xref: /openbmc/linux/kernel/bpf/verifier.c (revision 34f0677e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
194 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
195 static int ref_set_non_owning(struct bpf_verifier_env *env,
196 			      struct bpf_reg_state *reg);
197 
198 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
199 {
200 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
201 }
202 
203 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
204 {
205 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
206 }
207 
208 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
209 			      const struct bpf_map *map, bool unpriv)
210 {
211 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
212 	unpriv |= bpf_map_ptr_unpriv(aux);
213 	aux->map_ptr_state = (unsigned long)map |
214 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
215 }
216 
217 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
218 {
219 	return aux->map_key_state & BPF_MAP_KEY_POISON;
220 }
221 
222 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
223 {
224 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
225 }
226 
227 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
228 {
229 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
230 }
231 
232 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
233 {
234 	bool poisoned = bpf_map_key_poisoned(aux);
235 
236 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
237 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
238 }
239 
240 static bool bpf_pseudo_call(const struct bpf_insn *insn)
241 {
242 	return insn->code == (BPF_JMP | BPF_CALL) &&
243 	       insn->src_reg == BPF_PSEUDO_CALL;
244 }
245 
246 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
250 }
251 
252 struct bpf_call_arg_meta {
253 	struct bpf_map *map_ptr;
254 	bool raw_mode;
255 	bool pkt_access;
256 	u8 release_regno;
257 	int regno;
258 	int access_size;
259 	int mem_size;
260 	u64 msize_max_value;
261 	int ref_obj_id;
262 	int dynptr_id;
263 	int map_uid;
264 	int func_id;
265 	struct btf *btf;
266 	u32 btf_id;
267 	struct btf *ret_btf;
268 	u32 ret_btf_id;
269 	u32 subprogno;
270 	struct btf_field *kptr_field;
271 };
272 
273 struct bpf_kfunc_call_arg_meta {
274 	/* In parameters */
275 	struct btf *btf;
276 	u32 func_id;
277 	u32 kfunc_flags;
278 	const struct btf_type *func_proto;
279 	const char *func_name;
280 	/* Out parameters */
281 	u32 ref_obj_id;
282 	u8 release_regno;
283 	bool r0_rdonly;
284 	u32 ret_btf_id;
285 	u64 r0_size;
286 	u32 subprogno;
287 	struct {
288 		u64 value;
289 		bool found;
290 	} arg_constant;
291 	struct {
292 		struct btf *btf;
293 		u32 btf_id;
294 	} arg_obj_drop;
295 	struct {
296 		struct btf_field *field;
297 	} arg_list_head;
298 	struct {
299 		struct btf_field *field;
300 	} arg_rbtree_root;
301 	struct {
302 		enum bpf_dynptr_type type;
303 		u32 id;
304 	} initialized_dynptr;
305 	struct {
306 		u8 spi;
307 		u8 frameno;
308 	} iter;
309 	u64 mem_size;
310 };
311 
312 struct btf *btf_vmlinux;
313 
314 static DEFINE_MUTEX(bpf_verifier_lock);
315 
316 static const struct bpf_line_info *
317 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
318 {
319 	const struct bpf_line_info *linfo;
320 	const struct bpf_prog *prog;
321 	u32 i, nr_linfo;
322 
323 	prog = env->prog;
324 	nr_linfo = prog->aux->nr_linfo;
325 
326 	if (!nr_linfo || insn_off >= prog->len)
327 		return NULL;
328 
329 	linfo = prog->aux->linfo;
330 	for (i = 1; i < nr_linfo; i++)
331 		if (insn_off < linfo[i].insn_off)
332 			break;
333 
334 	return &linfo[i - 1];
335 }
336 
337 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
338 		       va_list args)
339 {
340 	unsigned int n;
341 
342 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
343 
344 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
345 		  "verifier log line truncated - local buffer too short\n");
346 
347 	if (log->level == BPF_LOG_KERNEL) {
348 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
349 
350 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
351 		return;
352 	}
353 
354 	n = min(log->len_total - log->len_used - 1, n);
355 	log->kbuf[n] = '\0';
356 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
357 		log->len_used += n;
358 	else
359 		log->ubuf = NULL;
360 }
361 
362 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
363 {
364 	char zero = 0;
365 
366 	if (!bpf_verifier_log_needed(log))
367 		return;
368 
369 	log->len_used = new_pos;
370 	if (put_user(zero, log->ubuf + new_pos))
371 		log->ubuf = NULL;
372 }
373 
374 /* log_level controls verbosity level of eBPF verifier.
375  * bpf_verifier_log_write() is used to dump the verification trace to the log,
376  * so the user can figure out what's wrong with the program
377  */
378 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
379 					   const char *fmt, ...)
380 {
381 	va_list args;
382 
383 	if (!bpf_verifier_log_needed(&env->log))
384 		return;
385 
386 	va_start(args, fmt);
387 	bpf_verifier_vlog(&env->log, fmt, args);
388 	va_end(args);
389 }
390 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
391 
392 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
393 {
394 	struct bpf_verifier_env *env = private_data;
395 	va_list args;
396 
397 	if (!bpf_verifier_log_needed(&env->log))
398 		return;
399 
400 	va_start(args, fmt);
401 	bpf_verifier_vlog(&env->log, fmt, args);
402 	va_end(args);
403 }
404 
405 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
406 			    const char *fmt, ...)
407 {
408 	va_list args;
409 
410 	if (!bpf_verifier_log_needed(log))
411 		return;
412 
413 	va_start(args, fmt);
414 	bpf_verifier_vlog(log, fmt, args);
415 	va_end(args);
416 }
417 EXPORT_SYMBOL_GPL(bpf_log);
418 
419 static const char *ltrim(const char *s)
420 {
421 	while (isspace(*s))
422 		s++;
423 
424 	return s;
425 }
426 
427 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
428 					 u32 insn_off,
429 					 const char *prefix_fmt, ...)
430 {
431 	const struct bpf_line_info *linfo;
432 
433 	if (!bpf_verifier_log_needed(&env->log))
434 		return;
435 
436 	linfo = find_linfo(env, insn_off);
437 	if (!linfo || linfo == env->prev_linfo)
438 		return;
439 
440 	if (prefix_fmt) {
441 		va_list args;
442 
443 		va_start(args, prefix_fmt);
444 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
445 		va_end(args);
446 	}
447 
448 	verbose(env, "%s\n",
449 		ltrim(btf_name_by_offset(env->prog->aux->btf,
450 					 linfo->line_off)));
451 
452 	env->prev_linfo = linfo;
453 }
454 
455 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
456 				   struct bpf_reg_state *reg,
457 				   struct tnum *range, const char *ctx,
458 				   const char *reg_name)
459 {
460 	char tn_buf[48];
461 
462 	verbose(env, "At %s the register %s ", ctx, reg_name);
463 	if (!tnum_is_unknown(reg->var_off)) {
464 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
465 		verbose(env, "has value %s", tn_buf);
466 	} else {
467 		verbose(env, "has unknown scalar value");
468 	}
469 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
470 	verbose(env, " should have been in %s\n", tn_buf);
471 }
472 
473 static bool type_is_pkt_pointer(enum bpf_reg_type type)
474 {
475 	type = base_type(type);
476 	return type == PTR_TO_PACKET ||
477 	       type == PTR_TO_PACKET_META;
478 }
479 
480 static bool type_is_sk_pointer(enum bpf_reg_type type)
481 {
482 	return type == PTR_TO_SOCKET ||
483 		type == PTR_TO_SOCK_COMMON ||
484 		type == PTR_TO_TCP_SOCK ||
485 		type == PTR_TO_XDP_SOCK;
486 }
487 
488 static bool reg_type_not_null(enum bpf_reg_type type)
489 {
490 	return type == PTR_TO_SOCKET ||
491 		type == PTR_TO_TCP_SOCK ||
492 		type == PTR_TO_MAP_VALUE ||
493 		type == PTR_TO_MAP_KEY ||
494 		type == PTR_TO_SOCK_COMMON ||
495 		type == PTR_TO_MEM;
496 }
497 
498 static bool type_is_ptr_alloc_obj(u32 type)
499 {
500 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
501 }
502 
503 static bool type_is_non_owning_ref(u32 type)
504 {
505 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
506 }
507 
508 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
509 {
510 	struct btf_record *rec = NULL;
511 	struct btf_struct_meta *meta;
512 
513 	if (reg->type == PTR_TO_MAP_VALUE) {
514 		rec = reg->map_ptr->record;
515 	} else if (type_is_ptr_alloc_obj(reg->type)) {
516 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
517 		if (meta)
518 			rec = meta->record;
519 	}
520 	return rec;
521 }
522 
523 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
524 {
525 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
526 }
527 
528 static bool type_is_rdonly_mem(u32 type)
529 {
530 	return type & MEM_RDONLY;
531 }
532 
533 static bool type_may_be_null(u32 type)
534 {
535 	return type & PTR_MAYBE_NULL;
536 }
537 
538 static bool is_acquire_function(enum bpf_func_id func_id,
539 				const struct bpf_map *map)
540 {
541 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
542 
543 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
544 	    func_id == BPF_FUNC_sk_lookup_udp ||
545 	    func_id == BPF_FUNC_skc_lookup_tcp ||
546 	    func_id == BPF_FUNC_ringbuf_reserve ||
547 	    func_id == BPF_FUNC_kptr_xchg)
548 		return true;
549 
550 	if (func_id == BPF_FUNC_map_lookup_elem &&
551 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
552 	     map_type == BPF_MAP_TYPE_SOCKHASH))
553 		return true;
554 
555 	return false;
556 }
557 
558 static bool is_ptr_cast_function(enum bpf_func_id func_id)
559 {
560 	return func_id == BPF_FUNC_tcp_sock ||
561 		func_id == BPF_FUNC_sk_fullsock ||
562 		func_id == BPF_FUNC_skc_to_tcp_sock ||
563 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
564 		func_id == BPF_FUNC_skc_to_udp6_sock ||
565 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
566 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
567 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
568 }
569 
570 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
571 {
572 	return func_id == BPF_FUNC_dynptr_data;
573 }
574 
575 static bool is_callback_calling_function(enum bpf_func_id func_id)
576 {
577 	return func_id == BPF_FUNC_for_each_map_elem ||
578 	       func_id == BPF_FUNC_timer_set_callback ||
579 	       func_id == BPF_FUNC_find_vma ||
580 	       func_id == BPF_FUNC_loop ||
581 	       func_id == BPF_FUNC_user_ringbuf_drain;
582 }
583 
584 static bool is_storage_get_function(enum bpf_func_id func_id)
585 {
586 	return func_id == BPF_FUNC_sk_storage_get ||
587 	       func_id == BPF_FUNC_inode_storage_get ||
588 	       func_id == BPF_FUNC_task_storage_get ||
589 	       func_id == BPF_FUNC_cgrp_storage_get;
590 }
591 
592 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
593 					const struct bpf_map *map)
594 {
595 	int ref_obj_uses = 0;
596 
597 	if (is_ptr_cast_function(func_id))
598 		ref_obj_uses++;
599 	if (is_acquire_function(func_id, map))
600 		ref_obj_uses++;
601 	if (is_dynptr_ref_function(func_id))
602 		ref_obj_uses++;
603 
604 	return ref_obj_uses > 1;
605 }
606 
607 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
608 {
609 	return BPF_CLASS(insn->code) == BPF_STX &&
610 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
611 	       insn->imm == BPF_CMPXCHG;
612 }
613 
614 /* string representation of 'enum bpf_reg_type'
615  *
616  * Note that reg_type_str() can not appear more than once in a single verbose()
617  * statement.
618  */
619 static const char *reg_type_str(struct bpf_verifier_env *env,
620 				enum bpf_reg_type type)
621 {
622 	char postfix[16] = {0}, prefix[64] = {0};
623 	static const char * const str[] = {
624 		[NOT_INIT]		= "?",
625 		[SCALAR_VALUE]		= "scalar",
626 		[PTR_TO_CTX]		= "ctx",
627 		[CONST_PTR_TO_MAP]	= "map_ptr",
628 		[PTR_TO_MAP_VALUE]	= "map_value",
629 		[PTR_TO_STACK]		= "fp",
630 		[PTR_TO_PACKET]		= "pkt",
631 		[PTR_TO_PACKET_META]	= "pkt_meta",
632 		[PTR_TO_PACKET_END]	= "pkt_end",
633 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
634 		[PTR_TO_SOCKET]		= "sock",
635 		[PTR_TO_SOCK_COMMON]	= "sock_common",
636 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
637 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
638 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
639 		[PTR_TO_BTF_ID]		= "ptr_",
640 		[PTR_TO_MEM]		= "mem",
641 		[PTR_TO_BUF]		= "buf",
642 		[PTR_TO_FUNC]		= "func",
643 		[PTR_TO_MAP_KEY]	= "map_key",
644 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
645 	};
646 
647 	if (type & PTR_MAYBE_NULL) {
648 		if (base_type(type) == PTR_TO_BTF_ID)
649 			strncpy(postfix, "or_null_", 16);
650 		else
651 			strncpy(postfix, "_or_null", 16);
652 	}
653 
654 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
655 		 type & MEM_RDONLY ? "rdonly_" : "",
656 		 type & MEM_RINGBUF ? "ringbuf_" : "",
657 		 type & MEM_USER ? "user_" : "",
658 		 type & MEM_PERCPU ? "percpu_" : "",
659 		 type & MEM_RCU ? "rcu_" : "",
660 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
661 		 type & PTR_TRUSTED ? "trusted_" : ""
662 	);
663 
664 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
665 		 prefix, str[base_type(type)], postfix);
666 	return env->type_str_buf;
667 }
668 
669 static char slot_type_char[] = {
670 	[STACK_INVALID]	= '?',
671 	[STACK_SPILL]	= 'r',
672 	[STACK_MISC]	= 'm',
673 	[STACK_ZERO]	= '0',
674 	[STACK_DYNPTR]	= 'd',
675 	[STACK_ITER]	= 'i',
676 };
677 
678 static void print_liveness(struct bpf_verifier_env *env,
679 			   enum bpf_reg_liveness live)
680 {
681 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
682 	    verbose(env, "_");
683 	if (live & REG_LIVE_READ)
684 		verbose(env, "r");
685 	if (live & REG_LIVE_WRITTEN)
686 		verbose(env, "w");
687 	if (live & REG_LIVE_DONE)
688 		verbose(env, "D");
689 }
690 
691 static int __get_spi(s32 off)
692 {
693 	return (-off - 1) / BPF_REG_SIZE;
694 }
695 
696 static struct bpf_func_state *func(struct bpf_verifier_env *env,
697 				   const struct bpf_reg_state *reg)
698 {
699 	struct bpf_verifier_state *cur = env->cur_state;
700 
701 	return cur->frame[reg->frameno];
702 }
703 
704 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
705 {
706        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
707 
708        /* We need to check that slots between [spi - nr_slots + 1, spi] are
709 	* within [0, allocated_stack).
710 	*
711 	* Please note that the spi grows downwards. For example, a dynptr
712 	* takes the size of two stack slots; the first slot will be at
713 	* spi and the second slot will be at spi - 1.
714 	*/
715        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
716 }
717 
718 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
719 			          const char *obj_kind, int nr_slots)
720 {
721 	int off, spi;
722 
723 	if (!tnum_is_const(reg->var_off)) {
724 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
725 		return -EINVAL;
726 	}
727 
728 	off = reg->off + reg->var_off.value;
729 	if (off % BPF_REG_SIZE) {
730 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
731 		return -EINVAL;
732 	}
733 
734 	spi = __get_spi(off);
735 	if (spi + 1 < nr_slots) {
736 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
737 		return -EINVAL;
738 	}
739 
740 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
741 		return -ERANGE;
742 	return spi;
743 }
744 
745 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
746 {
747 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
748 }
749 
750 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
751 {
752 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
753 }
754 
755 static const char *btf_type_name(const struct btf *btf, u32 id)
756 {
757 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
758 }
759 
760 static const char *dynptr_type_str(enum bpf_dynptr_type type)
761 {
762 	switch (type) {
763 	case BPF_DYNPTR_TYPE_LOCAL:
764 		return "local";
765 	case BPF_DYNPTR_TYPE_RINGBUF:
766 		return "ringbuf";
767 	case BPF_DYNPTR_TYPE_SKB:
768 		return "skb";
769 	case BPF_DYNPTR_TYPE_XDP:
770 		return "xdp";
771 	case BPF_DYNPTR_TYPE_INVALID:
772 		return "<invalid>";
773 	default:
774 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
775 		return "<unknown>";
776 	}
777 }
778 
779 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
780 {
781 	if (!btf || btf_id == 0)
782 		return "<invalid>";
783 
784 	/* we already validated that type is valid and has conforming name */
785 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
786 }
787 
788 static const char *iter_state_str(enum bpf_iter_state state)
789 {
790 	switch (state) {
791 	case BPF_ITER_STATE_ACTIVE:
792 		return "active";
793 	case BPF_ITER_STATE_DRAINED:
794 		return "drained";
795 	case BPF_ITER_STATE_INVALID:
796 		return "<invalid>";
797 	default:
798 		WARN_ONCE(1, "unknown iter state %d\n", state);
799 		return "<unknown>";
800 	}
801 }
802 
803 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
804 {
805 	env->scratched_regs |= 1U << regno;
806 }
807 
808 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
809 {
810 	env->scratched_stack_slots |= 1ULL << spi;
811 }
812 
813 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
814 {
815 	return (env->scratched_regs >> regno) & 1;
816 }
817 
818 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
819 {
820 	return (env->scratched_stack_slots >> regno) & 1;
821 }
822 
823 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
824 {
825 	return env->scratched_regs || env->scratched_stack_slots;
826 }
827 
828 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
829 {
830 	env->scratched_regs = 0U;
831 	env->scratched_stack_slots = 0ULL;
832 }
833 
834 /* Used for printing the entire verifier state. */
835 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
836 {
837 	env->scratched_regs = ~0U;
838 	env->scratched_stack_slots = ~0ULL;
839 }
840 
841 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
842 {
843 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
844 	case DYNPTR_TYPE_LOCAL:
845 		return BPF_DYNPTR_TYPE_LOCAL;
846 	case DYNPTR_TYPE_RINGBUF:
847 		return BPF_DYNPTR_TYPE_RINGBUF;
848 	case DYNPTR_TYPE_SKB:
849 		return BPF_DYNPTR_TYPE_SKB;
850 	case DYNPTR_TYPE_XDP:
851 		return BPF_DYNPTR_TYPE_XDP;
852 	default:
853 		return BPF_DYNPTR_TYPE_INVALID;
854 	}
855 }
856 
857 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
858 {
859 	switch (type) {
860 	case BPF_DYNPTR_TYPE_LOCAL:
861 		return DYNPTR_TYPE_LOCAL;
862 	case BPF_DYNPTR_TYPE_RINGBUF:
863 		return DYNPTR_TYPE_RINGBUF;
864 	case BPF_DYNPTR_TYPE_SKB:
865 		return DYNPTR_TYPE_SKB;
866 	case BPF_DYNPTR_TYPE_XDP:
867 		return DYNPTR_TYPE_XDP;
868 	default:
869 		return 0;
870 	}
871 }
872 
873 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
874 {
875 	return type == BPF_DYNPTR_TYPE_RINGBUF;
876 }
877 
878 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
879 			      enum bpf_dynptr_type type,
880 			      bool first_slot, int dynptr_id);
881 
882 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
883 				struct bpf_reg_state *reg);
884 
885 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
886 				   struct bpf_reg_state *sreg1,
887 				   struct bpf_reg_state *sreg2,
888 				   enum bpf_dynptr_type type)
889 {
890 	int id = ++env->id_gen;
891 
892 	__mark_dynptr_reg(sreg1, type, true, id);
893 	__mark_dynptr_reg(sreg2, type, false, id);
894 }
895 
896 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
897 			       struct bpf_reg_state *reg,
898 			       enum bpf_dynptr_type type)
899 {
900 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
901 }
902 
903 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
904 				        struct bpf_func_state *state, int spi);
905 
906 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
907 				   enum bpf_arg_type arg_type, int insn_idx)
908 {
909 	struct bpf_func_state *state = func(env, reg);
910 	enum bpf_dynptr_type type;
911 	int spi, i, id, err;
912 
913 	spi = dynptr_get_spi(env, reg);
914 	if (spi < 0)
915 		return spi;
916 
917 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
918 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
919 	 * to ensure that for the following example:
920 	 *	[d1][d1][d2][d2]
921 	 * spi    3   2   1   0
922 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
923 	 * case they do belong to same dynptr, second call won't see slot_type
924 	 * as STACK_DYNPTR and will simply skip destruction.
925 	 */
926 	err = destroy_if_dynptr_stack_slot(env, state, spi);
927 	if (err)
928 		return err;
929 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
930 	if (err)
931 		return err;
932 
933 	for (i = 0; i < BPF_REG_SIZE; i++) {
934 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
935 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
936 	}
937 
938 	type = arg_to_dynptr_type(arg_type);
939 	if (type == BPF_DYNPTR_TYPE_INVALID)
940 		return -EINVAL;
941 
942 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
943 			       &state->stack[spi - 1].spilled_ptr, type);
944 
945 	if (dynptr_type_refcounted(type)) {
946 		/* The id is used to track proper releasing */
947 		id = acquire_reference_state(env, insn_idx);
948 		if (id < 0)
949 			return id;
950 
951 		state->stack[spi].spilled_ptr.ref_obj_id = id;
952 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
953 	}
954 
955 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
956 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
957 
958 	return 0;
959 }
960 
961 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
962 {
963 	struct bpf_func_state *state = func(env, reg);
964 	int spi, i;
965 
966 	spi = dynptr_get_spi(env, reg);
967 	if (spi < 0)
968 		return spi;
969 
970 	for (i = 0; i < BPF_REG_SIZE; i++) {
971 		state->stack[spi].slot_type[i] = STACK_INVALID;
972 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
973 	}
974 
975 	/* Invalidate any slices associated with this dynptr */
976 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
977 		WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
978 
979 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
980 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
981 
982 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
983 	 *
984 	 * While we don't allow reading STACK_INVALID, it is still possible to
985 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
986 	 * helpers or insns can do partial read of that part without failing,
987 	 * but check_stack_range_initialized, check_stack_read_var_off, and
988 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
989 	 * the slot conservatively. Hence we need to prevent those liveness
990 	 * marking walks.
991 	 *
992 	 * This was not a problem before because STACK_INVALID is only set by
993 	 * default (where the default reg state has its reg->parent as NULL), or
994 	 * in clean_live_states after REG_LIVE_DONE (at which point
995 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
996 	 * verifier state exploration (like we did above). Hence, for our case
997 	 * parentage chain will still be live (i.e. reg->parent may be
998 	 * non-NULL), while earlier reg->parent was NULL, so we need
999 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
1000 	 * done later on reads or by mark_dynptr_read as well to unnecessary
1001 	 * mark registers in verifier state.
1002 	 */
1003 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1004 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1005 
1006 	return 0;
1007 }
1008 
1009 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1010 			       struct bpf_reg_state *reg);
1011 
1012 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1013 {
1014 	if (!env->allow_ptr_leaks)
1015 		__mark_reg_not_init(env, reg);
1016 	else
1017 		__mark_reg_unknown(env, reg);
1018 }
1019 
1020 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1021 				        struct bpf_func_state *state, int spi)
1022 {
1023 	struct bpf_func_state *fstate;
1024 	struct bpf_reg_state *dreg;
1025 	int i, dynptr_id;
1026 
1027 	/* We always ensure that STACK_DYNPTR is never set partially,
1028 	 * hence just checking for slot_type[0] is enough. This is
1029 	 * different for STACK_SPILL, where it may be only set for
1030 	 * 1 byte, so code has to use is_spilled_reg.
1031 	 */
1032 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1033 		return 0;
1034 
1035 	/* Reposition spi to first slot */
1036 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1037 		spi = spi + 1;
1038 
1039 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1040 		verbose(env, "cannot overwrite referenced dynptr\n");
1041 		return -EINVAL;
1042 	}
1043 
1044 	mark_stack_slot_scratched(env, spi);
1045 	mark_stack_slot_scratched(env, spi - 1);
1046 
1047 	/* Writing partially to one dynptr stack slot destroys both. */
1048 	for (i = 0; i < BPF_REG_SIZE; i++) {
1049 		state->stack[spi].slot_type[i] = STACK_INVALID;
1050 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1051 	}
1052 
1053 	dynptr_id = state->stack[spi].spilled_ptr.id;
1054 	/* Invalidate any slices associated with this dynptr */
1055 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1056 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1057 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1058 			continue;
1059 		if (dreg->dynptr_id == dynptr_id)
1060 			mark_reg_invalid(env, dreg);
1061 	}));
1062 
1063 	/* Do not release reference state, we are destroying dynptr on stack,
1064 	 * not using some helper to release it. Just reset register.
1065 	 */
1066 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1067 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1068 
1069 	/* Same reason as unmark_stack_slots_dynptr above */
1070 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1071 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1072 
1073 	return 0;
1074 }
1075 
1076 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1077 {
1078 	int spi;
1079 
1080 	if (reg->type == CONST_PTR_TO_DYNPTR)
1081 		return false;
1082 
1083 	spi = dynptr_get_spi(env, reg);
1084 
1085 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1086 	 * error because this just means the stack state hasn't been updated yet.
1087 	 * We will do check_mem_access to check and update stack bounds later.
1088 	 */
1089 	if (spi < 0 && spi != -ERANGE)
1090 		return false;
1091 
1092 	/* We don't need to check if the stack slots are marked by previous
1093 	 * dynptr initializations because we allow overwriting existing unreferenced
1094 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1095 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1096 	 * touching are completely destructed before we reinitialize them for a new
1097 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1098 	 * instead of delaying it until the end where the user will get "Unreleased
1099 	 * reference" error.
1100 	 */
1101 	return true;
1102 }
1103 
1104 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1105 {
1106 	struct bpf_func_state *state = func(env, reg);
1107 	int i, spi;
1108 
1109 	/* This already represents first slot of initialized bpf_dynptr.
1110 	 *
1111 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1112 	 * check_func_arg_reg_off's logic, so we don't need to check its
1113 	 * offset and alignment.
1114 	 */
1115 	if (reg->type == CONST_PTR_TO_DYNPTR)
1116 		return true;
1117 
1118 	spi = dynptr_get_spi(env, reg);
1119 	if (spi < 0)
1120 		return false;
1121 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1122 		return false;
1123 
1124 	for (i = 0; i < BPF_REG_SIZE; i++) {
1125 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1126 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1127 			return false;
1128 	}
1129 
1130 	return true;
1131 }
1132 
1133 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1134 				    enum bpf_arg_type arg_type)
1135 {
1136 	struct bpf_func_state *state = func(env, reg);
1137 	enum bpf_dynptr_type dynptr_type;
1138 	int spi;
1139 
1140 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1141 	if (arg_type == ARG_PTR_TO_DYNPTR)
1142 		return true;
1143 
1144 	dynptr_type = arg_to_dynptr_type(arg_type);
1145 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1146 		return reg->dynptr.type == dynptr_type;
1147 	} else {
1148 		spi = dynptr_get_spi(env, reg);
1149 		if (spi < 0)
1150 			return false;
1151 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1152 	}
1153 }
1154 
1155 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1156 
1157 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1158 				 struct bpf_reg_state *reg, int insn_idx,
1159 				 struct btf *btf, u32 btf_id, int nr_slots)
1160 {
1161 	struct bpf_func_state *state = func(env, reg);
1162 	int spi, i, j, id;
1163 
1164 	spi = iter_get_spi(env, reg, nr_slots);
1165 	if (spi < 0)
1166 		return spi;
1167 
1168 	id = acquire_reference_state(env, insn_idx);
1169 	if (id < 0)
1170 		return id;
1171 
1172 	for (i = 0; i < nr_slots; i++) {
1173 		struct bpf_stack_state *slot = &state->stack[spi - i];
1174 		struct bpf_reg_state *st = &slot->spilled_ptr;
1175 
1176 		__mark_reg_known_zero(st);
1177 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1178 		st->live |= REG_LIVE_WRITTEN;
1179 		st->ref_obj_id = i == 0 ? id : 0;
1180 		st->iter.btf = btf;
1181 		st->iter.btf_id = btf_id;
1182 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1183 		st->iter.depth = 0;
1184 
1185 		for (j = 0; j < BPF_REG_SIZE; j++)
1186 			slot->slot_type[j] = STACK_ITER;
1187 
1188 		mark_stack_slot_scratched(env, spi - i);
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1195 				   struct bpf_reg_state *reg, int nr_slots)
1196 {
1197 	struct bpf_func_state *state = func(env, reg);
1198 	int spi, i, j;
1199 
1200 	spi = iter_get_spi(env, reg, nr_slots);
1201 	if (spi < 0)
1202 		return spi;
1203 
1204 	for (i = 0; i < nr_slots; i++) {
1205 		struct bpf_stack_state *slot = &state->stack[spi - i];
1206 		struct bpf_reg_state *st = &slot->spilled_ptr;
1207 
1208 		if (i == 0)
1209 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1210 
1211 		__mark_reg_not_init(env, st);
1212 
1213 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1214 		st->live |= REG_LIVE_WRITTEN;
1215 
1216 		for (j = 0; j < BPF_REG_SIZE; j++)
1217 			slot->slot_type[j] = STACK_INVALID;
1218 
1219 		mark_stack_slot_scratched(env, spi - i);
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1226 				     struct bpf_reg_state *reg, int nr_slots)
1227 {
1228 	struct bpf_func_state *state = func(env, reg);
1229 	int spi, i, j;
1230 
1231 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1232 	 * will do check_mem_access to check and update stack bounds later, so
1233 	 * return true for that case.
1234 	 */
1235 	spi = iter_get_spi(env, reg, nr_slots);
1236 	if (spi == -ERANGE)
1237 		return true;
1238 	if (spi < 0)
1239 		return false;
1240 
1241 	for (i = 0; i < nr_slots; i++) {
1242 		struct bpf_stack_state *slot = &state->stack[spi - i];
1243 
1244 		for (j = 0; j < BPF_REG_SIZE; j++)
1245 			if (slot->slot_type[j] == STACK_ITER)
1246 				return false;
1247 	}
1248 
1249 	return true;
1250 }
1251 
1252 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1253 				   struct btf *btf, u32 btf_id, int nr_slots)
1254 {
1255 	struct bpf_func_state *state = func(env, reg);
1256 	int spi, i, j;
1257 
1258 	spi = iter_get_spi(env, reg, nr_slots);
1259 	if (spi < 0)
1260 		return false;
1261 
1262 	for (i = 0; i < nr_slots; i++) {
1263 		struct bpf_stack_state *slot = &state->stack[spi - i];
1264 		struct bpf_reg_state *st = &slot->spilled_ptr;
1265 
1266 		/* only main (first) slot has ref_obj_id set */
1267 		if (i == 0 && !st->ref_obj_id)
1268 			return false;
1269 		if (i != 0 && st->ref_obj_id)
1270 			return false;
1271 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1272 			return false;
1273 
1274 		for (j = 0; j < BPF_REG_SIZE; j++)
1275 			if (slot->slot_type[j] != STACK_ITER)
1276 				return false;
1277 	}
1278 
1279 	return true;
1280 }
1281 
1282 /* Check if given stack slot is "special":
1283  *   - spilled register state (STACK_SPILL);
1284  *   - dynptr state (STACK_DYNPTR);
1285  *   - iter state (STACK_ITER).
1286  */
1287 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1288 {
1289 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1290 
1291 	switch (type) {
1292 	case STACK_SPILL:
1293 	case STACK_DYNPTR:
1294 	case STACK_ITER:
1295 		return true;
1296 	case STACK_INVALID:
1297 	case STACK_MISC:
1298 	case STACK_ZERO:
1299 		return false;
1300 	default:
1301 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1302 		return true;
1303 	}
1304 }
1305 
1306 /* The reg state of a pointer or a bounded scalar was saved when
1307  * it was spilled to the stack.
1308  */
1309 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1310 {
1311 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1312 }
1313 
1314 static void scrub_spilled_slot(u8 *stype)
1315 {
1316 	if (*stype != STACK_INVALID)
1317 		*stype = STACK_MISC;
1318 }
1319 
1320 static void print_verifier_state(struct bpf_verifier_env *env,
1321 				 const struct bpf_func_state *state,
1322 				 bool print_all)
1323 {
1324 	const struct bpf_reg_state *reg;
1325 	enum bpf_reg_type t;
1326 	int i;
1327 
1328 	if (state->frameno)
1329 		verbose(env, " frame%d:", state->frameno);
1330 	for (i = 0; i < MAX_BPF_REG; i++) {
1331 		reg = &state->regs[i];
1332 		t = reg->type;
1333 		if (t == NOT_INIT)
1334 			continue;
1335 		if (!print_all && !reg_scratched(env, i))
1336 			continue;
1337 		verbose(env, " R%d", i);
1338 		print_liveness(env, reg->live);
1339 		verbose(env, "=");
1340 		if (t == SCALAR_VALUE && reg->precise)
1341 			verbose(env, "P");
1342 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1343 		    tnum_is_const(reg->var_off)) {
1344 			/* reg->off should be 0 for SCALAR_VALUE */
1345 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1346 			verbose(env, "%lld", reg->var_off.value + reg->off);
1347 		} else {
1348 			const char *sep = "";
1349 
1350 			verbose(env, "%s", reg_type_str(env, t));
1351 			if (base_type(t) == PTR_TO_BTF_ID)
1352 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1353 			verbose(env, "(");
1354 /*
1355  * _a stands for append, was shortened to avoid multiline statements below.
1356  * This macro is used to output a comma separated list of attributes.
1357  */
1358 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1359 
1360 			if (reg->id)
1361 				verbose_a("id=%d", reg->id);
1362 			if (reg->ref_obj_id)
1363 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1364 			if (type_is_non_owning_ref(reg->type))
1365 				verbose_a("%s", "non_own_ref");
1366 			if (t != SCALAR_VALUE)
1367 				verbose_a("off=%d", reg->off);
1368 			if (type_is_pkt_pointer(t))
1369 				verbose_a("r=%d", reg->range);
1370 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1371 				 base_type(t) == PTR_TO_MAP_KEY ||
1372 				 base_type(t) == PTR_TO_MAP_VALUE)
1373 				verbose_a("ks=%d,vs=%d",
1374 					  reg->map_ptr->key_size,
1375 					  reg->map_ptr->value_size);
1376 			if (tnum_is_const(reg->var_off)) {
1377 				/* Typically an immediate SCALAR_VALUE, but
1378 				 * could be a pointer whose offset is too big
1379 				 * for reg->off
1380 				 */
1381 				verbose_a("imm=%llx", reg->var_off.value);
1382 			} else {
1383 				if (reg->smin_value != reg->umin_value &&
1384 				    reg->smin_value != S64_MIN)
1385 					verbose_a("smin=%lld", (long long)reg->smin_value);
1386 				if (reg->smax_value != reg->umax_value &&
1387 				    reg->smax_value != S64_MAX)
1388 					verbose_a("smax=%lld", (long long)reg->smax_value);
1389 				if (reg->umin_value != 0)
1390 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1391 				if (reg->umax_value != U64_MAX)
1392 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1393 				if (!tnum_is_unknown(reg->var_off)) {
1394 					char tn_buf[48];
1395 
1396 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1397 					verbose_a("var_off=%s", tn_buf);
1398 				}
1399 				if (reg->s32_min_value != reg->smin_value &&
1400 				    reg->s32_min_value != S32_MIN)
1401 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1402 				if (reg->s32_max_value != reg->smax_value &&
1403 				    reg->s32_max_value != S32_MAX)
1404 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1405 				if (reg->u32_min_value != reg->umin_value &&
1406 				    reg->u32_min_value != U32_MIN)
1407 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1408 				if (reg->u32_max_value != reg->umax_value &&
1409 				    reg->u32_max_value != U32_MAX)
1410 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1411 			}
1412 #undef verbose_a
1413 
1414 			verbose(env, ")");
1415 		}
1416 	}
1417 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1418 		char types_buf[BPF_REG_SIZE + 1];
1419 		bool valid = false;
1420 		int j;
1421 
1422 		for (j = 0; j < BPF_REG_SIZE; j++) {
1423 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1424 				valid = true;
1425 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1426 		}
1427 		types_buf[BPF_REG_SIZE] = 0;
1428 		if (!valid)
1429 			continue;
1430 		if (!print_all && !stack_slot_scratched(env, i))
1431 			continue;
1432 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1433 		case STACK_SPILL:
1434 			reg = &state->stack[i].spilled_ptr;
1435 			t = reg->type;
1436 
1437 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1438 			print_liveness(env, reg->live);
1439 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1440 			if (t == SCALAR_VALUE && reg->precise)
1441 				verbose(env, "P");
1442 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1443 				verbose(env, "%lld", reg->var_off.value + reg->off);
1444 			break;
1445 		case STACK_DYNPTR:
1446 			i += BPF_DYNPTR_NR_SLOTS - 1;
1447 			reg = &state->stack[i].spilled_ptr;
1448 
1449 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1450 			print_liveness(env, reg->live);
1451 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1452 			if (reg->ref_obj_id)
1453 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1454 			break;
1455 		case STACK_ITER:
1456 			/* only main slot has ref_obj_id set; skip others */
1457 			reg = &state->stack[i].spilled_ptr;
1458 			if (!reg->ref_obj_id)
1459 				continue;
1460 
1461 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 			print_liveness(env, reg->live);
1463 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1464 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1465 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1466 				reg->iter.depth);
1467 			break;
1468 		case STACK_MISC:
1469 		case STACK_ZERO:
1470 		default:
1471 			reg = &state->stack[i].spilled_ptr;
1472 
1473 			for (j = 0; j < BPF_REG_SIZE; j++)
1474 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1475 			types_buf[BPF_REG_SIZE] = 0;
1476 
1477 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1478 			print_liveness(env, reg->live);
1479 			verbose(env, "=%s", types_buf);
1480 			break;
1481 		}
1482 	}
1483 	if (state->acquired_refs && state->refs[0].id) {
1484 		verbose(env, " refs=%d", state->refs[0].id);
1485 		for (i = 1; i < state->acquired_refs; i++)
1486 			if (state->refs[i].id)
1487 				verbose(env, ",%d", state->refs[i].id);
1488 	}
1489 	if (state->in_callback_fn)
1490 		verbose(env, " cb");
1491 	if (state->in_async_callback_fn)
1492 		verbose(env, " async_cb");
1493 	verbose(env, "\n");
1494 	mark_verifier_state_clean(env);
1495 }
1496 
1497 static inline u32 vlog_alignment(u32 pos)
1498 {
1499 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1500 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1501 }
1502 
1503 static void print_insn_state(struct bpf_verifier_env *env,
1504 			     const struct bpf_func_state *state)
1505 {
1506 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1507 		/* remove new line character */
1508 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1509 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1510 	} else {
1511 		verbose(env, "%d:", env->insn_idx);
1512 	}
1513 	print_verifier_state(env, state, false);
1514 }
1515 
1516 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1517  * small to hold src. This is different from krealloc since we don't want to preserve
1518  * the contents of dst.
1519  *
1520  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1521  * not be allocated.
1522  */
1523 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1524 {
1525 	size_t alloc_bytes;
1526 	void *orig = dst;
1527 	size_t bytes;
1528 
1529 	if (ZERO_OR_NULL_PTR(src))
1530 		goto out;
1531 
1532 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1533 		return NULL;
1534 
1535 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1536 	dst = krealloc(orig, alloc_bytes, flags);
1537 	if (!dst) {
1538 		kfree(orig);
1539 		return NULL;
1540 	}
1541 
1542 	memcpy(dst, src, bytes);
1543 out:
1544 	return dst ? dst : ZERO_SIZE_PTR;
1545 }
1546 
1547 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1548  * small to hold new_n items. new items are zeroed out if the array grows.
1549  *
1550  * Contrary to krealloc_array, does not free arr if new_n is zero.
1551  */
1552 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1553 {
1554 	size_t alloc_size;
1555 	void *new_arr;
1556 
1557 	if (!new_n || old_n == new_n)
1558 		goto out;
1559 
1560 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1561 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1562 	if (!new_arr) {
1563 		kfree(arr);
1564 		return NULL;
1565 	}
1566 	arr = new_arr;
1567 
1568 	if (new_n > old_n)
1569 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1570 
1571 out:
1572 	return arr ? arr : ZERO_SIZE_PTR;
1573 }
1574 
1575 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1576 {
1577 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1578 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1579 	if (!dst->refs)
1580 		return -ENOMEM;
1581 
1582 	dst->acquired_refs = src->acquired_refs;
1583 	return 0;
1584 }
1585 
1586 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1587 {
1588 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1589 
1590 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1591 				GFP_KERNEL);
1592 	if (!dst->stack)
1593 		return -ENOMEM;
1594 
1595 	dst->allocated_stack = src->allocated_stack;
1596 	return 0;
1597 }
1598 
1599 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1600 {
1601 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1602 				    sizeof(struct bpf_reference_state));
1603 	if (!state->refs)
1604 		return -ENOMEM;
1605 
1606 	state->acquired_refs = n;
1607 	return 0;
1608 }
1609 
1610 static int grow_stack_state(struct bpf_func_state *state, int size)
1611 {
1612 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1613 
1614 	if (old_n >= n)
1615 		return 0;
1616 
1617 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1618 	if (!state->stack)
1619 		return -ENOMEM;
1620 
1621 	state->allocated_stack = size;
1622 	return 0;
1623 }
1624 
1625 /* Acquire a pointer id from the env and update the state->refs to include
1626  * this new pointer reference.
1627  * On success, returns a valid pointer id to associate with the register
1628  * On failure, returns a negative errno.
1629  */
1630 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1631 {
1632 	struct bpf_func_state *state = cur_func(env);
1633 	int new_ofs = state->acquired_refs;
1634 	int id, err;
1635 
1636 	err = resize_reference_state(state, state->acquired_refs + 1);
1637 	if (err)
1638 		return err;
1639 	id = ++env->id_gen;
1640 	state->refs[new_ofs].id = id;
1641 	state->refs[new_ofs].insn_idx = insn_idx;
1642 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1643 
1644 	return id;
1645 }
1646 
1647 /* release function corresponding to acquire_reference_state(). Idempotent. */
1648 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1649 {
1650 	int i, last_idx;
1651 
1652 	last_idx = state->acquired_refs - 1;
1653 	for (i = 0; i < state->acquired_refs; i++) {
1654 		if (state->refs[i].id == ptr_id) {
1655 			/* Cannot release caller references in callbacks */
1656 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1657 				return -EINVAL;
1658 			if (last_idx && i != last_idx)
1659 				memcpy(&state->refs[i], &state->refs[last_idx],
1660 				       sizeof(*state->refs));
1661 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1662 			state->acquired_refs--;
1663 			return 0;
1664 		}
1665 	}
1666 	return -EINVAL;
1667 }
1668 
1669 static void free_func_state(struct bpf_func_state *state)
1670 {
1671 	if (!state)
1672 		return;
1673 	kfree(state->refs);
1674 	kfree(state->stack);
1675 	kfree(state);
1676 }
1677 
1678 static void clear_jmp_history(struct bpf_verifier_state *state)
1679 {
1680 	kfree(state->jmp_history);
1681 	state->jmp_history = NULL;
1682 	state->jmp_history_cnt = 0;
1683 }
1684 
1685 static void free_verifier_state(struct bpf_verifier_state *state,
1686 				bool free_self)
1687 {
1688 	int i;
1689 
1690 	for (i = 0; i <= state->curframe; i++) {
1691 		free_func_state(state->frame[i]);
1692 		state->frame[i] = NULL;
1693 	}
1694 	clear_jmp_history(state);
1695 	if (free_self)
1696 		kfree(state);
1697 }
1698 
1699 /* copy verifier state from src to dst growing dst stack space
1700  * when necessary to accommodate larger src stack
1701  */
1702 static int copy_func_state(struct bpf_func_state *dst,
1703 			   const struct bpf_func_state *src)
1704 {
1705 	int err;
1706 
1707 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1708 	err = copy_reference_state(dst, src);
1709 	if (err)
1710 		return err;
1711 	return copy_stack_state(dst, src);
1712 }
1713 
1714 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1715 			       const struct bpf_verifier_state *src)
1716 {
1717 	struct bpf_func_state *dst;
1718 	int i, err;
1719 
1720 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1721 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1722 					    GFP_USER);
1723 	if (!dst_state->jmp_history)
1724 		return -ENOMEM;
1725 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1726 
1727 	/* if dst has more stack frames then src frame, free them */
1728 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1729 		free_func_state(dst_state->frame[i]);
1730 		dst_state->frame[i] = NULL;
1731 	}
1732 	dst_state->speculative = src->speculative;
1733 	dst_state->active_rcu_lock = src->active_rcu_lock;
1734 	dst_state->curframe = src->curframe;
1735 	dst_state->active_lock.ptr = src->active_lock.ptr;
1736 	dst_state->active_lock.id = src->active_lock.id;
1737 	dst_state->branches = src->branches;
1738 	dst_state->parent = src->parent;
1739 	dst_state->first_insn_idx = src->first_insn_idx;
1740 	dst_state->last_insn_idx = src->last_insn_idx;
1741 	for (i = 0; i <= src->curframe; i++) {
1742 		dst = dst_state->frame[i];
1743 		if (!dst) {
1744 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1745 			if (!dst)
1746 				return -ENOMEM;
1747 			dst_state->frame[i] = dst;
1748 		}
1749 		err = copy_func_state(dst, src->frame[i]);
1750 		if (err)
1751 			return err;
1752 	}
1753 	return 0;
1754 }
1755 
1756 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1757 {
1758 	while (st) {
1759 		u32 br = --st->branches;
1760 
1761 		/* WARN_ON(br > 1) technically makes sense here,
1762 		 * but see comment in push_stack(), hence:
1763 		 */
1764 		WARN_ONCE((int)br < 0,
1765 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1766 			  br);
1767 		if (br)
1768 			break;
1769 		st = st->parent;
1770 	}
1771 }
1772 
1773 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1774 		     int *insn_idx, bool pop_log)
1775 {
1776 	struct bpf_verifier_state *cur = env->cur_state;
1777 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1778 	int err;
1779 
1780 	if (env->head == NULL)
1781 		return -ENOENT;
1782 
1783 	if (cur) {
1784 		err = copy_verifier_state(cur, &head->st);
1785 		if (err)
1786 			return err;
1787 	}
1788 	if (pop_log)
1789 		bpf_vlog_reset(&env->log, head->log_pos);
1790 	if (insn_idx)
1791 		*insn_idx = head->insn_idx;
1792 	if (prev_insn_idx)
1793 		*prev_insn_idx = head->prev_insn_idx;
1794 	elem = head->next;
1795 	free_verifier_state(&head->st, false);
1796 	kfree(head);
1797 	env->head = elem;
1798 	env->stack_size--;
1799 	return 0;
1800 }
1801 
1802 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1803 					     int insn_idx, int prev_insn_idx,
1804 					     bool speculative)
1805 {
1806 	struct bpf_verifier_state *cur = env->cur_state;
1807 	struct bpf_verifier_stack_elem *elem;
1808 	int err;
1809 
1810 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1811 	if (!elem)
1812 		goto err;
1813 
1814 	elem->insn_idx = insn_idx;
1815 	elem->prev_insn_idx = prev_insn_idx;
1816 	elem->next = env->head;
1817 	elem->log_pos = env->log.len_used;
1818 	env->head = elem;
1819 	env->stack_size++;
1820 	err = copy_verifier_state(&elem->st, cur);
1821 	if (err)
1822 		goto err;
1823 	elem->st.speculative |= speculative;
1824 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1825 		verbose(env, "The sequence of %d jumps is too complex.\n",
1826 			env->stack_size);
1827 		goto err;
1828 	}
1829 	if (elem->st.parent) {
1830 		++elem->st.parent->branches;
1831 		/* WARN_ON(branches > 2) technically makes sense here,
1832 		 * but
1833 		 * 1. speculative states will bump 'branches' for non-branch
1834 		 * instructions
1835 		 * 2. is_state_visited() heuristics may decide not to create
1836 		 * a new state for a sequence of branches and all such current
1837 		 * and cloned states will be pointing to a single parent state
1838 		 * which might have large 'branches' count.
1839 		 */
1840 	}
1841 	return &elem->st;
1842 err:
1843 	free_verifier_state(env->cur_state, true);
1844 	env->cur_state = NULL;
1845 	/* pop all elements and return */
1846 	while (!pop_stack(env, NULL, NULL, false));
1847 	return NULL;
1848 }
1849 
1850 #define CALLER_SAVED_REGS 6
1851 static const int caller_saved[CALLER_SAVED_REGS] = {
1852 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1853 };
1854 
1855 /* This helper doesn't clear reg->id */
1856 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1857 {
1858 	reg->var_off = tnum_const(imm);
1859 	reg->smin_value = (s64)imm;
1860 	reg->smax_value = (s64)imm;
1861 	reg->umin_value = imm;
1862 	reg->umax_value = imm;
1863 
1864 	reg->s32_min_value = (s32)imm;
1865 	reg->s32_max_value = (s32)imm;
1866 	reg->u32_min_value = (u32)imm;
1867 	reg->u32_max_value = (u32)imm;
1868 }
1869 
1870 /* Mark the unknown part of a register (variable offset or scalar value) as
1871  * known to have the value @imm.
1872  */
1873 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1874 {
1875 	/* Clear off and union(map_ptr, range) */
1876 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1877 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1878 	reg->id = 0;
1879 	reg->ref_obj_id = 0;
1880 	___mark_reg_known(reg, imm);
1881 }
1882 
1883 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1884 {
1885 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1886 	reg->s32_min_value = (s32)imm;
1887 	reg->s32_max_value = (s32)imm;
1888 	reg->u32_min_value = (u32)imm;
1889 	reg->u32_max_value = (u32)imm;
1890 }
1891 
1892 /* Mark the 'variable offset' part of a register as zero.  This should be
1893  * used only on registers holding a pointer type.
1894  */
1895 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1896 {
1897 	__mark_reg_known(reg, 0);
1898 }
1899 
1900 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1901 {
1902 	__mark_reg_known(reg, 0);
1903 	reg->type = SCALAR_VALUE;
1904 }
1905 
1906 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1907 				struct bpf_reg_state *regs, u32 regno)
1908 {
1909 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1910 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1911 		/* Something bad happened, let's kill all regs */
1912 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1913 			__mark_reg_not_init(env, regs + regno);
1914 		return;
1915 	}
1916 	__mark_reg_known_zero(regs + regno);
1917 }
1918 
1919 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1920 			      bool first_slot, int dynptr_id)
1921 {
1922 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1923 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1924 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1925 	 */
1926 	__mark_reg_known_zero(reg);
1927 	reg->type = CONST_PTR_TO_DYNPTR;
1928 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1929 	reg->id = dynptr_id;
1930 	reg->dynptr.type = type;
1931 	reg->dynptr.first_slot = first_slot;
1932 }
1933 
1934 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1935 {
1936 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1937 		const struct bpf_map *map = reg->map_ptr;
1938 
1939 		if (map->inner_map_meta) {
1940 			reg->type = CONST_PTR_TO_MAP;
1941 			reg->map_ptr = map->inner_map_meta;
1942 			/* transfer reg's id which is unique for every map_lookup_elem
1943 			 * as UID of the inner map.
1944 			 */
1945 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1946 				reg->map_uid = reg->id;
1947 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1948 			reg->type = PTR_TO_XDP_SOCK;
1949 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1950 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1951 			reg->type = PTR_TO_SOCKET;
1952 		} else {
1953 			reg->type = PTR_TO_MAP_VALUE;
1954 		}
1955 		return;
1956 	}
1957 
1958 	reg->type &= ~PTR_MAYBE_NULL;
1959 }
1960 
1961 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1962 				struct btf_field_graph_root *ds_head)
1963 {
1964 	__mark_reg_known_zero(&regs[regno]);
1965 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1966 	regs[regno].btf = ds_head->btf;
1967 	regs[regno].btf_id = ds_head->value_btf_id;
1968 	regs[regno].off = ds_head->node_offset;
1969 }
1970 
1971 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1972 {
1973 	return type_is_pkt_pointer(reg->type);
1974 }
1975 
1976 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1977 {
1978 	return reg_is_pkt_pointer(reg) ||
1979 	       reg->type == PTR_TO_PACKET_END;
1980 }
1981 
1982 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1983 {
1984 	return base_type(reg->type) == PTR_TO_MEM &&
1985 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1986 }
1987 
1988 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1989 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1990 				    enum bpf_reg_type which)
1991 {
1992 	/* The register can already have a range from prior markings.
1993 	 * This is fine as long as it hasn't been advanced from its
1994 	 * origin.
1995 	 */
1996 	return reg->type == which &&
1997 	       reg->id == 0 &&
1998 	       reg->off == 0 &&
1999 	       tnum_equals_const(reg->var_off, 0);
2000 }
2001 
2002 /* Reset the min/max bounds of a register */
2003 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2004 {
2005 	reg->smin_value = S64_MIN;
2006 	reg->smax_value = S64_MAX;
2007 	reg->umin_value = 0;
2008 	reg->umax_value = U64_MAX;
2009 
2010 	reg->s32_min_value = S32_MIN;
2011 	reg->s32_max_value = S32_MAX;
2012 	reg->u32_min_value = 0;
2013 	reg->u32_max_value = U32_MAX;
2014 }
2015 
2016 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2017 {
2018 	reg->smin_value = S64_MIN;
2019 	reg->smax_value = S64_MAX;
2020 	reg->umin_value = 0;
2021 	reg->umax_value = U64_MAX;
2022 }
2023 
2024 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2025 {
2026 	reg->s32_min_value = S32_MIN;
2027 	reg->s32_max_value = S32_MAX;
2028 	reg->u32_min_value = 0;
2029 	reg->u32_max_value = U32_MAX;
2030 }
2031 
2032 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2033 {
2034 	struct tnum var32_off = tnum_subreg(reg->var_off);
2035 
2036 	/* min signed is max(sign bit) | min(other bits) */
2037 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2038 			var32_off.value | (var32_off.mask & S32_MIN));
2039 	/* max signed is min(sign bit) | max(other bits) */
2040 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2041 			var32_off.value | (var32_off.mask & S32_MAX));
2042 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2043 	reg->u32_max_value = min(reg->u32_max_value,
2044 				 (u32)(var32_off.value | var32_off.mask));
2045 }
2046 
2047 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2048 {
2049 	/* min signed is max(sign bit) | min(other bits) */
2050 	reg->smin_value = max_t(s64, reg->smin_value,
2051 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2052 	/* max signed is min(sign bit) | max(other bits) */
2053 	reg->smax_value = min_t(s64, reg->smax_value,
2054 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2055 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2056 	reg->umax_value = min(reg->umax_value,
2057 			      reg->var_off.value | reg->var_off.mask);
2058 }
2059 
2060 static void __update_reg_bounds(struct bpf_reg_state *reg)
2061 {
2062 	__update_reg32_bounds(reg);
2063 	__update_reg64_bounds(reg);
2064 }
2065 
2066 /* Uses signed min/max values to inform unsigned, and vice-versa */
2067 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2068 {
2069 	/* Learn sign from signed bounds.
2070 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2071 	 * are the same, so combine.  This works even in the negative case, e.g.
2072 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2073 	 */
2074 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2075 		reg->s32_min_value = reg->u32_min_value =
2076 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2077 		reg->s32_max_value = reg->u32_max_value =
2078 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2079 		return;
2080 	}
2081 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2082 	 * boundary, so we must be careful.
2083 	 */
2084 	if ((s32)reg->u32_max_value >= 0) {
2085 		/* Positive.  We can't learn anything from the smin, but smax
2086 		 * is positive, hence safe.
2087 		 */
2088 		reg->s32_min_value = reg->u32_min_value;
2089 		reg->s32_max_value = reg->u32_max_value =
2090 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2091 	} else if ((s32)reg->u32_min_value < 0) {
2092 		/* Negative.  We can't learn anything from the smax, but smin
2093 		 * is negative, hence safe.
2094 		 */
2095 		reg->s32_min_value = reg->u32_min_value =
2096 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2097 		reg->s32_max_value = reg->u32_max_value;
2098 	}
2099 }
2100 
2101 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2102 {
2103 	/* Learn sign from signed bounds.
2104 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2105 	 * are the same, so combine.  This works even in the negative case, e.g.
2106 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2107 	 */
2108 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2109 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2110 							  reg->umin_value);
2111 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2112 							  reg->umax_value);
2113 		return;
2114 	}
2115 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2116 	 * boundary, so we must be careful.
2117 	 */
2118 	if ((s64)reg->umax_value >= 0) {
2119 		/* Positive.  We can't learn anything from the smin, but smax
2120 		 * is positive, hence safe.
2121 		 */
2122 		reg->smin_value = reg->umin_value;
2123 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2124 							  reg->umax_value);
2125 	} else if ((s64)reg->umin_value < 0) {
2126 		/* Negative.  We can't learn anything from the smax, but smin
2127 		 * is negative, hence safe.
2128 		 */
2129 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2130 							  reg->umin_value);
2131 		reg->smax_value = reg->umax_value;
2132 	}
2133 }
2134 
2135 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2136 {
2137 	__reg32_deduce_bounds(reg);
2138 	__reg64_deduce_bounds(reg);
2139 }
2140 
2141 /* Attempts to improve var_off based on unsigned min/max information */
2142 static void __reg_bound_offset(struct bpf_reg_state *reg)
2143 {
2144 	struct tnum var64_off = tnum_intersect(reg->var_off,
2145 					       tnum_range(reg->umin_value,
2146 							  reg->umax_value));
2147 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
2148 						tnum_range(reg->u32_min_value,
2149 							   reg->u32_max_value));
2150 
2151 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2152 }
2153 
2154 static void reg_bounds_sync(struct bpf_reg_state *reg)
2155 {
2156 	/* We might have learned new bounds from the var_off. */
2157 	__update_reg_bounds(reg);
2158 	/* We might have learned something about the sign bit. */
2159 	__reg_deduce_bounds(reg);
2160 	/* We might have learned some bits from the bounds. */
2161 	__reg_bound_offset(reg);
2162 	/* Intersecting with the old var_off might have improved our bounds
2163 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2164 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2165 	 */
2166 	__update_reg_bounds(reg);
2167 }
2168 
2169 static bool __reg32_bound_s64(s32 a)
2170 {
2171 	return a >= 0 && a <= S32_MAX;
2172 }
2173 
2174 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2175 {
2176 	reg->umin_value = reg->u32_min_value;
2177 	reg->umax_value = reg->u32_max_value;
2178 
2179 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2180 	 * be positive otherwise set to worse case bounds and refine later
2181 	 * from tnum.
2182 	 */
2183 	if (__reg32_bound_s64(reg->s32_min_value) &&
2184 	    __reg32_bound_s64(reg->s32_max_value)) {
2185 		reg->smin_value = reg->s32_min_value;
2186 		reg->smax_value = reg->s32_max_value;
2187 	} else {
2188 		reg->smin_value = 0;
2189 		reg->smax_value = U32_MAX;
2190 	}
2191 }
2192 
2193 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2194 {
2195 	/* special case when 64-bit register has upper 32-bit register
2196 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2197 	 * allowing us to use 32-bit bounds directly,
2198 	 */
2199 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2200 		__reg_assign_32_into_64(reg);
2201 	} else {
2202 		/* Otherwise the best we can do is push lower 32bit known and
2203 		 * unknown bits into register (var_off set from jmp logic)
2204 		 * then learn as much as possible from the 64-bit tnum
2205 		 * known and unknown bits. The previous smin/smax bounds are
2206 		 * invalid here because of jmp32 compare so mark them unknown
2207 		 * so they do not impact tnum bounds calculation.
2208 		 */
2209 		__mark_reg64_unbounded(reg);
2210 	}
2211 	reg_bounds_sync(reg);
2212 }
2213 
2214 static bool __reg64_bound_s32(s64 a)
2215 {
2216 	return a >= S32_MIN && a <= S32_MAX;
2217 }
2218 
2219 static bool __reg64_bound_u32(u64 a)
2220 {
2221 	return a >= U32_MIN && a <= U32_MAX;
2222 }
2223 
2224 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2225 {
2226 	__mark_reg32_unbounded(reg);
2227 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2228 		reg->s32_min_value = (s32)reg->smin_value;
2229 		reg->s32_max_value = (s32)reg->smax_value;
2230 	}
2231 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2232 		reg->u32_min_value = (u32)reg->umin_value;
2233 		reg->u32_max_value = (u32)reg->umax_value;
2234 	}
2235 	reg_bounds_sync(reg);
2236 }
2237 
2238 /* Mark a register as having a completely unknown (scalar) value. */
2239 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2240 			       struct bpf_reg_state *reg)
2241 {
2242 	/*
2243 	 * Clear type, off, and union(map_ptr, range) and
2244 	 * padding between 'type' and union
2245 	 */
2246 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2247 	reg->type = SCALAR_VALUE;
2248 	reg->id = 0;
2249 	reg->ref_obj_id = 0;
2250 	reg->var_off = tnum_unknown;
2251 	reg->frameno = 0;
2252 	reg->precise = !env->bpf_capable;
2253 	__mark_reg_unbounded(reg);
2254 }
2255 
2256 static void mark_reg_unknown(struct bpf_verifier_env *env,
2257 			     struct bpf_reg_state *regs, u32 regno)
2258 {
2259 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2260 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2261 		/* Something bad happened, let's kill all regs except FP */
2262 		for (regno = 0; regno < BPF_REG_FP; regno++)
2263 			__mark_reg_not_init(env, regs + regno);
2264 		return;
2265 	}
2266 	__mark_reg_unknown(env, regs + regno);
2267 }
2268 
2269 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2270 				struct bpf_reg_state *reg)
2271 {
2272 	__mark_reg_unknown(env, reg);
2273 	reg->type = NOT_INIT;
2274 }
2275 
2276 static void mark_reg_not_init(struct bpf_verifier_env *env,
2277 			      struct bpf_reg_state *regs, u32 regno)
2278 {
2279 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2280 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2281 		/* Something bad happened, let's kill all regs except FP */
2282 		for (regno = 0; regno < BPF_REG_FP; regno++)
2283 			__mark_reg_not_init(env, regs + regno);
2284 		return;
2285 	}
2286 	__mark_reg_not_init(env, regs + regno);
2287 }
2288 
2289 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2290 			    struct bpf_reg_state *regs, u32 regno,
2291 			    enum bpf_reg_type reg_type,
2292 			    struct btf *btf, u32 btf_id,
2293 			    enum bpf_type_flag flag)
2294 {
2295 	if (reg_type == SCALAR_VALUE) {
2296 		mark_reg_unknown(env, regs, regno);
2297 		return;
2298 	}
2299 	mark_reg_known_zero(env, regs, regno);
2300 	regs[regno].type = PTR_TO_BTF_ID | flag;
2301 	regs[regno].btf = btf;
2302 	regs[regno].btf_id = btf_id;
2303 }
2304 
2305 #define DEF_NOT_SUBREG	(0)
2306 static void init_reg_state(struct bpf_verifier_env *env,
2307 			   struct bpf_func_state *state)
2308 {
2309 	struct bpf_reg_state *regs = state->regs;
2310 	int i;
2311 
2312 	for (i = 0; i < MAX_BPF_REG; i++) {
2313 		mark_reg_not_init(env, regs, i);
2314 		regs[i].live = REG_LIVE_NONE;
2315 		regs[i].parent = NULL;
2316 		regs[i].subreg_def = DEF_NOT_SUBREG;
2317 	}
2318 
2319 	/* frame pointer */
2320 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2321 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2322 	regs[BPF_REG_FP].frameno = state->frameno;
2323 }
2324 
2325 #define BPF_MAIN_FUNC (-1)
2326 static void init_func_state(struct bpf_verifier_env *env,
2327 			    struct bpf_func_state *state,
2328 			    int callsite, int frameno, int subprogno)
2329 {
2330 	state->callsite = callsite;
2331 	state->frameno = frameno;
2332 	state->subprogno = subprogno;
2333 	state->callback_ret_range = tnum_range(0, 0);
2334 	init_reg_state(env, state);
2335 	mark_verifier_state_scratched(env);
2336 }
2337 
2338 /* Similar to push_stack(), but for async callbacks */
2339 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2340 						int insn_idx, int prev_insn_idx,
2341 						int subprog)
2342 {
2343 	struct bpf_verifier_stack_elem *elem;
2344 	struct bpf_func_state *frame;
2345 
2346 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2347 	if (!elem)
2348 		goto err;
2349 
2350 	elem->insn_idx = insn_idx;
2351 	elem->prev_insn_idx = prev_insn_idx;
2352 	elem->next = env->head;
2353 	elem->log_pos = env->log.len_used;
2354 	env->head = elem;
2355 	env->stack_size++;
2356 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2357 		verbose(env,
2358 			"The sequence of %d jumps is too complex for async cb.\n",
2359 			env->stack_size);
2360 		goto err;
2361 	}
2362 	/* Unlike push_stack() do not copy_verifier_state().
2363 	 * The caller state doesn't matter.
2364 	 * This is async callback. It starts in a fresh stack.
2365 	 * Initialize it similar to do_check_common().
2366 	 */
2367 	elem->st.branches = 1;
2368 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2369 	if (!frame)
2370 		goto err;
2371 	init_func_state(env, frame,
2372 			BPF_MAIN_FUNC /* callsite */,
2373 			0 /* frameno within this callchain */,
2374 			subprog /* subprog number within this prog */);
2375 	elem->st.frame[0] = frame;
2376 	return &elem->st;
2377 err:
2378 	free_verifier_state(env->cur_state, true);
2379 	env->cur_state = NULL;
2380 	/* pop all elements and return */
2381 	while (!pop_stack(env, NULL, NULL, false));
2382 	return NULL;
2383 }
2384 
2385 
2386 enum reg_arg_type {
2387 	SRC_OP,		/* register is used as source operand */
2388 	DST_OP,		/* register is used as destination operand */
2389 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2390 };
2391 
2392 static int cmp_subprogs(const void *a, const void *b)
2393 {
2394 	return ((struct bpf_subprog_info *)a)->start -
2395 	       ((struct bpf_subprog_info *)b)->start;
2396 }
2397 
2398 static int find_subprog(struct bpf_verifier_env *env, int off)
2399 {
2400 	struct bpf_subprog_info *p;
2401 
2402 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2403 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2404 	if (!p)
2405 		return -ENOENT;
2406 	return p - env->subprog_info;
2407 
2408 }
2409 
2410 static int add_subprog(struct bpf_verifier_env *env, int off)
2411 {
2412 	int insn_cnt = env->prog->len;
2413 	int ret;
2414 
2415 	if (off >= insn_cnt || off < 0) {
2416 		verbose(env, "call to invalid destination\n");
2417 		return -EINVAL;
2418 	}
2419 	ret = find_subprog(env, off);
2420 	if (ret >= 0)
2421 		return ret;
2422 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2423 		verbose(env, "too many subprograms\n");
2424 		return -E2BIG;
2425 	}
2426 	/* determine subprog starts. The end is one before the next starts */
2427 	env->subprog_info[env->subprog_cnt++].start = off;
2428 	sort(env->subprog_info, env->subprog_cnt,
2429 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2430 	return env->subprog_cnt - 1;
2431 }
2432 
2433 #define MAX_KFUNC_DESCS 256
2434 #define MAX_KFUNC_BTFS	256
2435 
2436 struct bpf_kfunc_desc {
2437 	struct btf_func_model func_model;
2438 	u32 func_id;
2439 	s32 imm;
2440 	u16 offset;
2441 };
2442 
2443 struct bpf_kfunc_btf {
2444 	struct btf *btf;
2445 	struct module *module;
2446 	u16 offset;
2447 };
2448 
2449 struct bpf_kfunc_desc_tab {
2450 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2451 	u32 nr_descs;
2452 };
2453 
2454 struct bpf_kfunc_btf_tab {
2455 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2456 	u32 nr_descs;
2457 };
2458 
2459 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2460 {
2461 	const struct bpf_kfunc_desc *d0 = a;
2462 	const struct bpf_kfunc_desc *d1 = b;
2463 
2464 	/* func_id is not greater than BTF_MAX_TYPE */
2465 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2466 }
2467 
2468 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2469 {
2470 	const struct bpf_kfunc_btf *d0 = a;
2471 	const struct bpf_kfunc_btf *d1 = b;
2472 
2473 	return d0->offset - d1->offset;
2474 }
2475 
2476 static const struct bpf_kfunc_desc *
2477 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2478 {
2479 	struct bpf_kfunc_desc desc = {
2480 		.func_id = func_id,
2481 		.offset = offset,
2482 	};
2483 	struct bpf_kfunc_desc_tab *tab;
2484 
2485 	tab = prog->aux->kfunc_tab;
2486 	return bsearch(&desc, tab->descs, tab->nr_descs,
2487 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2488 }
2489 
2490 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2491 					 s16 offset)
2492 {
2493 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2494 	struct bpf_kfunc_btf_tab *tab;
2495 	struct bpf_kfunc_btf *b;
2496 	struct module *mod;
2497 	struct btf *btf;
2498 	int btf_fd;
2499 
2500 	tab = env->prog->aux->kfunc_btf_tab;
2501 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2502 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2503 	if (!b) {
2504 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2505 			verbose(env, "too many different module BTFs\n");
2506 			return ERR_PTR(-E2BIG);
2507 		}
2508 
2509 		if (bpfptr_is_null(env->fd_array)) {
2510 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2511 			return ERR_PTR(-EPROTO);
2512 		}
2513 
2514 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2515 					    offset * sizeof(btf_fd),
2516 					    sizeof(btf_fd)))
2517 			return ERR_PTR(-EFAULT);
2518 
2519 		btf = btf_get_by_fd(btf_fd);
2520 		if (IS_ERR(btf)) {
2521 			verbose(env, "invalid module BTF fd specified\n");
2522 			return btf;
2523 		}
2524 
2525 		if (!btf_is_module(btf)) {
2526 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2527 			btf_put(btf);
2528 			return ERR_PTR(-EINVAL);
2529 		}
2530 
2531 		mod = btf_try_get_module(btf);
2532 		if (!mod) {
2533 			btf_put(btf);
2534 			return ERR_PTR(-ENXIO);
2535 		}
2536 
2537 		b = &tab->descs[tab->nr_descs++];
2538 		b->btf = btf;
2539 		b->module = mod;
2540 		b->offset = offset;
2541 
2542 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2543 		     kfunc_btf_cmp_by_off, NULL);
2544 	}
2545 	return b->btf;
2546 }
2547 
2548 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2549 {
2550 	if (!tab)
2551 		return;
2552 
2553 	while (tab->nr_descs--) {
2554 		module_put(tab->descs[tab->nr_descs].module);
2555 		btf_put(tab->descs[tab->nr_descs].btf);
2556 	}
2557 	kfree(tab);
2558 }
2559 
2560 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2561 {
2562 	if (offset) {
2563 		if (offset < 0) {
2564 			/* In the future, this can be allowed to increase limit
2565 			 * of fd index into fd_array, interpreted as u16.
2566 			 */
2567 			verbose(env, "negative offset disallowed for kernel module function call\n");
2568 			return ERR_PTR(-EINVAL);
2569 		}
2570 
2571 		return __find_kfunc_desc_btf(env, offset);
2572 	}
2573 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2574 }
2575 
2576 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2577 {
2578 	const struct btf_type *func, *func_proto;
2579 	struct bpf_kfunc_btf_tab *btf_tab;
2580 	struct bpf_kfunc_desc_tab *tab;
2581 	struct bpf_prog_aux *prog_aux;
2582 	struct bpf_kfunc_desc *desc;
2583 	const char *func_name;
2584 	struct btf *desc_btf;
2585 	unsigned long call_imm;
2586 	unsigned long addr;
2587 	int err;
2588 
2589 	prog_aux = env->prog->aux;
2590 	tab = prog_aux->kfunc_tab;
2591 	btf_tab = prog_aux->kfunc_btf_tab;
2592 	if (!tab) {
2593 		if (!btf_vmlinux) {
2594 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2595 			return -ENOTSUPP;
2596 		}
2597 
2598 		if (!env->prog->jit_requested) {
2599 			verbose(env, "JIT is required for calling kernel function\n");
2600 			return -ENOTSUPP;
2601 		}
2602 
2603 		if (!bpf_jit_supports_kfunc_call()) {
2604 			verbose(env, "JIT does not support calling kernel function\n");
2605 			return -ENOTSUPP;
2606 		}
2607 
2608 		if (!env->prog->gpl_compatible) {
2609 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2610 			return -EINVAL;
2611 		}
2612 
2613 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2614 		if (!tab)
2615 			return -ENOMEM;
2616 		prog_aux->kfunc_tab = tab;
2617 	}
2618 
2619 	/* func_id == 0 is always invalid, but instead of returning an error, be
2620 	 * conservative and wait until the code elimination pass before returning
2621 	 * error, so that invalid calls that get pruned out can be in BPF programs
2622 	 * loaded from userspace.  It is also required that offset be untouched
2623 	 * for such calls.
