xref: /openbmc/linux/kernel/bpf/verifier.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #define BPF_LINK_TYPE(_id, _name)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 #undef BPF_LINK_TYPE
38 };
39 
40 /* bpf_check() is a static code analyzer that walks eBPF program
41  * instruction by instruction and updates register/stack state.
42  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43  *
44  * The first pass is depth-first-search to check that the program is a DAG.
45  * It rejects the following programs:
46  * - larger than BPF_MAXINSNS insns
47  * - if loop is present (detected via back-edge)
48  * - unreachable insns exist (shouldn't be a forest. program = one function)
49  * - out of bounds or malformed jumps
50  * The second pass is all possible path descent from the 1st insn.
51  * Since it's analyzing all paths through the program, the length of the
52  * analysis is limited to 64k insn, which may be hit even if total number of
53  * insn is less then 4K, but there are too many branches that change stack/regs.
54  * Number of 'branches to be analyzed' is limited to 1k
55  *
56  * On entry to each instruction, each register has a type, and the instruction
57  * changes the types of the registers depending on instruction semantics.
58  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59  * copied to R1.
60  *
61  * All registers are 64-bit.
62  * R0 - return register
63  * R1-R5 argument passing registers
64  * R6-R9 callee saved registers
65  * R10 - frame pointer read-only
66  *
67  * At the start of BPF program the register R1 contains a pointer to bpf_context
68  * and has type PTR_TO_CTX.
69  *
70  * Verifier tracks arithmetic operations on pointers in case:
71  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73  * 1st insn copies R10 (which has FRAME_PTR) type into R1
74  * and 2nd arithmetic instruction is pattern matched to recognize
75  * that it wants to construct a pointer to some element within stack.
76  * So after 2nd insn, the register R1 has type PTR_TO_STACK
77  * (and -20 constant is saved for further stack bounds checking).
78  * Meaning that this reg is a pointer to stack plus known immediate constant.
79  *
80  * Most of the time the registers have SCALAR_VALUE type, which
81  * means the register has some value, but it's not a valid pointer.
82  * (like pointer plus pointer becomes SCALAR_VALUE type)
83  *
84  * When verifier sees load or store instructions the type of base register
85  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86  * four pointer types recognized by check_mem_access() function.
87  *
88  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89  * and the range of [ptr, ptr + map's value_size) is accessible.
90  *
91  * registers used to pass values to function calls are checked against
92  * function argument constraints.
93  *
94  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95  * It means that the register type passed to this function must be
96  * PTR_TO_STACK and it will be used inside the function as
97  * 'pointer to map element key'
98  *
99  * For example the argument constraints for bpf_map_lookup_elem():
100  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101  *   .arg1_type = ARG_CONST_MAP_PTR,
102  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
103  *
104  * ret_type says that this function returns 'pointer to map elem value or null'
105  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106  * 2nd argument should be a pointer to stack, which will be used inside
107  * the helper function as a pointer to map element key.
108  *
109  * On the kernel side the helper function looks like:
110  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111  * {
112  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113  *    void *key = (void *) (unsigned long) r2;
114  *    void *value;
115  *
116  *    here kernel can access 'key' and 'map' pointers safely, knowing that
117  *    [key, key + map->key_size) bytes are valid and were initialized on
118  *    the stack of eBPF program.
119  * }
120  *
121  * Corresponding eBPF program may look like:
122  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
123  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
125  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126  * here verifier looks at prototype of map_lookup_elem() and sees:
127  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129  *
130  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132  * and were initialized prior to this call.
133  * If it's ok, then verifier allows this BPF_CALL insn and looks at
134  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
136  * returns either pointer to map value or NULL.
137  *
138  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139  * insn, the register holding that pointer in the true branch changes state to
140  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141  * branch. See check_cond_jmp_op().
142  *
143  * After the call R0 is set to return type of the function and registers R1-R5
144  * are set to NOT_INIT to indicate that they are no longer readable.
145  *
146  * The following reference types represent a potential reference to a kernel
147  * resource which, after first being allocated, must be checked and freed by
148  * the BPF program:
149  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150  *
151  * When the verifier sees a helper call return a reference type, it allocates a
152  * pointer id for the reference and stores it in the current function state.
153  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155  * passes through a NULL-check conditional. For the branch wherein the state is
156  * changed to CONST_IMM, the verifier releases the reference.
157  *
158  * For each helper function that allocates a reference, such as
159  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160  * bpf_sk_release(). When a reference type passes into the release function,
161  * the verifier also releases the reference. If any unchecked or unreleased
162  * reference remains at the end of the program, the verifier rejects it.
163  */
164 
165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
166 struct bpf_verifier_stack_elem {
167 	/* verifer state is 'st'
168 	 * before processing instruction 'insn_idx'
169 	 * and after processing instruction 'prev_insn_idx'
170 	 */
171 	struct bpf_verifier_state st;
172 	int insn_idx;
173 	int prev_insn_idx;
174 	struct bpf_verifier_stack_elem *next;
175 	/* length of verifier log at the time this state was pushed on stack */
176 	u32 log_pos;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_KEY_POISON	(1ULL << 63)
183 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
184 
185 #define BPF_MAP_PTR_UNPRIV	1UL
186 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
187 					  POISON_POINTER_DELTA))
188 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189 
190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
192 
193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
194 {
195 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
196 }
197 
198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
199 {
200 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
201 }
202 
203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
204 			      const struct bpf_map *map, bool unpriv)
205 {
206 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
207 	unpriv |= bpf_map_ptr_unpriv(aux);
208 	aux->map_ptr_state = (unsigned long)map |
209 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
210 }
211 
212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
213 {
214 	return aux->map_key_state & BPF_MAP_KEY_POISON;
215 }
216 
217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
218 {
219 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
220 }
221 
222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
223 {
224 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
225 }
226 
227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
228 {
229 	bool poisoned = bpf_map_key_poisoned(aux);
230 
231 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
232 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
233 }
234 
235 static bool bpf_pseudo_call(const struct bpf_insn *insn)
236 {
237 	return insn->code == (BPF_JMP | BPF_CALL) &&
238 	       insn->src_reg == BPF_PSEUDO_CALL;
239 }
240 
241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
242 {
243 	return insn->code == (BPF_JMP | BPF_CALL) &&
244 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
245 }
246 
247 struct bpf_call_arg_meta {
248 	struct bpf_map *map_ptr;
249 	bool raw_mode;
250 	bool pkt_access;
251 	u8 release_regno;
252 	int regno;
253 	int access_size;
254 	int mem_size;
255 	u64 msize_max_value;
256 	int ref_obj_id;
257 	int map_uid;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 	struct bpf_map_value_off_desc *kptr_off_desc;
265 	u8 uninit_dynptr_regno;
266 };
267 
268 struct btf *btf_vmlinux;
269 
270 static DEFINE_MUTEX(bpf_verifier_lock);
271 
272 static const struct bpf_line_info *
273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
274 {
275 	const struct bpf_line_info *linfo;
276 	const struct bpf_prog *prog;
277 	u32 i, nr_linfo;
278 
279 	prog = env->prog;
280 	nr_linfo = prog->aux->nr_linfo;
281 
282 	if (!nr_linfo || insn_off >= prog->len)
283 		return NULL;
284 
285 	linfo = prog->aux->linfo;
286 	for (i = 1; i < nr_linfo; i++)
287 		if (insn_off < linfo[i].insn_off)
288 			break;
289 
290 	return &linfo[i - 1];
291 }
292 
293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
294 		       va_list args)
295 {
296 	unsigned int n;
297 
298 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
299 
300 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
301 		  "verifier log line truncated - local buffer too short\n");
302 
303 	if (log->level == BPF_LOG_KERNEL) {
304 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
305 
306 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
307 		return;
308 	}
309 
310 	n = min(log->len_total - log->len_used - 1, n);
311 	log->kbuf[n] = '\0';
312 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
313 		log->len_used += n;
314 	else
315 		log->ubuf = NULL;
316 }
317 
318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
319 {
320 	char zero = 0;
321 
322 	if (!bpf_verifier_log_needed(log))
323 		return;
324 
325 	log->len_used = new_pos;
326 	if (put_user(zero, log->ubuf + new_pos))
327 		log->ubuf = NULL;
328 }
329 
330 /* log_level controls verbosity level of eBPF verifier.
331  * bpf_verifier_log_write() is used to dump the verification trace to the log,
332  * so the user can figure out what's wrong with the program
333  */
334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
335 					   const char *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (!bpf_verifier_log_needed(&env->log))
340 		return;
341 
342 	va_start(args, fmt);
343 	bpf_verifier_vlog(&env->log, fmt, args);
344 	va_end(args);
345 }
346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
347 
348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
349 {
350 	struct bpf_verifier_env *env = private_data;
351 	va_list args;
352 
353 	if (!bpf_verifier_log_needed(&env->log))
354 		return;
355 
356 	va_start(args, fmt);
357 	bpf_verifier_vlog(&env->log, fmt, args);
358 	va_end(args);
359 }
360 
361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
362 			    const char *fmt, ...)
363 {
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	return type == PTR_TO_PACKET ||
431 	       type == PTR_TO_PACKET_META;
432 }
433 
434 static bool type_is_sk_pointer(enum bpf_reg_type type)
435 {
436 	return type == PTR_TO_SOCKET ||
437 		type == PTR_TO_SOCK_COMMON ||
438 		type == PTR_TO_TCP_SOCK ||
439 		type == PTR_TO_XDP_SOCK;
440 }
441 
442 static bool reg_type_not_null(enum bpf_reg_type type)
443 {
444 	return type == PTR_TO_SOCKET ||
445 		type == PTR_TO_TCP_SOCK ||
446 		type == PTR_TO_MAP_VALUE ||
447 		type == PTR_TO_MAP_KEY ||
448 		type == PTR_TO_SOCK_COMMON;
449 }
450 
451 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
452 {
453 	return reg->type == PTR_TO_MAP_VALUE &&
454 		map_value_has_spin_lock(reg->map_ptr);
455 }
456 
457 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
458 {
459 	return base_type(type) == PTR_TO_SOCKET ||
460 		base_type(type) == PTR_TO_TCP_SOCK ||
461 		base_type(type) == PTR_TO_MEM ||
462 		base_type(type) == PTR_TO_BTF_ID;
463 }
464 
465 static bool type_is_rdonly_mem(u32 type)
466 {
467 	return type & MEM_RDONLY;
468 }
469 
470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
471 {
472 	return type == ARG_PTR_TO_SOCK_COMMON;
473 }
474 
475 static bool type_may_be_null(u32 type)
476 {
477 	return type & PTR_MAYBE_NULL;
478 }
479 
480 static bool may_be_acquire_function(enum bpf_func_id func_id)
481 {
482 	return func_id == BPF_FUNC_sk_lookup_tcp ||
483 		func_id == BPF_FUNC_sk_lookup_udp ||
484 		func_id == BPF_FUNC_skc_lookup_tcp ||
485 		func_id == BPF_FUNC_map_lookup_elem ||
486 	        func_id == BPF_FUNC_ringbuf_reserve;
487 }
488 
489 static bool is_acquire_function(enum bpf_func_id func_id,
490 				const struct bpf_map *map)
491 {
492 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
493 
494 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
495 	    func_id == BPF_FUNC_sk_lookup_udp ||
496 	    func_id == BPF_FUNC_skc_lookup_tcp ||
497 	    func_id == BPF_FUNC_ringbuf_reserve ||
498 	    func_id == BPF_FUNC_kptr_xchg)
499 		return true;
500 
501 	if (func_id == BPF_FUNC_map_lookup_elem &&
502 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 	     map_type == BPF_MAP_TYPE_SOCKHASH))
504 		return true;
505 
506 	return false;
507 }
508 
509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_tcp_sock ||
512 		func_id == BPF_FUNC_sk_fullsock ||
513 		func_id == BPF_FUNC_skc_to_tcp_sock ||
514 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 		func_id == BPF_FUNC_skc_to_udp6_sock ||
516 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
519 }
520 
521 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
522 {
523 	return BPF_CLASS(insn->code) == BPF_STX &&
524 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
525 	       insn->imm == BPF_CMPXCHG;
526 }
527 
528 /* string representation of 'enum bpf_reg_type'
529  *
530  * Note that reg_type_str() can not appear more than once in a single verbose()
531  * statement.
532  */
533 static const char *reg_type_str(struct bpf_verifier_env *env,
534 				enum bpf_reg_type type)
535 {
536 	char postfix[16] = {0}, prefix[32] = {0};
537 	static const char * const str[] = {
538 		[NOT_INIT]		= "?",
539 		[SCALAR_VALUE]		= "scalar",
540 		[PTR_TO_CTX]		= "ctx",
541 		[CONST_PTR_TO_MAP]	= "map_ptr",
542 		[PTR_TO_MAP_VALUE]	= "map_value",
543 		[PTR_TO_STACK]		= "fp",
544 		[PTR_TO_PACKET]		= "pkt",
545 		[PTR_TO_PACKET_META]	= "pkt_meta",
546 		[PTR_TO_PACKET_END]	= "pkt_end",
547 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
548 		[PTR_TO_SOCKET]		= "sock",
549 		[PTR_TO_SOCK_COMMON]	= "sock_common",
550 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
551 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
552 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
553 		[PTR_TO_BTF_ID]		= "ptr_",
554 		[PTR_TO_MEM]		= "mem",
555 		[PTR_TO_BUF]		= "buf",
556 		[PTR_TO_FUNC]		= "func",
557 		[PTR_TO_MAP_KEY]	= "map_key",
558 	};
559 
560 	if (type & PTR_MAYBE_NULL) {
561 		if (base_type(type) == PTR_TO_BTF_ID)
562 			strncpy(postfix, "or_null_", 16);
563 		else
564 			strncpy(postfix, "_or_null", 16);
565 	}
566 
567 	if (type & MEM_RDONLY)
568 		strncpy(prefix, "rdonly_", 32);
569 	if (type & MEM_ALLOC)
570 		strncpy(prefix, "alloc_", 32);
571 	if (type & MEM_USER)
572 		strncpy(prefix, "user_", 32);
573 	if (type & MEM_PERCPU)
574 		strncpy(prefix, "percpu_", 32);
575 	if (type & PTR_UNTRUSTED)
576 		strncpy(prefix, "untrusted_", 32);
577 
578 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
579 		 prefix, str[base_type(type)], postfix);
580 	return env->type_str_buf;
581 }
582 
583 static char slot_type_char[] = {
584 	[STACK_INVALID]	= '?',
585 	[STACK_SPILL]	= 'r',
586 	[STACK_MISC]	= 'm',
587 	[STACK_ZERO]	= '0',
588 	[STACK_DYNPTR]	= 'd',
589 };
590 
591 static void print_liveness(struct bpf_verifier_env *env,
592 			   enum bpf_reg_liveness live)
593 {
594 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
595 	    verbose(env, "_");
596 	if (live & REG_LIVE_READ)
597 		verbose(env, "r");
598 	if (live & REG_LIVE_WRITTEN)
599 		verbose(env, "w");
600 	if (live & REG_LIVE_DONE)
601 		verbose(env, "D");
602 }
603 
604 static int get_spi(s32 off)
605 {
606 	return (-off - 1) / BPF_REG_SIZE;
607 }
608 
609 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
610 {
611 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
612 
613 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
614 	 * within [0, allocated_stack).
615 	 *
616 	 * Please note that the spi grows downwards. For example, a dynptr
617 	 * takes the size of two stack slots; the first slot will be at
618 	 * spi and the second slot will be at spi - 1.
619 	 */
620 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
621 }
622 
623 static struct bpf_func_state *func(struct bpf_verifier_env *env,
624 				   const struct bpf_reg_state *reg)
625 {
626 	struct bpf_verifier_state *cur = env->cur_state;
627 
628 	return cur->frame[reg->frameno];
629 }
630 
631 static const char *kernel_type_name(const struct btf* btf, u32 id)
632 {
633 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
634 }
635 
636 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
637 {
638 	env->scratched_regs |= 1U << regno;
639 }
640 
641 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
642 {
643 	env->scratched_stack_slots |= 1ULL << spi;
644 }
645 
646 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
647 {
648 	return (env->scratched_regs >> regno) & 1;
649 }
650 
651 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
652 {
653 	return (env->scratched_stack_slots >> regno) & 1;
654 }
655 
656 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
657 {
658 	return env->scratched_regs || env->scratched_stack_slots;
659 }
660 
661 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
662 {
663 	env->scratched_regs = 0U;
664 	env->scratched_stack_slots = 0ULL;
665 }
666 
667 /* Used for printing the entire verifier state. */
668 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
669 {
670 	env->scratched_regs = ~0U;
671 	env->scratched_stack_slots = ~0ULL;
672 }
673 
674 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
675 {
676 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
677 	case DYNPTR_TYPE_LOCAL:
678 		return BPF_DYNPTR_TYPE_LOCAL;
679 	case DYNPTR_TYPE_RINGBUF:
680 		return BPF_DYNPTR_TYPE_RINGBUF;
681 	default:
682 		return BPF_DYNPTR_TYPE_INVALID;
683 	}
684 }
685 
686 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
687 {
688 	return type == BPF_DYNPTR_TYPE_RINGBUF;
689 }
690 
691 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
692 				   enum bpf_arg_type arg_type, int insn_idx)
693 {
694 	struct bpf_func_state *state = func(env, reg);
695 	enum bpf_dynptr_type type;
696 	int spi, i, id;
697 
698 	spi = get_spi(reg->off);
699 
700 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
701 		return -EINVAL;
702 
703 	for (i = 0; i < BPF_REG_SIZE; i++) {
704 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
705 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
706 	}
707 
708 	type = arg_to_dynptr_type(arg_type);
709 	if (type == BPF_DYNPTR_TYPE_INVALID)
710 		return -EINVAL;
711 
712 	state->stack[spi].spilled_ptr.dynptr.first_slot = true;
713 	state->stack[spi].spilled_ptr.dynptr.type = type;
714 	state->stack[spi - 1].spilled_ptr.dynptr.type = type;
715 
716 	if (dynptr_type_refcounted(type)) {
717 		/* The id is used to track proper releasing */
718 		id = acquire_reference_state(env, insn_idx);
719 		if (id < 0)
720 			return id;
721 
722 		state->stack[spi].spilled_ptr.id = id;
723 		state->stack[spi - 1].spilled_ptr.id = id;
724 	}
725 
726 	return 0;
727 }
728 
729 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
730 {
731 	struct bpf_func_state *state = func(env, reg);
732 	int spi, i;
733 
734 	spi = get_spi(reg->off);
735 
736 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
737 		return -EINVAL;
738 
739 	for (i = 0; i < BPF_REG_SIZE; i++) {
740 		state->stack[spi].slot_type[i] = STACK_INVALID;
741 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
742 	}
743 
744 	/* Invalidate any slices associated with this dynptr */
745 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
746 		release_reference(env, state->stack[spi].spilled_ptr.id);
747 		state->stack[spi].spilled_ptr.id = 0;
748 		state->stack[spi - 1].spilled_ptr.id = 0;
749 	}
750 
751 	state->stack[spi].spilled_ptr.dynptr.first_slot = false;
752 	state->stack[spi].spilled_ptr.dynptr.type = 0;
753 	state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
754 
755 	return 0;
756 }
757 
758 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
759 {
760 	struct bpf_func_state *state = func(env, reg);
761 	int spi = get_spi(reg->off);
762 	int i;
763 
764 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
765 		return true;
766 
767 	for (i = 0; i < BPF_REG_SIZE; i++) {
768 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
769 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
770 			return false;
771 	}
772 
773 	return true;
774 }
775 
776 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
777 				     enum bpf_arg_type arg_type)
778 {
779 	struct bpf_func_state *state = func(env, reg);
780 	int spi = get_spi(reg->off);
781 	int i;
782 
783 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
784 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
785 		return false;
786 
787 	for (i = 0; i < BPF_REG_SIZE; i++) {
788 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
789 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
790 			return false;
791 	}
792 
793 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
794 	if (arg_type == ARG_PTR_TO_DYNPTR)
795 		return true;
796 
797 	return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type);
798 }
799 
800 /* The reg state of a pointer or a bounded scalar was saved when
801  * it was spilled to the stack.
802  */
803 static bool is_spilled_reg(const struct bpf_stack_state *stack)
804 {
805 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
806 }
807 
808 static void scrub_spilled_slot(u8 *stype)
809 {
810 	if (*stype != STACK_INVALID)
811 		*stype = STACK_MISC;
812 }
813 
814 static void print_verifier_state(struct bpf_verifier_env *env,
815 				 const struct bpf_func_state *state,
816 				 bool print_all)
817 {
818 	const struct bpf_reg_state *reg;
819 	enum bpf_reg_type t;
820 	int i;
821 
822 	if (state->frameno)
823 		verbose(env, " frame%d:", state->frameno);
824 	for (i = 0; i < MAX_BPF_REG; i++) {
825 		reg = &state->regs[i];
826 		t = reg->type;
827 		if (t == NOT_INIT)
828 			continue;
829 		if (!print_all && !reg_scratched(env, i))
830 			continue;
831 		verbose(env, " R%d", i);
832 		print_liveness(env, reg->live);
833 		verbose(env, "=");
834 		if (t == SCALAR_VALUE && reg->precise)
835 			verbose(env, "P");
836 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
837 		    tnum_is_const(reg->var_off)) {
838 			/* reg->off should be 0 for SCALAR_VALUE */
839 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
840 			verbose(env, "%lld", reg->var_off.value + reg->off);
841 		} else {
842 			const char *sep = "";
843 
844 			verbose(env, "%s", reg_type_str(env, t));
845 			if (base_type(t) == PTR_TO_BTF_ID)
846 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
847 			verbose(env, "(");
848 /*
849  * _a stands for append, was shortened to avoid multiline statements below.
850  * This macro is used to output a comma separated list of attributes.
851  */
852 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
853 
854 			if (reg->id)
855 				verbose_a("id=%d", reg->id);
856 			if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
857 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
858 			if (t != SCALAR_VALUE)
859 				verbose_a("off=%d", reg->off);
860 			if (type_is_pkt_pointer(t))
861 				verbose_a("r=%d", reg->range);
862 			else if (base_type(t) == CONST_PTR_TO_MAP ||
863 				 base_type(t) == PTR_TO_MAP_KEY ||
864 				 base_type(t) == PTR_TO_MAP_VALUE)
865 				verbose_a("ks=%d,vs=%d",
866 					  reg->map_ptr->key_size,
867 					  reg->map_ptr->value_size);
868 			if (tnum_is_const(reg->var_off)) {
869 				/* Typically an immediate SCALAR_VALUE, but
870 				 * could be a pointer whose offset is too big
871 				 * for reg->off
872 				 */
873 				verbose_a("imm=%llx", reg->var_off.value);
874 			} else {
875 				if (reg->smin_value != reg->umin_value &&
876 				    reg->smin_value != S64_MIN)
877 					verbose_a("smin=%lld", (long long)reg->smin_value);
878 				if (reg->smax_value != reg->umax_value &&
879 				    reg->smax_value != S64_MAX)
880 					verbose_a("smax=%lld", (long long)reg->smax_value);
881 				if (reg->umin_value != 0)
882 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
883 				if (reg->umax_value != U64_MAX)
884 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
885 				if (!tnum_is_unknown(reg->var_off)) {
886 					char tn_buf[48];
887 
888 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
889 					verbose_a("var_off=%s", tn_buf);
890 				}
891 				if (reg->s32_min_value != reg->smin_value &&
892 				    reg->s32_min_value != S32_MIN)
893 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
894 				if (reg->s32_max_value != reg->smax_value &&
895 				    reg->s32_max_value != S32_MAX)
896 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
897 				if (reg->u32_min_value != reg->umin_value &&
898 				    reg->u32_min_value != U32_MIN)
899 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
900 				if (reg->u32_max_value != reg->umax_value &&
901 				    reg->u32_max_value != U32_MAX)
902 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
903 			}
904 #undef verbose_a
905 
906 			verbose(env, ")");
907 		}
908 	}
909 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
910 		char types_buf[BPF_REG_SIZE + 1];
911 		bool valid = false;
912 		int j;
913 
914 		for (j = 0; j < BPF_REG_SIZE; j++) {
915 			if (state->stack[i].slot_type[j] != STACK_INVALID)
916 				valid = true;
917 			types_buf[j] = slot_type_char[
918 					state->stack[i].slot_type[j]];
919 		}
920 		types_buf[BPF_REG_SIZE] = 0;
921 		if (!valid)
922 			continue;
923 		if (!print_all && !stack_slot_scratched(env, i))
924 			continue;
925 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
926 		print_liveness(env, state->stack[i].spilled_ptr.live);
927 		if (is_spilled_reg(&state->stack[i])) {
928 			reg = &state->stack[i].spilled_ptr;
929 			t = reg->type;
930 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
931 			if (t == SCALAR_VALUE && reg->precise)
932 				verbose(env, "P");
933 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
934 				verbose(env, "%lld", reg->var_off.value + reg->off);
935 		} else {
936 			verbose(env, "=%s", types_buf);
937 		}
938 	}
939 	if (state->acquired_refs && state->refs[0].id) {
940 		verbose(env, " refs=%d", state->refs[0].id);
941 		for (i = 1; i < state->acquired_refs; i++)
942 			if (state->refs[i].id)
943 				verbose(env, ",%d", state->refs[i].id);
944 	}
945 	if (state->in_callback_fn)
946 		verbose(env, " cb");
947 	if (state->in_async_callback_fn)
948 		verbose(env, " async_cb");
949 	verbose(env, "\n");
950 	mark_verifier_state_clean(env);
951 }
952 
953 static inline u32 vlog_alignment(u32 pos)
954 {
955 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
956 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
957 }
958 
959 static void print_insn_state(struct bpf_verifier_env *env,
960 			     const struct bpf_func_state *state)
961 {
962 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
963 		/* remove new line character */
964 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
965 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
966 	} else {
967 		verbose(env, "%d:", env->insn_idx);
968 	}
969 	print_verifier_state(env, state, false);
970 }
971 
972 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
973  * small to hold src. This is different from krealloc since we don't want to preserve
974  * the contents of dst.
975  *
976  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
977  * not be allocated.
978  */
979 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
980 {
981 	size_t bytes;
982 
983 	if (ZERO_OR_NULL_PTR(src))
984 		goto out;
985 
986 	if (unlikely(check_mul_overflow(n, size, &bytes)))
987 		return NULL;
988 
989 	if (ksize(dst) < bytes) {
990 		kfree(dst);
991 		dst = kmalloc_track_caller(bytes, flags);
992 		if (!dst)
993 			return NULL;
994 	}
995 
996 	memcpy(dst, src, bytes);
997 out:
998 	return dst ? dst : ZERO_SIZE_PTR;
999 }
1000 
1001 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1002  * small to hold new_n items. new items are zeroed out if the array grows.
1003  *
1004  * Contrary to krealloc_array, does not free arr if new_n is zero.
1005  */
1006 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1007 {
1008 	if (!new_n || old_n == new_n)
1009 		goto out;
1010 
1011 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1012 	if (!arr)
1013 		return NULL;
1014 
1015 	if (new_n > old_n)
1016 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1017 
1018 out:
1019 	return arr ? arr : ZERO_SIZE_PTR;
1020 }
1021 
1022 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1023 {
1024 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1025 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1026 	if (!dst->refs)
1027 		return -ENOMEM;
1028 
1029 	dst->acquired_refs = src->acquired_refs;
1030 	return 0;
1031 }
1032 
1033 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1034 {
1035 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1036 
1037 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1038 				GFP_KERNEL);
1039 	if (!dst->stack)
1040 		return -ENOMEM;
1041 
1042 	dst->allocated_stack = src->allocated_stack;
1043 	return 0;
1044 }
1045 
1046 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1047 {
1048 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1049 				    sizeof(struct bpf_reference_state));
1050 	if (!state->refs)
1051 		return -ENOMEM;
1052 
1053 	state->acquired_refs = n;
1054 	return 0;
1055 }
1056 
1057 static int grow_stack_state(struct bpf_func_state *state, int size)
1058 {
1059 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1060 
1061 	if (old_n >= n)
1062 		return 0;
1063 
1064 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1065 	if (!state->stack)
1066 		return -ENOMEM;
1067 
1068 	state->allocated_stack = size;
1069 	return 0;
1070 }
1071 
1072 /* Acquire a pointer id from the env and update the state->refs to include
1073  * this new pointer reference.
1074  * On success, returns a valid pointer id to associate with the register
1075  * On failure, returns a negative errno.
1076  */
1077 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1078 {
1079 	struct bpf_func_state *state = cur_func(env);
1080 	int new_ofs = state->acquired_refs;
1081 	int id, err;
1082 
1083 	err = resize_reference_state(state, state->acquired_refs + 1);
1084 	if (err)
1085 		return err;
1086 	id = ++env->id_gen;
1087 	state->refs[new_ofs].id = id;
1088 	state->refs[new_ofs].insn_idx = insn_idx;
1089 
1090 	return id;
1091 }
1092 
1093 /* release function corresponding to acquire_reference_state(). Idempotent. */
1094 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1095 {
1096 	int i, last_idx;
1097 
1098 	last_idx = state->acquired_refs - 1;
1099 	for (i = 0; i < state->acquired_refs; i++) {
1100 		if (state->refs[i].id == ptr_id) {
1101 			if (last_idx && i != last_idx)
1102 				memcpy(&state->refs[i], &state->refs[last_idx],
1103 				       sizeof(*state->refs));
1104 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1105 			state->acquired_refs--;
1106 			return 0;
1107 		}
1108 	}
1109 	return -EINVAL;
1110 }
1111 
1112 static void free_func_state(struct bpf_func_state *state)
1113 {
1114 	if (!state)
1115 		return;
1116 	kfree(state->refs);
1117 	kfree(state->stack);
1118 	kfree(state);
1119 }
1120 
1121 static void clear_jmp_history(struct bpf_verifier_state *state)
1122 {
1123 	kfree(state->jmp_history);
1124 	state->jmp_history = NULL;
1125 	state->jmp_history_cnt = 0;
1126 }
1127 
1128 static void free_verifier_state(struct bpf_verifier_state *state,
1129 				bool free_self)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i <= state->curframe; i++) {
1134 		free_func_state(state->frame[i]);
1135 		state->frame[i] = NULL;
1136 	}
1137 	clear_jmp_history(state);
1138 	if (free_self)
1139 		kfree(state);
1140 }
1141 
1142 /* copy verifier state from src to dst growing dst stack space
1143  * when necessary to accommodate larger src stack
1144  */
1145 static int copy_func_state(struct bpf_func_state *dst,
1146 			   const struct bpf_func_state *src)
1147 {
1148 	int err;
1149 
1150 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1151 	err = copy_reference_state(dst, src);
1152 	if (err)
1153 		return err;
1154 	return copy_stack_state(dst, src);
1155 }
1156 
1157 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1158 			       const struct bpf_verifier_state *src)
1159 {
1160 	struct bpf_func_state *dst;
1161 	int i, err;
1162 
1163 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1164 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1165 					    GFP_USER);
1166 	if (!dst_state->jmp_history)
1167 		return -ENOMEM;
1168 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1169 
1170 	/* if dst has more stack frames then src frame, free them */
1171 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1172 		free_func_state(dst_state->frame[i]);
1173 		dst_state->frame[i] = NULL;
1174 	}
1175 	dst_state->speculative = src->speculative;
1176 	dst_state->curframe = src->curframe;
1177 	dst_state->active_spin_lock = src->active_spin_lock;
1178 	dst_state->branches = src->branches;
1179 	dst_state->parent = src->parent;
1180 	dst_state->first_insn_idx = src->first_insn_idx;
1181 	dst_state->last_insn_idx = src->last_insn_idx;
1182 	for (i = 0; i <= src->curframe; i++) {
1183 		dst = dst_state->frame[i];
1184 		if (!dst) {
1185 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1186 			if (!dst)
1187 				return -ENOMEM;
1188 			dst_state->frame[i] = dst;
1189 		}
1190 		err = copy_func_state(dst, src->frame[i]);
1191 		if (err)
1192 			return err;
1193 	}
1194 	return 0;
1195 }
1196 
1197 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1198 {
1199 	while (st) {
1200 		u32 br = --st->branches;
1201 
1202 		/* WARN_ON(br > 1) technically makes sense here,
1203 		 * but see comment in push_stack(), hence:
1204 		 */
1205 		WARN_ONCE((int)br < 0,
1206 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1207 			  br);
1208 		if (br)
1209 			break;
1210 		st = st->parent;
1211 	}
1212 }
1213 
1214 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1215 		     int *insn_idx, bool pop_log)
1216 {
1217 	struct bpf_verifier_state *cur = env->cur_state;
1218 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1219 	int err;
1220 
1221 	if (env->head == NULL)
1222 		return -ENOENT;
1223 
1224 	if (cur) {
1225 		err = copy_verifier_state(cur, &head->st);
1226 		if (err)
1227 			return err;
1228 	}
1229 	if (pop_log)
1230 		bpf_vlog_reset(&env->log, head->log_pos);
1231 	if (insn_idx)
1232 		*insn_idx = head->insn_idx;
1233 	if (prev_insn_idx)
1234 		*prev_insn_idx = head->prev_insn_idx;
1235 	elem = head->next;
1236 	free_verifier_state(&head->st, false);
1237 	kfree(head);
1238 	env->head = elem;
1239 	env->stack_size--;
1240 	return 0;
1241 }
1242 
1243 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1244 					     int insn_idx, int prev_insn_idx,
1245 					     bool speculative)
1246 {
1247 	struct bpf_verifier_state *cur = env->cur_state;
1248 	struct bpf_verifier_stack_elem *elem;
1249 	int err;
1250 
1251 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1252 	if (!elem)
1253 		goto err;
1254 
1255 	elem->insn_idx = insn_idx;
1256 	elem->prev_insn_idx = prev_insn_idx;
1257 	elem->next = env->head;
1258 	elem->log_pos = env->log.len_used;
1259 	env->head = elem;
1260 	env->stack_size++;
1261 	err = copy_verifier_state(&elem->st, cur);
1262 	if (err)
1263 		goto err;
1264 	elem->st.speculative |= speculative;
1265 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1266 		verbose(env, "The sequence of %d jumps is too complex.\n",
1267 			env->stack_size);
1268 		goto err;
1269 	}
1270 	if (elem->st.parent) {
1271 		++elem->st.parent->branches;
1272 		/* WARN_ON(branches > 2) technically makes sense here,
1273 		 * but
1274 		 * 1. speculative states will bump 'branches' for non-branch
1275 		 * instructions
1276 		 * 2. is_state_visited() heuristics may decide not to create
1277 		 * a new state for a sequence of branches and all such current
1278 		 * and cloned states will be pointing to a single parent state
1279 		 * which might have large 'branches' count.
