 2271 if (regno >= MAX_BPF_REG) { 2272 verbose(env, "R%d is invalid\n", regno); 2273 return -EINVAL; 2274 } 2275 2276 mark_reg_scratched(env, regno); 2277 2278 reg = ®s[regno]; 2279 rw64 = is_reg64(env, insn, regno, reg, t); 2280 if (t == SRC_OP) { 2281 /* check whether register used as source operand can be read */ 2282 if (reg->type == NOT_INIT) { 2283 verbose(env, "R%d !read_ok\n", regno); 2284 return -EACCES; 2285 } 2286 /* We don't need to worry about FP liveness because it's read-only */ 2287 if (regno == BPF_REG_FP) 2288 return 0; 2289 2290 if (rw64) 2291 mark_insn_zext(env, reg); 2292 2293 return mark_reg_read(env, reg, reg->parent, 2294 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2295 } else { 2296 /* check whether register used as dest operand can be written to */ 2297 if (regno == BPF_REG_FP) { 2298 verbose(env, "frame pointer is read only\n"); 2299 return -EACCES; 2300 } 2301 reg->live |= REG_LIVE_WRITTEN; 2302 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2303 if (t == DST_OP) 2304 mark_reg_unknown(env, regs, regno); 2305 } 2306 return 0; 2307 } 2308 2309 /* for any branch, call, exit record the history of jmps in the given state */ 2310 static int push_jmp_history(struct bpf_verifier_env *env, 2311 struct bpf_verifier_state *cur) 2312 { 2313 u32 cnt = cur->jmp_history_cnt; 2314 struct bpf_idx_pair *p; 2315 2316 cnt++; 2317 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2318 if (!p) 2319 return -ENOMEM; 2320 p[cnt - 1].idx = env->insn_idx; 2321 p[cnt - 1].prev_idx = env->prev_insn_idx; 2322 cur->jmp_history = p; 2323 cur->jmp_history_cnt = cnt; 2324 return 0; 2325 } 2326 2327 /* Backtrack one insn at a time. If idx is not at the top of recorded 2328 * history then previous instruction came from straight line execution. 2329 */ 2330 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2331 u32 *history) 2332 { 2333 u32 cnt = *history; 2334 2335 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2336 i = st->jmp_history[cnt - 1].prev_idx; 2337 (*history)--; 2338 } else { 2339 i--; 2340 } 2341 return i; 2342 } 2343 2344 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2345 { 2346 const struct btf_type *func; 2347 struct btf *desc_btf; 2348 2349 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2350 return NULL; 2351 2352 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); 2353 if (IS_ERR(desc_btf)) 2354 return "<error>"; 2355 2356 func = btf_type_by_id(desc_btf, insn->imm); 2357 return btf_name_by_offset(desc_btf, func->name_off); 2358 } 2359 2360 /* For given verifier state backtrack_insn() is called from the last insn to 2361 * the first insn. Its purpose is to compute a bitmask of registers and 2362 * stack slots that needs precision in the parent verifier state. 2363 */ 2364 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2365 u32 *reg_mask, u64 *stack_mask) 2366 { 2367 const struct bpf_insn_cbs cbs = { 2368 .cb_call = disasm_kfunc_name, 2369 .cb_print = verbose, 2370 .private_data = env, 2371 }; 2372 struct bpf_insn *insn = env->prog->insnsi + idx; 2373 u8 class = BPF_CLASS(insn->code); 2374 u8 opcode = BPF_OP(insn->code); 2375 u8 mode = BPF_MODE(insn->code); 2376 u32 dreg = 1u << insn->dst_reg; 2377 u32 sreg = 1u << insn->src_reg; 2378 u32 spi; 2379 2380 if (insn->code == 0) 2381 return 0; 2382 if (env->log.level & BPF_LOG_LEVEL2) { 2383 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2384 verbose(env, "%d: ", idx); 2385 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2386 } 2387 2388 if (class == BPF_ALU || class == BPF_ALU64) { 2389 if (!(*reg_mask & dreg)) 2390 return 0; 2391 if (opcode == BPF_MOV) { 2392 if (BPF_SRC(insn->code) == BPF_X) { 2393 /* dreg = sreg 2394 * dreg needs precision after this insn 2395 * sreg needs precision before this insn 2396 */ 2397 *reg_mask &= ~dreg; 2398 *reg_mask |= sreg; 2399 } else { 2400 /* dreg = K 2401 * dreg needs precision after this insn. 2402 * Corresponding register is already marked 2403 * as precise=true in this verifier state. 2404 * No further markings in parent are necessary 2405 */ 2406 *reg_mask &= ~dreg; 2407 } 2408 } else { 2409 if (BPF_SRC(insn->code) == BPF_X) { 2410 /* dreg += sreg 2411 * both dreg and sreg need precision 2412 * before this insn 2413 */ 2414 *reg_mask |= sreg; 2415 } /* else dreg += K 2416 * dreg still needs precision before this insn 2417 */ 2418 } 2419 } else if (class == BPF_LDX) { 2420 if (!(*reg_mask & dreg)) 2421 return 0; 2422 *reg_mask &= ~dreg; 2423 2424 /* scalars can only be spilled into stack w/o losing precision. 2425 * Load from any other memory can be zero extended. 2426 * The desire to keep that precision is already indicated 2427 * by 'precise' mark in corresponding register of this state. 2428 * No further tracking necessary. 2429 */ 2430 if (insn->src_reg != BPF_REG_FP) 2431 return 0; 2432 2433 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2434 * that [fp - off] slot contains scalar that needs to be 2435 * tracked with precision 2436 */ 2437 spi = (-insn->off - 1) / BPF_REG_SIZE; 2438 if (spi >= 64) { 2439 verbose(env, "BUG spi %d\n", spi); 2440 WARN_ONCE(1, "verifier backtracking bug"); 2441 return -EFAULT; 2442 } 2443 *stack_mask |= 1ull << spi; 2444 } else if (class == BPF_STX || class == BPF_ST) { 2445 if (*reg_mask & dreg) 2446 /* stx & st shouldn't be using _scalar_ dst_reg 2447 * to access memory. It means backtracking 2448 * encountered a case of pointer subtraction. 2449 */ 2450 return -ENOTSUPP; 2451 /* scalars can only be spilled into stack */ 2452 if (insn->dst_reg != BPF_REG_FP) 2453 return 0; 2454 spi = (-insn->off - 1) / BPF_REG_SIZE; 2455 if (spi >= 64) { 2456 verbose(env, "BUG spi %d\n", spi); 2457 WARN_ONCE(1, "verifier backtracking bug"); 2458 return -EFAULT; 2459 } 2460 if (!(*stack_mask & (1ull << spi))) 2461 return 0; 2462 *stack_mask &= ~(1ull << spi); 2463 if (class == BPF_STX) 2464 *reg_mask |= sreg; 2465 } else if (class == BPF_JMP || class == BPF_JMP32) { 2466 if (opcode == BPF_CALL) { 2467 if (insn->src_reg == BPF_PSEUDO_CALL) 2468 return -ENOTSUPP; 2469 /* regular helper call sets R0 */ 2470 *reg_mask &= ~1; 2471 if (*reg_mask & 0x3f) { 2472 /* if backtracing was looking for registers R1-R5 2473 * they should have been found already. 2474 */ 2475 verbose(env, "BUG regs %x\n", *reg_mask); 2476 WARN_ONCE(1, "verifier backtracking bug"); 2477 return -EFAULT; 2478 } 2479 } else if (opcode == BPF_EXIT) { 2480 return -ENOTSUPP; 2481 } 2482 } else if (class == BPF_LD) { 2483 if (!(*reg_mask & dreg)) 2484 return 0; 2485 *reg_mask &= ~dreg; 2486 /* It's ld_imm64 or ld_abs or ld_ind. 2487 * For ld_imm64 no further tracking of precision 2488 * into parent is necessary 2489 */ 2490 if (mode == BPF_IND || mode == BPF_ABS) 2491 /* to be analyzed */ 2492 return -ENOTSUPP; 2493 } 2494 return 0; 2495 } 2496 2497 /* the scalar precision tracking algorithm: 2498 * . at the start all registers have precise=false. 2499 * . scalar ranges are tracked as normal through alu and jmp insns. 2500 * . once precise value of the scalar register is used in: 2501 * . ptr + scalar alu 2502 * . if (scalar cond K|scalar) 2503 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2504 * backtrack through the verifier states and mark all registers and 2505 * stack slots with spilled constants that these scalar regisers 2506 * should be precise. 2507 * . during state pruning two registers (or spilled stack slots) 2508 * are equivalent if both are not precise. 2509 * 2510 * Note the verifier cannot simply walk register parentage chain, 2511 * since many different registers and stack slots could have been 2512 * used to compute single precise scalar. 2513 * 2514 * The approach of starting with precise=true for all registers and then 2515 * backtrack to mark a register as not precise when the verifier detects 2516 * that program doesn't care about specific value (e.g., when helper 2517 * takes register as ARG_ANYTHING parameter) is not safe. 2518 * 2519 * It's ok to walk single parentage chain of the verifier states. 2520 * It's possible that this backtracking will go all the way till 1st insn. 2521 * All other branches will be explored for needing precision later. 2522 * 2523 * The backtracking needs to deal with cases like: 2524 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2525 * r9 -= r8 2526 * r5 = r9 2527 * if r5 > 0x79f goto pc+7 2528 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2529 * r5 += 1 2530 * ... 2531 * call bpf_perf_event_output#25 2532 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2533 * 2534 * and this case: 2535 * r6 = 1 2536 * call foo // uses callee's r6 inside to compute r0 2537 * r0 += r6 2538 * if r0 == 0 goto 2539 * 2540 * to track above reg_mask/stack_mask needs to be independent for each frame. 2541 * 2542 * Also if parent's curframe > frame where backtracking started, 2543 * the verifier need to mark registers in both frames, otherwise callees 2544 * may incorrectly prune callers. This is similar to 2545 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2546 * 2547 * For now backtracking falls back into conservative marking. 2548 */ 2549 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2550 struct bpf_verifier_state *st) 2551 { 2552 struct bpf_func_state *func; 2553 struct bpf_reg_state *reg; 2554 int i, j; 2555 2556 /* big hammer: mark all scalars precise in this path. 2557 * pop_stack may still get !precise scalars. 2558 */ 2559 for (; st; st = st->parent) 2560 for (i = 0; i <= st->curframe; i++) { 2561 func = st->frame[i]; 2562 for (j = 0; j < BPF_REG_FP; j++) { 2563 reg = &func->regs[j]; 2564 if (reg->type != SCALAR_VALUE) 2565 continue; 2566 reg->precise = true; 2567 } 2568 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2569 if (!is_spilled_reg(&func->stack[j])) 2570 continue; 2571 reg = &func->stack[j].spilled_ptr; 2572 if (reg->type != SCALAR_VALUE) 2573 continue; 2574 reg->precise = true; 2575 } 2576 } 2577 } 2578 2579 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2580 int spi) 2581 { 2582 struct bpf_verifier_state *st = env->cur_state; 2583 int first_idx = st->first_insn_idx; 2584 int last_idx = env->insn_idx; 2585 struct bpf_func_state *func; 2586 struct bpf_reg_state *reg; 2587 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2588 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2589 bool skip_first = true; 2590 bool new_marks = false; 2591 int i, err; 2592 2593 if (!env->bpf_capable) 2594 return 0; 2595 2596 func = st->frame[st->curframe]; 2597 if (regno >= 0) { 2598 reg = &func->regs[regno]; 2599 if (reg->type != SCALAR_VALUE) { 2600 WARN_ONCE(1, "backtracing misuse"); 2601 return -EFAULT; 2602 } 2603 if (!reg->precise) 2604 new_marks = true; 2605 else 2606 reg_mask = 0; 2607 reg->precise = true; 2608 } 2609 2610 while (spi >= 0) { 2611 if (!is_spilled_reg(&func->stack[spi])) { 2612 stack_mask = 0; 2613 break; 2614 } 2615 reg = &func->stack[spi].spilled_ptr; 2616 if (reg->type != SCALAR_VALUE) { 2617 stack_mask = 0; 2618 break; 2619 } 2620 if (!reg->precise) 2621 new_marks = true; 2622 else 2623 stack_mask = 0; 2624 reg->precise = true; 2625 break; 2626 } 2627 2628 if (!new_marks) 2629 return 0; 2630 if (!reg_mask && !stack_mask) 2631 return 0; 2632 for (;;) { 2633 DECLARE_BITMAP(mask, 64); 2634 u32 history = st->jmp_history_cnt; 2635 2636 if (env->log.level & BPF_LOG_LEVEL2) 2637 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2638 for (i = last_idx;;) { 2639 if (skip_first) { 2640 err = 0; 2641 skip_first = false; 2642 } else { 2643 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2644 } 2645 if (err == -ENOTSUPP) { 2646 mark_all_scalars_precise(env, st); 2647 return 0; 2648 } else if (err) { 2649 return err; 2650 } 2651 if (!reg_mask && !stack_mask) 2652 /* Found assignment(s) into tracked register in this state. 2653 * Since this state is already marked, just return. 2654 * Nothing to be tracked further in the parent state. 2655 */ 2656 return 0; 2657 if (i == first_idx) 2658 break; 2659 i = get_prev_insn_idx(st, i, &history); 2660 if (i >= env->prog->len) { 2661 /* This can happen if backtracking reached insn 0 2662 * and there are still reg_mask or stack_mask 2663 * to backtrack. 2664 * It means the backtracking missed the spot where 2665 * particular register was initialized with a constant. 2666 */ 2667 verbose(env, "BUG backtracking idx %d\n", i); 2668 WARN_ONCE(1, "verifier backtracking bug"); 2669 return -EFAULT; 2670 } 2671 } 2672 st = st->parent; 2673 if (!st) 2674 break; 2675 2676 new_marks = false; 2677 func = st->frame[st->curframe]; 2678 bitmap_from_u64(mask, reg_mask); 2679 for_each_set_bit(i, mask, 32) { 2680 reg = &func->regs[i]; 2681 if (reg->type != SCALAR_VALUE) { 2682 reg_mask &= ~(1u << i); 2683 continue; 2684 } 2685 if (!reg->precise) 2686 new_marks = true; 2687 reg->precise = true; 2688 } 2689 2690 bitmap_from_u64(mask, stack_mask); 2691 for_each_set_bit(i, mask, 64) { 2692 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2693 /* the sequence of instructions: 2694 * 2: (bf) r3 = r10 2695 * 3: (7b) *(u64 *)(r3 -8) = r0 2696 * 4: (79) r4 = *(u64 *)(r10 -8) 2697 * doesn't contain jmps. It's backtracked 2698 * as a single block. 2699 * During backtracking insn 3 is not recognized as 2700 * stack access, so at the end of backtracking 2701 * stack slot fp-8 is still marked in stack_mask. 2702 * However the parent state may not have accessed 2703 * fp-8 and it's "unallocated" stack space. 2704 * In such case fallback to conservative. 2705 */ 2706 mark_all_scalars_precise(env, st); 2707 return 0; 2708 } 2709 2710 if (!is_spilled_reg(&func->stack[i])) { 2711 stack_mask &= ~(1ull << i); 2712 continue; 2713 } 2714 reg = &func->stack[i].spilled_ptr; 2715 if (reg->type != SCALAR_VALUE) { 2716 stack_mask &= ~(1ull << i); 2717 continue; 2718 } 2719 if (!reg->precise) 2720 new_marks = true; 2721 reg->precise = true; 2722 } 2723 if (env->log.level & BPF_LOG_LEVEL2) { 2724 verbose(env, "parent %s regs=%x stack=%llx marks:", 2725 new_marks ? "didn't have" : "already had", 2726 reg_mask, stack_mask); 2727 print_verifier_state(env, func, true); 2728 } 2729 2730 if (!reg_mask && !stack_mask) 2731 break; 2732 if (!new_marks) 2733 break; 2734 2735 last_idx = st->last_insn_idx; 2736 first_idx = st->first_insn_idx; 2737 } 2738 return 0; 2739 } 2740 2741 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2742 { 2743 return __mark_chain_precision(env, regno, -1); 2744 } 2745 2746 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2747 { 2748 return __mark_chain_precision(env, -1, spi); 2749 } 2750 2751 static bool is_spillable_regtype(enum bpf_reg_type type) 2752 { 2753 switch (base_type(type)) { 2754 case PTR_TO_MAP_VALUE: 2755 case PTR_TO_STACK: 2756 case PTR_TO_CTX: 2757 case PTR_TO_PACKET: 2758 case PTR_TO_PACKET_META: 2759 case PTR_TO_PACKET_END: 2760 case PTR_TO_FLOW_KEYS: 2761 case CONST_PTR_TO_MAP: 2762 case PTR_TO_SOCKET: 2763 case PTR_TO_SOCK_COMMON: 2764 case PTR_TO_TCP_SOCK: 2765 case PTR_TO_XDP_SOCK: 2766 case PTR_TO_BTF_ID: 2767 case PTR_TO_BUF: 2768 case PTR_TO_PERCPU_BTF_ID: 2769 case PTR_TO_MEM: 2770 case PTR_TO_FUNC: 2771 case PTR_TO_MAP_KEY: 2772 return true; 2773 default: 2774 return false; 2775 } 2776 } 2777 2778 /* Does this register contain a constant zero? */ 2779 static bool register_is_null(struct bpf_reg_state *reg) 2780 { 2781 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2782 } 2783 2784 static bool register_is_const(struct bpf_reg_state *reg) 2785 { 2786 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2787 } 2788 2789 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2790 { 2791 return tnum_is_unknown(reg->var_off) && 2792 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2793 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2794 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2795 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2796 } 2797 2798 static bool register_is_bounded(struct bpf_reg_state *reg) 2799 { 2800 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2801 } 2802 2803 static bool __is_pointer_value(bool allow_ptr_leaks, 2804 const struct bpf_reg_state *reg) 2805 { 2806 if (allow_ptr_leaks) 2807 return false; 2808 2809 return reg->type != SCALAR_VALUE; 2810 } 2811 2812 static void save_register_state(struct bpf_func_state *state, 2813 int spi, struct bpf_reg_state *reg, 2814 int size) 2815 { 2816 int i; 2817 2818 state->stack[spi].spilled_ptr = *reg; 2819 if (size == BPF_REG_SIZE) 2820 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2821 2822 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2823 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2824 2825 /* size < 8 bytes spill */ 2826 for (; i; i--) 2827 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2828 } 2829 2830 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2831 * stack boundary and alignment are checked in check_mem_access() 2832 */ 2833 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2834 /* stack frame we're writing to */ 2835 struct bpf_func_state *state, 2836 int off, int size, int value_regno, 2837 int insn_idx) 2838 { 2839 struct bpf_func_state *cur; /* state of the current function */ 2840 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2841 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2842 struct bpf_reg_state *reg = NULL; 2843 2844 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2845 if (err) 2846 return err; 2847 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2848 * so it's aligned access and [off, off + size) are within stack limits 2849 */ 2850 if (!env->allow_ptr_leaks && 2851 state->stack[spi].slot_type[0] == STACK_SPILL && 2852 size != BPF_REG_SIZE) { 2853 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2854 return -EACCES; 2855 } 2856 2857 cur = env->cur_state->frame[env->cur_state->curframe]; 2858 if (value_regno >= 0) 2859 reg = &cur->regs[value_regno]; 2860 if (!env->bypass_spec_v4) { 2861 bool sanitize = reg && is_spillable_regtype(reg->type); 2862 2863 for (i = 0; i < size; i++) { 2864 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2865 sanitize = true; 2866 break; 2867 } 2868 } 2869 2870 if (sanitize) 2871 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2872 } 2873 2874 mark_stack_slot_scratched(env, spi); 2875 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2876 !register_is_null(reg) && env->bpf_capable) { 2877 if (dst_reg != BPF_REG_FP) { 2878 /* The backtracking logic can only recognize explicit 2879 * stack slot address like [fp - 8]. Other spill of 2880 * scalar via different register has to be conservative. 2881 * Backtrack from here and mark all registers as precise 2882 * that contributed into 'reg' being a constant. 2883 */ 2884 err = mark_chain_precision(env, value_regno); 2885 if (err) 2886 return err; 2887 } 2888 save_register_state(state, spi, reg, size); 2889 } else if (reg && is_spillable_regtype(reg->type)) { 2890 /* register containing pointer is being spilled into stack */ 2891 if (size != BPF_REG_SIZE) { 2892 verbose_linfo(env, insn_idx, "; "); 2893 verbose(env, "invalid size of register spill\n"); 2894 return -EACCES; 2895 } 2896 if (state != cur && reg->type == PTR_TO_STACK) { 2897 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2898 return -EINVAL; 2899 } 2900 save_register_state(state, spi, reg, size); 2901 } else { 2902 u8 type = STACK_MISC; 2903 2904 /* regular write of data into stack destroys any spilled ptr */ 2905 state->stack[spi].spilled_ptr.type = NOT_INIT; 2906 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2907 if (is_spilled_reg(&state->stack[spi])) 2908 for (i = 0; i < BPF_REG_SIZE; i++) 2909 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2910 2911 /* only mark the slot as written if all 8 bytes were written 2912 * otherwise read propagation may incorrectly stop too soon 2913 * when stack slots are partially written. 2914 * This heuristic means that read propagation will be 2915 * conservative, since it will add reg_live_read marks 2916 * to stack slots all the way to first state when programs 2917 * writes+reads less than 8 bytes 2918 */ 2919 if (size == BPF_REG_SIZE) 2920 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2921 2922 /* when we zero initialize stack slots mark them as such */ 2923 if (reg && register_is_null(reg)) { 2924 /* backtracking doesn't work for STACK_ZERO yet. */ 2925 err = mark_chain_precision(env, value_regno); 2926 if (err) 2927 return err; 2928 type = STACK_ZERO; 2929 } 2930 2931 /* Mark slots affected by this stack write. */ 2932 for (i = 0; i < size; i++) 2933 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2934 type; 2935 } 2936 return 0; 2937 } 2938 2939 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2940 * known to contain a variable offset. 2941 * This function checks whether the write is permitted and conservatively 2942 * tracks the effects of the write, considering that each stack slot in the 2943 * dynamic range is potentially written to. 2944 * 2945 * 'off' includes 'regno->off'. 2946 * 'value_regno' can be -1, meaning that an unknown value is being written to 2947 * the stack. 2948 * 2949 * Spilled pointers in range are not marked as written because we don't know 2950 * what's going to be actually written. This means that read propagation for 2951 * future reads cannot be terminated by this write. 2952 * 2953 * For privileged programs, uninitialized stack slots are considered 2954 * initialized by this write (even though we don't know exactly what offsets 2955 * are going to be written to). The idea is that we don't want the verifier to 2956 * reject future reads that access slots written to through variable offsets. 2957 */ 2958 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2959 /* func where register points to */ 2960 struct bpf_func_state *state, 2961 int ptr_regno, int off, int size, 2962 int value_regno, int insn_idx) 2963 { 2964 struct bpf_func_state *cur; /* state of the current function */ 2965 int min_off, max_off; 2966 int i, err; 2967 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2968 bool writing_zero = false; 2969 /* set if the fact that we're writing a zero is used to let any 2970 * stack slots remain STACK_ZERO 2971 */ 2972 bool zero_used = false; 2973 2974 cur = env->cur_state->frame[env->cur_state->curframe]; 2975 ptr_reg = &cur->regs[ptr_regno]; 2976 min_off = ptr_reg->smin_value + off; 2977 max_off = ptr_reg->smax_value + off + size; 2978 if (value_regno >= 0) 2979 value_reg = &cur->regs[value_regno]; 2980 if (value_reg && register_is_null(value_reg)) 2981 writing_zero = true; 2982 2983 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2984 if (err) 2985 return err; 2986 2987 2988 /* Variable offset writes destroy any spilled pointers in range. */ 2989 for (i = min_off; i < max_off; i++) { 2990 u8 new_type, *stype; 2991 int slot, spi; 2992 2993 slot = -i - 1; 2994 spi = slot / BPF_REG_SIZE; 2995 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2996 mark_stack_slot_scratched(env, spi); 2997 2998 if (!env->allow_ptr_leaks 2999 && *stype != NOT_INIT 3000 && *stype != SCALAR_VALUE) { 3001 /* Reject the write if there's are spilled pointers in 3002 * range. If we didn't reject here, the ptr status 3003 * would be erased below (even though not all slots are 3004 * actually overwritten), possibly opening the door to 3005 * leaks. 3006 */ 3007 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3008 insn_idx, i); 3009 return -EINVAL; 3010 } 3011 3012 /* Erase all spilled pointers. */ 3013 state->stack[spi].spilled_ptr.type = NOT_INIT; 3014 3015 /* Update the slot type. */ 3016 new_type = STACK_MISC; 3017 if (writing_zero && *stype == STACK_ZERO) { 3018 new_type = STACK_ZERO; 3019 zero_used = true; 3020 } 3021 /* If the slot is STACK_INVALID, we check whether it's OK to 3022 * pretend that it will be initialized by this write. The slot 3023 * might not actually be written to, and so if we mark it as 3024 * initialized future reads might leak uninitialized memory. 3025 * For privileged programs, we will accept such reads to slots 3026 * that may or may not be written because, if we're reject 3027 * them, the error would be too confusing. 3028 */ 3029 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3030 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3031 insn_idx, i); 3032 return -EINVAL; 3033 } 3034 *stype = new_type; 3035 } 3036 if (zero_used) { 3037 /* backtracking doesn't work for STACK_ZERO yet. */ 3038 err = mark_chain_precision(env, value_regno); 3039 if (err) 3040 return err; 3041 } 3042 return 0; 3043 } 3044 3045 /* When register 'dst_regno' is assigned some values from stack[min_off, 3046 * max_off), we set the register's type according to the types of the 3047 * respective stack slots. If all the stack values are known to be zeros, then 3048 * so is the destination reg. Otherwise, the register is considered to be 3049 * SCALAR. This function does not deal with register filling; the caller must 3050 * ensure that all spilled registers in the stack range have been marked as 3051 * read. 3052 */ 3053 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3054 /* func where src register points to */ 3055 struct bpf_func_state *ptr_state, 3056 int min_off, int max_off, int dst_regno) 3057 { 3058 struct bpf_verifier_state *vstate = env->cur_state; 3059 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3060 int i, slot, spi; 3061 u8 *stype; 3062 int zeros = 0; 3063 3064 for (i = min_off; i < max_off; i++) { 3065 slot = -i - 1; 3066 spi = slot / BPF_REG_SIZE; 3067 stype = ptr_state->stack[spi].slot_type; 3068 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3069 break; 3070 zeros++; 3071 } 3072 if (zeros == max_off - min_off) { 3073 /* any access_size read into register is zero extended, 3074 * so the whole register == const_zero 3075 */ 3076 __mark_reg_const_zero(&state->regs[dst_regno]); 3077 /* backtracking doesn't support STACK_ZERO yet, 3078 * so mark it precise here, so that later 3079 * backtracking can stop here. 3080 * Backtracking may not need this if this register 3081 * doesn't participate in pointer adjustment. 3082 * Forward propagation of precise flag is not 3083 * necessary either. This mark is only to stop 3084 * backtracking. Any register that contributed 3085 * to const 0 was marked precise before spill. 3086 */ 3087 state->regs[dst_regno].precise = true; 3088 } else { 3089 /* have read misc data from the stack */ 3090 mark_reg_unknown(env, state->regs, dst_regno); 3091 } 3092 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3093 } 3094 3095 /* Read the stack at 'off' and put the results into the register indicated by 3096 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3097 * spilled reg. 3098 * 3099 * 'dst_regno' can be -1, meaning that the read value is not going to a 3100 * register. 3101 * 3102 * The access is assumed to be within the current stack bounds. 3103 */ 3104 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3105 /* func where src register points to */ 3106 struct bpf_func_state *reg_state, 3107 int off, int size, int dst_regno) 3108 { 3109 struct bpf_verifier_state *vstate = env->cur_state; 3110 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3111 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3112 struct bpf_reg_state *reg; 3113 u8 *stype, type; 3114 3115 stype = reg_state->stack[spi].slot_type; 3116 reg = ®_state->stack[spi].spilled_ptr; 3117 3118 if (is_spilled_reg(®_state->stack[spi])) { 3119 u8 spill_size = 1; 3120 3121 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3122 spill_size++; 3123 3124 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3125 if (reg->type != SCALAR_VALUE) { 3126 verbose_linfo(env, env->insn_idx, "; "); 3127 verbose(env, "invalid size of register fill\n"); 3128 return -EACCES; 3129 } 3130 3131 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3132 if (dst_regno < 0) 3133 return 0; 3134 3135 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3136 /* The earlier check_reg_arg() has decided the 3137 * subreg_def for this insn. Save it first. 3138 */ 3139 s32 subreg_def = state->regs[dst_regno].subreg_def; 3140 3141 state->regs[dst_regno] = *reg; 3142 state->regs[dst_regno].subreg_def = subreg_def; 3143 } else { 3144 for (i = 0; i < size; i++) { 3145 type = stype[(slot - i) % BPF_REG_SIZE]; 3146 if (type == STACK_SPILL) 3147 continue; 3148 if (type == STACK_MISC) 3149 continue; 3150 verbose(env, "invalid read from stack off %d+%d size %d\n", 3151 off, i, size); 3152 return -EACCES; 3153 } 3154 mark_reg_unknown(env, state->regs, dst_regno); 3155 } 3156 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3157 return 0; 3158 } 3159 3160 if (dst_regno >= 0) { 3161 /* restore register state from stack */ 3162 state->regs[dst_regno] = *reg; 3163 /* mark reg as written since spilled pointer state likely 3164 * has its liveness marks cleared by is_state_visited() 3165 * which resets stack/reg liveness for state transitions 3166 */ 3167 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3168 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3169 /* If dst_regno==-1, the caller is asking us whether 3170 * it is acceptable to use this value as a SCALAR_VALUE 3171 * (e.g. for XADD). 3172 * We must not allow unprivileged callers to do that 3173 * with spilled pointers. 3174 */ 3175 verbose(env, "leaking pointer from stack off %d\n", 3176 off); 3177 return -EACCES; 3178 } 3179 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3180 } else { 3181 for (i = 0; i < size; i++) { 3182 type = stype[(slot - i) % BPF_REG_SIZE]; 3183 if (type == STACK_MISC) 3184 continue; 3185 if (type == STACK_ZERO) 3186 continue; 3187 verbose(env, "invalid read from stack off %d+%d size %d\n", 3188 off, i, size); 3189 return -EACCES; 3190 } 3191 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3192 if (dst_regno >= 0) 3193 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3194 } 3195 return 0; 3196 } 3197 3198 enum stack_access_src { 3199 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3200 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3201 }; 3202 3203 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3204 int regno, int off, int access_size, 3205 bool zero_size_allowed, 3206 enum stack_access_src type, 3207 struct bpf_call_arg_meta *meta); 3208 3209 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3210 { 3211 return cur_regs(env) + regno; 3212 } 3213 3214 /* Read the stack at 'ptr_regno + off' and put the result into the register 3215 * 'dst_regno'. 3216 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3217 * but not its variable offset. 3218 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3219 * 3220 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3221 * filling registers (i.e. reads of spilled register cannot be detected when 3222 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3223 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3224 * offset; for a fixed offset check_stack_read_fixed_off should be used 3225 * instead. 3226 */ 3227 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3228 int ptr_regno, int off, int size, int dst_regno) 3229 { 3230 /* The state of the source register. */ 3231 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3232 struct bpf_func_state *ptr_state = func(env, reg); 3233 int err; 3234 int min_off, max_off; 3235 3236 /* Note that we pass a NULL meta, so raw access will not be permitted. 3237 */ 3238 err = check_stack_range_initialized(env, ptr_regno, off, size, 3239 false, ACCESS_DIRECT, NULL); 3240 if (err) 3241 return err; 3242 3243 min_off = reg->smin_value + off; 3244 max_off = reg->smax_value + off; 3245 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3246 return 0; 3247 } 3248 3249 /* check_stack_read dispatches to check_stack_read_fixed_off or 3250 * check_stack_read_var_off. 3251 * 3252 * The caller must ensure that the offset falls within the allocated stack 3253 * bounds. 3254 * 3255 * 'dst_regno' is a register which will receive the value from the stack. It 3256 * can be -1, meaning that the read value is not going to a register. 3257 */ 3258 static int check_stack_read(struct bpf_verifier_env *env, 3259 int ptr_regno, int off, int size, 3260 int dst_regno) 3261 { 3262 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3263 struct bpf_func_state *state = func(env, reg); 3264 int err; 3265 /* Some accesses are only permitted with a static offset. */ 3266 bool var_off = !tnum_is_const(reg->var_off); 3267 3268 /* The offset is required to be static when reads don't go to a 3269 * register, in order to not leak pointers (see 3270 * check_stack_read_fixed_off). 3271 */ 3272 if (dst_regno < 0 && var_off) { 3273 char tn_buf[48]; 3274 3275 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3276 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3277 tn_buf, off, size); 3278 return -EACCES; 3279 } 3280 /* Variable offset is prohibited for unprivileged mode for simplicity 3281 * since it requires corresponding support in Spectre masking for stack 3282 * ALU. See also retrieve_ptr_limit(). 3283 */ 3284 if (!env->bypass_spec_v1 && var_off) { 3285 char tn_buf[48]; 3286 3287 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3288 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3289 ptr_regno, tn_buf); 3290 return -EACCES; 3291 } 3292 3293 if (!var_off) { 3294 off += reg->var_off.value; 3295 err = check_stack_read_fixed_off(env, state, off, size, 3296 dst_regno); 3297 } else { 3298 /* Variable offset stack reads need more conservative handling 3299 * than fixed offset ones. Note that dst_regno >= 0 on this 3300 * branch. 3301 */ 3302 err = check_stack_read_var_off(env, ptr_regno, off, size, 3303 dst_regno); 3304 } 3305 return err; 3306 } 3307 3308 3309 /* check_stack_write dispatches to check_stack_write_fixed_off or 3310 * check_stack_write_var_off. 3311 * 3312 * 'ptr_regno' is the register used as a pointer into the stack. 3313 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3314 * 'value_regno' is the register whose value we're writing to the stack. It can 3315 * be -1, meaning that we're not writing from a register. 3316 * 3317 * The caller must ensure that the offset falls within the maximum stack size. 3318 */ 3319 static int check_stack_write(struct bpf_verifier_env *env, 3320 int ptr_regno, int off, int size, 3321 int value_regno, int insn_idx) 3322 { 3323 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3324 struct bpf_func_state *state = func(env, reg); 3325 int err; 3326 3327 if (tnum_is_const(reg->var_off)) { 3328 off += reg->var_off.value; 3329 err = check_stack_write_fixed_off(env, state, off, size, 3330 value_regno, insn_idx); 3331 } else { 3332 /* Variable offset stack reads need more conservative handling 3333 * than fixed offset ones. 3334 */ 3335 err = check_stack_write_var_off(env, state, 3336 ptr_regno, off, size, 3337 value_regno, insn_idx); 3338 } 3339 return err; 3340 } 3341 3342 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3343 int off, int size, enum bpf_access_type type) 3344 { 3345 struct bpf_reg_state *regs = cur_regs(env); 3346 struct bpf_map *map = regs[regno].map_ptr; 3347 u32 cap = bpf_map_flags_to_cap(map); 3348 3349 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3350 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3351 map->value_size, off, size); 3352 return -EACCES; 3353 } 3354 3355 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3356 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3357 map->value_size, off, size); 3358 return -EACCES; 3359 } 3360 3361 return 0; 3362 } 3363 3364 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3365 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3366 int off, int size, u32 mem_size, 3367 bool zero_size_allowed) 3368 { 3369 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3370 struct bpf_reg_state *reg; 3371 3372 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3373 return 0; 3374 3375 reg = &cur_regs(env)[regno]; 3376 switch (reg->type) { 3377 case PTR_TO_MAP_KEY: 3378 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3379 mem_size, off, size); 3380 break; 3381 case PTR_TO_MAP_VALUE: 3382 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3383 mem_size, off, size); 3384 break; 3385 case PTR_TO_PACKET: 3386 case PTR_TO_PACKET_META: 3387 case PTR_TO_PACKET_END: 3388 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3389 off, size, regno, reg->id, off, mem_size); 3390 break; 3391 case PTR_TO_MEM: 3392 default: 3393 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3394 mem_size, off, size); 3395 } 3396 3397 return -EACCES; 3398 } 3399 3400 /* check read/write into a memory region with possible variable offset */ 3401 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3402 int off, int size, u32 mem_size, 3403 bool zero_size_allowed) 3404 { 3405 struct bpf_verifier_state *vstate = env->cur_state; 3406 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3407 struct bpf_reg_state *reg = &state->regs[regno]; 3408 int err; 3409 3410 /* We may have adjusted the register pointing to memory region, so we 3411 * need to try adding each of min_value and max_value to off 3412 * to make sure our theoretical access will be safe. 3413 * 3414 * The minimum value is only important with signed 3415 * comparisons where we can't assume the floor of a 3416 * value is 0. If we are using signed variables for our 3417 * index'es we need to make sure that whatever we use 3418 * will have a set floor within our range. 3419 */ 3420 if (reg->smin_value < 0 && 3421 (reg->smin_value == S64_MIN || 3422 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3423 reg->smin_value + off < 0)) { 3424 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3425 regno); 3426 return -EACCES; 3427 } 3428 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3429 mem_size, zero_size_allowed); 3430 if (err) { 3431 verbose(env, "R%d min value is outside of the allowed memory range\n", 3432 regno); 3433 return err; 3434 } 3435 3436 /* If we haven't set a max value then we need to bail since we can't be 3437 * sure we won't do bad things. 3438 * If reg->umax_value + off could overflow, treat that as unbounded too. 3439 */ 3440 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3441 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3442 regno); 3443 return -EACCES; 3444 } 3445 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3446 mem_size, zero_size_allowed); 3447 if (err) { 3448 verbose(env, "R%d max value is outside of the allowed memory range\n", 3449 regno); 3450 return err; 3451 } 3452 3453 return 0; 3454 } 3455 3456 /* check read/write into a map element with possible variable offset */ 3457 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3458 int off, int size, bool zero_size_allowed) 3459 { 3460 struct bpf_verifier_state *vstate = env->cur_state; 3461 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3462 struct bpf_reg_state *reg = &state->regs[regno]; 3463 struct bpf_map *map = reg->map_ptr; 3464 int err; 3465 3466 err = check_mem_region_access(env, regno, off, size, map->value_size, 3467 zero_size_allowed); 3468 if (err) 3469 return err; 3470 3471 if (map_value_has_spin_lock(map)) { 3472 u32 lock = map->spin_lock_off; 3473 3474 /* if any part of struct bpf_spin_lock can be touched by 3475 * load/store reject this program. 3476 * To check that [x1, x2) overlaps with [y1, y2) 3477 * it is sufficient to check x1 < y2 && y1 < x2. 3478 */ 3479 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3480 lock < reg->umax_value + off + size) { 3481 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3482 return -EACCES; 3483 } 3484 } 3485 if (map_value_has_timer(map)) { 3486 u32 t = map->timer_off; 3487 3488 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3489 t < reg->umax_value + off + size) { 3490 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3491 return -EACCES; 3492 } 3493 } 3494 return err; 3495 } 3496 3497 #define MAX_PACKET_OFF 0xffff 3498 3499 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3500 { 3501 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3502 } 3503 3504 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3505 const struct bpf_call_arg_meta *meta, 3506 enum bpf_access_type t) 3507 { 3508 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3509 3510 switch (prog_type) { 3511 /* Program types only with direct read access go here! */ 3512 case BPF_PROG_TYPE_LWT_IN: 3513 case BPF_PROG_TYPE_LWT_OUT: 3514 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3515 case BPF_PROG_TYPE_SK_REUSEPORT: 3516 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3517 case BPF_PROG_TYPE_CGROUP_SKB: 3518 if (t == BPF_WRITE) 3519 return false; 3520 fallthrough; 3521 3522 /* Program types with direct read + write access go here! */ 3523 case BPF_PROG_TYPE_SCHED_CLS: 3524 case BPF_PROG_TYPE_SCHED_ACT: 3525 case BPF_PROG_TYPE_XDP: 3526 case BPF_PROG_TYPE_LWT_XMIT: 3527 case BPF_PROG_TYPE_SK_SKB: 3528 case BPF_PROG_TYPE_SK_MSG: 3529 if (meta) 3530 return meta->pkt_access; 3531 3532 env->seen_direct_write = true; 3533 return true; 3534 3535 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3536 if (t == BPF_WRITE) 3537 env->seen_direct_write = true; 3538 3539 return true; 3540 3541 default: 3542 return false; 3543 } 3544 } 3545 3546 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3547 int size, bool zero_size_allowed) 3548 { 3549 struct bpf_reg_state *regs = cur_regs(env); 3550 struct bpf_reg_state *reg = ®s[regno]; 3551 int err; 3552 3553 /* We may have added a variable offset to the packet pointer; but any 3554 * reg->range we have comes after that. We are only checking the fixed 3555 * offset. 3556 */ 3557 3558 /* We don't allow negative numbers, because we aren't tracking enough 3559 * detail to prove they're safe. 3560 */ 3561 if (reg->smin_value < 0) { 3562 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3563 regno); 3564 return -EACCES; 3565 } 3566 3567 err = reg->range < 0 ? -EINVAL : 3568 __check_mem_access(env, regno, off, size, reg->range, 3569 zero_size_allowed); 3570 if (err) { 3571 verbose(env, "R%d offset is outside of the packet\n", regno); 3572 return err; 3573 } 3574 3575 /* __check_mem_access has made sure "off + size - 1" is within u16. 3576 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3577 * otherwise find_good_pkt_pointers would have refused to set range info 3578 * that __check_mem_access would have rejected this pkt access. 3579 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3580 */ 3581 env->prog->aux->max_pkt_offset = 3582 max_t(u32, env->prog->aux->max_pkt_offset, 3583 off + reg->umax_value + size - 1); 3584 3585 return err; 3586 } 3587 3588 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3589 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3590 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3591 struct btf **btf, u32 *btf_id) 3592 { 3593 struct bpf_insn_access_aux info = { 3594 .reg_type = *reg_type, 3595 .log = &env->log, 3596 }; 3597 3598 if (env->ops->is_valid_access && 3599 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3600 /* A non zero info.ctx_field_size indicates that this field is a 3601 * candidate for later verifier transformation to load the whole 3602 * field and then apply a mask when accessed with a narrower 3603 * access than actual ctx access size. A zero info.ctx_field_size 3604 * will only allow for whole field access and rejects any other 3605 * type of narrower access. 3606 */ 3607 *reg_type = info.reg_type; 3608 3609 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3610 *btf = info.btf; 3611 *btf_id = info.btf_id; 3612 } else { 3613 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3614 } 3615 /* remember the offset of last byte accessed in ctx */ 3616 if (env->prog->aux->max_ctx_offset < off + size) 3617 env->prog->aux->max_ctx_offset = off + size; 3618 return 0; 3619 } 3620 3621 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3622 return -EACCES; 3623 } 3624 3625 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3626 int size) 3627 { 3628 if (size < 0 || off < 0 || 3629 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3630 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3631 off, size); 3632 return -EACCES; 3633 } 3634 return 0; 3635 } 3636 3637 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3638 u32 regno, int off, int size, 3639 enum bpf_access_type t) 3640 { 3641 struct bpf_reg_state *regs = cur_regs(env); 3642 struct bpf_reg_state *reg = ®s[regno]; 3643 struct bpf_insn_access_aux info = {}; 3644 bool valid; 3645 3646 if (reg->smin_value < 0) { 3647 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3648 regno); 3649 return -EACCES; 3650 } 3651 3652 switch (reg->type) { 3653 case PTR_TO_SOCK_COMMON: 3654 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3655 break; 3656 case PTR_TO_SOCKET: 3657 valid = bpf_sock_is_valid_access(off, size, t, &info); 3658 break; 3659 case PTR_TO_TCP_SOCK: 3660 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3661 break; 3662 case PTR_TO_XDP_SOCK: 3663 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3664 break; 3665 default: 3666 valid = false; 3667 } 3668 3669 3670 if (valid) { 3671 env->insn_aux_data[insn_idx].ctx_field_size = 3672 info.ctx_field_size; 3673 return 0; 3674 } 3675 3676 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3677 regno, reg_type_str(env, reg->type), off, size); 3678 3679 return -EACCES; 3680 } 3681 3682 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3683 { 3684 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3685 } 3686 3687 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3688 { 3689 const struct bpf_reg_state *reg = reg_state(env, regno); 3690 3691 return reg->type == PTR_TO_CTX; 3692 } 3693 3694 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3695 { 3696 const struct bpf_reg_state *reg = reg_state(env, regno); 3697 3698 return type_is_sk_pointer(reg->type); 3699 } 3700 3701 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3702 { 3703 const struct bpf_reg_state *reg = reg_state(env, regno); 3704 3705 return type_is_pkt_pointer(reg->type); 3706 } 3707 3708 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3709 { 3710 const struct bpf_reg_state *reg = reg_state(env, regno); 3711 3712 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3713 return reg->type == PTR_TO_FLOW_KEYS; 3714 } 3715 3716 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3717 const struct bpf_reg_state *reg, 3718 int off, int size, bool strict) 3719 { 3720 struct tnum reg_off; 3721 int ip_align; 3722 3723 /* Byte size accesses are always allowed. */ 3724 if (!strict || size == 1) 3725 return 0; 3726 3727 /* For platforms that do not have a Kconfig enabling 3728 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3729 * NET_IP_ALIGN is universally set to '2'. And on platforms 3730 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3731 * to this code only in strict mode where we want to emulate 3732 * the NET_IP_ALIGN==2 checking. Therefore use an 3733 * unconditional IP align value of '2'. 