2624 	 */
2625 	if (!func_id && !offset)
2626 		return 0;
2627 
2628 	if (!btf_tab && offset) {
2629 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2630 		if (!btf_tab)
2631 			return -ENOMEM;
2632 		prog_aux->kfunc_btf_tab = btf_tab;
2633 	}
2634 
2635 	desc_btf = find_kfunc_desc_btf(env, offset);
2636 	if (IS_ERR(desc_btf)) {
2637 		verbose(env, "failed to find BTF for kernel function\n");
2638 		return PTR_ERR(desc_btf);
2639 	}
2640 
2641 	if (find_kfunc_desc(env->prog, func_id, offset))
2642 		return 0;
2643 
2644 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2645 		verbose(env, "too many different kernel function calls\n");
2646 		return -E2BIG;
2647 	}
2648 
2649 	func = btf_type_by_id(desc_btf, func_id);
2650 	if (!func || !btf_type_is_func(func)) {
2651 		verbose(env, "kernel btf_id %u is not a function\n",
2652 			func_id);
2653 		return -EINVAL;
2654 	}
2655 	func_proto = btf_type_by_id(desc_btf, func->type);
2656 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2657 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2658 			func_id);
2659 		return -EINVAL;
2660 	}
2661 
2662 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2663 	addr = kallsyms_lookup_name(func_name);
2664 	if (!addr) {
2665 		verbose(env, "cannot find address for kernel function %s\n",
2666 			func_name);
2667 		return -EINVAL;
2668 	}
2669 
2670 	call_imm = BPF_CALL_IMM(addr);
2671 	/* Check whether or not the relative offset overflows desc->imm */
2672 	if ((unsigned long)(s32)call_imm != call_imm) {
2673 		verbose(env, "address of kernel function %s is out of range\n",
2674 			func_name);
2675 		return -EINVAL;
2676 	}
2677 
2678 	if (bpf_dev_bound_kfunc_id(func_id)) {
2679 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2680 		if (err)
2681 			return err;
2682 	}
2683 
2684 	desc = &tab->descs[tab->nr_descs++];
2685 	desc->func_id = func_id;
2686 	desc->imm = call_imm;
2687 	desc->offset = offset;
2688 	err = btf_distill_func_proto(&env->log, desc_btf,
2689 				     func_proto, func_name,
2690 				     &desc->func_model);
2691 	if (!err)
2692 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2693 		     kfunc_desc_cmp_by_id_off, NULL);
2694 	return err;
2695 }
2696 
2697 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2698 {
2699 	const struct bpf_kfunc_desc *d0 = a;
2700 	const struct bpf_kfunc_desc *d1 = b;
2701 
2702 	if (d0->imm > d1->imm)
2703 		return 1;
2704 	else if (d0->imm < d1->imm)
2705 		return -1;
2706 	return 0;
2707 }
2708 
2709 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2710 {
2711 	struct bpf_kfunc_desc_tab *tab;
2712 
2713 	tab = prog->aux->kfunc_tab;
2714 	if (!tab)
2715 		return;
2716 
2717 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2718 	     kfunc_desc_cmp_by_imm, NULL);
2719 }
2720 
2721 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2722 {
2723 	return !!prog->aux->kfunc_tab;
2724 }
2725 
2726 const struct btf_func_model *
2727 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2728 			 const struct bpf_insn *insn)
2729 {
2730 	const struct bpf_kfunc_desc desc = {
2731 		.imm = insn->imm,
2732 	};
2733 	const struct bpf_kfunc_desc *res;
2734 	struct bpf_kfunc_desc_tab *tab;
2735 
2736 	tab = prog->aux->kfunc_tab;
2737 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2738 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2739 
2740 	return res ? &res->func_model : NULL;
2741 }
2742 
2743 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2744 {
2745 	struct bpf_subprog_info *subprog = env->subprog_info;
2746 	struct bpf_insn *insn = env->prog->insnsi;
2747 	int i, ret, insn_cnt = env->prog->len;
2748 
2749 	/* Add entry function. */
2750 	ret = add_subprog(env, 0);
2751 	if (ret)
2752 		return ret;
2753 
2754 	for (i = 0; i < insn_cnt; i++, insn++) {
2755 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2756 		    !bpf_pseudo_kfunc_call(insn))
2757 			continue;
2758 
2759 		if (!env->bpf_capable) {
2760 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2761 			return -EPERM;
2762 		}
2763 
2764 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2765 			ret = add_subprog(env, i + insn->imm + 1);
2766 		else
2767 			ret = add_kfunc_call(env, insn->imm, insn->off);
2768 
2769 		if (ret < 0)
2770 			return ret;
2771 	}
2772 
2773 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2774 	 * logic. 'subprog_cnt' should not be increased.
2775 	 */
2776 	subprog[env->subprog_cnt].start = insn_cnt;
2777 
2778 	if (env->log.level & BPF_LOG_LEVEL2)
2779 		for (i = 0; i < env->subprog_cnt; i++)
2780 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2781 
2782 	return 0;
2783 }
2784 
2785 static int check_subprogs(struct bpf_verifier_env *env)
2786 {
2787 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2788 	struct bpf_subprog_info *subprog = env->subprog_info;
2789 	struct bpf_insn *insn = env->prog->insnsi;
2790 	int insn_cnt = env->prog->len;
2791 
2792 	/* now check that all jumps are within the same subprog */
2793 	subprog_start = subprog[cur_subprog].start;
2794 	subprog_end = subprog[cur_subprog + 1].start;
2795 	for (i = 0; i < insn_cnt; i++) {
2796 		u8 code = insn[i].code;
2797 
2798 		if (code == (BPF_JMP | BPF_CALL) &&
2799 		    insn[i].src_reg == 0 &&
2800 		    insn[i].imm == BPF_FUNC_tail_call)
2801 			subprog[cur_subprog].has_tail_call = true;
2802 		if (BPF_CLASS(code) == BPF_LD &&
2803 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2804 			subprog[cur_subprog].has_ld_abs = true;
2805 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2806 			goto next;
2807 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2808 			goto next;
2809 		off = i + insn[i].off + 1;
2810 		if (off < subprog_start || off >= subprog_end) {
2811 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2812 			return -EINVAL;
2813 		}
2814 next:
2815 		if (i == subprog_end - 1) {
2816 			/* to avoid fall-through from one subprog into another
2817 			 * the last insn of the subprog should be either exit
2818 			 * or unconditional jump back
2819 			 */
2820 			if (code != (BPF_JMP | BPF_EXIT) &&
2821 			    code != (BPF_JMP | BPF_JA)) {
2822 				verbose(env, "last insn is not an exit or jmp\n");
2823 				return -EINVAL;
2824 			}
2825 			subprog_start = subprog_end;
2826 			cur_subprog++;
2827 			if (cur_subprog < env->subprog_cnt)
2828 				subprog_end = subprog[cur_subprog + 1].start;
2829 		}
2830 	}
2831 	return 0;
2832 }
2833 
2834 /* Parentage chain of this register (or stack slot) should take care of all
2835  * issues like callee-saved registers, stack slot allocation time, etc.
2836  */
2837 static int mark_reg_read(struct bpf_verifier_env *env,
2838 			 const struct bpf_reg_state *state,
2839 			 struct bpf_reg_state *parent, u8 flag)
2840 {
2841 	bool writes = parent == state->parent; /* Observe write marks */
2842 	int cnt = 0;
2843 
2844 	while (parent) {
2845 		/* if read wasn't screened by an earlier write ... */
2846 		if (writes && state->live & REG_LIVE_WRITTEN)
2847 			break;
2848 		if (parent->live & REG_LIVE_DONE) {
2849 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2850 				reg_type_str(env, parent->type),
2851 				parent->var_off.value, parent->off);
2852 			return -EFAULT;
2853 		}
2854 		/* The first condition is more likely to be true than the
2855 		 * second, checked it first.
2856 		 */
2857 		if ((parent->live & REG_LIVE_READ) == flag ||
2858 		    parent->live & REG_LIVE_READ64)
2859 			/* The parentage chain never changes and
2860 			 * this parent was already marked as LIVE_READ.
2861 			 * There is no need to keep walking the chain again and
2862 			 * keep re-marking all parents as LIVE_READ.
2863 			 * This case happens when the same register is read
2864 			 * multiple times without writes into it in-between.
2865 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2866 			 * then no need to set the weak REG_LIVE_READ32.
2867 			 */
2868 			break;
2869 		/* ... then we depend on parent's value */
2870 		parent->live |= flag;
2871 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2872 		if (flag == REG_LIVE_READ64)
2873 			parent->live &= ~REG_LIVE_READ32;
2874 		state = parent;
2875 		parent = state->parent;
2876 		writes = true;
2877 		cnt++;
2878 	}
2879 
2880 	if (env->longest_mark_read_walk < cnt)
2881 		env->longest_mark_read_walk = cnt;
2882 	return 0;
2883 }
2884 
2885 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2886 {
2887 	struct bpf_func_state *state = func(env, reg);
2888 	int spi, ret;
2889 
2890 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2891 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2892 	 * check_kfunc_call.
2893 	 */
2894 	if (reg->type == CONST_PTR_TO_DYNPTR)
2895 		return 0;
2896 	spi = dynptr_get_spi(env, reg);
2897 	if (spi < 0)
2898 		return spi;
2899 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2900 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2901 	 * read.
2902 	 */
2903 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2904 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2905 	if (ret)
2906 		return ret;
2907 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2908 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2909 }
2910 
2911 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2912 			  int spi, int nr_slots)
2913 {
2914 	struct bpf_func_state *state = func(env, reg);
2915 	int err, i;
2916 
2917 	for (i = 0; i < nr_slots; i++) {
2918 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2919 
2920 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2921 		if (err)
2922 			return err;
2923 
2924 		mark_stack_slot_scratched(env, spi - i);
2925 	}
2926 
2927 	return 0;
2928 }
2929 
2930 /* This function is supposed to be used by the following 32-bit optimization
2931  * code only. It returns TRUE if the source or destination register operates
2932  * on 64-bit, otherwise return FALSE.
2933  */
2934 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2935 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2936 {
2937 	u8 code, class, op;
2938 
2939 	code = insn->code;
2940 	class = BPF_CLASS(code);
2941 	op = BPF_OP(code);
2942 	if (class == BPF_JMP) {
2943 		/* BPF_EXIT for "main" will reach here. Return TRUE
2944 		 * conservatively.
2945 		 */
2946 		if (op == BPF_EXIT)
2947 			return true;
2948 		if (op == BPF_CALL) {
2949 			/* BPF to BPF call will reach here because of marking
2950 			 * caller saved clobber with DST_OP_NO_MARK for which we
2951 			 * don't care the register def because they are anyway
2952 			 * marked as NOT_INIT already.
2953 			 */
2954 			if (insn->src_reg == BPF_PSEUDO_CALL)
2955 				return false;
2956 			/* Helper call will reach here because of arg type
2957 			 * check, conservatively return TRUE.
2958 			 */
2959 			if (t == SRC_OP)
2960 				return true;
2961 
2962 			return false;
2963 		}
2964 	}
2965 
2966 	if (class == BPF_ALU64 || class == BPF_JMP ||
2967 	    /* BPF_END always use BPF_ALU class. */
2968 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2969 		return true;
2970 
2971 	if (class == BPF_ALU || class == BPF_JMP32)
2972 		return false;
2973 
2974 	if (class == BPF_LDX) {
2975 		if (t != SRC_OP)
2976 			return BPF_SIZE(code) == BPF_DW;
2977 		/* LDX source must be ptr. */
2978 		return true;
2979 	}
2980 
2981 	if (class == BPF_STX) {
2982 		/* BPF_STX (including atomic variants) has multiple source
2983 		 * operands, one of which is a ptr. Check whether the caller is
2984 		 * asking about it.
2985 		 */
2986 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2987 			return true;
2988 		return BPF_SIZE(code) == BPF_DW;
2989 	}
2990 
2991 	if (class == BPF_LD) {
2992 		u8 mode = BPF_MODE(code);
2993 
2994 		/* LD_IMM64 */
2995 		if (mode == BPF_IMM)
2996 			return true;
2997 
2998 		/* Both LD_IND and LD_ABS return 32-bit data. */
2999 		if (t != SRC_OP)
3000 			return  false;
3001 
3002 		/* Implicit ctx ptr. */
3003 		if (regno == BPF_REG_6)
3004 			return true;
3005 
3006 		/* Explicit source could be any width. */
3007 		return true;
3008 	}
3009 
3010 	if (class == BPF_ST)
3011 		/* The only source register for BPF_ST is a ptr. */
3012 		return true;
3013 
3014 	/* Conservatively return true at default. */
3015 	return true;
3016 }
3017 
3018 /* Return the regno defined by the insn, or -1. */
3019 static int insn_def_regno(const struct bpf_insn *insn)
3020 {
3021 	switch (BPF_CLASS(insn->code)) {
3022 	case BPF_JMP:
3023 	case BPF_JMP32:
3024 	case BPF_ST:
3025 		return -1;
3026 	case BPF_STX:
3027 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3028 		    (insn->imm & BPF_FETCH)) {
3029 			if (insn->imm == BPF_CMPXCHG)
3030 				return BPF_REG_0;
3031 			else
3032 				return insn->src_reg;
3033 		} else {
3034 			return -1;
3035 		}
3036 	default:
3037 		return insn->dst_reg;
3038 	}
3039 }
3040 
3041 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3042 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3043 {
3044 	int dst_reg = insn_def_regno(insn);
3045 
3046 	if (dst_reg == -1)
3047 		return false;
3048 
3049 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3050 }
3051 
3052 static void mark_insn_zext(struct bpf_verifier_env *env,
3053 			   struct bpf_reg_state *reg)
3054 {
3055 	s32 def_idx = reg->subreg_def;
3056 
3057 	if (def_idx == DEF_NOT_SUBREG)
3058 		return;
3059 
3060 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3061 	/* The dst will be zero extended, so won't be sub-register anymore. */
3062 	reg->subreg_def = DEF_NOT_SUBREG;
3063 }
3064 
3065 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3066 			 enum reg_arg_type t)
3067 {
3068 	struct bpf_verifier_state *vstate = env->cur_state;
3069 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3070 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3071 	struct bpf_reg_state *reg, *regs = state->regs;
3072 	bool rw64;
3073 
3074 	if (regno >= MAX_BPF_REG) {
3075 		verbose(env, "R%d is invalid\n", regno);
3076 		return -EINVAL;
3077 	}
3078 
3079 	mark_reg_scratched(env, regno);
3080 
3081 	reg = &regs[regno];
3082 	rw64 = is_reg64(env, insn, regno, reg, t);
3083 	if (t == SRC_OP) {
3084 		/* check whether register used as source operand can be read */
3085 		if (reg->type == NOT_INIT) {
3086 			verbose(env, "R%d !read_ok\n", regno);
3087 			return -EACCES;
3088 		}
3089 		/* We don't need to worry about FP liveness because it's read-only */
3090 		if (regno == BPF_REG_FP)
3091 			return 0;
3092 
3093 		if (rw64)
3094 			mark_insn_zext(env, reg);
3095 
3096 		return mark_reg_read(env, reg, reg->parent,
3097 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3098 	} else {
3099 		/* check whether register used as dest operand can be written to */
3100 		if (regno == BPF_REG_FP) {
3101 			verbose(env, "frame pointer is read only\n");
3102 			return -EACCES;
3103 		}
3104 		reg->live |= REG_LIVE_WRITTEN;
3105 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3106 		if (t == DST_OP)
3107 			mark_reg_unknown(env, regs, regno);
3108 	}
3109 	return 0;
3110 }
3111 
3112 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3113 {
3114 	env->insn_aux_data[idx].jmp_point = true;
3115 }
3116 
3117 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3118 {
3119 	return env->insn_aux_data[insn_idx].jmp_point;
3120 }
3121 
3122 /* for any branch, call, exit record the history of jmps in the given state */
3123 static int push_jmp_history(struct bpf_verifier_env *env,
3124 			    struct bpf_verifier_state *cur)
3125 {
3126 	u32 cnt = cur->jmp_history_cnt;
3127 	struct bpf_idx_pair *p;
3128 	size_t alloc_size;
3129 
3130 	if (!is_jmp_point(env, env->insn_idx))
3131 		return 0;
3132 
3133 	cnt++;
3134 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3135 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3136 	if (!p)
3137 		return -ENOMEM;
3138 	p[cnt - 1].idx = env->insn_idx;
3139 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3140 	cur->jmp_history = p;
3141 	cur->jmp_history_cnt = cnt;
3142 	return 0;
3143 }
3144 
3145 /* Backtrack one insn at a time. If idx is not at the top of recorded
3146  * history then previous instruction came from straight line execution.
3147  */
3148 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3149 			     u32 *history)
3150 {
3151 	u32 cnt = *history;
3152 
3153 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3154 		i = st->jmp_history[cnt - 1].prev_idx;
3155 		(*history)--;
3156 	} else {
3157 		i--;
3158 	}
3159 	return i;
3160 }
3161 
3162 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3163 {
3164 	const struct btf_type *func;
3165 	struct btf *desc_btf;
3166 
3167 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3168 		return NULL;
3169 
3170 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3171 	if (IS_ERR(desc_btf))
3172 		return "<error>";
3173 
3174 	func = btf_type_by_id(desc_btf, insn->imm);
3175 	return btf_name_by_offset(desc_btf, func->name_off);
3176 }
3177 
3178 /* For given verifier state backtrack_insn() is called from the last insn to
3179  * the first insn. Its purpose is to compute a bitmask of registers and
3180  * stack slots that needs precision in the parent verifier state.
3181  */
3182 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
3183 			  u32 *reg_mask, u64 *stack_mask)
3184 {
3185 	const struct bpf_insn_cbs cbs = {
3186 		.cb_call	= disasm_kfunc_name,
3187 		.cb_print	= verbose,
3188 		.private_data	= env,
3189 	};
3190 	struct bpf_insn *insn = env->prog->insnsi + idx;
3191 	u8 class = BPF_CLASS(insn->code);
3192 	u8 opcode = BPF_OP(insn->code);
3193 	u8 mode = BPF_MODE(insn->code);
3194 	u32 dreg = 1u << insn->dst_reg;
3195 	u32 sreg = 1u << insn->src_reg;
3196 	u32 spi;
3197 
3198 	if (insn->code == 0)
3199 		return 0;
3200 	if (env->log.level & BPF_LOG_LEVEL2) {
3201 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
3202 		verbose(env, "%d: ", idx);
3203 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3204 	}
3205 
3206 	if (class == BPF_ALU || class == BPF_ALU64) {
3207 		if (!(*reg_mask & dreg))
3208 			return 0;
3209 		if (opcode == BPF_MOV) {
3210 			if (BPF_SRC(insn->code) == BPF_X) {
3211 				/* dreg = sreg
3212 				 * dreg needs precision after this insn
3213 				 * sreg needs precision before this insn
3214 				 */
3215 				*reg_mask &= ~dreg;
3216 				*reg_mask |= sreg;
3217 			} else {
3218 				/* dreg = K
3219 				 * dreg needs precision after this insn.
3220 				 * Corresponding register is already marked
3221 				 * as precise=true in this verifier state.
3222 				 * No further markings in parent are necessary
3223 				 */
3224 				*reg_mask &= ~dreg;
3225 			}
3226 		} else {
3227 			if (BPF_SRC(insn->code) == BPF_X) {
3228 				/* dreg += sreg
3229 				 * both dreg and sreg need precision
3230 				 * before this insn
3231 				 */
3232 				*reg_mask |= sreg;
3233 			} /* else dreg += K
3234 			   * dreg still needs precision before this insn
3235 			   */
3236 		}
3237 	} else if (class == BPF_LDX) {
3238 		if (!(*reg_mask & dreg))
3239 			return 0;
3240 		*reg_mask &= ~dreg;
3241 
3242 		/* scalars can only be spilled into stack w/o losing precision.
3243 		 * Load from any other memory can be zero extended.
3244 		 * The desire to keep that precision is already indicated
3245 		 * by 'precise' mark in corresponding register of this state.
3246 		 * No further tracking necessary.
3247 		 */
3248 		if (insn->src_reg != BPF_REG_FP)
3249 			return 0;
3250 
3251 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3252 		 * that [fp - off] slot contains scalar that needs to be
3253 		 * tracked with precision
3254 		 */
3255 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3256 		if (spi >= 64) {
3257 			verbose(env, "BUG spi %d\n", spi);
3258 			WARN_ONCE(1, "verifier backtracking bug");
3259 			return -EFAULT;
3260 		}
3261 		*stack_mask |= 1ull << spi;
3262 	} else if (class == BPF_STX || class == BPF_ST) {
3263 		if (*reg_mask & dreg)
3264 			/* stx & st shouldn't be using _scalar_ dst_reg
3265 			 * to access memory. It means backtracking
3266 			 * encountered a case of pointer subtraction.
3267 			 */
3268 			return -ENOTSUPP;
3269 		/* scalars can only be spilled into stack */
3270 		if (insn->dst_reg != BPF_REG_FP)
3271 			return 0;
3272 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3273 		if (spi >= 64) {
3274 			verbose(env, "BUG spi %d\n", spi);
3275 			WARN_ONCE(1, "verifier backtracking bug");
3276 			return -EFAULT;
3277 		}
3278 		if (!(*stack_mask & (1ull << spi)))
3279 			return 0;
3280 		*stack_mask &= ~(1ull << spi);
3281 		if (class == BPF_STX)
3282 			*reg_mask |= sreg;
3283 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3284 		if (opcode == BPF_CALL) {
3285 			if (insn->src_reg == BPF_PSEUDO_CALL)
3286 				return -ENOTSUPP;
3287 			/* BPF helpers that invoke callback subprogs are
3288 			 * equivalent to BPF_PSEUDO_CALL above
3289 			 */
3290 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
3291 				return -ENOTSUPP;
3292 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3293 			 * catch this error later. Make backtracking conservative
3294 			 * with ENOTSUPP.
3295 			 */
3296 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3297 				return -ENOTSUPP;
3298 			/* regular helper call sets R0 */
3299 			*reg_mask &= ~1;
3300 			if (*reg_mask & 0x3f) {
3301 				/* if backtracing was looking for registers R1-R5
3302 				 * they should have been found already.
3303 				 */
3304 				verbose(env, "BUG regs %x\n", *reg_mask);
3305 				WARN_ONCE(1, "verifier backtracking bug");
3306 				return -EFAULT;
3307 			}
3308 		} else if (opcode == BPF_EXIT) {
3309 			return -ENOTSUPP;
3310 		}
3311 	} else if (class == BPF_LD) {
3312 		if (!(*reg_mask & dreg))
3313 			return 0;
3314 		*reg_mask &= ~dreg;
3315 		/* It's ld_imm64 or ld_abs or ld_ind.
3316 		 * For ld_imm64 no further tracking of precision
3317 		 * into parent is necessary
3318 		 */
3319 		if (mode == BPF_IND || mode == BPF_ABS)
3320 			/* to be analyzed */
3321 			return -ENOTSUPP;
3322 	}
3323 	return 0;
3324 }
3325 
3326 /* the scalar precision tracking algorithm:
3327  * . at the start all registers have precise=false.
3328  * . scalar ranges are tracked as normal through alu and jmp insns.
3329  * . once precise value of the scalar register is used in:
3330  *   .  ptr + scalar alu
3331  *   . if (scalar cond K|scalar)
3332  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3333  *   backtrack through the verifier states and mark all registers and
3334  *   stack slots with spilled constants that these scalar regisers
3335  *   should be precise.
3336  * . during state pruning two registers (or spilled stack slots)
3337  *   are equivalent if both are not precise.
3338  *
3339  * Note the verifier cannot simply walk register parentage chain,
3340  * since many different registers and stack slots could have been
3341  * used to compute single precise scalar.
3342  *
3343  * The approach of starting with precise=true for all registers and then
3344  * backtrack to mark a register as not precise when the verifier detects
3345  * that program doesn't care about specific value (e.g., when helper
3346  * takes register as ARG_ANYTHING parameter) is not safe.
3347  *
3348  * It's ok to walk single parentage chain of the verifier states.
3349  * It's possible that this backtracking will go all the way till 1st insn.
3350  * All other branches will be explored for needing precision later.
3351  *
3352  * The backtracking needs to deal with cases like:
3353  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3354  * r9 -= r8
3355  * r5 = r9
3356  * if r5 > 0x79f goto pc+7
3357  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3358  * r5 += 1
3359  * ...
3360  * call bpf_perf_event_output#25
3361  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3362  *
3363  * and this case:
3364  * r6 = 1
3365  * call foo // uses callee's r6 inside to compute r0
3366  * r0 += r6
3367  * if r0 == 0 goto
3368  *
3369  * to track above reg_mask/stack_mask needs to be independent for each frame.
3370  *
3371  * Also if parent's curframe > frame where backtracking started,
3372  * the verifier need to mark registers in both frames, otherwise callees
3373  * may incorrectly prune callers. This is similar to
3374  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3375  *
3376  * For now backtracking falls back into conservative marking.
3377  */
3378 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3379 				     struct bpf_verifier_state *st)
3380 {
3381 	struct bpf_func_state *func;
3382 	struct bpf_reg_state *reg;
3383 	int i, j;
3384 
3385 	/* big hammer: mark all scalars precise in this path.
3386 	 * pop_stack may still get !precise scalars.
3387 	 * We also skip current state and go straight to first parent state,
3388 	 * because precision markings in current non-checkpointed state are
3389 	 * not needed. See why in the comment in __mark_chain_precision below.
3390 	 */
3391 	for (st = st->parent; st; st = st->parent) {
3392 		for (i = 0; i <= st->curframe; i++) {
3393 			func = st->frame[i];
3394 			for (j = 0; j < BPF_REG_FP; j++) {
3395 				reg = &func->regs[j];
3396 				if (reg->type != SCALAR_VALUE)
3397 					continue;
3398 				reg->precise = true;
3399 			}
3400 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3401 				if (!is_spilled_reg(&func->stack[j]))
3402 					continue;
3403 				reg = &func->stack[j].spilled_ptr;
3404 				if (reg->type != SCALAR_VALUE)
3405 					continue;
3406 				reg->precise = true;
3407 			}
3408 		}
3409 	}
3410 }
3411 
3412 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3413 {
3414 	struct bpf_func_state *func;
3415 	struct bpf_reg_state *reg;
3416 	int i, j;
3417 
3418 	for (i = 0; i <= st->curframe; i++) {
3419 		func = st->frame[i];
3420 		for (j = 0; j < BPF_REG_FP; j++) {
3421 			reg = &func->regs[j];
3422 			if (reg->type != SCALAR_VALUE)
3423 				continue;
3424 			reg->precise = false;
3425 		}
3426 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3427 			if (!is_spilled_reg(&func->stack[j]))
3428 				continue;
3429 			reg = &func->stack[j].spilled_ptr;
3430 			if (reg->type != SCALAR_VALUE)
3431 				continue;
3432 			reg->precise = false;
3433 		}
3434 	}
3435 }
3436 
3437 /*
3438  * __mark_chain_precision() backtracks BPF program instruction sequence and
3439  * chain of verifier states making sure that register *regno* (if regno >= 0)
3440  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3441  * SCALARS, as well as any other registers and slots that contribute to
3442  * a tracked state of given registers/stack slots, depending on specific BPF
3443  * assembly instructions (see backtrack_insns() for exact instruction handling
3444  * logic). This backtracking relies on recorded jmp_history and is able to
3445  * traverse entire chain of parent states. This process ends only when all the
3446  * necessary registers/slots and their transitive dependencies are marked as
3447  * precise.
3448  *
3449  * One important and subtle aspect is that precise marks *do not matter* in
3450  * the currently verified state (current state). It is important to understand
3451  * why this is the case.
3452  *
3453  * First, note that current state is the state that is not yet "checkpointed",
3454  * i.e., it is not yet put into env->explored_states, and it has no children
3455  * states as well. It's ephemeral, and can end up either a) being discarded if
3456  * compatible explored state is found at some point or BPF_EXIT instruction is
3457  * reached or b) checkpointed and put into env->explored_states, branching out
3458  * into one or more children states.
3459  *
3460  * In the former case, precise markings in current state are completely
3461  * ignored by state comparison code (see regsafe() for details). Only
3462  * checkpointed ("old") state precise markings are important, and if old
3463  * state's register/slot is precise, regsafe() assumes current state's
3464  * register/slot as precise and checks value ranges exactly and precisely. If
3465  * states turn out to be compatible, current state's necessary precise
3466  * markings and any required parent states' precise markings are enforced
3467  * after the fact with propagate_precision() logic, after the fact. But it's
3468  * important to realize that in this case, even after marking current state
3469  * registers/slots as precise, we immediately discard current state. So what
3470  * actually matters is any of the precise markings propagated into current
3471  * state's parent states, which are always checkpointed (due to b) case above).
3472  * As such, for scenario a) it doesn't matter if current state has precise
3473  * markings set or not.
3474  *
3475  * Now, for the scenario b), checkpointing and forking into child(ren)
3476  * state(s). Note that before current state gets to checkpointing step, any
3477  * processed instruction always assumes precise SCALAR register/slot
3478  * knowledge: if precise value or range is useful to prune jump branch, BPF
3479  * verifier takes this opportunity enthusiastically. Similarly, when
3480  * register's value is used to calculate offset or memory address, exact
3481  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3482  * what we mentioned above about state comparison ignoring precise markings
3483  * during state comparison, BPF verifier ignores and also assumes precise
3484  * markings *at will* during instruction verification process. But as verifier
3485  * assumes precision, it also propagates any precision dependencies across
3486  * parent states, which are not yet finalized, so can be further restricted
3487  * based on new knowledge gained from restrictions enforced by their children
3488  * states. This is so that once those parent states are finalized, i.e., when
3489  * they have no more active children state, state comparison logic in
3490  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3491  * required for correctness.
3492  *
3493  * To build a bit more intuition, note also that once a state is checkpointed,
3494  * the path we took to get to that state is not important. This is crucial
3495  * property for state pruning. When state is checkpointed and finalized at
3496  * some instruction index, it can be correctly and safely used to "short
3497  * circuit" any *compatible* state that reaches exactly the same instruction
3498  * index. I.e., if we jumped to that instruction from a completely different
3499  * code path than original finalized state was derived from, it doesn't
3500  * matter, current state can be discarded because from that instruction
3501  * forward having a compatible state will ensure we will safely reach the
3502  * exit. States describe preconditions for further exploration, but completely
3503  * forget the history of how we got here.
3504  *
3505  * This also means that even if we needed precise SCALAR range to get to
3506  * finalized state, but from that point forward *that same* SCALAR register is
3507  * never used in a precise context (i.e., it's precise value is not needed for
3508  * correctness), it's correct and safe to mark such register as "imprecise"
3509  * (i.e., precise marking set to false). This is what we rely on when we do
3510  * not set precise marking in current state. If no child state requires
3511  * precision for any given SCALAR register, it's safe to dictate that it can
3512  * be imprecise. If any child state does require this register to be precise,
3513  * we'll mark it precise later retroactively during precise markings
3514  * propagation from child state to parent states.
3515  *
3516  * Skipping precise marking setting in current state is a mild version of
3517  * relying on the above observation. But we can utilize this property even
3518  * more aggressively by proactively forgetting any precise marking in the
3519  * current state (which we inherited from the parent state), right before we
3520  * checkpoint it and branch off into new child state. This is done by
3521  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3522  * finalized states which help in short circuiting more future states.
3523  */
3524 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
3525 				  int spi)
3526 {
3527 	struct bpf_verifier_state *st = env->cur_state;
3528 	int first_idx = st->first_insn_idx;
3529 	int last_idx = env->insn_idx;
3530 	struct bpf_func_state *func;
3531 	struct bpf_reg_state *reg;
3532 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
3533 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
3534 	bool skip_first = true;
3535 	bool new_marks = false;
3536 	int i, err;
3537 
3538 	if (!env->bpf_capable)
3539 		return 0;
3540 
3541 	/* Do sanity checks against current state of register and/or stack
3542 	 * slot, but don't set precise flag in current state, as precision
3543 	 * tracking in the current state is unnecessary.
3544 	 */
3545 	func = st->frame[frame];
3546 	if (regno >= 0) {
3547 		reg = &func->regs[regno];
3548 		if (reg->type != SCALAR_VALUE) {
3549 			WARN_ONCE(1, "backtracing misuse");
3550 			return -EFAULT;
3551 		}
3552 		new_marks = true;
3553 	}
3554 
3555 	while (spi >= 0) {
3556 		if (!is_spilled_reg(&func->stack[spi])) {
3557 			stack_mask = 0;
3558 			break;
3559 		}
3560 		reg = &func->stack[spi].spilled_ptr;
3561 		if (reg->type != SCALAR_VALUE) {
3562 			stack_mask = 0;
3563 			break;
3564 		}
3565 		new_marks = true;
3566 		break;
3567 	}
3568 
3569 	if (!new_marks)
3570 		return 0;
3571 	if (!reg_mask && !stack_mask)
3572 		return 0;
3573 
3574 	for (;;) {
3575 		DECLARE_BITMAP(mask, 64);
3576 		u32 history = st->jmp_history_cnt;
3577 
3578 		if (env->log.level & BPF_LOG_LEVEL2)
3579 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
3580 
3581 		if (last_idx < 0) {
3582 			/* we are at the entry into subprog, which
3583 			 * is expected for global funcs, but only if
3584 			 * requested precise registers are R1-R5
3585 			 * (which are global func's input arguments)
3586 			 */
3587 			if (st->curframe == 0 &&
3588 			    st->frame[0]->subprogno > 0 &&
3589 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3590 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3591 				bitmap_from_u64(mask, reg_mask);
3592 				for_each_set_bit(i, mask, 32) {
3593 					reg = &st->frame[0]->regs[i];
3594 					if (reg->type != SCALAR_VALUE) {
3595 						reg_mask &= ~(1u << i);
3596 						continue;
3597 					}
3598 					reg->precise = true;
3599 				}
3600 				return 0;
3601 			}
3602 
3603 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3604 				st->frame[0]->subprogno, reg_mask, stack_mask);
3605 			WARN_ONCE(1, "verifier backtracking bug");
3606 			return -EFAULT;
3607 		}
3608 
3609 		for (i = last_idx;;) {
3610 			if (skip_first) {
3611 				err = 0;
3612 				skip_first = false;
3613 			} else {
3614 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3615 			}
3616 			if (err == -ENOTSUPP) {
3617 				mark_all_scalars_precise(env, st);
3618 				return 0;
3619 			} else if (err) {
3620 				return err;
3621 			}
3622 			if (!reg_mask && !stack_mask)
3623 				/* Found assignment(s) into tracked register in this state.
3624 				 * Since this state is already marked, just return.
3625 				 * Nothing to be tracked further in the parent state.
3626 				 */
3627 				return 0;
3628 			if (i == first_idx)
3629 				break;
3630 			i = get_prev_insn_idx(st, i, &history);
3631 			if (i >= env->prog->len) {
3632 				/* This can happen if backtracking reached insn 0
3633 				 * and there are still reg_mask or stack_mask
3634 				 * to backtrack.
3635 				 * It means the backtracking missed the spot where
3636 				 * particular register was initialized with a constant.
3637 				 */
3638 				verbose(env, "BUG backtracking idx %d\n", i);
3639 				WARN_ONCE(1, "verifier backtracking bug");
3640 				return -EFAULT;
3641 			}
3642 		}
3643 		st = st->parent;
3644 		if (!st)
3645 			break;
3646 
3647 		new_marks = false;
3648 		func = st->frame[frame];
3649 		bitmap_from_u64(mask, reg_mask);
3650 		for_each_set_bit(i, mask, 32) {
3651 			reg = &func->regs[i];
3652 			if (reg->type != SCALAR_VALUE) {
3653 				reg_mask &= ~(1u << i);
3654 				continue;
3655 			}
3656 			if (!reg->precise)
3657 				new_marks = true;
3658 			reg->precise = true;
3659 		}
3660 
3661 		bitmap_from_u64(mask, stack_mask);
3662 		for_each_set_bit(i, mask, 64) {
3663 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3664 				/* the sequence of instructions:
3665 				 * 2: (bf) r3 = r10
3666 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3667 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3668 				 * doesn't contain jmps. It's backtracked
3669 				 * as a single block.
3670 				 * During backtracking insn 3 is not recognized as
3671 				 * stack access, so at the end of backtracking
3672 				 * stack slot fp-8 is still marked in stack_mask.
3673 				 * However the parent state may not have accessed
3674 				 * fp-8 and it's "unallocated" stack space.
3675 				 * In such case fallback to conservative.
3676 				 */
3677 				mark_all_scalars_precise(env, st);
3678 				return 0;
3679 			}
3680 
3681 			if (!is_spilled_reg(&func->stack[i])) {
3682 				stack_mask &= ~(1ull << i);
3683 				continue;
3684 			}
3685 			reg = &func->stack[i].spilled_ptr;
3686 			if (reg->type != SCALAR_VALUE) {
3687 				stack_mask &= ~(1ull << i);
3688 				continue;
3689 			}
3690 			if (!reg->precise)
3691 				new_marks = true;
3692 			reg->precise = true;
3693 		}
3694 		if (env->log.level & BPF_LOG_LEVEL2) {
3695 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3696 				new_marks ? "didn't have" : "already had",
3697 				reg_mask, stack_mask);
3698 			print_verifier_state(env, func, true);
3699 		}
3700 
3701 		if (!reg_mask && !stack_mask)
3702 			break;
3703 		if (!new_marks)
3704 			break;
3705 
3706 		last_idx = st->last_insn_idx;
3707 		first_idx = st->first_insn_idx;
3708 	}
3709 	return 0;
3710 }
3711 
3712 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3713 {
3714 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3715 }
3716 
3717 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3718 {
3719 	return __mark_chain_precision(env, frame, regno, -1);
3720 }
3721 
3722 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3723 {
3724 	return __mark_chain_precision(env, frame, -1, spi);
3725 }
3726 
3727 static bool is_spillable_regtype(enum bpf_reg_type type)
3728 {
3729 	switch (base_type(type)) {
3730 	case PTR_TO_MAP_VALUE:
3731 	case PTR_TO_STACK:
3732 	case PTR_TO_CTX:
3733 	case PTR_TO_PACKET:
3734 	case PTR_TO_PACKET_META:
3735 	case PTR_TO_PACKET_END:
3736 	case PTR_TO_FLOW_KEYS:
3737 	case CONST_PTR_TO_MAP:
3738 	case PTR_TO_SOCKET:
3739 	case PTR_TO_SOCK_COMMON:
3740 	case PTR_TO_TCP_SOCK:
3741 	case PTR_TO_XDP_SOCK:
3742 	case PTR_TO_BTF_ID:
3743 	case PTR_TO_BUF:
3744 	case PTR_TO_MEM:
3745 	case PTR_TO_FUNC:
3746 	case PTR_TO_MAP_KEY:
3747 		return true;
3748 	default:
3749 		return false;
3750 	}
3751 }
3752 
3753 /* Does this register contain a constant zero? */
3754 static bool register_is_null(struct bpf_reg_state *reg)
3755 {
3756 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3757 }
3758 
3759 static bool register_is_const(struct bpf_reg_state *reg)
3760 {
3761 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3762 }
3763 
3764 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3765 {
3766 	return tnum_is_unknown(reg->var_off) &&
3767 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3768 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3769 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3770 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3771 }
3772 
3773 static bool register_is_bounded(struct bpf_reg_state *reg)
3774 {
3775 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3776 }
3777 
3778 static bool __is_pointer_value(bool allow_ptr_leaks,
3779 			       const struct bpf_reg_state *reg)
3780 {
3781 	if (allow_ptr_leaks)
3782 		return false;
3783 
3784 	return reg->type != SCALAR_VALUE;
3785 }
3786 
3787 /* Copy src state preserving dst->parent and dst->live fields */
3788 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
3789 {
3790 	struct bpf_reg_state *parent = dst->parent;
3791 	enum bpf_reg_liveness live = dst->live;
3792 
3793 	*dst = *src;
3794 	dst->parent = parent;
3795 	dst->live = live;
3796 }
3797 
3798 static void save_register_state(struct bpf_func_state *state,
3799 				int spi, struct bpf_reg_state *reg,
3800 				int size)
3801 {
3802 	int i;
3803 
3804 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
3805 	if (size == BPF_REG_SIZE)
3806 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3807 
3808 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3809 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3810 
3811 	/* size < 8 bytes spill */
3812 	for (; i; i--)
3813 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3814 }
3815 
3816 static bool is_bpf_st_mem(struct bpf_insn *insn)
3817 {
3818 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
3819 }
3820 
3821 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3822  * stack boundary and alignment are checked in check_mem_access()
3823  */
3824 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3825 				       /* stack frame we're writing to */
3826 				       struct bpf_func_state *state,
3827 				       int off, int size, int value_regno,
3828 				       int insn_idx)
3829 {
3830 	struct bpf_func_state *cur; /* state of the current function */
3831 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3832 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3833 	struct bpf_reg_state *reg = NULL;
3834 	u32 dst_reg = insn->dst_reg;
3835 
3836 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3837 	if (err)
3838 		return err;
3839 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3840 	 * so it's aligned access and [off, off + size) are within stack limits
3841 	 */
3842 	if (!env->allow_ptr_leaks &&
3843 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3844 	    size != BPF_REG_SIZE) {
3845 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3846 		return -EACCES;
3847 	}
3848 
3849 	cur = env->cur_state->frame[env->cur_state->curframe];
3850 	if (value_regno >= 0)
3851 		reg = &cur->regs[value_regno];
3852 	if (!env->bypass_spec_v4) {
3853 		bool sanitize = reg && is_spillable_regtype(reg->type);
3854 
3855 		for (i = 0; i < size; i++) {
3856 			u8 type = state->stack[spi].slot_type[i];
3857 
3858 			if (type != STACK_MISC && type != STACK_ZERO) {
3859 				sanitize = true;
3860 				break;
3861 			}
3862 		}
3863 
3864 		if (sanitize)
3865 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3866 	}
3867 
3868 	err = destroy_if_dynptr_stack_slot(env, state, spi);
3869 	if (err)
3870 		return err;
3871 
3872 	mark_stack_slot_scratched(env, spi);
3873 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3874 	    !register_is_null(reg) && env->bpf_capable) {
3875 		if (dst_reg != BPF_REG_FP) {
3876 			/* The backtracking logic can only recognize explicit
3877 			 * stack slot address like [fp - 8]. Other spill of
3878 			 * scalar via different register has to be conservative.
3879 			 * Backtrack from here and mark all registers as precise
3880 			 * that contributed into 'reg' being a constant.
3881 			 */
3882 			err = mark_chain_precision(env, value_regno);
3883 			if (err)
3884 				return err;
3885 		}
3886 		save_register_state(state, spi, reg, size);
3887 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
3888 		   insn->imm != 0 && env->bpf_capable) {
3889 		struct bpf_reg_state fake_reg = {};
3890 
3891 		__mark_reg_known(&fake_reg, (u32)insn->imm);
3892 		fake_reg.type = SCALAR_VALUE;
3893 		save_register_state(state, spi, &fake_reg, size);
3894 	} else if (reg && is_spillable_regtype(reg->type)) {
3895 		/* register containing pointer is being spilled into stack */
3896 		if (size != BPF_REG_SIZE) {
3897 			verbose_linfo(env, insn_idx, "; ");
3898 			verbose(env, "invalid size of register spill\n");
3899 			return -EACCES;
3900 		}
3901 		if (state != cur && reg->type == PTR_TO_STACK) {
3902 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3903 			return -EINVAL;
3904 		}
3905 		save_register_state(state, spi, reg, size);
3906 	} else {
3907 		u8 type = STACK_MISC;
3908 
3909 		/* regular write of data into stack destroys any spilled ptr */
3910 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3911 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
3912 		if (is_stack_slot_special(&state->stack[spi]))
3913 			for (i = 0; i < BPF_REG_SIZE; i++)
3914 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3915 
3916 		/* only mark the slot as written if all 8 bytes were written
3917 		 * otherwise read propagation may incorrectly stop too soon
3918 		 * when stack slots are partially written.
3919 		 * This heuristic means that read propagation will be
3920 		 * conservative, since it will add reg_live_read marks
3921 		 * to stack slots all the way to first state when programs
3922 		 * writes+reads less than 8 bytes
3923 		 */
3924 		if (size == BPF_REG_SIZE)
3925 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3926 
3927 		/* when we zero initialize stack slots mark them as such */
3928 		if ((reg && register_is_null(reg)) ||
3929 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
3930 			/* backtracking doesn't work for STACK_ZERO yet. */
3931 			err = mark_chain_precision(env, value_regno);
3932 			if (err)
3933 				return err;
3934 			type = STACK_ZERO;
3935 		}
3936 
3937 		/* Mark slots affected by this stack write. */
3938 		for (i = 0; i < size; i++)
3939 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3940 				type;
3941 	}
3942 	return 0;
3943 }
3944 
3945 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3946  * known to contain a variable offset.
3947  * This function checks whether the write is permitted and conservatively
3948  * tracks the effects of the write, considering that each stack slot in the
3949  * dynamic range is potentially written to.
3950  *
3951  * 'off' includes 'regno->off'.
3952  * 'value_regno' can be -1, meaning that an unknown value is being written to
3953  * the stack.
3954  *
3955  * Spilled pointers in range are not marked as written because we don't know
3956  * what's going to be actually written. This means that read propagation for
3957  * future reads cannot be terminated by this write.
3958  *
3959  * For privileged programs, uninitialized stack slots are considered
3960  * initialized by this write (even though we don't know exactly what offsets
3961  * are going to be written to). The idea is that we don't want the verifier to
3962  * reject future reads that access slots written to through variable offsets.
3963  */
3964 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3965 				     /* func where register points to */
3966 				     struct bpf_func_state *state,
3967 				     int ptr_regno, int off, int size,
3968 				     int value_regno, int insn_idx)
3969 {
3970 	struct bpf_func_state *cur; /* state of the current function */
3971 	int min_off, max_off;
3972 	int i, err;
3973 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3974 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3975 	bool writing_zero = false;
3976 	/* set if the fact that we're writing a zero is used to let any
3977 	 * stack slots remain STACK_ZERO
3978 	 */
3979 	bool zero_used = false;
3980 
3981 	cur = env->cur_state->frame[env->cur_state->curframe];
3982 	ptr_reg = &cur->regs[ptr_regno];
3983 	min_off = ptr_reg->smin_value + off;
3984 	max_off = ptr_reg->smax_value + off + size;
3985 	if (value_regno >= 0)
3986 		value_reg = &cur->regs[value_regno];
3987 	if ((value_reg && register_is_null(value_reg)) ||
3988 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
3989 		writing_zero = true;
3990 
3991 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3992 	if (err)
3993 		return err;
3994 
3995 	for (i = min_off; i < max_off; i++) {
3996 		int spi;
3997 
3998 		spi = __get_spi(i);
3999 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4000 		if (err)
4001 			return err;
4002 	}
4003 
4004 	/* Variable offset writes destroy any spilled pointers in range. */
4005 	for (i = min_off; i < max_off; i++) {
4006 		u8 new_type, *stype;
4007 		int slot, spi;
4008 
4009 		slot = -i - 1;
4010 		spi = slot / BPF_REG_SIZE;
4011 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4012 		mark_stack_slot_scratched(env, spi);
4013 
4014 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4015 			/* Reject the write if range we may write to has not
4016 			 * been initialized beforehand. If we didn't reject
4017 			 * here, the ptr status would be erased below (even
4018 			 * though not all slots are actually overwritten),
4019 			 * possibly opening the door to leaks.
4020 			 *
4021 			 * We do however catch STACK_INVALID case below, and
4022 			 * only allow reading possibly uninitialized memory
4023 			 * later for CAP_PERFMON, as the write may not happen to
4024 			 * that slot.
4025 			 */
4026 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4027 				insn_idx, i);
4028 			return -EINVAL;
4029 		}
4030 
4031 		/* Erase all spilled pointers. */
4032 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4033 
4034 		/* Update the slot type. */
4035 		new_type = STACK_MISC;
4036 		if (writing_zero && *stype == STACK_ZERO) {
4037 			new_type = STACK_ZERO;
4038 			zero_used = true;
4039 		}
4040 		/* If the slot is STACK_INVALID, we check whether it's OK to
4041 		 * pretend that it will be initialized by this write. The slot
4042 		 * might not actually be written to, and so if we mark it as
4043 		 * initialized future reads might leak uninitialized memory.
4044 		 * For privileged programs, we will accept such reads to slots
4045 		 * that may or may not be written because, if we're reject
4046 		 * them, the error would be too confusing.
4047 		 */
4048 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4049 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4050 					insn_idx, i);
4051 			return -EINVAL;
4052 		}
4053 		*stype = new_type;
4054 	}
4055 	if (zero_used) {
4056 		/* backtracking doesn't work for STACK_ZERO yet. */
4057 		err = mark_chain_precision(env, value_regno);
4058 		if (err)
4059 			return err;
4060 	}
4061 	return 0;
4062 }
4063 
4064 /* When register 'dst_regno' is assigned some values from stack[min_off,
4065  * max_off), we set the register's type according to the types of the
4066  * respective stack slots. If all the stack values are known to be zeros, then
4067  * so is the destination reg. Otherwise, the register is considered to be
4068  * SCALAR. This function does not deal with register filling; the caller must
4069  * ensure that all spilled registers in the stack range have been marked as
4070  * read.
4071  */
4072 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4073 				/* func where src register points to */
4074 				struct bpf_func_state *ptr_state,
4075 				int min_off, int max_off, int dst_regno)
4076 {
4077 	struct bpf_verifier_state *vstate = env->cur_state;
4078 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4079 	int i, slot, spi;
4080 	u8 *stype;
4081 	int zeros = 0;
4082 
4083 	for (i = min_off; i < max_off; i++) {
4084 		slot = -i - 1;
4085 		spi = slot / BPF_REG_SIZE;
4086 		stype = ptr_state->stack[spi].slot_type;
4087 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4088 			break;
4089 		zeros++;
4090 	}
4091 	if (zeros == max_off - min_off) {
4092 		/* any access_size read into register is zero extended,
4093 		 * so the whole register == const_zero
4094 		 */
4095 		__mark_reg_const_zero(&state->regs[dst_regno]);
4096 		/* backtracking doesn't support STACK_ZERO yet,
4097 		 * so mark it precise here, so that later
4098 		 * backtracking can stop here.
4099 		 * Backtracking may not need this if this register
4100 		 * doesn't participate in pointer adjustment.
4101 		 * Forward propagation of precise flag is not
4102 		 * necessary either. This mark is only to stop
4103 		 * backtracking. Any register that contributed
4104 		 * to const 0 was marked precise before spill.
4105 		 */
4106 		state->regs[dst_regno].precise = true;
4107 	} else {
4108 		/* have read misc data from the stack */
4109 		mark_reg_unknown(env, state->regs, dst_regno);
4110 	}
4111 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4112 }
4113 
4114 /* Read the stack at 'off' and put the results into the register indicated by
4115  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4116  * spilled reg.
4117  *
4118  * 'dst_regno' can be -1, meaning that the read value is not going to a
4119  * register.
4120  *
4121  * The access is assumed to be within the current stack bounds.
4122  */
4123 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4124 				      /* func where src register points to */
4125 				      struct bpf_func_state *reg_state,
4126 				      int off, int size, int dst_regno)
4127 {
4128 	struct bpf_verifier_state *vstate = env->cur_state;
4129 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4130 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4131 	struct bpf_reg_state *reg;
4132 	u8 *stype, type;
4133 
4134 	stype = reg_state->stack[spi].slot_type;
4135 	reg = &reg_state->stack[spi].spilled_ptr;
4136 
4137 	if (is_spilled_reg(&reg_state->stack[spi])) {
4138 		u8 spill_size = 1;
4139 
4140 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4141 			spill_size++;
4142 
4143 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4144 			if (reg->type != SCALAR_VALUE) {
4145 				verbose_linfo(env, env->insn_idx, "; ");
4146 				verbose(env, "invalid size of register fill\n");
4147 				return -EACCES;
4148 			}
4149 
4150 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4151 			if (dst_regno < 0)
4152 				return 0;
4153 
4154 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4155 				/* The earlier check_reg_arg() has decided the
4156 				 * subreg_def for this insn.  Save it first.
4157 				 */
4158 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4159 
4160 				copy_register_state(&state->regs[dst_regno], reg);
4161 				state->regs[dst_regno].subreg_def = subreg_def;
4162 			} else {
4163 				for (i = 0; i < size; i++) {
4164 					type = stype[(slot - i) % BPF_REG_SIZE];
4165 					if (type == STACK_SPILL)
4166 						continue;
4167 					if (type == STACK_MISC)
4168 						continue;
4169 					if (type == STACK_INVALID && env->allow_uninit_stack)
4170 						continue;
4171 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4172 						off, i, size);
4173 					return -EACCES;
4174 				}
4175 				mark_reg_unknown(env, state->regs, dst_regno);
4176 			}
4177 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4178 			return 0;
4179 		}
4180 
4181 		if (dst_regno >= 0) {
4182 			/* restore register state from stack */
4183 			copy_register_state(&state->regs[dst_regno], reg);
4184 			/* mark reg as written since spilled pointer state likely
4185 			 * has its liveness marks cleared by is_state_visited()
4186 			 * which resets stack/reg liveness for state transitions
4187 			 */
4188 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4189 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4190 			/* If dst_regno==-1, the caller is asking us whether
4191 			 * it is acceptable to use this value as a SCALAR_VALUE
4192 			 * (e.g. for XADD).
4193 			 * We must not allow unprivileged callers to do that
4194 			 * with spilled pointers.
4195 			 */
4196 			verbose(env, "leaking pointer from stack off %d\n",
4197 				off);
4198 			return -EACCES;
4199 		}
4200 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4201 	} else {
4202 		for (i = 0; i < size; i++) {
4203 			type = stype[(slot - i) % BPF_REG_SIZE];
4204 			if (type == STACK_MISC)
4205 				continue;
4206 			if (type == STACK_ZERO)
4207 				continue;
4208 			if (type == STACK_INVALID && env->allow_uninit_stack)
4209 				continue;
4210 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4211 				off, i, size);
4212 			return -EACCES;
4213 		}
4214 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4215 		if (dst_regno >= 0)
4216 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4217 	}
4218 	return 0;
4219 }
4220 
4221 enum bpf_access_src {
4222 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4223 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4224 };
4225 
4226 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4227 					 int regno, int off, int access_size,
4228 					 bool zero_size_allowed,
4229 					 enum bpf_access_src type,
4230 					 struct bpf_call_arg_meta *meta);
4231 
4232 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4233 {
4234 	return cur_regs(env) + regno;
4235 }
4236 
4237 /* Read the stack at 'ptr_regno + off' and put the result into the register
4238  * 'dst_regno'.
4239  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4240  * but not its variable offset.
4241  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4242  *
4243  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4244  * filling registers (i.e. reads of spilled register cannot be detected when
4245  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4246  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4247  * offset; for a fixed offset check_stack_read_fixed_off should be used
4248  * instead.
4249  */
4250 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4251 				    int ptr_regno, int off, int size, int dst_regno)
4252 {
4253 	/* The state of the source register. */
4254 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4255 	struct bpf_func_state *ptr_state = func(env, reg);
4256 	int err;
4257 	int min_off, max_off;
4258 
4259 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4260 	 */
4261 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4262 					    false, ACCESS_DIRECT, NULL);
4263 	if (err)
4264 		return err;
4265 
4266 	min_off = reg->smin_value + off;
4267 	max_off = reg->smax_value + off;
4268 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4269 	return 0;
4270 }
4271 
4272 /* check_stack_read dispatches to check_stack_read_fixed_off or
4273  * check_stack_read_var_off.
4274  *
4275  * The caller must ensure that the offset falls within the allocated stack
4276  * bounds.
4277  *
4278  * 'dst_regno' is a register which will receive the value from the stack. It
4279  * can be -1, meaning that the read value is not going to a register.
4280  */
4281 static int check_stack_read(struct bpf_verifier_env *env,
4282 			    int ptr_regno, int off, int size,
4283 			    int dst_regno)
4284 {
4285 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4286 	struct bpf_func_state *state = func(env, reg);
4287 	int err;
4288 	/* Some accesses are only permitted with a static offset. */
4289 	bool var_off = !tnum_is_const(reg->var_off);
4290 
4291 	/* The offset is required to be static when reads don't go to a
4292 	 * register, in order to not leak pointers (see
4293 	 * check_stack_read_fixed_off).
4294 	 */
4295 	if (dst_regno < 0 && var_off) {
4296 		char tn_buf[48];
4297 
4298 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4299 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4300 			tn_buf, off, size);
4301 		return -EACCES;
4302 	}
4303 	/* Variable offset is prohibited for unprivileged mode for simplicity
4304 	 * since it requires corresponding support in Spectre masking for stack
4305 	 * ALU. See also retrieve_ptr_limit().
4306 	 */
4307 	if (!env->bypass_spec_v1 && var_off) {
4308 		char tn_buf[48];
4309 
4310 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4311 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
4312 				ptr_regno, tn_buf);
4313 		return -EACCES;
4314 	}
4315 
4316 	if (!var_off) {
4317 		off += reg->var_off.value;
4318 		err = check_stack_read_fixed_off(env, state, off, size,
4319 						 dst_regno);
4320 	} else {
4321 		/* Variable offset stack reads need more conservative handling
4322 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4323 		 * branch.
4324 		 */
4325 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4326 					       dst_regno);
4327 	}
4328 	return err;
4329 }
4330 
4331 
4332 /* check_stack_write dispatches to check_stack_write_fixed_off or
4333  * check_stack_write_var_off.
4334  *
4335  * 'ptr_regno' is the register used as a pointer into the stack.
4336  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4337  * 'value_regno' is the register whose value we're writing to the stack. It can
4338  * be -1, meaning that we're not writing from a register.
4339  *
4340  * The caller must ensure that the offset falls within the maximum stack size.
4341  */
4342 static int check_stack_write(struct bpf_verifier_env *env,
4343 			     int ptr_regno, int off, int size,
4344 			     int value_regno, int insn_idx)
4345 {
4346 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4347 	struct bpf_func_state *state = func(env, reg);
4348 	int err;
4349 
4350 	if (tnum_is_const(reg->var_off)) {
4351 		off += reg->var_off.value;
4352 		err = check_stack_write_fixed_off(env, state, off, size,
4353 						  value_regno, insn_idx);
4354 	} else {
4355 		/* Variable offset stack reads need more conservative handling
4356 		 * than fixed offset ones.
4357 		 */
4358 		err = check_stack_write_var_off(env, state,
4359 						ptr_regno, off, size,
4360 						value_regno, insn_idx);
4361 	}
4362 	return err;
4363 }
4364 
4365 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4366 				 int off, int size, enum bpf_access_type type)
4367 {
4368 	struct bpf_reg_state *regs = cur_regs(env);
4369 	struct bpf_map *map = regs[regno].map_ptr;
4370 	u32 cap = bpf_map_flags_to_cap(map);
4371 
4372 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4373 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4374 			map->value_size, off, size);
4375 		return -EACCES;
4376 	}
4377 
4378 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4379 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4380 			map->value_size, off, size);
4381 		return -EACCES;
4382 	}
4383 
4384 	return 0;
4385 }
4386 
4387 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4388 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4389 			      int off, int size, u32 mem_size,
4390 			      bool zero_size_allowed)
4391 {
4392 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4393 	struct bpf_reg_state *reg;
4394 
4395 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4396 		return 0;
4397 
4398 	reg = &cur_regs(env)[regno];
4399 	switch (reg->type) {
4400 	case PTR_TO_MAP_KEY:
4401 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4402 			mem_size, off, size);
4403 		break;
4404 	case PTR_TO_MAP_VALUE:
4405 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4406 			mem_size, off, size);
4407 		break;
4408 	case PTR_TO_PACKET:
4409 	case PTR_TO_PACKET_META:
4410 	case PTR_TO_PACKET_END:
4411 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4412 			off, size, regno, reg->id, off, mem_size);
4413 		break;
4414 	case PTR_TO_MEM:
4415 	default:
4416 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4417 			mem_size, off, size);
4418 	}
4419 
4420 	return -EACCES;
4421 }
4422 
4423 /* check read/write into a memory region with possible variable offset */
4424 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4425 				   int off, int size, u32 mem_size,
4426 				   bool zero_size_allowed)
4427 {
4428 	struct bpf_verifier_state *vstate = env->cur_state;
4429 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4430 	struct bpf_reg_state *reg = &state->regs[regno];
4431 	int err;
4432 
4433 	/* We may have adjusted the register pointing to memory region, so we
4434 	 * need to try adding each of min_value and max_value to off
4435 	 * to make sure our theoretical access will be safe.
4436 	 *
4437 	 * The minimum value is only important with signed
4438 	 * comparisons where we can't assume the floor of a
4439 	 * value is 0.  If we are using signed variables for our
4440 	 * index'es we need to make sure that whatever we use
4441 	 * will have a set floor within our range.
4442 	 */
4443 	if (reg->smin_value < 0 &&
4444 	    (reg->smin_value == S64_MIN ||
4445 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4446 	      reg->smin_value + off < 0)) {
4447 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4448 			regno);
4449 		return -EACCES;
4450 	}
4451 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4452 				 mem_size, zero_size_allowed);
4453 	if (err) {
4454 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4455 			regno);
4456 		return err;
4457 	}
4458 
4459 	/* If we haven't set a max value then we need to bail since we can't be
4460 	 * sure we won't do bad things.
4461 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4462 	 */
4463 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4464 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4465 			regno);
4466 		return -EACCES;
4467 	}
4468 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4469 				 mem_size, zero_size_allowed);
4470 	if (err) {
4471 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4472 			regno);
4473 		return err;
4474 	}
4475 
4476 	return 0;
4477 }
4478 
4479 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4480 			       const struct bpf_reg_state *reg, int regno,
4481 			       bool fixed_off_ok)
4482 {
4483 	/* Access to this pointer-typed register or passing it to a helper
4484 	 * is only allowed in its original, unmodified form.
4485 	 */
4486 
4487 	if (reg->off < 0) {
4488 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4489 			reg_type_str(env, reg->type), regno, reg->off);
4490 		return -EACCES;
4491 	}
4492 
4493 	if (!fixed_off_ok && reg->off) {
4494 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4495 			reg_type_str(env, reg->type), regno, reg->off);
4496 		return -EACCES;
4497 	}
4498 
4499 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4500 		char tn_buf[48];
4501 
4502 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4503 		verbose(env, "variable %s access var_off=%s disallowed\n",
4504 			reg_type_str(env, reg->type), tn_buf);
4505 		return -EACCES;
4506 	}
4507 
4508 	return 0;
4509 }
4510 
4511 int check_ptr_off_reg(struct bpf_verifier_env *env,
4512 		      const struct bpf_reg_state *reg, int regno)
4513 {
4514 	return __check_ptr_off_reg(env, reg, regno, false);
4515 }
4516 
4517 static int map_kptr_match_type(struct bpf_verifier_env *env,
4518 			       struct btf_field *kptr_field,
4519 			       struct bpf_reg_state *reg, u32 regno)
4520 {
4521 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4522 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4523 	const char *reg_name = "";
4524 
4525 	/* Only unreferenced case accepts untrusted pointers */
4526 	if (kptr_field->type == BPF_KPTR_UNREF)
4527 		perm_flags |= PTR_UNTRUSTED;
4528 
4529 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
4530 		goto bad_type;
4531 
4532 	if (!btf_is_kernel(reg->btf)) {
4533 		verbose(env, "R%d must point to kernel BTF\n", regno);
4534 		return -EINVAL;
4535 	}
4536 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
4537 	reg_name = btf_type_name(reg->btf, reg->btf_id);
4538 
4539 	/* For ref_ptr case, release function check should ensure we get one
4540 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4541 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
4542 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4543 	 * reg->off and reg->ref_obj_id are not needed here.
4544 	 */
4545 	if (__check_ptr_off_reg(env, reg, regno, true))
4546 		return -EACCES;
4547 
4548 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
4549 	 * we also need to take into account the reg->off.
4550 	 *
4551 	 * We want to support cases like:
4552 	 *
4553 	 * struct foo {
4554 	 *         struct bar br;
4555 	 *         struct baz bz;
4556 	 * };
4557 	 *
4558 	 * struct foo *v;
4559 	 * v = func();	      // PTR_TO_BTF_ID
4560 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
4561 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4562 	 *                    // first member type of struct after comparison fails
4563 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4564 	 *                    // to match type
4565 	 *
4566 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
4567 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
4568 	 * the struct to match type against first member of struct, i.e. reject
4569 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4570 	 * strict mode to true for type match.
4571 	 */
4572 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4573 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4574 				  kptr_field->type == BPF_KPTR_REF))
4575 		goto bad_type;
4576 	return 0;
4577 bad_type:
4578 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4579 		reg_type_str(env, reg->type), reg_name);
4580 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
4581 	if (kptr_field->type == BPF_KPTR_UNREF)
4582 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4583 			targ_name);
4584 	else
4585 		verbose(env, "\n");
4586 	return -EINVAL;
4587 }
4588 
4589 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
4590  * can dereference RCU protected pointers and result is PTR_TRUSTED.
4591  */
4592 static bool in_rcu_cs(struct bpf_verifier_env *env)
4593 {
4594 	return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
4595 }
4596 
4597 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
4598 BTF_SET_START(rcu_protected_types)
4599 BTF_ID(struct, prog_test_ref_kfunc)
4600 BTF_ID(struct, cgroup)
4601 BTF_SET_END(rcu_protected_types)
4602 
4603 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
4604 {
4605 	if (!btf_is_kernel(btf))
4606 		return false;
4607 	return btf_id_set_contains(&rcu_protected_types, btf_id);
4608 }
4609 
4610 static bool rcu_safe_kptr(const struct btf_field *field)
4611 {
4612 	const struct btf_field_kptr *kptr = &field->kptr;
4613 
4614 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
4615 }
4616 
4617 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4618 				 int value_regno, int insn_idx,
4619 				 struct btf_field *kptr_field)
4620 {
4621 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4622 	int class = BPF_CLASS(insn->code);
4623 	struct bpf_reg_state *val_reg;
4624 
4625 	/* Things we already checked for in check_map_access and caller:
4626 	 *  - Reject cases where variable offset may touch kptr
4627 	 *  - size of access (must be BPF_DW)
4628 	 *  - tnum_is_const(reg->var_off)
4629 	 *  - kptr_field->offset == off + reg->var_off.value
4630 	 */
4631 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4632 	if (BPF_MODE(insn->code) != BPF_MEM) {
4633 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4634 		return -EACCES;
4635 	}
4636 
4637 	/* We only allow loading referenced kptr, since it will be marked as
4638 	 * untrusted, similar to unreferenced kptr.
4639 	 */
4640 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
4641 		verbose(env, "store to referenced kptr disallowed\n");
4642 		return -EACCES;
4643 	}
4644 
4645 	if (class == BPF_LDX) {
4646 		val_reg = reg_state(env, value_regno);
4647 		/* We can simply mark the value_regno receiving the pointer
4648 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4649 		 */
4650 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
4651 				kptr_field->kptr.btf_id,
4652 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
4653 				PTR_MAYBE_NULL | MEM_RCU :
4654 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
4655 		/* For mark_ptr_or_null_reg */
4656 		val_reg->id = ++env->id_gen;
4657 	} else if (class == BPF_STX) {
4658 		val_reg = reg_state(env, value_regno);
4659 		if (!register_is_null(val_reg) &&
4660 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4661 			return -EACCES;
4662 	} else if (class == BPF_ST) {
4663 		if (insn->imm) {
4664 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4665 				kptr_field->offset);
4666 			return -EACCES;
4667 		}
4668 	} else {
4669 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4670 		return -EACCES;
4671 	}
4672 	return 0;
4673 }
4674 
4675 /* check read/write into a map element with possible variable offset */
4676 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4677 			    int off, int size, bool zero_size_allowed,
4678 			    enum bpf_access_src src)
4679 {
4680 	struct bpf_verifier_state *vstate = env->cur_state;
4681 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4682 	struct bpf_reg_state *reg = &state->regs[regno];
4683 	struct bpf_map *map = reg->map_ptr;
4684 	struct btf_record *rec;
4685 	int err, i;
4686 
4687 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4688 				      zero_size_allowed);
4689 	if (err)
4690 		return err;
4691 
4692 	if (IS_ERR_OR_NULL(map->record))
4693 		return 0;
4694 	rec = map->record;
4695 	for (i = 0; i < rec->cnt; i++) {
4696 		struct btf_field *field = &rec->fields[i];
4697 		u32 p = field->offset;
4698 
4699 		/* If any part of a field  can be touched by load/store, reject
4700 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4701 		 * it is sufficient to check x1 < y2 && y1 < x2.
4702 		 */
4703 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4704 		    p < reg->umax_value + off + size) {
4705 			switch (field->type) {
4706 			case BPF_KPTR_UNREF:
4707 			case BPF_KPTR_REF:
4708 				if (src != ACCESS_DIRECT) {
4709 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4710 					return -EACCES;
4711 				}
4712 				if (!tnum_is_const(reg->var_off)) {
4713 					verbose(env, "kptr access cannot have variable offset\n");
4714 					return -EACCES;
4715 				}
4716 				if (p != off + reg->var_off.value) {
4717 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4718 						p, off + reg->var_off.value);
4719 					return -EACCES;
4720 				}
4721 				if (size != bpf_size_to_bytes(BPF_DW)) {
4722 					verbose(env, "kptr access size must be BPF_DW\n");
4723 					return -EACCES;
4724 				}
4725 				break;
4726 			default:
4727 				verbose(env, "%s cannot be accessed directly by load/store\n",
4728 					btf_field_type_name(field->type));
4729 				return -EACCES;
4730 			}
4731 		}
4732 	}
4733 	return 0;
4734 }
4735 
4736 #define MAX_PACKET_OFF 0xffff
4737 
4738 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4739 				       const struct bpf_call_arg_meta *meta,
4740 				       enum bpf_access_type t)
4741 {
4742 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4743 
4744 	switch (prog_type) {
4745 	/* Program types only with direct read access go here! */
4746 	case BPF_PROG_TYPE_LWT_IN:
4747 	case BPF_PROG_TYPE_LWT_OUT:
4748 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4749 	case BPF_PROG_TYPE_SK_REUSEPORT:
4750 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4751 	case BPF_PROG_TYPE_CGROUP_SKB:
4752 		if (t == BPF_WRITE)
4753 			return false;
4754 		fallthrough;
4755 
4756 	/* Program types with direct read + write access go here! */
4757 	case BPF_PROG_TYPE_SCHED_CLS:
4758 	case BPF_PROG_TYPE_SCHED_ACT:
4759 	case BPF_PROG_TYPE_XDP:
4760 	case BPF_PROG_TYPE_LWT_XMIT:
4761 	case BPF_PROG_TYPE_SK_SKB:
4762 	case BPF_PROG_TYPE_SK_MSG:
4763 		if (meta)
4764 			return meta->pkt_access;
4765 
4766 		env->seen_direct_write = true;
4767 		return true;
4768 
4769 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4770 		if (t == BPF_WRITE)
4771 			env->seen_direct_write = true;
4772 
4773 		return true;
4774 
4775 	default:
4776 		return false;
4777 	}
4778 }
4779 
4780 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4781 			       int size, bool zero_size_allowed)
4782 {
4783 	struct bpf_reg_state *regs = cur_regs(env);
4784 	struct bpf_reg_state *reg = &regs[regno];
4785 	int err;
4786 
4787 	/* We may have added a variable offset to the packet pointer; but any
4788 	 * reg->range we have comes after that.  We are only checking the fixed
4789 	 * offset.
4790 	 */
4791 
4792 	/* We don't allow negative numbers, because we aren't tracking enough
4793 	 * detail to prove they're safe.
4794 	 */
4795 	if (reg->smin_value < 0) {
4796 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4797 			regno);
4798 		return -EACCES;
4799 	}
4800 
4801 	err = reg->range < 0 ? -EINVAL :
4802 	      __check_mem_access(env, regno, off, size, reg->range,
4803 				 zero_size_allowed);
4804 	if (err) {
4805 		verbose(env, "R%d offset is outside of the packet\n", regno);
4806 		return err;
4807 	}
4808 
4809 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4810 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4811 	 * otherwise find_good_pkt_pointers would have refused to set range info
4812 	 * that __check_mem_access would have rejected this pkt access.
4813 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4814 	 */
4815 	env->prog->aux->max_pkt_offset =
4816 		max_t(u32, env->prog->aux->max_pkt_offset,
4817 		      off + reg->umax_value + size - 1);
4818 
4819 	return err;
4820 }
4821 
4822 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4823 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4824 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4825 			    struct btf **btf, u32 *btf_id)
4826 {
4827 	struct bpf_insn_access_aux info = {
4828 		.reg_type = *reg_type,
4829 		.log = &env->log,
4830 	};
4831 
4832 	if (env->ops->is_valid_access &&
4833 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4834 		/* A non zero info.ctx_field_size indicates that this field is a
4835 		 * candidate for later verifier transformation to load the whole
4836 		 * field and then apply a mask when accessed with a narrower
4837 		 * access than actual ctx access size. A zero info.ctx_field_size
4838 		 * will only allow for whole field access and rejects any other
4839 		 * type of narrower access.
4840 		 */
4841 		*reg_type = info.reg_type;
4842 
4843 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4844 			*btf = info.btf;
4845 			*btf_id = info.btf_id;
4846 		} else {
4847 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4848 		}
4849 		/* remember the offset of last byte accessed in ctx */
4850 		if (env->prog->aux->max_ctx_offset < off + size)
4851 			env->prog->aux->max_ctx_offset = off + size;
4852 		return 0;
4853 	}
4854 
4855 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4856 	return -EACCES;
4857 }
4858 
4859 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4860 				  int size)
4861 {
4862 	if (size < 0 || off < 0 ||
4863 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4864 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4865 			off, size);
4866 		return -EACCES;
4867 	}
4868 	return 0;
4869 }
4870 
4871 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4872 			     u32 regno, int off, int size,
4873 			     enum bpf_access_type t)
4874 {
4875 	struct bpf_reg_state *regs = cur_regs(env);
4876 	struct bpf_reg_state *reg = &regs[regno];
4877 	struct bpf_insn_access_aux info = {};
4878 	bool valid;
4879 
4880 	if (reg->smin_value < 0) {
4881 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4882 			regno);
4883 		return -EACCES;
4884 	}
4885 
4886 	switch (reg->type) {
4887 	case PTR_TO_SOCK_COMMON:
4888 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4889 		break;
4890 	case PTR_TO_SOCKET:
4891 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4892 		break;
4893 	case PTR_TO_TCP_SOCK:
4894 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4895 		break;
4896 	case PTR_TO_XDP_SOCK:
4897 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4898 		break;
4899 	default:
4900 		valid = false;
4901 	}
4902 
4903 
4904 	if (valid) {
4905 		env->insn_aux_data[insn_idx].ctx_field_size =
4906 			info.ctx_field_size;
4907 		return 0;
4908 	}
4909 
4910 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4911 		regno, reg_type_str(env, reg->type), off, size);
4912 
4913 	return -EACCES;
4914 }
4915 
4916 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4917 {
4918 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4919 }
4920 
4921 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4922 {
4923 	const struct bpf_reg_state *reg = reg_state(env, regno);
4924 
4925 	return reg->type == PTR_TO_CTX;
4926 }
4927 
4928 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4929 {
4930 	const struct bpf_reg_state *reg = reg_state(env, regno);
4931 
4932 	return type_is_sk_pointer(reg->type);
4933 }
4934 
4935 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4936 {
4937 	const struct bpf_reg_state *reg = reg_state(env, regno);
4938 
4939 	return type_is_pkt_pointer(reg->type);
4940 }
4941 
4942 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4943 {
4944 	const struct bpf_reg_state *reg = reg_state(env, regno);
4945 
4946 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4947 	return reg->type == PTR_TO_FLOW_KEYS;
4948 }
4949 
4950 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4951 {
4952 	/* A referenced register is always trusted. */
4953 	if (reg->ref_obj_id)
4954 		return true;
4955 
4956 	/* If a register is not referenced, it is trusted if it has the
4957 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4958 	 * other type modifiers may be safe, but we elect to take an opt-in
4959 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4960 	 * not.
4961 	 *
4962 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4963 	 * for whether a register is trusted.
4964 	 */
4965 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4966 	       !bpf_type_has_unsafe_modifiers(reg->type);
4967 }
4968 
4969 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4970 {
4971 	return reg->type & MEM_RCU;
4972 }
4973 
4974 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4975 				   const struct bpf_reg_state *reg,
4976 				   int off, int size, bool strict)
4977 {
4978 	struct tnum reg_off;
4979 	int ip_align;
4980 
4981 	/* Byte size accesses are always allowed. */
4982 	if (!strict || size == 1)
4983 		return 0;
4984 
4985 	/* For platforms that do not have a Kconfig enabling
4986 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4987 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4988 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4989 	 * to this code only in strict mode where we want to emulate
4990 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4991 	 * unconditional IP align value of '2'.