1280 		 */
1281 	}
1282 	return &elem->st;
1283 err:
1284 	free_verifier_state(env->cur_state, true);
1285 	env->cur_state = NULL;
1286 	/* pop all elements and return */
1287 	while (!pop_stack(env, NULL, NULL, false));
1288 	return NULL;
1289 }
1290 
1291 #define CALLER_SAVED_REGS 6
1292 static const int caller_saved[CALLER_SAVED_REGS] = {
1293 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1294 };
1295 
1296 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1297 				struct bpf_reg_state *reg);
1298 
1299 /* This helper doesn't clear reg->id */
1300 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1301 {
1302 	reg->var_off = tnum_const(imm);
1303 	reg->smin_value = (s64)imm;
1304 	reg->smax_value = (s64)imm;
1305 	reg->umin_value = imm;
1306 	reg->umax_value = imm;
1307 
1308 	reg->s32_min_value = (s32)imm;
1309 	reg->s32_max_value = (s32)imm;
1310 	reg->u32_min_value = (u32)imm;
1311 	reg->u32_max_value = (u32)imm;
1312 }
1313 
1314 /* Mark the unknown part of a register (variable offset or scalar value) as
1315  * known to have the value @imm.
1316  */
1317 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1318 {
1319 	/* Clear id, off, and union(map_ptr, range) */
1320 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1321 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1322 	___mark_reg_known(reg, imm);
1323 }
1324 
1325 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1326 {
1327 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1328 	reg->s32_min_value = (s32)imm;
1329 	reg->s32_max_value = (s32)imm;
1330 	reg->u32_min_value = (u32)imm;
1331 	reg->u32_max_value = (u32)imm;
1332 }
1333 
1334 /* Mark the 'variable offset' part of a register as zero.  This should be
1335  * used only on registers holding a pointer type.
1336  */
1337 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1338 {
1339 	__mark_reg_known(reg, 0);
1340 }
1341 
1342 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1343 {
1344 	__mark_reg_known(reg, 0);
1345 	reg->type = SCALAR_VALUE;
1346 }
1347 
1348 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1349 				struct bpf_reg_state *regs, u32 regno)
1350 {
1351 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1352 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1353 		/* Something bad happened, let's kill all regs */
1354 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1355 			__mark_reg_not_init(env, regs + regno);
1356 		return;
1357 	}
1358 	__mark_reg_known_zero(regs + regno);
1359 }
1360 
1361 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1362 {
1363 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1364 		const struct bpf_map *map = reg->map_ptr;
1365 
1366 		if (map->inner_map_meta) {
1367 			reg->type = CONST_PTR_TO_MAP;
1368 			reg->map_ptr = map->inner_map_meta;
1369 			/* transfer reg's id which is unique for every map_lookup_elem
1370 			 * as UID of the inner map.
1371 			 */
1372 			if (map_value_has_timer(map->inner_map_meta))
1373 				reg->map_uid = reg->id;
1374 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1375 			reg->type = PTR_TO_XDP_SOCK;
1376 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1377 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1378 			reg->type = PTR_TO_SOCKET;
1379 		} else {
1380 			reg->type = PTR_TO_MAP_VALUE;
1381 		}
1382 		return;
1383 	}
1384 
1385 	reg->type &= ~PTR_MAYBE_NULL;
1386 }
1387 
1388 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1389 {
1390 	return type_is_pkt_pointer(reg->type);
1391 }
1392 
1393 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1394 {
1395 	return reg_is_pkt_pointer(reg) ||
1396 	       reg->type == PTR_TO_PACKET_END;
1397 }
1398 
1399 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1400 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1401 				    enum bpf_reg_type which)
1402 {
1403 	/* The register can already have a range from prior markings.
1404 	 * This is fine as long as it hasn't been advanced from its
1405 	 * origin.
1406 	 */
1407 	return reg->type == which &&
1408 	       reg->id == 0 &&
1409 	       reg->off == 0 &&
1410 	       tnum_equals_const(reg->var_off, 0);
1411 }
1412 
1413 /* Reset the min/max bounds of a register */
1414 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1415 {
1416 	reg->smin_value = S64_MIN;
1417 	reg->smax_value = S64_MAX;
1418 	reg->umin_value = 0;
1419 	reg->umax_value = U64_MAX;
1420 
1421 	reg->s32_min_value = S32_MIN;
1422 	reg->s32_max_value = S32_MAX;
1423 	reg->u32_min_value = 0;
1424 	reg->u32_max_value = U32_MAX;
1425 }
1426 
1427 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1428 {
1429 	reg->smin_value = S64_MIN;
1430 	reg->smax_value = S64_MAX;
1431 	reg->umin_value = 0;
1432 	reg->umax_value = U64_MAX;
1433 }
1434 
1435 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1436 {
1437 	reg->s32_min_value = S32_MIN;
1438 	reg->s32_max_value = S32_MAX;
1439 	reg->u32_min_value = 0;
1440 	reg->u32_max_value = U32_MAX;
1441 }
1442 
1443 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1444 {
1445 	struct tnum var32_off = tnum_subreg(reg->var_off);
1446 
1447 	/* min signed is max(sign bit) | min(other bits) */
1448 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1449 			var32_off.value | (var32_off.mask & S32_MIN));
1450 	/* max signed is min(sign bit) | max(other bits) */
1451 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1452 			var32_off.value | (var32_off.mask & S32_MAX));
1453 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1454 	reg->u32_max_value = min(reg->u32_max_value,
1455 				 (u32)(var32_off.value | var32_off.mask));
1456 }
1457 
1458 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1459 {
1460 	/* min signed is max(sign bit) | min(other bits) */
1461 	reg->smin_value = max_t(s64, reg->smin_value,
1462 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1463 	/* max signed is min(sign bit) | max(other bits) */
1464 	reg->smax_value = min_t(s64, reg->smax_value,
1465 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1466 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1467 	reg->umax_value = min(reg->umax_value,
1468 			      reg->var_off.value | reg->var_off.mask);
1469 }
1470 
1471 static void __update_reg_bounds(struct bpf_reg_state *reg)
1472 {
1473 	__update_reg32_bounds(reg);
1474 	__update_reg64_bounds(reg);
1475 }
1476 
1477 /* Uses signed min/max values to inform unsigned, and vice-versa */
1478 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1479 {
1480 	/* Learn sign from signed bounds.
1481 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1482 	 * are the same, so combine.  This works even in the negative case, e.g.
1483 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1484 	 */
1485 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1486 		reg->s32_min_value = reg->u32_min_value =
1487 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1488 		reg->s32_max_value = reg->u32_max_value =
1489 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1490 		return;
1491 	}
1492 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1493 	 * boundary, so we must be careful.
1494 	 */
1495 	if ((s32)reg->u32_max_value >= 0) {
1496 		/* Positive.  We can't learn anything from the smin, but smax
1497 		 * is positive, hence safe.
1498 		 */
1499 		reg->s32_min_value = reg->u32_min_value;
1500 		reg->s32_max_value = reg->u32_max_value =
1501 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1502 	} else if ((s32)reg->u32_min_value < 0) {
1503 		/* Negative.  We can't learn anything from the smax, but smin
1504 		 * is negative, hence safe.
1505 		 */
1506 		reg->s32_min_value = reg->u32_min_value =
1507 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1508 		reg->s32_max_value = reg->u32_max_value;
1509 	}
1510 }
1511 
1512 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1513 {
1514 	/* Learn sign from signed bounds.
1515 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1516 	 * are the same, so combine.  This works even in the negative case, e.g.
1517 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1518 	 */
1519 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1520 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1521 							  reg->umin_value);
1522 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1523 							  reg->umax_value);
1524 		return;
1525 	}
1526 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1527 	 * boundary, so we must be careful.
1528 	 */
1529 	if ((s64)reg->umax_value >= 0) {
1530 		/* Positive.  We can't learn anything from the smin, but smax
1531 		 * is positive, hence safe.
1532 		 */
1533 		reg->smin_value = reg->umin_value;
1534 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1535 							  reg->umax_value);
1536 	} else if ((s64)reg->umin_value < 0) {
1537 		/* Negative.  We can't learn anything from the smax, but smin
1538 		 * is negative, hence safe.
1539 		 */
1540 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1541 							  reg->umin_value);
1542 		reg->smax_value = reg->umax_value;
1543 	}
1544 }
1545 
1546 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1547 {
1548 	__reg32_deduce_bounds(reg);
1549 	__reg64_deduce_bounds(reg);
1550 }
1551 
1552 /* Attempts to improve var_off based on unsigned min/max information */
1553 static void __reg_bound_offset(struct bpf_reg_state *reg)
1554 {
1555 	struct tnum var64_off = tnum_intersect(reg->var_off,
1556 					       tnum_range(reg->umin_value,
1557 							  reg->umax_value));
1558 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1559 						tnum_range(reg->u32_min_value,
1560 							   reg->u32_max_value));
1561 
1562 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1563 }
1564 
1565 static void reg_bounds_sync(struct bpf_reg_state *reg)
1566 {
1567 	/* We might have learned new bounds from the var_off. */
1568 	__update_reg_bounds(reg);
1569 	/* We might have learned something about the sign bit. */
1570 	__reg_deduce_bounds(reg);
1571 	/* We might have learned some bits from the bounds. */
1572 	__reg_bound_offset(reg);
1573 	/* Intersecting with the old var_off might have improved our bounds
1574 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1575 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1576 	 */
1577 	__update_reg_bounds(reg);
1578 }
1579 
1580 static bool __reg32_bound_s64(s32 a)
1581 {
1582 	return a >= 0 && a <= S32_MAX;
1583 }
1584 
1585 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1586 {
1587 	reg->umin_value = reg->u32_min_value;
1588 	reg->umax_value = reg->u32_max_value;
1589 
1590 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1591 	 * be positive otherwise set to worse case bounds and refine later
1592 	 * from tnum.
1593 	 */
1594 	if (__reg32_bound_s64(reg->s32_min_value) &&
1595 	    __reg32_bound_s64(reg->s32_max_value)) {
1596 		reg->smin_value = reg->s32_min_value;
1597 		reg->smax_value = reg->s32_max_value;
1598 	} else {
1599 		reg->smin_value = 0;
1600 		reg->smax_value = U32_MAX;
1601 	}
1602 }
1603 
1604 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1605 {
1606 	/* special case when 64-bit register has upper 32-bit register
1607 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1608 	 * allowing us to use 32-bit bounds directly,
1609 	 */
1610 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1611 		__reg_assign_32_into_64(reg);
1612 	} else {
1613 		/* Otherwise the best we can do is push lower 32bit known and
1614 		 * unknown bits into register (var_off set from jmp logic)
1615 		 * then learn as much as possible from the 64-bit tnum
1616 		 * known and unknown bits. The previous smin/smax bounds are
1617 		 * invalid here because of jmp32 compare so mark them unknown
1618 		 * so they do not impact tnum bounds calculation.
1619 		 */
1620 		__mark_reg64_unbounded(reg);
1621 	}
1622 	reg_bounds_sync(reg);
1623 }
1624 
1625 static bool __reg64_bound_s32(s64 a)
1626 {
1627 	return a >= S32_MIN && a <= S32_MAX;
1628 }
1629 
1630 static bool __reg64_bound_u32(u64 a)
1631 {
1632 	return a >= U32_MIN && a <= U32_MAX;
1633 }
1634 
1635 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1636 {
1637 	__mark_reg32_unbounded(reg);
1638 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1639 		reg->s32_min_value = (s32)reg->smin_value;
1640 		reg->s32_max_value = (s32)reg->smax_value;
1641 	}
1642 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1643 		reg->u32_min_value = (u32)reg->umin_value;
1644 		reg->u32_max_value = (u32)reg->umax_value;
1645 	}
1646 	reg_bounds_sync(reg);
1647 }
1648 
1649 /* Mark a register as having a completely unknown (scalar) value. */
1650 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1651 			       struct bpf_reg_state *reg)
1652 {
1653 	/*
1654 	 * Clear type, id, off, and union(map_ptr, range) and
1655 	 * padding between 'type' and union
1656 	 */
1657 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1658 	reg->type = SCALAR_VALUE;
1659 	reg->var_off = tnum_unknown;
1660 	reg->frameno = 0;
1661 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1662 	__mark_reg_unbounded(reg);
1663 }
1664 
1665 static void mark_reg_unknown(struct bpf_verifier_env *env,
1666 			     struct bpf_reg_state *regs, u32 regno)
1667 {
1668 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1669 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1670 		/* Something bad happened, let's kill all regs except FP */
1671 		for (regno = 0; regno < BPF_REG_FP; regno++)
1672 			__mark_reg_not_init(env, regs + regno);
1673 		return;
1674 	}
1675 	__mark_reg_unknown(env, regs + regno);
1676 }
1677 
1678 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1679 				struct bpf_reg_state *reg)
1680 {
1681 	__mark_reg_unknown(env, reg);
1682 	reg->type = NOT_INIT;
1683 }
1684 
1685 static void mark_reg_not_init(struct bpf_verifier_env *env,
1686 			      struct bpf_reg_state *regs, u32 regno)
1687 {
1688 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1689 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1690 		/* Something bad happened, let's kill all regs except FP */
1691 		for (regno = 0; regno < BPF_REG_FP; regno++)
1692 			__mark_reg_not_init(env, regs + regno);
1693 		return;
1694 	}
1695 	__mark_reg_not_init(env, regs + regno);
1696 }
1697 
1698 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1699 			    struct bpf_reg_state *regs, u32 regno,
1700 			    enum bpf_reg_type reg_type,
1701 			    struct btf *btf, u32 btf_id,
1702 			    enum bpf_type_flag flag)
1703 {
1704 	if (reg_type == SCALAR_VALUE) {
1705 		mark_reg_unknown(env, regs, regno);
1706 		return;
1707 	}
1708 	mark_reg_known_zero(env, regs, regno);
1709 	regs[regno].type = PTR_TO_BTF_ID | flag;
1710 	regs[regno].btf = btf;
1711 	regs[regno].btf_id = btf_id;
1712 }
1713 
1714 #define DEF_NOT_SUBREG	(0)
1715 static void init_reg_state(struct bpf_verifier_env *env,
1716 			   struct bpf_func_state *state)
1717 {
1718 	struct bpf_reg_state *regs = state->regs;
1719 	int i;
1720 
1721 	for (i = 0; i < MAX_BPF_REG; i++) {
1722 		mark_reg_not_init(env, regs, i);
1723 		regs[i].live = REG_LIVE_NONE;
1724 		regs[i].parent = NULL;
1725 		regs[i].subreg_def = DEF_NOT_SUBREG;
1726 	}
1727 
1728 	/* frame pointer */
1729 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1730 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1731 	regs[BPF_REG_FP].frameno = state->frameno;
1732 }
1733 
1734 #define BPF_MAIN_FUNC (-1)
1735 static void init_func_state(struct bpf_verifier_env *env,
1736 			    struct bpf_func_state *state,
1737 			    int callsite, int frameno, int subprogno)
1738 {
1739 	state->callsite = callsite;
1740 	state->frameno = frameno;
1741 	state->subprogno = subprogno;
1742 	init_reg_state(env, state);
1743 	mark_verifier_state_scratched(env);
1744 }
1745 
1746 /* Similar to push_stack(), but for async callbacks */
1747 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1748 						int insn_idx, int prev_insn_idx,
1749 						int subprog)
1750 {
1751 	struct bpf_verifier_stack_elem *elem;
1752 	struct bpf_func_state *frame;
1753 
1754 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1755 	if (!elem)
1756 		goto err;
1757 
1758 	elem->insn_idx = insn_idx;
1759 	elem->prev_insn_idx = prev_insn_idx;
1760 	elem->next = env->head;
1761 	elem->log_pos = env->log.len_used;
1762 	env->head = elem;
1763 	env->stack_size++;
1764 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1765 		verbose(env,
1766 			"The sequence of %d jumps is too complex for async cb.\n",
1767 			env->stack_size);
1768 		goto err;
1769 	}
1770 	/* Unlike push_stack() do not copy_verifier_state().
1771 	 * The caller state doesn't matter.
1772 	 * This is async callback. It starts in a fresh stack.
1773 	 * Initialize it similar to do_check_common().
1774 	 */
1775 	elem->st.branches = 1;
1776 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1777 	if (!frame)
1778 		goto err;
1779 	init_func_state(env, frame,
1780 			BPF_MAIN_FUNC /* callsite */,
1781 			0 /* frameno within this callchain */,
1782 			subprog /* subprog number within this prog */);
1783 	elem->st.frame[0] = frame;
1784 	return &elem->st;
1785 err:
1786 	free_verifier_state(env->cur_state, true);
1787 	env->cur_state = NULL;
1788 	/* pop all elements and return */
1789 	while (!pop_stack(env, NULL, NULL, false));
1790 	return NULL;
1791 }
1792 
1793 
1794 enum reg_arg_type {
1795 	SRC_OP,		/* register is used as source operand */
1796 	DST_OP,		/* register is used as destination operand */
1797 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1798 };
1799 
1800 static int cmp_subprogs(const void *a, const void *b)
1801 {
1802 	return ((struct bpf_subprog_info *)a)->start -
1803 	       ((struct bpf_subprog_info *)b)->start;
1804 }
1805 
1806 static int find_subprog(struct bpf_verifier_env *env, int off)
1807 {
1808 	struct bpf_subprog_info *p;
1809 
1810 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1811 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1812 	if (!p)
1813 		return -ENOENT;
1814 	return p - env->subprog_info;
1815 
1816 }
1817 
1818 static int add_subprog(struct bpf_verifier_env *env, int off)
1819 {
1820 	int insn_cnt = env->prog->len;
1821 	int ret;
1822 
1823 	if (off >= insn_cnt || off < 0) {
1824 		verbose(env, "call to invalid destination\n");
1825 		return -EINVAL;
1826 	}
1827 	ret = find_subprog(env, off);
1828 	if (ret >= 0)
1829 		return ret;
1830 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1831 		verbose(env, "too many subprograms\n");
1832 		return -E2BIG;
1833 	}
1834 	/* determine subprog starts. The end is one before the next starts */
1835 	env->subprog_info[env->subprog_cnt++].start = off;
1836 	sort(env->subprog_info, env->subprog_cnt,
1837 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1838 	return env->subprog_cnt - 1;
1839 }
1840 
1841 #define MAX_KFUNC_DESCS 256
1842 #define MAX_KFUNC_BTFS	256
1843 
1844 struct bpf_kfunc_desc {
1845 	struct btf_func_model func_model;
1846 	u32 func_id;
1847 	s32 imm;
1848 	u16 offset;
1849 };
1850 
1851 struct bpf_kfunc_btf {
1852 	struct btf *btf;
1853 	struct module *module;
1854 	u16 offset;
1855 };
1856 
1857 struct bpf_kfunc_desc_tab {
1858 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1859 	u32 nr_descs;
1860 };
1861 
1862 struct bpf_kfunc_btf_tab {
1863 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1864 	u32 nr_descs;
1865 };
1866 
1867 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1868 {
1869 	const struct bpf_kfunc_desc *d0 = a;
1870 	const struct bpf_kfunc_desc *d1 = b;
1871 
1872 	/* func_id is not greater than BTF_MAX_TYPE */
1873 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1874 }
1875 
1876 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1877 {
1878 	const struct bpf_kfunc_btf *d0 = a;
1879 	const struct bpf_kfunc_btf *d1 = b;
1880 
1881 	return d0->offset - d1->offset;
1882 }
1883 
1884 static const struct bpf_kfunc_desc *
1885 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1886 {
1887 	struct bpf_kfunc_desc desc = {
1888 		.func_id = func_id,
1889 		.offset = offset,
1890 	};
1891 	struct bpf_kfunc_desc_tab *tab;
1892 
1893 	tab = prog->aux->kfunc_tab;
1894 	return bsearch(&desc, tab->descs, tab->nr_descs,
1895 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1896 }
1897 
1898 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1899 					 s16 offset)
1900 {
1901 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1902 	struct bpf_kfunc_btf_tab *tab;
1903 	struct bpf_kfunc_btf *b;
1904 	struct module *mod;
1905 	struct btf *btf;
1906 	int btf_fd;
1907 
1908 	tab = env->prog->aux->kfunc_btf_tab;
1909 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1910 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1911 	if (!b) {
1912 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1913 			verbose(env, "too many different module BTFs\n");
1914 			return ERR_PTR(-E2BIG);
1915 		}
1916 
1917 		if (bpfptr_is_null(env->fd_array)) {
1918 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1919 			return ERR_PTR(-EPROTO);
1920 		}
1921 
1922 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1923 					    offset * sizeof(btf_fd),
1924 					    sizeof(btf_fd)))
1925 			return ERR_PTR(-EFAULT);
1926 
1927 		btf = btf_get_by_fd(btf_fd);
1928 		if (IS_ERR(btf)) {
1929 			verbose(env, "invalid module BTF fd specified\n");
1930 			return btf;
1931 		}
1932 
1933 		if (!btf_is_module(btf)) {
1934 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1935 			btf_put(btf);
1936 			return ERR_PTR(-EINVAL);
1937 		}
1938 
1939 		mod = btf_try_get_module(btf);
1940 		if (!mod) {
1941 			btf_put(btf);
1942 			return ERR_PTR(-ENXIO);
1943 		}
1944 
1945 		b = &tab->descs[tab->nr_descs++];
1946 		b->btf = btf;
1947 		b->module = mod;
1948 		b->offset = offset;
1949 
1950 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1951 		     kfunc_btf_cmp_by_off, NULL);
1952 	}
1953 	return b->btf;
1954 }
1955 
1956 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1957 {
1958 	if (!tab)
1959 		return;
1960 
1961 	while (tab->nr_descs--) {
1962 		module_put(tab->descs[tab->nr_descs].module);
1963 		btf_put(tab->descs[tab->nr_descs].btf);
1964 	}
1965 	kfree(tab);
1966 }
1967 
1968 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
1969 {
1970 	if (offset) {
1971 		if (offset < 0) {
1972 			/* In the future, this can be allowed to increase limit
1973 			 * of fd index into fd_array, interpreted as u16.
1974 			 */
1975 			verbose(env, "negative offset disallowed for kernel module function call\n");
1976 			return ERR_PTR(-EINVAL);
1977 		}
1978 
1979 		return __find_kfunc_desc_btf(env, offset);
1980 	}
1981 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1982 }
1983 
1984 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1985 {
1986 	const struct btf_type *func, *func_proto;
1987 	struct bpf_kfunc_btf_tab *btf_tab;
1988 	struct bpf_kfunc_desc_tab *tab;
1989 	struct bpf_prog_aux *prog_aux;
1990 	struct bpf_kfunc_desc *desc;
1991 	const char *func_name;
1992 	struct btf *desc_btf;
1993 	unsigned long call_imm;
1994 	unsigned long addr;
1995 	int err;
1996 
1997 	prog_aux = env->prog->aux;
1998 	tab = prog_aux->kfunc_tab;
1999 	btf_tab = prog_aux->kfunc_btf_tab;
2000 	if (!tab) {
2001 		if (!btf_vmlinux) {
2002 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2003 			return -ENOTSUPP;
2004 		}
2005 
2006 		if (!env->prog->jit_requested) {
2007 			verbose(env, "JIT is required for calling kernel function\n");
2008 			return -ENOTSUPP;
2009 		}
2010 
2011 		if (!bpf_jit_supports_kfunc_call()) {
2012 			verbose(env, "JIT does not support calling kernel function\n");
2013 			return -ENOTSUPP;
2014 		}
2015 
2016 		if (!env->prog->gpl_compatible) {
2017 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2018 			return -EINVAL;
2019 		}
2020 
2021 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2022 		if (!tab)
2023 			return -ENOMEM;
2024 		prog_aux->kfunc_tab = tab;
2025 	}
2026 
2027 	/* func_id == 0 is always invalid, but instead of returning an error, be
2028 	 * conservative and wait until the code elimination pass before returning
2029 	 * error, so that invalid calls that get pruned out can be in BPF programs
2030 	 * loaded from userspace.  It is also required that offset be untouched
2031 	 * for such calls.
2032 	 */
2033 	if (!func_id && !offset)
2034 		return 0;
2035 
2036 	if (!btf_tab && offset) {
2037 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2038 		if (!btf_tab)
2039 			return -ENOMEM;
2040 		prog_aux->kfunc_btf_tab = btf_tab;
2041 	}
2042 
2043 	desc_btf = find_kfunc_desc_btf(env, offset);
2044 	if (IS_ERR(desc_btf)) {
2045 		verbose(env, "failed to find BTF for kernel function\n");
2046 		return PTR_ERR(desc_btf);
2047 	}
2048 
2049 	if (find_kfunc_desc(env->prog, func_id, offset))
2050 		return 0;
2051 
2052 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2053 		verbose(env, "too many different kernel function calls\n");
2054 		return -E2BIG;
2055 	}
2056 
2057 	func = btf_type_by_id(desc_btf, func_id);
2058 	if (!func || !btf_type_is_func(func)) {
2059 		verbose(env, "kernel btf_id %u is not a function\n",
2060 			func_id);
2061 		return -EINVAL;
2062 	}
2063 	func_proto = btf_type_by_id(desc_btf, func->type);
2064 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2065 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2066 			func_id);
2067 		return -EINVAL;
2068 	}
2069 
2070 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2071 	addr = kallsyms_lookup_name(func_name);
2072 	if (!addr) {
2073 		verbose(env, "cannot find address for kernel function %s\n",
2074 			func_name);
2075 		return -EINVAL;
2076 	}
2077 
2078 	call_imm = BPF_CALL_IMM(addr);
2079 	/* Check whether or not the relative offset overflows desc->imm */
2080 	if ((unsigned long)(s32)call_imm != call_imm) {
2081 		verbose(env, "address of kernel function %s is out of range\n",
2082 			func_name);
2083 		return -EINVAL;
2084 	}
2085 
2086 	desc = &tab->descs[tab->nr_descs++];
2087 	desc->func_id = func_id;
2088 	desc->imm = call_imm;
2089 	desc->offset = offset;
2090 	err = btf_distill_func_proto(&env->log, desc_btf,
2091 				     func_proto, func_name,
2092 				     &desc->func_model);
2093 	if (!err)
2094 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2095 		     kfunc_desc_cmp_by_id_off, NULL);
2096 	return err;
2097 }
2098 
2099 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2100 {
2101 	const struct bpf_kfunc_desc *d0 = a;
2102 	const struct bpf_kfunc_desc *d1 = b;
2103 
2104 	if (d0->imm > d1->imm)
2105 		return 1;
2106 	else if (d0->imm < d1->imm)
2107 		return -1;
2108 	return 0;
2109 }
2110 
2111 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2112 {
2113 	struct bpf_kfunc_desc_tab *tab;
2114 
2115 	tab = prog->aux->kfunc_tab;
2116 	if (!tab)
2117 		return;
2118 
2119 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2120 	     kfunc_desc_cmp_by_imm, NULL);
2121 }
2122 
2123 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2124 {
2125 	return !!prog->aux->kfunc_tab;
2126 }
2127 
2128 const struct btf_func_model *
2129 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2130 			 const struct bpf_insn *insn)
2131 {
2132 	const struct bpf_kfunc_desc desc = {
2133 		.imm = insn->imm,
2134 	};
2135 	const struct bpf_kfunc_desc *res;
2136 	struct bpf_kfunc_desc_tab *tab;
2137 
2138 	tab = prog->aux->kfunc_tab;
2139 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2140 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2141 
2142 	return res ? &res->func_model : NULL;
2143 }
2144 
2145 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2146 {
2147 	struct bpf_subprog_info *subprog = env->subprog_info;
2148 	struct bpf_insn *insn = env->prog->insnsi;
2149 	int i, ret, insn_cnt = env->prog->len;
2150 
2151 	/* Add entry function. */
2152 	ret = add_subprog(env, 0);
2153 	if (ret)
2154 		return ret;
2155 
2156 	for (i = 0; i < insn_cnt; i++, insn++) {
2157 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2158 		    !bpf_pseudo_kfunc_call(insn))
2159 			continue;
2160 
2161 		if (!env->bpf_capable) {
2162 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2163 			return -EPERM;
2164 		}
2165 
2166 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2167 			ret = add_subprog(env, i + insn->imm + 1);
2168 		else
2169 			ret = add_kfunc_call(env, insn->imm, insn->off);
2170 
2171 		if (ret < 0)
2172 			return ret;
2173 	}
2174 
2175 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2176 	 * logic. 'subprog_cnt' should not be increased.
2177 	 */
2178 	subprog[env->subprog_cnt].start = insn_cnt;
2179 
2180 	if (env->log.level & BPF_LOG_LEVEL2)
2181 		for (i = 0; i < env->subprog_cnt; i++)
2182 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2183 
2184 	return 0;
2185 }
2186 
2187 static int check_subprogs(struct bpf_verifier_env *env)
2188 {
2189 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2190 	struct bpf_subprog_info *subprog = env->subprog_info;
2191 	struct bpf_insn *insn = env->prog->insnsi;
2192 	int insn_cnt = env->prog->len;
2193 
2194 	/* now check that all jumps are within the same subprog */
2195 	subprog_start = subprog[cur_subprog].start;
2196 	subprog_end = subprog[cur_subprog + 1].start;
2197 	for (i = 0; i < insn_cnt; i++) {
2198 		u8 code = insn[i].code;
2199 
2200 		if (code == (BPF_JMP | BPF_CALL) &&
2201 		    insn[i].imm == BPF_FUNC_tail_call &&
2202 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2203 			subprog[cur_subprog].has_tail_call = true;
2204 		if (BPF_CLASS(code) == BPF_LD &&
2205 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2206 			subprog[cur_subprog].has_ld_abs = true;
2207 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2208 			goto next;
2209 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2210 			goto next;
2211 		off = i + insn[i].off + 1;
2212 		if (off < subprog_start || off >= subprog_end) {
2213 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2214 			return -EINVAL;
2215 		}
2216 next:
2217 		if (i == subprog_end - 1) {
2218 			/* to avoid fall-through from one subprog into another
2219 			 * the last insn of the subprog should be either exit
2220 			 * or unconditional jump back
2221 			 */
2222 			if (code != (BPF_JMP | BPF_EXIT) &&
2223 			    code != (BPF_JMP | BPF_JA)) {
2224 				verbose(env, "last insn is not an exit or jmp\n");
2225 				return -EINVAL;
2226 			}
2227 			subprog_start = subprog_end;
2228 			cur_subprog++;
2229 			if (cur_subprog < env->subprog_cnt)
2230 				subprog_end = subprog[cur_subprog + 1].start;
2231 		}
2232 	}
2233 	return 0;
2234 }
2235 
2236 /* Parentage chain of this register (or stack slot) should take care of all
2237  * issues like callee-saved registers, stack slot allocation time, etc.
2238  */
2239 static int mark_reg_read(struct bpf_verifier_env *env,
2240 			 const struct bpf_reg_state *state,
2241 			 struct bpf_reg_state *parent, u8 flag)
2242 {
2243 	bool writes = parent == state->parent; /* Observe write marks */
2244 	int cnt = 0;
2245 
2246 	while (parent) {
2247 		/* if read wasn't screened by an earlier write ... */
2248 		if (writes && state->live & REG_LIVE_WRITTEN)
2249 			break;
2250 		if (parent->live & REG_LIVE_DONE) {
2251 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2252 				reg_type_str(env, parent->type),
2253 				parent->var_off.value, parent->off);
2254 			return -EFAULT;
2255 		}
2256 		/* The first condition is more likely to be true than the
2257 		 * second, checked it first.
2258 		 */
2259 		if ((parent->live & REG_LIVE_READ) == flag ||
2260 		    parent->live & REG_LIVE_READ64)
2261 			/* The parentage chain never changes and
2262 			 * this parent was already marked as LIVE_READ.
2263 			 * There is no need to keep walking the chain again and
2264 			 * keep re-marking all parents as LIVE_READ.
2265 			 * This case happens when the same register is read
2266 			 * multiple times without writes into it in-between.
2267 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2268 			 * then no need to set the weak REG_LIVE_READ32.
