xref: /openbmc/linux/kernel/bpf/verifier.c (revision 34fa67e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #define BPF_LINK_TYPE(_id, _name)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 #undef BPF_LINK_TYPE
38 };
39 
40 /* bpf_check() is a static code analyzer that walks eBPF program
41  * instruction by instruction and updates register/stack state.
42  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43  *
44  * The first pass is depth-first-search to check that the program is a DAG.
45  * It rejects the following programs:
46  * - larger than BPF_MAXINSNS insns
47  * - if loop is present (detected via back-edge)
48  * - unreachable insns exist (shouldn't be a forest. program = one function)
49  * - out of bounds or malformed jumps
50  * The second pass is all possible path descent from the 1st insn.
51  * Since it's analyzing all paths through the program, the length of the
52  * analysis is limited to 64k insn, which may be hit even if total number of
53  * insn is less then 4K, but there are too many branches that change stack/regs.
54  * Number of 'branches to be analyzed' is limited to 1k
55  *
56  * On entry to each instruction, each register has a type, and the instruction
57  * changes the types of the registers depending on instruction semantics.
58  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59  * copied to R1.
60  *
61  * All registers are 64-bit.
62  * R0 - return register
63  * R1-R5 argument passing registers
64  * R6-R9 callee saved registers
65  * R10 - frame pointer read-only
66  *
67  * At the start of BPF program the register R1 contains a pointer to bpf_context
68  * and has type PTR_TO_CTX.
69  *
70  * Verifier tracks arithmetic operations on pointers in case:
71  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73  * 1st insn copies R10 (which has FRAME_PTR) type into R1
74  * and 2nd arithmetic instruction is pattern matched to recognize
75  * that it wants to construct a pointer to some element within stack.
76  * So after 2nd insn, the register R1 has type PTR_TO_STACK
77  * (and -20 constant is saved for further stack bounds checking).
78  * Meaning that this reg is a pointer to stack plus known immediate constant.
79  *
80  * Most of the time the registers have SCALAR_VALUE type, which
81  * means the register has some value, but it's not a valid pointer.
82  * (like pointer plus pointer becomes SCALAR_VALUE type)
83  *
84  * When verifier sees load or store instructions the type of base register
85  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86  * four pointer types recognized by check_mem_access() function.
87  *
88  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89  * and the range of [ptr, ptr + map's value_size) is accessible.
90  *
91  * registers used to pass values to function calls are checked against
92  * function argument constraints.
93  *
94  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95  * It means that the register type passed to this function must be
96  * PTR_TO_STACK and it will be used inside the function as
97  * 'pointer to map element key'
98  *
99  * For example the argument constraints for bpf_map_lookup_elem():
100  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101  *   .arg1_type = ARG_CONST_MAP_PTR,
102  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
103  *
104  * ret_type says that this function returns 'pointer to map elem value or null'
105  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106  * 2nd argument should be a pointer to stack, which will be used inside
107  * the helper function as a pointer to map element key.
108  *
109  * On the kernel side the helper function looks like:
110  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111  * {
112  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113  *    void *key = (void *) (unsigned long) r2;
114  *    void *value;
115  *
116  *    here kernel can access 'key' and 'map' pointers safely, knowing that
117  *    [key, key + map->key_size) bytes are valid and were initialized on
118  *    the stack of eBPF program.
119  * }
120  *
121  * Corresponding eBPF program may look like:
122  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
123  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
125  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126  * here verifier looks at prototype of map_lookup_elem() and sees:
127  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129  *
130  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132  * and were initialized prior to this call.
133  * If it's ok, then verifier allows this BPF_CALL insn and looks at
134  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
136  * returns either pointer to map value or NULL.
137  *
138  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139  * insn, the register holding that pointer in the true branch changes state to
140  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141  * branch. See check_cond_jmp_op().
142  *
143  * After the call R0 is set to return type of the function and registers R1-R5
144  * are set to NOT_INIT to indicate that they are no longer readable.
145  *
146  * The following reference types represent a potential reference to a kernel
147  * resource which, after first being allocated, must be checked and freed by
148  * the BPF program:
149  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150  *
151  * When the verifier sees a helper call return a reference type, it allocates a
152  * pointer id for the reference and stores it in the current function state.
153  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155  * passes through a NULL-check conditional. For the branch wherein the state is
156  * changed to CONST_IMM, the verifier releases the reference.
157  *
158  * For each helper function that allocates a reference, such as
159  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160  * bpf_sk_release(). When a reference type passes into the release function,
161  * the verifier also releases the reference. If any unchecked or unreleased
162  * reference remains at the end of the program, the verifier rejects it.
163  */
164 
165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
166 struct bpf_verifier_stack_elem {
167 	/* verifer state is 'st'
168 	 * before processing instruction 'insn_idx'
169 	 * and after processing instruction 'prev_insn_idx'
170 	 */
171 	struct bpf_verifier_state st;
172 	int insn_idx;
173 	int prev_insn_idx;
174 	struct bpf_verifier_stack_elem *next;
175 	/* length of verifier log at the time this state was pushed on stack */
176 	u32 log_pos;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_KEY_POISON	(1ULL << 63)
183 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
184 
185 #define BPF_MAP_PTR_UNPRIV	1UL
186 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
187 					  POISON_POINTER_DELTA))
188 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189 
190 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
191 {
192 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
193 }
194 
195 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
196 {
197 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
198 }
199 
200 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
201 			      const struct bpf_map *map, bool unpriv)
202 {
203 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
204 	unpriv |= bpf_map_ptr_unpriv(aux);
205 	aux->map_ptr_state = (unsigned long)map |
206 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
207 }
208 
209 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_key_state & BPF_MAP_KEY_POISON;
212 }
213 
214 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
215 {
216 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
217 }
218 
219 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
220 {
221 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
222 }
223 
224 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
225 {
226 	bool poisoned = bpf_map_key_poisoned(aux);
227 
228 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
229 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
230 }
231 
232 static bool bpf_pseudo_call(const struct bpf_insn *insn)
233 {
234 	return insn->code == (BPF_JMP | BPF_CALL) &&
235 	       insn->src_reg == BPF_PSEUDO_CALL;
236 }
237 
238 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
239 {
240 	return insn->code == (BPF_JMP | BPF_CALL) &&
241 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
242 }
243 
244 struct bpf_call_arg_meta {
245 	struct bpf_map *map_ptr;
246 	bool raw_mode;
247 	bool pkt_access;
248 	int regno;
249 	int access_size;
250 	int mem_size;
251 	u64 msize_max_value;
252 	int ref_obj_id;
253 	int map_uid;
254 	int func_id;
255 	struct btf *btf;
256 	u32 btf_id;
257 	struct btf *ret_btf;
258 	u32 ret_btf_id;
259 	u32 subprogno;
260 };
261 
262 struct btf *btf_vmlinux;
263 
264 static DEFINE_MUTEX(bpf_verifier_lock);
265 
266 static const struct bpf_line_info *
267 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
268 {
269 	const struct bpf_line_info *linfo;
270 	const struct bpf_prog *prog;
271 	u32 i, nr_linfo;
272 
273 	prog = env->prog;
274 	nr_linfo = prog->aux->nr_linfo;
275 
276 	if (!nr_linfo || insn_off >= prog->len)
277 		return NULL;
278 
279 	linfo = prog->aux->linfo;
280 	for (i = 1; i < nr_linfo; i++)
281 		if (insn_off < linfo[i].insn_off)
282 			break;
283 
284 	return &linfo[i - 1];
285 }
286 
287 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
288 		       va_list args)
289 {
290 	unsigned int n;
291 
292 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
293 
294 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
295 		  "verifier log line truncated - local buffer too short\n");
296 
297 	if (log->level == BPF_LOG_KERNEL) {
298 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
299 
300 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
301 		return;
302 	}
303 
304 	n = min(log->len_total - log->len_used - 1, n);
305 	log->kbuf[n] = '\0';
306 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
307 		log->len_used += n;
308 	else
309 		log->ubuf = NULL;
310 }
311 
312 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
313 {
314 	char zero = 0;
315 
316 	if (!bpf_verifier_log_needed(log))
317 		return;
318 
319 	log->len_used = new_pos;
320 	if (put_user(zero, log->ubuf + new_pos))
321 		log->ubuf = NULL;
322 }
323 
324 /* log_level controls verbosity level of eBPF verifier.
325  * bpf_verifier_log_write() is used to dump the verification trace to the log,
326  * so the user can figure out what's wrong with the program
327  */
328 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
329 					   const char *fmt, ...)
330 {
331 	va_list args;
332 
333 	if (!bpf_verifier_log_needed(&env->log))
334 		return;
335 
336 	va_start(args, fmt);
337 	bpf_verifier_vlog(&env->log, fmt, args);
338 	va_end(args);
339 }
340 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
341 
342 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
343 {
344 	struct bpf_verifier_env *env = private_data;
345 	va_list args;
346 
347 	if (!bpf_verifier_log_needed(&env->log))
348 		return;
349 
350 	va_start(args, fmt);
351 	bpf_verifier_vlog(&env->log, fmt, args);
352 	va_end(args);
353 }
354 
355 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
356 			    const char *fmt, ...)
357 {
358 	va_list args;
359 
360 	if (!bpf_verifier_log_needed(log))
361 		return;
362 
363 	va_start(args, fmt);
364 	bpf_verifier_vlog(log, fmt, args);
365 	va_end(args);
366 }
367 
368 static const char *ltrim(const char *s)
369 {
370 	while (isspace(*s))
371 		s++;
372 
373 	return s;
374 }
375 
376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
377 					 u32 insn_off,
378 					 const char *prefix_fmt, ...)
379 {
380 	const struct bpf_line_info *linfo;
381 
382 	if (!bpf_verifier_log_needed(&env->log))
383 		return;
384 
385 	linfo = find_linfo(env, insn_off);
386 	if (!linfo || linfo == env->prev_linfo)
387 		return;
388 
389 	if (prefix_fmt) {
390 		va_list args;
391 
392 		va_start(args, prefix_fmt);
393 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
394 		va_end(args);
395 	}
396 
397 	verbose(env, "%s\n",
398 		ltrim(btf_name_by_offset(env->prog->aux->btf,
399 					 linfo->line_off)));
400 
401 	env->prev_linfo = linfo;
402 }
403 
404 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
405 				   struct bpf_reg_state *reg,
406 				   struct tnum *range, const char *ctx,
407 				   const char *reg_name)
408 {
409 	char tn_buf[48];
410 
411 	verbose(env, "At %s the register %s ", ctx, reg_name);
412 	if (!tnum_is_unknown(reg->var_off)) {
413 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
414 		verbose(env, "has value %s", tn_buf);
415 	} else {
416 		verbose(env, "has unknown scalar value");
417 	}
418 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
419 	verbose(env, " should have been in %s\n", tn_buf);
420 }
421 
422 static bool type_is_pkt_pointer(enum bpf_reg_type type)
423 {
424 	return type == PTR_TO_PACKET ||
425 	       type == PTR_TO_PACKET_META;
426 }
427 
428 static bool type_is_sk_pointer(enum bpf_reg_type type)
429 {
430 	return type == PTR_TO_SOCKET ||
431 		type == PTR_TO_SOCK_COMMON ||
432 		type == PTR_TO_TCP_SOCK ||
433 		type == PTR_TO_XDP_SOCK;
434 }
435 
436 static bool reg_type_not_null(enum bpf_reg_type type)
437 {
438 	return type == PTR_TO_SOCKET ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_MAP_VALUE ||
441 		type == PTR_TO_MAP_KEY ||
442 		type == PTR_TO_SOCK_COMMON;
443 }
444 
445 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
446 {
447 	return reg->type == PTR_TO_MAP_VALUE &&
448 		map_value_has_spin_lock(reg->map_ptr);
449 }
450 
451 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
452 {
453 	return base_type(type) == PTR_TO_SOCKET ||
454 		base_type(type) == PTR_TO_TCP_SOCK ||
455 		base_type(type) == PTR_TO_MEM;
456 }
457 
458 static bool type_is_rdonly_mem(u32 type)
459 {
460 	return type & MEM_RDONLY;
461 }
462 
463 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
464 {
465 	return type == ARG_PTR_TO_SOCK_COMMON;
466 }
467 
468 static bool type_may_be_null(u32 type)
469 {
470 	return type & PTR_MAYBE_NULL;
471 }
472 
473 /* Determine whether the function releases some resources allocated by another
474  * function call. The first reference type argument will be assumed to be
475  * released by release_reference().
476  */
477 static bool is_release_function(enum bpf_func_id func_id)
478 {
479 	return func_id == BPF_FUNC_sk_release ||
480 	       func_id == BPF_FUNC_ringbuf_submit ||
481 	       func_id == BPF_FUNC_ringbuf_discard;
482 }
483 
484 static bool may_be_acquire_function(enum bpf_func_id func_id)
485 {
486 	return func_id == BPF_FUNC_sk_lookup_tcp ||
487 		func_id == BPF_FUNC_sk_lookup_udp ||
488 		func_id == BPF_FUNC_skc_lookup_tcp ||
489 		func_id == BPF_FUNC_map_lookup_elem ||
490 	        func_id == BPF_FUNC_ringbuf_reserve;
491 }
492 
493 static bool is_acquire_function(enum bpf_func_id func_id,
494 				const struct bpf_map *map)
495 {
496 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
497 
498 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
499 	    func_id == BPF_FUNC_sk_lookup_udp ||
500 	    func_id == BPF_FUNC_skc_lookup_tcp ||
501 	    func_id == BPF_FUNC_ringbuf_reserve)
502 		return true;
503 
504 	if (func_id == BPF_FUNC_map_lookup_elem &&
505 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
506 	     map_type == BPF_MAP_TYPE_SOCKHASH))
507 		return true;
508 
509 	return false;
510 }
511 
512 static bool is_ptr_cast_function(enum bpf_func_id func_id)
513 {
514 	return func_id == BPF_FUNC_tcp_sock ||
515 		func_id == BPF_FUNC_sk_fullsock ||
516 		func_id == BPF_FUNC_skc_to_tcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
518 		func_id == BPF_FUNC_skc_to_udp6_sock ||
519 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
520 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
521 }
522 
523 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
524 {
525 	return BPF_CLASS(insn->code) == BPF_STX &&
526 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
527 	       insn->imm == BPF_CMPXCHG;
528 }
529 
530 /* string representation of 'enum bpf_reg_type'
531  *
532  * Note that reg_type_str() can not appear more than once in a single verbose()
533  * statement.
534  */
535 static const char *reg_type_str(struct bpf_verifier_env *env,
536 				enum bpf_reg_type type)
537 {
538 	char postfix[16] = {0}, prefix[16] = {0};
539 	static const char * const str[] = {
540 		[NOT_INIT]		= "?",
541 		[SCALAR_VALUE]		= "inv",
542 		[PTR_TO_CTX]		= "ctx",
543 		[CONST_PTR_TO_MAP]	= "map_ptr",
544 		[PTR_TO_MAP_VALUE]	= "map_value",
545 		[PTR_TO_STACK]		= "fp",
546 		[PTR_TO_PACKET]		= "pkt",
547 		[PTR_TO_PACKET_META]	= "pkt_meta",
548 		[PTR_TO_PACKET_END]	= "pkt_end",
549 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
550 		[PTR_TO_SOCKET]		= "sock",
551 		[PTR_TO_SOCK_COMMON]	= "sock_common",
552 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
553 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
554 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
555 		[PTR_TO_BTF_ID]		= "ptr_",
556 		[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
557 		[PTR_TO_MEM]		= "mem",
558 		[PTR_TO_BUF]		= "buf",
559 		[PTR_TO_FUNC]		= "func",
560 		[PTR_TO_MAP_KEY]	= "map_key",
561 	};
562 
563 	if (type & PTR_MAYBE_NULL) {
564 		if (base_type(type) == PTR_TO_BTF_ID ||
565 		    base_type(type) == PTR_TO_PERCPU_BTF_ID)
566 			strncpy(postfix, "or_null_", 16);
567 		else
568 			strncpy(postfix, "_or_null", 16);
569 	}
570 
571 	if (type & MEM_RDONLY)
572 		strncpy(prefix, "rdonly_", 16);
573 
574 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
575 		 prefix, str[base_type(type)], postfix);
576 	return env->type_str_buf;
577 }
578 
579 static char slot_type_char[] = {
580 	[STACK_INVALID]	= '?',
581 	[STACK_SPILL]	= 'r',
582 	[STACK_MISC]	= 'm',
583 	[STACK_ZERO]	= '0',
584 };
585 
586 static void print_liveness(struct bpf_verifier_env *env,
587 			   enum bpf_reg_liveness live)
588 {
589 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
590 	    verbose(env, "_");
591 	if (live & REG_LIVE_READ)
592 		verbose(env, "r");
593 	if (live & REG_LIVE_WRITTEN)
594 		verbose(env, "w");
595 	if (live & REG_LIVE_DONE)
596 		verbose(env, "D");
597 }
598 
599 static struct bpf_func_state *func(struct bpf_verifier_env *env,
600 				   const struct bpf_reg_state *reg)
601 {
602 	struct bpf_verifier_state *cur = env->cur_state;
603 
604 	return cur->frame[reg->frameno];
605 }
606 
607 static const char *kernel_type_name(const struct btf* btf, u32 id)
608 {
609 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
610 }
611 
612 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
613 {
614 	env->scratched_regs |= 1U << regno;
615 }
616 
617 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
618 {
619 	env->scratched_stack_slots |= 1UL << spi;
620 }
621 
622 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
623 {
624 	return (env->scratched_regs >> regno) & 1;
625 }
626 
627 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
628 {
629 	return (env->scratched_stack_slots >> regno) & 1;
630 }
631 
632 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
633 {
634 	return env->scratched_regs || env->scratched_stack_slots;
635 }
636 
637 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
638 {
639 	env->scratched_regs = 0U;
640 	env->scratched_stack_slots = 0UL;
641 }
642 
643 /* Used for printing the entire verifier state. */
644 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
645 {
646 	env->scratched_regs = ~0U;
647 	env->scratched_stack_slots = ~0UL;
648 }
649 
650 /* The reg state of a pointer or a bounded scalar was saved when
651  * it was spilled to the stack.
652  */
653 static bool is_spilled_reg(const struct bpf_stack_state *stack)
654 {
655 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
656 }
657 
658 static void scrub_spilled_slot(u8 *stype)
659 {
660 	if (*stype != STACK_INVALID)
661 		*stype = STACK_MISC;
662 }
663 
664 static void print_verifier_state(struct bpf_verifier_env *env,
665 				 const struct bpf_func_state *state,
666 				 bool print_all)
667 {
668 	const struct bpf_reg_state *reg;
669 	enum bpf_reg_type t;
670 	int i;
671 
672 	if (state->frameno)
673 		verbose(env, " frame%d:", state->frameno);
674 	for (i = 0; i < MAX_BPF_REG; i++) {
675 		reg = &state->regs[i];
676 		t = reg->type;
677 		if (t == NOT_INIT)
678 			continue;
679 		if (!print_all && !reg_scratched(env, i))
680 			continue;
681 		verbose(env, " R%d", i);
682 		print_liveness(env, reg->live);
683 		verbose(env, "=%s", reg_type_str(env, t));
684 		if (t == SCALAR_VALUE && reg->precise)
685 			verbose(env, "P");
686 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
687 		    tnum_is_const(reg->var_off)) {
688 			/* reg->off should be 0 for SCALAR_VALUE */
689 			verbose(env, "%lld", reg->var_off.value + reg->off);
690 		} else {
691 			if (base_type(t) == PTR_TO_BTF_ID ||
692 			    base_type(t) == PTR_TO_PERCPU_BTF_ID)
693 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
694 			verbose(env, "(id=%d", reg->id);
695 			if (reg_type_may_be_refcounted_or_null(t))
696 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
697 			if (t != SCALAR_VALUE)
698 				verbose(env, ",off=%d", reg->off);
699 			if (type_is_pkt_pointer(t))
700 				verbose(env, ",r=%d", reg->range);
701 			else if (base_type(t) == CONST_PTR_TO_MAP ||
702 				 base_type(t) == PTR_TO_MAP_KEY ||
703 				 base_type(t) == PTR_TO_MAP_VALUE)
704 				verbose(env, ",ks=%d,vs=%d",
705 					reg->map_ptr->key_size,
706 					reg->map_ptr->value_size);
707 			if (tnum_is_const(reg->var_off)) {
708 				/* Typically an immediate SCALAR_VALUE, but
709 				 * could be a pointer whose offset is too big
710 				 * for reg->off
711 				 */
712 				verbose(env, ",imm=%llx", reg->var_off.value);
713 			} else {
714 				if (reg->smin_value != reg->umin_value &&
715 				    reg->smin_value != S64_MIN)
716 					verbose(env, ",smin_value=%lld",
717 						(long long)reg->smin_value);
718 				if (reg->smax_value != reg->umax_value &&
719 				    reg->smax_value != S64_MAX)
720 					verbose(env, ",smax_value=%lld",
721 						(long long)reg->smax_value);
722 				if (reg->umin_value != 0)
723 					verbose(env, ",umin_value=%llu",
724 						(unsigned long long)reg->umin_value);
725 				if (reg->umax_value != U64_MAX)
726 					verbose(env, ",umax_value=%llu",
727 						(unsigned long long)reg->umax_value);
728 				if (!tnum_is_unknown(reg->var_off)) {
729 					char tn_buf[48];
730 
731 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
732 					verbose(env, ",var_off=%s", tn_buf);
733 				}
734 				if (reg->s32_min_value != reg->smin_value &&
735 				    reg->s32_min_value != S32_MIN)
736 					verbose(env, ",s32_min_value=%d",
737 						(int)(reg->s32_min_value));
738 				if (reg->s32_max_value != reg->smax_value &&
739 				    reg->s32_max_value != S32_MAX)
740 					verbose(env, ",s32_max_value=%d",
741 						(int)(reg->s32_max_value));
742 				if (reg->u32_min_value != reg->umin_value &&
743 				    reg->u32_min_value != U32_MIN)
744 					verbose(env, ",u32_min_value=%d",
745 						(int)(reg->u32_min_value));
746 				if (reg->u32_max_value != reg->umax_value &&
747 				    reg->u32_max_value != U32_MAX)
748 					verbose(env, ",u32_max_value=%d",
749 						(int)(reg->u32_max_value));
750 			}
751 			verbose(env, ")");
752 		}
753 	}
754 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
755 		char types_buf[BPF_REG_SIZE + 1];
756 		bool valid = false;
757 		int j;
758 
759 		for (j = 0; j < BPF_REG_SIZE; j++) {
760 			if (state->stack[i].slot_type[j] != STACK_INVALID)
761 				valid = true;
762 			types_buf[j] = slot_type_char[
763 					state->stack[i].slot_type[j]];
764 		}
765 		types_buf[BPF_REG_SIZE] = 0;
766 		if (!valid)
767 			continue;
768 		if (!print_all && !stack_slot_scratched(env, i))
769 			continue;
770 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
771 		print_liveness(env, state->stack[i].spilled_ptr.live);
772 		if (is_spilled_reg(&state->stack[i])) {
773 			reg = &state->stack[i].spilled_ptr;
774 			t = reg->type;
775 			verbose(env, "=%s", reg_type_str(env, t));
776 			if (t == SCALAR_VALUE && reg->precise)
777 				verbose(env, "P");
778 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
779 				verbose(env, "%lld", reg->var_off.value + reg->off);
780 		} else {
781 			verbose(env, "=%s", types_buf);
782 		}
783 	}
784 	if (state->acquired_refs && state->refs[0].id) {
785 		verbose(env, " refs=%d", state->refs[0].id);
786 		for (i = 1; i < state->acquired_refs; i++)
787 			if (state->refs[i].id)
788 				verbose(env, ",%d", state->refs[i].id);
789 	}
790 	if (state->in_callback_fn)
791 		verbose(env, " cb");
792 	if (state->in_async_callback_fn)
793 		verbose(env, " async_cb");
794 	verbose(env, "\n");
795 	mark_verifier_state_clean(env);
796 }
797 
798 static inline u32 vlog_alignment(u32 pos)
799 {
800 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
801 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
802 }
803 
804 static void print_insn_state(struct bpf_verifier_env *env,
805 			     const struct bpf_func_state *state)
806 {
807 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
808 		/* remove new line character */
809 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
810 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
811 	} else {
812 		verbose(env, "%d:", env->insn_idx);
813 	}
814 	print_verifier_state(env, state, false);
815 }
816 
817 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
818  * small to hold src. This is different from krealloc since we don't want to preserve
819  * the contents of dst.
820  *
821  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
822  * not be allocated.
823  */
824 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
825 {
826 	size_t bytes;
827 
828 	if (ZERO_OR_NULL_PTR(src))
829 		goto out;
830 
831 	if (unlikely(check_mul_overflow(n, size, &bytes)))
832 		return NULL;
833 
834 	if (ksize(dst) < bytes) {
835 		kfree(dst);
836 		dst = kmalloc_track_caller(bytes, flags);
837 		if (!dst)
838 			return NULL;
839 	}
840 
841 	memcpy(dst, src, bytes);
842 out:
843 	return dst ? dst : ZERO_SIZE_PTR;
844 }
845 
846 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
847  * small to hold new_n items. new items are zeroed out if the array grows.
848  *
849  * Contrary to krealloc_array, does not free arr if new_n is zero.
850  */
851 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
852 {
853 	if (!new_n || old_n == new_n)
854 		goto out;
855 
856 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
857 	if (!arr)
858 		return NULL;
859 
860 	if (new_n > old_n)
861 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
862 
863 out:
864 	return arr ? arr : ZERO_SIZE_PTR;
865 }
866 
867 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
868 {
869 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
870 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
871 	if (!dst->refs)
872 		return -ENOMEM;
873 
874 	dst->acquired_refs = src->acquired_refs;
875 	return 0;
876 }
877 
878 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
879 {
880 	size_t n = src->allocated_stack / BPF_REG_SIZE;
881 
882 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
883 				GFP_KERNEL);
884 	if (!dst->stack)
885 		return -ENOMEM;
886 
887 	dst->allocated_stack = src->allocated_stack;
888 	return 0;
889 }
890 
891 static int resize_reference_state(struct bpf_func_state *state, size_t n)
892 {
893 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
894 				    sizeof(struct bpf_reference_state));
895 	if (!state->refs)
896 		return -ENOMEM;
897 
898 	state->acquired_refs = n;
899 	return 0;
900 }
901 
902 static int grow_stack_state(struct bpf_func_state *state, int size)
903 {
904 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
905 
906 	if (old_n >= n)
907 		return 0;
908 
909 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
910 	if (!state->stack)
911 		return -ENOMEM;
912 
913 	state->allocated_stack = size;
914 	return 0;
915 }
916 
917 /* Acquire a pointer id from the env and update the state->refs to include
918  * this new pointer reference.
919  * On success, returns a valid pointer id to associate with the register
920  * On failure, returns a negative errno.
921  */
922 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
923 {
924 	struct bpf_func_state *state = cur_func(env);
925 	int new_ofs = state->acquired_refs;
926 	int id, err;
927 
928 	err = resize_reference_state(state, state->acquired_refs + 1);
929 	if (err)
930 		return err;
931 	id = ++env->id_gen;
932 	state->refs[new_ofs].id = id;
933 	state->refs[new_ofs].insn_idx = insn_idx;
934 
935 	return id;
936 }
937 
938 /* release function corresponding to acquire_reference_state(). Idempotent. */
939 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
940 {
941 	int i, last_idx;
942 
943 	last_idx = state->acquired_refs - 1;
944 	for (i = 0; i < state->acquired_refs; i++) {
945 		if (state->refs[i].id == ptr_id) {
946 			if (last_idx && i != last_idx)
947 				memcpy(&state->refs[i], &state->refs[last_idx],
948 				       sizeof(*state->refs));
949 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
950 			state->acquired_refs--;
951 			return 0;
952 		}
953 	}
954 	return -EINVAL;
955 }
956 
957 static void free_func_state(struct bpf_func_state *state)
958 {
959 	if (!state)
960 		return;
961 	kfree(state->refs);
962 	kfree(state->stack);
963 	kfree(state);
964 }
965 
966 static void clear_jmp_history(struct bpf_verifier_state *state)
967 {
968 	kfree(state->jmp_history);
969 	state->jmp_history = NULL;
970 	state->jmp_history_cnt = 0;
971 }
972 
973 static void free_verifier_state(struct bpf_verifier_state *state,
974 				bool free_self)
975 {
976 	int i;
977 
978 	for (i = 0; i <= state->curframe; i++) {
979 		free_func_state(state->frame[i]);
980 		state->frame[i] = NULL;
981 	}
982 	clear_jmp_history(state);
983 	if (free_self)
984 		kfree(state);
985 }
986 
987 /* copy verifier state from src to dst growing dst stack space
988  * when necessary to accommodate larger src stack
989  */
990 static int copy_func_state(struct bpf_func_state *dst,
991 			   const struct bpf_func_state *src)
992 {
993 	int err;
994 
995 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
996 	err = copy_reference_state(dst, src);
997 	if (err)
998 		return err;
999 	return copy_stack_state(dst, src);
1000 }
1001 
1002 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1003 			       const struct bpf_verifier_state *src)
1004 {
1005 	struct bpf_func_state *dst;
1006 	int i, err;
1007 
1008 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1009 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1010 					    GFP_USER);
1011 	if (!dst_state->jmp_history)
1012 		return -ENOMEM;
1013 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1014 
1015 	/* if dst has more stack frames then src frame, free them */
1016 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1017 		free_func_state(dst_state->frame[i]);
1018 		dst_state->frame[i] = NULL;
1019 	}
1020 	dst_state->speculative = src->speculative;
1021 	dst_state->curframe = src->curframe;
1022 	dst_state->active_spin_lock = src->active_spin_lock;
1023 	dst_state->branches = src->branches;
1024 	dst_state->parent = src->parent;
1025 	dst_state->first_insn_idx = src->first_insn_idx;
1026 	dst_state->last_insn_idx = src->last_insn_idx;
1027 	for (i = 0; i <= src->curframe; i++) {
1028 		dst = dst_state->frame[i];
1029 		if (!dst) {
1030 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1031 			if (!dst)
1032 				return -ENOMEM;
1033 			dst_state->frame[i] = dst;
1034 		}
1035 		err = copy_func_state(dst, src->frame[i]);
1036 		if (err)
1037 			return err;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1043 {
1044 	while (st) {
1045 		u32 br = --st->branches;
1046 
1047 		/* WARN_ON(br > 1) technically makes sense here,
1048 		 * but see comment in push_stack(), hence:
1049 		 */
1050 		WARN_ONCE((int)br < 0,
1051 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1052 			  br);
1053 		if (br)
1054 			break;
1055 		st = st->parent;
1056 	}
1057 }
1058 
1059 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1060 		     int *insn_idx, bool pop_log)
1061 {
1062 	struct bpf_verifier_state *cur = env->cur_state;
1063 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1064 	int err;
1065 
1066 	if (env->head == NULL)
1067 		return -ENOENT;
1068 
1069 	if (cur) {
1070 		err = copy_verifier_state(cur, &head->st);
1071 		if (err)
1072 			return err;
1073 	}
1074 	if (pop_log)
1075 		bpf_vlog_reset(&env->log, head->log_pos);
1076 	if (insn_idx)
1077 		*insn_idx = head->insn_idx;
1078 	if (prev_insn_idx)
1079 		*prev_insn_idx = head->prev_insn_idx;
1080 	elem = head->next;
1081 	free_verifier_state(&head->st, false);
1082 	kfree(head);
1083 	env->head = elem;
1084 	env->stack_size--;
1085 	return 0;
1086 }
1087 
1088 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1089 					     int insn_idx, int prev_insn_idx,
1090 					     bool speculative)
1091 {
1092 	struct bpf_verifier_state *cur = env->cur_state;
1093 	struct bpf_verifier_stack_elem *elem;
1094 	int err;
1095 
1096 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1097 	if (!elem)
1098 		goto err;
1099 
1100 	elem->insn_idx = insn_idx;
1101 	elem->prev_insn_idx = prev_insn_idx;
1102 	elem->next = env->head;
1103 	elem->log_pos = env->log.len_used;
1104 	env->head = elem;
1105 	env->stack_size++;
1106 	err = copy_verifier_state(&elem->st, cur);
1107 	if (err)
1108 		goto err;
1109 	elem->st.speculative |= speculative;
1110 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1111 		verbose(env, "The sequence of %d jumps is too complex.\n",
1112 			env->stack_size);
1113 		goto err;
1114 	}
1115 	if (elem->st.parent) {
1116 		++elem->st.parent->branches;
1117 		/* WARN_ON(branches > 2) technically makes sense here,
1118 		 * but
1119 		 * 1. speculative states will bump 'branches' for non-branch
1120 		 * instructions
1121 		 * 2. is_state_visited() heuristics may decide not to create
1122 		 * a new state for a sequence of branches and all such current
1123 		 * and cloned states will be pointing to a single parent state
1124 		 * which might have large 'branches' count.
1125 		 */
1126 	}
1127 	return &elem->st;
1128 err:
1129 	free_verifier_state(env->cur_state, true);
1130 	env->cur_state = NULL;
1131 	/* pop all elements and return */
1132 	while (!pop_stack(env, NULL, NULL, false));
1133 	return NULL;
1134 }
1135 
1136 #define CALLER_SAVED_REGS 6
1137 static const int caller_saved[CALLER_SAVED_REGS] = {
1138 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1139 };
1140 
1141 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1142 				struct bpf_reg_state *reg);
1143 
1144 /* This helper doesn't clear reg->id */
1145 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1146 {
1147 	reg->var_off = tnum_const(imm);
1148 	reg->smin_value = (s64)imm;
1149 	reg->smax_value = (s64)imm;
1150 	reg->umin_value = imm;
1151 	reg->umax_value = imm;
1152 
1153 	reg->s32_min_value = (s32)imm;
1154 	reg->s32_max_value = (s32)imm;
1155 	reg->u32_min_value = (u32)imm;
1156 	reg->u32_max_value = (u32)imm;
1157 }
1158 
1159 /* Mark the unknown part of a register (variable offset or scalar value) as
1160  * known to have the value @imm.
1161  */
1162 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1163 {
1164 	/* Clear id, off, and union(map_ptr, range) */
1165 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1166 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1167 	___mark_reg_known(reg, imm);
1168 }
1169 
1170 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1171 {
1172 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1173 	reg->s32_min_value = (s32)imm;
1174 	reg->s32_max_value = (s32)imm;
1175 	reg->u32_min_value = (u32)imm;
1176 	reg->u32_max_value = (u32)imm;
1177 }
1178 
1179 /* Mark the 'variable offset' part of a register as zero.  This should be
1180  * used only on registers holding a pointer type.
1181  */
1182 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1183 {
1184 	__mark_reg_known(reg, 0);
1185 }
1186 
1187 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1188 {
1189 	__mark_reg_known(reg, 0);
1190 	reg->type = SCALAR_VALUE;
1191 }
1192 
1193 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1194 				struct bpf_reg_state *regs, u32 regno)
1195 {
1196 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1197 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1198 		/* Something bad happened, let's kill all regs */
1199 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1200 			__mark_reg_not_init(env, regs + regno);
1201 		return;
1202 	}
1203 	__mark_reg_known_zero(regs + regno);
1204 }
1205 
1206 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1207 {
1208 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1209 		const struct bpf_map *map = reg->map_ptr;
1210 
1211 		if (map->inner_map_meta) {
1212 			reg->type = CONST_PTR_TO_MAP;
1213 			reg->map_ptr = map->inner_map_meta;
1214 			/* transfer reg's id which is unique for every map_lookup_elem
1215 			 * as UID of the inner map.
1216 			 */
1217 			if (map_value_has_timer(map->inner_map_meta))
1218 				reg->map_uid = reg->id;
1219 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1220 			reg->type = PTR_TO_XDP_SOCK;
1221 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1222 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1223 			reg->type = PTR_TO_SOCKET;
1224 		} else {
1225 			reg->type = PTR_TO_MAP_VALUE;
1226 		}
1227 		return;
1228 	}
1229 
1230 	reg->type &= ~PTR_MAYBE_NULL;
1231 }
1232 
1233 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1234 {
1235 	return type_is_pkt_pointer(reg->type);
1236 }
1237 
1238 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1239 {
1240 	return reg_is_pkt_pointer(reg) ||
1241 	       reg->type == PTR_TO_PACKET_END;
1242 }
1243 
1244 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1245 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1246 				    enum bpf_reg_type which)
1247 {
1248 	/* The register can already have a range from prior markings.
1249 	 * This is fine as long as it hasn't been advanced from its
1250 	 * origin.
1251 	 */
1252 	return reg->type == which &&
1253 	       reg->id == 0 &&
1254 	       reg->off == 0 &&
1255 	       tnum_equals_const(reg->var_off, 0);
1256 }
1257 
1258 /* Reset the min/max bounds of a register */
1259 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1260 {
1261 	reg->smin_value = S64_MIN;
1262 	reg->smax_value = S64_MAX;
1263 	reg->umin_value = 0;
1264 	reg->umax_value = U64_MAX;
1265 
1266 	reg->s32_min_value = S32_MIN;
1267 	reg->s32_max_value = S32_MAX;
1268 	reg->u32_min_value = 0;
1269 	reg->u32_max_value = U32_MAX;
1270 }
1271 
1272 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1273 {
1274 	reg->smin_value = S64_MIN;
1275 	reg->smax_value = S64_MAX;
1276 	reg->umin_value = 0;
1277 	reg->umax_value = U64_MAX;
1278 }
1279 
1280 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1281 {
1282 	reg->s32_min_value = S32_MIN;
1283 	reg->s32_max_value = S32_MAX;
1284 	reg->u32_min_value = 0;
1285 	reg->u32_max_value = U32_MAX;
1286 }
1287 
1288 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1289 {
1290 	struct tnum var32_off = tnum_subreg(reg->var_off);
1291 
1292 	/* min signed is max(sign bit) | min(other bits) */
1293 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1294 			var32_off.value | (var32_off.mask & S32_MIN));
1295 	/* max signed is min(sign bit) | max(other bits) */
1296 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1297 			var32_off.value | (var32_off.mask & S32_MAX));
1298 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1299 	reg->u32_max_value = min(reg->u32_max_value,
1300 				 (u32)(var32_off.value | var32_off.mask));
1301 }
1302 
1303 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1304 {
1305 	/* min signed is max(sign bit) | min(other bits) */
1306 	reg->smin_value = max_t(s64, reg->smin_value,
1307 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1308 	/* max signed is min(sign bit) | max(other bits) */
1309 	reg->smax_value = min_t(s64, reg->smax_value,
1310 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1311 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1312 	reg->umax_value = min(reg->umax_value,
1313 			      reg->var_off.value | reg->var_off.mask);
1314 }
1315 
1316 static void __update_reg_bounds(struct bpf_reg_state *reg)
1317 {
1318 	__update_reg32_bounds(reg);
1319 	__update_reg64_bounds(reg);
1320 }
1321 
1322 /* Uses signed min/max values to inform unsigned, and vice-versa */
1323 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1324 {
1325 	/* Learn sign from signed bounds.
1326 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1327 	 * are the same, so combine.  This works even in the negative case, e.g.
1328 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1329 	 */
1330 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1331 		reg->s32_min_value = reg->u32_min_value =
1332 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1333 		reg->s32_max_value = reg->u32_max_value =
1334 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1335 		return;
1336 	}
1337 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1338 	 * boundary, so we must be careful.
1339 	 */
1340 	if ((s32)reg->u32_max_value >= 0) {
1341 		/* Positive.  We can't learn anything from the smin, but smax
1342 		 * is positive, hence safe.
1343 		 */
1344 		reg->s32_min_value = reg->u32_min_value;
1345 		reg->s32_max_value = reg->u32_max_value =
1346 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1347 	} else if ((s32)reg->u32_min_value < 0) {
1348 		/* Negative.  We can't learn anything from the smax, but smin
1349 		 * is negative, hence safe.
1350 		 */
1351 		reg->s32_min_value = reg->u32_min_value =
1352 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1353 		reg->s32_max_value = reg->u32_max_value;
1354 	}
1355 }
1356 
1357 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1358 {
1359 	/* Learn sign from signed bounds.
1360 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1361 	 * are the same, so combine.  This works even in the negative case, e.g.
1362 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1363 	 */
1364 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1365 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1366 							  reg->umin_value);
1367 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1368 							  reg->umax_value);
1369 		return;
1370 	}
1371 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1372 	 * boundary, so we must be careful.
1373 	 */
1374 	if ((s64)reg->umax_value >= 0) {
1375 		/* Positive.  We can't learn anything from the smin, but smax
1376 		 * is positive, hence safe.
1377 		 */
1378 		reg->smin_value = reg->umin_value;
1379 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1380 							  reg->umax_value);
1381 	} else if ((s64)reg->umin_value < 0) {
1382 		/* Negative.  We can't learn anything from the smax, but smin
1383 		 * is negative, hence safe.
1384 		 */
1385 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1386 							  reg->umin_value);
1387 		reg->smax_value = reg->umax_value;
1388 	}
1389 }
1390 
1391 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1392 {
1393 	__reg32_deduce_bounds(reg);
1394 	__reg64_deduce_bounds(reg);
1395 }
1396 
1397 /* Attempts to improve var_off based on unsigned min/max information */
1398 static void __reg_bound_offset(struct bpf_reg_state *reg)
1399 {
1400 	struct tnum var64_off = tnum_intersect(reg->var_off,
1401 					       tnum_range(reg->umin_value,
1402 							  reg->umax_value));
1403 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1404 						tnum_range(reg->u32_min_value,
1405 							   reg->u32_max_value));
1406 
1407 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1408 }
1409 
1410 static bool __reg32_bound_s64(s32 a)
1411 {
1412 	return a >= 0 && a <= S32_MAX;
1413 }
1414 
1415 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1416 {
1417 	reg->umin_value = reg->u32_min_value;
1418 	reg->umax_value = reg->u32_max_value;
1419 
1420 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1421 	 * be positive otherwise set to worse case bounds and refine later
1422 	 * from tnum.
1423 	 */
1424 	if (__reg32_bound_s64(reg->s32_min_value) &&
1425 	    __reg32_bound_s64(reg->s32_max_value)) {
1426 		reg->smin_value = reg->s32_min_value;
1427 		reg->smax_value = reg->s32_max_value;
1428 	} else {
1429 		reg->smin_value = 0;
1430 		reg->smax_value = U32_MAX;
1431 	}
1432 }
1433 
1434 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1435 {
1436 	/* special case when 64-bit register has upper 32-bit register
1437 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1438 	 * allowing us to use 32-bit bounds directly,
1439 	 */
1440 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1441 		__reg_assign_32_into_64(reg);
1442 	} else {
1443 		/* Otherwise the best we can do is push lower 32bit known and
1444 		 * unknown bits into register (var_off set from jmp logic)
1445 		 * then learn as much as possible from the 64-bit tnum
1446 		 * known and unknown bits. The previous smin/smax bounds are
1447 		 * invalid here because of jmp32 compare so mark them unknown
1448 		 * so they do not impact tnum bounds calculation.
1449 		 */
1450 		__mark_reg64_unbounded(reg);
1451 		__update_reg_bounds(reg);
1452 	}
1453 
1454 	/* Intersecting with the old var_off might have improved our bounds
1455 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1456 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1457 	 */
1458 	__reg_deduce_bounds(reg);
1459 	__reg_bound_offset(reg);
1460 	__update_reg_bounds(reg);
1461 }
1462 
1463 static bool __reg64_bound_s32(s64 a)
1464 {
1465 	return a >= S32_MIN && a <= S32_MAX;
1466 }
1467 
1468 static bool __reg64_bound_u32(u64 a)
1469 {
1470 	return a >= U32_MIN && a <= U32_MAX;
1471 }
1472 
1473 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1474 {
1475 	__mark_reg32_unbounded(reg);
1476 
1477 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1478 		reg->s32_min_value = (s32)reg->smin_value;
1479 		reg->s32_max_value = (s32)reg->smax_value;
1480 	}
1481 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1482 		reg->u32_min_value = (u32)reg->umin_value;
1483 		reg->u32_max_value = (u32)reg->umax_value;
1484 	}
1485 
1486 	/* Intersecting with the old var_off might have improved our bounds
1487 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1488 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1489 	 */
1490 	__reg_deduce_bounds(reg);
1491 	__reg_bound_offset(reg);
1492 	__update_reg_bounds(reg);
1493 }
1494 
1495 /* Mark a register as having a completely unknown (scalar) value. */
1496 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1497 			       struct bpf_reg_state *reg)
1498 {
1499 	/*
1500 	 * Clear type, id, off, and union(map_ptr, range) and
1501 	 * padding between 'type' and union
1502 	 */
1503 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1504 	reg->type = SCALAR_VALUE;
1505 	reg->var_off = tnum_unknown;
1506 	reg->frameno = 0;
1507 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1508 	__mark_reg_unbounded(reg);
1509 }
1510 
1511 static void mark_reg_unknown(struct bpf_verifier_env *env,
1512 			     struct bpf_reg_state *regs, u32 regno)
1513 {
1514 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1515 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1516 		/* Something bad happened, let's kill all regs except FP */
1517 		for (regno = 0; regno < BPF_REG_FP; regno++)
1518 			__mark_reg_not_init(env, regs + regno);
1519 		return;
1520 	}
1521 	__mark_reg_unknown(env, regs + regno);
1522 }
1523 
1524 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1525 				struct bpf_reg_state *reg)
1526 {
1527 	__mark_reg_unknown(env, reg);
1528 	reg->type = NOT_INIT;
1529 }
1530 
1531 static void mark_reg_not_init(struct bpf_verifier_env *env,
1532 			      struct bpf_reg_state *regs, u32 regno)
1533 {
1534 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1535 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1536 		/* Something bad happened, let's kill all regs except FP */
1537 		for (regno = 0; regno < BPF_REG_FP; regno++)
1538 			__mark_reg_not_init(env, regs + regno);
1539 		return;
1540 	}
1541 	__mark_reg_not_init(env, regs + regno);
1542 }
1543 
1544 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1545 			    struct bpf_reg_state *regs, u32 regno,
1546 			    enum bpf_reg_type reg_type,
1547 			    struct btf *btf, u32 btf_id)
1548 {
1549 	if (reg_type == SCALAR_VALUE) {
1550 		mark_reg_unknown(env, regs, regno);
1551 		return;
1552 	}
1553 	mark_reg_known_zero(env, regs, regno);
1554 	regs[regno].type = PTR_TO_BTF_ID;
1555 	regs[regno].btf = btf;
1556 	regs[regno].btf_id = btf_id;
1557 }
1558 
1559 #define DEF_NOT_SUBREG	(0)
1560 static void init_reg_state(struct bpf_verifier_env *env,
1561 			   struct bpf_func_state *state)
1562 {
1563 	struct bpf_reg_state *regs = state->regs;
1564 	int i;
1565 
1566 	for (i = 0; i < MAX_BPF_REG; i++) {
1567 		mark_reg_not_init(env, regs, i);
1568 		regs[i].live = REG_LIVE_NONE;
1569 		regs[i].parent = NULL;
1570 		regs[i].subreg_def = DEF_NOT_SUBREG;
1571 	}
1572 
1573 	/* frame pointer */
1574 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1575 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1576 	regs[BPF_REG_FP].frameno = state->frameno;
1577 }
1578 
1579 #define BPF_MAIN_FUNC (-1)
1580 static void init_func_state(struct bpf_verifier_env *env,
1581 			    struct bpf_func_state *state,
1582 			    int callsite, int frameno, int subprogno)
1583 {
1584 	state->callsite = callsite;
1585 	state->frameno = frameno;
1586 	state->subprogno = subprogno;
1587 	init_reg_state(env, state);
1588 	mark_verifier_state_scratched(env);
1589 }
1590 
1591 /* Similar to push_stack(), but for async callbacks */
1592 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1593 						int insn_idx, int prev_insn_idx,
1594 						int subprog)
1595 {
1596 	struct bpf_verifier_stack_elem *elem;
1597 	struct bpf_func_state *frame;
1598 
1599 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1600 	if (!elem)
1601 		goto err;
1602 
1603 	elem->insn_idx = insn_idx;
1604 	elem->prev_insn_idx = prev_insn_idx;
1605 	elem->next = env->head;
1606 	elem->log_pos = env->log.len_used;
1607 	env->head = elem;
1608 	env->stack_size++;
1609 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1610 		verbose(env,
1611 			"The sequence of %d jumps is too complex for async cb.\n",
1612 			env->stack_size);
1613 		goto err;
1614 	}
1615 	/* Unlike push_stack() do not copy_verifier_state().
1616 	 * The caller state doesn't matter.
1617 	 * This is async callback. It starts in a fresh stack.
1618 	 * Initialize it similar to do_check_common().
1619 	 */
1620 	elem->st.branches = 1;
1621 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1622 	if (!frame)
1623 		goto err;
1624 	init_func_state(env, frame,
1625 			BPF_MAIN_FUNC /* callsite */,
1626 			0 /* frameno within this callchain */,
1627 			subprog /* subprog number within this prog */);
1628 	elem->st.frame[0] = frame;
1629 	return &elem->st;
1630 err:
1631 	free_verifier_state(env->cur_state, true);
1632 	env->cur_state = NULL;
1633 	/* pop all elements and return */
1634 	while (!pop_stack(env, NULL, NULL, false));
1635 	return NULL;
1636 }
1637 
1638 
1639 enum reg_arg_type {
1640 	SRC_OP,		/* register is used as source operand */
1641 	DST_OP,		/* register is used as destination operand */
1642 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1643 };
1644 
1645 static int cmp_subprogs(const void *a, const void *b)
1646 {
1647 	return ((struct bpf_subprog_info *)a)->start -
1648 	       ((struct bpf_subprog_info *)b)->start;
1649 }
1650 
1651 static int find_subprog(struct bpf_verifier_env *env, int off)
1652 {
1653 	struct bpf_subprog_info *p;
1654 
1655 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1656 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1657 	if (!p)
1658 		return -ENOENT;
1659 	return p - env->subprog_info;
1660 
1661 }
1662 
1663 static int add_subprog(struct bpf_verifier_env *env, int off)
1664 {
1665 	int insn_cnt = env->prog->len;
1666 	int ret;
1667 
1668 	if (off >= insn_cnt || off < 0) {
1669 		verbose(env, "call to invalid destination\n");
1670 		return -EINVAL;
1671 	}
1672 	ret = find_subprog(env, off);
1673 	if (ret >= 0)
1674 		return ret;
1675 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1676 		verbose(env, "too many subprograms\n");
1677 		return -E2BIG;
1678 	}
1679 	/* determine subprog starts. The end is one before the next starts */
1680 	env->subprog_info[env->subprog_cnt++].start = off;
1681 	sort(env->subprog_info, env->subprog_cnt,
1682 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1683 	return env->subprog_cnt - 1;
1684 }
1685 
1686 #define MAX_KFUNC_DESCS 256
1687 #define MAX_KFUNC_BTFS	256
1688 
1689 struct bpf_kfunc_desc {
1690 	struct btf_func_model func_model;
1691 	u32 func_id;
1692 	s32 imm;
1693 	u16 offset;
1694 };
1695 
1696 struct bpf_kfunc_btf {
1697 	struct btf *btf;
1698 	struct module *module;
1699 	u16 offset;
1700 };
1701 
1702 struct bpf_kfunc_desc_tab {
1703 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1704 	u32 nr_descs;
1705 };
1706 
1707 struct bpf_kfunc_btf_tab {
1708 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1709 	u32 nr_descs;
1710 };
1711 
1712 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1713 {
1714 	const struct bpf_kfunc_desc *d0 = a;
1715 	const struct bpf_kfunc_desc *d1 = b;
1716 
1717 	/* func_id is not greater than BTF_MAX_TYPE */
1718 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1719 }
1720 
1721 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1722 {
1723 	const struct bpf_kfunc_btf *d0 = a;
1724 	const struct bpf_kfunc_btf *d1 = b;
1725 
1726 	return d0->offset - d1->offset;
1727 }
1728 
1729 static const struct bpf_kfunc_desc *
1730 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1731 {
1732 	struct bpf_kfunc_desc desc = {
1733 		.func_id = func_id,
1734 		.offset = offset,
1735 	};
1736 	struct bpf_kfunc_desc_tab *tab;
1737 
1738 	tab = prog->aux->kfunc_tab;
1739 	return bsearch(&desc, tab->descs, tab->nr_descs,
1740 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1741 }
1742 
1743 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1744 					 s16 offset, struct module **btf_modp)
1745 {
1746 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1747 	struct bpf_kfunc_btf_tab *tab;
1748 	struct bpf_kfunc_btf *b;
1749 	struct module *mod;
1750 	struct btf *btf;
1751 	int btf_fd;
1752 
1753 	tab = env->prog->aux->kfunc_btf_tab;
1754 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1755 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1756 	if (!b) {
1757 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1758 			verbose(env, "too many different module BTFs\n");
1759 			return ERR_PTR(-E2BIG);
1760 		}
1761 
1762 		if (bpfptr_is_null(env->fd_array)) {
1763 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1764 			return ERR_PTR(-EPROTO);
1765 		}
1766 
1767 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1768 					    offset * sizeof(btf_fd),
1769 					    sizeof(btf_fd)))
1770 			return ERR_PTR(-EFAULT);
1771 
1772 		btf = btf_get_by_fd(btf_fd);
1773 		if (IS_ERR(btf)) {
1774 			verbose(env, "invalid module BTF fd specified\n");
1775 			return btf;
1776 		}
1777 
1778 		if (!btf_is_module(btf)) {
1779 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1780 			btf_put(btf);
1781 			return ERR_PTR(-EINVAL);
1782 		}
1783 
1784 		mod = btf_try_get_module(btf);
1785 		if (!mod) {
1786 			btf_put(btf);
1787 			return ERR_PTR(-ENXIO);
1788 		}
1789 
1790 		b = &tab->descs[tab->nr_descs++];
1791 		b->btf = btf;
1792 		b->module = mod;
1793 		b->offset = offset;
1794 
1795 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1796 		     kfunc_btf_cmp_by_off, NULL);
1797 	}
1798 	if (btf_modp)
1799 		*btf_modp = b->module;
1800 	return b->btf;
1801 }
1802 
1803 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1804 {
1805 	if (!tab)
1806 		return;
1807 
1808 	while (tab->nr_descs--) {
1809 		module_put(tab->descs[tab->nr_descs].module);
1810 		btf_put(tab->descs[tab->nr_descs].btf);
1811 	}
1812 	kfree(tab);
1813 }
1814 
1815 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1816 				       u32 func_id, s16 offset,
1817 				       struct module **btf_modp)
1818 {
1819 	if (offset) {
1820 		if (offset < 0) {
1821 			/* In the future, this can be allowed to increase limit
1822 			 * of fd index into fd_array, interpreted as u16.
1823 			 */
1824 			verbose(env, "negative offset disallowed for kernel module function call\n");
1825 			return ERR_PTR(-EINVAL);
1826 		}
1827 
1828 		return __find_kfunc_desc_btf(env, offset, btf_modp);
1829 	}
1830 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1831 }
1832 
1833 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1834 {
1835 	const struct btf_type *func, *func_proto;
1836 	struct bpf_kfunc_btf_tab *btf_tab;
1837 	struct bpf_kfunc_desc_tab *tab;
1838 	struct bpf_prog_aux *prog_aux;
1839 	struct bpf_kfunc_desc *desc;
1840 	const char *func_name;
1841 	struct btf *desc_btf;
1842 	unsigned long addr;
1843 	int err;
1844 
1845 	prog_aux = env->prog->aux;
1846 	tab = prog_aux->kfunc_tab;
1847 	btf_tab = prog_aux->kfunc_btf_tab;
1848 	if (!tab) {
1849 		if (!btf_vmlinux) {
1850 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1851 			return -ENOTSUPP;
1852 		}
1853 
1854 		if (!env->prog->jit_requested) {
1855 			verbose(env, "JIT is required for calling kernel function\n");
1856 			return -ENOTSUPP;
1857 		}
1858 
1859 		if (!bpf_jit_supports_kfunc_call()) {
1860 			verbose(env, "JIT does not support calling kernel function\n");
1861 			return -ENOTSUPP;
1862 		}
1863 
1864 		if (!env->prog->gpl_compatible) {
1865 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1866 			return -EINVAL;
1867 		}
1868 
1869 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1870 		if (!tab)
1871 			return -ENOMEM;
1872 		prog_aux->kfunc_tab = tab;
1873 	}
1874 
1875 	/* func_id == 0 is always invalid, but instead of returning an error, be
1876 	 * conservative and wait until the code elimination pass before returning
1877 	 * error, so that invalid calls that get pruned out can be in BPF programs
1878 	 * loaded from userspace.  It is also required that offset be untouched
1879 	 * for such calls.