4992 	 */
4993 	ip_align = 2;
4994 
4995 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4996 	if (!tnum_is_aligned(reg_off, size)) {
4997 		char tn_buf[48];
4998 
4999 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5000 		verbose(env,
5001 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5002 			ip_align, tn_buf, reg->off, off, size);
5003 		return -EACCES;
5004 	}
5005 
5006 	return 0;
5007 }
5008 
5009 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5010 				       const struct bpf_reg_state *reg,
5011 				       const char *pointer_desc,
5012 				       int off, int size, bool strict)
5013 {
5014 	struct tnum reg_off;
5015 
5016 	/* Byte size accesses are always allowed. */
5017 	if (!strict || size == 1)
5018 		return 0;
5019 
5020 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5021 	if (!tnum_is_aligned(reg_off, size)) {
5022 		char tn_buf[48];
5023 
5024 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5025 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5026 			pointer_desc, tn_buf, reg->off, off, size);
5027 		return -EACCES;
5028 	}
5029 
5030 	return 0;
5031 }
5032 
5033 static int check_ptr_alignment(struct bpf_verifier_env *env,
5034 			       const struct bpf_reg_state *reg, int off,
5035 			       int size, bool strict_alignment_once)
5036 {
5037 	bool strict = env->strict_alignment || strict_alignment_once;
5038 	const char *pointer_desc = "";
5039 
5040 	switch (reg->type) {
5041 	case PTR_TO_PACKET:
5042 	case PTR_TO_PACKET_META:
5043 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5044 		 * right in front, treat it the very same way.
5045 		 */
5046 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5047 	case PTR_TO_FLOW_KEYS:
5048 		pointer_desc = "flow keys ";
5049 		break;
5050 	case PTR_TO_MAP_KEY:
5051 		pointer_desc = "key ";
5052 		break;
5053 	case PTR_TO_MAP_VALUE:
5054 		pointer_desc = "value ";
5055 		break;
5056 	case PTR_TO_CTX:
5057 		pointer_desc = "context ";
5058 		break;
5059 	case PTR_TO_STACK:
5060 		pointer_desc = "stack ";
5061 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5062 		 * and check_stack_read_fixed_off() relies on stack accesses being
5063 		 * aligned.
5064 		 */
5065 		strict = true;
5066 		break;
5067 	case PTR_TO_SOCKET:
5068 		pointer_desc = "sock ";
5069 		break;
5070 	case PTR_TO_SOCK_COMMON:
5071 		pointer_desc = "sock_common ";
5072 		break;
5073 	case PTR_TO_TCP_SOCK:
5074 		pointer_desc = "tcp_sock ";
5075 		break;
5076 	case PTR_TO_XDP_SOCK:
5077 		pointer_desc = "xdp_sock ";
5078 		break;
5079 	default:
5080 		break;
5081 	}
5082 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5083 					   strict);
5084 }
5085 
5086 static int update_stack_depth(struct bpf_verifier_env *env,
5087 			      const struct bpf_func_state *func,
5088 			      int off)
5089 {
5090 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5091 
5092 	if (stack >= -off)
5093 		return 0;
5094 
5095 	/* update known max for given subprogram */
5096 	env->subprog_info[func->subprogno].stack_depth = -off;
5097 	return 0;
5098 }
5099 
5100 /* starting from main bpf function walk all instructions of the function
5101  * and recursively walk all callees that given function can call.
5102  * Ignore jump and exit insns.
5103  * Since recursion is prevented by check_cfg() this algorithm
5104  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5105  */
5106 static int check_max_stack_depth(struct bpf_verifier_env *env)
5107 {
5108 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
5109 	struct bpf_subprog_info *subprog = env->subprog_info;
5110 	struct bpf_insn *insn = env->prog->insnsi;
5111 	bool tail_call_reachable = false;
5112 	int ret_insn[MAX_CALL_FRAMES];
5113 	int ret_prog[MAX_CALL_FRAMES];
5114 	int j;
5115 
5116 process_func:
5117 	/* protect against potential stack overflow that might happen when
5118 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5119 	 * depth for such case down to 256 so that the worst case scenario
5120 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5121 	 * 8k).
5122 	 *
5123 	 * To get the idea what might happen, see an example:
5124 	 * func1 -> sub rsp, 128
5125 	 *  subfunc1 -> sub rsp, 256
5126 	 *  tailcall1 -> add rsp, 256
5127 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5128 	 *   subfunc2 -> sub rsp, 64
5129 	 *   subfunc22 -> sub rsp, 128
5130 	 *   tailcall2 -> add rsp, 128
5131 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5132 	 *
5133 	 * tailcall will unwind the current stack frame but it will not get rid
5134 	 * of caller's stack as shown on the example above.
5135 	 */
5136 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5137 		verbose(env,
5138 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5139 			depth);
5140 		return -EACCES;
5141 	}
5142 	/* round up to 32-bytes, since this is granularity
5143 	 * of interpreter stack size
5144 	 */
5145 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5146 	if (depth > MAX_BPF_STACK) {
5147 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5148 			frame + 1, depth);
5149 		return -EACCES;
5150 	}
5151 continue_func:
5152 	subprog_end = subprog[idx + 1].start;
5153 	for (; i < subprog_end; i++) {
5154 		int next_insn;
5155 
5156 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5157 			continue;
5158 		/* remember insn and function to return to */
5159 		ret_insn[frame] = i + 1;
5160 		ret_prog[frame] = idx;
5161 
5162 		/* find the callee */
5163 		next_insn = i + insn[i].imm + 1;
5164 		idx = find_subprog(env, next_insn);
5165 		if (idx < 0) {
5166 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5167 				  next_insn);
5168 			return -EFAULT;
5169 		}
5170 		if (subprog[idx].is_async_cb) {
5171 			if (subprog[idx].has_tail_call) {
5172 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5173 				return -EFAULT;
5174 			}
5175 			 /* async callbacks don't increase bpf prog stack size */
5176 			continue;
5177 		}
5178 		i = next_insn;
5179 
5180 		if (subprog[idx].has_tail_call)
5181 			tail_call_reachable = true;
5182 
5183 		frame++;
5184 		if (frame >= MAX_CALL_FRAMES) {
5185 			verbose(env, "the call stack of %d frames is too deep !\n",
5186 				frame);
5187 			return -E2BIG;
5188 		}
5189 		goto process_func;
5190 	}
5191 	/* if tail call got detected across bpf2bpf calls then mark each of the
5192 	 * currently present subprog frames as tail call reachable subprogs;
5193 	 * this info will be utilized by JIT so that we will be preserving the
5194 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5195 	 */
5196 	if (tail_call_reachable)
5197 		for (j = 0; j < frame; j++)
5198 			subprog[ret_prog[j]].tail_call_reachable = true;
5199 	if (subprog[0].tail_call_reachable)
5200 		env->prog->aux->tail_call_reachable = true;
5201 
5202 	/* end of for() loop means the last insn of the 'subprog'
5203 	 * was reached. Doesn't matter whether it was JA or EXIT
5204 	 */
5205 	if (frame == 0)
5206 		return 0;
5207 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5208 	frame--;
5209 	i = ret_insn[frame];
5210 	idx = ret_prog[frame];
5211 	goto continue_func;
5212 }
5213 
5214 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5215 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5216 				  const struct bpf_insn *insn, int idx)
5217 {
5218 	int start = idx + insn->imm + 1, subprog;
5219 
5220 	subprog = find_subprog(env, start);
5221 	if (subprog < 0) {
5222 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5223 			  start);
5224 		return -EFAULT;
5225 	}
5226 	return env->subprog_info[subprog].stack_depth;
5227 }
5228 #endif
5229 
5230 static int __check_buffer_access(struct bpf_verifier_env *env,
5231 				 const char *buf_info,
5232 				 const struct bpf_reg_state *reg,
5233 				 int regno, int off, int size)
5234 {
5235 	if (off < 0) {
5236 		verbose(env,
5237 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5238 			regno, buf_info, off, size);
5239 		return -EACCES;
5240 	}
5241 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5242 		char tn_buf[48];
5243 
5244 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5245 		verbose(env,
5246 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5247 			regno, off, tn_buf);
5248 		return -EACCES;
5249 	}
5250 
5251 	return 0;
5252 }
5253 
5254 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5255 				  const struct bpf_reg_state *reg,
5256 				  int regno, int off, int size)
5257 {
5258 	int err;
5259 
5260 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5261 	if (err)
5262 		return err;
5263 
5264 	if (off + size > env->prog->aux->max_tp_access)
5265 		env->prog->aux->max_tp_access = off + size;
5266 
5267 	return 0;
5268 }
5269 
5270 static int check_buffer_access(struct bpf_verifier_env *env,
5271 			       const struct bpf_reg_state *reg,
5272 			       int regno, int off, int size,
5273 			       bool zero_size_allowed,
5274 			       u32 *max_access)
5275 {
5276 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5277 	int err;
5278 
5279 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5280 	if (err)
5281 		return err;
5282 
5283 	if (off + size > *max_access)
5284 		*max_access = off + size;
5285 
5286 	return 0;
5287 }
5288 
5289 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5290 static void zext_32_to_64(struct bpf_reg_state *reg)
5291 {
5292 	reg->var_off = tnum_subreg(reg->var_off);
5293 	__reg_assign_32_into_64(reg);
5294 }
5295 
5296 /* truncate register to smaller size (in bytes)
5297  * must be called with size < BPF_REG_SIZE
5298  */
5299 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5300 {
5301 	u64 mask;
5302 
5303 	/* clear high bits in bit representation */
5304 	reg->var_off = tnum_cast(reg->var_off, size);
5305 
5306 	/* fix arithmetic bounds */
5307 	mask = ((u64)1 << (size * 8)) - 1;
5308 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5309 		reg->umin_value &= mask;
5310 		reg->umax_value &= mask;
5311 	} else {
5312 		reg->umin_value = 0;
5313 		reg->umax_value = mask;
5314 	}
5315 	reg->smin_value = reg->umin_value;
5316 	reg->smax_value = reg->umax_value;
5317 
5318 	/* If size is smaller than 32bit register the 32bit register
5319 	 * values are also truncated so we push 64-bit bounds into
5320 	 * 32-bit bounds. Above were truncated < 32-bits already.
5321 	 */
5322 	if (size >= 4)
5323 		return;
5324 	__reg_combine_64_into_32(reg);
5325 }
5326 
5327 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5328 {
5329 	/* A map is considered read-only if the following condition are true:
5330 	 *
5331 	 * 1) BPF program side cannot change any of the map content. The
5332 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5333 	 *    and was set at map creation time.
5334 	 * 2) The map value(s) have been initialized from user space by a
5335 	 *    loader and then "frozen", such that no new map update/delete
5336 	 *    operations from syscall side are possible for the rest of
5337 	 *    the map's lifetime from that point onwards.
5338 	 * 3) Any parallel/pending map update/delete operations from syscall
5339 	 *    side have been completed. Only after that point, it's safe to
5340 	 *    assume that map value(s) are immutable.
5341 	 */
5342 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
5343 	       READ_ONCE(map->frozen) &&
5344 	       !bpf_map_write_active(map);
5345 }
5346 
5347 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
5348 {
5349 	void *ptr;
5350 	u64 addr;
5351 	int err;
5352 
5353 	err = map->ops->map_direct_value_addr(map, &addr, off);
5354 	if (err)
5355 		return err;
5356 	ptr = (void *)(long)addr + off;
5357 
5358 	switch (size) {
5359 	case sizeof(u8):
5360 		*val = (u64)*(u8 *)ptr;
5361 		break;
5362 	case sizeof(u16):
5363 		*val = (u64)*(u16 *)ptr;
5364 		break;
5365 	case sizeof(u32):
5366 		*val = (u64)*(u32 *)ptr;
5367 		break;
5368 	case sizeof(u64):
5369 		*val = *(u64 *)ptr;
5370 		break;
5371 	default:
5372 		return -EINVAL;
5373 	}
5374 	return 0;
5375 }
5376 
5377 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
5378 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
5379 
5380 /*
5381  * Allow list few fields as RCU trusted or full trusted.
5382  * This logic doesn't allow mix tagging and will be removed once GCC supports
5383  * btf_type_tag.
5384  */
5385 
5386 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
5387 BTF_TYPE_SAFE_RCU(struct task_struct) {
5388 	const cpumask_t *cpus_ptr;
5389 	struct css_set __rcu *cgroups;
5390 	struct task_struct __rcu *real_parent;
5391 	struct task_struct *group_leader;
5392 };
5393 
5394 BTF_TYPE_SAFE_RCU(struct css_set) {
5395 	struct cgroup *dfl_cgrp;
5396 };
5397 
5398 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
5399 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
5400 	__bpf_md_ptr(struct seq_file *, seq);
5401 };
5402 
5403 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
5404 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
5405 	__bpf_md_ptr(struct task_struct *, task);
5406 };
5407 
5408 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
5409 	struct file *file;
5410 };
5411 
5412 BTF_TYPE_SAFE_TRUSTED(struct file) {
5413 	struct inode *f_inode;
5414 };
5415 
5416 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
5417 	/* no negative dentry-s in places where bpf can see it */
5418 	struct inode *d_inode;
5419 };
5420 
5421 BTF_TYPE_SAFE_TRUSTED(struct socket) {
5422 	struct sock *sk;
5423 };
5424 
5425 static bool type_is_rcu(struct bpf_verifier_env *env,
5426 			struct bpf_reg_state *reg,
5427 			int off)
5428 {
5429 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
5430 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
5431 
5432 	return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_rcu");
5433 }
5434 
5435 static bool type_is_trusted(struct bpf_verifier_env *env,
5436 			    struct bpf_reg_state *reg,
5437 			    int off)
5438 {
5439 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
5440 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
5441 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
5442 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
5443 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
5444 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
5445 
5446 	return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_trusted");
5447 }
5448 
5449 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
5450 				   struct bpf_reg_state *regs,
5451 				   int regno, int off, int size,
5452 				   enum bpf_access_type atype,
5453 				   int value_regno)
5454 {
5455 	struct bpf_reg_state *reg = regs + regno;
5456 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
5457 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
5458 	enum bpf_type_flag flag = 0;
5459 	u32 btf_id;
5460 	int ret;
5461 
5462 	if (!env->allow_ptr_leaks) {
5463 		verbose(env,
5464 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5465 			tname);
5466 		return -EPERM;
5467 	}
5468 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
5469 		verbose(env,
5470 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
5471 			tname);
5472 		return -EINVAL;
5473 	}
5474 	if (off < 0) {
5475 		verbose(env,
5476 			"R%d is ptr_%s invalid negative access: off=%d\n",
5477 			regno, tname, off);
5478 		return -EACCES;
5479 	}
5480 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5481 		char tn_buf[48];
5482 
5483 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5484 		verbose(env,
5485 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
5486 			regno, tname, off, tn_buf);
5487 		return -EACCES;
5488 	}
5489 
5490 	if (reg->type & MEM_USER) {
5491 		verbose(env,
5492 			"R%d is ptr_%s access user memory: off=%d\n",
5493 			regno, tname, off);
5494 		return -EACCES;
5495 	}
5496 
5497 	if (reg->type & MEM_PERCPU) {
5498 		verbose(env,
5499 			"R%d is ptr_%s access percpu memory: off=%d\n",
5500 			regno, tname, off);
5501 		return -EACCES;
5502 	}
5503 
5504 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
5505 		if (!btf_is_kernel(reg->btf)) {
5506 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5507 			return -EFAULT;
5508 		}
5509 		ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
5510 	} else {
5511 		/* Writes are permitted with default btf_struct_access for
5512 		 * program allocated objects (which always have ref_obj_id > 0),
5513 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5514 		 */
5515 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
5516 			verbose(env, "only read is supported\n");
5517 			return -EACCES;
5518 		}
5519 
5520 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
5521 		    !reg->ref_obj_id) {
5522 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5523 			return -EFAULT;
5524 		}
5525 
5526 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
5527 	}
5528 
5529 	if (ret < 0)
5530 		return ret;
5531 
5532 	if (ret != PTR_TO_BTF_ID) {
5533 		/* just mark; */
5534 
5535 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
5536 		/* If this is an untrusted pointer, all pointers formed by walking it
5537 		 * also inherit the untrusted flag.
5538 		 */
5539 		flag = PTR_UNTRUSTED;
5540 
5541 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
5542 		/* By default any pointer obtained from walking a trusted pointer is no
5543 		 * longer trusted, unless the field being accessed has explicitly been
5544 		 * marked as inheriting its parent's state of trust (either full or RCU).
5545 		 * For example:
5546 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
5547 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
5548 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
5549 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
5550 		 *
5551 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
5552 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
5553 		 */
5554 		if (type_is_trusted(env, reg, off)) {
5555 			flag |= PTR_TRUSTED;
5556 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
5557 			if (type_is_rcu(env, reg, off)) {
5558 				/* ignore __rcu tag and mark it MEM_RCU */
5559 				flag |= MEM_RCU;
5560 			} else if (flag & MEM_RCU) {
5561 				/* __rcu tagged pointers can be NULL */
5562 				flag |= PTR_MAYBE_NULL;
5563 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
5564 				/* keep as-is */
5565 			} else {
5566 				/* walking unknown pointers yields untrusted pointer */
5567 				flag = PTR_UNTRUSTED;
5568 			}
5569 		} else {
5570 			/*
5571 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
5572 			 * aggressively mark as untrusted otherwise such
5573 			 * pointers will be plain PTR_TO_BTF_ID without flags
5574 			 * and will be allowed to be passed into helpers for
5575 			 * compat reasons.
5576 			 */
5577 			flag = PTR_UNTRUSTED;
5578 		}
5579 	} else {
5580 		/* Old compat. Deprecated */
5581 		flag &= ~PTR_TRUSTED;
5582 	}
5583 
5584 	if (atype == BPF_READ && value_regno >= 0)
5585 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
5586 
5587 	return 0;
5588 }
5589 
5590 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5591 				   struct bpf_reg_state *regs,
5592 				   int regno, int off, int size,
5593 				   enum bpf_access_type atype,
5594 				   int value_regno)
5595 {
5596 	struct bpf_reg_state *reg = regs + regno;
5597 	struct bpf_map *map = reg->map_ptr;
5598 	struct bpf_reg_state map_reg;
5599 	enum bpf_type_flag flag = 0;
5600 	const struct btf_type *t;
5601 	const char *tname;
5602 	u32 btf_id;
5603 	int ret;
5604 
5605 	if (!btf_vmlinux) {
5606 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5607 		return -ENOTSUPP;
5608 	}
5609 
5610 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5611 		verbose(env, "map_ptr access not supported for map type %d\n",
5612 			map->map_type);
5613 		return -ENOTSUPP;
5614 	}
5615 
5616 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5617 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5618 
5619 	if (!env->allow_ptr_leaks) {
5620 		verbose(env,
5621 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5622 			tname);
5623 		return -EPERM;
5624 	}
5625 
5626 	if (off < 0) {
5627 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
5628 			regno, tname, off);
5629 		return -EACCES;
5630 	}
5631 
5632 	if (atype != BPF_READ) {
5633 		verbose(env, "only read from %s is supported\n", tname);
5634 		return -EACCES;
5635 	}
5636 
5637 	/* Simulate access to a PTR_TO_BTF_ID */
5638 	memset(&map_reg, 0, sizeof(map_reg));
5639 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
5640 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
5641 	if (ret < 0)
5642 		return ret;
5643 
5644 	if (value_regno >= 0)
5645 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
5646 
5647 	return 0;
5648 }
5649 
5650 /* Check that the stack access at the given offset is within bounds. The
5651  * maximum valid offset is -1.
5652  *
5653  * The minimum valid offset is -MAX_BPF_STACK for writes, and
5654  * -state->allocated_stack for reads.
5655  */
5656 static int check_stack_slot_within_bounds(int off,
5657 					  struct bpf_func_state *state,
5658 					  enum bpf_access_type t)
5659 {
5660 	int min_valid_off;
5661 
5662 	if (t == BPF_WRITE)
5663 		min_valid_off = -MAX_BPF_STACK;
5664 	else
5665 		min_valid_off = -state->allocated_stack;
5666 
5667 	if (off < min_valid_off || off > -1)
5668 		return -EACCES;
5669 	return 0;
5670 }
5671 
5672 /* Check that the stack access at 'regno + off' falls within the maximum stack
5673  * bounds.
5674  *
5675  * 'off' includes `regno->offset`, but not its dynamic part (if any).
5676  */
5677 static int check_stack_access_within_bounds(
5678 		struct bpf_verifier_env *env,
5679 		int regno, int off, int access_size,
5680 		enum bpf_access_src src, enum bpf_access_type type)
5681 {
5682 	struct bpf_reg_state *regs = cur_regs(env);
5683 	struct bpf_reg_state *reg = regs + regno;
5684 	struct bpf_func_state *state = func(env, reg);
5685 	int min_off, max_off;
5686 	int err;
5687 	char *err_extra;
5688 
5689 	if (src == ACCESS_HELPER)
5690 		/* We don't know if helpers are reading or writing (or both). */
5691 		err_extra = " indirect access to";
5692 	else if (type == BPF_READ)
5693 		err_extra = " read from";
5694 	else
5695 		err_extra = " write to";
5696 
5697 	if (tnum_is_const(reg->var_off)) {
5698 		min_off = reg->var_off.value + off;
5699 		if (access_size > 0)
5700 			max_off = min_off + access_size - 1;
5701 		else
5702 			max_off = min_off;
5703 	} else {
5704 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
5705 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
5706 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
5707 				err_extra, regno);
5708 			return -EACCES;
5709 		}
5710 		min_off = reg->smin_value + off;
5711 		if (access_size > 0)
5712 			max_off = reg->smax_value + off + access_size - 1;
5713 		else
5714 			max_off = min_off;
5715 	}
5716 
5717 	err = check_stack_slot_within_bounds(min_off, state, type);
5718 	if (!err)
5719 		err = check_stack_slot_within_bounds(max_off, state, type);
5720 
5721 	if (err) {
5722 		if (tnum_is_const(reg->var_off)) {
5723 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5724 				err_extra, regno, off, access_size);
5725 		} else {
5726 			char tn_buf[48];
5727 
5728 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5729 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5730 				err_extra, regno, tn_buf, access_size);
5731 		}
5732 	}
5733 	return err;
5734 }
5735 
5736 /* check whether memory at (regno + off) is accessible for t = (read | write)
5737  * if t==write, value_regno is a register which value is stored into memory
5738  * if t==read, value_regno is a register which will receive the value from memory
5739  * if t==write && value_regno==-1, some unknown value is stored into memory
5740  * if t==read && value_regno==-1, don't care what we read from memory
5741  */
5742 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5743 			    int off, int bpf_size, enum bpf_access_type t,
5744 			    int value_regno, bool strict_alignment_once)
5745 {
5746 	struct bpf_reg_state *regs = cur_regs(env);
5747 	struct bpf_reg_state *reg = regs + regno;
5748 	struct bpf_func_state *state;
5749 	int size, err = 0;
5750 
5751 	size = bpf_size_to_bytes(bpf_size);
5752 	if (size < 0)
5753 		return size;
5754 
5755 	/* alignment checks will add in reg->off themselves */
5756 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
5757 	if (err)
5758 		return err;
5759 
5760 	/* for access checks, reg->off is just part of off */
5761 	off += reg->off;
5762 
5763 	if (reg->type == PTR_TO_MAP_KEY) {
5764 		if (t == BPF_WRITE) {
5765 			verbose(env, "write to change key R%d not allowed\n", regno);
5766 			return -EACCES;
5767 		}
5768 
5769 		err = check_mem_region_access(env, regno, off, size,
5770 					      reg->map_ptr->key_size, false);
5771 		if (err)
5772 			return err;
5773 		if (value_regno >= 0)
5774 			mark_reg_unknown(env, regs, value_regno);
5775 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5776 		struct btf_field *kptr_field = NULL;
5777 
5778 		if (t == BPF_WRITE && value_regno >= 0 &&
5779 		    is_pointer_value(env, value_regno)) {
5780 			verbose(env, "R%d leaks addr into map\n", value_regno);
5781 			return -EACCES;
5782 		}
5783 		err = check_map_access_type(env, regno, off, size, t);
5784 		if (err)
5785 			return err;
5786 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5787 		if (err)
5788 			return err;
5789 		if (tnum_is_const(reg->var_off))
5790 			kptr_field = btf_record_find(reg->map_ptr->record,
5791 						     off + reg->var_off.value, BPF_KPTR);
5792 		if (kptr_field) {
5793 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5794 		} else if (t == BPF_READ && value_regno >= 0) {
5795 			struct bpf_map *map = reg->map_ptr;
5796 
5797 			/* if map is read-only, track its contents as scalars */
5798 			if (tnum_is_const(reg->var_off) &&
5799 			    bpf_map_is_rdonly(map) &&
5800 			    map->ops->map_direct_value_addr) {
5801 				int map_off = off + reg->var_off.value;
5802 				u64 val = 0;
5803 
5804 				err = bpf_map_direct_read(map, map_off, size,
5805 							  &val);
5806 				if (err)
5807 					return err;
5808 
5809 				regs[value_regno].type = SCALAR_VALUE;
5810 				__mark_reg_known(&regs[value_regno], val);
5811 			} else {
5812 				mark_reg_unknown(env, regs, value_regno);
5813 			}
5814 		}
5815 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5816 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5817 
5818 		if (type_may_be_null(reg->type)) {
5819 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5820 				reg_type_str(env, reg->type));
5821 			return -EACCES;
5822 		}
5823 
5824 		if (t == BPF_WRITE && rdonly_mem) {
5825 			verbose(env, "R%d cannot write into %s\n",
5826 				regno, reg_type_str(env, reg->type));
5827 			return -EACCES;
5828 		}
5829 
5830 		if (t == BPF_WRITE && value_regno >= 0 &&
5831 		    is_pointer_value(env, value_regno)) {
5832 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5833 			return -EACCES;
5834 		}
5835 
5836 		err = check_mem_region_access(env, regno, off, size,
5837 					      reg->mem_size, false);
5838 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5839 			mark_reg_unknown(env, regs, value_regno);
5840 	} else if (reg->type == PTR_TO_CTX) {
5841 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5842 		struct btf *btf = NULL;
5843 		u32 btf_id = 0;
5844 
5845 		if (t == BPF_WRITE && value_regno >= 0 &&
5846 		    is_pointer_value(env, value_regno)) {
5847 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5848 			return -EACCES;
5849 		}
5850 
5851 		err = check_ptr_off_reg(env, reg, regno);
5852 		if (err < 0)
5853 			return err;
5854 
5855 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5856 				       &btf_id);
5857 		if (err)
5858 			verbose_linfo(env, insn_idx, "; ");
5859 		if (!err && t == BPF_READ && value_regno >= 0) {
5860 			/* ctx access returns either a scalar, or a
5861 			 * PTR_TO_PACKET[_META,_END]. In the latter
5862 			 * case, we know the offset is zero.
5863 			 */
5864 			if (reg_type == SCALAR_VALUE) {
5865 				mark_reg_unknown(env, regs, value_regno);
5866 			} else {
5867 				mark_reg_known_zero(env, regs,
5868 						    value_regno);
5869 				if (type_may_be_null(reg_type))
5870 					regs[value_regno].id = ++env->id_gen;
5871 				/* A load of ctx field could have different
5872 				 * actual load size with the one encoded in the
5873 				 * insn. When the dst is PTR, it is for sure not
5874 				 * a sub-register.
5875 				 */
5876 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5877 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5878 					regs[value_regno].btf = btf;
5879 					regs[value_regno].btf_id = btf_id;
5880 				}
5881 			}
5882 			regs[value_regno].type = reg_type;
5883 		}
5884 
5885 	} else if (reg->type == PTR_TO_STACK) {
5886 		/* Basic bounds checks. */
5887 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5888 		if (err)
5889 			return err;
5890 
5891 		state = func(env, reg);
5892 		err = update_stack_depth(env, state, off);
5893 		if (err)
5894 			return err;
5895 
5896 		if (t == BPF_READ)
5897 			err = check_stack_read(env, regno, off, size,
5898 					       value_regno);
5899 		else
5900 			err = check_stack_write(env, regno, off, size,
5901 						value_regno, insn_idx);
5902 	} else if (reg_is_pkt_pointer(reg)) {
5903 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5904 			verbose(env, "cannot write into packet\n");
5905 			return -EACCES;
5906 		}
5907 		if (t == BPF_WRITE && value_regno >= 0 &&
5908 		    is_pointer_value(env, value_regno)) {
5909 			verbose(env, "R%d leaks addr into packet\n",
5910 				value_regno);
5911 			return -EACCES;
5912 		}
5913 		err = check_packet_access(env, regno, off, size, false);
5914 		if (!err && t == BPF_READ && value_regno >= 0)
5915 			mark_reg_unknown(env, regs, value_regno);
5916 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5917 		if (t == BPF_WRITE && value_regno >= 0 &&
5918 		    is_pointer_value(env, value_regno)) {
5919 			verbose(env, "R%d leaks addr into flow keys\n",
5920 				value_regno);
5921 			return -EACCES;
5922 		}
5923 
5924 		err = check_flow_keys_access(env, off, size);
5925 		if (!err && t == BPF_READ && value_regno >= 0)
5926 			mark_reg_unknown(env, regs, value_regno);
5927 	} else if (type_is_sk_pointer(reg->type)) {
5928 		if (t == BPF_WRITE) {
5929 			verbose(env, "R%d cannot write into %s\n",
5930 				regno, reg_type_str(env, reg->type));
5931 			return -EACCES;
5932 		}
5933 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5934 		if (!err && value_regno >= 0)
5935 			mark_reg_unknown(env, regs, value_regno);
5936 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5937 		err = check_tp_buffer_access(env, reg, regno, off, size);
5938 		if (!err && t == BPF_READ && value_regno >= 0)
5939 			mark_reg_unknown(env, regs, value_regno);
5940 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5941 		   !type_may_be_null(reg->type)) {
5942 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5943 					      value_regno);
5944 	} else if (reg->type == CONST_PTR_TO_MAP) {
5945 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5946 					      value_regno);
5947 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5948 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5949 		u32 *max_access;
5950 
5951 		if (rdonly_mem) {
5952 			if (t == BPF_WRITE) {
5953 				verbose(env, "R%d cannot write into %s\n",
5954 					regno, reg_type_str(env, reg->type));
5955 				return -EACCES;
5956 			}
5957 			max_access = &env->prog->aux->max_rdonly_access;
5958 		} else {
5959 			max_access = &env->prog->aux->max_rdwr_access;
5960 		}
5961 
5962 		err = check_buffer_access(env, reg, regno, off, size, false,
5963 					  max_access);
5964 
5965 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5966 			mark_reg_unknown(env, regs, value_regno);
5967 	} else {
5968 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5969 			reg_type_str(env, reg->type));
5970 		return -EACCES;
5971 	}
5972 
5973 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5974 	    regs[value_regno].type == SCALAR_VALUE) {
5975 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5976 		coerce_reg_to_size(&regs[value_regno], size);
5977 	}
5978 	return err;
5979 }
5980 
5981 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5982 {
5983 	int load_reg;
5984 	int err;
5985 
5986 	switch (insn->imm) {
5987 	case BPF_ADD:
5988 	case BPF_ADD | BPF_FETCH:
5989 	case BPF_AND:
5990 	case BPF_AND | BPF_FETCH:
5991 	case BPF_OR:
5992 	case BPF_OR | BPF_FETCH:
5993 	case BPF_XOR:
5994 	case BPF_XOR | BPF_FETCH:
5995 	case BPF_XCHG:
5996 	case BPF_CMPXCHG:
5997 		break;
5998 	default:
5999 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6000 		return -EINVAL;
6001 	}
6002 
6003 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6004 		verbose(env, "invalid atomic operand size\n");
6005 		return -EINVAL;
6006 	}
6007 
6008 	/* check src1 operand */
6009 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6010 	if (err)
6011 		return err;
6012 
6013 	/* check src2 operand */
6014 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6015 	if (err)
6016 		return err;
6017 
6018 	if (insn->imm == BPF_CMPXCHG) {
6019 		/* Check comparison of R0 with memory location */
6020 		const u32 aux_reg = BPF_REG_0;
6021 
6022 		err = check_reg_arg(env, aux_reg, SRC_OP);
6023 		if (err)
6024 			return err;
6025 
6026 		if (is_pointer_value(env, aux_reg)) {
6027 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6028 			return -EACCES;
6029 		}
6030 	}
6031 
6032 	if (is_pointer_value(env, insn->src_reg)) {
6033 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6034 		return -EACCES;
6035 	}
6036 
6037 	if (is_ctx_reg(env, insn->dst_reg) ||
6038 	    is_pkt_reg(env, insn->dst_reg) ||
6039 	    is_flow_key_reg(env, insn->dst_reg) ||
6040 	    is_sk_reg(env, insn->dst_reg)) {
6041 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6042 			insn->dst_reg,
6043 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6044 		return -EACCES;
6045 	}
6046 
6047 	if (insn->imm & BPF_FETCH) {
6048 		if (insn->imm == BPF_CMPXCHG)
6049 			load_reg = BPF_REG_0;
6050 		else
6051 			load_reg = insn->src_reg;
6052 
6053 		/* check and record load of old value */
6054 		err = check_reg_arg(env, load_reg, DST_OP);
6055 		if (err)
6056 			return err;
6057 	} else {
6058 		/* This instruction accesses a memory location but doesn't
6059 		 * actually load it into a register.
6060 		 */
6061 		load_reg = -1;
6062 	}
6063 
6064 	/* Check whether we can read the memory, with second call for fetch
6065 	 * case to simulate the register fill.
6066 	 */
6067 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6068 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
6069 	if (!err && load_reg >= 0)
6070 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6071 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6072 				       true);
6073 	if (err)
6074 		return err;
6075 
6076 	/* Check whether we can write into the same memory. */
6077 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6078 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
6079 	if (err)
6080 		return err;
6081 
6082 	return 0;
6083 }
6084 
6085 /* When register 'regno' is used to read the stack (either directly or through
6086  * a helper function) make sure that it's within stack boundary and, depending
6087  * on the access type, that all elements of the stack are initialized.
6088  *
6089  * 'off' includes 'regno->off', but not its dynamic part (if any).
6090  *
6091  * All registers that have been spilled on the stack in the slots within the
6092  * read offsets are marked as read.
6093  */
6094 static int check_stack_range_initialized(
6095 		struct bpf_verifier_env *env, int regno, int off,
6096 		int access_size, bool zero_size_allowed,
6097 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6098 {
6099 	struct bpf_reg_state *reg = reg_state(env, regno);
6100 	struct bpf_func_state *state = func(env, reg);
6101 	int err, min_off, max_off, i, j, slot, spi;
6102 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6103 	enum bpf_access_type bounds_check_type;
6104 	/* Some accesses can write anything into the stack, others are
6105 	 * read-only.
6106 	 */
6107 	bool clobber = false;
6108 
6109 	if (access_size == 0 && !zero_size_allowed) {
6110 		verbose(env, "invalid zero-sized read\n");
6111 		return -EACCES;
6112 	}
6113 
6114 	if (type == ACCESS_HELPER) {
6115 		/* The bounds checks for writes are more permissive than for
6116 		 * reads. However, if raw_mode is not set, we'll do extra
6117 		 * checks below.
6118 		 */
6119 		bounds_check_type = BPF_WRITE;
6120 		clobber = true;
6121 	} else {
6122 		bounds_check_type = BPF_READ;
6123 	}
6124 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6125 					       type, bounds_check_type);
6126 	if (err)
6127 		return err;
6128 
6129 
6130 	if (tnum_is_const(reg->var_off)) {
6131 		min_off = max_off = reg->var_off.value + off;
6132 	} else {
6133 		/* Variable offset is prohibited for unprivileged mode for
6134 		 * simplicity since it requires corresponding support in
6135 		 * Spectre masking for stack ALU.
6136 		 * See also retrieve_ptr_limit().
6137 		 */
6138 		if (!env->bypass_spec_v1) {
6139 			char tn_buf[48];
6140 
6141 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6142 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6143 				regno, err_extra, tn_buf);
6144 			return -EACCES;
6145 		}
6146 		/* Only initialized buffer on stack is allowed to be accessed
6147 		 * with variable offset. With uninitialized buffer it's hard to
6148 		 * guarantee that whole memory is marked as initialized on
6149 		 * helper return since specific bounds are unknown what may
6150 		 * cause uninitialized stack leaking.
6151 		 */
6152 		if (meta && meta->raw_mode)
6153 			meta = NULL;
6154 
6155 		min_off = reg->smin_value + off;
6156 		max_off = reg->smax_value + off;
6157 	}
6158 
6159 	if (meta && meta->raw_mode) {
6160 		/* Ensure we won't be overwriting dynptrs when simulating byte
6161 		 * by byte access in check_helper_call using meta.access_size.
6162 		 * This would be a problem if we have a helper in the future
6163 		 * which takes:
6164 		 *
6165 		 *	helper(uninit_mem, len, dynptr)
6166 		 *
6167 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6168 		 * may end up writing to dynptr itself when touching memory from
6169 		 * arg 1. This can be relaxed on a case by case basis for known
6170 		 * safe cases, but reject due to the possibilitiy of aliasing by
6171 		 * default.
6172 		 */
6173 		for (i = min_off; i < max_off + access_size; i++) {
6174 			int stack_off = -i - 1;
6175 
6176 			spi = __get_spi(i);
6177 			/* raw_mode may write past allocated_stack */
6178 			if (state->allocated_stack <= stack_off)
6179 				continue;
6180 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6181 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6182 				return -EACCES;
6183 			}
6184 		}
6185 		meta->access_size = access_size;
6186 		meta->regno = regno;
6187 		return 0;
6188 	}
6189 
6190 	for (i = min_off; i < max_off + access_size; i++) {
6191 		u8 *stype;
6192 
6193 		slot = -i - 1;
6194 		spi = slot / BPF_REG_SIZE;
6195 		if (state->allocated_stack <= slot)
6196 			goto err;
6197 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6198 		if (*stype == STACK_MISC)
6199 			goto mark;
6200 		if ((*stype == STACK_ZERO) ||
6201 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6202 			if (clobber) {
6203 				/* helper can write anything into the stack */
6204 				*stype = STACK_MISC;
6205 			}
6206 			goto mark;
6207 		}
6208 
6209 		if (is_spilled_reg(&state->stack[spi]) &&
6210 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6211 		     env->allow_ptr_leaks)) {
6212 			if (clobber) {
6213 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6214 				for (j = 0; j < BPF_REG_SIZE; j++)
6215 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6216 			}
6217 			goto mark;
6218 		}
6219 
6220 err:
6221 		if (tnum_is_const(reg->var_off)) {
6222 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6223 				err_extra, regno, min_off, i - min_off, access_size);
6224 		} else {
6225 			char tn_buf[48];
6226 
6227 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6228 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6229 				err_extra, regno, tn_buf, i - min_off, access_size);
6230 		}
6231 		return -EACCES;
6232 mark:
6233 		/* reading any byte out of 8-byte 'spill_slot' will cause
6234 		 * the whole slot to be marked as 'read'
6235 		 */
6236 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6237 			      state->stack[spi].spilled_ptr.parent,
6238 			      REG_LIVE_READ64);
6239 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6240 		 * be sure that whether stack slot is written to or not. Hence,
6241 		 * we must still conservatively propagate reads upwards even if
6242 		 * helper may write to the entire memory range.
6243 		 */
6244 	}
6245 	return update_stack_depth(env, state, min_off);
6246 }
6247 
6248 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6249 				   int access_size, bool zero_size_allowed,
6250 				   struct bpf_call_arg_meta *meta)
6251 {
6252 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6253 	u32 *max_access;
6254 
6255 	switch (base_type(reg->type)) {
6256 	case PTR_TO_PACKET:
6257 	case PTR_TO_PACKET_META:
6258 		return check_packet_access(env, regno, reg->off, access_size,
6259 					   zero_size_allowed);
6260 	case PTR_TO_MAP_KEY:
6261 		if (meta && meta->raw_mode) {
6262 			verbose(env, "R%d cannot write into %s\n", regno,
6263 				reg_type_str(env, reg->type));
6264 			return -EACCES;
6265 		}
6266 		return check_mem_region_access(env, regno, reg->off, access_size,
6267 					       reg->map_ptr->key_size, false);
6268 	case PTR_TO_MAP_VALUE:
6269 		if (check_map_access_type(env, regno, reg->off, access_size,
6270 					  meta && meta->raw_mode ? BPF_WRITE :
6271 					  BPF_READ))
6272 			return -EACCES;
6273 		return check_map_access(env, regno, reg->off, access_size,
6274 					zero_size_allowed, ACCESS_HELPER);
6275 	case PTR_TO_MEM:
6276 		if (type_is_rdonly_mem(reg->type)) {
6277 			if (meta && meta->raw_mode) {
6278 				verbose(env, "R%d cannot write into %s\n", regno,
6279 					reg_type_str(env, reg->type));
6280 				return -EACCES;
6281 			}
6282 		}
6283 		return check_mem_region_access(env, regno, reg->off,
6284 					       access_size, reg->mem_size,
6285 					       zero_size_allowed);
6286 	case PTR_TO_BUF:
6287 		if (type_is_rdonly_mem(reg->type)) {
6288 			if (meta && meta->raw_mode) {
6289 				verbose(env, "R%d cannot write into %s\n", regno,
6290 					reg_type_str(env, reg->type));
6291 				return -EACCES;
6292 			}
6293 
6294 			max_access = &env->prog->aux->max_rdonly_access;
6295 		} else {
6296 			max_access = &env->prog->aux->max_rdwr_access;
6297 		}
6298 		return check_buffer_access(env, reg, regno, reg->off,
6299 					   access_size, zero_size_allowed,
6300 					   max_access);
6301 	case PTR_TO_STACK:
6302 		return check_stack_range_initialized(
6303 				env,
6304 				regno, reg->off, access_size,
6305 				zero_size_allowed, ACCESS_HELPER, meta);
6306 	case PTR_TO_CTX:
6307 		/* in case the function doesn't know how to access the context,
6308 		 * (because we are in a program of type SYSCALL for example), we
6309 		 * can not statically check its size.
6310 		 * Dynamically check it now.
6311 		 */
6312 		if (!env->ops->convert_ctx_access) {
6313 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
6314 			int offset = access_size - 1;
6315 
6316 			/* Allow zero-byte read from PTR_TO_CTX */
6317 			if (access_size == 0)
6318 				return zero_size_allowed ? 0 : -EACCES;
6319 
6320 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
6321 						atype, -1, false);
6322 		}
6323 
6324 		fallthrough;
6325 	default: /* scalar_value or invalid ptr */
6326 		/* Allow zero-byte read from NULL, regardless of pointer type */
6327 		if (zero_size_allowed && access_size == 0 &&
6328 		    register_is_null(reg))
6329 			return 0;
6330 
6331 		verbose(env, "R%d type=%s ", regno,
6332 			reg_type_str(env, reg->type));
6333 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
6334 		return -EACCES;
6335 	}
6336 }
6337 
6338 static int check_mem_size_reg(struct bpf_verifier_env *env,
6339 			      struct bpf_reg_state *reg, u32 regno,
6340 			      bool zero_size_allowed,
6341 			      struct bpf_call_arg_meta *meta)
6342 {
6343 	int err;
6344 
6345 	/* This is used to refine r0 return value bounds for helpers
6346 	 * that enforce this value as an upper bound on return values.
6347 	 * See do_refine_retval_range() for helpers that can refine
6348 	 * the return value. C type of helper is u32 so we pull register
6349 	 * bound from umax_value however, if negative verifier errors
6350 	 * out. Only upper bounds can be learned because retval is an
6351 	 * int type and negative retvals are allowed.
6352 	 */
6353 	meta->msize_max_value = reg->umax_value;
6354 
6355 	/* The register is SCALAR_VALUE; the access check
6356 	 * happens using its boundaries.
6357 	 */
6358 	if (!tnum_is_const(reg->var_off))
6359 		/* For unprivileged variable accesses, disable raw
6360 		 * mode so that the program is required to
6361 		 * initialize all the memory that the helper could
6362 		 * just partially fill up.
6363 		 */
6364 		meta = NULL;
6365 
6366 	if (reg->smin_value < 0) {
6367 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
6368 			regno);
6369 		return -EACCES;
6370 	}
6371 
6372 	if (reg->umin_value == 0) {
6373 		err = check_helper_mem_access(env, regno - 1, 0,
6374 					      zero_size_allowed,
6375 					      meta);
6376 		if (err)
6377 			return err;
6378 	}
6379 
6380 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
6381 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
6382 			regno);
6383 		return -EACCES;
6384 	}
6385 	err = check_helper_mem_access(env, regno - 1,
6386 				      reg->umax_value,
6387 				      zero_size_allowed, meta);
6388 	if (!err)
6389 		err = mark_chain_precision(env, regno);
6390 	return err;
6391 }
6392 
6393 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6394 		   u32 regno, u32 mem_size)
6395 {
6396 	bool may_be_null = type_may_be_null(reg->type);
6397 	struct bpf_reg_state saved_reg;
6398 	struct bpf_call_arg_meta meta;
6399 	int err;
6400 
6401 	if (register_is_null(reg))
6402 		return 0;
6403 
6404 	memset(&meta, 0, sizeof(meta));
6405 	/* Assuming that the register contains a value check if the memory
6406 	 * access is safe. Temporarily save and restore the register's state as
6407 	 * the conversion shouldn't be visible to a caller.
6408 	 */
6409 	if (may_be_null) {
6410 		saved_reg = *reg;
6411 		mark_ptr_not_null_reg(reg);
6412 	}
6413 
6414 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
6415 	/* Check access for BPF_WRITE */
6416 	meta.raw_mode = true;
6417 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
6418 
6419 	if (may_be_null)
6420 		*reg = saved_reg;
6421 
6422 	return err;
6423 }
6424 
6425 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6426 				    u32 regno)
6427 {
6428 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
6429 	bool may_be_null = type_may_be_null(mem_reg->type);
6430 	struct bpf_reg_state saved_reg;
6431 	struct bpf_call_arg_meta meta;
6432 	int err;
6433 
6434 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
6435 
6436 	memset(&meta, 0, sizeof(meta));
6437 
6438 	if (may_be_null) {
6439 		saved_reg = *mem_reg;
6440 		mark_ptr_not_null_reg(mem_reg);
6441 	}
6442 
6443 	err = check_mem_size_reg(env, reg, regno, true, &meta);
6444 	/* Check access for BPF_WRITE */
6445 	meta.raw_mode = true;
6446 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
6447 
6448 	if (may_be_null)
6449 		*mem_reg = saved_reg;
6450 	return err;
6451 }
6452 
6453 /* Implementation details:
6454  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
6455  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
6456  * Two bpf_map_lookups (even with the same key) will have different reg->id.
6457  * Two separate bpf_obj_new will also have different reg->id.
6458  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
6459  * clears reg->id after value_or_null->value transition, since the verifier only
6460  * cares about the range of access to valid map value pointer and doesn't care
6461  * about actual address of the map element.
6462  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
6463  * reg->id > 0 after value_or_null->value transition. By doing so
6464  * two bpf_map_lookups will be considered two different pointers that
6465  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
6466  * returned from bpf_obj_new.
6467  * The verifier allows taking only one bpf_spin_lock at a time to avoid
6468  * dead-locks.
6469  * Since only one bpf_spin_lock is allowed the checks are simpler than
6470  * reg_is_refcounted() logic. The verifier needs to remember only
6471  * one spin_lock instead of array of acquired_refs.
6472  * cur_state->active_lock remembers which map value element or allocated
6473  * object got locked and clears it after bpf_spin_unlock.
6474  */
6475 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
6476 			     bool is_lock)
6477 {
6478 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6479 	struct bpf_verifier_state *cur = env->cur_state;
6480 	bool is_const = tnum_is_const(reg->var_off);
6481 	u64 val = reg->var_off.value;
6482 	struct bpf_map *map = NULL;
6483 	struct btf *btf = NULL;
6484 	struct btf_record *rec;
6485 
6486 	if (!is_const) {
6487 		verbose(env,
6488 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
6489 			regno);
6490 		return -EINVAL;
6491 	}
6492 	if (reg->type == PTR_TO_MAP_VALUE) {
6493 		map = reg->map_ptr;
6494 		if (!map->btf) {
6495 			verbose(env,
6496 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
6497 				map->name);
6498 			return -EINVAL;
6499 		}
6500 	} else {
6501 		btf = reg->btf;
6502 	}
6503 
6504 	rec = reg_btf_record(reg);
6505 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
6506 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
6507 			map ? map->name : "kptr");
6508 		return -EINVAL;
6509 	}
6510 	if (rec->spin_lock_off != val + reg->off) {
6511 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
6512 			val + reg->off, rec->spin_lock_off);
6513 		return -EINVAL;
6514 	}
6515 	if (is_lock) {
6516 		if (cur->active_lock.ptr) {
6517 			verbose(env,
6518 				"Locking two bpf_spin_locks are not allowed\n");
6519 			return -EINVAL;
6520 		}
6521 		if (map)
6522 			cur->active_lock.ptr = map;
6523 		else
6524 			cur->active_lock.ptr = btf;
6525 		cur->active_lock.id = reg->id;
6526 	} else {
6527 		void *ptr;
6528 
6529 		if (map)
6530 			ptr = map;
6531 		else
6532 			ptr = btf;
6533 
6534 		if (!cur->active_lock.ptr) {
6535 			verbose(env, "bpf_spin_unlock without taking a lock\n");
6536 			return -EINVAL;
6537 		}
6538 		if (cur->active_lock.ptr != ptr ||
6539 		    cur->active_lock.id != reg->id) {
6540 			verbose(env, "bpf_spin_unlock of different lock\n");
6541 			return -EINVAL;
6542 		}
6543 
6544 		invalidate_non_owning_refs(env);
6545 
6546 		cur->active_lock.ptr = NULL;
6547 		cur->active_lock.id = 0;
6548 	}
6549 	return 0;
6550 }
6551 
6552 static int process_timer_func(struct bpf_verifier_env *env, int regno,
6553 			      struct bpf_call_arg_meta *meta)
6554 {
6555 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6556 	bool is_const = tnum_is_const(reg->var_off);
6557 	struct bpf_map *map = reg->map_ptr;
6558 	u64 val = reg->var_off.value;
6559 
6560 	if (!is_const) {
6561 		verbose(env,
6562 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6563 			regno);
6564 		return -EINVAL;
6565 	}
6566 	if (!map->btf) {
6567 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6568 			map->name);
6569 		return -EINVAL;
6570 	}
6571 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
6572 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
6573 		return -EINVAL;
6574 	}
6575 	if (map->record->timer_off != val + reg->off) {
6576 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
6577 			val + reg->off, map->record->timer_off);
6578 		return -EINVAL;
6579 	}
6580 	if (meta->map_ptr) {
6581 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6582 		return -EFAULT;
6583 	}
6584 	meta->map_uid = reg->map_uid;
6585 	meta->map_ptr = map;
6586 	return 0;
6587 }
6588 
6589 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6590 			     struct bpf_call_arg_meta *meta)
6591 {
6592 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6593 	struct bpf_map *map_ptr = reg->map_ptr;
6594 	struct btf_field *kptr_field;
6595 	u32 kptr_off;
6596 
6597 	if (!tnum_is_const(reg->var_off)) {
6598 		verbose(env,
6599 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6600 			regno);
6601 		return -EINVAL;
6602 	}
6603 	if (!map_ptr->btf) {
6604 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6605 			map_ptr->name);
6606 		return -EINVAL;
6607 	}
6608 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6609 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
6610 		return -EINVAL;
6611 	}
6612 
6613 	meta->map_ptr = map_ptr;
6614 	kptr_off = reg->off + reg->var_off.value;
6615 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6616 	if (!kptr_field) {
6617 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6618 		return -EACCES;
6619 	}
6620 	if (kptr_field->type != BPF_KPTR_REF) {
6621 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
6622 		return -EACCES;
6623 	}
6624 	meta->kptr_field = kptr_field;
6625 	return 0;
6626 }
6627 
6628 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
6629  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
6630  *
6631  * In both cases we deal with the first 8 bytes, but need to mark the next 8
6632  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
6633  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
6634  *
6635  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
6636  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
6637  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
6638  * mutate the view of the dynptr and also possibly destroy it. In the latter
6639  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
6640  * memory that dynptr points to.
6641  *
6642  * The verifier will keep track both levels of mutation (bpf_dynptr's in
6643  * reg->type and the memory's in reg->dynptr.type), but there is no support for
6644  * readonly dynptr view yet, hence only the first case is tracked and checked.
6645  *
6646  * This is consistent with how C applies the const modifier to a struct object,
6647  * where the pointer itself inside bpf_dynptr becomes const but not what it
6648  * points to.
6649  *
6650  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
6651  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
6652  */
6653 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
6654 			       enum bpf_arg_type arg_type)
6655 {
6656 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6657 	int err;
6658 
6659 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
6660 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
6661 	 */
6662 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
6663 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
6664 		return -EFAULT;
6665 	}
6666 
6667 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
6668 	 *		 constructing a mutable bpf_dynptr object.
6669 	 *
6670 	 *		 Currently, this is only possible with PTR_TO_STACK
6671 	 *		 pointing to a region of at least 16 bytes which doesn't
6672 	 *		 contain an existing bpf_dynptr.
6673 	 *
6674 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
6675 	 *		 mutated or destroyed. However, the memory it points to
6676 	 *		 may be mutated.
6677 	 *
6678 	 *  None       - Points to a initialized dynptr that can be mutated and
6679 	 *		 destroyed, including mutation of the memory it points
6680 	 *		 to.
6681 	 */
6682 	if (arg_type & MEM_UNINIT) {
6683 		int i;
6684 
6685 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
6686 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6687 			return -EINVAL;
6688 		}
6689 
6690 		/* we write BPF_DW bits (8 bytes) at a time */
6691 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
6692 			err = check_mem_access(env, insn_idx, regno,
6693 					       i, BPF_DW, BPF_WRITE, -1, false);
6694 			if (err)
6695 				return err;
6696 		}
6697 
6698 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx);
6699 	} else /* MEM_RDONLY and None case from above */ {
6700 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
6701 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
6702 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
6703 			return -EINVAL;
6704 		}
6705 
6706 		if (!is_dynptr_reg_valid_init(env, reg)) {
6707 			verbose(env,
6708 				"Expected an initialized dynptr as arg #%d\n",
6709 				regno);
6710 			return -EINVAL;
6711 		}
6712 
6713 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
6714 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6715 			verbose(env,
6716 				"Expected a dynptr of type %s as arg #%d\n",
6717 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
6718 			return -EINVAL;
6719 		}
6720 
6721 		err = mark_dynptr_read(env, reg);
6722 	}
6723 	return err;
6724 }
6725 
6726 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
6727 {
6728 	struct bpf_func_state *state = func(env, reg);
6729 
6730 	return state->stack[spi].spilled_ptr.ref_obj_id;
6731 }
6732 
6733 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6734 {
6735 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
6736 }
6737 
6738 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6739 {
6740 	return meta->kfunc_flags & KF_ITER_NEW;
6741 }
6742 
6743 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6744 {
6745 	return meta->kfunc_flags & KF_ITER_NEXT;
6746 }
6747 
6748 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6749 {
6750 	return meta->kfunc_flags & KF_ITER_DESTROY;
6751 }
6752 
6753 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
6754 {
6755 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
6756 	 * kfunc is iter state pointer
6757 	 */
6758 	return arg == 0 && is_iter_kfunc(meta);
6759 }
6760 
6761 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
6762 			    struct bpf_kfunc_call_arg_meta *meta)
6763 {
6764 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6765 	const struct btf_type *t;
6766 	const struct btf_param *arg;
6767 	int spi, err, i, nr_slots;
6768 	u32 btf_id;
6769 
6770 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
6771 	arg = &btf_params(meta->func_proto)[0];
6772 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
6773 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
6774 	nr_slots = t->size / BPF_REG_SIZE;
6775 
6776 	spi = iter_get_spi(env, reg, nr_slots);
6777 	if (spi < 0 && spi != -ERANGE)
6778 		return spi;
6779 
6780 	meta->iter.spi = spi;
6781 	meta->iter.frameno = reg->frameno;
6782 
6783 	if (is_iter_new_kfunc(meta)) {
6784 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
6785 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
6786 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
6787 				iter_type_str(meta->btf, btf_id), regno);
6788 			return -EINVAL;
6789 		}
6790 
6791 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
6792 			err = check_mem_access(env, insn_idx, regno,
6793 					       i, BPF_DW, BPF_WRITE, -1, false);
6794 			if (err)
6795 				return err;
6796 		}
6797 
6798 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
6799 		if (err)
6800 			return err;
6801 	} else {
6802 		/* iter_next() or iter_destroy() expect initialized iter state*/
6803 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
6804 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
6805 				iter_type_str(meta->btf, btf_id), regno);
6806 			return -EINVAL;
6807 		}
6808 
6809 		err = mark_iter_read(env, reg, spi, nr_slots);
6810 		if (err)
6811 			return err;
6812 
6813 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
6814 
6815 		if (is_iter_destroy_kfunc(meta)) {
6816 			err = unmark_stack_slots_iter(env, reg, nr_slots);
6817 			if (err)
6818 				return err;
6819 		}
6820 	}
6821 
6822 	return 0;
6823 }
6824 
6825 /* process_iter_next_call() is called when verifier gets to iterator's next
6826  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
6827  * to it as just "iter_next()" in comments below.
6828  *
6829  * BPF verifier relies on a crucial contract for any iter_next()
6830  * implementation: it should *eventually* return NULL, and once that happens
6831  * it should keep returning NULL. That is, once iterator exhausts elements to
6832  * iterate, it should never reset or spuriously return new elements.
6833  *
6834  * With the assumption of such contract, process_iter_next_call() simulates
6835  * a fork in the verifier state to validate loop logic correctness and safety
6836  * without having to simulate infinite amount of iterations.
6837  *
6838  * In current state, we first assume that iter_next() returned NULL and
6839  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
6840  * conditions we should not form an infinite loop and should eventually reach
6841  * exit.
6842  *
6843  * Besides that, we also fork current state and enqueue it for later
6844  * verification. In a forked state we keep iterator state as ACTIVE
6845  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
6846  * also bump iteration depth to prevent erroneous infinite loop detection
6847  * later on (see iter_active_depths_differ() comment for details). In this
6848  * state we assume that we'll eventually loop back to another iter_next()
6849  * calls (it could be in exactly same location or in some other instruction,
6850  * it doesn't matter, we don't make any unnecessary assumptions about this,
6851  * everything revolves around iterator state in a stack slot, not which
6852  * instruction is calling iter_next()). When that happens, we either will come
6853  * to iter_next() with equivalent state and can conclude that next iteration
6854  * will proceed in exactly the same way as we just verified, so it's safe to
6855  * assume that loop converges. If not, we'll go on another iteration
6856  * simulation with a different input state, until all possible starting states
6857  * are validated or we reach maximum number of instructions limit.
6858  *
6859  * This way, we will either exhaustively discover all possible input states
6860  * that iterator loop can start with and eventually will converge, or we'll
6861  * effectively regress into bounded loop simulation logic and either reach
6862  * maximum number of instructions if loop is not provably convergent, or there
6863  * is some statically known limit on number of iterations (e.g., if there is
6864  * an explicit `if n > 100 then break;` statement somewhere in the loop).
6865  *
6866  * One very subtle but very important aspect is that we *always* simulate NULL
6867  * condition first (as the current state) before we simulate non-NULL case.
6868  * This has to do with intricacies of scalar precision tracking. By simulating
6869  * "exit condition" of iter_next() returning NULL first, we make sure all the
6870  * relevant precision marks *that will be set **after** we exit iterator loop*
6871  * are propagated backwards to common parent state of NULL and non-NULL
6872  * branches. Thanks to that, state equivalence checks done later in forked
6873  * state, when reaching iter_next() for ACTIVE iterator, can assume that
6874  * precision marks are finalized and won't change. Because simulating another
6875  * ACTIVE iterator iteration won't change them (because given same input
6876  * states we'll end up with exactly same output states which we are currently
6877  * comparing; and verification after the loop already propagated back what
6878  * needs to be **additionally** tracked as precise). It's subtle, grok
6879  * precision tracking for more intuitive understanding.
6880  */
6881 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
6882 				  struct bpf_kfunc_call_arg_meta *meta)
6883 {
6884 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
6885 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
6886 	struct bpf_reg_state *cur_iter, *queued_iter;
6887 	int iter_frameno = meta->iter.frameno;
6888 	int iter_spi = meta->iter.spi;
6889 
6890 	BTF_TYPE_EMIT(struct bpf_iter);
6891 
6892 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6893 
6894 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
6895 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
6896 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
6897 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
6898 		return -EFAULT;
6899 	}
6900 
6901 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
6902 		/* branch out active iter state */
6903 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
6904 		if (!queued_st)
6905 			return -ENOMEM;
6906 
6907 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6908 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
6909 		queued_iter->iter.depth++;
6910 
6911 		queued_fr = queued_st->frame[queued_st->curframe];
6912 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
6913 	}
6914 
6915 	/* switch to DRAINED state, but keep the depth unchanged */
6916 	/* mark current iter state as drained and assume returned NULL */
6917 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
6918 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
6919 
6920 	return 0;
6921 }
6922 
6923 static bool arg_type_is_mem_size(enum bpf_arg_type type)
6924 {
6925 	return type == ARG_CONST_SIZE ||
6926 	       type == ARG_CONST_SIZE_OR_ZERO;
6927 }
6928 
6929 static bool arg_type_is_release(enum bpf_arg_type type)
6930 {
6931 	return type & OBJ_RELEASE;
6932 }
6933 
6934 static bool arg_type_is_dynptr(enum bpf_arg_type type)
6935 {
6936 	return base_type(type) == ARG_PTR_TO_DYNPTR;
6937 }
6938 
6939 static int int_ptr_type_to_size(enum bpf_arg_type type)
6940 {
6941 	if (type == ARG_PTR_TO_INT)
6942 		return sizeof(u32);
6943 	else if (type == ARG_PTR_TO_LONG)
6944 		return sizeof(u64);
6945 
6946 	return -EINVAL;
6947 }
6948 
6949 static int resolve_map_arg_type(struct bpf_verifier_env *env,
6950 				 const struct bpf_call_arg_meta *meta,
6951 				 enum bpf_arg_type *arg_type)
6952 {
6953 	if (!meta->map_ptr) {
6954 		/* kernel subsystem misconfigured verifier */
6955 		verbose(env, "invalid map_ptr to access map->type\n");
6956 		return -EACCES;
6957 	}
6958 
6959 	switch (meta->map_ptr->map_type) {
6960 	case BPF_MAP_TYPE_SOCKMAP:
6961 	case BPF_MAP_TYPE_SOCKHASH:
6962 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6963 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
6964 		} else {
6965 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
6966 			return -EINVAL;
6967 		}
6968 		break;
6969 	case BPF_MAP_TYPE_BLOOM_FILTER:
6970 		if (meta->func_id == BPF_FUNC_map_peek_elem)
6971 			*arg_type = ARG_PTR_TO_MAP_VALUE;
6972 		break;
6973 	default:
6974 		break;
6975 	}
6976 	return 0;
6977 }
6978 
6979 struct bpf_reg_types {
6980 	const enum bpf_reg_type types[10];
6981 	u32 *btf_id;
6982 };
6983 
6984 static const struct bpf_reg_types sock_types = {
6985 	.types = {
6986 		PTR_TO_SOCK_COMMON,
6987 		PTR_TO_SOCKET,
6988 		PTR_TO_TCP_SOCK,
6989 		PTR_TO_XDP_SOCK,
6990 	},
6991 };
6992 
6993 #ifdef CONFIG_NET
6994 static const struct bpf_reg_types btf_id_sock_common_types = {
6995 	.types = {
6996 		PTR_TO_SOCK_COMMON,
6997 		PTR_TO_SOCKET,
6998 		PTR_TO_TCP_SOCK,
6999 		PTR_TO_XDP_SOCK,
7000 		PTR_TO_BTF_ID,
7001 		PTR_TO_BTF_ID | PTR_TRUSTED,
7002 	},
7003 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7004 };
7005 #endif
7006 
7007 static const struct bpf_reg_types mem_types = {
7008 	.types = {
7009 		PTR_TO_STACK,
7010 		PTR_TO_PACKET,
7011 		PTR_TO_PACKET_META,
7012 		PTR_TO_MAP_KEY,
7013 		PTR_TO_MAP_VALUE,
7014 		PTR_TO_MEM,
7015 		PTR_TO_MEM | MEM_RINGBUF,
7016 		PTR_TO_BUF,
7017 	},
7018 };
7019 
7020 static const struct bpf_reg_types int_ptr_types = {
7021 	.types = {
7022 		PTR_TO_STACK,
7023 		PTR_TO_PACKET,
7024 		PTR_TO_PACKET_META,
7025 		PTR_TO_MAP_KEY,
7026 		PTR_TO_MAP_VALUE,
7027 	},
7028 };
7029 
7030 static const struct bpf_reg_types spin_lock_types = {
7031 	.types = {
7032 		PTR_TO_MAP_VALUE,
7033 		PTR_TO_BTF_ID | MEM_ALLOC,
7034 	}
7035 };
7036 
7037 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7038 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7039 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7040 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7041 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7042 static const struct bpf_reg_types btf_ptr_types = {
7043 	.types = {
7044 		PTR_TO_BTF_ID,
7045 		PTR_TO_BTF_ID | PTR_TRUSTED,
7046 		PTR_TO_BTF_ID | MEM_RCU,
7047 	},
7048 };
7049 static const struct bpf_reg_types percpu_btf_ptr_types = {
7050 	.types = {
7051 		PTR_TO_BTF_ID | MEM_PERCPU,
7052 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7053 	}
7054 };
7055 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7056 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7057 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7058 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7059 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7060 static const struct bpf_reg_types dynptr_types = {
7061 	.types = {
7062 		PTR_TO_STACK,
7063 		CONST_PTR_TO_DYNPTR,
7064 	}
7065 };
7066 
7067 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7068 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7069 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7070 	[ARG_CONST_SIZE]		= &scalar_types,
7071 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7072 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7073 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7074 	[ARG_PTR_TO_CTX]		= &context_types,
7075 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7076 #ifdef CONFIG_NET
7077 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7078 #endif
7079 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7080 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7081 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7082 	[ARG_PTR_TO_MEM]		= &mem_types,
7083 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7084 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7085 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7086 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7087 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7088 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7089 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7090 	[ARG_PTR_TO_TIMER]		= &timer_types,
7091 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7092 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7093 };
7094 
7095 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7096 			  enum bpf_arg_type arg_type,
7097 			  const u32 *arg_btf_id,
7098 			  struct bpf_call_arg_meta *meta)
7099 {
7100 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7101 	enum bpf_reg_type expected, type = reg->type;
7102 	const struct bpf_reg_types *compatible;
7103 	int i, j;
7104 
7105 	compatible = compatible_reg_types[base_type(arg_type)];
7106 	if (!compatible) {
7107 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7108 		return -EFAULT;
7109 	}
7110 
7111 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7112 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7113 	 *
7114 	 * Same for MAYBE_NULL:
7115 	 *
7116 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7117 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7118 	 *
7119 	 * Therefore we fold these flags depending on the arg_type before comparison.
7120 	 */
7121 	if (arg_type & MEM_RDONLY)
7122 		type &= ~MEM_RDONLY;
7123 	if (arg_type & PTR_MAYBE_NULL)
7124 		type &= ~PTR_MAYBE_NULL;
7125 
7126 	if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC)
7127 		type &= ~MEM_ALLOC;
7128 
7129 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7130 		expected = compatible->types[i];
7131 		if (expected == NOT_INIT)
7132 			break;
7133 
7134 		if (type == expected)
7135 			goto found;
7136 	}
7137 
7138 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7139 	for (j = 0; j + 1 < i; j++)
7140 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7141 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7142 	return -EACCES;
7143 
7144 found:
7145 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7146 		return 0;
7147 
7148 	switch ((int)reg->type) {
7149 	case PTR_TO_BTF_ID:
7150 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7151 	case PTR_TO_BTF_ID | MEM_RCU:
7152 	{
7153 		/* For bpf_sk_release, it needs to match against first member
7154 		 * 'struct sock_common', hence make an exception for it. This
7155 		 * allows bpf_sk_release to work for multiple socket types.
7156 		 */
7157 		bool strict_type_match = arg_type_is_release(arg_type) &&
7158 					 meta->func_id != BPF_FUNC_sk_release;
7159 
7160 		if (!arg_btf_id) {
7161 			if (!compatible->btf_id) {
7162 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7163 				return -EFAULT;
7164 			}
7165 			arg_btf_id = compatible->btf_id;
7166 		}
7167 
7168 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7169 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7170 				return -EACCES;
7171 		} else {
7172 			if (arg_btf_id == BPF_PTR_POISON) {
7173 				verbose(env, "verifier internal error:");
7174 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7175 					regno);
7176 				return -EACCES;
7177 			}
7178 
7179 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7180 						  btf_vmlinux, *arg_btf_id,
7181 						  strict_type_match)) {
7182 				verbose(env, "R%d is of type %s but %s is expected\n",
7183 					regno, btf_type_name(reg->btf, reg->btf_id),
7184 					btf_type_name(btf_vmlinux, *arg_btf_id));
7185 				return -EACCES;
7186 			}
7187 		}
7188 		break;
7189 	}
7190 	case PTR_TO_BTF_ID | MEM_ALLOC:
7191 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7192 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7193 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7194 			return -EFAULT;
7195 		}
7196 		/* Handled by helper specific checks */
7197 		break;
7198 	case PTR_TO_BTF_ID | MEM_PERCPU:
7199 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7200 		/* Handled by helper specific checks */
7201 		break;
7202 	default:
7203 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7204 		return -EFAULT;
7205 	}
7206 	return 0;
7207 }
7208 
7209 static struct btf_field *
7210 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7211 {
7212 	struct btf_field *field;
7213 	struct btf_record *rec;
7214 
7215 	rec = reg_btf_record(reg);
7216 	if (!rec)
7217 		return NULL;
7218 
7219 	field = btf_record_find(rec, off, fields);
7220 	if (!field)
7221 		return NULL;
7222 
7223 	return field;
7224 }
7225 
7226 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7227 			   const struct bpf_reg_state *reg, int regno,
7228 			   enum bpf_arg_type arg_type)
7229 {
7230 	u32 type = reg->type;
7231 
7232 	/* When referenced register is passed to release function, its fixed
7233 	 * offset must be 0.
7234 	 *
7235 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7236 	 * meta->release_regno.
7237 	 */
7238 	if (arg_type_is_release(arg_type)) {
7239 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7240 		 * may not directly point to the object being released, but to
7241 		 * dynptr pointing to such object, which might be at some offset
7242 		 * on the stack. In that case, we simply to fallback to the
7243 		 * default handling.
7244 		 */
7245 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7246 			return 0;
7247 
7248 		if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7249 			if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7250 				return __check_ptr_off_reg(env, reg, regno, true);
7251 
7252 			verbose(env, "R%d must have zero offset when passed to release func\n",
7253 				regno);
7254 			verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
7255 				btf_type_name(reg->btf, reg->btf_id), reg->off);
7256 			return -EINVAL;
7257 		}
7258 
7259 		/* Doing check_ptr_off_reg check for the offset will catch this
7260 		 * because fixed_off_ok is false, but checking here allows us
7261 		 * to give the user a better error message.
7262 		 */
7263 		if (reg->off) {
7264 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7265 				regno);
7266 			return -EINVAL;
7267 		}
7268 		return __check_ptr_off_reg(env, reg, regno, false);
7269 	}
7270 
7271 	switch (type) {
7272 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
7273 	case PTR_TO_STACK:
7274 	case PTR_TO_PACKET:
7275 	case PTR_TO_PACKET_META:
7276 	case PTR_TO_MAP_KEY:
7277 	case PTR_TO_MAP_VALUE:
7278 	case PTR_TO_MEM:
7279 	case PTR_TO_MEM | MEM_RDONLY:
7280 	case PTR_TO_MEM | MEM_RINGBUF:
7281 	case PTR_TO_BUF:
7282 	case PTR_TO_BUF | MEM_RDONLY:
7283 	case SCALAR_VALUE:
7284 		return 0;
7285 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
7286 	 * fixed offset.
7287 	 */
7288 	case PTR_TO_BTF_ID:
7289 	case PTR_TO_BTF_ID | MEM_ALLOC:
7290 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7291 	case PTR_TO_BTF_ID | MEM_RCU:
7292 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
7293 		/* When referenced PTR_TO_BTF_ID is passed to release function,
7294 		 * its fixed offset must be 0. In the other cases, fixed offset
7295 		 * can be non-zero. This was already checked above. So pass
7296 		 * fixed_off_ok as true to allow fixed offset for all other
7297 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
7298 		 * still need to do checks instead of returning.
7299 		 */
7300 		return __check_ptr_off_reg(env, reg, regno, true);
7301 	default:
7302 		return __check_ptr_off_reg(env, reg, regno, false);
7303 	}
7304 }
7305 
7306 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
7307 						const struct bpf_func_proto *fn,
7308 						struct bpf_reg_state *regs)
7309 {
7310 	struct bpf_reg_state *state = NULL;
7311 	int i;
7312 
7313 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
7314 		if (arg_type_is_dynptr(fn->arg_type[i])) {
7315 			if (state) {
7316 				verbose(env, "verifier internal error: multiple dynptr args\n");
7317 				return NULL;
7318 			}
7319 			state = &regs[BPF_REG_1 + i];
7320 		}
7321 
7322 	if (!state)
7323 		verbose(env, "verifier internal error: no dynptr arg found\n");
7324 
7325 	return state;
7326 }
7327 
7328 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7329 {
7330 	struct bpf_func_state *state = func(env, reg);
7331 	int spi;
7332 
7333 	if (reg->type == CONST_PTR_TO_DYNPTR)
7334 		return reg->id;
7335 	spi = dynptr_get_spi(env, reg);
7336 	if (spi < 0)
7337 		return spi;
7338 	return state->stack[spi].spilled_ptr.id;
7339 }
7340 
7341 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7342 {
7343 	struct bpf_func_state *state = func(env, reg);
7344 	int spi;
7345 
7346 	if (reg->type == CONST_PTR_TO_DYNPTR)
7347 		return reg->ref_obj_id;
7348 	spi = dynptr_get_spi(env, reg);
7349 	if (spi < 0)
7350 		return spi;
7351 	return state->stack[spi].spilled_ptr.ref_obj_id;
7352 }
7353 
7354 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
7355 					    struct bpf_reg_state *reg)
7356 {
7357 	struct bpf_func_state *state = func(env, reg);
7358 	int spi;
7359 
7360 	if (reg->type == CONST_PTR_TO_DYNPTR)
7361 		return reg->dynptr.type;
7362 
7363 	spi = __get_spi(reg->off);
7364 	if (spi < 0) {
7365 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
7366 		return BPF_DYNPTR_TYPE_INVALID;
7367 	}
7368 
7369 	return state->stack[spi].spilled_ptr.dynptr.type;
7370 }
7371 
7372 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
7373 			  struct bpf_call_arg_meta *meta,
7374 			  const struct bpf_func_proto *fn,
7375 			  int insn_idx)
7376 {
7377 	u32 regno = BPF_REG_1 + arg;
7378 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7379 	enum bpf_arg_type arg_type = fn->arg_type[arg];
7380 	enum bpf_reg_type type = reg->type;
7381 	u32 *arg_btf_id = NULL;
7382 	int err = 0;
7383 
7384 	if (arg_type == ARG_DONTCARE)
7385 		return 0;
7386 
7387 	err = check_reg_arg(env, regno, SRC_OP);
7388 	if (err)
7389 		return err;
7390 
7391 	if (arg_type == ARG_ANYTHING) {
7392 		if (is_pointer_value(env, regno)) {
7393 			verbose(env, "R%d leaks addr into helper function\n",
7394 				regno);
7395 			return -EACCES;
7396 		}
7397 		return 0;
7398 	}
7399 
7400 	if (type_is_pkt_pointer(type) &&
7401 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
7402 		verbose(env, "helper access to the packet is not allowed\n");
7403 		return -EACCES;
7404 	}
7405 
7406 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
7407 		err = resolve_map_arg_type(env, meta, &arg_type);
7408 		if (err)
7409 			return err;
7410 	}
7411 
7412 	if (register_is_null(reg) && type_may_be_null(arg_type))
7413 		/* A NULL register has a SCALAR_VALUE type, so skip
7414 		 * type checking.