3734 */ 3735 ip_align = 2; 3736 3737 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3738 if (!tnum_is_aligned(reg_off, size)) { 3739 char tn_buf[48]; 3740 3741 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3742 verbose(env, 3743 "misaligned packet access off %d+%s+%d+%d size %d\n", 3744 ip_align, tn_buf, reg->off, off, size); 3745 return -EACCES; 3746 } 3747 3748 return 0; 3749 } 3750 3751 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3752 const struct bpf_reg_state *reg, 3753 const char *pointer_desc, 3754 int off, int size, bool strict) 3755 { 3756 struct tnum reg_off; 3757 3758 /* Byte size accesses are always allowed. */ 3759 if (!strict || size == 1) 3760 return 0; 3761 3762 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3763 if (!tnum_is_aligned(reg_off, size)) { 3764 char tn_buf[48]; 3765 3766 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3767 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3768 pointer_desc, tn_buf, reg->off, off, size); 3769 return -EACCES; 3770 } 3771 3772 return 0; 3773 } 3774 3775 static int check_ptr_alignment(struct bpf_verifier_env *env, 3776 const struct bpf_reg_state *reg, int off, 3777 int size, bool strict_alignment_once) 3778 { 3779 bool strict = env->strict_alignment || strict_alignment_once; 3780 const char *pointer_desc = ""; 3781 3782 switch (reg->type) { 3783 case PTR_TO_PACKET: 3784 case PTR_TO_PACKET_META: 3785 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3786 * right in front, treat it the very same way. 3787 */ 3788 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3789 case PTR_TO_FLOW_KEYS: 3790 pointer_desc = "flow keys "; 3791 break; 3792 case PTR_TO_MAP_KEY: 3793 pointer_desc = "key "; 3794 break; 3795 case PTR_TO_MAP_VALUE: 3796 pointer_desc = "value "; 3797 break; 3798 case PTR_TO_CTX: 3799 pointer_desc = "context "; 3800 break; 3801 case PTR_TO_STACK: 3802 pointer_desc = "stack "; 3803 /* The stack spill tracking logic in check_stack_write_fixed_off() 3804 * and check_stack_read_fixed_off() relies on stack accesses being 3805 * aligned. 3806 */ 3807 strict = true; 3808 break; 3809 case PTR_TO_SOCKET: 3810 pointer_desc = "sock "; 3811 break; 3812 case PTR_TO_SOCK_COMMON: 3813 pointer_desc = "sock_common "; 3814 break; 3815 case PTR_TO_TCP_SOCK: 3816 pointer_desc = "tcp_sock "; 3817 break; 3818 case PTR_TO_XDP_SOCK: 3819 pointer_desc = "xdp_sock "; 3820 break; 3821 default: 3822 break; 3823 } 3824 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3825 strict); 3826 } 3827 3828 static int update_stack_depth(struct bpf_verifier_env *env, 3829 const struct bpf_func_state *func, 3830 int off) 3831 { 3832 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3833 3834 if (stack >= -off) 3835 return 0; 3836 3837 /* update known max for given subprogram */ 3838 env->subprog_info[func->subprogno].stack_depth = -off; 3839 return 0; 3840 } 3841 3842 /* starting from main bpf function walk all instructions of the function 3843 * and recursively walk all callees that given function can call. 3844 * Ignore jump and exit insns. 3845 * Since recursion is prevented by check_cfg() this algorithm 3846 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3847 */ 3848 static int check_max_stack_depth(struct bpf_verifier_env *env) 3849 { 3850 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3851 struct bpf_subprog_info *subprog = env->subprog_info; 3852 struct bpf_insn *insn = env->prog->insnsi; 3853 bool tail_call_reachable = false; 3854 int ret_insn[MAX_CALL_FRAMES]; 3855 int ret_prog[MAX_CALL_FRAMES]; 3856 int j; 3857 3858 process_func: 3859 /* protect against potential stack overflow that might happen when 3860 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3861 * depth for such case down to 256 so that the worst case scenario 3862 * would result in 8k stack size (32 which is tailcall limit * 256 = 3863 * 8k). 3864 * 3865 * To get the idea what might happen, see an example: 3866 * func1 -> sub rsp, 128 3867 * subfunc1 -> sub rsp, 256 3868 * tailcall1 -> add rsp, 256 3869 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3870 * subfunc2 -> sub rsp, 64 3871 * subfunc22 -> sub rsp, 128 3872 * tailcall2 -> add rsp, 128 3873 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3874 * 3875 * tailcall will unwind the current stack frame but it will not get rid 3876 * of caller's stack as shown on the example above. 3877 */ 3878 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3879 verbose(env, 3880 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3881 depth); 3882 return -EACCES; 3883 } 3884 /* round up to 32-bytes, since this is granularity 3885 * of interpreter stack size 3886 */ 3887 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3888 if (depth > MAX_BPF_STACK) { 3889 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3890 frame + 1, depth); 3891 return -EACCES; 3892 } 3893 continue_func: 3894 subprog_end = subprog[idx + 1].start; 3895 for (; i < subprog_end; i++) { 3896 int next_insn; 3897 3898 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3899 continue; 3900 /* remember insn and function to return to */ 3901 ret_insn[frame] = i + 1; 3902 ret_prog[frame] = idx; 3903 3904 /* find the callee */ 3905 next_insn = i + insn[i].imm + 1; 3906 idx = find_subprog(env, next_insn); 3907 if (idx < 0) { 3908 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3909 next_insn); 3910 return -EFAULT; 3911 } 3912 if (subprog[idx].is_async_cb) { 3913 if (subprog[idx].has_tail_call) { 3914 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3915 return -EFAULT; 3916 } 3917 /* async callbacks don't increase bpf prog stack size */ 3918 continue; 3919 } 3920 i = next_insn; 3921 3922 if (subprog[idx].has_tail_call) 3923 tail_call_reachable = true; 3924 3925 frame++; 3926 if (frame >= MAX_CALL_FRAMES) { 3927 verbose(env, "the call stack of %d frames is too deep !\n", 3928 frame); 3929 return -E2BIG; 3930 } 3931 goto process_func; 3932 } 3933 /* if tail call got detected across bpf2bpf calls then mark each of the 3934 * currently present subprog frames as tail call reachable subprogs; 3935 * this info will be utilized by JIT so that we will be preserving the 3936 * tail call counter throughout bpf2bpf calls combined with tailcalls 3937 */ 3938 if (tail_call_reachable) 3939 for (j = 0; j < frame; j++) 3940 subprog[ret_prog[j]].tail_call_reachable = true; 3941 if (subprog[0].tail_call_reachable) 3942 env->prog->aux->tail_call_reachable = true; 3943 3944 /* end of for() loop means the last insn of the 'subprog' 3945 * was reached. Doesn't matter whether it was JA or EXIT 3946 */ 3947 if (frame == 0) 3948 return 0; 3949 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3950 frame--; 3951 i = ret_insn[frame]; 3952 idx = ret_prog[frame]; 3953 goto continue_func; 3954 } 3955 3956 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3957 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3958 const struct bpf_insn *insn, int idx) 3959 { 3960 int start = idx + insn->imm + 1, subprog; 3961 3962 subprog = find_subprog(env, start); 3963 if (subprog < 0) { 3964 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3965 start); 3966 return -EFAULT; 3967 } 3968 return env->subprog_info[subprog].stack_depth; 3969 } 3970 #endif 3971 3972 int check_ctx_reg(struct bpf_verifier_env *env, 3973 const struct bpf_reg_state *reg, int regno) 3974 { 3975 /* Access to ctx or passing it to a helper is only allowed in 3976 * its original, unmodified form. 3977 */ 3978 3979 if (reg->off) { 3980 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3981 regno, reg->off); 3982 return -EACCES; 3983 } 3984 3985 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3986 char tn_buf[48]; 3987 3988 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3989 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3990 return -EACCES; 3991 } 3992 3993 return 0; 3994 } 3995 3996 static int __check_buffer_access(struct bpf_verifier_env *env, 3997 const char *buf_info, 3998 const struct bpf_reg_state *reg, 3999 int regno, int off, int size) 4000 { 4001 if (off < 0) { 4002 verbose(env, 4003 "R%d invalid %s buffer access: off=%d, size=%d\n", 4004 regno, buf_info, off, size); 4005 return -EACCES; 4006 } 4007 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4008 char tn_buf[48]; 4009 4010 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4011 verbose(env, 4012 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4013 regno, off, tn_buf); 4014 return -EACCES; 4015 } 4016 4017 return 0; 4018 } 4019 4020 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4021 const struct bpf_reg_state *reg, 4022 int regno, int off, int size) 4023 { 4024 int err; 4025 4026 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4027 if (err) 4028 return err; 4029 4030 if (off + size > env->prog->aux->max_tp_access) 4031 env->prog->aux->max_tp_access = off + size; 4032 4033 return 0; 4034 } 4035 4036 static int check_buffer_access(struct bpf_verifier_env *env, 4037 const struct bpf_reg_state *reg, 4038 int regno, int off, int size, 4039 bool zero_size_allowed, 4040 const char *buf_info, 4041 u32 *max_access) 4042 { 4043 int err; 4044 4045 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4046 if (err) 4047 return err; 4048 4049 if (off + size > *max_access) 4050 *max_access = off + size; 4051 4052 return 0; 4053 } 4054 4055 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4056 static void zext_32_to_64(struct bpf_reg_state *reg) 4057 { 4058 reg->var_off = tnum_subreg(reg->var_off); 4059 __reg_assign_32_into_64(reg); 4060 } 4061 4062 /* truncate register to smaller size (in bytes) 4063 * must be called with size < BPF_REG_SIZE 4064 */ 4065 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4066 { 4067 u64 mask; 4068 4069 /* clear high bits in bit representation */ 4070 reg->var_off = tnum_cast(reg->var_off, size); 4071 4072 /* fix arithmetic bounds */ 4073 mask = ((u64)1 << (size * 8)) - 1; 4074 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4075 reg->umin_value &= mask; 4076 reg->umax_value &= mask; 4077 } else { 4078 reg->umin_value = 0; 4079 reg->umax_value = mask; 4080 } 4081 reg->smin_value = reg->umin_value; 4082 reg->smax_value = reg->umax_value; 4083 4084 /* If size is smaller than 32bit register the 32bit register 4085 * values are also truncated so we push 64-bit bounds into 4086 * 32-bit bounds. Above were truncated < 32-bits already. 4087 */ 4088 if (size >= 4) 4089 return; 4090 __reg_combine_64_into_32(reg); 4091 } 4092 4093 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4094 { 4095 /* A map is considered read-only if the following condition are true: 4096 * 4097 * 1) BPF program side cannot change any of the map content. The 4098 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4099 * and was set at map creation time. 4100 * 2) The map value(s) have been initialized from user space by a 4101 * loader and then "frozen", such that no new map update/delete 4102 * operations from syscall side are possible for the rest of 4103 * the map's lifetime from that point onwards. 4104 * 3) Any parallel/pending map update/delete operations from syscall 4105 * side have been completed. Only after that point, it's safe to 4106 * assume that map value(s) are immutable. 4107 */ 4108 return (map->map_flags & BPF_F_RDONLY_PROG) && 4109 READ_ONCE(map->frozen) && 4110 !bpf_map_write_active(map); 4111 } 4112 4113 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4114 { 4115 void *ptr; 4116 u64 addr; 4117 int err; 4118 4119 err = map->ops->map_direct_value_addr(map, &addr, off); 4120 if (err) 4121 return err; 4122 ptr = (void *)(long)addr + off; 4123 4124 switch (size) { 4125 case sizeof(u8): 4126 *val = (u64)*(u8 *)ptr; 4127 break; 4128 case sizeof(u16): 4129 *val = (u64)*(u16 *)ptr; 4130 break; 4131 case sizeof(u32): 4132 *val = (u64)*(u32 *)ptr; 4133 break; 4134 case sizeof(u64): 4135 *val = *(u64 *)ptr; 4136 break; 4137 default: 4138 return -EINVAL; 4139 } 4140 return 0; 4141 } 4142 4143 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4144 struct bpf_reg_state *regs, 4145 int regno, int off, int size, 4146 enum bpf_access_type atype, 4147 int value_regno) 4148 { 4149 struct bpf_reg_state *reg = regs + regno; 4150 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4151 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4152 u32 btf_id; 4153 int ret; 4154 4155 if (off < 0) { 4156 verbose(env, 4157 "R%d is ptr_%s invalid negative access: off=%d\n", 4158 regno, tname, off); 4159 return -EACCES; 4160 } 4161 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4162 char tn_buf[48]; 4163 4164 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4165 verbose(env, 4166 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4167 regno, tname, off, tn_buf); 4168 return -EACCES; 4169 } 4170 4171 if (env->ops->btf_struct_access) { 4172 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4173 off, size, atype, &btf_id); 4174 } else { 4175 if (atype != BPF_READ) { 4176 verbose(env, "only read is supported\n"); 4177 return -EACCES; 4178 } 4179 4180 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4181 atype, &btf_id); 4182 } 4183 4184 if (ret < 0) 4185 return ret; 4186 4187 if (atype == BPF_READ && value_regno >= 0) 4188 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4189 4190 return 0; 4191 } 4192 4193 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4194 struct bpf_reg_state *regs, 4195 int regno, int off, int size, 4196 enum bpf_access_type atype, 4197 int value_regno) 4198 { 4199 struct bpf_reg_state *reg = regs + regno; 4200 struct bpf_map *map = reg->map_ptr; 4201 const struct btf_type *t; 4202 const char *tname; 4203 u32 btf_id; 4204 int ret; 4205 4206 if (!btf_vmlinux) { 4207 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4208 return -ENOTSUPP; 4209 } 4210 4211 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4212 verbose(env, "map_ptr access not supported for map type %d\n", 4213 map->map_type); 4214 return -ENOTSUPP; 4215 } 4216 4217 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4218 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4219 4220 if (!env->allow_ptr_to_map_access) { 4221 verbose(env, 4222 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4223 tname); 4224 return -EPERM; 4225 } 4226 4227 if (off < 0) { 4228 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4229 regno, tname, off); 4230 return -EACCES; 4231 } 4232 4233 if (atype != BPF_READ) { 4234 verbose(env, "only read from %s is supported\n", tname); 4235 return -EACCES; 4236 } 4237 4238 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4239 if (ret < 0) 4240 return ret; 4241 4242 if (value_regno >= 0) 4243 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4244 4245 return 0; 4246 } 4247 4248 /* Check that the stack access at the given offset is within bounds. The 4249 * maximum valid offset is -1. 4250 * 4251 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4252 * -state->allocated_stack for reads. 4253 */ 4254 static int check_stack_slot_within_bounds(int off, 4255 struct bpf_func_state *state, 4256 enum bpf_access_type t) 4257 { 4258 int min_valid_off; 4259 4260 if (t == BPF_WRITE) 4261 min_valid_off = -MAX_BPF_STACK; 4262 else 4263 min_valid_off = -state->allocated_stack; 4264 4265 if (off < min_valid_off || off > -1) 4266 return -EACCES; 4267 return 0; 4268 } 4269 4270 /* Check that the stack access at 'regno + off' falls within the maximum stack 4271 * bounds. 4272 * 4273 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4274 */ 4275 static int check_stack_access_within_bounds( 4276 struct bpf_verifier_env *env, 4277 int regno, int off, int access_size, 4278 enum stack_access_src src, enum bpf_access_type type) 4279 { 4280 struct bpf_reg_state *regs = cur_regs(env); 4281 struct bpf_reg_state *reg = regs + regno; 4282 struct bpf_func_state *state = func(env, reg); 4283 int min_off, max_off; 4284 int err; 4285 char *err_extra; 4286 4287 if (src == ACCESS_HELPER) 4288 /* We don't know if helpers are reading or writing (or both). */ 4289 err_extra = " indirect access to"; 4290 else if (type == BPF_READ) 4291 err_extra = " read from"; 4292 else 4293 err_extra = " write to"; 4294 4295 if (tnum_is_const(reg->var_off)) { 4296 min_off = reg->var_off.value + off; 4297 if (access_size > 0) 4298 max_off = min_off + access_size - 1; 4299 else 4300 max_off = min_off; 4301 } else { 4302 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4303 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4304 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4305 err_extra, regno); 4306 return -EACCES; 4307 } 4308 min_off = reg->smin_value + off; 4309 if (access_size > 0) 4310 max_off = reg->smax_value + off + access_size - 1; 4311 else 4312 max_off = min_off; 4313 } 4314 4315 err = check_stack_slot_within_bounds(min_off, state, type); 4316 if (!err) 4317 err = check_stack_slot_within_bounds(max_off, state, type); 4318 4319 if (err) { 4320 if (tnum_is_const(reg->var_off)) { 4321 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4322 err_extra, regno, off, access_size); 4323 } else { 4324 char tn_buf[48]; 4325 4326 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4327 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4328 err_extra, regno, tn_buf, access_size); 4329 } 4330 } 4331 return err; 4332 } 4333 4334 /* check whether memory at (regno + off) is accessible for t = (read | write) 4335 * if t==write, value_regno is a register which value is stored into memory 4336 * if t==read, value_regno is a register which will receive the value from memory 4337 * if t==write && value_regno==-1, some unknown value is stored into memory 4338 * if t==read && value_regno==-1, don't care what we read from memory 4339 */ 4340 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4341 int off, int bpf_size, enum bpf_access_type t, 4342 int value_regno, bool strict_alignment_once) 4343 { 4344 struct bpf_reg_state *regs = cur_regs(env); 4345 struct bpf_reg_state *reg = regs + regno; 4346 struct bpf_func_state *state; 4347 int size, err = 0; 4348 4349 size = bpf_size_to_bytes(bpf_size); 4350 if (size < 0) 4351 return size; 4352 4353 /* alignment checks will add in reg->off themselves */ 4354 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4355 if (err) 4356 return err; 4357 4358 /* for access checks, reg->off is just part of off */ 4359 off += reg->off; 4360 4361 if (reg->type == PTR_TO_MAP_KEY) { 4362 if (t == BPF_WRITE) { 4363 verbose(env, "write to change key R%d not allowed\n", regno); 4364 return -EACCES; 4365 } 4366 4367 err = check_mem_region_access(env, regno, off, size, 4368 reg->map_ptr->key_size, false); 4369 if (err) 4370 return err; 4371 if (value_regno >= 0) 4372 mark_reg_unknown(env, regs, value_regno); 4373 } else if (reg->type == PTR_TO_MAP_VALUE) { 4374 if (t == BPF_WRITE && value_regno >= 0 && 4375 is_pointer_value(env, value_regno)) { 4376 verbose(env, "R%d leaks addr into map\n", value_regno); 4377 return -EACCES; 4378 } 4379 err = check_map_access_type(env, regno, off, size, t); 4380 if (err) 4381 return err; 4382 err = check_map_access(env, regno, off, size, false); 4383 if (!err && t == BPF_READ && value_regno >= 0) { 4384 struct bpf_map *map = reg->map_ptr; 4385 4386 /* if map is read-only, track its contents as scalars */ 4387 if (tnum_is_const(reg->var_off) && 4388 bpf_map_is_rdonly(map) && 4389 map->ops->map_direct_value_addr) { 4390 int map_off = off + reg->var_off.value; 4391 u64 val = 0; 4392 4393 err = bpf_map_direct_read(map, map_off, size, 4394 &val); 4395 if (err) 4396 return err; 4397 4398 regs[value_regno].type = SCALAR_VALUE; 4399 __mark_reg_known(®s[value_regno], val); 4400 } else { 4401 mark_reg_unknown(env, regs, value_regno); 4402 } 4403 } 4404 } else if (base_type(reg->type) == PTR_TO_MEM) { 4405 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4406 4407 if (type_may_be_null(reg->type)) { 4408 verbose(env, "R%d invalid mem access '%s'\n", regno, 4409 reg_type_str(env, reg->type)); 4410 return -EACCES; 4411 } 4412 4413 if (t == BPF_WRITE && rdonly_mem) { 4414 verbose(env, "R%d cannot write into %s\n", 4415 regno, reg_type_str(env, reg->type)); 4416 return -EACCES; 4417 } 4418 4419 if (t == BPF_WRITE && value_regno >= 0 && 4420 is_pointer_value(env, value_regno)) { 4421 verbose(env, "R%d leaks addr into mem\n", value_regno); 4422 return -EACCES; 4423 } 4424 4425 err = check_mem_region_access(env, regno, off, size, 4426 reg->mem_size, false); 4427 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4428 mark_reg_unknown(env, regs, value_regno); 4429 } else if (reg->type == PTR_TO_CTX) { 4430 enum bpf_reg_type reg_type = SCALAR_VALUE; 4431 struct btf *btf = NULL; 4432 u32 btf_id = 0; 4433 4434 if (t == BPF_WRITE && value_regno >= 0 && 4435 is_pointer_value(env, value_regno)) { 4436 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4437 return -EACCES; 4438 } 4439 4440 err = check_ctx_reg(env, reg, regno); 4441 if (err < 0) 4442 return err; 4443 4444 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4445 if (err) 4446 verbose_linfo(env, insn_idx, "; "); 4447 if (!err && t == BPF_READ && value_regno >= 0) { 4448 /* ctx access returns either a scalar, or a 4449 * PTR_TO_PACKET[_META,_END]. In the latter 4450 * case, we know the offset is zero. 4451 */ 4452 if (reg_type == SCALAR_VALUE) { 4453 mark_reg_unknown(env, regs, value_regno); 4454 } else { 4455 mark_reg_known_zero(env, regs, 4456 value_regno); 4457 if (type_may_be_null(reg_type)) 4458 regs[value_regno].id = ++env->id_gen; 4459 /* A load of ctx field could have different 4460 * actual load size with the one encoded in the 4461 * insn. When the dst is PTR, it is for sure not 4462 * a sub-register. 4463 */ 4464 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4465 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4466 regs[value_regno].btf = btf; 4467 regs[value_regno].btf_id = btf_id; 4468 } 4469 } 4470 regs[value_regno].type = reg_type; 4471 } 4472 4473 } else if (reg->type == PTR_TO_STACK) { 4474 /* Basic bounds checks. */ 4475 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4476 if (err) 4477 return err; 4478 4479 state = func(env, reg); 4480 err = update_stack_depth(env, state, off); 4481 if (err) 4482 return err; 4483 4484 if (t == BPF_READ) 4485 err = check_stack_read(env, regno, off, size, 4486 value_regno); 4487 else 4488 err = check_stack_write(env, regno, off, size, 4489 value_regno, insn_idx); 4490 } else if (reg_is_pkt_pointer(reg)) { 4491 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4492 verbose(env, "cannot write into packet\n"); 4493 return -EACCES; 4494 } 4495 if (t == BPF_WRITE && value_regno >= 0 && 4496 is_pointer_value(env, value_regno)) { 4497 verbose(env, "R%d leaks addr into packet\n", 4498 value_regno); 4499 return -EACCES; 4500 } 4501 err = check_packet_access(env, regno, off, size, false); 4502 if (!err && t == BPF_READ && value_regno >= 0) 4503 mark_reg_unknown(env, regs, value_regno); 4504 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4505 if (t == BPF_WRITE && value_regno >= 0 && 4506 is_pointer_value(env, value_regno)) { 4507 verbose(env, "R%d leaks addr into flow keys\n", 4508 value_regno); 4509 return -EACCES; 4510 } 4511 4512 err = check_flow_keys_access(env, off, size); 4513 if (!err && t == BPF_READ && value_regno >= 0) 4514 mark_reg_unknown(env, regs, value_regno); 4515 } else if (type_is_sk_pointer(reg->type)) { 4516 if (t == BPF_WRITE) { 4517 verbose(env, "R%d cannot write into %s\n", 4518 regno, reg_type_str(env, reg->type)); 4519 return -EACCES; 4520 } 4521 err = check_sock_access(env, insn_idx, regno, off, size, t); 4522 if (!err && value_regno >= 0) 4523 mark_reg_unknown(env, regs, value_regno); 4524 } else if (reg->type == PTR_TO_TP_BUFFER) { 4525 err = check_tp_buffer_access(env, reg, regno, off, size); 4526 if (!err && t == BPF_READ && value_regno >= 0) 4527 mark_reg_unknown(env, regs, value_regno); 4528 } else if (reg->type == PTR_TO_BTF_ID) { 4529 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4530 value_regno); 4531 } else if (reg->type == CONST_PTR_TO_MAP) { 4532 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4533 value_regno); 4534 } else if (base_type(reg->type) == PTR_TO_BUF) { 4535 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4536 const char *buf_info; 4537 u32 *max_access; 4538 4539 if (rdonly_mem) { 4540 if (t == BPF_WRITE) { 4541 verbose(env, "R%d cannot write into %s\n", 4542 regno, reg_type_str(env, reg->type)); 4543 return -EACCES; 4544 } 4545 buf_info = "rdonly"; 4546 max_access = &env->prog->aux->max_rdonly_access; 4547 } else { 4548 buf_info = "rdwr"; 4549 max_access = &env->prog->aux->max_rdwr_access; 4550 } 4551 4552 err = check_buffer_access(env, reg, regno, off, size, false, 4553 buf_info, max_access); 4554 4555 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4556 mark_reg_unknown(env, regs, value_regno); 4557 } else { 4558 verbose(env, "R%d invalid mem access '%s'\n", regno, 4559 reg_type_str(env, reg->type)); 4560 return -EACCES; 4561 } 4562 4563 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4564 regs[value_regno].type == SCALAR_VALUE) { 4565 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4566 coerce_reg_to_size(®s[value_regno], size); 4567 } 4568 return err; 4569 } 4570 4571 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4572 { 4573 int load_reg; 4574 int err; 4575 4576 switch (insn->imm) { 4577 case BPF_ADD: 4578 case BPF_ADD | BPF_FETCH: 4579 case BPF_AND: 4580 case BPF_AND | BPF_FETCH: 4581 case BPF_OR: 4582 case BPF_OR | BPF_FETCH: 4583 case BPF_XOR: 4584 case BPF_XOR | BPF_FETCH: 4585 case BPF_XCHG: 4586 case BPF_CMPXCHG: 4587 break; 4588 default: 4589 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4590 return -EINVAL; 4591 } 4592 4593 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4594 verbose(env, "invalid atomic operand size\n"); 4595 return -EINVAL; 4596 } 4597 4598 /* check src1 operand */ 4599 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4600 if (err) 4601 return err; 4602 4603 /* check src2 operand */ 4604 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4605 if (err) 4606 return err; 4607 4608 if (insn->imm == BPF_CMPXCHG) { 4609 /* Check comparison of R0 with memory location */ 4610 const u32 aux_reg = BPF_REG_0; 4611 4612 err = check_reg_arg(env, aux_reg, SRC_OP); 4613 if (err) 4614 return err; 4615 4616 if (is_pointer_value(env, aux_reg)) { 4617 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4618 return -EACCES; 4619 } 4620 } 4621 4622 if (is_pointer_value(env, insn->src_reg)) { 4623 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4624 return -EACCES; 4625 } 4626 4627 if (is_ctx_reg(env, insn->dst_reg) || 4628 is_pkt_reg(env, insn->dst_reg) || 4629 is_flow_key_reg(env, insn->dst_reg) || 4630 is_sk_reg(env, insn->dst_reg)) { 4631 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4632 insn->dst_reg, 4633 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4634 return -EACCES; 4635 } 4636 4637 if (insn->imm & BPF_FETCH) { 4638 if (insn->imm == BPF_CMPXCHG) 4639 load_reg = BPF_REG_0; 4640 else 4641 load_reg = insn->src_reg; 4642 4643 /* check and record load of old value */ 4644 err = check_reg_arg(env, load_reg, DST_OP); 4645 if (err) 4646 return err; 4647 } else { 4648 /* This instruction accesses a memory location but doesn't 4649 * actually load it into a register. 4650 */ 4651 load_reg = -1; 4652 } 4653 4654 /* Check whether we can read the memory, with second call for fetch 4655 * case to simulate the register fill. 4656 */ 4657 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4658 BPF_SIZE(insn->code), BPF_READ, -1, true); 4659 if (!err && load_reg >= 0) 4660 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4661 BPF_SIZE(insn->code), BPF_READ, load_reg, 4662 true); 4663 if (err) 4664 return err; 4665 4666 /* Check whether we can write into the same memory. */ 4667 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4668 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4669 if (err) 4670 return err; 4671 4672 return 0; 4673 } 4674 4675 /* When register 'regno' is used to read the stack (either directly or through 4676 * a helper function) make sure that it's within stack boundary and, depending 4677 * on the access type, that all elements of the stack are initialized. 4678 * 4679 * 'off' includes 'regno->off', but not its dynamic part (if any). 4680 * 4681 * All registers that have been spilled on the stack in the slots within the 4682 * read offsets are marked as read. 4683 */ 4684 static int check_stack_range_initialized( 4685 struct bpf_verifier_env *env, int regno, int off, 4686 int access_size, bool zero_size_allowed, 4687 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4688 { 4689 struct bpf_reg_state *reg = reg_state(env, regno); 4690 struct bpf_func_state *state = func(env, reg); 4691 int err, min_off, max_off, i, j, slot, spi; 4692 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4693 enum bpf_access_type bounds_check_type; 4694 /* Some accesses can write anything into the stack, others are 4695 * read-only. 4696 */ 4697 bool clobber = false; 4698 4699 if (access_size == 0 && !zero_size_allowed) { 4700 verbose(env, "invalid zero-sized read\n"); 4701 return -EACCES; 4702 } 4703 4704 if (type == ACCESS_HELPER) { 4705 /* The bounds checks for writes are more permissive than for 4706 * reads. However, if raw_mode is not set, we'll do extra 4707 * checks below. 4708 */ 4709 bounds_check_type = BPF_WRITE; 4710 clobber = true; 4711 } else { 4712 bounds_check_type = BPF_READ; 4713 } 4714 err = check_stack_access_within_bounds(env, regno, off, access_size, 4715 type, bounds_check_type); 4716 if (err) 4717 return err; 4718 4719 4720 if (tnum_is_const(reg->var_off)) { 4721 min_off = max_off = reg->var_off.value + off; 4722 } else { 4723 /* Variable offset is prohibited for unprivileged mode for 4724 * simplicity since it requires corresponding support in 4725 * Spectre masking for stack ALU. 4726 * See also retrieve_ptr_limit(). 4727 */ 4728 if (!env->bypass_spec_v1) { 4729 char tn_buf[48]; 4730 4731 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4732 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4733 regno, err_extra, tn_buf); 4734 return -EACCES; 4735 } 4736 /* Only initialized buffer on stack is allowed to be accessed 4737 * with variable offset. With uninitialized buffer it's hard to 4738 * guarantee that whole memory is marked as initialized on 4739 * helper return since specific bounds are unknown what may 4740 * cause uninitialized stack leaking. 4741 */ 4742 if (meta && meta->raw_mode) 4743 meta = NULL; 4744 4745 min_off = reg->smin_value + off; 4746 max_off = reg->smax_value + off; 4747 } 4748 4749 if (meta && meta->raw_mode) { 4750 meta->access_size = access_size; 4751 meta->regno = regno; 4752 return 0; 4753 } 4754 4755 for (i = min_off; i < max_off + access_size; i++) { 4756 u8 *stype; 4757 4758 slot = -i - 1; 4759 spi = slot / BPF_REG_SIZE; 4760 if (state->allocated_stack <= slot) 4761 goto err; 4762 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4763 if (*stype == STACK_MISC) 4764 goto mark; 4765 if (*stype == STACK_ZERO) { 4766 if (clobber) { 4767 /* helper can write anything into the stack */ 4768 *stype = STACK_MISC; 4769 } 4770 goto mark; 4771 } 4772 4773 if (is_spilled_reg(&state->stack[spi]) && 4774 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4775 goto mark; 4776 4777 if (is_spilled_reg(&state->stack[spi]) && 4778 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4779 env->allow_ptr_leaks)) { 4780 if (clobber) { 4781 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4782 for (j = 0; j < BPF_REG_SIZE; j++) 4783 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4784 } 4785 goto mark; 4786 } 4787 4788 err: 4789 if (tnum_is_const(reg->var_off)) { 4790 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4791 err_extra, regno, min_off, i - min_off, access_size); 4792 } else { 4793 char tn_buf[48]; 4794 4795 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4796 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4797 err_extra, regno, tn_buf, i - min_off, access_size); 4798 } 4799 return -EACCES; 4800 mark: 4801 /* reading any byte out of 8-byte 'spill_slot' will cause 4802 * the whole slot to be marked as 'read' 4803 */ 4804 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4805 state->stack[spi].spilled_ptr.parent, 4806 REG_LIVE_READ64); 4807 } 4808 return update_stack_depth(env, state, min_off); 4809 } 4810 4811 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4812 int access_size, bool zero_size_allowed, 4813 struct bpf_call_arg_meta *meta) 4814 { 4815 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4816 const char *buf_info; 4817 u32 *max_access; 4818 4819 switch (base_type(reg->type)) { 4820 case PTR_TO_PACKET: 4821 case PTR_TO_PACKET_META: 4822 return check_packet_access(env, regno, reg->off, access_size, 4823 zero_size_allowed); 4824 case PTR_TO_MAP_KEY: 4825 return check_mem_region_access(env, regno, reg->off, access_size, 4826 reg->map_ptr->key_size, false); 4827 case PTR_TO_MAP_VALUE: 4828 if (check_map_access_type(env, regno, reg->off, access_size, 4829 meta && meta->raw_mode ? BPF_WRITE : 4830 BPF_READ)) 4831 return -EACCES; 4832 return check_map_access(env, regno, reg->off, access_size, 4833 zero_size_allowed); 4834 case PTR_TO_MEM: 4835 return check_mem_region_access(env, regno, reg->off, 4836 access_size, reg->mem_size, 4837 zero_size_allowed); 4838 case PTR_TO_BUF: 4839 if (type_is_rdonly_mem(reg->type)) { 4840 if (meta && meta->raw_mode) 4841 return -EACCES; 4842 4843 buf_info = "rdonly"; 4844 max_access = &env->prog->aux->max_rdonly_access; 4845 } else { 4846 buf_info = "rdwr"; 4847 max_access = &env->prog->aux->max_rdwr_access; 4848 } 4849 return check_buffer_access(env, reg, regno, reg->off, 4850 access_size, zero_size_allowed, 4851 buf_info, max_access); 4852 case PTR_TO_STACK: 4853 return check_stack_range_initialized( 4854 env, 4855 regno, reg->off, access_size, 4856 zero_size_allowed, ACCESS_HELPER, meta); 4857 default: /* scalar_value or invalid ptr */ 4858 /* Allow zero-byte read from NULL, regardless of pointer type */ 4859 if (zero_size_allowed && access_size == 0 && 4860 register_is_null(reg)) 4861 return 0; 4862 4863 verbose(env, "R%d type=%s ", regno, 4864 reg_type_str(env, reg->type)); 4865 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 4866 return -EACCES; 4867 } 4868 } 4869 4870 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4871 u32 regno, u32 mem_size) 4872 { 4873 if (register_is_null(reg)) 4874 return 0; 4875 4876 if (type_may_be_null(reg->type)) { 4877 /* Assuming that the register contains a value check if the memory 4878 * access is safe. Temporarily save and restore the register's state as 4879 * the conversion shouldn't be visible to a caller. 4880 */ 4881 const struct bpf_reg_state saved_reg = *reg; 4882 int rv; 4883 4884 mark_ptr_not_null_reg(reg); 4885 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4886 *reg = saved_reg; 4887 return rv; 4888 } 4889 4890 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4891 } 4892 4893 /* Implementation details: 4894 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4895 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4896 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4897 * value_or_null->value transition, since the verifier only cares about 4898 * the range of access to valid map value pointer and doesn't care about actual 4899 * address of the map element. 4900 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4901 * reg->id > 0 after value_or_null->value transition. By doing so 4902 * two bpf_map_lookups will be considered two different pointers that 4903 * point to different bpf_spin_locks. 4904 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4905 * dead-locks. 4906 * Since only one bpf_spin_lock is allowed the checks are simpler than 4907 * reg_is_refcounted() logic. The verifier needs to remember only 4908 * one spin_lock instead of array of acquired_refs. 4909 * cur_state->active_spin_lock remembers which map value element got locked 4910 * and clears it after bpf_spin_unlock. 4911 */ 4912 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4913 bool is_lock) 4914 { 4915 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4916 struct bpf_verifier_state *cur = env->cur_state; 4917 bool is_const = tnum_is_const(reg->var_off); 4918 struct bpf_map *map = reg->map_ptr; 4919 u64 val = reg->var_off.value; 4920 4921 if (!is_const) { 4922 verbose(env, 4923 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4924 regno); 4925 return -EINVAL; 4926 } 4927 if (!map->btf) { 4928 verbose(env, 4929 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4930 map->name); 4931 return -EINVAL; 4932 } 4933 if (!map_value_has_spin_lock(map)) { 4934 if (map->spin_lock_off == -E2BIG) 4935 verbose(env, 4936 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4937 map->name); 4938 else if (map->spin_lock_off == -ENOENT) 4939 verbose(env, 4940 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4941 map->name); 4942 else 4943 verbose(env, 4944 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4945 map->name); 4946 return -EINVAL; 4947 } 4948 if (map->spin_lock_off != val + reg->off) { 4949 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4950 val + reg->off); 4951 return -EINVAL; 4952 } 4953 if (is_lock) { 4954 if (cur->active_spin_lock) { 4955 verbose(env, 4956 "Locking two bpf_spin_locks are not allowed\n"); 4957 return -EINVAL; 4958 } 4959 cur->active_spin_lock = reg->id; 4960 } else { 4961 if (!cur->active_spin_lock) { 4962 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4963 return -EINVAL; 4964 } 4965 if (cur->active_spin_lock != reg->id) { 4966 verbose(env, "bpf_spin_unlock of different lock\n"); 4967 return -EINVAL; 4968 } 4969 cur->active_spin_lock = 0; 4970 } 4971 return 0; 4972 } 4973 4974 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4975 struct bpf_call_arg_meta *meta) 4976 { 4977 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4978 bool is_const = tnum_is_const(reg->var_off); 4979 struct bpf_map *map = reg->map_ptr; 4980 u64 val = reg->var_off.value; 4981 4982 if (!is_const) { 4983 verbose(env, 4984 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4985 regno); 4986 return -EINVAL; 4987 } 4988 if (!map->btf) { 4989 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4990 map->name); 4991 return -EINVAL; 4992 } 4993 if (!map_value_has_timer(map)) { 4994 if (map->timer_off == -E2BIG) 4995 verbose(env, 4996 "map '%s' has more than one 'struct bpf_timer'\n", 4997 map->name); 4998 else if (map->timer_off == -ENOENT) 4999 verbose(env, 5000 "map '%s' doesn't have 'struct bpf_timer'\n", 5001 map->name); 5002 else 5003 verbose(env, 5004 "map '%s' is not a struct type or bpf_timer is mangled\n", 5005 map->name); 5006 return -EINVAL; 5007 } 5008 if (map->timer_off != val + reg->off) { 5009 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5010 val + reg->off, map->timer_off); 5011 return -EINVAL; 5012 } 5013 if (meta->map_ptr) { 5014 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5015 return -EFAULT; 5016 } 5017 meta->map_uid = reg->map_uid; 5018 meta->map_ptr = map; 5019 return 0; 5020 } 5021 5022 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 5023 { 5024 return base_type(type) == ARG_PTR_TO_MEM || 5025 base_type(type) == ARG_PTR_TO_UNINIT_MEM; 5026 } 5027 5028 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5029 { 5030 return type == ARG_CONST_SIZE || 5031 type == ARG_CONST_SIZE_OR_ZERO; 5032 } 5033 5034 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 5035 { 5036 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 5037 } 5038 5039 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 5040 { 5041 return type == ARG_PTR_TO_INT || 5042 type == ARG_PTR_TO_LONG; 5043 } 5044 5045 static int int_ptr_type_to_size(enum bpf_arg_type type) 5046 { 5047 if (type == ARG_PTR_TO_INT) 5048 return sizeof(u32); 5049 else if (type == ARG_PTR_TO_LONG) 5050 return sizeof(u64); 5051 5052 return -EINVAL; 5053 } 5054 5055 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5056 const struct bpf_call_arg_meta *meta, 5057 enum bpf_arg_type *arg_type) 5058 { 5059 if (!meta->map_ptr) { 5060 /* kernel subsystem misconfigured verifier */ 5061 verbose(env, "invalid map_ptr to access map->type\n"); 5062 return -EACCES; 5063 } 5064 5065 switch (meta->map_ptr->map_type) { 5066 case BPF_MAP_TYPE_SOCKMAP: 5067 case BPF_MAP_TYPE_SOCKHASH: 5068 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5069 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5070 } else { 5071 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5072 return -EINVAL; 5073 } 5074 break; 5075 case BPF_MAP_TYPE_BLOOM_FILTER: 5076 if (meta->func_id == BPF_FUNC_map_peek_elem) 5077 *arg_type = ARG_PTR_TO_MAP_VALUE; 5078 break; 5079 default: 5080 break; 5081 } 5082 return 0; 5083 } 5084 5085 struct bpf_reg_types { 5086 const enum bpf_reg_type types[10]; 5087 u32 *btf_id; 5088 }; 5089 5090 static const struct bpf_reg_types map_key_value_types = { 5091 .types = { 5092 PTR_TO_STACK, 5093 PTR_TO_PACKET, 5094 PTR_TO_PACKET_META, 5095 PTR_TO_MAP_KEY, 5096 PTR_TO_MAP_VALUE, 5097 }, 5098 }; 5099 5100 static const struct bpf_reg_types sock_types = { 5101 .types = { 5102 PTR_TO_SOCK_COMMON, 5103 PTR_TO_SOCKET, 5104 PTR_TO_TCP_SOCK, 5105 PTR_TO_XDP_SOCK, 5106 }, 5107 }; 5108 5109 #ifdef CONFIG_NET 5110 static const struct bpf_reg_types btf_id_sock_common_types = { 5111 .types = { 5112 PTR_TO_SOCK_COMMON, 5113 PTR_TO_SOCKET, 5114 PTR_TO_TCP_SOCK, 5115 PTR_TO_XDP_SOCK, 5116 PTR_TO_BTF_ID, 5117 }, 5118 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5119 }; 5120 #endif 5121 5122 static const struct bpf_reg_types mem_types = { 5123 .types = { 5124 PTR_TO_STACK, 5125 PTR_TO_PACKET, 5126 PTR_TO_PACKET_META, 5127 PTR_TO_MAP_KEY, 5128 PTR_TO_MAP_VALUE, 5129 PTR_TO_MEM, 5130 PTR_TO_BUF, 5131 }, 5132 }; 5133 5134 static const struct bpf_reg_types int_ptr_types = { 5135 .types = { 5136 PTR_TO_STACK, 5137 PTR_TO_PACKET, 5138 PTR_TO_PACKET_META, 5139 PTR_TO_MAP_KEY, 5140 PTR_TO_MAP_VALUE, 5141 }, 5142 }; 5143 5144 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5145 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5146 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5147 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 5148 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5149 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5150 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5151 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5152 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5153 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5154 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5155 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5156 5157 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5158 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5159 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5160 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5161 [ARG_CONST_SIZE] = &scalar_types, 5162 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5163 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5164 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5165 [ARG_PTR_TO_CTX] = &context_types, 5166 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5167 #ifdef CONFIG_NET 5168 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5169 #endif 5170 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5171 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5172 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5173 [ARG_PTR_TO_MEM] = &mem_types, 5174 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5175 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5176 [ARG_PTR_TO_INT] = &int_ptr_types, 5177 [ARG_PTR_TO_LONG] = &int_ptr_types, 5178 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5179 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5180 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5181 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5182 [ARG_PTR_TO_TIMER] = &timer_types, 5183 }; 5184 5185 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5186 enum bpf_arg_type arg_type, 5187 const u32 *arg_btf_id) 5188 { 5189 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5190 enum bpf_reg_type expected, type = reg->type; 5191 const struct bpf_reg_types *compatible; 5192 int i, j; 5193 5194 compatible = compatible_reg_types[base_type(arg_type)]; 5195 if (!compatible) { 5196 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5197 return -EFAULT; 5198 } 5199 5200 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5201 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5202 * 5203 * Same for MAYBE_NULL: 5204 * 5205 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5206 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5207 * 5208 * Therefore we fold these flags depending on the arg_type before comparison. 5209 */ 5210 if (arg_type & MEM_RDONLY) 5211 type &= ~MEM_RDONLY; 5212 if (arg_type & PTR_MAYBE_NULL) 5213 type &= ~PTR_MAYBE_NULL; 5214 5215 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5216 expected = compatible->types[i]; 5217 if (expected == NOT_INIT) 5218 break; 5219 5220 if (type == expected) 5221 goto found; 5222 } 5223 5224 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5225 for (j = 0; j + 1 < i; j++) 5226 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5227 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5228 return -EACCES; 5229 5230 found: 5231 if (reg->type == PTR_TO_BTF_ID) { 5232 if (!arg_btf_id) { 5233 if (!compatible->btf_id) { 5234 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5235 return -EFAULT; 5236 } 5237 arg_btf_id = compatible->btf_id; 5238 } 5239 5240 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5241 btf_vmlinux, *arg_btf_id)) { 5242 verbose(env, "R%d is of type %s but %s is expected\n", 5243 regno, kernel_type_name(reg->btf, reg->btf_id), 5244 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5245 return -EACCES; 5246 } 5247 5248 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5249 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5250 regno); 5251 return -EACCES; 5252 } 5253 } 5254 5255 return 0; 5256 } 5257 5258 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5259 struct bpf_call_arg_meta *meta, 5260 const struct bpf_func_proto *fn) 5261 { 5262 u32 regno = BPF_REG_1 + arg; 5263 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5264 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5265 enum bpf_reg_type type = reg->type; 5266 int err = 0; 5267 5268 if (arg_type == ARG_DONTCARE) 5269 return 0; 5270 5271 err = check_reg_arg(env, regno, SRC_OP); 5272 if (err) 5273 return err; 5274 5275 if (arg_type == ARG_ANYTHING) { 5276 if (is_pointer_value(env, regno)) { 5277 verbose(env, "R%d leaks addr into helper function\n", 5278 regno); 5279 return -EACCES; 5280 } 5281 return 0; 5282 } 5283 5284 if (type_is_pkt_pointer(type) && 5285 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5286 verbose(env, "helper access to the packet is not allowed\n"); 5287 return -EACCES; 5288 } 5289 5290 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5291 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5292 err = resolve_map_arg_type(env, meta, &arg_type); 5293 if (err) 5294 return err; 5295 } 5296 5297 if (register_is_null(reg) && type_may_be_null(arg_type)) 5298 /* A NULL register has a SCALAR_VALUE type, so skip 5299 * type checking. 