1880 	 */
1881 	if (!func_id && !offset)
1882 		return 0;
1883 
1884 	if (!btf_tab && offset) {
1885 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1886 		if (!btf_tab)
1887 			return -ENOMEM;
1888 		prog_aux->kfunc_btf_tab = btf_tab;
1889 	}
1890 
1891 	desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1892 	if (IS_ERR(desc_btf)) {
1893 		verbose(env, "failed to find BTF for kernel function\n");
1894 		return PTR_ERR(desc_btf);
1895 	}
1896 
1897 	if (find_kfunc_desc(env->prog, func_id, offset))
1898 		return 0;
1899 
1900 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1901 		verbose(env, "too many different kernel function calls\n");
1902 		return -E2BIG;
1903 	}
1904 
1905 	func = btf_type_by_id(desc_btf, func_id);
1906 	if (!func || !btf_type_is_func(func)) {
1907 		verbose(env, "kernel btf_id %u is not a function\n",
1908 			func_id);
1909 		return -EINVAL;
1910 	}
1911 	func_proto = btf_type_by_id(desc_btf, func->type);
1912 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1913 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1914 			func_id);
1915 		return -EINVAL;
1916 	}
1917 
1918 	func_name = btf_name_by_offset(desc_btf, func->name_off);
1919 	addr = kallsyms_lookup_name(func_name);
1920 	if (!addr) {
1921 		verbose(env, "cannot find address for kernel function %s\n",
1922 			func_name);
1923 		return -EINVAL;
1924 	}
1925 
1926 	desc = &tab->descs[tab->nr_descs++];
1927 	desc->func_id = func_id;
1928 	desc->imm = BPF_CALL_IMM(addr);
1929 	desc->offset = offset;
1930 	err = btf_distill_func_proto(&env->log, desc_btf,
1931 				     func_proto, func_name,
1932 				     &desc->func_model);
1933 	if (!err)
1934 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1935 		     kfunc_desc_cmp_by_id_off, NULL);
1936 	return err;
1937 }
1938 
1939 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1940 {
1941 	const struct bpf_kfunc_desc *d0 = a;
1942 	const struct bpf_kfunc_desc *d1 = b;
1943 
1944 	if (d0->imm > d1->imm)
1945 		return 1;
1946 	else if (d0->imm < d1->imm)
1947 		return -1;
1948 	return 0;
1949 }
1950 
1951 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1952 {
1953 	struct bpf_kfunc_desc_tab *tab;
1954 
1955 	tab = prog->aux->kfunc_tab;
1956 	if (!tab)
1957 		return;
1958 
1959 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1960 	     kfunc_desc_cmp_by_imm, NULL);
1961 }
1962 
1963 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1964 {
1965 	return !!prog->aux->kfunc_tab;
1966 }
1967 
1968 const struct btf_func_model *
1969 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1970 			 const struct bpf_insn *insn)
1971 {
1972 	const struct bpf_kfunc_desc desc = {
1973 		.imm = insn->imm,
1974 	};
1975 	const struct bpf_kfunc_desc *res;
1976 	struct bpf_kfunc_desc_tab *tab;
1977 
1978 	tab = prog->aux->kfunc_tab;
1979 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1980 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1981 
1982 	return res ? &res->func_model : NULL;
1983 }
1984 
1985 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1986 {
1987 	struct bpf_subprog_info *subprog = env->subprog_info;
1988 	struct bpf_insn *insn = env->prog->insnsi;
1989 	int i, ret, insn_cnt = env->prog->len;
1990 
1991 	/* Add entry function. */
1992 	ret = add_subprog(env, 0);
1993 	if (ret)
1994 		return ret;
1995 
1996 	for (i = 0; i < insn_cnt; i++, insn++) {
1997 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1998 		    !bpf_pseudo_kfunc_call(insn))
1999 			continue;
2000 
2001 		if (!env->bpf_capable) {
2002 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2003 			return -EPERM;
2004 		}
2005 
2006 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2007 			ret = add_subprog(env, i + insn->imm + 1);
2008 		else
2009 			ret = add_kfunc_call(env, insn->imm, insn->off);
2010 
2011 		if (ret < 0)
2012 			return ret;
2013 	}
2014 
2015 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2016 	 * logic. 'subprog_cnt' should not be increased.
2017 	 */
2018 	subprog[env->subprog_cnt].start = insn_cnt;
2019 
2020 	if (env->log.level & BPF_LOG_LEVEL2)
2021 		for (i = 0; i < env->subprog_cnt; i++)
2022 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2023 
2024 	return 0;
2025 }
2026 
2027 static int check_subprogs(struct bpf_verifier_env *env)
2028 {
2029 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2030 	struct bpf_subprog_info *subprog = env->subprog_info;
2031 	struct bpf_insn *insn = env->prog->insnsi;
2032 	int insn_cnt = env->prog->len;
2033 
2034 	/* now check that all jumps are within the same subprog */
2035 	subprog_start = subprog[cur_subprog].start;
2036 	subprog_end = subprog[cur_subprog + 1].start;
2037 	for (i = 0; i < insn_cnt; i++) {
2038 		u8 code = insn[i].code;
2039 
2040 		if (code == (BPF_JMP | BPF_CALL) &&
2041 		    insn[i].imm == BPF_FUNC_tail_call &&
2042 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2043 			subprog[cur_subprog].has_tail_call = true;
2044 		if (BPF_CLASS(code) == BPF_LD &&
2045 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2046 			subprog[cur_subprog].has_ld_abs = true;
2047 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2048 			goto next;
2049 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2050 			goto next;
2051 		off = i + insn[i].off + 1;
2052 		if (off < subprog_start || off >= subprog_end) {
2053 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2054 			return -EINVAL;
2055 		}
2056 next:
2057 		if (i == subprog_end - 1) {
2058 			/* to avoid fall-through from one subprog into another
2059 			 * the last insn of the subprog should be either exit
2060 			 * or unconditional jump back
2061 			 */
2062 			if (code != (BPF_JMP | BPF_EXIT) &&
2063 			    code != (BPF_JMP | BPF_JA)) {
2064 				verbose(env, "last insn is not an exit or jmp\n");
2065 				return -EINVAL;
2066 			}
2067 			subprog_start = subprog_end;
2068 			cur_subprog++;
2069 			if (cur_subprog < env->subprog_cnt)
2070 				subprog_end = subprog[cur_subprog + 1].start;
2071 		}
2072 	}
2073 	return 0;
2074 }
2075 
2076 /* Parentage chain of this register (or stack slot) should take care of all
2077  * issues like callee-saved registers, stack slot allocation time, etc.
2078  */
2079 static int mark_reg_read(struct bpf_verifier_env *env,
2080 			 const struct bpf_reg_state *state,
2081 			 struct bpf_reg_state *parent, u8 flag)
2082 {
2083 	bool writes = parent == state->parent; /* Observe write marks */
2084 	int cnt = 0;
2085 
2086 	while (parent) {
2087 		/* if read wasn't screened by an earlier write ... */
2088 		if (writes && state->live & REG_LIVE_WRITTEN)
2089 			break;
2090 		if (parent->live & REG_LIVE_DONE) {
2091 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2092 				reg_type_str(env, parent->type),
2093 				parent->var_off.value, parent->off);
2094 			return -EFAULT;
2095 		}
2096 		/* The first condition is more likely to be true than the
2097 		 * second, checked it first.
2098 		 */
2099 		if ((parent->live & REG_LIVE_READ) == flag ||
2100 		    parent->live & REG_LIVE_READ64)
2101 			/* The parentage chain never changes and
2102 			 * this parent was already marked as LIVE_READ.
2103 			 * There is no need to keep walking the chain again and
2104 			 * keep re-marking all parents as LIVE_READ.
2105 			 * This case happens when the same register is read
2106 			 * multiple times without writes into it in-between.
2107 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2108 			 * then no need to set the weak REG_LIVE_READ32.
2109 			 */
2110 			break;
2111 		/* ... then we depend on parent's value */
2112 		parent->live |= flag;
2113 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2114 		if (flag == REG_LIVE_READ64)
2115 			parent->live &= ~REG_LIVE_READ32;
2116 		state = parent;
2117 		parent = state->parent;
2118 		writes = true;
2119 		cnt++;
2120 	}
2121 
2122 	if (env->longest_mark_read_walk < cnt)
2123 		env->longest_mark_read_walk = cnt;
2124 	return 0;
2125 }
2126 
2127 /* This function is supposed to be used by the following 32-bit optimization
2128  * code only. It returns TRUE if the source or destination register operates
2129  * on 64-bit, otherwise return FALSE.
2130  */
2131 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2132 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2133 {
2134 	u8 code, class, op;
2135 
2136 	code = insn->code;
2137 	class = BPF_CLASS(code);
2138 	op = BPF_OP(code);
2139 	if (class == BPF_JMP) {
2140 		/* BPF_EXIT for "main" will reach here. Return TRUE
2141 		 * conservatively.
2142 		 */
2143 		if (op == BPF_EXIT)
2144 			return true;
2145 		if (op == BPF_CALL) {
2146 			/* BPF to BPF call will reach here because of marking
2147 			 * caller saved clobber with DST_OP_NO_MARK for which we
2148 			 * don't care the register def because they are anyway
2149 			 * marked as NOT_INIT already.
2150 			 */
2151 			if (insn->src_reg == BPF_PSEUDO_CALL)
2152 				return false;
2153 			/* Helper call will reach here because of arg type
2154 			 * check, conservatively return TRUE.
2155 			 */
2156 			if (t == SRC_OP)
2157 				return true;
2158 
2159 			return false;
2160 		}
2161 	}
2162 
2163 	if (class == BPF_ALU64 || class == BPF_JMP ||
2164 	    /* BPF_END always use BPF_ALU class. */
2165 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2166 		return true;
2167 
2168 	if (class == BPF_ALU || class == BPF_JMP32)
2169 		return false;
2170 
2171 	if (class == BPF_LDX) {
2172 		if (t != SRC_OP)
2173 			return BPF_SIZE(code) == BPF_DW;
2174 		/* LDX source must be ptr. */
2175 		return true;
2176 	}
2177 
2178 	if (class == BPF_STX) {
2179 		/* BPF_STX (including atomic variants) has multiple source
2180 		 * operands, one of which is a ptr. Check whether the caller is
2181 		 * asking about it.
2182 		 */
2183 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2184 			return true;
2185 		return BPF_SIZE(code) == BPF_DW;
2186 	}
2187 
2188 	if (class == BPF_LD) {
2189 		u8 mode = BPF_MODE(code);
2190 
2191 		/* LD_IMM64 */
2192 		if (mode == BPF_IMM)
2193 			return true;
2194 
2195 		/* Both LD_IND and LD_ABS return 32-bit data. */
2196 		if (t != SRC_OP)
2197 			return  false;
2198 
2199 		/* Implicit ctx ptr. */
2200 		if (regno == BPF_REG_6)
2201 			return true;
2202 
2203 		/* Explicit source could be any width. */
2204 		return true;
2205 	}
2206 
2207 	if (class == BPF_ST)
2208 		/* The only source register for BPF_ST is a ptr. */
2209 		return true;
2210 
2211 	/* Conservatively return true at default. */
2212 	return true;
2213 }
2214 
2215 /* Return the regno defined by the insn, or -1. */
2216 static int insn_def_regno(const struct bpf_insn *insn)
2217 {
2218 	switch (BPF_CLASS(insn->code)) {
2219 	case BPF_JMP:
2220 	case BPF_JMP32:
2221 	case BPF_ST:
2222 		return -1;
2223 	case BPF_STX:
2224 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2225 		    (insn->imm & BPF_FETCH)) {
2226 			if (insn->imm == BPF_CMPXCHG)
2227 				return BPF_REG_0;
2228 			else
2229 				return insn->src_reg;
2230 		} else {
2231 			return -1;
2232 		}
2233 	default:
2234 		return insn->dst_reg;
2235 	}
2236 }
2237 
2238 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2239 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2240 {
2241 	int dst_reg = insn_def_regno(insn);
2242 
2243 	if (dst_reg == -1)
2244 		return false;
2245 
2246 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2247 }
2248 
2249 static void mark_insn_zext(struct bpf_verifier_env *env,
2250 			   struct bpf_reg_state *reg)
2251 {
2252 	s32 def_idx = reg->subreg_def;
2253 
2254 	if (def_idx == DEF_NOT_SUBREG)
2255 		return;
2256 
2257 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2258 	/* The dst will be zero extended, so won't be sub-register anymore. */
2259 	reg->subreg_def = DEF_NOT_SUBREG;
2260 }
2261 
2262 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2263 			 enum reg_arg_type t)
2264 {
2265 	struct bpf_verifier_state *vstate = env->cur_state;
2266 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2267 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2268 	struct bpf_reg_state *reg, *regs = state->regs;
2269 	bool rw64;
2270 
2271 	if (regno >= MAX_BPF_REG) {
2272 		verbose(env, "R%d is invalid\n", regno);
2273 		return -EINVAL;
2274 	}
2275 
2276 	mark_reg_scratched(env, regno);
2277 
2278 	reg = &regs[regno];
2279 	rw64 = is_reg64(env, insn, regno, reg, t);
2280 	if (t == SRC_OP) {
2281 		/* check whether register used as source operand can be read */
2282 		if (reg->type == NOT_INIT) {
2283 			verbose(env, "R%d !read_ok\n", regno);
2284 			return -EACCES;
2285 		}
2286 		/* We don't need to worry about FP liveness because it's read-only */
2287 		if (regno == BPF_REG_FP)
2288 			return 0;
2289 
2290 		if (rw64)
2291 			mark_insn_zext(env, reg);
2292 
2293 		return mark_reg_read(env, reg, reg->parent,
2294 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2295 	} else {
2296 		/* check whether register used as dest operand can be written to */
2297 		if (regno == BPF_REG_FP) {
2298 			verbose(env, "frame pointer is read only\n");
2299 			return -EACCES;
2300 		}
2301 		reg->live |= REG_LIVE_WRITTEN;
2302 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2303 		if (t == DST_OP)
2304 			mark_reg_unknown(env, regs, regno);
2305 	}
2306 	return 0;
2307 }
2308 
2309 /* for any branch, call, exit record the history of jmps in the given state */
2310 static int push_jmp_history(struct bpf_verifier_env *env,
2311 			    struct bpf_verifier_state *cur)
2312 {
2313 	u32 cnt = cur->jmp_history_cnt;
2314 	struct bpf_idx_pair *p;
2315 
2316 	cnt++;
2317 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2318 	if (!p)
2319 		return -ENOMEM;
2320 	p[cnt - 1].idx = env->insn_idx;
2321 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2322 	cur->jmp_history = p;
2323 	cur->jmp_history_cnt = cnt;
2324 	return 0;
2325 }
2326 
2327 /* Backtrack one insn at a time. If idx is not at the top of recorded
2328  * history then previous instruction came from straight line execution.
2329  */
2330 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2331 			     u32 *history)
2332 {
2333 	u32 cnt = *history;
2334 
2335 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2336 		i = st->jmp_history[cnt - 1].prev_idx;
2337 		(*history)--;
2338 	} else {
2339 		i--;
2340 	}
2341 	return i;
2342 }
2343 
2344 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2345 {
2346 	const struct btf_type *func;
2347 	struct btf *desc_btf;
2348 
2349 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2350 		return NULL;
2351 
2352 	desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2353 	if (IS_ERR(desc_btf))
2354 		return "<error>";
2355 
2356 	func = btf_type_by_id(desc_btf, insn->imm);
2357 	return btf_name_by_offset(desc_btf, func->name_off);
2358 }
2359 
2360 /* For given verifier state backtrack_insn() is called from the last insn to
2361  * the first insn. Its purpose is to compute a bitmask of registers and
2362  * stack slots that needs precision in the parent verifier state.
2363  */
2364 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2365 			  u32 *reg_mask, u64 *stack_mask)
2366 {
2367 	const struct bpf_insn_cbs cbs = {
2368 		.cb_call	= disasm_kfunc_name,
2369 		.cb_print	= verbose,
2370 		.private_data	= env,
2371 	};
2372 	struct bpf_insn *insn = env->prog->insnsi + idx;
2373 	u8 class = BPF_CLASS(insn->code);
2374 	u8 opcode = BPF_OP(insn->code);
2375 	u8 mode = BPF_MODE(insn->code);
2376 	u32 dreg = 1u << insn->dst_reg;
2377 	u32 sreg = 1u << insn->src_reg;
2378 	u32 spi;
2379 
2380 	if (insn->code == 0)
2381 		return 0;
2382 	if (env->log.level & BPF_LOG_LEVEL2) {
2383 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2384 		verbose(env, "%d: ", idx);
2385 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2386 	}
2387 
2388 	if (class == BPF_ALU || class == BPF_ALU64) {
2389 		if (!(*reg_mask & dreg))
2390 			return 0;
2391 		if (opcode == BPF_MOV) {
2392 			if (BPF_SRC(insn->code) == BPF_X) {
2393 				/* dreg = sreg
2394 				 * dreg needs precision after this insn
2395 				 * sreg needs precision before this insn
2396 				 */
2397 				*reg_mask &= ~dreg;
2398 				*reg_mask |= sreg;
2399 			} else {
2400 				/* dreg = K
2401 				 * dreg needs precision after this insn.
2402 				 * Corresponding register is already marked
2403 				 * as precise=true in this verifier state.
2404 				 * No further markings in parent are necessary
2405 				 */
2406 				*reg_mask &= ~dreg;
2407 			}
2408 		} else {
2409 			if (BPF_SRC(insn->code) == BPF_X) {
2410 				/* dreg += sreg
2411 				 * both dreg and sreg need precision
2412 				 * before this insn
2413 				 */
2414 				*reg_mask |= sreg;
2415 			} /* else dreg += K
2416 			   * dreg still needs precision before this insn
2417 			   */
2418 		}
2419 	} else if (class == BPF_LDX) {
2420 		if (!(*reg_mask & dreg))
2421 			return 0;
2422 		*reg_mask &= ~dreg;
2423 
2424 		/* scalars can only be spilled into stack w/o losing precision.
2425 		 * Load from any other memory can be zero extended.
2426 		 * The desire to keep that precision is already indicated
2427 		 * by 'precise' mark in corresponding register of this state.
2428 		 * No further tracking necessary.
2429 		 */
2430 		if (insn->src_reg != BPF_REG_FP)
2431 			return 0;
2432 
2433 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2434 		 * that [fp - off] slot contains scalar that needs to be
2435 		 * tracked with precision
2436 		 */
2437 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2438 		if (spi >= 64) {
2439 			verbose(env, "BUG spi %d\n", spi);
2440 			WARN_ONCE(1, "verifier backtracking bug");
2441 			return -EFAULT;
2442 		}
2443 		*stack_mask |= 1ull << spi;
2444 	} else if (class == BPF_STX || class == BPF_ST) {
2445 		if (*reg_mask & dreg)
2446 			/* stx & st shouldn't be using _scalar_ dst_reg
2447 			 * to access memory. It means backtracking
2448 			 * encountered a case of pointer subtraction.
2449 			 */
2450 			return -ENOTSUPP;
2451 		/* scalars can only be spilled into stack */
2452 		if (insn->dst_reg != BPF_REG_FP)
2453 			return 0;
2454 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2455 		if (spi >= 64) {
2456 			verbose(env, "BUG spi %d\n", spi);
2457 			WARN_ONCE(1, "verifier backtracking bug");
2458 			return -EFAULT;
2459 		}
2460 		if (!(*stack_mask & (1ull << spi)))
2461 			return 0;
2462 		*stack_mask &= ~(1ull << spi);
2463 		if (class == BPF_STX)
2464 			*reg_mask |= sreg;
2465 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2466 		if (opcode == BPF_CALL) {
2467 			if (insn->src_reg == BPF_PSEUDO_CALL)
2468 				return -ENOTSUPP;
2469 			/* regular helper call sets R0 */
2470 			*reg_mask &= ~1;
2471 			if (*reg_mask & 0x3f) {
2472 				/* if backtracing was looking for registers R1-R5
2473 				 * they should have been found already.
2474 				 */
2475 				verbose(env, "BUG regs %x\n", *reg_mask);
2476 				WARN_ONCE(1, "verifier backtracking bug");
2477 				return -EFAULT;
2478 			}
2479 		} else if (opcode == BPF_EXIT) {
2480 			return -ENOTSUPP;
2481 		}
2482 	} else if (class == BPF_LD) {
2483 		if (!(*reg_mask & dreg))
2484 			return 0;
2485 		*reg_mask &= ~dreg;
2486 		/* It's ld_imm64 or ld_abs or ld_ind.
2487 		 * For ld_imm64 no further tracking of precision
2488 		 * into parent is necessary
2489 		 */
2490 		if (mode == BPF_IND || mode == BPF_ABS)
2491 			/* to be analyzed */
2492 			return -ENOTSUPP;
2493 	}
2494 	return 0;
2495 }
2496 
2497 /* the scalar precision tracking algorithm:
2498  * . at the start all registers have precise=false.
2499  * . scalar ranges are tracked as normal through alu and jmp insns.
2500  * . once precise value of the scalar register is used in:
2501  *   .  ptr + scalar alu
2502  *   . if (scalar cond K|scalar)
2503  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2504  *   backtrack through the verifier states and mark all registers and
2505  *   stack slots with spilled constants that these scalar regisers
2506  *   should be precise.
2507  * . during state pruning two registers (or spilled stack slots)
2508  *   are equivalent if both are not precise.
2509  *
2510  * Note the verifier cannot simply walk register parentage chain,
2511  * since many different registers and stack slots could have been
2512  * used to compute single precise scalar.
2513  *
2514  * The approach of starting with precise=true for all registers and then
2515  * backtrack to mark a register as not precise when the verifier detects
2516  * that program doesn't care about specific value (e.g., when helper
2517  * takes register as ARG_ANYTHING parameter) is not safe.
2518  *
2519  * It's ok to walk single parentage chain of the verifier states.
2520  * It's possible that this backtracking will go all the way till 1st insn.
2521  * All other branches will be explored for needing precision later.
2522  *
2523  * The backtracking needs to deal with cases like:
2524  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2525  * r9 -= r8
2526  * r5 = r9
2527  * if r5 > 0x79f goto pc+7
2528  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2529  * r5 += 1
2530  * ...
2531  * call bpf_perf_event_output#25
2532  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2533  *
2534  * and this case:
2535  * r6 = 1
2536  * call foo // uses callee's r6 inside to compute r0
2537  * r0 += r6
2538  * if r0 == 0 goto
2539  *
2540  * to track above reg_mask/stack_mask needs to be independent for each frame.
2541  *
2542  * Also if parent's curframe > frame where backtracking started,
2543  * the verifier need to mark registers in both frames, otherwise callees
2544  * may incorrectly prune callers. This is similar to
2545  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2546  *
2547  * For now backtracking falls back into conservative marking.
2548  */
2549 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2550 				     struct bpf_verifier_state *st)
2551 {
2552 	struct bpf_func_state *func;
2553 	struct bpf_reg_state *reg;
2554 	int i, j;
2555 
2556 	/* big hammer: mark all scalars precise in this path.
2557 	 * pop_stack may still get !precise scalars.
2558 	 */
2559 	for (; st; st = st->parent)
2560 		for (i = 0; i <= st->curframe; i++) {
2561 			func = st->frame[i];
2562 			for (j = 0; j < BPF_REG_FP; j++) {
2563 				reg = &func->regs[j];
2564 				if (reg->type != SCALAR_VALUE)
2565 					continue;
2566 				reg->precise = true;
2567 			}
2568 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2569 				if (!is_spilled_reg(&func->stack[j]))
2570 					continue;
2571 				reg = &func->stack[j].spilled_ptr;
2572 				if (reg->type != SCALAR_VALUE)
2573 					continue;
2574 				reg->precise = true;
2575 			}
2576 		}
2577 }
2578 
2579 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2580 				  int spi)
2581 {
2582 	struct bpf_verifier_state *st = env->cur_state;
2583 	int first_idx = st->first_insn_idx;
2584 	int last_idx = env->insn_idx;
2585 	struct bpf_func_state *func;
2586 	struct bpf_reg_state *reg;
2587 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2588 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2589 	bool skip_first = true;
2590 	bool new_marks = false;
2591 	int i, err;
2592 
2593 	if (!env->bpf_capable)
2594 		return 0;
2595 
2596 	func = st->frame[st->curframe];
2597 	if (regno >= 0) {
2598 		reg = &func->regs[regno];
2599 		if (reg->type != SCALAR_VALUE) {
2600 			WARN_ONCE(1, "backtracing misuse");
2601 			return -EFAULT;
2602 		}
2603 		if (!reg->precise)
2604 			new_marks = true;
2605 		else
2606 			reg_mask = 0;
2607 		reg->precise = true;
2608 	}
2609 
2610 	while (spi >= 0) {
2611 		if (!is_spilled_reg(&func->stack[spi])) {
2612 			stack_mask = 0;
2613 			break;
2614 		}
2615 		reg = &func->stack[spi].spilled_ptr;
2616 		if (reg->type != SCALAR_VALUE) {
2617 			stack_mask = 0;
2618 			break;
2619 		}
2620 		if (!reg->precise)
2621 			new_marks = true;
2622 		else
2623 			stack_mask = 0;
2624 		reg->precise = true;
2625 		break;
2626 	}
2627 
2628 	if (!new_marks)
2629 		return 0;
2630 	if (!reg_mask && !stack_mask)
2631 		return 0;
2632 	for (;;) {
2633 		DECLARE_BITMAP(mask, 64);
2634 		u32 history = st->jmp_history_cnt;
2635 
2636 		if (env->log.level & BPF_LOG_LEVEL2)
2637 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2638 		for (i = last_idx;;) {
2639 			if (skip_first) {
2640 				err = 0;
2641 				skip_first = false;
2642 			} else {
2643 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2644 			}
2645 			if (err == -ENOTSUPP) {
2646 				mark_all_scalars_precise(env, st);
2647 				return 0;
2648 			} else if (err) {
2649 				return err;
2650 			}
2651 			if (!reg_mask && !stack_mask)
2652 				/* Found assignment(s) into tracked register in this state.
2653 				 * Since this state is already marked, just return.
2654 				 * Nothing to be tracked further in the parent state.
2655 				 */
2656 				return 0;
2657 			if (i == first_idx)
2658 				break;
2659 			i = get_prev_insn_idx(st, i, &history);
2660 			if (i >= env->prog->len) {
2661 				/* This can happen if backtracking reached insn 0
2662 				 * and there are still reg_mask or stack_mask
2663 				 * to backtrack.
2664 				 * It means the backtracking missed the spot where
2665 				 * particular register was initialized with a constant.
2666 				 */
2667 				verbose(env, "BUG backtracking idx %d\n", i);
2668 				WARN_ONCE(1, "verifier backtracking bug");
2669 				return -EFAULT;
2670 			}
2671 		}
2672 		st = st->parent;
2673 		if (!st)
2674 			break;
2675 
2676 		new_marks = false;
2677 		func = st->frame[st->curframe];
2678 		bitmap_from_u64(mask, reg_mask);
2679 		for_each_set_bit(i, mask, 32) {
2680 			reg = &func->regs[i];
2681 			if (reg->type != SCALAR_VALUE) {
2682 				reg_mask &= ~(1u << i);
2683 				continue;
2684 			}
2685 			if (!reg->precise)
2686 				new_marks = true;
2687 			reg->precise = true;
2688 		}
2689 
2690 		bitmap_from_u64(mask, stack_mask);
2691 		for_each_set_bit(i, mask, 64) {
2692 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2693 				/* the sequence of instructions:
2694 				 * 2: (bf) r3 = r10
2695 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2696 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2697 				 * doesn't contain jmps. It's backtracked
2698 				 * as a single block.
2699 				 * During backtracking insn 3 is not recognized as
2700 				 * stack access, so at the end of backtracking
2701 				 * stack slot fp-8 is still marked in stack_mask.
2702 				 * However the parent state may not have accessed
2703 				 * fp-8 and it's "unallocated" stack space.
2704 				 * In such case fallback to conservative.
2705 				 */
2706 				mark_all_scalars_precise(env, st);
2707 				return 0;
2708 			}
2709 
2710 			if (!is_spilled_reg(&func->stack[i])) {
2711 				stack_mask &= ~(1ull << i);
2712 				continue;
2713 			}
2714 			reg = &func->stack[i].spilled_ptr;
2715 			if (reg->type != SCALAR_VALUE) {
2716 				stack_mask &= ~(1ull << i);
2717 				continue;
2718 			}
2719 			if (!reg->precise)
2720 				new_marks = true;
2721 			reg->precise = true;
2722 		}
2723 		if (env->log.level & BPF_LOG_LEVEL2) {
2724 			verbose(env, "parent %s regs=%x stack=%llx marks:",
2725 				new_marks ? "didn't have" : "already had",
2726 				reg_mask, stack_mask);
2727 			print_verifier_state(env, func, true);
2728 		}
2729 
2730 		if (!reg_mask && !stack_mask)
2731 			break;
2732 		if (!new_marks)
2733 			break;
2734 
2735 		last_idx = st->last_insn_idx;
2736 		first_idx = st->first_insn_idx;
2737 	}
2738 	return 0;
2739 }
2740 
2741 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2742 {
2743 	return __mark_chain_precision(env, regno, -1);
2744 }
2745 
2746 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2747 {
2748 	return __mark_chain_precision(env, -1, spi);
2749 }
2750 
2751 static bool is_spillable_regtype(enum bpf_reg_type type)
2752 {
2753 	switch (base_type(type)) {
2754 	case PTR_TO_MAP_VALUE:
2755 	case PTR_TO_STACK:
2756 	case PTR_TO_CTX:
2757 	case PTR_TO_PACKET:
2758 	case PTR_TO_PACKET_META:
2759 	case PTR_TO_PACKET_END:
2760 	case PTR_TO_FLOW_KEYS:
2761 	case CONST_PTR_TO_MAP:
2762 	case PTR_TO_SOCKET:
2763 	case PTR_TO_SOCK_COMMON:
2764 	case PTR_TO_TCP_SOCK:
2765 	case PTR_TO_XDP_SOCK:
2766 	case PTR_TO_BTF_ID:
2767 	case PTR_TO_BUF:
2768 	case PTR_TO_PERCPU_BTF_ID:
2769 	case PTR_TO_MEM:
2770 	case PTR_TO_FUNC:
2771 	case PTR_TO_MAP_KEY:
2772 		return true;
2773 	default:
2774 		return false;
2775 	}
2776 }
2777 
2778 /* Does this register contain a constant zero? */
2779 static bool register_is_null(struct bpf_reg_state *reg)
2780 {
2781 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2782 }
2783 
2784 static bool register_is_const(struct bpf_reg_state *reg)
2785 {
2786 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2787 }
2788 
2789 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2790 {
2791 	return tnum_is_unknown(reg->var_off) &&
2792 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2793 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2794 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2795 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2796 }
2797 
2798 static bool register_is_bounded(struct bpf_reg_state *reg)
2799 {
2800 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2801 }
2802 
2803 static bool __is_pointer_value(bool allow_ptr_leaks,
2804 			       const struct bpf_reg_state *reg)
2805 {
2806 	if (allow_ptr_leaks)
2807 		return false;
2808 
2809 	return reg->type != SCALAR_VALUE;
2810 }
2811 
2812 static void save_register_state(struct bpf_func_state *state,
2813 				int spi, struct bpf_reg_state *reg,
2814 				int size)
2815 {
2816 	int i;
2817 
2818 	state->stack[spi].spilled_ptr = *reg;
2819 	if (size == BPF_REG_SIZE)
2820 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2821 
2822 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2823 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2824 
2825 	/* size < 8 bytes spill */
2826 	for (; i; i--)
2827 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2828 }
2829 
2830 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2831  * stack boundary and alignment are checked in check_mem_access()
2832  */
2833 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2834 				       /* stack frame we're writing to */
2835 				       struct bpf_func_state *state,
2836 				       int off, int size, int value_regno,
2837 				       int insn_idx)
2838 {
2839 	struct bpf_func_state *cur; /* state of the current function */
2840 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2841 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2842 	struct bpf_reg_state *reg = NULL;
2843 
2844 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2845 	if (err)
2846 		return err;
2847 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2848 	 * so it's aligned access and [off, off + size) are within stack limits
2849 	 */
2850 	if (!env->allow_ptr_leaks &&
2851 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2852 	    size != BPF_REG_SIZE) {
2853 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2854 		return -EACCES;
2855 	}
2856 
2857 	cur = env->cur_state->frame[env->cur_state->curframe];
2858 	if (value_regno >= 0)
2859 		reg = &cur->regs[value_regno];
2860 	if (!env->bypass_spec_v4) {
2861 		bool sanitize = reg && is_spillable_regtype(reg->type);
2862 
2863 		for (i = 0; i < size; i++) {
2864 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2865 				sanitize = true;
2866 				break;
2867 			}
2868 		}
2869 
2870 		if (sanitize)
2871 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2872 	}
2873 
2874 	mark_stack_slot_scratched(env, spi);
2875 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2876 	    !register_is_null(reg) && env->bpf_capable) {
2877 		if (dst_reg != BPF_REG_FP) {
2878 			/* The backtracking logic can only recognize explicit
2879 			 * stack slot address like [fp - 8]. Other spill of
2880 			 * scalar via different register has to be conservative.
2881 			 * Backtrack from here and mark all registers as precise
2882 			 * that contributed into 'reg' being a constant.
2883 			 */
2884 			err = mark_chain_precision(env, value_regno);
2885 			if (err)
2886 				return err;
2887 		}
2888 		save_register_state(state, spi, reg, size);
2889 	} else if (reg && is_spillable_regtype(reg->type)) {
2890 		/* register containing pointer is being spilled into stack */
2891 		if (size != BPF_REG_SIZE) {
2892 			verbose_linfo(env, insn_idx, "; ");
2893 			verbose(env, "invalid size of register spill\n");
2894 			return -EACCES;
2895 		}
2896 		if (state != cur && reg->type == PTR_TO_STACK) {
2897 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2898 			return -EINVAL;
2899 		}
2900 		save_register_state(state, spi, reg, size);
2901 	} else {
2902 		u8 type = STACK_MISC;
2903 
2904 		/* regular write of data into stack destroys any spilled ptr */
2905 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2906 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2907 		if (is_spilled_reg(&state->stack[spi]))
2908 			for (i = 0; i < BPF_REG_SIZE; i++)
2909 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2910 
2911 		/* only mark the slot as written if all 8 bytes were written
2912 		 * otherwise read propagation may incorrectly stop too soon
2913 		 * when stack slots are partially written.
2914 		 * This heuristic means that read propagation will be
2915 		 * conservative, since it will add reg_live_read marks
2916 		 * to stack slots all the way to first state when programs
2917 		 * writes+reads less than 8 bytes
2918 		 */
2919 		if (size == BPF_REG_SIZE)
2920 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2921 
2922 		/* when we zero initialize stack slots mark them as such */
2923 		if (reg && register_is_null(reg)) {
2924 			/* backtracking doesn't work for STACK_ZERO yet. */
2925 			err = mark_chain_precision(env, value_regno);
2926 			if (err)
2927 				return err;
2928 			type = STACK_ZERO;
2929 		}
2930 
2931 		/* Mark slots affected by this stack write. */
2932 		for (i = 0; i < size; i++)
2933 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2934 				type;
2935 	}
2936 	return 0;
2937 }
2938 
2939 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2940  * known to contain a variable offset.
2941  * This function checks whether the write is permitted and conservatively
2942  * tracks the effects of the write, considering that each stack slot in the
2943  * dynamic range is potentially written to.
2944  *
2945  * 'off' includes 'regno->off'.
2946  * 'value_regno' can be -1, meaning that an unknown value is being written to
2947  * the stack.
2948  *
2949  * Spilled pointers in range are not marked as written because we don't know
2950  * what's going to be actually written. This means that read propagation for
2951  * future reads cannot be terminated by this write.
2952  *
2953  * For privileged programs, uninitialized stack slots are considered
2954  * initialized by this write (even though we don't know exactly what offsets
2955  * are going to be written to). The idea is that we don't want the verifier to
2956  * reject future reads that access slots written to through variable offsets.
2957  */
2958 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2959 				     /* func where register points to */
2960 				     struct bpf_func_state *state,
2961 				     int ptr_regno, int off, int size,
2962 				     int value_regno, int insn_idx)
2963 {
2964 	struct bpf_func_state *cur; /* state of the current function */
2965 	int min_off, max_off;
2966 	int i, err;
2967 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2968 	bool writing_zero = false;
2969 	/* set if the fact that we're writing a zero is used to let any
2970 	 * stack slots remain STACK_ZERO
2971 	 */
2972 	bool zero_used = false;
2973 
2974 	cur = env->cur_state->frame[env->cur_state->curframe];
2975 	ptr_reg = &cur->regs[ptr_regno];
2976 	min_off = ptr_reg->smin_value + off;
2977 	max_off = ptr_reg->smax_value + off + size;
2978 	if (value_regno >= 0)
2979 		value_reg = &cur->regs[value_regno];
2980 	if (value_reg && register_is_null(value_reg))
2981 		writing_zero = true;
2982 
2983 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2984 	if (err)
2985 		return err;
2986 
2987 
2988 	/* Variable offset writes destroy any spilled pointers in range. */
2989 	for (i = min_off; i < max_off; i++) {
2990 		u8 new_type, *stype;
2991 		int slot, spi;
2992 
2993 		slot = -i - 1;
2994 		spi = slot / BPF_REG_SIZE;
2995 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2996 		mark_stack_slot_scratched(env, spi);
2997 
2998 		if (!env->allow_ptr_leaks
2999 				&& *stype != NOT_INIT
3000 				&& *stype != SCALAR_VALUE) {
3001 			/* Reject the write if there's are spilled pointers in
3002 			 * range. If we didn't reject here, the ptr status
3003 			 * would be erased below (even though not all slots are
3004 			 * actually overwritten), possibly opening the door to
3005 			 * leaks.
3006 			 */
3007 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3008 				insn_idx, i);
3009 			return -EINVAL;
3010 		}
3011 
3012 		/* Erase all spilled pointers. */
3013 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3014 
3015 		/* Update the slot type. */
3016 		new_type = STACK_MISC;
3017 		if (writing_zero && *stype == STACK_ZERO) {
3018 			new_type = STACK_ZERO;
3019 			zero_used = true;
3020 		}
3021 		/* If the slot is STACK_INVALID, we check whether it's OK to
3022 		 * pretend that it will be initialized by this write. The slot
3023 		 * might not actually be written to, and so if we mark it as
3024 		 * initialized future reads might leak uninitialized memory.
3025 		 * For privileged programs, we will accept such reads to slots
3026 		 * that may or may not be written because, if we're reject
3027 		 * them, the error would be too confusing.
3028 		 */
3029 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3030 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3031 					insn_idx, i);
3032 			return -EINVAL;
3033 		}
3034 		*stype = new_type;
3035 	}
3036 	if (zero_used) {
3037 		/* backtracking doesn't work for STACK_ZERO yet. */
3038 		err = mark_chain_precision(env, value_regno);
3039 		if (err)
3040 			return err;
3041 	}
3042 	return 0;
3043 }
3044 
3045 /* When register 'dst_regno' is assigned some values from stack[min_off,
3046  * max_off), we set the register's type according to the types of the
3047  * respective stack slots. If all the stack values are known to be zeros, then
3048  * so is the destination reg. Otherwise, the register is considered to be
3049  * SCALAR. This function does not deal with register filling; the caller must
3050  * ensure that all spilled registers in the stack range have been marked as
3051  * read.
3052  */
3053 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3054 				/* func where src register points to */
3055 				struct bpf_func_state *ptr_state,
3056 				int min_off, int max_off, int dst_regno)
3057 {
3058 	struct bpf_verifier_state *vstate = env->cur_state;
3059 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3060 	int i, slot, spi;
3061 	u8 *stype;
3062 	int zeros = 0;
3063 
3064 	for (i = min_off; i < max_off; i++) {
3065 		slot = -i - 1;
3066 		spi = slot / BPF_REG_SIZE;
3067 		stype = ptr_state->stack[spi].slot_type;
3068 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3069 			break;
3070 		zeros++;
3071 	}
3072 	if (zeros == max_off - min_off) {
3073 		/* any access_size read into register is zero extended,
3074 		 * so the whole register == const_zero
3075 		 */
3076 		__mark_reg_const_zero(&state->regs[dst_regno]);
3077 		/* backtracking doesn't support STACK_ZERO yet,
3078 		 * so mark it precise here, so that later
3079 		 * backtracking can stop here.
3080 		 * Backtracking may not need this if this register
3081 		 * doesn't participate in pointer adjustment.
3082 		 * Forward propagation of precise flag is not
3083 		 * necessary either. This mark is only to stop
3084 		 * backtracking. Any register that contributed
3085 		 * to const 0 was marked precise before spill.
3086 		 */
3087 		state->regs[dst_regno].precise = true;
3088 	} else {
3089 		/* have read misc data from the stack */
3090 		mark_reg_unknown(env, state->regs, dst_regno);
3091 	}
3092 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3093 }
3094 
3095 /* Read the stack at 'off' and put the results into the register indicated by
3096  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3097  * spilled reg.
3098  *
3099  * 'dst_regno' can be -1, meaning that the read value is not going to a
3100  * register.
3101  *
3102  * The access is assumed to be within the current stack bounds.
3103  */
3104 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3105 				      /* func where src register points to */
3106 				      struct bpf_func_state *reg_state,
3107 				      int off, int size, int dst_regno)
3108 {
3109 	struct bpf_verifier_state *vstate = env->cur_state;
3110 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3111 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3112 	struct bpf_reg_state *reg;
3113 	u8 *stype, type;
3114 
3115 	stype = reg_state->stack[spi].slot_type;
3116 	reg = &reg_state->stack[spi].spilled_ptr;
3117 
3118 	if (is_spilled_reg(&reg_state->stack[spi])) {
3119 		u8 spill_size = 1;
3120 
3121 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3122 			spill_size++;
3123 
3124 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3125 			if (reg->type != SCALAR_VALUE) {
3126 				verbose_linfo(env, env->insn_idx, "; ");
3127 				verbose(env, "invalid size of register fill\n");
3128 				return -EACCES;
3129 			}
3130 
3131 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3132 			if (dst_regno < 0)
3133 				return 0;
3134 
3135 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3136 				/* The earlier check_reg_arg() has decided the
3137 				 * subreg_def for this insn.  Save it first.
3138 				 */
3139 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3140 
3141 				state->regs[dst_regno] = *reg;
3142 				state->regs[dst_regno].subreg_def = subreg_def;
3143 			} else {
3144 				for (i = 0; i < size; i++) {
3145 					type = stype[(slot - i) % BPF_REG_SIZE];
3146 					if (type == STACK_SPILL)
3147 						continue;
3148 					if (type == STACK_MISC)
3149 						continue;
3150 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3151 						off, i, size);
3152 					return -EACCES;
3153 				}
3154 				mark_reg_unknown(env, state->regs, dst_regno);
3155 			}
3156 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3157 			return 0;
3158 		}
3159 
3160 		if (dst_regno >= 0) {
3161 			/* restore register state from stack */
3162 			state->regs[dst_regno] = *reg;
3163 			/* mark reg as written since spilled pointer state likely
3164 			 * has its liveness marks cleared by is_state_visited()
3165 			 * which resets stack/reg liveness for state transitions
3166 			 */
3167 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3168 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3169 			/* If dst_regno==-1, the caller is asking us whether
3170 			 * it is acceptable to use this value as a SCALAR_VALUE
3171 			 * (e.g. for XADD).
3172 			 * We must not allow unprivileged callers to do that
3173 			 * with spilled pointers.
3174 			 */
3175 			verbose(env, "leaking pointer from stack off %d\n",
3176 				off);
3177 			return -EACCES;
3178 		}
3179 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3180 	} else {
3181 		for (i = 0; i < size; i++) {
3182 			type = stype[(slot - i) % BPF_REG_SIZE];
3183 			if (type == STACK_MISC)
3184 				continue;
3185 			if (type == STACK_ZERO)
3186 				continue;
3187 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3188 				off, i, size);
3189 			return -EACCES;
3190 		}
3191 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3192 		if (dst_regno >= 0)
3193 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3194 	}
3195 	return 0;
3196 }
3197 
3198 enum stack_access_src {
3199 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3200 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3201 };
3202 
3203 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3204 					 int regno, int off, int access_size,
3205 					 bool zero_size_allowed,
3206 					 enum stack_access_src type,
3207 					 struct bpf_call_arg_meta *meta);
3208 
3209 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3210 {
3211 	return cur_regs(env) + regno;
3212 }
3213 
3214 /* Read the stack at 'ptr_regno + off' and put the result into the register
3215  * 'dst_regno'.
3216  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3217  * but not its variable offset.
3218  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3219  *
3220  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3221  * filling registers (i.e. reads of spilled register cannot be detected when
3222  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3223  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3224  * offset; for a fixed offset check_stack_read_fixed_off should be used
3225  * instead.
3226  */
3227 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3228 				    int ptr_regno, int off, int size, int dst_regno)
3229 {
3230 	/* The state of the source register. */
3231 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3232 	struct bpf_func_state *ptr_state = func(env, reg);
3233 	int err;
3234 	int min_off, max_off;
3235 
3236 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3237 	 */
3238 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3239 					    false, ACCESS_DIRECT, NULL);
3240 	if (err)
3241 		return err;
3242 
3243 	min_off = reg->smin_value + off;
3244 	max_off = reg->smax_value + off;
3245 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3246 	return 0;
3247 }
3248 
3249 /* check_stack_read dispatches to check_stack_read_fixed_off or
3250  * check_stack_read_var_off.
3251  *
3252  * The caller must ensure that the offset falls within the allocated stack
3253  * bounds.
3254  *
3255  * 'dst_regno' is a register which will receive the value from the stack. It
3256  * can be -1, meaning that the read value is not going to a register.
3257  */
3258 static int check_stack_read(struct bpf_verifier_env *env,
3259 			    int ptr_regno, int off, int size,
3260 			    int dst_regno)
3261 {
3262 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3263 	struct bpf_func_state *state = func(env, reg);
3264 	int err;
3265 	/* Some accesses are only permitted with a static offset. */
3266 	bool var_off = !tnum_is_const(reg->var_off);
3267 
3268 	/* The offset is required to be static when reads don't go to a
3269 	 * register, in order to not leak pointers (see
3270 	 * check_stack_read_fixed_off).
3271 	 */
3272 	if (dst_regno < 0 && var_off) {
3273 		char tn_buf[48];
3274 
3275 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3276 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3277 			tn_buf, off, size);
3278 		return -EACCES;
3279 	}
3280 	/* Variable offset is prohibited for unprivileged mode for simplicity
3281 	 * since it requires corresponding support in Spectre masking for stack
3282 	 * ALU. See also retrieve_ptr_limit().
3283 	 */
3284 	if (!env->bypass_spec_v1 && var_off) {
3285 		char tn_buf[48];
3286 
3287 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3288 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3289 				ptr_regno, tn_buf);
3290 		return -EACCES;
3291 	}
3292 
3293 	if (!var_off) {
3294 		off += reg->var_off.value;
3295 		err = check_stack_read_fixed_off(env, state, off, size,
3296 						 dst_regno);
3297 	} else {
3298 		/* Variable offset stack reads need more conservative handling
3299 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3300 		 * branch.
3301 		 */
3302 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3303 					       dst_regno);
3304 	}
3305 	return err;
3306 }
3307 
3308 
3309 /* check_stack_write dispatches to check_stack_write_fixed_off or
3310  * check_stack_write_var_off.
3311  *
3312  * 'ptr_regno' is the register used as a pointer into the stack.
3313  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3314  * 'value_regno' is the register whose value we're writing to the stack. It can
3315  * be -1, meaning that we're not writing from a register.
3316  *
3317  * The caller must ensure that the offset falls within the maximum stack size.
3318  */
3319 static int check_stack_write(struct bpf_verifier_env *env,
3320 			     int ptr_regno, int off, int size,
3321 			     int value_regno, int insn_idx)
3322 {
3323 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3324 	struct bpf_func_state *state = func(env, reg);
3325 	int err;
3326 
3327 	if (tnum_is_const(reg->var_off)) {
3328 		off += reg->var_off.value;
3329 		err = check_stack_write_fixed_off(env, state, off, size,
3330 						  value_regno, insn_idx);
3331 	} else {
3332 		/* Variable offset stack reads need more conservative handling
3333 		 * than fixed offset ones.
3334 		 */
3335 		err = check_stack_write_var_off(env, state,
3336 						ptr_regno, off, size,
3337 						value_regno, insn_idx);
3338 	}
3339 	return err;
3340 }
3341 
3342 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3343 				 int off, int size, enum bpf_access_type type)
3344 {
3345 	struct bpf_reg_state *regs = cur_regs(env);
3346 	struct bpf_map *map = regs[regno].map_ptr;
3347 	u32 cap = bpf_map_flags_to_cap(map);
3348 
3349 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3350 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3351 			map->value_size, off, size);
3352 		return -EACCES;
3353 	}
3354 
3355 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3356 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3357 			map->value_size, off, size);
3358 		return -EACCES;
3359 	}
3360 
3361 	return 0;
3362 }
3363 
3364 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3365 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3366 			      int off, int size, u32 mem_size,
3367 			      bool zero_size_allowed)
3368 {
3369 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3370 	struct bpf_reg_state *reg;
3371 
3372 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3373 		return 0;
3374 
3375 	reg = &cur_regs(env)[regno];
3376 	switch (reg->type) {
3377 	case PTR_TO_MAP_KEY:
3378 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3379 			mem_size, off, size);
3380 		break;
3381 	case PTR_TO_MAP_VALUE:
3382 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3383 			mem_size, off, size);
3384 		break;
3385 	case PTR_TO_PACKET:
3386 	case PTR_TO_PACKET_META:
3387 	case PTR_TO_PACKET_END:
3388 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3389 			off, size, regno, reg->id, off, mem_size);
3390 		break;
3391 	case PTR_TO_MEM:
3392 	default:
3393 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3394 			mem_size, off, size);
3395 	}
3396 
3397 	return -EACCES;
3398 }
3399 
3400 /* check read/write into a memory region with possible variable offset */
3401 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3402 				   int off, int size, u32 mem_size,
3403 				   bool zero_size_allowed)
3404 {
3405 	struct bpf_verifier_state *vstate = env->cur_state;
3406 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3407 	struct bpf_reg_state *reg = &state->regs[regno];
3408 	int err;
3409 
3410 	/* We may have adjusted the register pointing to memory region, so we
3411 	 * need to try adding each of min_value and max_value to off
3412 	 * to make sure our theoretical access will be safe.
3413 	 *
3414 	 * The minimum value is only important with signed
3415 	 * comparisons where we can't assume the floor of a
3416 	 * value is 0.  If we are using signed variables for our
3417 	 * index'es we need to make sure that whatever we use
3418 	 * will have a set floor within our range.
3419 	 */
3420 	if (reg->smin_value < 0 &&
3421 	    (reg->smin_value == S64_MIN ||
3422 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3423 	      reg->smin_value + off < 0)) {
3424 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3425 			regno);
3426 		return -EACCES;
3427 	}
3428 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3429 				 mem_size, zero_size_allowed);
3430 	if (err) {
3431 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3432 			regno);
3433 		return err;
3434 	}
3435 
3436 	/* If we haven't set a max value then we need to bail since we can't be
3437 	 * sure we won't do bad things.
3438 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3439 	 */
3440 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3441 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3442 			regno);
3443 		return -EACCES;
3444 	}
3445 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3446 				 mem_size, zero_size_allowed);
3447 	if (err) {
3448 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3449 			regno);
3450 		return err;
3451 	}
3452 
3453 	return 0;
3454 }
3455 
3456 /* check read/write into a map element with possible variable offset */
3457 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3458 			    int off, int size, bool zero_size_allowed)
3459 {
3460 	struct bpf_verifier_state *vstate = env->cur_state;
3461 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3462 	struct bpf_reg_state *reg = &state->regs[regno];
3463 	struct bpf_map *map = reg->map_ptr;
3464 	int err;
3465 
3466 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3467 				      zero_size_allowed);
3468 	if (err)
3469 		return err;
3470 
3471 	if (map_value_has_spin_lock(map)) {
3472 		u32 lock = map->spin_lock_off;
3473 
3474 		/* if any part of struct bpf_spin_lock can be touched by
3475 		 * load/store reject this program.
3476 		 * To check that [x1, x2) overlaps with [y1, y2)
3477 		 * it is sufficient to check x1 < y2 && y1 < x2.
3478 		 */
3479 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3480 		     lock < reg->umax_value + off + size) {
3481 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3482 			return -EACCES;
3483 		}
3484 	}
3485 	if (map_value_has_timer(map)) {
3486 		u32 t = map->timer_off;
3487 
3488 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3489 		     t < reg->umax_value + off + size) {
3490 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3491 			return -EACCES;
3492 		}
3493 	}
3494 	return err;
3495 }
3496 
3497 #define MAX_PACKET_OFF 0xffff
3498 
3499 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3500 {
3501 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3502 }
3503 
3504 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3505 				       const struct bpf_call_arg_meta *meta,
3506 				       enum bpf_access_type t)
3507 {
3508 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3509 
3510 	switch (prog_type) {
3511 	/* Program types only with direct read access go here! */
3512 	case BPF_PROG_TYPE_LWT_IN:
3513 	case BPF_PROG_TYPE_LWT_OUT:
3514 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3515 	case BPF_PROG_TYPE_SK_REUSEPORT:
3516 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3517 	case BPF_PROG_TYPE_CGROUP_SKB:
3518 		if (t == BPF_WRITE)
3519 			return false;
3520 		fallthrough;
3521 
3522 	/* Program types with direct read + write access go here! */
3523 	case BPF_PROG_TYPE_SCHED_CLS:
3524 	case BPF_PROG_TYPE_SCHED_ACT:
3525 	case BPF_PROG_TYPE_XDP:
3526 	case BPF_PROG_TYPE_LWT_XMIT:
3527 	case BPF_PROG_TYPE_SK_SKB:
3528 	case BPF_PROG_TYPE_SK_MSG:
3529 		if (meta)
3530 			return meta->pkt_access;
3531 
3532 		env->seen_direct_write = true;
3533 		return true;
3534 
3535 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3536 		if (t == BPF_WRITE)
3537 			env->seen_direct_write = true;
3538 
3539 		return true;
3540 
3541 	default:
3542 		return false;
3543 	}
3544 }
3545 
3546 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3547 			       int size, bool zero_size_allowed)
3548 {
3549 	struct bpf_reg_state *regs = cur_regs(env);
3550 	struct bpf_reg_state *reg = &regs[regno];
3551 	int err;
3552 
3553 	/* We may have added a variable offset to the packet pointer; but any
3554 	 * reg->range we have comes after that.  We are only checking the fixed
3555 	 * offset.
3556 	 */
3557 
3558 	/* We don't allow negative numbers, because we aren't tracking enough
3559 	 * detail to prove they're safe.
3560 	 */
3561 	if (reg->smin_value < 0) {
3562 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3563 			regno);
3564 		return -EACCES;
3565 	}
3566 
3567 	err = reg->range < 0 ? -EINVAL :
3568 	      __check_mem_access(env, regno, off, size, reg->range,
3569 				 zero_size_allowed);
3570 	if (err) {
3571 		verbose(env, "R%d offset is outside of the packet\n", regno);
3572 		return err;
3573 	}
3574 
3575 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3576 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3577 	 * otherwise find_good_pkt_pointers would have refused to set range info
3578 	 * that __check_mem_access would have rejected this pkt access.
3579 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3580 	 */
3581 	env->prog->aux->max_pkt_offset =
3582 		max_t(u32, env->prog->aux->max_pkt_offset,
3583 		      off + reg->umax_value + size - 1);
3584 
3585 	return err;
3586 }
3587 
3588 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3589 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3590 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3591 			    struct btf **btf, u32 *btf_id)
3592 {
3593 	struct bpf_insn_access_aux info = {
3594 		.reg_type = *reg_type,
3595 		.log = &env->log,
3596 	};
3597 
3598 	if (env->ops->is_valid_access &&
3599 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3600 		/* A non zero info.ctx_field_size indicates that this field is a
3601 		 * candidate for later verifier transformation to load the whole
3602 		 * field and then apply a mask when accessed with a narrower
3603 		 * access than actual ctx access size. A zero info.ctx_field_size
3604 		 * will only allow for whole field access and rejects any other
3605 		 * type of narrower access.
3606 		 */
3607 		*reg_type = info.reg_type;
3608 
3609 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3610 			*btf = info.btf;
3611 			*btf_id = info.btf_id;
3612 		} else {
3613 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3614 		}
3615 		/* remember the offset of last byte accessed in ctx */
3616 		if (env->prog->aux->max_ctx_offset < off + size)
3617 			env->prog->aux->max_ctx_offset = off + size;
3618 		return 0;
3619 	}
3620 
3621 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3622 	return -EACCES;
3623 }
3624 
3625 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3626 				  int size)
3627 {
3628 	if (size < 0 || off < 0 ||
3629 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3630 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3631 			off, size);
3632 		return -EACCES;
3633 	}
3634 	return 0;
3635 }
3636 
3637 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3638 			     u32 regno, int off, int size,
3639 			     enum bpf_access_type t)
3640 {
3641 	struct bpf_reg_state *regs = cur_regs(env);
3642 	struct bpf_reg_state *reg = &regs[regno];
3643 	struct bpf_insn_access_aux info = {};
3644 	bool valid;
3645 
3646 	if (reg->smin_value < 0) {
3647 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3648 			regno);
3649 		return -EACCES;
3650 	}
3651 
3652 	switch (reg->type) {
3653 	case PTR_TO_SOCK_COMMON:
3654 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3655 		break;
3656 	case PTR_TO_SOCKET:
3657 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3658 		break;
3659 	case PTR_TO_TCP_SOCK:
3660 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3661 		break;
3662 	case PTR_TO_XDP_SOCK:
3663 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3664 		break;
3665 	default:
3666 		valid = false;
3667 	}
3668 
3669 
3670 	if (valid) {
3671 		env->insn_aux_data[insn_idx].ctx_field_size =
3672 			info.ctx_field_size;
3673 		return 0;
3674 	}
3675 
3676 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3677 		regno, reg_type_str(env, reg->type), off, size);
3678 
3679 	return -EACCES;
3680 }
3681 
3682 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3683 {
3684 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3685 }
3686 
3687 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3688 {
3689 	const struct bpf_reg_state *reg = reg_state(env, regno);
3690 
3691 	return reg->type == PTR_TO_CTX;
3692 }
3693 
3694 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3695 {
3696 	const struct bpf_reg_state *reg = reg_state(env, regno);
3697 
3698 	return type_is_sk_pointer(reg->type);
3699 }
3700 
3701 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3702 {
3703 	const struct bpf_reg_state *reg = reg_state(env, regno);
3704 
3705 	return type_is_pkt_pointer(reg->type);
3706 }
3707 
3708 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3709 {
3710 	const struct bpf_reg_state *reg = reg_state(env, regno);
3711 
3712 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3713 	return reg->type == PTR_TO_FLOW_KEYS;
3714 }
3715 
3716 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3717 				   const struct bpf_reg_state *reg,
3718 				   int off, int size, bool strict)
3719 {
3720 	struct tnum reg_off;
3721 	int ip_align;
3722 
3723 	/* Byte size accesses are always allowed. */
3724 	if (!strict || size == 1)
3725 		return 0;
3726 
3727 	/* For platforms that do not have a Kconfig enabling
3728 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3729 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3730 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3731 	 * to this code only in strict mode where we want to emulate
3732 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3733 	 * unconditional IP align value of '2'.