7415 		 */
7416 		goto skip_type_check;
7417 
7418 	/* arg_btf_id and arg_size are in a union. */
7419 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
7420 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
7421 		arg_btf_id = fn->arg_btf_id[arg];
7422 
7423 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
7424 	if (err)
7425 		return err;
7426 
7427 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
7428 	if (err)
7429 		return err;
7430 
7431 skip_type_check:
7432 	if (arg_type_is_release(arg_type)) {
7433 		if (arg_type_is_dynptr(arg_type)) {
7434 			struct bpf_func_state *state = func(env, reg);
7435 			int spi;
7436 
7437 			/* Only dynptr created on stack can be released, thus
7438 			 * the get_spi and stack state checks for spilled_ptr
7439 			 * should only be done before process_dynptr_func for
7440 			 * PTR_TO_STACK.
7441 			 */
7442 			if (reg->type == PTR_TO_STACK) {
7443 				spi = dynptr_get_spi(env, reg);
7444 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
7445 					verbose(env, "arg %d is an unacquired reference\n", regno);
7446 					return -EINVAL;
7447 				}
7448 			} else {
7449 				verbose(env, "cannot release unowned const bpf_dynptr\n");
7450 				return -EINVAL;
7451 			}
7452 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
7453 			verbose(env, "R%d must be referenced when passed to release function\n",
7454 				regno);
7455 			return -EINVAL;
7456 		}
7457 		if (meta->release_regno) {
7458 			verbose(env, "verifier internal error: more than one release argument\n");
7459 			return -EFAULT;
7460 		}
7461 		meta->release_regno = regno;
7462 	}
7463 
7464 	if (reg->ref_obj_id) {
7465 		if (meta->ref_obj_id) {
7466 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
7467 				regno, reg->ref_obj_id,
7468 				meta->ref_obj_id);
7469 			return -EFAULT;
7470 		}
7471 		meta->ref_obj_id = reg->ref_obj_id;
7472 	}
7473 
7474 	switch (base_type(arg_type)) {
7475 	case ARG_CONST_MAP_PTR:
7476 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
7477 		if (meta->map_ptr) {
7478 			/* Use map_uid (which is unique id of inner map) to reject:
7479 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
7480 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
7481 			 * if (inner_map1 && inner_map2) {
7482 			 *     timer = bpf_map_lookup_elem(inner_map1);
7483 			 *     if (timer)
7484 			 *         // mismatch would have been allowed
7485 			 *         bpf_timer_init(timer, inner_map2);
7486 			 * }
7487 			 *
7488 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
7489 			 */
7490 			if (meta->map_ptr != reg->map_ptr ||
7491 			    meta->map_uid != reg->map_uid) {
7492 				verbose(env,
7493 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
7494 					meta->map_uid, reg->map_uid);
7495 				return -EINVAL;
7496 			}
7497 		}
7498 		meta->map_ptr = reg->map_ptr;
7499 		meta->map_uid = reg->map_uid;
7500 		break;
7501 	case ARG_PTR_TO_MAP_KEY:
7502 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
7503 		 * check that [key, key + map->key_size) are within
7504 		 * stack limits and initialized
7505 		 */
7506 		if (!meta->map_ptr) {
7507 			/* in function declaration map_ptr must come before
7508 			 * map_key, so that it's verified and known before
7509 			 * we have to check map_key here. Otherwise it means
7510 			 * that kernel subsystem misconfigured verifier
7511 			 */
7512 			verbose(env, "invalid map_ptr to access map->key\n");
7513 			return -EACCES;
7514 		}
7515 		err = check_helper_mem_access(env, regno,
7516 					      meta->map_ptr->key_size, false,
7517 					      NULL);
7518 		break;
7519 	case ARG_PTR_TO_MAP_VALUE:
7520 		if (type_may_be_null(arg_type) && register_is_null(reg))
7521 			return 0;
7522 
7523 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
7524 		 * check [value, value + map->value_size) validity
7525 		 */
7526 		if (!meta->map_ptr) {
7527 			/* kernel subsystem misconfigured verifier */
7528 			verbose(env, "invalid map_ptr to access map->value\n");
7529 			return -EACCES;
7530 		}
7531 		meta->raw_mode = arg_type & MEM_UNINIT;
7532 		err = check_helper_mem_access(env, regno,
7533 					      meta->map_ptr->value_size, false,
7534 					      meta);
7535 		break;
7536 	case ARG_PTR_TO_PERCPU_BTF_ID:
7537 		if (!reg->btf_id) {
7538 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
7539 			return -EACCES;
7540 		}
7541 		meta->ret_btf = reg->btf;
7542 		meta->ret_btf_id = reg->btf_id;
7543 		break;
7544 	case ARG_PTR_TO_SPIN_LOCK:
7545 		if (in_rbtree_lock_required_cb(env)) {
7546 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
7547 			return -EACCES;
7548 		}
7549 		if (meta->func_id == BPF_FUNC_spin_lock) {
7550 			err = process_spin_lock(env, regno, true);
7551 			if (err)
7552 				return err;
7553 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
7554 			err = process_spin_lock(env, regno, false);
7555 			if (err)
7556 				return err;
7557 		} else {
7558 			verbose(env, "verifier internal error\n");
7559 			return -EFAULT;
7560 		}
7561 		break;
7562 	case ARG_PTR_TO_TIMER:
7563 		err = process_timer_func(env, regno, meta);
7564 		if (err)
7565 			return err;
7566 		break;
7567 	case ARG_PTR_TO_FUNC:
7568 		meta->subprogno = reg->subprogno;
7569 		break;
7570 	case ARG_PTR_TO_MEM:
7571 		/* The access to this pointer is only checked when we hit the
7572 		 * next is_mem_size argument below.
7573 		 */
7574 		meta->raw_mode = arg_type & MEM_UNINIT;
7575 		if (arg_type & MEM_FIXED_SIZE) {
7576 			err = check_helper_mem_access(env, regno,
7577 						      fn->arg_size[arg], false,
7578 						      meta);
7579 		}
7580 		break;
7581 	case ARG_CONST_SIZE:
7582 		err = check_mem_size_reg(env, reg, regno, false, meta);
7583 		break;
7584 	case ARG_CONST_SIZE_OR_ZERO:
7585 		err = check_mem_size_reg(env, reg, regno, true, meta);
7586 		break;
7587 	case ARG_PTR_TO_DYNPTR:
7588 		err = process_dynptr_func(env, regno, insn_idx, arg_type);
7589 		if (err)
7590 			return err;
7591 		break;
7592 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
7593 		if (!tnum_is_const(reg->var_off)) {
7594 			verbose(env, "R%d is not a known constant'\n",
7595 				regno);
7596 			return -EACCES;
7597 		}
7598 		meta->mem_size = reg->var_off.value;
7599 		err = mark_chain_precision(env, regno);
7600 		if (err)
7601 			return err;
7602 		break;
7603 	case ARG_PTR_TO_INT:
7604 	case ARG_PTR_TO_LONG:
7605 	{
7606 		int size = int_ptr_type_to_size(arg_type);
7607 
7608 		err = check_helper_mem_access(env, regno, size, false, meta);
7609 		if (err)
7610 			return err;
7611 		err = check_ptr_alignment(env, reg, 0, size, true);
7612 		break;
7613 	}
7614 	case ARG_PTR_TO_CONST_STR:
7615 	{
7616 		struct bpf_map *map = reg->map_ptr;
7617 		int map_off;
7618 		u64 map_addr;
7619 		char *str_ptr;
7620 
7621 		if (!bpf_map_is_rdonly(map)) {
7622 			verbose(env, "R%d does not point to a readonly map'\n", regno);
7623 			return -EACCES;
7624 		}
7625 
7626 		if (!tnum_is_const(reg->var_off)) {
7627 			verbose(env, "R%d is not a constant address'\n", regno);
7628 			return -EACCES;
7629 		}
7630 
7631 		if (!map->ops->map_direct_value_addr) {
7632 			verbose(env, "no direct value access support for this map type\n");
7633 			return -EACCES;
7634 		}
7635 
7636 		err = check_map_access(env, regno, reg->off,
7637 				       map->value_size - reg->off, false,
7638 				       ACCESS_HELPER);
7639 		if (err)
7640 			return err;
7641 
7642 		map_off = reg->off + reg->var_off.value;
7643 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
7644 		if (err) {
7645 			verbose(env, "direct value access on string failed\n");
7646 			return err;
7647 		}
7648 
7649 		str_ptr = (char *)(long)(map_addr);
7650 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
7651 			verbose(env, "string is not zero-terminated\n");
7652 			return -EINVAL;
7653 		}
7654 		break;
7655 	}
7656 	case ARG_PTR_TO_KPTR:
7657 		err = process_kptr_func(env, regno, meta);
7658 		if (err)
7659 			return err;
7660 		break;
7661 	}
7662 
7663 	return err;
7664 }
7665 
7666 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
7667 {
7668 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
7669 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7670 
7671 	if (func_id != BPF_FUNC_map_update_elem)
7672 		return false;
7673 
7674 	/* It's not possible to get access to a locked struct sock in these
7675 	 * contexts, so updating is safe.
7676 	 */
7677 	switch (type) {
7678 	case BPF_PROG_TYPE_TRACING:
7679 		if (eatype == BPF_TRACE_ITER)
7680 			return true;
7681 		break;
7682 	case BPF_PROG_TYPE_SOCKET_FILTER:
7683 	case BPF_PROG_TYPE_SCHED_CLS:
7684 	case BPF_PROG_TYPE_SCHED_ACT:
7685 	case BPF_PROG_TYPE_XDP:
7686 	case BPF_PROG_TYPE_SK_REUSEPORT:
7687 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
7688 	case BPF_PROG_TYPE_SK_LOOKUP:
7689 		return true;
7690 	default:
7691 		break;
7692 	}
7693 
7694 	verbose(env, "cannot update sockmap in this context\n");
7695 	return false;
7696 }
7697 
7698 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
7699 {
7700 	return env->prog->jit_requested &&
7701 	       bpf_jit_supports_subprog_tailcalls();
7702 }
7703 
7704 static int check_map_func_compatibility(struct bpf_verifier_env *env,
7705 					struct bpf_map *map, int func_id)
7706 {
7707 	if (!map)
7708 		return 0;
7709 
7710 	/* We need a two way check, first is from map perspective ... */
7711 	switch (map->map_type) {
7712 	case BPF_MAP_TYPE_PROG_ARRAY:
7713 		if (func_id != BPF_FUNC_tail_call)
7714 			goto error;
7715 		break;
7716 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
7717 		if (func_id != BPF_FUNC_perf_event_read &&
7718 		    func_id != BPF_FUNC_perf_event_output &&
7719 		    func_id != BPF_FUNC_skb_output &&
7720 		    func_id != BPF_FUNC_perf_event_read_value &&
7721 		    func_id != BPF_FUNC_xdp_output)
7722 			goto error;
7723 		break;
7724 	case BPF_MAP_TYPE_RINGBUF:
7725 		if (func_id != BPF_FUNC_ringbuf_output &&
7726 		    func_id != BPF_FUNC_ringbuf_reserve &&
7727 		    func_id != BPF_FUNC_ringbuf_query &&
7728 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
7729 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
7730 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
7731 			goto error;
7732 		break;
7733 	case BPF_MAP_TYPE_USER_RINGBUF:
7734 		if (func_id != BPF_FUNC_user_ringbuf_drain)
7735 			goto error;
7736 		break;
7737 	case BPF_MAP_TYPE_STACK_TRACE:
7738 		if (func_id != BPF_FUNC_get_stackid)
7739 			goto error;
7740 		break;
7741 	case BPF_MAP_TYPE_CGROUP_ARRAY:
7742 		if (func_id != BPF_FUNC_skb_under_cgroup &&
7743 		    func_id != BPF_FUNC_current_task_under_cgroup)
7744 			goto error;
7745 		break;
7746 	case BPF_MAP_TYPE_CGROUP_STORAGE:
7747 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
7748 		if (func_id != BPF_FUNC_get_local_storage)
7749 			goto error;
7750 		break;
7751 	case BPF_MAP_TYPE_DEVMAP:
7752 	case BPF_MAP_TYPE_DEVMAP_HASH:
7753 		if (func_id != BPF_FUNC_redirect_map &&
7754 		    func_id != BPF_FUNC_map_lookup_elem)
7755 			goto error;
7756 		break;
7757 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
7758 	 * appear.
7759 	 */
7760 	case BPF_MAP_TYPE_CPUMAP:
7761 		if (func_id != BPF_FUNC_redirect_map)
7762 			goto error;
7763 		break;
7764 	case BPF_MAP_TYPE_XSKMAP:
7765 		if (func_id != BPF_FUNC_redirect_map &&
7766 		    func_id != BPF_FUNC_map_lookup_elem)
7767 			goto error;
7768 		break;
7769 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
7770 	case BPF_MAP_TYPE_HASH_OF_MAPS:
7771 		if (func_id != BPF_FUNC_map_lookup_elem)
7772 			goto error;
7773 		break;
7774 	case BPF_MAP_TYPE_SOCKMAP:
7775 		if (func_id != BPF_FUNC_sk_redirect_map &&
7776 		    func_id != BPF_FUNC_sock_map_update &&
7777 		    func_id != BPF_FUNC_map_delete_elem &&
7778 		    func_id != BPF_FUNC_msg_redirect_map &&
7779 		    func_id != BPF_FUNC_sk_select_reuseport &&
7780 		    func_id != BPF_FUNC_map_lookup_elem &&
7781 		    !may_update_sockmap(env, func_id))
7782 			goto error;
7783 		break;
7784 	case BPF_MAP_TYPE_SOCKHASH:
7785 		if (func_id != BPF_FUNC_sk_redirect_hash &&
7786 		    func_id != BPF_FUNC_sock_hash_update &&
7787 		    func_id != BPF_FUNC_map_delete_elem &&
7788 		    func_id != BPF_FUNC_msg_redirect_hash &&
7789 		    func_id != BPF_FUNC_sk_select_reuseport &&
7790 		    func_id != BPF_FUNC_map_lookup_elem &&
7791 		    !may_update_sockmap(env, func_id))
7792 			goto error;
7793 		break;
7794 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
7795 		if (func_id != BPF_FUNC_sk_select_reuseport)
7796 			goto error;
7797 		break;
7798 	case BPF_MAP_TYPE_QUEUE:
7799 	case BPF_MAP_TYPE_STACK:
7800 		if (func_id != BPF_FUNC_map_peek_elem &&
7801 		    func_id != BPF_FUNC_map_pop_elem &&
7802 		    func_id != BPF_FUNC_map_push_elem)
7803 			goto error;
7804 		break;
7805 	case BPF_MAP_TYPE_SK_STORAGE:
7806 		if (func_id != BPF_FUNC_sk_storage_get &&
7807 		    func_id != BPF_FUNC_sk_storage_delete &&
7808 		    func_id != BPF_FUNC_kptr_xchg)
7809 			goto error;
7810 		break;
7811 	case BPF_MAP_TYPE_INODE_STORAGE:
7812 		if (func_id != BPF_FUNC_inode_storage_get &&
7813 		    func_id != BPF_FUNC_inode_storage_delete &&
7814 		    func_id != BPF_FUNC_kptr_xchg)
7815 			goto error;
7816 		break;
7817 	case BPF_MAP_TYPE_TASK_STORAGE:
7818 		if (func_id != BPF_FUNC_task_storage_get &&
7819 		    func_id != BPF_FUNC_task_storage_delete &&
7820 		    func_id != BPF_FUNC_kptr_xchg)
7821 			goto error;
7822 		break;
7823 	case BPF_MAP_TYPE_CGRP_STORAGE:
7824 		if (func_id != BPF_FUNC_cgrp_storage_get &&
7825 		    func_id != BPF_FUNC_cgrp_storage_delete &&
7826 		    func_id != BPF_FUNC_kptr_xchg)
7827 			goto error;
7828 		break;
7829 	case BPF_MAP_TYPE_BLOOM_FILTER:
7830 		if (func_id != BPF_FUNC_map_peek_elem &&
7831 		    func_id != BPF_FUNC_map_push_elem)
7832 			goto error;
7833 		break;
7834 	default:
7835 		break;
7836 	}
7837 
7838 	/* ... and second from the function itself. */
7839 	switch (func_id) {
7840 	case BPF_FUNC_tail_call:
7841 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
7842 			goto error;
7843 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
7844 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
7845 			return -EINVAL;
7846 		}
7847 		break;
7848 	case BPF_FUNC_perf_event_read:
7849 	case BPF_FUNC_perf_event_output:
7850 	case BPF_FUNC_perf_event_read_value:
7851 	case BPF_FUNC_skb_output:
7852 	case BPF_FUNC_xdp_output:
7853 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
7854 			goto error;
7855 		break;
7856 	case BPF_FUNC_ringbuf_output:
7857 	case BPF_FUNC_ringbuf_reserve:
7858 	case BPF_FUNC_ringbuf_query:
7859 	case BPF_FUNC_ringbuf_reserve_dynptr:
7860 	case BPF_FUNC_ringbuf_submit_dynptr:
7861 	case BPF_FUNC_ringbuf_discard_dynptr:
7862 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
7863 			goto error;
7864 		break;
7865 	case BPF_FUNC_user_ringbuf_drain:
7866 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
7867 			goto error;
7868 		break;
7869 	case BPF_FUNC_get_stackid:
7870 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
7871 			goto error;
7872 		break;
7873 	case BPF_FUNC_current_task_under_cgroup:
7874 	case BPF_FUNC_skb_under_cgroup:
7875 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
7876 			goto error;
7877 		break;
7878 	case BPF_FUNC_redirect_map:
7879 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
7880 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
7881 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
7882 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
7883 			goto error;
7884 		break;
7885 	case BPF_FUNC_sk_redirect_map:
7886 	case BPF_FUNC_msg_redirect_map:
7887 	case BPF_FUNC_sock_map_update:
7888 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
7889 			goto error;
7890 		break;
7891 	case BPF_FUNC_sk_redirect_hash:
7892 	case BPF_FUNC_msg_redirect_hash:
7893 	case BPF_FUNC_sock_hash_update:
7894 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
7895 			goto error;
7896 		break;
7897 	case BPF_FUNC_get_local_storage:
7898 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
7899 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
7900 			goto error;
7901 		break;
7902 	case BPF_FUNC_sk_select_reuseport:
7903 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
7904 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
7905 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
7906 			goto error;
7907 		break;
7908 	case BPF_FUNC_map_pop_elem:
7909 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7910 		    map->map_type != BPF_MAP_TYPE_STACK)
7911 			goto error;
7912 		break;
7913 	case BPF_FUNC_map_peek_elem:
7914 	case BPF_FUNC_map_push_elem:
7915 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7916 		    map->map_type != BPF_MAP_TYPE_STACK &&
7917 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
7918 			goto error;
7919 		break;
7920 	case BPF_FUNC_map_lookup_percpu_elem:
7921 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
7922 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7923 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
7924 			goto error;
7925 		break;
7926 	case BPF_FUNC_sk_storage_get:
7927 	case BPF_FUNC_sk_storage_delete:
7928 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
7929 			goto error;
7930 		break;
7931 	case BPF_FUNC_inode_storage_get:
7932 	case BPF_FUNC_inode_storage_delete:
7933 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
7934 			goto error;
7935 		break;
7936 	case BPF_FUNC_task_storage_get:
7937 	case BPF_FUNC_task_storage_delete:
7938 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
7939 			goto error;
7940 		break;
7941 	case BPF_FUNC_cgrp_storage_get:
7942 	case BPF_FUNC_cgrp_storage_delete:
7943 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
7944 			goto error;
7945 		break;
7946 	default:
7947 		break;
7948 	}
7949 
7950 	return 0;
7951 error:
7952 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
7953 		map->map_type, func_id_name(func_id), func_id);
7954 	return -EINVAL;
7955 }
7956 
7957 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
7958 {
7959 	int count = 0;
7960 
7961 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
7962 		count++;
7963 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
7964 		count++;
7965 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
7966 		count++;
7967 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
7968 		count++;
7969 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
7970 		count++;
7971 
7972 	/* We only support one arg being in raw mode at the moment,
7973 	 * which is sufficient for the helper functions we have
7974 	 * right now.
7975 	 */
7976 	return count <= 1;
7977 }
7978 
7979 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
7980 {
7981 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
7982 	bool has_size = fn->arg_size[arg] != 0;
7983 	bool is_next_size = false;
7984 
7985 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
7986 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
7987 
7988 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
7989 		return is_next_size;
7990 
7991 	return has_size == is_next_size || is_next_size == is_fixed;
7992 }
7993 
7994 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
7995 {
7996 	/* bpf_xxx(..., buf, len) call will access 'len'
7997 	 * bytes from memory 'buf'. Both arg types need
7998 	 * to be paired, so make sure there's no buggy
7999 	 * helper function specification.
8000 	 */
8001 	if (arg_type_is_mem_size(fn->arg1_type) ||
8002 	    check_args_pair_invalid(fn, 0) ||
8003 	    check_args_pair_invalid(fn, 1) ||
8004 	    check_args_pair_invalid(fn, 2) ||
8005 	    check_args_pair_invalid(fn, 3) ||
8006 	    check_args_pair_invalid(fn, 4))
8007 		return false;
8008 
8009 	return true;
8010 }
8011 
8012 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8013 {
8014 	int i;
8015 
8016 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8017 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8018 			return !!fn->arg_btf_id[i];
8019 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8020 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8021 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8022 		    /* arg_btf_id and arg_size are in a union. */
8023 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8024 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8025 			return false;
8026 	}
8027 
8028 	return true;
8029 }
8030 
8031 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8032 {
8033 	return check_raw_mode_ok(fn) &&
8034 	       check_arg_pair_ok(fn) &&
8035 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8036 }
8037 
8038 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8039  * are now invalid, so turn them into unknown SCALAR_VALUE.
8040  *
8041  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8042  * since these slices point to packet data.
8043  */
8044 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8045 {
8046 	struct bpf_func_state *state;
8047 	struct bpf_reg_state *reg;
8048 
8049 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8050 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8051 			mark_reg_invalid(env, reg);
8052 	}));
8053 }
8054 
8055 enum {
8056 	AT_PKT_END = -1,
8057 	BEYOND_PKT_END = -2,
8058 };
8059 
8060 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8061 {
8062 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8063 	struct bpf_reg_state *reg = &state->regs[regn];
8064 
8065 	if (reg->type != PTR_TO_PACKET)
8066 		/* PTR_TO_PACKET_META is not supported yet */
8067 		return;
8068 
8069 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8070 	 * How far beyond pkt_end it goes is unknown.
8071 	 * if (!range_open) it's the case of pkt >= pkt_end
8072 	 * if (range_open) it's the case of pkt > pkt_end
8073 	 * hence this pointer is at least 1 byte bigger than pkt_end
8074 	 */
8075 	if (range_open)
8076 		reg->range = BEYOND_PKT_END;
8077 	else
8078 		reg->range = AT_PKT_END;
8079 }
8080 
8081 /* The pointer with the specified id has released its reference to kernel
8082  * resources. Identify all copies of the same pointer and clear the reference.
8083  */
8084 static int release_reference(struct bpf_verifier_env *env,
8085 			     int ref_obj_id)
8086 {
8087 	struct bpf_func_state *state;
8088 	struct bpf_reg_state *reg;
8089 	int err;
8090 
8091 	err = release_reference_state(cur_func(env), ref_obj_id);
8092 	if (err)
8093 		return err;
8094 
8095 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8096 		if (reg->ref_obj_id == ref_obj_id)
8097 			mark_reg_invalid(env, reg);
8098 	}));
8099 
8100 	return 0;
8101 }
8102 
8103 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8104 {
8105 	struct bpf_func_state *unused;
8106 	struct bpf_reg_state *reg;
8107 
8108 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8109 		if (type_is_non_owning_ref(reg->type))
8110 			mark_reg_invalid(env, reg);
8111 	}));
8112 }
8113 
8114 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8115 				    struct bpf_reg_state *regs)
8116 {
8117 	int i;
8118 
8119 	/* after the call registers r0 - r5 were scratched */
8120 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8121 		mark_reg_not_init(env, regs, caller_saved[i]);
8122 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8123 	}
8124 }
8125 
8126 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8127 				   struct bpf_func_state *caller,
8128 				   struct bpf_func_state *callee,
8129 				   int insn_idx);
8130 
8131 static int set_callee_state(struct bpf_verifier_env *env,
8132 			    struct bpf_func_state *caller,
8133 			    struct bpf_func_state *callee, int insn_idx);
8134 
8135 static bool is_callback_calling_kfunc(u32 btf_id);
8136 
8137 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8138 			     int *insn_idx, int subprog,
8139 			     set_callee_state_fn set_callee_state_cb)
8140 {
8141 	struct bpf_verifier_state *state = env->cur_state;
8142 	struct bpf_func_info_aux *func_info_aux;
8143 	struct bpf_func_state *caller, *callee;
8144 	int err;
8145 	bool is_global = false;
8146 
8147 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8148 		verbose(env, "the call stack of %d frames is too deep\n",
8149 			state->curframe + 2);
8150 		return -E2BIG;
8151 	}
8152 
8153 	caller = state->frame[state->curframe];
8154 	if (state->frame[state->curframe + 1]) {
8155 		verbose(env, "verifier bug. Frame %d already allocated\n",
8156 			state->curframe + 1);
8157 		return -EFAULT;
8158 	}
8159 
8160 	func_info_aux = env->prog->aux->func_info_aux;
8161 	if (func_info_aux)
8162 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
8163 	err = btf_check_subprog_call(env, subprog, caller->regs);
8164 	if (err == -EFAULT)
8165 		return err;
8166 	if (is_global) {
8167 		if (err) {
8168 			verbose(env, "Caller passes invalid args into func#%d\n",
8169 				subprog);
8170 			return err;
8171 		} else {
8172 			if (env->log.level & BPF_LOG_LEVEL)
8173 				verbose(env,
8174 					"Func#%d is global and valid. Skipping.\n",
8175 					subprog);
8176 			clear_caller_saved_regs(env, caller->regs);
8177 
8178 			/* All global functions return a 64-bit SCALAR_VALUE */
8179 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8180 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8181 
8182 			/* continue with next insn after call */
8183 			return 0;
8184 		}
8185 	}
8186 
8187 	/* set_callee_state is used for direct subprog calls, but we are
8188 	 * interested in validating only BPF helpers that can call subprogs as
8189 	 * callbacks
8190 	 */
8191 	if (set_callee_state_cb != set_callee_state) {
8192 		if (bpf_pseudo_kfunc_call(insn) &&
8193 		    !is_callback_calling_kfunc(insn->imm)) {
8194 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8195 				func_id_name(insn->imm), insn->imm);
8196 			return -EFAULT;
8197 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8198 			   !is_callback_calling_function(insn->imm)) { /* helper */
8199 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8200 				func_id_name(insn->imm), insn->imm);
8201 			return -EFAULT;
8202 		}
8203 	}
8204 
8205 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8206 	    insn->src_reg == 0 &&
8207 	    insn->imm == BPF_FUNC_timer_set_callback) {
8208 		struct bpf_verifier_state *async_cb;
8209 
8210 		/* there is no real recursion here. timer callbacks are async */
8211 		env->subprog_info[subprog].is_async_cb = true;
8212 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8213 					 *insn_idx, subprog);
8214 		if (!async_cb)
8215 			return -EFAULT;
8216 		callee = async_cb->frame[0];
8217 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8218 
8219 		/* Convert bpf_timer_set_callback() args into timer callback args */
8220 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8221 		if (err)
8222 			return err;
8223 
8224 		clear_caller_saved_regs(env, caller->regs);
8225 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8226 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8227 		/* continue with next insn after call */
8228 		return 0;
8229 	}
8230 
8231 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8232 	if (!callee)
8233 		return -ENOMEM;
8234 	state->frame[state->curframe + 1] = callee;
8235 
8236 	/* callee cannot access r0, r6 - r9 for reading and has to write
8237 	 * into its own stack before reading from it.
8238 	 * callee can read/write into caller's stack
8239 	 */
8240 	init_func_state(env, callee,
8241 			/* remember the callsite, it will be used by bpf_exit */
8242 			*insn_idx /* callsite */,
8243 			state->curframe + 1 /* frameno within this callchain */,
8244 			subprog /* subprog number within this prog */);
8245 
8246 	/* Transfer references to the callee */
8247 	err = copy_reference_state(callee, caller);
8248 	if (err)
8249 		goto err_out;
8250 
8251 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8252 	if (err)
8253 		goto err_out;
8254 
8255 	clear_caller_saved_regs(env, caller->regs);
8256 
8257 	/* only increment it after check_reg_arg() finished */
8258 	state->curframe++;
8259 
8260 	/* and go analyze first insn of the callee */
8261 	*insn_idx = env->subprog_info[subprog].start - 1;
8262 
8263 	if (env->log.level & BPF_LOG_LEVEL) {
8264 		verbose(env, "caller:\n");
8265 		print_verifier_state(env, caller, true);
8266 		verbose(env, "callee:\n");
8267 		print_verifier_state(env, callee, true);
8268 	}
8269 	return 0;
8270 
8271 err_out:
8272 	free_func_state(callee);
8273 	state->frame[state->curframe + 1] = NULL;
8274 	return err;
8275 }
8276 
8277 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8278 				   struct bpf_func_state *caller,
8279 				   struct bpf_func_state *callee)
8280 {
8281 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8282 	 *      void *callback_ctx, u64 flags);
8283 	 * callback_fn(struct bpf_map *map, void *key, void *value,
8284 	 *      void *callback_ctx);
8285 	 */
8286 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8287 
8288 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8289 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8290 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8291 
8292 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8293 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8294 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8295 
8296 	/* pointer to stack or null */
8297 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
8298 
8299 	/* unused */
8300 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8301 	return 0;
8302 }
8303 
8304 static int set_callee_state(struct bpf_verifier_env *env,
8305 			    struct bpf_func_state *caller,
8306 			    struct bpf_func_state *callee, int insn_idx)
8307 {
8308 	int i;
8309 
8310 	/* copy r1 - r5 args that callee can access.  The copy includes parent
8311 	 * pointers, which connects us up to the liveness chain
8312 	 */
8313 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
8314 		callee->regs[i] = caller->regs[i];
8315 	return 0;
8316 }
8317 
8318 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8319 			   int *insn_idx)
8320 {
8321 	int subprog, target_insn;
8322 
8323 	target_insn = *insn_idx + insn->imm + 1;
8324 	subprog = find_subprog(env, target_insn);
8325 	if (subprog < 0) {
8326 		verbose(env, "verifier bug. No program starts at insn %d\n",
8327 			target_insn);
8328 		return -EFAULT;
8329 	}
8330 
8331 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
8332 }
8333 
8334 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
8335 				       struct bpf_func_state *caller,
8336 				       struct bpf_func_state *callee,
8337 				       int insn_idx)
8338 {
8339 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
8340 	struct bpf_map *map;
8341 	int err;
8342 
8343 	if (bpf_map_ptr_poisoned(insn_aux)) {
8344 		verbose(env, "tail_call abusing map_ptr\n");
8345 		return -EINVAL;
8346 	}
8347 
8348 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
8349 	if (!map->ops->map_set_for_each_callback_args ||
8350 	    !map->ops->map_for_each_callback) {
8351 		verbose(env, "callback function not allowed for map\n");
8352 		return -ENOTSUPP;
8353 	}
8354 
8355 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
8356 	if (err)
8357 		return err;
8358 
8359 	callee->in_callback_fn = true;
8360 	callee->callback_ret_range = tnum_range(0, 1);
8361 	return 0;
8362 }
8363 
8364 static int set_loop_callback_state(struct bpf_verifier_env *env,
8365 				   struct bpf_func_state *caller,
8366 				   struct bpf_func_state *callee,
8367 				   int insn_idx)
8368 {
8369 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
8370 	 *	    u64 flags);
8371 	 * callback_fn(u32 index, void *callback_ctx);
8372 	 */
8373 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
8374 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8375 
8376 	/* unused */
8377 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8378 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8379 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8380 
8381 	callee->in_callback_fn = true;
8382 	callee->callback_ret_range = tnum_range(0, 1);
8383 	return 0;
8384 }
8385 
8386 static int set_timer_callback_state(struct bpf_verifier_env *env,
8387 				    struct bpf_func_state *caller,
8388 				    struct bpf_func_state *callee,
8389 				    int insn_idx)
8390 {
8391 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
8392 
8393 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
8394 	 * callback_fn(struct bpf_map *map, void *key, void *value);
8395 	 */
8396 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
8397 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
8398 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
8399 
8400 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8401 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8402 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
8403 
8404 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8405 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8406 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
8407 
8408 	/* unused */
8409 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8410 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8411 	callee->in_async_callback_fn = true;
8412 	callee->callback_ret_range = tnum_range(0, 1);
8413 	return 0;
8414 }
8415 
8416 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
8417 				       struct bpf_func_state *caller,
8418 				       struct bpf_func_state *callee,
8419 				       int insn_idx)
8420 {
8421 	/* bpf_find_vma(struct task_struct *task, u64 addr,
8422 	 *               void *callback_fn, void *callback_ctx, u64 flags)
8423 	 * (callback_fn)(struct task_struct *task,
8424 	 *               struct vm_area_struct *vma, void *callback_ctx);
8425 	 */
8426 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8427 
8428 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
8429 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8430 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
8431 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
8432 
8433 	/* pointer to stack or null */
8434 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
8435 
8436 	/* unused */
8437 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8438 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8439 	callee->in_callback_fn = true;
8440 	callee->callback_ret_range = tnum_range(0, 1);
8441 	return 0;
8442 }
8443 
8444 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
8445 					   struct bpf_func_state *caller,
8446 					   struct bpf_func_state *callee,
8447 					   int insn_idx)
8448 {
8449 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
8450 	 *			  callback_ctx, u64 flags);
8451 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
8452 	 */
8453 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
8454 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
8455 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8456 
8457 	/* unused */
8458 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8459 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8460 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8461 
8462 	callee->in_callback_fn = true;
8463 	callee->callback_ret_range = tnum_range(0, 1);
8464 	return 0;
8465 }
8466 
8467 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
8468 					 struct bpf_func_state *caller,
8469 					 struct bpf_func_state *callee,
8470 					 int insn_idx)
8471 {
8472 	/* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node,
8473 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
8474 	 *
8475 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset
8476 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
8477 	 * by this point, so look at 'root'
8478 	 */
8479 	struct btf_field *field;
8480 
8481 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
8482 				      BPF_RB_ROOT);
8483 	if (!field || !field->graph_root.value_btf_id)
8484 		return -EFAULT;
8485 
8486 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
8487 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
8488 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
8489 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
8490 
8491 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8492 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8493 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8494 	callee->in_callback_fn = true;
8495 	callee->callback_ret_range = tnum_range(0, 1);
8496 	return 0;
8497 }
8498 
8499 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
8500 
8501 /* Are we currently verifying the callback for a rbtree helper that must
8502  * be called with lock held? If so, no need to complain about unreleased
8503  * lock
8504  */
8505 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
8506 {
8507 	struct bpf_verifier_state *state = env->cur_state;
8508 	struct bpf_insn *insn = env->prog->insnsi;
8509 	struct bpf_func_state *callee;
8510 	int kfunc_btf_id;
8511 
8512 	if (!state->curframe)
8513 		return false;
8514 
8515 	callee = state->frame[state->curframe];
8516 
8517 	if (!callee->in_callback_fn)
8518 		return false;
8519 
8520 	kfunc_btf_id = insn[callee->callsite].imm;
8521 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
8522 }
8523 
8524 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
8525 {
8526 	struct bpf_verifier_state *state = env->cur_state;
8527 	struct bpf_func_state *caller, *callee;
8528 	struct bpf_reg_state *r0;
8529 	int err;
8530 
8531 	callee = state->frame[state->curframe];
8532 	r0 = &callee->regs[BPF_REG_0];
8533 	if (r0->type == PTR_TO_STACK) {
8534 		/* technically it's ok to return caller's stack pointer
8535 		 * (or caller's caller's pointer) back to the caller,
8536 		 * since these pointers are valid. Only current stack
8537 		 * pointer will be invalid as soon as function exits,
8538 		 * but let's be conservative
8539 		 */
8540 		verbose(env, "cannot return stack pointer to the caller\n");
8541 		return -EINVAL;
8542 	}
8543 
8544 	caller = state->frame[state->curframe - 1];
8545 	if (callee->in_callback_fn) {
8546 		/* enforce R0 return value range [0, 1]. */
8547 		struct tnum range = callee->callback_ret_range;
8548 
8549 		if (r0->type != SCALAR_VALUE) {
8550 			verbose(env, "R0 not a scalar value\n");
8551 			return -EACCES;
8552 		}
8553 		if (!tnum_in(range, r0->var_off)) {
8554 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
8555 			return -EINVAL;
8556 		}
8557 	} else {
8558 		/* return to the caller whatever r0 had in the callee */
8559 		caller->regs[BPF_REG_0] = *r0;
8560 	}
8561 
8562 	/* callback_fn frame should have released its own additions to parent's
8563 	 * reference state at this point, or check_reference_leak would
8564 	 * complain, hence it must be the same as the caller. There is no need
8565 	 * to copy it back.
8566 	 */
8567 	if (!callee->in_callback_fn) {
8568 		/* Transfer references to the caller */
8569 		err = copy_reference_state(caller, callee);
8570 		if (err)
8571 			return err;
8572 	}
8573 
8574 	*insn_idx = callee->callsite + 1;
8575 	if (env->log.level & BPF_LOG_LEVEL) {
8576 		verbose(env, "returning from callee:\n");
8577 		print_verifier_state(env, callee, true);
8578 		verbose(env, "to caller at %d:\n", *insn_idx);
8579 		print_verifier_state(env, caller, true);
8580 	}
8581 	/* clear everything in the callee */
8582 	free_func_state(callee);
8583 	state->frame[state->curframe--] = NULL;
8584 	return 0;
8585 }
8586 
8587 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
8588 				   int func_id,
8589 				   struct bpf_call_arg_meta *meta)
8590 {
8591 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
8592 
8593 	if (ret_type != RET_INTEGER ||
8594 	    (func_id != BPF_FUNC_get_stack &&
8595 	     func_id != BPF_FUNC_get_task_stack &&
8596 	     func_id != BPF_FUNC_probe_read_str &&
8597 	     func_id != BPF_FUNC_probe_read_kernel_str &&
8598 	     func_id != BPF_FUNC_probe_read_user_str))
8599 		return;
8600 
8601 	ret_reg->smax_value = meta->msize_max_value;
8602 	ret_reg->s32_max_value = meta->msize_max_value;
8603 	ret_reg->smin_value = -MAX_ERRNO;
8604 	ret_reg->s32_min_value = -MAX_ERRNO;
8605 	reg_bounds_sync(ret_reg);
8606 }
8607 
8608 static int
8609 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8610 		int func_id, int insn_idx)
8611 {
8612 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
8613 	struct bpf_map *map = meta->map_ptr;
8614 
8615 	if (func_id != BPF_FUNC_tail_call &&
8616 	    func_id != BPF_FUNC_map_lookup_elem &&
8617 	    func_id != BPF_FUNC_map_update_elem &&
8618 	    func_id != BPF_FUNC_map_delete_elem &&
8619 	    func_id != BPF_FUNC_map_push_elem &&
8620 	    func_id != BPF_FUNC_map_pop_elem &&
8621 	    func_id != BPF_FUNC_map_peek_elem &&
8622 	    func_id != BPF_FUNC_for_each_map_elem &&
8623 	    func_id != BPF_FUNC_redirect_map &&
8624 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
8625 		return 0;
8626 
8627 	if (map == NULL) {
8628 		verbose(env, "kernel subsystem misconfigured verifier\n");
8629 		return -EINVAL;
8630 	}
8631 
8632 	/* In case of read-only, some additional restrictions
8633 	 * need to be applied in order to prevent altering the
8634 	 * state of the map from program side.
8635 	 */
8636 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
8637 	    (func_id == BPF_FUNC_map_delete_elem ||
8638 	     func_id == BPF_FUNC_map_update_elem ||
8639 	     func_id == BPF_FUNC_map_push_elem ||
8640 	     func_id == BPF_FUNC_map_pop_elem)) {
8641 		verbose(env, "write into map forbidden\n");
8642 		return -EACCES;
8643 	}
8644 
8645 	if (!BPF_MAP_PTR(aux->map_ptr_state))
8646 		bpf_map_ptr_store(aux, meta->map_ptr,
8647 				  !meta->map_ptr->bypass_spec_v1);
8648 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
8649 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
8650 				  !meta->map_ptr->bypass_spec_v1);
8651 	return 0;
8652 }
8653 
8654 static int
8655 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8656 		int func_id, int insn_idx)
8657 {
8658 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
8659 	struct bpf_reg_state *regs = cur_regs(env), *reg;
8660 	struct bpf_map *map = meta->map_ptr;
8661 	u64 val, max;
8662 	int err;
8663 
8664 	if (func_id != BPF_FUNC_tail_call)
8665 		return 0;
8666 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
8667 		verbose(env, "kernel subsystem misconfigured verifier\n");
8668 		return -EINVAL;
8669 	}
8670 
8671 	reg = &regs[BPF_REG_3];
8672 	val = reg->var_off.value;
8673 	max = map->max_entries;
8674 
8675 	if (!(register_is_const(reg) && val < max)) {
8676 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8677 		return 0;
8678 	}
8679 
8680 	err = mark_chain_precision(env, BPF_REG_3);
8681 	if (err)
8682 		return err;
8683 	if (bpf_map_key_unseen(aux))
8684 		bpf_map_key_store(aux, val);
8685 	else if (!bpf_map_key_poisoned(aux) &&
8686 		  bpf_map_key_immediate(aux) != val)
8687 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8688 	return 0;
8689 }
8690 
8691 static int check_reference_leak(struct bpf_verifier_env *env)
8692 {
8693 	struct bpf_func_state *state = cur_func(env);
8694 	bool refs_lingering = false;
8695 	int i;
8696 
8697 	if (state->frameno && !state->in_callback_fn)
8698 		return 0;
8699 
8700 	for (i = 0; i < state->acquired_refs; i++) {
8701 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
8702 			continue;
8703 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
8704 			state->refs[i].id, state->refs[i].insn_idx);
8705 		refs_lingering = true;
8706 	}
8707 	return refs_lingering ? -EINVAL : 0;
8708 }
8709 
8710 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
8711 				   struct bpf_reg_state *regs)
8712 {
8713 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
8714 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
8715 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
8716 	struct bpf_bprintf_data data = {};
8717 	int err, fmt_map_off, num_args;
8718 	u64 fmt_addr;
8719 	char *fmt;
8720 
8721 	/* data must be an array of u64 */
8722 	if (data_len_reg->var_off.value % 8)
8723 		return -EINVAL;
8724 	num_args = data_len_reg->var_off.value / 8;
8725 
8726 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
8727 	 * and map_direct_value_addr is set.
8728 	 */
8729 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
8730 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
8731 						  fmt_map_off);
8732 	if (err) {
8733 		verbose(env, "verifier bug\n");
8734 		return -EFAULT;
8735 	}
8736 	fmt = (char *)(long)fmt_addr + fmt_map_off;
8737 
8738 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
8739 	 * can focus on validating the format specifiers.
8740 	 */
8741 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
8742 	if (err < 0)
8743 		verbose(env, "Invalid format string\n");
8744 
8745 	return err;
8746 }
8747 
8748 static int check_get_func_ip(struct bpf_verifier_env *env)
8749 {
8750 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8751 	int func_id = BPF_FUNC_get_func_ip;
8752 
8753 	if (type == BPF_PROG_TYPE_TRACING) {
8754 		if (!bpf_prog_has_trampoline(env->prog)) {
8755 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
8756 				func_id_name(func_id), func_id);
8757 			return -ENOTSUPP;
8758 		}
8759 		return 0;
8760 	} else if (type == BPF_PROG_TYPE_KPROBE) {
8761 		return 0;
8762 	}
8763 
8764 	verbose(env, "func %s#%d not supported for program type %d\n",
8765 		func_id_name(func_id), func_id, type);
8766 	return -ENOTSUPP;
8767 }
8768 
8769 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
8770 {
8771 	return &env->insn_aux_data[env->insn_idx];
8772 }
8773 
8774 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
8775 {
8776 	struct bpf_reg_state *regs = cur_regs(env);
8777 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
8778 	bool reg_is_null = register_is_null(reg);
8779 
8780 	if (reg_is_null)
8781 		mark_chain_precision(env, BPF_REG_4);
8782 
8783 	return reg_is_null;
8784 }
8785 
8786 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
8787 {
8788 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
8789 
8790 	if (!state->initialized) {
8791 		state->initialized = 1;
8792 		state->fit_for_inline = loop_flag_is_zero(env);
8793 		state->callback_subprogno = subprogno;
8794 		return;
8795 	}
8796 
8797 	if (!state->fit_for_inline)
8798 		return;
8799 
8800 	state->fit_for_inline = (loop_flag_is_zero(env) &&
8801 				 state->callback_subprogno == subprogno);
8802 }
8803 
8804 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8805 			     int *insn_idx_p)
8806 {
8807 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8808 	const struct bpf_func_proto *fn = NULL;
8809 	enum bpf_return_type ret_type;
8810 	enum bpf_type_flag ret_flag;
8811 	struct bpf_reg_state *regs;
8812 	struct bpf_call_arg_meta meta;
8813 	int insn_idx = *insn_idx_p;
8814 	bool changes_data;
8815 	int i, err, func_id;
8816 
8817 	/* find function prototype */
8818 	func_id = insn->imm;
8819 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
8820 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
8821 			func_id);
8822 		return -EINVAL;
8823 	}
8824 
8825 	if (env->ops->get_func_proto)
8826 		fn = env->ops->get_func_proto(func_id, env->prog);
8827 	if (!fn) {
8828 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
8829 			func_id);
8830 		return -EINVAL;
8831 	}
8832 
8833 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
8834 	if (!env->prog->gpl_compatible && fn->gpl_only) {
8835 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
8836 		return -EINVAL;
8837 	}
8838 
8839 	if (fn->allowed && !fn->allowed(env->prog)) {
8840 		verbose(env, "helper call is not allowed in probe\n");
8841 		return -EINVAL;
8842 	}
8843 
8844 	if (!env->prog->aux->sleepable && fn->might_sleep) {
8845 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
8846 		return -EINVAL;
8847 	}
8848 
8849 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
8850 	changes_data = bpf_helper_changes_pkt_data(fn->func);
8851 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
8852 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
8853 			func_id_name(func_id), func_id);
8854 		return -EINVAL;
8855 	}
8856 
8857 	memset(&meta, 0, sizeof(meta));
8858 	meta.pkt_access = fn->pkt_access;
8859 
8860 	err = check_func_proto(fn, func_id);
8861 	if (err) {
8862 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
8863 			func_id_name(func_id), func_id);
8864 		return err;
8865 	}
8866 
8867 	if (env->cur_state->active_rcu_lock) {
8868 		if (fn->might_sleep) {
8869 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
8870 				func_id_name(func_id), func_id);
8871 			return -EINVAL;
8872 		}
8873 
8874 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
8875 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
8876 	}
8877 
8878 	meta.func_id = func_id;
8879 	/* check args */
8880 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
8881 		err = check_func_arg(env, i, &meta, fn, insn_idx);
8882 		if (err)
8883 			return err;
8884 	}
8885 
8886 	err = record_func_map(env, &meta, func_id, insn_idx);
8887 	if (err)
8888 		return err;
8889 
8890 	err = record_func_key(env, &meta, func_id, insn_idx);
8891 	if (err)
8892 		return err;
8893 
8894 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
8895 	 * is inferred from register state.
8896 	 */
8897 	for (i = 0; i < meta.access_size; i++) {
8898 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
8899 				       BPF_WRITE, -1, false);
8900 		if (err)
8901 			return err;
8902 	}
8903 
8904 	regs = cur_regs(env);
8905 
8906 	if (meta.release_regno) {
8907 		err = -EINVAL;
8908 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8909 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
8910 		 * is safe to do directly.
8911 		 */
8912 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
8913 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
8914 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
8915 				return -EFAULT;
8916 			}
8917 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
8918 		} else if (meta.ref_obj_id) {
8919 			err = release_reference(env, meta.ref_obj_id);
8920 		} else if (register_is_null(&regs[meta.release_regno])) {
8921 			/* meta.ref_obj_id can only be 0 if register that is meant to be
8922 			 * released is NULL, which must be > R0.
8923 			 */
8924 			err = 0;
8925 		}
8926 		if (err) {
8927 			verbose(env, "func %s#%d reference has not been acquired before\n",
8928 				func_id_name(func_id), func_id);
8929 			return err;
8930 		}
8931 	}
8932 
8933 	switch (func_id) {
8934 	case BPF_FUNC_tail_call:
8935 		err = check_reference_leak(env);
8936 		if (err) {
8937 			verbose(env, "tail_call would lead to reference leak\n");
8938 			return err;
8939 		}
8940 		break;
8941 	case BPF_FUNC_get_local_storage:
8942 		/* check that flags argument in get_local_storage(map, flags) is 0,
8943 		 * this is required because get_local_storage() can't return an error.
8944 		 */
8945 		if (!register_is_null(&regs[BPF_REG_2])) {
8946 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
8947 			return -EINVAL;
8948 		}
8949 		break;
8950 	case BPF_FUNC_for_each_map_elem:
8951 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8952 					set_map_elem_callback_state);
8953 		break;
8954 	case BPF_FUNC_timer_set_callback:
8955 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8956 					set_timer_callback_state);
8957 		break;
8958 	case BPF_FUNC_find_vma:
8959 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8960 					set_find_vma_callback_state);
8961 		break;
8962 	case BPF_FUNC_snprintf:
8963 		err = check_bpf_snprintf_call(env, regs);
8964 		break;
8965 	case BPF_FUNC_loop:
8966 		update_loop_inline_state(env, meta.subprogno);
8967 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8968 					set_loop_callback_state);
8969 		break;
8970 	case BPF_FUNC_dynptr_from_mem:
8971 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
8972 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
8973 				reg_type_str(env, regs[BPF_REG_1].type));
8974 			return -EACCES;
8975 		}
8976 		break;
8977 	case BPF_FUNC_set_retval:
8978 		if (prog_type == BPF_PROG_TYPE_LSM &&
8979 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
8980 			if (!env->prog->aux->attach_func_proto->type) {
8981 				/* Make sure programs that attach to void
8982 				 * hooks don't try to modify return value.
8983 				 */
8984 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
8985 				return -EINVAL;
8986 			}
8987 		}
8988 		break;
8989 	case BPF_FUNC_dynptr_data:
8990 	{
8991 		struct bpf_reg_state *reg;
8992 		int id, ref_obj_id;
8993 
8994 		reg = get_dynptr_arg_reg(env, fn, regs);
8995 		if (!reg)
8996 			return -EFAULT;
8997 
8998 
8999 		if (meta.dynptr_id) {
9000 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9001 			return -EFAULT;
9002 		}
9003 		if (meta.ref_obj_id) {
9004 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9005 			return -EFAULT;
9006 		}
9007 
9008 		id = dynptr_id(env, reg);
9009 		if (id < 0) {
9010 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9011 			return id;
9012 		}
9013 
9014 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9015 		if (ref_obj_id < 0) {
9016 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9017 			return ref_obj_id;
9018 		}
9019 
9020 		meta.dynptr_id = id;
9021 		meta.ref_obj_id = ref_obj_id;
9022 
9023 		break;
9024 	}
9025 	case BPF_FUNC_dynptr_write:
9026 	{
9027 		enum bpf_dynptr_type dynptr_type;
9028 		struct bpf_reg_state *reg;
9029 
9030 		reg = get_dynptr_arg_reg(env, fn, regs);
9031 		if (!reg)
9032 			return -EFAULT;
9033 
9034 		dynptr_type = dynptr_get_type(env, reg);
9035 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9036 			return -EFAULT;
9037 
9038 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9039 			/* this will trigger clear_all_pkt_pointers(), which will
9040 			 * invalidate all dynptr slices associated with the skb
9041 			 */
9042 			changes_data = true;
9043 
9044 		break;
9045 	}
9046 	case BPF_FUNC_user_ringbuf_drain:
9047 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9048 					set_user_ringbuf_callback_state);
9049 		break;
9050 	}
9051 
9052 	if (err)
9053 		return err;
9054 
9055 	/* reset caller saved regs */
9056 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9057 		mark_reg_not_init(env, regs, caller_saved[i]);
9058 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9059 	}
9060 
9061 	/* helper call returns 64-bit value. */
9062 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9063 
9064 	/* update return register (already marked as written above) */
9065 	ret_type = fn->ret_type;
9066 	ret_flag = type_flag(ret_type);
9067 
9068 	switch (base_type(ret_type)) {
9069 	case RET_INTEGER:
9070 		/* sets type to SCALAR_VALUE */
9071 		mark_reg_unknown(env, regs, BPF_REG_0);
9072 		break;
9073 	case RET_VOID:
9074 		regs[BPF_REG_0].type = NOT_INIT;
9075 		break;
9076 	case RET_PTR_TO_MAP_VALUE:
9077 		/* There is no offset yet applied, variable or fixed */
9078 		mark_reg_known_zero(env, regs, BPF_REG_0);
9079 		/* remember map_ptr, so that check_map_access()
9080 		 * can check 'value_size' boundary of memory access
9081 		 * to map element returned from bpf_map_lookup_elem()
9082 		 */
9083 		if (meta.map_ptr == NULL) {
9084 			verbose(env,
9085 				"kernel subsystem misconfigured verifier\n");
9086 			return -EINVAL;
9087 		}
9088 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9089 		regs[BPF_REG_0].map_uid = meta.map_uid;
9090 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9091 		if (!type_may_be_null(ret_type) &&
9092 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9093 			regs[BPF_REG_0].id = ++env->id_gen;
9094 		}
9095 		break;
9096 	case RET_PTR_TO_SOCKET:
9097 		mark_reg_known_zero(env, regs, BPF_REG_0);
9098 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9099 		break;
9100 	case RET_PTR_TO_SOCK_COMMON:
9101 		mark_reg_known_zero(env, regs, BPF_REG_0);
9102 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9103 		break;
9104 	case RET_PTR_TO_TCP_SOCK:
9105 		mark_reg_known_zero(env, regs, BPF_REG_0);
9106 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9107 		break;
9108 	case RET_PTR_TO_MEM:
9109 		mark_reg_known_zero(env, regs, BPF_REG_0);
9110 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9111 		regs[BPF_REG_0].mem_size = meta.mem_size;
9112 		break;
9113 	case RET_PTR_TO_MEM_OR_BTF_ID:
9114 	{
9115 		const struct btf_type *t;
9116 
9117 		mark_reg_known_zero(env, regs, BPF_REG_0);
9118 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9119 		if (!btf_type_is_struct(t)) {
9120 			u32 tsize;
9121 			const struct btf_type *ret;
9122 			const char *tname;
9123 
9124 			/* resolve the type size of ksym. */
9125 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9126 			if (IS_ERR(ret)) {
9127 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9128 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9129 					tname, PTR_ERR(ret));
9130 				return -EINVAL;
9131 			}
9132 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9133 			regs[BPF_REG_0].mem_size = tsize;
9134 		} else {
9135 			/* MEM_RDONLY may be carried from ret_flag, but it
9136 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9137 			 * it will confuse the check of PTR_TO_BTF_ID in
9138 			 * check_mem_access().
9139 			 */
9140 			ret_flag &= ~MEM_RDONLY;
9141 
9142 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9143 			regs[BPF_REG_0].btf = meta.ret_btf;
9144 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9145 		}
9146 		break;
9147 	}
9148 	case RET_PTR_TO_BTF_ID:
9149 	{
9150 		struct btf *ret_btf;
9151 		int ret_btf_id;
9152 
9153 		mark_reg_known_zero(env, regs, BPF_REG_0);
9154 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9155 		if (func_id == BPF_FUNC_kptr_xchg) {
9156 			ret_btf = meta.kptr_field->kptr.btf;
9157 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9158 			if (!btf_is_kernel(ret_btf))
9159 				regs[BPF_REG_0].type |= MEM_ALLOC;
9160 		} else {
9161 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9162 				verbose(env, "verifier internal error:");
9163 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9164 					func_id_name(func_id));
9165 				return -EINVAL;
9166 			}
9167 			ret_btf = btf_vmlinux;
9168 			ret_btf_id = *fn->ret_btf_id;
9169 		}
9170 		if (ret_btf_id == 0) {
9171 			verbose(env, "invalid return type %u of func %s#%d\n",
9172 				base_type(ret_type), func_id_name(func_id),
9173 				func_id);
9174 			return -EINVAL;
9175 		}
9176 		regs[BPF_REG_0].btf = ret_btf;
9177 		regs[BPF_REG_0].btf_id = ret_btf_id;
9178 		break;
9179 	}
9180 	default:
9181 		verbose(env, "unknown return type %u of func %s#%d\n",
9182 			base_type(ret_type), func_id_name(func_id), func_id);
9183 		return -EINVAL;
9184 	}
9185 
9186 	if (type_may_be_null(regs[BPF_REG_0].type))
9187 		regs[BPF_REG_0].id = ++env->id_gen;
9188 
9189 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9190 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9191 			func_id_name(func_id), func_id);
9192 		return -EFAULT;
9193 	}
9194 
9195 	if (is_dynptr_ref_function(func_id))
9196 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9197 
9198 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9199 		/* For release_reference() */
9200 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9201 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9202 		int id = acquire_reference_state(env, insn_idx);
9203 
9204 		if (id < 0)
9205 			return id;
9206 		/* For mark_ptr_or_null_reg() */
9207 		regs[BPF_REG_0].id = id;
9208 		/* For release_reference() */
9209 		regs[BPF_REG_0].ref_obj_id = id;
9210 	}
9211 
9212 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9213 
9214 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9215 	if (err)
9216 		return err;
9217 
9218 	if ((func_id == BPF_FUNC_get_stack ||
9219 	     func_id == BPF_FUNC_get_task_stack) &&
9220 	    !env->prog->has_callchain_buf) {
9221 		const char *err_str;
9222 
9223 #ifdef CONFIG_PERF_EVENTS
9224 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9225 		err_str = "cannot get callchain buffer for func %s#%d\n";
9226 #else
9227 		err = -ENOTSUPP;
9228 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9229 #endif
9230 		if (err) {
9231 			verbose(env, err_str, func_id_name(func_id), func_id);
9232 			return err;
9233 		}
9234 
9235 		env->prog->has_callchain_buf = true;
9236 	}
9237 
9238 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9239 		env->prog->call_get_stack = true;
9240 
9241 	if (func_id == BPF_FUNC_get_func_ip) {
9242 		if (check_get_func_ip(env))
9243 			return -ENOTSUPP;
9244 		env->prog->call_get_func_ip = true;
9245 	}
9246 
9247 	if (changes_data)
9248 		clear_all_pkt_pointers(env);
9249 	return 0;
9250 }
9251 
9252 /* mark_btf_func_reg_size() is used when the reg size is determined by
9253  * the BTF func_proto's return value size and argument.
9254  */
9255 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9256 				   size_t reg_size)
9257 {
9258 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
9259 
9260 	if (regno == BPF_REG_0) {
9261 		/* Function return value */
9262 		reg->live |= REG_LIVE_WRITTEN;
9263 		reg->subreg_def = reg_size == sizeof(u64) ?
9264 			DEF_NOT_SUBREG : env->insn_idx + 1;
9265 	} else {
9266 		/* Function argument */
9267 		if (reg_size == sizeof(u64)) {
9268 			mark_insn_zext(env, reg);
9269 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9270 		} else {
9271 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9272 		}
9273 	}
9274 }
9275 
9276 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
9277 {
9278 	return meta->kfunc_flags & KF_ACQUIRE;
9279 }
9280 
9281 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
9282 {
9283 	return meta->kfunc_flags & KF_RET_NULL;
9284 }
9285 
9286 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
9287 {
9288 	return meta->kfunc_flags & KF_RELEASE;
9289 }
9290 
9291 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
9292 {
9293 	return meta->kfunc_flags & KF_TRUSTED_ARGS;
9294 }
9295 
9296 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
9297 {
9298 	return meta->kfunc_flags & KF_SLEEPABLE;
9299 }
9300 
9301 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
9302 {
9303 	return meta->kfunc_flags & KF_DESTRUCTIVE;
9304 }
9305 
9306 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
9307 {
9308 	return meta->kfunc_flags & KF_RCU;
9309 }
9310 
9311 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
9312 {
9313 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
9314 }
9315 
9316 static bool __kfunc_param_match_suffix(const struct btf *btf,
9317 				       const struct btf_param *arg,
9318 				       const char *suffix)
9319 {
9320 	int suffix_len = strlen(suffix), len;
9321 	const char *param_name;
9322 
9323 	/* In the future, this can be ported to use BTF tagging */
9324 	param_name = btf_name_by_offset(btf, arg->name_off);
9325 	if (str_is_empty(param_name))
9326 		return false;
9327 	len = strlen(param_name);
9328 	if (len < suffix_len)
9329 		return false;
9330 	param_name += len - suffix_len;
9331 	return !strncmp(param_name, suffix, suffix_len);
9332 }
9333 
9334 static bool is_kfunc_arg_mem_size(const struct btf *btf,
9335 				  const struct btf_param *arg,
9336 				  const struct bpf_reg_state *reg)
9337 {
9338 	const struct btf_type *t;
9339 
9340 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9341 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9342 		return false;
9343 
9344 	return __kfunc_param_match_suffix(btf, arg, "__sz");
9345 }
9346 
9347 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
9348 					const struct btf_param *arg,
9349 					const struct bpf_reg_state *reg)
9350 {
9351 	const struct btf_type *t;
9352 
9353 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9354 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9355 		return false;
9356 
9357 	return __kfunc_param_match_suffix(btf, arg, "__szk");
9358 }
9359 
9360 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
9361 {
9362 	return __kfunc_param_match_suffix(btf, arg, "__k");
9363 }
9364 
9365 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
9366 {
9367 	return __kfunc_param_match_suffix(btf, arg, "__ign");
9368 }
9369 
9370 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
9371 {
9372 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
9373 }
9374 
9375 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
9376 {
9377 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
9378 }
9379 
9380 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
9381 					  const struct btf_param *arg,
9382 					  const char *name)
9383 {
9384 	int len, target_len = strlen(name);
9385 	const char *param_name;
9386 
9387 	param_name = btf_name_by_offset(btf, arg->name_off);
9388 	if (str_is_empty(param_name))
9389 		return false;
9390 	len = strlen(param_name);
9391 	if (len != target_len)
9392 		return false;
9393 	if (strcmp(param_name, name))
9394 		return false;
9395 
9396 	return true;
9397 }
9398 
9399 enum {
9400 	KF_ARG_DYNPTR_ID,
9401 	KF_ARG_LIST_HEAD_ID,
9402 	KF_ARG_LIST_NODE_ID,
9403 	KF_ARG_RB_ROOT_ID,
9404 	KF_ARG_RB_NODE_ID,
9405 };
9406 
9407 BTF_ID_LIST(kf_arg_btf_ids)
9408 BTF_ID(struct, bpf_dynptr_kern)
9409 BTF_ID(struct, bpf_list_head)
9410 BTF_ID(struct, bpf_list_node)
9411 BTF_ID(struct, bpf_rb_root)
9412 BTF_ID(struct, bpf_rb_node)
9413 
9414 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
9415 				    const struct btf_param *arg, int type)
9416 {
9417 	const struct btf_type *t;
9418 	u32 res_id;
9419 
9420 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9421 	if (!t)
9422 		return false;
9423 	if (!btf_type_is_ptr(t))
9424 		return false;
9425 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
9426 	if (!t)
9427 		return false;
9428 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
9429 }
9430 
9431 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
9432 {
9433 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
9434 }
9435 
9436 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
9437 {
9438 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
9439 }
9440 
9441 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
9442 {
9443 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
9444 }
9445 
9446 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
9447 {
9448 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
9449 }
9450 
9451 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
9452 {
9453 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
9454 }
9455 
9456 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
9457 				  const struct btf_param *arg)
9458 {
9459 	const struct btf_type *t;
9460 
9461 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
9462 	if (!t)
9463 		return false;
9464 
9465 	return true;
9466 }
9467 
9468 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
9469 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
9470 					const struct btf *btf,
9471 					const struct btf_type *t, int rec)
9472 {
9473 	const struct btf_type *member_type;
9474 	const struct btf_member *member;
9475 	u32 i;
9476 
9477 	if (!btf_type_is_struct(t))
9478 		return false;
9479 
9480 	for_each_member(i, t, member) {
9481 		const struct btf_array *array;
9482 
9483 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
9484 		if (btf_type_is_struct(member_type)) {
9485 			if (rec >= 3) {
9486 				verbose(env, "max struct nesting depth exceeded\n");
9487 				return false;
9488 			}
9489 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
9490 				return false;
9491 			continue;
9492 		}
9493 		if (btf_type_is_array(member_type)) {
9494 			array = btf_array(member_type);
9495 			if (!array->nelems)
9496 				return false;
9497 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
9498 			if (!btf_type_is_scalar(member_type))
9499 				return false;
9500 			continue;
9501 		}
9502 		if (!btf_type_is_scalar(member_type))
9503 			return false;
9504 	}
9505 	return true;
9506 }
9507 
9508 
9509 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
9510 #ifdef CONFIG_NET
9511 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
9512 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9513 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9514 #endif
9515 };
9516 
9517 enum kfunc_ptr_arg_type {
9518 	KF_ARG_PTR_TO_CTX,
9519 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
9520 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
9521 	KF_ARG_PTR_TO_DYNPTR,
9522 	KF_ARG_PTR_TO_ITER,
9523 	KF_ARG_PTR_TO_LIST_HEAD,
9524 	KF_ARG_PTR_TO_LIST_NODE,
9525 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
9526 	KF_ARG_PTR_TO_MEM,
9527 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
9528 	KF_ARG_PTR_TO_CALLBACK,
9529 	KF_ARG_PTR_TO_RB_ROOT,
9530 	KF_ARG_PTR_TO_RB_NODE,
9531 };
9532 
9533 enum special_kfunc_type {
9534 	KF_bpf_obj_new_impl,
9535 	KF_bpf_obj_drop_impl,
9536 	KF_bpf_list_push_front,
9537 	KF_bpf_list_push_back,
9538 	KF_bpf_list_pop_front,
9539 	KF_bpf_list_pop_back,
9540 	KF_bpf_cast_to_kern_ctx,
9541 	KF_bpf_rdonly_cast,
9542 	KF_bpf_rcu_read_lock,
9543 	KF_bpf_rcu_read_unlock,
9544 	KF_bpf_rbtree_remove,
9545 	KF_bpf_rbtree_add,
9546 	KF_bpf_rbtree_first,
9547 	KF_bpf_dynptr_from_skb,
9548 	KF_bpf_dynptr_from_xdp,
9549 	KF_bpf_dynptr_slice,
9550 	KF_bpf_dynptr_slice_rdwr,
9551 };
9552 
9553 BTF_SET_START(special_kfunc_set)
9554 BTF_ID(func, bpf_obj_new_impl)
9555 BTF_ID(func, bpf_obj_drop_impl)
9556 BTF_ID(func, bpf_list_push_front)
9557 BTF_ID(func, bpf_list_push_back)
9558 BTF_ID(func, bpf_list_pop_front)
9559 BTF_ID(func, bpf_list_pop_back)
9560 BTF_ID(func, bpf_cast_to_kern_ctx)
9561 BTF_ID(func, bpf_rdonly_cast)
9562 BTF_ID(func, bpf_rbtree_remove)
9563 BTF_ID(func, bpf_rbtree_add)
9564 BTF_ID(func, bpf_rbtree_first)
9565 BTF_ID(func, bpf_dynptr_from_skb)
9566 BTF_ID(func, bpf_dynptr_from_xdp)
9567 BTF_ID(func, bpf_dynptr_slice)
9568 BTF_ID(func, bpf_dynptr_slice_rdwr)
9569 BTF_SET_END(special_kfunc_set)
9570 
9571 BTF_ID_LIST(special_kfunc_list)
9572 BTF_ID(func, bpf_obj_new_impl)
9573 BTF_ID(func, bpf_obj_drop_impl)
9574 BTF_ID(func, bpf_list_push_front)
9575 BTF_ID(func, bpf_list_push_back)
9576 BTF_ID(func, bpf_list_pop_front)
9577 BTF_ID(func, bpf_list_pop_back)
9578 BTF_ID(func, bpf_cast_to_kern_ctx)
9579 BTF_ID(func, bpf_rdonly_cast)
9580 BTF_ID(func, bpf_rcu_read_lock)
9581 BTF_ID(func, bpf_rcu_read_unlock)
9582 BTF_ID(func, bpf_rbtree_remove)
9583 BTF_ID(func, bpf_rbtree_add)
9584 BTF_ID(func, bpf_rbtree_first)
9585 BTF_ID(func, bpf_dynptr_from_skb)
9586 BTF_ID(func, bpf_dynptr_from_xdp)
9587 BTF_ID(func, bpf_dynptr_slice)
9588 BTF_ID(func, bpf_dynptr_slice_rdwr)
9589 
9590 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
9591 {
9592 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
9593 }
9594 
9595 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
9596 {
9597 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
9598 }
9599 
9600 static enum kfunc_ptr_arg_type
9601 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
9602 		       struct bpf_kfunc_call_arg_meta *meta,
9603 		       const struct btf_type *t, const struct btf_type *ref_t,
9604 		       const char *ref_tname, const struct btf_param *args,
9605 		       int argno, int nargs)
9606 {
9607 	u32 regno = argno + 1;
9608 	struct bpf_reg_state *regs = cur_regs(env);
9609 	struct bpf_reg_state *reg = &regs[regno];
9610 	bool arg_mem_size = false;
9611 
9612 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
9613 		return KF_ARG_PTR_TO_CTX;
9614 
9615 	/* In this function, we verify the kfunc's BTF as per the argument type,
9616 	 * leaving the rest of the verification with respect to the register
9617 	 * type to our caller. When a set of conditions hold in the BTF type of
9618 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
9619 	 */
9620 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
9621 		return KF_ARG_PTR_TO_CTX;
9622 
9623 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
9624 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
9625 
9626 	if (is_kfunc_arg_kptr_get(meta, argno)) {
9627 		if (!btf_type_is_ptr(ref_t)) {
9628 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
9629 			return -EINVAL;
9630 		}
9631 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
9632 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
9633 		if (!btf_type_is_struct(ref_t)) {
9634 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
9635 				meta->func_name, btf_type_str(ref_t), ref_tname);
9636 			return -EINVAL;
9637 		}
9638 		return KF_ARG_PTR_TO_KPTR;
9639 	}
9640 
9641 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
9642 		return KF_ARG_PTR_TO_DYNPTR;
9643 
9644 	if (is_kfunc_arg_iter(meta, argno))
9645 		return KF_ARG_PTR_TO_ITER;
9646 
9647 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
9648 		return KF_ARG_PTR_TO_LIST_HEAD;
9649 
9650 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
9651 		return KF_ARG_PTR_TO_LIST_NODE;
9652 
9653 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
9654 		return KF_ARG_PTR_TO_RB_ROOT;
9655 
9656 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
9657 		return KF_ARG_PTR_TO_RB_NODE;
9658 
9659 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
9660 		if (!btf_type_is_struct(ref_t)) {
9661 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
9662 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9663 			return -EINVAL;
9664 		}
9665 		return KF_ARG_PTR_TO_BTF_ID;
9666 	}
9667 
9668 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
9669 		return KF_ARG_PTR_TO_CALLBACK;
9670 
9671 
9672 	if (argno + 1 < nargs &&
9673 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
9674 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
9675 		arg_mem_size = true;
9676 
9677 	/* This is the catch all argument type of register types supported by
9678 	 * check_helper_mem_access. However, we only allow when argument type is
9679 	 * pointer to scalar, or struct composed (recursively) of scalars. When
9680 	 * arg_mem_size is true, the pointer can be void *.
9681 	 */
9682 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
9683 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
9684 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
9685 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
9686 		return -EINVAL;
9687 	}
9688 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
9689 }
9690 
9691 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
9692 					struct bpf_reg_state *reg,
9693 					const struct btf_type *ref_t,
9694 					const char *ref_tname, u32 ref_id,
9695 					struct bpf_kfunc_call_arg_meta *meta,
9696 					int argno)
9697 {
9698 	const struct btf_type *reg_ref_t;
9699 	bool strict_type_match = false;
9700 	const struct btf *reg_btf;
9701 	const char *reg_ref_tname;
9702 	u32 reg_ref_id;
9703 
9704 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
9705 		reg_btf = reg->btf;
9706 		reg_ref_id = reg->btf_id;
9707 	} else {
9708 		reg_btf = btf_vmlinux;
9709 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
9710 	}
9711 
9712 	/* Enforce strict type matching for calls to kfuncs that are acquiring
9713 	 * or releasing a reference, or are no-cast aliases. We do _not_
9714 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
9715 	 * as we want to enable BPF programs to pass types that are bitwise
9716 	 * equivalent without forcing them to explicitly cast with something
9717 	 * like bpf_cast_to_kern_ctx().
9718 	 *
9719 	 * For example, say we had a type like the following:
9720 	 *
9721 	 * struct bpf_cpumask {
9722 	 *	cpumask_t cpumask;
9723 	 *	refcount_t usage;
9724 	 * };
9725 	 *
9726 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
9727 	 * to a struct cpumask, so it would be safe to pass a struct
9728 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
9729 	 *
9730 	 * The philosophy here is similar to how we allow scalars of different
9731 	 * types to be passed to kfuncs as long as the size is the same. The
9732 	 * only difference here is that we're simply allowing
9733 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
9734 	 * resolve types.
