xref: /openbmc/linux/kernel/bpf/verifier.c (revision 2ff40400)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/bpf.h>
16 #include <linux/filter.h>
17 #include <net/netlink.h>
18 #include <linux/file.h>
19 #include <linux/vmalloc.h>
20 
21 /* bpf_check() is a static code analyzer that walks eBPF program
22  * instruction by instruction and updates register/stack state.
23  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
24  *
25  * The first pass is depth-first-search to check that the program is a DAG.
26  * It rejects the following programs:
27  * - larger than BPF_MAXINSNS insns
28  * - if loop is present (detected via back-edge)
29  * - unreachable insns exist (shouldn't be a forest. program = one function)
30  * - out of bounds or malformed jumps
31  * The second pass is all possible path descent from the 1st insn.
32  * Since it's analyzing all pathes through the program, the length of the
33  * analysis is limited to 32k insn, which may be hit even if total number of
34  * insn is less then 4K, but there are too many branches that change stack/regs.
35  * Number of 'branches to be analyzed' is limited to 1k
36  *
37  * On entry to each instruction, each register has a type, and the instruction
38  * changes the types of the registers depending on instruction semantics.
39  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
40  * copied to R1.
41  *
42  * All registers are 64-bit.
43  * R0 - return register
44  * R1-R5 argument passing registers
45  * R6-R9 callee saved registers
46  * R10 - frame pointer read-only
47  *
48  * At the start of BPF program the register R1 contains a pointer to bpf_context
49  * and has type PTR_TO_CTX.
50  *
51  * Verifier tracks arithmetic operations on pointers in case:
52  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
53  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
54  * 1st insn copies R10 (which has FRAME_PTR) type into R1
55  * and 2nd arithmetic instruction is pattern matched to recognize
56  * that it wants to construct a pointer to some element within stack.
57  * So after 2nd insn, the register R1 has type PTR_TO_STACK
58  * (and -20 constant is saved for further stack bounds checking).
59  * Meaning that this reg is a pointer to stack plus known immediate constant.
60  *
61  * Most of the time the registers have UNKNOWN_VALUE type, which
62  * means the register has some value, but it's not a valid pointer.
63  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
64  *
65  * When verifier sees load or store instructions the type of base register
66  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
67  * types recognized by check_mem_access() function.
68  *
69  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
70  * and the range of [ptr, ptr + map's value_size) is accessible.
71  *
72  * registers used to pass values to function calls are checked against
73  * function argument constraints.
74  *
75  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
76  * It means that the register type passed to this function must be
77  * PTR_TO_STACK and it will be used inside the function as
78  * 'pointer to map element key'
79  *
80  * For example the argument constraints for bpf_map_lookup_elem():
81  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
82  *   .arg1_type = ARG_CONST_MAP_PTR,
83  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
84  *
85  * ret_type says that this function returns 'pointer to map elem value or null'
86  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
87  * 2nd argument should be a pointer to stack, which will be used inside
88  * the helper function as a pointer to map element key.
89  *
90  * On the kernel side the helper function looks like:
91  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
92  * {
93  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
94  *    void *key = (void *) (unsigned long) r2;
95  *    void *value;
96  *
97  *    here kernel can access 'key' and 'map' pointers safely, knowing that
98  *    [key, key + map->key_size) bytes are valid and were initialized on
99  *    the stack of eBPF program.
100  * }
101  *
102  * Corresponding eBPF program may look like:
103  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
104  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
105  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
106  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
107  * here verifier looks at prototype of map_lookup_elem() and sees:
108  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
109  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
110  *
111  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
112  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
113  * and were initialized prior to this call.
114  * If it's ok, then verifier allows this BPF_CALL insn and looks at
115  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
116  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
117  * returns ether pointer to map value or NULL.
118  *
119  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
120  * insn, the register holding that pointer in the true branch changes state to
121  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
122  * branch. See check_cond_jmp_op().
123  *
124  * After the call R0 is set to return type of the function and registers R1-R5
125  * are set to NOT_INIT to indicate that they are no longer readable.
126  */
127 
128 /* types of values stored in eBPF registers */
129 enum bpf_reg_type {
130 	NOT_INIT = 0,		 /* nothing was written into register */
131 	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */
132 	PTR_TO_CTX,		 /* reg points to bpf_context */
133 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
134 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
135 	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
136 	FRAME_PTR,		 /* reg == frame_pointer */
137 	PTR_TO_STACK,		 /* reg == frame_pointer + imm */
138 	CONST_IMM,		 /* constant integer value */
139 };
140 
141 struct reg_state {
142 	enum bpf_reg_type type;
143 	union {
144 		/* valid when type == CONST_IMM | PTR_TO_STACK */
145 		int imm;
146 
147 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
148 		 *   PTR_TO_MAP_VALUE_OR_NULL
149 		 */
150 		struct bpf_map *map_ptr;
151 	};
152 };
153 
154 enum bpf_stack_slot_type {
155 	STACK_INVALID,    /* nothing was stored in this stack slot */
156 	STACK_SPILL,      /* 1st byte of register spilled into stack */
157 	STACK_SPILL_PART, /* other 7 bytes of register spill */
158 	STACK_MISC	  /* BPF program wrote some data into this slot */
159 };
160 
161 struct bpf_stack_slot {
162 	enum bpf_stack_slot_type stype;
163 	struct reg_state reg_st;
164 };
165 
166 /* state of the program:
167  * type of all registers and stack info
168  */
169 struct verifier_state {
170 	struct reg_state regs[MAX_BPF_REG];
171 	struct bpf_stack_slot stack[MAX_BPF_STACK];
172 };
173 
174 /* linked list of verifier states used to prune search */
175 struct verifier_state_list {
176 	struct verifier_state state;
177 	struct verifier_state_list *next;
178 };
179 
180 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
181 struct verifier_stack_elem {
182 	/* verifer state is 'st'
183 	 * before processing instruction 'insn_idx'
184 	 * and after processing instruction 'prev_insn_idx'
185 	 */
186 	struct verifier_state st;
187 	int insn_idx;
188 	int prev_insn_idx;
189 	struct verifier_stack_elem *next;
190 };
191 
192 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
193 
194 /* single container for all structs
195  * one verifier_env per bpf_check() call
196  */
197 struct verifier_env {
198 	struct bpf_prog *prog;		/* eBPF program being verified */
199 	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
200 	int stack_size;			/* number of states to be processed */
201 	struct verifier_state cur_state; /* current verifier state */
202 	struct verifier_state_list **explored_states; /* search pruning optimization */
203 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
204 	u32 used_map_cnt;		/* number of used maps */
205 };
206 
207 /* verbose verifier prints what it's seeing
208  * bpf_check() is called under lock, so no race to access these global vars
209  */
210 static u32 log_level, log_size, log_len;
211 static char *log_buf;
212 
213 static DEFINE_MUTEX(bpf_verifier_lock);
214 
215 /* log_level controls verbosity level of eBPF verifier.
216  * verbose() is used to dump the verification trace to the log, so the user
217  * can figure out what's wrong with the program
218  */
219 static void verbose(const char *fmt, ...)