3734 	 */
3735 	ip_align = 2;
3736 
3737 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3738 	if (!tnum_is_aligned(reg_off, size)) {
3739 		char tn_buf[48];
3740 
3741 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3742 		verbose(env,
3743 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3744 			ip_align, tn_buf, reg->off, off, size);
3745 		return -EACCES;
3746 	}
3747 
3748 	return 0;
3749 }
3750 
3751 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3752 				       const struct bpf_reg_state *reg,
3753 				       const char *pointer_desc,
3754 				       int off, int size, bool strict)
3755 {
3756 	struct tnum reg_off;
3757 
3758 	/* Byte size accesses are always allowed. */
3759 	if (!strict || size == 1)
3760 		return 0;
3761 
3762 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3763 	if (!tnum_is_aligned(reg_off, size)) {
3764 		char tn_buf[48];
3765 
3766 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3767 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3768 			pointer_desc, tn_buf, reg->off, off, size);
3769 		return -EACCES;
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 static int check_ptr_alignment(struct bpf_verifier_env *env,
3776 			       const struct bpf_reg_state *reg, int off,
3777 			       int size, bool strict_alignment_once)
3778 {
3779 	bool strict = env->strict_alignment || strict_alignment_once;
3780 	const char *pointer_desc = "";
3781 
3782 	switch (reg->type) {
3783 	case PTR_TO_PACKET:
3784 	case PTR_TO_PACKET_META:
3785 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3786 		 * right in front, treat it the very same way.
3787 		 */
3788 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3789 	case PTR_TO_FLOW_KEYS:
3790 		pointer_desc = "flow keys ";
3791 		break;
3792 	case PTR_TO_MAP_KEY:
3793 		pointer_desc = "key ";
3794 		break;
3795 	case PTR_TO_MAP_VALUE:
3796 		pointer_desc = "value ";
3797 		break;
3798 	case PTR_TO_CTX:
3799 		pointer_desc = "context ";
3800 		break;
3801 	case PTR_TO_STACK:
3802 		pointer_desc = "stack ";
3803 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3804 		 * and check_stack_read_fixed_off() relies on stack accesses being
3805 		 * aligned.
3806 		 */
3807 		strict = true;
3808 		break;
3809 	case PTR_TO_SOCKET:
3810 		pointer_desc = "sock ";
3811 		break;
3812 	case PTR_TO_SOCK_COMMON:
3813 		pointer_desc = "sock_common ";
3814 		break;
3815 	case PTR_TO_TCP_SOCK:
3816 		pointer_desc = "tcp_sock ";
3817 		break;
3818 	case PTR_TO_XDP_SOCK:
3819 		pointer_desc = "xdp_sock ";
3820 		break;
3821 	default:
3822 		break;
3823 	}
3824 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3825 					   strict);
3826 }
3827 
3828 static int update_stack_depth(struct bpf_verifier_env *env,
3829 			      const struct bpf_func_state *func,
3830 			      int off)
3831 {
3832 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3833 
3834 	if (stack >= -off)
3835 		return 0;
3836 
3837 	/* update known max for given subprogram */
3838 	env->subprog_info[func->subprogno].stack_depth = -off;
3839 	return 0;
3840 }
3841 
3842 /* starting from main bpf function walk all instructions of the function
3843  * and recursively walk all callees that given function can call.
3844  * Ignore jump and exit insns.
3845  * Since recursion is prevented by check_cfg() this algorithm
3846  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3847  */
3848 static int check_max_stack_depth(struct bpf_verifier_env *env)
3849 {
3850 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3851 	struct bpf_subprog_info *subprog = env->subprog_info;
3852 	struct bpf_insn *insn = env->prog->insnsi;
3853 	bool tail_call_reachable = false;
3854 	int ret_insn[MAX_CALL_FRAMES];
3855 	int ret_prog[MAX_CALL_FRAMES];
3856 	int j;
3857 
3858 process_func:
3859 	/* protect against potential stack overflow that might happen when
3860 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3861 	 * depth for such case down to 256 so that the worst case scenario
3862 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3863 	 * 8k).
3864 	 *
3865 	 * To get the idea what might happen, see an example:
3866 	 * func1 -> sub rsp, 128
3867 	 *  subfunc1 -> sub rsp, 256
3868 	 *  tailcall1 -> add rsp, 256
3869 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3870 	 *   subfunc2 -> sub rsp, 64
3871 	 *   subfunc22 -> sub rsp, 128
3872 	 *   tailcall2 -> add rsp, 128
3873 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3874 	 *
3875 	 * tailcall will unwind the current stack frame but it will not get rid
3876 	 * of caller's stack as shown on the example above.
3877 	 */
3878 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3879 		verbose(env,
3880 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3881 			depth);
3882 		return -EACCES;
3883 	}
3884 	/* round up to 32-bytes, since this is granularity
3885 	 * of interpreter stack size
3886 	 */
3887 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3888 	if (depth > MAX_BPF_STACK) {
3889 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3890 			frame + 1, depth);
3891 		return -EACCES;
3892 	}
3893 continue_func:
3894 	subprog_end = subprog[idx + 1].start;
3895 	for (; i < subprog_end; i++) {
3896 		int next_insn;
3897 
3898 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3899 			continue;
3900 		/* remember insn and function to return to */
3901 		ret_insn[frame] = i + 1;
3902 		ret_prog[frame] = idx;
3903 
3904 		/* find the callee */
3905 		next_insn = i + insn[i].imm + 1;
3906 		idx = find_subprog(env, next_insn);
3907 		if (idx < 0) {
3908 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3909 				  next_insn);
3910 			return -EFAULT;
3911 		}
3912 		if (subprog[idx].is_async_cb) {
3913 			if (subprog[idx].has_tail_call) {
3914 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3915 				return -EFAULT;
3916 			}
3917 			 /* async callbacks don't increase bpf prog stack size */
3918 			continue;
3919 		}
3920 		i = next_insn;
3921 
3922 		if (subprog[idx].has_tail_call)
3923 			tail_call_reachable = true;
3924 
3925 		frame++;
3926 		if (frame >= MAX_CALL_FRAMES) {
3927 			verbose(env, "the call stack of %d frames is too deep !\n",
3928 				frame);
3929 			return -E2BIG;
3930 		}
3931 		goto process_func;
3932 	}
3933 	/* if tail call got detected across bpf2bpf calls then mark each of the
3934 	 * currently present subprog frames as tail call reachable subprogs;
3935 	 * this info will be utilized by JIT so that we will be preserving the
3936 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3937 	 */
3938 	if (tail_call_reachable)
3939 		for (j = 0; j < frame; j++)
3940 			subprog[ret_prog[j]].tail_call_reachable = true;
3941 	if (subprog[0].tail_call_reachable)
3942 		env->prog->aux->tail_call_reachable = true;
3943 
3944 	/* end of for() loop means the last insn of the 'subprog'
3945 	 * was reached. Doesn't matter whether it was JA or EXIT
3946 	 */
3947 	if (frame == 0)
3948 		return 0;
3949 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3950 	frame--;
3951 	i = ret_insn[frame];
3952 	idx = ret_prog[frame];
3953 	goto continue_func;
3954 }
3955 
3956 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3957 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3958 				  const struct bpf_insn *insn, int idx)
3959 {
3960 	int start = idx + insn->imm + 1, subprog;
3961 
3962 	subprog = find_subprog(env, start);
3963 	if (subprog < 0) {
3964 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3965 			  start);
3966 		return -EFAULT;
3967 	}
3968 	return env->subprog_info[subprog].stack_depth;
3969 }
3970 #endif
3971 
3972 int check_ctx_reg(struct bpf_verifier_env *env,
3973 		  const struct bpf_reg_state *reg, int regno)
3974 {
3975 	/* Access to ctx or passing it to a helper is only allowed in
3976 	 * its original, unmodified form.
3977 	 */
3978 
3979 	if (reg->off) {
3980 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3981 			regno, reg->off);
3982 		return -EACCES;
3983 	}
3984 
3985 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3986 		char tn_buf[48];
3987 
3988 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3989 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3990 		return -EACCES;
3991 	}
3992 
3993 	return 0;
3994 }
3995 
3996 static int __check_buffer_access(struct bpf_verifier_env *env,
3997 				 const char *buf_info,
3998 				 const struct bpf_reg_state *reg,
3999 				 int regno, int off, int size)
4000 {
4001 	if (off < 0) {
4002 		verbose(env,
4003 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4004 			regno, buf_info, off, size);
4005 		return -EACCES;
4006 	}
4007 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4008 		char tn_buf[48];
4009 
4010 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4011 		verbose(env,
4012 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4013 			regno, off, tn_buf);
4014 		return -EACCES;
4015 	}
4016 
4017 	return 0;
4018 }
4019 
4020 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4021 				  const struct bpf_reg_state *reg,
4022 				  int regno, int off, int size)
4023 {
4024 	int err;
4025 
4026 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4027 	if (err)
4028 		return err;
4029 
4030 	if (off + size > env->prog->aux->max_tp_access)
4031 		env->prog->aux->max_tp_access = off + size;
4032 
4033 	return 0;
4034 }
4035 
4036 static int check_buffer_access(struct bpf_verifier_env *env,
4037 			       const struct bpf_reg_state *reg,
4038 			       int regno, int off, int size,
4039 			       bool zero_size_allowed,
4040 			       const char *buf_info,
4041 			       u32 *max_access)
4042 {
4043 	int err;
4044 
4045 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4046 	if (err)
4047 		return err;
4048 
4049 	if (off + size > *max_access)
4050 		*max_access = off + size;
4051 
4052 	return 0;
4053 }
4054 
4055 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4056 static void zext_32_to_64(struct bpf_reg_state *reg)
4057 {
4058 	reg->var_off = tnum_subreg(reg->var_off);
4059 	__reg_assign_32_into_64(reg);
4060 }
4061 
4062 /* truncate register to smaller size (in bytes)
4063  * must be called with size < BPF_REG_SIZE
4064  */
4065 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4066 {
4067 	u64 mask;
4068 
4069 	/* clear high bits in bit representation */
4070 	reg->var_off = tnum_cast(reg->var_off, size);
4071 
4072 	/* fix arithmetic bounds */
4073 	mask = ((u64)1 << (size * 8)) - 1;
4074 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4075 		reg->umin_value &= mask;
4076 		reg->umax_value &= mask;
4077 	} else {
4078 		reg->umin_value = 0;
4079 		reg->umax_value = mask;
4080 	}
4081 	reg->smin_value = reg->umin_value;
4082 	reg->smax_value = reg->umax_value;
4083 
4084 	/* If size is smaller than 32bit register the 32bit register
4085 	 * values are also truncated so we push 64-bit bounds into
4086 	 * 32-bit bounds. Above were truncated < 32-bits already.
4087 	 */
4088 	if (size >= 4)
4089 		return;
4090 	__reg_combine_64_into_32(reg);
4091 }
4092 
4093 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4094 {
4095 	/* A map is considered read-only if the following condition are true:
4096 	 *
4097 	 * 1) BPF program side cannot change any of the map content. The
4098 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4099 	 *    and was set at map creation time.
4100 	 * 2) The map value(s) have been initialized from user space by a
4101 	 *    loader and then "frozen", such that no new map update/delete
4102 	 *    operations from syscall side are possible for the rest of
4103 	 *    the map's lifetime from that point onwards.
4104 	 * 3) Any parallel/pending map update/delete operations from syscall
4105 	 *    side have been completed. Only after that point, it's safe to
4106 	 *    assume that map value(s) are immutable.
4107 	 */
4108 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4109 	       READ_ONCE(map->frozen) &&
4110 	       !bpf_map_write_active(map);
4111 }
4112 
4113 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4114 {
4115 	void *ptr;
4116 	u64 addr;
4117 	int err;
4118 
4119 	err = map->ops->map_direct_value_addr(map, &addr, off);
4120 	if (err)
4121 		return err;
4122 	ptr = (void *)(long)addr + off;
4123 
4124 	switch (size) {
4125 	case sizeof(u8):
4126 		*val = (u64)*(u8 *)ptr;
4127 		break;
4128 	case sizeof(u16):
4129 		*val = (u64)*(u16 *)ptr;
4130 		break;
4131 	case sizeof(u32):
4132 		*val = (u64)*(u32 *)ptr;
4133 		break;
4134 	case sizeof(u64):
4135 		*val = *(u64 *)ptr;
4136 		break;
4137 	default:
4138 		return -EINVAL;
4139 	}
4140 	return 0;
4141 }
4142 
4143 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4144 				   struct bpf_reg_state *regs,
4145 				   int regno, int off, int size,
4146 				   enum bpf_access_type atype,
4147 				   int value_regno)
4148 {
4149 	struct bpf_reg_state *reg = regs + regno;
4150 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4151 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4152 	u32 btf_id;
4153 	int ret;
4154 
4155 	if (off < 0) {
4156 		verbose(env,
4157 			"R%d is ptr_%s invalid negative access: off=%d\n",
4158 			regno, tname, off);
4159 		return -EACCES;
4160 	}
4161 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4162 		char tn_buf[48];
4163 
4164 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4165 		verbose(env,
4166 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4167 			regno, tname, off, tn_buf);
4168 		return -EACCES;
4169 	}
4170 
4171 	if (env->ops->btf_struct_access) {
4172 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4173 						  off, size, atype, &btf_id);
4174 	} else {
4175 		if (atype != BPF_READ) {
4176 			verbose(env, "only read is supported\n");
4177 			return -EACCES;
4178 		}
4179 
4180 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4181 					atype, &btf_id);
4182 	}
4183 
4184 	if (ret < 0)
4185 		return ret;
4186 
4187 	if (atype == BPF_READ && value_regno >= 0)
4188 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4189 
4190 	return 0;
4191 }
4192 
4193 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4194 				   struct bpf_reg_state *regs,
4195 				   int regno, int off, int size,
4196 				   enum bpf_access_type atype,
4197 				   int value_regno)
4198 {
4199 	struct bpf_reg_state *reg = regs + regno;
4200 	struct bpf_map *map = reg->map_ptr;
4201 	const struct btf_type *t;
4202 	const char *tname;
4203 	u32 btf_id;
4204 	int ret;
4205 
4206 	if (!btf_vmlinux) {
4207 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4208 		return -ENOTSUPP;
4209 	}
4210 
4211 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4212 		verbose(env, "map_ptr access not supported for map type %d\n",
4213 			map->map_type);
4214 		return -ENOTSUPP;
4215 	}
4216 
4217 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4218 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4219 
4220 	if (!env->allow_ptr_to_map_access) {
4221 		verbose(env,
4222 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4223 			tname);
4224 		return -EPERM;
4225 	}
4226 
4227 	if (off < 0) {
4228 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4229 			regno, tname, off);
4230 		return -EACCES;
4231 	}
4232 
4233 	if (atype != BPF_READ) {
4234 		verbose(env, "only read from %s is supported\n", tname);
4235 		return -EACCES;
4236 	}
4237 
4238 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4239 	if (ret < 0)
4240 		return ret;
4241 
4242 	if (value_regno >= 0)
4243 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4244 
4245 	return 0;
4246 }
4247 
4248 /* Check that the stack access at the given offset is within bounds. The
4249  * maximum valid offset is -1.
4250  *
4251  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4252  * -state->allocated_stack for reads.
4253  */
4254 static int check_stack_slot_within_bounds(int off,
4255 					  struct bpf_func_state *state,
4256 					  enum bpf_access_type t)
4257 {
4258 	int min_valid_off;
4259 
4260 	if (t == BPF_WRITE)
4261 		min_valid_off = -MAX_BPF_STACK;
4262 	else
4263 		min_valid_off = -state->allocated_stack;
4264 
4265 	if (off < min_valid_off || off > -1)
4266 		return -EACCES;
4267 	return 0;
4268 }
4269 
4270 /* Check that the stack access at 'regno + off' falls within the maximum stack
4271  * bounds.
4272  *
4273  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4274  */
4275 static int check_stack_access_within_bounds(
4276 		struct bpf_verifier_env *env,
4277 		int regno, int off, int access_size,
4278 		enum stack_access_src src, enum bpf_access_type type)
4279 {
4280 	struct bpf_reg_state *regs = cur_regs(env);
4281 	struct bpf_reg_state *reg = regs + regno;
4282 	struct bpf_func_state *state = func(env, reg);
4283 	int min_off, max_off;
4284 	int err;
4285 	char *err_extra;
4286 
4287 	if (src == ACCESS_HELPER)
4288 		/* We don't know if helpers are reading or writing (or both). */
4289 		err_extra = " indirect access to";
4290 	else if (type == BPF_READ)
4291 		err_extra = " read from";
4292 	else
4293 		err_extra = " write to";
4294 
4295 	if (tnum_is_const(reg->var_off)) {
4296 		min_off = reg->var_off.value + off;
4297 		if (access_size > 0)
4298 			max_off = min_off + access_size - 1;
4299 		else
4300 			max_off = min_off;
4301 	} else {
4302 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4303 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4304 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4305 				err_extra, regno);
4306 			return -EACCES;
4307 		}
4308 		min_off = reg->smin_value + off;
4309 		if (access_size > 0)
4310 			max_off = reg->smax_value + off + access_size - 1;
4311 		else
4312 			max_off = min_off;
4313 	}
4314 
4315 	err = check_stack_slot_within_bounds(min_off, state, type);
4316 	if (!err)
4317 		err = check_stack_slot_within_bounds(max_off, state, type);
4318 
4319 	if (err) {
4320 		if (tnum_is_const(reg->var_off)) {
4321 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4322 				err_extra, regno, off, access_size);
4323 		} else {
4324 			char tn_buf[48];
4325 
4326 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4327 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4328 				err_extra, regno, tn_buf, access_size);
4329 		}
4330 	}
4331 	return err;
4332 }
4333 
4334 /* check whether memory at (regno + off) is accessible for t = (read | write)
4335  * if t==write, value_regno is a register which value is stored into memory
4336  * if t==read, value_regno is a register which will receive the value from memory
4337  * if t==write && value_regno==-1, some unknown value is stored into memory
4338  * if t==read && value_regno==-1, don't care what we read from memory
4339  */
4340 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4341 			    int off, int bpf_size, enum bpf_access_type t,
4342 			    int value_regno, bool strict_alignment_once)
4343 {
4344 	struct bpf_reg_state *regs = cur_regs(env);
4345 	struct bpf_reg_state *reg = regs + regno;
4346 	struct bpf_func_state *state;
4347 	int size, err = 0;
4348 
4349 	size = bpf_size_to_bytes(bpf_size);
4350 	if (size < 0)
4351 		return size;
4352 
4353 	/* alignment checks will add in reg->off themselves */
4354 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4355 	if (err)
4356 		return err;
4357 
4358 	/* for access checks, reg->off is just part of off */
4359 	off += reg->off;
4360 
4361 	if (reg->type == PTR_TO_MAP_KEY) {
4362 		if (t == BPF_WRITE) {
4363 			verbose(env, "write to change key R%d not allowed\n", regno);
4364 			return -EACCES;
4365 		}
4366 
4367 		err = check_mem_region_access(env, regno, off, size,
4368 					      reg->map_ptr->key_size, false);
4369 		if (err)
4370 			return err;
4371 		if (value_regno >= 0)
4372 			mark_reg_unknown(env, regs, value_regno);
4373 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4374 		if (t == BPF_WRITE && value_regno >= 0 &&
4375 		    is_pointer_value(env, value_regno)) {
4376 			verbose(env, "R%d leaks addr into map\n", value_regno);
4377 			return -EACCES;
4378 		}
4379 		err = check_map_access_type(env, regno, off, size, t);
4380 		if (err)
4381 			return err;
4382 		err = check_map_access(env, regno, off, size, false);
4383 		if (!err && t == BPF_READ && value_regno >= 0) {
4384 			struct bpf_map *map = reg->map_ptr;
4385 
4386 			/* if map is read-only, track its contents as scalars */
4387 			if (tnum_is_const(reg->var_off) &&
4388 			    bpf_map_is_rdonly(map) &&
4389 			    map->ops->map_direct_value_addr) {
4390 				int map_off = off + reg->var_off.value;
4391 				u64 val = 0;
4392 
4393 				err = bpf_map_direct_read(map, map_off, size,
4394 							  &val);
4395 				if (err)
4396 					return err;
4397 
4398 				regs[value_regno].type = SCALAR_VALUE;
4399 				__mark_reg_known(&regs[value_regno], val);
4400 			} else {
4401 				mark_reg_unknown(env, regs, value_regno);
4402 			}
4403 		}
4404 	} else if (base_type(reg->type) == PTR_TO_MEM) {
4405 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4406 
4407 		if (type_may_be_null(reg->type)) {
4408 			verbose(env, "R%d invalid mem access '%s'\n", regno,
4409 				reg_type_str(env, reg->type));
4410 			return -EACCES;
4411 		}
4412 
4413 		if (t == BPF_WRITE && rdonly_mem) {
4414 			verbose(env, "R%d cannot write into %s\n",
4415 				regno, reg_type_str(env, reg->type));
4416 			return -EACCES;
4417 		}
4418 
4419 		if (t == BPF_WRITE && value_regno >= 0 &&
4420 		    is_pointer_value(env, value_regno)) {
4421 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4422 			return -EACCES;
4423 		}
4424 
4425 		err = check_mem_region_access(env, regno, off, size,
4426 					      reg->mem_size, false);
4427 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4428 			mark_reg_unknown(env, regs, value_regno);
4429 	} else if (reg->type == PTR_TO_CTX) {
4430 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4431 		struct btf *btf = NULL;
4432 		u32 btf_id = 0;
4433 
4434 		if (t == BPF_WRITE && value_regno >= 0 &&
4435 		    is_pointer_value(env, value_regno)) {
4436 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4437 			return -EACCES;
4438 		}
4439 
4440 		err = check_ctx_reg(env, reg, regno);
4441 		if (err < 0)
4442 			return err;
4443 
4444 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4445 		if (err)
4446 			verbose_linfo(env, insn_idx, "; ");
4447 		if (!err && t == BPF_READ && value_regno >= 0) {
4448 			/* ctx access returns either a scalar, or a
4449 			 * PTR_TO_PACKET[_META,_END]. In the latter
4450 			 * case, we know the offset is zero.
4451 			 */
4452 			if (reg_type == SCALAR_VALUE) {
4453 				mark_reg_unknown(env, regs, value_regno);
4454 			} else {
4455 				mark_reg_known_zero(env, regs,
4456 						    value_regno);
4457 				if (type_may_be_null(reg_type))
4458 					regs[value_regno].id = ++env->id_gen;
4459 				/* A load of ctx field could have different
4460 				 * actual load size with the one encoded in the
4461 				 * insn. When the dst is PTR, it is for sure not
4462 				 * a sub-register.
4463 				 */
4464 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4465 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
4466 					regs[value_regno].btf = btf;
4467 					regs[value_regno].btf_id = btf_id;
4468 				}
4469 			}
4470 			regs[value_regno].type = reg_type;
4471 		}
4472 
4473 	} else if (reg->type == PTR_TO_STACK) {
4474 		/* Basic bounds checks. */
4475 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4476 		if (err)
4477 			return err;
4478 
4479 		state = func(env, reg);
4480 		err = update_stack_depth(env, state, off);
4481 		if (err)
4482 			return err;
4483 
4484 		if (t == BPF_READ)
4485 			err = check_stack_read(env, regno, off, size,
4486 					       value_regno);
4487 		else
4488 			err = check_stack_write(env, regno, off, size,
4489 						value_regno, insn_idx);
4490 	} else if (reg_is_pkt_pointer(reg)) {
4491 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4492 			verbose(env, "cannot write into packet\n");
4493 			return -EACCES;
4494 		}
4495 		if (t == BPF_WRITE && value_regno >= 0 &&
4496 		    is_pointer_value(env, value_regno)) {
4497 			verbose(env, "R%d leaks addr into packet\n",
4498 				value_regno);
4499 			return -EACCES;
4500 		}
4501 		err = check_packet_access(env, regno, off, size, false);
4502 		if (!err && t == BPF_READ && value_regno >= 0)
4503 			mark_reg_unknown(env, regs, value_regno);
4504 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4505 		if (t == BPF_WRITE && value_regno >= 0 &&
4506 		    is_pointer_value(env, value_regno)) {
4507 			verbose(env, "R%d leaks addr into flow keys\n",
4508 				value_regno);
4509 			return -EACCES;
4510 		}
4511 
4512 		err = check_flow_keys_access(env, off, size);
4513 		if (!err && t == BPF_READ && value_regno >= 0)
4514 			mark_reg_unknown(env, regs, value_regno);
4515 	} else if (type_is_sk_pointer(reg->type)) {
4516 		if (t == BPF_WRITE) {
4517 			verbose(env, "R%d cannot write into %s\n",
4518 				regno, reg_type_str(env, reg->type));
4519 			return -EACCES;
4520 		}
4521 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4522 		if (!err && value_regno >= 0)
4523 			mark_reg_unknown(env, regs, value_regno);
4524 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4525 		err = check_tp_buffer_access(env, reg, regno, off, size);
4526 		if (!err && t == BPF_READ && value_regno >= 0)
4527 			mark_reg_unknown(env, regs, value_regno);
4528 	} else if (reg->type == PTR_TO_BTF_ID) {
4529 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4530 					      value_regno);
4531 	} else if (reg->type == CONST_PTR_TO_MAP) {
4532 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4533 					      value_regno);
4534 	} else if (base_type(reg->type) == PTR_TO_BUF) {
4535 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4536 		const char *buf_info;
4537 		u32 *max_access;
4538 
4539 		if (rdonly_mem) {
4540 			if (t == BPF_WRITE) {
4541 				verbose(env, "R%d cannot write into %s\n",
4542 					regno, reg_type_str(env, reg->type));
4543 				return -EACCES;
4544 			}
4545 			buf_info = "rdonly";
4546 			max_access = &env->prog->aux->max_rdonly_access;
4547 		} else {
4548 			buf_info = "rdwr";
4549 			max_access = &env->prog->aux->max_rdwr_access;
4550 		}
4551 
4552 		err = check_buffer_access(env, reg, regno, off, size, false,
4553 					  buf_info, max_access);
4554 
4555 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4556 			mark_reg_unknown(env, regs, value_regno);
4557 	} else {
4558 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4559 			reg_type_str(env, reg->type));
4560 		return -EACCES;
4561 	}
4562 
4563 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4564 	    regs[value_regno].type == SCALAR_VALUE) {
4565 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4566 		coerce_reg_to_size(&regs[value_regno], size);
4567 	}
4568 	return err;
4569 }
4570 
4571 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4572 {
4573 	int load_reg;
4574 	int err;
4575 
4576 	switch (insn->imm) {
4577 	case BPF_ADD:
4578 	case BPF_ADD | BPF_FETCH:
4579 	case BPF_AND:
4580 	case BPF_AND | BPF_FETCH:
4581 	case BPF_OR:
4582 	case BPF_OR | BPF_FETCH:
4583 	case BPF_XOR:
4584 	case BPF_XOR | BPF_FETCH:
4585 	case BPF_XCHG:
4586 	case BPF_CMPXCHG:
4587 		break;
4588 	default:
4589 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4590 		return -EINVAL;
4591 	}
4592 
4593 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4594 		verbose(env, "invalid atomic operand size\n");
4595 		return -EINVAL;
4596 	}
4597 
4598 	/* check src1 operand */
4599 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4600 	if (err)
4601 		return err;
4602 
4603 	/* check src2 operand */
4604 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4605 	if (err)
4606 		return err;
4607 
4608 	if (insn->imm == BPF_CMPXCHG) {
4609 		/* Check comparison of R0 with memory location */
4610 		const u32 aux_reg = BPF_REG_0;
4611 
4612 		err = check_reg_arg(env, aux_reg, SRC_OP);
4613 		if (err)
4614 			return err;
4615 
4616 		if (is_pointer_value(env, aux_reg)) {
4617 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
4618 			return -EACCES;
4619 		}
4620 	}
4621 
4622 	if (is_pointer_value(env, insn->src_reg)) {
4623 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4624 		return -EACCES;
4625 	}
4626 
4627 	if (is_ctx_reg(env, insn->dst_reg) ||
4628 	    is_pkt_reg(env, insn->dst_reg) ||
4629 	    is_flow_key_reg(env, insn->dst_reg) ||
4630 	    is_sk_reg(env, insn->dst_reg)) {
4631 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4632 			insn->dst_reg,
4633 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4634 		return -EACCES;
4635 	}
4636 
4637 	if (insn->imm & BPF_FETCH) {
4638 		if (insn->imm == BPF_CMPXCHG)
4639 			load_reg = BPF_REG_0;
4640 		else
4641 			load_reg = insn->src_reg;
4642 
4643 		/* check and record load of old value */
4644 		err = check_reg_arg(env, load_reg, DST_OP);
4645 		if (err)
4646 			return err;
4647 	} else {
4648 		/* This instruction accesses a memory location but doesn't
4649 		 * actually load it into a register.
4650 		 */
4651 		load_reg = -1;
4652 	}
4653 
4654 	/* Check whether we can read the memory, with second call for fetch
4655 	 * case to simulate the register fill.
4656 	 */
4657 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4658 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
4659 	if (!err && load_reg >= 0)
4660 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4661 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
4662 				       true);
4663 	if (err)
4664 		return err;
4665 
4666 	/* Check whether we can write into the same memory. */
4667 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4668 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4669 	if (err)
4670 		return err;
4671 
4672 	return 0;
4673 }
4674 
4675 /* When register 'regno' is used to read the stack (either directly or through
4676  * a helper function) make sure that it's within stack boundary and, depending
4677  * on the access type, that all elements of the stack are initialized.
4678  *
4679  * 'off' includes 'regno->off', but not its dynamic part (if any).
4680  *
4681  * All registers that have been spilled on the stack in the slots within the
4682  * read offsets are marked as read.
4683  */
4684 static int check_stack_range_initialized(
4685 		struct bpf_verifier_env *env, int regno, int off,
4686 		int access_size, bool zero_size_allowed,
4687 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4688 {
4689 	struct bpf_reg_state *reg = reg_state(env, regno);
4690 	struct bpf_func_state *state = func(env, reg);
4691 	int err, min_off, max_off, i, j, slot, spi;
4692 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4693 	enum bpf_access_type bounds_check_type;
4694 	/* Some accesses can write anything into the stack, others are
4695 	 * read-only.
4696 	 */
4697 	bool clobber = false;
4698 
4699 	if (access_size == 0 && !zero_size_allowed) {
4700 		verbose(env, "invalid zero-sized read\n");
4701 		return -EACCES;
4702 	}
4703 
4704 	if (type == ACCESS_HELPER) {
4705 		/* The bounds checks for writes are more permissive than for
4706 		 * reads. However, if raw_mode is not set, we'll do extra
4707 		 * checks below.
4708 		 */
4709 		bounds_check_type = BPF_WRITE;
4710 		clobber = true;
4711 	} else {
4712 		bounds_check_type = BPF_READ;
4713 	}
4714 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4715 					       type, bounds_check_type);
4716 	if (err)
4717 		return err;
4718 
4719 
4720 	if (tnum_is_const(reg->var_off)) {
4721 		min_off = max_off = reg->var_off.value + off;
4722 	} else {
4723 		/* Variable offset is prohibited for unprivileged mode for
4724 		 * simplicity since it requires corresponding support in
4725 		 * Spectre masking for stack ALU.
4726 		 * See also retrieve_ptr_limit().
4727 		 */
4728 		if (!env->bypass_spec_v1) {
4729 			char tn_buf[48];
4730 
4731 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4732 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4733 				regno, err_extra, tn_buf);
4734 			return -EACCES;
4735 		}
4736 		/* Only initialized buffer on stack is allowed to be accessed
4737 		 * with variable offset. With uninitialized buffer it's hard to
4738 		 * guarantee that whole memory is marked as initialized on
4739 		 * helper return since specific bounds are unknown what may
4740 		 * cause uninitialized stack leaking.
4741 		 */
4742 		if (meta && meta->raw_mode)
4743 			meta = NULL;
4744 
4745 		min_off = reg->smin_value + off;
4746 		max_off = reg->smax_value + off;
4747 	}
4748 
4749 	if (meta && meta->raw_mode) {
4750 		meta->access_size = access_size;
4751 		meta->regno = regno;
4752 		return 0;
4753 	}
4754 
4755 	for (i = min_off; i < max_off + access_size; i++) {
4756 		u8 *stype;
4757 
4758 		slot = -i - 1;
4759 		spi = slot / BPF_REG_SIZE;
4760 		if (state->allocated_stack <= slot)
4761 			goto err;
4762 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4763 		if (*stype == STACK_MISC)
4764 			goto mark;
4765 		if (*stype == STACK_ZERO) {
4766 			if (clobber) {
4767 				/* helper can write anything into the stack */
4768 				*stype = STACK_MISC;
4769 			}
4770 			goto mark;
4771 		}
4772 
4773 		if (is_spilled_reg(&state->stack[spi]) &&
4774 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4775 			goto mark;
4776 
4777 		if (is_spilled_reg(&state->stack[spi]) &&
4778 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4779 		     env->allow_ptr_leaks)) {
4780 			if (clobber) {
4781 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4782 				for (j = 0; j < BPF_REG_SIZE; j++)
4783 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4784 			}
4785 			goto mark;
4786 		}
4787 
4788 err:
4789 		if (tnum_is_const(reg->var_off)) {
4790 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4791 				err_extra, regno, min_off, i - min_off, access_size);
4792 		} else {
4793 			char tn_buf[48];
4794 
4795 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4796 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4797 				err_extra, regno, tn_buf, i - min_off, access_size);
4798 		}
4799 		return -EACCES;
4800 mark:
4801 		/* reading any byte out of 8-byte 'spill_slot' will cause
4802 		 * the whole slot to be marked as 'read'
4803 		 */
4804 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4805 			      state->stack[spi].spilled_ptr.parent,
4806 			      REG_LIVE_READ64);
4807 	}
4808 	return update_stack_depth(env, state, min_off);
4809 }
4810 
4811 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4812 				   int access_size, bool zero_size_allowed,
4813 				   struct bpf_call_arg_meta *meta)
4814 {
4815 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4816 	const char *buf_info;
4817 	u32 *max_access;
4818 
4819 	switch (base_type(reg->type)) {
4820 	case PTR_TO_PACKET:
4821 	case PTR_TO_PACKET_META:
4822 		return check_packet_access(env, regno, reg->off, access_size,
4823 					   zero_size_allowed);
4824 	case PTR_TO_MAP_KEY:
4825 		return check_mem_region_access(env, regno, reg->off, access_size,
4826 					       reg->map_ptr->key_size, false);
4827 	case PTR_TO_MAP_VALUE:
4828 		if (check_map_access_type(env, regno, reg->off, access_size,
4829 					  meta && meta->raw_mode ? BPF_WRITE :
4830 					  BPF_READ))
4831 			return -EACCES;
4832 		return check_map_access(env, regno, reg->off, access_size,
4833 					zero_size_allowed);
4834 	case PTR_TO_MEM:
4835 		return check_mem_region_access(env, regno, reg->off,
4836 					       access_size, reg->mem_size,
4837 					       zero_size_allowed);
4838 	case PTR_TO_BUF:
4839 		if (type_is_rdonly_mem(reg->type)) {
4840 			if (meta && meta->raw_mode)
4841 				return -EACCES;
4842 
4843 			buf_info = "rdonly";
4844 			max_access = &env->prog->aux->max_rdonly_access;
4845 		} else {
4846 			buf_info = "rdwr";
4847 			max_access = &env->prog->aux->max_rdwr_access;
4848 		}
4849 		return check_buffer_access(env, reg, regno, reg->off,
4850 					   access_size, zero_size_allowed,
4851 					   buf_info, max_access);
4852 	case PTR_TO_STACK:
4853 		return check_stack_range_initialized(
4854 				env,
4855 				regno, reg->off, access_size,
4856 				zero_size_allowed, ACCESS_HELPER, meta);
4857 	default: /* scalar_value or invalid ptr */
4858 		/* Allow zero-byte read from NULL, regardless of pointer type */
4859 		if (zero_size_allowed && access_size == 0 &&
4860 		    register_is_null(reg))
4861 			return 0;
4862 
4863 		verbose(env, "R%d type=%s ", regno,
4864 			reg_type_str(env, reg->type));
4865 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4866 		return -EACCES;
4867 	}
4868 }
4869 
4870 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4871 		   u32 regno, u32 mem_size)
4872 {
4873 	if (register_is_null(reg))
4874 		return 0;
4875 
4876 	if (type_may_be_null(reg->type)) {
4877 		/* Assuming that the register contains a value check if the memory
4878 		 * access is safe. Temporarily save and restore the register's state as
4879 		 * the conversion shouldn't be visible to a caller.
4880 		 */
4881 		const struct bpf_reg_state saved_reg = *reg;
4882 		int rv;
4883 
4884 		mark_ptr_not_null_reg(reg);
4885 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4886 		*reg = saved_reg;
4887 		return rv;
4888 	}
4889 
4890 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4891 }
4892 
4893 /* Implementation details:
4894  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4895  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4896  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4897  * value_or_null->value transition, since the verifier only cares about
4898  * the range of access to valid map value pointer and doesn't care about actual
4899  * address of the map element.
4900  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4901  * reg->id > 0 after value_or_null->value transition. By doing so
4902  * two bpf_map_lookups will be considered two different pointers that
4903  * point to different bpf_spin_locks.
4904  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4905  * dead-locks.
4906  * Since only one bpf_spin_lock is allowed the checks are simpler than
4907  * reg_is_refcounted() logic. The verifier needs to remember only
4908  * one spin_lock instead of array of acquired_refs.
4909  * cur_state->active_spin_lock remembers which map value element got locked
4910  * and clears it after bpf_spin_unlock.
4911  */
4912 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4913 			     bool is_lock)
4914 {
4915 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4916 	struct bpf_verifier_state *cur = env->cur_state;
4917 	bool is_const = tnum_is_const(reg->var_off);
4918 	struct bpf_map *map = reg->map_ptr;
4919 	u64 val = reg->var_off.value;
4920 
4921 	if (!is_const) {
4922 		verbose(env,
4923 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4924 			regno);
4925 		return -EINVAL;
4926 	}
4927 	if (!map->btf) {
4928 		verbose(env,
4929 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4930 			map->name);
4931 		return -EINVAL;
4932 	}
4933 	if (!map_value_has_spin_lock(map)) {
4934 		if (map->spin_lock_off == -E2BIG)
4935 			verbose(env,
4936 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4937 				map->name);
4938 		else if (map->spin_lock_off == -ENOENT)
4939 			verbose(env,
4940 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4941 				map->name);
4942 		else
4943 			verbose(env,
4944 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4945 				map->name);
4946 		return -EINVAL;
4947 	}
4948 	if (map->spin_lock_off != val + reg->off) {
4949 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4950 			val + reg->off);
4951 		return -EINVAL;
4952 	}
4953 	if (is_lock) {
4954 		if (cur->active_spin_lock) {
4955 			verbose(env,
4956 				"Locking two bpf_spin_locks are not allowed\n");
4957 			return -EINVAL;
4958 		}
4959 		cur->active_spin_lock = reg->id;
4960 	} else {
4961 		if (!cur->active_spin_lock) {
4962 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4963 			return -EINVAL;
4964 		}
4965 		if (cur->active_spin_lock != reg->id) {
4966 			verbose(env, "bpf_spin_unlock of different lock\n");
4967 			return -EINVAL;
4968 		}
4969 		cur->active_spin_lock = 0;
4970 	}
4971 	return 0;
4972 }
4973 
4974 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4975 			      struct bpf_call_arg_meta *meta)
4976 {
4977 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4978 	bool is_const = tnum_is_const(reg->var_off);
4979 	struct bpf_map *map = reg->map_ptr;
4980 	u64 val = reg->var_off.value;
4981 
4982 	if (!is_const) {
4983 		verbose(env,
4984 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4985 			regno);
4986 		return -EINVAL;
4987 	}
4988 	if (!map->btf) {
4989 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4990 			map->name);
4991 		return -EINVAL;
4992 	}
4993 	if (!map_value_has_timer(map)) {
4994 		if (map->timer_off == -E2BIG)
4995 			verbose(env,
4996 				"map '%s' has more than one 'struct bpf_timer'\n",
4997 				map->name);
4998 		else if (map->timer_off == -ENOENT)
4999 			verbose(env,
5000 				"map '%s' doesn't have 'struct bpf_timer'\n",
5001 				map->name);
5002 		else
5003 			verbose(env,
5004 				"map '%s' is not a struct type or bpf_timer is mangled\n",
5005 				map->name);
5006 		return -EINVAL;
5007 	}
5008 	if (map->timer_off != val + reg->off) {
5009 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5010 			val + reg->off, map->timer_off);
5011 		return -EINVAL;
5012 	}
5013 	if (meta->map_ptr) {
5014 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5015 		return -EFAULT;
5016 	}
5017 	meta->map_uid = reg->map_uid;
5018 	meta->map_ptr = map;
5019 	return 0;
5020 }
5021 
5022 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
5023 {
5024 	return base_type(type) == ARG_PTR_TO_MEM ||
5025 	       base_type(type) == ARG_PTR_TO_UNINIT_MEM;
5026 }
5027 
5028 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5029 {
5030 	return type == ARG_CONST_SIZE ||
5031 	       type == ARG_CONST_SIZE_OR_ZERO;
5032 }
5033 
5034 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5035 {
5036 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5037 }
5038 
5039 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5040 {
5041 	return type == ARG_PTR_TO_INT ||
5042 	       type == ARG_PTR_TO_LONG;
5043 }
5044 
5045 static int int_ptr_type_to_size(enum bpf_arg_type type)
5046 {
5047 	if (type == ARG_PTR_TO_INT)
5048 		return sizeof(u32);
5049 	else if (type == ARG_PTR_TO_LONG)
5050 		return sizeof(u64);
5051 
5052 	return -EINVAL;
5053 }
5054 
5055 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5056 				 const struct bpf_call_arg_meta *meta,
5057 				 enum bpf_arg_type *arg_type)
5058 {
5059 	if (!meta->map_ptr) {
5060 		/* kernel subsystem misconfigured verifier */
5061 		verbose(env, "invalid map_ptr to access map->type\n");
5062 		return -EACCES;
5063 	}
5064 
5065 	switch (meta->map_ptr->map_type) {
5066 	case BPF_MAP_TYPE_SOCKMAP:
5067 	case BPF_MAP_TYPE_SOCKHASH:
5068 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5069 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5070 		} else {
5071 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5072 			return -EINVAL;
5073 		}
5074 		break;
5075 	case BPF_MAP_TYPE_BLOOM_FILTER:
5076 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5077 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5078 		break;
5079 	default:
5080 		break;
5081 	}
5082 	return 0;
5083 }
5084 
5085 struct bpf_reg_types {
5086 	const enum bpf_reg_type types[10];
5087 	u32 *btf_id;
5088 };
5089 
5090 static const struct bpf_reg_types map_key_value_types = {
5091 	.types = {
5092 		PTR_TO_STACK,
5093 		PTR_TO_PACKET,
5094 		PTR_TO_PACKET_META,
5095 		PTR_TO_MAP_KEY,
5096 		PTR_TO_MAP_VALUE,
5097 	},
5098 };
5099 
5100 static const struct bpf_reg_types sock_types = {
5101 	.types = {
5102 		PTR_TO_SOCK_COMMON,
5103 		PTR_TO_SOCKET,
5104 		PTR_TO_TCP_SOCK,
5105 		PTR_TO_XDP_SOCK,
5106 	},
5107 };
5108 
5109 #ifdef CONFIG_NET
5110 static const struct bpf_reg_types btf_id_sock_common_types = {
5111 	.types = {
5112 		PTR_TO_SOCK_COMMON,
5113 		PTR_TO_SOCKET,
5114 		PTR_TO_TCP_SOCK,
5115 		PTR_TO_XDP_SOCK,
5116 		PTR_TO_BTF_ID,
5117 	},
5118 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5119 };
5120 #endif
5121 
5122 static const struct bpf_reg_types mem_types = {
5123 	.types = {
5124 		PTR_TO_STACK,
5125 		PTR_TO_PACKET,
5126 		PTR_TO_PACKET_META,
5127 		PTR_TO_MAP_KEY,
5128 		PTR_TO_MAP_VALUE,
5129 		PTR_TO_MEM,
5130 		PTR_TO_BUF,
5131 	},
5132 };
5133 
5134 static const struct bpf_reg_types int_ptr_types = {
5135 	.types = {
5136 		PTR_TO_STACK,
5137 		PTR_TO_PACKET,
5138 		PTR_TO_PACKET_META,
5139 		PTR_TO_MAP_KEY,
5140 		PTR_TO_MAP_VALUE,
5141 	},
5142 };
5143 
5144 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5145 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5146 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5147 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5148 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5149 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5150 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5151 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5152 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5153 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5154 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5155 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5156 
5157 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5158 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5159 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5160 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
5161 	[ARG_CONST_SIZE]		= &scalar_types,
5162 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5163 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5164 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5165 	[ARG_PTR_TO_CTX]		= &context_types,
5166 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5167 #ifdef CONFIG_NET
5168 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5169 #endif
5170 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5171 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5172 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5173 	[ARG_PTR_TO_MEM]		= &mem_types,
5174 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
5175 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5176 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5177 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5178 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5179 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5180 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5181 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5182 	[ARG_PTR_TO_TIMER]		= &timer_types,
5183 };
5184 
5185 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5186 			  enum bpf_arg_type arg_type,
5187 			  const u32 *arg_btf_id)
5188 {
5189 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5190 	enum bpf_reg_type expected, type = reg->type;
5191 	const struct bpf_reg_types *compatible;
5192 	int i, j;
5193 
5194 	compatible = compatible_reg_types[base_type(arg_type)];
5195 	if (!compatible) {
5196 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5197 		return -EFAULT;
5198 	}
5199 
5200 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5201 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5202 	 *
5203 	 * Same for MAYBE_NULL:
5204 	 *
5205 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5206 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5207 	 *
5208 	 * Therefore we fold these flags depending on the arg_type before comparison.
5209 	 */
5210 	if (arg_type & MEM_RDONLY)
5211 		type &= ~MEM_RDONLY;
5212 	if (arg_type & PTR_MAYBE_NULL)
5213 		type &= ~PTR_MAYBE_NULL;
5214 
5215 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5216 		expected = compatible->types[i];
5217 		if (expected == NOT_INIT)
5218 			break;
5219 
5220 		if (type == expected)
5221 			goto found;
5222 	}
5223 
5224 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5225 	for (j = 0; j + 1 < i; j++)
5226 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5227 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5228 	return -EACCES;
5229 
5230 found:
5231 	if (reg->type == PTR_TO_BTF_ID) {
5232 		if (!arg_btf_id) {
5233 			if (!compatible->btf_id) {
5234 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5235 				return -EFAULT;
5236 			}
5237 			arg_btf_id = compatible->btf_id;
5238 		}
5239 
5240 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5241 					  btf_vmlinux, *arg_btf_id)) {
5242 			verbose(env, "R%d is of type %s but %s is expected\n",
5243 				regno, kernel_type_name(reg->btf, reg->btf_id),
5244 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5245 			return -EACCES;
5246 		}
5247 
5248 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5249 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5250 				regno);
5251 			return -EACCES;
5252 		}
5253 	}
5254 
5255 	return 0;
5256 }
5257 
5258 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5259 			  struct bpf_call_arg_meta *meta,
5260 			  const struct bpf_func_proto *fn)
5261 {
5262 	u32 regno = BPF_REG_1 + arg;
5263 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5264 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5265 	enum bpf_reg_type type = reg->type;
5266 	int err = 0;
5267 
5268 	if (arg_type == ARG_DONTCARE)
5269 		return 0;
5270 
5271 	err = check_reg_arg(env, regno, SRC_OP);
5272 	if (err)
5273 		return err;
5274 
5275 	if (arg_type == ARG_ANYTHING) {
5276 		if (is_pointer_value(env, regno)) {
5277 			verbose(env, "R%d leaks addr into helper function\n",
5278 				regno);
5279 			return -EACCES;
5280 		}
5281 		return 0;
5282 	}
5283 
5284 	if (type_is_pkt_pointer(type) &&
5285 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5286 		verbose(env, "helper access to the packet is not allowed\n");
5287 		return -EACCES;
5288 	}
5289 
5290 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5291 	    base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5292 		err = resolve_map_arg_type(env, meta, &arg_type);
5293 		if (err)
5294 			return err;
5295 	}
5296 
5297 	if (register_is_null(reg) && type_may_be_null(arg_type))
5298 		/* A NULL register has a SCALAR_VALUE type, so skip
5299 		 * type checking.
5300 		 */
5301 		goto skip_type_check;
5302 
5303 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5304 	if (err)
5305 		return err;
5306 
5307 	if (type == PTR_TO_CTX) {
5308 		err = check_ctx_reg(env, reg, regno);
5309 		if (err < 0)
5310 			return err;
5311 	}
5312 
5313 skip_type_check:
5314 	if (reg->ref_obj_id) {
5315 		if (meta->ref_obj_id) {
5316 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5317 				regno, reg->ref_obj_id,
5318 				meta->ref_obj_id);
5319 			return -EFAULT;
5320 		}
5321 		meta->ref_obj_id = reg->ref_obj_id;
5322 	}
5323 
5324 	if (arg_type == ARG_CONST_MAP_PTR) {
5325 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5326 		if (meta->map_ptr) {
5327 			/* Use map_uid (which is unique id of inner map) to reject:
5328 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5329 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5330 			 * if (inner_map1 && inner_map2) {
5331 			 *     timer = bpf_map_lookup_elem(inner_map1);
5332 			 *     if (timer)
5333 			 *         // mismatch would have been allowed
5334 			 *         bpf_timer_init(timer, inner_map2);
5335 			 * }
5336 			 *
5337 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5338 			 */
5339 			if (meta->map_ptr != reg->map_ptr ||
5340 			    meta->map_uid != reg->map_uid) {
5341 				verbose(env,
5342 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5343 					meta->map_uid, reg->map_uid);
5344 				return -EINVAL;
5345 			}
5346 		}
5347 		meta->map_ptr = reg->map_ptr;
5348 		meta->map_uid = reg->map_uid;
5349 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5350 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5351 		 * check that [key, key + map->key_size) are within
5352 		 * stack limits and initialized
5353 		 */
5354 		if (!meta->map_ptr) {
5355 			/* in function declaration map_ptr must come before
5356 			 * map_key, so that it's verified and known before
5357 			 * we have to check map_key here. Otherwise it means
5358 			 * that kernel subsystem misconfigured verifier
5359 			 */
5360 			verbose(env, "invalid map_ptr to access map->key\n");
5361 			return -EACCES;
5362 		}
5363 		err = check_helper_mem_access(env, regno,
5364 					      meta->map_ptr->key_size, false,
5365 					      NULL);
5366 	} else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5367 		   base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5368 		if (type_may_be_null(arg_type) && register_is_null(reg))
5369 			return 0;
5370 
5371 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5372 		 * check [value, value + map->value_size) validity
5373 		 */
5374 		if (!meta->map_ptr) {
5375 			/* kernel subsystem misconfigured verifier */
5376 			verbose(env, "invalid map_ptr to access map->value\n");
5377 			return -EACCES;
5378 		}
5379 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5380 		err = check_helper_mem_access(env, regno,
5381 					      meta->map_ptr->value_size, false,
5382 					      meta);
5383 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5384 		if (!reg->btf_id) {
5385 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5386 			return -EACCES;
5387 		}
5388 		meta->ret_btf = reg->btf;
5389 		meta->ret_btf_id = reg->btf_id;
5390 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5391 		if (meta->func_id == BPF_FUNC_spin_lock) {
5392 			if (process_spin_lock(env, regno, true))
5393 				return -EACCES;
5394 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5395 			if (process_spin_lock(env, regno, false))
5396 				return -EACCES;
5397 		} else {
5398 			verbose(env, "verifier internal error\n");
5399 			return -EFAULT;
5400 		}
5401 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5402 		if (process_timer_func(env, regno, meta))
5403 			return -EACCES;
5404 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5405 		meta->subprogno = reg->subprogno;
5406 	} else if (arg_type_is_mem_ptr(arg_type)) {
5407 		/* The access to this pointer is only checked when we hit the
5408 		 * next is_mem_size argument below.
5409 		 */
5410 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5411 	} else if (arg_type_is_mem_size(arg_type)) {
5412 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5413 
5414 		/* This is used to refine r0 return value bounds for helpers
5415 		 * that enforce this value as an upper bound on return values.
5416 		 * See do_refine_retval_range() for helpers that can refine
5417 		 * the return value. C type of helper is u32 so we pull register
5418 		 * bound from umax_value however, if negative verifier errors
5419 		 * out. Only upper bounds can be learned because retval is an
5420 		 * int type and negative retvals are allowed.
5421 		 */
5422 		meta->msize_max_value = reg->umax_value;
5423 
5424 		/* The register is SCALAR_VALUE; the access check
5425 		 * happens using its boundaries.
5426 		 */
5427 		if (!tnum_is_const(reg->var_off))
5428 			/* For unprivileged variable accesses, disable raw
5429 			 * mode so that the program is required to
5430 			 * initialize all the memory that the helper could
5431 			 * just partially fill up.
5432 			 */
5433 			meta = NULL;
5434 
5435 		if (reg->smin_value < 0) {
5436 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5437 				regno);
5438 			return -EACCES;
5439 		}
5440 
5441 		if (reg->umin_value == 0) {
5442 			err = check_helper_mem_access(env, regno - 1, 0,
5443 						      zero_size_allowed,
5444 						      meta);
5445 			if (err)
5446 				return err;
5447 		}
5448 
5449 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5450 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5451 				regno);
5452 			return -EACCES;
5453 		}
5454 		err = check_helper_mem_access(env, regno - 1,
5455 					      reg->umax_value,
5456 					      zero_size_allowed, meta);
5457 		if (!err)
5458 			err = mark_chain_precision(env, regno);
5459 	} else if (arg_type_is_alloc_size(arg_type)) {
5460 		if (!tnum_is_const(reg->var_off)) {
5461 			verbose(env, "R%d is not a known constant'\n",
5462 				regno);
5463 			return -EACCES;
5464 		}
5465 		meta->mem_size = reg->var_off.value;
5466 	} else if (arg_type_is_int_ptr(arg_type)) {
5467 		int size = int_ptr_type_to_size(arg_type);
5468 
5469 		err = check_helper_mem_access(env, regno, size, false, meta);
5470 		if (err)
5471 			return err;
5472 		err = check_ptr_alignment(env, reg, 0, size, true);
5473 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5474 		struct bpf_map *map = reg->map_ptr;
5475 		int map_off;
5476 		u64 map_addr;
5477 		char *str_ptr;
5478 
5479 		if (!bpf_map_is_rdonly(map)) {
5480 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5481 			return -EACCES;
5482 		}
5483 
5484 		if (!tnum_is_const(reg->var_off)) {
5485 			verbose(env, "R%d is not a constant address'\n", regno);
5486 			return -EACCES;
5487 		}
5488 
5489 		if (!map->ops->map_direct_value_addr) {
5490 			verbose(env, "no direct value access support for this map type\n");
5491 			return -EACCES;
5492 		}
5493 
5494 		err = check_map_access(env, regno, reg->off,
5495 				       map->value_size - reg->off, false);
5496 		if (err)
5497 			return err;
5498 
5499 		map_off = reg->off + reg->var_off.value;
5500 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5501 		if (err) {
5502 			verbose(env, "direct value access on string failed\n");
5503 			return err;
5504 		}
5505 
5506 		str_ptr = (char *)(long)(map_addr);
5507 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5508 			verbose(env, "string is not zero-terminated\n");
5509 			return -EINVAL;
5510 		}
5511 	}
5512 
5513 	return err;
5514 }
5515 
5516 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5517 {
5518 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5519 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5520 
5521 	if (func_id != BPF_FUNC_map_update_elem)
5522 		return false;
5523 
5524 	/* It's not possible to get access to a locked struct sock in these
5525 	 * contexts, so updating is safe.