5300 */ 5301 goto skip_type_check; 5302 5303 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5304 if (err) 5305 return err; 5306 5307 if (type == PTR_TO_CTX) { 5308 err = check_ctx_reg(env, reg, regno); 5309 if (err < 0) 5310 return err; 5311 } 5312 5313 skip_type_check: 5314 if (reg->ref_obj_id) { 5315 if (meta->ref_obj_id) { 5316 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5317 regno, reg->ref_obj_id, 5318 meta->ref_obj_id); 5319 return -EFAULT; 5320 } 5321 meta->ref_obj_id = reg->ref_obj_id; 5322 } 5323 5324 if (arg_type == ARG_CONST_MAP_PTR) { 5325 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5326 if (meta->map_ptr) { 5327 /* Use map_uid (which is unique id of inner map) to reject: 5328 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5329 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5330 * if (inner_map1 && inner_map2) { 5331 * timer = bpf_map_lookup_elem(inner_map1); 5332 * if (timer) 5333 * // mismatch would have been allowed 5334 * bpf_timer_init(timer, inner_map2); 5335 * } 5336 * 5337 * Comparing map_ptr is enough to distinguish normal and outer maps. 5338 */ 5339 if (meta->map_ptr != reg->map_ptr || 5340 meta->map_uid != reg->map_uid) { 5341 verbose(env, 5342 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5343 meta->map_uid, reg->map_uid); 5344 return -EINVAL; 5345 } 5346 } 5347 meta->map_ptr = reg->map_ptr; 5348 meta->map_uid = reg->map_uid; 5349 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5350 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5351 * check that [key, key + map->key_size) are within 5352 * stack limits and initialized 5353 */ 5354 if (!meta->map_ptr) { 5355 /* in function declaration map_ptr must come before 5356 * map_key, so that it's verified and known before 5357 * we have to check map_key here. Otherwise it means 5358 * that kernel subsystem misconfigured verifier 5359 */ 5360 verbose(env, "invalid map_ptr to access map->key\n"); 5361 return -EACCES; 5362 } 5363 err = check_helper_mem_access(env, regno, 5364 meta->map_ptr->key_size, false, 5365 NULL); 5366 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5367 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5368 if (type_may_be_null(arg_type) && register_is_null(reg)) 5369 return 0; 5370 5371 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5372 * check [value, value + map->value_size) validity 5373 */ 5374 if (!meta->map_ptr) { 5375 /* kernel subsystem misconfigured verifier */ 5376 verbose(env, "invalid map_ptr to access map->value\n"); 5377 return -EACCES; 5378 } 5379 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5380 err = check_helper_mem_access(env, regno, 5381 meta->map_ptr->value_size, false, 5382 meta); 5383 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5384 if (!reg->btf_id) { 5385 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5386 return -EACCES; 5387 } 5388 meta->ret_btf = reg->btf; 5389 meta->ret_btf_id = reg->btf_id; 5390 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5391 if (meta->func_id == BPF_FUNC_spin_lock) { 5392 if (process_spin_lock(env, regno, true)) 5393 return -EACCES; 5394 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5395 if (process_spin_lock(env, regno, false)) 5396 return -EACCES; 5397 } else { 5398 verbose(env, "verifier internal error\n"); 5399 return -EFAULT; 5400 } 5401 } else if (arg_type == ARG_PTR_TO_TIMER) { 5402 if (process_timer_func(env, regno, meta)) 5403 return -EACCES; 5404 } else if (arg_type == ARG_PTR_TO_FUNC) { 5405 meta->subprogno = reg->subprogno; 5406 } else if (arg_type_is_mem_ptr(arg_type)) { 5407 /* The access to this pointer is only checked when we hit the 5408 * next is_mem_size argument below. 5409 */ 5410 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5411 } else if (arg_type_is_mem_size(arg_type)) { 5412 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5413 5414 /* This is used to refine r0 return value bounds for helpers 5415 * that enforce this value as an upper bound on return values. 5416 * See do_refine_retval_range() for helpers that can refine 5417 * the return value. C type of helper is u32 so we pull register 5418 * bound from umax_value however, if negative verifier errors 5419 * out. Only upper bounds can be learned because retval is an 5420 * int type and negative retvals are allowed. 5421 */ 5422 meta->msize_max_value = reg->umax_value; 5423 5424 /* The register is SCALAR_VALUE; the access check 5425 * happens using its boundaries. 5426 */ 5427 if (!tnum_is_const(reg->var_off)) 5428 /* For unprivileged variable accesses, disable raw 5429 * mode so that the program is required to 5430 * initialize all the memory that the helper could 5431 * just partially fill up. 5432 */ 5433 meta = NULL; 5434 5435 if (reg->smin_value < 0) { 5436 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5437 regno); 5438 return -EACCES; 5439 } 5440 5441 if (reg->umin_value == 0) { 5442 err = check_helper_mem_access(env, regno - 1, 0, 5443 zero_size_allowed, 5444 meta); 5445 if (err) 5446 return err; 5447 } 5448 5449 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5450 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5451 regno); 5452 return -EACCES; 5453 } 5454 err = check_helper_mem_access(env, regno - 1, 5455 reg->umax_value, 5456 zero_size_allowed, meta); 5457 if (!err) 5458 err = mark_chain_precision(env, regno); 5459 } else if (arg_type_is_alloc_size(arg_type)) { 5460 if (!tnum_is_const(reg->var_off)) { 5461 verbose(env, "R%d is not a known constant'\n", 5462 regno); 5463 return -EACCES; 5464 } 5465 meta->mem_size = reg->var_off.value; 5466 } else if (arg_type_is_int_ptr(arg_type)) { 5467 int size = int_ptr_type_to_size(arg_type); 5468 5469 err = check_helper_mem_access(env, regno, size, false, meta); 5470 if (err) 5471 return err; 5472 err = check_ptr_alignment(env, reg, 0, size, true); 5473 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5474 struct bpf_map *map = reg->map_ptr; 5475 int map_off; 5476 u64 map_addr; 5477 char *str_ptr; 5478 5479 if (!bpf_map_is_rdonly(map)) { 5480 verbose(env, "R%d does not point to a readonly map'\n", regno); 5481 return -EACCES; 5482 } 5483 5484 if (!tnum_is_const(reg->var_off)) { 5485 verbose(env, "R%d is not a constant address'\n", regno); 5486 return -EACCES; 5487 } 5488 5489 if (!map->ops->map_direct_value_addr) { 5490 verbose(env, "no direct value access support for this map type\n"); 5491 return -EACCES; 5492 } 5493 5494 err = check_map_access(env, regno, reg->off, 5495 map->value_size - reg->off, false); 5496 if (err) 5497 return err; 5498 5499 map_off = reg->off + reg->var_off.value; 5500 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5501 if (err) { 5502 verbose(env, "direct value access on string failed\n"); 5503 return err; 5504 } 5505 5506 str_ptr = (char *)(long)(map_addr); 5507 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5508 verbose(env, "string is not zero-terminated\n"); 5509 return -EINVAL; 5510 } 5511 } 5512 5513 return err; 5514 } 5515 5516 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5517 { 5518 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5519 enum bpf_prog_type type = resolve_prog_type(env->prog); 5520 5521 if (func_id != BPF_FUNC_map_update_elem) 5522 return false; 5523 5524 /* It's not possible to get access to a locked struct sock in these 5525 * contexts, so updating is safe. 5526 */ 5527 switch (type) { 5528 case BPF_PROG_TYPE_TRACING: 5529 if (eatype == BPF_TRACE_ITER) 5530 return true; 5531 break; 5532 case BPF_PROG_TYPE_SOCKET_FILTER: 5533 case BPF_PROG_TYPE_SCHED_CLS: 5534 case BPF_PROG_TYPE_SCHED_ACT: 5535 case BPF_PROG_TYPE_XDP: 5536 case BPF_PROG_TYPE_SK_REUSEPORT: 5537 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5538 case BPF_PROG_TYPE_SK_LOOKUP: 5539 return true; 5540 default: 5541 break; 5542 } 5543 5544 verbose(env, "cannot update sockmap in this context\n"); 5545 return false; 5546 } 5547 5548 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5549 { 5550 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5551 } 5552 5553 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5554 struct bpf_map *map, int func_id) 5555 { 5556 if (!map) 5557 return 0; 5558 5559 /* We need a two way check, first is from map perspective ... */ 5560 switch (map->map_type) { 5561 case BPF_MAP_TYPE_PROG_ARRAY: 5562 if (func_id != BPF_FUNC_tail_call) 5563 goto error; 5564 break; 5565 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5566 if (func_id != BPF_FUNC_perf_event_read && 5567 func_id != BPF_FUNC_perf_event_output && 5568 func_id != BPF_FUNC_skb_output && 5569 func_id != BPF_FUNC_perf_event_read_value && 5570 func_id != BPF_FUNC_xdp_output) 5571 goto error; 5572 break; 5573 case BPF_MAP_TYPE_RINGBUF: 5574 if (func_id != BPF_FUNC_ringbuf_output && 5575 func_id != BPF_FUNC_ringbuf_reserve && 5576 func_id != BPF_FUNC_ringbuf_query) 5577 goto error; 5578 break; 5579 case BPF_MAP_TYPE_STACK_TRACE: 5580 if (func_id != BPF_FUNC_get_stackid) 5581 goto error; 5582 break; 5583 case BPF_MAP_TYPE_CGROUP_ARRAY: 5584 if (func_id != BPF_FUNC_skb_under_cgroup && 5585 func_id != BPF_FUNC_current_task_under_cgroup) 5586 goto error; 5587 break; 5588 case BPF_MAP_TYPE_CGROUP_STORAGE: 5589 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5590 if (func_id != BPF_FUNC_get_local_storage) 5591 goto error; 5592 break; 5593 case BPF_MAP_TYPE_DEVMAP: 5594 case BPF_MAP_TYPE_DEVMAP_HASH: 5595 if (func_id != BPF_FUNC_redirect_map && 5596 func_id != BPF_FUNC_map_lookup_elem) 5597 goto error; 5598 break; 5599 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5600 * appear. 5601 */ 5602 case BPF_MAP_TYPE_CPUMAP: 5603 if (func_id != BPF_FUNC_redirect_map) 5604 goto error; 5605 break; 5606 case BPF_MAP_TYPE_XSKMAP: 5607 if (func_id != BPF_FUNC_redirect_map && 5608 func_id != BPF_FUNC_map_lookup_elem) 5609 goto error; 5610 break; 5611 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5612 case BPF_MAP_TYPE_HASH_OF_MAPS: 5613 if (func_id != BPF_FUNC_map_lookup_elem) 5614 goto error; 5615 break; 5616 case BPF_MAP_TYPE_SOCKMAP: 5617 if (func_id != BPF_FUNC_sk_redirect_map && 5618 func_id != BPF_FUNC_sock_map_update && 5619 func_id != BPF_FUNC_map_delete_elem && 5620 func_id != BPF_FUNC_msg_redirect_map && 5621 func_id != BPF_FUNC_sk_select_reuseport && 5622 func_id != BPF_FUNC_map_lookup_elem && 5623 !may_update_sockmap(env, func_id)) 5624 goto error; 5625 break; 5626 case BPF_MAP_TYPE_SOCKHASH: 5627 if (func_id != BPF_FUNC_sk_redirect_hash && 5628 func_id != BPF_FUNC_sock_hash_update && 5629 func_id != BPF_FUNC_map_delete_elem && 5630 func_id != BPF_FUNC_msg_redirect_hash && 5631 func_id != BPF_FUNC_sk_select_reuseport && 5632 func_id != BPF_FUNC_map_lookup_elem && 5633 !may_update_sockmap(env, func_id)) 5634 goto error; 5635 break; 5636 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5637 if (func_id != BPF_FUNC_sk_select_reuseport) 5638 goto error; 5639 break; 5640 case BPF_MAP_TYPE_QUEUE: 5641 case BPF_MAP_TYPE_STACK: 5642 if (func_id != BPF_FUNC_map_peek_elem && 5643 func_id != BPF_FUNC_map_pop_elem && 5644 func_id != BPF_FUNC_map_push_elem) 5645 goto error; 5646 break; 5647 case BPF_MAP_TYPE_SK_STORAGE: 5648 if (func_id != BPF_FUNC_sk_storage_get && 5649 func_id != BPF_FUNC_sk_storage_delete) 5650 goto error; 5651 break; 5652 case BPF_MAP_TYPE_INODE_STORAGE: 5653 if (func_id != BPF_FUNC_inode_storage_get && 5654 func_id != BPF_FUNC_inode_storage_delete) 5655 goto error; 5656 break; 5657 case BPF_MAP_TYPE_TASK_STORAGE: 5658 if (func_id != BPF_FUNC_task_storage_get && 5659 func_id != BPF_FUNC_task_storage_delete) 5660 goto error; 5661 break; 5662 case BPF_MAP_TYPE_BLOOM_FILTER: 5663 if (func_id != BPF_FUNC_map_peek_elem && 5664 func_id != BPF_FUNC_map_push_elem) 5665 goto error; 5666 break; 5667 default: 5668 break; 5669 } 5670 5671 /* ... and second from the function itself. */ 5672 switch (func_id) { 5673 case BPF_FUNC_tail_call: 5674 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5675 goto error; 5676 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5677 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5678 return -EINVAL; 5679 } 5680 break; 5681 case BPF_FUNC_perf_event_read: 5682 case BPF_FUNC_perf_event_output: 5683 case BPF_FUNC_perf_event_read_value: 5684 case BPF_FUNC_skb_output: 5685 case BPF_FUNC_xdp_output: 5686 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5687 goto error; 5688 break; 5689 case BPF_FUNC_ringbuf_output: 5690 case BPF_FUNC_ringbuf_reserve: 5691 case BPF_FUNC_ringbuf_query: 5692 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5693 goto error; 5694 break; 5695 case BPF_FUNC_get_stackid: 5696 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5697 goto error; 5698 break; 5699 case BPF_FUNC_current_task_under_cgroup: 5700 case BPF_FUNC_skb_under_cgroup: 5701 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5702 goto error; 5703 break; 5704 case BPF_FUNC_redirect_map: 5705 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5706 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5707 map->map_type != BPF_MAP_TYPE_CPUMAP && 5708 map->map_type != BPF_MAP_TYPE_XSKMAP) 5709 goto error; 5710 break; 5711 case BPF_FUNC_sk_redirect_map: 5712 case BPF_FUNC_msg_redirect_map: 5713 case BPF_FUNC_sock_map_update: 5714 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5715 goto error; 5716 break; 5717 case BPF_FUNC_sk_redirect_hash: 5718 case BPF_FUNC_msg_redirect_hash: 5719 case BPF_FUNC_sock_hash_update: 5720 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5721 goto error; 5722 break; 5723 case BPF_FUNC_get_local_storage: 5724 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5725 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5726 goto error; 5727 break; 5728 case BPF_FUNC_sk_select_reuseport: 5729 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5730 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5731 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5732 goto error; 5733 break; 5734 case BPF_FUNC_map_pop_elem: 5735 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5736 map->map_type != BPF_MAP_TYPE_STACK) 5737 goto error; 5738 break; 5739 case BPF_FUNC_map_peek_elem: 5740 case BPF_FUNC_map_push_elem: 5741 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5742 map->map_type != BPF_MAP_TYPE_STACK && 5743 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5744 goto error; 5745 break; 5746 case BPF_FUNC_sk_storage_get: 5747 case BPF_FUNC_sk_storage_delete: 5748 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5749 goto error; 5750 break; 5751 case BPF_FUNC_inode_storage_get: 5752 case BPF_FUNC_inode_storage_delete: 5753 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5754 goto error; 5755 break; 5756 case BPF_FUNC_task_storage_get: 5757 case BPF_FUNC_task_storage_delete: 5758 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5759 goto error; 5760 break; 5761 default: 5762 break; 5763 } 5764 5765 return 0; 5766 error: 5767 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5768 map->map_type, func_id_name(func_id), func_id); 5769 return -EINVAL; 5770 } 5771 5772 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5773 { 5774 int count = 0; 5775 5776 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5777 count++; 5778 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5779 count++; 5780 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5781 count++; 5782 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5783 count++; 5784 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5785 count++; 5786 5787 /* We only support one arg being in raw mode at the moment, 5788 * which is sufficient for the helper functions we have 5789 * right now. 5790 */ 5791 return count <= 1; 5792 } 5793 5794 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5795 enum bpf_arg_type arg_next) 5796 { 5797 return (arg_type_is_mem_ptr(arg_curr) && 5798 !arg_type_is_mem_size(arg_next)) || 5799 (!arg_type_is_mem_ptr(arg_curr) && 5800 arg_type_is_mem_size(arg_next)); 5801 } 5802 5803 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5804 { 5805 /* bpf_xxx(..., buf, len) call will access 'len' 5806 * bytes from memory 'buf'. Both arg types need 5807 * to be paired, so make sure there's no buggy 5808 * helper function specification. 5809 */ 5810 if (arg_type_is_mem_size(fn->arg1_type) || 5811 arg_type_is_mem_ptr(fn->arg5_type) || 5812 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5813 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5814 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5815 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5816 return false; 5817 5818 return true; 5819 } 5820 5821 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5822 { 5823 int count = 0; 5824 5825 if (arg_type_may_be_refcounted(fn->arg1_type)) 5826 count++; 5827 if (arg_type_may_be_refcounted(fn->arg2_type)) 5828 count++; 5829 if (arg_type_may_be_refcounted(fn->arg3_type)) 5830 count++; 5831 if (arg_type_may_be_refcounted(fn->arg4_type)) 5832 count++; 5833 if (arg_type_may_be_refcounted(fn->arg5_type)) 5834 count++; 5835 5836 /* A reference acquiring function cannot acquire 5837 * another refcounted ptr. 5838 */ 5839 if (may_be_acquire_function(func_id) && count) 5840 return false; 5841 5842 /* We only support one arg being unreferenced at the moment, 5843 * which is sufficient for the helper functions we have right now. 5844 */ 5845 return count <= 1; 5846 } 5847 5848 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5849 { 5850 int i; 5851 5852 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5853 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5854 return false; 5855 5856 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5857 return false; 5858 } 5859 5860 return true; 5861 } 5862 5863 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5864 { 5865 return check_raw_mode_ok(fn) && 5866 check_arg_pair_ok(fn) && 5867 check_btf_id_ok(fn) && 5868 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5869 } 5870 5871 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5872 * are now invalid, so turn them into unknown SCALAR_VALUE. 5873 */ 5874 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5875 struct bpf_func_state *state) 5876 { 5877 struct bpf_reg_state *regs = state->regs, *reg; 5878 int i; 5879 5880 for (i = 0; i < MAX_BPF_REG; i++) 5881 if (reg_is_pkt_pointer_any(®s[i])) 5882 mark_reg_unknown(env, regs, i); 5883 5884 bpf_for_each_spilled_reg(i, state, reg) { 5885 if (!reg) 5886 continue; 5887 if (reg_is_pkt_pointer_any(reg)) 5888 __mark_reg_unknown(env, reg); 5889 } 5890 } 5891 5892 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5893 { 5894 struct bpf_verifier_state *vstate = env->cur_state; 5895 int i; 5896 5897 for (i = 0; i <= vstate->curframe; i++) 5898 __clear_all_pkt_pointers(env, vstate->frame[i]); 5899 } 5900 5901 enum { 5902 AT_PKT_END = -1, 5903 BEYOND_PKT_END = -2, 5904 }; 5905 5906 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5907 { 5908 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5909 struct bpf_reg_state *reg = &state->regs[regn]; 5910 5911 if (reg->type != PTR_TO_PACKET) 5912 /* PTR_TO_PACKET_META is not supported yet */ 5913 return; 5914 5915 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5916 * How far beyond pkt_end it goes is unknown. 5917 * if (!range_open) it's the case of pkt >= pkt_end 5918 * if (range_open) it's the case of pkt > pkt_end 5919 * hence this pointer is at least 1 byte bigger than pkt_end 5920 */ 5921 if (range_open) 5922 reg->range = BEYOND_PKT_END; 5923 else 5924 reg->range = AT_PKT_END; 5925 } 5926 5927 static void release_reg_references(struct bpf_verifier_env *env, 5928 struct bpf_func_state *state, 5929 int ref_obj_id) 5930 { 5931 struct bpf_reg_state *regs = state->regs, *reg; 5932 int i; 5933 5934 for (i = 0; i < MAX_BPF_REG; i++) 5935 if (regs[i].ref_obj_id == ref_obj_id) 5936 mark_reg_unknown(env, regs, i); 5937 5938 bpf_for_each_spilled_reg(i, state, reg) { 5939 if (!reg) 5940 continue; 5941 if (reg->ref_obj_id == ref_obj_id) 5942 __mark_reg_unknown(env, reg); 5943 } 5944 } 5945 5946 /* The pointer with the specified id has released its reference to kernel 5947 * resources. Identify all copies of the same pointer and clear the reference. 5948 */ 5949 static int release_reference(struct bpf_verifier_env *env, 5950 int ref_obj_id) 5951 { 5952 struct bpf_verifier_state *vstate = env->cur_state; 5953 int err; 5954 int i; 5955 5956 err = release_reference_state(cur_func(env), ref_obj_id); 5957 if (err) 5958 return err; 5959 5960 for (i = 0; i <= vstate->curframe; i++) 5961 release_reg_references(env, vstate->frame[i], ref_obj_id); 5962 5963 return 0; 5964 } 5965 5966 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5967 struct bpf_reg_state *regs) 5968 { 5969 int i; 5970 5971 /* after the call registers r0 - r5 were scratched */ 5972 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5973 mark_reg_not_init(env, regs, caller_saved[i]); 5974 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5975 } 5976 } 5977 5978 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5979 struct bpf_func_state *caller, 5980 struct bpf_func_state *callee, 5981 int insn_idx); 5982 5983 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5984 int *insn_idx, int subprog, 5985 set_callee_state_fn set_callee_state_cb) 5986 { 5987 struct bpf_verifier_state *state = env->cur_state; 5988 struct bpf_func_info_aux *func_info_aux; 5989 struct bpf_func_state *caller, *callee; 5990 int err; 5991 bool is_global = false; 5992 5993 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5994 verbose(env, "the call stack of %d frames is too deep\n", 5995 state->curframe + 2); 5996 return -E2BIG; 5997 } 5998 5999 caller = state->frame[state->curframe]; 6000 if (state->frame[state->curframe + 1]) { 6001 verbose(env, "verifier bug. Frame %d already allocated\n", 6002 state->curframe + 1); 6003 return -EFAULT; 6004 } 6005 6006 func_info_aux = env->prog->aux->func_info_aux; 6007 if (func_info_aux) 6008 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6009 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6010 if (err == -EFAULT) 6011 return err; 6012 if (is_global) { 6013 if (err) { 6014 verbose(env, "Caller passes invalid args into func#%d\n", 6015 subprog); 6016 return err; 6017 } else { 6018 if (env->log.level & BPF_LOG_LEVEL) 6019 verbose(env, 6020 "Func#%d is global and valid. Skipping.\n", 6021 subprog); 6022 clear_caller_saved_regs(env, caller->regs); 6023 6024 /* All global functions return a 64-bit SCALAR_VALUE */ 6025 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6026 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6027 6028 /* continue with next insn after call */ 6029 return 0; 6030 } 6031 } 6032 6033 if (insn->code == (BPF_JMP | BPF_CALL) && 6034 insn->src_reg == 0 && 6035 insn->imm == BPF_FUNC_timer_set_callback) { 6036 struct bpf_verifier_state *async_cb; 6037 6038 /* there is no real recursion here. timer callbacks are async */ 6039 env->subprog_info[subprog].is_async_cb = true; 6040 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6041 *insn_idx, subprog); 6042 if (!async_cb) 6043 return -EFAULT; 6044 callee = async_cb->frame[0]; 6045 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6046 6047 /* Convert bpf_timer_set_callback() args into timer callback args */ 6048 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6049 if (err) 6050 return err; 6051 6052 clear_caller_saved_regs(env, caller->regs); 6053 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6054 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6055 /* continue with next insn after call */ 6056 return 0; 6057 } 6058 6059 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6060 if (!callee) 6061 return -ENOMEM; 6062 state->frame[state->curframe + 1] = callee; 6063 6064 /* callee cannot access r0, r6 - r9 for reading and has to write 6065 * into its own stack before reading from it. 6066 * callee can read/write into caller's stack 6067 */ 6068 init_func_state(env, callee, 6069 /* remember the callsite, it will be used by bpf_exit */ 6070 *insn_idx /* callsite */, 6071 state->curframe + 1 /* frameno within this callchain */, 6072 subprog /* subprog number within this prog */); 6073 6074 /* Transfer references to the callee */ 6075 err = copy_reference_state(callee, caller); 6076 if (err) 6077 return err; 6078 6079 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6080 if (err) 6081 return err; 6082 6083 clear_caller_saved_regs(env, caller->regs); 6084 6085 /* only increment it after check_reg_arg() finished */ 6086 state->curframe++; 6087 6088 /* and go analyze first insn of the callee */ 6089 *insn_idx = env->subprog_info[subprog].start - 1; 6090 6091 if (env->log.level & BPF_LOG_LEVEL) { 6092 verbose(env, "caller:\n"); 6093 print_verifier_state(env, caller, true); 6094 verbose(env, "callee:\n"); 6095 print_verifier_state(env, callee, true); 6096 } 6097 return 0; 6098 } 6099 6100 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6101 struct bpf_func_state *caller, 6102 struct bpf_func_state *callee) 6103 { 6104 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6105 * void *callback_ctx, u64 flags); 6106 * callback_fn(struct bpf_map *map, void *key, void *value, 6107 * void *callback_ctx); 6108 */ 6109 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6110 6111 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6112 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6113 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6114 6115 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6116 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6117 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6118 6119 /* pointer to stack or null */ 6120 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6121 6122 /* unused */ 6123 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6124 return 0; 6125 } 6126 6127 static int set_callee_state(struct bpf_verifier_env *env, 6128 struct bpf_func_state *caller, 6129 struct bpf_func_state *callee, int insn_idx) 6130 { 6131 int i; 6132 6133 /* copy r1 - r5 args that callee can access. The copy includes parent 6134 * pointers, which connects us up to the liveness chain 6135 */ 6136 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6137 callee->regs[i] = caller->regs[i]; 6138 return 0; 6139 } 6140 6141 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6142 int *insn_idx) 6143 { 6144 int subprog, target_insn; 6145 6146 target_insn = *insn_idx + insn->imm + 1; 6147 subprog = find_subprog(env, target_insn); 6148 if (subprog < 0) { 6149 verbose(env, "verifier bug. No program starts at insn %d\n", 6150 target_insn); 6151 return -EFAULT; 6152 } 6153 6154 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6155 } 6156 6157 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6158 struct bpf_func_state *caller, 6159 struct bpf_func_state *callee, 6160 int insn_idx) 6161 { 6162 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6163 struct bpf_map *map; 6164 int err; 6165 6166 if (bpf_map_ptr_poisoned(insn_aux)) { 6167 verbose(env, "tail_call abusing map_ptr\n"); 6168 return -EINVAL; 6169 } 6170 6171 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6172 if (!map->ops->map_set_for_each_callback_args || 6173 !map->ops->map_for_each_callback) { 6174 verbose(env, "callback function not allowed for map\n"); 6175 return -ENOTSUPP; 6176 } 6177 6178 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6179 if (err) 6180 return err; 6181 6182 callee->in_callback_fn = true; 6183 return 0; 6184 } 6185 6186 static int set_loop_callback_state(struct bpf_verifier_env *env, 6187 struct bpf_func_state *caller, 6188 struct bpf_func_state *callee, 6189 int insn_idx) 6190 { 6191 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6192 * u64 flags); 6193 * callback_fn(u32 index, void *callback_ctx); 6194 */ 6195 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6196 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6197 6198 /* unused */ 6199 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6200 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6201 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6202 6203 callee->in_callback_fn = true; 6204 return 0; 6205 } 6206 6207 static int set_timer_callback_state(struct bpf_verifier_env *env, 6208 struct bpf_func_state *caller, 6209 struct bpf_func_state *callee, 6210 int insn_idx) 6211 { 6212 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6213 6214 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6215 * callback_fn(struct bpf_map *map, void *key, void *value); 6216 */ 6217 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6218 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6219 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6220 6221 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6222 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6223 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6224 6225 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6226 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6227 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6228 6229 /* unused */ 6230 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6231 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6232 callee->in_async_callback_fn = true; 6233 return 0; 6234 } 6235 6236 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6237 struct bpf_func_state *caller, 6238 struct bpf_func_state *callee, 6239 int insn_idx) 6240 { 6241 /* bpf_find_vma(struct task_struct *task, u64 addr, 6242 * void *callback_fn, void *callback_ctx, u64 flags) 6243 * (callback_fn)(struct task_struct *task, 6244 * struct vm_area_struct *vma, void *callback_ctx); 6245 */ 6246 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6247 6248 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6249 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6250 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6251 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6252 6253 /* pointer to stack or null */ 6254 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6255 6256 /* unused */ 6257 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6258 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6259 callee->in_callback_fn = true; 6260 return 0; 6261 } 6262 6263 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6264 { 6265 struct bpf_verifier_state *state = env->cur_state; 6266 struct bpf_func_state *caller, *callee; 6267 struct bpf_reg_state *r0; 6268 int err; 6269 6270 callee = state->frame[state->curframe]; 6271 r0 = &callee->regs[BPF_REG_0]; 6272 if (r0->type == PTR_TO_STACK) { 6273 /* technically it's ok to return caller's stack pointer 6274 * (or caller's caller's pointer) back to the caller, 6275 * since these pointers are valid. Only current stack 6276 * pointer will be invalid as soon as function exits, 6277 * but let's be conservative 6278 */ 6279 verbose(env, "cannot return stack pointer to the caller\n"); 6280 return -EINVAL; 6281 } 6282 6283 state->curframe--; 6284 caller = state->frame[state->curframe]; 6285 if (callee->in_callback_fn) { 6286 /* enforce R0 return value range [0, 1]. */ 6287 struct tnum range = tnum_range(0, 1); 6288 6289 if (r0->type != SCALAR_VALUE) { 6290 verbose(env, "R0 not a scalar value\n"); 6291 return -EACCES; 6292 } 6293 if (!tnum_in(range, r0->var_off)) { 6294 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6295 return -EINVAL; 6296 } 6297 } else { 6298 /* return to the caller whatever r0 had in the callee */ 6299 caller->regs[BPF_REG_0] = *r0; 6300 } 6301 6302 /* Transfer references to the caller */ 6303 err = copy_reference_state(caller, callee); 6304 if (err) 6305 return err; 6306 6307 *insn_idx = callee->callsite + 1; 6308 if (env->log.level & BPF_LOG_LEVEL) { 6309 verbose(env, "returning from callee:\n"); 6310 print_verifier_state(env, callee, true); 6311 verbose(env, "to caller at %d:\n", *insn_idx); 6312 print_verifier_state(env, caller, true); 6313 } 6314 /* clear everything in the callee */ 6315 free_func_state(callee); 6316 state->frame[state->curframe + 1] = NULL; 6317 return 0; 6318 } 6319 6320 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6321 int func_id, 6322 struct bpf_call_arg_meta *meta) 6323 { 6324 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6325 6326 if (ret_type != RET_INTEGER || 6327 (func_id != BPF_FUNC_get_stack && 6328 func_id != BPF_FUNC_get_task_stack && 6329 func_id != BPF_FUNC_probe_read_str && 6330 func_id != BPF_FUNC_probe_read_kernel_str && 6331 func_id != BPF_FUNC_probe_read_user_str)) 6332 return; 6333 6334 ret_reg->smax_value = meta->msize_max_value; 6335 ret_reg->s32_max_value = meta->msize_max_value; 6336 ret_reg->smin_value = -MAX_ERRNO; 6337 ret_reg->s32_min_value = -MAX_ERRNO; 6338 __reg_deduce_bounds(ret_reg); 6339 __reg_bound_offset(ret_reg); 6340 __update_reg_bounds(ret_reg); 6341 } 6342 6343 static int 6344 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6345 int func_id, int insn_idx) 6346 { 6347 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6348 struct bpf_map *map = meta->map_ptr; 6349 6350 if (func_id != BPF_FUNC_tail_call && 6351 func_id != BPF_FUNC_map_lookup_elem && 6352 func_id != BPF_FUNC_map_update_elem && 6353 func_id != BPF_FUNC_map_delete_elem && 6354 func_id != BPF_FUNC_map_push_elem && 6355 func_id != BPF_FUNC_map_pop_elem && 6356 func_id != BPF_FUNC_map_peek_elem && 6357 func_id != BPF_FUNC_for_each_map_elem && 6358 func_id != BPF_FUNC_redirect_map) 6359 return 0; 6360 6361 if (map == NULL) { 6362 verbose(env, "kernel subsystem misconfigured verifier\n"); 6363 return -EINVAL; 6364 } 6365 6366 /* In case of read-only, some additional restrictions 6367 * need to be applied in order to prevent altering the 6368 * state of the map from program side. 6369 */ 6370 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6371 (func_id == BPF_FUNC_map_delete_elem || 6372 func_id == BPF_FUNC_map_update_elem || 6373 func_id == BPF_FUNC_map_push_elem || 6374 func_id == BPF_FUNC_map_pop_elem)) { 6375 verbose(env, "write into map forbidden\n"); 6376 return -EACCES; 6377 } 6378 6379 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6380 bpf_map_ptr_store(aux, meta->map_ptr, 6381 !meta->map_ptr->bypass_spec_v1); 6382 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6383 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6384 !meta->map_ptr->bypass_spec_v1); 6385 return 0; 6386 } 6387 6388 static int 6389 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6390 int func_id, int insn_idx) 6391 { 6392 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6393 struct bpf_reg_state *regs = cur_regs(env), *reg; 6394 struct bpf_map *map = meta->map_ptr; 6395 struct tnum range; 6396 u64 val; 6397 int err; 6398 6399 if (func_id != BPF_FUNC_tail_call) 6400 return 0; 6401 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6402 verbose(env, "kernel subsystem misconfigured verifier\n"); 6403 return -EINVAL; 6404 } 6405 6406 range = tnum_range(0, map->max_entries - 1); 6407 reg = ®s[BPF_REG_3]; 6408 6409 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6410 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6411 return 0; 6412 } 6413 6414 err = mark_chain_precision(env, BPF_REG_3); 6415 if (err) 6416 return err; 6417 6418 val = reg->var_off.value; 6419 if (bpf_map_key_unseen(aux)) 6420 bpf_map_key_store(aux, val); 6421 else if (!bpf_map_key_poisoned(aux) && 6422 bpf_map_key_immediate(aux) != val) 6423 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6424 return 0; 6425 } 6426 6427 static int check_reference_leak(struct bpf_verifier_env *env) 6428 { 6429 struct bpf_func_state *state = cur_func(env); 6430 int i; 6431 6432 for (i = 0; i < state->acquired_refs; i++) { 6433 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6434 state->refs[i].id, state->refs[i].insn_idx); 6435 } 6436 return state->acquired_refs ? -EINVAL : 0; 6437 } 6438 6439 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6440 struct bpf_reg_state *regs) 6441 { 6442 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6443 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6444 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6445 int err, fmt_map_off, num_args; 6446 u64 fmt_addr; 6447 char *fmt; 6448 6449 /* data must be an array of u64 */ 6450 if (data_len_reg->var_off.value % 8) 6451 return -EINVAL; 6452 num_args = data_len_reg->var_off.value / 8; 6453 6454 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6455 * and map_direct_value_addr is set. 6456 */ 6457 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6458 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6459 fmt_map_off); 6460 if (err) { 6461 verbose(env, "verifier bug\n"); 6462 return -EFAULT; 6463 } 6464 fmt = (char *)(long)fmt_addr + fmt_map_off; 6465 6466 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6467 * can focus on validating the format specifiers. 6468 */ 6469 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6470 if (err < 0) 6471 verbose(env, "Invalid format string\n"); 6472 6473 return err; 6474 } 6475 6476 static int check_get_func_ip(struct bpf_verifier_env *env) 6477 { 6478 enum bpf_prog_type type = resolve_prog_type(env->prog); 6479 int func_id = BPF_FUNC_get_func_ip; 6480 6481 if (type == BPF_PROG_TYPE_TRACING) { 6482 if (!bpf_prog_has_trampoline(env->prog)) { 6483 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6484 func_id_name(func_id), func_id); 6485 return -ENOTSUPP; 6486 } 6487 return 0; 6488 } else if (type == BPF_PROG_TYPE_KPROBE) { 6489 return 0; 6490 } 6491 6492 verbose(env, "func %s#%d not supported for program type %d\n", 6493 func_id_name(func_id), func_id, type); 6494 return -ENOTSUPP; 6495 } 6496 6497 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6498 int *insn_idx_p) 6499 { 6500 const struct bpf_func_proto *fn = NULL; 6501 enum bpf_return_type ret_type; 6502 enum bpf_type_flag ret_flag; 6503 struct bpf_reg_state *regs; 6504 struct bpf_call_arg_meta meta; 6505 int insn_idx = *insn_idx_p; 6506 bool changes_data; 6507 int i, err, func_id; 6508 6509 /* find function prototype */ 6510 func_id = insn->imm; 6511 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6512 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6513 func_id); 6514 return -EINVAL; 6515 } 6516 6517 if (env->ops->get_func_proto) 6518 fn = env->ops->get_func_proto(func_id, env->prog); 6519 if (!fn) { 6520 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6521 func_id); 6522 return -EINVAL; 6523 } 6524 6525 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6526 if (!env->prog->gpl_compatible && fn->gpl_only) { 6527 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6528 return -EINVAL; 6529 } 6530 6531 if (fn->allowed && !fn->allowed(env->prog)) { 6532 verbose(env, "helper call is not allowed in probe\n"); 6533 return -EINVAL; 6534 } 6535 6536 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6537 changes_data = bpf_helper_changes_pkt_data(fn->func); 6538 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6539 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6540 func_id_name(func_id), func_id); 6541 return -EINVAL; 6542 } 6543 6544 memset(&meta, 0, sizeof(meta)); 6545 meta.pkt_access = fn->pkt_access; 6546 6547 err = check_func_proto(fn, func_id); 6548 if (err) { 6549 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6550 func_id_name(func_id), func_id); 6551 return err; 6552 } 6553 6554 meta.func_id = func_id; 6555 /* check args */ 6556 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6557 err = check_func_arg(env, i, &meta, fn); 6558 if (err) 6559 return err; 6560 } 6561 6562 err = record_func_map(env, &meta, func_id, insn_idx); 6563 if (err) 6564 return err; 6565 6566 err = record_func_key(env, &meta, func_id, insn_idx); 6567 if (err) 6568 return err; 6569 6570 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6571 * is inferred from register state. 6572 */ 6573 for (i = 0; i < meta.access_size; i++) { 6574 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6575 BPF_WRITE, -1, false); 6576 if (err) 6577 return err; 6578 } 6579 6580 if (is_release_function(func_id)) { 6581 err = release_reference(env, meta.ref_obj_id); 6582 if (err) { 6583 verbose(env, "func %s#%d reference has not been acquired before\n", 6584 func_id_name(func_id), func_id); 6585 return err; 6586 } 6587 } 6588 6589 regs = cur_regs(env); 6590 6591 switch (func_id) { 6592 case BPF_FUNC_tail_call: 6593 err = check_reference_leak(env); 6594 if (err) { 6595 verbose(env, "tail_call would lead to reference leak\n"); 6596 return err; 6597 } 6598 break; 6599 case BPF_FUNC_get_local_storage: 6600 /* check that flags argument in get_local_storage(map, flags) is 0, 6601 * this is required because get_local_storage() can't return an error. 6602 */ 6603 if (!register_is_null(®s[BPF_REG_2])) { 6604 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6605 return -EINVAL; 6606 } 6607 break; 6608 case BPF_FUNC_for_each_map_elem: 6609 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6610 set_map_elem_callback_state); 6611 break; 6612 case BPF_FUNC_timer_set_callback: 6613 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6614 set_timer_callback_state); 6615 break; 6616 case BPF_FUNC_find_vma: 6617 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6618 set_find_vma_callback_state); 6619 break; 6620 case BPF_FUNC_snprintf: 6621 err = check_bpf_snprintf_call(env, regs); 6622 break; 6623 case BPF_FUNC_loop: 6624 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6625 set_loop_callback_state); 6626 break; 6627 } 6628 6629 if (err) 6630 return err; 6631 6632 /* reset caller saved regs */ 6633 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6634 mark_reg_not_init(env, regs, caller_saved[i]); 6635 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6636 } 6637 6638 /* helper call returns 64-bit value. */ 6639 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6640 6641 /* update return register (already marked as written above) */ 6642 ret_type = fn->ret_type; 6643 ret_flag = type_flag(fn->ret_type); 6644 if (ret_type == RET_INTEGER) { 6645 /* sets type to SCALAR_VALUE */ 6646 mark_reg_unknown(env, regs, BPF_REG_0); 6647 } else if (ret_type == RET_VOID) { 6648 regs[BPF_REG_0].type = NOT_INIT; 6649 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 6650 /* There is no offset yet applied, variable or fixed */ 6651 mark_reg_known_zero(env, regs, BPF_REG_0); 6652 /* remember map_ptr, so that check_map_access() 6653 * can check 'value_size' boundary of memory access 6654 * to map element returned from bpf_map_lookup_elem() 6655 */ 6656 if (meta.map_ptr == NULL) { 6657 verbose(env, 6658 "kernel subsystem misconfigured verifier\n"); 6659 return -EINVAL; 6660 } 6661 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6662 regs[BPF_REG_0].map_uid = meta.map_uid; 6663 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 6664 if (!type_may_be_null(ret_type) && 6665 map_value_has_spin_lock(meta.map_ptr)) { 6666 regs[BPF_REG_0].id = ++env->id_gen; 6667 } 6668 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 6669 mark_reg_known_zero(env, regs, BPF_REG_0); 6670 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 6671 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 6672 mark_reg_known_zero(env, regs, BPF_REG_0); 6673 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 6674 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 6675 mark_reg_known_zero(env, regs, BPF_REG_0); 6676 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 6677 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 6678 mark_reg_known_zero(env, regs, BPF_REG_0); 6679 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6680 regs[BPF_REG_0].mem_size = meta.mem_size; 6681 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 6682 const struct btf_type *t; 6683 6684 mark_reg_known_zero(env, regs, BPF_REG_0); 6685 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6686 if (!btf_type_is_struct(t)) { 6687 u32 tsize; 6688 const struct btf_type *ret; 6689 const char *tname; 6690 6691 /* resolve the type size of ksym. */ 6692 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6693 if (IS_ERR(ret)) { 6694 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6695 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6696 tname, PTR_ERR(ret)); 6697 return -EINVAL; 6698 } 6699 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6700 regs[BPF_REG_0].mem_size = tsize; 6701 } else { 6702 /* MEM_RDONLY may be carried from ret_flag, but it 6703 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 6704 * it will confuse the check of PTR_TO_BTF_ID in 6705 * check_mem_access(). 6706 */ 6707 ret_flag &= ~MEM_RDONLY; 6708 6709 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6710 regs[BPF_REG_0].btf = meta.ret_btf; 6711 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6712 } 6713 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 6714 int ret_btf_id; 6715 6716 mark_reg_known_zero(env, regs, BPF_REG_0); 6717 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6718 ret_btf_id = *fn->ret_btf_id; 6719 if (ret_btf_id == 0) { 6720 verbose(env, "invalid return type %u of func %s#%d\n", 6721 base_type(ret_type), func_id_name(func_id), 6722 func_id); 6723 return -EINVAL; 6724 } 6725 /* current BPF helper definitions are only coming from 6726 * built-in code with type IDs from vmlinux BTF 6727 */ 6728 regs[BPF_REG_0].btf = btf_vmlinux; 6729 regs[BPF_REG_0].btf_id = ret_btf_id; 6730 } else { 6731 verbose(env, "unknown return type %u of func %s#%d\n", 6732 base_type(ret_type), func_id_name(func_id), func_id); 6733 return -EINVAL; 6734 } 6735 6736 if (type_may_be_null(regs[BPF_REG_0].type)) 6737 regs[BPF_REG_0].id = ++env->id_gen; 6738 6739 if (is_ptr_cast_function(func_id)) { 6740 /* For release_reference() */ 6741 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6742 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6743 int id = acquire_reference_state(env, insn_idx); 6744 6745 if (id < 0) 6746 return id; 6747 /* For mark_ptr_or_null_reg() */ 6748 regs[BPF_REG_0].id = id; 6749 /* For release_reference() */ 6750 regs[BPF_REG_0].ref_obj_id = id; 6751 } 6752 6753 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6754 6755 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6756 if (err) 6757 return err; 6758 6759 if ((func_id == BPF_FUNC_get_stack || 6760 func_id == BPF_FUNC_get_task_stack) && 6761 !env->prog->has_callchain_buf) { 6762 const char *err_str; 6763 6764 #ifdef CONFIG_PERF_EVENTS 6765 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6766 err_str = "cannot get callchain buffer for func %s#%d\n"; 6767 #else 6768 err = -ENOTSUPP; 6769 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6770 #endif 6771 if (err) { 6772 verbose(env, err_str, func_id_name(func_id), func_id); 6773 return err; 6774 } 6775 6776 env->prog->has_callchain_buf = true; 6777 } 6778 6779 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6780 env->prog->call_get_stack = true; 6781 6782 if (func_id == BPF_FUNC_get_func_ip) { 6783 if (check_get_func_ip(env)) 6784 return -ENOTSUPP; 6785 env->prog->call_get_func_ip = true; 6786 } 6787 6788 if (changes_data) 6789 clear_all_pkt_pointers(env); 6790 return 0; 6791 } 6792 6793 /* mark_btf_func_reg_size() is used when the reg size is determined by 6794 * the BTF func_proto's return value size and argument. 6795 */ 6796 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6797 size_t reg_size) 6798 { 6799 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6800 6801 if (regno == BPF_REG_0) { 6802 /* Function return value */ 6803 reg->live |= REG_LIVE_WRITTEN; 6804 reg->subreg_def = reg_size == sizeof(u64) ? 