220 {
221 	va_list args;
222 
223 	if (log_level == 0 || log_len >= log_size - 1)
224 		return;
225 
226 	va_start(args, fmt);
227 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
228 	va_end(args);
229 }
230 
231 /* string representation of 'enum bpf_reg_type' */
232 static const char * const reg_type_str[] = {
233 	[NOT_INIT]		= "?",
234 	[UNKNOWN_VALUE]		= "inv",
235 	[PTR_TO_CTX]		= "ctx",
236 	[CONST_PTR_TO_MAP]	= "map_ptr",
237 	[PTR_TO_MAP_VALUE]	= "map_value",
238 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
239 	[FRAME_PTR]		= "fp",
240 	[PTR_TO_STACK]		= "fp",
241 	[CONST_IMM]		= "imm",
242 };
243 
244 static void print_verifier_state(struct verifier_env *env)
245 {
246 	enum bpf_reg_type t;
247 	int i;
248 
249 	for (i = 0; i < MAX_BPF_REG; i++) {
250 		t = env->cur_state.regs[i].type;
251 		if (t == NOT_INIT)
252 			continue;
253 		verbose(" R%d=%s", i, reg_type_str[t]);
254 		if (t == CONST_IMM || t == PTR_TO_STACK)
255 			verbose("%d", env->cur_state.regs[i].imm);
256 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
257 			 t == PTR_TO_MAP_VALUE_OR_NULL)
258 			verbose("(ks=%d,vs=%d)",
259 				env->cur_state.regs[i].map_ptr->key_size,
260 				env->cur_state.regs[i].map_ptr->value_size);
261 	}
262 	for (i = 0; i < MAX_BPF_STACK; i++) {
263 		if (env->cur_state.stack[i].stype == STACK_SPILL)
264 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
265 				reg_type_str[env->cur_state.stack[i].reg_st.type]);
266 	}
267 	verbose("\n");
268 }
269 
270 static const char *const bpf_class_string[] = {
271 	[BPF_LD]    = "ld",
272 	[BPF_LDX]   = "ldx",
273 	[BPF_ST]    = "st",
274 	[BPF_STX]   = "stx",
275 	[BPF_ALU]   = "alu",
276 	[BPF_JMP]   = "jmp",
277 	[BPF_RET]   = "BUG",
278 	[BPF_ALU64] = "alu64",
279 };
280 
281 static const char *const bpf_alu_string[] = {
282 	[BPF_ADD >> 4]  = "+=",
283 	[BPF_SUB >> 4]  = "-=",
284 	[BPF_MUL >> 4]  = "*=",
285 	[BPF_DIV >> 4]  = "/=",
286 	[BPF_OR  >> 4]  = "|=",
287 	[BPF_AND >> 4]  = "&=",
288 	[BPF_LSH >> 4]  = "<<=",
289 	[BPF_RSH >> 4]  = ">>=",
290 	[BPF_NEG >> 4]  = "neg",
291 	[BPF_MOD >> 4]  = "%=",
292 	[BPF_XOR >> 4]  = "^=",
293 	[BPF_MOV >> 4]  = "=",
294 	[BPF_ARSH >> 4] = "s>>=",
295 	[BPF_END >> 4]  = "endian",
296 };
297 
298 static const char *const bpf_ldst_string[] = {
299 	[BPF_W >> 3]  = "u32",
300 	[BPF_H >> 3]  = "u16",
301 	[BPF_B >> 3]  = "u8",
302 	[BPF_DW >> 3] = "u64",
303 };
304 
305 static const char *const bpf_jmp_string[] = {
306 	[BPF_JA >> 4]   = "jmp",
307 	[BPF_JEQ >> 4]  = "==",
308 	[BPF_JGT >> 4]  = ">",
309 	[BPF_JGE >> 4]  = ">=",
310 	[BPF_JSET >> 4] = "&",
311 	[BPF_JNE >> 4]  = "!=",
312 	[BPF_JSGT >> 4] = "s>",
313 	[BPF_JSGE >> 4] = "s>=",
314 	[BPF_CALL >> 4] = "call",
315 	[BPF_EXIT >> 4] = "exit",
316 };
317 
318 static void print_bpf_insn(struct bpf_insn *insn)
319 {
320 	u8 class = BPF_CLASS(insn->code);
321 
322 	if (class == BPF_ALU || class == BPF_ALU64) {
323 		if (BPF_SRC(insn->code) == BPF_X)
324 			verbose("(%02x) %sr%d %s %sr%d\n",
325 				insn->code, class == BPF_ALU ? "(u32) " : "",
326 				insn->dst_reg,
327 				bpf_alu_string[BPF_OP(insn->code) >> 4],
328 				class == BPF_ALU ? "(u32) " : "",
329 				insn->src_reg);
330 		else
331 			verbose("(%02x) %sr%d %s %s%d\n",
332 				insn->code, class == BPF_ALU ? "(u32) " : "",
333 				insn->dst_reg,
334 				bpf_alu_string[BPF_OP(insn->code) >> 4],
335 				class == BPF_ALU ? "(u32) " : "",
336 				insn->imm);
337 	} else if (class == BPF_STX) {
338 		if (BPF_MODE(insn->code) == BPF_MEM)
339 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
340 				insn->code,
341 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
342 				insn->dst_reg,
343 				insn->off, insn->src_reg);
344 		else if (BPF_MODE(insn->code) == BPF_XADD)
345 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
346 				insn->code,
347 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
348 				insn->dst_reg, insn->off,
349 				insn->src_reg);
350 		else
351 			verbose("BUG_%02x\n", insn->code);
352 	} else if (class == BPF_ST) {
353 		if (BPF_MODE(insn->code) != BPF_MEM) {
354 			verbose("BUG_st_%02x\n", insn->code);
355 			return;
356 		}
357 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
358 			insn->code,
359 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 			insn->dst_reg,
361 			insn->off, insn->imm);
362 	} else if (class == BPF_LDX) {
363 		if (BPF_MODE(insn->code) != BPF_MEM) {
364 			verbose("BUG_ldx_%02x\n", insn->code);
365 			return;
366 		}
367 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
368 			insn->code, insn->dst_reg,
369 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
370 			insn->src_reg, insn->off);
371 	} else if (class == BPF_LD) {
372 		if (BPF_MODE(insn->code) == BPF_ABS) {
373 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
374 				insn->code,
375 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
376 				insn->imm);
377 		} else if (BPF_MODE(insn->code) == BPF_IND) {
378 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
379 				insn->code,
380 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 				insn->src_reg, insn->imm);
382 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
383 			verbose("(%02x) r%d = 0x%x\n",
384 				insn->code, insn->dst_reg, insn->imm);
385 		} else {
386 			verbose("BUG_ld_%02x\n", insn->code);
387 			return;
388 		}
389 	} else if (class == BPF_JMP) {
390 		u8 opcode = BPF_OP(insn->code);
391 
392 		if (opcode == BPF_CALL) {
393 			verbose("(%02x) call %d\n", insn->code, insn->imm);
394 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
395 			verbose("(%02x) goto pc%+d\n",
396 				insn->code, insn->off);
397 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
398 			verbose("(%02x) exit\n", insn->code);
399 		} else if (BPF_SRC(insn->code) == BPF_X) {
400 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
401 				insn->code, insn->dst_reg,
402 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
403 				insn->src_reg, insn->off);
404 		} else {
405 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
406 				insn->code, insn->dst_reg,
407 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
408 				insn->imm, insn->off);
409 		}
410 	} else {
411 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
412 	}
413 }
414 
415 static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
416 {
417 	struct verifier_stack_elem *elem;
418 	int insn_idx;
419 
420 	if (env->head == NULL)
421 		return -1;
422 
423 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
424 	insn_idx = env->head->insn_idx;
425 	if (prev_insn_idx)
426 		*prev_insn_idx = env->head->prev_insn_idx;
427 	elem = env->head->next;
428 	kfree(env->head);
429 	env->head = elem;
430 	env->stack_size--;
431 	return insn_idx;
432 }
433 
434 static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
435 					 int prev_insn_idx)
436 {
437 	struct verifier_stack_elem *elem;
438 
439 	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
440 	if (!elem)
441 		goto err;
442 
443 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
444 	elem->insn_idx = insn_idx;
445 	elem->prev_insn_idx = prev_insn_idx;
446 	elem->next = env->head;
447 	env->head = elem;
448 	env->stack_size++;
449 	if (env->stack_size > 1024) {
450 		verbose("BPF program is too complex\n");
451 		goto err;
452 	}
453 	return &elem->st;
454 err:
455 	/* pop all elements and return */
456 	while (pop_stack(env, NULL) >= 0);
457 	return NULL;
458 }
459 
460 #define CALLER_SAVED_REGS 6
461 static const int caller_saved[CALLER_SAVED_REGS] = {
462 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
463 };
464 
465 static void init_reg_state(struct reg_state *regs)
466 {