9735 	 */
9736 	if (is_kfunc_acquire(meta) ||
9737 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
9738 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
9739 		strict_type_match = true;
9740 
9741 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
9742 
9743 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
9744 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
9745 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
9746 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
9747 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
9748 			btf_type_str(reg_ref_t), reg_ref_tname);
9749 		return -EINVAL;
9750 	}
9751 	return 0;
9752 }
9753 
9754 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
9755 				      struct bpf_reg_state *reg,
9756 				      const struct btf_type *ref_t,
9757 				      const char *ref_tname,
9758 				      struct bpf_kfunc_call_arg_meta *meta,
9759 				      int argno)
9760 {
9761 	struct btf_field *kptr_field;
9762 
9763 	/* check_func_arg_reg_off allows var_off for
9764 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
9765 	 * off_desc.
9766 	 */
9767 	if (!tnum_is_const(reg->var_off)) {
9768 		verbose(env, "arg#0 must have constant offset\n");
9769 		return -EINVAL;
9770 	}
9771 
9772 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
9773 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
9774 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
9775 			reg->off + reg->var_off.value);
9776 		return -EINVAL;
9777 	}
9778 
9779 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
9780 				  kptr_field->kptr.btf_id, true)) {
9781 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
9782 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9783 		return -EINVAL;
9784 	}
9785 	return 0;
9786 }
9787 
9788 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9789 {
9790 	struct bpf_verifier_state *state = env->cur_state;
9791 
9792 	if (!state->active_lock.ptr) {
9793 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
9794 		return -EFAULT;
9795 	}
9796 
9797 	if (type_flag(reg->type) & NON_OWN_REF) {
9798 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
9799 		return -EFAULT;
9800 	}
9801 
9802 	reg->type |= NON_OWN_REF;
9803 	return 0;
9804 }
9805 
9806 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
9807 {
9808 	struct bpf_func_state *state, *unused;
9809 	struct bpf_reg_state *reg;
9810 	int i;
9811 
9812 	state = cur_func(env);
9813 
9814 	if (!ref_obj_id) {
9815 		verbose(env, "verifier internal error: ref_obj_id is zero for "
9816 			     "owning -> non-owning conversion\n");
9817 		return -EFAULT;
9818 	}
9819 
9820 	for (i = 0; i < state->acquired_refs; i++) {
9821 		if (state->refs[i].id != ref_obj_id)
9822 			continue;
9823 
9824 		/* Clear ref_obj_id here so release_reference doesn't clobber
9825 		 * the whole reg
9826 		 */
9827 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9828 			if (reg->ref_obj_id == ref_obj_id) {
9829 				reg->ref_obj_id = 0;
9830 				ref_set_non_owning(env, reg);
9831 			}
9832 		}));
9833 		return 0;
9834 	}
9835 
9836 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
9837 	return -EFAULT;
9838 }
9839 
9840 /* Implementation details:
9841  *
9842  * Each register points to some region of memory, which we define as an
9843  * allocation. Each allocation may embed a bpf_spin_lock which protects any
9844  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
9845  * allocation. The lock and the data it protects are colocated in the same
9846  * memory region.
9847  *
9848  * Hence, everytime a register holds a pointer value pointing to such
9849  * allocation, the verifier preserves a unique reg->id for it.
9850  *
9851  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
9852  * bpf_spin_lock is called.
9853  *
9854  * To enable this, lock state in the verifier captures two values:
9855  *	active_lock.ptr = Register's type specific pointer
9856  *	active_lock.id  = A unique ID for each register pointer value
9857  *
9858  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
9859  * supported register types.
9860  *
9861  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
9862  * allocated objects is the reg->btf pointer.
9863  *
9864  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
9865  * can establish the provenance of the map value statically for each distinct
9866  * lookup into such maps. They always contain a single map value hence unique
9867  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
9868  *
9869  * So, in case of global variables, they use array maps with max_entries = 1,
9870  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
9871  * into the same map value as max_entries is 1, as described above).
9872  *
9873  * In case of inner map lookups, the inner map pointer has same map_ptr as the
9874  * outer map pointer (in verifier context), but each lookup into an inner map
9875  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
9876  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
9877  * will get different reg->id assigned to each lookup, hence different
9878  * active_lock.id.
9879  *
9880  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
9881  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
9882  * returned from bpf_obj_new. Each allocation receives a new reg->id.
9883  */
9884 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9885 {
9886 	void *ptr;
9887 	u32 id;
9888 
9889 	switch ((int)reg->type) {
9890 	case PTR_TO_MAP_VALUE:
9891 		ptr = reg->map_ptr;
9892 		break;
9893 	case PTR_TO_BTF_ID | MEM_ALLOC:
9894 		ptr = reg->btf;
9895 		break;
9896 	default:
9897 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
9898 		return -EFAULT;
9899 	}
9900 	id = reg->id;
9901 
9902 	if (!env->cur_state->active_lock.ptr)
9903 		return -EINVAL;
9904 	if (env->cur_state->active_lock.ptr != ptr ||
9905 	    env->cur_state->active_lock.id != id) {
9906 		verbose(env, "held lock and object are not in the same allocation\n");
9907 		return -EINVAL;
9908 	}
9909 	return 0;
9910 }
9911 
9912 static bool is_bpf_list_api_kfunc(u32 btf_id)
9913 {
9914 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9915 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
9916 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9917 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
9918 }
9919 
9920 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
9921 {
9922 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add] ||
9923 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
9924 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
9925 }
9926 
9927 static bool is_bpf_graph_api_kfunc(u32 btf_id)
9928 {
9929 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id);
9930 }
9931 
9932 static bool is_callback_calling_kfunc(u32 btf_id)
9933 {
9934 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add];
9935 }
9936 
9937 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
9938 {
9939 	return is_bpf_rbtree_api_kfunc(btf_id);
9940 }
9941 
9942 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
9943 					  enum btf_field_type head_field_type,
9944 					  u32 kfunc_btf_id)
9945 {
9946 	bool ret;
9947 
9948 	switch (head_field_type) {
9949 	case BPF_LIST_HEAD:
9950 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
9951 		break;
9952 	case BPF_RB_ROOT:
9953 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
9954 		break;
9955 	default:
9956 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
9957 			btf_field_type_name(head_field_type));
9958 		return false;
9959 	}
9960 
9961 	if (!ret)
9962 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
9963 			btf_field_type_name(head_field_type));
9964 	return ret;
9965 }
9966 
9967 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
9968 					  enum btf_field_type node_field_type,
9969 					  u32 kfunc_btf_id)
9970 {
9971 	bool ret;
9972 
9973 	switch (node_field_type) {
9974 	case BPF_LIST_NODE:
9975 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9976 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]);
9977 		break;
9978 	case BPF_RB_NODE:
9979 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
9980 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]);
9981 		break;
9982 	default:
9983 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
9984 			btf_field_type_name(node_field_type));
9985 		return false;
9986 	}
9987 
9988 	if (!ret)
9989 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
9990 			btf_field_type_name(node_field_type));
9991 	return ret;
9992 }
9993 
9994 static int
9995 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
9996 				   struct bpf_reg_state *reg, u32 regno,
9997 				   struct bpf_kfunc_call_arg_meta *meta,
9998 				   enum btf_field_type head_field_type,
9999 				   struct btf_field **head_field)
10000 {
10001 	const char *head_type_name;
10002 	struct btf_field *field;
10003 	struct btf_record *rec;
10004 	u32 head_off;
10005 
10006 	if (meta->btf != btf_vmlinux) {
10007 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10008 		return -EFAULT;
10009 	}
10010 
10011 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10012 		return -EFAULT;
10013 
10014 	head_type_name = btf_field_type_name(head_field_type);
10015 	if (!tnum_is_const(reg->var_off)) {
10016 		verbose(env,
10017 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10018 			regno, head_type_name);
10019 		return -EINVAL;
10020 	}
10021 
10022 	rec = reg_btf_record(reg);
10023 	head_off = reg->off + reg->var_off.value;
10024 	field = btf_record_find(rec, head_off, head_field_type);
10025 	if (!field) {
10026 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10027 		return -EINVAL;
10028 	}
10029 
10030 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10031 	if (check_reg_allocation_locked(env, reg)) {
10032 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10033 			rec->spin_lock_off, head_type_name);
10034 		return -EINVAL;
10035 	}
10036 
10037 	if (*head_field) {
10038 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10039 		return -EFAULT;
10040 	}
10041 	*head_field = field;
10042 	return 0;
10043 }
10044 
10045 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10046 					   struct bpf_reg_state *reg, u32 regno,
10047 					   struct bpf_kfunc_call_arg_meta *meta)
10048 {
10049 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10050 							  &meta->arg_list_head.field);
10051 }
10052 
10053 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10054 					     struct bpf_reg_state *reg, u32 regno,
10055 					     struct bpf_kfunc_call_arg_meta *meta)
10056 {
10057 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10058 							  &meta->arg_rbtree_root.field);
10059 }
10060 
10061 static int
10062 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10063 				   struct bpf_reg_state *reg, u32 regno,
10064 				   struct bpf_kfunc_call_arg_meta *meta,
10065 				   enum btf_field_type head_field_type,
10066 				   enum btf_field_type node_field_type,
10067 				   struct btf_field **node_field)
10068 {
10069 	const char *node_type_name;
10070 	const struct btf_type *et, *t;
10071 	struct btf_field *field;
10072 	u32 node_off;
10073 
10074 	if (meta->btf != btf_vmlinux) {
10075 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10076 		return -EFAULT;
10077 	}
10078 
10079 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10080 		return -EFAULT;
10081 
10082 	node_type_name = btf_field_type_name(node_field_type);
10083 	if (!tnum_is_const(reg->var_off)) {
10084 		verbose(env,
10085 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10086 			regno, node_type_name);
10087 		return -EINVAL;
10088 	}
10089 
10090 	node_off = reg->off + reg->var_off.value;
10091 	field = reg_find_field_offset(reg, node_off, node_field_type);
10092 	if (!field || field->offset != node_off) {
10093 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10094 		return -EINVAL;
10095 	}
10096 
10097 	field = *node_field;
10098 
10099 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10100 	t = btf_type_by_id(reg->btf, reg->btf_id);
10101 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10102 				  field->graph_root.value_btf_id, true)) {
10103 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10104 			"in struct %s, but arg is at offset=%d in struct %s\n",
10105 			btf_field_type_name(head_field_type),
10106 			btf_field_type_name(node_field_type),
10107 			field->graph_root.node_offset,
10108 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10109 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10110 		return -EINVAL;
10111 	}
10112 
10113 	if (node_off != field->graph_root.node_offset) {
10114 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10115 			node_off, btf_field_type_name(node_field_type),
10116 			field->graph_root.node_offset,
10117 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10118 		return -EINVAL;
10119 	}
10120 
10121 	return 0;
10122 }
10123 
10124 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10125 					   struct bpf_reg_state *reg, u32 regno,
10126 					   struct bpf_kfunc_call_arg_meta *meta)
10127 {
10128 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10129 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10130 						  &meta->arg_list_head.field);
10131 }
10132 
10133 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10134 					     struct bpf_reg_state *reg, u32 regno,
10135 					     struct bpf_kfunc_call_arg_meta *meta)
10136 {
10137 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10138 						  BPF_RB_ROOT, BPF_RB_NODE,
10139 						  &meta->arg_rbtree_root.field);
10140 }
10141 
10142 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10143 			    int insn_idx)
10144 {
10145 	const char *func_name = meta->func_name, *ref_tname;
10146 	const struct btf *btf = meta->btf;
10147 	const struct btf_param *args;
10148 	u32 i, nargs;
10149 	int ret;
10150 
10151 	args = (const struct btf_param *)(meta->func_proto + 1);
10152 	nargs = btf_type_vlen(meta->func_proto);
10153 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10154 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10155 			MAX_BPF_FUNC_REG_ARGS);
10156 		return -EINVAL;
10157 	}
10158 
10159 	/* Check that BTF function arguments match actual types that the
10160 	 * verifier sees.
10161 	 */
10162 	for (i = 0; i < nargs; i++) {
10163 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10164 		const struct btf_type *t, *ref_t, *resolve_ret;
10165 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10166 		u32 regno = i + 1, ref_id, type_size;
10167 		bool is_ret_buf_sz = false;
10168 		int kf_arg_type;
10169 
10170 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10171 
10172 		if (is_kfunc_arg_ignore(btf, &args[i]))
10173 			continue;
10174 
10175 		if (btf_type_is_scalar(t)) {
10176 			if (reg->type != SCALAR_VALUE) {
10177 				verbose(env, "R%d is not a scalar\n", regno);
10178 				return -EINVAL;
10179 			}
10180 
10181 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10182 				if (meta->arg_constant.found) {
10183 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10184 					return -EFAULT;
10185 				}
10186 				if (!tnum_is_const(reg->var_off)) {
10187 					verbose(env, "R%d must be a known constant\n", regno);
10188 					return -EINVAL;
10189 				}
10190 				ret = mark_chain_precision(env, regno);
10191 				if (ret < 0)
10192 					return ret;
10193 				meta->arg_constant.found = true;
10194 				meta->arg_constant.value = reg->var_off.value;
10195 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10196 				meta->r0_rdonly = true;
10197 				is_ret_buf_sz = true;
10198 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10199 				is_ret_buf_sz = true;
10200 			}
10201 
10202 			if (is_ret_buf_sz) {
10203 				if (meta->r0_size) {
10204 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10205 					return -EINVAL;
10206 				}
10207 
10208 				if (!tnum_is_const(reg->var_off)) {
10209 					verbose(env, "R%d is not a const\n", regno);
10210 					return -EINVAL;
10211 				}
10212 
10213 				meta->r0_size = reg->var_off.value;
10214 				ret = mark_chain_precision(env, regno);
10215 				if (ret)
10216 					return ret;
10217 			}
10218 			continue;
10219 		}
10220 
10221 		if (!btf_type_is_ptr(t)) {
10222 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10223 			return -EINVAL;
10224 		}
10225 
10226 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10227 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10228 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10229 			return -EACCES;
10230 		}
10231 
10232 		if (reg->ref_obj_id) {
10233 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10234 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10235 					regno, reg->ref_obj_id,
10236 					meta->ref_obj_id);
10237 				return -EFAULT;
10238 			}
10239 			meta->ref_obj_id = reg->ref_obj_id;
10240 			if (is_kfunc_release(meta))
10241 				meta->release_regno = regno;
10242 		}
10243 
10244 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10245 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10246 
10247 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10248 		if (kf_arg_type < 0)
10249 			return kf_arg_type;
10250 
10251 		switch (kf_arg_type) {
10252 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10253 		case KF_ARG_PTR_TO_BTF_ID:
10254 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10255 				break;
10256 
10257 			if (!is_trusted_reg(reg)) {
10258 				if (!is_kfunc_rcu(meta)) {
10259 					verbose(env, "R%d must be referenced or trusted\n", regno);
10260 					return -EINVAL;
10261 				}
10262 				if (!is_rcu_reg(reg)) {
10263 					verbose(env, "R%d must be a rcu pointer\n", regno);
10264 					return -EINVAL;
10265 				}
10266 			}
10267 
10268 			fallthrough;
10269 		case KF_ARG_PTR_TO_CTX:
10270 			/* Trusted arguments have the same offset checks as release arguments */
10271 			arg_type |= OBJ_RELEASE;
10272 			break;
10273 		case KF_ARG_PTR_TO_KPTR:
10274 		case KF_ARG_PTR_TO_DYNPTR:
10275 		case KF_ARG_PTR_TO_ITER:
10276 		case KF_ARG_PTR_TO_LIST_HEAD:
10277 		case KF_ARG_PTR_TO_LIST_NODE:
10278 		case KF_ARG_PTR_TO_RB_ROOT:
10279 		case KF_ARG_PTR_TO_RB_NODE:
10280 		case KF_ARG_PTR_TO_MEM:
10281 		case KF_ARG_PTR_TO_MEM_SIZE:
10282 		case KF_ARG_PTR_TO_CALLBACK:
10283 			/* Trusted by default */
10284 			break;
10285 		default:
10286 			WARN_ON_ONCE(1);
10287 			return -EFAULT;
10288 		}
10289 
10290 		if (is_kfunc_release(meta) && reg->ref_obj_id)
10291 			arg_type |= OBJ_RELEASE;
10292 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10293 		if (ret < 0)
10294 			return ret;
10295 
10296 		switch (kf_arg_type) {
10297 		case KF_ARG_PTR_TO_CTX:
10298 			if (reg->type != PTR_TO_CTX) {
10299 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10300 				return -EINVAL;
10301 			}
10302 
10303 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10304 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10305 				if (ret < 0)
10306 					return -EINVAL;
10307 				meta->ret_btf_id  = ret;
10308 			}
10309 			break;
10310 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10311 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10312 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10313 				return -EINVAL;
10314 			}
10315 			if (!reg->ref_obj_id) {
10316 				verbose(env, "allocated object must be referenced\n");
10317 				return -EINVAL;
10318 			}
10319 			if (meta->btf == btf_vmlinux &&
10320 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10321 				meta->arg_obj_drop.btf = reg->btf;
10322 				meta->arg_obj_drop.btf_id = reg->btf_id;
10323 			}
10324 			break;
10325 		case KF_ARG_PTR_TO_KPTR:
10326 			if (reg->type != PTR_TO_MAP_VALUE) {
10327 				verbose(env, "arg#0 expected pointer to map value\n");
10328 				return -EINVAL;
10329 			}
10330 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
10331 			if (ret < 0)
10332 				return ret;
10333 			break;
10334 		case KF_ARG_PTR_TO_DYNPTR:
10335 		{
10336 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
10337 
10338 			if (reg->type != PTR_TO_STACK &&
10339 			    reg->type != CONST_PTR_TO_DYNPTR) {
10340 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
10341 				return -EINVAL;
10342 			}
10343 
10344 			if (reg->type == CONST_PTR_TO_DYNPTR)
10345 				dynptr_arg_type |= MEM_RDONLY;
10346 
10347 			if (is_kfunc_arg_uninit(btf, &args[i]))
10348 				dynptr_arg_type |= MEM_UNINIT;
10349 
10350 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb])
10351 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
10352 			else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp])
10353 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
10354 
10355 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type);
10356 			if (ret < 0)
10357 				return ret;
10358 
10359 			if (!(dynptr_arg_type & MEM_UNINIT)) {
10360 				int id = dynptr_id(env, reg);
10361 
10362 				if (id < 0) {
10363 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10364 					return id;
10365 				}
10366 				meta->initialized_dynptr.id = id;
10367 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
10368 			}
10369 
10370 			break;
10371 		}
10372 		case KF_ARG_PTR_TO_ITER:
10373 			ret = process_iter_arg(env, regno, insn_idx, meta);
10374 			if (ret < 0)
10375 				return ret;
10376 			break;
10377 		case KF_ARG_PTR_TO_LIST_HEAD:
10378 			if (reg->type != PTR_TO_MAP_VALUE &&
10379 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10380 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10381 				return -EINVAL;
10382 			}
10383 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10384 				verbose(env, "allocated object must be referenced\n");
10385 				return -EINVAL;
10386 			}
10387 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
10388 			if (ret < 0)
10389 				return ret;
10390 			break;
10391 		case KF_ARG_PTR_TO_RB_ROOT:
10392 			if (reg->type != PTR_TO_MAP_VALUE &&
10393 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10394 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10395 				return -EINVAL;
10396 			}
10397 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10398 				verbose(env, "allocated object must be referenced\n");
10399 				return -EINVAL;
10400 			}
10401 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
10402 			if (ret < 0)
10403 				return ret;
10404 			break;
10405 		case KF_ARG_PTR_TO_LIST_NODE:
10406 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10407 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10408 				return -EINVAL;
10409 			}
10410 			if (!reg->ref_obj_id) {
10411 				verbose(env, "allocated object must be referenced\n");
10412 				return -EINVAL;
10413 			}
10414 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
10415 			if (ret < 0)
10416 				return ret;
10417 			break;
10418 		case KF_ARG_PTR_TO_RB_NODE:
10419 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
10420 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
10421 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
10422 					return -EINVAL;
10423 				}
10424 				if (in_rbtree_lock_required_cb(env)) {
10425 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
10426 					return -EINVAL;
10427 				}
10428 			} else {
10429 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10430 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
10431 					return -EINVAL;
10432 				}
10433 				if (!reg->ref_obj_id) {
10434 					verbose(env, "allocated object must be referenced\n");
10435 					return -EINVAL;
10436 				}
10437 			}
10438 
10439 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
10440 			if (ret < 0)
10441 				return ret;
10442 			break;
10443 		case KF_ARG_PTR_TO_BTF_ID:
10444 			/* Only base_type is checked, further checks are done here */
10445 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
10446 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
10447 			    !reg2btf_ids[base_type(reg->type)]) {
10448 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
10449 				verbose(env, "expected %s or socket\n",
10450 					reg_type_str(env, base_type(reg->type) |
10451 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
10452 				return -EINVAL;
10453 			}
10454 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
10455 			if (ret < 0)
10456 				return ret;
10457 			break;
10458 		case KF_ARG_PTR_TO_MEM:
10459 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
10460 			if (IS_ERR(resolve_ret)) {
10461 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
10462 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
10463 				return -EINVAL;
10464 			}
10465 			ret = check_mem_reg(env, reg, regno, type_size);
10466 			if (ret < 0)
10467 				return ret;
10468 			break;
10469 		case KF_ARG_PTR_TO_MEM_SIZE:
10470 		{
10471 			struct bpf_reg_state *size_reg = &regs[regno + 1];
10472 			const struct btf_param *size_arg = &args[i + 1];
10473 
10474 			ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
10475 			if (ret < 0) {
10476 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
10477 				return ret;
10478 			}
10479 
10480 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
10481 				if (meta->arg_constant.found) {
10482 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10483 					return -EFAULT;
10484 				}
10485 				if (!tnum_is_const(size_reg->var_off)) {
10486 					verbose(env, "R%d must be a known constant\n", regno + 1);
10487 					return -EINVAL;
10488 				}
10489 				meta->arg_constant.found = true;
10490 				meta->arg_constant.value = size_reg->var_off.value;
10491 			}
10492 
10493 			/* Skip next '__sz' or '__szk' argument */
10494 			i++;
10495 			break;
10496 		}
10497 		case KF_ARG_PTR_TO_CALLBACK:
10498 			meta->subprogno = reg->subprogno;
10499 			break;
10500 		}
10501 	}
10502 
10503 	if (is_kfunc_release(meta) && !meta->release_regno) {
10504 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
10505 			func_name);
10506 		return -EINVAL;
10507 	}
10508 
10509 	return 0;
10510 }
10511 
10512 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
10513 			    struct bpf_insn *insn,
10514 			    struct bpf_kfunc_call_arg_meta *meta,
10515 			    const char **kfunc_name)
10516 {
10517 	const struct btf_type *func, *func_proto;
10518 	u32 func_id, *kfunc_flags;
10519 	const char *func_name;
10520 	struct btf *desc_btf;
10521 
10522 	if (kfunc_name)
10523 		*kfunc_name = NULL;
10524 
10525 	if (!insn->imm)
10526 		return -EINVAL;
10527 
10528 	desc_btf = find_kfunc_desc_btf(env, insn->off);
10529 	if (IS_ERR(desc_btf))
10530 		return PTR_ERR(desc_btf);
10531 
10532 	func_id = insn->imm;
10533 	func = btf_type_by_id(desc_btf, func_id);
10534 	func_name = btf_name_by_offset(desc_btf, func->name_off);
10535 	if (kfunc_name)
10536 		*kfunc_name = func_name;
10537 	func_proto = btf_type_by_id(desc_btf, func->type);
10538 
10539 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
10540 	if (!kfunc_flags) {
10541 		return -EACCES;
10542 	}
10543 
10544 	memset(meta, 0, sizeof(*meta));
10545 	meta->btf = desc_btf;
10546 	meta->func_id = func_id;
10547 	meta->kfunc_flags = *kfunc_flags;
10548 	meta->func_proto = func_proto;
10549 	meta->func_name = func_name;
10550 
10551 	return 0;
10552 }
10553 
10554 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10555 			    int *insn_idx_p)
10556 {
10557 	const struct btf_type *t, *ptr_type;
10558 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
10559 	struct bpf_reg_state *regs = cur_regs(env);
10560 	const char *func_name, *ptr_type_name;
10561 	bool sleepable, rcu_lock, rcu_unlock;
10562 	struct bpf_kfunc_call_arg_meta meta;
10563 	struct bpf_insn_aux_data *insn_aux;
10564 	int err, insn_idx = *insn_idx_p;
10565 	const struct btf_param *args;
10566 	const struct btf_type *ret_t;
10567 	struct btf *desc_btf;
10568 
10569 	/* skip for now, but return error when we find this in fixup_kfunc_call */
10570 	if (!insn->imm)
10571 		return 0;
10572 
10573 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
10574 	if (err == -EACCES && func_name)
10575 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
10576 	if (err)
10577 		return err;
10578 	desc_btf = meta.btf;
10579 	insn_aux = &env->insn_aux_data[insn_idx];
10580 
10581 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
10582 
10583 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
10584 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
10585 		return -EACCES;
10586 	}
10587 
10588 	sleepable = is_kfunc_sleepable(&meta);
10589 	if (sleepable && !env->prog->aux->sleepable) {
10590 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
10591 		return -EACCES;
10592 	}
10593 
10594 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
10595 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
10596 
10597 	if (env->cur_state->active_rcu_lock) {
10598 		struct bpf_func_state *state;
10599 		struct bpf_reg_state *reg;
10600 
10601 		if (rcu_lock) {
10602 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
10603 			return -EINVAL;
10604 		} else if (rcu_unlock) {
10605 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10606 				if (reg->type & MEM_RCU) {
10607 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
10608 					reg->type |= PTR_UNTRUSTED;
10609 				}
10610 			}));
10611 			env->cur_state->active_rcu_lock = false;
10612 		} else if (sleepable) {
10613 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
10614 			return -EACCES;
10615 		}
10616 	} else if (rcu_lock) {
10617 		env->cur_state->active_rcu_lock = true;
10618 	} else if (rcu_unlock) {
10619 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
10620 		return -EINVAL;
10621 	}
10622 
10623 	/* Check the arguments */
10624 	err = check_kfunc_args(env, &meta, insn_idx);
10625 	if (err < 0)
10626 		return err;
10627 	/* In case of release function, we get register number of refcounted
10628 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
10629 	 */
10630 	if (meta.release_regno) {
10631 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
10632 		if (err) {
10633 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
10634 				func_name, meta.func_id);
10635 			return err;
10636 		}
10637 	}
10638 
10639 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] ||
10640 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back] ||
10641 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
10642 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
10643 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
10644 		if (err) {
10645 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
10646 				func_name, meta.func_id);
10647 			return err;
10648 		}
10649 
10650 		err = release_reference(env, release_ref_obj_id);
10651 		if (err) {
10652 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
10653 				func_name, meta.func_id);
10654 			return err;
10655 		}
10656 	}
10657 
10658 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
10659 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10660 					set_rbtree_add_callback_state);
10661 		if (err) {
10662 			verbose(env, "kfunc %s#%d failed callback verification\n",
10663 				func_name, meta.func_id);
10664 			return err;
10665 		}
10666 	}
10667 
10668 	for (i = 0; i < CALLER_SAVED_REGS; i++)
10669 		mark_reg_not_init(env, regs, caller_saved[i]);
10670 
10671 	/* Check return type */
10672 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
10673 
10674 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
10675 		/* Only exception is bpf_obj_new_impl */
10676 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
10677 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
10678 			return -EINVAL;
10679 		}
10680 	}
10681 
10682 	if (btf_type_is_scalar(t)) {
10683 		mark_reg_unknown(env, regs, BPF_REG_0);
10684 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
10685 	} else if (btf_type_is_ptr(t)) {
10686 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
10687 
10688 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10689 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
10690 				struct btf *ret_btf;
10691 				u32 ret_btf_id;
10692 
10693 				if (unlikely(!bpf_global_ma_set))
10694 					return -ENOMEM;
10695 
10696 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
10697 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
10698 					return -EINVAL;
10699 				}
10700 
10701 				ret_btf = env->prog->aux->btf;
10702 				ret_btf_id = meta.arg_constant.value;
10703 
10704 				/* This may be NULL due to user not supplying a BTF */
10705 				if (!ret_btf) {
10706 					verbose(env, "bpf_obj_new requires prog BTF\n");
10707 					return -EINVAL;
10708 				}
10709 
10710 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
10711 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
10712 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
10713 					return -EINVAL;
10714 				}
10715 
10716 				mark_reg_known_zero(env, regs, BPF_REG_0);
10717 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
10718 				regs[BPF_REG_0].btf = ret_btf;
10719 				regs[BPF_REG_0].btf_id = ret_btf_id;
10720 
10721 				insn_aux->obj_new_size = ret_t->size;
10722 				insn_aux->kptr_struct_meta =
10723 					btf_find_struct_meta(ret_btf, ret_btf_id);
10724 			} else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10725 				insn_aux->kptr_struct_meta =
10726 					btf_find_struct_meta(meta.arg_obj_drop.btf,
10727 							     meta.arg_obj_drop.btf_id);
10728 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10729 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
10730 				struct btf_field *field = meta.arg_list_head.field;
10731 
10732 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
10733 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10734 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10735 				struct btf_field *field = meta.arg_rbtree_root.field;
10736 
10737 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
10738 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10739 				mark_reg_known_zero(env, regs, BPF_REG_0);
10740 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
10741 				regs[BPF_REG_0].btf = desc_btf;
10742 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10743 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
10744 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
10745 				if (!ret_t || !btf_type_is_struct(ret_t)) {
10746 					verbose(env,
10747 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
10748 					return -EINVAL;
10749 				}
10750 
10751 				mark_reg_known_zero(env, regs, BPF_REG_0);
10752 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
10753 				regs[BPF_REG_0].btf = desc_btf;
10754 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
10755 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
10756 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
10757 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
10758 
10759 				mark_reg_known_zero(env, regs, BPF_REG_0);
10760 
10761 				if (!meta.arg_constant.found) {
10762 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
10763 					return -EFAULT;
10764 				}
10765 
10766 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
10767 
10768 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
10769 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
10770 
10771 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
10772 					regs[BPF_REG_0].type |= MEM_RDONLY;
10773 				} else {
10774 					/* this will set env->seen_direct_write to true */
10775 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
10776 						verbose(env, "the prog does not allow writes to packet data\n");
10777 						return -EINVAL;
10778 					}
10779 				}
10780 
10781 				if (!meta.initialized_dynptr.id) {
10782 					verbose(env, "verifier internal error: no dynptr id\n");
10783 					return -EFAULT;
10784 				}
10785 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
10786 
10787 				/* we don't need to set BPF_REG_0's ref obj id
10788 				 * because packet slices are not refcounted (see
10789 				 * dynptr_type_refcounted)
10790 				 */
10791 			} else {
10792 				verbose(env, "kernel function %s unhandled dynamic return type\n",
10793 					meta.func_name);
10794 				return -EFAULT;
10795 			}
10796 		} else if (!__btf_type_is_struct(ptr_type)) {
10797 			if (!meta.r0_size) {
10798 				__u32 sz;
10799 
10800 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
10801 					meta.r0_size = sz;
10802 					meta.r0_rdonly = true;
10803 				}
10804 			}
10805 			if (!meta.r0_size) {
10806 				ptr_type_name = btf_name_by_offset(desc_btf,
10807 								   ptr_type->name_off);
10808 				verbose(env,
10809 					"kernel function %s returns pointer type %s %s is not supported\n",
10810 					func_name,
10811 					btf_type_str(ptr_type),
10812 					ptr_type_name);
10813 				return -EINVAL;
10814 			}
10815 
10816 			mark_reg_known_zero(env, regs, BPF_REG_0);
10817 			regs[BPF_REG_0].type = PTR_TO_MEM;
10818 			regs[BPF_REG_0].mem_size = meta.r0_size;
10819 
10820 			if (meta.r0_rdonly)
10821 				regs[BPF_REG_0].type |= MEM_RDONLY;
10822 
10823 			/* Ensures we don't access the memory after a release_reference() */
10824 			if (meta.ref_obj_id)
10825 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10826 		} else {
10827 			mark_reg_known_zero(env, regs, BPF_REG_0);
10828 			regs[BPF_REG_0].btf = desc_btf;
10829 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
10830 			regs[BPF_REG_0].btf_id = ptr_type_id;
10831 		}
10832 
10833 		if (is_kfunc_ret_null(&meta)) {
10834 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
10835 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
10836 			regs[BPF_REG_0].id = ++env->id_gen;
10837 		}
10838 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
10839 		if (is_kfunc_acquire(&meta)) {
10840 			int id = acquire_reference_state(env, insn_idx);
10841 
10842 			if (id < 0)
10843 				return id;
10844 			if (is_kfunc_ret_null(&meta))
10845 				regs[BPF_REG_0].id = id;
10846 			regs[BPF_REG_0].ref_obj_id = id;
10847 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10848 			ref_set_non_owning(env, &regs[BPF_REG_0]);
10849 		}
10850 
10851 		if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove])
10852 			invalidate_non_owning_refs(env);
10853 
10854 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
10855 			regs[BPF_REG_0].id = ++env->id_gen;
10856 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
10857 
10858 	nargs = btf_type_vlen(meta.func_proto);
10859 	args = (const struct btf_param *)(meta.func_proto + 1);
10860 	for (i = 0; i < nargs; i++) {
10861 		u32 regno = i + 1;
10862 
10863 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
10864 		if (btf_type_is_ptr(t))
10865 			mark_btf_func_reg_size(env, regno, sizeof(void *));
10866 		else
10867 			/* scalar. ensured by btf_check_kfunc_arg_match() */
10868 			mark_btf_func_reg_size(env, regno, t->size);
10869 	}
10870 
10871 	if (is_iter_next_kfunc(&meta)) {
10872 		err = process_iter_next_call(env, insn_idx, &meta);
10873 		if (err)
10874 			return err;
10875 	}
10876 
10877 	return 0;
10878 }
10879 
10880 static bool signed_add_overflows(s64 a, s64 b)
10881 {
10882 	/* Do the add in u64, where overflow is well-defined */
10883 	s64 res = (s64)((u64)a + (u64)b);
10884 
10885 	if (b < 0)
10886 		return res > a;
10887 	return res < a;
10888 }
10889 
10890 static bool signed_add32_overflows(s32 a, s32 b)
10891 {
10892 	/* Do the add in u32, where overflow is well-defined */
10893 	s32 res = (s32)((u32)a + (u32)b);
10894 
10895 	if (b < 0)
10896 		return res > a;
10897 	return res < a;
10898 }
10899 
10900 static bool signed_sub_overflows(s64 a, s64 b)
10901 {
10902 	/* Do the sub in u64, where overflow is well-defined */
10903 	s64 res = (s64)((u64)a - (u64)b);
10904 
10905 	if (b < 0)
10906 		return res < a;
10907 	return res > a;
10908 }
10909 
10910 static bool signed_sub32_overflows(s32 a, s32 b)
10911 {
10912 	/* Do the sub in u32, where overflow is well-defined */
10913 	s32 res = (s32)((u32)a - (u32)b);
10914 
10915 	if (b < 0)
10916 		return res < a;
10917 	return res > a;
10918 }
10919 
10920 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
10921 				  const struct bpf_reg_state *reg,
10922 				  enum bpf_reg_type type)
10923 {
10924 	bool known = tnum_is_const(reg->var_off);
10925 	s64 val = reg->var_off.value;
10926 	s64 smin = reg->smin_value;
10927 
10928 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
10929 		verbose(env, "math between %s pointer and %lld is not allowed\n",
10930 			reg_type_str(env, type), val);
10931 		return false;
10932 	}
10933 
10934 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
10935 		verbose(env, "%s pointer offset %d is not allowed\n",
10936 			reg_type_str(env, type), reg->off);
10937 		return false;
10938 	}
10939 
10940 	if (smin == S64_MIN) {
10941 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
10942 			reg_type_str(env, type));
10943 		return false;
10944 	}
10945 
10946 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
10947 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
10948 			smin, reg_type_str(env, type));
10949 		return false;
10950 	}
10951 
10952 	return true;
10953 }
10954 
10955 enum {
10956 	REASON_BOUNDS	= -1,
10957 	REASON_TYPE	= -2,
10958 	REASON_PATHS	= -3,
10959 	REASON_LIMIT	= -4,
10960 	REASON_STACK	= -5,
10961 };
10962 
10963 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
10964 			      u32 *alu_limit, bool mask_to_left)
10965 {
10966 	u32 max = 0, ptr_limit = 0;
10967 
10968 	switch (ptr_reg->type) {
10969 	case PTR_TO_STACK:
10970 		/* Offset 0 is out-of-bounds, but acceptable start for the
10971 		 * left direction, see BPF_REG_FP. Also, unknown scalar
10972 		 * offset where we would need to deal with min/max bounds is
10973 		 * currently prohibited for unprivileged.
10974 		 */
10975 		max = MAX_BPF_STACK + mask_to_left;
10976 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
10977 		break;
10978 	case PTR_TO_MAP_VALUE:
10979 		max = ptr_reg->map_ptr->value_size;
10980 		ptr_limit = (mask_to_left ?
10981 			     ptr_reg->smin_value :
10982 			     ptr_reg->umax_value) + ptr_reg->off;
10983 		break;
10984 	default:
10985 		return REASON_TYPE;
10986 	}
10987 
10988 	if (ptr_limit >= max)
10989 		return REASON_LIMIT;
10990 	*alu_limit = ptr_limit;
10991 	return 0;
10992 }
10993 
10994 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
10995 				    const struct bpf_insn *insn)
10996 {
10997 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
10998 }
10999 
11000 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11001 				       u32 alu_state, u32 alu_limit)
11002 {
11003 	/* If we arrived here from different branches with different
11004 	 * state or limits to sanitize, then this won't work.
11005 	 */
11006 	if (aux->alu_state &&
11007 	    (aux->alu_state != alu_state ||
11008 	     aux->alu_limit != alu_limit))
11009 		return REASON_PATHS;
11010 
11011 	/* Corresponding fixup done in do_misc_fixups(). */
11012 	aux->alu_state = alu_state;
11013 	aux->alu_limit = alu_limit;
11014 	return 0;
11015 }
11016 
11017 static int sanitize_val_alu(struct bpf_verifier_env *env,
11018 			    struct bpf_insn *insn)
11019 {
11020 	struct bpf_insn_aux_data *aux = cur_aux(env);
11021 
11022 	if (can_skip_alu_sanitation(env, insn))
11023 		return 0;
11024 
11025 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11026 }
11027 
11028 static bool sanitize_needed(u8 opcode)
11029 {
11030 	return opcode == BPF_ADD || opcode == BPF_SUB;
11031 }
11032 
11033 struct bpf_sanitize_info {
11034 	struct bpf_insn_aux_data aux;
11035 	bool mask_to_left;
11036 };
11037 
11038 static struct bpf_verifier_state *
11039 sanitize_speculative_path(struct bpf_verifier_env *env,
11040 			  const struct bpf_insn *insn,
11041 			  u32 next_idx, u32 curr_idx)
11042 {
11043 	struct bpf_verifier_state *branch;
11044 	struct bpf_reg_state *regs;
11045 
11046 	branch = push_stack(env, next_idx, curr_idx, true);
11047 	if (branch && insn) {
11048 		regs = branch->frame[branch->curframe]->regs;
11049 		if (BPF_SRC(insn->code) == BPF_K) {
11050 			mark_reg_unknown(env, regs, insn->dst_reg);
11051 		} else if (BPF_SRC(insn->code) == BPF_X) {
11052 			mark_reg_unknown(env, regs, insn->dst_reg);
11053 			mark_reg_unknown(env, regs, insn->src_reg);
11054 		}
11055 	}
11056 	return branch;
11057 }
11058 
11059 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11060 			    struct bpf_insn *insn,
11061 			    const struct bpf_reg_state *ptr_reg,
11062 			    const struct bpf_reg_state *off_reg,
11063 			    struct bpf_reg_state *dst_reg,
11064 			    struct bpf_sanitize_info *info,
11065 			    const bool commit_window)
11066 {
11067 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11068 	struct bpf_verifier_state *vstate = env->cur_state;
11069 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11070 	bool off_is_neg = off_reg->smin_value < 0;
11071 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11072 	u8 opcode = BPF_OP(insn->code);
11073 	u32 alu_state, alu_limit;
11074 	struct bpf_reg_state tmp;
11075 	bool ret;
11076 	int err;
11077 
11078 	if (can_skip_alu_sanitation(env, insn))
11079 		return 0;
11080 
11081 	/* We already marked aux for masking from non-speculative
11082 	 * paths, thus we got here in the first place. We only care
11083 	 * to explore bad access from here.
11084 	 */
11085 	if (vstate->speculative)
11086 		goto do_sim;
11087 
11088 	if (!commit_window) {
11089 		if (!tnum_is_const(off_reg->var_off) &&
11090 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11091 			return REASON_BOUNDS;
11092 
11093 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11094 				     (opcode == BPF_SUB && !off_is_neg);
11095 	}
11096 
11097 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11098 	if (err < 0)
11099 		return err;
11100 
11101 	if (commit_window) {
11102 		/* In commit phase we narrow the masking window based on
11103 		 * the observed pointer move after the simulated operation.
11104 		 */
11105 		alu_state = info->aux.alu_state;
11106 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11107 	} else {
11108 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11109 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11110 		alu_state |= ptr_is_dst_reg ?
11111 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11112 
11113 		/* Limit pruning on unknown scalars to enable deep search for
11114 		 * potential masking differences from other program paths.
11115 		 */
11116 		if (!off_is_imm)
11117 			env->explore_alu_limits = true;
11118 	}
11119 
11120 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11121 	if (err < 0)
11122 		return err;
11123 do_sim:
11124 	/* If we're in commit phase, we're done here given we already
11125 	 * pushed the truncated dst_reg into the speculative verification
11126 	 * stack.
11127 	 *
11128 	 * Also, when register is a known constant, we rewrite register-based
11129 	 * operation to immediate-based, and thus do not need masking (and as
11130 	 * a consequence, do not need to simulate the zero-truncation either).
11131 	 */
11132 	if (commit_window || off_is_imm)
11133 		return 0;
11134 
11135 	/* Simulate and find potential out-of-bounds access under
11136 	 * speculative execution from truncation as a result of
11137 	 * masking when off was not within expected range. If off
11138 	 * sits in dst, then we temporarily need to move ptr there
11139 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11140 	 * for cases where we use K-based arithmetic in one direction
11141 	 * and truncated reg-based in the other in order to explore
11142 	 * bad access.
11143 	 */
11144 	if (!ptr_is_dst_reg) {
11145 		tmp = *dst_reg;
11146 		copy_register_state(dst_reg, ptr_reg);
11147 	}
11148 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11149 					env->insn_idx);
11150 	if (!ptr_is_dst_reg && ret)
11151 		*dst_reg = tmp;
11152 	return !ret ? REASON_STACK : 0;
11153 }
11154 
11155 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11156 {
11157 	struct bpf_verifier_state *vstate = env->cur_state;
11158 
11159 	/* If we simulate paths under speculation, we don't update the
11160 	 * insn as 'seen' such that when we verify unreachable paths in
11161 	 * the non-speculative domain, sanitize_dead_code() can still
11162 	 * rewrite/sanitize them.
11163 	 */
11164 	if (!vstate->speculative)
11165 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11166 }
11167 
11168 static int sanitize_err(struct bpf_verifier_env *env,
11169 			const struct bpf_insn *insn, int reason,
11170 			const struct bpf_reg_state *off_reg,
11171 			const struct bpf_reg_state *dst_reg)
11172 {
11173 	static const char *err = "pointer arithmetic with it prohibited for !root";
11174 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11175 	u32 dst = insn->dst_reg, src = insn->src_reg;
11176 
11177 	switch (reason) {
11178 	case REASON_BOUNDS:
11179 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11180 			off_reg == dst_reg ? dst : src, err);
11181 		break;
11182 	case REASON_TYPE:
11183 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11184 			off_reg == dst_reg ? src : dst, err);
11185 		break;
11186 	case REASON_PATHS:
11187 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11188 			dst, op, err);
11189 		break;
11190 	case REASON_LIMIT:
11191 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11192 			dst, op, err);
11193 		break;
11194 	case REASON_STACK:
11195 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11196 			dst, err);
11197 		break;
11198 	default:
11199 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11200 			reason);
11201 		break;
11202 	}
11203 
11204 	return -EACCES;
11205 }
11206 
11207 /* check that stack access falls within stack limits and that 'reg' doesn't
11208  * have a variable offset.
11209  *
11210  * Variable offset is prohibited for unprivileged mode for simplicity since it
11211  * requires corresponding support in Spectre masking for stack ALU.  See also
11212  * retrieve_ptr_limit().
11213  *
11214  *
11215  * 'off' includes 'reg->off'.
11216  */
11217 static int check_stack_access_for_ptr_arithmetic(
11218 				struct bpf_verifier_env *env,
11219 				int regno,
11220 				const struct bpf_reg_state *reg,
11221 				int off)
11222 {
11223 	if (!tnum_is_const(reg->var_off)) {
11224 		char tn_buf[48];
11225 
11226 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11227 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11228 			regno, tn_buf, off);
11229 		return -EACCES;
11230 	}
11231 
11232 	if (off >= 0 || off < -MAX_BPF_STACK) {
11233 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
11234 			"prohibited for !root; off=%d\n", regno, off);
11235 		return -EACCES;
11236 	}
11237 
11238 	return 0;
11239 }
11240 
11241 static int sanitize_check_bounds(struct bpf_verifier_env *env,
11242 				 const struct bpf_insn *insn,
11243 				 const struct bpf_reg_state *dst_reg)
11244 {
11245 	u32 dst = insn->dst_reg;
11246 
11247 	/* For unprivileged we require that resulting offset must be in bounds
11248 	 * in order to be able to sanitize access later on.
11249 	 */
11250 	if (env->bypass_spec_v1)
11251 		return 0;
11252 
11253 	switch (dst_reg->type) {
11254 	case PTR_TO_STACK:
11255 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
11256 					dst_reg->off + dst_reg->var_off.value))
11257 			return -EACCES;
11258 		break;
11259 	case PTR_TO_MAP_VALUE:
11260 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
11261 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
11262 				"prohibited for !root\n", dst);
11263 			return -EACCES;
11264 		}
11265 		break;
11266 	default:
11267 		break;
11268 	}
11269 
11270 	return 0;
11271 }
11272 
11273 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
11274  * Caller should also handle BPF_MOV case separately.
11275  * If we return -EACCES, caller may want to try again treating pointer as a
11276  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
11277  */
11278 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
11279 				   struct bpf_insn *insn,
11280 				   const struct bpf_reg_state *ptr_reg,
11281 				   const struct bpf_reg_state *off_reg)
11282 {
11283 	struct bpf_verifier_state *vstate = env->cur_state;
11284 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11285 	struct bpf_reg_state *regs = state->regs, *dst_reg;
11286 	bool known = tnum_is_const(off_reg->var_off);
11287 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
11288 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
11289 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
11290 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
11291 	struct bpf_sanitize_info info = {};
11292 	u8 opcode = BPF_OP(insn->code);
11293 	u32 dst = insn->dst_reg;
11294 	int ret;
11295 
11296 	dst_reg = &regs[dst];
11297 
11298 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
11299 	    smin_val > smax_val || umin_val > umax_val) {
11300 		/* Taint dst register if offset had invalid bounds derived from
11301 		 * e.g. dead branches.
11302 		 */
11303 		__mark_reg_unknown(env, dst_reg);
11304 		return 0;
11305 	}
11306 
11307 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
11308 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
11309 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11310 			__mark_reg_unknown(env, dst_reg);
11311 			return 0;
11312 		}
11313 
11314 		verbose(env,
11315 			"R%d 32-bit pointer arithmetic prohibited\n",
11316 			dst);
11317 		return -EACCES;
11318 	}
11319 
11320 	if (ptr_reg->type & PTR_MAYBE_NULL) {
11321 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
11322 			dst, reg_type_str(env, ptr_reg->type));
11323 		return -EACCES;
11324 	}
11325 
11326 	switch (base_type(ptr_reg->type)) {
11327 	case CONST_PTR_TO_MAP:
11328 		/* smin_val represents the known value */
11329 		if (known && smin_val == 0 && opcode == BPF_ADD)
11330 			break;
11331 		fallthrough;
11332 	case PTR_TO_PACKET_END:
11333 	case PTR_TO_SOCKET:
11334 	case PTR_TO_SOCK_COMMON:
11335 	case PTR_TO_TCP_SOCK:
11336 	case PTR_TO_XDP_SOCK:
11337 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
11338 			dst, reg_type_str(env, ptr_reg->type));
11339 		return -EACCES;
11340 	default:
11341 		break;
11342 	}
11343 
11344 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
11345 	 * The id may be overwritten later if we create a new variable offset.
11346 	 */
11347 	dst_reg->type = ptr_reg->type;
11348 	dst_reg->id = ptr_reg->id;
11349 
11350 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
11351 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
11352 		return -EINVAL;
11353 
11354 	/* pointer types do not carry 32-bit bounds at the moment. */
11355 	__mark_reg32_unbounded(dst_reg);
11356 
11357 	if (sanitize_needed(opcode)) {
11358 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
11359 				       &info, false);
11360 		if (ret < 0)
11361 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
11362 	}
11363 
11364 	switch (opcode) {
11365 	case BPF_ADD:
11366 		/* We can take a fixed offset as long as it doesn't overflow
11367 		 * the s32 'off' field
11368 		 */
11369 		if (known && (ptr_reg->off + smin_val ==
11370 			      (s64)(s32)(ptr_reg->off + smin_val))) {
11371 			/* pointer += K.  Accumulate it into fixed offset */
11372 			dst_reg->smin_value = smin_ptr;
11373 			dst_reg->smax_value = smax_ptr;
11374 			dst_reg->umin_value = umin_ptr;
11375 			dst_reg->umax_value = umax_ptr;
11376 			dst_reg->var_off = ptr_reg->var_off;
11377 			dst_reg->off = ptr_reg->off + smin_val;
11378 			dst_reg->raw = ptr_reg->raw;
11379 			break;
11380 		}
11381 		/* A new variable offset is created.  Note that off_reg->off
11382 		 * == 0, since it's a scalar.
11383 		 * dst_reg gets the pointer type and since some positive
11384 		 * integer value was added to the pointer, give it a new 'id'
11385 		 * if it's a PTR_TO_PACKET.
11386 		 * this creates a new 'base' pointer, off_reg (variable) gets
11387 		 * added into the variable offset, and we copy the fixed offset
11388 		 * from ptr_reg.
11389 		 */
11390 		if (signed_add_overflows(smin_ptr, smin_val) ||
11391 		    signed_add_overflows(smax_ptr, smax_val)) {
11392 			dst_reg->smin_value = S64_MIN;
11393 			dst_reg->smax_value = S64_MAX;
11394 		} else {
11395 			dst_reg->smin_value = smin_ptr + smin_val;
11396 			dst_reg->smax_value = smax_ptr + smax_val;
11397 		}
11398 		if (umin_ptr + umin_val < umin_ptr ||
11399 		    umax_ptr + umax_val < umax_ptr) {
11400 			dst_reg->umin_value = 0;
11401 			dst_reg->umax_value = U64_MAX;
11402 		} else {
11403 			dst_reg->umin_value = umin_ptr + umin_val;
11404 			dst_reg->umax_value = umax_ptr + umax_val;
11405 		}
11406 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
11407 		dst_reg->off = ptr_reg->off;
11408 		dst_reg->raw = ptr_reg->raw;
11409 		if (reg_is_pkt_pointer(ptr_reg)) {
11410 			dst_reg->id = ++env->id_gen;
11411 			/* something was added to pkt_ptr, set range to zero */
11412 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
11413 		}
11414 		break;
11415 	case BPF_SUB:
11416 		if (dst_reg == off_reg) {
11417 			/* scalar -= pointer.  Creates an unknown scalar */
11418 			verbose(env, "R%d tried to subtract pointer from scalar\n",
11419 				dst);
11420 			return -EACCES;
11421 		}
11422 		/* We don't allow subtraction from FP, because (according to
11423 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
11424 		 * be able to deal with it.
11425 		 */
11426 		if (ptr_reg->type == PTR_TO_STACK) {
11427 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
11428 				dst);
11429 			return -EACCES;
11430 		}
11431 		if (known && (ptr_reg->off - smin_val ==
11432 			      (s64)(s32)(ptr_reg->off - smin_val))) {
11433 			/* pointer -= K.  Subtract it from fixed offset */
11434 			dst_reg->smin_value = smin_ptr;
11435 			dst_reg->smax_value = smax_ptr;
11436 			dst_reg->umin_value = umin_ptr;
11437 			dst_reg->umax_value = umax_ptr;
11438 			dst_reg->var_off = ptr_reg->var_off;
11439 			dst_reg->id = ptr_reg->id;
11440 			dst_reg->off = ptr_reg->off - smin_val;
11441 			dst_reg->raw = ptr_reg->raw;
11442 			break;
11443 		}
11444 		/* A new variable offset is created.  If the subtrahend is known
11445 		 * nonnegative, then any reg->range we had before is still good.
11446 		 */
11447 		if (signed_sub_overflows(smin_ptr, smax_val) ||
11448 		    signed_sub_overflows(smax_ptr, smin_val)) {
11449 			/* Overflow possible, we know nothing */
11450 			dst_reg->smin_value = S64_MIN;
11451 			dst_reg->smax_value = S64_MAX;
11452 		} else {
11453 			dst_reg->smin_value = smin_ptr - smax_val;
11454 			dst_reg->smax_value = smax_ptr - smin_val;
11455 		}
11456 		if (umin_ptr < umax_val) {
11457 			/* Overflow possible, we know nothing */
11458 			dst_reg->umin_value = 0;
11459 			dst_reg->umax_value = U64_MAX;
11460 		} else {
11461 			/* Cannot overflow (as long as bounds are consistent) */
11462 			dst_reg->umin_value = umin_ptr - umax_val;
11463 			dst_reg->umax_value = umax_ptr - umin_val;
11464 		}
11465 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
11466 		dst_reg->off = ptr_reg->off;
11467 		dst_reg->raw = ptr_reg->raw;
11468 		if (reg_is_pkt_pointer(ptr_reg)) {
11469 			dst_reg->id = ++env->id_gen;
11470 			/* something was added to pkt_ptr, set range to zero */
11471 			if (smin_val < 0)
11472 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
11473 		}
11474 		break;
11475 	case BPF_AND:
11476 	case BPF_OR:
11477 	case BPF_XOR:
11478 		/* bitwise ops on pointers are troublesome, prohibit. */
11479 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
11480 			dst, bpf_alu_string[opcode >> 4]);
11481 		return -EACCES;
11482 	default:
11483 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
11484 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
11485 			dst, bpf_alu_string[opcode >> 4]);
11486 		return -EACCES;
11487 	}
11488 
11489 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
11490 		return -EINVAL;
11491 	reg_bounds_sync(dst_reg);
11492 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
11493 		return -EACCES;
11494 	if (sanitize_needed(opcode)) {
11495 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
11496 				       &info, true);
11497 		if (ret < 0)
11498 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
11499 	}
11500 
11501 	return 0;
11502 }
11503 
11504 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
11505 				 struct bpf_reg_state *src_reg)
11506 {
11507 	s32 smin_val = src_reg->s32_min_value;
11508 	s32 smax_val = src_reg->s32_max_value;
11509 	u32 umin_val = src_reg->u32_min_value;
11510 	u32 umax_val = src_reg->u32_max_value;
11511 
11512 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
11513 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
11514 		dst_reg->s32_min_value = S32_MIN;
11515 		dst_reg->s32_max_value = S32_MAX;
11516 	} else {
11517 		dst_reg->s32_min_value += smin_val;
11518 		dst_reg->s32_max_value += smax_val;
11519 	}
11520 	if (dst_reg->u32_min_value + umin_val < umin_val ||
11521 	    dst_reg->u32_max_value + umax_val < umax_val) {
11522 		dst_reg->u32_min_value = 0;
11523 		dst_reg->u32_max_value = U32_MAX;
11524 	} else {
11525 		dst_reg->u32_min_value += umin_val;
11526 		dst_reg->u32_max_value += umax_val;
11527 	}
11528 }
11529 
11530 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
11531 			       struct bpf_reg_state *src_reg)
11532 {
11533 	s64 smin_val = src_reg->smin_value;
11534 	s64 smax_val = src_reg->smax_value;
11535 	u64 umin_val = src_reg->umin_value;
11536 	u64 umax_val = src_reg->umax_value;
11537 
11538 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
11539 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
11540 		dst_reg->smin_value = S64_MIN;
11541 		dst_reg->smax_value = S64_MAX;
11542 	} else {
11543 		dst_reg->smin_value += smin_val;
11544 		dst_reg->smax_value += smax_val;
11545 	}
11546 	if (dst_reg->umin_value + umin_val < umin_val ||
11547 	    dst_reg->umax_value + umax_val < umax_val) {
11548 		dst_reg->umin_value = 0;
11549 		dst_reg->umax_value = U64_MAX;
11550 	} else {
11551 		dst_reg->umin_value += umin_val;
11552 		dst_reg->umax_value += umax_val;
11553 	}
11554 }
11555 
11556 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
11557 				 struct bpf_reg_state *src_reg)
11558 {
11559 	s32 smin_val = src_reg->s32_min_value;
11560 	s32 smax_val = src_reg->s32_max_value;
11561 	u32 umin_val = src_reg->u32_min_value;
11562 	u32 umax_val = src_reg->u32_max_value;
11563 
11564 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
11565 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
11566 		/* Overflow possible, we know nothing */
11567 		dst_reg->s32_min_value = S32_MIN;
11568 		dst_reg->s32_max_value = S32_MAX;
11569 	} else {
11570 		dst_reg->s32_min_value -= smax_val;
11571 		dst_reg->s32_max_value -= smin_val;
11572 	}
11573 	if (dst_reg->u32_min_value < umax_val) {
11574 		/* Overflow possible, we know nothing */
11575 		dst_reg->u32_min_value = 0;
11576 		dst_reg->u32_max_value = U32_MAX;
11577 	} else {
11578 		/* Cannot overflow (as long as bounds are consistent) */
11579 		dst_reg->u32_min_value -= umax_val;
11580 		dst_reg->u32_max_value -= umin_val;
11581 	}
11582 }
11583 
11584 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
11585 			       struct bpf_reg_state *src_reg)
11586 {
11587 	s64 smin_val = src_reg->smin_value;
11588 	s64 smax_val = src_reg->smax_value;
11589 	u64 umin_val = src_reg->umin_value;
11590 	u64 umax_val = src_reg->umax_value;
11591 
11592 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
11593 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
11594 		/* Overflow possible, we know nothing */
11595 		dst_reg->smin_value = S64_MIN;
11596 		dst_reg->smax_value = S64_MAX;
11597 	} else {
11598 		dst_reg->smin_value -= smax_val;
11599 		dst_reg->smax_value -= smin_val;
11600 	}
11601 	if (dst_reg->umin_value < umax_val) {
11602 		/* Overflow possible, we know nothing */
11603 		dst_reg->umin_value = 0;
11604 		dst_reg->umax_value = U64_MAX;
11605 	} else {
11606 		/* Cannot overflow (as long as bounds are consistent) */
11607 		dst_reg->umin_value -= umax_val;
11608 		dst_reg->umax_value -= umin_val;
11609 	}
11610 }
11611 
11612 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
11613 				 struct bpf_reg_state *src_reg)
11614 {
11615 	s32 smin_val = src_reg->s32_min_value;
11616 	u32 umin_val = src_reg->u32_min_value;
11617 	u32 umax_val = src_reg->u32_max_value;
11618 
11619 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
11620 		/* Ain't nobody got time to multiply that sign */
11621 		__mark_reg32_unbounded(dst_reg);
11622 		return;
11623 	}
11624 	/* Both values are positive, so we can work with unsigned and
11625 	 * copy the result to signed (unless it exceeds S32_MAX).
11626 	 */
11627 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
11628 		/* Potential overflow, we know nothing */
11629 		__mark_reg32_unbounded(dst_reg);
11630 		return;
11631 	}
11632 	dst_reg->u32_min_value *= umin_val;
11633 	dst_reg->u32_max_value *= umax_val;
11634 	if (dst_reg->u32_max_value > S32_MAX) {
11635 		/* Overflow possible, we know nothing */
11636 		dst_reg->s32_min_value = S32_MIN;
11637 		dst_reg->s32_max_value = S32_MAX;
11638 	} else {
11639 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11640 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11641 	}
11642 }
11643 
11644 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
11645 			       struct bpf_reg_state *src_reg)
11646 {
11647 	s64 smin_val = src_reg->smin_value;
11648 	u64 umin_val = src_reg->umin_value;
11649 	u64 umax_val = src_reg->umax_value;
11650 
11651 	if (smin_val < 0 || dst_reg->smin_value < 0) {
11652 		/* Ain't nobody got time to multiply that sign */
11653 		__mark_reg64_unbounded(dst_reg);
11654 		return;
11655 	}
11656 	/* Both values are positive, so we can work with unsigned and
11657 	 * copy the result to signed (unless it exceeds S64_MAX).
11658 	 */
11659 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
11660 		/* Potential overflow, we know nothing */
11661 		__mark_reg64_unbounded(dst_reg);
11662 		return;
11663 	}
11664 	dst_reg->umin_value *= umin_val;
11665 	dst_reg->umax_value *= umax_val;
11666 	if (dst_reg->umax_value > S64_MAX) {
11667 		/* Overflow possible, we know nothing */
11668 		dst_reg->smin_value = S64_MIN;
11669 		dst_reg->smax_value = S64_MAX;
11670 	} else {
11671 		dst_reg->smin_value = dst_reg->umin_value;
11672 		dst_reg->smax_value = dst_reg->umax_value;
11673 	}
11674 }
11675 
11676 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
11677 				 struct bpf_reg_state *src_reg)
11678 {
11679 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
11680 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11681 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11682 	s32 smin_val = src_reg->s32_min_value;
11683 	u32 umax_val = src_reg->u32_max_value;
11684 
11685 	if (src_known && dst_known) {
11686 		__mark_reg32_known(dst_reg, var32_off.value);
11687 		return;
11688 	}
11689 
11690 	/* We get our minimum from the var_off, since that's inherently
11691 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
11692 	 */
11693 	dst_reg->u32_min_value = var32_off.value;
11694 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
11695 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11696 		/* Lose signed bounds when ANDing negative numbers,
11697 		 * ain't nobody got time for that.
11698 		 */
11699 		dst_reg->s32_min_value = S32_MIN;
11700 		dst_reg->s32_max_value = S32_MAX;
11701 	} else {
11702 		/* ANDing two positives gives a positive, so safe to
11703 		 * cast result into s64.
11704 		 */
11705 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11706 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11707 	}
11708 }
11709 
11710 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
11711 			       struct bpf_reg_state *src_reg)
11712 {
11713 	bool src_known = tnum_is_const(src_reg->var_off);
11714 	bool dst_known = tnum_is_const(dst_reg->var_off);
11715 	s64 smin_val = src_reg->smin_value;
11716 	u64 umax_val = src_reg->umax_value;
11717 
11718 	if (src_known && dst_known) {
11719 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
11720 		return;
11721 	}
11722 
11723 	/* We get our minimum from the var_off, since that's inherently
11724 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
11725 	 */
11726 	dst_reg->umin_value = dst_reg->var_off.value;
11727 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
11728 	if (dst_reg->smin_value < 0 || smin_val < 0) {
11729 		/* Lose signed bounds when ANDing negative numbers,
11730 		 * ain't nobody got time for that.
11731 		 */
11732 		dst_reg->smin_value = S64_MIN;
11733 		dst_reg->smax_value = S64_MAX;
11734 	} else {
11735 		/* ANDing two positives gives a positive, so safe to
11736 		 * cast result into s64.
11737 		 */
11738 		dst_reg->smin_value = dst_reg->umin_value;
11739 		dst_reg->smax_value = dst_reg->umax_value;
11740 	}
11741 	/* We may learn something more from the var_off */
11742 	__update_reg_bounds(dst_reg);
11743 }
11744 
11745 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
11746 				struct bpf_reg_state *src_reg)
11747 {
11748 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
11749 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11750 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11751 	s32 smin_val = src_reg->s32_min_value;
11752 	u32 umin_val = src_reg->u32_min_value;
11753 
11754 	if (src_known && dst_known) {
11755 		__mark_reg32_known(dst_reg, var32_off.value);
11756 		return;
11757 	}
11758 
11759 	/* We get our maximum from the var_off, and our minimum is the
11760 	 * maximum of the operands' minima
11761 	 */
11762 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
11763 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11764 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11765 		/* Lose signed bounds when ORing negative numbers,
11766 		 * ain't nobody got time for that.
11767 		 */
11768 		dst_reg->s32_min_value = S32_MIN;
11769 		dst_reg->s32_max_value = S32_MAX;
11770 	} else {
11771 		/* ORing two positives gives a positive, so safe to
11772 		 * cast result into s64.
11773 		 */
11774 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11775 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11776 	}
11777 }
11778 
11779 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
11780 			      struct bpf_reg_state *src_reg)
11781 {
11782 	bool src_known = tnum_is_const(src_reg->var_off);
11783 	bool dst_known = tnum_is_const(dst_reg->var_off);
11784 	s64 smin_val = src_reg->smin_value;
11785 	u64 umin_val = src_reg->umin_value;
11786 
11787 	if (src_known && dst_known) {
11788 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
11789 		return;
11790 	}
11791 
11792 	/* We get our maximum from the var_off, and our minimum is the
11793 	 * maximum of the operands' minima
11794 	 */
11795 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
11796 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11797 	if (dst_reg->smin_value < 0 || smin_val < 0) {
11798 		/* Lose signed bounds when ORing negative numbers,
11799 		 * ain't nobody got time for that.
11800 		 */
11801 		dst_reg->smin_value = S64_MIN;
11802 		dst_reg->smax_value = S64_MAX;
11803 	} else {
11804 		/* ORing two positives gives a positive, so safe to
11805 		 * cast result into s64.
11806 		 */
11807 		dst_reg->smin_value = dst_reg->umin_value;
11808 		dst_reg->smax_value = dst_reg->umax_value;
11809 	}
11810 	/* We may learn something more from the var_off */
11811 	__update_reg_bounds(dst_reg);
11812 }
11813 
11814 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
11815 				 struct bpf_reg_state *src_reg)
11816 {
11817 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
11818 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11819 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11820 	s32 smin_val = src_reg->s32_min_value;
11821 
11822 	if (src_known && dst_known) {
11823 		__mark_reg32_known(dst_reg, var32_off.value);
11824 		return;
11825 	}
11826 
11827 	/* We get both minimum and maximum from the var32_off. */
11828 	dst_reg->u32_min_value = var32_off.value;
11829 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11830 
11831 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
11832 		/* XORing two positive sign numbers gives a positive,
11833 		 * so safe to cast u32 result into s32.
11834 		 */
11835 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11836 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11837 	} else {
11838 		dst_reg->s32_min_value = S32_MIN;
11839 		dst_reg->s32_max_value = S32_MAX;
11840 	}
11841 }
11842 
11843 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
11844 			       struct bpf_reg_state *src_reg)
11845 {
11846 	bool src_known = tnum_is_const(src_reg->var_off);
11847 	bool dst_known = tnum_is_const(dst_reg->var_off);
11848 	s64 smin_val = src_reg->smin_value;
11849 
11850 	if (src_known && dst_known) {
11851 		/* dst_reg->var_off.value has been updated earlier */
11852 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
11853 		return;
11854 	}
11855 
11856 	/* We get both minimum and maximum from the var_off. */
11857 	dst_reg->umin_value = dst_reg->var_off.value;
11858 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11859 
11860 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
11861 		/* XORing two positive sign numbers gives a positive,
11862 		 * so safe to cast u64 result into s64.
11863 		 */
11864 		dst_reg->smin_value = dst_reg->umin_value;
11865 		dst_reg->smax_value = dst_reg->umax_value;
11866 	} else {
11867 		dst_reg->smin_value = S64_MIN;
11868 		dst_reg->smax_value = S64_MAX;
11869 	}
11870 
11871 	__update_reg_bounds(dst_reg);
11872 }
11873 
11874 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11875 				   u64 umin_val, u64 umax_val)
11876 {
11877 	/* We lose all sign bit information (except what we can pick
11878 	 * up from var_off)
11879 	 */
11880 	dst_reg->s32_min_value = S32_MIN;
11881 	dst_reg->s32_max_value = S32_MAX;
11882 	/* If we might shift our top bit out, then we know nothing */
11883 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
11884 		dst_reg->u32_min_value = 0;
11885 		dst_reg->u32_max_value = U32_MAX;
11886 	} else {
11887 		dst_reg->u32_min_value <<= umin_val;
11888 		dst_reg->u32_max_value <<= umax_val;
11889 	}
11890 }
11891 
11892 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11893 				 struct bpf_reg_state *src_reg)
11894 {
11895 	u32 umax_val = src_reg->u32_max_value;
11896 	u32 umin_val = src_reg->u32_min_value;
11897 	/* u32 alu operation will zext upper bits */
11898 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
11899 
11900 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11901 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
11902 	/* Not required but being careful mark reg64 bounds as unknown so
11903 	 * that we are forced to pick them up from tnum and zext later and
11904 	 * if some path skips this step we are still safe.
11905 	 */
11906 	__mark_reg64_unbounded(dst_reg);
11907 	__update_reg32_bounds(dst_reg);
11908 }
11909 
11910 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
11911 				   u64 umin_val, u64 umax_val)
11912 {
11913 	/* Special case <<32 because it is a common compiler pattern to sign
11914 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
11915 	 * positive we know this shift will also be positive so we can track
11916 	 * bounds correctly. Otherwise we lose all sign bit information except
11917 	 * what we can pick up from var_off. Perhaps we can generalize this
11918 	 * later to shifts of any length.
11919 	 */
11920 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
11921 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
11922 	else
11923 		dst_reg->smax_value = S64_MAX;
11924 
11925 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
11926 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
11927 	else
11928 		dst_reg->smin_value = S64_MIN;
11929 
11930 	/* If we might shift our top bit out, then we know nothing */
11931 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
11932 		dst_reg->umin_value = 0;
11933 		dst_reg->umax_value = U64_MAX;
11934 	} else {
11935 		dst_reg->umin_value <<= umin_val;
11936 		dst_reg->umax_value <<= umax_val;
11937 	}
11938 }
11939 
11940 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
11941 			       struct bpf_reg_state *src_reg)
11942 {
11943 	u64 umax_val = src_reg->umax_value;
11944 	u64 umin_val = src_reg->umin_value;
11945 
11946 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
11947 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
11948 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11949 
11950 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
11951 	/* We may learn something more from the var_off */
11952 	__update_reg_bounds(dst_reg);
11953 }
11954 
11955 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
11956 				 struct bpf_reg_state *src_reg)
11957 {
11958 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
11959 	u32 umax_val = src_reg->u32_max_value;
11960 	u32 umin_val = src_reg->u32_min_value;
11961 
11962 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
11963 	 * be negative, then either:
11964 	 * 1) src_reg might be zero, so the sign bit of the result is
11965 	 *    unknown, so we lose our signed bounds
11966 	 * 2) it's known negative, thus the unsigned bounds capture the
11967 	 *    signed bounds
11968 	 * 3) the signed bounds cross zero, so they tell us nothing
11969 	 *    about the result
11970 	 * If the value in dst_reg is known nonnegative, then again the
11971 	 * unsigned bounds capture the signed bounds.
11972 	 * Thus, in all cases it suffices to blow away our signed bounds
11973 	 * and rely on inferring new ones from the unsigned bounds and
11974 	 * var_off of the result.
11975 	 */
11976 	dst_reg->s32_min_value = S32_MIN;
11977 	dst_reg->s32_max_value = S32_MAX;
11978 
11979 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
11980 	dst_reg->u32_min_value >>= umax_val;
11981 	dst_reg->u32_max_value >>= umin_val;
11982 
11983 	__mark_reg64_unbounded(dst_reg);
11984 	__update_reg32_bounds(dst_reg);
11985 }
11986 
11987 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
11988 			       struct bpf_reg_state *src_reg)
11989 {
11990 	u64 umax_val = src_reg->umax_value;
11991 	u64 umin_val = src_reg->umin_value;
11992 
11993 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
11994 	 * be negative, then either:
11995 	 * 1) src_reg might be zero, so the sign bit of the result is
11996 	 *    unknown, so we lose our signed bounds
11997 	 * 2) it's known negative, thus the unsigned bounds capture the
11998 	 *    signed bounds
11999 	 * 3) the signed bounds cross zero, so they tell us nothing
12000 	 *    about the result
12001 	 * If the value in dst_reg is known nonnegative, then again the
12002 	 * unsigned bounds capture the signed bounds.
12003 	 * Thus, in all cases it suffices to blow away our signed bounds
12004 	 * and rely on inferring new ones from the unsigned bounds and
12005 	 * var_off of the result.
12006 	 */
12007 	dst_reg->smin_value = S64_MIN;
12008 	dst_reg->smax_value = S64_MAX;
12009 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12010 	dst_reg->umin_value >>= umax_val;
12011 	dst_reg->umax_value >>= umin_val;
12012 
12013 	/* Its not easy to operate on alu32 bounds here because it depends
12014 	 * on bits being shifted in. Take easy way out and mark unbounded
12015 	 * so we can recalculate later from tnum.
12016 	 */
12017 	__mark_reg32_unbounded(dst_reg);
12018 	__update_reg_bounds(dst_reg);
12019 }
12020 
12021 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12022 				  struct bpf_reg_state *src_reg)
12023 {
12024 	u64 umin_val = src_reg->u32_min_value;
12025 
12026 	/* Upon reaching here, src_known is true and
12027 	 * umax_val is equal to umin_val.
12028 	 */
12029 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12030 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12031 
12032 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12033 
12034 	/* blow away the dst_reg umin_value/umax_value and rely on
12035 	 * dst_reg var_off to refine the result.
12036 	 */
12037 	dst_reg->u32_min_value = 0;
12038 	dst_reg->u32_max_value = U32_MAX;
12039 
12040 	__mark_reg64_unbounded(dst_reg);
12041 	__update_reg32_bounds(dst_reg);
12042 }
12043 
12044 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12045 				struct bpf_reg_state *src_reg)
12046 {
12047 	u64 umin_val = src_reg->umin_value;
12048 
12049 	/* Upon reaching here, src_known is true and umax_val is equal
12050 	 * to umin_val.
12051 	 */
12052 	dst_reg->smin_value >>= umin_val;
12053 	dst_reg->smax_value >>= umin_val;
12054 
12055 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12056 
12057 	/* blow away the dst_reg umin_value/umax_value and rely on
12058 	 * dst_reg var_off to refine the result.
12059 	 */
12060 	dst_reg->umin_value = 0;
12061 	dst_reg->umax_value = U64_MAX;
12062 
12063 	/* Its not easy to operate on alu32 bounds here because it depends
12064 	 * on bits being shifted in from upper 32-bits. Take easy way out
12065 	 * and mark unbounded so we can recalculate later from tnum.