5526 	 */
5527 	switch (type) {
5528 	case BPF_PROG_TYPE_TRACING:
5529 		if (eatype == BPF_TRACE_ITER)
5530 			return true;
5531 		break;
5532 	case BPF_PROG_TYPE_SOCKET_FILTER:
5533 	case BPF_PROG_TYPE_SCHED_CLS:
5534 	case BPF_PROG_TYPE_SCHED_ACT:
5535 	case BPF_PROG_TYPE_XDP:
5536 	case BPF_PROG_TYPE_SK_REUSEPORT:
5537 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5538 	case BPF_PROG_TYPE_SK_LOOKUP:
5539 		return true;
5540 	default:
5541 		break;
5542 	}
5543 
5544 	verbose(env, "cannot update sockmap in this context\n");
5545 	return false;
5546 }
5547 
5548 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5549 {
5550 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5551 }
5552 
5553 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5554 					struct bpf_map *map, int func_id)
5555 {
5556 	if (!map)
5557 		return 0;
5558 
5559 	/* We need a two way check, first is from map perspective ... */
5560 	switch (map->map_type) {
5561 	case BPF_MAP_TYPE_PROG_ARRAY:
5562 		if (func_id != BPF_FUNC_tail_call)
5563 			goto error;
5564 		break;
5565 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5566 		if (func_id != BPF_FUNC_perf_event_read &&
5567 		    func_id != BPF_FUNC_perf_event_output &&
5568 		    func_id != BPF_FUNC_skb_output &&
5569 		    func_id != BPF_FUNC_perf_event_read_value &&
5570 		    func_id != BPF_FUNC_xdp_output)
5571 			goto error;
5572 		break;
5573 	case BPF_MAP_TYPE_RINGBUF:
5574 		if (func_id != BPF_FUNC_ringbuf_output &&
5575 		    func_id != BPF_FUNC_ringbuf_reserve &&
5576 		    func_id != BPF_FUNC_ringbuf_query)
5577 			goto error;
5578 		break;
5579 	case BPF_MAP_TYPE_STACK_TRACE:
5580 		if (func_id != BPF_FUNC_get_stackid)
5581 			goto error;
5582 		break;
5583 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5584 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5585 		    func_id != BPF_FUNC_current_task_under_cgroup)
5586 			goto error;
5587 		break;
5588 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5589 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5590 		if (func_id != BPF_FUNC_get_local_storage)
5591 			goto error;
5592 		break;
5593 	case BPF_MAP_TYPE_DEVMAP:
5594 	case BPF_MAP_TYPE_DEVMAP_HASH:
5595 		if (func_id != BPF_FUNC_redirect_map &&
5596 		    func_id != BPF_FUNC_map_lookup_elem)
5597 			goto error;
5598 		break;
5599 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5600 	 * appear.
5601 	 */
5602 	case BPF_MAP_TYPE_CPUMAP:
5603 		if (func_id != BPF_FUNC_redirect_map)
5604 			goto error;
5605 		break;
5606 	case BPF_MAP_TYPE_XSKMAP:
5607 		if (func_id != BPF_FUNC_redirect_map &&
5608 		    func_id != BPF_FUNC_map_lookup_elem)
5609 			goto error;
5610 		break;
5611 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5612 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5613 		if (func_id != BPF_FUNC_map_lookup_elem)
5614 			goto error;
5615 		break;
5616 	case BPF_MAP_TYPE_SOCKMAP:
5617 		if (func_id != BPF_FUNC_sk_redirect_map &&
5618 		    func_id != BPF_FUNC_sock_map_update &&
5619 		    func_id != BPF_FUNC_map_delete_elem &&
5620 		    func_id != BPF_FUNC_msg_redirect_map &&
5621 		    func_id != BPF_FUNC_sk_select_reuseport &&
5622 		    func_id != BPF_FUNC_map_lookup_elem &&
5623 		    !may_update_sockmap(env, func_id))
5624 			goto error;
5625 		break;
5626 	case BPF_MAP_TYPE_SOCKHASH:
5627 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5628 		    func_id != BPF_FUNC_sock_hash_update &&
5629 		    func_id != BPF_FUNC_map_delete_elem &&
5630 		    func_id != BPF_FUNC_msg_redirect_hash &&
5631 		    func_id != BPF_FUNC_sk_select_reuseport &&
5632 		    func_id != BPF_FUNC_map_lookup_elem &&
5633 		    !may_update_sockmap(env, func_id))
5634 			goto error;
5635 		break;
5636 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5637 		if (func_id != BPF_FUNC_sk_select_reuseport)
5638 			goto error;
5639 		break;
5640 	case BPF_MAP_TYPE_QUEUE:
5641 	case BPF_MAP_TYPE_STACK:
5642 		if (func_id != BPF_FUNC_map_peek_elem &&
5643 		    func_id != BPF_FUNC_map_pop_elem &&
5644 		    func_id != BPF_FUNC_map_push_elem)
5645 			goto error;
5646 		break;
5647 	case BPF_MAP_TYPE_SK_STORAGE:
5648 		if (func_id != BPF_FUNC_sk_storage_get &&
5649 		    func_id != BPF_FUNC_sk_storage_delete)
5650 			goto error;
5651 		break;
5652 	case BPF_MAP_TYPE_INODE_STORAGE:
5653 		if (func_id != BPF_FUNC_inode_storage_get &&
5654 		    func_id != BPF_FUNC_inode_storage_delete)
5655 			goto error;
5656 		break;
5657 	case BPF_MAP_TYPE_TASK_STORAGE:
5658 		if (func_id != BPF_FUNC_task_storage_get &&
5659 		    func_id != BPF_FUNC_task_storage_delete)
5660 			goto error;
5661 		break;
5662 	case BPF_MAP_TYPE_BLOOM_FILTER:
5663 		if (func_id != BPF_FUNC_map_peek_elem &&
5664 		    func_id != BPF_FUNC_map_push_elem)
5665 			goto error;
5666 		break;
5667 	default:
5668 		break;
5669 	}
5670 
5671 	/* ... and second from the function itself. */
5672 	switch (func_id) {
5673 	case BPF_FUNC_tail_call:
5674 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5675 			goto error;
5676 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5677 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5678 			return -EINVAL;
5679 		}
5680 		break;
5681 	case BPF_FUNC_perf_event_read:
5682 	case BPF_FUNC_perf_event_output:
5683 	case BPF_FUNC_perf_event_read_value:
5684 	case BPF_FUNC_skb_output:
5685 	case BPF_FUNC_xdp_output:
5686 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5687 			goto error;
5688 		break;
5689 	case BPF_FUNC_ringbuf_output:
5690 	case BPF_FUNC_ringbuf_reserve:
5691 	case BPF_FUNC_ringbuf_query:
5692 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5693 			goto error;
5694 		break;
5695 	case BPF_FUNC_get_stackid:
5696 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5697 			goto error;
5698 		break;
5699 	case BPF_FUNC_current_task_under_cgroup:
5700 	case BPF_FUNC_skb_under_cgroup:
5701 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5702 			goto error;
5703 		break;
5704 	case BPF_FUNC_redirect_map:
5705 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5706 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5707 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5708 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5709 			goto error;
5710 		break;
5711 	case BPF_FUNC_sk_redirect_map:
5712 	case BPF_FUNC_msg_redirect_map:
5713 	case BPF_FUNC_sock_map_update:
5714 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5715 			goto error;
5716 		break;
5717 	case BPF_FUNC_sk_redirect_hash:
5718 	case BPF_FUNC_msg_redirect_hash:
5719 	case BPF_FUNC_sock_hash_update:
5720 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5721 			goto error;
5722 		break;
5723 	case BPF_FUNC_get_local_storage:
5724 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5725 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5726 			goto error;
5727 		break;
5728 	case BPF_FUNC_sk_select_reuseport:
5729 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5730 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5731 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5732 			goto error;
5733 		break;
5734 	case BPF_FUNC_map_pop_elem:
5735 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5736 		    map->map_type != BPF_MAP_TYPE_STACK)
5737 			goto error;
5738 		break;
5739 	case BPF_FUNC_map_peek_elem:
5740 	case BPF_FUNC_map_push_elem:
5741 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5742 		    map->map_type != BPF_MAP_TYPE_STACK &&
5743 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5744 			goto error;
5745 		break;
5746 	case BPF_FUNC_sk_storage_get:
5747 	case BPF_FUNC_sk_storage_delete:
5748 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5749 			goto error;
5750 		break;
5751 	case BPF_FUNC_inode_storage_get:
5752 	case BPF_FUNC_inode_storage_delete:
5753 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5754 			goto error;
5755 		break;
5756 	case BPF_FUNC_task_storage_get:
5757 	case BPF_FUNC_task_storage_delete:
5758 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5759 			goto error;
5760 		break;
5761 	default:
5762 		break;
5763 	}
5764 
5765 	return 0;
5766 error:
5767 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5768 		map->map_type, func_id_name(func_id), func_id);
5769 	return -EINVAL;
5770 }
5771 
5772 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5773 {
5774 	int count = 0;
5775 
5776 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5777 		count++;
5778 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5779 		count++;
5780 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5781 		count++;
5782 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5783 		count++;
5784 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5785 		count++;
5786 
5787 	/* We only support one arg being in raw mode at the moment,
5788 	 * which is sufficient for the helper functions we have
5789 	 * right now.
5790 	 */
5791 	return count <= 1;
5792 }
5793 
5794 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5795 				    enum bpf_arg_type arg_next)
5796 {
5797 	return (arg_type_is_mem_ptr(arg_curr) &&
5798 	        !arg_type_is_mem_size(arg_next)) ||
5799 	       (!arg_type_is_mem_ptr(arg_curr) &&
5800 		arg_type_is_mem_size(arg_next));
5801 }
5802 
5803 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5804 {
5805 	/* bpf_xxx(..., buf, len) call will access 'len'
5806 	 * bytes from memory 'buf'. Both arg types need
5807 	 * to be paired, so make sure there's no buggy
5808 	 * helper function specification.
5809 	 */
5810 	if (arg_type_is_mem_size(fn->arg1_type) ||
5811 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5812 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5813 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5814 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5815 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5816 		return false;
5817 
5818 	return true;
5819 }
5820 
5821 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5822 {
5823 	int count = 0;
5824 
5825 	if (arg_type_may_be_refcounted(fn->arg1_type))
5826 		count++;
5827 	if (arg_type_may_be_refcounted(fn->arg2_type))
5828 		count++;
5829 	if (arg_type_may_be_refcounted(fn->arg3_type))
5830 		count++;
5831 	if (arg_type_may_be_refcounted(fn->arg4_type))
5832 		count++;
5833 	if (arg_type_may_be_refcounted(fn->arg5_type))
5834 		count++;
5835 
5836 	/* A reference acquiring function cannot acquire
5837 	 * another refcounted ptr.
5838 	 */
5839 	if (may_be_acquire_function(func_id) && count)
5840 		return false;
5841 
5842 	/* We only support one arg being unreferenced at the moment,
5843 	 * which is sufficient for the helper functions we have right now.
5844 	 */
5845 	return count <= 1;
5846 }
5847 
5848 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5849 {
5850 	int i;
5851 
5852 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5853 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5854 			return false;
5855 
5856 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5857 			return false;
5858 	}
5859 
5860 	return true;
5861 }
5862 
5863 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5864 {
5865 	return check_raw_mode_ok(fn) &&
5866 	       check_arg_pair_ok(fn) &&
5867 	       check_btf_id_ok(fn) &&
5868 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5869 }
5870 
5871 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5872  * are now invalid, so turn them into unknown SCALAR_VALUE.
5873  */
5874 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5875 				     struct bpf_func_state *state)
5876 {
5877 	struct bpf_reg_state *regs = state->regs, *reg;
5878 	int i;
5879 
5880 	for (i = 0; i < MAX_BPF_REG; i++)
5881 		if (reg_is_pkt_pointer_any(&regs[i]))
5882 			mark_reg_unknown(env, regs, i);
5883 
5884 	bpf_for_each_spilled_reg(i, state, reg) {
5885 		if (!reg)
5886 			continue;
5887 		if (reg_is_pkt_pointer_any(reg))
5888 			__mark_reg_unknown(env, reg);
5889 	}
5890 }
5891 
5892 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5893 {
5894 	struct bpf_verifier_state *vstate = env->cur_state;
5895 	int i;
5896 
5897 	for (i = 0; i <= vstate->curframe; i++)
5898 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5899 }
5900 
5901 enum {
5902 	AT_PKT_END = -1,
5903 	BEYOND_PKT_END = -2,
5904 };
5905 
5906 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5907 {
5908 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5909 	struct bpf_reg_state *reg = &state->regs[regn];
5910 
5911 	if (reg->type != PTR_TO_PACKET)
5912 		/* PTR_TO_PACKET_META is not supported yet */
5913 		return;
5914 
5915 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5916 	 * How far beyond pkt_end it goes is unknown.
5917 	 * if (!range_open) it's the case of pkt >= pkt_end
5918 	 * if (range_open) it's the case of pkt > pkt_end
5919 	 * hence this pointer is at least 1 byte bigger than pkt_end
5920 	 */
5921 	if (range_open)
5922 		reg->range = BEYOND_PKT_END;
5923 	else
5924 		reg->range = AT_PKT_END;
5925 }
5926 
5927 static void release_reg_references(struct bpf_verifier_env *env,
5928 				   struct bpf_func_state *state,
5929 				   int ref_obj_id)
5930 {
5931 	struct bpf_reg_state *regs = state->regs, *reg;
5932 	int i;
5933 
5934 	for (i = 0; i < MAX_BPF_REG; i++)
5935 		if (regs[i].ref_obj_id == ref_obj_id)
5936 			mark_reg_unknown(env, regs, i);
5937 
5938 	bpf_for_each_spilled_reg(i, state, reg) {
5939 		if (!reg)
5940 			continue;
5941 		if (reg->ref_obj_id == ref_obj_id)
5942 			__mark_reg_unknown(env, reg);
5943 	}
5944 }
5945 
5946 /* The pointer with the specified id has released its reference to kernel
5947  * resources. Identify all copies of the same pointer and clear the reference.
5948  */
5949 static int release_reference(struct bpf_verifier_env *env,
5950 			     int ref_obj_id)
5951 {
5952 	struct bpf_verifier_state *vstate = env->cur_state;
5953 	int err;
5954 	int i;
5955 
5956 	err = release_reference_state(cur_func(env), ref_obj_id);
5957 	if (err)
5958 		return err;
5959 
5960 	for (i = 0; i <= vstate->curframe; i++)
5961 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5962 
5963 	return 0;
5964 }
5965 
5966 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5967 				    struct bpf_reg_state *regs)
5968 {
5969 	int i;
5970 
5971 	/* after the call registers r0 - r5 were scratched */
5972 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5973 		mark_reg_not_init(env, regs, caller_saved[i]);
5974 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5975 	}
5976 }
5977 
5978 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5979 				   struct bpf_func_state *caller,
5980 				   struct bpf_func_state *callee,
5981 				   int insn_idx);
5982 
5983 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5984 			     int *insn_idx, int subprog,
5985 			     set_callee_state_fn set_callee_state_cb)
5986 {
5987 	struct bpf_verifier_state *state = env->cur_state;
5988 	struct bpf_func_info_aux *func_info_aux;
5989 	struct bpf_func_state *caller, *callee;
5990 	int err;
5991 	bool is_global = false;
5992 
5993 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5994 		verbose(env, "the call stack of %d frames is too deep\n",
5995 			state->curframe + 2);
5996 		return -E2BIG;
5997 	}
5998 
5999 	caller = state->frame[state->curframe];
6000 	if (state->frame[state->curframe + 1]) {
6001 		verbose(env, "verifier bug. Frame %d already allocated\n",
6002 			state->curframe + 1);
6003 		return -EFAULT;
6004 	}
6005 
6006 	func_info_aux = env->prog->aux->func_info_aux;
6007 	if (func_info_aux)
6008 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6009 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
6010 	if (err == -EFAULT)
6011 		return err;
6012 	if (is_global) {
6013 		if (err) {
6014 			verbose(env, "Caller passes invalid args into func#%d\n",
6015 				subprog);
6016 			return err;
6017 		} else {
6018 			if (env->log.level & BPF_LOG_LEVEL)
6019 				verbose(env,
6020 					"Func#%d is global and valid. Skipping.\n",
6021 					subprog);
6022 			clear_caller_saved_regs(env, caller->regs);
6023 
6024 			/* All global functions return a 64-bit SCALAR_VALUE */
6025 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6026 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6027 
6028 			/* continue with next insn after call */
6029 			return 0;
6030 		}
6031 	}
6032 
6033 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6034 	    insn->src_reg == 0 &&
6035 	    insn->imm == BPF_FUNC_timer_set_callback) {
6036 		struct bpf_verifier_state *async_cb;
6037 
6038 		/* there is no real recursion here. timer callbacks are async */
6039 		env->subprog_info[subprog].is_async_cb = true;
6040 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6041 					 *insn_idx, subprog);
6042 		if (!async_cb)
6043 			return -EFAULT;
6044 		callee = async_cb->frame[0];
6045 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6046 
6047 		/* Convert bpf_timer_set_callback() args into timer callback args */
6048 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6049 		if (err)
6050 			return err;
6051 
6052 		clear_caller_saved_regs(env, caller->regs);
6053 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6054 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6055 		/* continue with next insn after call */
6056 		return 0;
6057 	}
6058 
6059 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6060 	if (!callee)
6061 		return -ENOMEM;
6062 	state->frame[state->curframe + 1] = callee;
6063 
6064 	/* callee cannot access r0, r6 - r9 for reading and has to write
6065 	 * into its own stack before reading from it.
6066 	 * callee can read/write into caller's stack
6067 	 */
6068 	init_func_state(env, callee,
6069 			/* remember the callsite, it will be used by bpf_exit */
6070 			*insn_idx /* callsite */,
6071 			state->curframe + 1 /* frameno within this callchain */,
6072 			subprog /* subprog number within this prog */);
6073 
6074 	/* Transfer references to the callee */
6075 	err = copy_reference_state(callee, caller);
6076 	if (err)
6077 		return err;
6078 
6079 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6080 	if (err)
6081 		return err;
6082 
6083 	clear_caller_saved_regs(env, caller->regs);
6084 
6085 	/* only increment it after check_reg_arg() finished */
6086 	state->curframe++;
6087 
6088 	/* and go analyze first insn of the callee */
6089 	*insn_idx = env->subprog_info[subprog].start - 1;
6090 
6091 	if (env->log.level & BPF_LOG_LEVEL) {
6092 		verbose(env, "caller:\n");
6093 		print_verifier_state(env, caller, true);
6094 		verbose(env, "callee:\n");
6095 		print_verifier_state(env, callee, true);
6096 	}
6097 	return 0;
6098 }
6099 
6100 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6101 				   struct bpf_func_state *caller,
6102 				   struct bpf_func_state *callee)
6103 {
6104 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6105 	 *      void *callback_ctx, u64 flags);
6106 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6107 	 *      void *callback_ctx);
6108 	 */
6109 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6110 
6111 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6112 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6113 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6114 
6115 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6116 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6117 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6118 
6119 	/* pointer to stack or null */
6120 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6121 
6122 	/* unused */
6123 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6124 	return 0;
6125 }
6126 
6127 static int set_callee_state(struct bpf_verifier_env *env,
6128 			    struct bpf_func_state *caller,
6129 			    struct bpf_func_state *callee, int insn_idx)
6130 {
6131 	int i;
6132 
6133 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6134 	 * pointers, which connects us up to the liveness chain
6135 	 */
6136 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6137 		callee->regs[i] = caller->regs[i];
6138 	return 0;
6139 }
6140 
6141 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6142 			   int *insn_idx)
6143 {
6144 	int subprog, target_insn;
6145 
6146 	target_insn = *insn_idx + insn->imm + 1;
6147 	subprog = find_subprog(env, target_insn);
6148 	if (subprog < 0) {
6149 		verbose(env, "verifier bug. No program starts at insn %d\n",
6150 			target_insn);
6151 		return -EFAULT;
6152 	}
6153 
6154 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6155 }
6156 
6157 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6158 				       struct bpf_func_state *caller,
6159 				       struct bpf_func_state *callee,
6160 				       int insn_idx)
6161 {
6162 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6163 	struct bpf_map *map;
6164 	int err;
6165 
6166 	if (bpf_map_ptr_poisoned(insn_aux)) {
6167 		verbose(env, "tail_call abusing map_ptr\n");
6168 		return -EINVAL;
6169 	}
6170 
6171 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6172 	if (!map->ops->map_set_for_each_callback_args ||
6173 	    !map->ops->map_for_each_callback) {
6174 		verbose(env, "callback function not allowed for map\n");
6175 		return -ENOTSUPP;
6176 	}
6177 
6178 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6179 	if (err)
6180 		return err;
6181 
6182 	callee->in_callback_fn = true;
6183 	return 0;
6184 }
6185 
6186 static int set_loop_callback_state(struct bpf_verifier_env *env,
6187 				   struct bpf_func_state *caller,
6188 				   struct bpf_func_state *callee,
6189 				   int insn_idx)
6190 {
6191 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6192 	 *	    u64 flags);
6193 	 * callback_fn(u32 index, void *callback_ctx);
6194 	 */
6195 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6196 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6197 
6198 	/* unused */
6199 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6200 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6201 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6202 
6203 	callee->in_callback_fn = true;
6204 	return 0;
6205 }
6206 
6207 static int set_timer_callback_state(struct bpf_verifier_env *env,
6208 				    struct bpf_func_state *caller,
6209 				    struct bpf_func_state *callee,
6210 				    int insn_idx)
6211 {
6212 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6213 
6214 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6215 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6216 	 */
6217 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6218 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6219 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6220 
6221 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6222 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6223 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6224 
6225 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6226 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6227 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6228 
6229 	/* unused */
6230 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6231 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6232 	callee->in_async_callback_fn = true;
6233 	return 0;
6234 }
6235 
6236 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6237 				       struct bpf_func_state *caller,
6238 				       struct bpf_func_state *callee,
6239 				       int insn_idx)
6240 {
6241 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6242 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6243 	 * (callback_fn)(struct task_struct *task,
6244 	 *               struct vm_area_struct *vma, void *callback_ctx);
6245 	 */
6246 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6247 
6248 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6249 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6250 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6251 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6252 
6253 	/* pointer to stack or null */
6254 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6255 
6256 	/* unused */
6257 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6258 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6259 	callee->in_callback_fn = true;
6260 	return 0;
6261 }
6262 
6263 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6264 {
6265 	struct bpf_verifier_state *state = env->cur_state;
6266 	struct bpf_func_state *caller, *callee;
6267 	struct bpf_reg_state *r0;
6268 	int err;
6269 
6270 	callee = state->frame[state->curframe];
6271 	r0 = &callee->regs[BPF_REG_0];
6272 	if (r0->type == PTR_TO_STACK) {
6273 		/* technically it's ok to return caller's stack pointer
6274 		 * (or caller's caller's pointer) back to the caller,
6275 		 * since these pointers are valid. Only current stack
6276 		 * pointer will be invalid as soon as function exits,
6277 		 * but let's be conservative
6278 		 */
6279 		verbose(env, "cannot return stack pointer to the caller\n");
6280 		return -EINVAL;
6281 	}
6282 
6283 	state->curframe--;
6284 	caller = state->frame[state->curframe];
6285 	if (callee->in_callback_fn) {
6286 		/* enforce R0 return value range [0, 1]. */
6287 		struct tnum range = tnum_range(0, 1);
6288 
6289 		if (r0->type != SCALAR_VALUE) {
6290 			verbose(env, "R0 not a scalar value\n");
6291 			return -EACCES;
6292 		}
6293 		if (!tnum_in(range, r0->var_off)) {
6294 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6295 			return -EINVAL;
6296 		}
6297 	} else {
6298 		/* return to the caller whatever r0 had in the callee */
6299 		caller->regs[BPF_REG_0] = *r0;
6300 	}
6301 
6302 	/* Transfer references to the caller */
6303 	err = copy_reference_state(caller, callee);
6304 	if (err)
6305 		return err;
6306 
6307 	*insn_idx = callee->callsite + 1;
6308 	if (env->log.level & BPF_LOG_LEVEL) {
6309 		verbose(env, "returning from callee:\n");
6310 		print_verifier_state(env, callee, true);
6311 		verbose(env, "to caller at %d:\n", *insn_idx);
6312 		print_verifier_state(env, caller, true);
6313 	}
6314 	/* clear everything in the callee */
6315 	free_func_state(callee);
6316 	state->frame[state->curframe + 1] = NULL;
6317 	return 0;
6318 }
6319 
6320 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6321 				   int func_id,
6322 				   struct bpf_call_arg_meta *meta)
6323 {
6324 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6325 
6326 	if (ret_type != RET_INTEGER ||
6327 	    (func_id != BPF_FUNC_get_stack &&
6328 	     func_id != BPF_FUNC_get_task_stack &&
6329 	     func_id != BPF_FUNC_probe_read_str &&
6330 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6331 	     func_id != BPF_FUNC_probe_read_user_str))
6332 		return;
6333 
6334 	ret_reg->smax_value = meta->msize_max_value;
6335 	ret_reg->s32_max_value = meta->msize_max_value;
6336 	ret_reg->smin_value = -MAX_ERRNO;
6337 	ret_reg->s32_min_value = -MAX_ERRNO;
6338 	__reg_deduce_bounds(ret_reg);
6339 	__reg_bound_offset(ret_reg);
6340 	__update_reg_bounds(ret_reg);
6341 }
6342 
6343 static int
6344 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6345 		int func_id, int insn_idx)
6346 {
6347 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6348 	struct bpf_map *map = meta->map_ptr;
6349 
6350 	if (func_id != BPF_FUNC_tail_call &&
6351 	    func_id != BPF_FUNC_map_lookup_elem &&
6352 	    func_id != BPF_FUNC_map_update_elem &&
6353 	    func_id != BPF_FUNC_map_delete_elem &&
6354 	    func_id != BPF_FUNC_map_push_elem &&
6355 	    func_id != BPF_FUNC_map_pop_elem &&
6356 	    func_id != BPF_FUNC_map_peek_elem &&
6357 	    func_id != BPF_FUNC_for_each_map_elem &&
6358 	    func_id != BPF_FUNC_redirect_map)
6359 		return 0;
6360 
6361 	if (map == NULL) {
6362 		verbose(env, "kernel subsystem misconfigured verifier\n");
6363 		return -EINVAL;
6364 	}
6365 
6366 	/* In case of read-only, some additional restrictions
6367 	 * need to be applied in order to prevent altering the
6368 	 * state of the map from program side.
6369 	 */
6370 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6371 	    (func_id == BPF_FUNC_map_delete_elem ||
6372 	     func_id == BPF_FUNC_map_update_elem ||
6373 	     func_id == BPF_FUNC_map_push_elem ||
6374 	     func_id == BPF_FUNC_map_pop_elem)) {
6375 		verbose(env, "write into map forbidden\n");
6376 		return -EACCES;
6377 	}
6378 
6379 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6380 		bpf_map_ptr_store(aux, meta->map_ptr,
6381 				  !meta->map_ptr->bypass_spec_v1);
6382 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6383 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6384 				  !meta->map_ptr->bypass_spec_v1);
6385 	return 0;
6386 }
6387 
6388 static int
6389 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6390 		int func_id, int insn_idx)
6391 {
6392 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6393 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6394 	struct bpf_map *map = meta->map_ptr;
6395 	struct tnum range;
6396 	u64 val;
6397 	int err;
6398 
6399 	if (func_id != BPF_FUNC_tail_call)
6400 		return 0;
6401 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6402 		verbose(env, "kernel subsystem misconfigured verifier\n");
6403 		return -EINVAL;
6404 	}
6405 
6406 	range = tnum_range(0, map->max_entries - 1);
6407 	reg = &regs[BPF_REG_3];
6408 
6409 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6410 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6411 		return 0;
6412 	}
6413 
6414 	err = mark_chain_precision(env, BPF_REG_3);
6415 	if (err)
6416 		return err;
6417 
6418 	val = reg->var_off.value;
6419 	if (bpf_map_key_unseen(aux))
6420 		bpf_map_key_store(aux, val);
6421 	else if (!bpf_map_key_poisoned(aux) &&
6422 		  bpf_map_key_immediate(aux) != val)
6423 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6424 	return 0;
6425 }
6426 
6427 static int check_reference_leak(struct bpf_verifier_env *env)
6428 {
6429 	struct bpf_func_state *state = cur_func(env);
6430 	int i;
6431 
6432 	for (i = 0; i < state->acquired_refs; i++) {
6433 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6434 			state->refs[i].id, state->refs[i].insn_idx);
6435 	}
6436 	return state->acquired_refs ? -EINVAL : 0;
6437 }
6438 
6439 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6440 				   struct bpf_reg_state *regs)
6441 {
6442 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6443 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6444 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6445 	int err, fmt_map_off, num_args;
6446 	u64 fmt_addr;
6447 	char *fmt;
6448 
6449 	/* data must be an array of u64 */
6450 	if (data_len_reg->var_off.value % 8)
6451 		return -EINVAL;
6452 	num_args = data_len_reg->var_off.value / 8;
6453 
6454 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6455 	 * and map_direct_value_addr is set.
6456 	 */
6457 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6458 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6459 						  fmt_map_off);
6460 	if (err) {
6461 		verbose(env, "verifier bug\n");
6462 		return -EFAULT;
6463 	}
6464 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6465 
6466 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6467 	 * can focus on validating the format specifiers.
6468 	 */
6469 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6470 	if (err < 0)
6471 		verbose(env, "Invalid format string\n");
6472 
6473 	return err;
6474 }
6475 
6476 static int check_get_func_ip(struct bpf_verifier_env *env)
6477 {
6478 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6479 	int func_id = BPF_FUNC_get_func_ip;
6480 
6481 	if (type == BPF_PROG_TYPE_TRACING) {
6482 		if (!bpf_prog_has_trampoline(env->prog)) {
6483 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6484 				func_id_name(func_id), func_id);
6485 			return -ENOTSUPP;
6486 		}
6487 		return 0;
6488 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6489 		return 0;
6490 	}
6491 
6492 	verbose(env, "func %s#%d not supported for program type %d\n",
6493 		func_id_name(func_id), func_id, type);
6494 	return -ENOTSUPP;
6495 }
6496 
6497 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6498 			     int *insn_idx_p)
6499 {
6500 	const struct bpf_func_proto *fn = NULL;
6501 	enum bpf_return_type ret_type;
6502 	enum bpf_type_flag ret_flag;
6503 	struct bpf_reg_state *regs;
6504 	struct bpf_call_arg_meta meta;
6505 	int insn_idx = *insn_idx_p;
6506 	bool changes_data;
6507 	int i, err, func_id;
6508 
6509 	/* find function prototype */
6510 	func_id = insn->imm;
6511 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6512 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6513 			func_id);
6514 		return -EINVAL;
6515 	}
6516 
6517 	if (env->ops->get_func_proto)
6518 		fn = env->ops->get_func_proto(func_id, env->prog);
6519 	if (!fn) {
6520 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6521 			func_id);
6522 		return -EINVAL;
6523 	}
6524 
6525 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6526 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6527 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6528 		return -EINVAL;
6529 	}
6530 
6531 	if (fn->allowed && !fn->allowed(env->prog)) {
6532 		verbose(env, "helper call is not allowed in probe\n");
6533 		return -EINVAL;
6534 	}
6535 
6536 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6537 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6538 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6539 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6540 			func_id_name(func_id), func_id);
6541 		return -EINVAL;
6542 	}
6543 
6544 	memset(&meta, 0, sizeof(meta));
6545 	meta.pkt_access = fn->pkt_access;
6546 
6547 	err = check_func_proto(fn, func_id);
6548 	if (err) {
6549 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6550 			func_id_name(func_id), func_id);
6551 		return err;
6552 	}
6553 
6554 	meta.func_id = func_id;
6555 	/* check args */
6556 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6557 		err = check_func_arg(env, i, &meta, fn);
6558 		if (err)
6559 			return err;
6560 	}
6561 
6562 	err = record_func_map(env, &meta, func_id, insn_idx);
6563 	if (err)
6564 		return err;
6565 
6566 	err = record_func_key(env, &meta, func_id, insn_idx);
6567 	if (err)
6568 		return err;
6569 
6570 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6571 	 * is inferred from register state.
6572 	 */
6573 	for (i = 0; i < meta.access_size; i++) {
6574 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6575 				       BPF_WRITE, -1, false);
6576 		if (err)
6577 			return err;
6578 	}
6579 
6580 	if (is_release_function(func_id)) {
6581 		err = release_reference(env, meta.ref_obj_id);
6582 		if (err) {
6583 			verbose(env, "func %s#%d reference has not been acquired before\n",
6584 				func_id_name(func_id), func_id);
6585 			return err;
6586 		}
6587 	}
6588 
6589 	regs = cur_regs(env);
6590 
6591 	switch (func_id) {
6592 	case BPF_FUNC_tail_call:
6593 		err = check_reference_leak(env);
6594 		if (err) {
6595 			verbose(env, "tail_call would lead to reference leak\n");
6596 			return err;
6597 		}
6598 		break;
6599 	case BPF_FUNC_get_local_storage:
6600 		/* check that flags argument in get_local_storage(map, flags) is 0,
6601 		 * this is required because get_local_storage() can't return an error.
6602 		 */
6603 		if (!register_is_null(&regs[BPF_REG_2])) {
6604 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6605 			return -EINVAL;
6606 		}
6607 		break;
6608 	case BPF_FUNC_for_each_map_elem:
6609 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6610 					set_map_elem_callback_state);
6611 		break;
6612 	case BPF_FUNC_timer_set_callback:
6613 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6614 					set_timer_callback_state);
6615 		break;
6616 	case BPF_FUNC_find_vma:
6617 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6618 					set_find_vma_callback_state);
6619 		break;
6620 	case BPF_FUNC_snprintf:
6621 		err = check_bpf_snprintf_call(env, regs);
6622 		break;
6623 	case BPF_FUNC_loop:
6624 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6625 					set_loop_callback_state);
6626 		break;
6627 	}
6628 
6629 	if (err)
6630 		return err;
6631 
6632 	/* reset caller saved regs */
6633 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6634 		mark_reg_not_init(env, regs, caller_saved[i]);
6635 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6636 	}
6637 
6638 	/* helper call returns 64-bit value. */
6639 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6640 
6641 	/* update return register (already marked as written above) */
6642 	ret_type = fn->ret_type;
6643 	ret_flag = type_flag(fn->ret_type);
6644 	if (ret_type == RET_INTEGER) {
6645 		/* sets type to SCALAR_VALUE */
6646 		mark_reg_unknown(env, regs, BPF_REG_0);
6647 	} else if (ret_type == RET_VOID) {
6648 		regs[BPF_REG_0].type = NOT_INIT;
6649 	} else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
6650 		/* There is no offset yet applied, variable or fixed */
6651 		mark_reg_known_zero(env, regs, BPF_REG_0);
6652 		/* remember map_ptr, so that check_map_access()
6653 		 * can check 'value_size' boundary of memory access
6654 		 * to map element returned from bpf_map_lookup_elem()
6655 		 */
6656 		if (meta.map_ptr == NULL) {
6657 			verbose(env,
6658 				"kernel subsystem misconfigured verifier\n");
6659 			return -EINVAL;
6660 		}
6661 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6662 		regs[BPF_REG_0].map_uid = meta.map_uid;
6663 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
6664 		if (!type_may_be_null(ret_type) &&
6665 		    map_value_has_spin_lock(meta.map_ptr)) {
6666 			regs[BPF_REG_0].id = ++env->id_gen;
6667 		}
6668 	} else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
6669 		mark_reg_known_zero(env, regs, BPF_REG_0);
6670 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
6671 	} else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
6672 		mark_reg_known_zero(env, regs, BPF_REG_0);
6673 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
6674 	} else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
6675 		mark_reg_known_zero(env, regs, BPF_REG_0);
6676 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
6677 	} else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
6678 		mark_reg_known_zero(env, regs, BPF_REG_0);
6679 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6680 		regs[BPF_REG_0].mem_size = meta.mem_size;
6681 	} else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
6682 		const struct btf_type *t;
6683 
6684 		mark_reg_known_zero(env, regs, BPF_REG_0);
6685 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6686 		if (!btf_type_is_struct(t)) {
6687 			u32 tsize;
6688 			const struct btf_type *ret;
6689 			const char *tname;
6690 
6691 			/* resolve the type size of ksym. */
6692 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6693 			if (IS_ERR(ret)) {
6694 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6695 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6696 					tname, PTR_ERR(ret));
6697 				return -EINVAL;
6698 			}
6699 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6700 			regs[BPF_REG_0].mem_size = tsize;
6701 		} else {
6702 			/* MEM_RDONLY may be carried from ret_flag, but it
6703 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
6704 			 * it will confuse the check of PTR_TO_BTF_ID in
6705 			 * check_mem_access().
6706 			 */
6707 			ret_flag &= ~MEM_RDONLY;
6708 
6709 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6710 			regs[BPF_REG_0].btf = meta.ret_btf;
6711 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6712 		}
6713 	} else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
6714 		int ret_btf_id;
6715 
6716 		mark_reg_known_zero(env, regs, BPF_REG_0);
6717 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6718 		ret_btf_id = *fn->ret_btf_id;
6719 		if (ret_btf_id == 0) {
6720 			verbose(env, "invalid return type %u of func %s#%d\n",
6721 				base_type(ret_type), func_id_name(func_id),
6722 				func_id);
6723 			return -EINVAL;
6724 		}
6725 		/* current BPF helper definitions are only coming from
6726 		 * built-in code with type IDs from  vmlinux BTF
6727 		 */
6728 		regs[BPF_REG_0].btf = btf_vmlinux;
6729 		regs[BPF_REG_0].btf_id = ret_btf_id;
6730 	} else {
6731 		verbose(env, "unknown return type %u of func %s#%d\n",
6732 			base_type(ret_type), func_id_name(func_id), func_id);
6733 		return -EINVAL;
6734 	}
6735 
6736 	if (type_may_be_null(regs[BPF_REG_0].type))
6737 		regs[BPF_REG_0].id = ++env->id_gen;
6738 
6739 	if (is_ptr_cast_function(func_id)) {
6740 		/* For release_reference() */
6741 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6742 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6743 		int id = acquire_reference_state(env, insn_idx);
6744 
6745 		if (id < 0)
6746 			return id;
6747 		/* For mark_ptr_or_null_reg() */
6748 		regs[BPF_REG_0].id = id;
6749 		/* For release_reference() */
6750 		regs[BPF_REG_0].ref_obj_id = id;
6751 	}
6752 
6753 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6754 
6755 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6756 	if (err)
6757 		return err;
6758 
6759 	if ((func_id == BPF_FUNC_get_stack ||
6760 	     func_id == BPF_FUNC_get_task_stack) &&
6761 	    !env->prog->has_callchain_buf) {
6762 		const char *err_str;
6763 
6764 #ifdef CONFIG_PERF_EVENTS
6765 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6766 		err_str = "cannot get callchain buffer for func %s#%d\n";
6767 #else
6768 		err = -ENOTSUPP;
6769 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6770 #endif
6771 		if (err) {
6772 			verbose(env, err_str, func_id_name(func_id), func_id);
6773 			return err;
6774 		}
6775 
6776 		env->prog->has_callchain_buf = true;
6777 	}
6778 
6779 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6780 		env->prog->call_get_stack = true;
6781 
6782 	if (func_id == BPF_FUNC_get_func_ip) {
6783 		if (check_get_func_ip(env))
6784 			return -ENOTSUPP;
6785 		env->prog->call_get_func_ip = true;
6786 	}
6787 
6788 	if (changes_data)
6789 		clear_all_pkt_pointers(env);
6790 	return 0;
6791 }
6792 
6793 /* mark_btf_func_reg_size() is used when the reg size is determined by
6794  * the BTF func_proto's return value size and argument.
6795  */
6796 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6797 				   size_t reg_size)
6798 {
6799 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6800 
6801 	if (regno == BPF_REG_0) {
6802 		/* Function return value */
6803 		reg->live |= REG_LIVE_WRITTEN;
6804 		reg->subreg_def = reg_size == sizeof(u64) ?
6805 			DEF_NOT_SUBREG : env->insn_idx + 1;
6806 	} else {
6807 		/* Function argument */
6808 		if (reg_size == sizeof(u64)) {
6809 			mark_insn_zext(env, reg);
6810 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6811 		} else {
6812 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6813 		}
6814 	}
6815 }
6816 
6817 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6818 {
6819 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6820 	struct bpf_reg_state *regs = cur_regs(env);
6821 	const char *func_name, *ptr_type_name;
6822 	u32 i, nargs, func_id, ptr_type_id;
6823 	struct module *btf_mod = NULL;
6824 	const struct btf_param *args;
6825 	struct btf *desc_btf;
6826 	int err;
6827 
6828 	/* skip for now, but return error when we find this in fixup_kfunc_call */
6829 	if (!insn->imm)
6830 		return 0;
6831 
6832 	desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6833 	if (IS_ERR(desc_btf))
6834 		return PTR_ERR(desc_btf);
6835 
6836 	func_id = insn->imm;
6837 	func = btf_type_by_id(desc_btf, func_id);
6838 	func_name = btf_name_by_offset(desc_btf, func->name_off);
6839 	func_proto = btf_type_by_id(desc_btf, func->type);
6840 
6841 	if (!env->ops->check_kfunc_call ||
6842 	    !env->ops->check_kfunc_call(func_id, btf_mod)) {
6843 		verbose(env, "calling kernel function %s is not allowed\n",
6844 			func_name);
6845 		return -EACCES;
6846 	}
6847 
6848 	/* Check the arguments */
6849 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
6850 	if (err)
6851 		return err;
6852 
6853 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6854 		mark_reg_not_init(env, regs, caller_saved[i]);
6855 
6856 	/* Check return type */
6857 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
6858 	if (btf_type_is_scalar(t)) {
6859 		mark_reg_unknown(env, regs, BPF_REG_0);
6860 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6861 	} else if (btf_type_is_ptr(t)) {
6862 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
6863 						   &ptr_type_id);
6864 		if (!btf_type_is_struct(ptr_type)) {
6865 			ptr_type_name = btf_name_by_offset(desc_btf,
6866 							   ptr_type->name_off);
6867 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6868 				func_name, btf_type_str(ptr_type),
6869 				ptr_type_name);
6870 			return -EINVAL;
6871 		}
6872 		mark_reg_known_zero(env, regs, BPF_REG_0);
6873 		regs[BPF_REG_0].btf = desc_btf;
6874 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6875 		regs[BPF_REG_0].btf_id = ptr_type_id;
6876 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6877 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6878 
6879 	nargs = btf_type_vlen(func_proto);
6880 	args = (const struct btf_param *)(func_proto + 1);
6881 	for (i = 0; i < nargs; i++) {
6882 		u32 regno = i + 1;
6883 
6884 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
6885 		if (btf_type_is_ptr(t))
6886 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6887 		else
6888 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6889 			mark_btf_func_reg_size(env, regno, t->size);
6890 	}
6891 
6892 	return 0;
6893 }
6894 
6895 static bool signed_add_overflows(s64 a, s64 b)
6896 {
6897 	/* Do the add in u64, where overflow is well-defined */
6898 	s64 res = (s64)((u64)a + (u64)b);
6899 
6900 	if (b < 0)
6901 		return res > a;
6902 	return res < a;
6903 }
6904 
6905 static bool signed_add32_overflows(s32 a, s32 b)
6906 {
6907 	/* Do the add in u32, where overflow is well-defined */
6908 	s32 res = (s32)((u32)a + (u32)b);
6909 
6910 	if (b < 0)
6911 		return res > a;
6912 	return res < a;
6913 }
6914 
6915 static bool signed_sub_overflows(s64 a, s64 b)
6916 {
6917 	/* Do the sub in u64, where overflow is well-defined */
6918 	s64 res = (s64)((u64)a - (u64)b);
6919 
6920 	if (b < 0)
6921 		return res < a;
6922 	return res > a;
6923 }
6924 
6925 static bool signed_sub32_overflows(s32 a, s32 b)
6926 {
6927 	/* Do the sub in u32, where overflow is well-defined */
6928 	s32 res = (s32)((u32)a - (u32)b);
6929 
6930 	if (b < 0)
6931 		return res < a;
6932 	return res > a;
6933 }
6934 
6935 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6936 				  const struct bpf_reg_state *reg,
6937 				  enum bpf_reg_type type)
6938 {
6939 	bool known = tnum_is_const(reg->var_off);
6940 	s64 val = reg->var_off.value;
6941 	s64 smin = reg->smin_value;
6942 
6943 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6944 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6945 			reg_type_str(env, type), val);
6946 		return false;
6947 	}
6948 
6949 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6950 		verbose(env, "%s pointer offset %d is not allowed\n",
6951 			reg_type_str(env, type), reg->off);
6952 		return false;
6953 	}
6954 
6955 	if (smin == S64_MIN) {
6956 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6957 			reg_type_str(env, type));
6958 		return false;
6959 	}
6960 
6961 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6962 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6963 			smin, reg_type_str(env, type));
6964 		return false;
6965 	}
6966 
6967 	return true;
6968 }
6969 
6970 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6971 {
6972 	return &env->insn_aux_data[env->insn_idx];
6973 }
6974 
6975 enum {
6976 	REASON_BOUNDS	= -1,
6977 	REASON_TYPE	= -2,
6978 	REASON_PATHS	= -3,
6979 	REASON_LIMIT	= -4,
6980 	REASON_STACK	= -5,
6981 };
6982 
6983 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6984 			      u32 *alu_limit, bool mask_to_left)
6985 {
6986 	u32 max = 0, ptr_limit = 0;
6987 
6988 	switch (ptr_reg->type) {
6989 	case PTR_TO_STACK:
6990 		/* Offset 0 is out-of-bounds, but acceptable start for the
6991 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6992 		 * offset where we would need to deal with min/max bounds is
6993 		 * currently prohibited for unprivileged.
6994 		 */
6995 		max = MAX_BPF_STACK + mask_to_left;
6996 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6997 		break;
6998 	case PTR_TO_MAP_VALUE:
6999 		max = ptr_reg->map_ptr->value_size;
7000 		ptr_limit = (mask_to_left ?
7001 			     ptr_reg->smin_value :
7002 			     ptr_reg->umax_value) + ptr_reg->off;
7003 		break;
7004 	default:
7005 		return REASON_TYPE;
7006 	}
7007 
7008 	if (ptr_limit >= max)
7009 		return REASON_LIMIT;
7010 	*alu_limit = ptr_limit;
7011 	return 0;
7012 }
7013 
7014 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7015 				    const struct bpf_insn *insn)
7016 {
7017 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7018 }
7019 
7020 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7021 				       u32 alu_state, u32 alu_limit)
7022 {
7023 	/* If we arrived here from different branches with different
7024 	 * state or limits to sanitize, then this won't work.
7025 	 */
7026 	if (aux->alu_state &&
7027 	    (aux->alu_state != alu_state ||
7028 	     aux->alu_limit != alu_limit))
7029 		return REASON_PATHS;
7030 
7031 	/* Corresponding fixup done in do_misc_fixups(). */
7032 	aux->alu_state = alu_state;
7033 	aux->alu_limit = alu_limit;
7034 	return 0;
7035 }
7036 
7037 static int sanitize_val_alu(struct bpf_verifier_env *env,
7038 			    struct bpf_insn *insn)
7039 {
7040 	struct bpf_insn_aux_data *aux = cur_aux(env);
7041 
7042 	if (can_skip_alu_sanitation(env, insn))
7043 		return 0;
7044 
7045 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7046 }
7047 
7048 static bool sanitize_needed(u8 opcode)
7049 {
7050 	return opcode == BPF_ADD || opcode == BPF_SUB;
7051 }
7052 
7053 struct bpf_sanitize_info {
7054 	struct bpf_insn_aux_data aux;
7055 	bool mask_to_left;
7056 };
7057 
7058 static struct bpf_verifier_state *
7059 sanitize_speculative_path(struct bpf_verifier_env *env,
7060 			  const struct bpf_insn *insn,
7061 			  u32 next_idx, u32 curr_idx)
7062 {
7063 	struct bpf_verifier_state *branch;
7064 	struct bpf_reg_state *regs;
7065 
7066 	branch = push_stack(env, next_idx, curr_idx, true);
7067 	if (branch && insn) {
7068 		regs = branch->frame[branch->curframe]->regs;
7069 		if (BPF_SRC(insn->code) == BPF_K) {
7070 			mark_reg_unknown(env, regs, insn->dst_reg);
7071 		} else if (BPF_SRC(insn->code) == BPF_X) {
7072 			mark_reg_unknown(env, regs, insn->dst_reg);
7073 			mark_reg_unknown(env, regs, insn->src_reg);
7074 		}
7075 	}
7076 	return branch;
7077 }
7078 
7079 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7080 			    struct bpf_insn *insn,
7081 			    const struct bpf_reg_state *ptr_reg,
7082 			    const struct bpf_reg_state *off_reg,
7083 			    struct bpf_reg_state *dst_reg,
7084 			    struct bpf_sanitize_info *info,
7085 			    const bool commit_window)
7086 {
7087 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7088 	struct bpf_verifier_state *vstate = env->cur_state;
7089 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7090 	bool off_is_neg = off_reg->smin_value < 0;
7091 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7092 	u8 opcode = BPF_OP(insn->code);
7093 	u32 alu_state, alu_limit;
7094 	struct bpf_reg_state tmp;
7095 	bool ret;
7096 	int err;
7097 
7098 	if (can_skip_alu_sanitation(env, insn))
7099 		return 0;
7100 
7101 	/* We already marked aux for masking from non-speculative
7102 	 * paths, thus we got here in the first place. We only care
7103 	 * to explore bad access from here.
7104 	 */
7105 	if (vstate->speculative)
7106 		goto do_sim;
7107 
7108 	if (!commit_window) {
7109 		if (!tnum_is_const(off_reg->var_off) &&
7110 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7111 			return REASON_BOUNDS;
7112 
7113 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7114 				     (opcode == BPF_SUB && !off_is_neg);
7115 	}
7116 
7117 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7118 	if (err < 0)
7119 		return err;
7120 
7121 	if (commit_window) {
7122 		/* In commit phase we narrow the masking window based on
7123 		 * the observed pointer move after the simulated operation.
7124 		 */
7125 		alu_state = info->aux.alu_state;
7126 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7127 	} else {
7128 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7129 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7130 		alu_state |= ptr_is_dst_reg ?
7131 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7132 
7133 		/* Limit pruning on unknown scalars to enable deep search for
7134 		 * potential masking differences from other program paths.
7135 		 */
7136 		if (!off_is_imm)
7137 			env->explore_alu_limits = true;
7138 	}
7139 
7140 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7141 	if (err < 0)
7142 		return err;
7143 do_sim:
7144 	/* If we're in commit phase, we're done here given we already
7145 	 * pushed the truncated dst_reg into the speculative verification
7146 	 * stack.
7147 	 *
7148 	 * Also, when register is a known constant, we rewrite register-based
7149 	 * operation to immediate-based, and thus do not need masking (and as
7150 	 * a consequence, do not need to simulate the zero-truncation either).
7151 	 */
7152 	if (commit_window || off_is_imm)
7153 		return 0;
7154 
7155 	/* Simulate and find potential out-of-bounds access under
7156 	 * speculative execution from truncation as a result of
7157 	 * masking when off was not within expected range. If off
7158 	 * sits in dst, then we temporarily need to move ptr there
7159 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7160 	 * for cases where we use K-based arithmetic in one direction
7161 	 * and truncated reg-based in the other in order to explore
7162 	 * bad access.
7163 	 */
7164 	if (!ptr_is_dst_reg) {
7165 		tmp = *dst_reg;
7166 		*dst_reg = *ptr_reg;
7167 	}
7168 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7169 					env->insn_idx);
7170 	if (!ptr_is_dst_reg && ret)
7171 		*dst_reg = tmp;
7172 	return !ret ? REASON_STACK : 0;
7173 }
7174 
7175 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7176 {
7177 	struct bpf_verifier_state *vstate = env->cur_state;
7178 
7179 	/* If we simulate paths under speculation, we don't update the
7180 	 * insn as 'seen' such that when we verify unreachable paths in
7181 	 * the non-speculative domain, sanitize_dead_code() can still
7182 	 * rewrite/sanitize them.
7183 	 */
7184 	if (!vstate->speculative)
7185 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7186 }
7187 
7188 static int sanitize_err(struct bpf_verifier_env *env,
7189 			const struct bpf_insn *insn, int reason,
7190 			const struct bpf_reg_state *off_reg,
7191 			const struct bpf_reg_state *dst_reg)
7192 {
7193 	static const char *err = "pointer arithmetic with it prohibited for !root";
7194 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7195 	u32 dst = insn->dst_reg, src = insn->src_reg;
7196 
7197 	switch (reason) {
7198 	case REASON_BOUNDS:
7199 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7200 			off_reg == dst_reg ? dst : src, err);
7201 		break;
7202 	case REASON_TYPE:
7203 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7204 			off_reg == dst_reg ? src : dst, err);
7205 		break;
7206 	case REASON_PATHS:
7207 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7208 			dst, op, err);
7209 		break;
7210 	case REASON_LIMIT:
7211 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7212 			dst, op, err);
7213 		break;
7214 	case REASON_STACK:
7215 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7216 			dst, err);
7217 		break;
7218 	default:
7219 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7220 			reason);
7221 		break;
7222 	}
7223 
7224 	return -EACCES;
7225 }
7226 
7227 /* check that stack access falls within stack limits and that 'reg' doesn't
7228  * have a variable offset.
7229  *
7230  * Variable offset is prohibited for unprivileged mode for simplicity since it
7231  * requires corresponding support in Spectre masking for stack ALU.  See also
7232  * retrieve_ptr_limit().
7233  *
7234  *
7235  * 'off' includes 'reg->off'.
7236  */
7237 static int check_stack_access_for_ptr_arithmetic(
7238 				struct bpf_verifier_env *env,
7239 				int regno,
7240 				const struct bpf_reg_state *reg,
7241 				int off)
7242 {
7243 	if (!tnum_is_const(reg->var_off)) {
7244 		char tn_buf[48];
7245 
7246 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7247 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7248 			regno, tn_buf, off);
7249 		return -EACCES;
7250 	}
7251 
7252 	if (off >= 0 || off < -MAX_BPF_STACK) {
7253 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
7254 			"prohibited for !root; off=%d\n", regno, off);
7255 		return -EACCES;
7256 	}
7257 
7258 	return 0;
7259 }
7260 
7261 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7262 				 const struct bpf_insn *insn,
7263 				 const struct bpf_reg_state *dst_reg)
7264 {
7265 	u32 dst = insn->dst_reg;
7266 
7267 	/* For unprivileged we require that resulting offset must be in bounds
7268 	 * in order to be able to sanitize access later on.
7269 	 */
7270 	if (env->bypass_spec_v1)
7271 		return 0;
7272 
7273 	switch (dst_reg->type) {
7274 	case PTR_TO_STACK:
7275 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7276 					dst_reg->off + dst_reg->var_off.value))
7277 			return -EACCES;
7278 		break;
7279 	case PTR_TO_MAP_VALUE:
7280 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7281 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7282 				"prohibited for !root\n", dst);
7283 			return -EACCES;
7284 		}
7285 		break;
7286 	default:
7287 		break;
7288 	}
7289 
7290 	return 0;
7291 }
7292 
7293 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7294  * Caller should also handle BPF_MOV case separately.
7295  * If we return -EACCES, caller may want to try again treating pointer as a
7296  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
7297  */
7298 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7299 				   struct bpf_insn *insn,
7300 				   const struct bpf_reg_state *ptr_reg,
7301 				   const struct bpf_reg_state *off_reg)
7302 {
7303 	struct bpf_verifier_state *vstate = env->cur_state;
7304 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7305 	struct bpf_reg_state *regs = state->regs, *dst_reg;
7306 	bool known = tnum_is_const(off_reg->var_off);
7307 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7308 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7309 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7310 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7311 	struct bpf_sanitize_info info = {};
7312 	u8 opcode = BPF_OP(insn->code);
7313 	u32 dst = insn->dst_reg;
7314 	int ret;
7315 
7316 	dst_reg = &regs[dst];
7317 
7318 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7319 	    smin_val > smax_val || umin_val > umax_val) {
7320 		/* Taint dst register if offset had invalid bounds derived from
7321 		 * e.g. dead branches.
7322 		 */
7323 		__mark_reg_unknown(env, dst_reg);
7324 		return 0;
7325 	}
7326 
7327 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
7328 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
7329 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7330 			__mark_reg_unknown(env, dst_reg);
7331 			return 0;
7332 		}
7333 
7334 		verbose(env,
7335 			"R%d 32-bit pointer arithmetic prohibited\n",
7336 			dst);
7337 		return -EACCES;
7338 	}
7339 
7340 	if (ptr_reg->type & PTR_MAYBE_NULL) {
7341 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7342 			dst, reg_type_str(env, ptr_reg->type));
7343 		return -EACCES;
7344 	}
7345 
7346 	switch (base_type(ptr_reg->type)) {
7347 	case CONST_PTR_TO_MAP:
7348 		/* smin_val represents the known value */
7349 		if (known && smin_val == 0 && opcode == BPF_ADD)
7350 			break;
7351 		fallthrough;
7352 	case PTR_TO_PACKET_END:
7353 	case PTR_TO_SOCKET:
7354 	case PTR_TO_SOCK_COMMON:
7355 	case PTR_TO_TCP_SOCK:
7356 	case PTR_TO_XDP_SOCK:
7357 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7358 			dst, reg_type_str(env, ptr_reg->type));
7359 		return -EACCES;
7360 	default:
7361 		break;
7362 	}
7363 
7364 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7365 	 * The id may be overwritten later if we create a new variable offset.