467 	int i;
468 
469 	for (i = 0; i < MAX_BPF_REG; i++) {
470 		regs[i].type = NOT_INIT;
471 		regs[i].imm = 0;
472 		regs[i].map_ptr = NULL;
473 	}
474 
475 	/* frame pointer */
476 	regs[BPF_REG_FP].type = FRAME_PTR;
477 
478 	/* 1st arg to a function */
479 	regs[BPF_REG_1].type = PTR_TO_CTX;
480 }
481 
482 static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
483 {
484 	BUG_ON(regno >= MAX_BPF_REG);
485 	regs[regno].type = UNKNOWN_VALUE;
486 	regs[regno].imm = 0;
487 	regs[regno].map_ptr = NULL;
488 }
489 
490 enum reg_arg_type {
491 	SRC_OP,		/* register is used as source operand */
492 	DST_OP,		/* register is used as destination operand */
493 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
494 };
495 
496 static int check_reg_arg(struct reg_state *regs, u32 regno,
497 			 enum reg_arg_type t)
498 {
499 	if (regno >= MAX_BPF_REG) {
500 		verbose("R%d is invalid\n", regno);
501 		return -EINVAL;
502 	}
503 
504 	if (t == SRC_OP) {
505 		/* check whether register used as source operand can be read */
506 		if (regs[regno].type == NOT_INIT) {
507 			verbose("R%d !read_ok\n", regno);
508 			return -EACCES;
509 		}
510 	} else {
511 		/* check whether register used as dest operand can be written to */
512 		if (regno == BPF_REG_FP) {
513 			verbose("frame pointer is read only\n");
514 			return -EACCES;
515 		}
516 		if (t == DST_OP)
517 			mark_reg_unknown_value(regs, regno);
518 	}
519 	return 0;
520 }
521 
522 static int bpf_size_to_bytes(int bpf_size)
523 {
524 	if (bpf_size == BPF_W)
525 		return 4;
526 	else if (bpf_size == BPF_H)
527 		return 2;
528 	else if (bpf_size == BPF_B)
529 		return 1;
530 	else if (bpf_size == BPF_DW)
531 		return 8;
532 	else
533 		return -EINVAL;
534 }
535 
536 /* check_stack_read/write functions track spill/fill of registers,
537  * stack boundary and alignment are checked in check_mem_access()
538  */
539 static int check_stack_write(struct verifier_state *state, int off, int size,
540 			     int value_regno)
541 {
542 	struct bpf_stack_slot *slot;
543 	int i;
544 
545 	if (value_regno >= 0 &&
546 	    (state->regs[value_regno].type == PTR_TO_MAP_VALUE ||
547 	     state->regs[value_regno].type == PTR_TO_STACK ||
548 	     state->regs[value_regno].type == PTR_TO_CTX)) {
549 
550 		/* register containing pointer is being spilled into stack */
551 		if (size != 8) {
552 			verbose("invalid size of register spill\n");
553 			return -EACCES;
554 		}
555 
556 		slot = &state->stack[MAX_BPF_STACK + off];
557 		slot->stype = STACK_SPILL;
558 		/* save register state */
559 		slot->reg_st = state->regs[value_regno];
560 		for (i = 1; i < 8; i++) {
561 			slot = &state->stack[MAX_BPF_STACK + off + i];
562 			slot->stype = STACK_SPILL_PART;
563 			slot->reg_st.type = UNKNOWN_VALUE;
564 			slot->reg_st.map_ptr = NULL;
565 		}
566 	} else {
567 
568 		/* regular write of data into stack */
569 		for (i = 0; i < size; i++) {
570 			slot = &state->stack[MAX_BPF_STACK + off + i];
571 			slot->stype = STACK_MISC;
572 			slot->reg_st.type = UNKNOWN_VALUE;
573 			slot->reg_st.map_ptr = NULL;
574 		}
575 	}
576 	return 0;
577 }
578 
579 static int check_stack_read(struct verifier_state *state, int off, int size,
580 			    int value_regno)
581 {
582 	int i;
583 	struct bpf_stack_slot *slot;
584 
585 	slot = &state->stack[MAX_BPF_STACK + off];
586 
587 	if (slot->stype == STACK_SPILL) {
588 		if (size != 8) {
589 			verbose("invalid size of register spill\n");
590 			return -EACCES;
591 		}
592 		for (i = 1; i < 8; i++) {
593 			if (state->stack[MAX_BPF_STACK + off + i].stype !=
594 			    STACK_SPILL_PART) {
595 				verbose("corrupted spill memory\n");
596 				return -EACCES;
597 			}
598 		}
599 
600 		if (value_regno >= 0)
601 			/* restore register state from stack */
602 			state->regs[value_regno] = slot->reg_st;
603 		return 0;
604 	} else {
605 		for (i = 0; i < size; i++) {
606 			if (state->stack[MAX_BPF_STACK + off + i].stype !=
607 			    STACK_MISC) {
608 				verbose("invalid read from stack off %d+%d size %d\n",
609 					off, i, size);
610 				return -EACCES;
611 			}
612 		}
613 		if (value_regno >= 0)
614 			/* have read misc data from the stack */
615 			mark_reg_unknown_value(state->regs, value_regno);
616 		return 0;
617 	}
618 }
619 
620 /* check read/write into map element returned by bpf_map_lookup_elem() */
621 static int check_map_access(struct verifier_env *env, u32 regno, int off,
622 			    int size)
623 {
624 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
625 
626 	if (off < 0 || off + size > map->value_size) {
627 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
628 			map->value_size, off, size);
629 		return -EACCES;
630 	}
631 	return 0;
632 }
633 
634 /* check access to 'struct bpf_context' fields */
635 static int check_ctx_access(struct verifier_env *env, int off, int size,
636 			    enum bpf_access_type t)
637 {
638 	if (env->prog->aux->ops->is_valid_access &&
639 	    env->prog->aux->ops->is_valid_access(off, size, t))
640 		return 0;
641 
642 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
643 	return -EACCES;
644 }
645 
646 /* check whether memory at (regno + off) is accessible for t = (read | write)
647  * if t==write, value_regno is a register which value is stored into memory
648  * if t==read, value_regno is a register which will receive the value from memory
649  * if t==write && value_regno==-1, some unknown value is stored into memory
650  * if t==read && value_regno==-1, don't care what we read from memory
651  */
652 static int check_mem_access(struct verifier_env *env, u32 regno, int off,
653 			    int bpf_size, enum bpf_access_type t,
654 			    int value_regno)
655 {
656 	struct verifier_state *state = &env->cur_state;
657 	int size, err = 0;
658 
659 	size = bpf_size_to_bytes(bpf_size);
660 	if (size < 0)
661 		return size;
662 
663 	if (off % size != 0) {
664 		verbose("misaligned access off %d size %d\n", off, size);
665 		return -EACCES;
666 	}
667 
668 	if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
669 		err = check_map_access(env, regno, off, size);
670 		if (!err && t == BPF_READ && value_regno >= 0)
671 			mark_reg_unknown_value(state->regs, value_regno);
672 
673 	} else if (state->regs[regno].type == PTR_TO_CTX) {
674 		err = check_ctx_access(env, off, size, t);
675 		if (!err && t == BPF_READ && value_regno >= 0)
676 			mark_reg_unknown_value(state->regs, value_regno);
677 
678 	} else if (state->regs[regno].type == FRAME_PTR) {
679 		if (off >= 0 || off < -MAX_BPF_STACK) {
680 			verbose("invalid stack off=%d size=%d\n", off, size);
681 			return -EACCES;
682 		}
683 		if (t == BPF_WRITE)
684 			err = check_stack_write(state, off, size, value_regno);
685 		else
686 			err = check_stack_read(state, off, size, value_regno);
687 	} else {
688 		verbose("R%d invalid mem access '%s'\n",
689 			regno, reg_type_str[state->regs[regno].type]);
690 		return -EACCES;
691 	}
692 	return err;
693 }
694 
695 static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
696 {
697 	struct reg_state *regs = env->cur_state.regs;
698 	int err;
699 
700 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
701 	    insn->imm != 0) {
702 		verbose("BPF_XADD uses reserved fields\n");
703 		return -EINVAL;
704 	}
705 
706 	/* check src1 operand */
707 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
708 	if (err)
709 		return err;
710 
711 	/* check src2 operand */
712 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
713 	if (err)
714 		return err;
715 
716 	/* check whether atomic_add can read the memory */
717 	err = check_mem_access(env, insn->dst_reg, insn->off,
718 			       BPF_SIZE(insn->code), BPF_READ, -1);
719 	if (err)