6805 DEF_NOT_SUBREG : env->insn_idx + 1; 6806 } else { 6807 /* Function argument */ 6808 if (reg_size == sizeof(u64)) { 6809 mark_insn_zext(env, reg); 6810 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6811 } else { 6812 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6813 } 6814 } 6815 } 6816 6817 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6818 { 6819 const struct btf_type *t, *func, *func_proto, *ptr_type; 6820 struct bpf_reg_state *regs = cur_regs(env); 6821 const char *func_name, *ptr_type_name; 6822 u32 i, nargs, func_id, ptr_type_id; 6823 struct module *btf_mod = NULL; 6824 const struct btf_param *args; 6825 struct btf *desc_btf; 6826 int err; 6827 6828 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6829 if (!insn->imm) 6830 return 0; 6831 6832 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod); 6833 if (IS_ERR(desc_btf)) 6834 return PTR_ERR(desc_btf); 6835 6836 func_id = insn->imm; 6837 func = btf_type_by_id(desc_btf, func_id); 6838 func_name = btf_name_by_offset(desc_btf, func->name_off); 6839 func_proto = btf_type_by_id(desc_btf, func->type); 6840 6841 if (!env->ops->check_kfunc_call || 6842 !env->ops->check_kfunc_call(func_id, btf_mod)) { 6843 verbose(env, "calling kernel function %s is not allowed\n", 6844 func_name); 6845 return -EACCES; 6846 } 6847 6848 /* Check the arguments */ 6849 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6850 if (err) 6851 return err; 6852 6853 for (i = 0; i < CALLER_SAVED_REGS; i++) 6854 mark_reg_not_init(env, regs, caller_saved[i]); 6855 6856 /* Check return type */ 6857 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6858 if (btf_type_is_scalar(t)) { 6859 mark_reg_unknown(env, regs, BPF_REG_0); 6860 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6861 } else if (btf_type_is_ptr(t)) { 6862 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6863 &ptr_type_id); 6864 if (!btf_type_is_struct(ptr_type)) { 6865 ptr_type_name = btf_name_by_offset(desc_btf, 6866 ptr_type->name_off); 6867 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6868 func_name, btf_type_str(ptr_type), 6869 ptr_type_name); 6870 return -EINVAL; 6871 } 6872 mark_reg_known_zero(env, regs, BPF_REG_0); 6873 regs[BPF_REG_0].btf = desc_btf; 6874 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6875 regs[BPF_REG_0].btf_id = ptr_type_id; 6876 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6877 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6878 6879 nargs = btf_type_vlen(func_proto); 6880 args = (const struct btf_param *)(func_proto + 1); 6881 for (i = 0; i < nargs; i++) { 6882 u32 regno = i + 1; 6883 6884 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 6885 if (btf_type_is_ptr(t)) 6886 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6887 else 6888 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6889 mark_btf_func_reg_size(env, regno, t->size); 6890 } 6891 6892 return 0; 6893 } 6894 6895 static bool signed_add_overflows(s64 a, s64 b) 6896 { 6897 /* Do the add in u64, where overflow is well-defined */ 6898 s64 res = (s64)((u64)a + (u64)b); 6899 6900 if (b < 0) 6901 return res > a; 6902 return res < a; 6903 } 6904 6905 static bool signed_add32_overflows(s32 a, s32 b) 6906 { 6907 /* Do the add in u32, where overflow is well-defined */ 6908 s32 res = (s32)((u32)a + (u32)b); 6909 6910 if (b < 0) 6911 return res > a; 6912 return res < a; 6913 } 6914 6915 static bool signed_sub_overflows(s64 a, s64 b) 6916 { 6917 /* Do the sub in u64, where overflow is well-defined */ 6918 s64 res = (s64)((u64)a - (u64)b); 6919 6920 if (b < 0) 6921 return res < a; 6922 return res > a; 6923 } 6924 6925 static bool signed_sub32_overflows(s32 a, s32 b) 6926 { 6927 /* Do the sub in u32, where overflow is well-defined */ 6928 s32 res = (s32)((u32)a - (u32)b); 6929 6930 if (b < 0) 6931 return res < a; 6932 return res > a; 6933 } 6934 6935 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6936 const struct bpf_reg_state *reg, 6937 enum bpf_reg_type type) 6938 { 6939 bool known = tnum_is_const(reg->var_off); 6940 s64 val = reg->var_off.value; 6941 s64 smin = reg->smin_value; 6942 6943 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6944 verbose(env, "math between %s pointer and %lld is not allowed\n", 6945 reg_type_str(env, type), val); 6946 return false; 6947 } 6948 6949 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6950 verbose(env, "%s pointer offset %d is not allowed\n", 6951 reg_type_str(env, type), reg->off); 6952 return false; 6953 } 6954 6955 if (smin == S64_MIN) { 6956 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6957 reg_type_str(env, type)); 6958 return false; 6959 } 6960 6961 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6962 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6963 smin, reg_type_str(env, type)); 6964 return false; 6965 } 6966 6967 return true; 6968 } 6969 6970 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6971 { 6972 return &env->insn_aux_data[env->insn_idx]; 6973 } 6974 6975 enum { 6976 REASON_BOUNDS = -1, 6977 REASON_TYPE = -2, 6978 REASON_PATHS = -3, 6979 REASON_LIMIT = -4, 6980 REASON_STACK = -5, 6981 }; 6982 6983 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6984 u32 *alu_limit, bool mask_to_left) 6985 { 6986 u32 max = 0, ptr_limit = 0; 6987 6988 switch (ptr_reg->type) { 6989 case PTR_TO_STACK: 6990 /* Offset 0 is out-of-bounds, but acceptable start for the 6991 * left direction, see BPF_REG_FP. Also, unknown scalar 6992 * offset where we would need to deal with min/max bounds is 6993 * currently prohibited for unprivileged. 6994 */ 6995 max = MAX_BPF_STACK + mask_to_left; 6996 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6997 break; 6998 case PTR_TO_MAP_VALUE: 6999 max = ptr_reg->map_ptr->value_size; 7000 ptr_limit = (mask_to_left ? 7001 ptr_reg->smin_value : 7002 ptr_reg->umax_value) + ptr_reg->off; 7003 break; 7004 default: 7005 return REASON_TYPE; 7006 } 7007 7008 if (ptr_limit >= max) 7009 return REASON_LIMIT; 7010 *alu_limit = ptr_limit; 7011 return 0; 7012 } 7013 7014 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7015 const struct bpf_insn *insn) 7016 { 7017 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7018 } 7019 7020 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7021 u32 alu_state, u32 alu_limit) 7022 { 7023 /* If we arrived here from different branches with different 7024 * state or limits to sanitize, then this won't work. 7025 */ 7026 if (aux->alu_state && 7027 (aux->alu_state != alu_state || 7028 aux->alu_limit != alu_limit)) 7029 return REASON_PATHS; 7030 7031 /* Corresponding fixup done in do_misc_fixups(). */ 7032 aux->alu_state = alu_state; 7033 aux->alu_limit = alu_limit; 7034 return 0; 7035 } 7036 7037 static int sanitize_val_alu(struct bpf_verifier_env *env, 7038 struct bpf_insn *insn) 7039 { 7040 struct bpf_insn_aux_data *aux = cur_aux(env); 7041 7042 if (can_skip_alu_sanitation(env, insn)) 7043 return 0; 7044 7045 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7046 } 7047 7048 static bool sanitize_needed(u8 opcode) 7049 { 7050 return opcode == BPF_ADD || opcode == BPF_SUB; 7051 } 7052 7053 struct bpf_sanitize_info { 7054 struct bpf_insn_aux_data aux; 7055 bool mask_to_left; 7056 }; 7057 7058 static struct bpf_verifier_state * 7059 sanitize_speculative_path(struct bpf_verifier_env *env, 7060 const struct bpf_insn *insn, 7061 u32 next_idx, u32 curr_idx) 7062 { 7063 struct bpf_verifier_state *branch; 7064 struct bpf_reg_state *regs; 7065 7066 branch = push_stack(env, next_idx, curr_idx, true); 7067 if (branch && insn) { 7068 regs = branch->frame[branch->curframe]->regs; 7069 if (BPF_SRC(insn->code) == BPF_K) { 7070 mark_reg_unknown(env, regs, insn->dst_reg); 7071 } else if (BPF_SRC(insn->code) == BPF_X) { 7072 mark_reg_unknown(env, regs, insn->dst_reg); 7073 mark_reg_unknown(env, regs, insn->src_reg); 7074 } 7075 } 7076 return branch; 7077 } 7078 7079 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7080 struct bpf_insn *insn, 7081 const struct bpf_reg_state *ptr_reg, 7082 const struct bpf_reg_state *off_reg, 7083 struct bpf_reg_state *dst_reg, 7084 struct bpf_sanitize_info *info, 7085 const bool commit_window) 7086 { 7087 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7088 struct bpf_verifier_state *vstate = env->cur_state; 7089 bool off_is_imm = tnum_is_const(off_reg->var_off); 7090 bool off_is_neg = off_reg->smin_value < 0; 7091 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7092 u8 opcode = BPF_OP(insn->code); 7093 u32 alu_state, alu_limit; 7094 struct bpf_reg_state tmp; 7095 bool ret; 7096 int err; 7097 7098 if (can_skip_alu_sanitation(env, insn)) 7099 return 0; 7100 7101 /* We already marked aux for masking from non-speculative 7102 * paths, thus we got here in the first place. We only care 7103 * to explore bad access from here. 7104 */ 7105 if (vstate->speculative) 7106 goto do_sim; 7107 7108 if (!commit_window) { 7109 if (!tnum_is_const(off_reg->var_off) && 7110 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7111 return REASON_BOUNDS; 7112 7113 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7114 (opcode == BPF_SUB && !off_is_neg); 7115 } 7116 7117 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7118 if (err < 0) 7119 return err; 7120 7121 if (commit_window) { 7122 /* In commit phase we narrow the masking window based on 7123 * the observed pointer move after the simulated operation. 7124 */ 7125 alu_state = info->aux.alu_state; 7126 alu_limit = abs(info->aux.alu_limit - alu_limit); 7127 } else { 7128 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7129 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7130 alu_state |= ptr_is_dst_reg ? 7131 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7132 7133 /* Limit pruning on unknown scalars to enable deep search for 7134 * potential masking differences from other program paths. 7135 */ 7136 if (!off_is_imm) 7137 env->explore_alu_limits = true; 7138 } 7139 7140 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7141 if (err < 0) 7142 return err; 7143 do_sim: 7144 /* If we're in commit phase, we're done here given we already 7145 * pushed the truncated dst_reg into the speculative verification 7146 * stack. 7147 * 7148 * Also, when register is a known constant, we rewrite register-based 7149 * operation to immediate-based, and thus do not need masking (and as 7150 * a consequence, do not need to simulate the zero-truncation either). 7151 */ 7152 if (commit_window || off_is_imm) 7153 return 0; 7154 7155 /* Simulate and find potential out-of-bounds access under 7156 * speculative execution from truncation as a result of 7157 * masking when off was not within expected range. If off 7158 * sits in dst, then we temporarily need to move ptr there 7159 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7160 * for cases where we use K-based arithmetic in one direction 7161 * and truncated reg-based in the other in order to explore 7162 * bad access. 7163 */ 7164 if (!ptr_is_dst_reg) { 7165 tmp = *dst_reg; 7166 *dst_reg = *ptr_reg; 7167 } 7168 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7169 env->insn_idx); 7170 if (!ptr_is_dst_reg && ret) 7171 *dst_reg = tmp; 7172 return !ret ? REASON_STACK : 0; 7173 } 7174 7175 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7176 { 7177 struct bpf_verifier_state *vstate = env->cur_state; 7178 7179 /* If we simulate paths under speculation, we don't update the 7180 * insn as 'seen' such that when we verify unreachable paths in 7181 * the non-speculative domain, sanitize_dead_code() can still 7182 * rewrite/sanitize them. 7183 */ 7184 if (!vstate->speculative) 7185 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7186 } 7187 7188 static int sanitize_err(struct bpf_verifier_env *env, 7189 const struct bpf_insn *insn, int reason, 7190 const struct bpf_reg_state *off_reg, 7191 const struct bpf_reg_state *dst_reg) 7192 { 7193 static const char *err = "pointer arithmetic with it prohibited for !root"; 7194 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7195 u32 dst = insn->dst_reg, src = insn->src_reg; 7196 7197 switch (reason) { 7198 case REASON_BOUNDS: 7199 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7200 off_reg == dst_reg ? dst : src, err); 7201 break; 7202 case REASON_TYPE: 7203 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7204 off_reg == dst_reg ? src : dst, err); 7205 break; 7206 case REASON_PATHS: 7207 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7208 dst, op, err); 7209 break; 7210 case REASON_LIMIT: 7211 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7212 dst, op, err); 7213 break; 7214 case REASON_STACK: 7215 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7216 dst, err); 7217 break; 7218 default: 7219 verbose(env, "verifier internal error: unknown reason (%d)\n", 7220 reason); 7221 break; 7222 } 7223 7224 return -EACCES; 7225 } 7226 7227 /* check that stack access falls within stack limits and that 'reg' doesn't 7228 * have a variable offset. 7229 * 7230 * Variable offset is prohibited for unprivileged mode for simplicity since it 7231 * requires corresponding support in Spectre masking for stack ALU. See also 7232 * retrieve_ptr_limit(). 7233 * 7234 * 7235 * 'off' includes 'reg->off'. 7236 */ 7237 static int check_stack_access_for_ptr_arithmetic( 7238 struct bpf_verifier_env *env, 7239 int regno, 7240 const struct bpf_reg_state *reg, 7241 int off) 7242 { 7243 if (!tnum_is_const(reg->var_off)) { 7244 char tn_buf[48]; 7245 7246 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7247 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7248 regno, tn_buf, off); 7249 return -EACCES; 7250 } 7251 7252 if (off >= 0 || off < -MAX_BPF_STACK) { 7253 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7254 "prohibited for !root; off=%d\n", regno, off); 7255 return -EACCES; 7256 } 7257 7258 return 0; 7259 } 7260 7261 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7262 const struct bpf_insn *insn, 7263 const struct bpf_reg_state *dst_reg) 7264 { 7265 u32 dst = insn->dst_reg; 7266 7267 /* For unprivileged we require that resulting offset must be in bounds 7268 * in order to be able to sanitize access later on. 7269 */ 7270 if (env->bypass_spec_v1) 7271 return 0; 7272 7273 switch (dst_reg->type) { 7274 case PTR_TO_STACK: 7275 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7276 dst_reg->off + dst_reg->var_off.value)) 7277 return -EACCES; 7278 break; 7279 case PTR_TO_MAP_VALUE: 7280 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7281 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7282 "prohibited for !root\n", dst); 7283 return -EACCES; 7284 } 7285 break; 7286 default: 7287 break; 7288 } 7289 7290 return 0; 7291 } 7292 7293 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7294 * Caller should also handle BPF_MOV case separately. 7295 * If we return -EACCES, caller may want to try again treating pointer as a 7296 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7297 */ 7298 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7299 struct bpf_insn *insn, 7300 const struct bpf_reg_state *ptr_reg, 7301 const struct bpf_reg_state *off_reg) 7302 { 7303 struct bpf_verifier_state *vstate = env->cur_state; 7304 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7305 struct bpf_reg_state *regs = state->regs, *dst_reg; 7306 bool known = tnum_is_const(off_reg->var_off); 7307 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7308 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7309 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7310 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7311 struct bpf_sanitize_info info = {}; 7312 u8 opcode = BPF_OP(insn->code); 7313 u32 dst = insn->dst_reg; 7314 int ret; 7315 7316 dst_reg = ®s[dst]; 7317 7318 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7319 smin_val > smax_val || umin_val > umax_val) { 7320 /* Taint dst register if offset had invalid bounds derived from 7321 * e.g. dead branches. 7322 */ 7323 __mark_reg_unknown(env, dst_reg); 7324 return 0; 7325 } 7326 7327 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7328 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7329 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7330 __mark_reg_unknown(env, dst_reg); 7331 return 0; 7332 } 7333 7334 verbose(env, 7335 "R%d 32-bit pointer arithmetic prohibited\n", 7336 dst); 7337 return -EACCES; 7338 } 7339 7340 if (ptr_reg->type & PTR_MAYBE_NULL) { 7341 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7342 dst, reg_type_str(env, ptr_reg->type)); 7343 return -EACCES; 7344 } 7345 7346 switch (base_type(ptr_reg->type)) { 7347 case CONST_PTR_TO_MAP: 7348 /* smin_val represents the known value */ 7349 if (known && smin_val == 0 && opcode == BPF_ADD) 7350 break; 7351 fallthrough; 7352 case PTR_TO_PACKET_END: 7353 case PTR_TO_SOCKET: 7354 case PTR_TO_SOCK_COMMON: 7355 case PTR_TO_TCP_SOCK: 7356 case PTR_TO_XDP_SOCK: 7357 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7358 dst, reg_type_str(env, ptr_reg->type)); 7359 return -EACCES; 7360 default: 7361 break; 7362 } 7363 7364 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7365 * The id may be overwritten later if we create a new variable offset. 7366 */ 7367 dst_reg->type = ptr_reg->type; 7368 dst_reg->id = ptr_reg->id; 7369 7370 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7371 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7372 return -EINVAL; 7373 7374 /* pointer types do not carry 32-bit bounds at the moment. */ 7375 __mark_reg32_unbounded(dst_reg); 7376 7377 if (sanitize_needed(opcode)) { 7378 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7379 &info, false); 7380 if (ret < 0) 7381 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7382 } 7383 7384 switch (opcode) { 7385 case BPF_ADD: 7386 /* We can take a fixed offset as long as it doesn't overflow 7387 * the s32 'off' field 7388 */ 7389 if (known && (ptr_reg->off + smin_val == 7390 (s64)(s32)(ptr_reg->off + smin_val))) { 7391 /* pointer += K. Accumulate it into fixed offset */ 7392 dst_reg->smin_value = smin_ptr; 7393 dst_reg->smax_value = smax_ptr; 7394 dst_reg->umin_value = umin_ptr; 7395 dst_reg->umax_value = umax_ptr; 7396 dst_reg->var_off = ptr_reg->var_off; 7397 dst_reg->off = ptr_reg->off + smin_val; 7398 dst_reg->raw = ptr_reg->raw; 7399 break; 7400 } 7401 /* A new variable offset is created. Note that off_reg->off 7402 * == 0, since it's a scalar. 7403 * dst_reg gets the pointer type and since some positive 7404 * integer value was added to the pointer, give it a new 'id' 7405 * if it's a PTR_TO_PACKET. 7406 * this creates a new 'base' pointer, off_reg (variable) gets 7407 * added into the variable offset, and we copy the fixed offset 7408 * from ptr_reg. 7409 */ 7410 if (signed_add_overflows(smin_ptr, smin_val) || 7411 signed_add_overflows(smax_ptr, smax_val)) { 7412 dst_reg->smin_value = S64_MIN; 7413 dst_reg->smax_value = S64_MAX; 7414 } else { 7415 dst_reg->smin_value = smin_ptr + smin_val; 7416 dst_reg->smax_value = smax_ptr + smax_val; 7417 } 7418 if (umin_ptr + umin_val < umin_ptr || 7419 umax_ptr + umax_val < umax_ptr) { 7420 dst_reg->umin_value = 0; 7421 dst_reg->umax_value = U64_MAX; 7422 } else { 7423 dst_reg->umin_value = umin_ptr + umin_val; 7424 dst_reg->umax_value = umax_ptr + umax_val; 7425 } 7426 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7427 dst_reg->off = ptr_reg->off; 7428 dst_reg->raw = ptr_reg->raw; 7429 if (reg_is_pkt_pointer(ptr_reg)) { 7430 dst_reg->id = ++env->id_gen; 7431 /* something was added to pkt_ptr, set range to zero */ 7432 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7433 } 7434 break; 7435 case BPF_SUB: 7436 if (dst_reg == off_reg) { 7437 /* scalar -= pointer. Creates an unknown scalar */ 7438 verbose(env, "R%d tried to subtract pointer from scalar\n", 7439 dst); 7440 return -EACCES; 7441 } 7442 /* We don't allow subtraction from FP, because (according to 7443 * test_verifier.c test "invalid fp arithmetic", JITs might not 7444 * be able to deal with it. 7445 */ 7446 if (ptr_reg->type == PTR_TO_STACK) { 7447 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7448 dst); 7449 return -EACCES; 7450 } 7451 if (known && (ptr_reg->off - smin_val == 7452 (s64)(s32)(ptr_reg->off - smin_val))) { 7453 /* pointer -= K. Subtract it from fixed offset */ 7454 dst_reg->smin_value = smin_ptr; 7455 dst_reg->smax_value = smax_ptr; 7456 dst_reg->umin_value = umin_ptr; 7457 dst_reg->umax_value = umax_ptr; 7458 dst_reg->var_off = ptr_reg->var_off; 7459 dst_reg->id = ptr_reg->id; 7460 dst_reg->off = ptr_reg->off - smin_val; 7461 dst_reg->raw = ptr_reg->raw; 7462 break; 7463 } 7464 /* A new variable offset is created. If the subtrahend is known 7465 * nonnegative, then any reg->range we had before is still good. 7466 */ 7467 if (signed_sub_overflows(smin_ptr, smax_val) || 7468 signed_sub_overflows(smax_ptr, smin_val)) { 7469 /* Overflow possible, we know nothing */ 7470 dst_reg->smin_value = S64_MIN; 7471 dst_reg->smax_value = S64_MAX; 7472 } else { 7473 dst_reg->smin_value = smin_ptr - smax_val; 7474 dst_reg->smax_value = smax_ptr - smin_val; 7475 } 7476 if (umin_ptr < umax_val) { 7477 /* Overflow possible, we know nothing */ 7478 dst_reg->umin_value = 0; 7479 dst_reg->umax_value = U64_MAX; 7480 } else { 7481 /* Cannot overflow (as long as bounds are consistent) */ 7482 dst_reg->umin_value = umin_ptr - umax_val; 7483 dst_reg->umax_value = umax_ptr - umin_val; 7484 } 7485 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7486 dst_reg->off = ptr_reg->off; 7487 dst_reg->raw = ptr_reg->raw; 7488 if (reg_is_pkt_pointer(ptr_reg)) { 7489 dst_reg->id = ++env->id_gen; 7490 /* something was added to pkt_ptr, set range to zero */ 7491 if (smin_val < 0) 7492 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7493 } 7494 break; 7495 case BPF_AND: 7496 case BPF_OR: 7497 case BPF_XOR: 7498 /* bitwise ops on pointers are troublesome, prohibit. */ 7499 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7500 dst, bpf_alu_string[opcode >> 4]); 7501 return -EACCES; 7502 default: 7503 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7504 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7505 dst, bpf_alu_string[opcode >> 4]); 7506 return -EACCES; 7507 } 7508 7509 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7510 return -EINVAL; 7511 7512 __update_reg_bounds(dst_reg); 7513 __reg_deduce_bounds(dst_reg); 7514 __reg_bound_offset(dst_reg); 7515 7516 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7517 return -EACCES; 7518 if (sanitize_needed(opcode)) { 7519 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7520 &info, true); 7521 if (ret < 0) 7522 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7523 } 7524 7525 return 0; 7526 } 7527 7528 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7529 struct bpf_reg_state *src_reg) 7530 { 7531 s32 smin_val = src_reg->s32_min_value; 7532 s32 smax_val = src_reg->s32_max_value; 7533 u32 umin_val = src_reg->u32_min_value; 7534 u32 umax_val = src_reg->u32_max_value; 7535 7536 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7537 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7538 dst_reg->s32_min_value = S32_MIN; 7539 dst_reg->s32_max_value = S32_MAX; 7540 } else { 7541 dst_reg->s32_min_value += smin_val; 7542 dst_reg->s32_max_value += smax_val; 7543 } 7544 if (dst_reg->u32_min_value + umin_val < umin_val || 7545 dst_reg->u32_max_value + umax_val < umax_val) { 7546 dst_reg->u32_min_value = 0; 7547 dst_reg->u32_max_value = U32_MAX; 7548 } else { 7549 dst_reg->u32_min_value += umin_val; 7550 dst_reg->u32_max_value += umax_val; 7551 } 7552 } 7553 7554 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7555 struct bpf_reg_state *src_reg) 7556 { 7557 s64 smin_val = src_reg->smin_value; 7558 s64 smax_val = src_reg->smax_value; 7559 u64 umin_val = src_reg->umin_value; 7560 u64 umax_val = src_reg->umax_value; 7561 7562 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7563 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7564 dst_reg->smin_value = S64_MIN; 7565 dst_reg->smax_value = S64_MAX; 7566 } else { 7567 dst_reg->smin_value += smin_val; 7568 dst_reg->smax_value += smax_val; 7569 } 7570 if (dst_reg->umin_value + umin_val < umin_val || 7571 dst_reg->umax_value + umax_val < umax_val) { 7572 dst_reg->umin_value = 0; 7573 dst_reg->umax_value = U64_MAX; 7574 } else { 7575 dst_reg->umin_value += umin_val; 7576 dst_reg->umax_value += umax_val; 7577 } 7578 } 7579 7580 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7581 struct bpf_reg_state *src_reg) 7582 { 7583 s32 smin_val = src_reg->s32_min_value; 7584 s32 smax_val = src_reg->s32_max_value; 7585 u32 umin_val = src_reg->u32_min_value; 7586 u32 umax_val = src_reg->u32_max_value; 7587 7588 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7589 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7590 /* Overflow possible, we know nothing */ 7591 dst_reg->s32_min_value = S32_MIN; 7592 dst_reg->s32_max_value = S32_MAX; 7593 } else { 7594 dst_reg->s32_min_value -= smax_val; 7595 dst_reg->s32_max_value -= smin_val; 7596 } 7597 if (dst_reg->u32_min_value < umax_val) { 7598 /* Overflow possible, we know nothing */ 7599 dst_reg->u32_min_value = 0; 7600 dst_reg->u32_max_value = U32_MAX; 7601 } else { 7602 /* Cannot overflow (as long as bounds are consistent) */ 7603 dst_reg->u32_min_value -= umax_val; 7604 dst_reg->u32_max_value -= umin_val; 7605 } 7606 } 7607 7608 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7609 struct bpf_reg_state *src_reg) 7610 { 7611 s64 smin_val = src_reg->smin_value; 7612 s64 smax_val = src_reg->smax_value; 7613 u64 umin_val = src_reg->umin_value; 7614 u64 umax_val = src_reg->umax_value; 7615 7616 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7617 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7618 /* Overflow possible, we know nothing */ 7619 dst_reg->smin_value = S64_MIN; 7620 dst_reg->smax_value = S64_MAX; 7621 } else { 7622 dst_reg->smin_value -= smax_val; 7623 dst_reg->smax_value -= smin_val; 7624 } 7625 if (dst_reg->umin_value < umax_val) { 7626 /* Overflow possible, we know nothing */ 7627 dst_reg->umin_value = 0; 7628 dst_reg->umax_value = U64_MAX; 7629 } else { 7630 /* Cannot overflow (as long as bounds are consistent) */ 7631 dst_reg->umin_value -= umax_val; 7632 dst_reg->umax_value -= umin_val; 7633 } 7634 } 7635 7636 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7637 struct bpf_reg_state *src_reg) 7638 { 7639 s32 smin_val = src_reg->s32_min_value; 7640 u32 umin_val = src_reg->u32_min_value; 7641 u32 umax_val = src_reg->u32_max_value; 7642 7643 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7644 /* Ain't nobody got time to multiply that sign */ 7645 __mark_reg32_unbounded(dst_reg); 7646 return; 7647 } 7648 /* Both values are positive, so we can work with unsigned and 7649 * copy the result to signed (unless it exceeds S32_MAX). 7650 */ 7651 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7652 /* Potential overflow, we know nothing */ 7653 __mark_reg32_unbounded(dst_reg); 7654 return; 7655 } 7656 dst_reg->u32_min_value *= umin_val; 7657 dst_reg->u32_max_value *= umax_val; 7658 if (dst_reg->u32_max_value > S32_MAX) { 7659 /* Overflow possible, we know nothing */ 7660 dst_reg->s32_min_value = S32_MIN; 7661 dst_reg->s32_max_value = S32_MAX; 7662 } else { 7663 dst_reg->s32_min_value = dst_reg->u32_min_value; 7664 dst_reg->s32_max_value = dst_reg->u32_max_value; 7665 } 7666 } 7667 7668 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7669 struct bpf_reg_state *src_reg) 7670 { 7671 s64 smin_val = src_reg->smin_value; 7672 u64 umin_val = src_reg->umin_value; 7673 u64 umax_val = src_reg->umax_value; 7674 7675 if (smin_val < 0 || dst_reg->smin_value < 0) { 7676 /* Ain't nobody got time to multiply that sign */ 7677 __mark_reg64_unbounded(dst_reg); 7678 return; 7679 } 7680 /* Both values are positive, so we can work with unsigned and 7681 * copy the result to signed (unless it exceeds S64_MAX). 7682 */ 7683 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7684 /* Potential overflow, we know nothing */ 7685 __mark_reg64_unbounded(dst_reg); 7686 return; 7687 } 7688 dst_reg->umin_value *= umin_val; 7689 dst_reg->umax_value *= umax_val; 7690 if (dst_reg->umax_value > S64_MAX) { 7691 /* Overflow possible, we know nothing */ 7692 dst_reg->smin_value = S64_MIN; 7693 dst_reg->smax_value = S64_MAX; 7694 } else { 7695 dst_reg->smin_value = dst_reg->umin_value; 7696 dst_reg->smax_value = dst_reg->umax_value; 7697 } 7698 } 7699 7700 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7701 struct bpf_reg_state *src_reg) 7702 { 7703 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7704 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7705 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7706 s32 smin_val = src_reg->s32_min_value; 7707 u32 umax_val = src_reg->u32_max_value; 7708 7709 if (src_known && dst_known) { 7710 __mark_reg32_known(dst_reg, var32_off.value); 7711 return; 7712 } 7713 7714 /* We get our minimum from the var_off, since that's inherently 7715 * bitwise. Our maximum is the minimum of the operands' maxima. 7716 */ 7717 dst_reg->u32_min_value = var32_off.value; 7718 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7719 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7720 /* Lose signed bounds when ANDing negative numbers, 7721 * ain't nobody got time for that. 7722 */ 7723 dst_reg->s32_min_value = S32_MIN; 7724 dst_reg->s32_max_value = S32_MAX; 7725 } else { 7726 /* ANDing two positives gives a positive, so safe to 7727 * cast result into s64. 7728 */ 7729 dst_reg->s32_min_value = dst_reg->u32_min_value; 7730 dst_reg->s32_max_value = dst_reg->u32_max_value; 7731 } 7732 } 7733 7734 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7735 struct bpf_reg_state *src_reg) 7736 { 7737 bool src_known = tnum_is_const(src_reg->var_off); 7738 bool dst_known = tnum_is_const(dst_reg->var_off); 7739 s64 smin_val = src_reg->smin_value; 7740 u64 umax_val = src_reg->umax_value; 7741 7742 if (src_known && dst_known) { 7743 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7744 return; 7745 } 7746 7747 /* We get our minimum from the var_off, since that's inherently 7748 * bitwise. Our maximum is the minimum of the operands' maxima. 7749 */ 7750 dst_reg->umin_value = dst_reg->var_off.value; 7751 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7752 if (dst_reg->smin_value < 0 || smin_val < 0) { 7753 /* Lose signed bounds when ANDing negative numbers, 7754 * ain't nobody got time for that. 7755 */ 7756 dst_reg->smin_value = S64_MIN; 7757 dst_reg->smax_value = S64_MAX; 7758 } else { 7759 /* ANDing two positives gives a positive, so safe to 7760 * cast result into s64. 7761 */ 7762 dst_reg->smin_value = dst_reg->umin_value; 7763 dst_reg->smax_value = dst_reg->umax_value; 7764 } 7765 /* We may learn something more from the var_off */ 7766 __update_reg_bounds(dst_reg); 7767 } 7768 7769 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7770 struct bpf_reg_state *src_reg) 7771 { 7772 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7773 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7774 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7775 s32 smin_val = src_reg->s32_min_value; 7776 u32 umin_val = src_reg->u32_min_value; 7777 7778 if (src_known && dst_known) { 7779 __mark_reg32_known(dst_reg, var32_off.value); 7780 return; 7781 } 7782 7783 /* We get our maximum from the var_off, and our minimum is the 7784 * maximum of the operands' minima 7785 */ 7786 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7787 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7788 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7789 /* Lose signed bounds when ORing negative numbers, 7790 * ain't nobody got time for that. 7791 */ 7792 dst_reg->s32_min_value = S32_MIN; 7793 dst_reg->s32_max_value = S32_MAX; 7794 } else { 7795 /* ORing two positives gives a positive, so safe to 7796 * cast result into s64. 7797 */ 7798 dst_reg->s32_min_value = dst_reg->u32_min_value; 7799 dst_reg->s32_max_value = dst_reg->u32_max_value; 7800 } 7801 } 7802 7803 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7804 struct bpf_reg_state *src_reg) 7805 { 7806 bool src_known = tnum_is_const(src_reg->var_off); 7807 bool dst_known = tnum_is_const(dst_reg->var_off); 7808 s64 smin_val = src_reg->smin_value; 7809 u64 umin_val = src_reg->umin_value; 7810 7811 if (src_known && dst_known) { 7812 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7813 return; 7814 } 7815 7816 /* We get our maximum from the var_off, and our minimum is the 7817 * maximum of the operands' minima 7818 */ 7819 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7820 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7821 if (dst_reg->smin_value < 0 || smin_val < 0) { 7822 /* Lose signed bounds when ORing negative numbers, 7823 * ain't nobody got time for that. 7824 */ 7825 dst_reg->smin_value = S64_MIN; 7826 dst_reg->smax_value = S64_MAX; 7827 } else { 7828 /* ORing two positives gives a positive, so safe to 7829 * cast result into s64. 7830 */ 7831 dst_reg->smin_value = dst_reg->umin_value; 7832 dst_reg->smax_value = dst_reg->umax_value; 7833 } 7834 /* We may learn something more from the var_off */ 7835 __update_reg_bounds(dst_reg); 7836 } 7837 7838 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7839 struct bpf_reg_state *src_reg) 7840 { 7841 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7842 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7843 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7844 s32 smin_val = src_reg->s32_min_value; 7845 7846 if (src_known && dst_known) { 7847 __mark_reg32_known(dst_reg, var32_off.value); 7848 return; 7849 } 7850 7851 /* We get both minimum and maximum from the var32_off. */ 7852 dst_reg->u32_min_value = var32_off.value; 7853 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7854 7855 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7856 /* XORing two positive sign numbers gives a positive, 7857 * so safe to cast u32 result into s32. 7858 */ 7859 dst_reg->s32_min_value = dst_reg->u32_min_value; 7860 dst_reg->s32_max_value = dst_reg->u32_max_value; 7861 } else { 7862 dst_reg->s32_min_value = S32_MIN; 7863 dst_reg->s32_max_value = S32_MAX; 7864 } 7865 } 7866 7867 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7868 struct bpf_reg_state *src_reg) 7869 { 7870 bool src_known = tnum_is_const(src_reg->var_off); 7871 bool dst_known = tnum_is_const(dst_reg->var_off); 7872 s64 smin_val = src_reg->smin_value; 7873 7874 if (src_known && dst_known) { 7875 /* dst_reg->var_off.value has been updated earlier */ 7876 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7877 return; 7878 } 7879 7880 /* We get both minimum and maximum from the var_off. */ 7881 dst_reg->umin_value = dst_reg->var_off.value; 7882 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7883 7884 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7885 /* XORing two positive sign numbers gives a positive, 7886 * so safe to cast u64 result into s64. 7887 */ 7888 dst_reg->smin_value = dst_reg->umin_value; 7889 dst_reg->smax_value = dst_reg->umax_value; 7890 } else { 7891 dst_reg->smin_value = S64_MIN; 7892 dst_reg->smax_value = S64_MAX; 7893 } 7894 7895 __update_reg_bounds(dst_reg); 7896 } 7897 7898 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7899 u64 umin_val, u64 umax_val) 7900 { 7901 /* We lose all sign bit information (except what we can pick 7902 * up from var_off) 7903 */ 7904 dst_reg->s32_min_value = S32_MIN; 7905 dst_reg->s32_max_value = S32_MAX; 7906 /* If we might shift our top bit out, then we know nothing */ 7907 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7908 dst_reg->u32_min_value = 0; 7909 dst_reg->u32_max_value = U32_MAX; 7910 } else { 7911 dst_reg->u32_min_value <<= umin_val; 7912 dst_reg->u32_max_value <<= umax_val; 7913 } 7914 } 7915 7916 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7917 struct bpf_reg_state *src_reg) 7918 { 7919 u32 umax_val = src_reg->u32_max_value; 7920 u32 umin_val = src_reg->u32_min_value; 7921 /* u32 alu operation will zext upper bits */ 7922 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7923 7924 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7925 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7926 /* Not required but being careful mark reg64 bounds as unknown so 7927 * that we are forced to pick them up from tnum and zext later and 7928 * if some path skips this step we are still safe. 7929 */ 7930 __mark_reg64_unbounded(dst_reg); 7931 __update_reg32_bounds(dst_reg); 7932 } 7933 7934 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7935 u64 umin_val, u64 umax_val) 7936 { 7937 /* Special case <<32 because it is a common compiler pattern to sign 7938 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7939 * positive we know this shift will also be positive so we can track 7940 * bounds correctly. Otherwise we lose all sign bit information except 7941 * what we can pick up from var_off. Perhaps we can generalize this 7942 * later to shifts of any length. 7943 */ 7944 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7945 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7946 else 7947 dst_reg->smax_value = S64_MAX; 7948 7949 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7950 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7951 else 7952 dst_reg->smin_value = S64_MIN; 7953 7954 /* If we might shift our top bit out, then we know nothing */ 7955 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7956 dst_reg->umin_value = 0; 7957 dst_reg->umax_value = U64_MAX; 7958 } else { 7959 dst_reg->umin_value <<= umin_val; 7960 dst_reg->umax_value <<= umax_val; 7961 } 7962 } 7963 7964 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7965 struct bpf_reg_state *src_reg) 7966 { 7967 u64 umax_val = src_reg->umax_value; 7968 u64 umin_val = src_reg->umin_value; 7969 7970 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7971 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7972 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7973 7974 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7975 /* We may learn something more from the var_off */ 7976 __update_reg_bounds(dst_reg); 7977 } 7978 7979 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7980 struct bpf_reg_state *src_reg) 7981 { 7982 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7983 u32 umax_val = src_reg->u32_max_value; 7984 u32 umin_val = src_reg->u32_min_value; 7985 7986 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7987 * be negative, then either: 7988 * 1) src_reg might be zero, so the sign bit of the result is 7989 * unknown, so we lose our signed bounds 7990 * 2) it's known negative, thus the unsigned bounds capture the 7991 * signed bounds 7992 * 3) the signed bounds cross zero, so they tell us nothing 7993 * about the result 7994 * If the value in dst_reg is known nonnegative, then again the 7995 * unsigned bounds capture the signed bounds. 7996 * Thus, in all cases it suffices to blow away our signed bounds 7997 * and rely on inferring new ones from the unsigned bounds and 7998 * var_off of the result. 7999 */ 8000 dst_reg->s32_min_value = S32_MIN; 8001 dst_reg->s32_max_value = S32_MAX; 8002 8003 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8004 dst_reg->u32_min_value >>= umax_val; 8005 dst_reg->u32_max_value >>= umin_val; 8006 8007 __mark_reg64_unbounded(dst_reg); 8008 __update_reg32_bounds(dst_reg); 8009 } 8010 8011 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8012 struct bpf_reg_state *src_reg) 8013 { 8014 u64 umax_val = src_reg->umax_value; 8015 u64 umin_val = src_reg->umin_value; 8016 8017 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8018 * be negative, then either: 8019 * 1) src_reg might be zero, so the sign bit of the result is 8020 * unknown, so we lose our signed bounds 8021 * 2) it's known negative, thus the unsigned bounds capture the 8022 * signed bounds 8023 * 3) the signed bounds cross zero, so they tell us nothing 8024 * about the result 8025 * If the value in dst_reg is known nonnegative, then again the 8026 * unsigned bounds capture the signed bounds. 8027 * Thus, in all cases it suffices to blow away our signed bounds 8028 * and rely on inferring new ones from the unsigned bounds and 8029 * var_off of the result. 8030 */ 8031 dst_reg->smin_value = S64_MIN; 8032 dst_reg->smax_value = S64_MAX; 8033 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8034 dst_reg->umin_value >>= umax_val; 8035 dst_reg->umax_value >>= umin_val; 8036 8037 /* Its not easy to operate on alu32 bounds here because it depends 8038 * on bits being shifted in. Take easy way out and mark unbounded 8039 * so we can recalculate later from tnum. 8040 */ 8041 __mark_reg32_unbounded(dst_reg); 8042 __update_reg_bounds(dst_reg); 8043 } 8044 8045 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8046 struct bpf_reg_state *src_reg) 8047 { 8048 u64 umin_val = src_reg->u32_min_value; 8049 8050 /* Upon reaching here, src_known is true and 8051 * umax_val is equal to umin_val. 8052 */ 8053 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8054 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8055 8056 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8057 8058 /* blow away the dst_reg umin_value/umax_value and rely on 8059 * dst_reg var_off to refine the result. 8060 */ 8061 dst_reg->u32_min_value = 0; 8062 dst_reg->u32_max_value = U32_MAX; 8063 8064 __mark_reg64_unbounded(dst_reg); 8065 __update_reg32_bounds(dst_reg); 8066 } 8067 8068 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8069 struct bpf_reg_state *src_reg) 8070 { 8071 u64 umin_val = src_reg->umin_value; 8072 8073 /* Upon reaching here, src_known is true and umax_val is equal 8074 * to umin_val. 8075 */ 8076 dst_reg->smin_value >>= umin_val; 8077 dst_reg->smax_value >>= umin_val; 8078 8079 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8080 8081 /* blow away the dst_reg umin_value/umax_value and rely on 8082 * dst_reg var_off to refine the result. 8083 */ 8084 dst_reg->umin_value = 0; 8085 dst_reg->umax_value = U64_MAX; 8086 8087 /* Its not easy to operate on alu32 bounds here because it depends 8088 * on bits being shifted in from upper 32-bits. Take easy way out 8089 * and mark unbounded so we can recalculate later from tnum. 8090 */ 8091 __mark_reg32_unbounded(dst_reg); 8092 __update_reg_bounds(dst_reg); 8093 } 8094 8095 /* WARNING: This function does calculations on 64-bit values, but the actual 8096 * execution may occur on 32-bit values. Therefore, things like bitshifts 8097 * need extra checks in the 32-bit case. 8098 */ 8099 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8100 struct bpf_insn *insn, 8101 struct bpf_reg_state *dst_reg, 8102 struct bpf_reg_state src_reg) 8103 { 8104 struct bpf_reg_state *regs = cur_regs(env); 8105 u8 opcode = BPF_OP(insn->code); 8106 bool src_known; 8107 s64 smin_val, smax_val; 8108 u64 umin_val, umax_val; 8109 s32 s32_min_val, s32_max_val; 8110 u32 u32_min_val, u32_max_val; 8111 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8112 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8113 int ret; 8114 8115 smin_val = src_reg.smin_value; 8116 smax_val = src_reg.smax_value; 8117 umin_val = src_reg.umin_value; 8118 umax_val = src_reg.umax_value; 8119 8120 s32_min_val = src_reg.s32_min_value; 8121 s32_max_val = src_reg.s32_max_value; 8122 u32_min_val = src_reg.u32_min_value; 8123 u32_max_val = src_reg.u32_max_value; 8124 8125 if (alu32) { 8126 src_known = tnum_subreg_is_const(src_reg.var_off); 8127 if ((src_known && 8128 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8129 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8130 /* Taint dst register if offset had invalid bounds 8131 * derived from e.g. dead branches. 8132 */ 8133 __mark_reg_unknown(env, dst_reg); 8134 return 0; 8135 } 8136 } else { 8137 src_known = tnum_is_const(src_reg.var_off); 8138 if ((src_known && 8139 (smin_val != smax_val || umin_val != umax_val)) || 8140 smin_val > smax_val || umin_val > umax_val) { 8141 /* Taint dst register if offset had invalid bounds 8142 * derived from e.g. dead branches. 8143 */ 8144 __mark_reg_unknown(env, dst_reg); 8145 return 0; 8146 } 8147 } 8148 8149 if (!src_known && 8150 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8151 __mark_reg_unknown(env, dst_reg); 8152 return 0; 8153 } 8154 8155 if (sanitize_needed(opcode)) { 8156 ret = sanitize_val_alu(env, insn); 8157 if (ret < 0) 8158 return sanitize_err(env, insn, ret, NULL, NULL); 8159 } 8160 8161 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8162 * There are two classes of instructions: The first class we track both 8163 * alu32 and alu64 sign/unsigned bounds independently this provides the 8164 * greatest amount of precision when alu operations are mixed with jmp32 8165 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8166 * and BPF_OR. This is possible because these ops have fairly easy to 8167 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8168 * See alu32 verifier tests for examples. The second class of 8169 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8170 * with regards to tracking sign/unsigned bounds because the bits may 8171 * cross subreg boundaries in the alu64 case. When this happens we mark 8172 * the reg unbounded in the subreg bound space and use the resulting 8173 * tnum to calculate an approximation of the sign/unsigned bounds. 8174 */ 8175 switch (opcode) { 8176 case BPF_ADD: 8177 scalar32_min_max_add(dst_reg, &src_reg); 8178 scalar_min_max_add(dst_reg, &src_reg); 8179 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8180 break; 8181 case BPF_SUB: 8182 scalar32_min_max_sub(dst_reg, &src_reg); 8183 scalar_min_max_sub(dst_reg, &src_reg); 8184 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8185 break; 8186 case BPF_MUL: 8187 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8188 scalar32_min_max_mul(dst_reg, &src_reg); 8189 scalar_min_max_mul(dst_reg, &src_reg); 8190 break; 8191 case BPF_AND: 8192 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8193 scalar32_min_max_and(dst_reg, &src_reg); 8194 scalar_min_max_and(dst_reg, &src_reg); 8195 break; 8196 case BPF_OR: 8197 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8198 scalar32_min_max_or(dst_reg, &src_reg); 8199 scalar_min_max_or(dst_reg, &src_reg); 8200 break; 8201 case BPF_XOR: 8202 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8203 scalar32_min_max_xor(dst_reg, &src_reg); 8204 scalar_min_max_xor(dst_reg, &src_reg); 8205 break; 8206 case BPF_LSH: 8207 if (umax_val >= insn_bitness) { 8208 /* Shifts greater than 31 or 63 are undefined. 8209 * This includes shifts by a negative number. 8210 */ 8211 mark_reg_unknown(env, regs, insn->dst_reg); 8212 break; 8213 } 8214 if (alu32) 8215 scalar32_min_max_lsh(dst_reg, &src_reg); 8216 else 8217 scalar_min_max_lsh(dst_reg, &src_reg); 8218 break; 8219 case BPF_RSH: 8220 if (umax_val >= insn_bitness) { 8221 /* Shifts greater than 31 or 63 are undefined. 8222 * This includes shifts by a negative number. 8223 */ 8224 mark_reg_unknown(env, regs, insn->dst_reg); 8225 break; 8226 } 8227 if (alu32) 8228 scalar32_min_max_rsh(dst_reg, &src_reg); 8229 else 8230 scalar_min_max_rsh(dst_reg, &src_reg); 8231 break; 8232 case BPF_ARSH: 8233 if (umax_val >= insn_bitness) { 8234 /* Shifts greater than 31 or 63 are undefined. 8235 * This includes shifts by a negative number. 8236 */ 8237 mark_reg_unknown(env, regs, insn->dst_reg); 8238 break; 8239 } 8240 if (alu32) 8241 scalar32_min_max_arsh(dst_reg, &src_reg); 8242 else 8243 scalar_min_max_arsh(dst_reg, &src_reg); 8244 break; 8245 default: 8246 mark_reg_unknown(env, regs, insn->dst_reg); 8247 break; 8248 } 8249 8250 /* ALU32 ops are zero extended into 64bit register */ 8251 if (alu32) 8252 zext_32_to_64(dst_reg); 8253 8254 __update_reg_bounds(dst_reg); 8255 __reg_deduce_bounds(dst_reg); 8256 __reg_bound_offset(dst_reg); 8257 return 0; 8258 } 8259 8260 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8261 * and var_off. 8262 */ 8263 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8264 struct bpf_insn *insn) 8265 { 8266 struct bpf_verifier_state *vstate = env->cur_state; 8267 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8268 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8269 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8270 u8 opcode = BPF_OP(insn->code); 8271 int err; 8272 8273 dst_reg = ®s[insn->dst_reg]; 8274 src_reg = NULL; 8275 if (dst_reg->type != SCALAR_VALUE) 8276 ptr_reg = dst_reg; 8277 else 8278 /* Make sure ID is cleared otherwise dst_reg min/max could be 8279 * incorrectly propagated into other registers by find_equal_scalars() 8280 */ 8281 dst_reg->id = 0; 8282 if (BPF_SRC(insn->code) == BPF_X) { 8283 src_reg = ®s[insn->src_reg]; 8284 if (src_reg->type != SCALAR_VALUE) { 8285 if (dst_reg->type != SCALAR_VALUE) { 8286 /* Combining two pointers by any ALU op yields 8287 * an arbitrary scalar. Disallow all math except 8288 * pointer subtraction 8289 */ 8290 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8291 mark_reg_unknown(env, regs, insn->dst_reg); 8292 return 0; 8293 } 8294 verbose(env, "R%d pointer %s pointer prohibited\n", 8295 insn->dst_reg, 8296 bpf_alu_string[opcode >> 4]); 8297 return -EACCES; 8298 } else { 8299 /* scalar += pointer 8300 * This is legal, but we have to reverse our 8301 * src/dest handling in computing the range 8302 */ 8303 err = mark_chain_precision(env, insn->dst_reg); 8304 if (err) 8305 return err; 8306 return adjust_ptr_min_max_vals(env, insn, 8307 src_reg, dst_reg); 8308 } 8309 } else if (ptr_reg) { 8310 /* pointer += scalar */ 8311 err = mark_chain_precision(env, insn->src_reg); 8312 if (err) 8313 return err; 8314 return adjust_ptr_min_max_vals(env, insn, 8315 dst_reg, src_reg); 8316 } 8317 } else { 8318 /* Pretend the src is a reg with a known value, since we only 8319 * need to be able to read from this state. 