2269 			 */
2270 			break;
2271 		/* ... then we depend on parent's value */
2272 		parent->live |= flag;
2273 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2274 		if (flag == REG_LIVE_READ64)
2275 			parent->live &= ~REG_LIVE_READ32;
2276 		state = parent;
2277 		parent = state->parent;
2278 		writes = true;
2279 		cnt++;
2280 	}
2281 
2282 	if (env->longest_mark_read_walk < cnt)
2283 		env->longest_mark_read_walk = cnt;
2284 	return 0;
2285 }
2286 
2287 /* This function is supposed to be used by the following 32-bit optimization
2288  * code only. It returns TRUE if the source or destination register operates
2289  * on 64-bit, otherwise return FALSE.
2290  */
2291 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2292 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2293 {
2294 	u8 code, class, op;
2295 
2296 	code = insn->code;
2297 	class = BPF_CLASS(code);
2298 	op = BPF_OP(code);
2299 	if (class == BPF_JMP) {
2300 		/* BPF_EXIT for "main" will reach here. Return TRUE
2301 		 * conservatively.
2302 		 */
2303 		if (op == BPF_EXIT)
2304 			return true;
2305 		if (op == BPF_CALL) {
2306 			/* BPF to BPF call will reach here because of marking
2307 			 * caller saved clobber with DST_OP_NO_MARK for which we
2308 			 * don't care the register def because they are anyway
2309 			 * marked as NOT_INIT already.
2310 			 */
2311 			if (insn->src_reg == BPF_PSEUDO_CALL)
2312 				return false;
2313 			/* Helper call will reach here because of arg type
2314 			 * check, conservatively return TRUE.
2315 			 */
2316 			if (t == SRC_OP)
2317 				return true;
2318 
2319 			return false;
2320 		}
2321 	}
2322 
2323 	if (class == BPF_ALU64 || class == BPF_JMP ||
2324 	    /* BPF_END always use BPF_ALU class. */
2325 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2326 		return true;
2327 
2328 	if (class == BPF_ALU || class == BPF_JMP32)
2329 		return false;
2330 
2331 	if (class == BPF_LDX) {
2332 		if (t != SRC_OP)
2333 			return BPF_SIZE(code) == BPF_DW;
2334 		/* LDX source must be ptr. */
2335 		return true;
2336 	}
2337 
2338 	if (class == BPF_STX) {
2339 		/* BPF_STX (including atomic variants) has multiple source
2340 		 * operands, one of which is a ptr. Check whether the caller is
2341 		 * asking about it.
2342 		 */
2343 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2344 			return true;
2345 		return BPF_SIZE(code) == BPF_DW;
2346 	}
2347 
2348 	if (class == BPF_LD) {
2349 		u8 mode = BPF_MODE(code);
2350 
2351 		/* LD_IMM64 */
2352 		if (mode == BPF_IMM)
2353 			return true;
2354 
2355 		/* Both LD_IND and LD_ABS return 32-bit data. */
2356 		if (t != SRC_OP)
2357 			return  false;
2358 
2359 		/* Implicit ctx ptr. */
2360 		if (regno == BPF_REG_6)
2361 			return true;
2362 
2363 		/* Explicit source could be any width. */
2364 		return true;
2365 	}
2366 
2367 	if (class == BPF_ST)
2368 		/* The only source register for BPF_ST is a ptr. */
2369 		return true;
2370 
2371 	/* Conservatively return true at default. */
2372 	return true;
2373 }
2374 
2375 /* Return the regno defined by the insn, or -1. */
2376 static int insn_def_regno(const struct bpf_insn *insn)
2377 {
2378 	switch (BPF_CLASS(insn->code)) {
2379 	case BPF_JMP:
2380 	case BPF_JMP32:
2381 	case BPF_ST:
2382 		return -1;
2383 	case BPF_STX:
2384 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2385 		    (insn->imm & BPF_FETCH)) {
2386 			if (insn->imm == BPF_CMPXCHG)
2387 				return BPF_REG_0;
2388 			else
2389 				return insn->src_reg;
2390 		} else {
2391 			return -1;
2392 		}
2393 	default:
2394 		return insn->dst_reg;
2395 	}
2396 }
2397 
2398 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2399 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2400 {
2401 	int dst_reg = insn_def_regno(insn);
2402 
2403 	if (dst_reg == -1)
2404 		return false;
2405 
2406 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2407 }
2408 
2409 static void mark_insn_zext(struct bpf_verifier_env *env,
2410 			   struct bpf_reg_state *reg)
2411 {
2412 	s32 def_idx = reg->subreg_def;
2413 
2414 	if (def_idx == DEF_NOT_SUBREG)
2415 		return;
2416 
2417 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2418 	/* The dst will be zero extended, so won't be sub-register anymore. */
2419 	reg->subreg_def = DEF_NOT_SUBREG;
2420 }
2421 
2422 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2423 			 enum reg_arg_type t)
2424 {
2425 	struct bpf_verifier_state *vstate = env->cur_state;
2426 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2427 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2428 	struct bpf_reg_state *reg, *regs = state->regs;
2429 	bool rw64;
2430 
2431 	if (regno >= MAX_BPF_REG) {
2432 		verbose(env, "R%d is invalid\n", regno);
2433 		return -EINVAL;
2434 	}
2435 
2436 	mark_reg_scratched(env, regno);
2437 
2438 	reg = &regs[regno];
2439 	rw64 = is_reg64(env, insn, regno, reg, t);
2440 	if (t == SRC_OP) {
2441 		/* check whether register used as source operand can be read */
2442 		if (reg->type == NOT_INIT) {
2443 			verbose(env, "R%d !read_ok\n", regno);
2444 			return -EACCES;
2445 		}
2446 		/* We don't need to worry about FP liveness because it's read-only */
2447 		if (regno == BPF_REG_FP)
2448 			return 0;
2449 
2450 		if (rw64)
2451 			mark_insn_zext(env, reg);
2452 
2453 		return mark_reg_read(env, reg, reg->parent,
2454 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2455 	} else {
2456 		/* check whether register used as dest operand can be written to */
2457 		if (regno == BPF_REG_FP) {
2458 			verbose(env, "frame pointer is read only\n");
2459 			return -EACCES;
2460 		}
2461 		reg->live |= REG_LIVE_WRITTEN;
2462 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2463 		if (t == DST_OP)
2464 			mark_reg_unknown(env, regs, regno);
2465 	}
2466 	return 0;
2467 }
2468 
2469 /* for any branch, call, exit record the history of jmps in the given state */
2470 static int push_jmp_history(struct bpf_verifier_env *env,
2471 			    struct bpf_verifier_state *cur)
2472 {
2473 	u32 cnt = cur->jmp_history_cnt;
2474 	struct bpf_idx_pair *p;
2475 
2476 	cnt++;
2477 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2478 	if (!p)
2479 		return -ENOMEM;
2480 	p[cnt - 1].idx = env->insn_idx;
2481 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2482 	cur->jmp_history = p;
2483 	cur->jmp_history_cnt = cnt;
2484 	return 0;
2485 }
2486 
2487 /* Backtrack one insn at a time. If idx is not at the top of recorded
2488  * history then previous instruction came from straight line execution.
2489  */
2490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2491 			     u32 *history)
2492 {
2493 	u32 cnt = *history;
2494 
2495 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2496 		i = st->jmp_history[cnt - 1].prev_idx;
2497 		(*history)--;
2498 	} else {
2499 		i--;
2500 	}
2501 	return i;
2502 }
2503 
2504 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2505 {
2506 	const struct btf_type *func;
2507 	struct btf *desc_btf;
2508 
2509 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2510 		return NULL;
2511 
2512 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2513 	if (IS_ERR(desc_btf))
2514 		return "<error>";
2515 
2516 	func = btf_type_by_id(desc_btf, insn->imm);
2517 	return btf_name_by_offset(desc_btf, func->name_off);
2518 }
2519 
2520 /* For given verifier state backtrack_insn() is called from the last insn to
2521  * the first insn. Its purpose is to compute a bitmask of registers and
2522  * stack slots that needs precision in the parent verifier state.
2523  */
2524 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2525 			  u32 *reg_mask, u64 *stack_mask)
2526 {
2527 	const struct bpf_insn_cbs cbs = {
2528 		.cb_call	= disasm_kfunc_name,
2529 		.cb_print	= verbose,
2530 		.private_data	= env,
2531 	};
2532 	struct bpf_insn *insn = env->prog->insnsi + idx;
2533 	u8 class = BPF_CLASS(insn->code);
2534 	u8 opcode = BPF_OP(insn->code);
2535 	u8 mode = BPF_MODE(insn->code);
2536 	u32 dreg = 1u << insn->dst_reg;
2537 	u32 sreg = 1u << insn->src_reg;
2538 	u32 spi;
2539 
2540 	if (insn->code == 0)
2541 		return 0;
2542 	if (env->log.level & BPF_LOG_LEVEL2) {
2543 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2544 		verbose(env, "%d: ", idx);
2545 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2546 	}
2547 
2548 	if (class == BPF_ALU || class == BPF_ALU64) {
2549 		if (!(*reg_mask & dreg))
2550 			return 0;
2551 		if (opcode == BPF_MOV) {
2552 			if (BPF_SRC(insn->code) == BPF_X) {
2553 				/* dreg = sreg
2554 				 * dreg needs precision after this insn
2555 				 * sreg needs precision before this insn
2556 				 */
2557 				*reg_mask &= ~dreg;
2558 				*reg_mask |= sreg;
2559 			} else {
2560 				/* dreg = K
2561 				 * dreg needs precision after this insn.
2562 				 * Corresponding register is already marked
2563 				 * as precise=true in this verifier state.
2564 				 * No further markings in parent are necessary
2565 				 */
2566 				*reg_mask &= ~dreg;
2567 			}
2568 		} else {
2569 			if (BPF_SRC(insn->code) == BPF_X) {
2570 				/* dreg += sreg
2571 				 * both dreg and sreg need precision
2572 				 * before this insn
2573 				 */
2574 				*reg_mask |= sreg;
2575 			} /* else dreg += K
2576 			   * dreg still needs precision before this insn
2577 			   */
2578 		}
2579 	} else if (class == BPF_LDX) {
2580 		if (!(*reg_mask & dreg))
2581 			return 0;
2582 		*reg_mask &= ~dreg;
2583 
2584 		/* scalars can only be spilled into stack w/o losing precision.
2585 		 * Load from any other memory can be zero extended.
2586 		 * The desire to keep that precision is already indicated
2587 		 * by 'precise' mark in corresponding register of this state.
2588 		 * No further tracking necessary.
2589 		 */
2590 		if (insn->src_reg != BPF_REG_FP)
2591 			return 0;
2592 
2593 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2594 		 * that [fp - off] slot contains scalar that needs to be
2595 		 * tracked with precision
2596 		 */
2597 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2598 		if (spi >= 64) {
2599 			verbose(env, "BUG spi %d\n", spi);
2600 			WARN_ONCE(1, "verifier backtracking bug");
2601 			return -EFAULT;
2602 		}
2603 		*stack_mask |= 1ull << spi;
2604 	} else if (class == BPF_STX || class == BPF_ST) {
2605 		if (*reg_mask & dreg)
2606 			/* stx & st shouldn't be using _scalar_ dst_reg
2607 			 * to access memory. It means backtracking
2608 			 * encountered a case of pointer subtraction.
2609 			 */
2610 			return -ENOTSUPP;
2611 		/* scalars can only be spilled into stack */
2612 		if (insn->dst_reg != BPF_REG_FP)
2613 			return 0;
2614 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2615 		if (spi >= 64) {
2616 			verbose(env, "BUG spi %d\n", spi);
2617 			WARN_ONCE(1, "verifier backtracking bug");
2618 			return -EFAULT;
2619 		}
2620 		if (!(*stack_mask & (1ull << spi)))
2621 			return 0;
2622 		*stack_mask &= ~(1ull << spi);
2623 		if (class == BPF_STX)
2624 			*reg_mask |= sreg;
2625 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2626 		if (opcode == BPF_CALL) {
2627 			if (insn->src_reg == BPF_PSEUDO_CALL)
2628 				return -ENOTSUPP;
2629 			/* regular helper call sets R0 */
2630 			*reg_mask &= ~1;
2631 			if (*reg_mask & 0x3f) {
2632 				/* if backtracing was looking for registers R1-R5
2633 				 * they should have been found already.
2634 				 */
2635 				verbose(env, "BUG regs %x\n", *reg_mask);
2636 				WARN_ONCE(1, "verifier backtracking bug");
2637 				return -EFAULT;
2638 			}
2639 		} else if (opcode == BPF_EXIT) {
2640 			return -ENOTSUPP;
2641 		}
2642 	} else if (class == BPF_LD) {
2643 		if (!(*reg_mask & dreg))
2644 			return 0;
2645 		*reg_mask &= ~dreg;
2646 		/* It's ld_imm64 or ld_abs or ld_ind.
2647 		 * For ld_imm64 no further tracking of precision
2648 		 * into parent is necessary
2649 		 */
2650 		if (mode == BPF_IND || mode == BPF_ABS)
2651 			/* to be analyzed */
2652 			return -ENOTSUPP;
2653 	}
2654 	return 0;
2655 }
2656 
2657 /* the scalar precision tracking algorithm:
2658  * . at the start all registers have precise=false.
2659  * . scalar ranges are tracked as normal through alu and jmp insns.
2660  * . once precise value of the scalar register is used in:
2661  *   .  ptr + scalar alu
2662  *   . if (scalar cond K|scalar)
2663  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2664  *   backtrack through the verifier states and mark all registers and
2665  *   stack slots with spilled constants that these scalar regisers
2666  *   should be precise.
2667  * . during state pruning two registers (or spilled stack slots)
2668  *   are equivalent if both are not precise.
2669  *
2670  * Note the verifier cannot simply walk register parentage chain,
2671  * since many different registers and stack slots could have been
2672  * used to compute single precise scalar.
2673  *
2674  * The approach of starting with precise=true for all registers and then
2675  * backtrack to mark a register as not precise when the verifier detects
2676  * that program doesn't care about specific value (e.g., when helper
2677  * takes register as ARG_ANYTHING parameter) is not safe.
2678  *
2679  * It's ok to walk single parentage chain of the verifier states.
2680  * It's possible that this backtracking will go all the way till 1st insn.
2681  * All other branches will be explored for needing precision later.
2682  *
2683  * The backtracking needs to deal with cases like:
2684  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2685  * r9 -= r8
2686  * r5 = r9
2687  * if r5 > 0x79f goto pc+7
2688  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2689  * r5 += 1
2690  * ...
2691  * call bpf_perf_event_output#25
2692  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2693  *
2694  * and this case:
2695  * r6 = 1
2696  * call foo // uses callee's r6 inside to compute r0
2697  * r0 += r6
2698  * if r0 == 0 goto
2699  *
2700  * to track above reg_mask/stack_mask needs to be independent for each frame.
2701  *
2702  * Also if parent's curframe > frame where backtracking started,
2703  * the verifier need to mark registers in both frames, otherwise callees
2704  * may incorrectly prune callers. This is similar to
2705  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2706  *
2707  * For now backtracking falls back into conservative marking.
2708  */
2709 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2710 				     struct bpf_verifier_state *st)
2711 {
2712 	struct bpf_func_state *func;
2713 	struct bpf_reg_state *reg;
2714 	int i, j;
2715 
2716 	/* big hammer: mark all scalars precise in this path.
2717 	 * pop_stack may still get !precise scalars.
2718 	 */
2719 	for (; st; st = st->parent)
2720 		for (i = 0; i <= st->curframe; i++) {
2721 			func = st->frame[i];
2722 			for (j = 0; j < BPF_REG_FP; j++) {
2723 				reg = &func->regs[j];
2724 				if (reg->type != SCALAR_VALUE)
2725 					continue;
2726 				reg->precise = true;
2727 			}
2728 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2729 				if (!is_spilled_reg(&func->stack[j]))
2730 					continue;
2731 				reg = &func->stack[j].spilled_ptr;
2732 				if (reg->type != SCALAR_VALUE)
2733 					continue;
2734 				reg->precise = true;
2735 			}
2736 		}
2737 }
2738 
2739 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2740 				  int spi)
2741 {
2742 	struct bpf_verifier_state *st = env->cur_state;
2743 	int first_idx = st->first_insn_idx;
2744 	int last_idx = env->insn_idx;
2745 	struct bpf_func_state *func;
2746 	struct bpf_reg_state *reg;
2747 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2748 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2749 	bool skip_first = true;
2750 	bool new_marks = false;
2751 	int i, err;
2752 
2753 	if (!env->bpf_capable)
2754 		return 0;
2755 
2756 	func = st->frame[st->curframe];
2757 	if (regno >= 0) {
2758 		reg = &func->regs[regno];
2759 		if (reg->type != SCALAR_VALUE) {
2760 			WARN_ONCE(1, "backtracing misuse");
2761 			return -EFAULT;
2762 		}
2763 		if (!reg->precise)
2764 			new_marks = true;
2765 		else
2766 			reg_mask = 0;
2767 		reg->precise = true;
2768 	}
2769 
2770 	while (spi >= 0) {
2771 		if (!is_spilled_reg(&func->stack[spi])) {
2772 			stack_mask = 0;
2773 			break;
2774 		}
2775 		reg = &func->stack[spi].spilled_ptr;
2776 		if (reg->type != SCALAR_VALUE) {
2777 			stack_mask = 0;
2778 			break;
2779 		}
2780 		if (!reg->precise)
2781 			new_marks = true;
2782 		else
2783 			stack_mask = 0;
2784 		reg->precise = true;
2785 		break;
2786 	}
2787 
2788 	if (!new_marks)
2789 		return 0;
2790 	if (!reg_mask && !stack_mask)
2791 		return 0;
2792 	for (;;) {
2793 		DECLARE_BITMAP(mask, 64);
2794 		u32 history = st->jmp_history_cnt;
2795 
2796 		if (env->log.level & BPF_LOG_LEVEL2)
2797 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2798 		for (i = last_idx;;) {
2799 			if (skip_first) {
2800 				err = 0;
2801 				skip_first = false;
2802 			} else {
2803 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2804 			}
2805 			if (err == -ENOTSUPP) {
2806 				mark_all_scalars_precise(env, st);
2807 				return 0;
2808 			} else if (err) {
2809 				return err;
2810 			}
2811 			if (!reg_mask && !stack_mask)
2812 				/* Found assignment(s) into tracked register in this state.
2813 				 * Since this state is already marked, just return.
2814 				 * Nothing to be tracked further in the parent state.
2815 				 */
2816 				return 0;
2817 			if (i == first_idx)
2818 				break;
2819 			i = get_prev_insn_idx(st, i, &history);
2820 			if (i >= env->prog->len) {
2821 				/* This can happen if backtracking reached insn 0
2822 				 * and there are still reg_mask or stack_mask
2823 				 * to backtrack.
2824 				 * It means the backtracking missed the spot where
2825 				 * particular register was initialized with a constant.
2826 				 */
2827 				verbose(env, "BUG backtracking idx %d\n", i);
2828 				WARN_ONCE(1, "verifier backtracking bug");
2829 				return -EFAULT;
2830 			}
2831 		}
2832 		st = st->parent;
2833 		if (!st)
2834 			break;
2835 
2836 		new_marks = false;
2837 		func = st->frame[st->curframe];
2838 		bitmap_from_u64(mask, reg_mask);
2839 		for_each_set_bit(i, mask, 32) {
2840 			reg = &func->regs[i];
2841 			if (reg->type != SCALAR_VALUE) {
2842 				reg_mask &= ~(1u << i);
2843 				continue;
2844 			}
2845 			if (!reg->precise)
2846 				new_marks = true;
2847 			reg->precise = true;
2848 		}
2849 
2850 		bitmap_from_u64(mask, stack_mask);
2851 		for_each_set_bit(i, mask, 64) {
2852 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2853 				/* the sequence of instructions:
2854 				 * 2: (bf) r3 = r10
2855 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2856 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2857 				 * doesn't contain jmps. It's backtracked
2858 				 * as a single block.
2859 				 * During backtracking insn 3 is not recognized as
2860 				 * stack access, so at the end of backtracking
2861 				 * stack slot fp-8 is still marked in stack_mask.
2862 				 * However the parent state may not have accessed
2863 				 * fp-8 and it's "unallocated" stack space.
2864 				 * In such case fallback to conservative.
2865 				 */
2866 				mark_all_scalars_precise(env, st);
2867 				return 0;
2868 			}
2869 
2870 			if (!is_spilled_reg(&func->stack[i])) {
2871 				stack_mask &= ~(1ull << i);
2872 				continue;
2873 			}
2874 			reg = &func->stack[i].spilled_ptr;
2875 			if (reg->type != SCALAR_VALUE) {
2876 				stack_mask &= ~(1ull << i);
2877 				continue;
2878 			}
2879 			if (!reg->precise)
2880 				new_marks = true;
2881 			reg->precise = true;
2882 		}
2883 		if (env->log.level & BPF_LOG_LEVEL2) {
2884 			verbose(env, "parent %s regs=%x stack=%llx marks:",
2885 				new_marks ? "didn't have" : "already had",
2886 				reg_mask, stack_mask);
2887 			print_verifier_state(env, func, true);
2888 		}
2889 
2890 		if (!reg_mask && !stack_mask)
2891 			break;
2892 		if (!new_marks)
2893 			break;
2894 
2895 		last_idx = st->last_insn_idx;
2896 		first_idx = st->first_insn_idx;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2902 {
2903 	return __mark_chain_precision(env, regno, -1);
2904 }
2905 
2906 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2907 {
2908 	return __mark_chain_precision(env, -1, spi);
2909 }
2910 
2911 static bool is_spillable_regtype(enum bpf_reg_type type)
2912 {
2913 	switch (base_type(type)) {
2914 	case PTR_TO_MAP_VALUE:
2915 	case PTR_TO_STACK:
2916 	case PTR_TO_CTX:
2917 	case PTR_TO_PACKET:
2918 	case PTR_TO_PACKET_META:
2919 	case PTR_TO_PACKET_END:
2920 	case PTR_TO_FLOW_KEYS:
2921 	case CONST_PTR_TO_MAP:
2922 	case PTR_TO_SOCKET:
2923 	case PTR_TO_SOCK_COMMON:
2924 	case PTR_TO_TCP_SOCK:
2925 	case PTR_TO_XDP_SOCK:
2926 	case PTR_TO_BTF_ID:
2927 	case PTR_TO_BUF:
2928 	case PTR_TO_MEM:
2929 	case PTR_TO_FUNC:
2930 	case PTR_TO_MAP_KEY:
2931 		return true;
2932 	default:
2933 		return false;
2934 	}
2935 }
2936 
2937 /* Does this register contain a constant zero? */
2938 static bool register_is_null(struct bpf_reg_state *reg)
2939 {
2940 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2941 }
2942 
2943 static bool register_is_const(struct bpf_reg_state *reg)
2944 {
2945 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2946 }
2947 
2948 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2949 {
2950 	return tnum_is_unknown(reg->var_off) &&
2951 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2952 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2953 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2954 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2955 }
2956 
2957 static bool register_is_bounded(struct bpf_reg_state *reg)
2958 {
2959 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2960 }
2961 
2962 static bool __is_pointer_value(bool allow_ptr_leaks,
2963 			       const struct bpf_reg_state *reg)
2964 {
2965 	if (allow_ptr_leaks)
2966 		return false;
2967 
2968 	return reg->type != SCALAR_VALUE;
2969 }
2970 
2971 static void save_register_state(struct bpf_func_state *state,
2972 				int spi, struct bpf_reg_state *reg,
2973 				int size)
2974 {
2975 	int i;
2976 
2977 	state->stack[spi].spilled_ptr = *reg;
2978 	if (size == BPF_REG_SIZE)
2979 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2980 
2981 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2982 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2983 
2984 	/* size < 8 bytes spill */
2985 	for (; i; i--)
2986 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2987 }
2988 
2989 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2990  * stack boundary and alignment are checked in check_mem_access()
2991  */
2992 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2993 				       /* stack frame we're writing to */
2994 				       struct bpf_func_state *state,
2995 				       int off, int size, int value_regno,
2996 				       int insn_idx)
2997 {
2998 	struct bpf_func_state *cur; /* state of the current function */
2999 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3000 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3001 	struct bpf_reg_state *reg = NULL;
3002 
3003 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3004 	if (err)
3005 		return err;
3006 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3007 	 * so it's aligned access and [off, off + size) are within stack limits
3008 	 */
3009 	if (!env->allow_ptr_leaks &&
3010 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3011 	    size != BPF_REG_SIZE) {
3012 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3013 		return -EACCES;
3014 	}
3015 
3016 	cur = env->cur_state->frame[env->cur_state->curframe];
3017 	if (value_regno >= 0)
3018 		reg = &cur->regs[value_regno];
3019 	if (!env->bypass_spec_v4) {
3020 		bool sanitize = reg && is_spillable_regtype(reg->type);
3021 
3022 		for (i = 0; i < size; i++) {
3023 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3024 				sanitize = true;
3025 				break;
3026 			}
3027 		}
3028 
3029 		if (sanitize)
3030 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3031 	}
3032 
3033 	mark_stack_slot_scratched(env, spi);
3034 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3035 	    !register_is_null(reg) && env->bpf_capable) {
3036 		if (dst_reg != BPF_REG_FP) {
3037 			/* The backtracking logic can only recognize explicit
3038 			 * stack slot address like [fp - 8]. Other spill of
3039 			 * scalar via different register has to be conservative.
3040 			 * Backtrack from here and mark all registers as precise
3041 			 * that contributed into 'reg' being a constant.
3042 			 */
3043 			err = mark_chain_precision(env, value_regno);
3044 			if (err)
3045 				return err;
3046 		}
3047 		save_register_state(state, spi, reg, size);
3048 	} else if (reg && is_spillable_regtype(reg->type)) {
3049 		/* register containing pointer is being spilled into stack */
3050 		if (size != BPF_REG_SIZE) {
3051 			verbose_linfo(env, insn_idx, "; ");
3052 			verbose(env, "invalid size of register spill\n");
3053 			return -EACCES;
3054 		}
3055 		if (state != cur && reg->type == PTR_TO_STACK) {
3056 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3057 			return -EINVAL;
3058 		}
3059 		save_register_state(state, spi, reg, size);
3060 	} else {
3061 		u8 type = STACK_MISC;
3062 
3063 		/* regular write of data into stack destroys any spilled ptr */
3064 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3065 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3066 		if (is_spilled_reg(&state->stack[spi]))
3067 			for (i = 0; i < BPF_REG_SIZE; i++)
3068 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3069 
3070 		/* only mark the slot as written if all 8 bytes were written
3071 		 * otherwise read propagation may incorrectly stop too soon
3072 		 * when stack slots are partially written.
3073 		 * This heuristic means that read propagation will be
3074 		 * conservative, since it will add reg_live_read marks
3075 		 * to stack slots all the way to first state when programs
3076 		 * writes+reads less than 8 bytes
3077 		 */
3078 		if (size == BPF_REG_SIZE)
3079 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3080 
3081 		/* when we zero initialize stack slots mark them as such */
3082 		if (reg && register_is_null(reg)) {
3083 			/* backtracking doesn't work for STACK_ZERO yet. */
3084 			err = mark_chain_precision(env, value_regno);
3085 			if (err)
3086 				return err;
3087 			type = STACK_ZERO;
3088 		}
3089 
3090 		/* Mark slots affected by this stack write. */
3091 		for (i = 0; i < size; i++)
3092 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3093 				type;
3094 	}
3095 	return 0;
3096 }
3097 
3098 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3099  * known to contain a variable offset.
3100  * This function checks whether the write is permitted and conservatively
3101  * tracks the effects of the write, considering that each stack slot in the
3102  * dynamic range is potentially written to.
3103  *
3104  * 'off' includes 'regno->off'.
3105  * 'value_regno' can be -1, meaning that an unknown value is being written to
3106  * the stack.
3107  *
3108  * Spilled pointers in range are not marked as written because we don't know
3109  * what's going to be actually written. This means that read propagation for
3110  * future reads cannot be terminated by this write.
3111  *
3112  * For privileged programs, uninitialized stack slots are considered
3113  * initialized by this write (even though we don't know exactly what offsets
3114  * are going to be written to). The idea is that we don't want the verifier to
3115  * reject future reads that access slots written to through variable offsets.
3116  */
3117 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3118 				     /* func where register points to */
3119 				     struct bpf_func_state *state,
3120 				     int ptr_regno, int off, int size,
3121 				     int value_regno, int insn_idx)
3122 {
3123 	struct bpf_func_state *cur; /* state of the current function */
3124 	int min_off, max_off;
3125 	int i, err;
3126 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3127 	bool writing_zero = false;
3128 	/* set if the fact that we're writing a zero is used to let any
3129 	 * stack slots remain STACK_ZERO
3130 	 */
3131 	bool zero_used = false;
3132 
3133 	cur = env->cur_state->frame[env->cur_state->curframe];
3134 	ptr_reg = &cur->regs[ptr_regno];
3135 	min_off = ptr_reg->smin_value + off;
3136 	max_off = ptr_reg->smax_value + off + size;
3137 	if (value_regno >= 0)
3138 		value_reg = &cur->regs[value_regno];
3139 	if (value_reg && register_is_null(value_reg))
3140 		writing_zero = true;
3141 
3142 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3143 	if (err)
3144 		return err;
3145 
3146 
3147 	/* Variable offset writes destroy any spilled pointers in range. */
3148 	for (i = min_off; i < max_off; i++) {
3149 		u8 new_type, *stype;
3150 		int slot, spi;
3151 
3152 		slot = -i - 1;
3153 		spi = slot / BPF_REG_SIZE;
3154 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3155 		mark_stack_slot_scratched(env, spi);
3156 
3157 		if (!env->allow_ptr_leaks
3158 				&& *stype != NOT_INIT
3159 				&& *stype != SCALAR_VALUE) {
3160 			/* Reject the write if there's are spilled pointers in
3161 			 * range. If we didn't reject here, the ptr status
3162 			 * would be erased below (even though not all slots are
3163 			 * actually overwritten), possibly opening the door to
3164 			 * leaks.
3165 			 */
3166 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3167 				insn_idx, i);
3168 			return -EINVAL;
3169 		}
3170 
3171 		/* Erase all spilled pointers. */
3172 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3173 
3174 		/* Update the slot type. */
3175 		new_type = STACK_MISC;
3176 		if (writing_zero && *stype == STACK_ZERO) {
3177 			new_type = STACK_ZERO;
3178 			zero_used = true;
3179 		}
3180 		/* If the slot is STACK_INVALID, we check whether it's OK to
3181 		 * pretend that it will be initialized by this write. The slot
3182 		 * might not actually be written to, and so if we mark it as
3183 		 * initialized future reads might leak uninitialized memory.
3184 		 * For privileged programs, we will accept such reads to slots
3185 		 * that may or may not be written because, if we're reject
3186 		 * them, the error would be too confusing.
3187 		 */
3188 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3189 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3190 					insn_idx, i);
3191 			return -EINVAL;
3192 		}
3193 		*stype = new_type;
3194 	}
3195 	if (zero_used) {
3196 		/* backtracking doesn't work for STACK_ZERO yet. */
3197 		err = mark_chain_precision(env, value_regno);
3198 		if (err)
3199 			return err;
3200 	}
3201 	return 0;
3202 }
3203 
3204 /* When register 'dst_regno' is assigned some values from stack[min_off,
3205  * max_off), we set the register's type according to the types of the
3206  * respective stack slots. If all the stack values are known to be zeros, then
3207  * so is the destination reg. Otherwise, the register is considered to be
3208  * SCALAR. This function does not deal with register filling; the caller must
3209  * ensure that all spilled registers in the stack range have been marked as
3210  * read.
3211  */
3212 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3213 				/* func where src register points to */
3214 				struct bpf_func_state *ptr_state,
3215 				int min_off, int max_off, int dst_regno)
3216 {
3217 	struct bpf_verifier_state *vstate = env->cur_state;
3218 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3219 	int i, slot, spi;
3220 	u8 *stype;
3221 	int zeros = 0;
3222 
3223 	for (i = min_off; i < max_off; i++) {
3224 		slot = -i - 1;
3225 		spi = slot / BPF_REG_SIZE;
3226 		stype = ptr_state->stack[spi].slot_type;
3227 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3228 			break;
3229 		zeros++;
3230 	}
3231 	if (zeros == max_off - min_off) {
3232 		/* any access_size read into register is zero extended,
3233 		 * so the whole register == const_zero
3234 		 */
3235 		__mark_reg_const_zero(&state->regs[dst_regno]);
3236 		/* backtracking doesn't support STACK_ZERO yet,
3237 		 * so mark it precise here, so that later
3238 		 * backtracking can stop here.
3239 		 * Backtracking may not need this if this register
3240 		 * doesn't participate in pointer adjustment.
3241 		 * Forward propagation of precise flag is not
3242 		 * necessary either. This mark is only to stop
3243 		 * backtracking. Any register that contributed
3244 		 * to const 0 was marked precise before spill.
3245 		 */
3246 		state->regs[dst_regno].precise = true;
3247 	} else {
3248 		/* have read misc data from the stack */
3249 		mark_reg_unknown(env, state->regs, dst_regno);
3250 	}
3251 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3252 }
3253 
3254 /* Read the stack at 'off' and put the results into the register indicated by
3255  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3256  * spilled reg.