720 		return err;
721 
722 	/* check whether atomic_add can write into the same memory */
723 	return check_mem_access(env, insn->dst_reg, insn->off,
724 				BPF_SIZE(insn->code), BPF_WRITE, -1);
725 }
726 
727 /* when register 'regno' is passed into function that will read 'access_size'
728  * bytes from that pointer, make sure that it's within stack boundary
729  * and all elements of stack are initialized
730  */
731 static int check_stack_boundary(struct verifier_env *env,
732 				int regno, int access_size)
733 {
734 	struct verifier_state *state = &env->cur_state;
735 	struct reg_state *regs = state->regs;
736 	int off, i;
737 
738 	if (regs[regno].type != PTR_TO_STACK)
739 		return -EACCES;
740 
741 	off = regs[regno].imm;
742 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
743 	    access_size <= 0) {
744 		verbose("invalid stack type R%d off=%d access_size=%d\n",
745 			regno, off, access_size);
746 		return -EACCES;
747 	}
748 
749 	for (i = 0; i < access_size; i++) {
750 		if (state->stack[MAX_BPF_STACK + off + i].stype != STACK_MISC) {
751 			verbose("invalid indirect read from stack off %d+%d size %d\n",
752 				off, i, access_size);
753 			return -EACCES;
754 		}
755 	}
756 	return 0;
757 }
758 
759 static int check_func_arg(struct verifier_env *env, u32 regno,
760 			  enum bpf_arg_type arg_type, struct bpf_map **mapp)
761 {
762 	struct reg_state *reg = env->cur_state.regs + regno;
763 	enum bpf_reg_type expected_type;
764 	int err = 0;
765 
766 	if (arg_type == ARG_ANYTHING)
767 		return 0;
768 
769 	if (reg->type == NOT_INIT) {
770 		verbose("R%d !read_ok\n", regno);
771 		return -EACCES;
772 	}
773 
774 	if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
775 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
776 		expected_type = PTR_TO_STACK;
777 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
778 		expected_type = CONST_IMM;
779 	} else if (arg_type == ARG_CONST_MAP_PTR) {
780 		expected_type = CONST_PTR_TO_MAP;
781 	} else {
782 		verbose("unsupported arg_type %d\n", arg_type);
783 		return -EFAULT;
784 	}
785 
786 	if (reg->type != expected_type) {
787 		verbose("R%d type=%s expected=%s\n", regno,
788 			reg_type_str[reg->type], reg_type_str[expected_type]);
789 		return -EACCES;
790 	}
791 
792 	if (arg_type == ARG_CONST_MAP_PTR) {
793 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
794 		*mapp = reg->map_ptr;
795 
796 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
797 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
798 		 * check that [key, key + map->key_size) are within
799 		 * stack limits and initialized
800 		 */
801 		if (!*mapp) {
802 			/* in function declaration map_ptr must come before
803 			 * map_key, so that it's verified and known before
804 			 * we have to check map_key here. Otherwise it means
805 			 * that kernel subsystem misconfigured verifier
806 			 */
807 			verbose("invalid map_ptr to access map->key\n");
808 			return -EACCES;
809 		}
810 		err = check_stack_boundary(env, regno, (*mapp)->key_size);
811 
812 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
813 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
814 		 * check [value, value + map->value_size) validity
815 		 */
816 		if (!*mapp) {
817 			/* kernel subsystem misconfigured verifier */
818 			verbose("invalid map_ptr to access map->value\n");
819 			return -EACCES;
820 		}
821 		err = check_stack_boundary(env, regno, (*mapp)->value_size);
822 
823 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
824 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
825 		 * from stack pointer 'buf'. Check it
826 		 * note: regno == len, regno - 1 == buf
827 		 */
828 		if (regno == 0) {
829 			/* kernel subsystem misconfigured verifier */
830 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
831 			return -EACCES;
832 		}
833 		err = check_stack_boundary(env, regno - 1, reg->imm);
834 	}
835 
836 	return err;
837 }
838 
839 static int check_call(struct verifier_env *env, int func_id)
840 {
841 	struct verifier_state *state = &env->cur_state;
842 	const struct bpf_func_proto *fn = NULL;
843 	struct reg_state *regs = state->regs;
844 	struct bpf_map *map = NULL;
845 	struct reg_state *reg;
846 	int i, err;
847 
848 	/* find function prototype */
849 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
850 		verbose("invalid func %d\n", func_id);
851 		return -EINVAL;
852 	}
853 
854 	if (env->prog->aux->ops->get_func_proto)
855 		fn = env->prog->aux->ops->get_func_proto(func_id);
856 
857 	if (!fn) {
858 		verbose("unknown func %d\n", func_id);
859 		return -EINVAL;
860 	}
861 
862 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
863 	if (!env->prog->aux->is_gpl_compatible && fn->gpl_only) {
864 		verbose("cannot call GPL only function from proprietary program\n");
865 		return -EINVAL;
866 	}
867 
868 	/* check args */
869 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
870 	if (err)
871 		return err;
872 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
873 	if (err)
874 		return err;
875 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
876 	if (err)
877 		return err;
878 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
879 	if (err)
880 		return err;
881 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
882 	if (err)
883 		return err;
884 
885 	/* reset caller saved regs */
886 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
887 		reg = regs + caller_saved[i];
888 		reg->type = NOT_INIT;
889 		reg->imm = 0;
890 	}
891 
892 	/* update return register */
893 	if (fn->ret_type == RET_INTEGER) {
894 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
895 	} else if (fn->ret_type == RET_VOID) {
896 		regs[BPF_REG_0].type = NOT_INIT;
897 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
898 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
899 		/* remember map_ptr, so that check_map_access()
900 		 * can check 'value_size' boundary of memory access
901 		 * to map element returned from bpf_map_lookup_elem()
902 		 */
903 		if (map == NULL) {
904 			verbose("kernel subsystem misconfigured verifier\n");
905 			return -EINVAL;
906 		}
907 		regs[BPF_REG_0].map_ptr = map;
908 	} else {
909 		verbose("unknown return type %d of func %d\n",
910 			fn->ret_type, func_id);
911 		return -EINVAL;
912 	}
913 	return 0;
914 }
915 
916 /* check validity of 32-bit and 64-bit arithmetic operations */
917 static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn)
918 {
919 	u8 opcode = BPF_OP(insn->code);
920 	int err;
921 
922 	if (opcode == BPF_END || opcode == BPF_NEG) {
923 		if (opcode == BPF_NEG) {
924 			if (BPF_SRC(insn->code) != 0 ||
925 			    insn->src_reg != BPF_REG_0 ||
926 			    insn->off != 0 || insn->imm != 0) {
927 				verbose("BPF_NEG uses reserved fields\n");
928 				return -EINVAL;
929 			}
930 		} else {
931 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
932 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
933 				verbose("BPF_END uses reserved fields\n");
934 				return -EINVAL;
935 			}
936 		}
937 
938 		/* check src operand */
939 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
940 		if (err)
941 			return err;
942 
943 		/* check dest operand */
944 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
945 		if (err)
946 			return err;
947 
948 	} else if (opcode == BPF_MOV) {
949 
950 		if (BPF_SRC(insn->code) == BPF_X) {
951 			if (insn->imm != 0 || insn->off != 0) {
952 				verbose("BPF_MOV uses reserved fields\n");
953 				return -EINVAL;
954 			}
955 
956 			/* check src operand */
957 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
958 			if (err)
959 				return err;
960 		} else {
961 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