8320 */ 8321 off_reg.type = SCALAR_VALUE; 8322 __mark_reg_known(&off_reg, insn->imm); 8323 src_reg = &off_reg; 8324 if (ptr_reg) /* pointer += K */ 8325 return adjust_ptr_min_max_vals(env, insn, 8326 ptr_reg, src_reg); 8327 } 8328 8329 /* Got here implies adding two SCALAR_VALUEs */ 8330 if (WARN_ON_ONCE(ptr_reg)) { 8331 print_verifier_state(env, state, true); 8332 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8333 return -EINVAL; 8334 } 8335 if (WARN_ON(!src_reg)) { 8336 print_verifier_state(env, state, true); 8337 verbose(env, "verifier internal error: no src_reg\n"); 8338 return -EINVAL; 8339 } 8340 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8341 } 8342 8343 /* check validity of 32-bit and 64-bit arithmetic operations */ 8344 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8345 { 8346 struct bpf_reg_state *regs = cur_regs(env); 8347 u8 opcode = BPF_OP(insn->code); 8348 int err; 8349 8350 if (opcode == BPF_END || opcode == BPF_NEG) { 8351 if (opcode == BPF_NEG) { 8352 if (BPF_SRC(insn->code) != 0 || 8353 insn->src_reg != BPF_REG_0 || 8354 insn->off != 0 || insn->imm != 0) { 8355 verbose(env, "BPF_NEG uses reserved fields\n"); 8356 return -EINVAL; 8357 } 8358 } else { 8359 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8360 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8361 BPF_CLASS(insn->code) == BPF_ALU64) { 8362 verbose(env, "BPF_END uses reserved fields\n"); 8363 return -EINVAL; 8364 } 8365 } 8366 8367 /* check src operand */ 8368 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8369 if (err) 8370 return err; 8371 8372 if (is_pointer_value(env, insn->dst_reg)) { 8373 verbose(env, "R%d pointer arithmetic prohibited\n", 8374 insn->dst_reg); 8375 return -EACCES; 8376 } 8377 8378 /* check dest operand */ 8379 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8380 if (err) 8381 return err; 8382 8383 } else if (opcode == BPF_MOV) { 8384 8385 if (BPF_SRC(insn->code) == BPF_X) { 8386 if (insn->imm != 0 || insn->off != 0) { 8387 verbose(env, "BPF_MOV uses reserved fields\n"); 8388 return -EINVAL; 8389 } 8390 8391 /* check src operand */ 8392 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8393 if (err) 8394 return err; 8395 } else { 8396 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8397 verbose(env, "BPF_MOV uses reserved fields\n"); 8398 return -EINVAL; 8399 } 8400 } 8401 8402 /* check dest operand, mark as required later */ 8403 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8404 if (err) 8405 return err; 8406 8407 if (BPF_SRC(insn->code) == BPF_X) { 8408 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8409 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8410 8411 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8412 /* case: R1 = R2 8413 * copy register state to dest reg 8414 */ 8415 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8416 /* Assign src and dst registers the same ID 8417 * that will be used by find_equal_scalars() 8418 * to propagate min/max range. 8419 */ 8420 src_reg->id = ++env->id_gen; 8421 *dst_reg = *src_reg; 8422 dst_reg->live |= REG_LIVE_WRITTEN; 8423 dst_reg->subreg_def = DEF_NOT_SUBREG; 8424 } else { 8425 /* R1 = (u32) R2 */ 8426 if (is_pointer_value(env, insn->src_reg)) { 8427 verbose(env, 8428 "R%d partial copy of pointer\n", 8429 insn->src_reg); 8430 return -EACCES; 8431 } else if (src_reg->type == SCALAR_VALUE) { 8432 *dst_reg = *src_reg; 8433 /* Make sure ID is cleared otherwise 8434 * dst_reg min/max could be incorrectly 8435 * propagated into src_reg by find_equal_scalars() 8436 */ 8437 dst_reg->id = 0; 8438 dst_reg->live |= REG_LIVE_WRITTEN; 8439 dst_reg->subreg_def = env->insn_idx + 1; 8440 } else { 8441 mark_reg_unknown(env, regs, 8442 insn->dst_reg); 8443 } 8444 zext_32_to_64(dst_reg); 8445 8446 __update_reg_bounds(dst_reg); 8447 __reg_deduce_bounds(dst_reg); 8448 __reg_bound_offset(dst_reg); 8449 } 8450 } else { 8451 /* case: R = imm 8452 * remember the value we stored into this reg 8453 */ 8454 /* clear any state __mark_reg_known doesn't set */ 8455 mark_reg_unknown(env, regs, insn->dst_reg); 8456 regs[insn->dst_reg].type = SCALAR_VALUE; 8457 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8458 __mark_reg_known(regs + insn->dst_reg, 8459 insn->imm); 8460 } else { 8461 __mark_reg_known(regs + insn->dst_reg, 8462 (u32)insn->imm); 8463 } 8464 } 8465 8466 } else if (opcode > BPF_END) { 8467 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8468 return -EINVAL; 8469 8470 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8471 8472 if (BPF_SRC(insn->code) == BPF_X) { 8473 if (insn->imm != 0 || insn->off != 0) { 8474 verbose(env, "BPF_ALU uses reserved fields\n"); 8475 return -EINVAL; 8476 } 8477 /* check src1 operand */ 8478 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8479 if (err) 8480 return err; 8481 } else { 8482 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8483 verbose(env, "BPF_ALU uses reserved fields\n"); 8484 return -EINVAL; 8485 } 8486 } 8487 8488 /* check src2 operand */ 8489 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8490 if (err) 8491 return err; 8492 8493 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8494 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8495 verbose(env, "div by zero\n"); 8496 return -EINVAL; 8497 } 8498 8499 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8500 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8501 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8502 8503 if (insn->imm < 0 || insn->imm >= size) { 8504 verbose(env, "invalid shift %d\n", insn->imm); 8505 return -EINVAL; 8506 } 8507 } 8508 8509 /* check dest operand */ 8510 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8511 if (err) 8512 return err; 8513 8514 return adjust_reg_min_max_vals(env, insn); 8515 } 8516 8517 return 0; 8518 } 8519 8520 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8521 struct bpf_reg_state *dst_reg, 8522 enum bpf_reg_type type, int new_range) 8523 { 8524 struct bpf_reg_state *reg; 8525 int i; 8526 8527 for (i = 0; i < MAX_BPF_REG; i++) { 8528 reg = &state->regs[i]; 8529 if (reg->type == type && reg->id == dst_reg->id) 8530 /* keep the maximum range already checked */ 8531 reg->range = max(reg->range, new_range); 8532 } 8533 8534 bpf_for_each_spilled_reg(i, state, reg) { 8535 if (!reg) 8536 continue; 8537 if (reg->type == type && reg->id == dst_reg->id) 8538 reg->range = max(reg->range, new_range); 8539 } 8540 } 8541 8542 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8543 struct bpf_reg_state *dst_reg, 8544 enum bpf_reg_type type, 8545 bool range_right_open) 8546 { 8547 int new_range, i; 8548 8549 if (dst_reg->off < 0 || 8550 (dst_reg->off == 0 && range_right_open)) 8551 /* This doesn't give us any range */ 8552 return; 8553 8554 if (dst_reg->umax_value > MAX_PACKET_OFF || 8555 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8556 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8557 * than pkt_end, but that's because it's also less than pkt. 8558 */ 8559 return; 8560 8561 new_range = dst_reg->off; 8562 if (range_right_open) 8563 new_range++; 8564 8565 /* Examples for register markings: 8566 * 8567 * pkt_data in dst register: 8568 * 8569 * r2 = r3; 8570 * r2 += 8; 8571 * if (r2 > pkt_end) goto <handle exception> 8572 * <access okay> 8573 * 8574 * r2 = r3; 8575 * r2 += 8; 8576 * if (r2 < pkt_end) goto <access okay> 8577 * <handle exception> 8578 * 8579 * Where: 8580 * r2 == dst_reg, pkt_end == src_reg 8581 * r2=pkt(id=n,off=8,r=0) 8582 * r3=pkt(id=n,off=0,r=0) 8583 * 8584 * pkt_data in src register: 8585 * 8586 * r2 = r3; 8587 * r2 += 8; 8588 * if (pkt_end >= r2) goto <access okay> 8589 * <handle exception> 8590 * 8591 * r2 = r3; 8592 * r2 += 8; 8593 * if (pkt_end <= r2) goto <handle exception> 8594 * <access okay> 8595 * 8596 * Where: 8597 * pkt_end == dst_reg, r2 == src_reg 8598 * r2=pkt(id=n,off=8,r=0) 8599 * r3=pkt(id=n,off=0,r=0) 8600 * 8601 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8602 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8603 * and [r3, r3 + 8-1) respectively is safe to access depending on 8604 * the check. 8605 */ 8606 8607 /* If our ids match, then we must have the same max_value. And we 8608 * don't care about the other reg's fixed offset, since if it's too big 8609 * the range won't allow anything. 8610 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8611 */ 8612 for (i = 0; i <= vstate->curframe; i++) 8613 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8614 new_range); 8615 } 8616 8617 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8618 { 8619 struct tnum subreg = tnum_subreg(reg->var_off); 8620 s32 sval = (s32)val; 8621 8622 switch (opcode) { 8623 case BPF_JEQ: 8624 if (tnum_is_const(subreg)) 8625 return !!tnum_equals_const(subreg, val); 8626 break; 8627 case BPF_JNE: 8628 if (tnum_is_const(subreg)) 8629 return !tnum_equals_const(subreg, val); 8630 break; 8631 case BPF_JSET: 8632 if ((~subreg.mask & subreg.value) & val) 8633 return 1; 8634 if (!((subreg.mask | subreg.value) & val)) 8635 return 0; 8636 break; 8637 case BPF_JGT: 8638 if (reg->u32_min_value > val) 8639 return 1; 8640 else if (reg->u32_max_value <= val) 8641 return 0; 8642 break; 8643 case BPF_JSGT: 8644 if (reg->s32_min_value > sval) 8645 return 1; 8646 else if (reg->s32_max_value <= sval) 8647 return 0; 8648 break; 8649 case BPF_JLT: 8650 if (reg->u32_max_value < val) 8651 return 1; 8652 else if (reg->u32_min_value >= val) 8653 return 0; 8654 break; 8655 case BPF_JSLT: 8656 if (reg->s32_max_value < sval) 8657 return 1; 8658 else if (reg->s32_min_value >= sval) 8659 return 0; 8660 break; 8661 case BPF_JGE: 8662 if (reg->u32_min_value >= val) 8663 return 1; 8664 else if (reg->u32_max_value < val) 8665 return 0; 8666 break; 8667 case BPF_JSGE: 8668 if (reg->s32_min_value >= sval) 8669 return 1; 8670 else if (reg->s32_max_value < sval) 8671 return 0; 8672 break; 8673 case BPF_JLE: 8674 if (reg->u32_max_value <= val) 8675 return 1; 8676 else if (reg->u32_min_value > val) 8677 return 0; 8678 break; 8679 case BPF_JSLE: 8680 if (reg->s32_max_value <= sval) 8681 return 1; 8682 else if (reg->s32_min_value > sval) 8683 return 0; 8684 break; 8685 } 8686 8687 return -1; 8688 } 8689 8690 8691 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8692 { 8693 s64 sval = (s64)val; 8694 8695 switch (opcode) { 8696 case BPF_JEQ: 8697 if (tnum_is_const(reg->var_off)) 8698 return !!tnum_equals_const(reg->var_off, val); 8699 break; 8700 case BPF_JNE: 8701 if (tnum_is_const(reg->var_off)) 8702 return !tnum_equals_const(reg->var_off, val); 8703 break; 8704 case BPF_JSET: 8705 if ((~reg->var_off.mask & reg->var_off.value) & val) 8706 return 1; 8707 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8708 return 0; 8709 break; 8710 case BPF_JGT: 8711 if (reg->umin_value > val) 8712 return 1; 8713 else if (reg->umax_value <= val) 8714 return 0; 8715 break; 8716 case BPF_JSGT: 8717 if (reg->smin_value > sval) 8718 return 1; 8719 else if (reg->smax_value <= sval) 8720 return 0; 8721 break; 8722 case BPF_JLT: 8723 if (reg->umax_value < val) 8724 return 1; 8725 else if (reg->umin_value >= val) 8726 return 0; 8727 break; 8728 case BPF_JSLT: 8729 if (reg->smax_value < sval) 8730 return 1; 8731 else if (reg->smin_value >= sval) 8732 return 0; 8733 break; 8734 case BPF_JGE: 8735 if (reg->umin_value >= val) 8736 return 1; 8737 else if (reg->umax_value < val) 8738 return 0; 8739 break; 8740 case BPF_JSGE: 8741 if (reg->smin_value >= sval) 8742 return 1; 8743 else if (reg->smax_value < sval) 8744 return 0; 8745 break; 8746 case BPF_JLE: 8747 if (reg->umax_value <= val) 8748 return 1; 8749 else if (reg->umin_value > val) 8750 return 0; 8751 break; 8752 case BPF_JSLE: 8753 if (reg->smax_value <= sval) 8754 return 1; 8755 else if (reg->smin_value > sval) 8756 return 0; 8757 break; 8758 } 8759 8760 return -1; 8761 } 8762 8763 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8764 * and return: 8765 * 1 - branch will be taken and "goto target" will be executed 8766 * 0 - branch will not be taken and fall-through to next insn 8767 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8768 * range [0,10] 8769 */ 8770 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8771 bool is_jmp32) 8772 { 8773 if (__is_pointer_value(false, reg)) { 8774 if (!reg_type_not_null(reg->type)) 8775 return -1; 8776 8777 /* If pointer is valid tests against zero will fail so we can 8778 * use this to direct branch taken. 8779 */ 8780 if (val != 0) 8781 return -1; 8782 8783 switch (opcode) { 8784 case BPF_JEQ: 8785 return 0; 8786 case BPF_JNE: 8787 return 1; 8788 default: 8789 return -1; 8790 } 8791 } 8792 8793 if (is_jmp32) 8794 return is_branch32_taken(reg, val, opcode); 8795 return is_branch64_taken(reg, val, opcode); 8796 } 8797 8798 static int flip_opcode(u32 opcode) 8799 { 8800 /* How can we transform "a <op> b" into "b <op> a"? */ 8801 static const u8 opcode_flip[16] = { 8802 /* these stay the same */ 8803 [BPF_JEQ >> 4] = BPF_JEQ, 8804 [BPF_JNE >> 4] = BPF_JNE, 8805 [BPF_JSET >> 4] = BPF_JSET, 8806 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8807 [BPF_JGE >> 4] = BPF_JLE, 8808 [BPF_JGT >> 4] = BPF_JLT, 8809 [BPF_JLE >> 4] = BPF_JGE, 8810 [BPF_JLT >> 4] = BPF_JGT, 8811 [BPF_JSGE >> 4] = BPF_JSLE, 8812 [BPF_JSGT >> 4] = BPF_JSLT, 8813 [BPF_JSLE >> 4] = BPF_JSGE, 8814 [BPF_JSLT >> 4] = BPF_JSGT 8815 }; 8816 return opcode_flip[opcode >> 4]; 8817 } 8818 8819 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8820 struct bpf_reg_state *src_reg, 8821 u8 opcode) 8822 { 8823 struct bpf_reg_state *pkt; 8824 8825 if (src_reg->type == PTR_TO_PACKET_END) { 8826 pkt = dst_reg; 8827 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8828 pkt = src_reg; 8829 opcode = flip_opcode(opcode); 8830 } else { 8831 return -1; 8832 } 8833 8834 if (pkt->range >= 0) 8835 return -1; 8836 8837 switch (opcode) { 8838 case BPF_JLE: 8839 /* pkt <= pkt_end */ 8840 fallthrough; 8841 case BPF_JGT: 8842 /* pkt > pkt_end */ 8843 if (pkt->range == BEYOND_PKT_END) 8844 /* pkt has at last one extra byte beyond pkt_end */ 8845 return opcode == BPF_JGT; 8846 break; 8847 case BPF_JLT: 8848 /* pkt < pkt_end */ 8849 fallthrough; 8850 case BPF_JGE: 8851 /* pkt >= pkt_end */ 8852 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8853 return opcode == BPF_JGE; 8854 break; 8855 } 8856 return -1; 8857 } 8858 8859 /* Adjusts the register min/max values in the case that the dst_reg is the 8860 * variable register that we are working on, and src_reg is a constant or we're 8861 * simply doing a BPF_K check. 8862 * In JEQ/JNE cases we also adjust the var_off values. 8863 */ 8864 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8865 struct bpf_reg_state *false_reg, 8866 u64 val, u32 val32, 8867 u8 opcode, bool is_jmp32) 8868 { 8869 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8870 struct tnum false_64off = false_reg->var_off; 8871 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8872 struct tnum true_64off = true_reg->var_off; 8873 s64 sval = (s64)val; 8874 s32 sval32 = (s32)val32; 8875 8876 /* If the dst_reg is a pointer, we can't learn anything about its 8877 * variable offset from the compare (unless src_reg were a pointer into 8878 * the same object, but we don't bother with that. 8879 * Since false_reg and true_reg have the same type by construction, we 8880 * only need to check one of them for pointerness. 8881 */ 8882 if (__is_pointer_value(false, false_reg)) 8883 return; 8884 8885 switch (opcode) { 8886 case BPF_JEQ: 8887 case BPF_JNE: 8888 { 8889 struct bpf_reg_state *reg = 8890 opcode == BPF_JEQ ? true_reg : false_reg; 8891 8892 /* JEQ/JNE comparison doesn't change the register equivalence. 8893 * r1 = r2; 8894 * if (r1 == 42) goto label; 8895 * ... 8896 * label: // here both r1 and r2 are known to be 42. 8897 * 8898 * Hence when marking register as known preserve it's ID. 8899 */ 8900 if (is_jmp32) 8901 __mark_reg32_known(reg, val32); 8902 else 8903 ___mark_reg_known(reg, val); 8904 break; 8905 } 8906 case BPF_JSET: 8907 if (is_jmp32) { 8908 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8909 if (is_power_of_2(val32)) 8910 true_32off = tnum_or(true_32off, 8911 tnum_const(val32)); 8912 } else { 8913 false_64off = tnum_and(false_64off, tnum_const(~val)); 8914 if (is_power_of_2(val)) 8915 true_64off = tnum_or(true_64off, 8916 tnum_const(val)); 8917 } 8918 break; 8919 case BPF_JGE: 8920 case BPF_JGT: 8921 { 8922 if (is_jmp32) { 8923 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8924 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8925 8926 false_reg->u32_max_value = min(false_reg->u32_max_value, 8927 false_umax); 8928 true_reg->u32_min_value = max(true_reg->u32_min_value, 8929 true_umin); 8930 } else { 8931 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8932 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8933 8934 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8935 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8936 } 8937 break; 8938 } 8939 case BPF_JSGE: 8940 case BPF_JSGT: 8941 { 8942 if (is_jmp32) { 8943 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8944 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8945 8946 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8947 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8948 } else { 8949 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8950 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8951 8952 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8953 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8954 } 8955 break; 8956 } 8957 case BPF_JLE: 8958 case BPF_JLT: 8959 { 8960 if (is_jmp32) { 8961 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8962 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8963 8964 false_reg->u32_min_value = max(false_reg->u32_min_value, 8965 false_umin); 8966 true_reg->u32_max_value = min(true_reg->u32_max_value, 8967 true_umax); 8968 } else { 8969 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8970 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8971 8972 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8973 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8974 } 8975 break; 8976 } 8977 case BPF_JSLE: 8978 case BPF_JSLT: 8979 { 8980 if (is_jmp32) { 8981 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8982 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8983 8984 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8985 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8986 } else { 8987 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8988 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8989 8990 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8991 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8992 } 8993 break; 8994 } 8995 default: 8996 return; 8997 } 8998 8999 if (is_jmp32) { 9000 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9001 tnum_subreg(false_32off)); 9002 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9003 tnum_subreg(true_32off)); 9004 __reg_combine_32_into_64(false_reg); 9005 __reg_combine_32_into_64(true_reg); 9006 } else { 9007 false_reg->var_off = false_64off; 9008 true_reg->var_off = true_64off; 9009 __reg_combine_64_into_32(false_reg); 9010 __reg_combine_64_into_32(true_reg); 9011 } 9012 } 9013 9014 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9015 * the variable reg. 9016 */ 9017 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9018 struct bpf_reg_state *false_reg, 9019 u64 val, u32 val32, 9020 u8 opcode, bool is_jmp32) 9021 { 9022 opcode = flip_opcode(opcode); 9023 /* This uses zero as "not present in table"; luckily the zero opcode, 9024 * BPF_JA, can't get here. 9025 */ 9026 if (opcode) 9027 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9028 } 9029 9030 /* Regs are known to be equal, so intersect their min/max/var_off */ 9031 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9032 struct bpf_reg_state *dst_reg) 9033 { 9034 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9035 dst_reg->umin_value); 9036 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9037 dst_reg->umax_value); 9038 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9039 dst_reg->smin_value); 9040 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9041 dst_reg->smax_value); 9042 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9043 dst_reg->var_off); 9044 /* We might have learned new bounds from the var_off. */ 9045 __update_reg_bounds(src_reg); 9046 __update_reg_bounds(dst_reg); 9047 /* We might have learned something about the sign bit. */ 9048 __reg_deduce_bounds(src_reg); 9049 __reg_deduce_bounds(dst_reg); 9050 /* We might have learned some bits from the bounds. */ 9051 __reg_bound_offset(src_reg); 9052 __reg_bound_offset(dst_reg); 9053 /* Intersecting with the old var_off might have improved our bounds 9054 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 9055 * then new var_off is (0; 0x7f...fc) which improves our umax. 9056 */ 9057 __update_reg_bounds(src_reg); 9058 __update_reg_bounds(dst_reg); 9059 } 9060 9061 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9062 struct bpf_reg_state *true_dst, 9063 struct bpf_reg_state *false_src, 9064 struct bpf_reg_state *false_dst, 9065 u8 opcode) 9066 { 9067 switch (opcode) { 9068 case BPF_JEQ: 9069 __reg_combine_min_max(true_src, true_dst); 9070 break; 9071 case BPF_JNE: 9072 __reg_combine_min_max(false_src, false_dst); 9073 break; 9074 } 9075 } 9076 9077 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9078 struct bpf_reg_state *reg, u32 id, 9079 bool is_null) 9080 { 9081 if (type_may_be_null(reg->type) && reg->id == id && 9082 !WARN_ON_ONCE(!reg->id)) { 9083 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9084 !tnum_equals_const(reg->var_off, 0) || 9085 reg->off)) { 9086 /* Old offset (both fixed and variable parts) should 9087 * have been known-zero, because we don't allow pointer 9088 * arithmetic on pointers that might be NULL. If we 9089 * see this happening, don't convert the register. 9090 */ 9091 return; 9092 } 9093 if (is_null) { 9094 reg->type = SCALAR_VALUE; 9095 /* We don't need id and ref_obj_id from this point 9096 * onwards anymore, thus we should better reset it, 9097 * so that state pruning has chances to take effect. 9098 */ 9099 reg->id = 0; 9100 reg->ref_obj_id = 0; 9101 9102 return; 9103 } 9104 9105 mark_ptr_not_null_reg(reg); 9106 9107 if (!reg_may_point_to_spin_lock(reg)) { 9108 /* For not-NULL ptr, reg->ref_obj_id will be reset 9109 * in release_reg_references(). 9110 * 9111 * reg->id is still used by spin_lock ptr. Other 9112 * than spin_lock ptr type, reg->id can be reset. 9113 */ 9114 reg->id = 0; 9115 } 9116 } 9117 } 9118 9119 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9120 bool is_null) 9121 { 9122 struct bpf_reg_state *reg; 9123 int i; 9124 9125 for (i = 0; i < MAX_BPF_REG; i++) 9126 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9127 9128 bpf_for_each_spilled_reg(i, state, reg) { 9129 if (!reg) 9130 continue; 9131 mark_ptr_or_null_reg(state, reg, id, is_null); 9132 } 9133 } 9134 9135 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9136 * be folded together at some point. 9137 */ 9138 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9139 bool is_null) 9140 { 9141 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9142 struct bpf_reg_state *regs = state->regs; 9143 u32 ref_obj_id = regs[regno].ref_obj_id; 9144 u32 id = regs[regno].id; 9145 int i; 9146 9147 if (ref_obj_id && ref_obj_id == id && is_null) 9148 /* regs[regno] is in the " == NULL" branch. 9149 * No one could have freed the reference state before 9150 * doing the NULL check. 9151 */ 9152 WARN_ON_ONCE(release_reference_state(state, id)); 9153 9154 for (i = 0; i <= vstate->curframe; i++) 9155 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9156 } 9157 9158 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9159 struct bpf_reg_state *dst_reg, 9160 struct bpf_reg_state *src_reg, 9161 struct bpf_verifier_state *this_branch, 9162 struct bpf_verifier_state *other_branch) 9163 { 9164 if (BPF_SRC(insn->code) != BPF_X) 9165 return false; 9166 9167 /* Pointers are always 64-bit. */ 9168 if (BPF_CLASS(insn->code) == BPF_JMP32) 9169 return false; 9170 9171 switch (BPF_OP(insn->code)) { 9172 case BPF_JGT: 9173 if ((dst_reg->type == PTR_TO_PACKET && 9174 src_reg->type == PTR_TO_PACKET_END) || 9175 (dst_reg->type == PTR_TO_PACKET_META && 9176 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9177 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9178 find_good_pkt_pointers(this_branch, dst_reg, 9179 dst_reg->type, false); 9180 mark_pkt_end(other_branch, insn->dst_reg, true); 9181 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9182 src_reg->type == PTR_TO_PACKET) || 9183 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9184 src_reg->type == PTR_TO_PACKET_META)) { 9185 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9186 find_good_pkt_pointers(other_branch, src_reg, 9187 src_reg->type, true); 9188 mark_pkt_end(this_branch, insn->src_reg, false); 9189 } else { 9190 return false; 9191 } 9192 break; 9193 case BPF_JLT: 9194 if ((dst_reg->type == PTR_TO_PACKET && 9195 src_reg->type == PTR_TO_PACKET_END) || 9196 (dst_reg->type == PTR_TO_PACKET_META && 9197 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9198 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9199 find_good_pkt_pointers(other_branch, dst_reg, 9200 dst_reg->type, true); 9201 mark_pkt_end(this_branch, insn->dst_reg, false); 9202 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9203 src_reg->type == PTR_TO_PACKET) || 9204 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9205 src_reg->type == PTR_TO_PACKET_META)) { 9206 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9207 find_good_pkt_pointers(this_branch, src_reg, 9208 src_reg->type, false); 9209 mark_pkt_end(other_branch, insn->src_reg, true); 9210 } else { 9211 return false; 9212 } 9213 break; 9214 case BPF_JGE: 9215 if ((dst_reg->type == PTR_TO_PACKET && 9216 src_reg->type == PTR_TO_PACKET_END) || 9217 (dst_reg->type == PTR_TO_PACKET_META && 9218 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9219 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9220 find_good_pkt_pointers(this_branch, dst_reg, 9221 dst_reg->type, true); 9222 mark_pkt_end(other_branch, insn->dst_reg, false); 9223 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9224 src_reg->type == PTR_TO_PACKET) || 9225 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9226 src_reg->type == PTR_TO_PACKET_META)) { 9227 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9228 find_good_pkt_pointers(other_branch, src_reg, 9229 src_reg->type, false); 9230 mark_pkt_end(this_branch, insn->src_reg, true); 9231 } else { 9232 return false; 9233 } 9234 break; 9235 case BPF_JLE: 9236 if ((dst_reg->type == PTR_TO_PACKET && 9237 src_reg->type == PTR_TO_PACKET_END) || 9238 (dst_reg->type == PTR_TO_PACKET_META && 9239 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9240 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9241 find_good_pkt_pointers(other_branch, dst_reg, 9242 dst_reg->type, false); 9243 mark_pkt_end(this_branch, insn->dst_reg, true); 9244 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9245 src_reg->type == PTR_TO_PACKET) || 9246 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9247 src_reg->type == PTR_TO_PACKET_META)) { 9248 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9249 find_good_pkt_pointers(this_branch, src_reg, 9250 src_reg->type, true); 9251 mark_pkt_end(other_branch, insn->src_reg, false); 9252 } else { 9253 return false; 9254 } 9255 break; 9256 default: 9257 return false; 9258 } 9259 9260 return true; 9261 } 9262 9263 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9264 struct bpf_reg_state *known_reg) 9265 { 9266 struct bpf_func_state *state; 9267 struct bpf_reg_state *reg; 9268 int i, j; 9269 9270 for (i = 0; i <= vstate->curframe; i++) { 9271 state = vstate->frame[i]; 9272 for (j = 0; j < MAX_BPF_REG; j++) { 9273 reg = &state->regs[j]; 9274 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9275 *reg = *known_reg; 9276 } 9277 9278 bpf_for_each_spilled_reg(j, state, reg) { 9279 if (!reg) 9280 continue; 9281 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9282 *reg = *known_reg; 9283 } 9284 } 9285 } 9286 9287 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9288 struct bpf_insn *insn, int *insn_idx) 9289 { 9290 struct bpf_verifier_state *this_branch = env->cur_state; 9291 struct bpf_verifier_state *other_branch; 9292 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9293 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9294 u8 opcode = BPF_OP(insn->code); 9295 bool is_jmp32; 9296 int pred = -1; 9297 int err; 9298 9299 /* Only conditional jumps are expected to reach here. */ 9300 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9301 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9302 return -EINVAL; 9303 } 9304 9305 if (BPF_SRC(insn->code) == BPF_X) { 9306 if (insn->imm != 0) { 9307 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9308 return -EINVAL; 9309 } 9310 9311 /* check src1 operand */ 9312 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9313 if (err) 9314 return err; 9315 9316 if (is_pointer_value(env, insn->src_reg)) { 9317 verbose(env, "R%d pointer comparison prohibited\n", 9318 insn->src_reg); 9319 return -EACCES; 9320 } 9321 src_reg = ®s[insn->src_reg]; 9322 } else { 9323 if (insn->src_reg != BPF_REG_0) { 9324 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9325 return -EINVAL; 9326 } 9327 } 9328 9329 /* check src2 operand */ 9330 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9331 if (err) 9332 return err; 9333 9334 dst_reg = ®s[insn->dst_reg]; 9335 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9336 9337 if (BPF_SRC(insn->code) == BPF_K) { 9338 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9339 } else if (src_reg->type == SCALAR_VALUE && 9340 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9341 pred = is_branch_taken(dst_reg, 9342 tnum_subreg(src_reg->var_off).value, 9343 opcode, 9344 is_jmp32); 9345 } else if (src_reg->type == SCALAR_VALUE && 9346 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9347 pred = is_branch_taken(dst_reg, 9348 src_reg->var_off.value, 9349 opcode, 9350 is_jmp32); 9351 } else if (reg_is_pkt_pointer_any(dst_reg) && 9352 reg_is_pkt_pointer_any(src_reg) && 9353 !is_jmp32) { 9354 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9355 } 9356 9357 if (pred >= 0) { 9358 /* If we get here with a dst_reg pointer type it is because 9359 * above is_branch_taken() special cased the 0 comparison. 9360 */ 9361 if (!__is_pointer_value(false, dst_reg)) 9362 err = mark_chain_precision(env, insn->dst_reg); 9363 if (BPF_SRC(insn->code) == BPF_X && !err && 9364 !__is_pointer_value(false, src_reg)) 9365 err = mark_chain_precision(env, insn->src_reg); 9366 if (err) 9367 return err; 9368 } 9369 9370 if (pred == 1) { 9371 /* Only follow the goto, ignore fall-through. If needed, push 9372 * the fall-through branch for simulation under speculative 9373 * execution. 9374 */ 9375 if (!env->bypass_spec_v1 && 9376 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9377 *insn_idx)) 9378 return -EFAULT; 9379 *insn_idx += insn->off; 9380 return 0; 9381 } else if (pred == 0) { 9382 /* Only follow the fall-through branch, since that's where the 9383 * program will go. If needed, push the goto branch for 9384 * simulation under speculative execution. 9385 */ 9386 if (!env->bypass_spec_v1 && 9387 !sanitize_speculative_path(env, insn, 9388 *insn_idx + insn->off + 1, 9389 *insn_idx)) 9390 return -EFAULT; 9391 return 0; 9392 } 9393 9394 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9395 false); 9396 if (!other_branch) 9397 return -EFAULT; 9398 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9399 9400 /* detect if we are comparing against a constant value so we can adjust 9401 * our min/max values for our dst register. 9402 * this is only legit if both are scalars (or pointers to the same 9403 * object, I suppose, but we don't support that right now), because 9404 * otherwise the different base pointers mean the offsets aren't 9405 * comparable. 9406 */ 9407 if (BPF_SRC(insn->code) == BPF_X) { 9408 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9409 9410 if (dst_reg->type == SCALAR_VALUE && 9411 src_reg->type == SCALAR_VALUE) { 9412 if (tnum_is_const(src_reg->var_off) || 9413 (is_jmp32 && 9414 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9415 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9416 dst_reg, 9417 src_reg->var_off.value, 9418 tnum_subreg(src_reg->var_off).value, 9419 opcode, is_jmp32); 9420 else if (tnum_is_const(dst_reg->var_off) || 9421 (is_jmp32 && 9422 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9423 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9424 src_reg, 9425 dst_reg->var_off.value, 9426 tnum_subreg(dst_reg->var_off).value, 9427 opcode, is_jmp32); 9428 else if (!is_jmp32 && 9429 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9430 /* Comparing for equality, we can combine knowledge */ 9431 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9432 &other_branch_regs[insn->dst_reg], 9433 src_reg, dst_reg, opcode); 9434 if (src_reg->id && 9435 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9436 find_equal_scalars(this_branch, src_reg); 9437 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9438 } 9439 9440 } 9441 } else if (dst_reg->type == SCALAR_VALUE) { 9442 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9443 dst_reg, insn->imm, (u32)insn->imm, 9444 opcode, is_jmp32); 9445 } 9446 9447 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9448 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9449 find_equal_scalars(this_branch, dst_reg); 9450 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9451 } 9452 9453 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9454 * NOTE: these optimizations below are related with pointer comparison 9455 * which will never be JMP32. 9456 */ 9457 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9458 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9459 type_may_be_null(dst_reg->type)) { 9460 /* Mark all identical registers in each branch as either 9461 * safe or unknown depending R == 0 or R != 0 conditional. 9462 */ 9463 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9464 opcode == BPF_JNE); 9465 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9466 opcode == BPF_JEQ); 9467 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9468 this_branch, other_branch) && 9469 is_pointer_value(env, insn->dst_reg)) { 9470 verbose(env, "R%d pointer comparison prohibited\n", 9471 insn->dst_reg); 9472 return -EACCES; 9473 } 9474 if (env->log.level & BPF_LOG_LEVEL) 9475 print_insn_state(env, this_branch->frame[this_branch->curframe]); 9476 return 0; 9477 } 9478 9479 /* verify BPF_LD_IMM64 instruction */ 9480 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9481 { 9482 struct bpf_insn_aux_data *aux = cur_aux(env); 9483 struct bpf_reg_state *regs = cur_regs(env); 9484 struct bpf_reg_state *dst_reg; 9485 struct bpf_map *map; 9486 int err; 9487 9488 if (BPF_SIZE(insn->code) != BPF_DW) { 9489 verbose(env, "invalid BPF_LD_IMM insn\n"); 9490 return -EINVAL; 9491 } 9492 if (insn->off != 0) { 9493 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9494 return -EINVAL; 9495 } 9496 9497 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9498 if (err) 9499 return err; 9500 9501 dst_reg = ®s[insn->dst_reg]; 9502 if (insn->src_reg == 0) { 9503 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9504 9505 dst_reg->type = SCALAR_VALUE; 9506 __mark_reg_known(®s[insn->dst_reg], imm); 9507 return 0; 9508 } 9509 9510 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9511 mark_reg_known_zero(env, regs, insn->dst_reg); 9512 9513 dst_reg->type = aux->btf_var.reg_type; 9514 switch (base_type(dst_reg->type)) { 9515 case PTR_TO_MEM: 9516 dst_reg->mem_size = aux->btf_var.mem_size; 9517 break; 9518 case PTR_TO_BTF_ID: 9519 case PTR_TO_PERCPU_BTF_ID: 9520 dst_reg->btf = aux->btf_var.btf; 9521 dst_reg->btf_id = aux->btf_var.btf_id; 9522 break; 9523 default: 9524 verbose(env, "bpf verifier is misconfigured\n"); 9525 return -EFAULT; 9526 } 9527 return 0; 9528 } 9529 9530 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9531 struct bpf_prog_aux *aux = env->prog->aux; 9532 u32 subprogno = find_subprog(env, 9533 env->insn_idx + insn->imm + 1); 9534 9535 if (!aux->func_info) { 9536 verbose(env, "missing btf func_info\n"); 9537 return -EINVAL; 9538 } 9539 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9540 verbose(env, "callback function not static\n"); 9541 return -EINVAL; 9542 } 9543 9544 dst_reg->type = PTR_TO_FUNC; 9545 dst_reg->subprogno = subprogno; 9546 return 0; 9547 } 9548 9549 map = env->used_maps[aux->map_index]; 9550 mark_reg_known_zero(env, regs, insn->dst_reg); 9551 dst_reg->map_ptr = map; 9552 9553 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9554 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9555 dst_reg->type = PTR_TO_MAP_VALUE; 9556 dst_reg->off = aux->map_off; 9557 if (map_value_has_spin_lock(map)) 9558 dst_reg->id = ++env->id_gen; 9559 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9560 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9561 dst_reg->type = CONST_PTR_TO_MAP; 9562 } else { 9563 verbose(env, "bpf verifier is misconfigured\n"); 9564 return -EINVAL; 9565 } 9566 9567 return 0; 9568 } 9569 9570 static bool may_access_skb(enum bpf_prog_type type) 9571 { 9572 switch (type) { 9573 case BPF_PROG_TYPE_SOCKET_FILTER: 9574 case BPF_PROG_TYPE_SCHED_CLS: 9575 case BPF_PROG_TYPE_SCHED_ACT: 9576 return true; 9577 default: 9578 return false; 9579 } 9580 } 9581 9582 /* verify safety of LD_ABS|LD_IND instructions: 9583 * - they can only appear in the programs where ctx == skb 9584 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9585 * preserve R6-R9, and store return value into R0 9586 * 9587 * Implicit input: 9588 * ctx == skb == R6 == CTX 9589 * 9590 * Explicit input: 9591 * SRC == any register 9592 * IMM == 32-bit immediate 9593 * 9594 * Output: 9595 * R0 - 8/16/32-bit skb data converted to cpu endianness 9596 */ 9597 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9598 { 9599 struct bpf_reg_state *regs = cur_regs(env); 9600 static const int ctx_reg = BPF_REG_6; 9601 u8 mode = BPF_MODE(insn->code); 9602 int i, err; 9603 9604 if (!may_access_skb(resolve_prog_type(env->prog))) { 9605 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9606 return -EINVAL; 9607 } 9608 9609 if (!env->ops->gen_ld_abs) { 9610 verbose(env, "bpf verifier is misconfigured\n"); 9611 return -EINVAL; 9612 } 9613 9614 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9615 BPF_SIZE(insn->code) == BPF_DW || 9616 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9617 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9618 return -EINVAL; 9619 } 9620 9621 /* check whether implicit source operand (register R6) is readable */ 9622 err = check_reg_arg(env, ctx_reg, SRC_OP); 9623 if (err) 9624 return err; 9625 9626 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9627 * gen_ld_abs() may terminate the program at runtime, leading to 9628 * reference leak. 9629 */ 9630 err = check_reference_leak(env); 9631 if (err) { 9632 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9633 return err; 9634 } 9635 9636 if (env->cur_state->active_spin_lock) { 9637 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9638 return -EINVAL; 9639 } 9640 9641 if (regs[ctx_reg].type != PTR_TO_CTX) { 9642 verbose(env, 9643 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9644 return -EINVAL; 9645 } 9646 9647 if (mode == BPF_IND) { 9648 /* check explicit source operand */ 9649 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9650 if (err) 9651 return err; 9652 } 9653 9654 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9655 if (err < 0) 9656 return err; 9657 9658 /* reset caller saved regs to unreadable */ 9659 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9660 mark_reg_not_init(env, regs, caller_saved[i]); 9661 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9662 } 9663 9664 /* mark destination R0 register as readable, since it contains 9665 * the value fetched from the packet. 9666 * Already marked as written above. 9667 */ 9668 mark_reg_unknown(env, regs, BPF_REG_0); 9669 /* ld_abs load up to 32-bit skb data. */ 9670 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9671 return 0; 9672 } 9673 9674 static int check_return_code(struct bpf_verifier_env *env) 9675 { 9676 struct tnum enforce_attach_type_range = tnum_unknown; 9677 const struct bpf_prog *prog = env->prog; 9678 struct bpf_reg_state *reg; 9679 struct tnum range = tnum_range(0, 1); 9680 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9681 int err; 9682 struct bpf_func_state *frame = env->cur_state->frame[0]; 9683 const bool is_subprog = frame->subprogno; 9684 9685 /* LSM and struct_ops func-ptr's return type could be "void" */ 9686 if (!is_subprog && 9687 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9688 prog_type == BPF_PROG_TYPE_LSM) && 9689 !prog->aux->attach_func_proto->type) 9690 return 0; 9691 9692 /* eBPF calling convention is such that R0 is used 9693 * to return the value from eBPF program. 9694 * Make sure that it's readable at this time 9695 * of bpf_exit, which means that program wrote 9696 * something into it earlier 9697 */ 9698 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9699 if (err) 9700 return err; 9701 9702 if (is_pointer_value(env, BPF_REG_0)) { 9703 verbose(env, "R0 leaks addr as return value\n"); 9704 return -EACCES; 9705 } 9706 9707 reg = cur_regs(env) + BPF_REG_0; 9708 9709 if (frame->in_async_callback_fn) { 9710 /* enforce return zero from async callbacks like timer */ 9711 if (reg->type != SCALAR_VALUE) { 9712 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9713 reg_type_str(env, reg->type)); 9714 return -EINVAL; 9715 } 9716 9717 if (!tnum_in(tnum_const(0), reg->var_off)) { 9718 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9719 return -EINVAL; 9720 } 9721 return 0; 9722 } 9723 9724 if (is_subprog) { 9725 if (reg->type != SCALAR_VALUE) { 9726 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9727 reg_type_str(env, reg->type)); 9728 return -EINVAL; 9729 } 9730 return 0; 9731 } 9732 9733 switch (prog_type) { 9734 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9735 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9736 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9737 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9738 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9739 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9740 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9741 range = tnum_range(1, 1); 9742 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9743 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9744 range = tnum_range(0, 3); 9745 break; 9746 case BPF_PROG_TYPE_CGROUP_SKB: 9747 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9748 range = tnum_range(0, 3); 9749 enforce_attach_type_range = tnum_range(2, 3); 9750 } 9751 break; 9752 case BPF_PROG_TYPE_CGROUP_SOCK: 9753 case BPF_PROG_TYPE_SOCK_OPS: 9754 case BPF_PROG_TYPE_CGROUP_DEVICE: 9755 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9756 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9757 break; 9758 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9759 if (!env->prog->aux->attach_btf_id) 9760 return 0; 9761 range = tnum_const(0); 9762 break; 9763 case BPF_PROG_TYPE_TRACING: 9764 switch (env->prog->expected_attach_type) { 9765 case BPF_TRACE_FENTRY: 9766 case BPF_TRACE_FEXIT: 9767 range = tnum_const(0); 9768 break; 9769 case BPF_TRACE_RAW_TP: 9770 case BPF_MODIFY_RETURN: 9771 return 0; 9772 case BPF_TRACE_ITER: 9773 break; 9774 default: 9775 return -ENOTSUPP; 9776 } 9777 break; 9778 case BPF_PROG_TYPE_SK_LOOKUP: 9779 range = tnum_range(SK_DROP, SK_PASS); 9780 break; 9781 case BPF_PROG_TYPE_EXT: 9782 /* freplace program can return anything as its return value 9783 * depends on the to-be-replaced kernel func or bpf program. 9784 */ 9785 default: 9786 return 0; 9787 } 9788 9789 if (reg->type != SCALAR_VALUE) { 9790 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9791 reg_type_str(env, reg->type)); 9792 return -EINVAL; 9793 } 9794 9795 if (!tnum_in(range, reg->var_off)) { 9796 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9797 return -EINVAL; 9798 } 9799 9800 if (!tnum_is_unknown(enforce_attach_type_range) && 9801 tnum_in(enforce_attach_type_range, reg->var_off)) 9802 env->prog->enforce_expected_attach_type = 1; 9803 return 0; 9804 } 9805 9806 /* non-recursive DFS pseudo code 9807 * 1 procedure DFS-iterative(G,v): 9808 * 2 label v as discovered 9809 * 3 let S be a stack 9810 * 4 S.push(v) 9811 * 5 while S is not empty 9812 * 6 t <- S.pop() 9813 * 7 if t is what we're looking for: 9814 * 8 return t 9815 * 9 for all edges e in G.adjacentEdges(t) do 9816 * 10 if edge e is already labelled 9817 * 11 continue with the next edge 9818 * 12 w <- G.adjacentVertex(t,e) 9819 * 13 if vertex w is not discovered and not explored 9820 * 14 label e as tree-edge 9821 * 15 label w as discovered 9822 * 16 S.push(w) 9823 * 17 continue at 5 9824 * 18 else if vertex w is discovered 9825 * 19 label e as back-edge 9826 * 20 else 9827 * 21 // vertex w is explored 9828 * 22 label e as forward- or cross-edge 9829 * 23 label t as explored 9830 * 24 S.pop() 9831 * 9832 * convention: 9833 * 0x10 - discovered 9834 * 0x11 - discovered and fall-through edge labelled 9835 * 0x12 - discovered and fall-through and branch edges labelled 9836 * 0x20 - explored 9837 */ 9838 9839 enum { 9840 DISCOVERED = 0x10, 9841 EXPLORED = 0x20, 9842 FALLTHROUGH = 1, 9843 BRANCH = 2, 9844 }; 9845 9846 static u32 state_htab_size(struct bpf_verifier_env *env) 9847 { 9848 return env->prog->len; 9849 } 9850 9851 static struct bpf_verifier_state_list **explored_state( 9852 struct bpf_verifier_env *env, 9853 int idx) 9854 { 9855 struct bpf_verifier_state *cur = env->cur_state; 9856 struct bpf_func_state *state = cur->frame[cur->curframe]; 9857 9858 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9859 } 9860 9861 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9862 { 9863 env->insn_aux_data[idx].prune_point = true; 9864 } 9865 9866 enum { 9867 DONE_EXPLORING = 0, 9868 KEEP_EXPLORING = 1, 9869 }; 9870 9871 /* t, w, e - match pseudo-code above: 9872 * t - index of current instruction 9873 * w - next instruction 9874 * e - edge 9875 */ 9876 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9877 bool loop_ok) 9878 { 9879 int *insn_stack = env->cfg.insn_stack; 9880 int *insn_state = env->cfg.insn_state; 9881 9882 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9883 return DONE_EXPLORING; 9884 9885 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9886 return DONE_EXPLORING; 9887 9888 if (w < 0 || w >= env->prog->len) { 9889 verbose_linfo(env, t, "%d: ", t); 9890 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9891 return -EINVAL; 9892 } 9893 9894 if (e == BRANCH) 9895 /* mark branch target for state pruning */ 9896 init_explored_state(env, w); 9897 9898 if (insn_state[w] == 0) { 9899 /* tree-edge */ 9900 insn_state[t] = DISCOVERED | e; 9901 insn_state[w] = DISCOVERED; 9902 if (env->cfg.cur_stack >= env->prog->len) 9903 return -E2BIG; 9904 insn_stack[env->cfg.cur_stack++] = w; 9905 return KEEP_EXPLORING; 9906 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9907 if (loop_ok && env->bpf_capable) 9908 return DONE_EXPLORING; 9909 verbose_linfo(env, t, "%d: ", t); 9910 verbose_linfo(env, w, "%d: ", w); 9911 verbose(env, "back-edge from insn %d to %d\n", t, w); 9912 return -EINVAL; 9913 } else if (insn_state[w] == EXPLORED) { 9914 /* forward- or cross-edge */ 9915 insn_state[t] = DISCOVERED | e; 9916 } else { 9917 verbose(env, "insn state internal bug\n"); 9918 return -EFAULT; 9919 } 9920 return DONE_EXPLORING; 9921 } 9922 9923 static int visit_func_call_insn(int t, int insn_cnt, 9924 struct bpf_insn *insns, 9925 struct bpf_verifier_env *env, 9926 bool visit_callee) 9927 { 9928 int ret; 9929 9930 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9931 if (ret) 9932 return ret; 9933 9934 if (t + 1 < insn_cnt) 9935 init_explored_state(env, t + 1); 9936 if (visit_callee) { 9937 init_explored_state(env, t); 9938 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9939 /* It's ok to allow recursion from CFG point of 9940 * view. __check_func_call() will do the actual 9941 * check. 