3257  *
3258  * 'dst_regno' can be -1, meaning that the read value is not going to a
3259  * register.
3260  *
3261  * The access is assumed to be within the current stack bounds.
3262  */
3263 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3264 				      /* func where src register points to */
3265 				      struct bpf_func_state *reg_state,
3266 				      int off, int size, int dst_regno)
3267 {
3268 	struct bpf_verifier_state *vstate = env->cur_state;
3269 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3270 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3271 	struct bpf_reg_state *reg;
3272 	u8 *stype, type;
3273 
3274 	stype = reg_state->stack[spi].slot_type;
3275 	reg = &reg_state->stack[spi].spilled_ptr;
3276 
3277 	if (is_spilled_reg(&reg_state->stack[spi])) {
3278 		u8 spill_size = 1;
3279 
3280 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3281 			spill_size++;
3282 
3283 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3284 			if (reg->type != SCALAR_VALUE) {
3285 				verbose_linfo(env, env->insn_idx, "; ");
3286 				verbose(env, "invalid size of register fill\n");
3287 				return -EACCES;
3288 			}
3289 
3290 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3291 			if (dst_regno < 0)
3292 				return 0;
3293 
3294 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3295 				/* The earlier check_reg_arg() has decided the
3296 				 * subreg_def for this insn.  Save it first.
3297 				 */
3298 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3299 
3300 				state->regs[dst_regno] = *reg;
3301 				state->regs[dst_regno].subreg_def = subreg_def;
3302 			} else {
3303 				for (i = 0; i < size; i++) {
3304 					type = stype[(slot - i) % BPF_REG_SIZE];
3305 					if (type == STACK_SPILL)
3306 						continue;
3307 					if (type == STACK_MISC)
3308 						continue;
3309 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3310 						off, i, size);
3311 					return -EACCES;
3312 				}
3313 				mark_reg_unknown(env, state->regs, dst_regno);
3314 			}
3315 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3316 			return 0;
3317 		}
3318 
3319 		if (dst_regno >= 0) {
3320 			/* restore register state from stack */
3321 			state->regs[dst_regno] = *reg;
3322 			/* mark reg as written since spilled pointer state likely
3323 			 * has its liveness marks cleared by is_state_visited()
3324 			 * which resets stack/reg liveness for state transitions
3325 			 */
3326 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3327 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3328 			/* If dst_regno==-1, the caller is asking us whether
3329 			 * it is acceptable to use this value as a SCALAR_VALUE
3330 			 * (e.g. for XADD).
3331 			 * We must not allow unprivileged callers to do that
3332 			 * with spilled pointers.
3333 			 */
3334 			verbose(env, "leaking pointer from stack off %d\n",
3335 				off);
3336 			return -EACCES;
3337 		}
3338 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3339 	} else {
3340 		for (i = 0; i < size; i++) {
3341 			type = stype[(slot - i) % BPF_REG_SIZE];
3342 			if (type == STACK_MISC)
3343 				continue;
3344 			if (type == STACK_ZERO)
3345 				continue;
3346 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3347 				off, i, size);
3348 			return -EACCES;
3349 		}
3350 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3351 		if (dst_regno >= 0)
3352 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3353 	}
3354 	return 0;
3355 }
3356 
3357 enum bpf_access_src {
3358 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3359 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3360 };
3361 
3362 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3363 					 int regno, int off, int access_size,
3364 					 bool zero_size_allowed,
3365 					 enum bpf_access_src type,
3366 					 struct bpf_call_arg_meta *meta);
3367 
3368 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3369 {
3370 	return cur_regs(env) + regno;
3371 }
3372 
3373 /* Read the stack at 'ptr_regno + off' and put the result into the register
3374  * 'dst_regno'.
3375  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3376  * but not its variable offset.
3377  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3378  *
3379  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3380  * filling registers (i.e. reads of spilled register cannot be detected when
3381  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3382  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3383  * offset; for a fixed offset check_stack_read_fixed_off should be used
3384  * instead.
3385  */
3386 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3387 				    int ptr_regno, int off, int size, int dst_regno)
3388 {
3389 	/* The state of the source register. */
3390 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3391 	struct bpf_func_state *ptr_state = func(env, reg);
3392 	int err;
3393 	int min_off, max_off;
3394 
3395 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3396 	 */
3397 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3398 					    false, ACCESS_DIRECT, NULL);
3399 	if (err)
3400 		return err;
3401 
3402 	min_off = reg->smin_value + off;
3403 	max_off = reg->smax_value + off;
3404 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3405 	return 0;
3406 }
3407 
3408 /* check_stack_read dispatches to check_stack_read_fixed_off or
3409  * check_stack_read_var_off.
3410  *
3411  * The caller must ensure that the offset falls within the allocated stack
3412  * bounds.
3413  *
3414  * 'dst_regno' is a register which will receive the value from the stack. It
3415  * can be -1, meaning that the read value is not going to a register.
3416  */
3417 static int check_stack_read(struct bpf_verifier_env *env,
3418 			    int ptr_regno, int off, int size,
3419 			    int dst_regno)
3420 {
3421 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3422 	struct bpf_func_state *state = func(env, reg);
3423 	int err;
3424 	/* Some accesses are only permitted with a static offset. */
3425 	bool var_off = !tnum_is_const(reg->var_off);
3426 
3427 	/* The offset is required to be static when reads don't go to a
3428 	 * register, in order to not leak pointers (see
3429 	 * check_stack_read_fixed_off).
3430 	 */
3431 	if (dst_regno < 0 && var_off) {
3432 		char tn_buf[48];
3433 
3434 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3435 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3436 			tn_buf, off, size);
3437 		return -EACCES;
3438 	}
3439 	/* Variable offset is prohibited for unprivileged mode for simplicity
3440 	 * since it requires corresponding support in Spectre masking for stack
3441 	 * ALU. See also retrieve_ptr_limit().
3442 	 */
3443 	if (!env->bypass_spec_v1 && var_off) {
3444 		char tn_buf[48];
3445 
3446 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3447 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3448 				ptr_regno, tn_buf);
3449 		return -EACCES;
3450 	}
3451 
3452 	if (!var_off) {
3453 		off += reg->var_off.value;
3454 		err = check_stack_read_fixed_off(env, state, off, size,
3455 						 dst_regno);
3456 	} else {
3457 		/* Variable offset stack reads need more conservative handling
3458 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3459 		 * branch.
3460 		 */
3461 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3462 					       dst_regno);
3463 	}
3464 	return err;
3465 }
3466 
3467 
3468 /* check_stack_write dispatches to check_stack_write_fixed_off or
3469  * check_stack_write_var_off.
3470  *
3471  * 'ptr_regno' is the register used as a pointer into the stack.
3472  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3473  * 'value_regno' is the register whose value we're writing to the stack. It can
3474  * be -1, meaning that we're not writing from a register.
3475  *
3476  * The caller must ensure that the offset falls within the maximum stack size.
3477  */
3478 static int check_stack_write(struct bpf_verifier_env *env,
3479 			     int ptr_regno, int off, int size,
3480 			     int value_regno, int insn_idx)
3481 {
3482 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3483 	struct bpf_func_state *state = func(env, reg);
3484 	int err;
3485 
3486 	if (tnum_is_const(reg->var_off)) {
3487 		off += reg->var_off.value;
3488 		err = check_stack_write_fixed_off(env, state, off, size,
3489 						  value_regno, insn_idx);
3490 	} else {
3491 		/* Variable offset stack reads need more conservative handling
3492 		 * than fixed offset ones.
3493 		 */
3494 		err = check_stack_write_var_off(env, state,
3495 						ptr_regno, off, size,
3496 						value_regno, insn_idx);
3497 	}
3498 	return err;
3499 }
3500 
3501 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3502 				 int off, int size, enum bpf_access_type type)
3503 {
3504 	struct bpf_reg_state *regs = cur_regs(env);
3505 	struct bpf_map *map = regs[regno].map_ptr;
3506 	u32 cap = bpf_map_flags_to_cap(map);
3507 
3508 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3509 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3510 			map->value_size, off, size);
3511 		return -EACCES;
3512 	}
3513 
3514 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3515 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3516 			map->value_size, off, size);
3517 		return -EACCES;
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3524 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3525 			      int off, int size, u32 mem_size,
3526 			      bool zero_size_allowed)
3527 {
3528 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3529 	struct bpf_reg_state *reg;
3530 
3531 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3532 		return 0;
3533 
3534 	reg = &cur_regs(env)[regno];
3535 	switch (reg->type) {
3536 	case PTR_TO_MAP_KEY:
3537 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3538 			mem_size, off, size);
3539 		break;
3540 	case PTR_TO_MAP_VALUE:
3541 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3542 			mem_size, off, size);
3543 		break;
3544 	case PTR_TO_PACKET:
3545 	case PTR_TO_PACKET_META:
3546 	case PTR_TO_PACKET_END:
3547 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3548 			off, size, regno, reg->id, off, mem_size);
3549 		break;
3550 	case PTR_TO_MEM:
3551 	default:
3552 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3553 			mem_size, off, size);
3554 	}
3555 
3556 	return -EACCES;
3557 }
3558 
3559 /* check read/write into a memory region with possible variable offset */
3560 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3561 				   int off, int size, u32 mem_size,
3562 				   bool zero_size_allowed)
3563 {
3564 	struct bpf_verifier_state *vstate = env->cur_state;
3565 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3566 	struct bpf_reg_state *reg = &state->regs[regno];
3567 	int err;
3568 
3569 	/* We may have adjusted the register pointing to memory region, so we
3570 	 * need to try adding each of min_value and max_value to off
3571 	 * to make sure our theoretical access will be safe.
3572 	 *
3573 	 * The minimum value is only important with signed
3574 	 * comparisons where we can't assume the floor of a
3575 	 * value is 0.  If we are using signed variables for our
3576 	 * index'es we need to make sure that whatever we use
3577 	 * will have a set floor within our range.
3578 	 */
3579 	if (reg->smin_value < 0 &&
3580 	    (reg->smin_value == S64_MIN ||
3581 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3582 	      reg->smin_value + off < 0)) {
3583 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3584 			regno);
3585 		return -EACCES;
3586 	}
3587 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3588 				 mem_size, zero_size_allowed);
3589 	if (err) {
3590 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3591 			regno);
3592 		return err;
3593 	}
3594 
3595 	/* If we haven't set a max value then we need to bail since we can't be
3596 	 * sure we won't do bad things.
3597 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3598 	 */
3599 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3600 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3601 			regno);
3602 		return -EACCES;
3603 	}
3604 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3605 				 mem_size, zero_size_allowed);
3606 	if (err) {
3607 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3608 			regno);
3609 		return err;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3616 			       const struct bpf_reg_state *reg, int regno,
3617 			       bool fixed_off_ok)
3618 {
3619 	/* Access to this pointer-typed register or passing it to a helper
3620 	 * is only allowed in its original, unmodified form.
3621 	 */
3622 
3623 	if (reg->off < 0) {
3624 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3625 			reg_type_str(env, reg->type), regno, reg->off);
3626 		return -EACCES;
3627 	}
3628 
3629 	if (!fixed_off_ok && reg->off) {
3630 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3631 			reg_type_str(env, reg->type), regno, reg->off);
3632 		return -EACCES;
3633 	}
3634 
3635 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3636 		char tn_buf[48];
3637 
3638 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3639 		verbose(env, "variable %s access var_off=%s disallowed\n",
3640 			reg_type_str(env, reg->type), tn_buf);
3641 		return -EACCES;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 int check_ptr_off_reg(struct bpf_verifier_env *env,
3648 		      const struct bpf_reg_state *reg, int regno)
3649 {
3650 	return __check_ptr_off_reg(env, reg, regno, false);
3651 }
3652 
3653 static int map_kptr_match_type(struct bpf_verifier_env *env,
3654 			       struct bpf_map_value_off_desc *off_desc,
3655 			       struct bpf_reg_state *reg, u32 regno)
3656 {
3657 	const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3658 	int perm_flags = PTR_MAYBE_NULL;
3659 	const char *reg_name = "";
3660 
3661 	/* Only unreferenced case accepts untrusted pointers */
3662 	if (off_desc->type == BPF_KPTR_UNREF)
3663 		perm_flags |= PTR_UNTRUSTED;
3664 
3665 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3666 		goto bad_type;
3667 
3668 	if (!btf_is_kernel(reg->btf)) {
3669 		verbose(env, "R%d must point to kernel BTF\n", regno);
3670 		return -EINVAL;
3671 	}
3672 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3673 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3674 
3675 	/* For ref_ptr case, release function check should ensure we get one
3676 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3677 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3678 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3679 	 * reg->off and reg->ref_obj_id are not needed here.
3680 	 */
3681 	if (__check_ptr_off_reg(env, reg, regno, true))
3682 		return -EACCES;
3683 
3684 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3685 	 * we also need to take into account the reg->off.
3686 	 *
3687 	 * We want to support cases like:
3688 	 *
3689 	 * struct foo {
3690 	 *         struct bar br;
3691 	 *         struct baz bz;
3692 	 * };
3693 	 *
3694 	 * struct foo *v;
3695 	 * v = func();	      // PTR_TO_BTF_ID
3696 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3697 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3698 	 *                    // first member type of struct after comparison fails
3699 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3700 	 *                    // to match type
3701 	 *
3702 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3703 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3704 	 * the struct to match type against first member of struct, i.e. reject
3705 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3706 	 * strict mode to true for type match.
3707 	 */
3708 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3709 				  off_desc->kptr.btf, off_desc->kptr.btf_id,
3710 				  off_desc->type == BPF_KPTR_REF))
3711 		goto bad_type;
3712 	return 0;
3713 bad_type:
3714 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3715 		reg_type_str(env, reg->type), reg_name);
3716 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3717 	if (off_desc->type == BPF_KPTR_UNREF)
3718 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3719 			targ_name);
3720 	else
3721 		verbose(env, "\n");
3722 	return -EINVAL;
3723 }
3724 
3725 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3726 				 int value_regno, int insn_idx,
3727 				 struct bpf_map_value_off_desc *off_desc)
3728 {
3729 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3730 	int class = BPF_CLASS(insn->code);
3731 	struct bpf_reg_state *val_reg;
3732 
3733 	/* Things we already checked for in check_map_access and caller:
3734 	 *  - Reject cases where variable offset may touch kptr
3735 	 *  - size of access (must be BPF_DW)
3736 	 *  - tnum_is_const(reg->var_off)
3737 	 *  - off_desc->offset == off + reg->var_off.value
3738 	 */
3739 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3740 	if (BPF_MODE(insn->code) != BPF_MEM) {
3741 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3742 		return -EACCES;
3743 	}
3744 
3745 	/* We only allow loading referenced kptr, since it will be marked as
3746 	 * untrusted, similar to unreferenced kptr.
3747 	 */
3748 	if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
3749 		verbose(env, "store to referenced kptr disallowed\n");
3750 		return -EACCES;
3751 	}
3752 
3753 	if (class == BPF_LDX) {
3754 		val_reg = reg_state(env, value_regno);
3755 		/* We can simply mark the value_regno receiving the pointer
3756 		 * value from map as PTR_TO_BTF_ID, with the correct type.
3757 		 */
3758 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
3759 				off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3760 		/* For mark_ptr_or_null_reg */
3761 		val_reg->id = ++env->id_gen;
3762 	} else if (class == BPF_STX) {
3763 		val_reg = reg_state(env, value_regno);
3764 		if (!register_is_null(val_reg) &&
3765 		    map_kptr_match_type(env, off_desc, val_reg, value_regno))
3766 			return -EACCES;
3767 	} else if (class == BPF_ST) {
3768 		if (insn->imm) {
3769 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3770 				off_desc->offset);
3771 			return -EACCES;
3772 		}
3773 	} else {
3774 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3775 		return -EACCES;
3776 	}
3777 	return 0;
3778 }
3779 
3780 /* check read/write into a map element with possible variable offset */
3781 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3782 			    int off, int size, bool zero_size_allowed,
3783 			    enum bpf_access_src src)
3784 {
3785 	struct bpf_verifier_state *vstate = env->cur_state;
3786 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3787 	struct bpf_reg_state *reg = &state->regs[regno];
3788 	struct bpf_map *map = reg->map_ptr;
3789 	int err;
3790 
3791 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3792 				      zero_size_allowed);
3793 	if (err)
3794 		return err;
3795 
3796 	if (map_value_has_spin_lock(map)) {
3797 		u32 lock = map->spin_lock_off;
3798 
3799 		/* if any part of struct bpf_spin_lock can be touched by
3800 		 * load/store reject this program.
3801 		 * To check that [x1, x2) overlaps with [y1, y2)
3802 		 * it is sufficient to check x1 < y2 && y1 < x2.
3803 		 */
3804 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3805 		     lock < reg->umax_value + off + size) {
3806 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3807 			return -EACCES;
3808 		}
3809 	}
3810 	if (map_value_has_timer(map)) {
3811 		u32 t = map->timer_off;
3812 
3813 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3814 		     t < reg->umax_value + off + size) {
3815 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3816 			return -EACCES;
3817 		}
3818 	}
3819 	if (map_value_has_kptrs(map)) {
3820 		struct bpf_map_value_off *tab = map->kptr_off_tab;
3821 		int i;
3822 
3823 		for (i = 0; i < tab->nr_off; i++) {
3824 			u32 p = tab->off[i].offset;
3825 
3826 			if (reg->smin_value + off < p + sizeof(u64) &&
3827 			    p < reg->umax_value + off + size) {
3828 				if (src != ACCESS_DIRECT) {
3829 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
3830 					return -EACCES;
3831 				}
3832 				if (!tnum_is_const(reg->var_off)) {
3833 					verbose(env, "kptr access cannot have variable offset\n");
3834 					return -EACCES;
3835 				}
3836 				if (p != off + reg->var_off.value) {
3837 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3838 						p, off + reg->var_off.value);
3839 					return -EACCES;
3840 				}
3841 				if (size != bpf_size_to_bytes(BPF_DW)) {
3842 					verbose(env, "kptr access size must be BPF_DW\n");
3843 					return -EACCES;
3844 				}
3845 				break;
3846 			}
3847 		}
3848 	}
3849 	return err;
3850 }
3851 
3852 #define MAX_PACKET_OFF 0xffff
3853 
3854 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3855 				       const struct bpf_call_arg_meta *meta,
3856 				       enum bpf_access_type t)
3857 {
3858 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3859 
3860 	switch (prog_type) {
3861 	/* Program types only with direct read access go here! */
3862 	case BPF_PROG_TYPE_LWT_IN:
3863 	case BPF_PROG_TYPE_LWT_OUT:
3864 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3865 	case BPF_PROG_TYPE_SK_REUSEPORT:
3866 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3867 	case BPF_PROG_TYPE_CGROUP_SKB:
3868 		if (t == BPF_WRITE)
3869 			return false;
3870 		fallthrough;
3871 
3872 	/* Program types with direct read + write access go here! */
3873 	case BPF_PROG_TYPE_SCHED_CLS:
3874 	case BPF_PROG_TYPE_SCHED_ACT:
3875 	case BPF_PROG_TYPE_XDP:
3876 	case BPF_PROG_TYPE_LWT_XMIT:
3877 	case BPF_PROG_TYPE_SK_SKB:
3878 	case BPF_PROG_TYPE_SK_MSG:
3879 		if (meta)
3880 			return meta->pkt_access;
3881 
3882 		env->seen_direct_write = true;
3883 		return true;
3884 
3885 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3886 		if (t == BPF_WRITE)
3887 			env->seen_direct_write = true;
3888 
3889 		return true;
3890 
3891 	default:
3892 		return false;
3893 	}
3894 }
3895 
3896 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3897 			       int size, bool zero_size_allowed)
3898 {
3899 	struct bpf_reg_state *regs = cur_regs(env);
3900 	struct bpf_reg_state *reg = &regs[regno];
3901 	int err;
3902 
3903 	/* We may have added a variable offset to the packet pointer; but any
3904 	 * reg->range we have comes after that.  We are only checking the fixed
3905 	 * offset.
3906 	 */
3907 
3908 	/* We don't allow negative numbers, because we aren't tracking enough
3909 	 * detail to prove they're safe.
3910 	 */
3911 	if (reg->smin_value < 0) {
3912 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3913 			regno);
3914 		return -EACCES;
3915 	}
3916 
3917 	err = reg->range < 0 ? -EINVAL :
3918 	      __check_mem_access(env, regno, off, size, reg->range,
3919 				 zero_size_allowed);
3920 	if (err) {
3921 		verbose(env, "R%d offset is outside of the packet\n", regno);
3922 		return err;
3923 	}
3924 
3925 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3926 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3927 	 * otherwise find_good_pkt_pointers would have refused to set range info
3928 	 * that __check_mem_access would have rejected this pkt access.
3929 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3930 	 */
3931 	env->prog->aux->max_pkt_offset =
3932 		max_t(u32, env->prog->aux->max_pkt_offset,
3933 		      off + reg->umax_value + size - 1);
3934 
3935 	return err;
3936 }
3937 
3938 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3939 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3940 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3941 			    struct btf **btf, u32 *btf_id)
3942 {
3943 	struct bpf_insn_access_aux info = {
3944 		.reg_type = *reg_type,
3945 		.log = &env->log,
3946 	};
3947 
3948 	if (env->ops->is_valid_access &&
3949 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3950 		/* A non zero info.ctx_field_size indicates that this field is a
3951 		 * candidate for later verifier transformation to load the whole
3952 		 * field and then apply a mask when accessed with a narrower
3953 		 * access than actual ctx access size. A zero info.ctx_field_size
3954 		 * will only allow for whole field access and rejects any other
3955 		 * type of narrower access.
3956 		 */
3957 		*reg_type = info.reg_type;
3958 
3959 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3960 			*btf = info.btf;
3961 			*btf_id = info.btf_id;
3962 		} else {
3963 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3964 		}
3965 		/* remember the offset of last byte accessed in ctx */
3966 		if (env->prog->aux->max_ctx_offset < off + size)
3967 			env->prog->aux->max_ctx_offset = off + size;
3968 		return 0;
3969 	}
3970 
3971 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3972 	return -EACCES;
3973 }
3974 
3975 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3976 				  int size)
3977 {
3978 	if (size < 0 || off < 0 ||
3979 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3980 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3981 			off, size);
3982 		return -EACCES;
3983 	}
3984 	return 0;
3985 }
3986 
3987 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3988 			     u32 regno, int off, int size,
3989 			     enum bpf_access_type t)
3990 {
3991 	struct bpf_reg_state *regs = cur_regs(env);
3992 	struct bpf_reg_state *reg = &regs[regno];
3993 	struct bpf_insn_access_aux info = {};
3994 	bool valid;
3995 
3996 	if (reg->smin_value < 0) {
3997 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3998 			regno);
3999 		return -EACCES;
4000 	}
4001 
4002 	switch (reg->type) {
4003 	case PTR_TO_SOCK_COMMON:
4004 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4005 		break;
4006 	case PTR_TO_SOCKET:
4007 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4008 		break;
4009 	case PTR_TO_TCP_SOCK:
4010 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4011 		break;
4012 	case PTR_TO_XDP_SOCK:
4013 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4014 		break;
4015 	default:
4016 		valid = false;
4017 	}
4018 
4019 
4020 	if (valid) {
4021 		env->insn_aux_data[insn_idx].ctx_field_size =
4022 			info.ctx_field_size;
4023 		return 0;
4024 	}
4025 
4026 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4027 		regno, reg_type_str(env, reg->type), off, size);
4028 
4029 	return -EACCES;
4030 }
4031 
4032 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4033 {
4034 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4035 }
4036 
4037 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4038 {
4039 	const struct bpf_reg_state *reg = reg_state(env, regno);
4040 
4041 	return reg->type == PTR_TO_CTX;
4042 }
4043 
4044 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4045 {
4046 	const struct bpf_reg_state *reg = reg_state(env, regno);
4047 
4048 	return type_is_sk_pointer(reg->type);
4049 }
4050 
4051 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4052 {
4053 	const struct bpf_reg_state *reg = reg_state(env, regno);
4054 
4055 	return type_is_pkt_pointer(reg->type);
4056 }
4057 
4058 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4059 {
4060 	const struct bpf_reg_state *reg = reg_state(env, regno);
4061 
4062 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4063 	return reg->type == PTR_TO_FLOW_KEYS;
4064 }
4065 
4066 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4067 				   const struct bpf_reg_state *reg,
4068 				   int off, int size, bool strict)
4069 {
4070 	struct tnum reg_off;
4071 	int ip_align;
4072 
4073 	/* Byte size accesses are always allowed. */
4074 	if (!strict || size == 1)
4075 		return 0;
4076 
4077 	/* For platforms that do not have a Kconfig enabling
4078 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4079 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4080 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4081 	 * to this code only in strict mode where we want to emulate
4082 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4083 	 * unconditional IP align value of '2'.
4084 	 */
4085 	ip_align = 2;
4086 
4087 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4088 	if (!tnum_is_aligned(reg_off, size)) {
4089 		char tn_buf[48];
4090 
4091 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4092 		verbose(env,
4093 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4094 			ip_align, tn_buf, reg->off, off, size);
4095 		return -EACCES;
4096 	}
4097 
4098 	return 0;
4099 }
4100 
4101 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4102 				       const struct bpf_reg_state *reg,
4103 				       const char *pointer_desc,
4104 				       int off, int size, bool strict)
4105 {
4106 	struct tnum reg_off;
4107 
4108 	/* Byte size accesses are always allowed. */
4109 	if (!strict || size == 1)
4110 		return 0;
4111 
4112 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4113 	if (!tnum_is_aligned(reg_off, size)) {
4114 		char tn_buf[48];
4115 
4116 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4117 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4118 			pointer_desc, tn_buf, reg->off, off, size);
4119 		return -EACCES;
4120 	}
4121 
4122 	return 0;
4123 }
4124 
4125 static int check_ptr_alignment(struct bpf_verifier_env *env,
4126 			       const struct bpf_reg_state *reg, int off,
4127 			       int size, bool strict_alignment_once)
4128 {
4129 	bool strict = env->strict_alignment || strict_alignment_once;
4130 	const char *pointer_desc = "";
4131 
4132 	switch (reg->type) {
4133 	case PTR_TO_PACKET:
4134 	case PTR_TO_PACKET_META:
4135 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4136 		 * right in front, treat it the very same way.
4137 		 */
4138 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4139 	case PTR_TO_FLOW_KEYS:
4140 		pointer_desc = "flow keys ";
4141 		break;
4142 	case PTR_TO_MAP_KEY:
4143 		pointer_desc = "key ";
4144 		break;
4145 	case PTR_TO_MAP_VALUE:
4146 		pointer_desc = "value ";
4147 		break;
4148 	case PTR_TO_CTX:
4149 		pointer_desc = "context ";
4150 		break;
4151 	case PTR_TO_STACK:
4152 		pointer_desc = "stack ";
4153 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4154 		 * and check_stack_read_fixed_off() relies on stack accesses being
4155 		 * aligned.
4156 		 */
4157 		strict = true;
4158 		break;
4159 	case PTR_TO_SOCKET:
4160 		pointer_desc = "sock ";
4161 		break;
4162 	case PTR_TO_SOCK_COMMON:
4163 		pointer_desc = "sock_common ";
4164 		break;
4165 	case PTR_TO_TCP_SOCK:
4166 		pointer_desc = "tcp_sock ";
4167 		break;
4168 	case PTR_TO_XDP_SOCK:
4169 		pointer_desc = "xdp_sock ";
4170 		break;
4171 	default:
4172 		break;
4173 	}
4174 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4175 					   strict);
4176 }
4177 
4178 static int update_stack_depth(struct bpf_verifier_env *env,
4179 			      const struct bpf_func_state *func,
4180 			      int off)
4181 {
4182 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4183 
4184 	if (stack >= -off)
4185 		return 0;
4186 
4187 	/* update known max for given subprogram */
4188 	env->subprog_info[func->subprogno].stack_depth = -off;
4189 	return 0;
4190 }
4191 
4192 /* starting from main bpf function walk all instructions of the function
4193  * and recursively walk all callees that given function can call.
4194  * Ignore jump and exit insns.
4195  * Since recursion is prevented by check_cfg() this algorithm
4196  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4197  */
4198 static int check_max_stack_depth(struct bpf_verifier_env *env)
4199 {
4200 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4201 	struct bpf_subprog_info *subprog = env->subprog_info;
4202 	struct bpf_insn *insn = env->prog->insnsi;
4203 	bool tail_call_reachable = false;
4204 	int ret_insn[MAX_CALL_FRAMES];
4205 	int ret_prog[MAX_CALL_FRAMES];
4206 	int j;
4207 
4208 process_func:
4209 	/* protect against potential stack overflow that might happen when
4210 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4211 	 * depth for such case down to 256 so that the worst case scenario
4212 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4213 	 * 8k).
4214 	 *
4215 	 * To get the idea what might happen, see an example:
4216 	 * func1 -> sub rsp, 128
4217 	 *  subfunc1 -> sub rsp, 256
4218 	 *  tailcall1 -> add rsp, 256
4219 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4220 	 *   subfunc2 -> sub rsp, 64
4221 	 *   subfunc22 -> sub rsp, 128
4222 	 *   tailcall2 -> add rsp, 128
4223 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4224 	 *
4225 	 * tailcall will unwind the current stack frame but it will not get rid
4226 	 * of caller's stack as shown on the example above.
4227 	 */
4228 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4229 		verbose(env,
4230 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4231 			depth);
4232 		return -EACCES;
4233 	}
4234 	/* round up to 32-bytes, since this is granularity
4235 	 * of interpreter stack size
4236 	 */
4237 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4238 	if (depth > MAX_BPF_STACK) {
4239 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4240 			frame + 1, depth);
4241 		return -EACCES;
4242 	}
4243 continue_func:
4244 	subprog_end = subprog[idx + 1].start;
4245 	for (; i < subprog_end; i++) {
4246 		int next_insn;
4247 
4248 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4249 			continue;
4250 		/* remember insn and function to return to */
4251 		ret_insn[frame] = i + 1;
4252 		ret_prog[frame] = idx;
4253 
4254 		/* find the callee */
4255 		next_insn = i + insn[i].imm + 1;
4256 		idx = find_subprog(env, next_insn);
4257 		if (idx < 0) {
4258 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4259 				  next_insn);
4260 			return -EFAULT;
4261 		}
4262 		if (subprog[idx].is_async_cb) {
4263 			if (subprog[idx].has_tail_call) {
4264 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4265 				return -EFAULT;
4266 			}
4267 			 /* async callbacks don't increase bpf prog stack size */
4268 			continue;
4269 		}
4270 		i = next_insn;
4271 
4272 		if (subprog[idx].has_tail_call)
4273 			tail_call_reachable = true;
4274 
4275 		frame++;
4276 		if (frame >= MAX_CALL_FRAMES) {
4277 			verbose(env, "the call stack of %d frames is too deep !\n",
4278 				frame);
4279 			return -E2BIG;
4280 		}
4281 		goto process_func;
4282 	}
4283 	/* if tail call got detected across bpf2bpf calls then mark each of the
4284 	 * currently present subprog frames as tail call reachable subprogs;
4285 	 * this info will be utilized by JIT so that we will be preserving the
4286 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4287 	 */
4288 	if (tail_call_reachable)
4289 		for (j = 0; j < frame; j++)
4290 			subprog[ret_prog[j]].tail_call_reachable = true;
4291 	if (subprog[0].tail_call_reachable)
4292 		env->prog->aux->tail_call_reachable = true;
4293 
4294 	/* end of for() loop means the last insn of the 'subprog'
4295 	 * was reached. Doesn't matter whether it was JA or EXIT
4296 	 */
4297 	if (frame == 0)
4298 		return 0;
4299 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4300 	frame--;
4301 	i = ret_insn[frame];
4302 	idx = ret_prog[frame];
4303 	goto continue_func;
4304 }
4305 
4306 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4307 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4308 				  const struct bpf_insn *insn, int idx)
4309 {
4310 	int start = idx + insn->imm + 1, subprog;
4311 
4312 	subprog = find_subprog(env, start);
4313 	if (subprog < 0) {
4314 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4315 			  start);
4316 		return -EFAULT;
4317 	}
4318 	return env->subprog_info[subprog].stack_depth;
4319 }
4320 #endif
4321 
4322 static int __check_buffer_access(struct bpf_verifier_env *env,
4323 				 const char *buf_info,
4324 				 const struct bpf_reg_state *reg,
4325 				 int regno, int off, int size)
4326 {
4327 	if (off < 0) {
4328 		verbose(env,
4329 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4330 			regno, buf_info, off, size);
4331 		return -EACCES;
4332 	}
4333 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4334 		char tn_buf[48];
4335 
4336 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4337 		verbose(env,
4338 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4339 			regno, off, tn_buf);
4340 		return -EACCES;
4341 	}
4342 
4343 	return 0;
4344 }
4345 
4346 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4347 				  const struct bpf_reg_state *reg,
4348 				  int regno, int off, int size)
4349 {
4350 	int err;
4351 
4352 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4353 	if (err)
4354 		return err;
4355 
4356 	if (off + size > env->prog->aux->max_tp_access)
4357 		env->prog->aux->max_tp_access = off + size;
4358 
4359 	return 0;
4360 }
4361 
4362 static int check_buffer_access(struct bpf_verifier_env *env,
4363 			       const struct bpf_reg_state *reg,
4364 			       int regno, int off, int size,
4365 			       bool zero_size_allowed,
4366 			       u32 *max_access)
4367 {
4368 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4369 	int err;
4370 
4371 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4372 	if (err)
4373 		return err;
4374 
4375 	if (off + size > *max_access)
4376 		*max_access = off + size;
4377 
4378 	return 0;
4379 }
4380 
4381 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4382 static void zext_32_to_64(struct bpf_reg_state *reg)
4383 {
4384 	reg->var_off = tnum_subreg(reg->var_off);
4385 	__reg_assign_32_into_64(reg);
4386 }
4387 
4388 /* truncate register to smaller size (in bytes)
4389  * must be called with size < BPF_REG_SIZE
4390  */
4391 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4392 {
4393 	u64 mask;
4394 
4395 	/* clear high bits in bit representation */
4396 	reg->var_off = tnum_cast(reg->var_off, size);
4397 
4398 	/* fix arithmetic bounds */
4399 	mask = ((u64)1 << (size * 8)) - 1;
4400 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4401 		reg->umin_value &= mask;
4402 		reg->umax_value &= mask;
4403 	} else {
4404 		reg->umin_value = 0;
4405 		reg->umax_value = mask;
4406 	}
4407 	reg->smin_value = reg->umin_value;
4408 	reg->smax_value = reg->umax_value;
4409 
4410 	/* If size is smaller than 32bit register the 32bit register
4411 	 * values are also truncated so we push 64-bit bounds into
4412 	 * 32-bit bounds. Above were truncated < 32-bits already.