962 				verbose("BPF_MOV uses reserved fields\n");
963 				return -EINVAL;
964 			}
965 		}
966 
967 		/* check dest operand */
968 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
969 		if (err)
970 			return err;
971 
972 		if (BPF_SRC(insn->code) == BPF_X) {
973 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
974 				/* case: R1 = R2
975 				 * copy register state to dest reg
976 				 */
977 				regs[insn->dst_reg] = regs[insn->src_reg];
978 			} else {
979 				regs[insn->dst_reg].type = UNKNOWN_VALUE;
980 				regs[insn->dst_reg].map_ptr = NULL;
981 			}
982 		} else {
983 			/* case: R = imm
984 			 * remember the value we stored into this reg
985 			 */
986 			regs[insn->dst_reg].type = CONST_IMM;
987 			regs[insn->dst_reg].imm = insn->imm;
988 		}
989 
990 	} else if (opcode > BPF_END) {
991 		verbose("invalid BPF_ALU opcode %x\n", opcode);
992 		return -EINVAL;
993 
994 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
995 
996 		bool stack_relative = false;
997 
998 		if (BPF_SRC(insn->code) == BPF_X) {
999 			if (insn->imm != 0 || insn->off != 0) {
1000 				verbose("BPF_ALU uses reserved fields\n");
1001 				return -EINVAL;
1002 			}
1003 			/* check src1 operand */
1004 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1005 			if (err)
1006 				return err;
1007 		} else {
1008 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1009 				verbose("BPF_ALU uses reserved fields\n");
1010 				return -EINVAL;
1011 			}
1012 		}
1013 
1014 		/* check src2 operand */
1015 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1016 		if (err)
1017 			return err;
1018 
1019 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1020 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1021 			verbose("div by zero\n");
1022 			return -EINVAL;
1023 		}
1024 
1025 		/* pattern match 'bpf_add Rx, imm' instruction */
1026 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1027 		    regs[insn->dst_reg].type == FRAME_PTR &&
1028 		    BPF_SRC(insn->code) == BPF_K)
1029 			stack_relative = true;
1030 
1031 		/* check dest operand */
1032 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1033 		if (err)
1034 			return err;
1035 
1036 		if (stack_relative) {
1037 			regs[insn->dst_reg].type = PTR_TO_STACK;
1038 			regs[insn->dst_reg].imm = insn->imm;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int check_cond_jmp_op(struct verifier_env *env,
1046 			     struct bpf_insn *insn, int *insn_idx)
1047 {
1048 	struct reg_state *regs = env->cur_state.regs;
1049 	struct verifier_state *other_branch;
1050 	u8 opcode = BPF_OP(insn->code);
1051 	int err;
1052 
1053 	if (opcode > BPF_EXIT) {
1054 		verbose("invalid BPF_JMP opcode %x\n", opcode);
1055 		return -EINVAL;
1056 	}
1057 
1058 	if (BPF_SRC(insn->code) == BPF_X) {
1059 		if (insn->imm != 0) {
1060 			verbose("BPF_JMP uses reserved fields\n");
1061 			return -EINVAL;
1062 		}
1063 
1064 		/* check src1 operand */
1065 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1066 		if (err)
1067 			return err;
1068 	} else {
1069 		if (insn->src_reg != BPF_REG_0) {
1070 			verbose("BPF_JMP uses reserved fields\n");
1071 			return -EINVAL;
1072 		}
1073 	}
1074 
1075 	/* check src2 operand */
1076 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1077 	if (err)
1078 		return err;
1079 
1080 	/* detect if R == 0 where R was initialized to zero earlier */
1081 	if (BPF_SRC(insn->code) == BPF_K &&
1082 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1083 	    regs[insn->dst_reg].type == CONST_IMM &&
1084 	    regs[insn->dst_reg].imm == insn->imm) {
1085 		if (opcode == BPF_JEQ) {
1086 			/* if (imm == imm) goto pc+off;
1087 			 * only follow the goto, ignore fall-through
1088 			 */
1089 			*insn_idx += insn->off;
1090 			return 0;
1091 		} else {
1092 			/* if (imm != imm) goto pc+off;
1093 			 * only follow fall-through branch, since
1094 			 * that's where the program will go
1095 			 */
1096 			return 0;
1097 		}
1098 	}
1099 
1100 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1101 	if (!other_branch)
1102 		return -EFAULT;
1103 
1104 	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1105 	if (BPF_SRC(insn->code) == BPF_K &&
1106 	    insn->imm == 0 && (opcode == BPF_JEQ ||
1107 			       opcode == BPF_JNE) &&
1108 	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1109 		if (opcode == BPF_JEQ) {
1110 			/* next fallthrough insn can access memory via
1111 			 * this register
1112 			 */
1113 			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1114 			/* branch targer cannot access it, since reg == 0 */
1115 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1116 			other_branch->regs[insn->dst_reg].imm = 0;
1117 		} else {
1118 			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1119 			regs[insn->dst_reg].type = CONST_IMM;
1120 			regs[insn->dst_reg].imm = 0;
1121 		}
1122 	} else if (BPF_SRC(insn->code) == BPF_K &&
1123 		   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1124 
1125 		if (opcode == BPF_JEQ) {
1126 			/* detect if (R == imm) goto
1127 			 * and in the target state recognize that R = imm
1128 			 */
1129 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1130 			other_branch->regs[insn->dst_reg].imm = insn->imm;
1131 		} else {
1132 			/* detect if (R != imm) goto
1133 			 * and in the fall-through state recognize that R = imm
1134 			 */
1135 			regs[insn->dst_reg].type = CONST_IMM;
1136 			regs[insn->dst_reg].imm = insn->imm;
1137 		}
1138 	}
1139 	if (log_level)
1140 		print_verifier_state(env);
1141 	return 0;
1142 }
1143 
1144 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
1145 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1146 {
1147 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1148 
1149 	return (struct bpf_map *) (unsigned long) imm64;
1150 }
1151 
1152 /* verify BPF_LD_IMM64 instruction */
1153 static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1154 {
1155 	struct reg_state *regs = env->cur_state.regs;
1156 	int err;
1157 
1158 	if (BPF_SIZE(insn->code) != BPF_DW) {
1159 		verbose("invalid BPF_LD_IMM insn\n");
1160 		return -EINVAL;
1161 	}
1162 	if (insn->off != 0) {
1163 		verbose("BPF_LD_IMM64 uses reserved fields\n");
1164 		return -EINVAL;
1165 	}
1166 
1167 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1168 	if (err)
1169 		return err;
1170 
1171 	if (insn->src_reg == 0)
1172 		/* generic move 64-bit immediate into a register */
1173 		return 0;
1174 
1175 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1176 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1177 
1178 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1179 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1180 	return 0;
1181 }
1182 
1183 /* non-recursive DFS pseudo code
1184  * 1  procedure DFS-iterative(G,v):
1185  * 2      label v as discovered
1186  * 3      let S be a stack
1187  * 4      S.push(v)
1188  * 5      while S is not empty
1189  * 6            t <- S.pop()
1190  * 7            if t is what we're looking for:
1191  * 8                return t
1192  * 9            for all edges e in G.adjacentEdges(t) do
1193  * 10               if edge e is already labelled
1194  * 11                   continue with the next edge
1195  * 12               w <- G.adjacentVertex(t,e)
1196  * 13               if vertex w is not discovered and not explored
1197  * 14                   label e as tree-edge
1198  * 15                   label w as discovered
1199  * 16                   S.push(w)
1200  * 17                   continue at 5
1201  * 18               else if vertex w is discovered
1202  * 19                   label e as back-edge
1203  * 20               else