9942 */ 9943 bpf_pseudo_func(insns + t)); 9944 } 9945 return ret; 9946 } 9947 9948 /* Visits the instruction at index t and returns one of the following: 9949 * < 0 - an error occurred 9950 * DONE_EXPLORING - the instruction was fully explored 9951 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9952 */ 9953 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9954 { 9955 struct bpf_insn *insns = env->prog->insnsi; 9956 int ret; 9957 9958 if (bpf_pseudo_func(insns + t)) 9959 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9960 9961 /* All non-branch instructions have a single fall-through edge. */ 9962 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9963 BPF_CLASS(insns[t].code) != BPF_JMP32) 9964 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9965 9966 switch (BPF_OP(insns[t].code)) { 9967 case BPF_EXIT: 9968 return DONE_EXPLORING; 9969 9970 case BPF_CALL: 9971 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9972 /* Mark this call insn to trigger is_state_visited() check 9973 * before call itself is processed by __check_func_call(). 9974 * Otherwise new async state will be pushed for further 9975 * exploration. 9976 */ 9977 init_explored_state(env, t); 9978 return visit_func_call_insn(t, insn_cnt, insns, env, 9979 insns[t].src_reg == BPF_PSEUDO_CALL); 9980 9981 case BPF_JA: 9982 if (BPF_SRC(insns[t].code) != BPF_K) 9983 return -EINVAL; 9984 9985 /* unconditional jump with single edge */ 9986 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9987 true); 9988 if (ret) 9989 return ret; 9990 9991 /* unconditional jmp is not a good pruning point, 9992 * but it's marked, since backtracking needs 9993 * to record jmp history in is_state_visited(). 9994 */ 9995 init_explored_state(env, t + insns[t].off + 1); 9996 /* tell verifier to check for equivalent states 9997 * after every call and jump 9998 */ 9999 if (t + 1 < insn_cnt) 10000 init_explored_state(env, t + 1); 10001 10002 return ret; 10003 10004 default: 10005 /* conditional jump with two edges */ 10006 init_explored_state(env, t); 10007 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10008 if (ret) 10009 return ret; 10010 10011 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10012 } 10013 } 10014 10015 /* non-recursive depth-first-search to detect loops in BPF program 10016 * loop == back-edge in directed graph 10017 */ 10018 static int check_cfg(struct bpf_verifier_env *env) 10019 { 10020 int insn_cnt = env->prog->len; 10021 int *insn_stack, *insn_state; 10022 int ret = 0; 10023 int i; 10024 10025 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10026 if (!insn_state) 10027 return -ENOMEM; 10028 10029 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10030 if (!insn_stack) { 10031 kvfree(insn_state); 10032 return -ENOMEM; 10033 } 10034 10035 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10036 insn_stack[0] = 0; /* 0 is the first instruction */ 10037 env->cfg.cur_stack = 1; 10038 10039 while (env->cfg.cur_stack > 0) { 10040 int t = insn_stack[env->cfg.cur_stack - 1]; 10041 10042 ret = visit_insn(t, insn_cnt, env); 10043 switch (ret) { 10044 case DONE_EXPLORING: 10045 insn_state[t] = EXPLORED; 10046 env->cfg.cur_stack--; 10047 break; 10048 case KEEP_EXPLORING: 10049 break; 10050 default: 10051 if (ret > 0) { 10052 verbose(env, "visit_insn internal bug\n"); 10053 ret = -EFAULT; 10054 } 10055 goto err_free; 10056 } 10057 } 10058 10059 if (env->cfg.cur_stack < 0) { 10060 verbose(env, "pop stack internal bug\n"); 10061 ret = -EFAULT; 10062 goto err_free; 10063 } 10064 10065 for (i = 0; i < insn_cnt; i++) { 10066 if (insn_state[i] != EXPLORED) { 10067 verbose(env, "unreachable insn %d\n", i); 10068 ret = -EINVAL; 10069 goto err_free; 10070 } 10071 } 10072 ret = 0; /* cfg looks good */ 10073 10074 err_free: 10075 kvfree(insn_state); 10076 kvfree(insn_stack); 10077 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10078 return ret; 10079 } 10080 10081 static int check_abnormal_return(struct bpf_verifier_env *env) 10082 { 10083 int i; 10084 10085 for (i = 1; i < env->subprog_cnt; i++) { 10086 if (env->subprog_info[i].has_ld_abs) { 10087 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10088 return -EINVAL; 10089 } 10090 if (env->subprog_info[i].has_tail_call) { 10091 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10092 return -EINVAL; 10093 } 10094 } 10095 return 0; 10096 } 10097 10098 /* The minimum supported BTF func info size */ 10099 #define MIN_BPF_FUNCINFO_SIZE 8 10100 #define MAX_FUNCINFO_REC_SIZE 252 10101 10102 static int check_btf_func(struct bpf_verifier_env *env, 10103 const union bpf_attr *attr, 10104 bpfptr_t uattr) 10105 { 10106 const struct btf_type *type, *func_proto, *ret_type; 10107 u32 i, nfuncs, urec_size, min_size; 10108 u32 krec_size = sizeof(struct bpf_func_info); 10109 struct bpf_func_info *krecord; 10110 struct bpf_func_info_aux *info_aux = NULL; 10111 struct bpf_prog *prog; 10112 const struct btf *btf; 10113 bpfptr_t urecord; 10114 u32 prev_offset = 0; 10115 bool scalar_return; 10116 int ret = -ENOMEM; 10117 10118 nfuncs = attr->func_info_cnt; 10119 if (!nfuncs) { 10120 if (check_abnormal_return(env)) 10121 return -EINVAL; 10122 return 0; 10123 } 10124 10125 if (nfuncs != env->subprog_cnt) { 10126 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10127 return -EINVAL; 10128 } 10129 10130 urec_size = attr->func_info_rec_size; 10131 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10132 urec_size > MAX_FUNCINFO_REC_SIZE || 10133 urec_size % sizeof(u32)) { 10134 verbose(env, "invalid func info rec size %u\n", urec_size); 10135 return -EINVAL; 10136 } 10137 10138 prog = env->prog; 10139 btf = prog->aux->btf; 10140 10141 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10142 min_size = min_t(u32, krec_size, urec_size); 10143 10144 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10145 if (!krecord) 10146 return -ENOMEM; 10147 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10148 if (!info_aux) 10149 goto err_free; 10150 10151 for (i = 0; i < nfuncs; i++) { 10152 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10153 if (ret) { 10154 if (ret == -E2BIG) { 10155 verbose(env, "nonzero tailing record in func info"); 10156 /* set the size kernel expects so loader can zero 10157 * out the rest of the record. 10158 */ 10159 if (copy_to_bpfptr_offset(uattr, 10160 offsetof(union bpf_attr, func_info_rec_size), 10161 &min_size, sizeof(min_size))) 10162 ret = -EFAULT; 10163 } 10164 goto err_free; 10165 } 10166 10167 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10168 ret = -EFAULT; 10169 goto err_free; 10170 } 10171 10172 /* check insn_off */ 10173 ret = -EINVAL; 10174 if (i == 0) { 10175 if (krecord[i].insn_off) { 10176 verbose(env, 10177 "nonzero insn_off %u for the first func info record", 10178 krecord[i].insn_off); 10179 goto err_free; 10180 } 10181 } else if (krecord[i].insn_off <= prev_offset) { 10182 verbose(env, 10183 "same or smaller insn offset (%u) than previous func info record (%u)", 10184 krecord[i].insn_off, prev_offset); 10185 goto err_free; 10186 } 10187 10188 if (env->subprog_info[i].start != krecord[i].insn_off) { 10189 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10190 goto err_free; 10191 } 10192 10193 /* check type_id */ 10194 type = btf_type_by_id(btf, krecord[i].type_id); 10195 if (!type || !btf_type_is_func(type)) { 10196 verbose(env, "invalid type id %d in func info", 10197 krecord[i].type_id); 10198 goto err_free; 10199 } 10200 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10201 10202 func_proto = btf_type_by_id(btf, type->type); 10203 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10204 /* btf_func_check() already verified it during BTF load */ 10205 goto err_free; 10206 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10207 scalar_return = 10208 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10209 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10210 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10211 goto err_free; 10212 } 10213 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10214 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10215 goto err_free; 10216 } 10217 10218 prev_offset = krecord[i].insn_off; 10219 bpfptr_add(&urecord, urec_size); 10220 } 10221 10222 prog->aux->func_info = krecord; 10223 prog->aux->func_info_cnt = nfuncs; 10224 prog->aux->func_info_aux = info_aux; 10225 return 0; 10226 10227 err_free: 10228 kvfree(krecord); 10229 kfree(info_aux); 10230 return ret; 10231 } 10232 10233 static void adjust_btf_func(struct bpf_verifier_env *env) 10234 { 10235 struct bpf_prog_aux *aux = env->prog->aux; 10236 int i; 10237 10238 if (!aux->func_info) 10239 return; 10240 10241 for (i = 0; i < env->subprog_cnt; i++) 10242 aux->func_info[i].insn_off = env->subprog_info[i].start; 10243 } 10244 10245 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10246 sizeof(((struct bpf_line_info *)(0))->line_col)) 10247 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10248 10249 static int check_btf_line(struct bpf_verifier_env *env, 10250 const union bpf_attr *attr, 10251 bpfptr_t uattr) 10252 { 10253 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10254 struct bpf_subprog_info *sub; 10255 struct bpf_line_info *linfo; 10256 struct bpf_prog *prog; 10257 const struct btf *btf; 10258 bpfptr_t ulinfo; 10259 int err; 10260 10261 nr_linfo = attr->line_info_cnt; 10262 if (!nr_linfo) 10263 return 0; 10264 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10265 return -EINVAL; 10266 10267 rec_size = attr->line_info_rec_size; 10268 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10269 rec_size > MAX_LINEINFO_REC_SIZE || 10270 rec_size & (sizeof(u32) - 1)) 10271 return -EINVAL; 10272 10273 /* Need to zero it in case the userspace may 10274 * pass in a smaller bpf_line_info object. 10275 */ 10276 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10277 GFP_KERNEL | __GFP_NOWARN); 10278 if (!linfo) 10279 return -ENOMEM; 10280 10281 prog = env->prog; 10282 btf = prog->aux->btf; 10283 10284 s = 0; 10285 sub = env->subprog_info; 10286 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10287 expected_size = sizeof(struct bpf_line_info); 10288 ncopy = min_t(u32, expected_size, rec_size); 10289 for (i = 0; i < nr_linfo; i++) { 10290 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10291 if (err) { 10292 if (err == -E2BIG) { 10293 verbose(env, "nonzero tailing record in line_info"); 10294 if (copy_to_bpfptr_offset(uattr, 10295 offsetof(union bpf_attr, line_info_rec_size), 10296 &expected_size, sizeof(expected_size))) 10297 err = -EFAULT; 10298 } 10299 goto err_free; 10300 } 10301 10302 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10303 err = -EFAULT; 10304 goto err_free; 10305 } 10306 10307 /* 10308 * Check insn_off to ensure 10309 * 1) strictly increasing AND 10310 * 2) bounded by prog->len 10311 * 10312 * The linfo[0].insn_off == 0 check logically falls into 10313 * the later "missing bpf_line_info for func..." case 10314 * because the first linfo[0].insn_off must be the 10315 * first sub also and the first sub must have 10316 * subprog_info[0].start == 0. 10317 */ 10318 if ((i && linfo[i].insn_off <= prev_offset) || 10319 linfo[i].insn_off >= prog->len) { 10320 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10321 i, linfo[i].insn_off, prev_offset, 10322 prog->len); 10323 err = -EINVAL; 10324 goto err_free; 10325 } 10326 10327 if (!prog->insnsi[linfo[i].insn_off].code) { 10328 verbose(env, 10329 "Invalid insn code at line_info[%u].insn_off\n", 10330 i); 10331 err = -EINVAL; 10332 goto err_free; 10333 } 10334 10335 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10336 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10337 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10338 err = -EINVAL; 10339 goto err_free; 10340 } 10341 10342 if (s != env->subprog_cnt) { 10343 if (linfo[i].insn_off == sub[s].start) { 10344 sub[s].linfo_idx = i; 10345 s++; 10346 } else if (sub[s].start < linfo[i].insn_off) { 10347 verbose(env, "missing bpf_line_info for func#%u\n", s); 10348 err = -EINVAL; 10349 goto err_free; 10350 } 10351 } 10352 10353 prev_offset = linfo[i].insn_off; 10354 bpfptr_add(&ulinfo, rec_size); 10355 } 10356 10357 if (s != env->subprog_cnt) { 10358 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10359 env->subprog_cnt - s, s); 10360 err = -EINVAL; 10361 goto err_free; 10362 } 10363 10364 prog->aux->linfo = linfo; 10365 prog->aux->nr_linfo = nr_linfo; 10366 10367 return 0; 10368 10369 err_free: 10370 kvfree(linfo); 10371 return err; 10372 } 10373 10374 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 10375 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 10376 10377 static int check_core_relo(struct bpf_verifier_env *env, 10378 const union bpf_attr *attr, 10379 bpfptr_t uattr) 10380 { 10381 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 10382 struct bpf_core_relo core_relo = {}; 10383 struct bpf_prog *prog = env->prog; 10384 const struct btf *btf = prog->aux->btf; 10385 struct bpf_core_ctx ctx = { 10386 .log = &env->log, 10387 .btf = btf, 10388 }; 10389 bpfptr_t u_core_relo; 10390 int err; 10391 10392 nr_core_relo = attr->core_relo_cnt; 10393 if (!nr_core_relo) 10394 return 0; 10395 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 10396 return -EINVAL; 10397 10398 rec_size = attr->core_relo_rec_size; 10399 if (rec_size < MIN_CORE_RELO_SIZE || 10400 rec_size > MAX_CORE_RELO_SIZE || 10401 rec_size % sizeof(u32)) 10402 return -EINVAL; 10403 10404 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 10405 expected_size = sizeof(struct bpf_core_relo); 10406 ncopy = min_t(u32, expected_size, rec_size); 10407 10408 /* Unlike func_info and line_info, copy and apply each CO-RE 10409 * relocation record one at a time. 10410 */ 10411 for (i = 0; i < nr_core_relo; i++) { 10412 /* future proofing when sizeof(bpf_core_relo) changes */ 10413 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 10414 if (err) { 10415 if (err == -E2BIG) { 10416 verbose(env, "nonzero tailing record in core_relo"); 10417 if (copy_to_bpfptr_offset(uattr, 10418 offsetof(union bpf_attr, core_relo_rec_size), 10419 &expected_size, sizeof(expected_size))) 10420 err = -EFAULT; 10421 } 10422 break; 10423 } 10424 10425 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 10426 err = -EFAULT; 10427 break; 10428 } 10429 10430 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 10431 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 10432 i, core_relo.insn_off, prog->len); 10433 err = -EINVAL; 10434 break; 10435 } 10436 10437 err = bpf_core_apply(&ctx, &core_relo, i, 10438 &prog->insnsi[core_relo.insn_off / 8]); 10439 if (err) 10440 break; 10441 bpfptr_add(&u_core_relo, rec_size); 10442 } 10443 return err; 10444 } 10445 10446 static int check_btf_info(struct bpf_verifier_env *env, 10447 const union bpf_attr *attr, 10448 bpfptr_t uattr) 10449 { 10450 struct btf *btf; 10451 int err; 10452 10453 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10454 if (check_abnormal_return(env)) 10455 return -EINVAL; 10456 return 0; 10457 } 10458 10459 btf = btf_get_by_fd(attr->prog_btf_fd); 10460 if (IS_ERR(btf)) 10461 return PTR_ERR(btf); 10462 if (btf_is_kernel(btf)) { 10463 btf_put(btf); 10464 return -EACCES; 10465 } 10466 env->prog->aux->btf = btf; 10467 10468 err = check_btf_func(env, attr, uattr); 10469 if (err) 10470 return err; 10471 10472 err = check_btf_line(env, attr, uattr); 10473 if (err) 10474 return err; 10475 10476 err = check_core_relo(env, attr, uattr); 10477 if (err) 10478 return err; 10479 10480 return 0; 10481 } 10482 10483 /* check %cur's range satisfies %old's */ 10484 static bool range_within(struct bpf_reg_state *old, 10485 struct bpf_reg_state *cur) 10486 { 10487 return old->umin_value <= cur->umin_value && 10488 old->umax_value >= cur->umax_value && 10489 old->smin_value <= cur->smin_value && 10490 old->smax_value >= cur->smax_value && 10491 old->u32_min_value <= cur->u32_min_value && 10492 old->u32_max_value >= cur->u32_max_value && 10493 old->s32_min_value <= cur->s32_min_value && 10494 old->s32_max_value >= cur->s32_max_value; 10495 } 10496 10497 /* If in the old state two registers had the same id, then they need to have 10498 * the same id in the new state as well. But that id could be different from 10499 * the old state, so we need to track the mapping from old to new ids. 10500 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10501 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10502 * regs with a different old id could still have new id 9, we don't care about 10503 * that. 10504 * So we look through our idmap to see if this old id has been seen before. If 10505 * so, we require the new id to match; otherwise, we add the id pair to the map. 10506 */ 10507 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10508 { 10509 unsigned int i; 10510 10511 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10512 if (!idmap[i].old) { 10513 /* Reached an empty slot; haven't seen this id before */ 10514 idmap[i].old = old_id; 10515 idmap[i].cur = cur_id; 10516 return true; 10517 } 10518 if (idmap[i].old == old_id) 10519 return idmap[i].cur == cur_id; 10520 } 10521 /* We ran out of idmap slots, which should be impossible */ 10522 WARN_ON_ONCE(1); 10523 return false; 10524 } 10525 10526 static void clean_func_state(struct bpf_verifier_env *env, 10527 struct bpf_func_state *st) 10528 { 10529 enum bpf_reg_liveness live; 10530 int i, j; 10531 10532 for (i = 0; i < BPF_REG_FP; i++) { 10533 live = st->regs[i].live; 10534 /* liveness must not touch this register anymore */ 10535 st->regs[i].live |= REG_LIVE_DONE; 10536 if (!(live & REG_LIVE_READ)) 10537 /* since the register is unused, clear its state 10538 * to make further comparison simpler 10539 */ 10540 __mark_reg_not_init(env, &st->regs[i]); 10541 } 10542 10543 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10544 live = st->stack[i].spilled_ptr.live; 10545 /* liveness must not touch this stack slot anymore */ 10546 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10547 if (!(live & REG_LIVE_READ)) { 10548 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10549 for (j = 0; j < BPF_REG_SIZE; j++) 10550 st->stack[i].slot_type[j] = STACK_INVALID; 10551 } 10552 } 10553 } 10554 10555 static void clean_verifier_state(struct bpf_verifier_env *env, 10556 struct bpf_verifier_state *st) 10557 { 10558 int i; 10559 10560 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10561 /* all regs in this state in all frames were already marked */ 10562 return; 10563 10564 for (i = 0; i <= st->curframe; i++) 10565 clean_func_state(env, st->frame[i]); 10566 } 10567 10568 /* the parentage chains form a tree. 10569 * the verifier states are added to state lists at given insn and 10570 * pushed into state stack for future exploration. 10571 * when the verifier reaches bpf_exit insn some of the verifer states 10572 * stored in the state lists have their final liveness state already, 10573 * but a lot of states will get revised from liveness point of view when 10574 * the verifier explores other branches. 10575 * Example: 10576 * 1: r0 = 1 10577 * 2: if r1 == 100 goto pc+1 10578 * 3: r0 = 2 10579 * 4: exit 10580 * when the verifier reaches exit insn the register r0 in the state list of 10581 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10582 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10583 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10584 * 10585 * Since the verifier pushes the branch states as it sees them while exploring 10586 * the program the condition of walking the branch instruction for the second 10587 * time means that all states below this branch were already explored and 10588 * their final liveness marks are already propagated. 10589 * Hence when the verifier completes the search of state list in is_state_visited() 10590 * we can call this clean_live_states() function to mark all liveness states 10591 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10592 * will not be used. 10593 * This function also clears the registers and stack for states that !READ 10594 * to simplify state merging. 10595 * 10596 * Important note here that walking the same branch instruction in the callee 10597 * doesn't meant that the states are DONE. The verifier has to compare 10598 * the callsites 10599 */ 10600 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10601 struct bpf_verifier_state *cur) 10602 { 10603 struct bpf_verifier_state_list *sl; 10604 int i; 10605 10606 sl = *explored_state(env, insn); 10607 while (sl) { 10608 if (sl->state.branches) 10609 goto next; 10610 if (sl->state.insn_idx != insn || 10611 sl->state.curframe != cur->curframe) 10612 goto next; 10613 for (i = 0; i <= cur->curframe; i++) 10614 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10615 goto next; 10616 clean_verifier_state(env, &sl->state); 10617 next: 10618 sl = sl->next; 10619 } 10620 } 10621 10622 /* Returns true if (rold safe implies rcur safe) */ 10623 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10624 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10625 { 10626 bool equal; 10627 10628 if (!(rold->live & REG_LIVE_READ)) 10629 /* explored state didn't use this */ 10630 return true; 10631 10632 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10633 10634 if (rold->type == PTR_TO_STACK) 10635 /* two stack pointers are equal only if they're pointing to 10636 * the same stack frame, since fp-8 in foo != fp-8 in bar 10637 */ 10638 return equal && rold->frameno == rcur->frameno; 10639 10640 if (equal) 10641 return true; 10642 10643 if (rold->type == NOT_INIT) 10644 /* explored state can't have used this */ 10645 return true; 10646 if (rcur->type == NOT_INIT) 10647 return false; 10648 switch (base_type(rold->type)) { 10649 case SCALAR_VALUE: 10650 if (env->explore_alu_limits) 10651 return false; 10652 if (rcur->type == SCALAR_VALUE) { 10653 if (!rold->precise && !rcur->precise) 10654 return true; 10655 /* new val must satisfy old val knowledge */ 10656 return range_within(rold, rcur) && 10657 tnum_in(rold->var_off, rcur->var_off); 10658 } else { 10659 /* We're trying to use a pointer in place of a scalar. 10660 * Even if the scalar was unbounded, this could lead to 10661 * pointer leaks because scalars are allowed to leak 10662 * while pointers are not. We could make this safe in 10663 * special cases if root is calling us, but it's 10664 * probably not worth the hassle. 10665 */ 10666 return false; 10667 } 10668 case PTR_TO_MAP_KEY: 10669 case PTR_TO_MAP_VALUE: 10670 /* a PTR_TO_MAP_VALUE could be safe to use as a 10671 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10672 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10673 * checked, doing so could have affected others with the same 10674 * id, and we can't check for that because we lost the id when 10675 * we converted to a PTR_TO_MAP_VALUE. 10676 */ 10677 if (type_may_be_null(rold->type)) { 10678 if (!type_may_be_null(rcur->type)) 10679 return false; 10680 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10681 return false; 10682 /* Check our ids match any regs they're supposed to */ 10683 return check_ids(rold->id, rcur->id, idmap); 10684 } 10685 10686 /* If the new min/max/var_off satisfy the old ones and 10687 * everything else matches, we are OK. 10688 * 'id' is not compared, since it's only used for maps with 10689 * bpf_spin_lock inside map element and in such cases if 10690 * the rest of the prog is valid for one map element then 10691 * it's valid for all map elements regardless of the key 10692 * used in bpf_map_lookup() 10693 */ 10694 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10695 range_within(rold, rcur) && 10696 tnum_in(rold->var_off, rcur->var_off); 10697 case PTR_TO_PACKET_META: 10698 case PTR_TO_PACKET: 10699 if (rcur->type != rold->type) 10700 return false; 10701 /* We must have at least as much range as the old ptr 10702 * did, so that any accesses which were safe before are 10703 * still safe. This is true even if old range < old off, 10704 * since someone could have accessed through (ptr - k), or 10705 * even done ptr -= k in a register, to get a safe access. 10706 */ 10707 if (rold->range > rcur->range) 10708 return false; 10709 /* If the offsets don't match, we can't trust our alignment; 10710 * nor can we be sure that we won't fall out of range. 10711 */ 10712 if (rold->off != rcur->off) 10713 return false; 10714 /* id relations must be preserved */ 10715 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10716 return false; 10717 /* new val must satisfy old val knowledge */ 10718 return range_within(rold, rcur) && 10719 tnum_in(rold->var_off, rcur->var_off); 10720 case PTR_TO_CTX: 10721 case CONST_PTR_TO_MAP: 10722 case PTR_TO_PACKET_END: 10723 case PTR_TO_FLOW_KEYS: 10724 case PTR_TO_SOCKET: 10725 case PTR_TO_SOCK_COMMON: 10726 case PTR_TO_TCP_SOCK: 10727 case PTR_TO_XDP_SOCK: 10728 /* Only valid matches are exact, which memcmp() above 10729 * would have accepted 10730 */ 10731 default: 10732 /* Don't know what's going on, just say it's not safe */ 10733 return false; 10734 } 10735 10736 /* Shouldn't get here; if we do, say it's not safe */ 10737 WARN_ON_ONCE(1); 10738 return false; 10739 } 10740 10741 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10742 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10743 { 10744 int i, spi; 10745 10746 /* walk slots of the explored stack and ignore any additional 10747 * slots in the current stack, since explored(safe) state 10748 * didn't use them 10749 */ 10750 for (i = 0; i < old->allocated_stack; i++) { 10751 spi = i / BPF_REG_SIZE; 10752 10753 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10754 i += BPF_REG_SIZE - 1; 10755 /* explored state didn't use this */ 10756 continue; 10757 } 10758 10759 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10760 continue; 10761 10762 /* explored stack has more populated slots than current stack 10763 * and these slots were used 10764 */ 10765 if (i >= cur->allocated_stack) 10766 return false; 10767 10768 /* if old state was safe with misc data in the stack 10769 * it will be safe with zero-initialized stack. 10770 * The opposite is not true 10771 */ 10772 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10773 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10774 continue; 10775 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10776 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10777 /* Ex: old explored (safe) state has STACK_SPILL in 10778 * this stack slot, but current has STACK_MISC -> 10779 * this verifier states are not equivalent, 10780 * return false to continue verification of this path 10781 */ 10782 return false; 10783 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10784 continue; 10785 if (!is_spilled_reg(&old->stack[spi])) 10786 continue; 10787 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10788 &cur->stack[spi].spilled_ptr, idmap)) 10789 /* when explored and current stack slot are both storing 10790 * spilled registers, check that stored pointers types 10791 * are the same as well. 10792 * Ex: explored safe path could have stored 10793 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10794 * but current path has stored: 10795 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10796 * such verifier states are not equivalent. 10797 * return false to continue verification of this path 10798 */ 10799 return false; 10800 } 10801 return true; 10802 } 10803 10804 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10805 { 10806 if (old->acquired_refs != cur->acquired_refs) 10807 return false; 10808 return !memcmp(old->refs, cur->refs, 10809 sizeof(*old->refs) * old->acquired_refs); 10810 } 10811 10812 /* compare two verifier states 10813 * 10814 * all states stored in state_list are known to be valid, since 10815 * verifier reached 'bpf_exit' instruction through them 10816 * 10817 * this function is called when verifier exploring different branches of 10818 * execution popped from the state stack. If it sees an old state that has 10819 * more strict register state and more strict stack state then this execution 10820 * branch doesn't need to be explored further, since verifier already 10821 * concluded that more strict state leads to valid finish. 10822 * 10823 * Therefore two states are equivalent if register state is more conservative 10824 * and explored stack state is more conservative than the current one. 10825 * Example: 10826 * explored current 10827 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10828 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10829 * 10830 * In other words if current stack state (one being explored) has more 10831 * valid slots than old one that already passed validation, it means 10832 * the verifier can stop exploring and conclude that current state is valid too 10833 * 10834 * Similarly with registers. If explored state has register type as invalid 10835 * whereas register type in current state is meaningful, it means that 10836 * the current state will reach 'bpf_exit' instruction safely 10837 */ 10838 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10839 struct bpf_func_state *cur) 10840 { 10841 int i; 10842 10843 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10844 for (i = 0; i < MAX_BPF_REG; i++) 10845 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10846 env->idmap_scratch)) 10847 return false; 10848 10849 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10850 return false; 10851 10852 if (!refsafe(old, cur)) 10853 return false; 10854 10855 return true; 10856 } 10857 10858 static bool states_equal(struct bpf_verifier_env *env, 10859 struct bpf_verifier_state *old, 10860 struct bpf_verifier_state *cur) 10861 { 10862 int i; 10863 10864 if (old->curframe != cur->curframe) 10865 return false; 10866 10867 /* Verification state from speculative execution simulation 10868 * must never prune a non-speculative execution one. 10869 */ 10870 if (old->speculative && !cur->speculative) 10871 return false; 10872 10873 if (old->active_spin_lock != cur->active_spin_lock) 10874 return false; 10875 10876 /* for states to be equal callsites have to be the same 10877 * and all frame states need to be equivalent 10878 */ 10879 for (i = 0; i <= old->curframe; i++) { 10880 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10881 return false; 10882 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10883 return false; 10884 } 10885 return true; 10886 } 10887 10888 /* Return 0 if no propagation happened. Return negative error code if error 10889 * happened. Otherwise, return the propagated bit. 10890 */ 10891 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10892 struct bpf_reg_state *reg, 10893 struct bpf_reg_state *parent_reg) 10894 { 10895 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10896 u8 flag = reg->live & REG_LIVE_READ; 10897 int err; 10898 10899 /* When comes here, read flags of PARENT_REG or REG could be any of 10900 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10901 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10902 */ 10903 if (parent_flag == REG_LIVE_READ64 || 10904 /* Or if there is no read flag from REG. */ 10905 !flag || 10906 /* Or if the read flag from REG is the same as PARENT_REG. */ 10907 parent_flag == flag) 10908 return 0; 10909 10910 err = mark_reg_read(env, reg, parent_reg, flag); 10911 if (err) 10912 return err; 10913 10914 return flag; 10915 } 10916 10917 /* A write screens off any subsequent reads; but write marks come from the 10918 * straight-line code between a state and its parent. When we arrive at an 10919 * equivalent state (jump target or such) we didn't arrive by the straight-line 10920 * code, so read marks in the state must propagate to the parent regardless 10921 * of the state's write marks. That's what 'parent == state->parent' comparison 10922 * in mark_reg_read() is for. 10923 */ 10924 static int propagate_liveness(struct bpf_verifier_env *env, 10925 const struct bpf_verifier_state *vstate, 10926 struct bpf_verifier_state *vparent) 10927 { 10928 struct bpf_reg_state *state_reg, *parent_reg; 10929 struct bpf_func_state *state, *parent; 10930 int i, frame, err = 0; 10931 10932 if (vparent->curframe != vstate->curframe) { 10933 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10934 vparent->curframe, vstate->curframe); 10935 return -EFAULT; 10936 } 10937 /* Propagate read liveness of registers... */ 10938 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10939 for (frame = 0; frame <= vstate->curframe; frame++) { 10940 parent = vparent->frame[frame]; 10941 state = vstate->frame[frame]; 10942 parent_reg = parent->regs; 10943 state_reg = state->regs; 10944 /* We don't need to worry about FP liveness, it's read-only */ 10945 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10946 err = propagate_liveness_reg(env, &state_reg[i], 10947 &parent_reg[i]); 10948 if (err < 0) 10949 return err; 10950 if (err == REG_LIVE_READ64) 10951 mark_insn_zext(env, &parent_reg[i]); 10952 } 10953 10954 /* Propagate stack slots. */ 10955 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10956 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10957 parent_reg = &parent->stack[i].spilled_ptr; 10958 state_reg = &state->stack[i].spilled_ptr; 10959 err = propagate_liveness_reg(env, state_reg, 10960 parent_reg); 10961 if (err < 0) 10962 return err; 10963 } 10964 } 10965 return 0; 10966 } 10967 10968 /* find precise scalars in the previous equivalent state and 10969 * propagate them into the current state 10970 */ 10971 static int propagate_precision(struct bpf_verifier_env *env, 10972 const struct bpf_verifier_state *old) 10973 { 10974 struct bpf_reg_state *state_reg; 10975 struct bpf_func_state *state; 10976 int i, err = 0; 10977 10978 state = old->frame[old->curframe]; 10979 state_reg = state->regs; 10980 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10981 if (state_reg->type != SCALAR_VALUE || 10982 !state_reg->precise) 10983 continue; 10984 if (env->log.level & BPF_LOG_LEVEL2) 10985 verbose(env, "propagating r%d\n", i); 10986 err = mark_chain_precision(env, i); 10987 if (err < 0) 10988 return err; 10989 } 10990 10991 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10992 if (!is_spilled_reg(&state->stack[i])) 10993 continue; 10994 state_reg = &state->stack[i].spilled_ptr; 10995 if (state_reg->type != SCALAR_VALUE || 10996 !state_reg->precise) 10997 continue; 10998 if (env->log.level & BPF_LOG_LEVEL2) 10999 verbose(env, "propagating fp%d\n", 11000 (-i - 1) * BPF_REG_SIZE); 11001 err = mark_chain_precision_stack(env, i); 11002 if (err < 0) 11003 return err; 11004 } 11005 return 0; 11006 } 11007 11008 static bool states_maybe_looping(struct bpf_verifier_state *old, 11009 struct bpf_verifier_state *cur) 11010 { 11011 struct bpf_func_state *fold, *fcur; 11012 int i, fr = cur->curframe; 11013 11014 if (old->curframe != fr) 11015 return false; 11016 11017 fold = old->frame[fr]; 11018 fcur = cur->frame[fr]; 11019 for (i = 0; i < MAX_BPF_REG; i++) 11020 if (memcmp(&fold->regs[i], &fcur->regs[i], 11021 offsetof(struct bpf_reg_state, parent))) 11022 return false; 11023 return true; 11024 } 11025 11026 11027 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11028 { 11029 struct bpf_verifier_state_list *new_sl; 11030 struct bpf_verifier_state_list *sl, **pprev; 11031 struct bpf_verifier_state *cur = env->cur_state, *new; 11032 int i, j, err, states_cnt = 0; 11033 bool add_new_state = env->test_state_freq ? true : false; 11034 11035 cur->last_insn_idx = env->prev_insn_idx; 11036 if (!env->insn_aux_data[insn_idx].prune_point) 11037 /* this 'insn_idx' instruction wasn't marked, so we will not 11038 * be doing state search here 11039 */ 11040 return 0; 11041 11042 /* bpf progs typically have pruning point every 4 instructions 11043 * http://vger.kernel.org/bpfconf2019.html#session-1 11044 * Do not add new state for future pruning if the verifier hasn't seen 11045 * at least 2 jumps and at least 8 instructions. 11046 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11047 * In tests that amounts to up to 50% reduction into total verifier 11048 * memory consumption and 20% verifier time speedup. 11049 */ 11050 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11051 env->insn_processed - env->prev_insn_processed >= 8) 11052 add_new_state = true; 11053 11054 pprev = explored_state(env, insn_idx); 11055 sl = *pprev; 11056 11057 clean_live_states(env, insn_idx, cur); 11058 11059 while (sl) { 11060 states_cnt++; 11061 if (sl->state.insn_idx != insn_idx) 11062 goto next; 11063 11064 if (sl->state.branches) { 11065 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11066 11067 if (frame->in_async_callback_fn && 11068 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11069 /* Different async_entry_cnt means that the verifier is 11070 * processing another entry into async callback. 11071 * Seeing the same state is not an indication of infinite 11072 * loop or infinite recursion. 11073 * But finding the same state doesn't mean that it's safe 11074 * to stop processing the current state. The previous state 11075 * hasn't yet reached bpf_exit, since state.branches > 0. 11076 * Checking in_async_callback_fn alone is not enough either. 11077 * Since the verifier still needs to catch infinite loops 11078 * inside async callbacks. 11079 */ 11080 } else if (states_maybe_looping(&sl->state, cur) && 11081 states_equal(env, &sl->state, cur)) { 11082 verbose_linfo(env, insn_idx, "; "); 11083 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11084 return -EINVAL; 11085 } 11086 /* if the verifier is processing a loop, avoid adding new state 11087 * too often, since different loop iterations have distinct 11088 * states and may not help future pruning. 11089 * This threshold shouldn't be too low to make sure that 11090 * a loop with large bound will be rejected quickly. 11091 * The most abusive loop will be: 11092 * r1 += 1 11093 * if r1 < 1000000 goto pc-2 11094 * 1M insn_procssed limit / 100 == 10k peak states. 11095 * This threshold shouldn't be too high either, since states 11096 * at the end of the loop are likely to be useful in pruning. 11097 */ 11098 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11099 env->insn_processed - env->prev_insn_processed < 100) 11100 add_new_state = false; 11101 goto miss; 11102 } 11103 if (states_equal(env, &sl->state, cur)) { 11104 sl->hit_cnt++; 11105 /* reached equivalent register/stack state, 11106 * prune the search. 11107 * Registers read by the continuation are read by us. 11108 * If we have any write marks in env->cur_state, they 11109 * will prevent corresponding reads in the continuation 11110 * from reaching our parent (an explored_state). Our 11111 * own state will get the read marks recorded, but 11112 * they'll be immediately forgotten as we're pruning 11113 * this state and will pop a new one. 11114 */ 11115 err = propagate_liveness(env, &sl->state, cur); 11116 11117 /* if previous state reached the exit with precision and 11118 * current state is equivalent to it (except precsion marks) 11119 * the precision needs to be propagated back in 11120 * the current state. 11121 */ 11122 err = err ? : push_jmp_history(env, cur); 11123 err = err ? : propagate_precision(env, &sl->state); 11124 if (err) 11125 return err; 11126 return 1; 11127 } 11128 miss: 11129 /* when new state is not going to be added do not increase miss count. 11130 * Otherwise several loop iterations will remove the state 11131 * recorded earlier. The goal of these heuristics is to have 11132 * states from some iterations of the loop (some in the beginning 11133 * and some at the end) to help pruning. 11134 */ 11135 if (add_new_state) 11136 sl->miss_cnt++; 11137 /* heuristic to determine whether this state is beneficial 11138 * to keep checking from state equivalence point of view. 11139 * Higher numbers increase max_states_per_insn and verification time, 11140 * but do not meaningfully decrease insn_processed. 11141 */ 11142 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11143 /* the state is unlikely to be useful. Remove it to 11144 * speed up verification 11145 */ 11146 *pprev = sl->next; 11147 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11148 u32 br = sl->state.branches; 11149 11150 WARN_ONCE(br, 11151 "BUG live_done but branches_to_explore %d\n", 11152 br); 11153 free_verifier_state(&sl->state, false); 11154 kfree(sl); 11155 env->peak_states--; 11156 } else { 11157 /* cannot free this state, since parentage chain may 11158 * walk it later. Add it for free_list instead to 11159 * be freed at the end of verification 11160 */ 11161 sl->next = env->free_list; 11162 env->free_list = sl; 11163 } 11164 sl = *pprev; 11165 continue; 11166 } 11167 next: 11168 pprev = &sl->next; 11169 sl = *pprev; 11170 } 11171 11172 if (env->max_states_per_insn < states_cnt) 11173 env->max_states_per_insn = states_cnt; 11174 11175 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11176 return push_jmp_history(env, cur); 11177 11178 if (!add_new_state) 11179 return push_jmp_history(env, cur); 11180 11181 /* There were no equivalent states, remember the current one. 11182 * Technically the current state is not proven to be safe yet, 11183 * but it will either reach outer most bpf_exit (which means it's safe) 11184 * or it will be rejected. When there are no loops the verifier won't be 11185 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11186 * again on the way to bpf_exit. 11187 * When looping the sl->state.branches will be > 0 and this state 11188 * will not be considered for equivalence until branches == 0. 11189 */ 11190 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11191 if (!new_sl) 11192 return -ENOMEM; 11193 env->total_states++; 11194 env->peak_states++; 11195 env->prev_jmps_processed = env->jmps_processed; 11196 env->prev_insn_processed = env->insn_processed; 11197 11198 /* add new state to the head of linked list */ 11199 new = &new_sl->state; 11200 err = copy_verifier_state(new, cur); 11201 if (err) { 11202 free_verifier_state(new, false); 11203 kfree(new_sl); 11204 return err; 11205 } 11206 new->insn_idx = insn_idx; 11207 WARN_ONCE(new->branches != 1, 11208 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11209 11210 cur->parent = new; 11211 cur->first_insn_idx = insn_idx; 11212 clear_jmp_history(cur); 11213 new_sl->next = *explored_state(env, insn_idx); 11214 *explored_state(env, insn_idx) = new_sl; 11215 /* connect new state to parentage chain. Current frame needs all 11216 * registers connected. Only r6 - r9 of the callers are alive (pushed 11217 * to the stack implicitly by JITs) so in callers' frames connect just 11218 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11219 * the state of the call instruction (with WRITTEN set), and r0 comes 11220 * from callee with its full parentage chain, anyway. 11221 */ 11222 /* clear write marks in current state: the writes we did are not writes 11223 * our child did, so they don't screen off its reads from us. 11224 * (There are no read marks in current state, because reads always mark 11225 * their parent and current state never has children yet. Only 11226 * explored_states can get read marks.) 11227 */ 11228 for (j = 0; j <= cur->curframe; j++) { 11229 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11230 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11231 for (i = 0; i < BPF_REG_FP; i++) 11232 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11233 } 11234 11235 /* all stack frames are accessible from callee, clear them all */ 11236 for (j = 0; j <= cur->curframe; j++) { 11237 struct bpf_func_state *frame = cur->frame[j]; 11238 struct bpf_func_state *newframe = new->frame[j]; 11239 11240 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11241 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11242 frame->stack[i].spilled_ptr.parent = 11243 &newframe->stack[i].spilled_ptr; 11244 } 11245 } 11246 return 0; 11247 } 11248 11249 /* Return true if it's OK to have the same insn return a different type. */ 11250 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11251 { 11252 switch (base_type(type)) { 11253 case PTR_TO_CTX: 11254 case PTR_TO_SOCKET: 11255 case PTR_TO_SOCK_COMMON: 11256 case PTR_TO_TCP_SOCK: 11257 case PTR_TO_XDP_SOCK: 11258 case PTR_TO_BTF_ID: 11259 return false; 11260 default: 11261 return true; 11262 } 11263 } 11264 11265 /* If an instruction was previously used with particular pointer types, then we 11266 * need to be careful to avoid cases such as the below, where it may be ok 11267 * for one branch accessing the pointer, but not ok for the other branch: 11268 * 11269 * R1 = sock_ptr 11270 * goto X; 11271 * ... 11272 * R1 = some_other_valid_ptr; 11273 * goto X; 11274 * ... 11275 * R2 = *(u32 *)(R1 + 0); 11276 */ 11277 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11278 { 11279 return src != prev && (!reg_type_mismatch_ok(src) || 11280 !reg_type_mismatch_ok(prev)); 11281 } 11282 11283 static int do_check(struct bpf_verifier_env *env) 11284 { 11285 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11286 struct bpf_verifier_state *state = env->cur_state; 11287 struct bpf_insn *insns = env->prog->insnsi; 11288 struct bpf_reg_state *regs; 11289 int insn_cnt = env->prog->len; 11290 bool do_print_state = false; 11291 int prev_insn_idx = -1; 11292 11293 for (;;) { 11294 struct bpf_insn *insn; 11295 u8 class; 11296 int err; 11297 11298 env->prev_insn_idx = prev_insn_idx; 11299 if (env->insn_idx >= insn_cnt) { 11300 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11301 env->insn_idx, insn_cnt); 11302 return -EFAULT; 11303 } 11304 11305 insn = &insns[env->insn_idx]; 11306 class = BPF_CLASS(insn->code); 11307 11308 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11309 verbose(env, 11310 "BPF program is too large. Processed %d insn\n", 11311 env->insn_processed); 11312 return -E2BIG; 11313 } 11314 11315 err = is_state_visited(env, env->insn_idx); 11316 if (err < 0) 11317 return err; 11318 if (err == 1) { 11319 /* found equivalent state, can prune the search */ 11320 if (env->log.level & BPF_LOG_LEVEL) { 11321 if (do_print_state) 11322 verbose(env, "\nfrom %d to %d%s: safe\n", 11323 env->prev_insn_idx, env->insn_idx, 11324 env->cur_state->speculative ? 