4413 	 */
4414 	if (size >= 4)
4415 		return;
4416 	__reg_combine_64_into_32(reg);
4417 }
4418 
4419 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4420 {
4421 	/* A map is considered read-only if the following condition are true:
4422 	 *
4423 	 * 1) BPF program side cannot change any of the map content. The
4424 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4425 	 *    and was set at map creation time.
4426 	 * 2) The map value(s) have been initialized from user space by a
4427 	 *    loader and then "frozen", such that no new map update/delete
4428 	 *    operations from syscall side are possible for the rest of
4429 	 *    the map's lifetime from that point onwards.
4430 	 * 3) Any parallel/pending map update/delete operations from syscall
4431 	 *    side have been completed. Only after that point, it's safe to
4432 	 *    assume that map value(s) are immutable.
4433 	 */
4434 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4435 	       READ_ONCE(map->frozen) &&
4436 	       !bpf_map_write_active(map);
4437 }
4438 
4439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4440 {
4441 	void *ptr;
4442 	u64 addr;
4443 	int err;
4444 
4445 	err = map->ops->map_direct_value_addr(map, &addr, off);
4446 	if (err)
4447 		return err;
4448 	ptr = (void *)(long)addr + off;
4449 
4450 	switch (size) {
4451 	case sizeof(u8):
4452 		*val = (u64)*(u8 *)ptr;
4453 		break;
4454 	case sizeof(u16):
4455 		*val = (u64)*(u16 *)ptr;
4456 		break;
4457 	case sizeof(u32):
4458 		*val = (u64)*(u32 *)ptr;
4459 		break;
4460 	case sizeof(u64):
4461 		*val = *(u64 *)ptr;
4462 		break;
4463 	default:
4464 		return -EINVAL;
4465 	}
4466 	return 0;
4467 }
4468 
4469 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4470 				   struct bpf_reg_state *regs,
4471 				   int regno, int off, int size,
4472 				   enum bpf_access_type atype,
4473 				   int value_regno)
4474 {
4475 	struct bpf_reg_state *reg = regs + regno;
4476 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4477 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4478 	enum bpf_type_flag flag = 0;
4479 	u32 btf_id;
4480 	int ret;
4481 
4482 	if (off < 0) {
4483 		verbose(env,
4484 			"R%d is ptr_%s invalid negative access: off=%d\n",
4485 			regno, tname, off);
4486 		return -EACCES;
4487 	}
4488 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4489 		char tn_buf[48];
4490 
4491 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4492 		verbose(env,
4493 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4494 			regno, tname, off, tn_buf);
4495 		return -EACCES;
4496 	}
4497 
4498 	if (reg->type & MEM_USER) {
4499 		verbose(env,
4500 			"R%d is ptr_%s access user memory: off=%d\n",
4501 			regno, tname, off);
4502 		return -EACCES;
4503 	}
4504 
4505 	if (reg->type & MEM_PERCPU) {
4506 		verbose(env,
4507 			"R%d is ptr_%s access percpu memory: off=%d\n",
4508 			regno, tname, off);
4509 		return -EACCES;
4510 	}
4511 
4512 	if (env->ops->btf_struct_access) {
4513 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4514 						  off, size, atype, &btf_id, &flag);
4515 	} else {
4516 		if (atype != BPF_READ) {
4517 			verbose(env, "only read is supported\n");
4518 			return -EACCES;
4519 		}
4520 
4521 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4522 					atype, &btf_id, &flag);
4523 	}
4524 
4525 	if (ret < 0)
4526 		return ret;
4527 
4528 	/* If this is an untrusted pointer, all pointers formed by walking it
4529 	 * also inherit the untrusted flag.
4530 	 */
4531 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4532 		flag |= PTR_UNTRUSTED;
4533 
4534 	if (atype == BPF_READ && value_regno >= 0)
4535 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4536 
4537 	return 0;
4538 }
4539 
4540 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4541 				   struct bpf_reg_state *regs,
4542 				   int regno, int off, int size,
4543 				   enum bpf_access_type atype,
4544 				   int value_regno)
4545 {
4546 	struct bpf_reg_state *reg = regs + regno;
4547 	struct bpf_map *map = reg->map_ptr;
4548 	enum bpf_type_flag flag = 0;
4549 	const struct btf_type *t;
4550 	const char *tname;
4551 	u32 btf_id;
4552 	int ret;
4553 
4554 	if (!btf_vmlinux) {
4555 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4556 		return -ENOTSUPP;
4557 	}
4558 
4559 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4560 		verbose(env, "map_ptr access not supported for map type %d\n",
4561 			map->map_type);
4562 		return -ENOTSUPP;
4563 	}
4564 
4565 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4566 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4567 
4568 	if (!env->allow_ptr_to_map_access) {
4569 		verbose(env,
4570 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4571 			tname);
4572 		return -EPERM;
4573 	}
4574 
4575 	if (off < 0) {
4576 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4577 			regno, tname, off);
4578 		return -EACCES;
4579 	}
4580 
4581 	if (atype != BPF_READ) {
4582 		verbose(env, "only read from %s is supported\n", tname);
4583 		return -EACCES;
4584 	}
4585 
4586 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4587 	if (ret < 0)
4588 		return ret;
4589 
4590 	if (value_regno >= 0)
4591 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4592 
4593 	return 0;
4594 }
4595 
4596 /* Check that the stack access at the given offset is within bounds. The
4597  * maximum valid offset is -1.
4598  *
4599  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4600  * -state->allocated_stack for reads.
4601  */
4602 static int check_stack_slot_within_bounds(int off,
4603 					  struct bpf_func_state *state,
4604 					  enum bpf_access_type t)
4605 {
4606 	int min_valid_off;
4607 
4608 	if (t == BPF_WRITE)
4609 		min_valid_off = -MAX_BPF_STACK;
4610 	else
4611 		min_valid_off = -state->allocated_stack;
4612 
4613 	if (off < min_valid_off || off > -1)
4614 		return -EACCES;
4615 	return 0;
4616 }
4617 
4618 /* Check that the stack access at 'regno + off' falls within the maximum stack
4619  * bounds.
4620  *
4621  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4622  */
4623 static int check_stack_access_within_bounds(
4624 		struct bpf_verifier_env *env,
4625 		int regno, int off, int access_size,
4626 		enum bpf_access_src src, enum bpf_access_type type)
4627 {
4628 	struct bpf_reg_state *regs = cur_regs(env);
4629 	struct bpf_reg_state *reg = regs + regno;
4630 	struct bpf_func_state *state = func(env, reg);
4631 	int min_off, max_off;
4632 	int err;
4633 	char *err_extra;
4634 
4635 	if (src == ACCESS_HELPER)
4636 		/* We don't know if helpers are reading or writing (or both). */
4637 		err_extra = " indirect access to";
4638 	else if (type == BPF_READ)
4639 		err_extra = " read from";
4640 	else
4641 		err_extra = " write to";
4642 
4643 	if (tnum_is_const(reg->var_off)) {
4644 		min_off = reg->var_off.value + off;
4645 		if (access_size > 0)
4646 			max_off = min_off + access_size - 1;
4647 		else
4648 			max_off = min_off;
4649 	} else {
4650 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4651 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4652 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4653 				err_extra, regno);
4654 			return -EACCES;
4655 		}
4656 		min_off = reg->smin_value + off;
4657 		if (access_size > 0)
4658 			max_off = reg->smax_value + off + access_size - 1;
4659 		else
4660 			max_off = min_off;
4661 	}
4662 
4663 	err = check_stack_slot_within_bounds(min_off, state, type);
4664 	if (!err)
4665 		err = check_stack_slot_within_bounds(max_off, state, type);
4666 
4667 	if (err) {
4668 		if (tnum_is_const(reg->var_off)) {
4669 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4670 				err_extra, regno, off, access_size);
4671 		} else {
4672 			char tn_buf[48];
4673 
4674 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4675 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4676 				err_extra, regno, tn_buf, access_size);
4677 		}
4678 	}
4679 	return err;
4680 }
4681 
4682 /* check whether memory at (regno + off) is accessible for t = (read | write)
4683  * if t==write, value_regno is a register which value is stored into memory
4684  * if t==read, value_regno is a register which will receive the value from memory
4685  * if t==write && value_regno==-1, some unknown value is stored into memory
4686  * if t==read && value_regno==-1, don't care what we read from memory
4687  */
4688 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4689 			    int off, int bpf_size, enum bpf_access_type t,
4690 			    int value_regno, bool strict_alignment_once)
4691 {
4692 	struct bpf_reg_state *regs = cur_regs(env);
4693 	struct bpf_reg_state *reg = regs + regno;
4694 	struct bpf_func_state *state;
4695 	int size, err = 0;
4696 
4697 	size = bpf_size_to_bytes(bpf_size);
4698 	if (size < 0)
4699 		return size;
4700 
4701 	/* alignment checks will add in reg->off themselves */
4702 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4703 	if (err)
4704 		return err;
4705 
4706 	/* for access checks, reg->off is just part of off */
4707 	off += reg->off;
4708 
4709 	if (reg->type == PTR_TO_MAP_KEY) {
4710 		if (t == BPF_WRITE) {
4711 			verbose(env, "write to change key R%d not allowed\n", regno);
4712 			return -EACCES;
4713 		}
4714 
4715 		err = check_mem_region_access(env, regno, off, size,
4716 					      reg->map_ptr->key_size, false);
4717 		if (err)
4718 			return err;
4719 		if (value_regno >= 0)
4720 			mark_reg_unknown(env, regs, value_regno);
4721 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4722 		struct bpf_map_value_off_desc *kptr_off_desc = NULL;
4723 
4724 		if (t == BPF_WRITE && value_regno >= 0 &&
4725 		    is_pointer_value(env, value_regno)) {
4726 			verbose(env, "R%d leaks addr into map\n", value_regno);
4727 			return -EACCES;
4728 		}
4729 		err = check_map_access_type(env, regno, off, size, t);
4730 		if (err)
4731 			return err;
4732 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4733 		if (err)
4734 			return err;
4735 		if (tnum_is_const(reg->var_off))
4736 			kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
4737 								  off + reg->var_off.value);
4738 		if (kptr_off_desc) {
4739 			err = check_map_kptr_access(env, regno, value_regno, insn_idx,
4740 						    kptr_off_desc);
4741 		} else if (t == BPF_READ && value_regno >= 0) {
4742 			struct bpf_map *map = reg->map_ptr;
4743 
4744 			/* if map is read-only, track its contents as scalars */
4745 			if (tnum_is_const(reg->var_off) &&
4746 			    bpf_map_is_rdonly(map) &&
4747 			    map->ops->map_direct_value_addr) {
4748 				int map_off = off + reg->var_off.value;
4749 				u64 val = 0;
4750 
4751 				err = bpf_map_direct_read(map, map_off, size,
4752 							  &val);
4753 				if (err)
4754 					return err;
4755 
4756 				regs[value_regno].type = SCALAR_VALUE;
4757 				__mark_reg_known(&regs[value_regno], val);
4758 			} else {
4759 				mark_reg_unknown(env, regs, value_regno);
4760 			}
4761 		}
4762 	} else if (base_type(reg->type) == PTR_TO_MEM) {
4763 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4764 
4765 		if (type_may_be_null(reg->type)) {
4766 			verbose(env, "R%d invalid mem access '%s'\n", regno,
4767 				reg_type_str(env, reg->type));
4768 			return -EACCES;
4769 		}
4770 
4771 		if (t == BPF_WRITE && rdonly_mem) {
4772 			verbose(env, "R%d cannot write into %s\n",
4773 				regno, reg_type_str(env, reg->type));
4774 			return -EACCES;
4775 		}
4776 
4777 		if (t == BPF_WRITE && value_regno >= 0 &&
4778 		    is_pointer_value(env, value_regno)) {
4779 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4780 			return -EACCES;
4781 		}
4782 
4783 		err = check_mem_region_access(env, regno, off, size,
4784 					      reg->mem_size, false);
4785 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4786 			mark_reg_unknown(env, regs, value_regno);
4787 	} else if (reg->type == PTR_TO_CTX) {
4788 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4789 		struct btf *btf = NULL;
4790 		u32 btf_id = 0;
4791 
4792 		if (t == BPF_WRITE && value_regno >= 0 &&
4793 		    is_pointer_value(env, value_regno)) {
4794 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4795 			return -EACCES;
4796 		}
4797 
4798 		err = check_ptr_off_reg(env, reg, regno);
4799 		if (err < 0)
4800 			return err;
4801 
4802 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
4803 				       &btf_id);
4804 		if (err)
4805 			verbose_linfo(env, insn_idx, "; ");
4806 		if (!err && t == BPF_READ && value_regno >= 0) {
4807 			/* ctx access returns either a scalar, or a
4808 			 * PTR_TO_PACKET[_META,_END]. In the latter
4809 			 * case, we know the offset is zero.
4810 			 */
4811 			if (reg_type == SCALAR_VALUE) {
4812 				mark_reg_unknown(env, regs, value_regno);
4813 			} else {
4814 				mark_reg_known_zero(env, regs,
4815 						    value_regno);
4816 				if (type_may_be_null(reg_type))
4817 					regs[value_regno].id = ++env->id_gen;
4818 				/* A load of ctx field could have different
4819 				 * actual load size with the one encoded in the
4820 				 * insn. When the dst is PTR, it is for sure not
4821 				 * a sub-register.
4822 				 */
4823 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4824 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
4825 					regs[value_regno].btf = btf;
4826 					regs[value_regno].btf_id = btf_id;
4827 				}
4828 			}
4829 			regs[value_regno].type = reg_type;
4830 		}
4831 
4832 	} else if (reg->type == PTR_TO_STACK) {
4833 		/* Basic bounds checks. */
4834 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4835 		if (err)
4836 			return err;
4837 
4838 		state = func(env, reg);
4839 		err = update_stack_depth(env, state, off);
4840 		if (err)
4841 			return err;
4842 
4843 		if (t == BPF_READ)
4844 			err = check_stack_read(env, regno, off, size,
4845 					       value_regno);
4846 		else
4847 			err = check_stack_write(env, regno, off, size,
4848 						value_regno, insn_idx);
4849 	} else if (reg_is_pkt_pointer(reg)) {
4850 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4851 			verbose(env, "cannot write into packet\n");
4852 			return -EACCES;
4853 		}
4854 		if (t == BPF_WRITE && value_regno >= 0 &&
4855 		    is_pointer_value(env, value_regno)) {
4856 			verbose(env, "R%d leaks addr into packet\n",
4857 				value_regno);
4858 			return -EACCES;
4859 		}
4860 		err = check_packet_access(env, regno, off, size, false);
4861 		if (!err && t == BPF_READ && value_regno >= 0)
4862 			mark_reg_unknown(env, regs, value_regno);
4863 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4864 		if (t == BPF_WRITE && value_regno >= 0 &&
4865 		    is_pointer_value(env, value_regno)) {
4866 			verbose(env, "R%d leaks addr into flow keys\n",
4867 				value_regno);
4868 			return -EACCES;
4869 		}
4870 
4871 		err = check_flow_keys_access(env, off, size);
4872 		if (!err && t == BPF_READ && value_regno >= 0)
4873 			mark_reg_unknown(env, regs, value_regno);
4874 	} else if (type_is_sk_pointer(reg->type)) {
4875 		if (t == BPF_WRITE) {
4876 			verbose(env, "R%d cannot write into %s\n",
4877 				regno, reg_type_str(env, reg->type));
4878 			return -EACCES;
4879 		}
4880 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4881 		if (!err && value_regno >= 0)
4882 			mark_reg_unknown(env, regs, value_regno);
4883 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4884 		err = check_tp_buffer_access(env, reg, regno, off, size);
4885 		if (!err && t == BPF_READ && value_regno >= 0)
4886 			mark_reg_unknown(env, regs, value_regno);
4887 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4888 		   !type_may_be_null(reg->type)) {
4889 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4890 					      value_regno);
4891 	} else if (reg->type == CONST_PTR_TO_MAP) {
4892 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4893 					      value_regno);
4894 	} else if (base_type(reg->type) == PTR_TO_BUF) {
4895 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4896 		u32 *max_access;
4897 
4898 		if (rdonly_mem) {
4899 			if (t == BPF_WRITE) {
4900 				verbose(env, "R%d cannot write into %s\n",
4901 					regno, reg_type_str(env, reg->type));
4902 				return -EACCES;
4903 			}
4904 			max_access = &env->prog->aux->max_rdonly_access;
4905 		} else {
4906 			max_access = &env->prog->aux->max_rdwr_access;
4907 		}
4908 
4909 		err = check_buffer_access(env, reg, regno, off, size, false,
4910 					  max_access);
4911 
4912 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4913 			mark_reg_unknown(env, regs, value_regno);
4914 	} else {
4915 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4916 			reg_type_str(env, reg->type));
4917 		return -EACCES;
4918 	}
4919 
4920 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4921 	    regs[value_regno].type == SCALAR_VALUE) {
4922 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4923 		coerce_reg_to_size(&regs[value_regno], size);
4924 	}
4925 	return err;
4926 }
4927 
4928 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4929 {
4930 	int load_reg;
4931 	int err;
4932 
4933 	switch (insn->imm) {
4934 	case BPF_ADD:
4935 	case BPF_ADD | BPF_FETCH:
4936 	case BPF_AND:
4937 	case BPF_AND | BPF_FETCH:
4938 	case BPF_OR:
4939 	case BPF_OR | BPF_FETCH:
4940 	case BPF_XOR:
4941 	case BPF_XOR | BPF_FETCH:
4942 	case BPF_XCHG:
4943 	case BPF_CMPXCHG:
4944 		break;
4945 	default:
4946 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4947 		return -EINVAL;
4948 	}
4949 
4950 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4951 		verbose(env, "invalid atomic operand size\n");
4952 		return -EINVAL;
4953 	}
4954 
4955 	/* check src1 operand */
4956 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4957 	if (err)
4958 		return err;
4959 
4960 	/* check src2 operand */
4961 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4962 	if (err)
4963 		return err;
4964 
4965 	if (insn->imm == BPF_CMPXCHG) {
4966 		/* Check comparison of R0 with memory location */
4967 		const u32 aux_reg = BPF_REG_0;
4968 
4969 		err = check_reg_arg(env, aux_reg, SRC_OP);
4970 		if (err)
4971 			return err;
4972 
4973 		if (is_pointer_value(env, aux_reg)) {
4974 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
4975 			return -EACCES;
4976 		}
4977 	}
4978 
4979 	if (is_pointer_value(env, insn->src_reg)) {
4980 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4981 		return -EACCES;
4982 	}
4983 
4984 	if (is_ctx_reg(env, insn->dst_reg) ||
4985 	    is_pkt_reg(env, insn->dst_reg) ||
4986 	    is_flow_key_reg(env, insn->dst_reg) ||
4987 	    is_sk_reg(env, insn->dst_reg)) {
4988 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4989 			insn->dst_reg,
4990 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4991 		return -EACCES;
4992 	}
4993 
4994 	if (insn->imm & BPF_FETCH) {
4995 		if (insn->imm == BPF_CMPXCHG)
4996 			load_reg = BPF_REG_0;
4997 		else
4998 			load_reg = insn->src_reg;
4999 
5000 		/* check and record load of old value */
5001 		err = check_reg_arg(env, load_reg, DST_OP);
5002 		if (err)
5003 			return err;
5004 	} else {
5005 		/* This instruction accesses a memory location but doesn't
5006 		 * actually load it into a register.
5007 		 */
5008 		load_reg = -1;
5009 	}
5010 
5011 	/* Check whether we can read the memory, with second call for fetch
5012 	 * case to simulate the register fill.
5013 	 */
5014 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5015 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5016 	if (!err && load_reg >= 0)
5017 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5018 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5019 				       true);
5020 	if (err)
5021 		return err;
5022 
5023 	/* Check whether we can write into the same memory. */
5024 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5025 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5026 	if (err)
5027 		return err;
5028 
5029 	return 0;
5030 }
5031 
5032 /* When register 'regno' is used to read the stack (either directly or through
5033  * a helper function) make sure that it's within stack boundary and, depending
5034  * on the access type, that all elements of the stack are initialized.
5035  *
5036  * 'off' includes 'regno->off', but not its dynamic part (if any).
5037  *
5038  * All registers that have been spilled on the stack in the slots within the
5039  * read offsets are marked as read.
5040  */
5041 static int check_stack_range_initialized(
5042 		struct bpf_verifier_env *env, int regno, int off,
5043 		int access_size, bool zero_size_allowed,
5044 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5045 {
5046 	struct bpf_reg_state *reg = reg_state(env, regno);
5047 	struct bpf_func_state *state = func(env, reg);
5048 	int err, min_off, max_off, i, j, slot, spi;
5049 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5050 	enum bpf_access_type bounds_check_type;
5051 	/* Some accesses can write anything into the stack, others are
5052 	 * read-only.
5053 	 */
5054 	bool clobber = false;
5055 
5056 	if (access_size == 0 && !zero_size_allowed) {
5057 		verbose(env, "invalid zero-sized read\n");
5058 		return -EACCES;
5059 	}
5060 
5061 	if (type == ACCESS_HELPER) {
5062 		/* The bounds checks for writes are more permissive than for
5063 		 * reads. However, if raw_mode is not set, we'll do extra
5064 		 * checks below.
5065 		 */
5066 		bounds_check_type = BPF_WRITE;
5067 		clobber = true;
5068 	} else {
5069 		bounds_check_type = BPF_READ;
5070 	}
5071 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5072 					       type, bounds_check_type);
5073 	if (err)
5074 		return err;
5075 
5076 
5077 	if (tnum_is_const(reg->var_off)) {
5078 		min_off = max_off = reg->var_off.value + off;
5079 	} else {
5080 		/* Variable offset is prohibited for unprivileged mode for
5081 		 * simplicity since it requires corresponding support in
5082 		 * Spectre masking for stack ALU.
5083 		 * See also retrieve_ptr_limit().
5084 		 */
5085 		if (!env->bypass_spec_v1) {
5086 			char tn_buf[48];
5087 
5088 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5089 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5090 				regno, err_extra, tn_buf);
5091 			return -EACCES;
5092 		}
5093 		/* Only initialized buffer on stack is allowed to be accessed
5094 		 * with variable offset. With uninitialized buffer it's hard to
5095 		 * guarantee that whole memory is marked as initialized on
5096 		 * helper return since specific bounds are unknown what may
5097 		 * cause uninitialized stack leaking.
5098 		 */
5099 		if (meta && meta->raw_mode)
5100 			meta = NULL;
5101 
5102 		min_off = reg->smin_value + off;
5103 		max_off = reg->smax_value + off;
5104 	}
5105 
5106 	if (meta && meta->raw_mode) {
5107 		meta->access_size = access_size;
5108 		meta->regno = regno;
5109 		return 0;
5110 	}
5111 
5112 	for (i = min_off; i < max_off + access_size; i++) {
5113 		u8 *stype;
5114 
5115 		slot = -i - 1;
5116 		spi = slot / BPF_REG_SIZE;
5117 		if (state->allocated_stack <= slot)
5118 			goto err;
5119 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5120 		if (*stype == STACK_MISC)
5121 			goto mark;
5122 		if (*stype == STACK_ZERO) {
5123 			if (clobber) {
5124 				/* helper can write anything into the stack */
5125 				*stype = STACK_MISC;
5126 			}
5127 			goto mark;
5128 		}
5129 
5130 		if (is_spilled_reg(&state->stack[spi]) &&
5131 		    base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID)
5132 			goto mark;
5133 
5134 		if (is_spilled_reg(&state->stack[spi]) &&
5135 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5136 		     env->allow_ptr_leaks)) {
5137 			if (clobber) {
5138 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5139 				for (j = 0; j < BPF_REG_SIZE; j++)
5140 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5141 			}
5142 			goto mark;
5143 		}
5144 
5145 err:
5146 		if (tnum_is_const(reg->var_off)) {
5147 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5148 				err_extra, regno, min_off, i - min_off, access_size);
5149 		} else {
5150 			char tn_buf[48];
5151 
5152 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5153 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5154 				err_extra, regno, tn_buf, i - min_off, access_size);
5155 		}
5156 		return -EACCES;
5157 mark:
5158 		/* reading any byte out of 8-byte 'spill_slot' will cause
5159 		 * the whole slot to be marked as 'read'
5160 		 */
5161 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5162 			      state->stack[spi].spilled_ptr.parent,
5163 			      REG_LIVE_READ64);
5164 	}
5165 	return update_stack_depth(env, state, min_off);
5166 }
5167 
5168 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5169 				   int access_size, bool zero_size_allowed,
5170 				   struct bpf_call_arg_meta *meta)
5171 {
5172 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5173 	u32 *max_access;
5174 
5175 	switch (base_type(reg->type)) {
5176 	case PTR_TO_PACKET:
5177 	case PTR_TO_PACKET_META:
5178 		return check_packet_access(env, regno, reg->off, access_size,
5179 					   zero_size_allowed);
5180 	case PTR_TO_MAP_KEY:
5181 		if (meta && meta->raw_mode) {
5182 			verbose(env, "R%d cannot write into %s\n", regno,
5183 				reg_type_str(env, reg->type));
5184 			return -EACCES;
5185 		}
5186 		return check_mem_region_access(env, regno, reg->off, access_size,
5187 					       reg->map_ptr->key_size, false);
5188 	case PTR_TO_MAP_VALUE:
5189 		if (check_map_access_type(env, regno, reg->off, access_size,
5190 					  meta && meta->raw_mode ? BPF_WRITE :
5191 					  BPF_READ))
5192 			return -EACCES;
5193 		return check_map_access(env, regno, reg->off, access_size,
5194 					zero_size_allowed, ACCESS_HELPER);
5195 	case PTR_TO_MEM:
5196 		if (type_is_rdonly_mem(reg->type)) {
5197 			if (meta && meta->raw_mode) {
5198 				verbose(env, "R%d cannot write into %s\n", regno,
5199 					reg_type_str(env, reg->type));
5200 				return -EACCES;
5201 			}
5202 		}
5203 		return check_mem_region_access(env, regno, reg->off,
5204 					       access_size, reg->mem_size,
5205 					       zero_size_allowed);
5206 	case PTR_TO_BUF:
5207 		if (type_is_rdonly_mem(reg->type)) {
5208 			if (meta && meta->raw_mode) {
5209 				verbose(env, "R%d cannot write into %s\n", regno,
5210 					reg_type_str(env, reg->type));
5211 				return -EACCES;
5212 			}
5213 
5214 			max_access = &env->prog->aux->max_rdonly_access;
5215 		} else {
5216 			max_access = &env->prog->aux->max_rdwr_access;
5217 		}
5218 		return check_buffer_access(env, reg, regno, reg->off,
5219 					   access_size, zero_size_allowed,
5220 					   max_access);
5221 	case PTR_TO_STACK:
5222 		return check_stack_range_initialized(
5223 				env,
5224 				regno, reg->off, access_size,
5225 				zero_size_allowed, ACCESS_HELPER, meta);
5226 	default: /* scalar_value or invalid ptr */
5227 		/* Allow zero-byte read from NULL, regardless of pointer type */
5228 		if (zero_size_allowed && access_size == 0 &&
5229 		    register_is_null(reg))
5230 			return 0;
5231 
5232 		verbose(env, "R%d type=%s ", regno,
5233 			reg_type_str(env, reg->type));
5234 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5235 		return -EACCES;
5236 	}
5237 }
5238 
5239 static int check_mem_size_reg(struct bpf_verifier_env *env,
5240 			      struct bpf_reg_state *reg, u32 regno,
5241 			      bool zero_size_allowed,
5242 			      struct bpf_call_arg_meta *meta)
5243 {
5244 	int err;
5245 
5246 	/* This is used to refine r0 return value bounds for helpers
5247 	 * that enforce this value as an upper bound on return values.
5248 	 * See do_refine_retval_range() for helpers that can refine
5249 	 * the return value. C type of helper is u32 so we pull register
5250 	 * bound from umax_value however, if negative verifier errors
5251 	 * out. Only upper bounds can be learned because retval is an
5252 	 * int type and negative retvals are allowed.
5253 	 */
5254 	meta->msize_max_value = reg->umax_value;
5255 
5256 	/* The register is SCALAR_VALUE; the access check
5257 	 * happens using its boundaries.
5258 	 */
5259 	if (!tnum_is_const(reg->var_off))
5260 		/* For unprivileged variable accesses, disable raw
5261 		 * mode so that the program is required to
5262 		 * initialize all the memory that the helper could
5263 		 * just partially fill up.
5264 		 */
5265 		meta = NULL;
5266 
5267 	if (reg->smin_value < 0) {
5268 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5269 			regno);
5270 		return -EACCES;
5271 	}
5272 
5273 	if (reg->umin_value == 0) {
5274 		err = check_helper_mem_access(env, regno - 1, 0,
5275 					      zero_size_allowed,
5276 					      meta);
5277 		if (err)
5278 			return err;
5279 	}
5280 
5281 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5282 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5283 			regno);
5284 		return -EACCES;
5285 	}
5286 	err = check_helper_mem_access(env, regno - 1,
5287 				      reg->umax_value,
5288 				      zero_size_allowed, meta);
5289 	if (!err)
5290 		err = mark_chain_precision(env, regno);
5291 	return err;
5292 }
5293 
5294 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5295 		   u32 regno, u32 mem_size)
5296 {
5297 	bool may_be_null = type_may_be_null(reg->type);
5298 	struct bpf_reg_state saved_reg;
5299 	struct bpf_call_arg_meta meta;
5300 	int err;
5301 
5302 	if (register_is_null(reg))
5303 		return 0;
5304 
5305 	memset(&meta, 0, sizeof(meta));
5306 	/* Assuming that the register contains a value check if the memory
5307 	 * access is safe. Temporarily save and restore the register's state as
5308 	 * the conversion shouldn't be visible to a caller.
5309 	 */
5310 	if (may_be_null) {
5311 		saved_reg = *reg;
5312 		mark_ptr_not_null_reg(reg);
5313 	}
5314 
5315 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5316 	/* Check access for BPF_WRITE */
5317 	meta.raw_mode = true;
5318 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5319 
5320 	if (may_be_null)
5321 		*reg = saved_reg;
5322 
5323 	return err;
5324 }
5325 
5326 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5327 			     u32 regno)
5328 {
5329 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5330 	bool may_be_null = type_may_be_null(mem_reg->type);
5331 	struct bpf_reg_state saved_reg;
5332 	struct bpf_call_arg_meta meta;
5333 	int err;
5334 
5335 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5336 
5337 	memset(&meta, 0, sizeof(meta));
5338 
5339 	if (may_be_null) {
5340 		saved_reg = *mem_reg;
5341 		mark_ptr_not_null_reg(mem_reg);
5342 	}
5343 
5344 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5345 	/* Check access for BPF_WRITE */
5346 	meta.raw_mode = true;
5347 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5348 
5349 	if (may_be_null)
5350 		*mem_reg = saved_reg;
5351 	return err;
5352 }
5353 
5354 /* Implementation details:
5355  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5356  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5357  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5358  * value_or_null->value transition, since the verifier only cares about
5359  * the range of access to valid map value pointer and doesn't care about actual
5360  * address of the map element.
5361  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5362  * reg->id > 0 after value_or_null->value transition. By doing so
5363  * two bpf_map_lookups will be considered two different pointers that
5364  * point to different bpf_spin_locks.
5365  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5366  * dead-locks.
5367  * Since only one bpf_spin_lock is allowed the checks are simpler than
5368  * reg_is_refcounted() logic. The verifier needs to remember only
5369  * one spin_lock instead of array of acquired_refs.
5370  * cur_state->active_spin_lock remembers which map value element got locked
5371  * and clears it after bpf_spin_unlock.