1204  * 21                   // vertex w is explored
1205  * 22                   label e as forward- or cross-edge
1206  * 23           label t as explored
1207  * 24           S.pop()
1208  *
1209  * convention:
1210  * 0x10 - discovered
1211  * 0x11 - discovered and fall-through edge labelled
1212  * 0x12 - discovered and fall-through and branch edges labelled
1213  * 0x20 - explored
1214  */
1215 
1216 enum {
1217 	DISCOVERED = 0x10,
1218 	EXPLORED = 0x20,
1219 	FALLTHROUGH = 1,
1220 	BRANCH = 2,
1221 };
1222 
1223 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1224 
1225 static int *insn_stack;	/* stack of insns to process */
1226 static int cur_stack;	/* current stack index */
1227 static int *insn_state;
1228 
1229 /* t, w, e - match pseudo-code above:
1230  * t - index of current instruction
1231  * w - next instruction
1232  * e - edge
1233  */
1234 static int push_insn(int t, int w, int e, struct verifier_env *env)
1235 {
1236 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1237 		return 0;
1238 
1239 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1240 		return 0;
1241 
1242 	if (w < 0 || w >= env->prog->len) {
1243 		verbose("jump out of range from insn %d to %d\n", t, w);
1244 		return -EINVAL;
1245 	}
1246 
1247 	if (e == BRANCH)
1248 		/* mark branch target for state pruning */
1249 		env->explored_states[w] = STATE_LIST_MARK;
1250 
1251 	if (insn_state[w] == 0) {
1252 		/* tree-edge */
1253 		insn_state[t] = DISCOVERED | e;
1254 		insn_state[w] = DISCOVERED;
1255 		if (cur_stack >= env->prog->len)
1256 			return -E2BIG;
1257 		insn_stack[cur_stack++] = w;
1258 		return 1;
1259 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1260 		verbose("back-edge from insn %d to %d\n", t, w);
1261 		return -EINVAL;
1262 	} else if (insn_state[w] == EXPLORED) {
1263 		/* forward- or cross-edge */
1264 		insn_state[t] = DISCOVERED | e;
1265 	} else {
1266 		verbose("insn state internal bug\n");
1267 		return -EFAULT;
1268 	}
1269 	return 0;
1270 }
1271 
1272 /* non-recursive depth-first-search to detect loops in BPF program
1273  * loop == back-edge in directed graph
1274  */
1275 static int check_cfg(struct verifier_env *env)
1276 {
1277 	struct bpf_insn *insns = env->prog->insnsi;
1278 	int insn_cnt = env->prog->len;
1279 	int ret = 0;
1280 	int i, t;
1281 
1282 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1283 	if (!insn_state)
1284 		return -ENOMEM;
1285 
1286 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1287 	if (!insn_stack) {
1288 		kfree(insn_state);
1289 		return -ENOMEM;
1290 	}
1291 
1292 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1293 	insn_stack[0] = 0; /* 0 is the first instruction */
1294 	cur_stack = 1;
1295 
1296 peek_stack:
1297 	if (cur_stack == 0)
1298 		goto check_state;
1299 	t = insn_stack[cur_stack - 1];
1300 
1301 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1302 		u8 opcode = BPF_OP(insns[t].code);
1303 
1304 		if (opcode == BPF_EXIT) {
1305 			goto mark_explored;
1306 		} else if (opcode == BPF_CALL) {
1307 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1308 			if (ret == 1)
1309 				goto peek_stack;
1310 			else if (ret < 0)
1311 				goto err_free;
1312 		} else if (opcode == BPF_JA) {
1313 			if (BPF_SRC(insns[t].code) != BPF_K) {
1314 				ret = -EINVAL;
1315 				goto err_free;
1316 			}
1317 			/* unconditional jump with single edge */
1318 			ret = push_insn(t, t + insns[t].off + 1,
1319 					FALLTHROUGH, env);
1320 			if (ret == 1)
1321 				goto peek_stack;
1322 			else if (ret < 0)
1323 				goto err_free;
1324 			/* tell verifier to check for equivalent states
1325 			 * after every call and jump
1326 			 */
1327 			env->explored_states[t + 1] = STATE_LIST_MARK;
1328 		} else {
1329 			/* conditional jump with two edges */
1330 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1331 			if (ret == 1)
1332 				goto peek_stack;
1333 			else if (ret < 0)
1334 				goto err_free;
1335 
1336 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1337 			if (ret == 1)
1338 				goto peek_stack;
1339 			else if (ret < 0)
1340 				goto err_free;
1341 		}
1342 	} else {
1343 		/* all other non-branch instructions with single
1344 		 * fall-through edge
1345 		 */
1346 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1347 		if (ret == 1)
1348 			goto peek_stack;
1349 		else if (ret < 0)
1350 			goto err_free;
1351 	}
1352 
1353 mark_explored:
1354 	insn_state[t] = EXPLORED;
1355 	if (cur_stack-- <= 0) {
1356 		verbose("pop stack internal bug\n");
1357 		ret = -EFAULT;
1358 		goto err_free;
1359 	}
1360 	goto peek_stack;
1361 
1362 check_state:
1363 	for (i = 0; i < insn_cnt; i++) {
1364 		if (insn_state[i] != EXPLORED) {
1365 			verbose("unreachable insn %d\n", i);
1366 			ret = -EINVAL;
1367 			goto err_free;
1368 		}
1369 	}
1370 	ret = 0; /* cfg looks good */
1371 
1372 err_free:
1373 	kfree(insn_state);
1374 	kfree(insn_stack);
1375 	return ret;
1376 }
1377 
1378 /* compare two verifier states
1379  *
1380  * all states stored in state_list are known to be valid, since
1381  * verifier reached 'bpf_exit' instruction through them
1382  *
1383  * this function is called when verifier exploring different branches of
1384  * execution popped from the state stack. If it sees an old state that has
1385  * more strict register state and more strict stack state then this execution
1386  * branch doesn't need to be explored further, since verifier already
1387  * concluded that more strict state leads to valid finish.
1388  *
1389  * Therefore two states are equivalent if register state is more conservative
1390  * and explored stack state is more conservative than the current one.
1391  * Example:
1392  *       explored                   current
1393  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1394  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1395  *
1396  * In other words if current stack state (one being explored) has more
1397  * valid slots than old one that already passed validation, it means
1398  * the verifier can stop exploring and conclude that current state is valid too
1399  *
1400  * Similarly with registers. If explored state has register type as invalid
1401  * whereas register type in current state is meaningful, it means that
1402  * the current state will reach 'bpf_exit' instruction safely
1403  */
1404 static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
1405 {
1406 	int i;
1407 
1408 	for (i = 0; i < MAX_BPF_REG; i++) {
1409 		if (memcmp(&old->regs[i], &cur->regs[i],
1410 			   sizeof(old->regs[0])) != 0) {
1411 			if (old->regs[i].type == NOT_INIT ||
1412 			    (old->regs[i].type == UNKNOWN_VALUE &&
1413 			     cur->regs[i].type != NOT_INIT))
1414 				continue;
1415 			return false;
1416 		}
1417 	}
1418 
1419 	for (i = 0; i < MAX_BPF_STACK; i++) {
1420 		if (memcmp(&old->stack[i], &cur->stack[i],
1421 			   sizeof(old->stack[0])) != 0) {
1422 			if (old->stack[i].stype == STACK_INVALID)
1423 				continue;
1424 			return false;
1425 		}
1426 	}
1427 	return true;
1428 }
1429 
1430 static int is_state_visited(struct verifier_env *env, int insn_idx)
1431 {
1432 	struct verifier_state_list *new_sl;
1433 	struct verifier_state_list *sl;
1434 
1435 	sl = env->explored_states[insn_idx];
1436 	if (!sl)
1437 		/* this 'insn_idx' instruction wasn't marked, so we will not
1438 		 * be doing state search here
1439 		 */
1440 		return 0;
1441 
1442 	while (sl != STATE_LIST_MARK) {
1443 		if (states_equal(&sl->state, &env->cur_state))
1444 			/* reached equivalent register/stack state,
1445 			 * prune the search
1446 			 */
1447 			return 1;
1448 		sl = sl->next;
1449 	}
1450 
1451 	/* there were no equivalent states, remember current one.