12066 	 */
12067 	__mark_reg32_unbounded(dst_reg);
12068 	__update_reg_bounds(dst_reg);
12069 }
12070 
12071 /* WARNING: This function does calculations on 64-bit values, but the actual
12072  * execution may occur on 32-bit values. Therefore, things like bitshifts
12073  * need extra checks in the 32-bit case.
12074  */
12075 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12076 				      struct bpf_insn *insn,
12077 				      struct bpf_reg_state *dst_reg,
12078 				      struct bpf_reg_state src_reg)
12079 {
12080 	struct bpf_reg_state *regs = cur_regs(env);
12081 	u8 opcode = BPF_OP(insn->code);
12082 	bool src_known;
12083 	s64 smin_val, smax_val;
12084 	u64 umin_val, umax_val;
12085 	s32 s32_min_val, s32_max_val;
12086 	u32 u32_min_val, u32_max_val;
12087 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12088 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12089 	int ret;
12090 
12091 	smin_val = src_reg.smin_value;
12092 	smax_val = src_reg.smax_value;
12093 	umin_val = src_reg.umin_value;
12094 	umax_val = src_reg.umax_value;
12095 
12096 	s32_min_val = src_reg.s32_min_value;
12097 	s32_max_val = src_reg.s32_max_value;
12098 	u32_min_val = src_reg.u32_min_value;
12099 	u32_max_val = src_reg.u32_max_value;
12100 
12101 	if (alu32) {
12102 		src_known = tnum_subreg_is_const(src_reg.var_off);
12103 		if ((src_known &&
12104 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12105 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12106 			/* Taint dst register if offset had invalid bounds
12107 			 * derived from e.g. dead branches.
12108 			 */
12109 			__mark_reg_unknown(env, dst_reg);
12110 			return 0;
12111 		}
12112 	} else {
12113 		src_known = tnum_is_const(src_reg.var_off);
12114 		if ((src_known &&
12115 		     (smin_val != smax_val || umin_val != umax_val)) ||
12116 		    smin_val > smax_val || umin_val > umax_val) {
12117 			/* Taint dst register if offset had invalid bounds
12118 			 * derived from e.g. dead branches.
12119 			 */
12120 			__mark_reg_unknown(env, dst_reg);
12121 			return 0;
12122 		}
12123 	}
12124 
12125 	if (!src_known &&
12126 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12127 		__mark_reg_unknown(env, dst_reg);
12128 		return 0;
12129 	}
12130 
12131 	if (sanitize_needed(opcode)) {
12132 		ret = sanitize_val_alu(env, insn);
12133 		if (ret < 0)
12134 			return sanitize_err(env, insn, ret, NULL, NULL);
12135 	}
12136 
12137 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12138 	 * There are two classes of instructions: The first class we track both
12139 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12140 	 * greatest amount of precision when alu operations are mixed with jmp32
12141 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12142 	 * and BPF_OR. This is possible because these ops have fairly easy to
12143 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12144 	 * See alu32 verifier tests for examples. The second class of
12145 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12146 	 * with regards to tracking sign/unsigned bounds because the bits may
12147 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12148 	 * the reg unbounded in the subreg bound space and use the resulting
12149 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12150 	 */
12151 	switch (opcode) {
12152 	case BPF_ADD:
12153 		scalar32_min_max_add(dst_reg, &src_reg);
12154 		scalar_min_max_add(dst_reg, &src_reg);
12155 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12156 		break;
12157 	case BPF_SUB:
12158 		scalar32_min_max_sub(dst_reg, &src_reg);
12159 		scalar_min_max_sub(dst_reg, &src_reg);
12160 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12161 		break;
12162 	case BPF_MUL:
12163 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12164 		scalar32_min_max_mul(dst_reg, &src_reg);
12165 		scalar_min_max_mul(dst_reg, &src_reg);
12166 		break;
12167 	case BPF_AND:
12168 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12169 		scalar32_min_max_and(dst_reg, &src_reg);
12170 		scalar_min_max_and(dst_reg, &src_reg);
12171 		break;
12172 	case BPF_OR:
12173 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12174 		scalar32_min_max_or(dst_reg, &src_reg);
12175 		scalar_min_max_or(dst_reg, &src_reg);
12176 		break;
12177 	case BPF_XOR:
12178 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12179 		scalar32_min_max_xor(dst_reg, &src_reg);
12180 		scalar_min_max_xor(dst_reg, &src_reg);
12181 		break;
12182 	case BPF_LSH:
12183 		if (umax_val >= insn_bitness) {
12184 			/* Shifts greater than 31 or 63 are undefined.
12185 			 * This includes shifts by a negative number.
12186 			 */
12187 			mark_reg_unknown(env, regs, insn->dst_reg);
12188 			break;
12189 		}
12190 		if (alu32)
12191 			scalar32_min_max_lsh(dst_reg, &src_reg);
12192 		else
12193 			scalar_min_max_lsh(dst_reg, &src_reg);
12194 		break;
12195 	case BPF_RSH:
12196 		if (umax_val >= insn_bitness) {
12197 			/* Shifts greater than 31 or 63 are undefined.
12198 			 * This includes shifts by a negative number.
12199 			 */
12200 			mark_reg_unknown(env, regs, insn->dst_reg);
12201 			break;
12202 		}
12203 		if (alu32)
12204 			scalar32_min_max_rsh(dst_reg, &src_reg);
12205 		else
12206 			scalar_min_max_rsh(dst_reg, &src_reg);
12207 		break;
12208 	case BPF_ARSH:
12209 		if (umax_val >= insn_bitness) {
12210 			/* Shifts greater than 31 or 63 are undefined.
12211 			 * This includes shifts by a negative number.
12212 			 */
12213 			mark_reg_unknown(env, regs, insn->dst_reg);
12214 			break;
12215 		}
12216 		if (alu32)
12217 			scalar32_min_max_arsh(dst_reg, &src_reg);
12218 		else
12219 			scalar_min_max_arsh(dst_reg, &src_reg);
12220 		break;
12221 	default:
12222 		mark_reg_unknown(env, regs, insn->dst_reg);
12223 		break;
12224 	}
12225 
12226 	/* ALU32 ops are zero extended into 64bit register */
12227 	if (alu32)
12228 		zext_32_to_64(dst_reg);
12229 	reg_bounds_sync(dst_reg);
12230 	return 0;
12231 }
12232 
12233 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12234  * and var_off.
12235  */
12236 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12237 				   struct bpf_insn *insn)
12238 {
12239 	struct bpf_verifier_state *vstate = env->cur_state;
12240 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12241 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
12242 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12243 	u8 opcode = BPF_OP(insn->code);
12244 	int err;
12245 
12246 	dst_reg = &regs[insn->dst_reg];
12247 	src_reg = NULL;
12248 	if (dst_reg->type != SCALAR_VALUE)
12249 		ptr_reg = dst_reg;
12250 	else
12251 		/* Make sure ID is cleared otherwise dst_reg min/max could be
12252 		 * incorrectly propagated into other registers by find_equal_scalars()
12253 		 */
12254 		dst_reg->id = 0;
12255 	if (BPF_SRC(insn->code) == BPF_X) {
12256 		src_reg = &regs[insn->src_reg];
12257 		if (src_reg->type != SCALAR_VALUE) {
12258 			if (dst_reg->type != SCALAR_VALUE) {
12259 				/* Combining two pointers by any ALU op yields
12260 				 * an arbitrary scalar. Disallow all math except
12261 				 * pointer subtraction
12262 				 */
12263 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12264 					mark_reg_unknown(env, regs, insn->dst_reg);
12265 					return 0;
12266 				}
12267 				verbose(env, "R%d pointer %s pointer prohibited\n",
12268 					insn->dst_reg,
12269 					bpf_alu_string[opcode >> 4]);
12270 				return -EACCES;
12271 			} else {
12272 				/* scalar += pointer
12273 				 * This is legal, but we have to reverse our
12274 				 * src/dest handling in computing the range
12275 				 */
12276 				err = mark_chain_precision(env, insn->dst_reg);
12277 				if (err)
12278 					return err;
12279 				return adjust_ptr_min_max_vals(env, insn,
12280 							       src_reg, dst_reg);
12281 			}
12282 		} else if (ptr_reg) {
12283 			/* pointer += scalar */
12284 			err = mark_chain_precision(env, insn->src_reg);
12285 			if (err)
12286 				return err;
12287 			return adjust_ptr_min_max_vals(env, insn,
12288 						       dst_reg, src_reg);
12289 		} else if (dst_reg->precise) {
12290 			/* if dst_reg is precise, src_reg should be precise as well */
12291 			err = mark_chain_precision(env, insn->src_reg);
12292 			if (err)
12293 				return err;
12294 		}
12295 	} else {
12296 		/* Pretend the src is a reg with a known value, since we only
12297 		 * need to be able to read from this state.
12298 		 */
12299 		off_reg.type = SCALAR_VALUE;
12300 		__mark_reg_known(&off_reg, insn->imm);
12301 		src_reg = &off_reg;
12302 		if (ptr_reg) /* pointer += K */
12303 			return adjust_ptr_min_max_vals(env, insn,
12304 						       ptr_reg, src_reg);
12305 	}
12306 
12307 	/* Got here implies adding two SCALAR_VALUEs */
12308 	if (WARN_ON_ONCE(ptr_reg)) {
12309 		print_verifier_state(env, state, true);
12310 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
12311 		return -EINVAL;
12312 	}
12313 	if (WARN_ON(!src_reg)) {
12314 		print_verifier_state(env, state, true);
12315 		verbose(env, "verifier internal error: no src_reg\n");
12316 		return -EINVAL;
12317 	}
12318 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
12319 }
12320 
12321 /* check validity of 32-bit and 64-bit arithmetic operations */
12322 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
12323 {
12324 	struct bpf_reg_state *regs = cur_regs(env);
12325 	u8 opcode = BPF_OP(insn->code);
12326 	int err;
12327 
12328 	if (opcode == BPF_END || opcode == BPF_NEG) {
12329 		if (opcode == BPF_NEG) {
12330 			if (BPF_SRC(insn->code) != BPF_K ||
12331 			    insn->src_reg != BPF_REG_0 ||
12332 			    insn->off != 0 || insn->imm != 0) {
12333 				verbose(env, "BPF_NEG uses reserved fields\n");
12334 				return -EINVAL;
12335 			}
12336 		} else {
12337 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
12338 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
12339 			    BPF_CLASS(insn->code) == BPF_ALU64) {
12340 				verbose(env, "BPF_END uses reserved fields\n");
12341 				return -EINVAL;
12342 			}
12343 		}
12344 
12345 		/* check src operand */
12346 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12347 		if (err)
12348 			return err;
12349 
12350 		if (is_pointer_value(env, insn->dst_reg)) {
12351 			verbose(env, "R%d pointer arithmetic prohibited\n",
12352 				insn->dst_reg);
12353 			return -EACCES;
12354 		}
12355 
12356 		/* check dest operand */
12357 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
12358 		if (err)
12359 			return err;
12360 
12361 	} else if (opcode == BPF_MOV) {
12362 
12363 		if (BPF_SRC(insn->code) == BPF_X) {
12364 			if (insn->imm != 0 || insn->off != 0) {
12365 				verbose(env, "BPF_MOV uses reserved fields\n");
12366 				return -EINVAL;
12367 			}
12368 
12369 			/* check src operand */
12370 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12371 			if (err)
12372 				return err;
12373 		} else {
12374 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
12375 				verbose(env, "BPF_MOV uses reserved fields\n");
12376 				return -EINVAL;
12377 			}
12378 		}
12379 
12380 		/* check dest operand, mark as required later */
12381 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12382 		if (err)
12383 			return err;
12384 
12385 		if (BPF_SRC(insn->code) == BPF_X) {
12386 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
12387 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
12388 
12389 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
12390 				/* case: R1 = R2
12391 				 * copy register state to dest reg
12392 				 */
12393 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
12394 					/* Assign src and dst registers the same ID
12395 					 * that will be used by find_equal_scalars()
12396 					 * to propagate min/max range.
12397 					 */
12398 					src_reg->id = ++env->id_gen;
12399 				copy_register_state(dst_reg, src_reg);
12400 				dst_reg->live |= REG_LIVE_WRITTEN;
12401 				dst_reg->subreg_def = DEF_NOT_SUBREG;
12402 			} else {
12403 				/* R1 = (u32) R2 */
12404 				if (is_pointer_value(env, insn->src_reg)) {
12405 					verbose(env,
12406 						"R%d partial copy of pointer\n",
12407 						insn->src_reg);
12408 					return -EACCES;
12409 				} else if (src_reg->type == SCALAR_VALUE) {
12410 					copy_register_state(dst_reg, src_reg);
12411 					/* Make sure ID is cleared otherwise
12412 					 * dst_reg min/max could be incorrectly
12413 					 * propagated into src_reg by find_equal_scalars()
12414 					 */
12415 					dst_reg->id = 0;
12416 					dst_reg->live |= REG_LIVE_WRITTEN;
12417 					dst_reg->subreg_def = env->insn_idx + 1;
12418 				} else {
12419 					mark_reg_unknown(env, regs,
12420 							 insn->dst_reg);
12421 				}
12422 				zext_32_to_64(dst_reg);
12423 				reg_bounds_sync(dst_reg);
12424 			}
12425 		} else {
12426 			/* case: R = imm
12427 			 * remember the value we stored into this reg
12428 			 */
12429 			/* clear any state __mark_reg_known doesn't set */
12430 			mark_reg_unknown(env, regs, insn->dst_reg);
12431 			regs[insn->dst_reg].type = SCALAR_VALUE;
12432 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
12433 				__mark_reg_known(regs + insn->dst_reg,
12434 						 insn->imm);
12435 			} else {
12436 				__mark_reg_known(regs + insn->dst_reg,
12437 						 (u32)insn->imm);
12438 			}
12439 		}
12440 
12441 	} else if (opcode > BPF_END) {
12442 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
12443 		return -EINVAL;
12444 
12445 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
12446 
12447 		if (BPF_SRC(insn->code) == BPF_X) {
12448 			if (insn->imm != 0 || insn->off != 0) {
12449 				verbose(env, "BPF_ALU uses reserved fields\n");
12450 				return -EINVAL;
12451 			}
12452 			/* check src1 operand */
12453 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12454 			if (err)
12455 				return err;
12456 		} else {
12457 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
12458 				verbose(env, "BPF_ALU uses reserved fields\n");
12459 				return -EINVAL;
12460 			}
12461 		}
12462 
12463 		/* check src2 operand */
12464 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12465 		if (err)
12466 			return err;
12467 
12468 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
12469 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
12470 			verbose(env, "div by zero\n");
12471 			return -EINVAL;
12472 		}
12473 
12474 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
12475 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
12476 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
12477 
12478 			if (insn->imm < 0 || insn->imm >= size) {
12479 				verbose(env, "invalid shift %d\n", insn->imm);
12480 				return -EINVAL;
12481 			}
12482 		}
12483 
12484 		/* check dest operand */
12485 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12486 		if (err)
12487 			return err;
12488 
12489 		return adjust_reg_min_max_vals(env, insn);
12490 	}
12491 
12492 	return 0;
12493 }
12494 
12495 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
12496 				   struct bpf_reg_state *dst_reg,
12497 				   enum bpf_reg_type type,
12498 				   bool range_right_open)
12499 {
12500 	struct bpf_func_state *state;
12501 	struct bpf_reg_state *reg;
12502 	int new_range;
12503 
12504 	if (dst_reg->off < 0 ||
12505 	    (dst_reg->off == 0 && range_right_open))
12506 		/* This doesn't give us any range */
12507 		return;
12508 
12509 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
12510 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
12511 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
12512 		 * than pkt_end, but that's because it's also less than pkt.
12513 		 */
12514 		return;
12515 
12516 	new_range = dst_reg->off;
12517 	if (range_right_open)
12518 		new_range++;
12519 
12520 	/* Examples for register markings:
12521 	 *
12522 	 * pkt_data in dst register:
12523 	 *
12524 	 *   r2 = r3;
12525 	 *   r2 += 8;
12526 	 *   if (r2 > pkt_end) goto <handle exception>
12527 	 *   <access okay>
12528 	 *
12529 	 *   r2 = r3;
12530 	 *   r2 += 8;
12531 	 *   if (r2 < pkt_end) goto <access okay>
12532 	 *   <handle exception>
12533 	 *
12534 	 *   Where:
12535 	 *     r2 == dst_reg, pkt_end == src_reg
12536 	 *     r2=pkt(id=n,off=8,r=0)
12537 	 *     r3=pkt(id=n,off=0,r=0)
12538 	 *
12539 	 * pkt_data in src register:
12540 	 *
12541 	 *   r2 = r3;
12542 	 *   r2 += 8;
12543 	 *   if (pkt_end >= r2) goto <access okay>
12544 	 *   <handle exception>
12545 	 *
12546 	 *   r2 = r3;
12547 	 *   r2 += 8;
12548 	 *   if (pkt_end <= r2) goto <handle exception>
12549 	 *   <access okay>
12550 	 *
12551 	 *   Where:
12552 	 *     pkt_end == dst_reg, r2 == src_reg
12553 	 *     r2=pkt(id=n,off=8,r=0)
12554 	 *     r3=pkt(id=n,off=0,r=0)
12555 	 *
12556 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
12557 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
12558 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
12559 	 * the check.
12560 	 */
12561 
12562 	/* If our ids match, then we must have the same max_value.  And we
12563 	 * don't care about the other reg's fixed offset, since if it's too big
12564 	 * the range won't allow anything.
12565 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
12566 	 */
12567 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
12568 		if (reg->type == type && reg->id == dst_reg->id)
12569 			/* keep the maximum range already checked */
12570 			reg->range = max(reg->range, new_range);
12571 	}));
12572 }
12573 
12574 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
12575 {
12576 	struct tnum subreg = tnum_subreg(reg->var_off);
12577 	s32 sval = (s32)val;
12578 
12579 	switch (opcode) {
12580 	case BPF_JEQ:
12581 		if (tnum_is_const(subreg))
12582 			return !!tnum_equals_const(subreg, val);
12583 		break;
12584 	case BPF_JNE:
12585 		if (tnum_is_const(subreg))
12586 			return !tnum_equals_const(subreg, val);
12587 		break;
12588 	case BPF_JSET:
12589 		if ((~subreg.mask & subreg.value) & val)
12590 			return 1;
12591 		if (!((subreg.mask | subreg.value) & val))
12592 			return 0;
12593 		break;
12594 	case BPF_JGT:
12595 		if (reg->u32_min_value > val)
12596 			return 1;
12597 		else if (reg->u32_max_value <= val)
12598 			return 0;
12599 		break;
12600 	case BPF_JSGT:
12601 		if (reg->s32_min_value > sval)
12602 			return 1;
12603 		else if (reg->s32_max_value <= sval)
12604 			return 0;
12605 		break;
12606 	case BPF_JLT:
12607 		if (reg->u32_max_value < val)
12608 			return 1;
12609 		else if (reg->u32_min_value >= val)
12610 			return 0;
12611 		break;
12612 	case BPF_JSLT:
12613 		if (reg->s32_max_value < sval)
12614 			return 1;
12615 		else if (reg->s32_min_value >= sval)
12616 			return 0;
12617 		break;
12618 	case BPF_JGE:
12619 		if (reg->u32_min_value >= val)
12620 			return 1;
12621 		else if (reg->u32_max_value < val)
12622 			return 0;
12623 		break;
12624 	case BPF_JSGE:
12625 		if (reg->s32_min_value >= sval)
12626 			return 1;
12627 		else if (reg->s32_max_value < sval)
12628 			return 0;
12629 		break;
12630 	case BPF_JLE:
12631 		if (reg->u32_max_value <= val)
12632 			return 1;
12633 		else if (reg->u32_min_value > val)
12634 			return 0;
12635 		break;
12636 	case BPF_JSLE:
12637 		if (reg->s32_max_value <= sval)
12638 			return 1;
12639 		else if (reg->s32_min_value > sval)
12640 			return 0;
12641 		break;
12642 	}
12643 
12644 	return -1;
12645 }
12646 
12647 
12648 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
12649 {
12650 	s64 sval = (s64)val;
12651 
12652 	switch (opcode) {
12653 	case BPF_JEQ:
12654 		if (tnum_is_const(reg->var_off))
12655 			return !!tnum_equals_const(reg->var_off, val);
12656 		break;
12657 	case BPF_JNE:
12658 		if (tnum_is_const(reg->var_off))
12659 			return !tnum_equals_const(reg->var_off, val);
12660 		break;
12661 	case BPF_JSET:
12662 		if ((~reg->var_off.mask & reg->var_off.value) & val)
12663 			return 1;
12664 		if (!((reg->var_off.mask | reg->var_off.value) & val))
12665 			return 0;
12666 		break;
12667 	case BPF_JGT:
12668 		if (reg->umin_value > val)
12669 			return 1;
12670 		else if (reg->umax_value <= val)
12671 			return 0;
12672 		break;
12673 	case BPF_JSGT:
12674 		if (reg->smin_value > sval)
12675 			return 1;
12676 		else if (reg->smax_value <= sval)
12677 			return 0;
12678 		break;
12679 	case BPF_JLT:
12680 		if (reg->umax_value < val)
12681 			return 1;
12682 		else if (reg->umin_value >= val)
12683 			return 0;
12684 		break;
12685 	case BPF_JSLT:
12686 		if (reg->smax_value < sval)
12687 			return 1;
12688 		else if (reg->smin_value >= sval)
12689 			return 0;
12690 		break;
12691 	case BPF_JGE:
12692 		if (reg->umin_value >= val)
12693 			return 1;
12694 		else if (reg->umax_value < val)
12695 			return 0;
12696 		break;
12697 	case BPF_JSGE:
12698 		if (reg->smin_value >= sval)
12699 			return 1;
12700 		else if (reg->smax_value < sval)
12701 			return 0;
12702 		break;
12703 	case BPF_JLE:
12704 		if (reg->umax_value <= val)
12705 			return 1;
12706 		else if (reg->umin_value > val)
12707 			return 0;
12708 		break;
12709 	case BPF_JSLE:
12710 		if (reg->smax_value <= sval)
12711 			return 1;
12712 		else if (reg->smin_value > sval)
12713 			return 0;
12714 		break;
12715 	}
12716 
12717 	return -1;
12718 }
12719 
12720 /* compute branch direction of the expression "if (reg opcode val) goto target;"
12721  * and return:
12722  *  1 - branch will be taken and "goto target" will be executed
12723  *  0 - branch will not be taken and fall-through to next insn
12724  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
12725  *      range [0,10]
12726  */
12727 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
12728 			   bool is_jmp32)
12729 {
12730 	if (__is_pointer_value(false, reg)) {
12731 		if (!reg_type_not_null(reg->type))
12732 			return -1;
12733 
12734 		/* If pointer is valid tests against zero will fail so we can
12735 		 * use this to direct branch taken.
12736 		 */
12737 		if (val != 0)
12738 			return -1;
12739 
12740 		switch (opcode) {
12741 		case BPF_JEQ:
12742 			return 0;
12743 		case BPF_JNE:
12744 			return 1;
12745 		default:
12746 			return -1;
12747 		}
12748 	}
12749 
12750 	if (is_jmp32)
12751 		return is_branch32_taken(reg, val, opcode);
12752 	return is_branch64_taken(reg, val, opcode);
12753 }
12754 
12755 static int flip_opcode(u32 opcode)
12756 {
12757 	/* How can we transform "a <op> b" into "b <op> a"? */
12758 	static const u8 opcode_flip[16] = {
12759 		/* these stay the same */
12760 		[BPF_JEQ  >> 4] = BPF_JEQ,
12761 		[BPF_JNE  >> 4] = BPF_JNE,
12762 		[BPF_JSET >> 4] = BPF_JSET,
12763 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
12764 		[BPF_JGE  >> 4] = BPF_JLE,
12765 		[BPF_JGT  >> 4] = BPF_JLT,
12766 		[BPF_JLE  >> 4] = BPF_JGE,
12767 		[BPF_JLT  >> 4] = BPF_JGT,
12768 		[BPF_JSGE >> 4] = BPF_JSLE,
12769 		[BPF_JSGT >> 4] = BPF_JSLT,
12770 		[BPF_JSLE >> 4] = BPF_JSGE,
12771 		[BPF_JSLT >> 4] = BPF_JSGT
12772 	};
12773 	return opcode_flip[opcode >> 4];
12774 }
12775 
12776 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
12777 				   struct bpf_reg_state *src_reg,
12778 				   u8 opcode)
12779 {
12780 	struct bpf_reg_state *pkt;
12781 
12782 	if (src_reg->type == PTR_TO_PACKET_END) {
12783 		pkt = dst_reg;
12784 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
12785 		pkt = src_reg;
12786 		opcode = flip_opcode(opcode);
12787 	} else {
12788 		return -1;
12789 	}
12790 
12791 	if (pkt->range >= 0)
12792 		return -1;
12793 
12794 	switch (opcode) {
12795 	case BPF_JLE:
12796 		/* pkt <= pkt_end */
12797 		fallthrough;
12798 	case BPF_JGT:
12799 		/* pkt > pkt_end */
12800 		if (pkt->range == BEYOND_PKT_END)
12801 			/* pkt has at last one extra byte beyond pkt_end */
12802 			return opcode == BPF_JGT;
12803 		break;
12804 	case BPF_JLT:
12805 		/* pkt < pkt_end */
12806 		fallthrough;
12807 	case BPF_JGE:
12808 		/* pkt >= pkt_end */
12809 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
12810 			return opcode == BPF_JGE;
12811 		break;
12812 	}
12813 	return -1;
12814 }
12815 
12816 /* Adjusts the register min/max values in the case that the dst_reg is the
12817  * variable register that we are working on, and src_reg is a constant or we're
12818  * simply doing a BPF_K check.
12819  * In JEQ/JNE cases we also adjust the var_off values.
12820  */
12821 static void reg_set_min_max(struct bpf_reg_state *true_reg,
12822 			    struct bpf_reg_state *false_reg,
12823 			    u64 val, u32 val32,
12824 			    u8 opcode, bool is_jmp32)
12825 {
12826 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
12827 	struct tnum false_64off = false_reg->var_off;
12828 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
12829 	struct tnum true_64off = true_reg->var_off;
12830 	s64 sval = (s64)val;
12831 	s32 sval32 = (s32)val32;
12832 
12833 	/* If the dst_reg is a pointer, we can't learn anything about its
12834 	 * variable offset from the compare (unless src_reg were a pointer into
12835 	 * the same object, but we don't bother with that.
12836 	 * Since false_reg and true_reg have the same type by construction, we
12837 	 * only need to check one of them for pointerness.
12838 	 */
12839 	if (__is_pointer_value(false, false_reg))
12840 		return;
12841 
12842 	switch (opcode) {
12843 	/* JEQ/JNE comparison doesn't change the register equivalence.
12844 	 *
12845 	 * r1 = r2;
12846 	 * if (r1 == 42) goto label;
12847 	 * ...
12848 	 * label: // here both r1 and r2 are known to be 42.
12849 	 *
12850 	 * Hence when marking register as known preserve it's ID.
12851 	 */
12852 	case BPF_JEQ:
12853 		if (is_jmp32) {
12854 			__mark_reg32_known(true_reg, val32);
12855 			true_32off = tnum_subreg(true_reg->var_off);
12856 		} else {
12857 			___mark_reg_known(true_reg, val);
12858 			true_64off = true_reg->var_off;
12859 		}
12860 		break;
12861 	case BPF_JNE:
12862 		if (is_jmp32) {
12863 			__mark_reg32_known(false_reg, val32);
12864 			false_32off = tnum_subreg(false_reg->var_off);
12865 		} else {
12866 			___mark_reg_known(false_reg, val);
12867 			false_64off = false_reg->var_off;
12868 		}
12869 		break;
12870 	case BPF_JSET:
12871 		if (is_jmp32) {
12872 			false_32off = tnum_and(false_32off, tnum_const(~val32));
12873 			if (is_power_of_2(val32))
12874 				true_32off = tnum_or(true_32off,
12875 						     tnum_const(val32));
12876 		} else {
12877 			false_64off = tnum_and(false_64off, tnum_const(~val));
12878 			if (is_power_of_2(val))
12879 				true_64off = tnum_or(true_64off,
12880 						     tnum_const(val));
12881 		}
12882 		break;
12883 	case BPF_JGE:
12884 	case BPF_JGT:
12885 	{
12886 		if (is_jmp32) {
12887 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
12888 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
12889 
12890 			false_reg->u32_max_value = min(false_reg->u32_max_value,
12891 						       false_umax);
12892 			true_reg->u32_min_value = max(true_reg->u32_min_value,
12893 						      true_umin);
12894 		} else {
12895 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
12896 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
12897 
12898 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
12899 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
12900 		}
12901 		break;
12902 	}
12903 	case BPF_JSGE:
12904 	case BPF_JSGT:
12905 	{
12906 		if (is_jmp32) {
12907 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
12908 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
12909 
12910 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
12911 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
12912 		} else {
12913 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
12914 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
12915 
12916 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
12917 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
12918 		}
12919 		break;
12920 	}
12921 	case BPF_JLE:
12922 	case BPF_JLT:
12923 	{
12924 		if (is_jmp32) {
12925 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
12926 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
12927 
12928 			false_reg->u32_min_value = max(false_reg->u32_min_value,
12929 						       false_umin);
12930 			true_reg->u32_max_value = min(true_reg->u32_max_value,
12931 						      true_umax);
12932 		} else {
12933 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
12934 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
12935 
12936 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
12937 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
12938 		}
12939 		break;
12940 	}
12941 	case BPF_JSLE:
12942 	case BPF_JSLT:
12943 	{
12944 		if (is_jmp32) {
12945 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
12946 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
12947 
12948 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
12949 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
12950 		} else {
12951 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
12952 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
12953 
12954 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
12955 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
12956 		}
12957 		break;
12958 	}
12959 	default:
12960 		return;
12961 	}
12962 
12963 	if (is_jmp32) {
12964 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
12965 					     tnum_subreg(false_32off));
12966 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
12967 					    tnum_subreg(true_32off));
12968 		__reg_combine_32_into_64(false_reg);
12969 		__reg_combine_32_into_64(true_reg);
12970 	} else {
12971 		false_reg->var_off = false_64off;
12972 		true_reg->var_off = true_64off;
12973 		__reg_combine_64_into_32(false_reg);
12974 		__reg_combine_64_into_32(true_reg);
12975 	}
12976 }
12977 
12978 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
12979  * the variable reg.
12980  */
12981 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
12982 				struct bpf_reg_state *false_reg,
12983 				u64 val, u32 val32,
12984 				u8 opcode, bool is_jmp32)
12985 {
12986 	opcode = flip_opcode(opcode);
12987 	/* This uses zero as "not present in table"; luckily the zero opcode,
12988 	 * BPF_JA, can't get here.
12989 	 */
12990 	if (opcode)
12991 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
12992 }
12993 
12994 /* Regs are known to be equal, so intersect their min/max/var_off */
12995 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
12996 				  struct bpf_reg_state *dst_reg)
12997 {
12998 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
12999 							dst_reg->umin_value);
13000 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13001 							dst_reg->umax_value);
13002 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13003 							dst_reg->smin_value);
13004 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13005 							dst_reg->smax_value);
13006 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13007 							     dst_reg->var_off);
13008 	reg_bounds_sync(src_reg);
13009 	reg_bounds_sync(dst_reg);
13010 }
13011 
13012 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13013 				struct bpf_reg_state *true_dst,
13014 				struct bpf_reg_state *false_src,
13015 				struct bpf_reg_state *false_dst,
13016 				u8 opcode)
13017 {
13018 	switch (opcode) {
13019 	case BPF_JEQ:
13020 		__reg_combine_min_max(true_src, true_dst);
13021 		break;
13022 	case BPF_JNE:
13023 		__reg_combine_min_max(false_src, false_dst);
13024 		break;
13025 	}
13026 }
13027 
13028 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13029 				 struct bpf_reg_state *reg, u32 id,
13030 				 bool is_null)
13031 {
13032 	if (type_may_be_null(reg->type) && reg->id == id &&
13033 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13034 		/* Old offset (both fixed and variable parts) should have been
13035 		 * known-zero, because we don't allow pointer arithmetic on
13036 		 * pointers that might be NULL. If we see this happening, don't
13037 		 * convert the register.
13038 		 *
13039 		 * But in some cases, some helpers that return local kptrs
13040 		 * advance offset for the returned pointer. In those cases, it
13041 		 * is fine to expect to see reg->off.
13042 		 */
13043 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13044 			return;
13045 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13046 		    WARN_ON_ONCE(reg->off))
13047 			return;
13048 
13049 		if (is_null) {
13050 			reg->type = SCALAR_VALUE;
13051 			/* We don't need id and ref_obj_id from this point
13052 			 * onwards anymore, thus we should better reset it,
13053 			 * so that state pruning has chances to take effect.
13054 			 */
13055 			reg->id = 0;
13056 			reg->ref_obj_id = 0;
13057 
13058 			return;
13059 		}
13060 
13061 		mark_ptr_not_null_reg(reg);
13062 
13063 		if (!reg_may_point_to_spin_lock(reg)) {
13064 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13065 			 * in release_reference().
13066 			 *
13067 			 * reg->id is still used by spin_lock ptr. Other
13068 			 * than spin_lock ptr type, reg->id can be reset.
13069 			 */
13070 			reg->id = 0;
13071 		}
13072 	}
13073 }
13074 
13075 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13076  * be folded together at some point.
13077  */
13078 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13079 				  bool is_null)
13080 {
13081 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13082 	struct bpf_reg_state *regs = state->regs, *reg;
13083 	u32 ref_obj_id = regs[regno].ref_obj_id;
13084 	u32 id = regs[regno].id;
13085 
13086 	if (ref_obj_id && ref_obj_id == id && is_null)
13087 		/* regs[regno] is in the " == NULL" branch.
13088 		 * No one could have freed the reference state before
13089 		 * doing the NULL check.
13090 		 */
13091 		WARN_ON_ONCE(release_reference_state(state, id));
13092 
13093 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13094 		mark_ptr_or_null_reg(state, reg, id, is_null);
13095 	}));
13096 }
13097 
13098 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13099 				   struct bpf_reg_state *dst_reg,
13100 				   struct bpf_reg_state *src_reg,
13101 				   struct bpf_verifier_state *this_branch,
13102 				   struct bpf_verifier_state *other_branch)
13103 {
13104 	if (BPF_SRC(insn->code) != BPF_X)
13105 		return false;
13106 
13107 	/* Pointers are always 64-bit. */
13108 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13109 		return false;
13110 
13111 	switch (BPF_OP(insn->code)) {
13112 	case BPF_JGT:
13113 		if ((dst_reg->type == PTR_TO_PACKET &&
13114 		     src_reg->type == PTR_TO_PACKET_END) ||
13115 		    (dst_reg->type == PTR_TO_PACKET_META &&
13116 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13117 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13118 			find_good_pkt_pointers(this_branch, dst_reg,
13119 					       dst_reg->type, false);
13120 			mark_pkt_end(other_branch, insn->dst_reg, true);
13121 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13122 			    src_reg->type == PTR_TO_PACKET) ||
13123 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13124 			    src_reg->type == PTR_TO_PACKET_META)) {
13125 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13126 			find_good_pkt_pointers(other_branch, src_reg,
13127 					       src_reg->type, true);
13128 			mark_pkt_end(this_branch, insn->src_reg, false);
13129 		} else {
13130 			return false;
13131 		}
13132 		break;
13133 	case BPF_JLT:
13134 		if ((dst_reg->type == PTR_TO_PACKET &&
13135 		     src_reg->type == PTR_TO_PACKET_END) ||
13136 		    (dst_reg->type == PTR_TO_PACKET_META &&
13137 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13138 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13139 			find_good_pkt_pointers(other_branch, dst_reg,
13140 					       dst_reg->type, true);
13141 			mark_pkt_end(this_branch, insn->dst_reg, false);
13142 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13143 			    src_reg->type == PTR_TO_PACKET) ||
13144 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13145 			    src_reg->type == PTR_TO_PACKET_META)) {
13146 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13147 			find_good_pkt_pointers(this_branch, src_reg,
13148 					       src_reg->type, false);
13149 			mark_pkt_end(other_branch, insn->src_reg, true);
13150 		} else {
13151 			return false;
13152 		}
13153 		break;
13154 	case BPF_JGE:
13155 		if ((dst_reg->type == PTR_TO_PACKET &&
13156 		     src_reg->type == PTR_TO_PACKET_END) ||
13157 		    (dst_reg->type == PTR_TO_PACKET_META &&
13158 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13159 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13160 			find_good_pkt_pointers(this_branch, dst_reg,
13161 					       dst_reg->type, true);
13162 			mark_pkt_end(other_branch, insn->dst_reg, false);
13163 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13164 			    src_reg->type == PTR_TO_PACKET) ||
13165 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13166 			    src_reg->type == PTR_TO_PACKET_META)) {
13167 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13168 			find_good_pkt_pointers(other_branch, src_reg,
13169 					       src_reg->type, false);
13170 			mark_pkt_end(this_branch, insn->src_reg, true);
13171 		} else {
13172 			return false;
13173 		}
13174 		break;
13175 	case BPF_JLE:
13176 		if ((dst_reg->type == PTR_TO_PACKET &&
13177 		     src_reg->type == PTR_TO_PACKET_END) ||
13178 		    (dst_reg->type == PTR_TO_PACKET_META &&
13179 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13180 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13181 			find_good_pkt_pointers(other_branch, dst_reg,
13182 					       dst_reg->type, false);
13183 			mark_pkt_end(this_branch, insn->dst_reg, true);
13184 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13185 			    src_reg->type == PTR_TO_PACKET) ||
13186 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13187 			    src_reg->type == PTR_TO_PACKET_META)) {
13188 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13189 			find_good_pkt_pointers(this_branch, src_reg,
13190 					       src_reg->type, true);
13191 			mark_pkt_end(other_branch, insn->src_reg, false);
13192 		} else {
13193 			return false;
13194 		}
13195 		break;
13196 	default:
13197 		return false;
13198 	}
13199 
13200 	return true;
13201 }
13202 
13203 static void find_equal_scalars(struct bpf_verifier_state *vstate,
13204 			       struct bpf_reg_state *known_reg)
13205 {
13206 	struct bpf_func_state *state;
13207 	struct bpf_reg_state *reg;
13208 
13209 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13210 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
13211 			copy_register_state(reg, known_reg);
13212 	}));
13213 }
13214 
13215 static int check_cond_jmp_op(struct bpf_verifier_env *env,
13216 			     struct bpf_insn *insn, int *insn_idx)
13217 {
13218 	struct bpf_verifier_state *this_branch = env->cur_state;
13219 	struct bpf_verifier_state *other_branch;
13220 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
13221 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
13222 	struct bpf_reg_state *eq_branch_regs;
13223 	u8 opcode = BPF_OP(insn->code);
13224 	bool is_jmp32;
13225 	int pred = -1;
13226 	int err;
13227 
13228 	/* Only conditional jumps are expected to reach here. */
13229 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
13230 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
13231 		return -EINVAL;
13232 	}
13233 
13234 	if (BPF_SRC(insn->code) == BPF_X) {
13235 		if (insn->imm != 0) {
13236 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13237 			return -EINVAL;
13238 		}
13239 
13240 		/* check src1 operand */
13241 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
13242 		if (err)
13243 			return err;
13244 
13245 		if (is_pointer_value(env, insn->src_reg)) {
13246 			verbose(env, "R%d pointer comparison prohibited\n",
13247 				insn->src_reg);
13248 			return -EACCES;
13249 		}
13250 		src_reg = &regs[insn->src_reg];
13251 	} else {
13252 		if (insn->src_reg != BPF_REG_0) {
13253 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13254 			return -EINVAL;
13255 		}
13256 	}
13257 
13258 	/* check src2 operand */
13259 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13260 	if (err)
13261 		return err;
13262 
13263 	dst_reg = &regs[insn->dst_reg];
13264 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
13265 
13266 	if (BPF_SRC(insn->code) == BPF_K) {
13267 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
13268 	} else if (src_reg->type == SCALAR_VALUE &&
13269 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
13270 		pred = is_branch_taken(dst_reg,
13271 				       tnum_subreg(src_reg->var_off).value,
13272 				       opcode,
13273 				       is_jmp32);
13274 	} else if (src_reg->type == SCALAR_VALUE &&
13275 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
13276 		pred = is_branch_taken(dst_reg,
13277 				       src_reg->var_off.value,
13278 				       opcode,
13279 				       is_jmp32);
13280 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
13281 		   reg_is_pkt_pointer_any(src_reg) &&
13282 		   !is_jmp32) {
13283 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
13284 	}
13285 
13286 	if (pred >= 0) {
13287 		/* If we get here with a dst_reg pointer type it is because
13288 		 * above is_branch_taken() special cased the 0 comparison.
13289 		 */
13290 		if (!__is_pointer_value(false, dst_reg))
13291 			err = mark_chain_precision(env, insn->dst_reg);
13292 		if (BPF_SRC(insn->code) == BPF_X && !err &&
13293 		    !__is_pointer_value(false, src_reg))
13294 			err = mark_chain_precision(env, insn->src_reg);
13295 		if (err)
13296 			return err;
13297 	}
13298 
13299 	if (pred == 1) {
13300 		/* Only follow the goto, ignore fall-through. If needed, push
13301 		 * the fall-through branch for simulation under speculative
13302 		 * execution.
13303 		 */
13304 		if (!env->bypass_spec_v1 &&
13305 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
13306 					       *insn_idx))
13307 			return -EFAULT;
13308 		*insn_idx += insn->off;
13309 		return 0;
13310 	} else if (pred == 0) {
13311 		/* Only follow the fall-through branch, since that's where the
13312 		 * program will go. If needed, push the goto branch for
13313 		 * simulation under speculative execution.
13314 		 */
13315 		if (!env->bypass_spec_v1 &&
13316 		    !sanitize_speculative_path(env, insn,
13317 					       *insn_idx + insn->off + 1,
13318 					       *insn_idx))
13319 			return -EFAULT;
13320 		return 0;
13321 	}
13322 
13323 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
13324 				  false);
13325 	if (!other_branch)
13326 		return -EFAULT;
13327 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
13328 
13329 	/* detect if we are comparing against a constant value so we can adjust
13330 	 * our min/max values for our dst register.
13331 	 * this is only legit if both are scalars (or pointers to the same
13332 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
13333 	 * because otherwise the different base pointers mean the offsets aren't
13334 	 * comparable.
13335 	 */
13336 	if (BPF_SRC(insn->code) == BPF_X) {
13337 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
13338 
13339 		if (dst_reg->type == SCALAR_VALUE &&
13340 		    src_reg->type == SCALAR_VALUE) {
13341 			if (tnum_is_const(src_reg->var_off) ||
13342 			    (is_jmp32 &&
13343 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
13344 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
13345 						dst_reg,
13346 						src_reg->var_off.value,
13347 						tnum_subreg(src_reg->var_off).value,
13348 						opcode, is_jmp32);
13349 			else if (tnum_is_const(dst_reg->var_off) ||
13350 				 (is_jmp32 &&
13351 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
13352 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
13353 						    src_reg,
13354 						    dst_reg->var_off.value,
13355 						    tnum_subreg(dst_reg->var_off).value,
13356 						    opcode, is_jmp32);
13357 			else if (!is_jmp32 &&
13358 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
13359 				/* Comparing for equality, we can combine knowledge */
13360 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
13361 						    &other_branch_regs[insn->dst_reg],
13362 						    src_reg, dst_reg, opcode);
13363 			if (src_reg->id &&
13364 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
13365 				find_equal_scalars(this_branch, src_reg);
13366 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
13367 			}
13368 
13369 		}
13370 	} else if (dst_reg->type == SCALAR_VALUE) {
13371 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
13372 					dst_reg, insn->imm, (u32)insn->imm,
13373 					opcode, is_jmp32);
13374 	}
13375 
13376 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
13377 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
13378 		find_equal_scalars(this_branch, dst_reg);
13379 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
13380 	}
13381 
13382 	/* if one pointer register is compared to another pointer
13383 	 * register check if PTR_MAYBE_NULL could be lifted.
13384 	 * E.g. register A - maybe null
13385 	 *      register B - not null
13386 	 * for JNE A, B, ... - A is not null in the false branch;
13387 	 * for JEQ A, B, ... - A is not null in the true branch.
13388 	 *
13389 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
13390 	 * not need to be null checked by the BPF program, i.e.,
13391 	 * could be null even without PTR_MAYBE_NULL marking, so
13392 	 * only propagate nullness when neither reg is that type.
13393 	 */
13394 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
13395 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
13396 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
13397 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
13398 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
13399 		eq_branch_regs = NULL;
13400 		switch (opcode) {
13401 		case BPF_JEQ:
13402 			eq_branch_regs = other_branch_regs;
13403 			break;
13404 		case BPF_JNE:
13405 			eq_branch_regs = regs;
13406 			break;
13407 		default:
13408 			/* do nothing */
13409 			break;
13410 		}
13411 		if (eq_branch_regs) {
13412 			if (type_may_be_null(src_reg->type))
13413 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
13414 			else
13415 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
13416 		}
13417 	}
13418 
13419 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
13420 	 * NOTE: these optimizations below are related with pointer comparison
13421 	 *       which will never be JMP32.
13422 	 */
13423 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
13424 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
13425 	    type_may_be_null(dst_reg->type)) {
13426 		/* Mark all identical registers in each branch as either
13427 		 * safe or unknown depending R == 0 or R != 0 conditional.
13428 		 */
13429 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
13430 				      opcode == BPF_JNE);
13431 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
13432 				      opcode == BPF_JEQ);
13433 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
13434 					   this_branch, other_branch) &&
13435 		   is_pointer_value(env, insn->dst_reg)) {
13436 		verbose(env, "R%d pointer comparison prohibited\n",
13437 			insn->dst_reg);
13438 		return -EACCES;
13439 	}
13440 	if (env->log.level & BPF_LOG_LEVEL)
13441 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
13442 	return 0;
13443 }
13444 
13445 /* verify BPF_LD_IMM64 instruction */
13446 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
13447 {
13448 	struct bpf_insn_aux_data *aux = cur_aux(env);
13449 	struct bpf_reg_state *regs = cur_regs(env);
13450 	struct bpf_reg_state *dst_reg;
13451 	struct bpf_map *map;
13452 	int err;
13453 
13454 	if (BPF_SIZE(insn->code) != BPF_DW) {
13455 		verbose(env, "invalid BPF_LD_IMM insn\n");
13456 		return -EINVAL;
13457 	}
13458 	if (insn->off != 0) {
13459 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
13460 		return -EINVAL;
13461 	}
13462 
13463 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
13464 	if (err)
13465 		return err;
13466 
13467 	dst_reg = &regs[insn->dst_reg];
13468 	if (insn->src_reg == 0) {
13469 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
13470 
13471 		dst_reg->type = SCALAR_VALUE;
13472 		__mark_reg_known(&regs[insn->dst_reg], imm);
13473 		return 0;
13474 	}
13475 
13476 	/* All special src_reg cases are listed below. From this point onwards
13477 	 * we either succeed and assign a corresponding dst_reg->type after
13478 	 * zeroing the offset, or fail and reject the program.
13479 	 */
13480 	mark_reg_known_zero(env, regs, insn->dst_reg);
13481 
13482 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
13483 		dst_reg->type = aux->btf_var.reg_type;
13484 		switch (base_type(dst_reg->type)) {
13485 		case PTR_TO_MEM:
13486 			dst_reg->mem_size = aux->btf_var.mem_size;
13487 			break;
13488 		case PTR_TO_BTF_ID:
13489 			dst_reg->btf = aux->btf_var.btf;
13490 			dst_reg->btf_id = aux->btf_var.btf_id;
13491 			break;
13492 		default:
13493 			verbose(env, "bpf verifier is misconfigured\n");
13494 			return -EFAULT;
13495 		}
13496 		return 0;
13497 	}
13498 
13499 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
13500 		struct bpf_prog_aux *aux = env->prog->aux;
13501 		u32 subprogno = find_subprog(env,
13502 					     env->insn_idx + insn->imm + 1);
13503 
13504 		if (!aux->func_info) {
13505 			verbose(env, "missing btf func_info\n");
13506 			return -EINVAL;
13507 		}
13508 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
13509 			verbose(env, "callback function not static\n");
13510 			return -EINVAL;
13511 		}
13512 
13513 		dst_reg->type = PTR_TO_FUNC;
13514 		dst_reg->subprogno = subprogno;
13515 		return 0;
13516 	}
13517 
13518 	map = env->used_maps[aux->map_index];
13519 	dst_reg->map_ptr = map;
13520 
13521 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
13522 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
13523 		dst_reg->type = PTR_TO_MAP_VALUE;
13524 		dst_reg->off = aux->map_off;
13525 		WARN_ON_ONCE(map->max_entries != 1);
13526 		/* We want reg->id to be same (0) as map_value is not distinct */
13527 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
13528 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
13529 		dst_reg->type = CONST_PTR_TO_MAP;
13530 	} else {
13531 		verbose(env, "bpf verifier is misconfigured\n");
13532 		return -EINVAL;
13533 	}
13534 
13535 	return 0;
13536 }
13537 
13538 static bool may_access_skb(enum bpf_prog_type type)
13539 {
13540 	switch (type) {
13541 	case BPF_PROG_TYPE_SOCKET_FILTER:
13542 	case BPF_PROG_TYPE_SCHED_CLS:
13543 	case BPF_PROG_TYPE_SCHED_ACT:
13544 		return true;
13545 	default:
13546 		return false;
13547 	}
13548 }
13549 
13550 /* verify safety of LD_ABS|LD_IND instructions:
13551  * - they can only appear in the programs where ctx == skb
13552  * - since they are wrappers of function calls, they scratch R1-R5 registers,
13553  *   preserve R6-R9, and store return value into R0
13554  *
13555  * Implicit input:
13556  *   ctx == skb == R6 == CTX
13557  *
13558  * Explicit input:
13559  *   SRC == any register
13560  *   IMM == 32-bit immediate
13561  *
13562  * Output:
13563  *   R0 - 8/16/32-bit skb data converted to cpu endianness
13564  */
13565 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
13566 {
13567 	struct bpf_reg_state *regs = cur_regs(env);
13568 	static const int ctx_reg = BPF_REG_6;
13569 	u8 mode = BPF_MODE(insn->code);
13570 	int i, err;
13571 
13572 	if (!may_access_skb(resolve_prog_type(env->prog))) {
13573 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
13574 		return -EINVAL;
13575 	}
13576 
13577 	if (!env->ops->gen_ld_abs) {
13578 		verbose(env, "bpf verifier is misconfigured\n");
13579 		return -EINVAL;
13580 	}
13581 
13582 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
13583 	    BPF_SIZE(insn->code) == BPF_DW ||
13584 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
13585 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
13586 		return -EINVAL;
13587 	}
13588 
13589 	/* check whether implicit source operand (register R6) is readable */
13590 	err = check_reg_arg(env, ctx_reg, SRC_OP);
13591 	if (err)
13592 		return err;
13593 
13594 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
13595 	 * gen_ld_abs() may terminate the program at runtime, leading to
13596 	 * reference leak.
13597 	 */
13598 	err = check_reference_leak(env);
13599 	if (err) {
13600 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
13601 		return err;
13602 	}
13603 
13604 	if (env->cur_state->active_lock.ptr) {
13605 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
13606 		return -EINVAL;
13607 	}
13608 
13609 	if (env->cur_state->active_rcu_lock) {
13610 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
13611 		return -EINVAL;
13612 	}
13613 
13614 	if (regs[ctx_reg].type != PTR_TO_CTX) {
13615 		verbose(env,
13616 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
13617 		return -EINVAL;
13618 	}
13619 
13620 	if (mode == BPF_IND) {
13621 		/* check explicit source operand */
13622 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
13623 		if (err)
13624 			return err;
13625 	}
13626 
13627 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
13628 	if (err < 0)
13629 		return err;
13630 
13631 	/* reset caller saved regs to unreadable */
13632 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
13633 		mark_reg_not_init(env, regs, caller_saved[i]);
13634 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
13635 	}
13636 
13637 	/* mark destination R0 register as readable, since it contains
13638 	 * the value fetched from the packet.
13639 	 * Already marked as written above.
13640 	 */
13641 	mark_reg_unknown(env, regs, BPF_REG_0);
13642 	/* ld_abs load up to 32-bit skb data. */
13643 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
13644 	return 0;
13645 }
13646 
13647 static int check_return_code(struct bpf_verifier_env *env)
13648 {
13649 	struct tnum enforce_attach_type_range = tnum_unknown;
13650 	const struct bpf_prog *prog = env->prog;
13651 	struct bpf_reg_state *reg;
13652 	struct tnum range = tnum_range(0, 1);
13653 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
13654 	int err;
13655 	struct bpf_func_state *frame = env->cur_state->frame[0];
13656 	const bool is_subprog = frame->subprogno;
13657 
13658 	/* LSM and struct_ops func-ptr's return type could be "void" */
13659 	if (!is_subprog) {
13660 		switch (prog_type) {
13661 		case BPF_PROG_TYPE_LSM:
13662 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
13663 				/* See below, can be 0 or 0-1 depending on hook. */
13664 				break;
13665 			fallthrough;
13666 		case BPF_PROG_TYPE_STRUCT_OPS:
13667 			if (!prog->aux->attach_func_proto->type)
13668 				return 0;
13669 			break;
13670 		default:
13671 			break;
13672 		}
13673 	}
13674 
13675 	/* eBPF calling convention is such that R0 is used
13676 	 * to return the value from eBPF program.
13677 	 * Make sure that it's readable at this time
13678 	 * of bpf_exit, which means that program wrote
13679 	 * something into it earlier
13680 	 */
13681 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
13682 	if (err)
13683 		return err;
13684 
13685 	if (is_pointer_value(env, BPF_REG_0)) {
13686 		verbose(env, "R0 leaks addr as return value\n");
13687 		return -EACCES;
13688 	}
13689 
13690 	reg = cur_regs(env) + BPF_REG_0;
13691 
13692 	if (frame->in_async_callback_fn) {
13693 		/* enforce return zero from async callbacks like timer */
13694 		if (reg->type != SCALAR_VALUE) {
13695 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
13696 				reg_type_str(env, reg->type));
13697 			return -EINVAL;
13698 		}
13699 
13700 		if (!tnum_in(tnum_const(0), reg->var_off)) {
13701 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
13702 			return -EINVAL;
13703 		}
13704 		return 0;
13705 	}
13706 
13707 	if (is_subprog) {
13708 		if (reg->type != SCALAR_VALUE) {
13709 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
13710 				reg_type_str(env, reg->type));
13711 			return -EINVAL;
13712 		}
13713 		return 0;
13714 	}
13715 
13716 	switch (prog_type) {
13717 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
13718 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
13719 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
13720 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
13721 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
13722 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
13723 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
13724 			range = tnum_range(1, 1);
13725 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
13726 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
13727 			range = tnum_range(0, 3);
13728 		break;
13729 	case BPF_PROG_TYPE_CGROUP_SKB:
13730 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
13731 			range = tnum_range(0, 3);
13732 			enforce_attach_type_range = tnum_range(2, 3);
13733 		}
13734 		break;
13735 	case BPF_PROG_TYPE_CGROUP_SOCK:
13736 	case BPF_PROG_TYPE_SOCK_OPS:
13737 	case BPF_PROG_TYPE_CGROUP_DEVICE:
13738 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
13739 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
13740 		break;
13741 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
13742 		if (!env->prog->aux->attach_btf_id)
13743 			return 0;
13744 		range = tnum_const(0);
13745 		break;
13746 	case BPF_PROG_TYPE_TRACING:
13747 		switch (env->prog->expected_attach_type) {
13748 		case BPF_TRACE_FENTRY:
13749 		case BPF_TRACE_FEXIT:
13750 			range = tnum_const(0);
13751 			break;
13752 		case BPF_TRACE_RAW_TP:
13753 		case BPF_MODIFY_RETURN:
13754 			return 0;
13755 		case BPF_TRACE_ITER:
13756 			break;
13757 		default:
13758 			return -ENOTSUPP;
13759 		}
13760 		break;
13761 	case BPF_PROG_TYPE_SK_LOOKUP:
13762 		range = tnum_range(SK_DROP, SK_PASS);
13763 		break;
13764 
13765 	case BPF_PROG_TYPE_LSM:
13766 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
13767 			/* Regular BPF_PROG_TYPE_LSM programs can return
13768 			 * any value.
13769 			 */
13770 			return 0;
13771 		}
13772 		if (!env->prog->aux->attach_func_proto->type) {
13773 			/* Make sure programs that attach to void
13774 			 * hooks don't try to modify return value.
13775 			 */
13776 			range = tnum_range(1, 1);
13777 		}
13778 		break;
13779 
13780 	case BPF_PROG_TYPE_EXT:
13781 		/* freplace program can return anything as its return value
13782 		 * depends on the to-be-replaced kernel func or bpf program.
13783 		 */
13784 	default:
13785 		return 0;
13786 	}
13787 
13788 	if (reg->type != SCALAR_VALUE) {
13789 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
13790 			reg_type_str(env, reg->type));
13791 		return -EINVAL;
13792 	}
13793 
13794 	if (!tnum_in(range, reg->var_off)) {
13795 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
13796 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
13797 		    prog_type == BPF_PROG_TYPE_LSM &&
13798 		    !prog->aux->attach_func_proto->type)
13799 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
13800 		return -EINVAL;
13801 	}
13802 
13803 	if (!tnum_is_unknown(enforce_attach_type_range) &&
13804 	    tnum_in(enforce_attach_type_range, reg->var_off))
13805 		env->prog->enforce_expected_attach_type = 1;
13806 	return 0;
13807 }
13808 
13809 /* non-recursive DFS pseudo code
13810  * 1  procedure DFS-iterative(G,v):
13811  * 2      label v as discovered
13812  * 3      let S be a stack
13813  * 4      S.push(v)
13814  * 5      while S is not empty
13815  * 6            t <- S.peek()
13816  * 7            if t is what we're looking for:
13817  * 8                return t
13818  * 9            for all edges e in G.adjacentEdges(t) do
13819  * 10               if edge e is already labelled
13820  * 11                   continue with the next edge
13821  * 12               w <- G.adjacentVertex(t,e)
13822  * 13               if vertex w is not discovered and not explored
13823  * 14                   label e as tree-edge
13824  * 15                   label w as discovered
13825  * 16                   S.push(w)
13826  * 17                   continue at 5
13827  * 18               else if vertex w is discovered
13828  * 19                   label e as back-edge
13829  * 20               else
13830  * 21                   // vertex w is explored
13831  * 22                   label e as forward- or cross-edge
13832  * 23           label t as explored
13833  * 24           S.pop()
13834  *
13835  * convention:
13836  * 0x10 - discovered
13837  * 0x11 - discovered and fall-through edge labelled
13838  * 0x12 - discovered and fall-through and branch edges labelled
13839  * 0x20 - explored
13840  */
13841 
13842 enum {
13843 	DISCOVERED = 0x10,
13844 	EXPLORED = 0x20,
13845 	FALLTHROUGH = 1,
13846 	BRANCH = 2,
13847 };
13848 
13849 static u32 state_htab_size(struct bpf_verifier_env *env)
13850 {
13851 	return env->prog->len;
13852 }
13853 
13854 static struct bpf_verifier_state_list **explored_state(
13855 					struct bpf_verifier_env *env,
13856 					int idx)
13857 {
13858 	struct bpf_verifier_state *cur = env->cur_state;
13859 	struct bpf_func_state *state = cur->frame[cur->curframe];
13860 
13861 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
13862 }
13863 
13864 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
13865 {
13866 	env->insn_aux_data[idx].prune_point = true;
13867 }
13868 
13869 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
13870 {
13871 	return env->insn_aux_data[insn_idx].prune_point;
13872 }
13873 
13874 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
13875 {
13876 	env->insn_aux_data[idx].force_checkpoint = true;
13877 }
13878 
13879 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
13880 {
13881 	return env->insn_aux_data[insn_idx].force_checkpoint;
13882 }
13883 
13884 
13885 enum {
13886 	DONE_EXPLORING = 0,
13887 	KEEP_EXPLORING = 1,
13888 };
13889 
13890 /* t, w, e - match pseudo-code above:
13891  * t - index of current instruction
13892  * w - next instruction
13893  * e - edge
13894  */
13895 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
13896 		     bool loop_ok)
13897 {
13898 	int *insn_stack = env->cfg.insn_stack;
13899 	int *insn_state = env->cfg.insn_state;
13900 
13901 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
13902 		return DONE_EXPLORING;
13903 
13904 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
13905 		return DONE_EXPLORING;
13906 
13907 	if (w < 0 || w >= env->prog->len) {
13908 		verbose_linfo(env, t, "%d: ", t);
13909 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
13910 		return -EINVAL;
13911 	}
13912 
13913 	if (e == BRANCH) {
13914 		/* mark branch target for state pruning */
13915 		mark_prune_point(env, w);
13916 		mark_jmp_point(env, w);
13917 	}
13918 
13919 	if (insn_state[w] == 0) {
13920 		/* tree-edge */
13921 		insn_state[t] = DISCOVERED | e;
13922 		insn_state[w] = DISCOVERED;
13923 		if (env->cfg.cur_stack >= env->prog->len)
13924 			return -E2BIG;
13925 		insn_stack[env->cfg.cur_stack++] = w;
13926 		return KEEP_EXPLORING;
13927 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
13928 		if (loop_ok && env->bpf_capable)
13929 			return DONE_EXPLORING;
13930 		verbose_linfo(env, t, "%d: ", t);
13931 		verbose_linfo(env, w, "%d: ", w);
13932 		verbose(env, "back-edge from insn %d to %d\n", t, w);
13933 		return -EINVAL;
13934 	} else if (insn_state[w] == EXPLORED) {
13935 		/* forward- or cross-edge */
13936 		insn_state[t] = DISCOVERED | e;
13937 	} else {
13938 		verbose(env, "insn state internal bug\n");
13939 		return -EFAULT;
13940 	}
13941 	return DONE_EXPLORING;
13942 }
13943 
13944 static int visit_func_call_insn(int t, struct bpf_insn *insns,
13945 				struct bpf_verifier_env *env,
13946 				bool visit_callee)
13947 {
13948 	int ret;
13949 
13950 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
13951 	if (ret)
13952 		return ret;
13953 
13954 	mark_prune_point(env, t + 1);
13955 	/* when we exit from subprog, we need to record non-linear history */
13956 	mark_jmp_point(env, t + 1);
13957 
13958 	if (visit_callee) {
13959 		mark_prune_point(env, t);
13960 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
13961 				/* It's ok to allow recursion from CFG point of
13962 				 * view. __check_func_call() will do the actual
13963 				 * check.
13964 				 */
13965 				bpf_pseudo_func(insns + t));
13966 	}
13967 	return ret;
13968 }
13969 
13970 /* Visits the instruction at index t and returns one of the following:
13971  *  < 0 - an error occurred
13972  *  DONE_EXPLORING - the instruction was fully explored
13973  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
13974  */
13975 static int visit_insn(int t, struct bpf_verifier_env *env)
13976 {
13977 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
13978 	int ret;
13979 
13980 	if (bpf_pseudo_func(insn))
13981 		return visit_func_call_insn(t, insns, env, true);
13982 
13983 	/* All non-branch instructions have a single fall-through edge. */
13984 	if (BPF_CLASS(insn->code) != BPF_JMP &&
13985 	    BPF_CLASS(insn->code) != BPF_JMP32)
13986 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
13987 
13988 	switch (BPF_OP(insn->code)) {
13989 	case BPF_EXIT:
13990 		return DONE_EXPLORING;
13991 
13992 	case BPF_CALL:
13993 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
13994 			/* Mark this call insn as a prune point to trigger
13995 			 * is_state_visited() check before call itself is
13996 			 * processed by __check_func_call(). Otherwise new
13997 			 * async state will be pushed for further exploration.
13998 			 */
13999 			mark_prune_point(env, t);
14000 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14001 			struct bpf_kfunc_call_arg_meta meta;
14002 
14003 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14004 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14005 				mark_prune_point(env, t);
14006 				/* Checking and saving state checkpoints at iter_next() call
14007 				 * is crucial for fast convergence of open-coded iterator loop
14008 				 * logic, so we need to force it. If we don't do that,
14009 				 * is_state_visited() might skip saving a checkpoint, causing
14010 				 * unnecessarily long sequence of not checkpointed
14011 				 * instructions and jumps, leading to exhaustion of jump
14012 				 * history buffer, and potentially other undesired outcomes.
14013 				 * It is expected that with correct open-coded iterators
14014 				 * convergence will happen quickly, so we don't run a risk of
14015 				 * exhausting memory.
14016 				 */
14017 				mark_force_checkpoint(env, t);
14018 			}
14019 		}
14020 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14021 
14022 	case BPF_JA:
14023 		if (BPF_SRC(insn->code) != BPF_K)
14024 			return -EINVAL;
14025 
14026 		/* unconditional jump with single edge */
14027 		ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
14028 				true);
14029 		if (ret)
14030 			return ret;
14031 
14032 		mark_prune_point(env, t + insn->off + 1);
14033 		mark_jmp_point(env, t + insn->off + 1);
14034 
14035 		return ret;
14036 
14037 	default:
14038 		/* conditional jump with two edges */
14039 		mark_prune_point(env, t);
14040 
14041 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14042 		if (ret)
14043 			return ret;
14044 
14045 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
14046 	}
14047 }
14048 
14049 /* non-recursive depth-first-search to detect loops in BPF program
14050  * loop == back-edge in directed graph
14051  */
14052 static int check_cfg(struct bpf_verifier_env *env)
14053 {
14054 	int insn_cnt = env->prog->len;
14055 	int *insn_stack, *insn_state;
14056 	int ret = 0;
14057 	int i;
14058 
14059 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14060 	if (!insn_state)
14061 		return -ENOMEM;
14062 
14063 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14064 	if (!insn_stack) {
14065 		kvfree(insn_state);
14066 		return -ENOMEM;
14067 	}
14068 
14069 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14070 	insn_stack[0] = 0; /* 0 is the first instruction */
14071 	env->cfg.cur_stack = 1;
14072 
14073 	while (env->cfg.cur_stack > 0) {
14074 		int t = insn_stack[env->cfg.cur_stack - 1];
14075 
14076 		ret = visit_insn(t, env);
14077 		switch (ret) {
14078 		case DONE_EXPLORING:
14079 			insn_state[t] = EXPLORED;
14080 			env->cfg.cur_stack--;
14081 			break;
14082 		case KEEP_EXPLORING:
14083 			break;
14084 		default:
14085 			if (ret > 0) {
14086 				verbose(env, "visit_insn internal bug\n");
14087 				ret = -EFAULT;
14088 			}
14089 			goto err_free;
14090 		}
14091 	}
14092 
14093 	if (env->cfg.cur_stack < 0) {
14094 		verbose(env, "pop stack internal bug\n");
14095 		ret = -EFAULT;
14096 		goto err_free;
14097 	}
14098 
14099 	for (i = 0; i < insn_cnt; i++) {
14100 		if (insn_state[i] != EXPLORED) {
14101 			verbose(env, "unreachable insn %d\n", i);
14102 			ret = -EINVAL;
14103 			goto err_free;
14104 		}
14105 	}
14106 	ret = 0; /* cfg looks good */
14107 
14108 err_free:
14109 	kvfree(insn_state);
14110 	kvfree(insn_stack);
14111 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14112 	return ret;
14113 }
14114 
14115 static int check_abnormal_return(struct bpf_verifier_env *env)
14116 {
14117 	int i;
14118 
14119 	for (i = 1; i < env->subprog_cnt; i++) {
14120 		if (env->subprog_info[i].has_ld_abs) {
14121 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14122 			return -EINVAL;
14123 		}
14124 		if (env->subprog_info[i].has_tail_call) {
14125 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14126 			return -EINVAL;
14127 		}
14128 	}
14129 	return 0;
14130 }
14131 
14132 /* The minimum supported BTF func info size */
14133 #define MIN_BPF_FUNCINFO_SIZE	8
14134 #define MAX_FUNCINFO_REC_SIZE	252
14135 
14136 static int check_btf_func(struct bpf_verifier_env *env,
14137 			  const union bpf_attr *attr,
14138 			  bpfptr_t uattr)
14139 {
14140 	const struct btf_type *type, *func_proto, *ret_type;
14141 	u32 i, nfuncs, urec_size, min_size;
14142 	u32 krec_size = sizeof(struct bpf_func_info);
14143 	struct bpf_func_info *krecord;
14144 	struct bpf_func_info_aux *info_aux = NULL;
14145 	struct bpf_prog *prog;
14146 	const struct btf *btf;
14147 	bpfptr_t urecord;
14148 	u32 prev_offset = 0;
14149 	bool scalar_return;
14150 	int ret = -ENOMEM;
14151 
14152 	nfuncs = attr->func_info_cnt;
14153 	if (!nfuncs) {
14154 		if (check_abnormal_return(env))
14155 			return -EINVAL;
14156 		return 0;
14157 	}
14158 
14159 	if (nfuncs != env->subprog_cnt) {
14160 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14161 		return -EINVAL;
14162 	}
14163 
14164 	urec_size = attr->func_info_rec_size;
14165 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14166 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
14167 	    urec_size % sizeof(u32)) {
14168 		verbose(env, "invalid func info rec size %u\n", urec_size);
14169 		return -EINVAL;
14170 	}
14171 
14172 	prog = env->prog;
14173 	btf = prog->aux->btf;
14174 
14175 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
14176 	min_size = min_t(u32, krec_size, urec_size);
14177 
14178 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
14179 	if (!krecord)
14180 		return -ENOMEM;
14181 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
14182 	if (!info_aux)
14183 		goto err_free;
14184 
14185 	for (i = 0; i < nfuncs; i++) {
14186 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
14187 		if (ret) {
14188 			if (ret == -E2BIG) {
14189 				verbose(env, "nonzero tailing record in func info");
14190 				/* set the size kernel expects so loader can zero
14191 				 * out the rest of the record.
14192 				 */
14193 				if (copy_to_bpfptr_offset(uattr,
14194 							  offsetof(union bpf_attr, func_info_rec_size),
14195 							  &min_size, sizeof(min_size)))
14196 					ret = -EFAULT;
14197 			}
14198 			goto err_free;
14199 		}
14200 
14201 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
14202 			ret = -EFAULT;
14203 			goto err_free;
14204 		}
14205 
14206 		/* check insn_off */
14207 		ret = -EINVAL;
14208 		if (i == 0) {
14209 			if (krecord[i].insn_off) {
14210 				verbose(env,
14211 					"nonzero insn_off %u for the first func info record",
14212 					krecord[i].insn_off);
14213 				goto err_free;
14214 			}
14215 		} else if (krecord[i].insn_off <= prev_offset) {
14216 			verbose(env,
14217 				"same or smaller insn offset (%u) than previous func info record (%u)",
14218 				krecord[i].insn_off, prev_offset);
14219 			goto err_free;
14220 		}
14221 
14222 		if (env->subprog_info[i].start != krecord[i].insn_off) {
14223 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
14224 			goto err_free;
14225 		}
14226 
14227 		/* check type_id */
14228 		type = btf_type_by_id(btf, krecord[i].type_id);
14229 		if (!type || !btf_type_is_func(type)) {
14230 			verbose(env, "invalid type id %d in func info",
14231 				krecord[i].type_id);
14232 			goto err_free;
14233 		}
14234 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
14235 
14236 		func_proto = btf_type_by_id(btf, type->type);
14237 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
14238 			/* btf_func_check() already verified it during BTF load */
14239 			goto err_free;
14240 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
14241 		scalar_return =
14242 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
14243 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
14244 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
14245 			goto err_free;
14246 		}
14247 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
14248 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
14249 			goto err_free;
14250 		}
14251 
14252 		prev_offset = krecord[i].insn_off;
14253 		bpfptr_add(&urecord, urec_size);
14254 	}
14255 
14256 	prog->aux->func_info = krecord;
14257 	prog->aux->func_info_cnt = nfuncs;
14258 	prog->aux->func_info_aux = info_aux;
14259 	return 0;
14260 
14261 err_free:
14262 	kvfree(krecord);
14263 	kfree(info_aux);
14264 	return ret;
14265 }
14266 
14267 static void adjust_btf_func(struct bpf_verifier_env *env)
14268 {
14269 	struct bpf_prog_aux *aux = env->prog->aux;
14270 	int i;
14271 
14272 	if (!aux->func_info)
14273 		return;
14274 
14275 	for (i = 0; i < env->subprog_cnt; i++)
14276 		aux->func_info[i].insn_off = env->subprog_info[i].start;
14277 }
14278 
14279 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
14280 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
14281 
14282 static int check_btf_line(struct bpf_verifier_env *env,
14283 			  const union bpf_attr *attr,
14284 			  bpfptr_t uattr)
14285 {
14286 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
14287 	struct bpf_subprog_info *sub;
14288 	struct bpf_line_info *linfo;
14289 	struct bpf_prog *prog;
14290 	const struct btf *btf;
14291 	bpfptr_t ulinfo;
14292 	int err;
14293 
14294 	nr_linfo = attr->line_info_cnt;
14295 	if (!nr_linfo)
14296 		return 0;
14297 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
14298 		return -EINVAL;
14299 
14300 	rec_size = attr->line_info_rec_size;
14301 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
14302 	    rec_size > MAX_LINEINFO_REC_SIZE ||
14303 	    rec_size & (sizeof(u32) - 1))
14304 		return -EINVAL;
14305 
14306 	/* Need to zero it in case the userspace may
14307 	 * pass in a smaller bpf_line_info object.
14308 	 */
14309 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
14310 			 GFP_KERNEL | __GFP_NOWARN);
14311 	if (!linfo)
14312 		return -ENOMEM;
14313 
14314 	prog = env->prog;
14315 	btf = prog->aux->btf;
14316 
14317 	s = 0;
14318 	sub = env->subprog_info;
14319 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
14320 	expected_size = sizeof(struct bpf_line_info);
14321 	ncopy = min_t(u32, expected_size, rec_size);
14322 	for (i = 0; i < nr_linfo; i++) {
14323 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
14324 		if (err) {
14325 			if (err == -E2BIG) {
14326 				verbose(env, "nonzero tailing record in line_info");
14327 				if (copy_to_bpfptr_offset(uattr,
14328 							  offsetof(union bpf_attr, line_info_rec_size),
14329 							  &expected_size, sizeof(expected_size)))
14330 					err = -EFAULT;
14331 			}
14332 			goto err_free;
14333 		}
14334 
14335 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
14336 			err = -EFAULT;
14337 			goto err_free;
14338 		}
14339 
14340 		/*
14341 		 * Check insn_off to ensure
14342 		 * 1) strictly increasing AND
14343 		 * 2) bounded by prog->len
14344 		 *
14345 		 * The linfo[0].insn_off == 0 check logically falls into
14346 		 * the later "missing bpf_line_info for func..." case
14347 		 * because the first linfo[0].insn_off must be the
14348 		 * first sub also and the first sub must have
14349 		 * subprog_info[0].start == 0.