5372  */
5373 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5374 			     bool is_lock)
5375 {
5376 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5377 	struct bpf_verifier_state *cur = env->cur_state;
5378 	bool is_const = tnum_is_const(reg->var_off);
5379 	struct bpf_map *map = reg->map_ptr;
5380 	u64 val = reg->var_off.value;
5381 
5382 	if (!is_const) {
5383 		verbose(env,
5384 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5385 			regno);
5386 		return -EINVAL;
5387 	}
5388 	if (!map->btf) {
5389 		verbose(env,
5390 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5391 			map->name);
5392 		return -EINVAL;
5393 	}
5394 	if (!map_value_has_spin_lock(map)) {
5395 		if (map->spin_lock_off == -E2BIG)
5396 			verbose(env,
5397 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
5398 				map->name);
5399 		else if (map->spin_lock_off == -ENOENT)
5400 			verbose(env,
5401 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
5402 				map->name);
5403 		else
5404 			verbose(env,
5405 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5406 				map->name);
5407 		return -EINVAL;
5408 	}
5409 	if (map->spin_lock_off != val + reg->off) {
5410 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5411 			val + reg->off);
5412 		return -EINVAL;
5413 	}
5414 	if (is_lock) {
5415 		if (cur->active_spin_lock) {
5416 			verbose(env,
5417 				"Locking two bpf_spin_locks are not allowed\n");
5418 			return -EINVAL;
5419 		}
5420 		cur->active_spin_lock = reg->id;
5421 	} else {
5422 		if (!cur->active_spin_lock) {
5423 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5424 			return -EINVAL;
5425 		}
5426 		if (cur->active_spin_lock != reg->id) {
5427 			verbose(env, "bpf_spin_unlock of different lock\n");
5428 			return -EINVAL;
5429 		}
5430 		cur->active_spin_lock = 0;
5431 	}
5432 	return 0;
5433 }
5434 
5435 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5436 			      struct bpf_call_arg_meta *meta)
5437 {
5438 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5439 	bool is_const = tnum_is_const(reg->var_off);
5440 	struct bpf_map *map = reg->map_ptr;
5441 	u64 val = reg->var_off.value;
5442 
5443 	if (!is_const) {
5444 		verbose(env,
5445 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5446 			regno);
5447 		return -EINVAL;
5448 	}
5449 	if (!map->btf) {
5450 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5451 			map->name);
5452 		return -EINVAL;
5453 	}
5454 	if (!map_value_has_timer(map)) {
5455 		if (map->timer_off == -E2BIG)
5456 			verbose(env,
5457 				"map '%s' has more than one 'struct bpf_timer'\n",
5458 				map->name);
5459 		else if (map->timer_off == -ENOENT)
5460 			verbose(env,
5461 				"map '%s' doesn't have 'struct bpf_timer'\n",
5462 				map->name);
5463 		else
5464 			verbose(env,
5465 				"map '%s' is not a struct type or bpf_timer is mangled\n",
5466 				map->name);
5467 		return -EINVAL;
5468 	}
5469 	if (map->timer_off != val + reg->off) {
5470 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5471 			val + reg->off, map->timer_off);
5472 		return -EINVAL;
5473 	}
5474 	if (meta->map_ptr) {
5475 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5476 		return -EFAULT;
5477 	}
5478 	meta->map_uid = reg->map_uid;
5479 	meta->map_ptr = map;
5480 	return 0;
5481 }
5482 
5483 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5484 			     struct bpf_call_arg_meta *meta)
5485 {
5486 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5487 	struct bpf_map_value_off_desc *off_desc;
5488 	struct bpf_map *map_ptr = reg->map_ptr;
5489 	u32 kptr_off;
5490 	int ret;
5491 
5492 	if (!tnum_is_const(reg->var_off)) {
5493 		verbose(env,
5494 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5495 			regno);
5496 		return -EINVAL;
5497 	}
5498 	if (!map_ptr->btf) {
5499 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5500 			map_ptr->name);
5501 		return -EINVAL;
5502 	}
5503 	if (!map_value_has_kptrs(map_ptr)) {
5504 		ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
5505 		if (ret == -E2BIG)
5506 			verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5507 				BPF_MAP_VALUE_OFF_MAX);
5508 		else if (ret == -EEXIST)
5509 			verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5510 		else
5511 			verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5512 		return -EINVAL;
5513 	}
5514 
5515 	meta->map_ptr = map_ptr;
5516 	kptr_off = reg->off + reg->var_off.value;
5517 	off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5518 	if (!off_desc) {
5519 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5520 		return -EACCES;
5521 	}
5522 	if (off_desc->type != BPF_KPTR_REF) {
5523 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5524 		return -EACCES;
5525 	}
5526 	meta->kptr_off_desc = off_desc;
5527 	return 0;
5528 }
5529 
5530 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5531 {
5532 	return type == ARG_CONST_SIZE ||
5533 	       type == ARG_CONST_SIZE_OR_ZERO;
5534 }
5535 
5536 static bool arg_type_is_release(enum bpf_arg_type type)
5537 {
5538 	return type & OBJ_RELEASE;
5539 }
5540 
5541 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5542 {
5543 	return base_type(type) == ARG_PTR_TO_DYNPTR;
5544 }
5545 
5546 static int int_ptr_type_to_size(enum bpf_arg_type type)
5547 {
5548 	if (type == ARG_PTR_TO_INT)
5549 		return sizeof(u32);
5550 	else if (type == ARG_PTR_TO_LONG)
5551 		return sizeof(u64);
5552 
5553 	return -EINVAL;
5554 }
5555 
5556 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5557 				 const struct bpf_call_arg_meta *meta,
5558 				 enum bpf_arg_type *arg_type)
5559 {
5560 	if (!meta->map_ptr) {
5561 		/* kernel subsystem misconfigured verifier */
5562 		verbose(env, "invalid map_ptr to access map->type\n");
5563 		return -EACCES;
5564 	}
5565 
5566 	switch (meta->map_ptr->map_type) {
5567 	case BPF_MAP_TYPE_SOCKMAP:
5568 	case BPF_MAP_TYPE_SOCKHASH:
5569 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5570 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5571 		} else {
5572 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5573 			return -EINVAL;
5574 		}
5575 		break;
5576 	case BPF_MAP_TYPE_BLOOM_FILTER:
5577 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5578 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5579 		break;
5580 	default:
5581 		break;
5582 	}
5583 	return 0;
5584 }
5585 
5586 struct bpf_reg_types {
5587 	const enum bpf_reg_type types[10];
5588 	u32 *btf_id;
5589 };
5590 
5591 static const struct bpf_reg_types map_key_value_types = {
5592 	.types = {
5593 		PTR_TO_STACK,
5594 		PTR_TO_PACKET,
5595 		PTR_TO_PACKET_META,
5596 		PTR_TO_MAP_KEY,
5597 		PTR_TO_MAP_VALUE,
5598 	},
5599 };
5600 
5601 static const struct bpf_reg_types sock_types = {
5602 	.types = {
5603 		PTR_TO_SOCK_COMMON,
5604 		PTR_TO_SOCKET,
5605 		PTR_TO_TCP_SOCK,
5606 		PTR_TO_XDP_SOCK,
5607 	},
5608 };
5609 
5610 #ifdef CONFIG_NET
5611 static const struct bpf_reg_types btf_id_sock_common_types = {
5612 	.types = {
5613 		PTR_TO_SOCK_COMMON,
5614 		PTR_TO_SOCKET,
5615 		PTR_TO_TCP_SOCK,
5616 		PTR_TO_XDP_SOCK,
5617 		PTR_TO_BTF_ID,
5618 	},
5619 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5620 };
5621 #endif
5622 
5623 static const struct bpf_reg_types mem_types = {
5624 	.types = {
5625 		PTR_TO_STACK,
5626 		PTR_TO_PACKET,
5627 		PTR_TO_PACKET_META,
5628 		PTR_TO_MAP_KEY,
5629 		PTR_TO_MAP_VALUE,
5630 		PTR_TO_MEM,
5631 		PTR_TO_MEM | MEM_ALLOC,
5632 		PTR_TO_BUF,
5633 	},
5634 };
5635 
5636 static const struct bpf_reg_types int_ptr_types = {
5637 	.types = {
5638 		PTR_TO_STACK,
5639 		PTR_TO_PACKET,
5640 		PTR_TO_PACKET_META,
5641 		PTR_TO_MAP_KEY,
5642 		PTR_TO_MAP_VALUE,
5643 	},
5644 };
5645 
5646 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5647 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5648 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5649 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5650 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5651 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5652 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5653 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5654 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5655 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5656 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5657 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5658 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5659 
5660 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5661 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5662 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5663 	[ARG_CONST_SIZE]		= &scalar_types,
5664 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5665 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5666 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5667 	[ARG_PTR_TO_CTX]		= &context_types,
5668 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5669 #ifdef CONFIG_NET
5670 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5671 #endif
5672 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5673 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5674 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5675 	[ARG_PTR_TO_MEM]		= &mem_types,
5676 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5677 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5678 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5679 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5680 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5681 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5682 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5683 	[ARG_PTR_TO_TIMER]		= &timer_types,
5684 	[ARG_PTR_TO_KPTR]		= &kptr_types,
5685 	[ARG_PTR_TO_DYNPTR]		= &stack_ptr_types,
5686 };
5687 
5688 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5689 			  enum bpf_arg_type arg_type,
5690 			  const u32 *arg_btf_id,
5691 			  struct bpf_call_arg_meta *meta)
5692 {
5693 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5694 	enum bpf_reg_type expected, type = reg->type;
5695 	const struct bpf_reg_types *compatible;
5696 	int i, j;
5697 
5698 	compatible = compatible_reg_types[base_type(arg_type)];
5699 	if (!compatible) {
5700 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5701 		return -EFAULT;
5702 	}
5703 
5704 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5705 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5706 	 *
5707 	 * Same for MAYBE_NULL:
5708 	 *
5709 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5710 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5711 	 *
5712 	 * Therefore we fold these flags depending on the arg_type before comparison.
5713 	 */
5714 	if (arg_type & MEM_RDONLY)
5715 		type &= ~MEM_RDONLY;
5716 	if (arg_type & PTR_MAYBE_NULL)
5717 		type &= ~PTR_MAYBE_NULL;
5718 
5719 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5720 		expected = compatible->types[i];
5721 		if (expected == NOT_INIT)
5722 			break;
5723 
5724 		if (type == expected)
5725 			goto found;
5726 	}
5727 
5728 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5729 	for (j = 0; j + 1 < i; j++)
5730 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5731 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5732 	return -EACCES;
5733 
5734 found:
5735 	if (reg->type == PTR_TO_BTF_ID) {
5736 		/* For bpf_sk_release, it needs to match against first member
5737 		 * 'struct sock_common', hence make an exception for it. This
5738 		 * allows bpf_sk_release to work for multiple socket types.
5739 		 */
5740 		bool strict_type_match = arg_type_is_release(arg_type) &&
5741 					 meta->func_id != BPF_FUNC_sk_release;
5742 
5743 		if (!arg_btf_id) {
5744 			if (!compatible->btf_id) {
5745 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5746 				return -EFAULT;
5747 			}
5748 			arg_btf_id = compatible->btf_id;
5749 		}
5750 
5751 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
5752 			if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
5753 				return -EACCES;
5754 		} else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5755 						 btf_vmlinux, *arg_btf_id,
5756 						 strict_type_match)) {
5757 			verbose(env, "R%d is of type %s but %s is expected\n",
5758 				regno, kernel_type_name(reg->btf, reg->btf_id),
5759 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5760 			return -EACCES;
5761 		}
5762 	}
5763 
5764 	return 0;
5765 }
5766 
5767 int check_func_arg_reg_off(struct bpf_verifier_env *env,
5768 			   const struct bpf_reg_state *reg, int regno,
5769 			   enum bpf_arg_type arg_type)
5770 {
5771 	enum bpf_reg_type type = reg->type;
5772 	bool fixed_off_ok = false;
5773 
5774 	switch ((u32)type) {
5775 	/* Pointer types where reg offset is explicitly allowed: */
5776 	case PTR_TO_STACK:
5777 		if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
5778 			verbose(env, "cannot pass in dynptr at an offset\n");
5779 			return -EINVAL;
5780 		}
5781 		fallthrough;
5782 	case PTR_TO_PACKET:
5783 	case PTR_TO_PACKET_META:
5784 	case PTR_TO_MAP_KEY:
5785 	case PTR_TO_MAP_VALUE:
5786 	case PTR_TO_MEM:
5787 	case PTR_TO_MEM | MEM_RDONLY:
5788 	case PTR_TO_MEM | MEM_ALLOC:
5789 	case PTR_TO_BUF:
5790 	case PTR_TO_BUF | MEM_RDONLY:
5791 	case SCALAR_VALUE:
5792 		/* Some of the argument types nevertheless require a
5793 		 * zero register offset.
5794 		 */
5795 		if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
5796 			return 0;
5797 		break;
5798 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5799 	 * fixed offset.
5800 	 */
5801 	case PTR_TO_BTF_ID:
5802 		/* When referenced PTR_TO_BTF_ID is passed to release function,
5803 		 * it's fixed offset must be 0.	In the other cases, fixed offset
5804 		 * can be non-zero.
5805 		 */
5806 		if (arg_type_is_release(arg_type) && reg->off) {
5807 			verbose(env, "R%d must have zero offset when passed to release func\n",
5808 				regno);
5809 			return -EINVAL;
5810 		}
5811 		/* For arg is release pointer, fixed_off_ok must be false, but
5812 		 * we already checked and rejected reg->off != 0 above, so set
5813 		 * to true to allow fixed offset for all other cases.
5814 		 */
5815 		fixed_off_ok = true;
5816 		break;
5817 	default:
5818 		break;
5819 	}
5820 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5821 }
5822 
5823 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
5824 {
5825 	struct bpf_func_state *state = func(env, reg);
5826 	int spi = get_spi(reg->off);
5827 
5828 	return state->stack[spi].spilled_ptr.id;
5829 }
5830 
5831 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5832 			  struct bpf_call_arg_meta *meta,
5833 			  const struct bpf_func_proto *fn)
5834 {
5835 	u32 regno = BPF_REG_1 + arg;
5836 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5837 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5838 	enum bpf_reg_type type = reg->type;
5839 	u32 *arg_btf_id = NULL;
5840 	int err = 0;
5841 
5842 	if (arg_type == ARG_DONTCARE)
5843 		return 0;
5844 
5845 	err = check_reg_arg(env, regno, SRC_OP);
5846 	if (err)
5847 		return err;
5848 
5849 	if (arg_type == ARG_ANYTHING) {
5850 		if (is_pointer_value(env, regno)) {
5851 			verbose(env, "R%d leaks addr into helper function\n",
5852 				regno);
5853 			return -EACCES;
5854 		}
5855 		return 0;
5856 	}
5857 
5858 	if (type_is_pkt_pointer(type) &&
5859 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5860 		verbose(env, "helper access to the packet is not allowed\n");
5861 		return -EACCES;
5862 	}
5863 
5864 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
5865 		err = resolve_map_arg_type(env, meta, &arg_type);
5866 		if (err)
5867 			return err;
5868 	}
5869 
5870 	if (register_is_null(reg) && type_may_be_null(arg_type))
5871 		/* A NULL register has a SCALAR_VALUE type, so skip
5872 		 * type checking.
5873 		 */
5874 		goto skip_type_check;
5875 
5876 	/* arg_btf_id and arg_size are in a union. */
5877 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
5878 		arg_btf_id = fn->arg_btf_id[arg];
5879 
5880 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
5881 	if (err)
5882 		return err;
5883 
5884 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
5885 	if (err)
5886 		return err;
5887 
5888 skip_type_check:
5889 	if (arg_type_is_release(arg_type)) {
5890 		if (arg_type_is_dynptr(arg_type)) {
5891 			struct bpf_func_state *state = func(env, reg);
5892 			int spi = get_spi(reg->off);
5893 
5894 			if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
5895 			    !state->stack[spi].spilled_ptr.id) {
5896 				verbose(env, "arg %d is an unacquired reference\n", regno);
5897 				return -EINVAL;
5898 			}
5899 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
5900 			verbose(env, "R%d must be referenced when passed to release function\n",
5901 				regno);
5902 			return -EINVAL;
5903 		}
5904 		if (meta->release_regno) {
5905 			verbose(env, "verifier internal error: more than one release argument\n");
5906 			return -EFAULT;
5907 		}
5908 		meta->release_regno = regno;
5909 	}
5910 
5911 	if (reg->ref_obj_id) {
5912 		if (meta->ref_obj_id) {
5913 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5914 				regno, reg->ref_obj_id,
5915 				meta->ref_obj_id);
5916 			return -EFAULT;
5917 		}
5918 		meta->ref_obj_id = reg->ref_obj_id;
5919 	}
5920 
5921 	switch (base_type(arg_type)) {
5922 	case ARG_CONST_MAP_PTR:
5923 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5924 		if (meta->map_ptr) {
5925 			/* Use map_uid (which is unique id of inner map) to reject:
5926 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5927 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5928 			 * if (inner_map1 && inner_map2) {
5929 			 *     timer = bpf_map_lookup_elem(inner_map1);
5930 			 *     if (timer)
5931 			 *         // mismatch would have been allowed
5932 			 *         bpf_timer_init(timer, inner_map2);
5933 			 * }
5934 			 *
5935 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5936 			 */
5937 			if (meta->map_ptr != reg->map_ptr ||
5938 			    meta->map_uid != reg->map_uid) {
5939 				verbose(env,
5940 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5941 					meta->map_uid, reg->map_uid);
5942 				return -EINVAL;
5943 			}
5944 		}
5945 		meta->map_ptr = reg->map_ptr;
5946 		meta->map_uid = reg->map_uid;
5947 		break;
5948 	case ARG_PTR_TO_MAP_KEY:
5949 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5950 		 * check that [key, key + map->key_size) are within
5951 		 * stack limits and initialized
5952 		 */
5953 		if (!meta->map_ptr) {
5954 			/* in function declaration map_ptr must come before
5955 			 * map_key, so that it's verified and known before
5956 			 * we have to check map_key here. Otherwise it means
5957 			 * that kernel subsystem misconfigured verifier
5958 			 */
5959 			verbose(env, "invalid map_ptr to access map->key\n");
5960 			return -EACCES;
5961 		}
5962 		err = check_helper_mem_access(env, regno,
5963 					      meta->map_ptr->key_size, false,
5964 					      NULL);
5965 		break;
5966 	case ARG_PTR_TO_MAP_VALUE:
5967 		if (type_may_be_null(arg_type) && register_is_null(reg))
5968 			return 0;
5969 
5970 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5971 		 * check [value, value + map->value_size) validity
5972 		 */
5973 		if (!meta->map_ptr) {
5974 			/* kernel subsystem misconfigured verifier */
5975 			verbose(env, "invalid map_ptr to access map->value\n");
5976 			return -EACCES;
5977 		}
5978 		meta->raw_mode = arg_type & MEM_UNINIT;
5979 		err = check_helper_mem_access(env, regno,
5980 					      meta->map_ptr->value_size, false,
5981 					      meta);
5982 		break;
5983 	case ARG_PTR_TO_PERCPU_BTF_ID:
5984 		if (!reg->btf_id) {
5985 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5986 			return -EACCES;
5987 		}
5988 		meta->ret_btf = reg->btf;
5989 		meta->ret_btf_id = reg->btf_id;
5990 		break;
5991 	case ARG_PTR_TO_SPIN_LOCK:
5992 		if (meta->func_id == BPF_FUNC_spin_lock) {
5993 			if (process_spin_lock(env, regno, true))
5994 				return -EACCES;
5995 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5996 			if (process_spin_lock(env, regno, false))
5997 				return -EACCES;
5998 		} else {
5999 			verbose(env, "verifier internal error\n");
6000 			return -EFAULT;
6001 		}
6002 		break;
6003 	case ARG_PTR_TO_TIMER:
6004 		if (process_timer_func(env, regno, meta))
6005 			return -EACCES;
6006 		break;
6007 	case ARG_PTR_TO_FUNC:
6008 		meta->subprogno = reg->subprogno;
6009 		break;
6010 	case ARG_PTR_TO_MEM:
6011 		/* The access to this pointer is only checked when we hit the
6012 		 * next is_mem_size argument below.
6013 		 */
6014 		meta->raw_mode = arg_type & MEM_UNINIT;
6015 		if (arg_type & MEM_FIXED_SIZE) {
6016 			err = check_helper_mem_access(env, regno,
6017 						      fn->arg_size[arg], false,
6018 						      meta);
6019 		}
6020 		break;
6021 	case ARG_CONST_SIZE:
6022 		err = check_mem_size_reg(env, reg, regno, false, meta);
6023 		break;
6024 	case ARG_CONST_SIZE_OR_ZERO:
6025 		err = check_mem_size_reg(env, reg, regno, true, meta);
6026 		break;
6027 	case ARG_PTR_TO_DYNPTR:
6028 		if (arg_type & MEM_UNINIT) {
6029 			if (!is_dynptr_reg_valid_uninit(env, reg)) {
6030 				verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6031 				return -EINVAL;
6032 			}
6033 
6034 			/* We only support one dynptr being uninitialized at the moment,
6035 			 * which is sufficient for the helper functions we have right now.
6036 			 */
6037 			if (meta->uninit_dynptr_regno) {
6038 				verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6039 				return -EFAULT;
6040 			}
6041 
6042 			meta->uninit_dynptr_regno = regno;
6043 		} else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) {
6044 			const char *err_extra = "";
6045 
6046 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6047 			case DYNPTR_TYPE_LOCAL:
6048 				err_extra = "local ";
6049 				break;
6050 			case DYNPTR_TYPE_RINGBUF:
6051 				err_extra = "ringbuf ";
6052 				break;
6053 			default:
6054 				break;
6055 			}
6056 
6057 			verbose(env, "Expected an initialized %sdynptr as arg #%d\n",
6058 				err_extra, arg + 1);
6059 			return -EINVAL;
6060 		}
6061 		break;
6062 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6063 		if (!tnum_is_const(reg->var_off)) {
6064 			verbose(env, "R%d is not a known constant'\n",
6065 				regno);
6066 			return -EACCES;
6067 		}
6068 		meta->mem_size = reg->var_off.value;
6069 		break;
6070 	case ARG_PTR_TO_INT:
6071 	case ARG_PTR_TO_LONG:
6072 	{
6073 		int size = int_ptr_type_to_size(arg_type);
6074 
6075 		err = check_helper_mem_access(env, regno, size, false, meta);
6076 		if (err)
6077 			return err;
6078 		err = check_ptr_alignment(env, reg, 0, size, true);
6079 		break;
6080 	}
6081 	case ARG_PTR_TO_CONST_STR:
6082 	{
6083 		struct bpf_map *map = reg->map_ptr;
6084 		int map_off;
6085 		u64 map_addr;
6086 		char *str_ptr;
6087 
6088 		if (!bpf_map_is_rdonly(map)) {
6089 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6090 			return -EACCES;
6091 		}
6092 
6093 		if (!tnum_is_const(reg->var_off)) {
6094 			verbose(env, "R%d is not a constant address'\n", regno);
6095 			return -EACCES;
6096 		}
6097 
6098 		if (!map->ops->map_direct_value_addr) {
6099 			verbose(env, "no direct value access support for this map type\n");
6100 			return -EACCES;
6101 		}
6102 
6103 		err = check_map_access(env, regno, reg->off,
6104 				       map->value_size - reg->off, false,
6105 				       ACCESS_HELPER);
6106 		if (err)
6107 			return err;
6108 
6109 		map_off = reg->off + reg->var_off.value;
6110 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6111 		if (err) {
6112 			verbose(env, "direct value access on string failed\n");
6113 			return err;
6114 		}
6115 
6116 		str_ptr = (char *)(long)(map_addr);
6117 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6118 			verbose(env, "string is not zero-terminated\n");
6119 			return -EINVAL;
6120 		}
6121 		break;
6122 	}
6123 	case ARG_PTR_TO_KPTR:
6124 		if (process_kptr_func(env, regno, meta))
6125 			return -EACCES;
6126 		break;
6127 	}
6128 
6129 	return err;
6130 }
6131 
6132 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6133 {
6134 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6135 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6136 
6137 	if (func_id != BPF_FUNC_map_update_elem)
6138 		return false;
6139 
6140 	/* It's not possible to get access to a locked struct sock in these
6141 	 * contexts, so updating is safe.
6142 	 */
6143 	switch (type) {
6144 	case BPF_PROG_TYPE_TRACING:
6145 		if (eatype == BPF_TRACE_ITER)
6146 			return true;
6147 		break;
6148 	case BPF_PROG_TYPE_SOCKET_FILTER:
6149 	case BPF_PROG_TYPE_SCHED_CLS:
6150 	case BPF_PROG_TYPE_SCHED_ACT:
6151 	case BPF_PROG_TYPE_XDP:
6152 	case BPF_PROG_TYPE_SK_REUSEPORT:
6153 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6154 	case BPF_PROG_TYPE_SK_LOOKUP:
6155 		return true;
6156 	default:
6157 		break;
6158 	}
6159 
6160 	verbose(env, "cannot update sockmap in this context\n");
6161 	return false;
6162 }
6163 
6164 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6165 {
6166 	return env->prog->jit_requested &&
6167 	       bpf_jit_supports_subprog_tailcalls();
6168 }
6169 
6170 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6171 					struct bpf_map *map, int func_id)
6172 {
6173 	if (!map)
6174 		return 0;
6175 
6176 	/* We need a two way check, first is from map perspective ... */
6177 	switch (map->map_type) {
6178 	case BPF_MAP_TYPE_PROG_ARRAY:
6179 		if (func_id != BPF_FUNC_tail_call)
6180 			goto error;
6181 		break;
6182 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6183 		if (func_id != BPF_FUNC_perf_event_read &&
6184 		    func_id != BPF_FUNC_perf_event_output &&
6185 		    func_id != BPF_FUNC_skb_output &&
6186 		    func_id != BPF_FUNC_perf_event_read_value &&
6187 		    func_id != BPF_FUNC_xdp_output)
6188 			goto error;
6189 		break;
6190 	case BPF_MAP_TYPE_RINGBUF:
6191 		if (func_id != BPF_FUNC_ringbuf_output &&
6192 		    func_id != BPF_FUNC_ringbuf_reserve &&
6193 		    func_id != BPF_FUNC_ringbuf_query &&
6194 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6195 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6196 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6197 			goto error;
6198 		break;
6199 	case BPF_MAP_TYPE_STACK_TRACE:
6200 		if (func_id != BPF_FUNC_get_stackid)
6201 			goto error;
6202 		break;
6203 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6204 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6205 		    func_id != BPF_FUNC_current_task_under_cgroup)
6206 			goto error;
6207 		break;
6208 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6209 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6210 		if (func_id != BPF_FUNC_get_local_storage)
6211 			goto error;
6212 		break;
6213 	case BPF_MAP_TYPE_DEVMAP:
6214 	case BPF_MAP_TYPE_DEVMAP_HASH:
6215 		if (func_id != BPF_FUNC_redirect_map &&
6216 		    func_id != BPF_FUNC_map_lookup_elem)
6217 			goto error;
6218 		break;
6219 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6220 	 * appear.
6221 	 */
6222 	case BPF_MAP_TYPE_CPUMAP:
6223 		if (func_id != BPF_FUNC_redirect_map)
6224 			goto error;
6225 		break;
6226 	case BPF_MAP_TYPE_XSKMAP:
6227 		if (func_id != BPF_FUNC_redirect_map &&
6228 		    func_id != BPF_FUNC_map_lookup_elem)
6229 			goto error;
6230 		break;
6231 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6232 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6233 		if (func_id != BPF_FUNC_map_lookup_elem)
6234 			goto error;
6235 		break;
6236 	case BPF_MAP_TYPE_SOCKMAP:
6237 		if (func_id != BPF_FUNC_sk_redirect_map &&
6238 		    func_id != BPF_FUNC_sock_map_update &&
6239 		    func_id != BPF_FUNC_map_delete_elem &&
6240 		    func_id != BPF_FUNC_msg_redirect_map &&
6241 		    func_id != BPF_FUNC_sk_select_reuseport &&
6242 		    func_id != BPF_FUNC_map_lookup_elem &&
6243 		    !may_update_sockmap(env, func_id))
6244 			goto error;
6245 		break;
6246 	case BPF_MAP_TYPE_SOCKHASH:
6247 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6248 		    func_id != BPF_FUNC_sock_hash_update &&
6249 		    func_id != BPF_FUNC_map_delete_elem &&
6250 		    func_id != BPF_FUNC_msg_redirect_hash &&
6251 		    func_id != BPF_FUNC_sk_select_reuseport &&
6252 		    func_id != BPF_FUNC_map_lookup_elem &&
6253 		    !may_update_sockmap(env, func_id))
6254 			goto error;
6255 		break;
6256 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6257 		if (func_id != BPF_FUNC_sk_select_reuseport)
6258 			goto error;
6259 		break;
6260 	case BPF_MAP_TYPE_QUEUE:
6261 	case BPF_MAP_TYPE_STACK:
6262 		if (func_id != BPF_FUNC_map_peek_elem &&
6263 		    func_id != BPF_FUNC_map_pop_elem &&
6264 		    func_id != BPF_FUNC_map_push_elem)
6265 			goto error;
6266 		break;
6267 	case BPF_MAP_TYPE_SK_STORAGE:
6268 		if (func_id != BPF_FUNC_sk_storage_get &&
6269 		    func_id != BPF_FUNC_sk_storage_delete)
6270 			goto error;
6271 		break;
6272 	case BPF_MAP_TYPE_INODE_STORAGE:
6273 		if (func_id != BPF_FUNC_inode_storage_get &&
6274 		    func_id != BPF_FUNC_inode_storage_delete)
6275 			goto error;
6276 		break;
6277 	case BPF_MAP_TYPE_TASK_STORAGE:
6278 		if (func_id != BPF_FUNC_task_storage_get &&
6279 		    func_id != BPF_FUNC_task_storage_delete)
6280 			goto error;
6281 		break;
6282 	case BPF_MAP_TYPE_BLOOM_FILTER:
6283 		if (func_id != BPF_FUNC_map_peek_elem &&
6284 		    func_id != BPF_FUNC_map_push_elem)
6285 			goto error;
6286 		break;
6287 	default:
6288 		break;
6289 	}
6290 
6291 	/* ... and second from the function itself. */
6292 	switch (func_id) {
6293 	case BPF_FUNC_tail_call:
6294 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6295 			goto error;
6296 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6297 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6298 			return -EINVAL;
6299 		}
6300 		break;
6301 	case BPF_FUNC_perf_event_read:
6302 	case BPF_FUNC_perf_event_output:
6303 	case BPF_FUNC_perf_event_read_value:
6304 	case BPF_FUNC_skb_output:
6305 	case BPF_FUNC_xdp_output:
6306 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6307 			goto error;
6308 		break;
6309 	case BPF_FUNC_ringbuf_output:
6310 	case BPF_FUNC_ringbuf_reserve:
6311 	case BPF_FUNC_ringbuf_query:
6312 	case BPF_FUNC_ringbuf_reserve_dynptr:
6313 	case BPF_FUNC_ringbuf_submit_dynptr:
6314 	case BPF_FUNC_ringbuf_discard_dynptr:
6315 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6316 			goto error;
6317 		break;
6318 	case BPF_FUNC_get_stackid:
6319 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6320 			goto error;
6321 		break;
6322 	case BPF_FUNC_current_task_under_cgroup:
6323 	case BPF_FUNC_skb_under_cgroup:
6324 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6325 			goto error;
6326 		break;
6327 	case BPF_FUNC_redirect_map:
6328 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6329 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6330 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6331 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6332 			goto error;
6333 		break;
6334 	case BPF_FUNC_sk_redirect_map:
6335 	case BPF_FUNC_msg_redirect_map:
6336 	case BPF_FUNC_sock_map_update:
6337 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6338 			goto error;
6339 		break;
6340 	case BPF_FUNC_sk_redirect_hash:
6341 	case BPF_FUNC_msg_redirect_hash:
6342 	case BPF_FUNC_sock_hash_update:
6343 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6344 			goto error;
6345 		break;
6346 	case BPF_FUNC_get_local_storage:
6347 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6348 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6349 			goto error;
6350 		break;
6351 	case BPF_FUNC_sk_select_reuseport:
6352 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6353 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6354 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6355 			goto error;
6356 		break;
6357 	case BPF_FUNC_map_pop_elem:
6358 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6359 		    map->map_type != BPF_MAP_TYPE_STACK)
6360 			goto error;
6361 		break;
6362 	case BPF_FUNC_map_peek_elem:
6363 	case BPF_FUNC_map_push_elem:
6364 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6365 		    map->map_type != BPF_MAP_TYPE_STACK &&
6366 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6367 			goto error;
6368 		break;
6369 	case BPF_FUNC_map_lookup_percpu_elem:
6370 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6371 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6372 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6373 			goto error;
6374 		break;
6375 	case BPF_FUNC_sk_storage_get:
6376 	case BPF_FUNC_sk_storage_delete:
6377 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6378 			goto error;
6379 		break;
6380 	case BPF_FUNC_inode_storage_get:
6381 	case BPF_FUNC_inode_storage_delete:
6382 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6383 			goto error;
6384 		break;
6385 	case BPF_FUNC_task_storage_get:
6386 	case BPF_FUNC_task_storage_delete:
6387 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6388 			goto error;
6389 		break;
6390 	default:
6391 		break;
6392 	}
6393 
6394 	return 0;
6395 error:
6396 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6397 		map->map_type, func_id_name(func_id), func_id);
6398 	return -EINVAL;
6399 }
6400 
6401 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6402 {
6403 	int count = 0;
6404 
6405 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6406 		count++;
6407 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6408 		count++;
6409 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6410 		count++;
6411 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6412 		count++;
6413 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6414 		count++;
6415 
6416 	/* We only support one arg being in raw mode at the moment,
6417 	 * which is sufficient for the helper functions we have
6418 	 * right now.