1452 	 * technically the current state is not proven to be safe yet,
1453 	 * but it will either reach bpf_exit (which means it's safe) or
1454 	 * it will be rejected. Since there are no loops, we won't be
1455 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1456 	 */
1457 	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1458 	if (!new_sl)
1459 		return -ENOMEM;
1460 
1461 	/* add new state to the head of linked list */
1462 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1463 	new_sl->next = env->explored_states[insn_idx];
1464 	env->explored_states[insn_idx] = new_sl;
1465 	return 0;
1466 }
1467 
1468 static int do_check(struct verifier_env *env)
1469 {
1470 	struct verifier_state *state = &env->cur_state;
1471 	struct bpf_insn *insns = env->prog->insnsi;
1472 	struct reg_state *regs = state->regs;
1473 	int insn_cnt = env->prog->len;
1474 	int insn_idx, prev_insn_idx = 0;
1475 	int insn_processed = 0;
1476 	bool do_print_state = false;
1477 
1478 	init_reg_state(regs);
1479 	insn_idx = 0;
1480 	for (;;) {
1481 		struct bpf_insn *insn;
1482 		u8 class;
1483 		int err;
1484 
1485 		if (insn_idx >= insn_cnt) {
1486 			verbose("invalid insn idx %d insn_cnt %d\n",
1487 				insn_idx, insn_cnt);
1488 			return -EFAULT;
1489 		}
1490 
1491 		insn = &insns[insn_idx];
1492 		class = BPF_CLASS(insn->code);
1493 
1494 		if (++insn_processed > 32768) {
1495 			verbose("BPF program is too large. Proccessed %d insn\n",
1496 				insn_processed);
1497 			return -E2BIG;
1498 		}
1499 
1500 		err = is_state_visited(env, insn_idx);
1501 		if (err < 0)
1502 			return err;
1503 		if (err == 1) {
1504 			/* found equivalent state, can prune the search */
1505 			if (log_level) {
1506 				if (do_print_state)
1507 					verbose("\nfrom %d to %d: safe\n",
1508 						prev_insn_idx, insn_idx);
1509 				else
1510 					verbose("%d: safe\n", insn_idx);
1511 			}
1512 			goto process_bpf_exit;
1513 		}
1514 
1515 		if (log_level && do_print_state) {
1516 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1517 			print_verifier_state(env);
1518 			do_print_state = false;
1519 		}
1520 
1521 		if (log_level) {
1522 			verbose("%d: ", insn_idx);
1523 			print_bpf_insn(insn);
1524 		}
1525 
1526 		if (class == BPF_ALU || class == BPF_ALU64) {
1527 			err = check_alu_op(regs, insn);
1528 			if (err)
1529 				return err;
1530 
1531 		} else if (class == BPF_LDX) {
1532 			if (BPF_MODE(insn->code) != BPF_MEM ||
1533 			    insn->imm != 0) {
1534 				verbose("BPF_LDX uses reserved fields\n");
1535 				return -EINVAL;
1536 			}
1537 			/* check src operand */
1538 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1539 			if (err)
1540 				return err;
1541 
1542 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1543 			if (err)
1544 				return err;
1545 
1546 			/* check that memory (src_reg + off) is readable,
1547 			 * the state of dst_reg will be updated by this func
1548 			 */
1549 			err = check_mem_access(env, insn->src_reg, insn->off,
1550 					       BPF_SIZE(insn->code), BPF_READ,
1551 					       insn->dst_reg);
1552 			if (err)
1553 				return err;
1554 
1555 		} else if (class == BPF_STX) {
1556 			if (BPF_MODE(insn->code) == BPF_XADD) {
1557 				err = check_xadd(env, insn);
1558 				if (err)
1559 					return err;
1560 				insn_idx++;
1561 				continue;
1562 			}
1563 
1564 			if (BPF_MODE(insn->code) != BPF_MEM ||
1565 			    insn->imm != 0) {
1566 				verbose("BPF_STX uses reserved fields\n");
1567 				return -EINVAL;
1568 			}
1569 			/* check src1 operand */
1570 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1571 			if (err)
1572 				return err;
1573 			/* check src2 operand */
1574 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1575 			if (err)
1576 				return err;
1577 
1578 			/* check that memory (dst_reg + off) is writeable */
1579 			err = check_mem_access(env, insn->dst_reg, insn->off,
1580 					       BPF_SIZE(insn->code), BPF_WRITE,
1581 					       insn->src_reg);
1582 			if (err)
1583 				return err;
1584 
1585 		} else if (class == BPF_ST) {
1586 			if (BPF_MODE(insn->code) != BPF_MEM ||
1587 			    insn->src_reg != BPF_REG_0) {
1588 				verbose("BPF_ST uses reserved fields\n");
1589 				return -EINVAL;
1590 			}
1591 			/* check src operand */
1592 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1593 			if (err)
1594 				return err;
1595 
1596 			/* check that memory (dst_reg + off) is writeable */
1597 			err = check_mem_access(env, insn->dst_reg, insn->off,
1598 					       BPF_SIZE(insn->code), BPF_WRITE,
1599 					       -1);
1600 			if (err)
1601 				return err;
1602 
1603 		} else if (class == BPF_JMP) {
1604 			u8 opcode = BPF_OP(insn->code);
1605 
1606 			if (opcode == BPF_CALL) {
1607 				if (BPF_SRC(insn->code) != BPF_K ||
1608 				    insn->off != 0 ||
1609 				    insn->src_reg != BPF_REG_0 ||
1610 				    insn->dst_reg != BPF_REG_0) {
1611 					verbose("BPF_CALL uses reserved fields\n");
1612 					return -EINVAL;
1613 				}
1614 
1615 				err = check_call(env, insn->imm);
1616 				if (err)
1617 					return err;
1618 
1619 			} else if (opcode == BPF_JA) {
1620 				if (BPF_SRC(insn->code) != BPF_K ||
1621 				    insn->imm != 0 ||
1622 				    insn->src_reg != BPF_REG_0 ||
1623 				    insn->dst_reg != BPF_REG_0) {
1624 					verbose("BPF_JA uses reserved fields\n");
1625 					return -EINVAL;
1626 				}
1627 
1628 				insn_idx += insn->off + 1;
1629 				continue;
1630 
1631 			} else if (opcode == BPF_EXIT) {
1632 				if (BPF_SRC(insn->code) != BPF_K ||
1633 				    insn->imm != 0 ||
1634 				    insn->src_reg != BPF_REG_0 ||
1635 				    insn->dst_reg != BPF_REG_0) {
1636 					verbose("BPF_EXIT uses reserved fields\n");
1637 					return -EINVAL;
1638 				}
1639 
1640 				/* eBPF calling convetion is such that R0 is used
1641 				 * to return the value from eBPF program.