7366 	 */
7367 	dst_reg->type = ptr_reg->type;
7368 	dst_reg->id = ptr_reg->id;
7369 
7370 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7371 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7372 		return -EINVAL;
7373 
7374 	/* pointer types do not carry 32-bit bounds at the moment. */
7375 	__mark_reg32_unbounded(dst_reg);
7376 
7377 	if (sanitize_needed(opcode)) {
7378 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7379 				       &info, false);
7380 		if (ret < 0)
7381 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7382 	}
7383 
7384 	switch (opcode) {
7385 	case BPF_ADD:
7386 		/* We can take a fixed offset as long as it doesn't overflow
7387 		 * the s32 'off' field
7388 		 */
7389 		if (known && (ptr_reg->off + smin_val ==
7390 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7391 			/* pointer += K.  Accumulate it into fixed offset */
7392 			dst_reg->smin_value = smin_ptr;
7393 			dst_reg->smax_value = smax_ptr;
7394 			dst_reg->umin_value = umin_ptr;
7395 			dst_reg->umax_value = umax_ptr;
7396 			dst_reg->var_off = ptr_reg->var_off;
7397 			dst_reg->off = ptr_reg->off + smin_val;
7398 			dst_reg->raw = ptr_reg->raw;
7399 			break;
7400 		}
7401 		/* A new variable offset is created.  Note that off_reg->off
7402 		 * == 0, since it's a scalar.
7403 		 * dst_reg gets the pointer type and since some positive
7404 		 * integer value was added to the pointer, give it a new 'id'
7405 		 * if it's a PTR_TO_PACKET.
7406 		 * this creates a new 'base' pointer, off_reg (variable) gets
7407 		 * added into the variable offset, and we copy the fixed offset
7408 		 * from ptr_reg.
7409 		 */
7410 		if (signed_add_overflows(smin_ptr, smin_val) ||
7411 		    signed_add_overflows(smax_ptr, smax_val)) {
7412 			dst_reg->smin_value = S64_MIN;
7413 			dst_reg->smax_value = S64_MAX;
7414 		} else {
7415 			dst_reg->smin_value = smin_ptr + smin_val;
7416 			dst_reg->smax_value = smax_ptr + smax_val;
7417 		}
7418 		if (umin_ptr + umin_val < umin_ptr ||
7419 		    umax_ptr + umax_val < umax_ptr) {
7420 			dst_reg->umin_value = 0;
7421 			dst_reg->umax_value = U64_MAX;
7422 		} else {
7423 			dst_reg->umin_value = umin_ptr + umin_val;
7424 			dst_reg->umax_value = umax_ptr + umax_val;
7425 		}
7426 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7427 		dst_reg->off = ptr_reg->off;
7428 		dst_reg->raw = ptr_reg->raw;
7429 		if (reg_is_pkt_pointer(ptr_reg)) {
7430 			dst_reg->id = ++env->id_gen;
7431 			/* something was added to pkt_ptr, set range to zero */
7432 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7433 		}
7434 		break;
7435 	case BPF_SUB:
7436 		if (dst_reg == off_reg) {
7437 			/* scalar -= pointer.  Creates an unknown scalar */
7438 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7439 				dst);
7440 			return -EACCES;
7441 		}
7442 		/* We don't allow subtraction from FP, because (according to
7443 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7444 		 * be able to deal with it.
7445 		 */
7446 		if (ptr_reg->type == PTR_TO_STACK) {
7447 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7448 				dst);
7449 			return -EACCES;
7450 		}
7451 		if (known && (ptr_reg->off - smin_val ==
7452 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7453 			/* pointer -= K.  Subtract it from fixed offset */
7454 			dst_reg->smin_value = smin_ptr;
7455 			dst_reg->smax_value = smax_ptr;
7456 			dst_reg->umin_value = umin_ptr;
7457 			dst_reg->umax_value = umax_ptr;
7458 			dst_reg->var_off = ptr_reg->var_off;
7459 			dst_reg->id = ptr_reg->id;
7460 			dst_reg->off = ptr_reg->off - smin_val;
7461 			dst_reg->raw = ptr_reg->raw;
7462 			break;
7463 		}
7464 		/* A new variable offset is created.  If the subtrahend is known
7465 		 * nonnegative, then any reg->range we had before is still good.
7466 		 */
7467 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7468 		    signed_sub_overflows(smax_ptr, smin_val)) {
7469 			/* Overflow possible, we know nothing */
7470 			dst_reg->smin_value = S64_MIN;
7471 			dst_reg->smax_value = S64_MAX;
7472 		} else {
7473 			dst_reg->smin_value = smin_ptr - smax_val;
7474 			dst_reg->smax_value = smax_ptr - smin_val;
7475 		}
7476 		if (umin_ptr < umax_val) {
7477 			/* Overflow possible, we know nothing */
7478 			dst_reg->umin_value = 0;
7479 			dst_reg->umax_value = U64_MAX;
7480 		} else {
7481 			/* Cannot overflow (as long as bounds are consistent) */
7482 			dst_reg->umin_value = umin_ptr - umax_val;
7483 			dst_reg->umax_value = umax_ptr - umin_val;
7484 		}
7485 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7486 		dst_reg->off = ptr_reg->off;
7487 		dst_reg->raw = ptr_reg->raw;
7488 		if (reg_is_pkt_pointer(ptr_reg)) {
7489 			dst_reg->id = ++env->id_gen;
7490 			/* something was added to pkt_ptr, set range to zero */
7491 			if (smin_val < 0)
7492 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7493 		}
7494 		break;
7495 	case BPF_AND:
7496 	case BPF_OR:
7497 	case BPF_XOR:
7498 		/* bitwise ops on pointers are troublesome, prohibit. */
7499 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7500 			dst, bpf_alu_string[opcode >> 4]);
7501 		return -EACCES;
7502 	default:
7503 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7504 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7505 			dst, bpf_alu_string[opcode >> 4]);
7506 		return -EACCES;
7507 	}
7508 
7509 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7510 		return -EINVAL;
7511 
7512 	__update_reg_bounds(dst_reg);
7513 	__reg_deduce_bounds(dst_reg);
7514 	__reg_bound_offset(dst_reg);
7515 
7516 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7517 		return -EACCES;
7518 	if (sanitize_needed(opcode)) {
7519 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7520 				       &info, true);
7521 		if (ret < 0)
7522 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7523 	}
7524 
7525 	return 0;
7526 }
7527 
7528 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7529 				 struct bpf_reg_state *src_reg)
7530 {
7531 	s32 smin_val = src_reg->s32_min_value;
7532 	s32 smax_val = src_reg->s32_max_value;
7533 	u32 umin_val = src_reg->u32_min_value;
7534 	u32 umax_val = src_reg->u32_max_value;
7535 
7536 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7537 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7538 		dst_reg->s32_min_value = S32_MIN;
7539 		dst_reg->s32_max_value = S32_MAX;
7540 	} else {
7541 		dst_reg->s32_min_value += smin_val;
7542 		dst_reg->s32_max_value += smax_val;
7543 	}
7544 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7545 	    dst_reg->u32_max_value + umax_val < umax_val) {
7546 		dst_reg->u32_min_value = 0;
7547 		dst_reg->u32_max_value = U32_MAX;
7548 	} else {
7549 		dst_reg->u32_min_value += umin_val;
7550 		dst_reg->u32_max_value += umax_val;
7551 	}
7552 }
7553 
7554 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7555 			       struct bpf_reg_state *src_reg)
7556 {
7557 	s64 smin_val = src_reg->smin_value;
7558 	s64 smax_val = src_reg->smax_value;
7559 	u64 umin_val = src_reg->umin_value;
7560 	u64 umax_val = src_reg->umax_value;
7561 
7562 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7563 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7564 		dst_reg->smin_value = S64_MIN;
7565 		dst_reg->smax_value = S64_MAX;
7566 	} else {
7567 		dst_reg->smin_value += smin_val;
7568 		dst_reg->smax_value += smax_val;
7569 	}
7570 	if (dst_reg->umin_value + umin_val < umin_val ||
7571 	    dst_reg->umax_value + umax_val < umax_val) {
7572 		dst_reg->umin_value = 0;
7573 		dst_reg->umax_value = U64_MAX;
7574 	} else {
7575 		dst_reg->umin_value += umin_val;
7576 		dst_reg->umax_value += umax_val;
7577 	}
7578 }
7579 
7580 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7581 				 struct bpf_reg_state *src_reg)
7582 {
7583 	s32 smin_val = src_reg->s32_min_value;
7584 	s32 smax_val = src_reg->s32_max_value;
7585 	u32 umin_val = src_reg->u32_min_value;
7586 	u32 umax_val = src_reg->u32_max_value;
7587 
7588 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7589 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7590 		/* Overflow possible, we know nothing */
7591 		dst_reg->s32_min_value = S32_MIN;
7592 		dst_reg->s32_max_value = S32_MAX;
7593 	} else {
7594 		dst_reg->s32_min_value -= smax_val;
7595 		dst_reg->s32_max_value -= smin_val;
7596 	}
7597 	if (dst_reg->u32_min_value < umax_val) {
7598 		/* Overflow possible, we know nothing */
7599 		dst_reg->u32_min_value = 0;
7600 		dst_reg->u32_max_value = U32_MAX;
7601 	} else {
7602 		/* Cannot overflow (as long as bounds are consistent) */
7603 		dst_reg->u32_min_value -= umax_val;
7604 		dst_reg->u32_max_value -= umin_val;
7605 	}
7606 }
7607 
7608 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7609 			       struct bpf_reg_state *src_reg)
7610 {
7611 	s64 smin_val = src_reg->smin_value;
7612 	s64 smax_val = src_reg->smax_value;
7613 	u64 umin_val = src_reg->umin_value;
7614 	u64 umax_val = src_reg->umax_value;
7615 
7616 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7617 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7618 		/* Overflow possible, we know nothing */
7619 		dst_reg->smin_value = S64_MIN;
7620 		dst_reg->smax_value = S64_MAX;
7621 	} else {
7622 		dst_reg->smin_value -= smax_val;
7623 		dst_reg->smax_value -= smin_val;
7624 	}
7625 	if (dst_reg->umin_value < umax_val) {
7626 		/* Overflow possible, we know nothing */
7627 		dst_reg->umin_value = 0;
7628 		dst_reg->umax_value = U64_MAX;
7629 	} else {
7630 		/* Cannot overflow (as long as bounds are consistent) */
7631 		dst_reg->umin_value -= umax_val;
7632 		dst_reg->umax_value -= umin_val;
7633 	}
7634 }
7635 
7636 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7637 				 struct bpf_reg_state *src_reg)
7638 {
7639 	s32 smin_val = src_reg->s32_min_value;
7640 	u32 umin_val = src_reg->u32_min_value;
7641 	u32 umax_val = src_reg->u32_max_value;
7642 
7643 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7644 		/* Ain't nobody got time to multiply that sign */
7645 		__mark_reg32_unbounded(dst_reg);
7646 		return;
7647 	}
7648 	/* Both values are positive, so we can work with unsigned and
7649 	 * copy the result to signed (unless it exceeds S32_MAX).
7650 	 */
7651 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7652 		/* Potential overflow, we know nothing */
7653 		__mark_reg32_unbounded(dst_reg);
7654 		return;
7655 	}
7656 	dst_reg->u32_min_value *= umin_val;
7657 	dst_reg->u32_max_value *= umax_val;
7658 	if (dst_reg->u32_max_value > S32_MAX) {
7659 		/* Overflow possible, we know nothing */
7660 		dst_reg->s32_min_value = S32_MIN;
7661 		dst_reg->s32_max_value = S32_MAX;
7662 	} else {
7663 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7664 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7665 	}
7666 }
7667 
7668 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7669 			       struct bpf_reg_state *src_reg)
7670 {
7671 	s64 smin_val = src_reg->smin_value;
7672 	u64 umin_val = src_reg->umin_value;
7673 	u64 umax_val = src_reg->umax_value;
7674 
7675 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7676 		/* Ain't nobody got time to multiply that sign */
7677 		__mark_reg64_unbounded(dst_reg);
7678 		return;
7679 	}
7680 	/* Both values are positive, so we can work with unsigned and
7681 	 * copy the result to signed (unless it exceeds S64_MAX).
7682 	 */
7683 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7684 		/* Potential overflow, we know nothing */
7685 		__mark_reg64_unbounded(dst_reg);
7686 		return;
7687 	}
7688 	dst_reg->umin_value *= umin_val;
7689 	dst_reg->umax_value *= umax_val;
7690 	if (dst_reg->umax_value > S64_MAX) {
7691 		/* Overflow possible, we know nothing */
7692 		dst_reg->smin_value = S64_MIN;
7693 		dst_reg->smax_value = S64_MAX;
7694 	} else {
7695 		dst_reg->smin_value = dst_reg->umin_value;
7696 		dst_reg->smax_value = dst_reg->umax_value;
7697 	}
7698 }
7699 
7700 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7701 				 struct bpf_reg_state *src_reg)
7702 {
7703 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7704 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7705 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7706 	s32 smin_val = src_reg->s32_min_value;
7707 	u32 umax_val = src_reg->u32_max_value;
7708 
7709 	if (src_known && dst_known) {
7710 		__mark_reg32_known(dst_reg, var32_off.value);
7711 		return;
7712 	}
7713 
7714 	/* We get our minimum from the var_off, since that's inherently
7715 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7716 	 */
7717 	dst_reg->u32_min_value = var32_off.value;
7718 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7719 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7720 		/* Lose signed bounds when ANDing negative numbers,
7721 		 * ain't nobody got time for that.
7722 		 */
7723 		dst_reg->s32_min_value = S32_MIN;
7724 		dst_reg->s32_max_value = S32_MAX;
7725 	} else {
7726 		/* ANDing two positives gives a positive, so safe to
7727 		 * cast result into s64.
7728 		 */
7729 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7730 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7731 	}
7732 }
7733 
7734 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7735 			       struct bpf_reg_state *src_reg)
7736 {
7737 	bool src_known = tnum_is_const(src_reg->var_off);
7738 	bool dst_known = tnum_is_const(dst_reg->var_off);
7739 	s64 smin_val = src_reg->smin_value;
7740 	u64 umax_val = src_reg->umax_value;
7741 
7742 	if (src_known && dst_known) {
7743 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7744 		return;
7745 	}
7746 
7747 	/* We get our minimum from the var_off, since that's inherently
7748 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7749 	 */
7750 	dst_reg->umin_value = dst_reg->var_off.value;
7751 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7752 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7753 		/* Lose signed bounds when ANDing negative numbers,
7754 		 * ain't nobody got time for that.
7755 		 */
7756 		dst_reg->smin_value = S64_MIN;
7757 		dst_reg->smax_value = S64_MAX;
7758 	} else {
7759 		/* ANDing two positives gives a positive, so safe to
7760 		 * cast result into s64.
7761 		 */
7762 		dst_reg->smin_value = dst_reg->umin_value;
7763 		dst_reg->smax_value = dst_reg->umax_value;
7764 	}
7765 	/* We may learn something more from the var_off */
7766 	__update_reg_bounds(dst_reg);
7767 }
7768 
7769 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7770 				struct bpf_reg_state *src_reg)
7771 {
7772 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7773 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7774 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7775 	s32 smin_val = src_reg->s32_min_value;
7776 	u32 umin_val = src_reg->u32_min_value;
7777 
7778 	if (src_known && dst_known) {
7779 		__mark_reg32_known(dst_reg, var32_off.value);
7780 		return;
7781 	}
7782 
7783 	/* We get our maximum from the var_off, and our minimum is the
7784 	 * maximum of the operands' minima
7785 	 */
7786 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7787 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7788 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7789 		/* Lose signed bounds when ORing negative numbers,
7790 		 * ain't nobody got time for that.
7791 		 */
7792 		dst_reg->s32_min_value = S32_MIN;
7793 		dst_reg->s32_max_value = S32_MAX;
7794 	} else {
7795 		/* ORing two positives gives a positive, so safe to
7796 		 * cast result into s64.
7797 		 */
7798 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7799 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7800 	}
7801 }
7802 
7803 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7804 			      struct bpf_reg_state *src_reg)
7805 {
7806 	bool src_known = tnum_is_const(src_reg->var_off);
7807 	bool dst_known = tnum_is_const(dst_reg->var_off);
7808 	s64 smin_val = src_reg->smin_value;
7809 	u64 umin_val = src_reg->umin_value;
7810 
7811 	if (src_known && dst_known) {
7812 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7813 		return;
7814 	}
7815 
7816 	/* We get our maximum from the var_off, and our minimum is the
7817 	 * maximum of the operands' minima
7818 	 */
7819 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7820 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7821 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7822 		/* Lose signed bounds when ORing negative numbers,
7823 		 * ain't nobody got time for that.
7824 		 */
7825 		dst_reg->smin_value = S64_MIN;
7826 		dst_reg->smax_value = S64_MAX;
7827 	} else {
7828 		/* ORing two positives gives a positive, so safe to
7829 		 * cast result into s64.
7830 		 */
7831 		dst_reg->smin_value = dst_reg->umin_value;
7832 		dst_reg->smax_value = dst_reg->umax_value;
7833 	}
7834 	/* We may learn something more from the var_off */
7835 	__update_reg_bounds(dst_reg);
7836 }
7837 
7838 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7839 				 struct bpf_reg_state *src_reg)
7840 {
7841 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7842 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7843 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7844 	s32 smin_val = src_reg->s32_min_value;
7845 
7846 	if (src_known && dst_known) {
7847 		__mark_reg32_known(dst_reg, var32_off.value);
7848 		return;
7849 	}
7850 
7851 	/* We get both minimum and maximum from the var32_off. */
7852 	dst_reg->u32_min_value = var32_off.value;
7853 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7854 
7855 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7856 		/* XORing two positive sign numbers gives a positive,
7857 		 * so safe to cast u32 result into s32.
7858 		 */
7859 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7860 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7861 	} else {
7862 		dst_reg->s32_min_value = S32_MIN;
7863 		dst_reg->s32_max_value = S32_MAX;
7864 	}
7865 }
7866 
7867 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7868 			       struct bpf_reg_state *src_reg)
7869 {
7870 	bool src_known = tnum_is_const(src_reg->var_off);
7871 	bool dst_known = tnum_is_const(dst_reg->var_off);
7872 	s64 smin_val = src_reg->smin_value;
7873 
7874 	if (src_known && dst_known) {
7875 		/* dst_reg->var_off.value has been updated earlier */
7876 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7877 		return;
7878 	}
7879 
7880 	/* We get both minimum and maximum from the var_off. */
7881 	dst_reg->umin_value = dst_reg->var_off.value;
7882 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7883 
7884 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7885 		/* XORing two positive sign numbers gives a positive,
7886 		 * so safe to cast u64 result into s64.
7887 		 */
7888 		dst_reg->smin_value = dst_reg->umin_value;
7889 		dst_reg->smax_value = dst_reg->umax_value;
7890 	} else {
7891 		dst_reg->smin_value = S64_MIN;
7892 		dst_reg->smax_value = S64_MAX;
7893 	}
7894 
7895 	__update_reg_bounds(dst_reg);
7896 }
7897 
7898 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7899 				   u64 umin_val, u64 umax_val)
7900 {
7901 	/* We lose all sign bit information (except what we can pick
7902 	 * up from var_off)
7903 	 */
7904 	dst_reg->s32_min_value = S32_MIN;
7905 	dst_reg->s32_max_value = S32_MAX;
7906 	/* If we might shift our top bit out, then we know nothing */
7907 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7908 		dst_reg->u32_min_value = 0;
7909 		dst_reg->u32_max_value = U32_MAX;
7910 	} else {
7911 		dst_reg->u32_min_value <<= umin_val;
7912 		dst_reg->u32_max_value <<= umax_val;
7913 	}
7914 }
7915 
7916 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7917 				 struct bpf_reg_state *src_reg)
7918 {
7919 	u32 umax_val = src_reg->u32_max_value;
7920 	u32 umin_val = src_reg->u32_min_value;
7921 	/* u32 alu operation will zext upper bits */
7922 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7923 
7924 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7925 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7926 	/* Not required but being careful mark reg64 bounds as unknown so
7927 	 * that we are forced to pick them up from tnum and zext later and
7928 	 * if some path skips this step we are still safe.
7929 	 */
7930 	__mark_reg64_unbounded(dst_reg);
7931 	__update_reg32_bounds(dst_reg);
7932 }
7933 
7934 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7935 				   u64 umin_val, u64 umax_val)
7936 {
7937 	/* Special case <<32 because it is a common compiler pattern to sign
7938 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7939 	 * positive we know this shift will also be positive so we can track
7940 	 * bounds correctly. Otherwise we lose all sign bit information except
7941 	 * what we can pick up from var_off. Perhaps we can generalize this
7942 	 * later to shifts of any length.
7943 	 */
7944 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7945 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7946 	else
7947 		dst_reg->smax_value = S64_MAX;
7948 
7949 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7950 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7951 	else
7952 		dst_reg->smin_value = S64_MIN;
7953 
7954 	/* If we might shift our top bit out, then we know nothing */
7955 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7956 		dst_reg->umin_value = 0;
7957 		dst_reg->umax_value = U64_MAX;
7958 	} else {
7959 		dst_reg->umin_value <<= umin_val;
7960 		dst_reg->umax_value <<= umax_val;
7961 	}
7962 }
7963 
7964 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7965 			       struct bpf_reg_state *src_reg)
7966 {
7967 	u64 umax_val = src_reg->umax_value;
7968 	u64 umin_val = src_reg->umin_value;
7969 
7970 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7971 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7972 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7973 
7974 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7975 	/* We may learn something more from the var_off */
7976 	__update_reg_bounds(dst_reg);
7977 }
7978 
7979 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7980 				 struct bpf_reg_state *src_reg)
7981 {
7982 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7983 	u32 umax_val = src_reg->u32_max_value;
7984 	u32 umin_val = src_reg->u32_min_value;
7985 
7986 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7987 	 * be negative, then either:
7988 	 * 1) src_reg might be zero, so the sign bit of the result is
7989 	 *    unknown, so we lose our signed bounds
7990 	 * 2) it's known negative, thus the unsigned bounds capture the
7991 	 *    signed bounds
7992 	 * 3) the signed bounds cross zero, so they tell us nothing
7993 	 *    about the result
7994 	 * If the value in dst_reg is known nonnegative, then again the
7995 	 * unsigned bounds capture the signed bounds.
7996 	 * Thus, in all cases it suffices to blow away our signed bounds
7997 	 * and rely on inferring new ones from the unsigned bounds and
7998 	 * var_off of the result.
7999 	 */
8000 	dst_reg->s32_min_value = S32_MIN;
8001 	dst_reg->s32_max_value = S32_MAX;
8002 
8003 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
8004 	dst_reg->u32_min_value >>= umax_val;
8005 	dst_reg->u32_max_value >>= umin_val;
8006 
8007 	__mark_reg64_unbounded(dst_reg);
8008 	__update_reg32_bounds(dst_reg);
8009 }
8010 
8011 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8012 			       struct bpf_reg_state *src_reg)
8013 {
8014 	u64 umax_val = src_reg->umax_value;
8015 	u64 umin_val = src_reg->umin_value;
8016 
8017 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8018 	 * be negative, then either:
8019 	 * 1) src_reg might be zero, so the sign bit of the result is
8020 	 *    unknown, so we lose our signed bounds
8021 	 * 2) it's known negative, thus the unsigned bounds capture the
8022 	 *    signed bounds
8023 	 * 3) the signed bounds cross zero, so they tell us nothing
8024 	 *    about the result
8025 	 * If the value in dst_reg is known nonnegative, then again the
8026 	 * unsigned bounds capture the signed bounds.
8027 	 * Thus, in all cases it suffices to blow away our signed bounds
8028 	 * and rely on inferring new ones from the unsigned bounds and
8029 	 * var_off of the result.
8030 	 */
8031 	dst_reg->smin_value = S64_MIN;
8032 	dst_reg->smax_value = S64_MAX;
8033 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8034 	dst_reg->umin_value >>= umax_val;
8035 	dst_reg->umax_value >>= umin_val;
8036 
8037 	/* Its not easy to operate on alu32 bounds here because it depends
8038 	 * on bits being shifted in. Take easy way out and mark unbounded
8039 	 * so we can recalculate later from tnum.
8040 	 */
8041 	__mark_reg32_unbounded(dst_reg);
8042 	__update_reg_bounds(dst_reg);
8043 }
8044 
8045 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8046 				  struct bpf_reg_state *src_reg)
8047 {
8048 	u64 umin_val = src_reg->u32_min_value;
8049 
8050 	/* Upon reaching here, src_known is true and
8051 	 * umax_val is equal to umin_val.
8052 	 */
8053 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8054 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8055 
8056 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8057 
8058 	/* blow away the dst_reg umin_value/umax_value and rely on
8059 	 * dst_reg var_off to refine the result.
8060 	 */
8061 	dst_reg->u32_min_value = 0;
8062 	dst_reg->u32_max_value = U32_MAX;
8063 
8064 	__mark_reg64_unbounded(dst_reg);
8065 	__update_reg32_bounds(dst_reg);
8066 }
8067 
8068 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8069 				struct bpf_reg_state *src_reg)
8070 {
8071 	u64 umin_val = src_reg->umin_value;
8072 
8073 	/* Upon reaching here, src_known is true and umax_val is equal
8074 	 * to umin_val.
8075 	 */
8076 	dst_reg->smin_value >>= umin_val;
8077 	dst_reg->smax_value >>= umin_val;
8078 
8079 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8080 
8081 	/* blow away the dst_reg umin_value/umax_value and rely on
8082 	 * dst_reg var_off to refine the result.
8083 	 */
8084 	dst_reg->umin_value = 0;
8085 	dst_reg->umax_value = U64_MAX;
8086 
8087 	/* Its not easy to operate on alu32 bounds here because it depends
8088 	 * on bits being shifted in from upper 32-bits. Take easy way out
8089 	 * and mark unbounded so we can recalculate later from tnum.
8090 	 */
8091 	__mark_reg32_unbounded(dst_reg);
8092 	__update_reg_bounds(dst_reg);
8093 }
8094 
8095 /* WARNING: This function does calculations on 64-bit values, but the actual
8096  * execution may occur on 32-bit values. Therefore, things like bitshifts
8097  * need extra checks in the 32-bit case.
8098  */
8099 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8100 				      struct bpf_insn *insn,
8101 				      struct bpf_reg_state *dst_reg,
8102 				      struct bpf_reg_state src_reg)
8103 {
8104 	struct bpf_reg_state *regs = cur_regs(env);
8105 	u8 opcode = BPF_OP(insn->code);
8106 	bool src_known;
8107 	s64 smin_val, smax_val;
8108 	u64 umin_val, umax_val;
8109 	s32 s32_min_val, s32_max_val;
8110 	u32 u32_min_val, u32_max_val;
8111 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8112 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8113 	int ret;
8114 
8115 	smin_val = src_reg.smin_value;
8116 	smax_val = src_reg.smax_value;
8117 	umin_val = src_reg.umin_value;
8118 	umax_val = src_reg.umax_value;
8119 
8120 	s32_min_val = src_reg.s32_min_value;
8121 	s32_max_val = src_reg.s32_max_value;
8122 	u32_min_val = src_reg.u32_min_value;
8123 	u32_max_val = src_reg.u32_max_value;
8124 
8125 	if (alu32) {
8126 		src_known = tnum_subreg_is_const(src_reg.var_off);
8127 		if ((src_known &&
8128 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8129 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8130 			/* Taint dst register if offset had invalid bounds
8131 			 * derived from e.g. dead branches.
8132 			 */
8133 			__mark_reg_unknown(env, dst_reg);
8134 			return 0;
8135 		}
8136 	} else {
8137 		src_known = tnum_is_const(src_reg.var_off);
8138 		if ((src_known &&
8139 		     (smin_val != smax_val || umin_val != umax_val)) ||
8140 		    smin_val > smax_val || umin_val > umax_val) {
8141 			/* Taint dst register if offset had invalid bounds
8142 			 * derived from e.g. dead branches.
8143 			 */
8144 			__mark_reg_unknown(env, dst_reg);
8145 			return 0;
8146 		}
8147 	}
8148 
8149 	if (!src_known &&
8150 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8151 		__mark_reg_unknown(env, dst_reg);
8152 		return 0;
8153 	}
8154 
8155 	if (sanitize_needed(opcode)) {
8156 		ret = sanitize_val_alu(env, insn);
8157 		if (ret < 0)
8158 			return sanitize_err(env, insn, ret, NULL, NULL);
8159 	}
8160 
8161 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8162 	 * There are two classes of instructions: The first class we track both
8163 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8164 	 * greatest amount of precision when alu operations are mixed with jmp32
8165 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8166 	 * and BPF_OR. This is possible because these ops have fairly easy to
8167 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8168 	 * See alu32 verifier tests for examples. The second class of
8169 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8170 	 * with regards to tracking sign/unsigned bounds because the bits may
8171 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8172 	 * the reg unbounded in the subreg bound space and use the resulting
8173 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8174 	 */
8175 	switch (opcode) {
8176 	case BPF_ADD:
8177 		scalar32_min_max_add(dst_reg, &src_reg);
8178 		scalar_min_max_add(dst_reg, &src_reg);
8179 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8180 		break;
8181 	case BPF_SUB:
8182 		scalar32_min_max_sub(dst_reg, &src_reg);
8183 		scalar_min_max_sub(dst_reg, &src_reg);
8184 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8185 		break;
8186 	case BPF_MUL:
8187 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8188 		scalar32_min_max_mul(dst_reg, &src_reg);
8189 		scalar_min_max_mul(dst_reg, &src_reg);
8190 		break;
8191 	case BPF_AND:
8192 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8193 		scalar32_min_max_and(dst_reg, &src_reg);
8194 		scalar_min_max_and(dst_reg, &src_reg);
8195 		break;
8196 	case BPF_OR:
8197 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8198 		scalar32_min_max_or(dst_reg, &src_reg);
8199 		scalar_min_max_or(dst_reg, &src_reg);
8200 		break;
8201 	case BPF_XOR:
8202 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8203 		scalar32_min_max_xor(dst_reg, &src_reg);
8204 		scalar_min_max_xor(dst_reg, &src_reg);
8205 		break;
8206 	case BPF_LSH:
8207 		if (umax_val >= insn_bitness) {
8208 			/* Shifts greater than 31 or 63 are undefined.
8209 			 * This includes shifts by a negative number.
8210 			 */
8211 			mark_reg_unknown(env, regs, insn->dst_reg);
8212 			break;
8213 		}
8214 		if (alu32)
8215 			scalar32_min_max_lsh(dst_reg, &src_reg);
8216 		else
8217 			scalar_min_max_lsh(dst_reg, &src_reg);
8218 		break;
8219 	case BPF_RSH:
8220 		if (umax_val >= insn_bitness) {
8221 			/* Shifts greater than 31 or 63 are undefined.
8222 			 * This includes shifts by a negative number.
8223 			 */
8224 			mark_reg_unknown(env, regs, insn->dst_reg);
8225 			break;
8226 		}
8227 		if (alu32)
8228 			scalar32_min_max_rsh(dst_reg, &src_reg);
8229 		else
8230 			scalar_min_max_rsh(dst_reg, &src_reg);
8231 		break;
8232 	case BPF_ARSH:
8233 		if (umax_val >= insn_bitness) {
8234 			/* Shifts greater than 31 or 63 are undefined.
8235 			 * This includes shifts by a negative number.
8236 			 */
8237 			mark_reg_unknown(env, regs, insn->dst_reg);
8238 			break;
8239 		}
8240 		if (alu32)
8241 			scalar32_min_max_arsh(dst_reg, &src_reg);
8242 		else
8243 			scalar_min_max_arsh(dst_reg, &src_reg);
8244 		break;
8245 	default:
8246 		mark_reg_unknown(env, regs, insn->dst_reg);
8247 		break;
8248 	}
8249 
8250 	/* ALU32 ops are zero extended into 64bit register */
8251 	if (alu32)
8252 		zext_32_to_64(dst_reg);
8253 
8254 	__update_reg_bounds(dst_reg);
8255 	__reg_deduce_bounds(dst_reg);
8256 	__reg_bound_offset(dst_reg);
8257 	return 0;
8258 }
8259 
8260 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8261  * and var_off.
8262  */
8263 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8264 				   struct bpf_insn *insn)
8265 {
8266 	struct bpf_verifier_state *vstate = env->cur_state;
8267 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8268 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8269 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8270 	u8 opcode = BPF_OP(insn->code);
8271 	int err;
8272 
8273 	dst_reg = &regs[insn->dst_reg];
8274 	src_reg = NULL;
8275 	if (dst_reg->type != SCALAR_VALUE)
8276 		ptr_reg = dst_reg;
8277 	else
8278 		/* Make sure ID is cleared otherwise dst_reg min/max could be
8279 		 * incorrectly propagated into other registers by find_equal_scalars()
8280 		 */
8281 		dst_reg->id = 0;
8282 	if (BPF_SRC(insn->code) == BPF_X) {
8283 		src_reg = &regs[insn->src_reg];
8284 		if (src_reg->type != SCALAR_VALUE) {
8285 			if (dst_reg->type != SCALAR_VALUE) {
8286 				/* Combining two pointers by any ALU op yields
8287 				 * an arbitrary scalar. Disallow all math except
8288 				 * pointer subtraction
8289 				 */
8290 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8291 					mark_reg_unknown(env, regs, insn->dst_reg);
8292 					return 0;
8293 				}
8294 				verbose(env, "R%d pointer %s pointer prohibited\n",
8295 					insn->dst_reg,
8296 					bpf_alu_string[opcode >> 4]);
8297 				return -EACCES;
8298 			} else {
8299 				/* scalar += pointer
8300 				 * This is legal, but we have to reverse our
8301 				 * src/dest handling in computing the range
8302 				 */
8303 				err = mark_chain_precision(env, insn->dst_reg);
8304 				if (err)
8305 					return err;
8306 				return adjust_ptr_min_max_vals(env, insn,
8307 							       src_reg, dst_reg);
8308 			}
8309 		} else if (ptr_reg) {
8310 			/* pointer += scalar */
8311 			err = mark_chain_precision(env, insn->src_reg);
8312 			if (err)
8313 				return err;
8314 			return adjust_ptr_min_max_vals(env, insn,
8315 						       dst_reg, src_reg);
8316 		}
8317 	} else {
8318 		/* Pretend the src is a reg with a known value, since we only
8319 		 * need to be able to read from this state.
8320 		 */
8321 		off_reg.type = SCALAR_VALUE;
8322 		__mark_reg_known(&off_reg, insn->imm);
8323 		src_reg = &off_reg;
8324 		if (ptr_reg) /* pointer += K */
8325 			return adjust_ptr_min_max_vals(env, insn,
8326 						       ptr_reg, src_reg);
8327 	}
8328 
8329 	/* Got here implies adding two SCALAR_VALUEs */
8330 	if (WARN_ON_ONCE(ptr_reg)) {
8331 		print_verifier_state(env, state, true);
8332 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8333 		return -EINVAL;
8334 	}
8335 	if (WARN_ON(!src_reg)) {
8336 		print_verifier_state(env, state, true);
8337 		verbose(env, "verifier internal error: no src_reg\n");
8338 		return -EINVAL;
8339 	}
8340 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8341 }
8342 
8343 /* check validity of 32-bit and 64-bit arithmetic operations */
8344 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8345 {
8346 	struct bpf_reg_state *regs = cur_regs(env);
8347 	u8 opcode = BPF_OP(insn->code);
8348 	int err;
8349 
8350 	if (opcode == BPF_END || opcode == BPF_NEG) {
8351 		if (opcode == BPF_NEG) {
8352 			if (BPF_SRC(insn->code) != 0 ||
8353 			    insn->src_reg != BPF_REG_0 ||
8354 			    insn->off != 0 || insn->imm != 0) {
8355 				verbose(env, "BPF_NEG uses reserved fields\n");
8356 				return -EINVAL;
8357 			}
8358 		} else {
8359 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8360 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8361 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8362 				verbose(env, "BPF_END uses reserved fields\n");
8363 				return -EINVAL;
8364 			}
8365 		}
8366 
8367 		/* check src operand */
8368 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8369 		if (err)
8370 			return err;
8371 
8372 		if (is_pointer_value(env, insn->dst_reg)) {
8373 			verbose(env, "R%d pointer arithmetic prohibited\n",
8374 				insn->dst_reg);
8375 			return -EACCES;
8376 		}
8377 
8378 		/* check dest operand */
8379 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8380 		if (err)
8381 			return err;
8382 
8383 	} else if (opcode == BPF_MOV) {
8384 
8385 		if (BPF_SRC(insn->code) == BPF_X) {
8386 			if (insn->imm != 0 || insn->off != 0) {
8387 				verbose(env, "BPF_MOV uses reserved fields\n");
8388 				return -EINVAL;
8389 			}
8390 
8391 			/* check src operand */
8392 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8393 			if (err)
8394 				return err;
8395 		} else {
8396 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8397 				verbose(env, "BPF_MOV uses reserved fields\n");
8398 				return -EINVAL;
8399 			}
8400 		}
8401 
8402 		/* check dest operand, mark as required later */
8403 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8404 		if (err)
8405 			return err;
8406 
8407 		if (BPF_SRC(insn->code) == BPF_X) {
8408 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8409 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8410 
8411 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8412 				/* case: R1 = R2
8413 				 * copy register state to dest reg
8414 				 */
8415 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8416 					/* Assign src and dst registers the same ID
8417 					 * that will be used by find_equal_scalars()
8418 					 * to propagate min/max range.
8419 					 */
8420 					src_reg->id = ++env->id_gen;
8421 				*dst_reg = *src_reg;
8422 				dst_reg->live |= REG_LIVE_WRITTEN;
8423 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8424 			} else {
8425 				/* R1 = (u32) R2 */
8426 				if (is_pointer_value(env, insn->src_reg)) {
8427 					verbose(env,
8428 						"R%d partial copy of pointer\n",
8429 						insn->src_reg);
8430 					return -EACCES;
8431 				} else if (src_reg->type == SCALAR_VALUE) {
8432 					*dst_reg = *src_reg;
8433 					/* Make sure ID is cleared otherwise
8434 					 * dst_reg min/max could be incorrectly
8435 					 * propagated into src_reg by find_equal_scalars()
8436 					 */
8437 					dst_reg->id = 0;
8438 					dst_reg->live |= REG_LIVE_WRITTEN;
8439 					dst_reg->subreg_def = env->insn_idx + 1;
8440 				} else {
8441 					mark_reg_unknown(env, regs,
8442 							 insn->dst_reg);
8443 				}
8444 				zext_32_to_64(dst_reg);
8445 
8446 				__update_reg_bounds(dst_reg);
8447 				__reg_deduce_bounds(dst_reg);
8448 				__reg_bound_offset(dst_reg);
8449 			}
8450 		} else {
8451 			/* case: R = imm
8452 			 * remember the value we stored into this reg
8453 			 */
8454 			/* clear any state __mark_reg_known doesn't set */
8455 			mark_reg_unknown(env, regs, insn->dst_reg);
8456 			regs[insn->dst_reg].type = SCALAR_VALUE;
8457 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8458 				__mark_reg_known(regs + insn->dst_reg,
8459 						 insn->imm);
8460 			} else {
8461 				__mark_reg_known(regs + insn->dst_reg,
8462 						 (u32)insn->imm);
8463 			}
8464 		}
8465 
8466 	} else if (opcode > BPF_END) {
8467 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8468 		return -EINVAL;
8469 
8470 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8471 
8472 		if (BPF_SRC(insn->code) == BPF_X) {
8473 			if (insn->imm != 0 || insn->off != 0) {
8474 				verbose(env, "BPF_ALU uses reserved fields\n");
8475 				return -EINVAL;
8476 			}
8477 			/* check src1 operand */
8478 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8479 			if (err)
8480 				return err;
8481 		} else {
8482 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8483 				verbose(env, "BPF_ALU uses reserved fields\n");
8484 				return -EINVAL;
8485 			}
8486 		}
8487 
8488 		/* check src2 operand */
8489 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8490 		if (err)
8491 			return err;
8492 
8493 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8494 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8495 			verbose(env, "div by zero\n");
8496 			return -EINVAL;
8497 		}
8498 
8499 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8500 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8501 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8502 
8503 			if (insn->imm < 0 || insn->imm >= size) {
8504 				verbose(env, "invalid shift %d\n", insn->imm);
8505 				return -EINVAL;
8506 			}
8507 		}
8508 
8509 		/* check dest operand */
8510 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8511 		if (err)
8512 			return err;
8513 
8514 		return adjust_reg_min_max_vals(env, insn);
8515 	}
8516 
8517 	return 0;
8518 }
8519 
8520 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8521 				     struct bpf_reg_state *dst_reg,
8522 				     enum bpf_reg_type type, int new_range)
8523 {
8524 	struct bpf_reg_state *reg;
8525 	int i;
8526 
8527 	for (i = 0; i < MAX_BPF_REG; i++) {
8528 		reg = &state->regs[i];
8529 		if (reg->type == type && reg->id == dst_reg->id)
8530 			/* keep the maximum range already checked */
8531 			reg->range = max(reg->range, new_range);
8532 	}
8533 
8534 	bpf_for_each_spilled_reg(i, state, reg) {
8535 		if (!reg)
8536 			continue;
8537 		if (reg->type == type && reg->id == dst_reg->id)
8538 			reg->range = max(reg->range, new_range);
8539 	}
8540 }
8541 
8542 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8543 				   struct bpf_reg_state *dst_reg,
8544 				   enum bpf_reg_type type,
8545 				   bool range_right_open)
8546 {
8547 	int new_range, i;
8548 
8549 	if (dst_reg->off < 0 ||
8550 	    (dst_reg->off == 0 && range_right_open))
8551 		/* This doesn't give us any range */
8552 		return;
8553 
8554 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8555 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8556 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8557 		 * than pkt_end, but that's because it's also less than pkt.
8558 		 */
8559 		return;
8560 
8561 	new_range = dst_reg->off;
8562 	if (range_right_open)
8563 		new_range++;
8564 
8565 	/* Examples for register markings:
8566 	 *
8567 	 * pkt_data in dst register:
8568 	 *
8569 	 *   r2 = r3;
8570 	 *   r2 += 8;
8571 	 *   if (r2 > pkt_end) goto <handle exception>
8572 	 *   <access okay>
8573 	 *
8574 	 *   r2 = r3;
8575 	 *   r2 += 8;
8576 	 *   if (r2 < pkt_end) goto <access okay>
8577 	 *   <handle exception>
8578 	 *
8579 	 *   Where:
8580 	 *     r2 == dst_reg, pkt_end == src_reg
8581 	 *     r2=pkt(id=n,off=8,r=0)
8582 	 *     r3=pkt(id=n,off=0,r=0)
8583 	 *
8584 	 * pkt_data in src register:
8585 	 *
8586 	 *   r2 = r3;
8587 	 *   r2 += 8;
8588 	 *   if (pkt_end >= r2) goto <access okay>
8589 	 *   <handle exception>
8590 	 *
8591 	 *   r2 = r3;
8592 	 *   r2 += 8;
8593 	 *   if (pkt_end <= r2) goto <handle exception>
8594 	 *   <access okay>
8595 	 *
8596 	 *   Where:
8597 	 *     pkt_end == dst_reg, r2 == src_reg
8598 	 *     r2=pkt(id=n,off=8,r=0)
8599 	 *     r3=pkt(id=n,off=0,r=0)
8600 	 *
8601 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8602 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8603 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8604 	 * the check.
8605 	 */
8606 
8607 	/* If our ids match, then we must have the same max_value.  And we
8608 	 * don't care about the other reg's fixed offset, since if it's too big
8609 	 * the range won't allow anything.
8610 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8611 	 */
8612 	for (i = 0; i <= vstate->curframe; i++)
8613 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8614 					 new_range);
8615 }
8616 
8617 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8618 {
8619 	struct tnum subreg = tnum_subreg(reg->var_off);
8620 	s32 sval = (s32)val;
8621 
8622 	switch (opcode) {
8623 	case BPF_JEQ:
8624 		if (tnum_is_const(subreg))
8625 			return !!tnum_equals_const(subreg, val);
8626 		break;
8627 	case BPF_JNE:
8628 		if (tnum_is_const(subreg))
8629 			return !tnum_equals_const(subreg, val);
8630 		break;
8631 	case BPF_JSET:
8632 		if ((~subreg.mask & subreg.value) & val)
8633 			return 1;
8634 		if (!((subreg.mask | subreg.value) & val))
8635 			return 0;
8636 		break;
8637 	case BPF_JGT:
8638 		if (reg->u32_min_value > val)
8639 			return 1;
8640 		else if (reg->u32_max_value <= val)
8641 			return 0;
8642 		break;
8643 	case BPF_JSGT:
8644 		if (reg->s32_min_value > sval)
8645 			return 1;
8646 		else if (reg->s32_max_value <= sval)
8647 			return 0;
8648 		break;
8649 	case BPF_JLT:
8650 		if (reg->u32_max_value < val)
8651 			return 1;
8652 		else if (reg->u32_min_value >= val)
8653 			return 0;
8654 		break;
8655 	case BPF_JSLT:
8656 		if (reg->s32_max_value < sval)
8657 			return 1;
8658 		else if (reg->s32_min_value >= sval)
8659 			return 0;
8660 		break;
8661 	case BPF_JGE:
8662 		if (reg->u32_min_value >= val)
8663 			return 1;
8664 		else if (reg->u32_max_value < val)
8665 			return 0;
8666 		break;
8667 	case BPF_JSGE:
8668 		if (reg->s32_min_value >= sval)
8669 			return 1;
8670 		else if (reg->s32_max_value < sval)
8671 			return 0;
8672 		break;
8673 	case BPF_JLE:
8674 		if (reg->u32_max_value <= val)
8675 			return 1;
8676 		else if (reg->u32_min_value > val)
8677 			return 0;
8678 		break;
8679 	case BPF_JSLE:
8680 		if (reg->s32_max_value <= sval)
8681 			return 1;
8682 		else if (reg->s32_min_value > sval)
8683 			return 0;
8684 		break;
8685 	}
8686 
8687 	return -1;
8688 }
8689 
8690 
8691 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8692 {
8693 	s64 sval = (s64)val;
8694 
8695 	switch (opcode) {
8696 	case BPF_JEQ:
8697 		if (tnum_is_const(reg->var_off))
8698 			return !!tnum_equals_const(reg->var_off, val);
8699 		break;
8700 	case BPF_JNE:
8701 		if (tnum_is_const(reg->var_off))
8702 			return !tnum_equals_const(reg->var_off, val);
8703 		break;
8704 	case BPF_JSET:
8705 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8706 			return 1;
8707 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8708 			return 0;
8709 		break;
8710 	case BPF_JGT:
8711 		if (reg->umin_value > val)
8712 			return 1;
8713 		else if (reg->umax_value <= val)
8714 			return 0;
8715 		break;
8716 	case BPF_JSGT:
8717 		if (reg->smin_value > sval)
8718 			return 1;
8719 		else if (reg->smax_value <= sval)
8720 			return 0;
8721 		break;
8722 	case BPF_JLT:
8723 		if (reg->umax_value < val)
8724 			return 1;
8725 		else if (reg->umin_value >= val)
8726 			return 0;
8727 		break;
8728 	case BPF_JSLT:
8729 		if (reg->smax_value < sval)
8730 			return 1;
8731 		else if (reg->smin_value >= sval)
8732 			return 0;
8733 		break;
8734 	case BPF_JGE:
8735 		if (reg->umin_value >= val)
8736 			return 1;
8737 		else if (reg->umax_value < val)
8738 			return 0;
8739 		break;
8740 	case BPF_JSGE:
8741 		if (reg->smin_value >= sval)
8742 			return 1;
8743 		else if (reg->smax_value < sval)
8744 			return 0;
8745 		break;
8746 	case BPF_JLE:
8747 		if (reg->umax_value <= val)
8748 			return 1;
8749 		else if (reg->umin_value > val)
8750 			return 0;
8751 		break;
8752 	case BPF_JSLE:
8753 		if (reg->smax_value <= sval)
8754 			return 1;
8755 		else if (reg->smin_value > sval)
8756 			return 0;
8757 		break;
8758 	}
8759 
8760 	return -1;
8761 }
8762 
8763 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8764  * and return:
8765  *  1 - branch will be taken and "goto target" will be executed
8766  *  0 - branch will not be taken and fall-through to next insn
8767  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8768  *      range [0,10]
8769  */
8770 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8771 			   bool is_jmp32)
8772 {
8773 	if (__is_pointer_value(false, reg)) {
8774 		if (!reg_type_not_null(reg->type))
8775 			return -1;
8776 
8777 		/* If pointer is valid tests against zero will fail so we can
8778 		 * use this to direct branch taken.
8779 		 */
8780 		if (val != 0)
8781 			return -1;
8782 
8783 		switch (opcode) {
8784 		case BPF_JEQ:
8785 			return 0;
8786 		case BPF_JNE:
8787 			return 1;
8788 		default:
8789 			return -1;
8790 		}
8791 	}
8792 
8793 	if (is_jmp32)
8794 		return is_branch32_taken(reg, val, opcode);
8795 	return is_branch64_taken(reg, val, opcode);
8796 }
8797 
8798 static int flip_opcode(u32 opcode)
8799 {
8800 	/* How can we transform "a <op> b" into "b <op> a"? */
8801 	static const u8 opcode_flip[16] = {
8802 		/* these stay the same */
8803 		[BPF_JEQ  >> 4] = BPF_JEQ,
8804 		[BPF_JNE  >> 4] = BPF_JNE,
8805 		[BPF_JSET >> 4] = BPF_JSET,
8806 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8807 		[BPF_JGE  >> 4] = BPF_JLE,
8808 		[BPF_JGT  >> 4] = BPF_JLT,
8809 		[BPF_JLE  >> 4] = BPF_JGE,
8810 		[BPF_JLT  >> 4] = BPF_JGT,
8811 		[BPF_JSGE >> 4] = BPF_JSLE,
8812 		[BPF_JSGT >> 4] = BPF_JSLT,
8813 		[BPF_JSLE >> 4] = BPF_JSGE,
8814 		[BPF_JSLT >> 4] = BPF_JSGT
8815 	};
8816 	return opcode_flip[opcode >> 4];
8817 }
8818 
8819 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8820 				   struct bpf_reg_state *src_reg,
8821 				   u8 opcode)
8822 {
8823 	struct bpf_reg_state *pkt;
8824 
8825 	if (src_reg->type == PTR_TO_PACKET_END) {
8826 		pkt = dst_reg;
8827 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8828 		pkt = src_reg;
8829 		opcode = flip_opcode(opcode);
8830 	} else {
8831 		return -1;
8832 	}
8833 
8834 	if (pkt->range >= 0)
8835 		return -1;
8836 
8837 	switch (opcode) {
8838 	case BPF_JLE:
8839 		/* pkt <= pkt_end */
8840 		fallthrough;
8841 	case BPF_JGT:
8842 		/* pkt > pkt_end */
8843 		if (pkt->range == BEYOND_PKT_END)
8844 			/* pkt has at last one extra byte beyond pkt_end */
8845 			return opcode == BPF_JGT;
8846 		break;
8847 	case BPF_JLT:
8848 		/* pkt < pkt_end */
8849 		fallthrough;
8850 	case BPF_JGE:
8851 		/* pkt >= pkt_end */
8852 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8853 			return opcode == BPF_JGE;
8854 		break;
8855 	}
8856 	return -1;
8857 }
8858 
8859 /* Adjusts the register min/max values in the case that the dst_reg is the
8860  * variable register that we are working on, and src_reg is a constant or we're
8861  * simply doing a BPF_K check.
8862  * In JEQ/JNE cases we also adjust the var_off values.
8863  */
8864 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8865 			    struct bpf_reg_state *false_reg,
8866 			    u64 val, u32 val32,
8867 			    u8 opcode, bool is_jmp32)
8868 {
8869 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8870 	struct tnum false_64off = false_reg->var_off;
8871 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8872 	struct tnum true_64off = true_reg->var_off;
8873 	s64 sval = (s64)val;
8874 	s32 sval32 = (s32)val32;
8875 
8876 	/* If the dst_reg is a pointer, we can't learn anything about its
8877 	 * variable offset from the compare (unless src_reg were a pointer into
8878 	 * the same object, but we don't bother with that.
8879 	 * Since false_reg and true_reg have the same type by construction, we
8880 	 * only need to check one of them for pointerness.
8881 	 */
8882 	if (__is_pointer_value(false, false_reg))
8883 		return;
8884 
8885 	switch (opcode) {
8886 	case BPF_JEQ:
8887 	case BPF_JNE:
8888 	{
8889 		struct bpf_reg_state *reg =
8890 			opcode == BPF_JEQ ? true_reg : false_reg;
8891 
8892 		/* JEQ/JNE comparison doesn't change the register equivalence.
8893 		 * r1 = r2;
8894 		 * if (r1 == 42) goto label;
8895 		 * ...
8896 		 * label: // here both r1 and r2 are known to be 42.
8897 		 *
8898 		 * Hence when marking register as known preserve it's ID.
8899 		 */
8900 		if (is_jmp32)
8901 			__mark_reg32_known(reg, val32);
8902 		else
8903 			___mark_reg_known(reg, val);
8904 		break;
8905 	}
8906 	case BPF_JSET:
8907 		if (is_jmp32) {
8908 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8909 			if (is_power_of_2(val32))
8910 				true_32off = tnum_or(true_32off,
8911 						     tnum_const(val32));
8912 		} else {
8913 			false_64off = tnum_and(false_64off, tnum_const(~val));
8914 			if (is_power_of_2(val))
8915 				true_64off = tnum_or(true_64off,
8916 						     tnum_const(val));
8917 		}
8918 		break;
8919 	case BPF_JGE:
8920 	case BPF_JGT:
8921 	{
8922 		if (is_jmp32) {
8923 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8924 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8925 
8926 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8927 						       false_umax);
8928 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8929 						      true_umin);
8930 		} else {
8931 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8932 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8933 
8934 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8935 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8936 		}
8937 		break;
8938 	}
8939 	case BPF_JSGE:
8940 	case BPF_JSGT:
8941 	{
8942 		if (is_jmp32) {
8943 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8944 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8945 
8946 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8947 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8948 		} else {
8949 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8950 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8951 
8952 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8953 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8954 		}
8955 		break;
8956 	}
8957 	case BPF_JLE:
8958 	case BPF_JLT:
8959 	{
8960 		if (is_jmp32) {
8961 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8962 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8963 
8964 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8965 						       false_umin);
8966 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8967 						      true_umax);
8968 		} else {
8969 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8970 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8971 
8972 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8973 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8974 		}
8975 		break;
8976 	}
8977 	case BPF_JSLE:
8978 	case BPF_JSLT:
8979 	{
8980 		if (is_jmp32) {
8981 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8982 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8983 
8984 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8985 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8986 		} else {
8987 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8988 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8989 
8990 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8991 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8992 		}
8993 		break;
8994 	}
8995 	default:
8996 		return;
8997 	}
8998 
8999 	if (is_jmp32) {
9000 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9001 					     tnum_subreg(false_32off));
9002 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9003 					    tnum_subreg(true_32off));
9004 		__reg_combine_32_into_64(false_reg);
9005 		__reg_combine_32_into_64(true_reg);
9006 	} else {
9007 		false_reg->var_off = false_64off;
9008 		true_reg->var_off = true_64off;
9009 		__reg_combine_64_into_32(false_reg);
9010 		__reg_combine_64_into_32(true_reg);
9011 	}
9012 }
9013 
9014 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9015  * the variable reg.
9016  */
9017 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9018 				struct bpf_reg_state *false_reg,
9019 				u64 val, u32 val32,
9020 				u8 opcode, bool is_jmp32)
9021 {
9022 	opcode = flip_opcode(opcode);
9023 	/* This uses zero as "not present in table"; luckily the zero opcode,
9024 	 * BPF_JA, can't get here.
9025 	 */
9026 	if (opcode)
9027 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9028 }
9029 
9030 /* Regs are known to be equal, so intersect their min/max/var_off */
9031 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9032 				  struct bpf_reg_state *dst_reg)
9033 {
9034 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9035 							dst_reg->umin_value);
9036 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9037 							dst_reg->umax_value);
9038 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9039 							dst_reg->smin_value);
9040 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9041 							dst_reg->smax_value);
9042 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9043 							     dst_reg->var_off);
9044 	/* We might have learned new bounds from the var_off. */
9045 	__update_reg_bounds(src_reg);
9046 	__update_reg_bounds(dst_reg);
9047 	/* We might have learned something about the sign bit. */
9048 	__reg_deduce_bounds(src_reg);
9049 	__reg_deduce_bounds(dst_reg);
9050 	/* We might have learned some bits from the bounds. */
9051 	__reg_bound_offset(src_reg);
9052 	__reg_bound_offset(dst_reg);
9053 	/* Intersecting with the old var_off might have improved our bounds
9054 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
9055 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
9056 	 */
9057 	__update_reg_bounds(src_reg);
9058 	__update_reg_bounds(dst_reg);
9059 }
9060 
9061 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9062 				struct bpf_reg_state *true_dst,
9063 				struct bpf_reg_state *false_src,
9064 				struct bpf_reg_state *false_dst,
9065 				u8 opcode)
9066 {
9067 	switch (opcode) {
9068 	case BPF_JEQ:
9069 		__reg_combine_min_max(true_src, true_dst);
9070 		break;
9071 	case BPF_JNE:
9072 		__reg_combine_min_max(false_src, false_dst);
9073 		break;
9074 	}
9075 }
9076 
9077 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9078 				 struct bpf_reg_state *reg, u32 id,
9079 				 bool is_null)
9080 {
9081 	if (type_may_be_null(reg->type) && reg->id == id &&
9082 	    !WARN_ON_ONCE(!reg->id)) {
9083 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9084 				 !tnum_equals_const(reg->var_off, 0) ||
9085 				 reg->off)) {
9086 			/* Old offset (both fixed and variable parts) should
9087 			 * have been known-zero, because we don't allow pointer
9088 			 * arithmetic on pointers that might be NULL. If we
9089 			 * see this happening, don't convert the register.