6419 	 */
6420 	return count <= 1;
6421 }
6422 
6423 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6424 {
6425 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6426 	bool has_size = fn->arg_size[arg] != 0;
6427 	bool is_next_size = false;
6428 
6429 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6430 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6431 
6432 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6433 		return is_next_size;
6434 
6435 	return has_size == is_next_size || is_next_size == is_fixed;
6436 }
6437 
6438 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6439 {
6440 	/* bpf_xxx(..., buf, len) call will access 'len'
6441 	 * bytes from memory 'buf'. Both arg types need
6442 	 * to be paired, so make sure there's no buggy
6443 	 * helper function specification.
6444 	 */
6445 	if (arg_type_is_mem_size(fn->arg1_type) ||
6446 	    check_args_pair_invalid(fn, 0) ||
6447 	    check_args_pair_invalid(fn, 1) ||
6448 	    check_args_pair_invalid(fn, 2) ||
6449 	    check_args_pair_invalid(fn, 3) ||
6450 	    check_args_pair_invalid(fn, 4))
6451 		return false;
6452 
6453 	return true;
6454 }
6455 
6456 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
6457 {
6458 	int count = 0;
6459 
6460 	if (arg_type_may_be_refcounted(fn->arg1_type))
6461 		count++;
6462 	if (arg_type_may_be_refcounted(fn->arg2_type))
6463 		count++;
6464 	if (arg_type_may_be_refcounted(fn->arg3_type))
6465 		count++;
6466 	if (arg_type_may_be_refcounted(fn->arg4_type))
6467 		count++;
6468 	if (arg_type_may_be_refcounted(fn->arg5_type))
6469 		count++;
6470 
6471 	/* A reference acquiring function cannot acquire
6472 	 * another refcounted ptr.
6473 	 */
6474 	if (may_be_acquire_function(func_id) && count)
6475 		return false;
6476 
6477 	/* We only support one arg being unreferenced at the moment,
6478 	 * which is sufficient for the helper functions we have right now.
6479 	 */
6480 	return count <= 1;
6481 }
6482 
6483 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6484 {
6485 	int i;
6486 
6487 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6488 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6489 			return false;
6490 
6491 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6492 		    /* arg_btf_id and arg_size are in a union. */
6493 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6494 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6495 			return false;
6496 	}
6497 
6498 	return true;
6499 }
6500 
6501 static int check_func_proto(const struct bpf_func_proto *fn, int func_id,
6502 			    struct bpf_call_arg_meta *meta)
6503 {
6504 	return check_raw_mode_ok(fn) &&
6505 	       check_arg_pair_ok(fn) &&
6506 	       check_btf_id_ok(fn) &&
6507 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
6508 }
6509 
6510 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6511  * are now invalid, so turn them into unknown SCALAR_VALUE.
6512  */
6513 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
6514 				     struct bpf_func_state *state)
6515 {
6516 	struct bpf_reg_state *regs = state->regs, *reg;
6517 	int i;
6518 
6519 	for (i = 0; i < MAX_BPF_REG; i++)
6520 		if (reg_is_pkt_pointer_any(&regs[i]))
6521 			mark_reg_unknown(env, regs, i);
6522 
6523 	bpf_for_each_spilled_reg(i, state, reg) {
6524 		if (!reg)
6525 			continue;
6526 		if (reg_is_pkt_pointer_any(reg))
6527 			__mark_reg_unknown(env, reg);
6528 	}
6529 }
6530 
6531 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6532 {
6533 	struct bpf_verifier_state *vstate = env->cur_state;
6534 	int i;
6535 
6536 	for (i = 0; i <= vstate->curframe; i++)
6537 		__clear_all_pkt_pointers(env, vstate->frame[i]);
6538 }
6539 
6540 enum {
6541 	AT_PKT_END = -1,
6542 	BEYOND_PKT_END = -2,
6543 };
6544 
6545 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6546 {
6547 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6548 	struct bpf_reg_state *reg = &state->regs[regn];
6549 
6550 	if (reg->type != PTR_TO_PACKET)
6551 		/* PTR_TO_PACKET_META is not supported yet */
6552 		return;
6553 
6554 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6555 	 * How far beyond pkt_end it goes is unknown.
6556 	 * if (!range_open) it's the case of pkt >= pkt_end
6557 	 * if (range_open) it's the case of pkt > pkt_end
6558 	 * hence this pointer is at least 1 byte bigger than pkt_end
6559 	 */
6560 	if (range_open)
6561 		reg->range = BEYOND_PKT_END;
6562 	else
6563 		reg->range = AT_PKT_END;
6564 }
6565 
6566 static void release_reg_references(struct bpf_verifier_env *env,
6567 				   struct bpf_func_state *state,
6568 				   int ref_obj_id)
6569 {
6570 	struct bpf_reg_state *regs = state->regs, *reg;
6571 	int i;
6572 
6573 	for (i = 0; i < MAX_BPF_REG; i++)
6574 		if (regs[i].ref_obj_id == ref_obj_id)
6575 			mark_reg_unknown(env, regs, i);
6576 
6577 	bpf_for_each_spilled_reg(i, state, reg) {
6578 		if (!reg)
6579 			continue;
6580 		if (reg->ref_obj_id == ref_obj_id)
6581 			__mark_reg_unknown(env, reg);
6582 	}
6583 }
6584 
6585 /* The pointer with the specified id has released its reference to kernel
6586  * resources. Identify all copies of the same pointer and clear the reference.
6587  */
6588 static int release_reference(struct bpf_verifier_env *env,
6589 			     int ref_obj_id)
6590 {
6591 	struct bpf_verifier_state *vstate = env->cur_state;
6592 	int err;
6593 	int i;
6594 
6595 	err = release_reference_state(cur_func(env), ref_obj_id);
6596 	if (err)
6597 		return err;
6598 
6599 	for (i = 0; i <= vstate->curframe; i++)
6600 		release_reg_references(env, vstate->frame[i], ref_obj_id);
6601 
6602 	return 0;
6603 }
6604 
6605 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6606 				    struct bpf_reg_state *regs)
6607 {
6608 	int i;
6609 
6610 	/* after the call registers r0 - r5 were scratched */
6611 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6612 		mark_reg_not_init(env, regs, caller_saved[i]);
6613 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6614 	}
6615 }
6616 
6617 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6618 				   struct bpf_func_state *caller,
6619 				   struct bpf_func_state *callee,
6620 				   int insn_idx);
6621 
6622 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6623 			     int *insn_idx, int subprog,
6624 			     set_callee_state_fn set_callee_state_cb)
6625 {
6626 	struct bpf_verifier_state *state = env->cur_state;
6627 	struct bpf_func_info_aux *func_info_aux;
6628 	struct bpf_func_state *caller, *callee;
6629 	int err;
6630 	bool is_global = false;
6631 
6632 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6633 		verbose(env, "the call stack of %d frames is too deep\n",
6634 			state->curframe + 2);
6635 		return -E2BIG;
6636 	}
6637 
6638 	caller = state->frame[state->curframe];
6639 	if (state->frame[state->curframe + 1]) {
6640 		verbose(env, "verifier bug. Frame %d already allocated\n",
6641 			state->curframe + 1);
6642 		return -EFAULT;
6643 	}
6644 
6645 	func_info_aux = env->prog->aux->func_info_aux;
6646 	if (func_info_aux)
6647 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6648 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
6649 	if (err == -EFAULT)
6650 		return err;
6651 	if (is_global) {
6652 		if (err) {
6653 			verbose(env, "Caller passes invalid args into func#%d\n",
6654 				subprog);
6655 			return err;
6656 		} else {
6657 			if (env->log.level & BPF_LOG_LEVEL)
6658 				verbose(env,
6659 					"Func#%d is global and valid. Skipping.\n",
6660 					subprog);
6661 			clear_caller_saved_regs(env, caller->regs);
6662 
6663 			/* All global functions return a 64-bit SCALAR_VALUE */
6664 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6665 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6666 
6667 			/* continue with next insn after call */
6668 			return 0;
6669 		}
6670 	}
6671 
6672 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6673 	    insn->src_reg == 0 &&
6674 	    insn->imm == BPF_FUNC_timer_set_callback) {
6675 		struct bpf_verifier_state *async_cb;
6676 
6677 		/* there is no real recursion here. timer callbacks are async */
6678 		env->subprog_info[subprog].is_async_cb = true;
6679 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6680 					 *insn_idx, subprog);
6681 		if (!async_cb)
6682 			return -EFAULT;
6683 		callee = async_cb->frame[0];
6684 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6685 
6686 		/* Convert bpf_timer_set_callback() args into timer callback args */
6687 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6688 		if (err)
6689 			return err;
6690 
6691 		clear_caller_saved_regs(env, caller->regs);
6692 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6693 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6694 		/* continue with next insn after call */
6695 		return 0;
6696 	}
6697 
6698 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6699 	if (!callee)
6700 		return -ENOMEM;
6701 	state->frame[state->curframe + 1] = callee;
6702 
6703 	/* callee cannot access r0, r6 - r9 for reading and has to write
6704 	 * into its own stack before reading from it.
6705 	 * callee can read/write into caller's stack
6706 	 */
6707 	init_func_state(env, callee,
6708 			/* remember the callsite, it will be used by bpf_exit */
6709 			*insn_idx /* callsite */,
6710 			state->curframe + 1 /* frameno within this callchain */,
6711 			subprog /* subprog number within this prog */);
6712 
6713 	/* Transfer references to the callee */
6714 	err = copy_reference_state(callee, caller);
6715 	if (err)
6716 		return err;
6717 
6718 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6719 	if (err)
6720 		return err;
6721 
6722 	clear_caller_saved_regs(env, caller->regs);
6723 
6724 	/* only increment it after check_reg_arg() finished */
6725 	state->curframe++;
6726 
6727 	/* and go analyze first insn of the callee */
6728 	*insn_idx = env->subprog_info[subprog].start - 1;
6729 
6730 	if (env->log.level & BPF_LOG_LEVEL) {
6731 		verbose(env, "caller:\n");
6732 		print_verifier_state(env, caller, true);
6733 		verbose(env, "callee:\n");
6734 		print_verifier_state(env, callee, true);
6735 	}
6736 	return 0;
6737 }
6738 
6739 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6740 				   struct bpf_func_state *caller,
6741 				   struct bpf_func_state *callee)
6742 {
6743 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6744 	 *      void *callback_ctx, u64 flags);
6745 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6746 	 *      void *callback_ctx);
6747 	 */
6748 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6749 
6750 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6751 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6752 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6753 
6754 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6755 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6756 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6757 
6758 	/* pointer to stack or null */
6759 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6760 
6761 	/* unused */
6762 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6763 	return 0;
6764 }
6765 
6766 static int set_callee_state(struct bpf_verifier_env *env,
6767 			    struct bpf_func_state *caller,
6768 			    struct bpf_func_state *callee, int insn_idx)
6769 {
6770 	int i;
6771 
6772 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6773 	 * pointers, which connects us up to the liveness chain
6774 	 */
6775 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6776 		callee->regs[i] = caller->regs[i];
6777 	return 0;
6778 }
6779 
6780 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6781 			   int *insn_idx)
6782 {
6783 	int subprog, target_insn;
6784 
6785 	target_insn = *insn_idx + insn->imm + 1;
6786 	subprog = find_subprog(env, target_insn);
6787 	if (subprog < 0) {
6788 		verbose(env, "verifier bug. No program starts at insn %d\n",
6789 			target_insn);
6790 		return -EFAULT;
6791 	}
6792 
6793 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6794 }
6795 
6796 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6797 				       struct bpf_func_state *caller,
6798 				       struct bpf_func_state *callee,
6799 				       int insn_idx)
6800 {
6801 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6802 	struct bpf_map *map;
6803 	int err;
6804 
6805 	if (bpf_map_ptr_poisoned(insn_aux)) {
6806 		verbose(env, "tail_call abusing map_ptr\n");
6807 		return -EINVAL;
6808 	}
6809 
6810 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6811 	if (!map->ops->map_set_for_each_callback_args ||
6812 	    !map->ops->map_for_each_callback) {
6813 		verbose(env, "callback function not allowed for map\n");
6814 		return -ENOTSUPP;
6815 	}
6816 
6817 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6818 	if (err)
6819 		return err;
6820 
6821 	callee->in_callback_fn = true;
6822 	return 0;
6823 }
6824 
6825 static int set_loop_callback_state(struct bpf_verifier_env *env,
6826 				   struct bpf_func_state *caller,
6827 				   struct bpf_func_state *callee,
6828 				   int insn_idx)
6829 {
6830 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6831 	 *	    u64 flags);
6832 	 * callback_fn(u32 index, void *callback_ctx);
6833 	 */
6834 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6835 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6836 
6837 	/* unused */
6838 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6839 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6840 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6841 
6842 	callee->in_callback_fn = true;
6843 	return 0;
6844 }
6845 
6846 static int set_timer_callback_state(struct bpf_verifier_env *env,
6847 				    struct bpf_func_state *caller,
6848 				    struct bpf_func_state *callee,
6849 				    int insn_idx)
6850 {
6851 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6852 
6853 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6854 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6855 	 */
6856 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6857 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6858 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6859 
6860 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6861 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6862 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6863 
6864 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6865 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6866 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6867 
6868 	/* unused */
6869 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6870 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6871 	callee->in_async_callback_fn = true;
6872 	return 0;
6873 }
6874 
6875 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6876 				       struct bpf_func_state *caller,
6877 				       struct bpf_func_state *callee,
6878 				       int insn_idx)
6879 {
6880 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6881 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6882 	 * (callback_fn)(struct task_struct *task,
6883 	 *               struct vm_area_struct *vma, void *callback_ctx);
6884 	 */
6885 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6886 
6887 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6888 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6889 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6890 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6891 
6892 	/* pointer to stack or null */
6893 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6894 
6895 	/* unused */
6896 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6897 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6898 	callee->in_callback_fn = true;
6899 	return 0;
6900 }
6901 
6902 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6903 {
6904 	struct bpf_verifier_state *state = env->cur_state;
6905 	struct bpf_func_state *caller, *callee;
6906 	struct bpf_reg_state *r0;
6907 	int err;
6908 
6909 	callee = state->frame[state->curframe];
6910 	r0 = &callee->regs[BPF_REG_0];
6911 	if (r0->type == PTR_TO_STACK) {
6912 		/* technically it's ok to return caller's stack pointer
6913 		 * (or caller's caller's pointer) back to the caller,
6914 		 * since these pointers are valid. Only current stack
6915 		 * pointer will be invalid as soon as function exits,
6916 		 * but let's be conservative
6917 		 */
6918 		verbose(env, "cannot return stack pointer to the caller\n");
6919 		return -EINVAL;
6920 	}
6921 
6922 	state->curframe--;
6923 	caller = state->frame[state->curframe];
6924 	if (callee->in_callback_fn) {
6925 		/* enforce R0 return value range [0, 1]. */
6926 		struct tnum range = tnum_range(0, 1);
6927 
6928 		if (r0->type != SCALAR_VALUE) {
6929 			verbose(env, "R0 not a scalar value\n");
6930 			return -EACCES;
6931 		}
6932 		if (!tnum_in(range, r0->var_off)) {
6933 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6934 			return -EINVAL;
6935 		}
6936 	} else {
6937 		/* return to the caller whatever r0 had in the callee */
6938 		caller->regs[BPF_REG_0] = *r0;
6939 	}
6940 
6941 	/* Transfer references to the caller */
6942 	err = copy_reference_state(caller, callee);
6943 	if (err)
6944 		return err;
6945 
6946 	*insn_idx = callee->callsite + 1;
6947 	if (env->log.level & BPF_LOG_LEVEL) {
6948 		verbose(env, "returning from callee:\n");
6949 		print_verifier_state(env, callee, true);
6950 		verbose(env, "to caller at %d:\n", *insn_idx);
6951 		print_verifier_state(env, caller, true);
6952 	}
6953 	/* clear everything in the callee */
6954 	free_func_state(callee);
6955 	state->frame[state->curframe + 1] = NULL;
6956 	return 0;
6957 }
6958 
6959 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6960 				   int func_id,
6961 				   struct bpf_call_arg_meta *meta)
6962 {
6963 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6964 
6965 	if (ret_type != RET_INTEGER ||
6966 	    (func_id != BPF_FUNC_get_stack &&
6967 	     func_id != BPF_FUNC_get_task_stack &&
6968 	     func_id != BPF_FUNC_probe_read_str &&
6969 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6970 	     func_id != BPF_FUNC_probe_read_user_str))
6971 		return;
6972 
6973 	ret_reg->smax_value = meta->msize_max_value;
6974 	ret_reg->s32_max_value = meta->msize_max_value;
6975 	ret_reg->smin_value = -MAX_ERRNO;
6976 	ret_reg->s32_min_value = -MAX_ERRNO;
6977 	reg_bounds_sync(ret_reg);
6978 }
6979 
6980 static int
6981 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6982 		int func_id, int insn_idx)
6983 {
6984 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6985 	struct bpf_map *map = meta->map_ptr;
6986 
6987 	if (func_id != BPF_FUNC_tail_call &&
6988 	    func_id != BPF_FUNC_map_lookup_elem &&
6989 	    func_id != BPF_FUNC_map_update_elem &&
6990 	    func_id != BPF_FUNC_map_delete_elem &&
6991 	    func_id != BPF_FUNC_map_push_elem &&
6992 	    func_id != BPF_FUNC_map_pop_elem &&
6993 	    func_id != BPF_FUNC_map_peek_elem &&
6994 	    func_id != BPF_FUNC_for_each_map_elem &&
6995 	    func_id != BPF_FUNC_redirect_map &&
6996 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
6997 		return 0;
6998 
6999 	if (map == NULL) {
7000 		verbose(env, "kernel subsystem misconfigured verifier\n");
7001 		return -EINVAL;
7002 	}
7003 
7004 	/* In case of read-only, some additional restrictions
7005 	 * need to be applied in order to prevent altering the
7006 	 * state of the map from program side.
7007 	 */
7008 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7009 	    (func_id == BPF_FUNC_map_delete_elem ||
7010 	     func_id == BPF_FUNC_map_update_elem ||
7011 	     func_id == BPF_FUNC_map_push_elem ||
7012 	     func_id == BPF_FUNC_map_pop_elem)) {
7013 		verbose(env, "write into map forbidden\n");
7014 		return -EACCES;
7015 	}
7016 
7017 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7018 		bpf_map_ptr_store(aux, meta->map_ptr,
7019 				  !meta->map_ptr->bypass_spec_v1);
7020 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7021 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7022 				  !meta->map_ptr->bypass_spec_v1);
7023 	return 0;
7024 }
7025 
7026 static int
7027 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7028 		int func_id, int insn_idx)
7029 {
7030 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7031 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7032 	struct bpf_map *map = meta->map_ptr;
7033 	struct tnum range;
7034 	u64 val;
7035 	int err;
7036 
7037 	if (func_id != BPF_FUNC_tail_call)
7038 		return 0;
7039 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7040 		verbose(env, "kernel subsystem misconfigured verifier\n");
7041 		return -EINVAL;
7042 	}
7043 
7044 	range = tnum_range(0, map->max_entries - 1);
7045 	reg = &regs[BPF_REG_3];
7046 
7047 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
7048 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7049 		return 0;
7050 	}
7051 
7052 	err = mark_chain_precision(env, BPF_REG_3);
7053 	if (err)
7054 		return err;
7055 
7056 	val = reg->var_off.value;
7057 	if (bpf_map_key_unseen(aux))
7058 		bpf_map_key_store(aux, val);
7059 	else if (!bpf_map_key_poisoned(aux) &&
7060 		  bpf_map_key_immediate(aux) != val)
7061 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7062 	return 0;
7063 }
7064 
7065 static int check_reference_leak(struct bpf_verifier_env *env)
7066 {
7067 	struct bpf_func_state *state = cur_func(env);
7068 	int i;
7069 
7070 	for (i = 0; i < state->acquired_refs; i++) {
7071 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7072 			state->refs[i].id, state->refs[i].insn_idx);
7073 	}
7074 	return state->acquired_refs ? -EINVAL : 0;
7075 }
7076 
7077 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7078 				   struct bpf_reg_state *regs)
7079 {
7080 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7081 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7082 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7083 	int err, fmt_map_off, num_args;
7084 	u64 fmt_addr;
7085 	char *fmt;
7086 
7087 	/* data must be an array of u64 */
7088 	if (data_len_reg->var_off.value % 8)
7089 		return -EINVAL;
7090 	num_args = data_len_reg->var_off.value / 8;
7091 
7092 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7093 	 * and map_direct_value_addr is set.
7094 	 */
7095 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7096 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7097 						  fmt_map_off);
7098 	if (err) {
7099 		verbose(env, "verifier bug\n");
7100 		return -EFAULT;
7101 	}
7102 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7103 
7104 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7105 	 * can focus on validating the format specifiers.
7106 	 */
7107 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7108 	if (err < 0)
7109 		verbose(env, "Invalid format string\n");
7110 
7111 	return err;
7112 }
7113 
7114 static int check_get_func_ip(struct bpf_verifier_env *env)
7115 {
7116 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7117 	int func_id = BPF_FUNC_get_func_ip;
7118 
7119 	if (type == BPF_PROG_TYPE_TRACING) {
7120 		if (!bpf_prog_has_trampoline(env->prog)) {
7121 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7122 				func_id_name(func_id), func_id);
7123 			return -ENOTSUPP;
7124 		}
7125 		return 0;
7126 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7127 		return 0;
7128 	}
7129 
7130 	verbose(env, "func %s#%d not supported for program type %d\n",
7131 		func_id_name(func_id), func_id, type);
7132 	return -ENOTSUPP;
7133 }
7134 
7135 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7136 {
7137 	return &env->insn_aux_data[env->insn_idx];
7138 }
7139 
7140 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7141 {
7142 	struct bpf_reg_state *regs = cur_regs(env);
7143 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7144 	bool reg_is_null = register_is_null(reg);
7145 
7146 	if (reg_is_null)
7147 		mark_chain_precision(env, BPF_REG_4);
7148 
7149 	return reg_is_null;
7150 }
7151 
7152 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7153 {
7154 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7155 
7156 	if (!state->initialized) {
7157 		state->initialized = 1;
7158 		state->fit_for_inline = loop_flag_is_zero(env);
7159 		state->callback_subprogno = subprogno;
7160 		return;
7161 	}
7162 
7163 	if (!state->fit_for_inline)
7164 		return;
7165 
7166 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7167 				 state->callback_subprogno == subprogno);
7168 }
7169 
7170 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7171 			     int *insn_idx_p)
7172 {
7173 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7174 	const struct bpf_func_proto *fn = NULL;
7175 	enum bpf_return_type ret_type;
7176 	enum bpf_type_flag ret_flag;
7177 	struct bpf_reg_state *regs;
7178 	struct bpf_call_arg_meta meta;
7179 	int insn_idx = *insn_idx_p;
7180 	bool changes_data;
7181 	int i, err, func_id;
7182 
7183 	/* find function prototype */
7184 	func_id = insn->imm;
7185 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7186 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7187 			func_id);
7188 		return -EINVAL;
7189 	}
7190 
7191 	if (env->ops->get_func_proto)
7192 		fn = env->ops->get_func_proto(func_id, env->prog);
7193 	if (!fn) {
7194 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7195 			func_id);
7196 		return -EINVAL;
7197 	}
7198 
7199 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7200 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7201 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7202 		return -EINVAL;
7203 	}
7204 
7205 	if (fn->allowed && !fn->allowed(env->prog)) {
7206 		verbose(env, "helper call is not allowed in probe\n");
7207 		return -EINVAL;
7208 	}
7209 
7210 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7211 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7212 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7213 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7214 			func_id_name(func_id), func_id);
7215 		return -EINVAL;
7216 	}
7217 
7218 	memset(&meta, 0, sizeof(meta));
7219 	meta.pkt_access = fn->pkt_access;
7220 
7221 	err = check_func_proto(fn, func_id, &meta);
7222 	if (err) {
7223 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7224 			func_id_name(func_id), func_id);
7225 		return err;
7226 	}
7227 
7228 	meta.func_id = func_id;
7229 	/* check args */
7230 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7231 		err = check_func_arg(env, i, &meta, fn);
7232 		if (err)
7233 			return err;
7234 	}
7235 
7236 	err = record_func_map(env, &meta, func_id, insn_idx);
7237 	if (err)
7238 		return err;
7239 
7240 	err = record_func_key(env, &meta, func_id, insn_idx);
7241 	if (err)
7242 		return err;
7243 
7244 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7245 	 * is inferred from register state.
7246 	 */
7247 	for (i = 0; i < meta.access_size; i++) {
7248 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7249 				       BPF_WRITE, -1, false);
7250 		if (err)
7251 			return err;
7252 	}
7253 
7254 	regs = cur_regs(env);
7255 
7256 	if (meta.uninit_dynptr_regno) {
7257 		/* we write BPF_DW bits (8 bytes) at a time */
7258 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7259 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7260 					       i, BPF_DW, BPF_WRITE, -1, false);
7261 			if (err)
7262 				return err;
7263 		}
7264 
7265 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7266 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7267 					      insn_idx);
7268 		if (err)
7269 			return err;
7270 	}
7271 
7272 	if (meta.release_regno) {
7273 		err = -EINVAL;
7274 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7275 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7276 		else if (meta.ref_obj_id)
7277 			err = release_reference(env, meta.ref_obj_id);
7278 		/* meta.ref_obj_id can only be 0 if register that is meant to be
7279 		 * released is NULL, which must be > R0.
7280 		 */
7281 		else if (register_is_null(&regs[meta.release_regno]))
7282 			err = 0;
7283 		if (err) {
7284 			verbose(env, "func %s#%d reference has not been acquired before\n",
7285 				func_id_name(func_id), func_id);
7286 			return err;
7287 		}
7288 	}
7289 
7290 	switch (func_id) {
7291 	case BPF_FUNC_tail_call:
7292 		err = check_reference_leak(env);
7293 		if (err) {
7294 			verbose(env, "tail_call would lead to reference leak\n");
7295 			return err;
7296 		}
7297 		break;
7298 	case BPF_FUNC_get_local_storage:
7299 		/* check that flags argument in get_local_storage(map, flags) is 0,
7300 		 * this is required because get_local_storage() can't return an error.
7301 		 */
7302 		if (!register_is_null(&regs[BPF_REG_2])) {
7303 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7304 			return -EINVAL;
7305 		}
7306 		break;
7307 	case BPF_FUNC_for_each_map_elem:
7308 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7309 					set_map_elem_callback_state);
7310 		break;
7311 	case BPF_FUNC_timer_set_callback:
7312 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7313 					set_timer_callback_state);
7314 		break;
7315 	case BPF_FUNC_find_vma:
7316 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7317 					set_find_vma_callback_state);
7318 		break;
7319 	case BPF_FUNC_snprintf:
7320 		err = check_bpf_snprintf_call(env, regs);
7321 		break;
7322 	case BPF_FUNC_loop:
7323 		update_loop_inline_state(env, meta.subprogno);
7324 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7325 					set_loop_callback_state);
7326 		break;
7327 	case BPF_FUNC_dynptr_from_mem:
7328 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7329 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7330 				reg_type_str(env, regs[BPF_REG_1].type));
7331 			return -EACCES;
7332 		}
7333 		break;
7334 	case BPF_FUNC_set_retval:
7335 		if (prog_type == BPF_PROG_TYPE_LSM &&
7336 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7337 			if (!env->prog->aux->attach_func_proto->type) {
7338 				/* Make sure programs that attach to void
7339 				 * hooks don't try to modify return value.
7340 				 */
7341 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7342 				return -EINVAL;
7343 			}
7344 		}
7345 		break;
7346 	}
7347 
7348 	if (err)
7349 		return err;
7350 
7351 	/* reset caller saved regs */
7352 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7353 		mark_reg_not_init(env, regs, caller_saved[i]);
7354 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7355 	}
7356 
7357 	/* helper call returns 64-bit value. */
7358 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7359 
7360 	/* update return register (already marked as written above) */
7361 	ret_type = fn->ret_type;
7362 	ret_flag = type_flag(fn->ret_type);
7363 	if (ret_type == RET_INTEGER) {
7364 		/* sets type to SCALAR_VALUE */
7365 		mark_reg_unknown(env, regs, BPF_REG_0);
7366 	} else if (ret_type == RET_VOID) {
7367 		regs[BPF_REG_0].type = NOT_INIT;
7368 	} else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
7369 		/* There is no offset yet applied, variable or fixed */
7370 		mark_reg_known_zero(env, regs, BPF_REG_0);
7371 		/* remember map_ptr, so that check_map_access()
7372 		 * can check 'value_size' boundary of memory access
7373 		 * to map element returned from bpf_map_lookup_elem()
7374 		 */
7375 		if (meta.map_ptr == NULL) {
7376 			verbose(env,
7377 				"kernel subsystem misconfigured verifier\n");
7378 			return -EINVAL;
7379 		}
7380 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7381 		regs[BPF_REG_0].map_uid = meta.map_uid;
7382 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7383 		if (!type_may_be_null(ret_type) &&
7384 		    map_value_has_spin_lock(meta.map_ptr)) {
7385 			regs[BPF_REG_0].id = ++env->id_gen;
7386 		}
7387 	} else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
7388 		mark_reg_known_zero(env, regs, BPF_REG_0);
7389 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7390 	} else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
7391 		mark_reg_known_zero(env, regs, BPF_REG_0);
7392 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7393 	} else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
7394 		mark_reg_known_zero(env, regs, BPF_REG_0);
7395 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7396 	} else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
7397 		mark_reg_known_zero(env, regs, BPF_REG_0);
7398 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7399 		regs[BPF_REG_0].mem_size = meta.mem_size;
7400 	} else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
7401 		const struct btf_type *t;
7402 
7403 		mark_reg_known_zero(env, regs, BPF_REG_0);
7404 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7405 		if (!btf_type_is_struct(t)) {
7406 			u32 tsize;
7407 			const struct btf_type *ret;
7408 			const char *tname;
7409 
7410 			/* resolve the type size of ksym. */
7411 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7412 			if (IS_ERR(ret)) {
7413 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7414 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7415 					tname, PTR_ERR(ret));
7416 				return -EINVAL;
7417 			}
7418 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7419 			regs[BPF_REG_0].mem_size = tsize;
7420 		} else {
7421 			/* MEM_RDONLY may be carried from ret_flag, but it
7422 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7423 			 * it will confuse the check of PTR_TO_BTF_ID in
7424 			 * check_mem_access().
7425 			 */
7426 			ret_flag &= ~MEM_RDONLY;
7427 
7428 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7429 			regs[BPF_REG_0].btf = meta.ret_btf;
7430 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7431 		}
7432 	} else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
7433 		struct btf *ret_btf;
7434 		int ret_btf_id;
7435 
7436 		mark_reg_known_zero(env, regs, BPF_REG_0);
7437 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7438 		if (func_id == BPF_FUNC_kptr_xchg) {
7439 			ret_btf = meta.kptr_off_desc->kptr.btf;
7440 			ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7441 		} else {
7442 			ret_btf = btf_vmlinux;
7443 			ret_btf_id = *fn->ret_btf_id;
7444 		}
7445 		if (ret_btf_id == 0) {
7446 			verbose(env, "invalid return type %u of func %s#%d\n",
7447 				base_type(ret_type), func_id_name(func_id),
7448 				func_id);
7449 			return -EINVAL;
7450 		}
7451 		regs[BPF_REG_0].btf = ret_btf;
7452 		regs[BPF_REG_0].btf_id = ret_btf_id;
7453 	} else {
7454 		verbose(env, "unknown return type %u of func %s#%d\n",
7455 			base_type(ret_type), func_id_name(func_id), func_id);
7456 		return -EINVAL;
7457 	}
7458 
7459 	if (type_may_be_null(regs[BPF_REG_0].type))
7460 		regs[BPF_REG_0].id = ++env->id_gen;
7461 
7462 	if (is_ptr_cast_function(func_id)) {
7463 		/* For release_reference() */
7464 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7465 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7466 		int id = acquire_reference_state(env, insn_idx);
7467 
7468 		if (id < 0)
7469 			return id;
7470 		/* For mark_ptr_or_null_reg() */
7471 		regs[BPF_REG_0].id = id;
7472 		/* For release_reference() */
7473 		regs[BPF_REG_0].ref_obj_id = id;
7474 	} else if (func_id == BPF_FUNC_dynptr_data) {
7475 		int dynptr_id = 0, i;
7476 
7477 		/* Find the id of the dynptr we're acquiring a reference to */
7478 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7479 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7480 				if (dynptr_id) {
7481 					verbose(env, "verifier internal error: multiple dynptr args in func\n");
7482 					return -EFAULT;
7483 				}
7484 				dynptr_id = stack_slot_get_id(env, &regs[BPF_REG_1 + i]);
7485 			}
7486 		}
7487 		/* For release_reference() */
7488 		regs[BPF_REG_0].ref_obj_id = dynptr_id;
7489 	}
7490 
7491 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7492 
7493 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7494 	if (err)
7495 		return err;
7496 
7497 	if ((func_id == BPF_FUNC_get_stack ||
7498 	     func_id == BPF_FUNC_get_task_stack) &&
7499 	    !env->prog->has_callchain_buf) {
7500 		const char *err_str;
7501 
7502 #ifdef CONFIG_PERF_EVENTS
7503 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7504 		err_str = "cannot get callchain buffer for func %s#%d\n";
7505 #else
7506 		err = -ENOTSUPP;
7507 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7508 #endif
7509 		if (err) {
7510 			verbose(env, err_str, func_id_name(func_id), func_id);
7511 			return err;
7512 		}
7513 
7514 		env->prog->has_callchain_buf = true;
7515 	}
7516 
7517 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7518 		env->prog->call_get_stack = true;
7519 
7520 	if (func_id == BPF_FUNC_get_func_ip) {
7521 		if (check_get_func_ip(env))
7522 			return -ENOTSUPP;
7523 		env->prog->call_get_func_ip = true;
7524 	}
7525 
7526 	if (changes_data)
7527 		clear_all_pkt_pointers(env);
7528 	return 0;
7529 }
7530 
7531 /* mark_btf_func_reg_size() is used when the reg size is determined by
7532  * the BTF func_proto's return value size and argument.