1642 				 * Make sure that it's readable at this time
1643 				 * of bpf_exit, which means that program wrote
1644 				 * something into it earlier
1645 				 */
1646 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1647 				if (err)
1648 					return err;
1649 
1650 process_bpf_exit:
1651 				insn_idx = pop_stack(env, &prev_insn_idx);
1652 				if (insn_idx < 0) {
1653 					break;
1654 				} else {
1655 					do_print_state = true;
1656 					continue;
1657 				}
1658 			} else {
1659 				err = check_cond_jmp_op(env, insn, &insn_idx);
1660 				if (err)
1661 					return err;
1662 			}
1663 		} else if (class == BPF_LD) {
1664 			u8 mode = BPF_MODE(insn->code);
1665 
1666 			if (mode == BPF_ABS || mode == BPF_IND) {
1667 				verbose("LD_ABS is not supported yet\n");
1668 				return -EINVAL;
1669 			} else if (mode == BPF_IMM) {
1670 				err = check_ld_imm(env, insn);
1671 				if (err)
1672 					return err;
1673 
1674 				insn_idx++;
1675 			} else {
1676 				verbose("invalid BPF_LD mode\n");
1677 				return -EINVAL;
1678 			}
1679 		} else {
1680 			verbose("unknown insn class %d\n", class);
1681 			return -EINVAL;
1682 		}
1683 
1684 		insn_idx++;
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 /* look for pseudo eBPF instructions that access map FDs and
1691  * replace them with actual map pointers
1692  */
1693 static int replace_map_fd_with_map_ptr(struct verifier_env *env)
1694 {
1695 	struct bpf_insn *insn = env->prog->insnsi;
1696 	int insn_cnt = env->prog->len;
1697 	int i, j;
1698 
1699 	for (i = 0; i < insn_cnt; i++, insn++) {
1700 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
1701 			struct bpf_map *map;
1702 			struct fd f;
1703 
1704 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
1705 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
1706 			    insn[1].off != 0) {
1707 				verbose("invalid bpf_ld_imm64 insn\n");
1708 				return -EINVAL;
1709 			}
1710 
1711 			if (insn->src_reg == 0)
1712 				/* valid generic load 64-bit imm */
1713 				goto next_insn;
1714 
1715 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
1716 				verbose("unrecognized bpf_ld_imm64 insn\n");
1717 				return -EINVAL;
1718 			}
1719 
1720 			f = fdget(insn->imm);
1721 
1722 			map = bpf_map_get(f);
1723 			if (IS_ERR(map)) {
1724 				verbose("fd %d is not pointing to valid bpf_map\n",
1725 					insn->imm);
1726 				fdput(f);
1727 				return PTR_ERR(map);
1728 			}
1729 
1730 			/* store map pointer inside BPF_LD_IMM64 instruction */
1731 			insn[0].imm = (u32) (unsigned long) map;
1732 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
1733 
1734 			/* check whether we recorded this map already */
1735 			for (j = 0; j < env->used_map_cnt; j++)
1736 				if (env->used_maps[j] == map) {
1737 					fdput(f);
1738 					goto next_insn;
1739 				}
1740 
1741 			if (env->used_map_cnt >= MAX_USED_MAPS) {
1742 				fdput(f);
1743 				return -E2BIG;
1744 			}
1745 
1746 			/* remember this map */
1747 			env->used_maps[env->used_map_cnt++] = map;
1748 
1749 			/* hold the map. If the program is rejected by verifier,
1750 			 * the map will be released by release_maps() or it
1751 			 * will be used by the valid program until it's unloaded
1752 			 * and all maps are released in free_bpf_prog_info()
1753 			 */
1754 			atomic_inc(&map->refcnt);
1755 
1756 			fdput(f);
1757 next_insn:
1758 			insn++;
1759 			i++;
1760 		}
1761 	}
1762 
1763 	/* now all pseudo BPF_LD_IMM64 instructions load valid
1764 	 * 'struct bpf_map *' into a register instead of user map_fd.
1765 	 * These pointers will be used later by verifier to validate map access.
1766 	 */
1767 	return 0;
1768 }
1769 
1770 /* drop refcnt of maps used by the rejected program */
1771 static void release_maps(struct verifier_env *env)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; i < env->used_map_cnt; i++)
1776 		bpf_map_put(env->used_maps[i]);
1777 }
1778 
1779 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
1780 static void convert_pseudo_ld_imm64(struct verifier_env *env)
1781 {
1782 	struct bpf_insn *insn = env->prog->insnsi;
1783 	int insn_cnt = env->prog->len;
1784 	int i;
1785 
1786 	for (i = 0; i < insn_cnt; i++, insn++)
1787 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
1788 			insn->src_reg = 0;
1789 }
1790 
1791 static void free_states(struct verifier_env *env)
1792 {
1793 	struct verifier_state_list *sl, *sln;
1794 	int i;
1795 
1796 	if (!env->explored_states)
1797 		return;
1798 
1799 	for (i = 0; i < env->prog->len; i++) {
1800 		sl = env->explored_states[i];
1801 
1802 		if (sl)
1803 			while (sl != STATE_LIST_MARK) {
1804 				sln = sl->next;
1805 				kfree(sl);
1806 				sl = sln;
1807 			}
1808 	}
1809 
1810 	kfree(env->explored_states);
1811 }
1812 
1813 int bpf_check(struct bpf_prog *prog, union bpf_attr *attr)
1814 {
1815 	char __user *log_ubuf = NULL;
1816 	struct verifier_env *env;
1817 	int ret = -EINVAL;
1818 
1819 	if (prog->len <= 0 || prog->len > BPF_MAXINSNS)
1820 		return -E2BIG;
1821 
1822 	/* 'struct verifier_env' can be global, but since it's not small,
1823 	 * allocate/free it every time bpf_check() is called
1824 	 */
1825 	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
1826 	if (!env)
1827 		return -ENOMEM;
1828 
1829 	env->prog = prog;
1830 
1831 	/* grab the mutex to protect few globals used by verifier */
1832 	mutex_lock(&bpf_verifier_lock);
1833 
1834 	if (attr->log_level || attr->log_buf || attr->log_size) {
1835 		/* user requested verbose verifier output
1836 		 * and supplied buffer to store the verification trace
1837 		 */
1838 		log_level = attr->log_level;
1839 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
1840 		log_size = attr->log_size;
1841 		log_len = 0;
1842 
1843 		ret = -EINVAL;
1844 		/* log_* values have to be sane */
1845 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
1846 		    log_level == 0 || log_ubuf == NULL)
1847 			goto free_env;
1848 
1849 		ret = -ENOMEM;
1850 		log_buf = vmalloc(log_size);
1851 		if (!log_buf)
1852 			goto free_env;
1853 	} else {
1854 		log_level = 0;
1855 	}
1856 
1857 	ret = replace_map_fd_with_map_ptr(env);
1858 	if (ret < 0)
1859 		goto skip_full_check;
1860 
1861 	env->explored_states = kcalloc(prog->len,
1862 				       sizeof(struct verifier_state_list *),
1863 				       GFP_USER);
1864 	ret = -ENOMEM;
1865 	if (!env->explored_states)
1866 		goto skip_full_check;
1867 
1868 	ret = check_cfg(env);
1869 	if (ret < 0)
1870 		goto skip_full_check;
1871 
1872 	ret = do_check(env);
1873 
1874 skip_full_check:
1875 	while (pop_stack(env, NULL) >= 0);
1876 	free_states(env);
1877 
1878 	if (log_level && log_len >= log_size - 1) {
1879 		BUG_ON(log_len >= log_size);
1880 		/* verifier log exceeded user supplied buffer */
1881 		ret = -ENOSPC;
1882 		/* fall through to return what was recorded */
1883 	}
1884 
1885 	/* copy verifier log back to user space including trailing zero */
1886 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
1887 		ret = -EFAULT;
1888 		goto free_log_buf;
1889 	}
1890 
1891 	if (ret == 0 && env->used_map_cnt) {
1892 		/* if program passed verifier, update used_maps in bpf_prog_info */
1893 		prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
1894 						     sizeof(env->used_maps[0]),
1895 						     GFP_KERNEL);
1896 
1897 		if (!prog->aux->used_maps) {
1898 			ret = -ENOMEM;
1899 			goto free_log_buf;
1900 		}
1901 
1902 		memcpy(prog->aux->used_maps, env->used_maps,
1903 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
1904 		prog->aux->used_map_cnt = env->used_map_cnt;
1905 
1906 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
1907 		 * bpf_ld_imm64 instructions
1908 		 */
1909 		convert_pseudo_ld_imm64(env);
1910 	}
1911 
1912 free_log_buf:
1913 	if (log_level)
1914 		vfree(log_buf);
1915 free_env:
1916 	if (!prog->aux->used_maps)
1917 		/* if we didn't copy map pointers into bpf_prog_info, release
1918 		 * them now. Otherwise free_bpf_prog_info() will release them.
1919 		 */
1920 		release_maps(env);
1921 	kfree(env);
1922 	mutex_unlock(&bpf_verifier_lock);
1923 	return ret;
1924 }
1925