11325 " (speculative execution)" : ""); 11326 else 11327 verbose(env, "%d: safe\n", env->insn_idx); 11328 } 11329 goto process_bpf_exit; 11330 } 11331 11332 if (signal_pending(current)) 11333 return -EAGAIN; 11334 11335 if (need_resched()) 11336 cond_resched(); 11337 11338 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 11339 verbose(env, "\nfrom %d to %d%s:", 11340 env->prev_insn_idx, env->insn_idx, 11341 env->cur_state->speculative ? 11342 " (speculative execution)" : ""); 11343 print_verifier_state(env, state->frame[state->curframe], true); 11344 do_print_state = false; 11345 } 11346 11347 if (env->log.level & BPF_LOG_LEVEL) { 11348 const struct bpf_insn_cbs cbs = { 11349 .cb_call = disasm_kfunc_name, 11350 .cb_print = verbose, 11351 .private_data = env, 11352 }; 11353 11354 if (verifier_state_scratched(env)) 11355 print_insn_state(env, state->frame[state->curframe]); 11356 11357 verbose_linfo(env, env->insn_idx, "; "); 11358 env->prev_log_len = env->log.len_used; 11359 verbose(env, "%d: ", env->insn_idx); 11360 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11361 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 11362 env->prev_log_len = env->log.len_used; 11363 } 11364 11365 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11366 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11367 env->prev_insn_idx); 11368 if (err) 11369 return err; 11370 } 11371 11372 regs = cur_regs(env); 11373 sanitize_mark_insn_seen(env); 11374 prev_insn_idx = env->insn_idx; 11375 11376 if (class == BPF_ALU || class == BPF_ALU64) { 11377 err = check_alu_op(env, insn); 11378 if (err) 11379 return err; 11380 11381 } else if (class == BPF_LDX) { 11382 enum bpf_reg_type *prev_src_type, src_reg_type; 11383 11384 /* check for reserved fields is already done */ 11385 11386 /* check src operand */ 11387 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11388 if (err) 11389 return err; 11390 11391 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11392 if (err) 11393 return err; 11394 11395 src_reg_type = regs[insn->src_reg].type; 11396 11397 /* check that memory (src_reg + off) is readable, 11398 * the state of dst_reg will be updated by this func 11399 */ 11400 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11401 insn->off, BPF_SIZE(insn->code), 11402 BPF_READ, insn->dst_reg, false); 11403 if (err) 11404 return err; 11405 11406 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11407 11408 if (*prev_src_type == NOT_INIT) { 11409 /* saw a valid insn 11410 * dst_reg = *(u32 *)(src_reg + off) 11411 * save type to validate intersecting paths 11412 */ 11413 *prev_src_type = src_reg_type; 11414 11415 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11416 /* ABuser program is trying to use the same insn 11417 * dst_reg = *(u32*) (src_reg + off) 11418 * with different pointer types: 11419 * src_reg == ctx in one branch and 11420 * src_reg == stack|map in some other branch. 11421 * Reject it. 11422 */ 11423 verbose(env, "same insn cannot be used with different pointers\n"); 11424 return -EINVAL; 11425 } 11426 11427 } else if (class == BPF_STX) { 11428 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11429 11430 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11431 err = check_atomic(env, env->insn_idx, insn); 11432 if (err) 11433 return err; 11434 env->insn_idx++; 11435 continue; 11436 } 11437 11438 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11439 verbose(env, "BPF_STX uses reserved fields\n"); 11440 return -EINVAL; 11441 } 11442 11443 /* check src1 operand */ 11444 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11445 if (err) 11446 return err; 11447 /* check src2 operand */ 11448 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11449 if (err) 11450 return err; 11451 11452 dst_reg_type = regs[insn->dst_reg].type; 11453 11454 /* check that memory (dst_reg + off) is writeable */ 11455 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11456 insn->off, BPF_SIZE(insn->code), 11457 BPF_WRITE, insn->src_reg, false); 11458 if (err) 11459 return err; 11460 11461 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11462 11463 if (*prev_dst_type == NOT_INIT) { 11464 *prev_dst_type = dst_reg_type; 11465 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11466 verbose(env, "same insn cannot be used with different pointers\n"); 11467 return -EINVAL; 11468 } 11469 11470 } else if (class == BPF_ST) { 11471 if (BPF_MODE(insn->code) != BPF_MEM || 11472 insn->src_reg != BPF_REG_0) { 11473 verbose(env, "BPF_ST uses reserved fields\n"); 11474 return -EINVAL; 11475 } 11476 /* check src operand */ 11477 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11478 if (err) 11479 return err; 11480 11481 if (is_ctx_reg(env, insn->dst_reg)) { 11482 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11483 insn->dst_reg, 11484 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 11485 return -EACCES; 11486 } 11487 11488 /* check that memory (dst_reg + off) is writeable */ 11489 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11490 insn->off, BPF_SIZE(insn->code), 11491 BPF_WRITE, -1, false); 11492 if (err) 11493 return err; 11494 11495 } else if (class == BPF_JMP || class == BPF_JMP32) { 11496 u8 opcode = BPF_OP(insn->code); 11497 11498 env->jmps_processed++; 11499 if (opcode == BPF_CALL) { 11500 if (BPF_SRC(insn->code) != BPF_K || 11501 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11502 && insn->off != 0) || 11503 (insn->src_reg != BPF_REG_0 && 11504 insn->src_reg != BPF_PSEUDO_CALL && 11505 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11506 insn->dst_reg != BPF_REG_0 || 11507 class == BPF_JMP32) { 11508 verbose(env, "BPF_CALL uses reserved fields\n"); 11509 return -EINVAL; 11510 } 11511 11512 if (env->cur_state->active_spin_lock && 11513 (insn->src_reg == BPF_PSEUDO_CALL || 11514 insn->imm != BPF_FUNC_spin_unlock)) { 11515 verbose(env, "function calls are not allowed while holding a lock\n"); 11516 return -EINVAL; 11517 } 11518 if (insn->src_reg == BPF_PSEUDO_CALL) 11519 err = check_func_call(env, insn, &env->insn_idx); 11520 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11521 err = check_kfunc_call(env, insn); 11522 else 11523 err = check_helper_call(env, insn, &env->insn_idx); 11524 if (err) 11525 return err; 11526 } else if (opcode == BPF_JA) { 11527 if (BPF_SRC(insn->code) != BPF_K || 11528 insn->imm != 0 || 11529 insn->src_reg != BPF_REG_0 || 11530 insn->dst_reg != BPF_REG_0 || 11531 class == BPF_JMP32) { 11532 verbose(env, "BPF_JA uses reserved fields\n"); 11533 return -EINVAL; 11534 } 11535 11536 env->insn_idx += insn->off + 1; 11537 continue; 11538 11539 } else if (opcode == BPF_EXIT) { 11540 if (BPF_SRC(insn->code) != BPF_K || 11541 insn->imm != 0 || 11542 insn->src_reg != BPF_REG_0 || 11543 insn->dst_reg != BPF_REG_0 || 11544 class == BPF_JMP32) { 11545 verbose(env, "BPF_EXIT uses reserved fields\n"); 11546 return -EINVAL; 11547 } 11548 11549 if (env->cur_state->active_spin_lock) { 11550 verbose(env, "bpf_spin_unlock is missing\n"); 11551 return -EINVAL; 11552 } 11553 11554 if (state->curframe) { 11555 /* exit from nested function */ 11556 err = prepare_func_exit(env, &env->insn_idx); 11557 if (err) 11558 return err; 11559 do_print_state = true; 11560 continue; 11561 } 11562 11563 err = check_reference_leak(env); 11564 if (err) 11565 return err; 11566 11567 err = check_return_code(env); 11568 if (err) 11569 return err; 11570 process_bpf_exit: 11571 mark_verifier_state_scratched(env); 11572 update_branch_counts(env, env->cur_state); 11573 err = pop_stack(env, &prev_insn_idx, 11574 &env->insn_idx, pop_log); 11575 if (err < 0) { 11576 if (err != -ENOENT) 11577 return err; 11578 break; 11579 } else { 11580 do_print_state = true; 11581 continue; 11582 } 11583 } else { 11584 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11585 if (err) 11586 return err; 11587 } 11588 } else if (class == BPF_LD) { 11589 u8 mode = BPF_MODE(insn->code); 11590 11591 if (mode == BPF_ABS || mode == BPF_IND) { 11592 err = check_ld_abs(env, insn); 11593 if (err) 11594 return err; 11595 11596 } else if (mode == BPF_IMM) { 11597 err = check_ld_imm(env, insn); 11598 if (err) 11599 return err; 11600 11601 env->insn_idx++; 11602 sanitize_mark_insn_seen(env); 11603 } else { 11604 verbose(env, "invalid BPF_LD mode\n"); 11605 return -EINVAL; 11606 } 11607 } else { 11608 verbose(env, "unknown insn class %d\n", class); 11609 return -EINVAL; 11610 } 11611 11612 env->insn_idx++; 11613 } 11614 11615 return 0; 11616 } 11617 11618 static int find_btf_percpu_datasec(struct btf *btf) 11619 { 11620 const struct btf_type *t; 11621 const char *tname; 11622 int i, n; 11623 11624 /* 11625 * Both vmlinux and module each have their own ".data..percpu" 11626 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11627 * types to look at only module's own BTF types. 11628 */ 11629 n = btf_nr_types(btf); 11630 if (btf_is_module(btf)) 11631 i = btf_nr_types(btf_vmlinux); 11632 else 11633 i = 1; 11634 11635 for(; i < n; i++) { 11636 t = btf_type_by_id(btf, i); 11637 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11638 continue; 11639 11640 tname = btf_name_by_offset(btf, t->name_off); 11641 if (!strcmp(tname, ".data..percpu")) 11642 return i; 11643 } 11644 11645 return -ENOENT; 11646 } 11647 11648 /* replace pseudo btf_id with kernel symbol address */ 11649 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11650 struct bpf_insn *insn, 11651 struct bpf_insn_aux_data *aux) 11652 { 11653 const struct btf_var_secinfo *vsi; 11654 const struct btf_type *datasec; 11655 struct btf_mod_pair *btf_mod; 11656 const struct btf_type *t; 11657 const char *sym_name; 11658 bool percpu = false; 11659 u32 type, id = insn->imm; 11660 struct btf *btf; 11661 s32 datasec_id; 11662 u64 addr; 11663 int i, btf_fd, err; 11664 11665 btf_fd = insn[1].imm; 11666 if (btf_fd) { 11667 btf = btf_get_by_fd(btf_fd); 11668 if (IS_ERR(btf)) { 11669 verbose(env, "invalid module BTF object FD specified.\n"); 11670 return -EINVAL; 11671 } 11672 } else { 11673 if (!btf_vmlinux) { 11674 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11675 return -EINVAL; 11676 } 11677 btf = btf_vmlinux; 11678 btf_get(btf); 11679 } 11680 11681 t = btf_type_by_id(btf, id); 11682 if (!t) { 11683 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11684 err = -ENOENT; 11685 goto err_put; 11686 } 11687 11688 if (!btf_type_is_var(t)) { 11689 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11690 err = -EINVAL; 11691 goto err_put; 11692 } 11693 11694 sym_name = btf_name_by_offset(btf, t->name_off); 11695 addr = kallsyms_lookup_name(sym_name); 11696 if (!addr) { 11697 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11698 sym_name); 11699 err = -ENOENT; 11700 goto err_put; 11701 } 11702 11703 datasec_id = find_btf_percpu_datasec(btf); 11704 if (datasec_id > 0) { 11705 datasec = btf_type_by_id(btf, datasec_id); 11706 for_each_vsi(i, datasec, vsi) { 11707 if (vsi->type == id) { 11708 percpu = true; 11709 break; 11710 } 11711 } 11712 } 11713 11714 insn[0].imm = (u32)addr; 11715 insn[1].imm = addr >> 32; 11716 11717 type = t->type; 11718 t = btf_type_skip_modifiers(btf, type, NULL); 11719 if (percpu) { 11720 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11721 aux->btf_var.btf = btf; 11722 aux->btf_var.btf_id = type; 11723 } else if (!btf_type_is_struct(t)) { 11724 const struct btf_type *ret; 11725 const char *tname; 11726 u32 tsize; 11727 11728 /* resolve the type size of ksym. */ 11729 ret = btf_resolve_size(btf, t, &tsize); 11730 if (IS_ERR(ret)) { 11731 tname = btf_name_by_offset(btf, t->name_off); 11732 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11733 tname, PTR_ERR(ret)); 11734 err = -EINVAL; 11735 goto err_put; 11736 } 11737 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 11738 aux->btf_var.mem_size = tsize; 11739 } else { 11740 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11741 aux->btf_var.btf = btf; 11742 aux->btf_var.btf_id = type; 11743 } 11744 11745 /* check whether we recorded this BTF (and maybe module) already */ 11746 for (i = 0; i < env->used_btf_cnt; i++) { 11747 if (env->used_btfs[i].btf == btf) { 11748 btf_put(btf); 11749 return 0; 11750 } 11751 } 11752 11753 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11754 err = -E2BIG; 11755 goto err_put; 11756 } 11757 11758 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11759 btf_mod->btf = btf; 11760 btf_mod->module = NULL; 11761 11762 /* if we reference variables from kernel module, bump its refcount */ 11763 if (btf_is_module(btf)) { 11764 btf_mod->module = btf_try_get_module(btf); 11765 if (!btf_mod->module) { 11766 err = -ENXIO; 11767 goto err_put; 11768 } 11769 } 11770 11771 env->used_btf_cnt++; 11772 11773 return 0; 11774 err_put: 11775 btf_put(btf); 11776 return err; 11777 } 11778 11779 static int check_map_prealloc(struct bpf_map *map) 11780 { 11781 return (map->map_type != BPF_MAP_TYPE_HASH && 11782 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11783 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11784 !(map->map_flags & BPF_F_NO_PREALLOC); 11785 } 11786 11787 static bool is_tracing_prog_type(enum bpf_prog_type type) 11788 { 11789 switch (type) { 11790 case BPF_PROG_TYPE_KPROBE: 11791 case BPF_PROG_TYPE_TRACEPOINT: 11792 case BPF_PROG_TYPE_PERF_EVENT: 11793 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11794 return true; 11795 default: 11796 return false; 11797 } 11798 } 11799 11800 static bool is_preallocated_map(struct bpf_map *map) 11801 { 11802 if (!check_map_prealloc(map)) 11803 return false; 11804 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11805 return false; 11806 return true; 11807 } 11808 11809 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11810 struct bpf_map *map, 11811 struct bpf_prog *prog) 11812 11813 { 11814 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11815 /* 11816 * Validate that trace type programs use preallocated hash maps. 11817 * 11818 * For programs attached to PERF events this is mandatory as the 11819 * perf NMI can hit any arbitrary code sequence. 11820 * 11821 * All other trace types using preallocated hash maps are unsafe as 11822 * well because tracepoint or kprobes can be inside locked regions 11823 * of the memory allocator or at a place where a recursion into the 11824 * memory allocator would see inconsistent state. 11825 * 11826 * On RT enabled kernels run-time allocation of all trace type 11827 * programs is strictly prohibited due to lock type constraints. On 11828 * !RT kernels it is allowed for backwards compatibility reasons for 11829 * now, but warnings are emitted so developers are made aware of 11830 * the unsafety and can fix their programs before this is enforced. 11831 */ 11832 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11833 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11834 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11835 return -EINVAL; 11836 } 11837 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11838 verbose(env, "trace type programs can only use preallocated hash map\n"); 11839 return -EINVAL; 11840 } 11841 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11842 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11843 } 11844 11845 if (map_value_has_spin_lock(map)) { 11846 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11847 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11848 return -EINVAL; 11849 } 11850 11851 if (is_tracing_prog_type(prog_type)) { 11852 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11853 return -EINVAL; 11854 } 11855 11856 if (prog->aux->sleepable) { 11857 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11858 return -EINVAL; 11859 } 11860 } 11861 11862 if (map_value_has_timer(map)) { 11863 if (is_tracing_prog_type(prog_type)) { 11864 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 11865 return -EINVAL; 11866 } 11867 } 11868 11869 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11870 !bpf_offload_prog_map_match(prog, map)) { 11871 verbose(env, "offload device mismatch between prog and map\n"); 11872 return -EINVAL; 11873 } 11874 11875 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11876 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11877 return -EINVAL; 11878 } 11879 11880 if (prog->aux->sleepable) 11881 switch (map->map_type) { 11882 case BPF_MAP_TYPE_HASH: 11883 case BPF_MAP_TYPE_LRU_HASH: 11884 case BPF_MAP_TYPE_ARRAY: 11885 case BPF_MAP_TYPE_PERCPU_HASH: 11886 case BPF_MAP_TYPE_PERCPU_ARRAY: 11887 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11888 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11889 case BPF_MAP_TYPE_HASH_OF_MAPS: 11890 if (!is_preallocated_map(map)) { 11891 verbose(env, 11892 "Sleepable programs can only use preallocated maps\n"); 11893 return -EINVAL; 11894 } 11895 break; 11896 case BPF_MAP_TYPE_RINGBUF: 11897 case BPF_MAP_TYPE_INODE_STORAGE: 11898 case BPF_MAP_TYPE_SK_STORAGE: 11899 case BPF_MAP_TYPE_TASK_STORAGE: 11900 break; 11901 default: 11902 verbose(env, 11903 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11904 return -EINVAL; 11905 } 11906 11907 return 0; 11908 } 11909 11910 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11911 { 11912 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11913 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11914 } 11915 11916 /* find and rewrite pseudo imm in ld_imm64 instructions: 11917 * 11918 * 1. if it accesses map FD, replace it with actual map pointer. 11919 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11920 * 11921 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11922 */ 11923 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11924 { 11925 struct bpf_insn *insn = env->prog->insnsi; 11926 int insn_cnt = env->prog->len; 11927 int i, j, err; 11928 11929 err = bpf_prog_calc_tag(env->prog); 11930 if (err) 11931 return err; 11932 11933 for (i = 0; i < insn_cnt; i++, insn++) { 11934 if (BPF_CLASS(insn->code) == BPF_LDX && 11935 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11936 verbose(env, "BPF_LDX uses reserved fields\n"); 11937 return -EINVAL; 11938 } 11939 11940 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11941 struct bpf_insn_aux_data *aux; 11942 struct bpf_map *map; 11943 struct fd f; 11944 u64 addr; 11945 u32 fd; 11946 11947 if (i == insn_cnt - 1 || insn[1].code != 0 || 11948 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11949 insn[1].off != 0) { 11950 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11951 return -EINVAL; 11952 } 11953 11954 if (insn[0].src_reg == 0) 11955 /* valid generic load 64-bit imm */ 11956 goto next_insn; 11957 11958 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11959 aux = &env->insn_aux_data[i]; 11960 err = check_pseudo_btf_id(env, insn, aux); 11961 if (err) 11962 return err; 11963 goto next_insn; 11964 } 11965 11966 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11967 aux = &env->insn_aux_data[i]; 11968 aux->ptr_type = PTR_TO_FUNC; 11969 goto next_insn; 11970 } 11971 11972 /* In final convert_pseudo_ld_imm64() step, this is 11973 * converted into regular 64-bit imm load insn. 11974 */ 11975 switch (insn[0].src_reg) { 11976 case BPF_PSEUDO_MAP_VALUE: 11977 case BPF_PSEUDO_MAP_IDX_VALUE: 11978 break; 11979 case BPF_PSEUDO_MAP_FD: 11980 case BPF_PSEUDO_MAP_IDX: 11981 if (insn[1].imm == 0) 11982 break; 11983 fallthrough; 11984 default: 11985 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11986 return -EINVAL; 11987 } 11988 11989 switch (insn[0].src_reg) { 11990 case BPF_PSEUDO_MAP_IDX_VALUE: 11991 case BPF_PSEUDO_MAP_IDX: 11992 if (bpfptr_is_null(env->fd_array)) { 11993 verbose(env, "fd_idx without fd_array is invalid\n"); 11994 return -EPROTO; 11995 } 11996 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11997 insn[0].imm * sizeof(fd), 11998 sizeof(fd))) 11999 return -EFAULT; 12000 break; 12001 default: 12002 fd = insn[0].imm; 12003 break; 12004 } 12005 12006 f = fdget(fd); 12007 map = __bpf_map_get(f); 12008 if (IS_ERR(map)) { 12009 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12010 insn[0].imm); 12011 return PTR_ERR(map); 12012 } 12013 12014 err = check_map_prog_compatibility(env, map, env->prog); 12015 if (err) { 12016 fdput(f); 12017 return err; 12018 } 12019 12020 aux = &env->insn_aux_data[i]; 12021 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12022 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12023 addr = (unsigned long)map; 12024 } else { 12025 u32 off = insn[1].imm; 12026 12027 if (off >= BPF_MAX_VAR_OFF) { 12028 verbose(env, "direct value offset of %u is not allowed\n", off); 12029 fdput(f); 12030 return -EINVAL; 12031 } 12032 12033 if (!map->ops->map_direct_value_addr) { 12034 verbose(env, "no direct value access support for this map type\n"); 12035 fdput(f); 12036 return -EINVAL; 12037 } 12038 12039 err = map->ops->map_direct_value_addr(map, &addr, off); 12040 if (err) { 12041 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12042 map->value_size, off); 12043 fdput(f); 12044 return err; 12045 } 12046 12047 aux->map_off = off; 12048 addr += off; 12049 } 12050 12051 insn[0].imm = (u32)addr; 12052 insn[1].imm = addr >> 32; 12053 12054 /* check whether we recorded this map already */ 12055 for (j = 0; j < env->used_map_cnt; j++) { 12056 if (env->used_maps[j] == map) { 12057 aux->map_index = j; 12058 fdput(f); 12059 goto next_insn; 12060 } 12061 } 12062 12063 if (env->used_map_cnt >= MAX_USED_MAPS) { 12064 fdput(f); 12065 return -E2BIG; 12066 } 12067 12068 /* hold the map. If the program is rejected by verifier, 12069 * the map will be released by release_maps() or it 12070 * will be used by the valid program until it's unloaded 12071 * and all maps are released in free_used_maps() 12072 */ 12073 bpf_map_inc(map); 12074 12075 aux->map_index = env->used_map_cnt; 12076 env->used_maps[env->used_map_cnt++] = map; 12077 12078 if (bpf_map_is_cgroup_storage(map) && 12079 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12080 verbose(env, "only one cgroup storage of each type is allowed\n"); 12081 fdput(f); 12082 return -EBUSY; 12083 } 12084 12085 fdput(f); 12086 next_insn: 12087 insn++; 12088 i++; 12089 continue; 12090 } 12091 12092 /* Basic sanity check before we invest more work here. */ 12093 if (!bpf_opcode_in_insntable(insn->code)) { 12094 verbose(env, "unknown opcode %02x\n", insn->code); 12095 return -EINVAL; 12096 } 12097 } 12098 12099 /* now all pseudo BPF_LD_IMM64 instructions load valid 12100 * 'struct bpf_map *' into a register instead of user map_fd. 12101 * These pointers will be used later by verifier to validate map access. 12102 */ 12103 return 0; 12104 } 12105 12106 /* drop refcnt of maps used by the rejected program */ 12107 static void release_maps(struct bpf_verifier_env *env) 12108 { 12109 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12110 env->used_map_cnt); 12111 } 12112 12113 /* drop refcnt of maps used by the rejected program */ 12114 static void release_btfs(struct bpf_verifier_env *env) 12115 { 12116 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12117 env->used_btf_cnt); 12118 } 12119 12120 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12121 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12122 { 12123 struct bpf_insn *insn = env->prog->insnsi; 12124 int insn_cnt = env->prog->len; 12125 int i; 12126 12127 for (i = 0; i < insn_cnt; i++, insn++) { 12128 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12129 continue; 12130 if (insn->src_reg == BPF_PSEUDO_FUNC) 12131 continue; 12132 insn->src_reg = 0; 12133 } 12134 } 12135 12136 /* single env->prog->insni[off] instruction was replaced with the range 12137 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12138 * [0, off) and [off, end) to new locations, so the patched range stays zero 12139 */ 12140 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12141 struct bpf_insn_aux_data *new_data, 12142 struct bpf_prog *new_prog, u32 off, u32 cnt) 12143 { 12144 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12145 struct bpf_insn *insn = new_prog->insnsi; 12146 u32 old_seen = old_data[off].seen; 12147 u32 prog_len; 12148 int i; 12149 12150 /* aux info at OFF always needs adjustment, no matter fast path 12151 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12152 * original insn at old prog. 12153 */ 12154 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12155 12156 if (cnt == 1) 12157 return; 12158 prog_len = new_prog->len; 12159 12160 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12161 memcpy(new_data + off + cnt - 1, old_data + off, 12162 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12163 for (i = off; i < off + cnt - 1; i++) { 12164 /* Expand insni[off]'s seen count to the patched range. */ 12165 new_data[i].seen = old_seen; 12166 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12167 } 12168 env->insn_aux_data = new_data; 12169 vfree(old_data); 12170 } 12171 12172 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12173 { 12174 int i; 12175 12176 if (len == 1) 12177 return; 12178 /* NOTE: fake 'exit' subprog should be updated as well. */ 12179 for (i = 0; i <= env->subprog_cnt; i++) { 12180 if (env->subprog_info[i].start <= off) 12181 continue; 12182 env->subprog_info[i].start += len - 1; 12183 } 12184 } 12185 12186 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12187 { 12188 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12189 int i, sz = prog->aux->size_poke_tab; 12190 struct bpf_jit_poke_descriptor *desc; 12191 12192 for (i = 0; i < sz; i++) { 12193 desc = &tab[i]; 12194 if (desc->insn_idx <= off) 12195 continue; 12196 desc->insn_idx += len - 1; 12197 } 12198 } 12199 12200 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12201 const struct bpf_insn *patch, u32 len) 12202 { 12203 struct bpf_prog *new_prog; 12204 struct bpf_insn_aux_data *new_data = NULL; 12205 12206 if (len > 1) { 12207 new_data = vzalloc(array_size(env->prog->len + len - 1, 12208 sizeof(struct bpf_insn_aux_data))); 12209 if (!new_data) 12210 return NULL; 12211 } 12212 12213 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12214 if (IS_ERR(new_prog)) { 12215 if (PTR_ERR(new_prog) == -ERANGE) 12216 verbose(env, 12217 "insn %d cannot be patched due to 16-bit range\n", 12218 env->insn_aux_data[off].orig_idx); 12219 vfree(new_data); 12220 return NULL; 12221 } 12222 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12223 adjust_subprog_starts(env, off, len); 12224 adjust_poke_descs(new_prog, off, len); 12225 return new_prog; 12226 } 12227 12228 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12229 u32 off, u32 cnt) 12230 { 12231 int i, j; 12232 12233 /* find first prog starting at or after off (first to remove) */ 12234 for (i = 0; i < env->subprog_cnt; i++) 12235 if (env->subprog_info[i].start >= off) 12236 break; 12237 /* find first prog starting at or after off + cnt (first to stay) */ 12238 for (j = i; j < env->subprog_cnt; j++) 12239 if (env->subprog_info[j].start >= off + cnt) 12240 break; 12241 /* if j doesn't start exactly at off + cnt, we are just removing 12242 * the front of previous prog 12243 */ 12244 if (env->subprog_info[j].start != off + cnt) 12245 j--; 12246 12247 if (j > i) { 12248 struct bpf_prog_aux *aux = env->prog->aux; 12249 int move; 12250 12251 /* move fake 'exit' subprog as well */ 12252 move = env->subprog_cnt + 1 - j; 12253 12254 memmove(env->subprog_info + i, 12255 env->subprog_info + j, 12256 sizeof(*env->subprog_info) * move); 12257 env->subprog_cnt -= j - i; 12258 12259 /* remove func_info */ 12260 if (aux->func_info) { 12261 move = aux->func_info_cnt - j; 12262 12263 memmove(aux->func_info + i, 12264 aux->func_info + j, 12265 sizeof(*aux->func_info) * move); 12266 aux->func_info_cnt -= j - i; 12267 /* func_info->insn_off is set after all code rewrites, 12268 * in adjust_btf_func() - no need to adjust 12269 */ 12270 } 12271 } else { 12272 /* convert i from "first prog to remove" to "first to adjust" */ 12273 if (env->subprog_info[i].start == off) 12274 i++; 12275 } 12276 12277 /* update fake 'exit' subprog as well */ 12278 for (; i <= env->subprog_cnt; i++) 12279 env->subprog_info[i].start -= cnt; 12280 12281 return 0; 12282 } 12283 12284 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12285 u32 cnt) 12286 { 12287 struct bpf_prog *prog = env->prog; 12288 u32 i, l_off, l_cnt, nr_linfo; 12289 struct bpf_line_info *linfo; 12290 12291 nr_linfo = prog->aux->nr_linfo; 12292 if (!nr_linfo) 12293 return 0; 12294 12295 linfo = prog->aux->linfo; 12296 12297 /* find first line info to remove, count lines to be removed */ 12298 for (i = 0; i < nr_linfo; i++) 12299 if (linfo[i].insn_off >= off) 12300 break; 12301 12302 l_off = i; 12303 l_cnt = 0; 12304 for (; i < nr_linfo; i++) 12305 if (linfo[i].insn_off < off + cnt) 12306 l_cnt++; 12307 else 12308 break; 12309 12310 /* First live insn doesn't match first live linfo, it needs to "inherit" 12311 * last removed linfo. prog is already modified, so prog->len == off 12312 * means no live instructions after (tail of the program was removed). 12313 */ 12314 if (prog->len != off && l_cnt && 12315 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12316 l_cnt--; 12317 linfo[--i].insn_off = off + cnt; 12318 } 12319 12320 /* remove the line info which refer to the removed instructions */ 12321 if (l_cnt) { 12322 memmove(linfo + l_off, linfo + i, 12323 sizeof(*linfo) * (nr_linfo - i)); 12324 12325 prog->aux->nr_linfo -= l_cnt; 12326 nr_linfo = prog->aux->nr_linfo; 12327 } 12328 12329 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12330 for (i = l_off; i < nr_linfo; i++) 12331 linfo[i].insn_off -= cnt; 12332 12333 /* fix up all subprogs (incl. 'exit') which start >= off */ 12334 for (i = 0; i <= env->subprog_cnt; i++) 12335 if (env->subprog_info[i].linfo_idx > l_off) { 12336 /* program may have started in the removed region but 12337 * may not be fully removed 12338 */ 12339 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12340 env->subprog_info[i].linfo_idx -= l_cnt; 12341 else 12342 env->subprog_info[i].linfo_idx = l_off; 12343 } 12344 12345 return 0; 12346 } 12347 12348 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12349 { 12350 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12351 unsigned int orig_prog_len = env->prog->len; 12352 int err; 12353 12354 if (bpf_prog_is_dev_bound(env->prog->aux)) 12355 bpf_prog_offload_remove_insns(env, off, cnt); 12356 12357 err = bpf_remove_insns(env->prog, off, cnt); 12358 if (err) 12359 return err; 12360 12361 err = adjust_subprog_starts_after_remove(env, off, cnt); 12362 if (err) 12363 return err; 12364 12365 err = bpf_adj_linfo_after_remove(env, off, cnt); 12366 if (err) 12367 return err; 12368 12369 memmove(aux_data + off, aux_data + off + cnt, 12370 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12371 12372 return 0; 12373 } 12374 12375 /* The verifier does more data flow analysis than llvm and will not 12376 * explore branches that are dead at run time. Malicious programs can 12377 * have dead code too. Therefore replace all dead at-run-time code 12378 * with 'ja -1'. 12379 * 12380 * Just nops are not optimal, e.g. if they would sit at the end of the 12381 * program and through another bug we would manage to jump there, then 12382 * we'd execute beyond program memory otherwise. Returning exception 12383 * code also wouldn't work since we can have subprogs where the dead 12384 * code could be located. 12385 */ 12386 static void sanitize_dead_code(struct bpf_verifier_env *env) 12387 { 12388 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12389 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12390 struct bpf_insn *insn = env->prog->insnsi; 12391 const int insn_cnt = env->prog->len; 12392 int i; 12393 12394 for (i = 0; i < insn_cnt; i++) { 12395 if (aux_data[i].seen) 12396 continue; 12397 memcpy(insn + i, &trap, sizeof(trap)); 12398 aux_data[i].zext_dst = false; 12399 } 12400 } 12401 12402 static bool insn_is_cond_jump(u8 code) 12403 { 12404 u8 op; 12405 12406 if (BPF_CLASS(code) == BPF_JMP32) 12407 return true; 12408 12409 if (BPF_CLASS(code) != BPF_JMP) 12410 return false; 12411 12412 op = BPF_OP(code); 12413 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12414 } 12415 12416 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12417 { 12418 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12419 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12420 struct bpf_insn *insn = env->prog->insnsi; 12421 const int insn_cnt = env->prog->len; 12422 int i; 12423 12424 for (i = 0; i < insn_cnt; i++, insn++) { 12425 if (!insn_is_cond_jump(insn->code)) 12426 continue; 12427 12428 if (!aux_data[i + 1].seen) 12429 ja.off = insn->off; 12430 else if (!aux_data[i + 1 + insn->off].seen) 12431 ja.off = 0; 12432 else 12433 continue; 12434 12435 if (bpf_prog_is_dev_bound(env->prog->aux)) 12436 bpf_prog_offload_replace_insn(env, i, &ja); 12437 12438 memcpy(insn, &ja, sizeof(ja)); 12439 } 12440 } 12441 12442 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12443 { 12444 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12445 int insn_cnt = env->prog->len; 12446 int i, err; 12447 12448 for (i = 0; i < insn_cnt; i++) { 12449 int j; 12450 12451 j = 0; 12452 while (i + j < insn_cnt && !aux_data[i + j].seen) 12453 j++; 12454 if (!j) 12455 continue; 12456 12457 err = verifier_remove_insns(env, i, j); 12458 if (err) 12459 return err; 12460 insn_cnt = env->prog->len; 12461 } 12462 12463 return 0; 12464 } 12465 12466 static int opt_remove_nops(struct bpf_verifier_env *env) 12467 { 12468 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12469 struct bpf_insn *insn = env->prog->insnsi; 12470 int insn_cnt = env->prog->len; 12471 int i, err; 12472 12473 for (i = 0; i < insn_cnt; i++) { 12474 if (memcmp(&insn[i], &ja, sizeof(ja))) 12475 continue; 12476 12477 err = verifier_remove_insns(env, i, 1); 12478 if (err) 12479 return err; 12480 insn_cnt--; 12481 i--; 12482 } 12483 12484 return 0; 12485 } 12486 12487 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12488 const union bpf_attr *attr) 12489 { 12490 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12491 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12492 int i, patch_len, delta = 0, len = env->prog->len; 12493 struct bpf_insn *insns = env->prog->insnsi; 12494 struct bpf_prog *new_prog; 12495 bool rnd_hi32; 12496 12497 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12498 zext_patch[1] = BPF_ZEXT_REG(0); 12499 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12500 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12501 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12502 for (i = 0; i < len; i++) { 12503 int adj_idx = i + delta; 12504 struct bpf_insn insn; 12505 int load_reg; 12506 12507 insn = insns[adj_idx]; 12508 load_reg = insn_def_regno(&insn); 12509 if (!aux[adj_idx].zext_dst) { 12510 u8 code, class; 12511 u32 imm_rnd; 12512 12513 if (!rnd_hi32) 12514 continue; 12515 12516 code = insn.code; 12517 class = BPF_CLASS(code); 12518 if (load_reg == -1) 12519 continue; 12520 12521 /* NOTE: arg "reg" (the fourth one) is only used for 12522 * BPF_STX + SRC_OP, so it is safe to pass NULL 12523 * here. 12524 */ 12525 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12526 if (class == BPF_LD && 12527 BPF_MODE(code) == BPF_IMM) 12528 i++; 12529 continue; 12530 } 12531 12532 /* ctx load could be transformed into wider load. */ 12533 if (class == BPF_LDX && 12534 aux[adj_idx].ptr_type == PTR_TO_CTX) 12535 continue; 12536 12537 imm_rnd = get_random_int(); 12538 rnd_hi32_patch[0] = insn; 12539 rnd_hi32_patch[1].imm = imm_rnd; 12540 rnd_hi32_patch[3].dst_reg = load_reg; 12541 patch = rnd_hi32_patch; 12542 patch_len = 4; 12543 goto apply_patch_buffer; 12544 } 12545 12546 /* Add in an zero-extend instruction if a) the JIT has requested 12547 * it or b) it's a CMPXCHG. 12548 * 12549 * The latter is because: BPF_CMPXCHG always loads a value into 12550 * R0, therefore always zero-extends. However some archs' 12551 * equivalent instruction only does this load when the 12552 * comparison is successful. This detail of CMPXCHG is 12553 * orthogonal to the general zero-extension behaviour of the 12554 * CPU, so it's treated independently of bpf_jit_needs_zext. 12555 */ 12556 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12557 continue; 12558 12559 if (WARN_ON(load_reg == -1)) { 12560 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12561 return -EFAULT; 12562 } 12563 12564 zext_patch[0] = insn; 12565 zext_patch[1].dst_reg = load_reg; 12566 zext_patch[1].src_reg = load_reg; 12567 patch = zext_patch; 12568 patch_len = 2; 12569 apply_patch_buffer: 12570 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12571 if (!new_prog) 12572 return -ENOMEM; 12573 env->prog = new_prog; 12574 insns = new_prog->insnsi; 12575 aux = env->insn_aux_data; 12576 delta += patch_len - 1; 12577 } 12578 12579 return 0; 12580 } 12581 12582 /* convert load instructions that access fields of a context type into a 12583 * sequence of instructions that access fields of the underlying structure: 12584 * struct __sk_buff -> struct sk_buff 12585 * struct bpf_sock_ops -> struct sock 12586 */ 12587 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12588 { 12589 const struct bpf_verifier_ops *ops = env->ops; 12590 int i, cnt, size, ctx_field_size, delta = 0; 12591 const int insn_cnt = env->prog->len; 12592 struct bpf_insn insn_buf[16], *insn; 12593 u32 target_size, size_default, off; 12594 struct bpf_prog *new_prog; 12595 enum bpf_access_type type; 12596 bool is_narrower_load; 12597 12598 if (ops->gen_prologue || env->seen_direct_write) { 12599 if (!ops->gen_prologue) { 12600 verbose(env, "bpf verifier is misconfigured\n"); 12601 return -EINVAL; 12602 } 12603 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12604 env->prog); 12605 if (cnt >= ARRAY_SIZE(insn_buf)) { 12606 verbose(env, "bpf verifier is misconfigured\n"); 12607 return -EINVAL; 12608 } else if (cnt) { 12609 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12610 if (!new_prog) 12611 return -ENOMEM; 12612 12613 env->prog = new_prog; 12614 delta += cnt - 1; 12615 } 12616 } 12617 12618 if (bpf_prog_is_dev_bound(env->prog->aux)) 12619 return 0; 12620 12621 insn = env->prog->insnsi + delta; 12622 12623 for (i = 0; i < insn_cnt; i++, insn++) { 12624 bpf_convert_ctx_access_t convert_ctx_access; 12625 bool ctx_access; 12626 12627 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12628 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12629 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12630 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12631 type = BPF_READ; 12632 ctx_access = true; 12633 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12634 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12635 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12636 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12637 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12638 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12639 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12640 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12641 type = BPF_WRITE; 12642 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12643 } else { 12644 continue; 12645 } 12646 12647 if (type == BPF_WRITE && 12648 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12649 struct bpf_insn patch[] = { 12650 *insn, 12651 BPF_ST_NOSPEC(), 12652 }; 12653 12654 cnt = ARRAY_SIZE(patch); 12655 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12656 if (!new_prog) 12657 return -ENOMEM; 12658 12659 delta += cnt - 1; 12660 env->prog = new_prog; 12661 insn = new_prog->insnsi + i + delta; 12662 continue; 12663 } 12664 12665 if (!ctx_access) 12666 continue; 12667 12668 switch (env->insn_aux_data[i + delta].ptr_type) { 12669 case PTR_TO_CTX: 12670 if (!ops->convert_ctx_access) 12671 continue; 12672 convert_ctx_access = ops->convert_ctx_access; 12673 break; 12674 case PTR_TO_SOCKET: 12675 case PTR_TO_SOCK_COMMON: 12676 convert_ctx_access = bpf_sock_convert_ctx_access; 12677 break; 12678 case PTR_TO_TCP_SOCK: 12679 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12680 break; 12681 case PTR_TO_XDP_SOCK: 12682 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12683 break; 12684 case PTR_TO_BTF_ID: 12685 if (type == BPF_READ) { 12686 insn->code = BPF_LDX | BPF_PROBE_MEM | 12687 BPF_SIZE((insn)->code); 12688 env->prog->aux->num_exentries++; 12689 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12690 verbose(env, "Writes through BTF pointers are not allowed\n"); 12691 return -EINVAL; 12692 } 12693 continue; 12694 default: 12695 continue; 12696 } 12697 12698 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12699 size = BPF_LDST_BYTES(insn); 12700 12701 /* If the read access is a narrower load of the field, 12702 * convert to a 4/8-byte load, to minimum program type specific 12703 * convert_ctx_access changes. If conversion is successful, 12704 * we will apply proper mask to the result. 12705 */ 12706 is_narrower_load = size < ctx_field_size; 12707 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12708 off = insn->off; 12709 if (is_narrower_load) { 12710 u8 size_code; 12711 12712 if (type == BPF_WRITE) { 12713 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12714 return -EINVAL; 12715 } 12716 12717 size_code = BPF_H; 12718 if (ctx_field_size == 4) 12719 size_code = BPF_W; 12720 else if (ctx_field_size == 8) 12721 size_code = BPF_DW; 12722 12723 insn->off = off & ~(size_default - 1); 12724 insn->code = BPF_LDX | BPF_MEM | size_code; 12725 } 12726 12727 target_size = 0; 12728 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12729 &target_size); 12730 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12731 (ctx_field_size && !target_size)) { 12732 verbose(env, "bpf verifier is misconfigured\n"); 12733 return -EINVAL; 12734 } 12735 12736 if (is_narrower_load && size < target_size) { 12737 u8 shift = bpf_ctx_narrow_access_offset( 12738 off, size, size_default) * 8; 12739 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12740 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12741 return -EINVAL; 12742 } 12743 if (ctx_field_size <= 4) { 12744 if (shift) 12745 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12746 insn->dst_reg, 12747 shift); 12748 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12749 (1 << size * 8) - 1); 12750 } else { 12751 if (shift) 12752 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12753 insn->dst_reg, 12754 shift); 12755 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12756 (1ULL << size * 8) - 1); 12757 } 12758 } 12759 12760 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12761 if (!new_prog) 12762 return -ENOMEM; 12763 12764 delta += cnt - 1; 12765 12766 /* keep walking new program and skip insns we just inserted */ 12767 env->prog = new_prog; 12768 insn = new_prog->insnsi + i + delta; 12769 } 12770 12771 return 0; 12772 } 12773 12774 static int jit_subprogs(struct bpf_verifier_env *env) 12775 { 12776 struct bpf_prog *prog = env->prog, **func, *tmp; 12777 int i, j, subprog_start, subprog_end = 0, len, subprog; 12778 struct bpf_map *map_ptr; 12779 struct bpf_insn *insn; 12780 void *old_bpf_func; 12781 int err, num_exentries; 12782 12783 if (env->subprog_cnt <= 1) 12784 return 0; 12785 12786 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12787 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 12788 continue; 12789 12790 /* Upon error here we cannot fall back to interpreter but 12791 * need a hard reject of the program. Thus -EFAULT is 12792 * propagated in any case. 12793 */ 12794 subprog = find_subprog(env, i + insn->imm + 1); 12795 if (subprog < 0) { 12796 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12797 i + insn->imm + 1); 12798 return -EFAULT; 12799 } 12800 /* temporarily remember subprog id inside insn instead of 12801 * aux_data, since next loop will split up all insns into funcs 12802 */ 12803 insn->off = subprog; 12804 /* remember original imm in case JIT fails and fallback 12805 * to interpreter will be needed 12806 */ 12807 env->insn_aux_data[i].call_imm = insn->imm; 12808 /* point imm to __bpf_call_base+1 from JITs point of view */ 12809 insn->imm = 1; 12810 if (bpf_pseudo_func(insn)) 12811 /* jit (e.g. x86_64) may emit fewer instructions 12812 * if it learns a u32 imm is the same as a u64 imm. 12813 * Force a non zero here. 12814 */ 12815 insn[1].imm = 1; 12816 } 12817 12818 err = bpf_prog_alloc_jited_linfo(prog); 12819 if (err) 12820 goto out_undo_insn; 12821 12822 err = -ENOMEM; 12823 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12824 if (!func) 12825 goto out_undo_insn; 12826 12827 for (i = 0; i < env->subprog_cnt; i++) { 12828 subprog_start = subprog_end; 12829 subprog_end = env->subprog_info[i + 1].start; 12830 12831 len = subprog_end - subprog_start; 12832 /* bpf_prog_run() doesn't call subprogs directly, 12833 * hence main prog stats include the runtime of subprogs. 12834 * subprogs don't have IDs and not reachable via prog_get_next_id 12835 * func[i]->stats will never be accessed and stays NULL 12836 */ 12837 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12838 if (!func[i]) 12839 goto out_free; 12840 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12841 len * sizeof(struct bpf_insn)); 12842 func[i]->type = prog->type; 12843 func[i]->len = len; 12844 if (bpf_prog_calc_tag(func[i])) 12845 goto out_free; 12846 func[i]->is_func = 1; 12847 func[i]->aux->func_idx = i; 12848 /* Below members will be freed only at prog->aux */ 12849 func[i]->aux->btf = prog->aux->btf; 12850 func[i]->aux->func_info = prog->aux->func_info; 12851 func[i]->aux->poke_tab = prog->aux->poke_tab; 12852 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12853 12854 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12855 struct bpf_jit_poke_descriptor *poke; 12856 12857 poke = &prog->aux->poke_tab[j]; 12858 if (poke->insn_idx < subprog_end && 12859 poke->insn_idx >= subprog_start) 12860 poke->aux = func[i]->aux; 12861 } 12862 12863 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12864 * Long term would need debug info to populate names 12865 */ 12866 func[i]->aux->name[0] = 'F'; 12867 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12868 func[i]->jit_requested = 1; 12869 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12870 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12871 func[i]->aux->linfo = prog->aux->linfo; 12872 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12873 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12874 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12875 num_exentries = 0; 12876 insn = func[i]->insnsi; 12877 for (j = 0; j < func[i]->len; j++, insn++) { 12878 if (BPF_CLASS(insn->code) == BPF_LDX && 12879 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12880 num_exentries++; 12881 } 12882 func[i]->aux->num_exentries = num_exentries; 12883 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12884 func[i] = bpf_int_jit_compile(func[i]); 12885 if (!func[i]->jited) { 12886 err = -ENOTSUPP; 12887 goto out_free; 12888 } 12889 cond_resched(); 12890 } 12891 12892 /* at this point all bpf functions were successfully JITed 12893 * now populate all bpf_calls with correct addresses and 12894 * run last pass of JIT 12895 */ 12896 for (i = 0; i < env->subprog_cnt; i++) { 12897 insn = func[i]->insnsi; 12898 for (j = 0; j < func[i]->len; j++, insn++) { 12899 if (bpf_pseudo_func(insn)) { 12900 subprog = insn->off; 12901 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12902 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12903 continue; 12904 } 12905 if (!bpf_pseudo_call(insn)) 12906 continue; 12907 subprog = insn->off; 12908 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12909 } 12910 12911 /* we use the aux data to keep a list of the start addresses 12912 * of the JITed images for each function in the program 12913 * 12914 * for some architectures, such as powerpc64, the imm field 12915 * might not be large enough to hold the offset of the start 12916 * address of the callee's JITed image from __bpf_call_base 12917 * 12918 * in such cases, we can lookup the start address of a callee 12919 * by using its subprog id, available from the off field of 12920 * the call instruction, as an index for this list 12921 */ 12922 func[i]->aux->func = func; 12923 func[i]->aux->func_cnt = env->subprog_cnt; 12924 } 12925 for (i = 0; i < env->subprog_cnt; i++) { 12926 old_bpf_func = func[i]->bpf_func; 12927 tmp = bpf_int_jit_compile(func[i]); 12928 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12929 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12930 err = -ENOTSUPP; 12931 goto out_free; 12932 } 12933 cond_resched(); 12934 } 12935 12936 /* finally lock prog and jit images for all functions and 12937 * populate kallsysm 12938 */ 12939 for (i = 0; i < env->subprog_cnt; i++) { 12940 bpf_prog_lock_ro(func[i]); 12941 bpf_prog_kallsyms_add(func[i]); 12942 } 12943 12944 /* Last step: make now unused interpreter insns from main 12945 * prog consistent for later dump requests, so they can 12946 * later look the same as if they were interpreted only. 12947 */ 12948 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12949 if (bpf_pseudo_func(insn)) { 12950 insn[0].imm = env->insn_aux_data[i].call_imm; 12951 insn[1].imm = insn->off; 12952 insn->off = 0; 12953 continue; 12954 } 12955 if (!bpf_pseudo_call(insn)) 12956 continue; 12957 insn->off = env->insn_aux_data[i].call_imm; 12958 subprog = find_subprog(env, i + insn->off + 1); 12959 insn->imm = subprog; 12960 } 12961 12962 prog->jited = 1; 12963 prog->bpf_func = func[0]->bpf_func; 12964 prog->aux->func = func; 12965 prog->aux->func_cnt = env->subprog_cnt; 12966 bpf_prog_jit_attempt_done(prog); 12967 return 0; 12968 out_free: 12969 /* We failed JIT'ing, so at this point we need to unregister poke 12970 * descriptors from subprogs, so that kernel is not attempting to 12971 * patch it anymore as we're freeing the subprog JIT memory. 