14350 		 */
14351 		if ((i && linfo[i].insn_off <= prev_offset) ||
14352 		    linfo[i].insn_off >= prog->len) {
14353 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
14354 				i, linfo[i].insn_off, prev_offset,
14355 				prog->len);
14356 			err = -EINVAL;
14357 			goto err_free;
14358 		}
14359 
14360 		if (!prog->insnsi[linfo[i].insn_off].code) {
14361 			verbose(env,
14362 				"Invalid insn code at line_info[%u].insn_off\n",
14363 				i);
14364 			err = -EINVAL;
14365 			goto err_free;
14366 		}
14367 
14368 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
14369 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
14370 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
14371 			err = -EINVAL;
14372 			goto err_free;
14373 		}
14374 
14375 		if (s != env->subprog_cnt) {
14376 			if (linfo[i].insn_off == sub[s].start) {
14377 				sub[s].linfo_idx = i;
14378 				s++;
14379 			} else if (sub[s].start < linfo[i].insn_off) {
14380 				verbose(env, "missing bpf_line_info for func#%u\n", s);
14381 				err = -EINVAL;
14382 				goto err_free;
14383 			}
14384 		}
14385 
14386 		prev_offset = linfo[i].insn_off;
14387 		bpfptr_add(&ulinfo, rec_size);
14388 	}
14389 
14390 	if (s != env->subprog_cnt) {
14391 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
14392 			env->subprog_cnt - s, s);
14393 		err = -EINVAL;
14394 		goto err_free;
14395 	}
14396 
14397 	prog->aux->linfo = linfo;
14398 	prog->aux->nr_linfo = nr_linfo;
14399 
14400 	return 0;
14401 
14402 err_free:
14403 	kvfree(linfo);
14404 	return err;
14405 }
14406 
14407 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
14408 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
14409 
14410 static int check_core_relo(struct bpf_verifier_env *env,
14411 			   const union bpf_attr *attr,
14412 			   bpfptr_t uattr)
14413 {
14414 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
14415 	struct bpf_core_relo core_relo = {};
14416 	struct bpf_prog *prog = env->prog;
14417 	const struct btf *btf = prog->aux->btf;
14418 	struct bpf_core_ctx ctx = {
14419 		.log = &env->log,
14420 		.btf = btf,
14421 	};
14422 	bpfptr_t u_core_relo;
14423 	int err;
14424 
14425 	nr_core_relo = attr->core_relo_cnt;
14426 	if (!nr_core_relo)
14427 		return 0;
14428 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
14429 		return -EINVAL;
14430 
14431 	rec_size = attr->core_relo_rec_size;
14432 	if (rec_size < MIN_CORE_RELO_SIZE ||
14433 	    rec_size > MAX_CORE_RELO_SIZE ||
14434 	    rec_size % sizeof(u32))
14435 		return -EINVAL;
14436 
14437 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
14438 	expected_size = sizeof(struct bpf_core_relo);
14439 	ncopy = min_t(u32, expected_size, rec_size);
14440 
14441 	/* Unlike func_info and line_info, copy and apply each CO-RE
14442 	 * relocation record one at a time.
14443 	 */
14444 	for (i = 0; i < nr_core_relo; i++) {
14445 		/* future proofing when sizeof(bpf_core_relo) changes */
14446 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
14447 		if (err) {
14448 			if (err == -E2BIG) {
14449 				verbose(env, "nonzero tailing record in core_relo");
14450 				if (copy_to_bpfptr_offset(uattr,
14451 							  offsetof(union bpf_attr, core_relo_rec_size),
14452 							  &expected_size, sizeof(expected_size)))
14453 					err = -EFAULT;
14454 			}
14455 			break;
14456 		}
14457 
14458 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
14459 			err = -EFAULT;
14460 			break;
14461 		}
14462 
14463 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
14464 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
14465 				i, core_relo.insn_off, prog->len);
14466 			err = -EINVAL;
14467 			break;
14468 		}
14469 
14470 		err = bpf_core_apply(&ctx, &core_relo, i,
14471 				     &prog->insnsi[core_relo.insn_off / 8]);
14472 		if (err)
14473 			break;
14474 		bpfptr_add(&u_core_relo, rec_size);
14475 	}
14476 	return err;
14477 }
14478 
14479 static int check_btf_info(struct bpf_verifier_env *env,
14480 			  const union bpf_attr *attr,
14481 			  bpfptr_t uattr)
14482 {
14483 	struct btf *btf;
14484 	int err;
14485 
14486 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
14487 		if (check_abnormal_return(env))
14488 			return -EINVAL;
14489 		return 0;
14490 	}
14491 
14492 	btf = btf_get_by_fd(attr->prog_btf_fd);
14493 	if (IS_ERR(btf))
14494 		return PTR_ERR(btf);
14495 	if (btf_is_kernel(btf)) {
14496 		btf_put(btf);
14497 		return -EACCES;
14498 	}
14499 	env->prog->aux->btf = btf;
14500 
14501 	err = check_btf_func(env, attr, uattr);
14502 	if (err)
14503 		return err;
14504 
14505 	err = check_btf_line(env, attr, uattr);
14506 	if (err)
14507 		return err;
14508 
14509 	err = check_core_relo(env, attr, uattr);
14510 	if (err)
14511 		return err;
14512 
14513 	return 0;
14514 }
14515 
14516 /* check %cur's range satisfies %old's */
14517 static bool range_within(struct bpf_reg_state *old,
14518 			 struct bpf_reg_state *cur)
14519 {
14520 	return old->umin_value <= cur->umin_value &&
14521 	       old->umax_value >= cur->umax_value &&
14522 	       old->smin_value <= cur->smin_value &&
14523 	       old->smax_value >= cur->smax_value &&
14524 	       old->u32_min_value <= cur->u32_min_value &&
14525 	       old->u32_max_value >= cur->u32_max_value &&
14526 	       old->s32_min_value <= cur->s32_min_value &&
14527 	       old->s32_max_value >= cur->s32_max_value;
14528 }
14529 
14530 /* If in the old state two registers had the same id, then they need to have
14531  * the same id in the new state as well.  But that id could be different from
14532  * the old state, so we need to track the mapping from old to new ids.
14533  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
14534  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
14535  * regs with a different old id could still have new id 9, we don't care about
14536  * that.
14537  * So we look through our idmap to see if this old id has been seen before.  If
14538  * so, we require the new id to match; otherwise, we add the id pair to the map.
14539  */
14540 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
14541 {
14542 	unsigned int i;
14543 
14544 	/* either both IDs should be set or both should be zero */
14545 	if (!!old_id != !!cur_id)
14546 		return false;
14547 
14548 	if (old_id == 0) /* cur_id == 0 as well */
14549 		return true;
14550 
14551 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
14552 		if (!idmap[i].old) {
14553 			/* Reached an empty slot; haven't seen this id before */
14554 			idmap[i].old = old_id;
14555 			idmap[i].cur = cur_id;
14556 			return true;
14557 		}
14558 		if (idmap[i].old == old_id)
14559 			return idmap[i].cur == cur_id;
14560 	}
14561 	/* We ran out of idmap slots, which should be impossible */
14562 	WARN_ON_ONCE(1);
14563 	return false;
14564 }
14565 
14566 static void clean_func_state(struct bpf_verifier_env *env,
14567 			     struct bpf_func_state *st)
14568 {
14569 	enum bpf_reg_liveness live;
14570 	int i, j;
14571 
14572 	for (i = 0; i < BPF_REG_FP; i++) {
14573 		live = st->regs[i].live;
14574 		/* liveness must not touch this register anymore */
14575 		st->regs[i].live |= REG_LIVE_DONE;
14576 		if (!(live & REG_LIVE_READ))
14577 			/* since the register is unused, clear its state
14578 			 * to make further comparison simpler
14579 			 */
14580 			__mark_reg_not_init(env, &st->regs[i]);
14581 	}
14582 
14583 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
14584 		live = st->stack[i].spilled_ptr.live;
14585 		/* liveness must not touch this stack slot anymore */
14586 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
14587 		if (!(live & REG_LIVE_READ)) {
14588 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
14589 			for (j = 0; j < BPF_REG_SIZE; j++)
14590 				st->stack[i].slot_type[j] = STACK_INVALID;
14591 		}
14592 	}
14593 }
14594 
14595 static void clean_verifier_state(struct bpf_verifier_env *env,
14596 				 struct bpf_verifier_state *st)
14597 {
14598 	int i;
14599 
14600 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
14601 		/* all regs in this state in all frames were already marked */
14602 		return;
14603 
14604 	for (i = 0; i <= st->curframe; i++)
14605 		clean_func_state(env, st->frame[i]);
14606 }
14607 
14608 /* the parentage chains form a tree.
14609  * the verifier states are added to state lists at given insn and
14610  * pushed into state stack for future exploration.
14611  * when the verifier reaches bpf_exit insn some of the verifer states
14612  * stored in the state lists have their final liveness state already,
14613  * but a lot of states will get revised from liveness point of view when
14614  * the verifier explores other branches.
14615  * Example:
14616  * 1: r0 = 1
14617  * 2: if r1 == 100 goto pc+1
14618  * 3: r0 = 2
14619  * 4: exit
14620  * when the verifier reaches exit insn the register r0 in the state list of
14621  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
14622  * of insn 2 and goes exploring further. At the insn 4 it will walk the
14623  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
14624  *
14625  * Since the verifier pushes the branch states as it sees them while exploring
14626  * the program the condition of walking the branch instruction for the second
14627  * time means that all states below this branch were already explored and
14628  * their final liveness marks are already propagated.
14629  * Hence when the verifier completes the search of state list in is_state_visited()
14630  * we can call this clean_live_states() function to mark all liveness states
14631  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
14632  * will not be used.
14633  * This function also clears the registers and stack for states that !READ
14634  * to simplify state merging.
14635  *
14636  * Important note here that walking the same branch instruction in the callee
14637  * doesn't meant that the states are DONE. The verifier has to compare
14638  * the callsites
14639  */
14640 static void clean_live_states(struct bpf_verifier_env *env, int insn,
14641 			      struct bpf_verifier_state *cur)
14642 {
14643 	struct bpf_verifier_state_list *sl;
14644 	int i;
14645 
14646 	sl = *explored_state(env, insn);
14647 	while (sl) {
14648 		if (sl->state.branches)
14649 			goto next;
14650 		if (sl->state.insn_idx != insn ||
14651 		    sl->state.curframe != cur->curframe)
14652 			goto next;
14653 		for (i = 0; i <= cur->curframe; i++)
14654 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
14655 				goto next;
14656 		clean_verifier_state(env, &sl->state);
14657 next:
14658 		sl = sl->next;
14659 	}
14660 }
14661 
14662 static bool regs_exact(const struct bpf_reg_state *rold,
14663 		       const struct bpf_reg_state *rcur,
14664 		       struct bpf_id_pair *idmap)
14665 {
14666 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
14667 	       check_ids(rold->id, rcur->id, idmap) &&
14668 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
14669 }
14670 
14671 /* Returns true if (rold safe implies rcur safe) */
14672 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
14673 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
14674 {
14675 	if (!(rold->live & REG_LIVE_READ))
14676 		/* explored state didn't use this */
14677 		return true;
14678 	if (rold->type == NOT_INIT)
14679 		/* explored state can't have used this */
14680 		return true;
14681 	if (rcur->type == NOT_INIT)
14682 		return false;
14683 
14684 	/* Enforce that register types have to match exactly, including their
14685 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
14686 	 * rule.
14687 	 *
14688 	 * One can make a point that using a pointer register as unbounded
14689 	 * SCALAR would be technically acceptable, but this could lead to
14690 	 * pointer leaks because scalars are allowed to leak while pointers
14691 	 * are not. We could make this safe in special cases if root is
14692 	 * calling us, but it's probably not worth the hassle.
14693 	 *
14694 	 * Also, register types that are *not* MAYBE_NULL could technically be
14695 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
14696 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
14697 	 * to the same map).
14698 	 * However, if the old MAYBE_NULL register then got NULL checked,
14699 	 * doing so could have affected others with the same id, and we can't
14700 	 * check for that because we lost the id when we converted to
14701 	 * a non-MAYBE_NULL variant.
14702 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
14703 	 * non-MAYBE_NULL registers as well.
14704 	 */
14705 	if (rold->type != rcur->type)
14706 		return false;
14707 
14708 	switch (base_type(rold->type)) {
14709 	case SCALAR_VALUE:
14710 		if (regs_exact(rold, rcur, idmap))
14711 			return true;
14712 		if (env->explore_alu_limits)
14713 			return false;
14714 		if (!rold->precise)
14715 			return true;
14716 		/* new val must satisfy old val knowledge */
14717 		return range_within(rold, rcur) &&
14718 		       tnum_in(rold->var_off, rcur->var_off);
14719 	case PTR_TO_MAP_KEY:
14720 	case PTR_TO_MAP_VALUE:
14721 	case PTR_TO_MEM:
14722 	case PTR_TO_BUF:
14723 	case PTR_TO_TP_BUFFER:
14724 		/* If the new min/max/var_off satisfy the old ones and
14725 		 * everything else matches, we are OK.
14726 		 */
14727 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
14728 		       range_within(rold, rcur) &&
14729 		       tnum_in(rold->var_off, rcur->var_off) &&
14730 		       check_ids(rold->id, rcur->id, idmap) &&
14731 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
14732 	case PTR_TO_PACKET_META:
14733 	case PTR_TO_PACKET:
14734 		/* We must have at least as much range as the old ptr
14735 		 * did, so that any accesses which were safe before are
14736 		 * still safe.  This is true even if old range < old off,
14737 		 * since someone could have accessed through (ptr - k), or
14738 		 * even done ptr -= k in a register, to get a safe access.
14739 		 */
14740 		if (rold->range > rcur->range)
14741 			return false;
14742 		/* If the offsets don't match, we can't trust our alignment;
14743 		 * nor can we be sure that we won't fall out of range.
14744 		 */
14745 		if (rold->off != rcur->off)
14746 			return false;
14747 		/* id relations must be preserved */
14748 		if (!check_ids(rold->id, rcur->id, idmap))
14749 			return false;
14750 		/* new val must satisfy old val knowledge */
14751 		return range_within(rold, rcur) &&
14752 		       tnum_in(rold->var_off, rcur->var_off);
14753 	case PTR_TO_STACK:
14754 		/* two stack pointers are equal only if they're pointing to
14755 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
14756 		 */
14757 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
14758 	default:
14759 		return regs_exact(rold, rcur, idmap);
14760 	}
14761 }
14762 
14763 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
14764 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
14765 {
14766 	int i, spi;
14767 
14768 	/* walk slots of the explored stack and ignore any additional
14769 	 * slots in the current stack, since explored(safe) state
14770 	 * didn't use them
14771 	 */
14772 	for (i = 0; i < old->allocated_stack; i++) {
14773 		struct bpf_reg_state *old_reg, *cur_reg;
14774 
14775 		spi = i / BPF_REG_SIZE;
14776 
14777 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
14778 			i += BPF_REG_SIZE - 1;
14779 			/* explored state didn't use this */
14780 			continue;
14781 		}
14782 
14783 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
14784 			continue;
14785 
14786 		if (env->allow_uninit_stack &&
14787 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
14788 			continue;
14789 
14790 		/* explored stack has more populated slots than current stack
14791 		 * and these slots were used
14792 		 */
14793 		if (i >= cur->allocated_stack)
14794 			return false;
14795 
14796 		/* if old state was safe with misc data in the stack
14797 		 * it will be safe with zero-initialized stack.
14798 		 * The opposite is not true
14799 		 */
14800 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
14801 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
14802 			continue;
14803 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
14804 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
14805 			/* Ex: old explored (safe) state has STACK_SPILL in
14806 			 * this stack slot, but current has STACK_MISC ->
14807 			 * this verifier states are not equivalent,
14808 			 * return false to continue verification of this path
14809 			 */
14810 			return false;
14811 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
14812 			continue;
14813 		/* Both old and cur are having same slot_type */
14814 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
14815 		case STACK_SPILL:
14816 			/* when explored and current stack slot are both storing
14817 			 * spilled registers, check that stored pointers types
14818 			 * are the same as well.
14819 			 * Ex: explored safe path could have stored
14820 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
14821 			 * but current path has stored:
14822 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
14823 			 * such verifier states are not equivalent.
14824 			 * return false to continue verification of this path
14825 			 */
14826 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
14827 				     &cur->stack[spi].spilled_ptr, idmap))
14828 				return false;
14829 			break;
14830 		case STACK_DYNPTR:
14831 			old_reg = &old->stack[spi].spilled_ptr;
14832 			cur_reg = &cur->stack[spi].spilled_ptr;
14833 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
14834 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
14835 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14836 				return false;
14837 			break;
14838 		case STACK_ITER:
14839 			old_reg = &old->stack[spi].spilled_ptr;
14840 			cur_reg = &cur->stack[spi].spilled_ptr;
14841 			/* iter.depth is not compared between states as it
14842 			 * doesn't matter for correctness and would otherwise
14843 			 * prevent convergence; we maintain it only to prevent
14844 			 * infinite loop check triggering, see
14845 			 * iter_active_depths_differ()
14846 			 */
14847 			if (old_reg->iter.btf != cur_reg->iter.btf ||
14848 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
14849 			    old_reg->iter.state != cur_reg->iter.state ||
14850 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
14851 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14852 				return false;
14853 			break;
14854 		case STACK_MISC:
14855 		case STACK_ZERO:
14856 		case STACK_INVALID:
14857 			continue;
14858 		/* Ensure that new unhandled slot types return false by default */
14859 		default:
14860 			return false;
14861 		}
14862 	}
14863 	return true;
14864 }
14865 
14866 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
14867 		    struct bpf_id_pair *idmap)
14868 {
14869 	int i;
14870 
14871 	if (old->acquired_refs != cur->acquired_refs)
14872 		return false;
14873 
14874 	for (i = 0; i < old->acquired_refs; i++) {
14875 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
14876 			return false;
14877 	}
14878 
14879 	return true;
14880 }
14881 
14882 /* compare two verifier states
14883  *
14884  * all states stored in state_list are known to be valid, since
14885  * verifier reached 'bpf_exit' instruction through them
14886  *
14887  * this function is called when verifier exploring different branches of
14888  * execution popped from the state stack. If it sees an old state that has
14889  * more strict register state and more strict stack state then this execution
14890  * branch doesn't need to be explored further, since verifier already
14891  * concluded that more strict state leads to valid finish.
14892  *
14893  * Therefore two states are equivalent if register state is more conservative
14894  * and explored stack state is more conservative than the current one.
14895  * Example:
14896  *       explored                   current
14897  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
14898  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
14899  *
14900  * In other words if current stack state (one being explored) has more
14901  * valid slots than old one that already passed validation, it means
14902  * the verifier can stop exploring and conclude that current state is valid too
14903  *
14904  * Similarly with registers. If explored state has register type as invalid
14905  * whereas register type in current state is meaningful, it means that
14906  * the current state will reach 'bpf_exit' instruction safely
14907  */
14908 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
14909 			      struct bpf_func_state *cur)
14910 {
14911 	int i;
14912 
14913 	for (i = 0; i < MAX_BPF_REG; i++)
14914 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
14915 			     env->idmap_scratch))
14916 			return false;
14917 
14918 	if (!stacksafe(env, old, cur, env->idmap_scratch))
14919 		return false;
14920 
14921 	if (!refsafe(old, cur, env->idmap_scratch))
14922 		return false;
14923 
14924 	return true;
14925 }
14926 
14927 static bool states_equal(struct bpf_verifier_env *env,
14928 			 struct bpf_verifier_state *old,
14929 			 struct bpf_verifier_state *cur)
14930 {
14931 	int i;
14932 
14933 	if (old->curframe != cur->curframe)
14934 		return false;
14935 
14936 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
14937 
14938 	/* Verification state from speculative execution simulation
14939 	 * must never prune a non-speculative execution one.
14940 	 */
14941 	if (old->speculative && !cur->speculative)
14942 		return false;
14943 
14944 	if (old->active_lock.ptr != cur->active_lock.ptr)
14945 		return false;
14946 
14947 	/* Old and cur active_lock's have to be either both present
14948 	 * or both absent.
14949 	 */
14950 	if (!!old->active_lock.id != !!cur->active_lock.id)
14951 		return false;
14952 
14953 	if (old->active_lock.id &&
14954 	    !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
14955 		return false;
14956 
14957 	if (old->active_rcu_lock != cur->active_rcu_lock)
14958 		return false;
14959 
14960 	/* for states to be equal callsites have to be the same
14961 	 * and all frame states need to be equivalent
14962 	 */
14963 	for (i = 0; i <= old->curframe; i++) {
14964 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
14965 			return false;
14966 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
14967 			return false;
14968 	}
14969 	return true;
14970 }
14971 
14972 /* Return 0 if no propagation happened. Return negative error code if error
14973  * happened. Otherwise, return the propagated bit.
14974  */
14975 static int propagate_liveness_reg(struct bpf_verifier_env *env,
14976 				  struct bpf_reg_state *reg,
14977 				  struct bpf_reg_state *parent_reg)
14978 {
14979 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
14980 	u8 flag = reg->live & REG_LIVE_READ;
14981 	int err;
14982 
14983 	/* When comes here, read flags of PARENT_REG or REG could be any of
14984 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
14985 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
14986 	 */
14987 	if (parent_flag == REG_LIVE_READ64 ||
14988 	    /* Or if there is no read flag from REG. */
14989 	    !flag ||
14990 	    /* Or if the read flag from REG is the same as PARENT_REG. */
14991 	    parent_flag == flag)
14992 		return 0;
14993 
14994 	err = mark_reg_read(env, reg, parent_reg, flag);
14995 	if (err)
14996 		return err;
14997 
14998 	return flag;
14999 }
15000 
15001 /* A write screens off any subsequent reads; but write marks come from the
15002  * straight-line code between a state and its parent.  When we arrive at an
15003  * equivalent state (jump target or such) we didn't arrive by the straight-line
15004  * code, so read marks in the state must propagate to the parent regardless
15005  * of the state's write marks. That's what 'parent == state->parent' comparison
15006  * in mark_reg_read() is for.
15007  */
15008 static int propagate_liveness(struct bpf_verifier_env *env,
15009 			      const struct bpf_verifier_state *vstate,
15010 			      struct bpf_verifier_state *vparent)
15011 {
15012 	struct bpf_reg_state *state_reg, *parent_reg;
15013 	struct bpf_func_state *state, *parent;
15014 	int i, frame, err = 0;
15015 
15016 	if (vparent->curframe != vstate->curframe) {
15017 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15018 		     vparent->curframe, vstate->curframe);
15019 		return -EFAULT;
15020 	}
15021 	/* Propagate read liveness of registers... */
15022 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15023 	for (frame = 0; frame <= vstate->curframe; frame++) {
15024 		parent = vparent->frame[frame];
15025 		state = vstate->frame[frame];
15026 		parent_reg = parent->regs;
15027 		state_reg = state->regs;
15028 		/* We don't need to worry about FP liveness, it's read-only */
15029 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15030 			err = propagate_liveness_reg(env, &state_reg[i],
15031 						     &parent_reg[i]);
15032 			if (err < 0)
15033 				return err;
15034 			if (err == REG_LIVE_READ64)
15035 				mark_insn_zext(env, &parent_reg[i]);
15036 		}
15037 
15038 		/* Propagate stack slots. */
15039 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15040 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15041 			parent_reg = &parent->stack[i].spilled_ptr;
15042 			state_reg = &state->stack[i].spilled_ptr;
15043 			err = propagate_liveness_reg(env, state_reg,
15044 						     parent_reg);
15045 			if (err < 0)
15046 				return err;
15047 		}
15048 	}
15049 	return 0;
15050 }
15051 
15052 /* find precise scalars in the previous equivalent state and
15053  * propagate them into the current state
15054  */
15055 static int propagate_precision(struct bpf_verifier_env *env,
15056 			       const struct bpf_verifier_state *old)
15057 {
15058 	struct bpf_reg_state *state_reg;
15059 	struct bpf_func_state *state;
15060 	int i, err = 0, fr;
15061 
15062 	for (fr = old->curframe; fr >= 0; fr--) {
15063 		state = old->frame[fr];
15064 		state_reg = state->regs;
15065 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15066 			if (state_reg->type != SCALAR_VALUE ||
15067 			    !state_reg->precise ||
15068 			    !(state_reg->live & REG_LIVE_READ))
15069 				continue;
15070 			if (env->log.level & BPF_LOG_LEVEL2)
15071 				verbose(env, "frame %d: propagating r%d\n", fr, i);
15072 			err = mark_chain_precision_frame(env, fr, i);
15073 			if (err < 0)
15074 				return err;
15075 		}
15076 
15077 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15078 			if (!is_spilled_reg(&state->stack[i]))
15079 				continue;
15080 			state_reg = &state->stack[i].spilled_ptr;
15081 			if (state_reg->type != SCALAR_VALUE ||
15082 			    !state_reg->precise ||
15083 			    !(state_reg->live & REG_LIVE_READ))
15084 				continue;
15085 			if (env->log.level & BPF_LOG_LEVEL2)
15086 				verbose(env, "frame %d: propagating fp%d\n",
15087 					fr, (-i - 1) * BPF_REG_SIZE);
15088 			err = mark_chain_precision_stack_frame(env, fr, i);
15089 			if (err < 0)
15090 				return err;
15091 		}
15092 	}
15093 	return 0;
15094 }
15095 
15096 static bool states_maybe_looping(struct bpf_verifier_state *old,
15097 				 struct bpf_verifier_state *cur)
15098 {
15099 	struct bpf_func_state *fold, *fcur;
15100 	int i, fr = cur->curframe;
15101 
15102 	if (old->curframe != fr)
15103 		return false;
15104 
15105 	fold = old->frame[fr];
15106 	fcur = cur->frame[fr];
15107 	for (i = 0; i < MAX_BPF_REG; i++)
15108 		if (memcmp(&fold->regs[i], &fcur->regs[i],
15109 			   offsetof(struct bpf_reg_state, parent)))
15110 			return false;
15111 	return true;
15112 }
15113 
15114 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
15115 {
15116 	return env->insn_aux_data[insn_idx].is_iter_next;
15117 }
15118 
15119 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
15120  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
15121  * states to match, which otherwise would look like an infinite loop. So while
15122  * iter_next() calls are taken care of, we still need to be careful and
15123  * prevent erroneous and too eager declaration of "ininite loop", when
15124  * iterators are involved.
15125  *
15126  * Here's a situation in pseudo-BPF assembly form:
15127  *
15128  *   0: again:                          ; set up iter_next() call args
15129  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
15130  *   2:   call bpf_iter_num_next        ; this is iter_next() call
15131  *   3:   if r0 == 0 goto done
15132  *   4:   ... something useful here ...
15133  *   5:   goto again                    ; another iteration
15134  *   6: done:
15135  *   7:   r1 = &it
15136  *   8:   call bpf_iter_num_destroy     ; clean up iter state
15137  *   9:   exit
15138  *
15139  * This is a typical loop. Let's assume that we have a prune point at 1:,
15140  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
15141  * again`, assuming other heuristics don't get in a way).
15142  *
15143  * When we first time come to 1:, let's say we have some state X. We proceed
15144  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
15145  * Now we come back to validate that forked ACTIVE state. We proceed through
15146  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
15147  * are converging. But the problem is that we don't know that yet, as this
15148  * convergence has to happen at iter_next() call site only. So if nothing is
15149  * done, at 1: verifier will use bounded loop logic and declare infinite
15150  * looping (and would be *technically* correct, if not for iterator's
15151  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
15152  * don't want that. So what we do in process_iter_next_call() when we go on
15153  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
15154  * a different iteration. So when we suspect an infinite loop, we additionally
15155  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
15156  * pretend we are not looping and wait for next iter_next() call.
15157  *
15158  * This only applies to ACTIVE state. In DRAINED state we don't expect to
15159  * loop, because that would actually mean infinite loop, as DRAINED state is
15160  * "sticky", and so we'll keep returning into the same instruction with the
15161  * same state (at least in one of possible code paths).
15162  *
15163  * This approach allows to keep infinite loop heuristic even in the face of
15164  * active iterator. E.g., C snippet below is and will be detected as
15165  * inifintely looping:
15166  *
15167  *   struct bpf_iter_num it;
15168  *   int *p, x;
15169  *
15170  *   bpf_iter_num_new(&it, 0, 10);
15171  *   while ((p = bpf_iter_num_next(&t))) {
15172  *       x = p;
15173  *       while (x--) {} // <<-- infinite loop here
15174  *   }
15175  *
15176  */
15177 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
15178 {
15179 	struct bpf_reg_state *slot, *cur_slot;
15180 	struct bpf_func_state *state;
15181 	int i, fr;
15182 
15183 	for (fr = old->curframe; fr >= 0; fr--) {
15184 		state = old->frame[fr];
15185 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15186 			if (state->stack[i].slot_type[0] != STACK_ITER)
15187 				continue;
15188 
15189 			slot = &state->stack[i].spilled_ptr;
15190 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
15191 				continue;
15192 
15193 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
15194 			if (cur_slot->iter.depth != slot->iter.depth)
15195 				return true;
15196 		}
15197 	}
15198 	return false;
15199 }
15200 
15201 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
15202 {
15203 	struct bpf_verifier_state_list *new_sl;
15204 	struct bpf_verifier_state_list *sl, **pprev;
15205 	struct bpf_verifier_state *cur = env->cur_state, *new;
15206 	int i, j, err, states_cnt = 0;
15207 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
15208 	bool add_new_state = force_new_state;
15209 
15210 	/* bpf progs typically have pruning point every 4 instructions
15211 	 * http://vger.kernel.org/bpfconf2019.html#session-1
15212 	 * Do not add new state for future pruning if the verifier hasn't seen
15213 	 * at least 2 jumps and at least 8 instructions.
15214 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
15215 	 * In tests that amounts to up to 50% reduction into total verifier
15216 	 * memory consumption and 20% verifier time speedup.
15217 	 */
15218 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
15219 	    env->insn_processed - env->prev_insn_processed >= 8)
15220 		add_new_state = true;
15221 
15222 	pprev = explored_state(env, insn_idx);
15223 	sl = *pprev;
15224 
15225 	clean_live_states(env, insn_idx, cur);
15226 
15227 	while (sl) {
15228 		states_cnt++;
15229 		if (sl->state.insn_idx != insn_idx)
15230 			goto next;
15231 
15232 		if (sl->state.branches) {
15233 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
15234 
15235 			if (frame->in_async_callback_fn &&
15236 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
15237 				/* Different async_entry_cnt means that the verifier is
15238 				 * processing another entry into async callback.
15239 				 * Seeing the same state is not an indication of infinite
15240 				 * loop or infinite recursion.
15241 				 * But finding the same state doesn't mean that it's safe
15242 				 * to stop processing the current state. The previous state
15243 				 * hasn't yet reached bpf_exit, since state.branches > 0.
15244 				 * Checking in_async_callback_fn alone is not enough either.
15245 				 * Since the verifier still needs to catch infinite loops
15246 				 * inside async callbacks.
15247 				 */
15248 				goto skip_inf_loop_check;
15249 			}
15250 			/* BPF open-coded iterators loop detection is special.
15251 			 * states_maybe_looping() logic is too simplistic in detecting
15252 			 * states that *might* be equivalent, because it doesn't know
15253 			 * about ID remapping, so don't even perform it.
15254 			 * See process_iter_next_call() and iter_active_depths_differ()
15255 			 * for overview of the logic. When current and one of parent
15256 			 * states are detected as equivalent, it's a good thing: we prove
15257 			 * convergence and can stop simulating further iterations.
15258 			 * It's safe to assume that iterator loop will finish, taking into
15259 			 * account iter_next() contract of eventually returning
15260 			 * sticky NULL result.
15261 			 */
15262 			if (is_iter_next_insn(env, insn_idx)) {
15263 				if (states_equal(env, &sl->state, cur)) {
15264 					struct bpf_func_state *cur_frame;
15265 					struct bpf_reg_state *iter_state, *iter_reg;
15266 					int spi;
15267 
15268 					cur_frame = cur->frame[cur->curframe];
15269 					/* btf_check_iter_kfuncs() enforces that
15270 					 * iter state pointer is always the first arg
15271 					 */
15272 					iter_reg = &cur_frame->regs[BPF_REG_1];
15273 					/* current state is valid due to states_equal(),
15274 					 * so we can assume valid iter and reg state,
15275 					 * no need for extra (re-)validations
15276 					 */
15277 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
15278 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
15279 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
15280 						goto hit;
15281 				}
15282 				goto skip_inf_loop_check;
15283 			}
15284 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
15285 			if (states_maybe_looping(&sl->state, cur) &&
15286 			    states_equal(env, &sl->state, cur) &&
15287 			    !iter_active_depths_differ(&sl->state, cur)) {
15288 				verbose_linfo(env, insn_idx, "; ");
15289 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
15290 				return -EINVAL;
15291 			}
15292 			/* if the verifier is processing a loop, avoid adding new state
15293 			 * too often, since different loop iterations have distinct
15294 			 * states and may not help future pruning.
15295 			 * This threshold shouldn't be too low to make sure that
15296 			 * a loop with large bound will be rejected quickly.
15297 			 * The most abusive loop will be:
15298 			 * r1 += 1
15299 			 * if r1 < 1000000 goto pc-2
15300 			 * 1M insn_procssed limit / 100 == 10k peak states.
15301 			 * This threshold shouldn't be too high either, since states
15302 			 * at the end of the loop are likely to be useful in pruning.
15303 			 */
15304 skip_inf_loop_check:
15305 			if (!force_new_state &&
15306 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
15307 			    env->insn_processed - env->prev_insn_processed < 100)
15308 				add_new_state = false;
15309 			goto miss;
15310 		}
15311 		if (states_equal(env, &sl->state, cur)) {
15312 hit:
15313 			sl->hit_cnt++;
15314 			/* reached equivalent register/stack state,
15315 			 * prune the search.
15316 			 * Registers read by the continuation are read by us.
15317 			 * If we have any write marks in env->cur_state, they
15318 			 * will prevent corresponding reads in the continuation
15319 			 * from reaching our parent (an explored_state).  Our
15320 			 * own state will get the read marks recorded, but
15321 			 * they'll be immediately forgotten as we're pruning
15322 			 * this state and will pop a new one.
15323 			 */
15324 			err = propagate_liveness(env, &sl->state, cur);
15325 
15326 			/* if previous state reached the exit with precision and
15327 			 * current state is equivalent to it (except precsion marks)
15328 			 * the precision needs to be propagated back in
15329 			 * the current state.
15330 			 */
15331 			err = err ? : push_jmp_history(env, cur);
15332 			err = err ? : propagate_precision(env, &sl->state);
15333 			if (err)
15334 				return err;
15335 			return 1;
15336 		}
15337 miss:
15338 		/* when new state is not going to be added do not increase miss count.
15339 		 * Otherwise several loop iterations will remove the state
15340 		 * recorded earlier. The goal of these heuristics is to have
15341 		 * states from some iterations of the loop (some in the beginning
15342 		 * and some at the end) to help pruning.
15343 		 */
15344 		if (add_new_state)
15345 			sl->miss_cnt++;
15346 		/* heuristic to determine whether this state is beneficial
15347 		 * to keep checking from state equivalence point of view.
15348 		 * Higher numbers increase max_states_per_insn and verification time,
15349 		 * but do not meaningfully decrease insn_processed.
15350 		 */
15351 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
15352 			/* the state is unlikely to be useful. Remove it to
15353 			 * speed up verification
15354 			 */
15355 			*pprev = sl->next;
15356 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
15357 				u32 br = sl->state.branches;
15358 
15359 				WARN_ONCE(br,
15360 					  "BUG live_done but branches_to_explore %d\n",
15361 					  br);
15362 				free_verifier_state(&sl->state, false);
15363 				kfree(sl);
15364 				env->peak_states--;
15365 			} else {
15366 				/* cannot free this state, since parentage chain may
15367 				 * walk it later. Add it for free_list instead to
15368 				 * be freed at the end of verification
15369 				 */
15370 				sl->next = env->free_list;
15371 				env->free_list = sl;
15372 			}
15373 			sl = *pprev;
15374 			continue;
15375 		}
15376 next:
15377 		pprev = &sl->next;
15378 		sl = *pprev;
15379 	}
15380 
15381 	if (env->max_states_per_insn < states_cnt)
15382 		env->max_states_per_insn = states_cnt;
15383 
15384 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
15385 		return 0;
15386 
15387 	if (!add_new_state)
15388 		return 0;
15389 
15390 	/* There were no equivalent states, remember the current one.
15391 	 * Technically the current state is not proven to be safe yet,
15392 	 * but it will either reach outer most bpf_exit (which means it's safe)
15393 	 * or it will be rejected. When there are no loops the verifier won't be
15394 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
15395 	 * again on the way to bpf_exit.
15396 	 * When looping the sl->state.branches will be > 0 and this state
15397 	 * will not be considered for equivalence until branches == 0.
15398 	 */
15399 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
15400 	if (!new_sl)
15401 		return -ENOMEM;
15402 	env->total_states++;
15403 	env->peak_states++;
15404 	env->prev_jmps_processed = env->jmps_processed;
15405 	env->prev_insn_processed = env->insn_processed;
15406 
15407 	/* forget precise markings we inherited, see __mark_chain_precision */
15408 	if (env->bpf_capable)
15409 		mark_all_scalars_imprecise(env, cur);
15410 
15411 	/* add new state to the head of linked list */
15412 	new = &new_sl->state;
15413 	err = copy_verifier_state(new, cur);
15414 	if (err) {
15415 		free_verifier_state(new, false);
15416 		kfree(new_sl);
15417 		return err;
15418 	}
15419 	new->insn_idx = insn_idx;
15420 	WARN_ONCE(new->branches != 1,
15421 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
15422 
15423 	cur->parent = new;
15424 	cur->first_insn_idx = insn_idx;
15425 	clear_jmp_history(cur);
15426 	new_sl->next = *explored_state(env, insn_idx);
15427 	*explored_state(env, insn_idx) = new_sl;
15428 	/* connect new state to parentage chain. Current frame needs all
15429 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
15430 	 * to the stack implicitly by JITs) so in callers' frames connect just
15431 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
15432 	 * the state of the call instruction (with WRITTEN set), and r0 comes
15433 	 * from callee with its full parentage chain, anyway.
15434 	 */
15435 	/* clear write marks in current state: the writes we did are not writes
15436 	 * our child did, so they don't screen off its reads from us.
15437 	 * (There are no read marks in current state, because reads always mark
15438 	 * their parent and current state never has children yet.  Only
15439 	 * explored_states can get read marks.)
15440 	 */
15441 	for (j = 0; j <= cur->curframe; j++) {
15442 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
15443 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
15444 		for (i = 0; i < BPF_REG_FP; i++)
15445 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
15446 	}
15447 
15448 	/* all stack frames are accessible from callee, clear them all */
15449 	for (j = 0; j <= cur->curframe; j++) {
15450 		struct bpf_func_state *frame = cur->frame[j];
15451 		struct bpf_func_state *newframe = new->frame[j];
15452 
15453 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
15454 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
15455 			frame->stack[i].spilled_ptr.parent =
15456 						&newframe->stack[i].spilled_ptr;
15457 		}
15458 	}
15459 	return 0;
15460 }
15461 
15462 /* Return true if it's OK to have the same insn return a different type. */
15463 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
15464 {
15465 	switch (base_type(type)) {
15466 	case PTR_TO_CTX:
15467 	case PTR_TO_SOCKET:
15468 	case PTR_TO_SOCK_COMMON:
15469 	case PTR_TO_TCP_SOCK:
15470 	case PTR_TO_XDP_SOCK:
15471 	case PTR_TO_BTF_ID:
15472 		return false;
15473 	default:
15474 		return true;
15475 	}
15476 }
15477 
15478 /* If an instruction was previously used with particular pointer types, then we
15479  * need to be careful to avoid cases such as the below, where it may be ok
15480  * for one branch accessing the pointer, but not ok for the other branch:
15481  *
15482  * R1 = sock_ptr
15483  * goto X;
15484  * ...
15485  * R1 = some_other_valid_ptr;
15486  * goto X;
15487  * ...
15488  * R2 = *(u32 *)(R1 + 0);
15489  */
15490 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
15491 {
15492 	return src != prev && (!reg_type_mismatch_ok(src) ||
15493 			       !reg_type_mismatch_ok(prev));
15494 }
15495 
15496 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
15497 			     bool allow_trust_missmatch)
15498 {
15499 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
15500 
15501 	if (*prev_type == NOT_INIT) {
15502 		/* Saw a valid insn
15503 		 * dst_reg = *(u32 *)(src_reg + off)
15504 		 * save type to validate intersecting paths
15505 		 */
15506 		*prev_type = type;
15507 	} else if (reg_type_mismatch(type, *prev_type)) {
15508 		/* Abuser program is trying to use the same insn
15509 		 * dst_reg = *(u32*) (src_reg + off)
15510 		 * with different pointer types:
15511 		 * src_reg == ctx in one branch and
15512 		 * src_reg == stack|map in some other branch.
15513 		 * Reject it.
15514 		 */
15515 		if (allow_trust_missmatch &&
15516 		    base_type(type) == PTR_TO_BTF_ID &&
15517 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
15518 			/*
15519 			 * Have to support a use case when one path through
15520 			 * the program yields TRUSTED pointer while another
15521 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
15522 			 * BPF_PROBE_MEM.
15523 			 */
15524 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
15525 		} else {
15526 			verbose(env, "same insn cannot be used with different pointers\n");
15527 			return -EINVAL;
15528 		}
15529 	}
15530 
15531 	return 0;
15532 }
15533 
15534 static int do_check(struct bpf_verifier_env *env)
15535 {
15536 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
15537 	struct bpf_verifier_state *state = env->cur_state;
15538 	struct bpf_insn *insns = env->prog->insnsi;
15539 	struct bpf_reg_state *regs;
15540 	int insn_cnt = env->prog->len;
15541 	bool do_print_state = false;
15542 	int prev_insn_idx = -1;
15543 
15544 	for (;;) {
15545 		struct bpf_insn *insn;
15546 		u8 class;
15547 		int err;
15548 
15549 		env->prev_insn_idx = prev_insn_idx;
15550 		if (env->insn_idx >= insn_cnt) {
15551 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
15552 				env->insn_idx, insn_cnt);
15553 			return -EFAULT;
15554 		}
15555 
15556 		insn = &insns[env->insn_idx];
15557 		class = BPF_CLASS(insn->code);
15558 
15559 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
15560 			verbose(env,
15561 				"BPF program is too large. Processed %d insn\n",
15562 				env->insn_processed);
15563 			return -E2BIG;
15564 		}
15565 
15566 		state->last_insn_idx = env->prev_insn_idx;
15567 
15568 		if (is_prune_point(env, env->insn_idx)) {
15569 			err = is_state_visited(env, env->insn_idx);
15570 			if (err < 0)
15571 				return err;
15572 			if (err == 1) {
15573 				/* found equivalent state, can prune the search */
15574 				if (env->log.level & BPF_LOG_LEVEL) {
15575 					if (do_print_state)
15576 						verbose(env, "\nfrom %d to %d%s: safe\n",
15577 							env->prev_insn_idx, env->insn_idx,
15578 							env->cur_state->speculative ?
15579 							" (speculative execution)" : "");
15580 					else
15581 						verbose(env, "%d: safe\n", env->insn_idx);
15582 				}
15583 				goto process_bpf_exit;
15584 			}
15585 		}
15586 
15587 		if (is_jmp_point(env, env->insn_idx)) {
15588 			err = push_jmp_history(env, state);
15589 			if (err)
15590 				return err;
15591 		}
15592 
15593 		if (signal_pending(current))
15594 			return -EAGAIN;
15595 
15596 		if (need_resched())
15597 			cond_resched();
15598 
15599 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
15600 			verbose(env, "\nfrom %d to %d%s:",
15601 				env->prev_insn_idx, env->insn_idx,
15602 				env->cur_state->speculative ?
15603 				" (speculative execution)" : "");
15604 			print_verifier_state(env, state->frame[state->curframe], true);
15605 			do_print_state = false;
15606 		}
15607 
15608 		if (env->log.level & BPF_LOG_LEVEL) {
15609 			const struct bpf_insn_cbs cbs = {
15610 				.cb_call	= disasm_kfunc_name,
15611 				.cb_print	= verbose,
15612 				.private_data	= env,
15613 			};
15614 
15615 			if (verifier_state_scratched(env))
15616 				print_insn_state(env, state->frame[state->curframe]);
15617 
15618 			verbose_linfo(env, env->insn_idx, "; ");
15619 			env->prev_log_len = env->log.len_used;
15620 			verbose(env, "%d: ", env->insn_idx);
15621 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
15622 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
15623 			env->prev_log_len = env->log.len_used;
15624 		}
15625 
15626 		if (bpf_prog_is_offloaded(env->prog->aux)) {
15627 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
15628 							   env->prev_insn_idx);
15629 			if (err)
15630 				return err;
15631 		}
15632 
15633 		regs = cur_regs(env);
15634 		sanitize_mark_insn_seen(env);
15635 		prev_insn_idx = env->insn_idx;
15636 
15637 		if (class == BPF_ALU || class == BPF_ALU64) {
15638 			err = check_alu_op(env, insn);
15639 			if (err)
15640 				return err;
15641 
15642 		} else if (class == BPF_LDX) {
15643 			enum bpf_reg_type src_reg_type;
15644 
15645 			/* check for reserved fields is already done */
15646 
15647 			/* check src operand */
15648 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15649 			if (err)
15650 				return err;
15651 
15652 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15653 			if (err)
15654 				return err;
15655 
15656 			src_reg_type = regs[insn->src_reg].type;
15657 
15658 			/* check that memory (src_reg + off) is readable,
15659 			 * the state of dst_reg will be updated by this func
15660 			 */
15661 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
15662 					       insn->off, BPF_SIZE(insn->code),
15663 					       BPF_READ, insn->dst_reg, false);
15664 			if (err)
15665 				return err;
15666 
15667 			err = save_aux_ptr_type(env, src_reg_type, true);
15668 			if (err)
15669 				return err;
15670 		} else if (class == BPF_STX) {
15671 			enum bpf_reg_type dst_reg_type;
15672 
15673 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
15674 				err = check_atomic(env, env->insn_idx, insn);
15675 				if (err)
15676 					return err;
15677 				env->insn_idx++;
15678 				continue;
15679 			}
15680 
15681 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
15682 				verbose(env, "BPF_STX uses reserved fields\n");
15683 				return -EINVAL;
15684 			}
15685 
15686 			/* check src1 operand */
15687 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15688 			if (err)
15689 				return err;
15690 			/* check src2 operand */
15691 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15692 			if (err)
15693 				return err;
15694 
15695 			dst_reg_type = regs[insn->dst_reg].type;
15696 
15697 			/* check that memory (dst_reg + off) is writeable */
15698 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15699 					       insn->off, BPF_SIZE(insn->code),
15700 					       BPF_WRITE, insn->src_reg, false);
15701 			if (err)
15702 				return err;
15703 
15704 			err = save_aux_ptr_type(env, dst_reg_type, false);
15705 			if (err)
15706 				return err;
15707 		} else if (class == BPF_ST) {
15708 			enum bpf_reg_type dst_reg_type;
15709 
15710 			if (BPF_MODE(insn->code) != BPF_MEM ||
15711 			    insn->src_reg != BPF_REG_0) {
15712 				verbose(env, "BPF_ST uses reserved fields\n");
15713 				return -EINVAL;
15714 			}
15715 			/* check src operand */
15716 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15717 			if (err)
15718 				return err;
15719 
15720 			dst_reg_type = regs[insn->dst_reg].type;
15721 
15722 			/* check that memory (dst_reg + off) is writeable */
15723 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15724 					       insn->off, BPF_SIZE(insn->code),
15725 					       BPF_WRITE, -1, false);
15726 			if (err)
15727 				return err;
15728 
15729 			err = save_aux_ptr_type(env, dst_reg_type, false);
15730 			if (err)
15731 				return err;
15732 		} else if (class == BPF_JMP || class == BPF_JMP32) {
15733 			u8 opcode = BPF_OP(insn->code);
15734 
15735 			env->jmps_processed++;
15736 			if (opcode == BPF_CALL) {
15737 				if (BPF_SRC(insn->code) != BPF_K ||
15738 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
15739 				     && insn->off != 0) ||
15740 				    (insn->src_reg != BPF_REG_0 &&
15741 				     insn->src_reg != BPF_PSEUDO_CALL &&
15742 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
15743 				    insn->dst_reg != BPF_REG_0 ||
15744 				    class == BPF_JMP32) {
15745 					verbose(env, "BPF_CALL uses reserved fields\n");
15746 					return -EINVAL;
15747 				}
15748 
15749 				if (env->cur_state->active_lock.ptr) {
15750 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
15751 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
15752 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
15753 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
15754 						verbose(env, "function calls are not allowed while holding a lock\n");
15755 						return -EINVAL;
15756 					}
15757 				}
15758 				if (insn->src_reg == BPF_PSEUDO_CALL)
15759 					err = check_func_call(env, insn, &env->insn_idx);
15760 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
15761 					err = check_kfunc_call(env, insn, &env->insn_idx);
15762 				else
15763 					err = check_helper_call(env, insn, &env->insn_idx);
15764 				if (err)
15765 					return err;
15766 
15767 				mark_reg_scratched(env, BPF_REG_0);
15768 			} else if (opcode == BPF_JA) {
15769 				if (BPF_SRC(insn->code) != BPF_K ||
15770 				    insn->imm != 0 ||
15771 				    insn->src_reg != BPF_REG_0 ||
15772 				    insn->dst_reg != BPF_REG_0 ||
15773 				    class == BPF_JMP32) {
15774 					verbose(env, "BPF_JA uses reserved fields\n");
15775 					return -EINVAL;
15776 				}
15777 
15778 				env->insn_idx += insn->off + 1;
15779 				continue;
15780 
15781 			} else if (opcode == BPF_EXIT) {
15782 				if (BPF_SRC(insn->code) != BPF_K ||
15783 				    insn->imm != 0 ||
15784 				    insn->src_reg != BPF_REG_0 ||
15785 				    insn->dst_reg != BPF_REG_0 ||
15786 				    class == BPF_JMP32) {
15787 					verbose(env, "BPF_EXIT uses reserved fields\n");
15788 					return -EINVAL;
15789 				}
15790 
15791 				if (env->cur_state->active_lock.ptr &&
15792 				    !in_rbtree_lock_required_cb(env)) {
15793 					verbose(env, "bpf_spin_unlock is missing\n");
15794 					return -EINVAL;
15795 				}
15796 
15797 				if (env->cur_state->active_rcu_lock) {
15798 					verbose(env, "bpf_rcu_read_unlock is missing\n");
15799 					return -EINVAL;
15800 				}
15801 
15802 				/* We must do check_reference_leak here before
15803 				 * prepare_func_exit to handle the case when
15804 				 * state->curframe > 0, it may be a callback
15805 				 * function, for which reference_state must
15806 				 * match caller reference state when it exits.
15807 				 */
15808 				err = check_reference_leak(env);
15809 				if (err)
15810 					return err;
15811 
15812 				if (state->curframe) {
15813 					/* exit from nested function */
15814 					err = prepare_func_exit(env, &env->insn_idx);
15815 					if (err)
15816 						return err;
15817 					do_print_state = true;
15818 					continue;
15819 				}
15820 
15821 				err = check_return_code(env);
15822 				if (err)
15823 					return err;
15824 process_bpf_exit:
15825 				mark_verifier_state_scratched(env);
15826 				update_branch_counts(env, env->cur_state);
15827 				err = pop_stack(env, &prev_insn_idx,
15828 						&env->insn_idx, pop_log);
15829 				if (err < 0) {
15830 					if (err != -ENOENT)
15831 						return err;
15832 					break;
15833 				} else {
15834 					do_print_state = true;
15835 					continue;
15836 				}
15837 			} else {
15838 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
15839 				if (err)
15840 					return err;
15841 			}
15842 		} else if (class == BPF_LD) {
15843 			u8 mode = BPF_MODE(insn->code);
15844 
15845 			if (mode == BPF_ABS || mode == BPF_IND) {
15846 				err = check_ld_abs(env, insn);
15847 				if (err)
15848 					return err;
15849 
15850 			} else if (mode == BPF_IMM) {
15851 				err = check_ld_imm(env, insn);
15852 				if (err)
15853 					return err;
15854 
15855 				env->insn_idx++;
15856 				sanitize_mark_insn_seen(env);
15857 			} else {
15858 				verbose(env, "invalid BPF_LD mode\n");
15859 				return -EINVAL;
15860 			}
15861 		} else {
15862 			verbose(env, "unknown insn class %d\n", class);
15863 			return -EINVAL;
15864 		}
15865 
15866 		env->insn_idx++;
15867 	}
15868 
15869 	return 0;
15870 }
15871 
15872 static int find_btf_percpu_datasec(struct btf *btf)
15873 {
15874 	const struct btf_type *t;
15875 	const char *tname;
15876 	int i, n;
15877 
15878 	/*
15879 	 * Both vmlinux and module each have their own ".data..percpu"
15880 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
15881 	 * types to look at only module's own BTF types.
15882 	 */
15883 	n = btf_nr_types(btf);
15884 	if (btf_is_module(btf))
15885 		i = btf_nr_types(btf_vmlinux);
15886 	else
15887 		i = 1;
15888 
15889 	for(; i < n; i++) {
15890 		t = btf_type_by_id(btf, i);
15891 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
15892 			continue;
15893 
15894 		tname = btf_name_by_offset(btf, t->name_off);
15895 		if (!strcmp(tname, ".data..percpu"))
15896 			return i;
15897 	}
15898 
15899 	return -ENOENT;
15900 }
15901 
15902 /* replace pseudo btf_id with kernel symbol address */
15903 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
15904 			       struct bpf_insn *insn,
15905 			       struct bpf_insn_aux_data *aux)
15906 {
15907 	const struct btf_var_secinfo *vsi;
15908 	const struct btf_type *datasec;
15909 	struct btf_mod_pair *btf_mod;
15910 	const struct btf_type *t;
15911 	const char *sym_name;
15912 	bool percpu = false;
15913 	u32 type, id = insn->imm;
15914 	struct btf *btf;
15915 	s32 datasec_id;
15916 	u64 addr;
15917 	int i, btf_fd, err;
15918 
15919 	btf_fd = insn[1].imm;
15920 	if (btf_fd) {
15921 		btf = btf_get_by_fd(btf_fd);
15922 		if (IS_ERR(btf)) {
15923 			verbose(env, "invalid module BTF object FD specified.\n");
15924 			return -EINVAL;
15925 		}
15926 	} else {
15927 		if (!btf_vmlinux) {
15928 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
15929 			return -EINVAL;
15930 		}
15931 		btf = btf_vmlinux;
15932 		btf_get(btf);
15933 	}
15934 
15935 	t = btf_type_by_id(btf, id);
15936 	if (!t) {
15937 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
15938 		err = -ENOENT;
15939 		goto err_put;
15940 	}
15941 
15942 	if (!btf_type_is_var(t)) {
15943 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
15944 		err = -EINVAL;
15945 		goto err_put;
15946 	}
15947 
15948 	sym_name = btf_name_by_offset(btf, t->name_off);
15949 	addr = kallsyms_lookup_name(sym_name);
15950 	if (!addr) {
15951 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
15952 			sym_name);
15953 		err = -ENOENT;
15954 		goto err_put;
15955 	}
15956 
15957 	datasec_id = find_btf_percpu_datasec(btf);
15958 	if (datasec_id > 0) {
15959 		datasec = btf_type_by_id(btf, datasec_id);
15960 		for_each_vsi(i, datasec, vsi) {
15961 			if (vsi->type == id) {
15962 				percpu = true;
15963 				break;
15964 			}
15965 		}
15966 	}
15967 
15968 	insn[0].imm = (u32)addr;
15969 	insn[1].imm = addr >> 32;
15970 
15971 	type = t->type;
15972 	t = btf_type_skip_modifiers(btf, type, NULL);
15973 	if (percpu) {
15974 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
15975 		aux->btf_var.btf = btf;
15976 		aux->btf_var.btf_id = type;
15977 	} else if (!btf_type_is_struct(t)) {
15978 		const struct btf_type *ret;
15979 		const char *tname;
15980 		u32 tsize;
15981 
15982 		/* resolve the type size of ksym. */
15983 		ret = btf_resolve_size(btf, t, &tsize);
15984 		if (IS_ERR(ret)) {
15985 			tname = btf_name_by_offset(btf, t->name_off);
15986 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
15987 				tname, PTR_ERR(ret));
15988 			err = -EINVAL;
15989 			goto err_put;
15990 		}
15991 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
15992 		aux->btf_var.mem_size = tsize;
15993 	} else {
15994 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
15995 		aux->btf_var.btf = btf;
15996 		aux->btf_var.btf_id = type;
15997 	}
15998 
15999 	/* check whether we recorded this BTF (and maybe module) already */
16000 	for (i = 0; i < env->used_btf_cnt; i++) {
16001 		if (env->used_btfs[i].btf == btf) {
16002 			btf_put(btf);
16003 			return 0;
16004 		}
16005 	}
16006 
16007 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16008 		err = -E2BIG;
16009 		goto err_put;
16010 	}
16011 
16012 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16013 	btf_mod->btf = btf;
16014 	btf_mod->module = NULL;
16015 
16016 	/* if we reference variables from kernel module, bump its refcount */
16017 	if (btf_is_module(btf)) {
16018 		btf_mod->module = btf_try_get_module(btf);
16019 		if (!btf_mod->module) {
16020 			err = -ENXIO;
16021 			goto err_put;
16022 		}
16023 	}
16024 
16025 	env->used_btf_cnt++;
16026 
16027 	return 0;
16028 err_put:
16029 	btf_put(btf);
16030 	return err;
16031 }
16032 
16033 static bool is_tracing_prog_type(enum bpf_prog_type type)
16034 {
16035 	switch (type) {
16036 	case BPF_PROG_TYPE_KPROBE:
16037 	case BPF_PROG_TYPE_TRACEPOINT:
16038 	case BPF_PROG_TYPE_PERF_EVENT:
16039 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16040 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16041 		return true;
16042 	default:
16043 		return false;
16044 	}
16045 }
16046 
16047 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16048 					struct bpf_map *map,
16049 					struct bpf_prog *prog)
16050 
16051 {
16052 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16053 
16054 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16055 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16056 		if (is_tracing_prog_type(prog_type)) {
16057 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16058 			return -EINVAL;
16059 		}
16060 	}
16061 
16062 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16063 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16064 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16065 			return -EINVAL;
16066 		}
16067 
16068 		if (is_tracing_prog_type(prog_type)) {
16069 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16070 			return -EINVAL;
16071 		}
16072 
16073 		if (prog->aux->sleepable) {
16074 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16075 			return -EINVAL;
16076 		}
16077 	}
16078 
16079 	if (btf_record_has_field(map->record, BPF_TIMER)) {
16080 		if (is_tracing_prog_type(prog_type)) {
16081 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
16082 			return -EINVAL;
16083 		}
16084 	}
16085 
16086 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
16087 	    !bpf_offload_prog_map_match(prog, map)) {
16088 		verbose(env, "offload device mismatch between prog and map\n");
16089 		return -EINVAL;
16090 	}
16091 
16092 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16093 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16094 		return -EINVAL;
16095 	}
16096 
16097 	if (prog->aux->sleepable)
16098 		switch (map->map_type) {
16099 		case BPF_MAP_TYPE_HASH:
16100 		case BPF_MAP_TYPE_LRU_HASH:
16101 		case BPF_MAP_TYPE_ARRAY:
16102 		case BPF_MAP_TYPE_PERCPU_HASH:
16103 		case BPF_MAP_TYPE_PERCPU_ARRAY:
16104 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16105 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
16106 		case BPF_MAP_TYPE_HASH_OF_MAPS:
16107 		case BPF_MAP_TYPE_RINGBUF:
16108 		case BPF_MAP_TYPE_USER_RINGBUF:
16109 		case BPF_MAP_TYPE_INODE_STORAGE:
16110 		case BPF_MAP_TYPE_SK_STORAGE:
16111 		case BPF_MAP_TYPE_TASK_STORAGE:
16112 		case BPF_MAP_TYPE_CGRP_STORAGE:
16113 			break;
16114 		default:
16115 			verbose(env,
16116 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
16117 			return -EINVAL;
16118 		}
16119 
16120 	return 0;
16121 }
16122 
16123 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
16124 {
16125 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
16126 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
16127 }
16128 
16129 /* find and rewrite pseudo imm in ld_imm64 instructions:
16130  *
16131  * 1. if it accesses map FD, replace it with actual map pointer.
16132  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
16133  *
16134  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
16135  */
16136 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
16137 {
16138 	struct bpf_insn *insn = env->prog->insnsi;
16139 	int insn_cnt = env->prog->len;
16140 	int i, j, err;
16141 
16142 	err = bpf_prog_calc_tag(env->prog);
16143 	if (err)
16144 		return err;
16145 
16146 	for (i = 0; i < insn_cnt; i++, insn++) {
16147 		if (BPF_CLASS(insn->code) == BPF_LDX &&
16148 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
16149 			verbose(env, "BPF_LDX uses reserved fields\n");
16150 			return -EINVAL;
16151 		}
16152 
16153 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
16154 			struct bpf_insn_aux_data *aux;
16155 			struct bpf_map *map;
16156 			struct fd f;
16157 			u64 addr;
16158 			u32 fd;
16159 
16160 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
16161 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
16162 			    insn[1].off != 0) {
16163 				verbose(env, "invalid bpf_ld_imm64 insn\n");
16164 				return -EINVAL;
16165 			}
16166 
16167 			if (insn[0].src_reg == 0)
16168 				/* valid generic load 64-bit imm */
16169 				goto next_insn;
16170 
16171 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
16172 				aux = &env->insn_aux_data[i];
16173 				err = check_pseudo_btf_id(env, insn, aux);
16174 				if (err)
16175 					return err;
16176 				goto next_insn;
16177 			}
16178 
16179 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
16180 				aux = &env->insn_aux_data[i];
16181 				aux->ptr_type = PTR_TO_FUNC;
16182 				goto next_insn;
16183 			}
16184 
16185 			/* In final convert_pseudo_ld_imm64() step, this is
16186 			 * converted into regular 64-bit imm load insn.
16187 			 */
16188 			switch (insn[0].src_reg) {
16189 			case BPF_PSEUDO_MAP_VALUE:
16190 			case BPF_PSEUDO_MAP_IDX_VALUE:
16191 				break;
16192 			case BPF_PSEUDO_MAP_FD:
16193 			case BPF_PSEUDO_MAP_IDX:
16194 				if (insn[1].imm == 0)
16195 					break;
16196 				fallthrough;
16197 			default:
16198 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
16199 				return -EINVAL;
16200 			}
16201 
16202 			switch (insn[0].src_reg) {
16203 			case BPF_PSEUDO_MAP_IDX_VALUE:
16204 			case BPF_PSEUDO_MAP_IDX:
16205 				if (bpfptr_is_null(env->fd_array)) {
16206 					verbose(env, "fd_idx without fd_array is invalid\n");
16207 					return -EPROTO;
16208 				}
16209 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
16210 							    insn[0].imm * sizeof(fd),
16211 							    sizeof(fd)))
16212 					return -EFAULT;
16213 				break;
16214 			default:
16215 				fd = insn[0].imm;
16216 				break;
16217 			}
16218 
16219 			f = fdget(fd);
16220 			map = __bpf_map_get(f);
16221 			if (IS_ERR(map)) {
16222 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
16223 					insn[0].imm);
16224 				return PTR_ERR(map);
16225 			}
16226 
16227 			err = check_map_prog_compatibility(env, map, env->prog);
16228 			if (err) {
16229 				fdput(f);
16230 				return err;
16231 			}
16232 
16233 			aux = &env->insn_aux_data[i];
16234 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
16235 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
16236 				addr = (unsigned long)map;
16237 			} else {
16238 				u32 off = insn[1].imm;
16239 
16240 				if (off >= BPF_MAX_VAR_OFF) {
16241 					verbose(env, "direct value offset of %u is not allowed\n", off);
16242 					fdput(f);
16243 					return -EINVAL;
16244 				}
16245 
16246 				if (!map->ops->map_direct_value_addr) {
16247 					verbose(env, "no direct value access support for this map type\n");
16248 					fdput(f);
16249 					return -EINVAL;
16250 				}
16251 
16252 				err = map->ops->map_direct_value_addr(map, &addr, off);
16253 				if (err) {
16254 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
16255 						map->value_size, off);
16256 					fdput(f);
16257 					return err;
16258 				}
16259 
16260 				aux->map_off = off;
16261 				addr += off;
16262 			}
16263 
16264 			insn[0].imm = (u32)addr;
16265 			insn[1].imm = addr >> 32;
16266 
16267 			/* check whether we recorded this map already */
16268 			for (j = 0; j < env->used_map_cnt; j++) {
16269 				if (env->used_maps[j] == map) {
16270 					aux->map_index = j;
16271 					fdput(f);
16272 					goto next_insn;
16273 				}
16274 			}
16275 
16276 			if (env->used_map_cnt >= MAX_USED_MAPS) {
16277 				fdput(f);
16278 				return -E2BIG;
16279 			}
16280 
16281 			/* hold the map. If the program is rejected by verifier,
16282 			 * the map will be released by release_maps() or it
16283 			 * will be used by the valid program until it's unloaded
16284 			 * and all maps are released in free_used_maps()
16285 			 */
16286 			bpf_map_inc(map);
16287 
16288 			aux->map_index = env->used_map_cnt;
16289 			env->used_maps[env->used_map_cnt++] = map;
16290 
16291 			if (bpf_map_is_cgroup_storage(map) &&
16292 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
16293 				verbose(env, "only one cgroup storage of each type is allowed\n");
16294 				fdput(f);
16295 				return -EBUSY;
16296 			}
16297 
16298 			fdput(f);
16299 next_insn:
16300 			insn++;
16301 			i++;
16302 			continue;
16303 		}
16304 
16305 		/* Basic sanity check before we invest more work here. */
16306 		if (!bpf_opcode_in_insntable(insn->code)) {
16307 			verbose(env, "unknown opcode %02x\n", insn->code);
16308 			return -EINVAL;
16309 		}
16310 	}
16311 
16312 	/* now all pseudo BPF_LD_IMM64 instructions load valid
16313 	 * 'struct bpf_map *' into a register instead of user map_fd.
16314 	 * These pointers will be used later by verifier to validate map access.
16315 	 */
16316 	return 0;
16317 }
16318 
16319 /* drop refcnt of maps used by the rejected program */
16320 static void release_maps(struct bpf_verifier_env *env)
16321 {
16322 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
16323 			     env->used_map_cnt);
16324 }
16325 
16326 /* drop refcnt of maps used by the rejected program */
16327 static void release_btfs(struct bpf_verifier_env *env)
16328 {
16329 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
16330 			     env->used_btf_cnt);
16331 }
16332 
16333 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
16334 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
16335 {
16336 	struct bpf_insn *insn = env->prog->insnsi;
16337 	int insn_cnt = env->prog->len;
16338 	int i;
16339 
16340 	for (i = 0; i < insn_cnt; i++, insn++) {
16341 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
16342 			continue;
16343 		if (insn->src_reg == BPF_PSEUDO_FUNC)
16344 			continue;
16345 		insn->src_reg = 0;
16346 	}
16347 }
16348 
16349 /* single env->prog->insni[off] instruction was replaced with the range
16350  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
16351  * [0, off) and [off, end) to new locations, so the patched range stays zero
16352  */
16353 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
16354 				 struct bpf_insn_aux_data *new_data,
16355 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
16356 {
16357 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
16358 	struct bpf_insn *insn = new_prog->insnsi;
16359 	u32 old_seen = old_data[off].seen;
16360 	u32 prog_len;
16361 	int i;
16362 
16363 	/* aux info at OFF always needs adjustment, no matter fast path
16364 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
16365 	 * original insn at old prog.
16366 	 */
16367 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
16368 
16369 	if (cnt == 1)
16370 		return;
16371 	prog_len = new_prog->len;
16372 
16373 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
16374 	memcpy(new_data + off + cnt - 1, old_data + off,
16375 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
16376 	for (i = off; i < off + cnt - 1; i++) {
16377 		/* Expand insni[off]'s seen count to the patched range. */
16378 		new_data[i].seen = old_seen;
16379 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
16380 	}
16381 	env->insn_aux_data = new_data;
16382 	vfree(old_data);
16383 }
16384 
16385 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
16386 {
16387 	int i;
16388 
16389 	if (len == 1)
16390 		return;
16391 	/* NOTE: fake 'exit' subprog should be updated as well. */
16392 	for (i = 0; i <= env->subprog_cnt; i++) {
16393 		if (env->subprog_info[i].start <= off)
16394 			continue;
16395 		env->subprog_info[i].start += len - 1;
16396 	}
16397 }
16398 
16399 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
16400 {
16401 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
16402 	int i, sz = prog->aux->size_poke_tab;
16403 	struct bpf_jit_poke_descriptor *desc;
16404 
16405 	for (i = 0; i < sz; i++) {
16406 		desc = &tab[i];
16407 		if (desc->insn_idx <= off)
16408 			continue;
16409 		desc->insn_idx += len - 1;
16410 	}
16411 }
16412 
16413 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
16414 					    const struct bpf_insn *patch, u32 len)
16415 {
16416 	struct bpf_prog *new_prog;
16417 	struct bpf_insn_aux_data *new_data = NULL;
16418 
16419 	if (len > 1) {
16420 		new_data = vzalloc(array_size(env->prog->len + len - 1,
16421 					      sizeof(struct bpf_insn_aux_data)));
16422 		if (!new_data)
16423 			return NULL;
16424 	}
16425 
16426 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
16427 	if (IS_ERR(new_prog)) {
16428 		if (PTR_ERR(new_prog) == -ERANGE)
16429 			verbose(env,
16430 				"insn %d cannot be patched due to 16-bit range\n",
16431 				env->insn_aux_data[off].orig_idx);
16432 		vfree(new_data);
16433 		return NULL;
16434 	}
16435 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
16436 	adjust_subprog_starts(env, off, len);
16437 	adjust_poke_descs(new_prog, off, len);
16438 	return new_prog;
16439 }
16440 
16441 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
16442 					      u32 off, u32 cnt)
16443 {
16444 	int i, j;
16445 
16446 	/* find first prog starting at or after off (first to remove) */
16447 	for (i = 0; i < env->subprog_cnt; i++)
16448 		if (env->subprog_info[i].start >= off)
16449 			break;
16450 	/* find first prog starting at or after off + cnt (first to stay) */
16451 	for (j = i; j < env->subprog_cnt; j++)
16452 		if (env->subprog_info[j].start >= off + cnt)
16453 			break;
16454 	/* if j doesn't start exactly at off + cnt, we are just removing
16455 	 * the front of previous prog
16456 	 */
16457 	if (env->subprog_info[j].start != off + cnt)
16458 		j--;
16459 
16460 	if (j > i) {
16461 		struct bpf_prog_aux *aux = env->prog->aux;
16462 		int move;
16463 
16464 		/* move fake 'exit' subprog as well */
16465 		move = env->subprog_cnt + 1 - j;
16466 
16467 		memmove(env->subprog_info + i,
16468 			env->subprog_info + j,
16469 			sizeof(*env->subprog_info) * move);
16470 		env->subprog_cnt -= j - i;
16471 
16472 		/* remove func_info */
16473 		if (aux->func_info) {
16474 			move = aux->func_info_cnt - j;
16475 
16476 			memmove(aux->func_info + i,
16477 				aux->func_info + j,
16478 				sizeof(*aux->func_info) * move);
16479 			aux->func_info_cnt -= j - i;
16480 			/* func_info->insn_off is set after all code rewrites,
16481 			 * in adjust_btf_func() - no need to adjust
16482 			 */
16483 		}
16484 	} else {
16485 		/* convert i from "first prog to remove" to "first to adjust" */
16486 		if (env->subprog_info[i].start == off)
16487 			i++;
16488 	}
16489 
16490 	/* update fake 'exit' subprog as well */
16491 	for (; i <= env->subprog_cnt; i++)
16492 		env->subprog_info[i].start -= cnt;
16493 
16494 	return 0;
16495 }
16496 
16497 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
16498 				      u32 cnt)
16499 {
16500 	struct bpf_prog *prog = env->prog;
16501 	u32 i, l_off, l_cnt, nr_linfo;
16502 	struct bpf_line_info *linfo;
16503 
16504 	nr_linfo = prog->aux->nr_linfo;
16505 	if (!nr_linfo)
16506 		return 0;
16507 
16508 	linfo = prog->aux->linfo;
16509 
16510 	/* find first line info to remove, count lines to be removed */
16511 	for (i = 0; i < nr_linfo; i++)
16512 		if (linfo[i].insn_off >= off)
16513 			break;
16514 
16515 	l_off = i;
16516 	l_cnt = 0;
16517 	for (; i < nr_linfo; i++)
16518 		if (linfo[i].insn_off < off + cnt)
16519 			l_cnt++;
16520 		else
16521 			break;
16522 
16523 	/* First live insn doesn't match first live linfo, it needs to "inherit"
16524 	 * last removed linfo.  prog is already modified, so prog->len == off
16525 	 * means no live instructions after (tail of the program was removed).
16526 	 */
16527 	if (prog->len != off && l_cnt &&
16528 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
16529 		l_cnt--;
16530 		linfo[--i].insn_off = off + cnt;
16531 	}
16532 
16533 	/* remove the line info which refer to the removed instructions */
16534 	if (l_cnt) {
16535 		memmove(linfo + l_off, linfo + i,
16536 			sizeof(*linfo) * (nr_linfo - i));
16537 
16538 		prog->aux->nr_linfo -= l_cnt;
16539 		nr_linfo = prog->aux->nr_linfo;
16540 	}
16541 
16542 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
16543 	for (i = l_off; i < nr_linfo; i++)
16544 		linfo[i].insn_off -= cnt;
16545 
16546 	/* fix up all subprogs (incl. 'exit') which start >= off */
16547 	for (i = 0; i <= env->subprog_cnt; i++)
16548 		if (env->subprog_info[i].linfo_idx > l_off) {
16549 			/* program may have started in the removed region but
16550 			 * may not be fully removed
16551 			 */
16552 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
16553 				env->subprog_info[i].linfo_idx -= l_cnt;
16554 			else
16555 				env->subprog_info[i].linfo_idx = l_off;
16556 		}
16557 
16558 	return 0;
16559 }
16560 
16561 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
16562 {
16563 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16564 	unsigned int orig_prog_len = env->prog->len;
16565 	int err;
16566 
16567 	if (bpf_prog_is_offloaded(env->prog->aux))
16568 		bpf_prog_offload_remove_insns(env, off, cnt);
16569 
16570 	err = bpf_remove_insns(env->prog, off, cnt);
16571 	if (err)
16572 		return err;
16573 
16574 	err = adjust_subprog_starts_after_remove(env, off, cnt);
16575 	if (err)
16576 		return err;
16577 
16578 	err = bpf_adj_linfo_after_remove(env, off, cnt);
16579 	if (err)
16580 		return err;
16581 
16582 	memmove(aux_data + off,	aux_data + off + cnt,
16583 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
16584 
16585 	return 0;
16586 }
16587 
16588 /* The verifier does more data flow analysis than llvm and will not
16589  * explore branches that are dead at run time. Malicious programs can
16590  * have dead code too. Therefore replace all dead at-run-time code
16591  * with 'ja -1'.