9090 			 */
9091 			return;
9092 		}
9093 		if (is_null) {
9094 			reg->type = SCALAR_VALUE;
9095 			/* We don't need id and ref_obj_id from this point
9096 			 * onwards anymore, thus we should better reset it,
9097 			 * so that state pruning has chances to take effect.
9098 			 */
9099 			reg->id = 0;
9100 			reg->ref_obj_id = 0;
9101 
9102 			return;
9103 		}
9104 
9105 		mark_ptr_not_null_reg(reg);
9106 
9107 		if (!reg_may_point_to_spin_lock(reg)) {
9108 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9109 			 * in release_reg_references().
9110 			 *
9111 			 * reg->id is still used by spin_lock ptr. Other
9112 			 * than spin_lock ptr type, reg->id can be reset.
9113 			 */
9114 			reg->id = 0;
9115 		}
9116 	}
9117 }
9118 
9119 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9120 				    bool is_null)
9121 {
9122 	struct bpf_reg_state *reg;
9123 	int i;
9124 
9125 	for (i = 0; i < MAX_BPF_REG; i++)
9126 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9127 
9128 	bpf_for_each_spilled_reg(i, state, reg) {
9129 		if (!reg)
9130 			continue;
9131 		mark_ptr_or_null_reg(state, reg, id, is_null);
9132 	}
9133 }
9134 
9135 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9136  * be folded together at some point.
9137  */
9138 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9139 				  bool is_null)
9140 {
9141 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9142 	struct bpf_reg_state *regs = state->regs;
9143 	u32 ref_obj_id = regs[regno].ref_obj_id;
9144 	u32 id = regs[regno].id;
9145 	int i;
9146 
9147 	if (ref_obj_id && ref_obj_id == id && is_null)
9148 		/* regs[regno] is in the " == NULL" branch.
9149 		 * No one could have freed the reference state before
9150 		 * doing the NULL check.
9151 		 */
9152 		WARN_ON_ONCE(release_reference_state(state, id));
9153 
9154 	for (i = 0; i <= vstate->curframe; i++)
9155 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9156 }
9157 
9158 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9159 				   struct bpf_reg_state *dst_reg,
9160 				   struct bpf_reg_state *src_reg,
9161 				   struct bpf_verifier_state *this_branch,
9162 				   struct bpf_verifier_state *other_branch)
9163 {
9164 	if (BPF_SRC(insn->code) != BPF_X)
9165 		return false;
9166 
9167 	/* Pointers are always 64-bit. */
9168 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9169 		return false;
9170 
9171 	switch (BPF_OP(insn->code)) {
9172 	case BPF_JGT:
9173 		if ((dst_reg->type == PTR_TO_PACKET &&
9174 		     src_reg->type == PTR_TO_PACKET_END) ||
9175 		    (dst_reg->type == PTR_TO_PACKET_META &&
9176 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9177 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9178 			find_good_pkt_pointers(this_branch, dst_reg,
9179 					       dst_reg->type, false);
9180 			mark_pkt_end(other_branch, insn->dst_reg, true);
9181 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9182 			    src_reg->type == PTR_TO_PACKET) ||
9183 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9184 			    src_reg->type == PTR_TO_PACKET_META)) {
9185 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9186 			find_good_pkt_pointers(other_branch, src_reg,
9187 					       src_reg->type, true);
9188 			mark_pkt_end(this_branch, insn->src_reg, false);
9189 		} else {
9190 			return false;
9191 		}
9192 		break;
9193 	case BPF_JLT:
9194 		if ((dst_reg->type == PTR_TO_PACKET &&
9195 		     src_reg->type == PTR_TO_PACKET_END) ||
9196 		    (dst_reg->type == PTR_TO_PACKET_META &&
9197 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9198 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9199 			find_good_pkt_pointers(other_branch, dst_reg,
9200 					       dst_reg->type, true);
9201 			mark_pkt_end(this_branch, insn->dst_reg, false);
9202 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9203 			    src_reg->type == PTR_TO_PACKET) ||
9204 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9205 			    src_reg->type == PTR_TO_PACKET_META)) {
9206 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9207 			find_good_pkt_pointers(this_branch, src_reg,
9208 					       src_reg->type, false);
9209 			mark_pkt_end(other_branch, insn->src_reg, true);
9210 		} else {
9211 			return false;
9212 		}
9213 		break;
9214 	case BPF_JGE:
9215 		if ((dst_reg->type == PTR_TO_PACKET &&
9216 		     src_reg->type == PTR_TO_PACKET_END) ||
9217 		    (dst_reg->type == PTR_TO_PACKET_META &&
9218 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9219 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9220 			find_good_pkt_pointers(this_branch, dst_reg,
9221 					       dst_reg->type, true);
9222 			mark_pkt_end(other_branch, insn->dst_reg, false);
9223 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9224 			    src_reg->type == PTR_TO_PACKET) ||
9225 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9226 			    src_reg->type == PTR_TO_PACKET_META)) {
9227 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9228 			find_good_pkt_pointers(other_branch, src_reg,
9229 					       src_reg->type, false);
9230 			mark_pkt_end(this_branch, insn->src_reg, true);
9231 		} else {
9232 			return false;
9233 		}
9234 		break;
9235 	case BPF_JLE:
9236 		if ((dst_reg->type == PTR_TO_PACKET &&
9237 		     src_reg->type == PTR_TO_PACKET_END) ||
9238 		    (dst_reg->type == PTR_TO_PACKET_META &&
9239 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9240 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9241 			find_good_pkt_pointers(other_branch, dst_reg,
9242 					       dst_reg->type, false);
9243 			mark_pkt_end(this_branch, insn->dst_reg, true);
9244 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9245 			    src_reg->type == PTR_TO_PACKET) ||
9246 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9247 			    src_reg->type == PTR_TO_PACKET_META)) {
9248 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9249 			find_good_pkt_pointers(this_branch, src_reg,
9250 					       src_reg->type, true);
9251 			mark_pkt_end(other_branch, insn->src_reg, false);
9252 		} else {
9253 			return false;
9254 		}
9255 		break;
9256 	default:
9257 		return false;
9258 	}
9259 
9260 	return true;
9261 }
9262 
9263 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9264 			       struct bpf_reg_state *known_reg)
9265 {
9266 	struct bpf_func_state *state;
9267 	struct bpf_reg_state *reg;
9268 	int i, j;
9269 
9270 	for (i = 0; i <= vstate->curframe; i++) {
9271 		state = vstate->frame[i];
9272 		for (j = 0; j < MAX_BPF_REG; j++) {
9273 			reg = &state->regs[j];
9274 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9275 				*reg = *known_reg;
9276 		}
9277 
9278 		bpf_for_each_spilled_reg(j, state, reg) {
9279 			if (!reg)
9280 				continue;
9281 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9282 				*reg = *known_reg;
9283 		}
9284 	}
9285 }
9286 
9287 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9288 			     struct bpf_insn *insn, int *insn_idx)
9289 {
9290 	struct bpf_verifier_state *this_branch = env->cur_state;
9291 	struct bpf_verifier_state *other_branch;
9292 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9293 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9294 	u8 opcode = BPF_OP(insn->code);
9295 	bool is_jmp32;
9296 	int pred = -1;
9297 	int err;
9298 
9299 	/* Only conditional jumps are expected to reach here. */
9300 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
9301 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9302 		return -EINVAL;
9303 	}
9304 
9305 	if (BPF_SRC(insn->code) == BPF_X) {
9306 		if (insn->imm != 0) {
9307 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9308 			return -EINVAL;
9309 		}
9310 
9311 		/* check src1 operand */
9312 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9313 		if (err)
9314 			return err;
9315 
9316 		if (is_pointer_value(env, insn->src_reg)) {
9317 			verbose(env, "R%d pointer comparison prohibited\n",
9318 				insn->src_reg);
9319 			return -EACCES;
9320 		}
9321 		src_reg = &regs[insn->src_reg];
9322 	} else {
9323 		if (insn->src_reg != BPF_REG_0) {
9324 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9325 			return -EINVAL;
9326 		}
9327 	}
9328 
9329 	/* check src2 operand */
9330 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9331 	if (err)
9332 		return err;
9333 
9334 	dst_reg = &regs[insn->dst_reg];
9335 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9336 
9337 	if (BPF_SRC(insn->code) == BPF_K) {
9338 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9339 	} else if (src_reg->type == SCALAR_VALUE &&
9340 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9341 		pred = is_branch_taken(dst_reg,
9342 				       tnum_subreg(src_reg->var_off).value,
9343 				       opcode,
9344 				       is_jmp32);
9345 	} else if (src_reg->type == SCALAR_VALUE &&
9346 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9347 		pred = is_branch_taken(dst_reg,
9348 				       src_reg->var_off.value,
9349 				       opcode,
9350 				       is_jmp32);
9351 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9352 		   reg_is_pkt_pointer_any(src_reg) &&
9353 		   !is_jmp32) {
9354 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9355 	}
9356 
9357 	if (pred >= 0) {
9358 		/* If we get here with a dst_reg pointer type it is because
9359 		 * above is_branch_taken() special cased the 0 comparison.
9360 		 */
9361 		if (!__is_pointer_value(false, dst_reg))
9362 			err = mark_chain_precision(env, insn->dst_reg);
9363 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9364 		    !__is_pointer_value(false, src_reg))
9365 			err = mark_chain_precision(env, insn->src_reg);
9366 		if (err)
9367 			return err;
9368 	}
9369 
9370 	if (pred == 1) {
9371 		/* Only follow the goto, ignore fall-through. If needed, push
9372 		 * the fall-through branch for simulation under speculative
9373 		 * execution.
9374 		 */
9375 		if (!env->bypass_spec_v1 &&
9376 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9377 					       *insn_idx))
9378 			return -EFAULT;
9379 		*insn_idx += insn->off;
9380 		return 0;
9381 	} else if (pred == 0) {
9382 		/* Only follow the fall-through branch, since that's where the
9383 		 * program will go. If needed, push the goto branch for
9384 		 * simulation under speculative execution.
9385 		 */
9386 		if (!env->bypass_spec_v1 &&
9387 		    !sanitize_speculative_path(env, insn,
9388 					       *insn_idx + insn->off + 1,
9389 					       *insn_idx))
9390 			return -EFAULT;
9391 		return 0;
9392 	}
9393 
9394 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9395 				  false);
9396 	if (!other_branch)
9397 		return -EFAULT;
9398 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9399 
9400 	/* detect if we are comparing against a constant value so we can adjust
9401 	 * our min/max values for our dst register.
9402 	 * this is only legit if both are scalars (or pointers to the same
9403 	 * object, I suppose, but we don't support that right now), because
9404 	 * otherwise the different base pointers mean the offsets aren't
9405 	 * comparable.
9406 	 */
9407 	if (BPF_SRC(insn->code) == BPF_X) {
9408 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9409 
9410 		if (dst_reg->type == SCALAR_VALUE &&
9411 		    src_reg->type == SCALAR_VALUE) {
9412 			if (tnum_is_const(src_reg->var_off) ||
9413 			    (is_jmp32 &&
9414 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9415 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9416 						dst_reg,
9417 						src_reg->var_off.value,
9418 						tnum_subreg(src_reg->var_off).value,
9419 						opcode, is_jmp32);
9420 			else if (tnum_is_const(dst_reg->var_off) ||
9421 				 (is_jmp32 &&
9422 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9423 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9424 						    src_reg,
9425 						    dst_reg->var_off.value,
9426 						    tnum_subreg(dst_reg->var_off).value,
9427 						    opcode, is_jmp32);
9428 			else if (!is_jmp32 &&
9429 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9430 				/* Comparing for equality, we can combine knowledge */
9431 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9432 						    &other_branch_regs[insn->dst_reg],
9433 						    src_reg, dst_reg, opcode);
9434 			if (src_reg->id &&
9435 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9436 				find_equal_scalars(this_branch, src_reg);
9437 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9438 			}
9439 
9440 		}
9441 	} else if (dst_reg->type == SCALAR_VALUE) {
9442 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9443 					dst_reg, insn->imm, (u32)insn->imm,
9444 					opcode, is_jmp32);
9445 	}
9446 
9447 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9448 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9449 		find_equal_scalars(this_branch, dst_reg);
9450 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9451 	}
9452 
9453 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9454 	 * NOTE: these optimizations below are related with pointer comparison
9455 	 *       which will never be JMP32.
9456 	 */
9457 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9458 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9459 	    type_may_be_null(dst_reg->type)) {
9460 		/* Mark all identical registers in each branch as either
9461 		 * safe or unknown depending R == 0 or R != 0 conditional.
9462 		 */
9463 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9464 				      opcode == BPF_JNE);
9465 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9466 				      opcode == BPF_JEQ);
9467 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9468 					   this_branch, other_branch) &&
9469 		   is_pointer_value(env, insn->dst_reg)) {
9470 		verbose(env, "R%d pointer comparison prohibited\n",
9471 			insn->dst_reg);
9472 		return -EACCES;
9473 	}
9474 	if (env->log.level & BPF_LOG_LEVEL)
9475 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
9476 	return 0;
9477 }
9478 
9479 /* verify BPF_LD_IMM64 instruction */
9480 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9481 {
9482 	struct bpf_insn_aux_data *aux = cur_aux(env);
9483 	struct bpf_reg_state *regs = cur_regs(env);
9484 	struct bpf_reg_state *dst_reg;
9485 	struct bpf_map *map;
9486 	int err;
9487 
9488 	if (BPF_SIZE(insn->code) != BPF_DW) {
9489 		verbose(env, "invalid BPF_LD_IMM insn\n");
9490 		return -EINVAL;
9491 	}
9492 	if (insn->off != 0) {
9493 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9494 		return -EINVAL;
9495 	}
9496 
9497 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9498 	if (err)
9499 		return err;
9500 
9501 	dst_reg = &regs[insn->dst_reg];
9502 	if (insn->src_reg == 0) {
9503 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9504 
9505 		dst_reg->type = SCALAR_VALUE;
9506 		__mark_reg_known(&regs[insn->dst_reg], imm);
9507 		return 0;
9508 	}
9509 
9510 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9511 		mark_reg_known_zero(env, regs, insn->dst_reg);
9512 
9513 		dst_reg->type = aux->btf_var.reg_type;
9514 		switch (base_type(dst_reg->type)) {
9515 		case PTR_TO_MEM:
9516 			dst_reg->mem_size = aux->btf_var.mem_size;
9517 			break;
9518 		case PTR_TO_BTF_ID:
9519 		case PTR_TO_PERCPU_BTF_ID:
9520 			dst_reg->btf = aux->btf_var.btf;
9521 			dst_reg->btf_id = aux->btf_var.btf_id;
9522 			break;
9523 		default:
9524 			verbose(env, "bpf verifier is misconfigured\n");
9525 			return -EFAULT;
9526 		}
9527 		return 0;
9528 	}
9529 
9530 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9531 		struct bpf_prog_aux *aux = env->prog->aux;
9532 		u32 subprogno = find_subprog(env,
9533 					     env->insn_idx + insn->imm + 1);
9534 
9535 		if (!aux->func_info) {
9536 			verbose(env, "missing btf func_info\n");
9537 			return -EINVAL;
9538 		}
9539 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9540 			verbose(env, "callback function not static\n");
9541 			return -EINVAL;
9542 		}
9543 
9544 		dst_reg->type = PTR_TO_FUNC;
9545 		dst_reg->subprogno = subprogno;
9546 		return 0;
9547 	}
9548 
9549 	map = env->used_maps[aux->map_index];
9550 	mark_reg_known_zero(env, regs, insn->dst_reg);
9551 	dst_reg->map_ptr = map;
9552 
9553 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9554 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9555 		dst_reg->type = PTR_TO_MAP_VALUE;
9556 		dst_reg->off = aux->map_off;
9557 		if (map_value_has_spin_lock(map))
9558 			dst_reg->id = ++env->id_gen;
9559 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9560 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9561 		dst_reg->type = CONST_PTR_TO_MAP;
9562 	} else {
9563 		verbose(env, "bpf verifier is misconfigured\n");
9564 		return -EINVAL;
9565 	}
9566 
9567 	return 0;
9568 }
9569 
9570 static bool may_access_skb(enum bpf_prog_type type)
9571 {
9572 	switch (type) {
9573 	case BPF_PROG_TYPE_SOCKET_FILTER:
9574 	case BPF_PROG_TYPE_SCHED_CLS:
9575 	case BPF_PROG_TYPE_SCHED_ACT:
9576 		return true;
9577 	default:
9578 		return false;
9579 	}
9580 }
9581 
9582 /* verify safety of LD_ABS|LD_IND instructions:
9583  * - they can only appear in the programs where ctx == skb
9584  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9585  *   preserve R6-R9, and store return value into R0
9586  *
9587  * Implicit input:
9588  *   ctx == skb == R6 == CTX
9589  *
9590  * Explicit input:
9591  *   SRC == any register
9592  *   IMM == 32-bit immediate
9593  *
9594  * Output:
9595  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9596  */
9597 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9598 {
9599 	struct bpf_reg_state *regs = cur_regs(env);
9600 	static const int ctx_reg = BPF_REG_6;
9601 	u8 mode = BPF_MODE(insn->code);
9602 	int i, err;
9603 
9604 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9605 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9606 		return -EINVAL;
9607 	}
9608 
9609 	if (!env->ops->gen_ld_abs) {
9610 		verbose(env, "bpf verifier is misconfigured\n");
9611 		return -EINVAL;
9612 	}
9613 
9614 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9615 	    BPF_SIZE(insn->code) == BPF_DW ||
9616 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9617 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9618 		return -EINVAL;
9619 	}
9620 
9621 	/* check whether implicit source operand (register R6) is readable */
9622 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9623 	if (err)
9624 		return err;
9625 
9626 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9627 	 * gen_ld_abs() may terminate the program at runtime, leading to
9628 	 * reference leak.
9629 	 */
9630 	err = check_reference_leak(env);
9631 	if (err) {
9632 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9633 		return err;
9634 	}
9635 
9636 	if (env->cur_state->active_spin_lock) {
9637 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9638 		return -EINVAL;
9639 	}
9640 
9641 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9642 		verbose(env,
9643 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9644 		return -EINVAL;
9645 	}
9646 
9647 	if (mode == BPF_IND) {
9648 		/* check explicit source operand */
9649 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9650 		if (err)
9651 			return err;
9652 	}
9653 
9654 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9655 	if (err < 0)
9656 		return err;
9657 
9658 	/* reset caller saved regs to unreadable */
9659 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9660 		mark_reg_not_init(env, regs, caller_saved[i]);
9661 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9662 	}
9663 
9664 	/* mark destination R0 register as readable, since it contains
9665 	 * the value fetched from the packet.
9666 	 * Already marked as written above.
9667 	 */
9668 	mark_reg_unknown(env, regs, BPF_REG_0);
9669 	/* ld_abs load up to 32-bit skb data. */
9670 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9671 	return 0;
9672 }
9673 
9674 static int check_return_code(struct bpf_verifier_env *env)
9675 {
9676 	struct tnum enforce_attach_type_range = tnum_unknown;
9677 	const struct bpf_prog *prog = env->prog;
9678 	struct bpf_reg_state *reg;
9679 	struct tnum range = tnum_range(0, 1);
9680 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9681 	int err;
9682 	struct bpf_func_state *frame = env->cur_state->frame[0];
9683 	const bool is_subprog = frame->subprogno;
9684 
9685 	/* LSM and struct_ops func-ptr's return type could be "void" */
9686 	if (!is_subprog &&
9687 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9688 	     prog_type == BPF_PROG_TYPE_LSM) &&
9689 	    !prog->aux->attach_func_proto->type)
9690 		return 0;
9691 
9692 	/* eBPF calling convention is such that R0 is used
9693 	 * to return the value from eBPF program.
9694 	 * Make sure that it's readable at this time
9695 	 * of bpf_exit, which means that program wrote
9696 	 * something into it earlier
9697 	 */
9698 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9699 	if (err)
9700 		return err;
9701 
9702 	if (is_pointer_value(env, BPF_REG_0)) {
9703 		verbose(env, "R0 leaks addr as return value\n");
9704 		return -EACCES;
9705 	}
9706 
9707 	reg = cur_regs(env) + BPF_REG_0;
9708 
9709 	if (frame->in_async_callback_fn) {
9710 		/* enforce return zero from async callbacks like timer */
9711 		if (reg->type != SCALAR_VALUE) {
9712 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9713 				reg_type_str(env, reg->type));
9714 			return -EINVAL;
9715 		}
9716 
9717 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9718 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9719 			return -EINVAL;
9720 		}
9721 		return 0;
9722 	}
9723 
9724 	if (is_subprog) {
9725 		if (reg->type != SCALAR_VALUE) {
9726 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9727 				reg_type_str(env, reg->type));
9728 			return -EINVAL;
9729 		}
9730 		return 0;
9731 	}
9732 
9733 	switch (prog_type) {
9734 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9735 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9736 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9737 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9738 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9739 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9740 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9741 			range = tnum_range(1, 1);
9742 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9743 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9744 			range = tnum_range(0, 3);
9745 		break;
9746 	case BPF_PROG_TYPE_CGROUP_SKB:
9747 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9748 			range = tnum_range(0, 3);
9749 			enforce_attach_type_range = tnum_range(2, 3);
9750 		}
9751 		break;
9752 	case BPF_PROG_TYPE_CGROUP_SOCK:
9753 	case BPF_PROG_TYPE_SOCK_OPS:
9754 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9755 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9756 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9757 		break;
9758 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9759 		if (!env->prog->aux->attach_btf_id)
9760 			return 0;
9761 		range = tnum_const(0);
9762 		break;
9763 	case BPF_PROG_TYPE_TRACING:
9764 		switch (env->prog->expected_attach_type) {
9765 		case BPF_TRACE_FENTRY:
9766 		case BPF_TRACE_FEXIT:
9767 			range = tnum_const(0);
9768 			break;
9769 		case BPF_TRACE_RAW_TP:
9770 		case BPF_MODIFY_RETURN:
9771 			return 0;
9772 		case BPF_TRACE_ITER:
9773 			break;
9774 		default:
9775 			return -ENOTSUPP;
9776 		}
9777 		break;
9778 	case BPF_PROG_TYPE_SK_LOOKUP:
9779 		range = tnum_range(SK_DROP, SK_PASS);
9780 		break;
9781 	case BPF_PROG_TYPE_EXT:
9782 		/* freplace program can return anything as its return value
9783 		 * depends on the to-be-replaced kernel func or bpf program.
9784 		 */
9785 	default:
9786 		return 0;
9787 	}
9788 
9789 	if (reg->type != SCALAR_VALUE) {
9790 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9791 			reg_type_str(env, reg->type));
9792 		return -EINVAL;
9793 	}
9794 
9795 	if (!tnum_in(range, reg->var_off)) {
9796 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9797 		return -EINVAL;
9798 	}
9799 
9800 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9801 	    tnum_in(enforce_attach_type_range, reg->var_off))
9802 		env->prog->enforce_expected_attach_type = 1;
9803 	return 0;
9804 }
9805 
9806 /* non-recursive DFS pseudo code
9807  * 1  procedure DFS-iterative(G,v):
9808  * 2      label v as discovered
9809  * 3      let S be a stack
9810  * 4      S.push(v)
9811  * 5      while S is not empty
9812  * 6            t <- S.pop()
9813  * 7            if t is what we're looking for:
9814  * 8                return t
9815  * 9            for all edges e in G.adjacentEdges(t) do
9816  * 10               if edge e is already labelled
9817  * 11                   continue with the next edge
9818  * 12               w <- G.adjacentVertex(t,e)
9819  * 13               if vertex w is not discovered and not explored
9820  * 14                   label e as tree-edge
9821  * 15                   label w as discovered
9822  * 16                   S.push(w)
9823  * 17                   continue at 5
9824  * 18               else if vertex w is discovered
9825  * 19                   label e as back-edge
9826  * 20               else
9827  * 21                   // vertex w is explored
9828  * 22                   label e as forward- or cross-edge
9829  * 23           label t as explored
9830  * 24           S.pop()
9831  *
9832  * convention:
9833  * 0x10 - discovered
9834  * 0x11 - discovered and fall-through edge labelled
9835  * 0x12 - discovered and fall-through and branch edges labelled
9836  * 0x20 - explored
9837  */
9838 
9839 enum {
9840 	DISCOVERED = 0x10,
9841 	EXPLORED = 0x20,
9842 	FALLTHROUGH = 1,
9843 	BRANCH = 2,
9844 };
9845 
9846 static u32 state_htab_size(struct bpf_verifier_env *env)
9847 {
9848 	return env->prog->len;
9849 }
9850 
9851 static struct bpf_verifier_state_list **explored_state(
9852 					struct bpf_verifier_env *env,
9853 					int idx)
9854 {
9855 	struct bpf_verifier_state *cur = env->cur_state;
9856 	struct bpf_func_state *state = cur->frame[cur->curframe];
9857 
9858 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9859 }
9860 
9861 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9862 {
9863 	env->insn_aux_data[idx].prune_point = true;
9864 }
9865 
9866 enum {
9867 	DONE_EXPLORING = 0,
9868 	KEEP_EXPLORING = 1,
9869 };
9870 
9871 /* t, w, e - match pseudo-code above:
9872  * t - index of current instruction
9873  * w - next instruction
9874  * e - edge
9875  */
9876 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9877 		     bool loop_ok)
9878 {
9879 	int *insn_stack = env->cfg.insn_stack;
9880 	int *insn_state = env->cfg.insn_state;
9881 
9882 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9883 		return DONE_EXPLORING;
9884 
9885 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9886 		return DONE_EXPLORING;
9887 
9888 	if (w < 0 || w >= env->prog->len) {
9889 		verbose_linfo(env, t, "%d: ", t);
9890 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9891 		return -EINVAL;
9892 	}
9893 
9894 	if (e == BRANCH)
9895 		/* mark branch target for state pruning */
9896 		init_explored_state(env, w);
9897 
9898 	if (insn_state[w] == 0) {
9899 		/* tree-edge */
9900 		insn_state[t] = DISCOVERED | e;
9901 		insn_state[w] = DISCOVERED;
9902 		if (env->cfg.cur_stack >= env->prog->len)
9903 			return -E2BIG;
9904 		insn_stack[env->cfg.cur_stack++] = w;
9905 		return KEEP_EXPLORING;
9906 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9907 		if (loop_ok && env->bpf_capable)
9908 			return DONE_EXPLORING;
9909 		verbose_linfo(env, t, "%d: ", t);
9910 		verbose_linfo(env, w, "%d: ", w);
9911 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9912 		return -EINVAL;
9913 	} else if (insn_state[w] == EXPLORED) {
9914 		/* forward- or cross-edge */
9915 		insn_state[t] = DISCOVERED | e;
9916 	} else {
9917 		verbose(env, "insn state internal bug\n");
9918 		return -EFAULT;
9919 	}
9920 	return DONE_EXPLORING;
9921 }
9922 
9923 static int visit_func_call_insn(int t, int insn_cnt,
9924 				struct bpf_insn *insns,
9925 				struct bpf_verifier_env *env,
9926 				bool visit_callee)
9927 {
9928 	int ret;
9929 
9930 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9931 	if (ret)
9932 		return ret;
9933 
9934 	if (t + 1 < insn_cnt)
9935 		init_explored_state(env, t + 1);
9936 	if (visit_callee) {
9937 		init_explored_state(env, t);
9938 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9939 				/* It's ok to allow recursion from CFG point of
9940 				 * view. __check_func_call() will do the actual
9941 				 * check.
9942 				 */
9943 				bpf_pseudo_func(insns + t));
9944 	}
9945 	return ret;
9946 }
9947 
9948 /* Visits the instruction at index t and returns one of the following:
9949  *  < 0 - an error occurred
9950  *  DONE_EXPLORING - the instruction was fully explored
9951  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9952  */
9953 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9954 {
9955 	struct bpf_insn *insns = env->prog->insnsi;
9956 	int ret;
9957 
9958 	if (bpf_pseudo_func(insns + t))
9959 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9960 
9961 	/* All non-branch instructions have a single fall-through edge. */
9962 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9963 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9964 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9965 
9966 	switch (BPF_OP(insns[t].code)) {
9967 	case BPF_EXIT:
9968 		return DONE_EXPLORING;
9969 
9970 	case BPF_CALL:
9971 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9972 			/* Mark this call insn to trigger is_state_visited() check
9973 			 * before call itself is processed by __check_func_call().
9974 			 * Otherwise new async state will be pushed for further
9975 			 * exploration.
9976 			 */
9977 			init_explored_state(env, t);
9978 		return visit_func_call_insn(t, insn_cnt, insns, env,
9979 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9980 
9981 	case BPF_JA:
9982 		if (BPF_SRC(insns[t].code) != BPF_K)
9983 			return -EINVAL;
9984 
9985 		/* unconditional jump with single edge */
9986 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9987 				true);
9988 		if (ret)
9989 			return ret;
9990 
9991 		/* unconditional jmp is not a good pruning point,
9992 		 * but it's marked, since backtracking needs
9993 		 * to record jmp history in is_state_visited().
9994 		 */
9995 		init_explored_state(env, t + insns[t].off + 1);
9996 		/* tell verifier to check for equivalent states
9997 		 * after every call and jump
9998 		 */
9999 		if (t + 1 < insn_cnt)
10000 			init_explored_state(env, t + 1);
10001 
10002 		return ret;
10003 
10004 	default:
10005 		/* conditional jump with two edges */
10006 		init_explored_state(env, t);
10007 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10008 		if (ret)
10009 			return ret;
10010 
10011 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10012 	}
10013 }
10014 
10015 /* non-recursive depth-first-search to detect loops in BPF program
10016  * loop == back-edge in directed graph
10017  */
10018 static int check_cfg(struct bpf_verifier_env *env)
10019 {
10020 	int insn_cnt = env->prog->len;
10021 	int *insn_stack, *insn_state;
10022 	int ret = 0;
10023 	int i;
10024 
10025 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10026 	if (!insn_state)
10027 		return -ENOMEM;
10028 
10029 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10030 	if (!insn_stack) {
10031 		kvfree(insn_state);
10032 		return -ENOMEM;
10033 	}
10034 
10035 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10036 	insn_stack[0] = 0; /* 0 is the first instruction */
10037 	env->cfg.cur_stack = 1;
10038 
10039 	while (env->cfg.cur_stack > 0) {
10040 		int t = insn_stack[env->cfg.cur_stack - 1];
10041 
10042 		ret = visit_insn(t, insn_cnt, env);
10043 		switch (ret) {
10044 		case DONE_EXPLORING:
10045 			insn_state[t] = EXPLORED;
10046 			env->cfg.cur_stack--;
10047 			break;
10048 		case KEEP_EXPLORING:
10049 			break;
10050 		default:
10051 			if (ret > 0) {
10052 				verbose(env, "visit_insn internal bug\n");
10053 				ret = -EFAULT;
10054 			}
10055 			goto err_free;
10056 		}
10057 	}
10058 
10059 	if (env->cfg.cur_stack < 0) {
10060 		verbose(env, "pop stack internal bug\n");
10061 		ret = -EFAULT;
10062 		goto err_free;
10063 	}
10064 
10065 	for (i = 0; i < insn_cnt; i++) {
10066 		if (insn_state[i] != EXPLORED) {
10067 			verbose(env, "unreachable insn %d\n", i);
10068 			ret = -EINVAL;
10069 			goto err_free;
10070 		}
10071 	}
10072 	ret = 0; /* cfg looks good */
10073 
10074 err_free:
10075 	kvfree(insn_state);
10076 	kvfree(insn_stack);
10077 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
10078 	return ret;
10079 }
10080 
10081 static int check_abnormal_return(struct bpf_verifier_env *env)
10082 {
10083 	int i;
10084 
10085 	for (i = 1; i < env->subprog_cnt; i++) {
10086 		if (env->subprog_info[i].has_ld_abs) {
10087 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10088 			return -EINVAL;
10089 		}
10090 		if (env->subprog_info[i].has_tail_call) {
10091 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10092 			return -EINVAL;
10093 		}
10094 	}
10095 	return 0;
10096 }
10097 
10098 /* The minimum supported BTF func info size */
10099 #define MIN_BPF_FUNCINFO_SIZE	8
10100 #define MAX_FUNCINFO_REC_SIZE	252
10101 
10102 static int check_btf_func(struct bpf_verifier_env *env,
10103 			  const union bpf_attr *attr,
10104 			  bpfptr_t uattr)
10105 {
10106 	const struct btf_type *type, *func_proto, *ret_type;
10107 	u32 i, nfuncs, urec_size, min_size;
10108 	u32 krec_size = sizeof(struct bpf_func_info);
10109 	struct bpf_func_info *krecord;
10110 	struct bpf_func_info_aux *info_aux = NULL;
10111 	struct bpf_prog *prog;
10112 	const struct btf *btf;
10113 	bpfptr_t urecord;
10114 	u32 prev_offset = 0;
10115 	bool scalar_return;
10116 	int ret = -ENOMEM;
10117 
10118 	nfuncs = attr->func_info_cnt;
10119 	if (!nfuncs) {
10120 		if (check_abnormal_return(env))
10121 			return -EINVAL;
10122 		return 0;
10123 	}
10124 
10125 	if (nfuncs != env->subprog_cnt) {
10126 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10127 		return -EINVAL;
10128 	}
10129 
10130 	urec_size = attr->func_info_rec_size;
10131 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10132 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10133 	    urec_size % sizeof(u32)) {
10134 		verbose(env, "invalid func info rec size %u\n", urec_size);
10135 		return -EINVAL;
10136 	}
10137 
10138 	prog = env->prog;
10139 	btf = prog->aux->btf;
10140 
10141 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10142 	min_size = min_t(u32, krec_size, urec_size);
10143 
10144 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10145 	if (!krecord)
10146 		return -ENOMEM;
10147 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10148 	if (!info_aux)
10149 		goto err_free;
10150 
10151 	for (i = 0; i < nfuncs; i++) {
10152 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10153 		if (ret) {
10154 			if (ret == -E2BIG) {
10155 				verbose(env, "nonzero tailing record in func info");
10156 				/* set the size kernel expects so loader can zero
10157 				 * out the rest of the record.
10158 				 */
10159 				if (copy_to_bpfptr_offset(uattr,
10160 							  offsetof(union bpf_attr, func_info_rec_size),
10161 							  &min_size, sizeof(min_size)))
10162 					ret = -EFAULT;
10163 			}
10164 			goto err_free;
10165 		}
10166 
10167 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10168 			ret = -EFAULT;
10169 			goto err_free;
10170 		}
10171 
10172 		/* check insn_off */
10173 		ret = -EINVAL;
10174 		if (i == 0) {
10175 			if (krecord[i].insn_off) {
10176 				verbose(env,
10177 					"nonzero insn_off %u for the first func info record",
10178 					krecord[i].insn_off);
10179 				goto err_free;
10180 			}
10181 		} else if (krecord[i].insn_off <= prev_offset) {
10182 			verbose(env,
10183 				"same or smaller insn offset (%u) than previous func info record (%u)",
10184 				krecord[i].insn_off, prev_offset);
10185 			goto err_free;
10186 		}
10187 
10188 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10189 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10190 			goto err_free;
10191 		}
10192 
10193 		/* check type_id */
10194 		type = btf_type_by_id(btf, krecord[i].type_id);
10195 		if (!type || !btf_type_is_func(type)) {
10196 			verbose(env, "invalid type id %d in func info",
10197 				krecord[i].type_id);
10198 			goto err_free;
10199 		}
10200 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10201 
10202 		func_proto = btf_type_by_id(btf, type->type);
10203 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10204 			/* btf_func_check() already verified it during BTF load */
10205 			goto err_free;
10206 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10207 		scalar_return =
10208 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10209 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10210 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10211 			goto err_free;
10212 		}
10213 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10214 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10215 			goto err_free;
10216 		}
10217 
10218 		prev_offset = krecord[i].insn_off;
10219 		bpfptr_add(&urecord, urec_size);
10220 	}
10221 
10222 	prog->aux->func_info = krecord;
10223 	prog->aux->func_info_cnt = nfuncs;
10224 	prog->aux->func_info_aux = info_aux;
10225 	return 0;
10226 
10227 err_free:
10228 	kvfree(krecord);
10229 	kfree(info_aux);
10230 	return ret;
10231 }
10232 
10233 static void adjust_btf_func(struct bpf_verifier_env *env)
10234 {
10235 	struct bpf_prog_aux *aux = env->prog->aux;
10236 	int i;
10237 
10238 	if (!aux->func_info)
10239 		return;
10240 
10241 	for (i = 0; i < env->subprog_cnt; i++)
10242 		aux->func_info[i].insn_off = env->subprog_info[i].start;
10243 }
10244 
10245 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
10246 		sizeof(((struct bpf_line_info *)(0))->line_col))
10247 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
10248 
10249 static int check_btf_line(struct bpf_verifier_env *env,
10250 			  const union bpf_attr *attr,
10251 			  bpfptr_t uattr)
10252 {
10253 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10254 	struct bpf_subprog_info *sub;
10255 	struct bpf_line_info *linfo;
10256 	struct bpf_prog *prog;
10257 	const struct btf *btf;
10258 	bpfptr_t ulinfo;
10259 	int err;
10260 
10261 	nr_linfo = attr->line_info_cnt;
10262 	if (!nr_linfo)
10263 		return 0;
10264 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10265 		return -EINVAL;
10266 
10267 	rec_size = attr->line_info_rec_size;
10268 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10269 	    rec_size > MAX_LINEINFO_REC_SIZE ||
10270 	    rec_size & (sizeof(u32) - 1))
10271 		return -EINVAL;
10272 
10273 	/* Need to zero it in case the userspace may
10274 	 * pass in a smaller bpf_line_info object.
10275 	 */
10276 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10277 			 GFP_KERNEL | __GFP_NOWARN);
10278 	if (!linfo)
10279 		return -ENOMEM;
10280 
10281 	prog = env->prog;
10282 	btf = prog->aux->btf;
10283 
10284 	s = 0;
10285 	sub = env->subprog_info;
10286 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10287 	expected_size = sizeof(struct bpf_line_info);
10288 	ncopy = min_t(u32, expected_size, rec_size);
10289 	for (i = 0; i < nr_linfo; i++) {
10290 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10291 		if (err) {
10292 			if (err == -E2BIG) {
10293 				verbose(env, "nonzero tailing record in line_info");
10294 				if (copy_to_bpfptr_offset(uattr,
10295 							  offsetof(union bpf_attr, line_info_rec_size),
10296 							  &expected_size, sizeof(expected_size)))
10297 					err = -EFAULT;
10298 			}
10299 			goto err_free;
10300 		}
10301 
10302 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10303 			err = -EFAULT;
10304 			goto err_free;
10305 		}
10306 
10307 		/*
10308 		 * Check insn_off to ensure
10309 		 * 1) strictly increasing AND
10310 		 * 2) bounded by prog->len
10311 		 *
10312 		 * The linfo[0].insn_off == 0 check logically falls into
10313 		 * the later "missing bpf_line_info for func..." case
10314 		 * because the first linfo[0].insn_off must be the
10315 		 * first sub also and the first sub must have
10316 		 * subprog_info[0].start == 0.
10317 		 */
10318 		if ((i && linfo[i].insn_off <= prev_offset) ||
10319 		    linfo[i].insn_off >= prog->len) {
10320 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10321 				i, linfo[i].insn_off, prev_offset,
10322 				prog->len);
10323 			err = -EINVAL;
10324 			goto err_free;
10325 		}
10326 
10327 		if (!prog->insnsi[linfo[i].insn_off].code) {
10328 			verbose(env,
10329 				"Invalid insn code at line_info[%u].insn_off\n",
10330 				i);
10331 			err = -EINVAL;
10332 			goto err_free;
10333 		}
10334 
10335 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10336 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10337 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10338 			err = -EINVAL;
10339 			goto err_free;
10340 		}
10341 
10342 		if (s != env->subprog_cnt) {
10343 			if (linfo[i].insn_off == sub[s].start) {
10344 				sub[s].linfo_idx = i;
10345 				s++;
10346 			} else if (sub[s].start < linfo[i].insn_off) {
10347 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10348 				err = -EINVAL;
10349 				goto err_free;
10350 			}
10351 		}
10352 
10353 		prev_offset = linfo[i].insn_off;
10354 		bpfptr_add(&ulinfo, rec_size);
10355 	}
10356 
10357 	if (s != env->subprog_cnt) {
10358 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10359 			env->subprog_cnt - s, s);
10360 		err = -EINVAL;
10361 		goto err_free;
10362 	}
10363 
10364 	prog->aux->linfo = linfo;
10365 	prog->aux->nr_linfo = nr_linfo;
10366 
10367 	return 0;
10368 
10369 err_free:
10370 	kvfree(linfo);
10371 	return err;
10372 }
10373 
10374 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
10375 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
10376 
10377 static int check_core_relo(struct bpf_verifier_env *env,
10378 			   const union bpf_attr *attr,
10379 			   bpfptr_t uattr)
10380 {
10381 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
10382 	struct bpf_core_relo core_relo = {};
10383 	struct bpf_prog *prog = env->prog;
10384 	const struct btf *btf = prog->aux->btf;
10385 	struct bpf_core_ctx ctx = {
10386 		.log = &env->log,
10387 		.btf = btf,
10388 	};
10389 	bpfptr_t u_core_relo;
10390 	int err;
10391 
10392 	nr_core_relo = attr->core_relo_cnt;
10393 	if (!nr_core_relo)
10394 		return 0;
10395 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
10396 		return -EINVAL;
10397 
10398 	rec_size = attr->core_relo_rec_size;
10399 	if (rec_size < MIN_CORE_RELO_SIZE ||
10400 	    rec_size > MAX_CORE_RELO_SIZE ||
10401 	    rec_size % sizeof(u32))
10402 		return -EINVAL;
10403 
10404 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
10405 	expected_size = sizeof(struct bpf_core_relo);
10406 	ncopy = min_t(u32, expected_size, rec_size);
10407 
10408 	/* Unlike func_info and line_info, copy and apply each CO-RE
10409 	 * relocation record one at a time.
10410 	 */
10411 	for (i = 0; i < nr_core_relo; i++) {
10412 		/* future proofing when sizeof(bpf_core_relo) changes */
10413 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
10414 		if (err) {
10415 			if (err == -E2BIG) {
10416 				verbose(env, "nonzero tailing record in core_relo");
10417 				if (copy_to_bpfptr_offset(uattr,
10418 							  offsetof(union bpf_attr, core_relo_rec_size),
10419 							  &expected_size, sizeof(expected_size)))
10420 					err = -EFAULT;
10421 			}
10422 			break;
10423 		}
10424 
10425 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
10426 			err = -EFAULT;
10427 			break;
10428 		}
10429 
10430 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
10431 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
10432 				i, core_relo.insn_off, prog->len);
10433 			err = -EINVAL;
10434 			break;
10435 		}
10436 
10437 		err = bpf_core_apply(&ctx, &core_relo, i,
10438 				     &prog->insnsi[core_relo.insn_off / 8]);
10439 		if (err)
10440 			break;
10441 		bpfptr_add(&u_core_relo, rec_size);
10442 	}
10443 	return err;
10444 }
10445 
10446 static int check_btf_info(struct bpf_verifier_env *env,
10447 			  const union bpf_attr *attr,
10448 			  bpfptr_t uattr)
10449 {
10450 	struct btf *btf;
10451 	int err;
10452 
10453 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10454 		if (check_abnormal_return(env))
10455 			return -EINVAL;
10456 		return 0;
10457 	}
10458 
10459 	btf = btf_get_by_fd(attr->prog_btf_fd);
10460 	if (IS_ERR(btf))
10461 		return PTR_ERR(btf);
10462 	if (btf_is_kernel(btf)) {
10463 		btf_put(btf);
10464 		return -EACCES;
10465 	}
10466 	env->prog->aux->btf = btf;
10467 
10468 	err = check_btf_func(env, attr, uattr);
10469 	if (err)
10470 		return err;
10471 
10472 	err = check_btf_line(env, attr, uattr);
10473 	if (err)
10474 		return err;
10475 
10476 	err = check_core_relo(env, attr, uattr);
10477 	if (err)
10478 		return err;
10479 
10480 	return 0;
10481 }
10482 
10483 /* check %cur's range satisfies %old's */
10484 static bool range_within(struct bpf_reg_state *old,
10485 			 struct bpf_reg_state *cur)
10486 {
10487 	return old->umin_value <= cur->umin_value &&
10488 	       old->umax_value >= cur->umax_value &&
10489 	       old->smin_value <= cur->smin_value &&
10490 	       old->smax_value >= cur->smax_value &&
10491 	       old->u32_min_value <= cur->u32_min_value &&
10492 	       old->u32_max_value >= cur->u32_max_value &&
10493 	       old->s32_min_value <= cur->s32_min_value &&
10494 	       old->s32_max_value >= cur->s32_max_value;
10495 }
10496 
10497 /* If in the old state two registers had the same id, then they need to have
10498  * the same id in the new state as well.  But that id could be different from
10499  * the old state, so we need to track the mapping from old to new ids.
10500  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10501  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10502  * regs with a different old id could still have new id 9, we don't care about
10503  * that.
10504  * So we look through our idmap to see if this old id has been seen before.  If
10505  * so, we require the new id to match; otherwise, we add the id pair to the map.
10506  */
10507 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10508 {
10509 	unsigned int i;
10510 
10511 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10512 		if (!idmap[i].old) {
10513 			/* Reached an empty slot; haven't seen this id before */
10514 			idmap[i].old = old_id;
10515 			idmap[i].cur = cur_id;
10516 			return true;
10517 		}
10518 		if (idmap[i].old == old_id)
10519 			return idmap[i].cur == cur_id;
10520 	}
10521 	/* We ran out of idmap slots, which should be impossible */
10522 	WARN_ON_ONCE(1);
10523 	return false;
10524 }
10525 
10526 static void clean_func_state(struct bpf_verifier_env *env,
10527 			     struct bpf_func_state *st)
10528 {
10529 	enum bpf_reg_liveness live;
10530 	int i, j;
10531 
10532 	for (i = 0; i < BPF_REG_FP; i++) {
10533 		live = st->regs[i].live;
10534 		/* liveness must not touch this register anymore */
10535 		st->regs[i].live |= REG_LIVE_DONE;
10536 		if (!(live & REG_LIVE_READ))
10537 			/* since the register is unused, clear its state
10538 			 * to make further comparison simpler
10539 			 */
10540 			__mark_reg_not_init(env, &st->regs[i]);
10541 	}
10542 
10543 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10544 		live = st->stack[i].spilled_ptr.live;
10545 		/* liveness must not touch this stack slot anymore */
10546 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10547 		if (!(live & REG_LIVE_READ)) {
10548 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10549 			for (j = 0; j < BPF_REG_SIZE; j++)
10550 				st->stack[i].slot_type[j] = STACK_INVALID;
10551 		}
10552 	}
10553 }
10554 
10555 static void clean_verifier_state(struct bpf_verifier_env *env,
10556 				 struct bpf_verifier_state *st)
10557 {
10558 	int i;
10559 
10560 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10561 		/* all regs in this state in all frames were already marked */
10562 		return;
10563 
10564 	for (i = 0; i <= st->curframe; i++)
10565 		clean_func_state(env, st->frame[i]);
10566 }
10567 
10568 /* the parentage chains form a tree.
10569  * the verifier states are added to state lists at given insn and
10570  * pushed into state stack for future exploration.
10571  * when the verifier reaches bpf_exit insn some of the verifer states
10572  * stored in the state lists have their final liveness state already,
10573  * but a lot of states will get revised from liveness point of view when
10574  * the verifier explores other branches.
10575  * Example:
10576  * 1: r0 = 1
10577  * 2: if r1 == 100 goto pc+1
10578  * 3: r0 = 2
10579  * 4: exit
10580  * when the verifier reaches exit insn the register r0 in the state list of
10581  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10582  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10583  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10584  *
10585  * Since the verifier pushes the branch states as it sees them while exploring
10586  * the program the condition of walking the branch instruction for the second
10587  * time means that all states below this branch were already explored and
10588  * their final liveness marks are already propagated.
10589  * Hence when the verifier completes the search of state list in is_state_visited()
10590  * we can call this clean_live_states() function to mark all liveness states
10591  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10592  * will not be used.
10593  * This function also clears the registers and stack for states that !READ
10594  * to simplify state merging.
10595  *
10596  * Important note here that walking the same branch instruction in the callee
10597  * doesn't meant that the states are DONE. The verifier has to compare
10598  * the callsites
10599  */
10600 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10601 			      struct bpf_verifier_state *cur)
10602 {
10603 	struct bpf_verifier_state_list *sl;
10604 	int i;
10605 
10606 	sl = *explored_state(env, insn);
10607 	while (sl) {
10608 		if (sl->state.branches)
10609 			goto next;
10610 		if (sl->state.insn_idx != insn ||
10611 		    sl->state.curframe != cur->curframe)
10612 			goto next;
10613 		for (i = 0; i <= cur->curframe; i++)
10614 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10615 				goto next;
10616 		clean_verifier_state(env, &sl->state);
10617 next:
10618 		sl = sl->next;
10619 	}
10620 }
10621 
10622 /* Returns true if (rold safe implies rcur safe) */
10623 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10624 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10625 {
10626 	bool equal;
10627 
10628 	if (!(rold->live & REG_LIVE_READ))
10629 		/* explored state didn't use this */
10630 		return true;
10631 
10632 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10633 
10634 	if (rold->type == PTR_TO_STACK)
10635 		/* two stack pointers are equal only if they're pointing to
10636 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10637 		 */
10638 		return equal && rold->frameno == rcur->frameno;
10639 
10640 	if (equal)
10641 		return true;
10642 
10643 	if (rold->type == NOT_INIT)
10644 		/* explored state can't have used this */
10645 		return true;
10646 	if (rcur->type == NOT_INIT)
10647 		return false;
10648 	switch (base_type(rold->type)) {
10649 	case SCALAR_VALUE:
10650 		if (env->explore_alu_limits)
10651 			return false;
10652 		if (rcur->type == SCALAR_VALUE) {
10653 			if (!rold->precise && !rcur->precise)
10654 				return true;
10655 			/* new val must satisfy old val knowledge */
10656 			return range_within(rold, rcur) &&
10657 			       tnum_in(rold->var_off, rcur->var_off);
10658 		} else {
10659 			/* We're trying to use a pointer in place of a scalar.
10660 			 * Even if the scalar was unbounded, this could lead to
10661 			 * pointer leaks because scalars are allowed to leak
10662 			 * while pointers are not. We could make this safe in
10663 			 * special cases if root is calling us, but it's
10664 			 * probably not worth the hassle.
10665 			 */
10666 			return false;
10667 		}
10668 	case PTR_TO_MAP_KEY:
10669 	case PTR_TO_MAP_VALUE:
10670 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10671 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10672 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10673 		 * checked, doing so could have affected others with the same
10674 		 * id, and we can't check for that because we lost the id when
10675 		 * we converted to a PTR_TO_MAP_VALUE.
10676 		 */
10677 		if (type_may_be_null(rold->type)) {
10678 			if (!type_may_be_null(rcur->type))
10679 				return false;
10680 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10681 				return false;
10682 			/* Check our ids match any regs they're supposed to */
10683 			return check_ids(rold->id, rcur->id, idmap);
10684 		}
10685 
10686 		/* If the new min/max/var_off satisfy the old ones and
10687 		 * everything else matches, we are OK.
10688 		 * 'id' is not compared, since it's only used for maps with
10689 		 * bpf_spin_lock inside map element and in such cases if
10690 		 * the rest of the prog is valid for one map element then
10691 		 * it's valid for all map elements regardless of the key
10692 		 * used in bpf_map_lookup()
10693 		 */
10694 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10695 		       range_within(rold, rcur) &&
10696 		       tnum_in(rold->var_off, rcur->var_off);
10697 	case PTR_TO_PACKET_META:
10698 	case PTR_TO_PACKET:
10699 		if (rcur->type != rold->type)
10700 			return false;
10701 		/* We must have at least as much range as the old ptr
10702 		 * did, so that any accesses which were safe before are
10703 		 * still safe.  This is true even if old range < old off,
10704 		 * since someone could have accessed through (ptr - k), or
10705 		 * even done ptr -= k in a register, to get a safe access.
10706 		 */
10707 		if (rold->range > rcur->range)
10708 			return false;
10709 		/* If the offsets don't match, we can't trust our alignment;
10710 		 * nor can we be sure that we won't fall out of range.
10711 		 */
10712 		if (rold->off != rcur->off)
10713 			return false;
10714 		/* id relations must be preserved */
10715 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10716 			return false;
10717 		/* new val must satisfy old val knowledge */
10718 		return range_within(rold, rcur) &&
10719 		       tnum_in(rold->var_off, rcur->var_off);
10720 	case PTR_TO_CTX:
10721 	case CONST_PTR_TO_MAP:
10722 	case PTR_TO_PACKET_END:
10723 	case PTR_TO_FLOW_KEYS:
10724 	case PTR_TO_SOCKET:
10725 	case PTR_TO_SOCK_COMMON:
10726 	case PTR_TO_TCP_SOCK:
10727 	case PTR_TO_XDP_SOCK:
10728 		/* Only valid matches are exact, which memcmp() above
10729 		 * would have accepted
10730 		 */
10731 	default:
10732 		/* Don't know what's going on, just say it's not safe */
10733 		return false;
10734 	}
10735 
10736 	/* Shouldn't get here; if we do, say it's not safe */
10737 	WARN_ON_ONCE(1);
10738 	return false;
10739 }
10740 
10741 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10742 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10743 {
10744 	int i, spi;
10745 
10746 	/* walk slots of the explored stack and ignore any additional
10747 	 * slots in the current stack, since explored(safe) state
10748 	 * didn't use them
10749 	 */
10750 	for (i = 0; i < old->allocated_stack; i++) {
10751 		spi = i / BPF_REG_SIZE;
10752 
10753 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10754 			i += BPF_REG_SIZE - 1;
10755 			/* explored state didn't use this */
10756 			continue;
10757 		}
10758 
10759 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10760 			continue;
10761 
10762 		/* explored stack has more populated slots than current stack
10763 		 * and these slots were used
10764 		 */
10765 		if (i >= cur->allocated_stack)
10766 			return false;
10767 
10768 		/* if old state was safe with misc data in the stack
10769 		 * it will be safe with zero-initialized stack.
10770 		 * The opposite is not true
10771 		 */
10772 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10773 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10774 			continue;
10775 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10776 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10777 			/* Ex: old explored (safe) state has STACK_SPILL in
10778 			 * this stack slot, but current has STACK_MISC ->
10779 			 * this verifier states are not equivalent,
10780 			 * return false to continue verification of this path
10781 			 */
10782 			return false;
10783 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10784 			continue;
10785 		if (!is_spilled_reg(&old->stack[spi]))
10786 			continue;
10787 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10788 			     &cur->stack[spi].spilled_ptr, idmap))
10789 			/* when explored and current stack slot are both storing
10790 			 * spilled registers, check that stored pointers types
10791 			 * are the same as well.
10792 			 * Ex: explored safe path could have stored
10793 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10794 			 * but current path has stored:
10795 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10796 			 * such verifier states are not equivalent.
10797 			 * return false to continue verification of this path
10798 			 */
10799 			return false;
10800 	}
10801 	return true;
10802 }
10803 
10804 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10805 {
10806 	if (old->acquired_refs != cur->acquired_refs)
10807 		return false;
10808 	return !memcmp(old->refs, cur->refs,
10809 		       sizeof(*old->refs) * old->acquired_refs);
10810 }
10811 
10812 /* compare two verifier states
10813  *
10814  * all states stored in state_list are known to be valid, since
10815  * verifier reached 'bpf_exit' instruction through them
10816  *
10817  * this function is called when verifier exploring different branches of
10818  * execution popped from the state stack. If it sees an old state that has
10819  * more strict register state and more strict stack state then this execution
10820  * branch doesn't need to be explored further, since verifier already
10821  * concluded that more strict state leads to valid finish.
10822  *
10823  * Therefore two states are equivalent if register state is more conservative
10824  * and explored stack state is more conservative than the current one.
10825  * Example:
10826  *       explored                   current
10827  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10828  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10829  *
10830  * In other words if current stack state (one being explored) has more
10831  * valid slots than old one that already passed validation, it means
10832  * the verifier can stop exploring and conclude that current state is valid too
10833  *
10834  * Similarly with registers. If explored state has register type as invalid
10835  * whereas register type in current state is meaningful, it means that
10836  * the current state will reach 'bpf_exit' instruction safely
10837  */
10838 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10839 			      struct bpf_func_state *cur)
10840 {
10841 	int i;
10842 
10843 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10844 	for (i = 0; i < MAX_BPF_REG; i++)
10845 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10846 			     env->idmap_scratch))
10847 			return false;
10848 
10849 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10850 		return false;
10851 
10852 	if (!refsafe(old, cur))
10853 		return false;
10854 
10855 	return true;
10856 }
10857 
10858 static bool states_equal(struct bpf_verifier_env *env,
10859 			 struct bpf_verifier_state *old,
10860 			 struct bpf_verifier_state *cur)
10861 {
10862 	int i;
10863 
10864 	if (old->curframe != cur->curframe)
10865 		return false;
10866 
10867 	/* Verification state from speculative execution simulation
10868 	 * must never prune a non-speculative execution one.