12972 */ 12973 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12974 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12975 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12976 } 12977 /* At this point we're guaranteed that poke descriptors are not 12978 * live anymore. We can just unlink its descriptor table as it's 12979 * released with the main prog. 12980 */ 12981 for (i = 0; i < env->subprog_cnt; i++) { 12982 if (!func[i]) 12983 continue; 12984 func[i]->aux->poke_tab = NULL; 12985 bpf_jit_free(func[i]); 12986 } 12987 kfree(func); 12988 out_undo_insn: 12989 /* cleanup main prog to be interpreted */ 12990 prog->jit_requested = 0; 12991 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12992 if (!bpf_pseudo_call(insn)) 12993 continue; 12994 insn->off = 0; 12995 insn->imm = env->insn_aux_data[i].call_imm; 12996 } 12997 bpf_prog_jit_attempt_done(prog); 12998 return err; 12999 } 13000 13001 static int fixup_call_args(struct bpf_verifier_env *env) 13002 { 13003 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13004 struct bpf_prog *prog = env->prog; 13005 struct bpf_insn *insn = prog->insnsi; 13006 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13007 int i, depth; 13008 #endif 13009 int err = 0; 13010 13011 if (env->prog->jit_requested && 13012 !bpf_prog_is_dev_bound(env->prog->aux)) { 13013 err = jit_subprogs(env); 13014 if (err == 0) 13015 return 0; 13016 if (err == -EFAULT) 13017 return err; 13018 } 13019 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13020 if (has_kfunc_call) { 13021 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13022 return -EINVAL; 13023 } 13024 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13025 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13026 * have to be rejected, since interpreter doesn't support them yet. 13027 */ 13028 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13029 return -EINVAL; 13030 } 13031 for (i = 0; i < prog->len; i++, insn++) { 13032 if (bpf_pseudo_func(insn)) { 13033 /* When JIT fails the progs with callback calls 13034 * have to be rejected, since interpreter doesn't support them yet. 13035 */ 13036 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13037 return -EINVAL; 13038 } 13039 13040 if (!bpf_pseudo_call(insn)) 13041 continue; 13042 depth = get_callee_stack_depth(env, insn, i); 13043 if (depth < 0) 13044 return depth; 13045 bpf_patch_call_args(insn, depth); 13046 } 13047 err = 0; 13048 #endif 13049 return err; 13050 } 13051 13052 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13053 struct bpf_insn *insn) 13054 { 13055 const struct bpf_kfunc_desc *desc; 13056 13057 if (!insn->imm) { 13058 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13059 return -EINVAL; 13060 } 13061 13062 /* insn->imm has the btf func_id. Replace it with 13063 * an address (relative to __bpf_base_call). 13064 */ 13065 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13066 if (!desc) { 13067 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13068 insn->imm); 13069 return -EFAULT; 13070 } 13071 13072 insn->imm = desc->imm; 13073 13074 return 0; 13075 } 13076 13077 /* Do various post-verification rewrites in a single program pass. 13078 * These rewrites simplify JIT and interpreter implementations. 13079 */ 13080 static int do_misc_fixups(struct bpf_verifier_env *env) 13081 { 13082 struct bpf_prog *prog = env->prog; 13083 enum bpf_attach_type eatype = prog->expected_attach_type; 13084 bool expect_blinding = bpf_jit_blinding_enabled(prog); 13085 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13086 struct bpf_insn *insn = prog->insnsi; 13087 const struct bpf_func_proto *fn; 13088 const int insn_cnt = prog->len; 13089 const struct bpf_map_ops *ops; 13090 struct bpf_insn_aux_data *aux; 13091 struct bpf_insn insn_buf[16]; 13092 struct bpf_prog *new_prog; 13093 struct bpf_map *map_ptr; 13094 int i, ret, cnt, delta = 0; 13095 13096 for (i = 0; i < insn_cnt; i++, insn++) { 13097 /* Make divide-by-zero exceptions impossible. */ 13098 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13099 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13100 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13101 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13102 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13103 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13104 struct bpf_insn *patchlet; 13105 struct bpf_insn chk_and_div[] = { 13106 /* [R,W]x div 0 -> 0 */ 13107 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13108 BPF_JNE | BPF_K, insn->src_reg, 13109 0, 2, 0), 13110 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13111 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13112 *insn, 13113 }; 13114 struct bpf_insn chk_and_mod[] = { 13115 /* [R,W]x mod 0 -> [R,W]x */ 13116 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13117 BPF_JEQ | BPF_K, insn->src_reg, 13118 0, 1 + (is64 ? 0 : 1), 0), 13119 *insn, 13120 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13121 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13122 }; 13123 13124 patchlet = isdiv ? chk_and_div : chk_and_mod; 13125 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13126 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13127 13128 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13129 if (!new_prog) 13130 return -ENOMEM; 13131 13132 delta += cnt - 1; 13133 env->prog = prog = new_prog; 13134 insn = new_prog->insnsi + i + delta; 13135 continue; 13136 } 13137 13138 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13139 if (BPF_CLASS(insn->code) == BPF_LD && 13140 (BPF_MODE(insn->code) == BPF_ABS || 13141 BPF_MODE(insn->code) == BPF_IND)) { 13142 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13143 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13144 verbose(env, "bpf verifier is misconfigured\n"); 13145 return -EINVAL; 13146 } 13147 13148 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13149 if (!new_prog) 13150 return -ENOMEM; 13151 13152 delta += cnt - 1; 13153 env->prog = prog = new_prog; 13154 insn = new_prog->insnsi + i + delta; 13155 continue; 13156 } 13157 13158 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13159 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13160 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13161 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13162 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13163 struct bpf_insn *patch = &insn_buf[0]; 13164 bool issrc, isneg, isimm; 13165 u32 off_reg; 13166 13167 aux = &env->insn_aux_data[i + delta]; 13168 if (!aux->alu_state || 13169 aux->alu_state == BPF_ALU_NON_POINTER) 13170 continue; 13171 13172 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13173 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13174 BPF_ALU_SANITIZE_SRC; 13175 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13176 13177 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13178 if (isimm) { 13179 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13180 } else { 13181 if (isneg) 13182 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13183 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13184 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13185 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13186 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13187 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13188 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13189 } 13190 if (!issrc) 13191 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13192 insn->src_reg = BPF_REG_AX; 13193 if (isneg) 13194 insn->code = insn->code == code_add ? 13195 code_sub : code_add; 13196 *patch++ = *insn; 13197 if (issrc && isneg && !isimm) 13198 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13199 cnt = patch - insn_buf; 13200 13201 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13202 if (!new_prog) 13203 return -ENOMEM; 13204 13205 delta += cnt - 1; 13206 env->prog = prog = new_prog; 13207 insn = new_prog->insnsi + i + delta; 13208 continue; 13209 } 13210 13211 if (insn->code != (BPF_JMP | BPF_CALL)) 13212 continue; 13213 if (insn->src_reg == BPF_PSEUDO_CALL) 13214 continue; 13215 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13216 ret = fixup_kfunc_call(env, insn); 13217 if (ret) 13218 return ret; 13219 continue; 13220 } 13221 13222 if (insn->imm == BPF_FUNC_get_route_realm) 13223 prog->dst_needed = 1; 13224 if (insn->imm == BPF_FUNC_get_prandom_u32) 13225 bpf_user_rnd_init_once(); 13226 if (insn->imm == BPF_FUNC_override_return) 13227 prog->kprobe_override = 1; 13228 if (insn->imm == BPF_FUNC_tail_call) { 13229 /* If we tail call into other programs, we 13230 * cannot make any assumptions since they can 13231 * be replaced dynamically during runtime in 13232 * the program array. 13233 */ 13234 prog->cb_access = 1; 13235 if (!allow_tail_call_in_subprogs(env)) 13236 prog->aux->stack_depth = MAX_BPF_STACK; 13237 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13238 13239 /* mark bpf_tail_call as different opcode to avoid 13240 * conditional branch in the interpreter for every normal 13241 * call and to prevent accidental JITing by JIT compiler 13242 * that doesn't support bpf_tail_call yet 13243 */ 13244 insn->imm = 0; 13245 insn->code = BPF_JMP | BPF_TAIL_CALL; 13246 13247 aux = &env->insn_aux_data[i + delta]; 13248 if (env->bpf_capable && !expect_blinding && 13249 prog->jit_requested && 13250 !bpf_map_key_poisoned(aux) && 13251 !bpf_map_ptr_poisoned(aux) && 13252 !bpf_map_ptr_unpriv(aux)) { 13253 struct bpf_jit_poke_descriptor desc = { 13254 .reason = BPF_POKE_REASON_TAIL_CALL, 13255 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13256 .tail_call.key = bpf_map_key_immediate(aux), 13257 .insn_idx = i + delta, 13258 }; 13259 13260 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13261 if (ret < 0) { 13262 verbose(env, "adding tail call poke descriptor failed\n"); 13263 return ret; 13264 } 13265 13266 insn->imm = ret + 1; 13267 continue; 13268 } 13269 13270 if (!bpf_map_ptr_unpriv(aux)) 13271 continue; 13272 13273 /* instead of changing every JIT dealing with tail_call 13274 * emit two extra insns: 13275 * if (index >= max_entries) goto out; 13276 * index &= array->index_mask; 13277 * to avoid out-of-bounds cpu speculation 13278 */ 13279 if (bpf_map_ptr_poisoned(aux)) { 13280 verbose(env, "tail_call abusing map_ptr\n"); 13281 return -EINVAL; 13282 } 13283 13284 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13285 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13286 map_ptr->max_entries, 2); 13287 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13288 container_of(map_ptr, 13289 struct bpf_array, 13290 map)->index_mask); 13291 insn_buf[2] = *insn; 13292 cnt = 3; 13293 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13294 if (!new_prog) 13295 return -ENOMEM; 13296 13297 delta += cnt - 1; 13298 env->prog = prog = new_prog; 13299 insn = new_prog->insnsi + i + delta; 13300 continue; 13301 } 13302 13303 if (insn->imm == BPF_FUNC_timer_set_callback) { 13304 /* The verifier will process callback_fn as many times as necessary 13305 * with different maps and the register states prepared by 13306 * set_timer_callback_state will be accurate. 13307 * 13308 * The following use case is valid: 13309 * map1 is shared by prog1, prog2, prog3. 13310 * prog1 calls bpf_timer_init for some map1 elements 13311 * prog2 calls bpf_timer_set_callback for some map1 elements. 13312 * Those that were not bpf_timer_init-ed will return -EINVAL. 13313 * prog3 calls bpf_timer_start for some map1 elements. 13314 * Those that were not both bpf_timer_init-ed and 13315 * bpf_timer_set_callback-ed will return -EINVAL. 13316 */ 13317 struct bpf_insn ld_addrs[2] = { 13318 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13319 }; 13320 13321 insn_buf[0] = ld_addrs[0]; 13322 insn_buf[1] = ld_addrs[1]; 13323 insn_buf[2] = *insn; 13324 cnt = 3; 13325 13326 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13327 if (!new_prog) 13328 return -ENOMEM; 13329 13330 delta += cnt - 1; 13331 env->prog = prog = new_prog; 13332 insn = new_prog->insnsi + i + delta; 13333 goto patch_call_imm; 13334 } 13335 13336 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13337 * and other inlining handlers are currently limited to 64 bit 13338 * only. 13339 */ 13340 if (prog->jit_requested && BITS_PER_LONG == 64 && 13341 (insn->imm == BPF_FUNC_map_lookup_elem || 13342 insn->imm == BPF_FUNC_map_update_elem || 13343 insn->imm == BPF_FUNC_map_delete_elem || 13344 insn->imm == BPF_FUNC_map_push_elem || 13345 insn->imm == BPF_FUNC_map_pop_elem || 13346 insn->imm == BPF_FUNC_map_peek_elem || 13347 insn->imm == BPF_FUNC_redirect_map || 13348 insn->imm == BPF_FUNC_for_each_map_elem)) { 13349 aux = &env->insn_aux_data[i + delta]; 13350 if (bpf_map_ptr_poisoned(aux)) 13351 goto patch_call_imm; 13352 13353 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13354 ops = map_ptr->ops; 13355 if (insn->imm == BPF_FUNC_map_lookup_elem && 13356 ops->map_gen_lookup) { 13357 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13358 if (cnt == -EOPNOTSUPP) 13359 goto patch_map_ops_generic; 13360 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13361 verbose(env, "bpf verifier is misconfigured\n"); 13362 return -EINVAL; 13363 } 13364 13365 new_prog = bpf_patch_insn_data(env, i + delta, 13366 insn_buf, cnt); 13367 if (!new_prog) 13368 return -ENOMEM; 13369 13370 delta += cnt - 1; 13371 env->prog = prog = new_prog; 13372 insn = new_prog->insnsi + i + delta; 13373 continue; 13374 } 13375 13376 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13377 (void *(*)(struct bpf_map *map, void *key))NULL)); 13378 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13379 (int (*)(struct bpf_map *map, void *key))NULL)); 13380 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13381 (int (*)(struct bpf_map *map, void *key, void *value, 13382 u64 flags))NULL)); 13383 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13384 (int (*)(struct bpf_map *map, void *value, 13385 u64 flags))NULL)); 13386 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13387 (int (*)(struct bpf_map *map, void *value))NULL)); 13388 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13389 (int (*)(struct bpf_map *map, void *value))NULL)); 13390 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13391 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13392 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13393 (int (*)(struct bpf_map *map, 13394 bpf_callback_t callback_fn, 13395 void *callback_ctx, 13396 u64 flags))NULL)); 13397 13398 patch_map_ops_generic: 13399 switch (insn->imm) { 13400 case BPF_FUNC_map_lookup_elem: 13401 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13402 continue; 13403 case BPF_FUNC_map_update_elem: 13404 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13405 continue; 13406 case BPF_FUNC_map_delete_elem: 13407 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13408 continue; 13409 case BPF_FUNC_map_push_elem: 13410 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13411 continue; 13412 case BPF_FUNC_map_pop_elem: 13413 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13414 continue; 13415 case BPF_FUNC_map_peek_elem: 13416 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13417 continue; 13418 case BPF_FUNC_redirect_map: 13419 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13420 continue; 13421 case BPF_FUNC_for_each_map_elem: 13422 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13423 continue; 13424 } 13425 13426 goto patch_call_imm; 13427 } 13428 13429 /* Implement bpf_jiffies64 inline. */ 13430 if (prog->jit_requested && BITS_PER_LONG == 64 && 13431 insn->imm == BPF_FUNC_jiffies64) { 13432 struct bpf_insn ld_jiffies_addr[2] = { 13433 BPF_LD_IMM64(BPF_REG_0, 13434 (unsigned long)&jiffies), 13435 }; 13436 13437 insn_buf[0] = ld_jiffies_addr[0]; 13438 insn_buf[1] = ld_jiffies_addr[1]; 13439 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13440 BPF_REG_0, 0); 13441 cnt = 3; 13442 13443 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13444 cnt); 13445 if (!new_prog) 13446 return -ENOMEM; 13447 13448 delta += cnt - 1; 13449 env->prog = prog = new_prog; 13450 insn = new_prog->insnsi + i + delta; 13451 continue; 13452 } 13453 13454 /* Implement bpf_get_func_arg inline. */ 13455 if (prog_type == BPF_PROG_TYPE_TRACING && 13456 insn->imm == BPF_FUNC_get_func_arg) { 13457 /* Load nr_args from ctx - 8 */ 13458 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13459 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 13460 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 13461 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 13462 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 13463 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13464 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 13465 insn_buf[7] = BPF_JMP_A(1); 13466 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 13467 cnt = 9; 13468 13469 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13470 if (!new_prog) 13471 return -ENOMEM; 13472 13473 delta += cnt - 1; 13474 env->prog = prog = new_prog; 13475 insn = new_prog->insnsi + i + delta; 13476 continue; 13477 } 13478 13479 /* Implement bpf_get_func_ret inline. */ 13480 if (prog_type == BPF_PROG_TYPE_TRACING && 13481 insn->imm == BPF_FUNC_get_func_ret) { 13482 if (eatype == BPF_TRACE_FEXIT || 13483 eatype == BPF_MODIFY_RETURN) { 13484 /* Load nr_args from ctx - 8 */ 13485 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13486 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 13487 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 13488 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13489 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 13490 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 13491 cnt = 6; 13492 } else { 13493 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 13494 cnt = 1; 13495 } 13496 13497 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13498 if (!new_prog) 13499 return -ENOMEM; 13500 13501 delta += cnt - 1; 13502 env->prog = prog = new_prog; 13503 insn = new_prog->insnsi + i + delta; 13504 continue; 13505 } 13506 13507 /* Implement get_func_arg_cnt inline. */ 13508 if (prog_type == BPF_PROG_TYPE_TRACING && 13509 insn->imm == BPF_FUNC_get_func_arg_cnt) { 13510 /* Load nr_args from ctx - 8 */ 13511 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13512 13513 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13514 if (!new_prog) 13515 return -ENOMEM; 13516 13517 env->prog = prog = new_prog; 13518 insn = new_prog->insnsi + i + delta; 13519 continue; 13520 } 13521 13522 /* Implement bpf_get_func_ip inline. */ 13523 if (prog_type == BPF_PROG_TYPE_TRACING && 13524 insn->imm == BPF_FUNC_get_func_ip) { 13525 /* Load IP address from ctx - 16 */ 13526 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 13527 13528 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13529 if (!new_prog) 13530 return -ENOMEM; 13531 13532 env->prog = prog = new_prog; 13533 insn = new_prog->insnsi + i + delta; 13534 continue; 13535 } 13536 13537 patch_call_imm: 13538 fn = env->ops->get_func_proto(insn->imm, env->prog); 13539 /* all functions that have prototype and verifier allowed 13540 * programs to call them, must be real in-kernel functions 13541 */ 13542 if (!fn->func) { 13543 verbose(env, 13544 "kernel subsystem misconfigured func %s#%d\n", 13545 func_id_name(insn->imm), insn->imm); 13546 return -EFAULT; 13547 } 13548 insn->imm = fn->func - __bpf_call_base; 13549 } 13550 13551 /* Since poke tab is now finalized, publish aux to tracker. */ 13552 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13553 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13554 if (!map_ptr->ops->map_poke_track || 13555 !map_ptr->ops->map_poke_untrack || 13556 !map_ptr->ops->map_poke_run) { 13557 verbose(env, "bpf verifier is misconfigured\n"); 13558 return -EINVAL; 13559 } 13560 13561 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13562 if (ret < 0) { 13563 verbose(env, "tracking tail call prog failed\n"); 13564 return ret; 13565 } 13566 } 13567 13568 sort_kfunc_descs_by_imm(env->prog); 13569 13570 return 0; 13571 } 13572 13573 static void free_states(struct bpf_verifier_env *env) 13574 { 13575 struct bpf_verifier_state_list *sl, *sln; 13576 int i; 13577 13578 sl = env->free_list; 13579 while (sl) { 13580 sln = sl->next; 13581 free_verifier_state(&sl->state, false); 13582 kfree(sl); 13583 sl = sln; 13584 } 13585 env->free_list = NULL; 13586 13587 if (!env->explored_states) 13588 return; 13589 13590 for (i = 0; i < state_htab_size(env); i++) { 13591 sl = env->explored_states[i]; 13592 13593 while (sl) { 13594 sln = sl->next; 13595 free_verifier_state(&sl->state, false); 13596 kfree(sl); 13597 sl = sln; 13598 } 13599 env->explored_states[i] = NULL; 13600 } 13601 } 13602 13603 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13604 { 13605 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13606 struct bpf_verifier_state *state; 13607 struct bpf_reg_state *regs; 13608 int ret, i; 13609 13610 env->prev_linfo = NULL; 13611 env->pass_cnt++; 13612 13613 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13614 if (!state) 13615 return -ENOMEM; 13616 state->curframe = 0; 13617 state->speculative = false; 13618 state->branches = 1; 13619 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13620 if (!state->frame[0]) { 13621 kfree(state); 13622 return -ENOMEM; 13623 } 13624 env->cur_state = state; 13625 init_func_state(env, state->frame[0], 13626 BPF_MAIN_FUNC /* callsite */, 13627 0 /* frameno */, 13628 subprog); 13629 13630 regs = state->frame[state->curframe]->regs; 13631 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13632 ret = btf_prepare_func_args(env, subprog, regs); 13633 if (ret) 13634 goto out; 13635 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13636 if (regs[i].type == PTR_TO_CTX) 13637 mark_reg_known_zero(env, regs, i); 13638 else if (regs[i].type == SCALAR_VALUE) 13639 mark_reg_unknown(env, regs, i); 13640 else if (base_type(regs[i].type) == PTR_TO_MEM) { 13641 const u32 mem_size = regs[i].mem_size; 13642 13643 mark_reg_known_zero(env, regs, i); 13644 regs[i].mem_size = mem_size; 13645 regs[i].id = ++env->id_gen; 13646 } 13647 } 13648 } else { 13649 /* 1st arg to a function */ 13650 regs[BPF_REG_1].type = PTR_TO_CTX; 13651 mark_reg_known_zero(env, regs, BPF_REG_1); 13652 ret = btf_check_subprog_arg_match(env, subprog, regs); 13653 if (ret == -EFAULT) 13654 /* unlikely verifier bug. abort. 13655 * ret == 0 and ret < 0 are sadly acceptable for 13656 * main() function due to backward compatibility. 13657 * Like socket filter program may be written as: 13658 * int bpf_prog(struct pt_regs *ctx) 13659 * and never dereference that ctx in the program. 13660 * 'struct pt_regs' is a type mismatch for socket 13661 * filter that should be using 'struct __sk_buff'. 13662 */ 13663 goto out; 13664 } 13665 13666 ret = do_check(env); 13667 out: 13668 /* check for NULL is necessary, since cur_state can be freed inside 13669 * do_check() under memory pressure. 13670 */ 13671 if (env->cur_state) { 13672 free_verifier_state(env->cur_state, true); 13673 env->cur_state = NULL; 13674 } 13675 while (!pop_stack(env, NULL, NULL, false)); 13676 if (!ret && pop_log) 13677 bpf_vlog_reset(&env->log, 0); 13678 free_states(env); 13679 return ret; 13680 } 13681 13682 /* Verify all global functions in a BPF program one by one based on their BTF. 13683 * All global functions must pass verification. Otherwise the whole program is rejected. 13684 * Consider: 13685 * int bar(int); 13686 * int foo(int f) 13687 * { 13688 * return bar(f); 13689 * } 13690 * int bar(int b) 13691 * { 13692 * ... 13693 * } 13694 * foo() will be verified first for R1=any_scalar_value. During verification it 13695 * will be assumed that bar() already verified successfully and call to bar() 13696 * from foo() will be checked for type match only. Later bar() will be verified 13697 * independently to check that it's safe for R1=any_scalar_value. 13698 */ 13699 static int do_check_subprogs(struct bpf_verifier_env *env) 13700 { 13701 struct bpf_prog_aux *aux = env->prog->aux; 13702 int i, ret; 13703 13704 if (!aux->func_info) 13705 return 0; 13706 13707 for (i = 1; i < env->subprog_cnt; i++) { 13708 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13709 continue; 13710 env->insn_idx = env->subprog_info[i].start; 13711 WARN_ON_ONCE(env->insn_idx == 0); 13712 ret = do_check_common(env, i); 13713 if (ret) { 13714 return ret; 13715 } else if (env->log.level & BPF_LOG_LEVEL) { 13716 verbose(env, 13717 "Func#%d is safe for any args that match its prototype\n", 13718 i); 13719 } 13720 } 13721 return 0; 13722 } 13723 13724 static int do_check_main(struct bpf_verifier_env *env) 13725 { 13726 int ret; 13727 13728 env->insn_idx = 0; 13729 ret = do_check_common(env, 0); 13730 if (!ret) 13731 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13732 return ret; 13733 } 13734 13735 13736 static void print_verification_stats(struct bpf_verifier_env *env) 13737 { 13738 int i; 13739 13740 if (env->log.level & BPF_LOG_STATS) { 13741 verbose(env, "verification time %lld usec\n", 13742 div_u64(env->verification_time, 1000)); 13743 verbose(env, "stack depth "); 13744 for (i = 0; i < env->subprog_cnt; i++) { 13745 u32 depth = env->subprog_info[i].stack_depth; 13746 13747 verbose(env, "%d", depth); 13748 if (i + 1 < env->subprog_cnt) 13749 verbose(env, "+"); 13750 } 13751 verbose(env, "\n"); 13752 } 13753 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13754 "total_states %d peak_states %d mark_read %d\n", 13755 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13756 env->max_states_per_insn, env->total_states, 13757 env->peak_states, env->longest_mark_read_walk); 13758 } 13759 13760 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13761 { 13762 const struct btf_type *t, *func_proto; 13763 const struct bpf_struct_ops *st_ops; 13764 const struct btf_member *member; 13765 struct bpf_prog *prog = env->prog; 13766 u32 btf_id, member_idx; 13767 const char *mname; 13768 13769 if (!prog->gpl_compatible) { 13770 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13771 return -EINVAL; 13772 } 13773 13774 btf_id = prog->aux->attach_btf_id; 13775 st_ops = bpf_struct_ops_find(btf_id); 13776 if (!st_ops) { 13777 verbose(env, "attach_btf_id %u is not a supported struct\n", 13778 btf_id); 13779 return -ENOTSUPP; 13780 } 13781 13782 t = st_ops->type; 13783 member_idx = prog->expected_attach_type; 13784 if (member_idx >= btf_type_vlen(t)) { 13785 verbose(env, "attach to invalid member idx %u of struct %s\n", 13786 member_idx, st_ops->name); 13787 return -EINVAL; 13788 } 13789 13790 member = &btf_type_member(t)[member_idx]; 13791 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13792 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13793 NULL); 13794 if (!func_proto) { 13795 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13796 mname, member_idx, st_ops->name); 13797 return -EINVAL; 13798 } 13799 13800 if (st_ops->check_member) { 13801 int err = st_ops->check_member(t, member); 13802 13803 if (err) { 13804 verbose(env, "attach to unsupported member %s of struct %s\n", 13805 mname, st_ops->name); 13806 return err; 13807 } 13808 } 13809 13810 prog->aux->attach_func_proto = func_proto; 13811 prog->aux->attach_func_name = mname; 13812 env->ops = st_ops->verifier_ops; 13813 13814 return 0; 13815 } 13816 #define SECURITY_PREFIX "security_" 13817 13818 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13819 { 13820 if (within_error_injection_list(addr) || 13821 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13822 return 0; 13823 13824 return -EINVAL; 13825 } 13826 13827 /* list of non-sleepable functions that are otherwise on 13828 * ALLOW_ERROR_INJECTION list 13829 */ 13830 BTF_SET_START(btf_non_sleepable_error_inject) 13831 /* Three functions below can be called from sleepable and non-sleepable context. 13832 * Assume non-sleepable from bpf safety point of view. 13833 */ 13834 BTF_ID(func, __filemap_add_folio) 13835 BTF_ID(func, should_fail_alloc_page) 13836 BTF_ID(func, should_failslab) 13837 BTF_SET_END(btf_non_sleepable_error_inject) 13838 13839 static int check_non_sleepable_error_inject(u32 btf_id) 13840 { 13841 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13842 } 13843 13844 int bpf_check_attach_target(struct bpf_verifier_log *log, 13845 const struct bpf_prog *prog, 13846 const struct bpf_prog *tgt_prog, 13847 u32 btf_id, 13848 struct bpf_attach_target_info *tgt_info) 13849 { 13850 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13851 const char prefix[] = "btf_trace_"; 13852 int ret = 0, subprog = -1, i; 13853 const struct btf_type *t; 13854 bool conservative = true; 13855 const char *tname; 13856 struct btf *btf; 13857 long addr = 0; 13858 13859 if (!btf_id) { 13860 bpf_log(log, "Tracing programs must provide btf_id\n"); 13861 return -EINVAL; 13862 } 13863 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13864 if (!btf) { 13865 bpf_log(log, 13866 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13867 return -EINVAL; 13868 } 13869 t = btf_type_by_id(btf, btf_id); 13870 if (!t) { 13871 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13872 return -EINVAL; 13873 } 13874 tname = btf_name_by_offset(btf, t->name_off); 13875 if (!tname) { 13876 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13877 return -EINVAL; 13878 } 13879 if (tgt_prog) { 13880 struct bpf_prog_aux *aux = tgt_prog->aux; 13881 13882 for (i = 0; i < aux->func_info_cnt; i++) 13883 if (aux->func_info[i].type_id == btf_id) { 13884 subprog = i; 13885 break; 13886 } 13887 if (subprog == -1) { 13888 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13889 return -EINVAL; 13890 } 13891 conservative = aux->func_info_aux[subprog].unreliable; 13892 if (prog_extension) { 13893 if (conservative) { 13894 bpf_log(log, 13895 "Cannot replace static functions\n"); 13896 return -EINVAL; 13897 } 13898 if (!prog->jit_requested) { 13899 bpf_log(log, 13900 "Extension programs should be JITed\n"); 13901 return -EINVAL; 13902 } 13903 } 13904 if (!tgt_prog->jited) { 13905 bpf_log(log, "Can attach to only JITed progs\n"); 13906 return -EINVAL; 13907 } 13908 if (tgt_prog->type == prog->type) { 13909 /* Cannot fentry/fexit another fentry/fexit program. 13910 * Cannot attach program extension to another extension. 13911 * It's ok to attach fentry/fexit to extension program. 13912 */ 13913 bpf_log(log, "Cannot recursively attach\n"); 13914 return -EINVAL; 13915 } 13916 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13917 prog_extension && 13918 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13919 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13920 /* Program extensions can extend all program types 13921 * except fentry/fexit. The reason is the following. 13922 * The fentry/fexit programs are used for performance 13923 * analysis, stats and can be attached to any program 13924 * type except themselves. When extension program is 13925 * replacing XDP function it is necessary to allow 13926 * performance analysis of all functions. Both original 13927 * XDP program and its program extension. Hence 13928 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13929 * allowed. If extending of fentry/fexit was allowed it 13930 * would be possible to create long call chain 13931 * fentry->extension->fentry->extension beyond 13932 * reasonable stack size. Hence extending fentry is not 13933 * allowed. 13934 */ 13935 bpf_log(log, "Cannot extend fentry/fexit\n"); 13936 return -EINVAL; 13937 } 13938 } else { 13939 if (prog_extension) { 13940 bpf_log(log, "Cannot replace kernel functions\n"); 13941 return -EINVAL; 13942 } 13943 } 13944 13945 switch (prog->expected_attach_type) { 13946 case BPF_TRACE_RAW_TP: 13947 if (tgt_prog) { 13948 bpf_log(log, 13949 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13950 return -EINVAL; 13951 } 13952 if (!btf_type_is_typedef(t)) { 13953 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13954 btf_id); 13955 return -EINVAL; 13956 } 13957 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13958 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13959 btf_id, tname); 13960 return -EINVAL; 13961 } 13962 tname += sizeof(prefix) - 1; 13963 t = btf_type_by_id(btf, t->type); 13964 if (!btf_type_is_ptr(t)) 13965 /* should never happen in valid vmlinux build */ 13966 return -EINVAL; 13967 t = btf_type_by_id(btf, t->type); 13968 if (!btf_type_is_func_proto(t)) 13969 /* should never happen in valid vmlinux build */ 13970 return -EINVAL; 13971 13972 break; 13973 case BPF_TRACE_ITER: 13974 if (!btf_type_is_func(t)) { 13975 bpf_log(log, "attach_btf_id %u is not a function\n", 13976 btf_id); 13977 return -EINVAL; 13978 } 13979 t = btf_type_by_id(btf, t->type); 13980 if (!btf_type_is_func_proto(t)) 13981 return -EINVAL; 13982 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13983 if (ret) 13984 return ret; 13985 break; 13986 default: 13987 if (!prog_extension) 13988 return -EINVAL; 13989 fallthrough; 13990 case BPF_MODIFY_RETURN: 13991 case BPF_LSM_MAC: 13992 case BPF_TRACE_FENTRY: 13993 case BPF_TRACE_FEXIT: 13994 if (!btf_type_is_func(t)) { 13995 bpf_log(log, "attach_btf_id %u is not a function\n", 13996 btf_id); 13997 return -EINVAL; 13998 } 13999 if (prog_extension && 14000 btf_check_type_match(log, prog, btf, t)) 14001 return -EINVAL; 14002 t = btf_type_by_id(btf, t->type); 14003 if (!btf_type_is_func_proto(t)) 14004 return -EINVAL; 14005 14006 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14007 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14008 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14009 return -EINVAL; 14010 14011 if (tgt_prog && conservative) 14012 t = NULL; 14013 14014 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14015 if (ret < 0) 14016 return ret; 14017 14018 if (tgt_prog) { 14019 if (subprog == 0) 14020 addr = (long) tgt_prog->bpf_func; 14021 else 14022 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14023 } else { 14024 addr = kallsyms_lookup_name(tname); 14025 if (!addr) { 14026 bpf_log(log, 14027 "The address of function %s cannot be found\n", 14028 tname); 14029 return -ENOENT; 14030 } 14031 } 14032 14033 if (prog->aux->sleepable) { 14034 ret = -EINVAL; 14035 switch (prog->type) { 14036 case BPF_PROG_TYPE_TRACING: 14037 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14038 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14039 */ 14040 if (!check_non_sleepable_error_inject(btf_id) && 14041 within_error_injection_list(addr)) 14042 ret = 0; 14043 break; 14044 case BPF_PROG_TYPE_LSM: 14045 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14046 * Only some of them are sleepable. 14047 */ 14048 if (bpf_lsm_is_sleepable_hook(btf_id)) 14049 ret = 0; 14050 break; 14051 default: 14052 break; 14053 } 14054 if (ret) { 14055 bpf_log(log, "%s is not sleepable\n", tname); 14056 return ret; 14057 } 14058 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14059 if (tgt_prog) { 14060 bpf_log(log, "can't modify return codes of BPF programs\n"); 14061 return -EINVAL; 14062 } 14063 ret = check_attach_modify_return(addr, tname); 14064 if (ret) { 14065 bpf_log(log, "%s() is not modifiable\n", tname); 14066 return ret; 14067 } 14068 } 14069 14070 break; 14071 } 14072 tgt_info->tgt_addr = addr; 14073 tgt_info->tgt_name = tname; 14074 tgt_info->tgt_type = t; 14075 return 0; 14076 } 14077 14078 BTF_SET_START(btf_id_deny) 14079 BTF_ID_UNUSED 14080 #ifdef CONFIG_SMP 14081 BTF_ID(func, migrate_disable) 14082 BTF_ID(func, migrate_enable) 14083 #endif 14084 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 14085 BTF_ID(func, rcu_read_unlock_strict) 14086 #endif 14087 BTF_SET_END(btf_id_deny) 14088 14089 static int check_attach_btf_id(struct bpf_verifier_env *env) 14090 { 14091 struct bpf_prog *prog = env->prog; 14092 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 14093 struct bpf_attach_target_info tgt_info = {}; 14094 u32 btf_id = prog->aux->attach_btf_id; 14095 struct bpf_trampoline *tr; 14096 int ret; 14097 u64 key; 14098 14099 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 14100 if (prog->aux->sleepable) 14101 /* attach_btf_id checked to be zero already */ 14102 return 0; 14103 verbose(env, "Syscall programs can only be sleepable\n"); 14104 return -EINVAL; 14105 } 14106 14107 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 14108 prog->type != BPF_PROG_TYPE_LSM) { 14109 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 14110 return -EINVAL; 14111 } 14112 14113 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 14114 return check_struct_ops_btf_id(env); 14115 14116 if (prog->type != BPF_PROG_TYPE_TRACING && 14117 prog->type != BPF_PROG_TYPE_LSM && 14118 prog->type != BPF_PROG_TYPE_EXT) 14119 return 0; 14120 14121 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 14122 if (ret) 14123 return ret; 14124 14125 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 14126 /* to make freplace equivalent to their targets, they need to 14127 * inherit env->ops and expected_attach_type for the rest of the 14128 * verification 14129 */ 14130 env->ops = bpf_verifier_ops[tgt_prog->type]; 14131 prog->expected_attach_type = tgt_prog->expected_attach_type; 14132 } 14133 14134 /* store info about the attachment target that will be used later */ 14135 prog->aux->attach_func_proto = tgt_info.tgt_type; 14136 prog->aux->attach_func_name = tgt_info.tgt_name; 14137 14138 if (tgt_prog) { 14139 prog->aux->saved_dst_prog_type = tgt_prog->type; 14140 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 14141 } 14142 14143 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 14144 prog->aux->attach_btf_trace = true; 14145 return 0; 14146 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 14147 if (!bpf_iter_prog_supported(prog)) 14148 return -EINVAL; 14149 return 0; 14150 } 14151 14152 if (prog->type == BPF_PROG_TYPE_LSM) { 14153 ret = bpf_lsm_verify_prog(&env->log, prog); 14154 if (ret < 0) 14155 return ret; 14156 } else if (prog->type == BPF_PROG_TYPE_TRACING && 14157 btf_id_set_contains(&btf_id_deny, btf_id)) { 14158 return -EINVAL; 14159 } 14160 14161 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 14162 tr = bpf_trampoline_get(key, &tgt_info); 14163 if (!tr) 14164 return -ENOMEM; 14165 14166 prog->aux->dst_trampoline = tr; 14167 return 0; 14168 } 14169 14170 struct btf *bpf_get_btf_vmlinux(void) 14171 { 14172 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 14173 mutex_lock(&bpf_verifier_lock); 14174 if (!btf_vmlinux) 14175 btf_vmlinux = btf_parse_vmlinux(); 14176 mutex_unlock(&bpf_verifier_lock); 14177 } 14178 return btf_vmlinux; 14179 } 14180 14181 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 14182 { 14183 u64 start_time = ktime_get_ns(); 14184 struct bpf_verifier_env *env; 14185 struct bpf_verifier_log *log; 14186 int i, len, ret = -EINVAL; 14187 bool is_priv; 14188 14189 /* no program is valid */ 14190 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 14191 return -EINVAL; 14192 14193 /* 'struct bpf_verifier_env' can be global, but since it's not small, 14194 * allocate/free it every time bpf_check() is called 14195 */ 14196 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 14197 if (!env) 14198 return -ENOMEM; 14199 log = &env->log; 14200 14201 len = (*prog)->len; 14202 env->insn_aux_data = 14203 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 14204 ret = -ENOMEM; 14205 if (!env->insn_aux_data) 14206 goto err_free_env; 14207 for (i = 0; i < len; i++) 14208 env->insn_aux_data[i].orig_idx = i; 14209 env->prog = *prog; 14210 env->ops = bpf_verifier_ops[env->prog->type]; 14211 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 14212 is_priv = bpf_capable(); 14213 14214 bpf_get_btf_vmlinux(); 14215 14216 /* grab the mutex to protect few globals used by verifier */ 14217 if (!is_priv) 14218 mutex_lock(&bpf_verifier_lock); 14219 14220 if (attr->log_level || attr->log_buf || attr->log_size) { 14221 /* user requested verbose verifier output 14222 * and supplied buffer to store the verification trace 14223 */ 14224 log->level = attr->log_level; 14225 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 14226 log->len_total = attr->log_size; 14227 14228 /* log attributes have to be sane */ 14229 if (!bpf_verifier_log_attr_valid(log)) { 14230 ret = -EINVAL; 14231 goto err_unlock; 14232 } 14233 } 14234 14235 mark_verifier_state_clean(env); 14236 14237 if (IS_ERR(btf_vmlinux)) { 14238 /* Either gcc or pahole or kernel are broken. */ 14239 verbose(env, "in-kernel BTF is malformed\n"); 14240 ret = PTR_ERR(btf_vmlinux); 14241 goto skip_full_check; 14242 } 14243 14244 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 14245 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 14246 env->strict_alignment = true; 14247 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 14248 env->strict_alignment = false; 14249 14250 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 14251 env->allow_uninit_stack = bpf_allow_uninit_stack(); 14252 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 14253 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 14254 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 14255 env->bpf_capable = bpf_capable(); 14256 14257 if (is_priv) 14258 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 14259 14260 env->explored_states = kvcalloc(state_htab_size(env), 14261 sizeof(struct bpf_verifier_state_list *), 14262 GFP_USER); 14263 ret = -ENOMEM; 14264 if (!env->explored_states) 14265 goto skip_full_check; 14266 14267 ret = add_subprog_and_kfunc(env); 14268 if (ret < 0) 14269 goto skip_full_check; 14270 14271 ret = check_subprogs(env); 14272 if (ret < 0) 14273 goto skip_full_check; 14274 14275 ret = check_btf_info(env, attr, uattr); 14276 if (ret < 0) 14277 goto skip_full_check; 14278 14279 ret = check_attach_btf_id(env); 14280 if (ret) 14281 goto skip_full_check; 14282 14283 ret = resolve_pseudo_ldimm64(env); 14284 if (ret < 0) 14285 goto skip_full_check; 14286 14287 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14288 ret = bpf_prog_offload_verifier_prep(env->prog); 14289 if (ret) 14290 goto skip_full_check; 14291 } 14292 14293 ret = check_cfg(env); 14294 if (ret < 0) 14295 goto skip_full_check; 14296 14297 ret = do_check_subprogs(env); 14298 ret = ret ?: do_check_main(env); 14299 14300 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14301 ret = bpf_prog_offload_finalize(env); 14302 14303 skip_full_check: 14304 kvfree(env->explored_states); 14305 14306 if (ret == 0) 14307 ret = check_max_stack_depth(env); 14308 14309 /* instruction rewrites happen after this point */ 14310 if (is_priv) { 14311 if (ret == 0) 14312 opt_hard_wire_dead_code_branches(env); 14313 if (ret == 0) 14314 ret = opt_remove_dead_code(env); 14315 if (ret == 0) 14316 ret = opt_remove_nops(env); 14317 } else { 14318 if (ret == 0) 14319 sanitize_dead_code(env); 14320 } 14321 14322 if (ret == 0) 14323 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14324 ret = convert_ctx_accesses(env); 14325 14326 if (ret == 0) 14327 ret = do_misc_fixups(env); 14328 14329 /* do 32-bit optimization after insn patching has done so those patched 14330 * insns could be handled correctly. 14331 */ 14332 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14333 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14334 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14335 : false; 14336 } 14337 14338 if (ret == 0) 14339 ret = fixup_call_args(env); 14340 14341 env->verification_time = ktime_get_ns() - start_time; 14342 print_verification_stats(env); 14343 env->prog->aux->verified_insns = env->insn_processed; 14344 14345 if (log->level && bpf_verifier_log_full(log)) 14346 ret = -ENOSPC; 14347 if (log->level && !log->ubuf) { 14348 ret = -EFAULT; 14349 goto err_release_maps; 14350 } 14351 14352 if (ret) 14353 goto err_release_maps; 14354 14355 if (env->used_map_cnt) { 14356 /* if program passed verifier, update used_maps in bpf_prog_info */ 14357 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14358 sizeof(env->used_maps[0]), 14359 GFP_KERNEL); 14360 14361 if (!env->prog->aux->used_maps) { 14362 ret = -ENOMEM; 14363 goto err_release_maps; 14364 } 14365 14366 memcpy(env->prog->aux->used_maps, env->used_maps, 14367 sizeof(env->used_maps[0]) * env->used_map_cnt); 14368 env->prog->aux->used_map_cnt = env->used_map_cnt; 14369 } 14370 if (env->used_btf_cnt) { 14371 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14372 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14373 sizeof(env->used_btfs[0]), 14374 GFP_KERNEL); 14375 if (!env->prog->aux->used_btfs) { 14376 ret = -ENOMEM; 14377 goto err_release_maps; 14378 } 14379 14380 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14381 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14382 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14383 } 14384 if (env->used_map_cnt || env->used_btf_cnt) { 14385 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14386 * bpf_ld_imm64 instructions 14387 */ 14388 convert_pseudo_ld_imm64(env); 14389 } 14390 14391 adjust_btf_func(env); 14392 14393 err_release_maps: 14394 if (!env->prog->aux->used_maps) 14395 /* if we didn't copy map pointers into bpf_prog_info, release 14396 * them now. Otherwise free_used_maps() will release them. 14397 */ 14398 release_maps(env); 14399 if (!env->prog->aux->used_btfs) 14400 release_btfs(env); 14401 14402 /* extension progs temporarily inherit the attach_type of their targets 14403 for verification purposes, so set it back to zero before returning 14404 */ 14405 if (env->prog->type == BPF_PROG_TYPE_EXT) 14406 env->prog->expected_attach_type = 0; 14407 14408 *prog = env->prog; 14409 err_unlock: 14410 if (!is_priv) 14411 mutex_unlock(&bpf_verifier_lock); 14412 vfree(env->insn_aux_data); 14413 err_free_env: 14414 kfree(env); 14415 return ret; 14416 } 14417