16592  *
16593  * Just nops are not optimal, e.g. if they would sit at the end of the
16594  * program and through another bug we would manage to jump there, then
16595  * we'd execute beyond program memory otherwise. Returning exception
16596  * code also wouldn't work since we can have subprogs where the dead
16597  * code could be located.
16598  */
16599 static void sanitize_dead_code(struct bpf_verifier_env *env)
16600 {
16601 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16602 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
16603 	struct bpf_insn *insn = env->prog->insnsi;
16604 	const int insn_cnt = env->prog->len;
16605 	int i;
16606 
16607 	for (i = 0; i < insn_cnt; i++) {
16608 		if (aux_data[i].seen)
16609 			continue;
16610 		memcpy(insn + i, &trap, sizeof(trap));
16611 		aux_data[i].zext_dst = false;
16612 	}
16613 }
16614 
16615 static bool insn_is_cond_jump(u8 code)
16616 {
16617 	u8 op;
16618 
16619 	if (BPF_CLASS(code) == BPF_JMP32)
16620 		return true;
16621 
16622 	if (BPF_CLASS(code) != BPF_JMP)
16623 		return false;
16624 
16625 	op = BPF_OP(code);
16626 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
16627 }
16628 
16629 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
16630 {
16631 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16632 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16633 	struct bpf_insn *insn = env->prog->insnsi;
16634 	const int insn_cnt = env->prog->len;
16635 	int i;
16636 
16637 	for (i = 0; i < insn_cnt; i++, insn++) {
16638 		if (!insn_is_cond_jump(insn->code))
16639 			continue;
16640 
16641 		if (!aux_data[i + 1].seen)
16642 			ja.off = insn->off;
16643 		else if (!aux_data[i + 1 + insn->off].seen)
16644 			ja.off = 0;
16645 		else
16646 			continue;
16647 
16648 		if (bpf_prog_is_offloaded(env->prog->aux))
16649 			bpf_prog_offload_replace_insn(env, i, &ja);
16650 
16651 		memcpy(insn, &ja, sizeof(ja));
16652 	}
16653 }
16654 
16655 static int opt_remove_dead_code(struct bpf_verifier_env *env)
16656 {
16657 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16658 	int insn_cnt = env->prog->len;
16659 	int i, err;
16660 
16661 	for (i = 0; i < insn_cnt; i++) {
16662 		int j;
16663 
16664 		j = 0;
16665 		while (i + j < insn_cnt && !aux_data[i + j].seen)
16666 			j++;
16667 		if (!j)
16668 			continue;
16669 
16670 		err = verifier_remove_insns(env, i, j);
16671 		if (err)
16672 			return err;
16673 		insn_cnt = env->prog->len;
16674 	}
16675 
16676 	return 0;
16677 }
16678 
16679 static int opt_remove_nops(struct bpf_verifier_env *env)
16680 {
16681 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16682 	struct bpf_insn *insn = env->prog->insnsi;
16683 	int insn_cnt = env->prog->len;
16684 	int i, err;
16685 
16686 	for (i = 0; i < insn_cnt; i++) {
16687 		if (memcmp(&insn[i], &ja, sizeof(ja)))
16688 			continue;
16689 
16690 		err = verifier_remove_insns(env, i, 1);
16691 		if (err)
16692 			return err;
16693 		insn_cnt--;
16694 		i--;
16695 	}
16696 
16697 	return 0;
16698 }
16699 
16700 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
16701 					 const union bpf_attr *attr)
16702 {
16703 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
16704 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
16705 	int i, patch_len, delta = 0, len = env->prog->len;
16706 	struct bpf_insn *insns = env->prog->insnsi;
16707 	struct bpf_prog *new_prog;
16708 	bool rnd_hi32;
16709 
16710 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
16711 	zext_patch[1] = BPF_ZEXT_REG(0);
16712 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
16713 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
16714 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
16715 	for (i = 0; i < len; i++) {
16716 		int adj_idx = i + delta;
16717 		struct bpf_insn insn;
16718 		int load_reg;
16719 
16720 		insn = insns[adj_idx];
16721 		load_reg = insn_def_regno(&insn);
16722 		if (!aux[adj_idx].zext_dst) {
16723 			u8 code, class;
16724 			u32 imm_rnd;
16725 
16726 			if (!rnd_hi32)
16727 				continue;
16728 
16729 			code = insn.code;
16730 			class = BPF_CLASS(code);
16731 			if (load_reg == -1)
16732 				continue;
16733 
16734 			/* NOTE: arg "reg" (the fourth one) is only used for
16735 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
16736 			 *       here.
16737 			 */
16738 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
16739 				if (class == BPF_LD &&
16740 				    BPF_MODE(code) == BPF_IMM)
16741 					i++;
16742 				continue;
16743 			}
16744 
16745 			/* ctx load could be transformed into wider load. */
16746 			if (class == BPF_LDX &&
16747 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
16748 				continue;
16749 
16750 			imm_rnd = get_random_u32();
16751 			rnd_hi32_patch[0] = insn;
16752 			rnd_hi32_patch[1].imm = imm_rnd;
16753 			rnd_hi32_patch[3].dst_reg = load_reg;
16754 			patch = rnd_hi32_patch;
16755 			patch_len = 4;
16756 			goto apply_patch_buffer;
16757 		}
16758 
16759 		/* Add in an zero-extend instruction if a) the JIT has requested
16760 		 * it or b) it's a CMPXCHG.
16761 		 *
16762 		 * The latter is because: BPF_CMPXCHG always loads a value into
16763 		 * R0, therefore always zero-extends. However some archs'
16764 		 * equivalent instruction only does this load when the
16765 		 * comparison is successful. This detail of CMPXCHG is
16766 		 * orthogonal to the general zero-extension behaviour of the
16767 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
16768 		 */
16769 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
16770 			continue;
16771 
16772 		/* Zero-extension is done by the caller. */
16773 		if (bpf_pseudo_kfunc_call(&insn))
16774 			continue;
16775 
16776 		if (WARN_ON(load_reg == -1)) {
16777 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
16778 			return -EFAULT;
16779 		}
16780 
16781 		zext_patch[0] = insn;
16782 		zext_patch[1].dst_reg = load_reg;
16783 		zext_patch[1].src_reg = load_reg;
16784 		patch = zext_patch;
16785 		patch_len = 2;
16786 apply_patch_buffer:
16787 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
16788 		if (!new_prog)
16789 			return -ENOMEM;
16790 		env->prog = new_prog;
16791 		insns = new_prog->insnsi;
16792 		aux = env->insn_aux_data;
16793 		delta += patch_len - 1;
16794 	}
16795 
16796 	return 0;
16797 }
16798 
16799 /* convert load instructions that access fields of a context type into a
16800  * sequence of instructions that access fields of the underlying structure:
16801  *     struct __sk_buff    -> struct sk_buff
16802  *     struct bpf_sock_ops -> struct sock
16803  */
16804 static int convert_ctx_accesses(struct bpf_verifier_env *env)
16805 {
16806 	const struct bpf_verifier_ops *ops = env->ops;
16807 	int i, cnt, size, ctx_field_size, delta = 0;
16808 	const int insn_cnt = env->prog->len;
16809 	struct bpf_insn insn_buf[16], *insn;
16810 	u32 target_size, size_default, off;
16811 	struct bpf_prog *new_prog;
16812 	enum bpf_access_type type;
16813 	bool is_narrower_load;
16814 
16815 	if (ops->gen_prologue || env->seen_direct_write) {
16816 		if (!ops->gen_prologue) {
16817 			verbose(env, "bpf verifier is misconfigured\n");
16818 			return -EINVAL;
16819 		}
16820 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
16821 					env->prog);
16822 		if (cnt >= ARRAY_SIZE(insn_buf)) {
16823 			verbose(env, "bpf verifier is misconfigured\n");
16824 			return -EINVAL;
16825 		} else if (cnt) {
16826 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
16827 			if (!new_prog)
16828 				return -ENOMEM;
16829 
16830 			env->prog = new_prog;
16831 			delta += cnt - 1;
16832 		}
16833 	}
16834 
16835 	if (bpf_prog_is_offloaded(env->prog->aux))
16836 		return 0;
16837 
16838 	insn = env->prog->insnsi + delta;
16839 
16840 	for (i = 0; i < insn_cnt; i++, insn++) {
16841 		bpf_convert_ctx_access_t convert_ctx_access;
16842 
16843 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
16844 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
16845 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
16846 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
16847 			type = BPF_READ;
16848 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
16849 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
16850 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
16851 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
16852 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
16853 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
16854 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
16855 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
16856 			type = BPF_WRITE;
16857 		} else {
16858 			continue;
16859 		}
16860 
16861 		if (type == BPF_WRITE &&
16862 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
16863 			struct bpf_insn patch[] = {
16864 				*insn,
16865 				BPF_ST_NOSPEC(),
16866 			};
16867 
16868 			cnt = ARRAY_SIZE(patch);
16869 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
16870 			if (!new_prog)
16871 				return -ENOMEM;
16872 
16873 			delta    += cnt - 1;
16874 			env->prog = new_prog;
16875 			insn      = new_prog->insnsi + i + delta;
16876 			continue;
16877 		}
16878 
16879 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
16880 		case PTR_TO_CTX:
16881 			if (!ops->convert_ctx_access)
16882 				continue;
16883 			convert_ctx_access = ops->convert_ctx_access;
16884 			break;
16885 		case PTR_TO_SOCKET:
16886 		case PTR_TO_SOCK_COMMON:
16887 			convert_ctx_access = bpf_sock_convert_ctx_access;
16888 			break;
16889 		case PTR_TO_TCP_SOCK:
16890 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
16891 			break;
16892 		case PTR_TO_XDP_SOCK:
16893 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
16894 			break;
16895 		case PTR_TO_BTF_ID:
16896 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
16897 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
16898 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
16899 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
16900 		 * any faults for loads into such types. BPF_WRITE is disallowed
16901 		 * for this case.
16902 		 */
16903 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
16904 			if (type == BPF_READ) {
16905 				insn->code = BPF_LDX | BPF_PROBE_MEM |
16906 					BPF_SIZE((insn)->code);
16907 				env->prog->aux->num_exentries++;
16908 			}
16909 			continue;
16910 		default:
16911 			continue;
16912 		}
16913 
16914 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
16915 		size = BPF_LDST_BYTES(insn);
16916 
16917 		/* If the read access is a narrower load of the field,
16918 		 * convert to a 4/8-byte load, to minimum program type specific
16919 		 * convert_ctx_access changes. If conversion is successful,
16920 		 * we will apply proper mask to the result.
16921 		 */
16922 		is_narrower_load = size < ctx_field_size;
16923 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
16924 		off = insn->off;
16925 		if (is_narrower_load) {
16926 			u8 size_code;
16927 
16928 			if (type == BPF_WRITE) {
16929 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
16930 				return -EINVAL;
16931 			}
16932 
16933 			size_code = BPF_H;
16934 			if (ctx_field_size == 4)
16935 				size_code = BPF_W;
16936 			else if (ctx_field_size == 8)
16937 				size_code = BPF_DW;
16938 
16939 			insn->off = off & ~(size_default - 1);
16940 			insn->code = BPF_LDX | BPF_MEM | size_code;
16941 		}
16942 
16943 		target_size = 0;
16944 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
16945 					 &target_size);
16946 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
16947 		    (ctx_field_size && !target_size)) {
16948 			verbose(env, "bpf verifier is misconfigured\n");
16949 			return -EINVAL;
16950 		}
16951 
16952 		if (is_narrower_load && size < target_size) {
16953 			u8 shift = bpf_ctx_narrow_access_offset(
16954 				off, size, size_default) * 8;
16955 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
16956 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
16957 				return -EINVAL;
16958 			}
16959 			if (ctx_field_size <= 4) {
16960 				if (shift)
16961 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
16962 									insn->dst_reg,
16963 									shift);
16964 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
16965 								(1 << size * 8) - 1);
16966 			} else {
16967 				if (shift)
16968 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
16969 									insn->dst_reg,
16970 									shift);
16971 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
16972 								(1ULL << size * 8) - 1);
16973 			}
16974 		}
16975 
16976 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16977 		if (!new_prog)
16978 			return -ENOMEM;
16979 
16980 		delta += cnt - 1;
16981 
16982 		/* keep walking new program and skip insns we just inserted */
16983 		env->prog = new_prog;
16984 		insn      = new_prog->insnsi + i + delta;
16985 	}
16986 
16987 	return 0;
16988 }
16989 
16990 static int jit_subprogs(struct bpf_verifier_env *env)
16991 {
16992 	struct bpf_prog *prog = env->prog, **func, *tmp;
16993 	int i, j, subprog_start, subprog_end = 0, len, subprog;
16994 	struct bpf_map *map_ptr;
16995 	struct bpf_insn *insn;
16996 	void *old_bpf_func;
16997 	int err, num_exentries;
16998 
16999 	if (env->subprog_cnt <= 1)
17000 		return 0;
17001 
17002 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17003 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17004 			continue;
17005 
17006 		/* Upon error here we cannot fall back to interpreter but
17007 		 * need a hard reject of the program. Thus -EFAULT is
17008 		 * propagated in any case.
17009 		 */
17010 		subprog = find_subprog(env, i + insn->imm + 1);
17011 		if (subprog < 0) {
17012 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17013 				  i + insn->imm + 1);
17014 			return -EFAULT;
17015 		}
17016 		/* temporarily remember subprog id inside insn instead of
17017 		 * aux_data, since next loop will split up all insns into funcs
17018 		 */
17019 		insn->off = subprog;
17020 		/* remember original imm in case JIT fails and fallback
17021 		 * to interpreter will be needed
17022 		 */
17023 		env->insn_aux_data[i].call_imm = insn->imm;
17024 		/* point imm to __bpf_call_base+1 from JITs point of view */
17025 		insn->imm = 1;
17026 		if (bpf_pseudo_func(insn))
17027 			/* jit (e.g. x86_64) may emit fewer instructions
17028 			 * if it learns a u32 imm is the same as a u64 imm.
17029 			 * Force a non zero here.
17030 			 */
17031 			insn[1].imm = 1;
17032 	}
17033 
17034 	err = bpf_prog_alloc_jited_linfo(prog);
17035 	if (err)
17036 		goto out_undo_insn;
17037 
17038 	err = -ENOMEM;
17039 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17040 	if (!func)
17041 		goto out_undo_insn;
17042 
17043 	for (i = 0; i < env->subprog_cnt; i++) {
17044 		subprog_start = subprog_end;
17045 		subprog_end = env->subprog_info[i + 1].start;
17046 
17047 		len = subprog_end - subprog_start;
17048 		/* bpf_prog_run() doesn't call subprogs directly,
17049 		 * hence main prog stats include the runtime of subprogs.
17050 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17051 		 * func[i]->stats will never be accessed and stays NULL
17052 		 */
17053 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17054 		if (!func[i])
17055 			goto out_free;
17056 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17057 		       len * sizeof(struct bpf_insn));
17058 		func[i]->type = prog->type;
17059 		func[i]->len = len;
17060 		if (bpf_prog_calc_tag(func[i]))
17061 			goto out_free;
17062 		func[i]->is_func = 1;
17063 		func[i]->aux->func_idx = i;
17064 		/* Below members will be freed only at prog->aux */
17065 		func[i]->aux->btf = prog->aux->btf;
17066 		func[i]->aux->func_info = prog->aux->func_info;
17067 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
17068 		func[i]->aux->poke_tab = prog->aux->poke_tab;
17069 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
17070 
17071 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
17072 			struct bpf_jit_poke_descriptor *poke;
17073 
17074 			poke = &prog->aux->poke_tab[j];
17075 			if (poke->insn_idx < subprog_end &&
17076 			    poke->insn_idx >= subprog_start)
17077 				poke->aux = func[i]->aux;
17078 		}
17079 
17080 		func[i]->aux->name[0] = 'F';
17081 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
17082 		func[i]->jit_requested = 1;
17083 		func[i]->blinding_requested = prog->blinding_requested;
17084 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
17085 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
17086 		func[i]->aux->linfo = prog->aux->linfo;
17087 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17088 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17089 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
17090 		num_exentries = 0;
17091 		insn = func[i]->insnsi;
17092 		for (j = 0; j < func[i]->len; j++, insn++) {
17093 			if (BPF_CLASS(insn->code) == BPF_LDX &&
17094 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
17095 				num_exentries++;
17096 		}
17097 		func[i]->aux->num_exentries = num_exentries;
17098 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
17099 		func[i] = bpf_int_jit_compile(func[i]);
17100 		if (!func[i]->jited) {
17101 			err = -ENOTSUPP;
17102 			goto out_free;
17103 		}
17104 		cond_resched();
17105 	}
17106 
17107 	/* at this point all bpf functions were successfully JITed
17108 	 * now populate all bpf_calls with correct addresses and
17109 	 * run last pass of JIT
17110 	 */
17111 	for (i = 0; i < env->subprog_cnt; i++) {
17112 		insn = func[i]->insnsi;
17113 		for (j = 0; j < func[i]->len; j++, insn++) {
17114 			if (bpf_pseudo_func(insn)) {
17115 				subprog = insn->off;
17116 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
17117 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
17118 				continue;
17119 			}
17120 			if (!bpf_pseudo_call(insn))
17121 				continue;
17122 			subprog = insn->off;
17123 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
17124 		}
17125 
17126 		/* we use the aux data to keep a list of the start addresses
17127 		 * of the JITed images for each function in the program
17128 		 *
17129 		 * for some architectures, such as powerpc64, the imm field
17130 		 * might not be large enough to hold the offset of the start
17131 		 * address of the callee's JITed image from __bpf_call_base
17132 		 *
17133 		 * in such cases, we can lookup the start address of a callee
17134 		 * by using its subprog id, available from the off field of
17135 		 * the call instruction, as an index for this list
17136 		 */
17137 		func[i]->aux->func = func;
17138 		func[i]->aux->func_cnt = env->subprog_cnt;
17139 	}
17140 	for (i = 0; i < env->subprog_cnt; i++) {
17141 		old_bpf_func = func[i]->bpf_func;
17142 		tmp = bpf_int_jit_compile(func[i]);
17143 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
17144 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
17145 			err = -ENOTSUPP;
17146 			goto out_free;
17147 		}
17148 		cond_resched();
17149 	}
17150 
17151 	/* finally lock prog and jit images for all functions and
17152 	 * populate kallsysm
17153 	 */
17154 	for (i = 0; i < env->subprog_cnt; i++) {
17155 		bpf_prog_lock_ro(func[i]);
17156 		bpf_prog_kallsyms_add(func[i]);
17157 	}
17158 
17159 	/* Last step: make now unused interpreter insns from main
17160 	 * prog consistent for later dump requests, so they can
17161 	 * later look the same as if they were interpreted only.
17162 	 */
17163 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17164 		if (bpf_pseudo_func(insn)) {
17165 			insn[0].imm = env->insn_aux_data[i].call_imm;
17166 			insn[1].imm = insn->off;
17167 			insn->off = 0;
17168 			continue;
17169 		}
17170 		if (!bpf_pseudo_call(insn))
17171 			continue;
17172 		insn->off = env->insn_aux_data[i].call_imm;
17173 		subprog = find_subprog(env, i + insn->off + 1);
17174 		insn->imm = subprog;
17175 	}
17176 
17177 	prog->jited = 1;
17178 	prog->bpf_func = func[0]->bpf_func;
17179 	prog->jited_len = func[0]->jited_len;
17180 	prog->aux->func = func;
17181 	prog->aux->func_cnt = env->subprog_cnt;
17182 	bpf_prog_jit_attempt_done(prog);
17183 	return 0;
17184 out_free:
17185 	/* We failed JIT'ing, so at this point we need to unregister poke
17186 	 * descriptors from subprogs, so that kernel is not attempting to
17187 	 * patch it anymore as we're freeing the subprog JIT memory.
17188 	 */
17189 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
17190 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
17191 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
17192 	}
17193 	/* At this point we're guaranteed that poke descriptors are not
17194 	 * live anymore. We can just unlink its descriptor table as it's
17195 	 * released with the main prog.
17196 	 */
17197 	for (i = 0; i < env->subprog_cnt; i++) {
17198 		if (!func[i])
17199 			continue;
17200 		func[i]->aux->poke_tab = NULL;
17201 		bpf_jit_free(func[i]);
17202 	}
17203 	kfree(func);
17204 out_undo_insn:
17205 	/* cleanup main prog to be interpreted */
17206 	prog->jit_requested = 0;
17207 	prog->blinding_requested = 0;
17208 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17209 		if (!bpf_pseudo_call(insn))
17210 			continue;
17211 		insn->off = 0;
17212 		insn->imm = env->insn_aux_data[i].call_imm;
17213 	}
17214 	bpf_prog_jit_attempt_done(prog);
17215 	return err;
17216 }
17217 
17218 static int fixup_call_args(struct bpf_verifier_env *env)
17219 {
17220 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17221 	struct bpf_prog *prog = env->prog;
17222 	struct bpf_insn *insn = prog->insnsi;
17223 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
17224 	int i, depth;
17225 #endif
17226 	int err = 0;
17227 
17228 	if (env->prog->jit_requested &&
17229 	    !bpf_prog_is_offloaded(env->prog->aux)) {
17230 		err = jit_subprogs(env);
17231 		if (err == 0)
17232 			return 0;
17233 		if (err == -EFAULT)
17234 			return err;
17235 	}
17236 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17237 	if (has_kfunc_call) {
17238 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
17239 		return -EINVAL;
17240 	}
17241 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
17242 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
17243 		 * have to be rejected, since interpreter doesn't support them yet.
17244 		 */
17245 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
17246 		return -EINVAL;
17247 	}
17248 	for (i = 0; i < prog->len; i++, insn++) {
17249 		if (bpf_pseudo_func(insn)) {
17250 			/* When JIT fails the progs with callback calls
17251 			 * have to be rejected, since interpreter doesn't support them yet.
17252 			 */
17253 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
17254 			return -EINVAL;
17255 		}
17256 
17257 		if (!bpf_pseudo_call(insn))
17258 			continue;
17259 		depth = get_callee_stack_depth(env, insn, i);
17260 		if (depth < 0)
17261 			return depth;
17262 		bpf_patch_call_args(insn, depth);
17263 	}
17264 	err = 0;
17265 #endif
17266 	return err;
17267 }
17268 
17269 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
17270 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
17271 {
17272 	const struct bpf_kfunc_desc *desc;
17273 	void *xdp_kfunc;
17274 
17275 	if (!insn->imm) {
17276 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
17277 		return -EINVAL;
17278 	}
17279 
17280 	*cnt = 0;
17281 
17282 	if (bpf_dev_bound_kfunc_id(insn->imm)) {
17283 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm);
17284 		if (xdp_kfunc) {
17285 			insn->imm = BPF_CALL_IMM(xdp_kfunc);
17286 			return 0;
17287 		}
17288 
17289 		/* fallback to default kfunc when not supported by netdev */
17290 	}
17291 
17292 	/* insn->imm has the btf func_id. Replace it with
17293 	 * an address (relative to __bpf_call_base).
17294 	 */
17295 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
17296 	if (!desc) {
17297 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
17298 			insn->imm);
17299 		return -EFAULT;
17300 	}
17301 
17302 	insn->imm = desc->imm;
17303 	if (insn->off)
17304 		return 0;
17305 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
17306 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17307 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17308 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
17309 
17310 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
17311 		insn_buf[1] = addr[0];
17312 		insn_buf[2] = addr[1];
17313 		insn_buf[3] = *insn;
17314 		*cnt = 4;
17315 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
17316 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17317 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17318 
17319 		insn_buf[0] = addr[0];
17320 		insn_buf[1] = addr[1];
17321 		insn_buf[2] = *insn;
17322 		*cnt = 3;
17323 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
17324 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
17325 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
17326 		*cnt = 1;
17327 	} else if (desc->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
17328 		bool seen_direct_write = env->seen_direct_write;
17329 		bool is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
17330 
17331 		if (is_rdonly)
17332 			insn->imm = BPF_CALL_IMM(bpf_dynptr_from_skb_rdonly);
17333 
17334 		/* restore env->seen_direct_write to its original value, since
17335 		 * may_access_direct_pkt_data mutates it
17336 		 */
17337 		env->seen_direct_write = seen_direct_write;
17338 	}
17339 	return 0;
17340 }
17341 
17342 /* Do various post-verification rewrites in a single program pass.
17343  * These rewrites simplify JIT and interpreter implementations.
17344  */
17345 static int do_misc_fixups(struct bpf_verifier_env *env)
17346 {
17347 	struct bpf_prog *prog = env->prog;
17348 	enum bpf_attach_type eatype = prog->expected_attach_type;
17349 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17350 	struct bpf_insn *insn = prog->insnsi;
17351 	const struct bpf_func_proto *fn;
17352 	const int insn_cnt = prog->len;
17353 	const struct bpf_map_ops *ops;
17354 	struct bpf_insn_aux_data *aux;
17355 	struct bpf_insn insn_buf[16];
17356 	struct bpf_prog *new_prog;
17357 	struct bpf_map *map_ptr;
17358 	int i, ret, cnt, delta = 0;
17359 
17360 	for (i = 0; i < insn_cnt; i++, insn++) {
17361 		/* Make divide-by-zero exceptions impossible. */
17362 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
17363 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
17364 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
17365 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
17366 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
17367 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
17368 			struct bpf_insn *patchlet;
17369 			struct bpf_insn chk_and_div[] = {
17370 				/* [R,W]x div 0 -> 0 */
17371 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17372 					     BPF_JNE | BPF_K, insn->src_reg,
17373 					     0, 2, 0),
17374 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
17375 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17376 				*insn,
17377 			};
17378 			struct bpf_insn chk_and_mod[] = {
17379 				/* [R,W]x mod 0 -> [R,W]x */
17380 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17381 					     BPF_JEQ | BPF_K, insn->src_reg,
17382 					     0, 1 + (is64 ? 0 : 1), 0),
17383 				*insn,
17384 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17385 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
17386 			};
17387 
17388 			patchlet = isdiv ? chk_and_div : chk_and_mod;
17389 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
17390 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
17391 
17392 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
17393 			if (!new_prog)
17394 				return -ENOMEM;
17395 
17396 			delta    += cnt - 1;
17397 			env->prog = prog = new_prog;
17398 			insn      = new_prog->insnsi + i + delta;
17399 			continue;
17400 		}
17401 
17402 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
17403 		if (BPF_CLASS(insn->code) == BPF_LD &&
17404 		    (BPF_MODE(insn->code) == BPF_ABS ||
17405 		     BPF_MODE(insn->code) == BPF_IND)) {
17406 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
17407 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17408 				verbose(env, "bpf verifier is misconfigured\n");
17409 				return -EINVAL;
17410 			}
17411 
17412 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17413 			if (!new_prog)
17414 				return -ENOMEM;
17415 
17416 			delta    += cnt - 1;
17417 			env->prog = prog = new_prog;
17418 			insn      = new_prog->insnsi + i + delta;
17419 			continue;
17420 		}
17421 
17422 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
17423 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
17424 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
17425 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
17426 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
17427 			struct bpf_insn *patch = &insn_buf[0];
17428 			bool issrc, isneg, isimm;
17429 			u32 off_reg;
17430 
17431 			aux = &env->insn_aux_data[i + delta];
17432 			if (!aux->alu_state ||
17433 			    aux->alu_state == BPF_ALU_NON_POINTER)
17434 				continue;
17435 
17436 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
17437 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
17438 				BPF_ALU_SANITIZE_SRC;
17439 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
17440 
17441 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
17442 			if (isimm) {
17443 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17444 			} else {
17445 				if (isneg)
17446 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17447 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17448 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
17449 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
17450 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
17451 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
17452 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
17453 			}
17454 			if (!issrc)
17455 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
17456 			insn->src_reg = BPF_REG_AX;
17457 			if (isneg)
17458 				insn->code = insn->code == code_add ?
17459 					     code_sub : code_add;
17460 			*patch++ = *insn;
17461 			if (issrc && isneg && !isimm)
17462 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17463 			cnt = patch - insn_buf;
17464 
17465 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17466 			if (!new_prog)
17467 				return -ENOMEM;
17468 
17469 			delta    += cnt - 1;
17470 			env->prog = prog = new_prog;
17471 			insn      = new_prog->insnsi + i + delta;
17472 			continue;
17473 		}
17474 
17475 		if (insn->code != (BPF_JMP | BPF_CALL))
17476 			continue;
17477 		if (insn->src_reg == BPF_PSEUDO_CALL)
17478 			continue;
17479 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17480 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
17481 			if (ret)
17482 				return ret;
17483 			if (cnt == 0)
17484 				continue;
17485 
17486 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17487 			if (!new_prog)
17488 				return -ENOMEM;
17489 
17490 			delta	 += cnt - 1;
17491 			env->prog = prog = new_prog;
17492 			insn	  = new_prog->insnsi + i + delta;
17493 			continue;
17494 		}
17495 
17496 		if (insn->imm == BPF_FUNC_get_route_realm)
17497 			prog->dst_needed = 1;
17498 		if (insn->imm == BPF_FUNC_get_prandom_u32)
17499 			bpf_user_rnd_init_once();
17500 		if (insn->imm == BPF_FUNC_override_return)
17501 			prog->kprobe_override = 1;
17502 		if (insn->imm == BPF_FUNC_tail_call) {
17503 			/* If we tail call into other programs, we
17504 			 * cannot make any assumptions since they can
17505 			 * be replaced dynamically during runtime in
17506 			 * the program array.
17507 			 */
17508 			prog->cb_access = 1;
17509 			if (!allow_tail_call_in_subprogs(env))
17510 				prog->aux->stack_depth = MAX_BPF_STACK;
17511 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
17512 
17513 			/* mark bpf_tail_call as different opcode to avoid
17514 			 * conditional branch in the interpreter for every normal
17515 			 * call and to prevent accidental JITing by JIT compiler
17516 			 * that doesn't support bpf_tail_call yet
17517 			 */
17518 			insn->imm = 0;
17519 			insn->code = BPF_JMP | BPF_TAIL_CALL;
17520 
17521 			aux = &env->insn_aux_data[i + delta];
17522 			if (env->bpf_capable && !prog->blinding_requested &&
17523 			    prog->jit_requested &&
17524 			    !bpf_map_key_poisoned(aux) &&
17525 			    !bpf_map_ptr_poisoned(aux) &&
17526 			    !bpf_map_ptr_unpriv(aux)) {
17527 				struct bpf_jit_poke_descriptor desc = {
17528 					.reason = BPF_POKE_REASON_TAIL_CALL,
17529 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
17530 					.tail_call.key = bpf_map_key_immediate(aux),
17531 					.insn_idx = i + delta,
17532 				};
17533 
17534 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
17535 				if (ret < 0) {
17536 					verbose(env, "adding tail call poke descriptor failed\n");
17537 					return ret;
17538 				}
17539 
17540 				insn->imm = ret + 1;
17541 				continue;
17542 			}
17543 
17544 			if (!bpf_map_ptr_unpriv(aux))
17545 				continue;
17546 
17547 			/* instead of changing every JIT dealing with tail_call
17548 			 * emit two extra insns:
17549 			 * if (index >= max_entries) goto out;
17550 			 * index &= array->index_mask;
17551 			 * to avoid out-of-bounds cpu speculation
17552 			 */
17553 			if (bpf_map_ptr_poisoned(aux)) {
17554 				verbose(env, "tail_call abusing map_ptr\n");
17555 				return -EINVAL;
17556 			}
17557 
17558 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
17559 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
17560 						  map_ptr->max_entries, 2);
17561 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
17562 						    container_of(map_ptr,
17563 								 struct bpf_array,
17564 								 map)->index_mask);
17565 			insn_buf[2] = *insn;
17566 			cnt = 3;
17567 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17568 			if (!new_prog)
17569 				return -ENOMEM;
17570 
17571 			delta    += cnt - 1;
17572 			env->prog = prog = new_prog;
17573 			insn      = new_prog->insnsi + i + delta;
17574 			continue;
17575 		}
17576 
17577 		if (insn->imm == BPF_FUNC_timer_set_callback) {
17578 			/* The verifier will process callback_fn as many times as necessary
17579 			 * with different maps and the register states prepared by
17580 			 * set_timer_callback_state will be accurate.
17581 			 *
17582 			 * The following use case is valid:
17583 			 *   map1 is shared by prog1, prog2, prog3.
17584 			 *   prog1 calls bpf_timer_init for some map1 elements
17585 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
17586 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
17587 			 *   prog3 calls bpf_timer_start for some map1 elements.
17588 			 *     Those that were not both bpf_timer_init-ed and
17589 			 *     bpf_timer_set_callback-ed will return -EINVAL.
17590 			 */
17591 			struct bpf_insn ld_addrs[2] = {
17592 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
17593 			};
17594 
17595 			insn_buf[0] = ld_addrs[0];
17596 			insn_buf[1] = ld_addrs[1];
17597 			insn_buf[2] = *insn;
17598 			cnt = 3;
17599 
17600 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17601 			if (!new_prog)
17602 				return -ENOMEM;
17603 
17604 			delta    += cnt - 1;
17605 			env->prog = prog = new_prog;
17606 			insn      = new_prog->insnsi + i + delta;
17607 			goto patch_call_imm;
17608 		}
17609 
17610 		if (is_storage_get_function(insn->imm)) {
17611 			if (!env->prog->aux->sleepable ||
17612 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
17613 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
17614 			else
17615 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
17616 			insn_buf[1] = *insn;
17617 			cnt = 2;
17618 
17619 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17620 			if (!new_prog)
17621 				return -ENOMEM;
17622 
17623 			delta += cnt - 1;
17624 			env->prog = prog = new_prog;
17625 			insn = new_prog->insnsi + i + delta;
17626 			goto patch_call_imm;
17627 		}
17628 
17629 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
17630 		 * and other inlining handlers are currently limited to 64 bit
17631 		 * only.
17632 		 */
17633 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
17634 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
17635 		     insn->imm == BPF_FUNC_map_update_elem ||
17636 		     insn->imm == BPF_FUNC_map_delete_elem ||
17637 		     insn->imm == BPF_FUNC_map_push_elem   ||
17638 		     insn->imm == BPF_FUNC_map_pop_elem    ||
17639 		     insn->imm == BPF_FUNC_map_peek_elem   ||
17640 		     insn->imm == BPF_FUNC_redirect_map    ||
17641 		     insn->imm == BPF_FUNC_for_each_map_elem ||
17642 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
17643 			aux = &env->insn_aux_data[i + delta];
17644 			if (bpf_map_ptr_poisoned(aux))
17645 				goto patch_call_imm;
17646 
17647 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
17648 			ops = map_ptr->ops;
17649 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
17650 			    ops->map_gen_lookup) {
17651 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
17652 				if (cnt == -EOPNOTSUPP)
17653 					goto patch_map_ops_generic;
17654 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17655 					verbose(env, "bpf verifier is misconfigured\n");
17656 					return -EINVAL;
17657 				}
17658 
17659 				new_prog = bpf_patch_insn_data(env, i + delta,
17660 							       insn_buf, cnt);
17661 				if (!new_prog)
17662 					return -ENOMEM;
17663 
17664 				delta    += cnt - 1;
17665 				env->prog = prog = new_prog;
17666 				insn      = new_prog->insnsi + i + delta;
17667 				continue;
17668 			}
17669 
17670 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
17671 				     (void *(*)(struct bpf_map *map, void *key))NULL));
17672 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
17673 				     (int (*)(struct bpf_map *map, void *key))NULL));
17674 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
17675 				     (int (*)(struct bpf_map *map, void *key, void *value,
17676 					      u64 flags))NULL));
17677 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
17678 				     (int (*)(struct bpf_map *map, void *value,
17679 					      u64 flags))NULL));
17680 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
17681 				     (int (*)(struct bpf_map *map, void *value))NULL));
17682 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
17683 				     (int (*)(struct bpf_map *map, void *value))NULL));
17684 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
17685 				     (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
17686 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
17687 				     (int (*)(struct bpf_map *map,
17688 					      bpf_callback_t callback_fn,
17689 					      void *callback_ctx,
17690 					      u64 flags))NULL));
17691 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
17692 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
17693 
17694 patch_map_ops_generic:
17695 			switch (insn->imm) {
17696 			case BPF_FUNC_map_lookup_elem:
17697 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
17698 				continue;
17699 			case BPF_FUNC_map_update_elem:
17700 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
17701 				continue;
17702 			case BPF_FUNC_map_delete_elem:
17703 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
17704 				continue;
17705 			case BPF_FUNC_map_push_elem:
17706 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
17707 				continue;
17708 			case BPF_FUNC_map_pop_elem:
17709 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
17710 				continue;
17711 			case BPF_FUNC_map_peek_elem:
17712 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
17713 				continue;
17714 			case BPF_FUNC_redirect_map:
17715 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
17716 				continue;
17717 			case BPF_FUNC_for_each_map_elem:
17718 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
17719 				continue;
17720 			case BPF_FUNC_map_lookup_percpu_elem:
17721 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
17722 				continue;
17723 			}
17724 
17725 			goto patch_call_imm;
17726 		}
17727 
17728 		/* Implement bpf_jiffies64 inline. */
17729 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
17730 		    insn->imm == BPF_FUNC_jiffies64) {
17731 			struct bpf_insn ld_jiffies_addr[2] = {
17732 				BPF_LD_IMM64(BPF_REG_0,
17733 					     (unsigned long)&jiffies),
17734 			};
17735 
17736 			insn_buf[0] = ld_jiffies_addr[0];
17737 			insn_buf[1] = ld_jiffies_addr[1];
17738 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
17739 						  BPF_REG_0, 0);
17740 			cnt = 3;
17741 
17742 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
17743 						       cnt);
17744 			if (!new_prog)
17745 				return -ENOMEM;
17746 
17747 			delta    += cnt - 1;
17748 			env->prog = prog = new_prog;
17749 			insn      = new_prog->insnsi + i + delta;
17750 			continue;
17751 		}
17752 
17753 		/* Implement bpf_get_func_arg inline. */
17754 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17755 		    insn->imm == BPF_FUNC_get_func_arg) {
17756 			/* Load nr_args from ctx - 8 */
17757 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17758 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
17759 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
17760 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
17761 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
17762 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17763 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
17764 			insn_buf[7] = BPF_JMP_A(1);
17765 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
17766 			cnt = 9;
17767 
17768 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17769 			if (!new_prog)
17770 				return -ENOMEM;
17771 
17772 			delta    += cnt - 1;
17773 			env->prog = prog = new_prog;
17774 			insn      = new_prog->insnsi + i + delta;
17775 			continue;
17776 		}
17777 
17778 		/* Implement bpf_get_func_ret inline. */
17779 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17780 		    insn->imm == BPF_FUNC_get_func_ret) {
17781 			if (eatype == BPF_TRACE_FEXIT ||
17782 			    eatype == BPF_MODIFY_RETURN) {
17783 				/* Load nr_args from ctx - 8 */
17784 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17785 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
17786 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
17787 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17788 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
17789 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
17790 				cnt = 6;
17791 			} else {
17792 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
17793 				cnt = 1;
17794 			}
17795 
17796 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17797 			if (!new_prog)
17798 				return -ENOMEM;
17799 
17800 			delta    += cnt - 1;
17801 			env->prog = prog = new_prog;
17802 			insn      = new_prog->insnsi + i + delta;
17803 			continue;
17804 		}
17805 
17806 		/* Implement get_func_arg_cnt inline. */
17807 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17808 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
17809 			/* Load nr_args from ctx - 8 */
17810 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17811 
17812 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17813 			if (!new_prog)
17814 				return -ENOMEM;
17815 
17816 			env->prog = prog = new_prog;
17817 			insn      = new_prog->insnsi + i + delta;
17818 			continue;
17819 		}
17820 
17821 		/* Implement bpf_get_func_ip inline. */
17822 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17823 		    insn->imm == BPF_FUNC_get_func_ip) {
17824 			/* Load IP address from ctx - 16 */
17825 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
17826 
17827 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17828 			if (!new_prog)
17829 				return -ENOMEM;
17830 
17831 			env->prog = prog = new_prog;
17832 			insn      = new_prog->insnsi + i + delta;
17833 			continue;
17834 		}
17835 
17836 patch_call_imm:
17837 		fn = env->ops->get_func_proto(insn->imm, env->prog);
17838 		/* all functions that have prototype and verifier allowed
17839 		 * programs to call them, must be real in-kernel functions
17840 		 */
17841 		if (!fn->func) {
17842 			verbose(env,
17843 				"kernel subsystem misconfigured func %s#%d\n",
17844 				func_id_name(insn->imm), insn->imm);
17845 			return -EFAULT;
17846 		}
17847 		insn->imm = fn->func - __bpf_call_base;
17848 	}
17849 
17850 	/* Since poke tab is now finalized, publish aux to tracker. */
17851 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
17852 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
17853 		if (!map_ptr->ops->map_poke_track ||
17854 		    !map_ptr->ops->map_poke_untrack ||
17855 		    !map_ptr->ops->map_poke_run) {
17856 			verbose(env, "bpf verifier is misconfigured\n");
17857 			return -EINVAL;
17858 		}
17859 
17860 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
17861 		if (ret < 0) {
17862 			verbose(env, "tracking tail call prog failed\n");
17863 			return ret;
17864 		}
17865 	}
17866 
17867 	sort_kfunc_descs_by_imm(env->prog);
17868 
17869 	return 0;
17870 }
17871 
17872 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
17873 					int position,
17874 					s32 stack_base,
17875 					u32 callback_subprogno,
17876 					u32 *cnt)
17877 {
17878 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
17879 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
17880 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
17881 	int reg_loop_max = BPF_REG_6;
17882 	int reg_loop_cnt = BPF_REG_7;
17883 	int reg_loop_ctx = BPF_REG_8;
17884 
17885 	struct bpf_prog *new_prog;
17886 	u32 callback_start;
17887 	u32 call_insn_offset;
17888 	s32 callback_offset;
17889 
17890 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
17891 	 * be careful to modify this code in sync.
17892 	 */
17893 	struct bpf_insn insn_buf[] = {
17894 		/* Return error and jump to the end of the patch if
17895 		 * expected number of iterations is too big.
17896 		 */
17897 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
17898 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
17899 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
17900 		/* spill R6, R7, R8 to use these as loop vars */
17901 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
17902 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
17903 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
17904 		/* initialize loop vars */
17905 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
17906 		BPF_MOV32_IMM(reg_loop_cnt, 0),
17907 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
17908 		/* loop header,
17909 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
17910 		 */
17911 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
17912 		/* callback call,
17913 		 * correct callback offset would be set after patching
17914 		 */
17915 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
17916 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
17917 		BPF_CALL_REL(0),
17918 		/* increment loop counter */
17919 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
17920 		/* jump to loop header if callback returned 0 */
17921 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
17922 		/* return value of bpf_loop,
17923 		 * set R0 to the number of iterations
17924 		 */
17925 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
17926 		/* restore original values of R6, R7, R8 */
17927 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
17928 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
17929 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
17930 	};
17931 
17932 	*cnt = ARRAY_SIZE(insn_buf);
17933 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
17934 	if (!new_prog)
17935 		return new_prog;
17936 
17937 	/* callback start is known only after patching */
17938 	callback_start = env->subprog_info[callback_subprogno].start;
17939 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
17940 	call_insn_offset = position + 12;
17941 	callback_offset = callback_start - call_insn_offset - 1;
17942 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
17943 
17944 	return new_prog;
17945 }
17946 
17947 static bool is_bpf_loop_call(struct bpf_insn *insn)
17948 {
17949 	return insn->code == (BPF_JMP | BPF_CALL) &&
17950 		insn->src_reg == 0 &&
17951 		insn->imm == BPF_FUNC_loop;
17952 }
17953 
17954 /* For all sub-programs in the program (including main) check
17955  * insn_aux_data to see if there are bpf_loop calls that require
17956  * inlining. If such calls are found the calls are replaced with a
17957  * sequence of instructions produced by `inline_bpf_loop` function and
17958  * subprog stack_depth is increased by the size of 3 registers.
17959  * This stack space is used to spill values of the R6, R7, R8.  These
17960  * registers are used to store the loop bound, counter and context
17961  * variables.
17962  */
17963 static int optimize_bpf_loop(struct bpf_verifier_env *env)
17964 {
17965 	struct bpf_subprog_info *subprogs = env->subprog_info;
17966 	int i, cur_subprog = 0, cnt, delta = 0;
17967 	struct bpf_insn *insn = env->prog->insnsi;
17968 	int insn_cnt = env->prog->len;
17969 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
17970 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
17971 	u16 stack_depth_extra = 0;
17972 
17973 	for (i = 0; i < insn_cnt; i++, insn++) {
17974 		struct bpf_loop_inline_state *inline_state =
17975 			&env->insn_aux_data[i + delta].loop_inline_state;
17976 
17977 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
17978 			struct bpf_prog *new_prog;
17979 
17980 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
17981 			new_prog = inline_bpf_loop(env,
17982 						   i + delta,
17983 						   -(stack_depth + stack_depth_extra),
17984 						   inline_state->callback_subprogno,
17985 						   &cnt);
17986 			if (!new_prog)
17987 				return -ENOMEM;
17988 
17989 			delta     += cnt - 1;
17990 			env->prog  = new_prog;
17991 			insn       = new_prog->insnsi + i + delta;
17992 		}
17993 
17994 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
17995 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
17996 			cur_subprog++;
17997 			stack_depth = subprogs[cur_subprog].stack_depth;
17998 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
17999 			stack_depth_extra = 0;
18000 		}
18001 	}
18002 
18003 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18004 
18005 	return 0;
18006 }
18007 
18008 static void free_states(struct bpf_verifier_env *env)
18009 {
18010 	struct bpf_verifier_state_list *sl, *sln;
18011 	int i;
18012 
18013 	sl = env->free_list;
18014 	while (sl) {
18015 		sln = sl->next;
18016 		free_verifier_state(&sl->state, false);
18017 		kfree(sl);
18018 		sl = sln;
18019 	}
18020 	env->free_list = NULL;
18021 
18022 	if (!env->explored_states)
18023 		return;
18024 
18025 	for (i = 0; i < state_htab_size(env); i++) {
18026 		sl = env->explored_states[i];
18027 
18028 		while (sl) {
18029 			sln = sl->next;
18030 			free_verifier_state(&sl->state, false);
18031 			kfree(sl);
18032 			sl = sln;
18033 		}
18034 		env->explored_states[i] = NULL;
18035 	}
18036 }
18037 
18038 static int do_check_common(struct bpf_verifier_env *env, int subprog)
18039 {
18040 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18041 	struct bpf_verifier_state *state;
18042 	struct bpf_reg_state *regs;
18043 	int ret, i;
18044 
18045 	env->prev_linfo = NULL;
18046 	env->pass_cnt++;
18047 
18048 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
18049 	if (!state)
18050 		return -ENOMEM;
18051 	state->curframe = 0;
18052 	state->speculative = false;
18053 	state->branches = 1;
18054 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
18055 	if (!state->frame[0]) {
18056 		kfree(state);
18057 		return -ENOMEM;
18058 	}
18059 	env->cur_state = state;
18060 	init_func_state(env, state->frame[0],
18061 			BPF_MAIN_FUNC /* callsite */,
18062 			0 /* frameno */,
18063 			subprog);
18064 	state->first_insn_idx = env->subprog_info[subprog].start;
18065 	state->last_insn_idx = -1;
18066 
18067 	regs = state->frame[state->curframe]->regs;
18068 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
18069 		ret = btf_prepare_func_args(env, subprog, regs);
18070 		if (ret)
18071 			goto out;
18072 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
18073 			if (regs[i].type == PTR_TO_CTX)
18074 				mark_reg_known_zero(env, regs, i);
18075 			else if (regs[i].type == SCALAR_VALUE)
18076 				mark_reg_unknown(env, regs, i);
18077 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
18078 				const u32 mem_size = regs[i].mem_size;
18079 
18080 				mark_reg_known_zero(env, regs, i);
18081 				regs[i].mem_size = mem_size;
18082 				regs[i].id = ++env->id_gen;
18083 			}
18084 		}
18085 	} else {
18086 		/* 1st arg to a function */
18087 		regs[BPF_REG_1].type = PTR_TO_CTX;
18088 		mark_reg_known_zero(env, regs, BPF_REG_1);
18089 		ret = btf_check_subprog_arg_match(env, subprog, regs);
18090 		if (ret == -EFAULT)
18091 			/* unlikely verifier bug. abort.
18092 			 * ret == 0 and ret < 0 are sadly acceptable for
18093 			 * main() function due to backward compatibility.
18094 			 * Like socket filter program may be written as:
18095 			 * int bpf_prog(struct pt_regs *ctx)
18096 			 * and never dereference that ctx in the program.
18097 			 * 'struct pt_regs' is a type mismatch for socket
18098 			 * filter that should be using 'struct __sk_buff'.
18099 			 */
18100 			goto out;
18101 	}
18102 
18103 	ret = do_check(env);
18104 out:
18105 	/* check for NULL is necessary, since cur_state can be freed inside
18106 	 * do_check() under memory pressure.
18107 	 */
18108 	if (env->cur_state) {
18109 		free_verifier_state(env->cur_state, true);
18110 		env->cur_state = NULL;
18111 	}
18112 	while (!pop_stack(env, NULL, NULL, false));
18113 	if (!ret && pop_log)
18114 		bpf_vlog_reset(&env->log, 0);
18115 	free_states(env);
18116 	return ret;
18117 }
18118 
18119 /* Verify all global functions in a BPF program one by one based on their BTF.
18120  * All global functions must pass verification. Otherwise the whole program is rejected.
18121  * Consider:
18122  * int bar(int);
18123  * int foo(int f)
18124  * {
18125  *    return bar(f);
18126  * }
18127  * int bar(int b)
18128  * {
18129  *    ...
18130  * }
18131  * foo() will be verified first for R1=any_scalar_value. During verification it
18132  * will be assumed that bar() already verified successfully and call to bar()
18133  * from foo() will be checked for type match only. Later bar() will be verified
18134  * independently to check that it's safe for R1=any_scalar_value.
18135  */
18136 static int do_check_subprogs(struct bpf_verifier_env *env)
18137 {
18138 	struct bpf_prog_aux *aux = env->prog->aux;
18139 	int i, ret;
18140 
18141 	if (!aux->func_info)
18142 		return 0;
18143 
18144 	for (i = 1; i < env->subprog_cnt; i++) {
18145 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
18146 			continue;
18147 		env->insn_idx = env->subprog_info[i].start;
18148 		WARN_ON_ONCE(env->insn_idx == 0);
18149 		ret = do_check_common(env, i);
18150 		if (ret) {
18151 			return ret;
18152 		} else if (env->log.level & BPF_LOG_LEVEL) {
18153 			verbose(env,
18154 				"Func#%d is safe for any args that match its prototype\n",
18155 				i);
18156 		}
18157 	}
18158 	return 0;
18159 }
18160 
18161 static int do_check_main(struct bpf_verifier_env *env)
18162 {
18163 	int ret;
18164 
18165 	env->insn_idx = 0;
18166 	ret = do_check_common(env, 0);
18167 	if (!ret)
18168 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18169 	return ret;
18170 }
18171 
18172 
18173 static void print_verification_stats(struct bpf_verifier_env *env)
18174 {
18175 	int i;
18176 
18177 	if (env->log.level & BPF_LOG_STATS) {
18178 		verbose(env, "verification time %lld usec\n",
18179 			div_u64(env->verification_time, 1000));
18180 		verbose(env, "stack depth ");
18181 		for (i = 0; i < env->subprog_cnt; i++) {
18182 			u32 depth = env->subprog_info[i].stack_depth;
18183 
18184 			verbose(env, "%d", depth);
18185 			if (i + 1 < env->subprog_cnt)
18186 				verbose(env, "+");
18187 		}
18188 		verbose(env, "\n");
18189 	}
18190 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
18191 		"total_states %d peak_states %d mark_read %d\n",
18192 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
18193 		env->max_states_per_insn, env->total_states,
18194 		env->peak_states, env->longest_mark_read_walk);
18195 }
18196 
18197 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
18198 {
18199 	const struct btf_type *t, *func_proto;
18200 	const struct bpf_struct_ops *st_ops;
18201 	const struct btf_member *member;
18202 	struct bpf_prog *prog = env->prog;
18203 	u32 btf_id, member_idx;
18204 	const char *mname;
18205 
18206 	if (!prog->gpl_compatible) {
18207 		verbose(env, "struct ops programs must have a GPL compatible license\n");
18208 		return -EINVAL;
18209 	}
18210 
18211 	btf_id = prog->aux->attach_btf_id;
18212 	st_ops = bpf_struct_ops_find(btf_id);
18213 	if (!st_ops) {
18214 		verbose(env, "attach_btf_id %u is not a supported struct\n",
18215 			btf_id);
18216 		return -ENOTSUPP;
18217 	}
18218 
18219 	t = st_ops->type;
18220 	member_idx = prog->expected_attach_type;
18221 	if (member_idx >= btf_type_vlen(t)) {
18222 		verbose(env, "attach to invalid member idx %u of struct %s\n",
18223 			member_idx, st_ops->name);
18224 		return -EINVAL;
18225 	}
18226 
18227 	member = &btf_type_member(t)[member_idx];
18228 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
18229 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
18230 					       NULL);
18231 	if (!func_proto) {
18232 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
18233 			mname, member_idx, st_ops->name);
18234 		return -EINVAL;
18235 	}
18236 
18237 	if (st_ops->check_member) {
18238 		int err = st_ops->check_member(t, member, prog);
18239 
18240 		if (err) {
18241 			verbose(env, "attach to unsupported member %s of struct %s\n",
18242 				mname, st_ops->name);
18243 			return err;
18244 		}
18245 	}
18246 
18247 	prog->aux->attach_func_proto = func_proto;
18248 	prog->aux->attach_func_name = mname;
18249 	env->ops = st_ops->verifier_ops;
18250 
18251 	return 0;
18252 }
18253 #define SECURITY_PREFIX "security_"
18254 
18255 static int check_attach_modify_return(unsigned long addr, const char *func_name)
18256 {
18257 	if (within_error_injection_list(addr) ||
18258 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
18259 		return 0;
18260 
18261 	return -EINVAL;
18262 }
18263 
18264 /* list of non-sleepable functions that are otherwise on
18265  * ALLOW_ERROR_INJECTION list
18266  */
18267 BTF_SET_START(btf_non_sleepable_error_inject)
18268 /* Three functions below can be called from sleepable and non-sleepable context.
18269  * Assume non-sleepable from bpf safety point of view.
18270  */
18271 BTF_ID(func, __filemap_add_folio)
18272 BTF_ID(func, should_fail_alloc_page)
18273 BTF_ID(func, should_failslab)
18274 BTF_SET_END(btf_non_sleepable_error_inject)
18275 
18276 static int check_non_sleepable_error_inject(u32 btf_id)
18277 {
18278 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
18279 }
18280 
18281 int bpf_check_attach_target(struct bpf_verifier_log *log,
18282 			    const struct bpf_prog *prog,
18283 			    const struct bpf_prog *tgt_prog,
18284 			    u32 btf_id,
18285 			    struct bpf_attach_target_info *tgt_info)
18286 {
18287 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
18288 	const char prefix[] = "btf_trace_";
18289 	int ret = 0, subprog = -1, i;
18290 	const struct btf_type *t;
18291 	bool conservative = true;
18292 	const char *tname;
18293 	struct btf *btf;
18294 	long addr = 0;
18295 
18296 	if (!btf_id) {
18297 		bpf_log(log, "Tracing programs must provide btf_id\n");
18298 		return -EINVAL;
18299 	}
18300 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
18301 	if (!btf) {
18302 		bpf_log(log,
18303 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
18304 		return -EINVAL;
18305 	}
18306 	t = btf_type_by_id(btf, btf_id);
18307 	if (!t) {
18308 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
18309 		return -EINVAL;
18310 	}
18311 	tname = btf_name_by_offset(btf, t->name_off);
18312 	if (!tname) {
18313 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
18314 		return -EINVAL;
18315 	}
18316 	if (tgt_prog) {
18317 		struct bpf_prog_aux *aux = tgt_prog->aux;
18318 
18319 		if (bpf_prog_is_dev_bound(prog->aux) &&
18320 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
18321 			bpf_log(log, "Target program bound device mismatch");
18322 			return -EINVAL;
18323 		}
18324 
18325 		for (i = 0; i < aux->func_info_cnt; i++)
18326 			if (aux->func_info[i].type_id == btf_id) {
18327 				subprog = i;
18328 				break;
18329 			}
18330 		if (subprog == -1) {
18331 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
18332 			return -EINVAL;
18333 		}
18334 		conservative = aux->func_info_aux[subprog].unreliable;
18335 		if (prog_extension) {
18336 			if (conservative) {
18337 				bpf_log(log,
18338 					"Cannot replace static functions\n");
18339 				return -EINVAL;
18340 			}
18341 			if (!prog->jit_requested) {
18342 				bpf_log(log,
18343 					"Extension programs should be JITed\n");
18344 				return -EINVAL;
18345 			}
18346 		}
18347 		if (!tgt_prog->jited) {
18348 			bpf_log(log, "Can attach to only JITed progs\n");
18349 			return -EINVAL;
18350 		}
18351 		if (tgt_prog->type == prog->type) {
18352 			/* Cannot fentry/fexit another fentry/fexit program.
18353 			 * Cannot attach program extension to another extension.
18354 			 * It's ok to attach fentry/fexit to extension program.
18355 			 */
18356 			bpf_log(log, "Cannot recursively attach\n");
18357 			return -EINVAL;
18358 		}
18359 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
18360 		    prog_extension &&
18361 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
18362 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
18363 			/* Program extensions can extend all program types
18364 			 * except fentry/fexit. The reason is the following.
18365 			 * The fentry/fexit programs are used for performance
18366 			 * analysis, stats and can be attached to any program
18367 			 * type except themselves. When extension program is
18368 			 * replacing XDP function it is necessary to allow
18369 			 * performance analysis of all functions. Both original
18370 			 * XDP program and its program extension. Hence
18371 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
18372 			 * allowed. If extending of fentry/fexit was allowed it
18373 			 * would be possible to create long call chain
18374 			 * fentry->extension->fentry->extension beyond
18375 			 * reasonable stack size. Hence extending fentry is not
18376 			 * allowed.
18377 			 */
18378 			bpf_log(log, "Cannot extend fentry/fexit\n");
18379 			return -EINVAL;
18380 		}
18381 	} else {
18382 		if (prog_extension) {
18383 			bpf_log(log, "Cannot replace kernel functions\n");
18384 			return -EINVAL;
18385 		}
18386 	}
18387 
18388 	switch (prog->expected_attach_type) {
18389 	case BPF_TRACE_RAW_TP:
18390 		if (tgt_prog) {
18391 			bpf_log(log,
18392 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
18393 			return -EINVAL;
18394 		}
18395 		if (!btf_type_is_typedef(t)) {
18396 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
18397 				btf_id);
18398 			return -EINVAL;
18399 		}
18400 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
18401 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
18402 				btf_id, tname);
18403 			return -EINVAL;
18404 		}
18405 		tname += sizeof(prefix) - 1;
18406 		t = btf_type_by_id(btf, t->type);
18407 		if (!btf_type_is_ptr(t))
18408 			/* should never happen in valid vmlinux build */
18409 			return -EINVAL;
18410 		t = btf_type_by_id(btf, t->type);
18411 		if (!btf_type_is_func_proto(t))
18412 			/* should never happen in valid vmlinux build */
18413 			return -EINVAL;
18414 
18415 		break;
18416 	case BPF_TRACE_ITER:
18417 		if (!btf_type_is_func(t)) {
18418 			bpf_log(log, "attach_btf_id %u is not a function\n",
18419 				btf_id);
18420 			return -EINVAL;
18421 		}
18422 		t = btf_type_by_id(btf, t->type);
18423 		if (!btf_type_is_func_proto(t))
18424 			return -EINVAL;
18425 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18426 		if (ret)
18427 			return ret;
18428 		break;
18429 	default:
18430 		if (!prog_extension)
18431 			return -EINVAL;
18432 		fallthrough;
18433 	case BPF_MODIFY_RETURN:
18434 	case BPF_LSM_MAC:
18435 	case BPF_LSM_CGROUP:
18436 	case BPF_TRACE_FENTRY:
18437 	case BPF_TRACE_FEXIT:
18438 		if (!btf_type_is_func(t)) {
18439 			bpf_log(log, "attach_btf_id %u is not a function\n",
18440 				btf_id);
18441 			return -EINVAL;
18442 		}
18443 		if (prog_extension &&
18444 		    btf_check_type_match(log, prog, btf, t))
18445 			return -EINVAL;
18446 		t = btf_type_by_id(btf, t->type);
18447 		if (!btf_type_is_func_proto(t))
18448 			return -EINVAL;
18449 
18450 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
18451 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
18452 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
18453 			return -EINVAL;
18454 
18455 		if (tgt_prog && conservative)
18456 			t = NULL;
18457 
18458 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18459 		if (ret < 0)
18460 			return ret;
18461 
18462 		if (tgt_prog) {
18463 			if (subprog == 0)
18464 				addr = (long) tgt_prog->bpf_func;
18465 			else
18466 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
18467 		} else {
18468 			addr = kallsyms_lookup_name(tname);
18469 			if (!addr) {
18470 				bpf_log(log,
18471 					"The address of function %s cannot be found\n",
18472 					tname);
18473 				return -ENOENT;
18474 			}
18475 		}
18476 
18477 		if (prog->aux->sleepable) {
18478 			ret = -EINVAL;
18479 			switch (prog->type) {
18480 			case BPF_PROG_TYPE_TRACING:
18481 
18482 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
18483 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
18484 				 */
18485 				if (!check_non_sleepable_error_inject(btf_id) &&
18486 				    within_error_injection_list(addr))
18487 					ret = 0;
18488 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
18489 				 * in the fmodret id set with the KF_SLEEPABLE flag.
18490 				 */
18491 				else {
18492 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
18493 
18494 					if (flags && (*flags & KF_SLEEPABLE))
18495 						ret = 0;
18496 				}
18497 				break;
18498 			case BPF_PROG_TYPE_LSM:
18499 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
18500 				 * Only some of them are sleepable.
18501 				 */
18502 				if (bpf_lsm_is_sleepable_hook(btf_id))
18503 					ret = 0;
18504 				break;
18505 			default:
18506 				break;
18507 			}
18508 			if (ret) {
18509 				bpf_log(log, "%s is not sleepable\n", tname);
18510 				return ret;
18511 			}
18512 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
18513 			if (tgt_prog) {
18514 				bpf_log(log, "can't modify return codes of BPF programs\n");
18515 				return -EINVAL;
18516 			}
18517 			ret = -EINVAL;
18518 			if (btf_kfunc_is_modify_return(btf, btf_id) ||
18519 			    !check_attach_modify_return(addr, tname))
18520 				ret = 0;
18521 			if (ret) {
18522 				bpf_log(log, "%s() is not modifiable\n", tname);
18523 				return ret;
18524 			}
18525 		}
18526 
18527 		break;
18528 	}
18529 	tgt_info->tgt_addr = addr;
18530 	tgt_info->tgt_name = tname;
18531 	tgt_info->tgt_type = t;
18532 	return 0;
18533 }
18534 
18535 BTF_SET_START(btf_id_deny)
18536 BTF_ID_UNUSED
18537 #ifdef CONFIG_SMP
18538 BTF_ID(func, migrate_disable)
18539 BTF_ID(func, migrate_enable)
18540 #endif
18541 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
18542 BTF_ID(func, rcu_read_unlock_strict)
18543 #endif
18544 BTF_SET_END(btf_id_deny)
18545 
18546 static bool can_be_sleepable(struct bpf_prog *prog)
18547 {
18548 	if (prog->type == BPF_PROG_TYPE_TRACING) {
18549 		switch (prog->expected_attach_type) {
18550 		case BPF_TRACE_FENTRY:
18551 		case BPF_TRACE_FEXIT:
18552 		case BPF_MODIFY_RETURN:
18553 		case BPF_TRACE_ITER:
18554 			return true;
18555 		default:
18556 			return false;
18557 		}
18558 	}
18559 	return prog->type == BPF_PROG_TYPE_LSM ||
18560 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
18561 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
18562 }
18563 
18564 static int check_attach_btf_id(struct bpf_verifier_env *env)
18565 {
18566 	struct bpf_prog *prog = env->prog;
18567 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
18568 	struct bpf_attach_target_info tgt_info = {};
18569 	u32 btf_id = prog->aux->attach_btf_id;
18570 	struct bpf_trampoline *tr;
18571 	int ret;
18572 	u64 key;
18573 
18574 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
18575 		if (prog->aux->sleepable)
18576 			/* attach_btf_id checked to be zero already */
18577 			return 0;
18578 		verbose(env, "Syscall programs can only be sleepable\n");
18579 		return -EINVAL;
18580 	}
18581 
18582 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
18583 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
18584 		return -EINVAL;
18585 	}
18586 
18587 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
18588 		return check_struct_ops_btf_id(env);
18589 
18590 	if (prog->type != BPF_PROG_TYPE_TRACING &&
18591 	    prog->type != BPF_PROG_TYPE_LSM &&
18592 	    prog->type != BPF_PROG_TYPE_EXT)
18593 		return 0;
18594 
18595 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
18596 	if (ret)
18597 		return ret;
18598 
18599 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
18600 		/* to make freplace equivalent to their targets, they need to
18601 		 * inherit env->ops and expected_attach_type for the rest of the
18602 		 * verification
18603 		 */
18604 		env->ops = bpf_verifier_ops[tgt_prog->type];
18605 		prog->expected_attach_type = tgt_prog->expected_attach_type;
18606 	}
18607 
18608 	/* store info about the attachment target that will be used later */
18609 	prog->aux->attach_func_proto = tgt_info.tgt_type;
18610 	prog->aux->attach_func_name = tgt_info.tgt_name;
18611 
18612 	if (tgt_prog) {
18613 		prog->aux->saved_dst_prog_type = tgt_prog->type;
18614 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
18615 	}
18616 
18617 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
18618 		prog->aux->attach_btf_trace = true;
18619 		return 0;
18620 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
18621 		if (!bpf_iter_prog_supported(prog))
18622 			return -EINVAL;
18623 		return 0;
18624 	}
18625 
18626 	if (prog->type == BPF_PROG_TYPE_LSM) {
18627 		ret = bpf_lsm_verify_prog(&env->log, prog);
18628 		if (ret < 0)
18629 			return ret;
18630 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
18631 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
18632 		return -EINVAL;
18633 	}
18634 
18635 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
18636 	tr = bpf_trampoline_get(key, &tgt_info);
18637 	if (!tr)
18638 		return -ENOMEM;
18639 
18640 	prog->aux->dst_trampoline = tr;
18641 	return 0;
18642 }
18643 
18644 struct btf *bpf_get_btf_vmlinux(void)
18645 {
18646 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
18647 		mutex_lock(&bpf_verifier_lock);
18648 		if (!btf_vmlinux)
18649 			btf_vmlinux = btf_parse_vmlinux();
18650 		mutex_unlock(&bpf_verifier_lock);
18651 	}
18652 	return btf_vmlinux;
18653 }
18654 
18655 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
18656 {
18657 	u64 start_time = ktime_get_ns();
18658 	struct bpf_verifier_env *env;
18659 	struct bpf_verifier_log *log;
18660 	int i, len, ret = -EINVAL;
18661 	bool is_priv;
18662 
18663 	/* no program is valid */
18664 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
18665 		return -EINVAL;
18666 
18667 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
18668 	 * allocate/free it every time bpf_check() is called
18669 	 */
18670 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
18671 	if (!env)
18672 		return -ENOMEM;
18673 	log = &env->log;
18674 
18675 	len = (*prog)->len;
18676 	env->insn_aux_data =
18677 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
18678 	ret = -ENOMEM;
18679 	if (!env->insn_aux_data)
18680 		goto err_free_env;
18681 	for (i = 0; i < len; i++)
18682 		env->insn_aux_data[i].orig_idx = i;
18683 	env->prog = *prog;
18684 	env->ops = bpf_verifier_ops[env->prog->type];
18685 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
18686 	is_priv = bpf_capable();
18687 
18688 	bpf_get_btf_vmlinux();
18689 
18690 	/* grab the mutex to protect few globals used by verifier */
18691 	if (!is_priv)
18692 		mutex_lock(&bpf_verifier_lock);
18693 
18694 	if (attr->log_level || attr->log_buf || attr->log_size) {
18695 		/* user requested verbose verifier output
18696 		 * and supplied buffer to store the verification trace
18697 		 */
18698 		log->level = attr->log_level;
18699 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
18700 		log->len_total = attr->log_size;
18701 
18702 		/* log attributes have to be sane */
18703 		if (!bpf_verifier_log_attr_valid(log)) {
18704 			ret = -EINVAL;
18705 			goto err_unlock;
18706 		}
18707 	}
18708 
18709 	mark_verifier_state_clean(env);
18710 
18711 	if (IS_ERR(btf_vmlinux)) {
18712 		/* Either gcc or pahole or kernel are broken. */
18713 		verbose(env, "in-kernel BTF is malformed\n");
18714 		ret = PTR_ERR(btf_vmlinux);
18715 		goto skip_full_check;
18716 	}
18717 
18718 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
18719 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
18720 		env->strict_alignment = true;
18721 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
18722 		env->strict_alignment = false;
18723 
18724 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
18725 	env->allow_uninit_stack = bpf_allow_uninit_stack();
18726 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
18727 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
18728 	env->bpf_capable = bpf_capable();
18729 
18730 	if (is_priv)
18731 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
18732 
18733 	env->explored_states = kvcalloc(state_htab_size(env),
18734 				       sizeof(struct bpf_verifier_state_list *),
18735 				       GFP_USER);
18736 	ret = -ENOMEM;
18737 	if (!env->explored_states)
18738 		goto skip_full_check;
18739 
18740 	ret = add_subprog_and_kfunc(env);
18741 	if (ret < 0)
18742 		goto skip_full_check;
18743 
18744 	ret = check_subprogs(env);
18745 	if (ret < 0)
18746 		goto skip_full_check;
18747 
18748 	ret = check_btf_info(env, attr, uattr);
18749 	if (ret < 0)
18750 		goto skip_full_check;
18751 
18752 	ret = check_attach_btf_id(env);
18753 	if (ret)
18754 		goto skip_full_check;
18755 
18756 	ret = resolve_pseudo_ldimm64(env);
18757 	if (ret < 0)
18758 		goto skip_full_check;
18759 
18760 	if (bpf_prog_is_offloaded(env->prog->aux)) {
18761 		ret = bpf_prog_offload_verifier_prep(env->prog);
18762 		if (ret)
18763 			goto skip_full_check;
18764 	}
18765 
18766 	ret = check_cfg(env);
18767 	if (ret < 0)
18768 		goto skip_full_check;
18769 
18770 	ret = do_check_subprogs(env);
18771 	ret = ret ?: do_check_main(env);
18772 
18773 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
18774 		ret = bpf_prog_offload_finalize(env);
18775 
18776 skip_full_check:
18777 	kvfree(env->explored_states);
18778 
18779 	if (ret == 0)
18780 		ret = check_max_stack_depth(env);
18781 
18782 	/* instruction rewrites happen after this point */
18783 	if (ret == 0)
18784 		ret = optimize_bpf_loop(env);
18785 
18786 	if (is_priv) {
18787 		if (ret == 0)
18788 			opt_hard_wire_dead_code_branches(env);
18789 		if (ret == 0)
18790 			ret = opt_remove_dead_code(env);
18791 		if (ret == 0)
18792 			ret = opt_remove_nops(env);
18793 	} else {
18794 		if (ret == 0)
18795 			sanitize_dead_code(env);
18796 	}
18797 
18798 	if (ret == 0)
18799 		/* program is valid, convert *(u32*)(ctx + off) accesses */
18800 		ret = convert_ctx_accesses(env);
18801 
18802 	if (ret == 0)
18803 		ret = do_misc_fixups(env);
18804 
18805 	/* do 32-bit optimization after insn patching has done so those patched
18806 	 * insns could be handled correctly.
18807 	 */
18808 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
18809 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
18810 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
18811 								     : false;
18812 	}
18813 
18814 	if (ret == 0)
18815 		ret = fixup_call_args(env);
18816 
18817 	env->verification_time = ktime_get_ns() - start_time;
18818 	print_verification_stats(env);
18819 	env->prog->aux->verified_insns = env->insn_processed;
18820 
18821 	if (log->level && bpf_verifier_log_full(log))
18822 		ret = -ENOSPC;
18823 	if (log->level && !log->ubuf) {
18824 		ret = -EFAULT;
18825 		goto err_release_maps;
18826 	}
18827 
18828 	if (ret)
18829 		goto err_release_maps;
18830 
18831 	if (env->used_map_cnt) {
18832 		/* if program passed verifier, update used_maps in bpf_prog_info */
18833 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
18834 							  sizeof(env->used_maps[0]),
18835 							  GFP_KERNEL);
18836 
18837 		if (!env->prog->aux->used_maps) {
18838 			ret = -ENOMEM;
18839 			goto err_release_maps;
18840 		}
18841 
18842 		memcpy(env->prog->aux->used_maps, env->used_maps,
18843 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
18844 		env->prog->aux->used_map_cnt = env->used_map_cnt;
18845 	}
18846 	if (env->used_btf_cnt) {
18847 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
18848 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
18849 							  sizeof(env->used_btfs[0]),
18850 							  GFP_KERNEL);
18851 		if (!env->prog->aux->used_btfs) {
18852 			ret = -ENOMEM;
18853 			goto err_release_maps;
18854 		}
18855 
18856 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
18857 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
18858 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
18859 	}
18860 	if (env->used_map_cnt || env->used_btf_cnt) {
18861 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
18862 		 * bpf_ld_imm64 instructions
18863 		 */
18864 		convert_pseudo_ld_imm64(env);
18865 	}
18866 
18867 	adjust_btf_func(env);
18868 
18869 err_release_maps:
18870 	if (!env->prog->aux->used_maps)
18871 		/* if we didn't copy map pointers into bpf_prog_info, release
18872 		 * them now. Otherwise free_used_maps() will release them.
18873 		 */
18874 		release_maps(env);
18875 	if (!env->prog->aux->used_btfs)
18876 		release_btfs(env);
18877 
18878 	/* extension progs temporarily inherit the attach_type of their targets
18879 	   for verification purposes, so set it back to zero before returning
18880 	 */
18881 	if (env->prog->type == BPF_PROG_TYPE_EXT)
18882 		env->prog->expected_attach_type = 0;
18883 
18884 	*prog = env->prog;
18885 err_unlock:
18886 	if (!is_priv)
18887 		mutex_unlock(&bpf_verifier_lock);
18888 	vfree(env->insn_aux_data);
18889 err_free_env:
18890 	kfree(env);
18891 	return ret;
18892 }
18893