10869 	 */
10870 	if (old->speculative && !cur->speculative)
10871 		return false;
10872 
10873 	if (old->active_spin_lock != cur->active_spin_lock)
10874 		return false;
10875 
10876 	/* for states to be equal callsites have to be the same
10877 	 * and all frame states need to be equivalent
10878 	 */
10879 	for (i = 0; i <= old->curframe; i++) {
10880 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10881 			return false;
10882 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10883 			return false;
10884 	}
10885 	return true;
10886 }
10887 
10888 /* Return 0 if no propagation happened. Return negative error code if error
10889  * happened. Otherwise, return the propagated bit.
10890  */
10891 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10892 				  struct bpf_reg_state *reg,
10893 				  struct bpf_reg_state *parent_reg)
10894 {
10895 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10896 	u8 flag = reg->live & REG_LIVE_READ;
10897 	int err;
10898 
10899 	/* When comes here, read flags of PARENT_REG or REG could be any of
10900 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10901 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10902 	 */
10903 	if (parent_flag == REG_LIVE_READ64 ||
10904 	    /* Or if there is no read flag from REG. */
10905 	    !flag ||
10906 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10907 	    parent_flag == flag)
10908 		return 0;
10909 
10910 	err = mark_reg_read(env, reg, parent_reg, flag);
10911 	if (err)
10912 		return err;
10913 
10914 	return flag;
10915 }
10916 
10917 /* A write screens off any subsequent reads; but write marks come from the
10918  * straight-line code between a state and its parent.  When we arrive at an
10919  * equivalent state (jump target or such) we didn't arrive by the straight-line
10920  * code, so read marks in the state must propagate to the parent regardless
10921  * of the state's write marks. That's what 'parent == state->parent' comparison
10922  * in mark_reg_read() is for.
10923  */
10924 static int propagate_liveness(struct bpf_verifier_env *env,
10925 			      const struct bpf_verifier_state *vstate,
10926 			      struct bpf_verifier_state *vparent)
10927 {
10928 	struct bpf_reg_state *state_reg, *parent_reg;
10929 	struct bpf_func_state *state, *parent;
10930 	int i, frame, err = 0;
10931 
10932 	if (vparent->curframe != vstate->curframe) {
10933 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10934 		     vparent->curframe, vstate->curframe);
10935 		return -EFAULT;
10936 	}
10937 	/* Propagate read liveness of registers... */
10938 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10939 	for (frame = 0; frame <= vstate->curframe; frame++) {
10940 		parent = vparent->frame[frame];
10941 		state = vstate->frame[frame];
10942 		parent_reg = parent->regs;
10943 		state_reg = state->regs;
10944 		/* We don't need to worry about FP liveness, it's read-only */
10945 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10946 			err = propagate_liveness_reg(env, &state_reg[i],
10947 						     &parent_reg[i]);
10948 			if (err < 0)
10949 				return err;
10950 			if (err == REG_LIVE_READ64)
10951 				mark_insn_zext(env, &parent_reg[i]);
10952 		}
10953 
10954 		/* Propagate stack slots. */
10955 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10956 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10957 			parent_reg = &parent->stack[i].spilled_ptr;
10958 			state_reg = &state->stack[i].spilled_ptr;
10959 			err = propagate_liveness_reg(env, state_reg,
10960 						     parent_reg);
10961 			if (err < 0)
10962 				return err;
10963 		}
10964 	}
10965 	return 0;
10966 }
10967 
10968 /* find precise scalars in the previous equivalent state and
10969  * propagate them into the current state
10970  */
10971 static int propagate_precision(struct bpf_verifier_env *env,
10972 			       const struct bpf_verifier_state *old)
10973 {
10974 	struct bpf_reg_state *state_reg;
10975 	struct bpf_func_state *state;
10976 	int i, err = 0;
10977 
10978 	state = old->frame[old->curframe];
10979 	state_reg = state->regs;
10980 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10981 		if (state_reg->type != SCALAR_VALUE ||
10982 		    !state_reg->precise)
10983 			continue;
10984 		if (env->log.level & BPF_LOG_LEVEL2)
10985 			verbose(env, "propagating r%d\n", i);
10986 		err = mark_chain_precision(env, i);
10987 		if (err < 0)
10988 			return err;
10989 	}
10990 
10991 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10992 		if (!is_spilled_reg(&state->stack[i]))
10993 			continue;
10994 		state_reg = &state->stack[i].spilled_ptr;
10995 		if (state_reg->type != SCALAR_VALUE ||
10996 		    !state_reg->precise)
10997 			continue;
10998 		if (env->log.level & BPF_LOG_LEVEL2)
10999 			verbose(env, "propagating fp%d\n",
11000 				(-i - 1) * BPF_REG_SIZE);
11001 		err = mark_chain_precision_stack(env, i);
11002 		if (err < 0)
11003 			return err;
11004 	}
11005 	return 0;
11006 }
11007 
11008 static bool states_maybe_looping(struct bpf_verifier_state *old,
11009 				 struct bpf_verifier_state *cur)
11010 {
11011 	struct bpf_func_state *fold, *fcur;
11012 	int i, fr = cur->curframe;
11013 
11014 	if (old->curframe != fr)
11015 		return false;
11016 
11017 	fold = old->frame[fr];
11018 	fcur = cur->frame[fr];
11019 	for (i = 0; i < MAX_BPF_REG; i++)
11020 		if (memcmp(&fold->regs[i], &fcur->regs[i],
11021 			   offsetof(struct bpf_reg_state, parent)))
11022 			return false;
11023 	return true;
11024 }
11025 
11026 
11027 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11028 {
11029 	struct bpf_verifier_state_list *new_sl;
11030 	struct bpf_verifier_state_list *sl, **pprev;
11031 	struct bpf_verifier_state *cur = env->cur_state, *new;
11032 	int i, j, err, states_cnt = 0;
11033 	bool add_new_state = env->test_state_freq ? true : false;
11034 
11035 	cur->last_insn_idx = env->prev_insn_idx;
11036 	if (!env->insn_aux_data[insn_idx].prune_point)
11037 		/* this 'insn_idx' instruction wasn't marked, so we will not
11038 		 * be doing state search here
11039 		 */
11040 		return 0;
11041 
11042 	/* bpf progs typically have pruning point every 4 instructions
11043 	 * http://vger.kernel.org/bpfconf2019.html#session-1
11044 	 * Do not add new state for future pruning if the verifier hasn't seen
11045 	 * at least 2 jumps and at least 8 instructions.
11046 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11047 	 * In tests that amounts to up to 50% reduction into total verifier
11048 	 * memory consumption and 20% verifier time speedup.
11049 	 */
11050 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11051 	    env->insn_processed - env->prev_insn_processed >= 8)
11052 		add_new_state = true;
11053 
11054 	pprev = explored_state(env, insn_idx);
11055 	sl = *pprev;
11056 
11057 	clean_live_states(env, insn_idx, cur);
11058 
11059 	while (sl) {
11060 		states_cnt++;
11061 		if (sl->state.insn_idx != insn_idx)
11062 			goto next;
11063 
11064 		if (sl->state.branches) {
11065 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11066 
11067 			if (frame->in_async_callback_fn &&
11068 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11069 				/* Different async_entry_cnt means that the verifier is
11070 				 * processing another entry into async callback.
11071 				 * Seeing the same state is not an indication of infinite
11072 				 * loop or infinite recursion.
11073 				 * But finding the same state doesn't mean that it's safe
11074 				 * to stop processing the current state. The previous state
11075 				 * hasn't yet reached bpf_exit, since state.branches > 0.
11076 				 * Checking in_async_callback_fn alone is not enough either.
11077 				 * Since the verifier still needs to catch infinite loops
11078 				 * inside async callbacks.
11079 				 */
11080 			} else if (states_maybe_looping(&sl->state, cur) &&
11081 				   states_equal(env, &sl->state, cur)) {
11082 				verbose_linfo(env, insn_idx, "; ");
11083 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11084 				return -EINVAL;
11085 			}
11086 			/* if the verifier is processing a loop, avoid adding new state
11087 			 * too often, since different loop iterations have distinct
11088 			 * states and may not help future pruning.
11089 			 * This threshold shouldn't be too low to make sure that
11090 			 * a loop with large bound will be rejected quickly.
11091 			 * The most abusive loop will be:
11092 			 * r1 += 1
11093 			 * if r1 < 1000000 goto pc-2
11094 			 * 1M insn_procssed limit / 100 == 10k peak states.
11095 			 * This threshold shouldn't be too high either, since states
11096 			 * at the end of the loop are likely to be useful in pruning.
11097 			 */
11098 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11099 			    env->insn_processed - env->prev_insn_processed < 100)
11100 				add_new_state = false;
11101 			goto miss;
11102 		}
11103 		if (states_equal(env, &sl->state, cur)) {
11104 			sl->hit_cnt++;
11105 			/* reached equivalent register/stack state,
11106 			 * prune the search.
11107 			 * Registers read by the continuation are read by us.
11108 			 * If we have any write marks in env->cur_state, they
11109 			 * will prevent corresponding reads in the continuation
11110 			 * from reaching our parent (an explored_state).  Our
11111 			 * own state will get the read marks recorded, but
11112 			 * they'll be immediately forgotten as we're pruning
11113 			 * this state and will pop a new one.
11114 			 */
11115 			err = propagate_liveness(env, &sl->state, cur);
11116 
11117 			/* if previous state reached the exit with precision and
11118 			 * current state is equivalent to it (except precsion marks)
11119 			 * the precision needs to be propagated back in
11120 			 * the current state.
11121 			 */
11122 			err = err ? : push_jmp_history(env, cur);
11123 			err = err ? : propagate_precision(env, &sl->state);
11124 			if (err)
11125 				return err;
11126 			return 1;
11127 		}
11128 miss:
11129 		/* when new state is not going to be added do not increase miss count.
11130 		 * Otherwise several loop iterations will remove the state
11131 		 * recorded earlier. The goal of these heuristics is to have
11132 		 * states from some iterations of the loop (some in the beginning
11133 		 * and some at the end) to help pruning.
11134 		 */
11135 		if (add_new_state)
11136 			sl->miss_cnt++;
11137 		/* heuristic to determine whether this state is beneficial
11138 		 * to keep checking from state equivalence point of view.
11139 		 * Higher numbers increase max_states_per_insn and verification time,
11140 		 * but do not meaningfully decrease insn_processed.
11141 		 */
11142 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11143 			/* the state is unlikely to be useful. Remove it to
11144 			 * speed up verification
11145 			 */
11146 			*pprev = sl->next;
11147 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
11148 				u32 br = sl->state.branches;
11149 
11150 				WARN_ONCE(br,
11151 					  "BUG live_done but branches_to_explore %d\n",
11152 					  br);
11153 				free_verifier_state(&sl->state, false);
11154 				kfree(sl);
11155 				env->peak_states--;
11156 			} else {
11157 				/* cannot free this state, since parentage chain may
11158 				 * walk it later. Add it for free_list instead to
11159 				 * be freed at the end of verification
11160 				 */
11161 				sl->next = env->free_list;
11162 				env->free_list = sl;
11163 			}
11164 			sl = *pprev;
11165 			continue;
11166 		}
11167 next:
11168 		pprev = &sl->next;
11169 		sl = *pprev;
11170 	}
11171 
11172 	if (env->max_states_per_insn < states_cnt)
11173 		env->max_states_per_insn = states_cnt;
11174 
11175 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11176 		return push_jmp_history(env, cur);
11177 
11178 	if (!add_new_state)
11179 		return push_jmp_history(env, cur);
11180 
11181 	/* There were no equivalent states, remember the current one.
11182 	 * Technically the current state is not proven to be safe yet,
11183 	 * but it will either reach outer most bpf_exit (which means it's safe)
11184 	 * or it will be rejected. When there are no loops the verifier won't be
11185 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11186 	 * again on the way to bpf_exit.
11187 	 * When looping the sl->state.branches will be > 0 and this state
11188 	 * will not be considered for equivalence until branches == 0.
11189 	 */
11190 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11191 	if (!new_sl)
11192 		return -ENOMEM;
11193 	env->total_states++;
11194 	env->peak_states++;
11195 	env->prev_jmps_processed = env->jmps_processed;
11196 	env->prev_insn_processed = env->insn_processed;
11197 
11198 	/* add new state to the head of linked list */
11199 	new = &new_sl->state;
11200 	err = copy_verifier_state(new, cur);
11201 	if (err) {
11202 		free_verifier_state(new, false);
11203 		kfree(new_sl);
11204 		return err;
11205 	}
11206 	new->insn_idx = insn_idx;
11207 	WARN_ONCE(new->branches != 1,
11208 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11209 
11210 	cur->parent = new;
11211 	cur->first_insn_idx = insn_idx;
11212 	clear_jmp_history(cur);
11213 	new_sl->next = *explored_state(env, insn_idx);
11214 	*explored_state(env, insn_idx) = new_sl;
11215 	/* connect new state to parentage chain. Current frame needs all
11216 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11217 	 * to the stack implicitly by JITs) so in callers' frames connect just
11218 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11219 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11220 	 * from callee with its full parentage chain, anyway.
11221 	 */
11222 	/* clear write marks in current state: the writes we did are not writes
11223 	 * our child did, so they don't screen off its reads from us.
11224 	 * (There are no read marks in current state, because reads always mark
11225 	 * their parent and current state never has children yet.  Only
11226 	 * explored_states can get read marks.)
11227 	 */
11228 	for (j = 0; j <= cur->curframe; j++) {
11229 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11230 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11231 		for (i = 0; i < BPF_REG_FP; i++)
11232 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11233 	}
11234 
11235 	/* all stack frames are accessible from callee, clear them all */
11236 	for (j = 0; j <= cur->curframe; j++) {
11237 		struct bpf_func_state *frame = cur->frame[j];
11238 		struct bpf_func_state *newframe = new->frame[j];
11239 
11240 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11241 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11242 			frame->stack[i].spilled_ptr.parent =
11243 						&newframe->stack[i].spilled_ptr;
11244 		}
11245 	}
11246 	return 0;
11247 }
11248 
11249 /* Return true if it's OK to have the same insn return a different type. */
11250 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11251 {
11252 	switch (base_type(type)) {
11253 	case PTR_TO_CTX:
11254 	case PTR_TO_SOCKET:
11255 	case PTR_TO_SOCK_COMMON:
11256 	case PTR_TO_TCP_SOCK:
11257 	case PTR_TO_XDP_SOCK:
11258 	case PTR_TO_BTF_ID:
11259 		return false;
11260 	default:
11261 		return true;
11262 	}
11263 }
11264 
11265 /* If an instruction was previously used with particular pointer types, then we
11266  * need to be careful to avoid cases such as the below, where it may be ok
11267  * for one branch accessing the pointer, but not ok for the other branch:
11268  *
11269  * R1 = sock_ptr
11270  * goto X;
11271  * ...
11272  * R1 = some_other_valid_ptr;
11273  * goto X;
11274  * ...
11275  * R2 = *(u32 *)(R1 + 0);
11276  */
11277 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11278 {
11279 	return src != prev && (!reg_type_mismatch_ok(src) ||
11280 			       !reg_type_mismatch_ok(prev));
11281 }
11282 
11283 static int do_check(struct bpf_verifier_env *env)
11284 {
11285 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11286 	struct bpf_verifier_state *state = env->cur_state;
11287 	struct bpf_insn *insns = env->prog->insnsi;
11288 	struct bpf_reg_state *regs;
11289 	int insn_cnt = env->prog->len;
11290 	bool do_print_state = false;
11291 	int prev_insn_idx = -1;
11292 
11293 	for (;;) {
11294 		struct bpf_insn *insn;
11295 		u8 class;
11296 		int err;
11297 
11298 		env->prev_insn_idx = prev_insn_idx;
11299 		if (env->insn_idx >= insn_cnt) {
11300 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
11301 				env->insn_idx, insn_cnt);
11302 			return -EFAULT;
11303 		}
11304 
11305 		insn = &insns[env->insn_idx];
11306 		class = BPF_CLASS(insn->code);
11307 
11308 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11309 			verbose(env,
11310 				"BPF program is too large. Processed %d insn\n",
11311 				env->insn_processed);
11312 			return -E2BIG;
11313 		}
11314 
11315 		err = is_state_visited(env, env->insn_idx);
11316 		if (err < 0)
11317 			return err;
11318 		if (err == 1) {
11319 			/* found equivalent state, can prune the search */
11320 			if (env->log.level & BPF_LOG_LEVEL) {
11321 				if (do_print_state)
11322 					verbose(env, "\nfrom %d to %d%s: safe\n",
11323 						env->prev_insn_idx, env->insn_idx,
11324 						env->cur_state->speculative ?
11325 						" (speculative execution)" : "");
11326 				else
11327 					verbose(env, "%d: safe\n", env->insn_idx);
11328 			}
11329 			goto process_bpf_exit;
11330 		}
11331 
11332 		if (signal_pending(current))
11333 			return -EAGAIN;
11334 
11335 		if (need_resched())
11336 			cond_resched();
11337 
11338 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
11339 			verbose(env, "\nfrom %d to %d%s:",
11340 				env->prev_insn_idx, env->insn_idx,
11341 				env->cur_state->speculative ?
11342 				" (speculative execution)" : "");
11343 			print_verifier_state(env, state->frame[state->curframe], true);
11344 			do_print_state = false;
11345 		}
11346 
11347 		if (env->log.level & BPF_LOG_LEVEL) {
11348 			const struct bpf_insn_cbs cbs = {
11349 				.cb_call	= disasm_kfunc_name,
11350 				.cb_print	= verbose,
11351 				.private_data	= env,
11352 			};
11353 
11354 			if (verifier_state_scratched(env))
11355 				print_insn_state(env, state->frame[state->curframe]);
11356 
11357 			verbose_linfo(env, env->insn_idx, "; ");
11358 			env->prev_log_len = env->log.len_used;
11359 			verbose(env, "%d: ", env->insn_idx);
11360 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11361 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
11362 			env->prev_log_len = env->log.len_used;
11363 		}
11364 
11365 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
11366 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11367 							   env->prev_insn_idx);
11368 			if (err)
11369 				return err;
11370 		}
11371 
11372 		regs = cur_regs(env);
11373 		sanitize_mark_insn_seen(env);
11374 		prev_insn_idx = env->insn_idx;
11375 
11376 		if (class == BPF_ALU || class == BPF_ALU64) {
11377 			err = check_alu_op(env, insn);
11378 			if (err)
11379 				return err;
11380 
11381 		} else if (class == BPF_LDX) {
11382 			enum bpf_reg_type *prev_src_type, src_reg_type;
11383 
11384 			/* check for reserved fields is already done */
11385 
11386 			/* check src operand */
11387 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11388 			if (err)
11389 				return err;
11390 
11391 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11392 			if (err)
11393 				return err;
11394 
11395 			src_reg_type = regs[insn->src_reg].type;
11396 
11397 			/* check that memory (src_reg + off) is readable,
11398 			 * the state of dst_reg will be updated by this func
11399 			 */
11400 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
11401 					       insn->off, BPF_SIZE(insn->code),
11402 					       BPF_READ, insn->dst_reg, false);
11403 			if (err)
11404 				return err;
11405 
11406 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11407 
11408 			if (*prev_src_type == NOT_INIT) {
11409 				/* saw a valid insn
11410 				 * dst_reg = *(u32 *)(src_reg + off)
11411 				 * save type to validate intersecting paths
11412 				 */
11413 				*prev_src_type = src_reg_type;
11414 
11415 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11416 				/* ABuser program is trying to use the same insn
11417 				 * dst_reg = *(u32*) (src_reg + off)
11418 				 * with different pointer types:
11419 				 * src_reg == ctx in one branch and
11420 				 * src_reg == stack|map in some other branch.
11421 				 * Reject it.
11422 				 */
11423 				verbose(env, "same insn cannot be used with different pointers\n");
11424 				return -EINVAL;
11425 			}
11426 
11427 		} else if (class == BPF_STX) {
11428 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11429 
11430 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11431 				err = check_atomic(env, env->insn_idx, insn);
11432 				if (err)
11433 					return err;
11434 				env->insn_idx++;
11435 				continue;
11436 			}
11437 
11438 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11439 				verbose(env, "BPF_STX uses reserved fields\n");
11440 				return -EINVAL;
11441 			}
11442 
11443 			/* check src1 operand */
11444 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11445 			if (err)
11446 				return err;
11447 			/* check src2 operand */
11448 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11449 			if (err)
11450 				return err;
11451 
11452 			dst_reg_type = regs[insn->dst_reg].type;
11453 
11454 			/* check that memory (dst_reg + off) is writeable */
11455 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11456 					       insn->off, BPF_SIZE(insn->code),
11457 					       BPF_WRITE, insn->src_reg, false);
11458 			if (err)
11459 				return err;
11460 
11461 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11462 
11463 			if (*prev_dst_type == NOT_INIT) {
11464 				*prev_dst_type = dst_reg_type;
11465 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11466 				verbose(env, "same insn cannot be used with different pointers\n");
11467 				return -EINVAL;
11468 			}
11469 
11470 		} else if (class == BPF_ST) {
11471 			if (BPF_MODE(insn->code) != BPF_MEM ||
11472 			    insn->src_reg != BPF_REG_0) {
11473 				verbose(env, "BPF_ST uses reserved fields\n");
11474 				return -EINVAL;
11475 			}
11476 			/* check src operand */
11477 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11478 			if (err)
11479 				return err;
11480 
11481 			if (is_ctx_reg(env, insn->dst_reg)) {
11482 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11483 					insn->dst_reg,
11484 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
11485 				return -EACCES;
11486 			}
11487 
11488 			/* check that memory (dst_reg + off) is writeable */
11489 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11490 					       insn->off, BPF_SIZE(insn->code),
11491 					       BPF_WRITE, -1, false);
11492 			if (err)
11493 				return err;
11494 
11495 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11496 			u8 opcode = BPF_OP(insn->code);
11497 
11498 			env->jmps_processed++;
11499 			if (opcode == BPF_CALL) {
11500 				if (BPF_SRC(insn->code) != BPF_K ||
11501 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11502 				     && insn->off != 0) ||
11503 				    (insn->src_reg != BPF_REG_0 &&
11504 				     insn->src_reg != BPF_PSEUDO_CALL &&
11505 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11506 				    insn->dst_reg != BPF_REG_0 ||
11507 				    class == BPF_JMP32) {
11508 					verbose(env, "BPF_CALL uses reserved fields\n");
11509 					return -EINVAL;
11510 				}
11511 
11512 				if (env->cur_state->active_spin_lock &&
11513 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11514 				     insn->imm != BPF_FUNC_spin_unlock)) {
11515 					verbose(env, "function calls are not allowed while holding a lock\n");
11516 					return -EINVAL;
11517 				}
11518 				if (insn->src_reg == BPF_PSEUDO_CALL)
11519 					err = check_func_call(env, insn, &env->insn_idx);
11520 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11521 					err = check_kfunc_call(env, insn);
11522 				else
11523 					err = check_helper_call(env, insn, &env->insn_idx);
11524 				if (err)
11525 					return err;
11526 			} else if (opcode == BPF_JA) {
11527 				if (BPF_SRC(insn->code) != BPF_K ||
11528 				    insn->imm != 0 ||
11529 				    insn->src_reg != BPF_REG_0 ||
11530 				    insn->dst_reg != BPF_REG_0 ||
11531 				    class == BPF_JMP32) {
11532 					verbose(env, "BPF_JA uses reserved fields\n");
11533 					return -EINVAL;
11534 				}
11535 
11536 				env->insn_idx += insn->off + 1;
11537 				continue;
11538 
11539 			} else if (opcode == BPF_EXIT) {
11540 				if (BPF_SRC(insn->code) != BPF_K ||
11541 				    insn->imm != 0 ||
11542 				    insn->src_reg != BPF_REG_0 ||
11543 				    insn->dst_reg != BPF_REG_0 ||
11544 				    class == BPF_JMP32) {
11545 					verbose(env, "BPF_EXIT uses reserved fields\n");
11546 					return -EINVAL;
11547 				}
11548 
11549 				if (env->cur_state->active_spin_lock) {
11550 					verbose(env, "bpf_spin_unlock is missing\n");
11551 					return -EINVAL;
11552 				}
11553 
11554 				if (state->curframe) {
11555 					/* exit from nested function */
11556 					err = prepare_func_exit(env, &env->insn_idx);
11557 					if (err)
11558 						return err;
11559 					do_print_state = true;
11560 					continue;
11561 				}
11562 
11563 				err = check_reference_leak(env);
11564 				if (err)
11565 					return err;
11566 
11567 				err = check_return_code(env);
11568 				if (err)
11569 					return err;
11570 process_bpf_exit:
11571 				mark_verifier_state_scratched(env);
11572 				update_branch_counts(env, env->cur_state);
11573 				err = pop_stack(env, &prev_insn_idx,
11574 						&env->insn_idx, pop_log);
11575 				if (err < 0) {
11576 					if (err != -ENOENT)
11577 						return err;
11578 					break;
11579 				} else {
11580 					do_print_state = true;
11581 					continue;
11582 				}
11583 			} else {
11584 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11585 				if (err)
11586 					return err;
11587 			}
11588 		} else if (class == BPF_LD) {
11589 			u8 mode = BPF_MODE(insn->code);
11590 
11591 			if (mode == BPF_ABS || mode == BPF_IND) {
11592 				err = check_ld_abs(env, insn);
11593 				if (err)
11594 					return err;
11595 
11596 			} else if (mode == BPF_IMM) {
11597 				err = check_ld_imm(env, insn);
11598 				if (err)
11599 					return err;
11600 
11601 				env->insn_idx++;
11602 				sanitize_mark_insn_seen(env);
11603 			} else {
11604 				verbose(env, "invalid BPF_LD mode\n");
11605 				return -EINVAL;
11606 			}
11607 		} else {
11608 			verbose(env, "unknown insn class %d\n", class);
11609 			return -EINVAL;
11610 		}
11611 
11612 		env->insn_idx++;
11613 	}
11614 
11615 	return 0;
11616 }
11617 
11618 static int find_btf_percpu_datasec(struct btf *btf)
11619 {
11620 	const struct btf_type *t;
11621 	const char *tname;
11622 	int i, n;
11623 
11624 	/*
11625 	 * Both vmlinux and module each have their own ".data..percpu"
11626 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11627 	 * types to look at only module's own BTF types.
11628 	 */
11629 	n = btf_nr_types(btf);
11630 	if (btf_is_module(btf))
11631 		i = btf_nr_types(btf_vmlinux);
11632 	else
11633 		i = 1;
11634 
11635 	for(; i < n; i++) {
11636 		t = btf_type_by_id(btf, i);
11637 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11638 			continue;
11639 
11640 		tname = btf_name_by_offset(btf, t->name_off);
11641 		if (!strcmp(tname, ".data..percpu"))
11642 			return i;
11643 	}
11644 
11645 	return -ENOENT;
11646 }
11647 
11648 /* replace pseudo btf_id with kernel symbol address */
11649 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11650 			       struct bpf_insn *insn,
11651 			       struct bpf_insn_aux_data *aux)
11652 {
11653 	const struct btf_var_secinfo *vsi;
11654 	const struct btf_type *datasec;
11655 	struct btf_mod_pair *btf_mod;
11656 	const struct btf_type *t;
11657 	const char *sym_name;
11658 	bool percpu = false;
11659 	u32 type, id = insn->imm;
11660 	struct btf *btf;
11661 	s32 datasec_id;
11662 	u64 addr;
11663 	int i, btf_fd, err;
11664 
11665 	btf_fd = insn[1].imm;
11666 	if (btf_fd) {
11667 		btf = btf_get_by_fd(btf_fd);
11668 		if (IS_ERR(btf)) {
11669 			verbose(env, "invalid module BTF object FD specified.\n");
11670 			return -EINVAL;
11671 		}
11672 	} else {
11673 		if (!btf_vmlinux) {
11674 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11675 			return -EINVAL;
11676 		}
11677 		btf = btf_vmlinux;
11678 		btf_get(btf);
11679 	}
11680 
11681 	t = btf_type_by_id(btf, id);
11682 	if (!t) {
11683 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11684 		err = -ENOENT;
11685 		goto err_put;
11686 	}
11687 
11688 	if (!btf_type_is_var(t)) {
11689 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11690 		err = -EINVAL;
11691 		goto err_put;
11692 	}
11693 
11694 	sym_name = btf_name_by_offset(btf, t->name_off);
11695 	addr = kallsyms_lookup_name(sym_name);
11696 	if (!addr) {
11697 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11698 			sym_name);
11699 		err = -ENOENT;
11700 		goto err_put;
11701 	}
11702 
11703 	datasec_id = find_btf_percpu_datasec(btf);
11704 	if (datasec_id > 0) {
11705 		datasec = btf_type_by_id(btf, datasec_id);
11706 		for_each_vsi(i, datasec, vsi) {
11707 			if (vsi->type == id) {
11708 				percpu = true;
11709 				break;
11710 			}
11711 		}
11712 	}
11713 
11714 	insn[0].imm = (u32)addr;
11715 	insn[1].imm = addr >> 32;
11716 
11717 	type = t->type;
11718 	t = btf_type_skip_modifiers(btf, type, NULL);
11719 	if (percpu) {
11720 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11721 		aux->btf_var.btf = btf;
11722 		aux->btf_var.btf_id = type;
11723 	} else if (!btf_type_is_struct(t)) {
11724 		const struct btf_type *ret;
11725 		const char *tname;
11726 		u32 tsize;
11727 
11728 		/* resolve the type size of ksym. */
11729 		ret = btf_resolve_size(btf, t, &tsize);
11730 		if (IS_ERR(ret)) {
11731 			tname = btf_name_by_offset(btf, t->name_off);
11732 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11733 				tname, PTR_ERR(ret));
11734 			err = -EINVAL;
11735 			goto err_put;
11736 		}
11737 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
11738 		aux->btf_var.mem_size = tsize;
11739 	} else {
11740 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11741 		aux->btf_var.btf = btf;
11742 		aux->btf_var.btf_id = type;
11743 	}
11744 
11745 	/* check whether we recorded this BTF (and maybe module) already */
11746 	for (i = 0; i < env->used_btf_cnt; i++) {
11747 		if (env->used_btfs[i].btf == btf) {
11748 			btf_put(btf);
11749 			return 0;
11750 		}
11751 	}
11752 
11753 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11754 		err = -E2BIG;
11755 		goto err_put;
11756 	}
11757 
11758 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11759 	btf_mod->btf = btf;
11760 	btf_mod->module = NULL;
11761 
11762 	/* if we reference variables from kernel module, bump its refcount */
11763 	if (btf_is_module(btf)) {
11764 		btf_mod->module = btf_try_get_module(btf);
11765 		if (!btf_mod->module) {
11766 			err = -ENXIO;
11767 			goto err_put;
11768 		}
11769 	}
11770 
11771 	env->used_btf_cnt++;
11772 
11773 	return 0;
11774 err_put:
11775 	btf_put(btf);
11776 	return err;
11777 }
11778 
11779 static int check_map_prealloc(struct bpf_map *map)
11780 {
11781 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11782 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11783 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11784 		!(map->map_flags & BPF_F_NO_PREALLOC);
11785 }
11786 
11787 static bool is_tracing_prog_type(enum bpf_prog_type type)
11788 {
11789 	switch (type) {
11790 	case BPF_PROG_TYPE_KPROBE:
11791 	case BPF_PROG_TYPE_TRACEPOINT:
11792 	case BPF_PROG_TYPE_PERF_EVENT:
11793 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11794 		return true;
11795 	default:
11796 		return false;
11797 	}
11798 }
11799 
11800 static bool is_preallocated_map(struct bpf_map *map)
11801 {
11802 	if (!check_map_prealloc(map))
11803 		return false;
11804 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11805 		return false;
11806 	return true;
11807 }
11808 
11809 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11810 					struct bpf_map *map,
11811 					struct bpf_prog *prog)
11812 
11813 {
11814 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11815 	/*
11816 	 * Validate that trace type programs use preallocated hash maps.
11817 	 *
11818 	 * For programs attached to PERF events this is mandatory as the
11819 	 * perf NMI can hit any arbitrary code sequence.
11820 	 *
11821 	 * All other trace types using preallocated hash maps are unsafe as
11822 	 * well because tracepoint or kprobes can be inside locked regions
11823 	 * of the memory allocator or at a place where a recursion into the
11824 	 * memory allocator would see inconsistent state.
11825 	 *
11826 	 * On RT enabled kernels run-time allocation of all trace type
11827 	 * programs is strictly prohibited due to lock type constraints. On
11828 	 * !RT kernels it is allowed for backwards compatibility reasons for
11829 	 * now, but warnings are emitted so developers are made aware of
11830 	 * the unsafety and can fix their programs before this is enforced.
11831 	 */
11832 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11833 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11834 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11835 			return -EINVAL;
11836 		}
11837 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11838 			verbose(env, "trace type programs can only use preallocated hash map\n");
11839 			return -EINVAL;
11840 		}
11841 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11842 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11843 	}
11844 
11845 	if (map_value_has_spin_lock(map)) {
11846 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11847 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11848 			return -EINVAL;
11849 		}
11850 
11851 		if (is_tracing_prog_type(prog_type)) {
11852 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11853 			return -EINVAL;
11854 		}
11855 
11856 		if (prog->aux->sleepable) {
11857 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11858 			return -EINVAL;
11859 		}
11860 	}
11861 
11862 	if (map_value_has_timer(map)) {
11863 		if (is_tracing_prog_type(prog_type)) {
11864 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
11865 			return -EINVAL;
11866 		}
11867 	}
11868 
11869 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11870 	    !bpf_offload_prog_map_match(prog, map)) {
11871 		verbose(env, "offload device mismatch between prog and map\n");
11872 		return -EINVAL;
11873 	}
11874 
11875 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11876 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11877 		return -EINVAL;
11878 	}
11879 
11880 	if (prog->aux->sleepable)
11881 		switch (map->map_type) {
11882 		case BPF_MAP_TYPE_HASH:
11883 		case BPF_MAP_TYPE_LRU_HASH:
11884 		case BPF_MAP_TYPE_ARRAY:
11885 		case BPF_MAP_TYPE_PERCPU_HASH:
11886 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11887 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11888 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11889 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11890 			if (!is_preallocated_map(map)) {
11891 				verbose(env,
11892 					"Sleepable programs can only use preallocated maps\n");
11893 				return -EINVAL;
11894 			}
11895 			break;
11896 		case BPF_MAP_TYPE_RINGBUF:
11897 		case BPF_MAP_TYPE_INODE_STORAGE:
11898 		case BPF_MAP_TYPE_SK_STORAGE:
11899 		case BPF_MAP_TYPE_TASK_STORAGE:
11900 			break;
11901 		default:
11902 			verbose(env,
11903 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11904 			return -EINVAL;
11905 		}
11906 
11907 	return 0;
11908 }
11909 
11910 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11911 {
11912 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11913 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11914 }
11915 
11916 /* find and rewrite pseudo imm in ld_imm64 instructions:
11917  *
11918  * 1. if it accesses map FD, replace it with actual map pointer.
11919  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11920  *
11921  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11922  */
11923 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11924 {
11925 	struct bpf_insn *insn = env->prog->insnsi;
11926 	int insn_cnt = env->prog->len;
11927 	int i, j, err;
11928 
11929 	err = bpf_prog_calc_tag(env->prog);
11930 	if (err)
11931 		return err;
11932 
11933 	for (i = 0; i < insn_cnt; i++, insn++) {
11934 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11935 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11936 			verbose(env, "BPF_LDX uses reserved fields\n");
11937 			return -EINVAL;
11938 		}
11939 
11940 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11941 			struct bpf_insn_aux_data *aux;
11942 			struct bpf_map *map;
11943 			struct fd f;
11944 			u64 addr;
11945 			u32 fd;
11946 
11947 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11948 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11949 			    insn[1].off != 0) {
11950 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11951 				return -EINVAL;
11952 			}
11953 
11954 			if (insn[0].src_reg == 0)
11955 				/* valid generic load 64-bit imm */
11956 				goto next_insn;
11957 
11958 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11959 				aux = &env->insn_aux_data[i];
11960 				err = check_pseudo_btf_id(env, insn, aux);
11961 				if (err)
11962 					return err;
11963 				goto next_insn;
11964 			}
11965 
11966 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11967 				aux = &env->insn_aux_data[i];
11968 				aux->ptr_type = PTR_TO_FUNC;
11969 				goto next_insn;
11970 			}
11971 
11972 			/* In final convert_pseudo_ld_imm64() step, this is
11973 			 * converted into regular 64-bit imm load insn.
11974 			 */
11975 			switch (insn[0].src_reg) {
11976 			case BPF_PSEUDO_MAP_VALUE:
11977 			case BPF_PSEUDO_MAP_IDX_VALUE:
11978 				break;
11979 			case BPF_PSEUDO_MAP_FD:
11980 			case BPF_PSEUDO_MAP_IDX:
11981 				if (insn[1].imm == 0)
11982 					break;
11983 				fallthrough;
11984 			default:
11985 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11986 				return -EINVAL;
11987 			}
11988 
11989 			switch (insn[0].src_reg) {
11990 			case BPF_PSEUDO_MAP_IDX_VALUE:
11991 			case BPF_PSEUDO_MAP_IDX:
11992 				if (bpfptr_is_null(env->fd_array)) {
11993 					verbose(env, "fd_idx without fd_array is invalid\n");
11994 					return -EPROTO;
11995 				}
11996 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11997 							    insn[0].imm * sizeof(fd),
11998 							    sizeof(fd)))
11999 					return -EFAULT;
12000 				break;
12001 			default:
12002 				fd = insn[0].imm;
12003 				break;
12004 			}
12005 
12006 			f = fdget(fd);
12007 			map = __bpf_map_get(f);
12008 			if (IS_ERR(map)) {
12009 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
12010 					insn[0].imm);
12011 				return PTR_ERR(map);
12012 			}
12013 
12014 			err = check_map_prog_compatibility(env, map, env->prog);
12015 			if (err) {
12016 				fdput(f);
12017 				return err;
12018 			}
12019 
12020 			aux = &env->insn_aux_data[i];
12021 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12022 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12023 				addr = (unsigned long)map;
12024 			} else {
12025 				u32 off = insn[1].imm;
12026 
12027 				if (off >= BPF_MAX_VAR_OFF) {
12028 					verbose(env, "direct value offset of %u is not allowed\n", off);
12029 					fdput(f);
12030 					return -EINVAL;
12031 				}
12032 
12033 				if (!map->ops->map_direct_value_addr) {
12034 					verbose(env, "no direct value access support for this map type\n");
12035 					fdput(f);
12036 					return -EINVAL;
12037 				}
12038 
12039 				err = map->ops->map_direct_value_addr(map, &addr, off);
12040 				if (err) {
12041 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12042 						map->value_size, off);
12043 					fdput(f);
12044 					return err;
12045 				}
12046 
12047 				aux->map_off = off;
12048 				addr += off;
12049 			}
12050 
12051 			insn[0].imm = (u32)addr;
12052 			insn[1].imm = addr >> 32;
12053 
12054 			/* check whether we recorded this map already */
12055 			for (j = 0; j < env->used_map_cnt; j++) {
12056 				if (env->used_maps[j] == map) {
12057 					aux->map_index = j;
12058 					fdput(f);
12059 					goto next_insn;
12060 				}
12061 			}
12062 
12063 			if (env->used_map_cnt >= MAX_USED_MAPS) {
12064 				fdput(f);
12065 				return -E2BIG;
12066 			}
12067 
12068 			/* hold the map. If the program is rejected by verifier,
12069 			 * the map will be released by release_maps() or it
12070 			 * will be used by the valid program until it's unloaded
12071 			 * and all maps are released in free_used_maps()
12072 			 */
12073 			bpf_map_inc(map);
12074 
12075 			aux->map_index = env->used_map_cnt;
12076 			env->used_maps[env->used_map_cnt++] = map;
12077 
12078 			if (bpf_map_is_cgroup_storage(map) &&
12079 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
12080 				verbose(env, "only one cgroup storage of each type is allowed\n");
12081 				fdput(f);
12082 				return -EBUSY;
12083 			}
12084 
12085 			fdput(f);
12086 next_insn:
12087 			insn++;
12088 			i++;
12089 			continue;
12090 		}
12091 
12092 		/* Basic sanity check before we invest more work here. */
12093 		if (!bpf_opcode_in_insntable(insn->code)) {
12094 			verbose(env, "unknown opcode %02x\n", insn->code);
12095 			return -EINVAL;
12096 		}
12097 	}
12098 
12099 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12100 	 * 'struct bpf_map *' into a register instead of user map_fd.
12101 	 * These pointers will be used later by verifier to validate map access.
12102 	 */
12103 	return 0;
12104 }
12105 
12106 /* drop refcnt of maps used by the rejected program */
12107 static void release_maps(struct bpf_verifier_env *env)
12108 {
12109 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12110 			     env->used_map_cnt);
12111 }
12112 
12113 /* drop refcnt of maps used by the rejected program */
12114 static void release_btfs(struct bpf_verifier_env *env)
12115 {
12116 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12117 			     env->used_btf_cnt);
12118 }
12119 
12120 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12121 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12122 {
12123 	struct bpf_insn *insn = env->prog->insnsi;
12124 	int insn_cnt = env->prog->len;
12125 	int i;
12126 
12127 	for (i = 0; i < insn_cnt; i++, insn++) {
12128 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12129 			continue;
12130 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12131 			continue;
12132 		insn->src_reg = 0;
12133 	}
12134 }
12135 
12136 /* single env->prog->insni[off] instruction was replaced with the range
12137  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12138  * [0, off) and [off, end) to new locations, so the patched range stays zero
12139  */
12140 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12141 				 struct bpf_insn_aux_data *new_data,
12142 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12143 {
12144 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12145 	struct bpf_insn *insn = new_prog->insnsi;
12146 	u32 old_seen = old_data[off].seen;
12147 	u32 prog_len;
12148 	int i;
12149 
12150 	/* aux info at OFF always needs adjustment, no matter fast path
12151 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12152 	 * original insn at old prog.
12153 	 */
12154 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12155 
12156 	if (cnt == 1)
12157 		return;
12158 	prog_len = new_prog->len;
12159 
12160 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12161 	memcpy(new_data + off + cnt - 1, old_data + off,
12162 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12163 	for (i = off; i < off + cnt - 1; i++) {
12164 		/* Expand insni[off]'s seen count to the patched range. */
12165 		new_data[i].seen = old_seen;
12166 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12167 	}
12168 	env->insn_aux_data = new_data;
12169 	vfree(old_data);
12170 }
12171 
12172 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12173 {
12174 	int i;
12175 
12176 	if (len == 1)
12177 		return;
12178 	/* NOTE: fake 'exit' subprog should be updated as well. */
12179 	for (i = 0; i <= env->subprog_cnt; i++) {
12180 		if (env->subprog_info[i].start <= off)
12181 			continue;
12182 		env->subprog_info[i].start += len - 1;
12183 	}
12184 }
12185 
12186 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12187 {
12188 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12189 	int i, sz = prog->aux->size_poke_tab;
12190 	struct bpf_jit_poke_descriptor *desc;
12191 
12192 	for (i = 0; i < sz; i++) {
12193 		desc = &tab[i];
12194 		if (desc->insn_idx <= off)
12195 			continue;
12196 		desc->insn_idx += len - 1;
12197 	}
12198 }
12199 
12200 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12201 					    const struct bpf_insn *patch, u32 len)
12202 {
12203 	struct bpf_prog *new_prog;
12204 	struct bpf_insn_aux_data *new_data = NULL;
12205 
12206 	if (len > 1) {
12207 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12208 					      sizeof(struct bpf_insn_aux_data)));
12209 		if (!new_data)
12210 			return NULL;
12211 	}
12212 
12213 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12214 	if (IS_ERR(new_prog)) {
12215 		if (PTR_ERR(new_prog) == -ERANGE)
12216 			verbose(env,
12217 				"insn %d cannot be patched due to 16-bit range\n",
12218 				env->insn_aux_data[off].orig_idx);
12219 		vfree(new_data);
12220 		return NULL;
12221 	}
12222 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
12223 	adjust_subprog_starts(env, off, len);
12224 	adjust_poke_descs(new_prog, off, len);
12225 	return new_prog;
12226 }
12227 
12228 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12229 					      u32 off, u32 cnt)
12230 {
12231 	int i, j;
12232 
12233 	/* find first prog starting at or after off (first to remove) */
12234 	for (i = 0; i < env->subprog_cnt; i++)
12235 		if (env->subprog_info[i].start >= off)
12236 			break;
12237 	/* find first prog starting at or after off + cnt (first to stay) */
12238 	for (j = i; j < env->subprog_cnt; j++)
12239 		if (env->subprog_info[j].start >= off + cnt)
12240 			break;
12241 	/* if j doesn't start exactly at off + cnt, we are just removing
12242 	 * the front of previous prog
12243 	 */
12244 	if (env->subprog_info[j].start != off + cnt)
12245 		j--;
12246 
12247 	if (j > i) {
12248 		struct bpf_prog_aux *aux = env->prog->aux;
12249 		int move;
12250 
12251 		/* move fake 'exit' subprog as well */
12252 		move = env->subprog_cnt + 1 - j;
12253 
12254 		memmove(env->subprog_info + i,
12255 			env->subprog_info + j,
12256 			sizeof(*env->subprog_info) * move);
12257 		env->subprog_cnt -= j - i;
12258 
12259 		/* remove func_info */
12260 		if (aux->func_info) {
12261 			move = aux->func_info_cnt - j;
12262 
12263 			memmove(aux->func_info + i,
12264 				aux->func_info + j,
12265 				sizeof(*aux->func_info) * move);
12266 			aux->func_info_cnt -= j - i;
12267 			/* func_info->insn_off is set after all code rewrites,
12268 			 * in adjust_btf_func() - no need to adjust
12269 			 */
12270 		}
12271 	} else {
12272 		/* convert i from "first prog to remove" to "first to adjust" */
12273 		if (env->subprog_info[i].start == off)
12274 			i++;
12275 	}
12276 
12277 	/* update fake 'exit' subprog as well */
12278 	for (; i <= env->subprog_cnt; i++)
12279 		env->subprog_info[i].start -= cnt;
12280 
12281 	return 0;
12282 }
12283 
12284 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12285 				      u32 cnt)
12286 {
12287 	struct bpf_prog *prog = env->prog;
12288 	u32 i, l_off, l_cnt, nr_linfo;
12289 	struct bpf_line_info *linfo;
12290 
12291 	nr_linfo = prog->aux->nr_linfo;
12292 	if (!nr_linfo)
12293 		return 0;
12294 
12295 	linfo = prog->aux->linfo;
12296 
12297 	/* find first line info to remove, count lines to be removed */
12298 	for (i = 0; i < nr_linfo; i++)
12299 		if (linfo[i].insn_off >= off)
12300 			break;
12301 
12302 	l_off = i;
12303 	l_cnt = 0;
12304 	for (; i < nr_linfo; i++)
12305 		if (linfo[i].insn_off < off + cnt)
12306 			l_cnt++;
12307 		else
12308 			break;
12309 
12310 	/* First live insn doesn't match first live linfo, it needs to "inherit"
12311 	 * last removed linfo.  prog is already modified, so prog->len == off
12312 	 * means no live instructions after (tail of the program was removed).
12313 	 */
12314 	if (prog->len != off && l_cnt &&
12315 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12316 		l_cnt--;
12317 		linfo[--i].insn_off = off + cnt;
12318 	}
12319 
12320 	/* remove the line info which refer to the removed instructions */
12321 	if (l_cnt) {
12322 		memmove(linfo + l_off, linfo + i,
12323 			sizeof(*linfo) * (nr_linfo - i));
12324 
12325 		prog->aux->nr_linfo -= l_cnt;
12326 		nr_linfo = prog->aux->nr_linfo;
12327 	}
12328 
12329 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
12330 	for (i = l_off; i < nr_linfo; i++)
12331 		linfo[i].insn_off -= cnt;
12332 
12333 	/* fix up all subprogs (incl. 'exit') which start >= off */
12334 	for (i = 0; i <= env->subprog_cnt; i++)
12335 		if (env->subprog_info[i].linfo_idx > l_off) {
12336 			/* program may have started in the removed region but
12337 			 * may not be fully removed
12338 			 */
12339 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12340 				env->subprog_info[i].linfo_idx -= l_cnt;
12341 			else
12342 				env->subprog_info[i].linfo_idx = l_off;
12343 		}
12344 
12345 	return 0;
12346 }
12347 
12348 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12349 {
12350 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12351 	unsigned int orig_prog_len = env->prog->len;
12352 	int err;
12353 
12354 	if (bpf_prog_is_dev_bound(env->prog->aux))
12355 		bpf_prog_offload_remove_insns(env, off, cnt);
12356 
12357 	err = bpf_remove_insns(env->prog, off, cnt);
12358 	if (err)
12359 		return err;
12360 
12361 	err = adjust_subprog_starts_after_remove(env, off, cnt);
12362 	if (err)
12363 		return err;
12364 
12365 	err = bpf_adj_linfo_after_remove(env, off, cnt);
12366 	if (err)
12367 		return err;
12368 
12369 	memmove(aux_data + off,	aux_data + off + cnt,
12370 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
12371 
12372 	return 0;
12373 }
12374 
12375 /* The verifier does more data flow analysis than llvm and will not
12376  * explore branches that are dead at run time. Malicious programs can
12377  * have dead code too. Therefore replace all dead at-run-time code
12378  * with 'ja -1'.
12379  *
12380  * Just nops are not optimal, e.g. if they would sit at the end of the
12381  * program and through another bug we would manage to jump there, then
12382  * we'd execute beyond program memory otherwise. Returning exception
12383  * code also wouldn't work since we can have subprogs where the dead
12384  * code could be located.
12385  */
12386 static void sanitize_dead_code(struct bpf_verifier_env *env)
12387 {
12388 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12389 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12390 	struct bpf_insn *insn = env->prog->insnsi;
12391 	const int insn_cnt = env->prog->len;
12392 	int i;
12393 
12394 	for (i = 0; i < insn_cnt; i++) {
12395 		if (aux_data[i].seen)
12396 			continue;
12397 		memcpy(insn + i, &trap, sizeof(trap));
12398 		aux_data[i].zext_dst = false;
12399 	}
12400 }
12401 
12402 static bool insn_is_cond_jump(u8 code)
12403 {
12404 	u8 op;
12405 
12406 	if (BPF_CLASS(code) == BPF_JMP32)
12407 		return true;
12408 
12409 	if (BPF_CLASS(code) != BPF_JMP)
12410 		return false;
12411 
12412 	op = BPF_OP(code);
12413 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12414 }
12415 
12416 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12417 {
12418 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12419 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12420 	struct bpf_insn *insn = env->prog->insnsi;
12421 	const int insn_cnt = env->prog->len;
12422 	int i;
12423 
12424 	for (i = 0; i < insn_cnt; i++, insn++) {
12425 		if (!insn_is_cond_jump(insn->code))
12426 			continue;
12427 
12428 		if (!aux_data[i + 1].seen)
12429 			ja.off = insn->off;
12430 		else if (!aux_data[i + 1 + insn->off].seen)
12431 			ja.off = 0;
12432 		else
12433 			continue;
12434 
12435 		if (bpf_prog_is_dev_bound(env->prog->aux))
12436 			bpf_prog_offload_replace_insn(env, i, &ja);
12437 
12438 		memcpy(insn, &ja, sizeof(ja));
12439 	}
12440 }
12441 
12442 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12443 {
12444 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12445 	int insn_cnt = env->prog->len;
12446 	int i, err;
12447 
12448 	for (i = 0; i < insn_cnt; i++) {
12449 		int j;
12450 
12451 		j = 0;
12452 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12453 			j++;
12454 		if (!j)
12455 			continue;
12456 
12457 		err = verifier_remove_insns(env, i, j);
12458 		if (err)
12459 			return err;
12460 		insn_cnt = env->prog->len;
12461 	}
12462 
12463 	return 0;
12464 }
12465 
12466 static int opt_remove_nops(struct bpf_verifier_env *env)
12467 {
12468 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12469 	struct bpf_insn *insn = env->prog->insnsi;
12470 	int insn_cnt = env->prog->len;
12471 	int i, err;
12472 
12473 	for (i = 0; i < insn_cnt; i++) {
12474 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12475 			continue;
12476 
12477 		err = verifier_remove_insns(env, i, 1);
12478 		if (err)
12479 			return err;
12480 		insn_cnt--;
12481 		i--;
12482 	}
12483 
12484 	return 0;
12485 }
12486 
12487 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12488 					 const union bpf_attr *attr)
12489 {
12490 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12491 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12492 	int i, patch_len, delta = 0, len = env->prog->len;
12493 	struct bpf_insn *insns = env->prog->insnsi;
12494 	struct bpf_prog *new_prog;
12495 	bool rnd_hi32;
12496 
12497 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12498 	zext_patch[1] = BPF_ZEXT_REG(0);
12499 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12500 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12501 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12502 	for (i = 0; i < len; i++) {
12503 		int adj_idx = i + delta;
12504 		struct bpf_insn insn;
12505 		int load_reg;
12506 
12507 		insn = insns[adj_idx];
12508 		load_reg = insn_def_regno(&insn);
12509 		if (!aux[adj_idx].zext_dst) {
12510 			u8 code, class;
12511 			u32 imm_rnd;
12512 
12513 			if (!rnd_hi32)
12514 				continue;
12515 
12516 			code = insn.code;
12517 			class = BPF_CLASS(code);
12518 			if (load_reg == -1)
12519 				continue;
12520 
12521 			/* NOTE: arg "reg" (the fourth one) is only used for
12522 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12523 			 *       here.
12524 			 */
12525 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12526 				if (class == BPF_LD &&
12527 				    BPF_MODE(code) == BPF_IMM)
12528 					i++;
12529 				continue;
12530 			}
12531 
12532 			/* ctx load could be transformed into wider load. */
12533 			if (class == BPF_LDX &&
12534 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12535 				continue;
12536 
12537 			imm_rnd = get_random_int();
12538 			rnd_hi32_patch[0] = insn;
12539 			rnd_hi32_patch[1].imm = imm_rnd;
12540 			rnd_hi32_patch[3].dst_reg = load_reg;
12541 			patch = rnd_hi32_patch;
12542 			patch_len = 4;
12543 			goto apply_patch_buffer;
12544 		}
12545 
12546 		/* Add in an zero-extend instruction if a) the JIT has requested
12547 		 * it or b) it's a CMPXCHG.
12548 		 *
12549 		 * The latter is because: BPF_CMPXCHG always loads a value into
12550 		 * R0, therefore always zero-extends. However some archs'
12551 		 * equivalent instruction only does this load when the
12552 		 * comparison is successful. This detail of CMPXCHG is
12553 		 * orthogonal to the general zero-extension behaviour of the
12554 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12555 		 */
12556 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12557 			continue;
12558 
12559 		if (WARN_ON(load_reg == -1)) {
12560 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12561 			return -EFAULT;
12562 		}
12563 
12564 		zext_patch[0] = insn;
12565 		zext_patch[1].dst_reg = load_reg;
12566 		zext_patch[1].src_reg = load_reg;
12567 		patch = zext_patch;
12568 		patch_len = 2;
12569 apply_patch_buffer:
12570 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12571 		if (!new_prog)
12572 			return -ENOMEM;
12573 		env->prog = new_prog;
12574 		insns = new_prog->insnsi;
12575 		aux = env->insn_aux_data;
12576 		delta += patch_len - 1;
12577 	}
12578 
12579 	return 0;
12580 }
12581 
12582 /* convert load instructions that access fields of a context type into a
12583  * sequence of instructions that access fields of the underlying structure:
12584  *     struct __sk_buff    -> struct sk_buff
12585  *     struct bpf_sock_ops -> struct sock
12586  */
12587 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12588 {
12589 	const struct bpf_verifier_ops *ops = env->ops;
12590 	int i, cnt, size, ctx_field_size, delta = 0;
12591 	const int insn_cnt = env->prog->len;
12592 	struct bpf_insn insn_buf[16], *insn;
12593 	u32 target_size, size_default, off;
12594 	struct bpf_prog *new_prog;
12595 	enum bpf_access_type type;
12596 	bool is_narrower_load;
12597 
12598 	if (ops->gen_prologue || env->seen_direct_write) {
12599 		if (!ops->gen_prologue) {
12600 			verbose(env, "bpf verifier is misconfigured\n");
12601 			return -EINVAL;
12602 		}
12603 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12604 					env->prog);
12605 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12606 			verbose(env, "bpf verifier is misconfigured\n");
12607 			return -EINVAL;
12608 		} else if (cnt) {
12609 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12610 			if (!new_prog)
12611 				return -ENOMEM;
12612 
12613 			env->prog = new_prog;
12614 			delta += cnt - 1;
12615 		}
12616 	}
12617 
12618 	if (bpf_prog_is_dev_bound(env->prog->aux))
12619 		return 0;
12620 
12621 	insn = env->prog->insnsi + delta;
12622 
12623 	for (i = 0; i < insn_cnt; i++, insn++) {
12624 		bpf_convert_ctx_access_t convert_ctx_access;
12625 		bool ctx_access;
12626 
12627 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12628 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12629 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12630 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12631 			type = BPF_READ;
12632 			ctx_access = true;
12633 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12634 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12635 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12636 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12637 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12638 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12639 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12640 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12641 			type = BPF_WRITE;
12642 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12643 		} else {
12644 			continue;
12645 		}
12646 
12647 		if (type == BPF_WRITE &&
12648 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
12649 			struct bpf_insn patch[] = {
12650 				*insn,
12651 				BPF_ST_NOSPEC(),
12652 			};
12653 
12654 			cnt = ARRAY_SIZE(patch);
12655 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12656 			if (!new_prog)
12657 				return -ENOMEM;
12658 
12659 			delta    += cnt - 1;
12660 			env->prog = new_prog;
12661 			insn      = new_prog->insnsi + i + delta;
12662 			continue;
12663 		}
12664 
12665 		if (!ctx_access)
12666 			continue;
12667 
12668 		switch (env->insn_aux_data[i + delta].ptr_type) {
12669 		case PTR_TO_CTX:
12670 			if (!ops->convert_ctx_access)
12671 				continue;
12672 			convert_ctx_access = ops->convert_ctx_access;
12673 			break;
12674 		case PTR_TO_SOCKET:
12675 		case PTR_TO_SOCK_COMMON:
12676 			convert_ctx_access = bpf_sock_convert_ctx_access;
12677 			break;
12678 		case PTR_TO_TCP_SOCK:
12679 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12680 			break;
12681 		case PTR_TO_XDP_SOCK:
12682 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12683 			break;
12684 		case PTR_TO_BTF_ID:
12685 			if (type == BPF_READ) {
12686 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12687 					BPF_SIZE((insn)->code);
12688 				env->prog->aux->num_exentries++;
12689 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12690 				verbose(env, "Writes through BTF pointers are not allowed\n");
12691 				return -EINVAL;
12692 			}
12693 			continue;
12694 		default:
12695 			continue;
12696 		}
12697 
12698 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12699 		size = BPF_LDST_BYTES(insn);
12700 
12701 		/* If the read access is a narrower load of the field,
12702 		 * convert to a 4/8-byte load, to minimum program type specific
12703 		 * convert_ctx_access changes. If conversion is successful,
12704 		 * we will apply proper mask to the result.
12705 		 */
12706 		is_narrower_load = size < ctx_field_size;
12707 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12708 		off = insn->off;
12709 		if (is_narrower_load) {
12710 			u8 size_code;
12711 
12712 			if (type == BPF_WRITE) {
12713 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12714 				return -EINVAL;
12715 			}
12716 
12717 			size_code = BPF_H;
12718 			if (ctx_field_size == 4)
12719 				size_code = BPF_W;
12720 			else if (ctx_field_size == 8)
12721 				size_code = BPF_DW;
12722 
12723 			insn->off = off & ~(size_default - 1);
12724 			insn->code = BPF_LDX | BPF_MEM | size_code;
12725 		}
12726 
12727 		target_size = 0;
12728 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12729 					 &target_size);
12730 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12731 		    (ctx_field_size && !target_size)) {
12732 			verbose(env, "bpf verifier is misconfigured\n");
12733 			return -EINVAL;
12734 		}
12735 
12736 		if (is_narrower_load && size < target_size) {
12737 			u8 shift = bpf_ctx_narrow_access_offset(
12738 				off, size, size_default) * 8;
12739 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12740 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12741 				return -EINVAL;
12742 			}
12743 			if (ctx_field_size <= 4) {
12744 				if (shift)
12745 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12746 									insn->dst_reg,
12747 									shift);
12748 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12749 								(1 << size * 8) - 1);
12750 			} else {
12751 				if (shift)
12752 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12753 									insn->dst_reg,
12754 									shift);
12755 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12756 								(1ULL << size * 8) - 1);
12757 			}
12758 		}
12759 
12760 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12761 		if (!new_prog)
12762 			return -ENOMEM;
12763 
12764 		delta += cnt - 1;
12765 
12766 		/* keep walking new program and skip insns we just inserted */
12767 		env->prog = new_prog;
12768 		insn      = new_prog->insnsi + i + delta;
12769 	}
12770 
12771 	return 0;
12772 }
12773 
12774 static int jit_subprogs(struct bpf_verifier_env *env)
12775 {
12776 	struct bpf_prog *prog = env->prog, **func, *tmp;
12777 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12778 	struct bpf_map *map_ptr;
12779 	struct bpf_insn *insn;
12780 	void *old_bpf_func;
12781 	int err, num_exentries;
12782 
12783 	if (env->subprog_cnt <= 1)
12784 		return 0;
12785 
12786 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12787 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
12788 			continue;
12789 
12790 		/* Upon error here we cannot fall back to interpreter but
12791 		 * need a hard reject of the program. Thus -EFAULT is
12792 		 * propagated in any case.
12793 		 */
12794 		subprog = find_subprog(env, i + insn->imm + 1);
12795 		if (subprog < 0) {
12796 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12797 				  i + insn->imm + 1);
12798 			return -EFAULT;
12799 		}
12800 		/* temporarily remember subprog id inside insn instead of
12801 		 * aux_data, since next loop will split up all insns into funcs
12802 		 */
12803 		insn->off = subprog;
12804 		/* remember original imm in case JIT fails and fallback
12805 		 * to interpreter will be needed
12806 		 */
12807 		env->insn_aux_data[i].call_imm = insn->imm;
12808 		/* point imm to __bpf_call_base+1 from JITs point of view */
12809 		insn->imm = 1;
12810 		if (bpf_pseudo_func(insn))
12811 			/* jit (e.g. x86_64) may emit fewer instructions
12812 			 * if it learns a u32 imm is the same as a u64 imm.
12813 			 * Force a non zero here.
12814 			 */
12815 			insn[1].imm = 1;
12816 	}
12817 
12818 	err = bpf_prog_alloc_jited_linfo(prog);
12819 	if (err)
12820 		goto out_undo_insn;
12821 
12822 	err = -ENOMEM;
12823 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12824 	if (!func)
12825 		goto out_undo_insn;
12826 
12827 	for (i = 0; i < env->subprog_cnt; i++) {
12828 		subprog_start = subprog_end;
12829 		subprog_end = env->subprog_info[i + 1].start;
12830 
12831 		len = subprog_end - subprog_start;
12832 		/* bpf_prog_run() doesn't call subprogs directly,
12833 		 * hence main prog stats include the runtime of subprogs.
12834 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12835 		 * func[i]->stats will never be accessed and stays NULL
12836 		 */
12837 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12838 		if (!func[i])
12839 			goto out_free;
12840 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12841 		       len * sizeof(struct bpf_insn));
12842 		func[i]->type = prog->type;
12843 		func[i]->len = len;
12844 		if (bpf_prog_calc_tag(func[i]))
12845 			goto out_free;
12846 		func[i]->is_func = 1;
12847 		func[i]->aux->func_idx = i;
12848 		/* Below members will be freed only at prog->aux */
12849 		func[i]->aux->btf = prog->aux->btf;
12850 		func[i]->aux->func_info = prog->aux->func_info;
12851 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12852 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12853 
12854 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12855 			struct bpf_jit_poke_descriptor *poke;
12856 
12857 			poke = &prog->aux->poke_tab[j];
12858 			if (poke->insn_idx < subprog_end &&
12859 			    poke->insn_idx >= subprog_start)
12860 				poke->aux = func[i]->aux;
12861 		}
12862 
12863 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12864 		 * Long term would need debug info to populate names
12865 		 */
12866 		func[i]->aux->name[0] = 'F';
12867 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12868 		func[i]->jit_requested = 1;
12869 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12870 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
12871 		func[i]->aux->linfo = prog->aux->linfo;
12872 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12873 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12874 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12875 		num_exentries = 0;
12876 		insn = func[i]->insnsi;
12877 		for (j = 0; j < func[i]->len; j++, insn++) {
12878 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12879 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12880 				num_exentries++;
12881 		}
12882 		func[i]->aux->num_exentries = num_exentries;
12883 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12884 		func[i] = bpf_int_jit_compile(func[i]);
12885 		if (!func[i]->jited) {
12886 			err = -ENOTSUPP;
12887 			goto out_free;
12888 		}
12889 		cond_resched();
12890 	}
12891 
12892 	/* at this point all bpf functions were successfully JITed
12893 	 * now populate all bpf_calls with correct addresses and
12894 	 * run last pass of JIT
12895 	 */
12896 	for (i = 0; i < env->subprog_cnt; i++) {
12897 		insn = func[i]->insnsi;
12898 		for (j = 0; j < func[i]->len; j++, insn++) {
12899 			if (bpf_pseudo_func(insn)) {
12900 				subprog = insn->off;
12901 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12902 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12903 				continue;
12904 			}
12905 			if (!bpf_pseudo_call(insn))
12906 				continue;
12907 			subprog = insn->off;
12908 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
12909 		}
12910 
12911 		/* we use the aux data to keep a list of the start addresses
12912 		 * of the JITed images for each function in the program
12913 		 *
12914 		 * for some architectures, such as powerpc64, the imm field
12915 		 * might not be large enough to hold the offset of the start
12916 		 * address of the callee's JITed image from __bpf_call_base
12917 		 *
12918 		 * in such cases, we can lookup the start address of a callee
12919 		 * by using its subprog id, available from the off field of
12920 		 * the call instruction, as an index for this list
12921 		 */
12922 		func[i]->aux->func = func;
12923 		func[i]->aux->func_cnt = env->subprog_cnt;
12924 	}
12925 	for (i = 0; i < env->subprog_cnt; i++) {
12926 		old_bpf_func = func[i]->bpf_func;
12927 		tmp = bpf_int_jit_compile(func[i]);
12928 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12929 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12930 			err = -ENOTSUPP;
12931 			goto out_free;
12932 		}
12933 		cond_resched();
12934 	}
12935 
12936 	/* finally lock prog and jit images for all functions and
12937 	 * populate kallsysm
12938 	 */
12939 	for (i = 0; i < env->subprog_cnt; i++) {
12940 		bpf_prog_lock_ro(func[i]);
12941 		bpf_prog_kallsyms_add(func[i]);
12942 	}
12943 
12944 	/* Last step: make now unused interpreter insns from main
12945 	 * prog consistent for later dump requests, so they can
12946 	 * later look the same as if they were interpreted only.
12947 	 */
12948 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12949 		if (bpf_pseudo_func(insn)) {
12950 			insn[0].imm = env->insn_aux_data[i].call_imm;
12951 			insn[1].imm = insn->off;
12952 			insn->off = 0;
12953 			continue;
12954 		}
12955 		if (!bpf_pseudo_call(insn))
12956 			continue;
12957 		insn->off = env->insn_aux_data[i].call_imm;
12958 		subprog = find_subprog(env, i + insn->off + 1);
12959 		insn->imm = subprog;
12960 	}
12961 
12962 	prog->jited = 1;
12963 	prog->bpf_func = func[0]->bpf_func;
12964 	prog->aux->func = func;
12965 	prog->aux->func_cnt = env->subprog_cnt;
12966 	bpf_prog_jit_attempt_done(prog);
12967 	return 0;
12968 out_free:
12969 	/* We failed JIT'ing, so at this point we need to unregister poke
12970 	 * descriptors from subprogs, so that kernel is not attempting to
12971 	 * patch it anymore as we're freeing the subprog JIT memory.
12972 	 */
12973 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12974 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12975 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12976 	}
12977 	/* At this point we're guaranteed that poke descriptors are not
12978 	 * live anymore. We can just unlink its descriptor table as it's
12979 	 * released with the main prog.
12980 	 */
12981 	for (i = 0; i < env->subprog_cnt; i++) {
12982 		if (!func[i])
12983 			continue;
12984 		func[i]->aux->poke_tab = NULL;
12985 		bpf_jit_free(func[i]);
12986 	}
12987 	kfree(func);
12988 out_undo_insn:
12989 	/* cleanup main prog to be interpreted */
12990 	prog->jit_requested = 0;
12991 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12992 		if (!bpf_pseudo_call(insn))
12993 			continue;
12994 		insn->off = 0;
12995 		insn->imm = env->insn_aux_data[i].call_imm;
12996 	}
12997 	bpf_prog_jit_attempt_done(prog);
12998 	return err;
12999 }
13000 
13001 static int fixup_call_args(struct bpf_verifier_env *env)
13002 {
13003 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13004 	struct bpf_prog *prog = env->prog;
13005 	struct bpf_insn *insn = prog->insnsi;
13006 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13007 	int i, depth;
13008 #endif
13009 	int err = 0;
13010 
13011 	if (env->prog->jit_requested &&
13012 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
13013 		err = jit_subprogs(env);
13014 		if (err == 0)
13015 			return 0;
13016 		if (err == -EFAULT)
13017 			return err;
13018 	}
13019 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13020 	if (has_kfunc_call) {
13021 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13022 		return -EINVAL;
13023 	}
13024 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13025 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
13026 		 * have to be rejected, since interpreter doesn't support them yet.
13027 		 */
13028 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13029 		return -EINVAL;
13030 	}
13031 	for (i = 0; i < prog->len; i++, insn++) {
13032 		if (bpf_pseudo_func(insn)) {
13033 			/* When JIT fails the progs with callback calls
13034 			 * have to be rejected, since interpreter doesn't support them yet.
13035 			 */
13036 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
13037 			return -EINVAL;
13038 		}
13039 
13040 		if (!bpf_pseudo_call(insn))
13041 			continue;
13042 		depth = get_callee_stack_depth(env, insn, i);
13043 		if (depth < 0)
13044 			return depth;
13045 		bpf_patch_call_args(insn, depth);
13046 	}
13047 	err = 0;
13048 #endif
13049 	return err;
13050 }
13051 
13052 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13053 			    struct bpf_insn *insn)
13054 {
13055 	const struct bpf_kfunc_desc *desc;
13056 
13057 	if (!insn->imm) {
13058 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13059 		return -EINVAL;
13060 	}
13061 
13062 	/* insn->imm has the btf func_id. Replace it with
13063 	 * an address (relative to __bpf_base_call).
13064 	 */
13065 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13066 	if (!desc) {
13067 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13068 			insn->imm);
13069 		return -EFAULT;
13070 	}
13071 
13072 	insn->imm = desc->imm;
13073 
13074 	return 0;
13075 }
13076 
13077 /* Do various post-verification rewrites in a single program pass.
13078  * These rewrites simplify JIT and interpreter implementations.
13079  */
13080 static int do_misc_fixups(struct bpf_verifier_env *env)
13081 {
13082 	struct bpf_prog *prog = env->prog;
13083 	enum bpf_attach_type eatype = prog->expected_attach_type;
13084 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
13085 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13086 	struct bpf_insn *insn = prog->insnsi;
13087 	const struct bpf_func_proto *fn;
13088 	const int insn_cnt = prog->len;
13089 	const struct bpf_map_ops *ops;
13090 	struct bpf_insn_aux_data *aux;
13091 	struct bpf_insn insn_buf[16];
13092 	struct bpf_prog *new_prog;
13093 	struct bpf_map *map_ptr;
13094 	int i, ret, cnt, delta = 0;
13095 
13096 	for (i = 0; i < insn_cnt; i++, insn++) {
13097 		/* Make divide-by-zero exceptions impossible. */
13098 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13099 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13100 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13101 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13102 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13103 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13104 			struct bpf_insn *patchlet;
13105 			struct bpf_insn chk_and_div[] = {
13106 				/* [R,W]x div 0 -> 0 */
13107 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13108 					     BPF_JNE | BPF_K, insn->src_reg,
13109 					     0, 2, 0),
13110 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13111 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13112 				*insn,
13113 			};
13114 			struct bpf_insn chk_and_mod[] = {
13115 				/* [R,W]x mod 0 -> [R,W]x */
13116 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13117 					     BPF_JEQ | BPF_K, insn->src_reg,
13118 					     0, 1 + (is64 ? 0 : 1), 0),
13119 				*insn,
13120 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13121 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13122 			};
13123 
13124 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13125 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13126 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13127 
13128 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13129 			if (!new_prog)
13130 				return -ENOMEM;
13131 
13132 			delta    += cnt - 1;
13133 			env->prog = prog = new_prog;
13134 			insn      = new_prog->insnsi + i + delta;
13135 			continue;
13136 		}
13137 
13138 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13139 		if (BPF_CLASS(insn->code) == BPF_LD &&
13140 		    (BPF_MODE(insn->code) == BPF_ABS ||
13141 		     BPF_MODE(insn->code) == BPF_IND)) {
13142 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13143 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13144 				verbose(env, "bpf verifier is misconfigured\n");
13145 				return -EINVAL;
13146 			}
13147 
13148 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13149 			if (!new_prog)
13150 				return -ENOMEM;
13151 
13152 			delta    += cnt - 1;
13153 			env->prog = prog = new_prog;
13154 			insn      = new_prog->insnsi + i + delta;
13155 			continue;
13156 		}
13157 
13158 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13159 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13160 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13161 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13162 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13163 			struct bpf_insn *patch = &insn_buf[0];
13164 			bool issrc, isneg, isimm;
13165 			u32 off_reg;
13166 
13167 			aux = &env->insn_aux_data[i + delta];
13168 			if (!aux->alu_state ||
13169 			    aux->alu_state == BPF_ALU_NON_POINTER)
13170 				continue;
13171 
13172 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13173 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13174 				BPF_ALU_SANITIZE_SRC;
13175 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13176 
13177 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
13178 			if (isimm) {
13179 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13180 			} else {
13181 				if (isneg)
13182 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13183 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13184 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13185 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13186 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13187 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13188 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13189 			}
13190 			if (!issrc)
13191 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13192 			insn->src_reg = BPF_REG_AX;
13193 			if (isneg)
13194 				insn->code = insn->code == code_add ?
13195 					     code_sub : code_add;
13196 			*patch++ = *insn;
13197 			if (issrc && isneg && !isimm)
13198 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13199 			cnt = patch - insn_buf;
13200 
13201 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13202 			if (!new_prog)
13203 				return -ENOMEM;
13204 
13205 			delta    += cnt - 1;
13206 			env->prog = prog = new_prog;
13207 			insn      = new_prog->insnsi + i + delta;
13208 			continue;
13209 		}
13210 
13211 		if (insn->code != (BPF_JMP | BPF_CALL))
13212 			continue;
13213 		if (insn->src_reg == BPF_PSEUDO_CALL)
13214 			continue;
13215 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13216 			ret = fixup_kfunc_call(env, insn);
13217 			if (ret)
13218 				return ret;
13219 			continue;
13220 		}
13221 
13222 		if (insn->imm == BPF_FUNC_get_route_realm)
13223 			prog->dst_needed = 1;
13224 		if (insn->imm == BPF_FUNC_get_prandom_u32)
13225 			bpf_user_rnd_init_once();
13226 		if (insn->imm == BPF_FUNC_override_return)
13227 			prog->kprobe_override = 1;
13228 		if (insn->imm == BPF_FUNC_tail_call) {
13229 			/* If we tail call into other programs, we
13230 			 * cannot make any assumptions since they can
13231 			 * be replaced dynamically during runtime in
13232 			 * the program array.
13233 			 */
13234 			prog->cb_access = 1;
13235 			if (!allow_tail_call_in_subprogs(env))
13236 				prog->aux->stack_depth = MAX_BPF_STACK;
13237 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13238 
13239 			/* mark bpf_tail_call as different opcode to avoid
13240 			 * conditional branch in the interpreter for every normal
13241 			 * call and to prevent accidental JITing by JIT compiler
13242 			 * that doesn't support bpf_tail_call yet
13243 			 */
13244 			insn->imm = 0;
13245 			insn->code = BPF_JMP | BPF_TAIL_CALL;
13246 
13247 			aux = &env->insn_aux_data[i + delta];
13248 			if (env->bpf_capable && !expect_blinding &&
13249 			    prog->jit_requested &&
13250 			    !bpf_map_key_poisoned(aux) &&
13251 			    !bpf_map_ptr_poisoned(aux) &&
13252 			    !bpf_map_ptr_unpriv(aux)) {
13253 				struct bpf_jit_poke_descriptor desc = {
13254 					.reason = BPF_POKE_REASON_TAIL_CALL,
13255 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13256 					.tail_call.key = bpf_map_key_immediate(aux),
13257 					.insn_idx = i + delta,
13258 				};
13259 
13260 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
13261 				if (ret < 0) {
13262 					verbose(env, "adding tail call poke descriptor failed\n");
13263 					return ret;
13264 				}
13265 
13266 				insn->imm = ret + 1;
13267 				continue;
13268 			}
13269 
13270 			if (!bpf_map_ptr_unpriv(aux))
13271 				continue;
13272 
13273 			/* instead of changing every JIT dealing with tail_call
13274 			 * emit two extra insns:
13275 			 * if (index >= max_entries) goto out;
13276 			 * index &= array->index_mask;
13277 			 * to avoid out-of-bounds cpu speculation
13278 			 */
13279 			if (bpf_map_ptr_poisoned(aux)) {
13280 				verbose(env, "tail_call abusing map_ptr\n");
13281 				return -EINVAL;
13282 			}
13283 
13284 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13285 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13286 						  map_ptr->max_entries, 2);
13287 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13288 						    container_of(map_ptr,
13289 								 struct bpf_array,
13290 								 map)->index_mask);
13291 			insn_buf[2] = *insn;
13292 			cnt = 3;
13293 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13294 			if (!new_prog)
13295 				return -ENOMEM;
13296 
13297 			delta    += cnt - 1;
13298 			env->prog = prog = new_prog;
13299 			insn      = new_prog->insnsi + i + delta;
13300 			continue;
13301 		}
13302 
13303 		if (insn->imm == BPF_FUNC_timer_set_callback) {
13304 			/* The verifier will process callback_fn as many times as necessary
13305 			 * with different maps and the register states prepared by
13306 			 * set_timer_callback_state will be accurate.
13307 			 *
13308 			 * The following use case is valid:
13309 			 *   map1 is shared by prog1, prog2, prog3.
13310 			 *   prog1 calls bpf_timer_init for some map1 elements
13311 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
13312 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
13313 			 *   prog3 calls bpf_timer_start for some map1 elements.
13314 			 *     Those that were not both bpf_timer_init-ed and
13315 			 *     bpf_timer_set_callback-ed will return -EINVAL.
13316 			 */
13317 			struct bpf_insn ld_addrs[2] = {
13318 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13319 			};
13320 
13321 			insn_buf[0] = ld_addrs[0];
13322 			insn_buf[1] = ld_addrs[1];
13323 			insn_buf[2] = *insn;
13324 			cnt = 3;
13325 
13326 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13327 			if (!new_prog)
13328 				return -ENOMEM;
13329 
13330 			delta    += cnt - 1;
13331 			env->prog = prog = new_prog;
13332 			insn      = new_prog->insnsi + i + delta;
13333 			goto patch_call_imm;
13334 		}
13335 
13336 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13337 		 * and other inlining handlers are currently limited to 64 bit
13338 		 * only.
13339 		 */
13340 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13341 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
13342 		     insn->imm == BPF_FUNC_map_update_elem ||
13343 		     insn->imm == BPF_FUNC_map_delete_elem ||
13344 		     insn->imm == BPF_FUNC_map_push_elem   ||
13345 		     insn->imm == BPF_FUNC_map_pop_elem    ||
13346 		     insn->imm == BPF_FUNC_map_peek_elem   ||
13347 		     insn->imm == BPF_FUNC_redirect_map    ||
13348 		     insn->imm == BPF_FUNC_for_each_map_elem)) {
13349 			aux = &env->insn_aux_data[i + delta];
13350 			if (bpf_map_ptr_poisoned(aux))
13351 				goto patch_call_imm;
13352 
13353 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13354 			ops = map_ptr->ops;
13355 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
13356 			    ops->map_gen_lookup) {
13357 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13358 				if (cnt == -EOPNOTSUPP)
13359 					goto patch_map_ops_generic;
13360 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13361 					verbose(env, "bpf verifier is misconfigured\n");
13362 					return -EINVAL;
13363 				}
13364 
13365 				new_prog = bpf_patch_insn_data(env, i + delta,
13366 							       insn_buf, cnt);
13367 				if (!new_prog)
13368 					return -ENOMEM;
13369 
13370 				delta    += cnt - 1;
13371 				env->prog = prog = new_prog;
13372 				insn      = new_prog->insnsi + i + delta;
13373 				continue;
13374 			}
13375 
13376 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13377 				     (void *(*)(struct bpf_map *map, void *key))NULL));
13378 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13379 				     (int (*)(struct bpf_map *map, void *key))NULL));
13380 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13381 				     (int (*)(struct bpf_map *map, void *key, void *value,
13382 					      u64 flags))NULL));
13383 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13384 				     (int (*)(struct bpf_map *map, void *value,
13385 					      u64 flags))NULL));
13386 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13387 				     (int (*)(struct bpf_map *map, void *value))NULL));
13388 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13389 				     (int (*)(struct bpf_map *map, void *value))NULL));
13390 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
13391 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13392 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13393 				     (int (*)(struct bpf_map *map,
13394 					      bpf_callback_t callback_fn,
13395 					      void *callback_ctx,
13396 					      u64 flags))NULL));
13397 
13398 patch_map_ops_generic:
13399 			switch (insn->imm) {
13400 			case BPF_FUNC_map_lookup_elem:
13401 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
13402 				continue;
13403 			case BPF_FUNC_map_update_elem:
13404 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
13405 				continue;
13406 			case BPF_FUNC_map_delete_elem:
13407 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
13408 				continue;
13409 			case BPF_FUNC_map_push_elem:
13410 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
13411 				continue;
13412 			case BPF_FUNC_map_pop_elem:
13413 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
13414 				continue;
13415 			case BPF_FUNC_map_peek_elem:
13416 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
13417 				continue;
13418 			case BPF_FUNC_redirect_map:
13419 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
13420 				continue;
13421 			case BPF_FUNC_for_each_map_elem:
13422 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
13423 				continue;
13424 			}
13425 
13426 			goto patch_call_imm;
13427 		}
13428 
13429 		/* Implement bpf_jiffies64 inline. */
13430 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13431 		    insn->imm == BPF_FUNC_jiffies64) {
13432 			struct bpf_insn ld_jiffies_addr[2] = {
13433 				BPF_LD_IMM64(BPF_REG_0,
13434 					     (unsigned long)&jiffies),
13435 			};
13436 
13437 			insn_buf[0] = ld_jiffies_addr[0];
13438 			insn_buf[1] = ld_jiffies_addr[1];
13439 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13440 						  BPF_REG_0, 0);
13441 			cnt = 3;
13442 
13443 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13444 						       cnt);
13445 			if (!new_prog)
13446 				return -ENOMEM;
13447 
13448 			delta    += cnt - 1;
13449 			env->prog = prog = new_prog;
13450 			insn      = new_prog->insnsi + i + delta;
13451 			continue;
13452 		}
13453 
13454 		/* Implement bpf_get_func_arg inline. */
13455 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13456 		    insn->imm == BPF_FUNC_get_func_arg) {
13457 			/* Load nr_args from ctx - 8 */
13458 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13459 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
13460 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
13461 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
13462 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
13463 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13464 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
13465 			insn_buf[7] = BPF_JMP_A(1);
13466 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
13467 			cnt = 9;
13468 
13469 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13470 			if (!new_prog)
13471 				return -ENOMEM;
13472 
13473 			delta    += cnt - 1;
13474 			env->prog = prog = new_prog;
13475 			insn      = new_prog->insnsi + i + delta;
13476 			continue;
13477 		}
13478 
13479 		/* Implement bpf_get_func_ret inline. */
13480 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13481 		    insn->imm == BPF_FUNC_get_func_ret) {
13482 			if (eatype == BPF_TRACE_FEXIT ||
13483 			    eatype == BPF_MODIFY_RETURN) {
13484 				/* Load nr_args from ctx - 8 */
13485 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13486 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
13487 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
13488 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13489 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
13490 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
13491 				cnt = 6;
13492 			} else {
13493 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
13494 				cnt = 1;
13495 			}
13496 
13497 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13498 			if (!new_prog)
13499 				return -ENOMEM;
13500 
13501 			delta    += cnt - 1;
13502 			env->prog = prog = new_prog;
13503 			insn      = new_prog->insnsi + i + delta;
13504 			continue;
13505 		}
13506 
13507 		/* Implement get_func_arg_cnt inline. */
13508 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13509 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
13510 			/* Load nr_args from ctx - 8 */
13511 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13512 
13513 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13514 			if (!new_prog)
13515 				return -ENOMEM;
13516 
13517 			env->prog = prog = new_prog;
13518 			insn      = new_prog->insnsi + i + delta;
13519 			continue;
13520 		}
13521 
13522 		/* Implement bpf_get_func_ip inline. */
13523 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13524 		    insn->imm == BPF_FUNC_get_func_ip) {
13525 			/* Load IP address from ctx - 16 */
13526 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
13527 
13528 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13529 			if (!new_prog)
13530 				return -ENOMEM;
13531 
13532 			env->prog = prog = new_prog;
13533 			insn      = new_prog->insnsi + i + delta;
13534 			continue;
13535 		}
13536 
13537 patch_call_imm:
13538 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13539 		/* all functions that have prototype and verifier allowed
13540 		 * programs to call them, must be real in-kernel functions
13541 		 */
13542 		if (!fn->func) {
13543 			verbose(env,
13544 				"kernel subsystem misconfigured func %s#%d\n",
13545 				func_id_name(insn->imm), insn->imm);
13546 			return -EFAULT;
13547 		}
13548 		insn->imm = fn->func - __bpf_call_base;
13549 	}
13550 
13551 	/* Since poke tab is now finalized, publish aux to tracker. */
13552 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13553 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13554 		if (!map_ptr->ops->map_poke_track ||
13555 		    !map_ptr->ops->map_poke_untrack ||
13556 		    !map_ptr->ops->map_poke_run) {
13557 			verbose(env, "bpf verifier is misconfigured\n");
13558 			return -EINVAL;
13559 		}
13560 
13561 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13562 		if (ret < 0) {
13563 			verbose(env, "tracking tail call prog failed\n");
13564 			return ret;
13565 		}
13566 	}
13567 
13568 	sort_kfunc_descs_by_imm(env->prog);
13569 
13570 	return 0;
13571 }
13572 
13573 static void free_states(struct bpf_verifier_env *env)
13574 {
13575 	struct bpf_verifier_state_list *sl, *sln;
13576 	int i;
13577 
13578 	sl = env->free_list;
13579 	while (sl) {
13580 		sln = sl->next;
13581 		free_verifier_state(&sl->state, false);
13582 		kfree(sl);
13583 		sl = sln;
13584 	}
13585 	env->free_list = NULL;
13586 
13587 	if (!env->explored_states)
13588 		return;
13589 
13590 	for (i = 0; i < state_htab_size(env); i++) {
13591 		sl = env->explored_states[i];
13592 
13593 		while (sl) {
13594 			sln = sl->next;
13595 			free_verifier_state(&sl->state, false);
13596 			kfree(sl);
13597 			sl = sln;
13598 		}
13599 		env->explored_states[i] = NULL;
13600 	}
13601 }
13602 
13603 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13604 {
13605 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13606 	struct bpf_verifier_state *state;
13607 	struct bpf_reg_state *regs;
13608 	int ret, i;
13609 
13610 	env->prev_linfo = NULL;
13611 	env->pass_cnt++;
13612 
13613 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13614 	if (!state)
13615 		return -ENOMEM;
13616 	state->curframe = 0;
13617 	state->speculative = false;
13618 	state->branches = 1;
13619 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13620 	if (!state->frame[0]) {
13621 		kfree(state);
13622 		return -ENOMEM;
13623 	}
13624 	env->cur_state = state;
13625 	init_func_state(env, state->frame[0],
13626 			BPF_MAIN_FUNC /* callsite */,
13627 			0 /* frameno */,
13628 			subprog);
13629 
13630 	regs = state->frame[state->curframe]->regs;
13631 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13632 		ret = btf_prepare_func_args(env, subprog, regs);
13633 		if (ret)
13634 			goto out;
13635 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13636 			if (regs[i].type == PTR_TO_CTX)
13637 				mark_reg_known_zero(env, regs, i);
13638 			else if (regs[i].type == SCALAR_VALUE)
13639 				mark_reg_unknown(env, regs, i);
13640 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
13641 				const u32 mem_size = regs[i].mem_size;
13642 
13643 				mark_reg_known_zero(env, regs, i);
13644 				regs[i].mem_size = mem_size;
13645 				regs[i].id = ++env->id_gen;
13646 			}
13647 		}
13648 	} else {
13649 		/* 1st arg to a function */
13650 		regs[BPF_REG_1].type = PTR_TO_CTX;
13651 		mark_reg_known_zero(env, regs, BPF_REG_1);
13652 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13653 		if (ret == -EFAULT)
13654 			/* unlikely verifier bug. abort.
13655 			 * ret == 0 and ret < 0 are sadly acceptable for
13656 			 * main() function due to backward compatibility.
13657 			 * Like socket filter program may be written as:
13658 			 * int bpf_prog(struct pt_regs *ctx)
13659 			 * and never dereference that ctx in the program.
13660 			 * 'struct pt_regs' is a type mismatch for socket
13661 			 * filter that should be using 'struct __sk_buff'.
13662 			 */
13663 			goto out;
13664 	}
13665 
13666 	ret = do_check(env);
13667 out:
13668 	/* check for NULL is necessary, since cur_state can be freed inside
13669 	 * do_check() under memory pressure.
13670 	 */
13671 	if (env->cur_state) {
13672 		free_verifier_state(env->cur_state, true);
13673 		env->cur_state = NULL;
13674 	}
13675 	while (!pop_stack(env, NULL, NULL, false));
13676 	if (!ret && pop_log)
13677 		bpf_vlog_reset(&env->log, 0);
13678 	free_states(env);
13679 	return ret;
13680 }
13681 
13682 /* Verify all global functions in a BPF program one by one based on their BTF.
13683  * All global functions must pass verification. Otherwise the whole program is rejected.
13684  * Consider:
13685  * int bar(int);
13686  * int foo(int f)
13687  * {
13688  *    return bar(f);
13689  * }
13690  * int bar(int b)
13691  * {
13692  *    ...
13693  * }
13694  * foo() will be verified first for R1=any_scalar_value. During verification it
13695  * will be assumed that bar() already verified successfully and call to bar()
13696  * from foo() will be checked for type match only. Later bar() will be verified
13697  * independently to check that it's safe for R1=any_scalar_value.
13698  */
13699 static int do_check_subprogs(struct bpf_verifier_env *env)
13700 {
13701 	struct bpf_prog_aux *aux = env->prog->aux;
13702 	int i, ret;
13703 
13704 	if (!aux->func_info)
13705 		return 0;
13706 
13707 	for (i = 1; i < env->subprog_cnt; i++) {
13708 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13709 			continue;
13710 		env->insn_idx = env->subprog_info[i].start;
13711 		WARN_ON_ONCE(env->insn_idx == 0);
13712 		ret = do_check_common(env, i);
13713 		if (ret) {
13714 			return ret;
13715 		} else if (env->log.level & BPF_LOG_LEVEL) {
13716 			verbose(env,
13717 				"Func#%d is safe for any args that match its prototype\n",
13718 				i);
13719 		}
13720 	}
13721 	return 0;
13722 }
13723 
13724 static int do_check_main(struct bpf_verifier_env *env)
13725 {
13726 	int ret;
13727 
13728 	env->insn_idx = 0;
13729 	ret = do_check_common(env, 0);
13730 	if (!ret)
13731 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13732 	return ret;
13733 }
13734 
13735 
13736 static void print_verification_stats(struct bpf_verifier_env *env)
13737 {
13738 	int i;
13739 
13740 	if (env->log.level & BPF_LOG_STATS) {
13741 		verbose(env, "verification time %lld usec\n",
13742 			div_u64(env->verification_time, 1000));
13743 		verbose(env, "stack depth ");
13744 		for (i = 0; i < env->subprog_cnt; i++) {
13745 			u32 depth = env->subprog_info[i].stack_depth;
13746 
13747 			verbose(env, "%d", depth);
13748 			if (i + 1 < env->subprog_cnt)
13749 				verbose(env, "+");
13750 		}
13751 		verbose(env, "\n");
13752 	}
13753 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13754 		"total_states %d peak_states %d mark_read %d\n",
13755 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13756 		env->max_states_per_insn, env->total_states,
13757 		env->peak_states, env->longest_mark_read_walk);
13758 }
13759 
13760 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13761 {
13762 	const struct btf_type *t, *func_proto;
13763 	const struct bpf_struct_ops *st_ops;
13764 	const struct btf_member *member;
13765 	struct bpf_prog *prog = env->prog;
13766 	u32 btf_id, member_idx;
13767 	const char *mname;
13768 
13769 	if (!prog->gpl_compatible) {
13770 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13771 		return -EINVAL;
13772 	}
13773 
13774 	btf_id = prog->aux->attach_btf_id;
13775 	st_ops = bpf_struct_ops_find(btf_id);
13776 	if (!st_ops) {
13777 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13778 			btf_id);
13779 		return -ENOTSUPP;
13780 	}
13781 
13782 	t = st_ops->type;
13783 	member_idx = prog->expected_attach_type;
13784 	if (member_idx >= btf_type_vlen(t)) {
13785 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13786 			member_idx, st_ops->name);
13787 		return -EINVAL;
13788 	}
13789 
13790 	member = &btf_type_member(t)[member_idx];
13791 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13792 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13793 					       NULL);
13794 	if (!func_proto) {
13795 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13796 			mname, member_idx, st_ops->name);
13797 		return -EINVAL;
13798 	}
13799 
13800 	if (st_ops->check_member) {
13801 		int err = st_ops->check_member(t, member);
13802 
13803 		if (err) {
13804 			verbose(env, "attach to unsupported member %s of struct %s\n",
13805 				mname, st_ops->name);
13806 			return err;
13807 		}
13808 	}
13809 
13810 	prog->aux->attach_func_proto = func_proto;
13811 	prog->aux->attach_func_name = mname;
13812 	env->ops = st_ops->verifier_ops;
13813 
13814 	return 0;
13815 }
13816 #define SECURITY_PREFIX "security_"
13817 
13818 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13819 {
13820 	if (within_error_injection_list(addr) ||
13821 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13822 		return 0;
13823 
13824 	return -EINVAL;
13825 }
13826 
13827 /* list of non-sleepable functions that are otherwise on
13828  * ALLOW_ERROR_INJECTION list
13829  */
13830 BTF_SET_START(btf_non_sleepable_error_inject)
13831 /* Three functions below can be called from sleepable and non-sleepable context.
13832  * Assume non-sleepable from bpf safety point of view.
13833  */
13834 BTF_ID(func, __filemap_add_folio)
13835 BTF_ID(func, should_fail_alloc_page)
13836 BTF_ID(func, should_failslab)
13837 BTF_SET_END(btf_non_sleepable_error_inject)
13838 
13839 static int check_non_sleepable_error_inject(u32 btf_id)
13840 {
13841 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13842 }
13843 
13844 int bpf_check_attach_target(struct bpf_verifier_log *log,
13845 			    const struct bpf_prog *prog,
13846 			    const struct bpf_prog *tgt_prog,
13847 			    u32 btf_id,
13848 			    struct bpf_attach_target_info *tgt_info)
13849 {
13850 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13851 	const char prefix[] = "btf_trace_";
13852 	int ret = 0, subprog = -1, i;
13853 	const struct btf_type *t;
13854 	bool conservative = true;
13855 	const char *tname;
13856 	struct btf *btf;
13857 	long addr = 0;
13858 
13859 	if (!btf_id) {
13860 		bpf_log(log, "Tracing programs must provide btf_id\n");
13861 		return -EINVAL;
13862 	}
13863 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13864 	if (!btf) {
13865 		bpf_log(log,
13866 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13867 		return -EINVAL;
13868 	}
13869 	t = btf_type_by_id(btf, btf_id);
13870 	if (!t) {
13871 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13872 		return -EINVAL;
13873 	}
13874 	tname = btf_name_by_offset(btf, t->name_off);
13875 	if (!tname) {
13876 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13877 		return -EINVAL;
13878 	}
13879 	if (tgt_prog) {
13880 		struct bpf_prog_aux *aux = tgt_prog->aux;
13881 
13882 		for (i = 0; i < aux->func_info_cnt; i++)
13883 			if (aux->func_info[i].type_id == btf_id) {
13884 				subprog = i;
13885 				break;
13886 			}
13887 		if (subprog == -1) {
13888 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13889 			return -EINVAL;
13890 		}
13891 		conservative = aux->func_info_aux[subprog].unreliable;
13892 		if (prog_extension) {
13893 			if (conservative) {
13894 				bpf_log(log,
13895 					"Cannot replace static functions\n");
13896 				return -EINVAL;
13897 			}
13898 			if (!prog->jit_requested) {
13899 				bpf_log(log,
13900 					"Extension programs should be JITed\n");
13901 				return -EINVAL;
13902 			}
13903 		}
13904 		if (!tgt_prog->jited) {
13905 			bpf_log(log, "Can attach to only JITed progs\n");
13906 			return -EINVAL;
13907 		}
13908 		if (tgt_prog->type == prog->type) {
13909 			/* Cannot fentry/fexit another fentry/fexit program.
13910 			 * Cannot attach program extension to another extension.
13911 			 * It's ok to attach fentry/fexit to extension program.
13912 			 */
13913 			bpf_log(log, "Cannot recursively attach\n");
13914 			return -EINVAL;
13915 		}
13916 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13917 		    prog_extension &&
13918 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13919 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13920 			/* Program extensions can extend all program types
13921 			 * except fentry/fexit. The reason is the following.
13922 			 * The fentry/fexit programs are used for performance
13923 			 * analysis, stats and can be attached to any program
13924 			 * type except themselves. When extension program is
13925 			 * replacing XDP function it is necessary to allow
13926 			 * performance analysis of all functions. Both original
13927 			 * XDP program and its program extension. Hence
13928 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13929 			 * allowed. If extending of fentry/fexit was allowed it
13930 			 * would be possible to create long call chain
13931 			 * fentry->extension->fentry->extension beyond
13932 			 * reasonable stack size. Hence extending fentry is not
13933 			 * allowed.
13934 			 */
13935 			bpf_log(log, "Cannot extend fentry/fexit\n");
13936 			return -EINVAL;
13937 		}
13938 	} else {
13939 		if (prog_extension) {
13940 			bpf_log(log, "Cannot replace kernel functions\n");
13941 			return -EINVAL;
13942 		}
13943 	}
13944 
13945 	switch (prog->expected_attach_type) {
13946 	case BPF_TRACE_RAW_TP:
13947 		if (tgt_prog) {
13948 			bpf_log(log,
13949 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13950 			return -EINVAL;
13951 		}
13952 		if (!btf_type_is_typedef(t)) {
13953 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13954 				btf_id);
13955 			return -EINVAL;
13956 		}
13957 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13958 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13959 				btf_id, tname);
13960 			return -EINVAL;
13961 		}
13962 		tname += sizeof(prefix) - 1;
13963 		t = btf_type_by_id(btf, t->type);
13964 		if (!btf_type_is_ptr(t))
13965 			/* should never happen in valid vmlinux build */
13966 			return -EINVAL;
13967 		t = btf_type_by_id(btf, t->type);
13968 		if (!btf_type_is_func_proto(t))
13969 			/* should never happen in valid vmlinux build */
13970 			return -EINVAL;
13971 
13972 		break;
13973 	case BPF_TRACE_ITER:
13974 		if (!btf_type_is_func(t)) {
13975 			bpf_log(log, "attach_btf_id %u is not a function\n",
13976 				btf_id);
13977 			return -EINVAL;
13978 		}
13979 		t = btf_type_by_id(btf, t->type);
13980 		if (!btf_type_is_func_proto(t))
13981 			return -EINVAL;
13982 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13983 		if (ret)
13984 			return ret;
13985 		break;
13986 	default:
13987 		if (!prog_extension)
13988 			return -EINVAL;
13989 		fallthrough;
13990 	case BPF_MODIFY_RETURN:
13991 	case BPF_LSM_MAC:
13992 	case BPF_TRACE_FENTRY:
13993 	case BPF_TRACE_FEXIT:
13994 		if (!btf_type_is_func(t)) {
13995 			bpf_log(log, "attach_btf_id %u is not a function\n",
13996 				btf_id);
13997 			return -EINVAL;
13998 		}
13999 		if (prog_extension &&
14000 		    btf_check_type_match(log, prog, btf, t))
14001 			return -EINVAL;
14002 		t = btf_type_by_id(btf, t->type);
14003 		if (!btf_type_is_func_proto(t))
14004 			return -EINVAL;
14005 
14006 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14007 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14008 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
14009 			return -EINVAL;
14010 
14011 		if (tgt_prog && conservative)
14012 			t = NULL;
14013 
14014 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14015 		if (ret < 0)
14016 			return ret;
14017 
14018 		if (tgt_prog) {
14019 			if (subprog == 0)
14020 				addr = (long) tgt_prog->bpf_func;
14021 			else
14022 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
14023 		} else {
14024 			addr = kallsyms_lookup_name(tname);
14025 			if (!addr) {
14026 				bpf_log(log,
14027 					"The address of function %s cannot be found\n",
14028 					tname);
14029 				return -ENOENT;
14030 			}
14031 		}
14032 
14033 		if (prog->aux->sleepable) {
14034 			ret = -EINVAL;
14035 			switch (prog->type) {
14036 			case BPF_PROG_TYPE_TRACING:
14037 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
14038 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14039 				 */
14040 				if (!check_non_sleepable_error_inject(btf_id) &&
14041 				    within_error_injection_list(addr))
14042 					ret = 0;
14043 				break;
14044 			case BPF_PROG_TYPE_LSM:
14045 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
14046 				 * Only some of them are sleepable.
14047 				 */
14048 				if (bpf_lsm_is_sleepable_hook(btf_id))
14049 					ret = 0;
14050 				break;
14051 			default:
14052 				break;
14053 			}
14054 			if (ret) {
14055 				bpf_log(log, "%s is not sleepable\n", tname);
14056 				return ret;
14057 			}
14058 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
14059 			if (tgt_prog) {
14060 				bpf_log(log, "can't modify return codes of BPF programs\n");
14061 				return -EINVAL;
14062 			}
14063 			ret = check_attach_modify_return(addr, tname);
14064 			if (ret) {
14065 				bpf_log(log, "%s() is not modifiable\n", tname);
14066 				return ret;
14067 			}
14068 		}
14069 
14070 		break;
14071 	}
14072 	tgt_info->tgt_addr = addr;
14073 	tgt_info->tgt_name = tname;
14074 	tgt_info->tgt_type = t;
14075 	return 0;
14076 }
14077 
14078 BTF_SET_START(btf_id_deny)
14079 BTF_ID_UNUSED
14080 #ifdef CONFIG_SMP
14081 BTF_ID(func, migrate_disable)
14082 BTF_ID(func, migrate_enable)
14083 #endif
14084 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
14085 BTF_ID(func, rcu_read_unlock_strict)
14086 #endif
14087 BTF_SET_END(btf_id_deny)
14088 
14089 static int check_attach_btf_id(struct bpf_verifier_env *env)
14090 {
14091 	struct bpf_prog *prog = env->prog;
14092 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
14093 	struct bpf_attach_target_info tgt_info = {};
14094 	u32 btf_id = prog->aux->attach_btf_id;
14095 	struct bpf_trampoline *tr;
14096 	int ret;
14097 	u64 key;
14098 
14099 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
14100 		if (prog->aux->sleepable)
14101 			/* attach_btf_id checked to be zero already */
14102 			return 0;
14103 		verbose(env, "Syscall programs can only be sleepable\n");
14104 		return -EINVAL;
14105 	}
14106 
14107 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
14108 	    prog->type != BPF_PROG_TYPE_LSM) {
14109 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
14110 		return -EINVAL;
14111 	}
14112 
14113 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
14114 		return check_struct_ops_btf_id(env);
14115 
14116 	if (prog->type != BPF_PROG_TYPE_TRACING &&
14117 	    prog->type != BPF_PROG_TYPE_LSM &&
14118 	    prog->type != BPF_PROG_TYPE_EXT)
14119 		return 0;
14120 
14121 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
14122 	if (ret)
14123 		return ret;
14124 
14125 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
14126 		/* to make freplace equivalent to their targets, they need to
14127 		 * inherit env->ops and expected_attach_type for the rest of the
14128 		 * verification
14129 		 */
14130 		env->ops = bpf_verifier_ops[tgt_prog->type];
14131 		prog->expected_attach_type = tgt_prog->expected_attach_type;
14132 	}
14133 
14134 	/* store info about the attachment target that will be used later */
14135 	prog->aux->attach_func_proto = tgt_info.tgt_type;
14136 	prog->aux->attach_func_name = tgt_info.tgt_name;
14137 
14138 	if (tgt_prog) {
14139 		prog->aux->saved_dst_prog_type = tgt_prog->type;
14140 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
14141 	}
14142 
14143 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
14144 		prog->aux->attach_btf_trace = true;
14145 		return 0;
14146 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
14147 		if (!bpf_iter_prog_supported(prog))
14148 			return -EINVAL;
14149 		return 0;
14150 	}
14151 
14152 	if (prog->type == BPF_PROG_TYPE_LSM) {
14153 		ret = bpf_lsm_verify_prog(&env->log, prog);
14154 		if (ret < 0)
14155 			return ret;
14156 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
14157 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
14158 		return -EINVAL;
14159 	}
14160 
14161 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
14162 	tr = bpf_trampoline_get(key, &tgt_info);
14163 	if (!tr)
14164 		return -ENOMEM;
14165 
14166 	prog->aux->dst_trampoline = tr;
14167 	return 0;
14168 }
14169 
14170 struct btf *bpf_get_btf_vmlinux(void)
14171 {
14172 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
14173 		mutex_lock(&bpf_verifier_lock);
14174 		if (!btf_vmlinux)
14175 			btf_vmlinux = btf_parse_vmlinux();
14176 		mutex_unlock(&bpf_verifier_lock);
14177 	}
14178 	return btf_vmlinux;
14179 }
14180 
14181 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
14182 {
14183 	u64 start_time = ktime_get_ns();
14184 	struct bpf_verifier_env *env;
14185 	struct bpf_verifier_log *log;
14186 	int i, len, ret = -EINVAL;
14187 	bool is_priv;
14188 
14189 	/* no program is valid */
14190 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
14191 		return -EINVAL;
14192 
14193 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
14194 	 * allocate/free it every time bpf_check() is called
14195 	 */
14196 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
14197 	if (!env)
14198 		return -ENOMEM;
14199 	log = &env->log;
14200 
14201 	len = (*prog)->len;
14202 	env->insn_aux_data =
14203 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
14204 	ret = -ENOMEM;
14205 	if (!env->insn_aux_data)
14206 		goto err_free_env;
14207 	for (i = 0; i < len; i++)
14208 		env->insn_aux_data[i].orig_idx = i;
14209 	env->prog = *prog;
14210 	env->ops = bpf_verifier_ops[env->prog->type];
14211 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
14212 	is_priv = bpf_capable();
14213 
14214 	bpf_get_btf_vmlinux();
14215 
14216 	/* grab the mutex to protect few globals used by verifier */
14217 	if (!is_priv)
14218 		mutex_lock(&bpf_verifier_lock);
14219 
14220 	if (attr->log_level || attr->log_buf || attr->log_size) {
14221 		/* user requested verbose verifier output
14222 		 * and supplied buffer to store the verification trace
14223 		 */
14224 		log->level = attr->log_level;
14225 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
14226 		log->len_total = attr->log_size;
14227 
14228 		/* log attributes have to be sane */
14229 		if (!bpf_verifier_log_attr_valid(log)) {
14230 			ret = -EINVAL;
14231 			goto err_unlock;
14232 		}
14233 	}
14234 
14235 	mark_verifier_state_clean(env);
14236 
14237 	if (IS_ERR(btf_vmlinux)) {
14238 		/* Either gcc or pahole or kernel are broken. */
14239 		verbose(env, "in-kernel BTF is malformed\n");
14240 		ret = PTR_ERR(btf_vmlinux);
14241 		goto skip_full_check;
14242 	}
14243 
14244 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
14245 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
14246 		env->strict_alignment = true;
14247 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
14248 		env->strict_alignment = false;
14249 
14250 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
14251 	env->allow_uninit_stack = bpf_allow_uninit_stack();
14252 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
14253 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
14254 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
14255 	env->bpf_capable = bpf_capable();
14256 
14257 	if (is_priv)
14258 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14259 
14260 	env->explored_states = kvcalloc(state_htab_size(env),
14261 				       sizeof(struct bpf_verifier_state_list *),
14262 				       GFP_USER);
14263 	ret = -ENOMEM;
14264 	if (!env->explored_states)
14265 		goto skip_full_check;
14266 
14267 	ret = add_subprog_and_kfunc(env);
14268 	if (ret < 0)
14269 		goto skip_full_check;
14270 
14271 	ret = check_subprogs(env);
14272 	if (ret < 0)
14273 		goto skip_full_check;
14274 
14275 	ret = check_btf_info(env, attr, uattr);
14276 	if (ret < 0)
14277 		goto skip_full_check;
14278 
14279 	ret = check_attach_btf_id(env);
14280 	if (ret)
14281 		goto skip_full_check;
14282 
14283 	ret = resolve_pseudo_ldimm64(env);
14284 	if (ret < 0)
14285 		goto skip_full_check;
14286 
14287 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
14288 		ret = bpf_prog_offload_verifier_prep(env->prog);
14289 		if (ret)
14290 			goto skip_full_check;
14291 	}
14292 
14293 	ret = check_cfg(env);
14294 	if (ret < 0)
14295 		goto skip_full_check;
14296 
14297 	ret = do_check_subprogs(env);
14298 	ret = ret ?: do_check_main(env);
14299 
14300 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14301 		ret = bpf_prog_offload_finalize(env);
14302 
14303 skip_full_check:
14304 	kvfree(env->explored_states);
14305 
14306 	if (ret == 0)
14307 		ret = check_max_stack_depth(env);
14308 
14309 	/* instruction rewrites happen after this point */
14310 	if (is_priv) {
14311 		if (ret == 0)
14312 			opt_hard_wire_dead_code_branches(env);
14313 		if (ret == 0)
14314 			ret = opt_remove_dead_code(env);
14315 		if (ret == 0)
14316 			ret = opt_remove_nops(env);
14317 	} else {
14318 		if (ret == 0)
14319 			sanitize_dead_code(env);
14320 	}
14321 
14322 	if (ret == 0)
14323 		/* program is valid, convert *(u32*)(ctx + off) accesses */
14324 		ret = convert_ctx_accesses(env);
14325 
14326 	if (ret == 0)
14327 		ret = do_misc_fixups(env);
14328 
14329 	/* do 32-bit optimization after insn patching has done so those patched
14330 	 * insns could be handled correctly.
14331 	 */
14332 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14333 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14334 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14335 								     : false;
14336 	}
14337 
14338 	if (ret == 0)
14339 		ret = fixup_call_args(env);
14340 
14341 	env->verification_time = ktime_get_ns() - start_time;
14342 	print_verification_stats(env);
14343 	env->prog->aux->verified_insns = env->insn_processed;
14344 
14345 	if (log->level && bpf_verifier_log_full(log))
14346 		ret = -ENOSPC;
14347 	if (log->level && !log->ubuf) {
14348 		ret = -EFAULT;
14349 		goto err_release_maps;
14350 	}
14351 
14352 	if (ret)
14353 		goto err_release_maps;
14354 
14355 	if (env->used_map_cnt) {
14356 		/* if program passed verifier, update used_maps in bpf_prog_info */
14357 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14358 							  sizeof(env->used_maps[0]),
14359 							  GFP_KERNEL);
14360 
14361 		if (!env->prog->aux->used_maps) {
14362 			ret = -ENOMEM;
14363 			goto err_release_maps;
14364 		}
14365 
14366 		memcpy(env->prog->aux->used_maps, env->used_maps,
14367 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
14368 		env->prog->aux->used_map_cnt = env->used_map_cnt;
14369 	}
14370 	if (env->used_btf_cnt) {
14371 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
14372 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14373 							  sizeof(env->used_btfs[0]),
14374 							  GFP_KERNEL);
14375 		if (!env->prog->aux->used_btfs) {
14376 			ret = -ENOMEM;
14377 			goto err_release_maps;
14378 		}
14379 
14380 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
14381 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14382 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14383 	}
14384 	if (env->used_map_cnt || env->used_btf_cnt) {
14385 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
14386 		 * bpf_ld_imm64 instructions
14387 		 */
14388 		convert_pseudo_ld_imm64(env);
14389 	}
14390 
14391 	adjust_btf_func(env);
14392 
14393 err_release_maps:
14394 	if (!env->prog->aux->used_maps)
14395 		/* if we didn't copy map pointers into bpf_prog_info, release
14396 		 * them now. Otherwise free_used_maps() will release them.
14397 		 */
14398 		release_maps(env);
14399 	if (!env->prog->aux->used_btfs)
14400 		release_btfs(env);
14401 
14402 	/* extension progs temporarily inherit the attach_type of their targets
14403 	   for verification purposes, so set it back to zero before returning
14404 	 */
14405 	if (env->prog->type == BPF_PROG_TYPE_EXT)
14406 		env->prog->expected_attach_type = 0;
14407 
14408 	*prog = env->prog;
14409 err_unlock:
14410 	if (!is_priv)
14411 		mutex_unlock(&bpf_verifier_lock);
14412 	vfree(env->insn_aux_data);
14413 err_free_env:
14414 	kfree(env);
14415 	return ret;
14416 }
14417