7533  */
7534 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7535 				   size_t reg_size)
7536 {
7537 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7538 
7539 	if (regno == BPF_REG_0) {
7540 		/* Function return value */
7541 		reg->live |= REG_LIVE_WRITTEN;
7542 		reg->subreg_def = reg_size == sizeof(u64) ?
7543 			DEF_NOT_SUBREG : env->insn_idx + 1;
7544 	} else {
7545 		/* Function argument */
7546 		if (reg_size == sizeof(u64)) {
7547 			mark_insn_zext(env, reg);
7548 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7549 		} else {
7550 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7551 		}
7552 	}
7553 }
7554 
7555 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7556 			    int *insn_idx_p)
7557 {
7558 	const struct btf_type *t, *func, *func_proto, *ptr_type;
7559 	struct bpf_reg_state *regs = cur_regs(env);
7560 	const char *func_name, *ptr_type_name;
7561 	u32 i, nargs, func_id, ptr_type_id;
7562 	int err, insn_idx = *insn_idx_p;
7563 	const struct btf_param *args;
7564 	struct btf *desc_btf;
7565 	u32 *kfunc_flags;
7566 	bool acq;
7567 
7568 	/* skip for now, but return error when we find this in fixup_kfunc_call */
7569 	if (!insn->imm)
7570 		return 0;
7571 
7572 	desc_btf = find_kfunc_desc_btf(env, insn->off);
7573 	if (IS_ERR(desc_btf))
7574 		return PTR_ERR(desc_btf);
7575 
7576 	func_id = insn->imm;
7577 	func = btf_type_by_id(desc_btf, func_id);
7578 	func_name = btf_name_by_offset(desc_btf, func->name_off);
7579 	func_proto = btf_type_by_id(desc_btf, func->type);
7580 
7581 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
7582 	if (!kfunc_flags) {
7583 		verbose(env, "calling kernel function %s is not allowed\n",
7584 			func_name);
7585 		return -EACCES;
7586 	}
7587 	acq = *kfunc_flags & KF_ACQUIRE;
7588 
7589 	/* Check the arguments */
7590 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, *kfunc_flags);
7591 	if (err < 0)
7592 		return err;
7593 	/* In case of release function, we get register number of refcounted
7594 	 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7595 	 */
7596 	if (err) {
7597 		err = release_reference(env, regs[err].ref_obj_id);
7598 		if (err) {
7599 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7600 				func_name, func_id);
7601 			return err;
7602 		}
7603 	}
7604 
7605 	for (i = 0; i < CALLER_SAVED_REGS; i++)
7606 		mark_reg_not_init(env, regs, caller_saved[i]);
7607 
7608 	/* Check return type */
7609 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
7610 
7611 	if (acq && !btf_type_is_ptr(t)) {
7612 		verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7613 		return -EINVAL;
7614 	}
7615 
7616 	if (btf_type_is_scalar(t)) {
7617 		mark_reg_unknown(env, regs, BPF_REG_0);
7618 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7619 	} else if (btf_type_is_ptr(t)) {
7620 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
7621 						   &ptr_type_id);
7622 		if (!btf_type_is_struct(ptr_type)) {
7623 			ptr_type_name = btf_name_by_offset(desc_btf,
7624 							   ptr_type->name_off);
7625 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
7626 				func_name, btf_type_str(ptr_type),
7627 				ptr_type_name);
7628 			return -EINVAL;
7629 		}
7630 		mark_reg_known_zero(env, regs, BPF_REG_0);
7631 		regs[BPF_REG_0].btf = desc_btf;
7632 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7633 		regs[BPF_REG_0].btf_id = ptr_type_id;
7634 		if (*kfunc_flags & KF_RET_NULL) {
7635 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7636 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7637 			regs[BPF_REG_0].id = ++env->id_gen;
7638 		}
7639 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
7640 		if (acq) {
7641 			int id = acquire_reference_state(env, insn_idx);
7642 
7643 			if (id < 0)
7644 				return id;
7645 			regs[BPF_REG_0].id = id;
7646 			regs[BPF_REG_0].ref_obj_id = id;
7647 		}
7648 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7649 
7650 	nargs = btf_type_vlen(func_proto);
7651 	args = (const struct btf_param *)(func_proto + 1);
7652 	for (i = 0; i < nargs; i++) {
7653 		u32 regno = i + 1;
7654 
7655 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
7656 		if (btf_type_is_ptr(t))
7657 			mark_btf_func_reg_size(env, regno, sizeof(void *));
7658 		else
7659 			/* scalar. ensured by btf_check_kfunc_arg_match() */
7660 			mark_btf_func_reg_size(env, regno, t->size);
7661 	}
7662 
7663 	return 0;
7664 }
7665 
7666 static bool signed_add_overflows(s64 a, s64 b)
7667 {
7668 	/* Do the add in u64, where overflow is well-defined */
7669 	s64 res = (s64)((u64)a + (u64)b);
7670 
7671 	if (b < 0)
7672 		return res > a;
7673 	return res < a;
7674 }
7675 
7676 static bool signed_add32_overflows(s32 a, s32 b)
7677 {
7678 	/* Do the add in u32, where overflow is well-defined */
7679 	s32 res = (s32)((u32)a + (u32)b);
7680 
7681 	if (b < 0)
7682 		return res > a;
7683 	return res < a;
7684 }
7685 
7686 static bool signed_sub_overflows(s64 a, s64 b)
7687 {
7688 	/* Do the sub in u64, where overflow is well-defined */
7689 	s64 res = (s64)((u64)a - (u64)b);
7690 
7691 	if (b < 0)
7692 		return res < a;
7693 	return res > a;
7694 }
7695 
7696 static bool signed_sub32_overflows(s32 a, s32 b)
7697 {
7698 	/* Do the sub in u32, where overflow is well-defined */
7699 	s32 res = (s32)((u32)a - (u32)b);
7700 
7701 	if (b < 0)
7702 		return res < a;
7703 	return res > a;
7704 }
7705 
7706 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7707 				  const struct bpf_reg_state *reg,
7708 				  enum bpf_reg_type type)
7709 {
7710 	bool known = tnum_is_const(reg->var_off);
7711 	s64 val = reg->var_off.value;
7712 	s64 smin = reg->smin_value;
7713 
7714 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7715 		verbose(env, "math between %s pointer and %lld is not allowed\n",
7716 			reg_type_str(env, type), val);
7717 		return false;
7718 	}
7719 
7720 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7721 		verbose(env, "%s pointer offset %d is not allowed\n",
7722 			reg_type_str(env, type), reg->off);
7723 		return false;
7724 	}
7725 
7726 	if (smin == S64_MIN) {
7727 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
7728 			reg_type_str(env, type));
7729 		return false;
7730 	}
7731 
7732 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7733 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
7734 			smin, reg_type_str(env, type));
7735 		return false;
7736 	}
7737 
7738 	return true;
7739 }
7740 
7741 enum {
7742 	REASON_BOUNDS	= -1,
7743 	REASON_TYPE	= -2,
7744 	REASON_PATHS	= -3,
7745 	REASON_LIMIT	= -4,
7746 	REASON_STACK	= -5,
7747 };
7748 
7749 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
7750 			      u32 *alu_limit, bool mask_to_left)
7751 {
7752 	u32 max = 0, ptr_limit = 0;
7753 
7754 	switch (ptr_reg->type) {
7755 	case PTR_TO_STACK:
7756 		/* Offset 0 is out-of-bounds, but acceptable start for the
7757 		 * left direction, see BPF_REG_FP. Also, unknown scalar
7758 		 * offset where we would need to deal with min/max bounds is
7759 		 * currently prohibited for unprivileged.
7760 		 */
7761 		max = MAX_BPF_STACK + mask_to_left;
7762 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
7763 		break;
7764 	case PTR_TO_MAP_VALUE:
7765 		max = ptr_reg->map_ptr->value_size;
7766 		ptr_limit = (mask_to_left ?
7767 			     ptr_reg->smin_value :
7768 			     ptr_reg->umax_value) + ptr_reg->off;
7769 		break;
7770 	default:
7771 		return REASON_TYPE;
7772 	}
7773 
7774 	if (ptr_limit >= max)
7775 		return REASON_LIMIT;
7776 	*alu_limit = ptr_limit;
7777 	return 0;
7778 }
7779 
7780 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7781 				    const struct bpf_insn *insn)
7782 {
7783 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7784 }
7785 
7786 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7787 				       u32 alu_state, u32 alu_limit)
7788 {
7789 	/* If we arrived here from different branches with different
7790 	 * state or limits to sanitize, then this won't work.
7791 	 */
7792 	if (aux->alu_state &&
7793 	    (aux->alu_state != alu_state ||
7794 	     aux->alu_limit != alu_limit))
7795 		return REASON_PATHS;
7796 
7797 	/* Corresponding fixup done in do_misc_fixups(). */
7798 	aux->alu_state = alu_state;
7799 	aux->alu_limit = alu_limit;
7800 	return 0;
7801 }
7802 
7803 static int sanitize_val_alu(struct bpf_verifier_env *env,
7804 			    struct bpf_insn *insn)
7805 {
7806 	struct bpf_insn_aux_data *aux = cur_aux(env);
7807 
7808 	if (can_skip_alu_sanitation(env, insn))
7809 		return 0;
7810 
7811 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7812 }
7813 
7814 static bool sanitize_needed(u8 opcode)
7815 {
7816 	return opcode == BPF_ADD || opcode == BPF_SUB;
7817 }
7818 
7819 struct bpf_sanitize_info {
7820 	struct bpf_insn_aux_data aux;
7821 	bool mask_to_left;
7822 };
7823 
7824 static struct bpf_verifier_state *
7825 sanitize_speculative_path(struct bpf_verifier_env *env,
7826 			  const struct bpf_insn *insn,
7827 			  u32 next_idx, u32 curr_idx)
7828 {
7829 	struct bpf_verifier_state *branch;
7830 	struct bpf_reg_state *regs;
7831 
7832 	branch = push_stack(env, next_idx, curr_idx, true);
7833 	if (branch && insn) {
7834 		regs = branch->frame[branch->curframe]->regs;
7835 		if (BPF_SRC(insn->code) == BPF_K) {
7836 			mark_reg_unknown(env, regs, insn->dst_reg);
7837 		} else if (BPF_SRC(insn->code) == BPF_X) {
7838 			mark_reg_unknown(env, regs, insn->dst_reg);
7839 			mark_reg_unknown(env, regs, insn->src_reg);
7840 		}
7841 	}
7842 	return branch;
7843 }
7844 
7845 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7846 			    struct bpf_insn *insn,
7847 			    const struct bpf_reg_state *ptr_reg,
7848 			    const struct bpf_reg_state *off_reg,
7849 			    struct bpf_reg_state *dst_reg,
7850 			    struct bpf_sanitize_info *info,
7851 			    const bool commit_window)
7852 {
7853 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7854 	struct bpf_verifier_state *vstate = env->cur_state;
7855 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7856 	bool off_is_neg = off_reg->smin_value < 0;
7857 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7858 	u8 opcode = BPF_OP(insn->code);
7859 	u32 alu_state, alu_limit;
7860 	struct bpf_reg_state tmp;
7861 	bool ret;
7862 	int err;
7863 
7864 	if (can_skip_alu_sanitation(env, insn))
7865 		return 0;
7866 
7867 	/* We already marked aux for masking from non-speculative
7868 	 * paths, thus we got here in the first place. We only care
7869 	 * to explore bad access from here.
7870 	 */
7871 	if (vstate->speculative)
7872 		goto do_sim;
7873 
7874 	if (!commit_window) {
7875 		if (!tnum_is_const(off_reg->var_off) &&
7876 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7877 			return REASON_BOUNDS;
7878 
7879 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7880 				     (opcode == BPF_SUB && !off_is_neg);
7881 	}
7882 
7883 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7884 	if (err < 0)
7885 		return err;
7886 
7887 	if (commit_window) {
7888 		/* In commit phase we narrow the masking window based on
7889 		 * the observed pointer move after the simulated operation.
7890 		 */
7891 		alu_state = info->aux.alu_state;
7892 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7893 	} else {
7894 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7895 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7896 		alu_state |= ptr_is_dst_reg ?
7897 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7898 
7899 		/* Limit pruning on unknown scalars to enable deep search for
7900 		 * potential masking differences from other program paths.
7901 		 */
7902 		if (!off_is_imm)
7903 			env->explore_alu_limits = true;
7904 	}
7905 
7906 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7907 	if (err < 0)
7908 		return err;
7909 do_sim:
7910 	/* If we're in commit phase, we're done here given we already
7911 	 * pushed the truncated dst_reg into the speculative verification
7912 	 * stack.
7913 	 *
7914 	 * Also, when register is a known constant, we rewrite register-based
7915 	 * operation to immediate-based, and thus do not need masking (and as
7916 	 * a consequence, do not need to simulate the zero-truncation either).
7917 	 */
7918 	if (commit_window || off_is_imm)
7919 		return 0;
7920 
7921 	/* Simulate and find potential out-of-bounds access under
7922 	 * speculative execution from truncation as a result of
7923 	 * masking when off was not within expected range. If off
7924 	 * sits in dst, then we temporarily need to move ptr there
7925 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7926 	 * for cases where we use K-based arithmetic in one direction
7927 	 * and truncated reg-based in the other in order to explore
7928 	 * bad access.
7929 	 */
7930 	if (!ptr_is_dst_reg) {
7931 		tmp = *dst_reg;
7932 		*dst_reg = *ptr_reg;
7933 	}
7934 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7935 					env->insn_idx);
7936 	if (!ptr_is_dst_reg && ret)
7937 		*dst_reg = tmp;
7938 	return !ret ? REASON_STACK : 0;
7939 }
7940 
7941 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7942 {
7943 	struct bpf_verifier_state *vstate = env->cur_state;
7944 
7945 	/* If we simulate paths under speculation, we don't update the
7946 	 * insn as 'seen' such that when we verify unreachable paths in
7947 	 * the non-speculative domain, sanitize_dead_code() can still
7948 	 * rewrite/sanitize them.
7949 	 */
7950 	if (!vstate->speculative)
7951 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7952 }
7953 
7954 static int sanitize_err(struct bpf_verifier_env *env,
7955 			const struct bpf_insn *insn, int reason,
7956 			const struct bpf_reg_state *off_reg,
7957 			const struct bpf_reg_state *dst_reg)
7958 {
7959 	static const char *err = "pointer arithmetic with it prohibited for !root";
7960 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7961 	u32 dst = insn->dst_reg, src = insn->src_reg;
7962 
7963 	switch (reason) {
7964 	case REASON_BOUNDS:
7965 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7966 			off_reg == dst_reg ? dst : src, err);
7967 		break;
7968 	case REASON_TYPE:
7969 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7970 			off_reg == dst_reg ? src : dst, err);
7971 		break;
7972 	case REASON_PATHS:
7973 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7974 			dst, op, err);
7975 		break;
7976 	case REASON_LIMIT:
7977 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7978 			dst, op, err);
7979 		break;
7980 	case REASON_STACK:
7981 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7982 			dst, err);
7983 		break;
7984 	default:
7985 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7986 			reason);
7987 		break;
7988 	}
7989 
7990 	return -EACCES;
7991 }
7992 
7993 /* check that stack access falls within stack limits and that 'reg' doesn't
7994  * have a variable offset.
7995  *
7996  * Variable offset is prohibited for unprivileged mode for simplicity since it
7997  * requires corresponding support in Spectre masking for stack ALU.  See also
7998  * retrieve_ptr_limit().
7999  *
8000  *
8001  * 'off' includes 'reg->off'.
8002  */
8003 static int check_stack_access_for_ptr_arithmetic(
8004 				struct bpf_verifier_env *env,
8005 				int regno,
8006 				const struct bpf_reg_state *reg,
8007 				int off)
8008 {
8009 	if (!tnum_is_const(reg->var_off)) {
8010 		char tn_buf[48];
8011 
8012 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8013 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8014 			regno, tn_buf, off);
8015 		return -EACCES;
8016 	}
8017 
8018 	if (off >= 0 || off < -MAX_BPF_STACK) {
8019 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
8020 			"prohibited for !root; off=%d\n", regno, off);
8021 		return -EACCES;
8022 	}
8023 
8024 	return 0;
8025 }
8026 
8027 static int sanitize_check_bounds(struct bpf_verifier_env *env,
8028 				 const struct bpf_insn *insn,
8029 				 const struct bpf_reg_state *dst_reg)
8030 {
8031 	u32 dst = insn->dst_reg;
8032 
8033 	/* For unprivileged we require that resulting offset must be in bounds
8034 	 * in order to be able to sanitize access later on.
8035 	 */
8036 	if (env->bypass_spec_v1)
8037 		return 0;
8038 
8039 	switch (dst_reg->type) {
8040 	case PTR_TO_STACK:
8041 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8042 					dst_reg->off + dst_reg->var_off.value))
8043 			return -EACCES;
8044 		break;
8045 	case PTR_TO_MAP_VALUE:
8046 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
8047 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8048 				"prohibited for !root\n", dst);
8049 			return -EACCES;
8050 		}
8051 		break;
8052 	default:
8053 		break;
8054 	}
8055 
8056 	return 0;
8057 }
8058 
8059 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
8060  * Caller should also handle BPF_MOV case separately.
8061  * If we return -EACCES, caller may want to try again treating pointer as a
8062  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
8063  */
8064 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8065 				   struct bpf_insn *insn,
8066 				   const struct bpf_reg_state *ptr_reg,
8067 				   const struct bpf_reg_state *off_reg)
8068 {
8069 	struct bpf_verifier_state *vstate = env->cur_state;
8070 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8071 	struct bpf_reg_state *regs = state->regs, *dst_reg;
8072 	bool known = tnum_is_const(off_reg->var_off);
8073 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8074 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8075 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8076 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
8077 	struct bpf_sanitize_info info = {};
8078 	u8 opcode = BPF_OP(insn->code);
8079 	u32 dst = insn->dst_reg;
8080 	int ret;
8081 
8082 	dst_reg = &regs[dst];
8083 
8084 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8085 	    smin_val > smax_val || umin_val > umax_val) {
8086 		/* Taint dst register if offset had invalid bounds derived from
8087 		 * e.g. dead branches.
8088 		 */
8089 		__mark_reg_unknown(env, dst_reg);
8090 		return 0;
8091 	}
8092 
8093 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
8094 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
8095 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8096 			__mark_reg_unknown(env, dst_reg);
8097 			return 0;
8098 		}
8099 
8100 		verbose(env,
8101 			"R%d 32-bit pointer arithmetic prohibited\n",
8102 			dst);
8103 		return -EACCES;
8104 	}
8105 
8106 	if (ptr_reg->type & PTR_MAYBE_NULL) {
8107 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
8108 			dst, reg_type_str(env, ptr_reg->type));
8109 		return -EACCES;
8110 	}
8111 
8112 	switch (base_type(ptr_reg->type)) {
8113 	case CONST_PTR_TO_MAP:
8114 		/* smin_val represents the known value */
8115 		if (known && smin_val == 0 && opcode == BPF_ADD)
8116 			break;
8117 		fallthrough;
8118 	case PTR_TO_PACKET_END:
8119 	case PTR_TO_SOCKET:
8120 	case PTR_TO_SOCK_COMMON:
8121 	case PTR_TO_TCP_SOCK:
8122 	case PTR_TO_XDP_SOCK:
8123 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
8124 			dst, reg_type_str(env, ptr_reg->type));
8125 		return -EACCES;
8126 	default:
8127 		break;
8128 	}
8129 
8130 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8131 	 * The id may be overwritten later if we create a new variable offset.
8132 	 */
8133 	dst_reg->type = ptr_reg->type;
8134 	dst_reg->id = ptr_reg->id;
8135 
8136 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8137 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8138 		return -EINVAL;
8139 
8140 	/* pointer types do not carry 32-bit bounds at the moment. */
8141 	__mark_reg32_unbounded(dst_reg);
8142 
8143 	if (sanitize_needed(opcode)) {
8144 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
8145 				       &info, false);
8146 		if (ret < 0)
8147 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8148 	}
8149 
8150 	switch (opcode) {
8151 	case BPF_ADD:
8152 		/* We can take a fixed offset as long as it doesn't overflow
8153 		 * the s32 'off' field
8154 		 */
8155 		if (known && (ptr_reg->off + smin_val ==
8156 			      (s64)(s32)(ptr_reg->off + smin_val))) {
8157 			/* pointer += K.  Accumulate it into fixed offset */
8158 			dst_reg->smin_value = smin_ptr;
8159 			dst_reg->smax_value = smax_ptr;
8160 			dst_reg->umin_value = umin_ptr;
8161 			dst_reg->umax_value = umax_ptr;
8162 			dst_reg->var_off = ptr_reg->var_off;
8163 			dst_reg->off = ptr_reg->off + smin_val;
8164 			dst_reg->raw = ptr_reg->raw;
8165 			break;
8166 		}
8167 		/* A new variable offset is created.  Note that off_reg->off
8168 		 * == 0, since it's a scalar.
8169 		 * dst_reg gets the pointer type and since some positive
8170 		 * integer value was added to the pointer, give it a new 'id'
8171 		 * if it's a PTR_TO_PACKET.
8172 		 * this creates a new 'base' pointer, off_reg (variable) gets
8173 		 * added into the variable offset, and we copy the fixed offset
8174 		 * from ptr_reg.
8175 		 */
8176 		if (signed_add_overflows(smin_ptr, smin_val) ||
8177 		    signed_add_overflows(smax_ptr, smax_val)) {
8178 			dst_reg->smin_value = S64_MIN;
8179 			dst_reg->smax_value = S64_MAX;
8180 		} else {
8181 			dst_reg->smin_value = smin_ptr + smin_val;
8182 			dst_reg->smax_value = smax_ptr + smax_val;
8183 		}
8184 		if (umin_ptr + umin_val < umin_ptr ||
8185 		    umax_ptr + umax_val < umax_ptr) {
8186 			dst_reg->umin_value = 0;
8187 			dst_reg->umax_value = U64_MAX;
8188 		} else {
8189 			dst_reg->umin_value = umin_ptr + umin_val;
8190 			dst_reg->umax_value = umax_ptr + umax_val;
8191 		}
8192 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8193 		dst_reg->off = ptr_reg->off;
8194 		dst_reg->raw = ptr_reg->raw;
8195 		if (reg_is_pkt_pointer(ptr_reg)) {
8196 			dst_reg->id = ++env->id_gen;
8197 			/* something was added to pkt_ptr, set range to zero */
8198 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8199 		}
8200 		break;
8201 	case BPF_SUB:
8202 		if (dst_reg == off_reg) {
8203 			/* scalar -= pointer.  Creates an unknown scalar */
8204 			verbose(env, "R%d tried to subtract pointer from scalar\n",
8205 				dst);
8206 			return -EACCES;
8207 		}
8208 		/* We don't allow subtraction from FP, because (according to
8209 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
8210 		 * be able to deal with it.
8211 		 */
8212 		if (ptr_reg->type == PTR_TO_STACK) {
8213 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
8214 				dst);
8215 			return -EACCES;
8216 		}
8217 		if (known && (ptr_reg->off - smin_val ==
8218 			      (s64)(s32)(ptr_reg->off - smin_val))) {
8219 			/* pointer -= K.  Subtract it from fixed offset */
8220 			dst_reg->smin_value = smin_ptr;
8221 			dst_reg->smax_value = smax_ptr;
8222 			dst_reg->umin_value = umin_ptr;
8223 			dst_reg->umax_value = umax_ptr;
8224 			dst_reg->var_off = ptr_reg->var_off;
8225 			dst_reg->id = ptr_reg->id;
8226 			dst_reg->off = ptr_reg->off - smin_val;
8227 			dst_reg->raw = ptr_reg->raw;
8228 			break;
8229 		}
8230 		/* A new variable offset is created.  If the subtrahend is known
8231 		 * nonnegative, then any reg->range we had before is still good.
8232 		 */
8233 		if (signed_sub_overflows(smin_ptr, smax_val) ||
8234 		    signed_sub_overflows(smax_ptr, smin_val)) {
8235 			/* Overflow possible, we know nothing */
8236 			dst_reg->smin_value = S64_MIN;
8237 			dst_reg->smax_value = S64_MAX;
8238 		} else {
8239 			dst_reg->smin_value = smin_ptr - smax_val;
8240 			dst_reg->smax_value = smax_ptr - smin_val;
8241 		}
8242 		if (umin_ptr < umax_val) {
8243 			/* Overflow possible, we know nothing */
8244 			dst_reg->umin_value = 0;
8245 			dst_reg->umax_value = U64_MAX;
8246 		} else {
8247 			/* Cannot overflow (as long as bounds are consistent) */
8248 			dst_reg->umin_value = umin_ptr - umax_val;
8249 			dst_reg->umax_value = umax_ptr - umin_val;
8250 		}
8251 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8252 		dst_reg->off = ptr_reg->off;
8253 		dst_reg->raw = ptr_reg->raw;
8254 		if (reg_is_pkt_pointer(ptr_reg)) {
8255 			dst_reg->id = ++env->id_gen;
8256 			/* something was added to pkt_ptr, set range to zero */
8257 			if (smin_val < 0)
8258 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8259 		}
8260 		break;
8261 	case BPF_AND:
8262 	case BPF_OR:
8263 	case BPF_XOR:
8264 		/* bitwise ops on pointers are troublesome, prohibit. */
8265 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8266 			dst, bpf_alu_string[opcode >> 4]);
8267 		return -EACCES;
8268 	default:
8269 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
8270 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8271 			dst, bpf_alu_string[opcode >> 4]);
8272 		return -EACCES;
8273 	}
8274 
8275 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8276 		return -EINVAL;
8277 	reg_bounds_sync(dst_reg);
8278 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8279 		return -EACCES;
8280 	if (sanitize_needed(opcode)) {
8281 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
8282 				       &info, true);
8283 		if (ret < 0)
8284 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8285 	}
8286 
8287 	return 0;
8288 }
8289 
8290 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8291 				 struct bpf_reg_state *src_reg)
8292 {
8293 	s32 smin_val = src_reg->s32_min_value;
8294 	s32 smax_val = src_reg->s32_max_value;
8295 	u32 umin_val = src_reg->u32_min_value;
8296 	u32 umax_val = src_reg->u32_max_value;
8297 
8298 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8299 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8300 		dst_reg->s32_min_value = S32_MIN;
8301 		dst_reg->s32_max_value = S32_MAX;
8302 	} else {
8303 		dst_reg->s32_min_value += smin_val;
8304 		dst_reg->s32_max_value += smax_val;
8305 	}
8306 	if (dst_reg->u32_min_value + umin_val < umin_val ||
8307 	    dst_reg->u32_max_value + umax_val < umax_val) {
8308 		dst_reg->u32_min_value = 0;
8309 		dst_reg->u32_max_value = U32_MAX;
8310 	} else {
8311 		dst_reg->u32_min_value += umin_val;
8312 		dst_reg->u32_max_value += umax_val;
8313 	}
8314 }
8315 
8316 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8317 			       struct bpf_reg_state *src_reg)
8318 {
8319 	s64 smin_val = src_reg->smin_value;
8320 	s64 smax_val = src_reg->smax_value;
8321 	u64 umin_val = src_reg->umin_value;
8322 	u64 umax_val = src_reg->umax_value;
8323 
8324 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8325 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
8326 		dst_reg->smin_value = S64_MIN;
8327 		dst_reg->smax_value = S64_MAX;
8328 	} else {
8329 		dst_reg->smin_value += smin_val;
8330 		dst_reg->smax_value += smax_val;
8331 	}
8332 	if (dst_reg->umin_value + umin_val < umin_val ||
8333 	    dst_reg->umax_value + umax_val < umax_val) {
8334 		dst_reg->umin_value = 0;
8335 		dst_reg->umax_value = U64_MAX;
8336 	} else {
8337 		dst_reg->umin_value += umin_val;
8338 		dst_reg->umax_value += umax_val;
8339 	}
8340 }
8341 
8342 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8343 				 struct bpf_reg_state *src_reg)
8344 {
8345 	s32 smin_val = src_reg->s32_min_value;
8346 	s32 smax_val = src_reg->s32_max_value;
8347 	u32 umin_val = src_reg->u32_min_value;
8348 	u32 umax_val = src_reg->u32_max_value;
8349 
8350 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8351 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8352 		/* Overflow possible, we know nothing */
8353 		dst_reg->s32_min_value = S32_MIN;
8354 		dst_reg->s32_max_value = S32_MAX;
8355 	} else {
8356 		dst_reg->s32_min_value -= smax_val;
8357 		dst_reg->s32_max_value -= smin_val;
8358 	}
8359 	if (dst_reg->u32_min_value < umax_val) {
8360 		/* Overflow possible, we know nothing */
8361 		dst_reg->u32_min_value = 0;
8362 		dst_reg->u32_max_value = U32_MAX;
8363 	} else {
8364 		/* Cannot overflow (as long as bounds are consistent) */
8365 		dst_reg->u32_min_value -= umax_val;
8366 		dst_reg->u32_max_value -= umin_val;
8367 	}
8368 }
8369 
8370 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8371 			       struct bpf_reg_state *src_reg)
8372 {
8373 	s64 smin_val = src_reg->smin_value;
8374 	s64 smax_val = src_reg->smax_value;
8375 	u64 umin_val = src_reg->umin_value;
8376 	u64 umax_val = src_reg->umax_value;
8377 
8378 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8379 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8380 		/* Overflow possible, we know nothing */
8381 		dst_reg->smin_value = S64_MIN;
8382 		dst_reg->smax_value = S64_MAX;
8383 	} else {
8384 		dst_reg->smin_value -= smax_val;
8385 		dst_reg->smax_value -= smin_val;
8386 	}
8387 	if (dst_reg->umin_value < umax_val) {
8388 		/* Overflow possible, we know nothing */
8389 		dst_reg->umin_value = 0;
8390 		dst_reg->umax_value = U64_MAX;
8391 	} else {
8392 		/* Cannot overflow (as long as bounds are consistent) */
8393 		dst_reg->umin_value -= umax_val;
8394 		dst_reg->umax_value -= umin_val;
8395 	}
8396 }
8397 
8398 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8399 				 struct bpf_reg_state *src_reg)
8400 {
8401 	s32 smin_val = src_reg->s32_min_value;
8402 	u32 umin_val = src_reg->u32_min_value;
8403 	u32 umax_val = src_reg->u32_max_value;
8404 
8405 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8406 		/* Ain't nobody got time to multiply that sign */
8407 		__mark_reg32_unbounded(dst_reg);
8408 		return;
8409 	}
8410 	/* Both values are positive, so we can work with unsigned and
8411 	 * copy the result to signed (unless it exceeds S32_MAX).
8412 	 */
8413 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8414 		/* Potential overflow, we know nothing */
8415 		__mark_reg32_unbounded(dst_reg);
8416 		return;
8417 	}
8418 	dst_reg->u32_min_value *= umin_val;
8419 	dst_reg->u32_max_value *= umax_val;
8420 	if (dst_reg->u32_max_value > S32_MAX) {
8421 		/* Overflow possible, we know nothing */
8422 		dst_reg->s32_min_value = S32_MIN;
8423 		dst_reg->s32_max_value = S32_MAX;
8424 	} else {
8425 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8426 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8427 	}
8428 }
8429 
8430 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8431 			       struct bpf_reg_state *src_reg)
8432 {
8433 	s64 smin_val = src_reg->smin_value;
8434 	u64 umin_val = src_reg->umin_value;
8435 	u64 umax_val = src_reg->umax_value;
8436 
8437 	if (smin_val < 0 || dst_reg->smin_value < 0) {
8438 		/* Ain't nobody got time to multiply that sign */
8439 		__mark_reg64_unbounded(dst_reg);
8440 		return;
8441 	}
8442 	/* Both values are positive, so we can work with unsigned and
8443 	 * copy the result to signed (unless it exceeds S64_MAX).
8444 	 */
8445 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8446 		/* Potential overflow, we know nothing */
8447 		__mark_reg64_unbounded(dst_reg);
8448 		return;
8449 	}
8450 	dst_reg->umin_value *= umin_val;
8451 	dst_reg->umax_value *= umax_val;
8452 	if (dst_reg->umax_value > S64_MAX) {
8453 		/* Overflow possible, we know nothing */
8454 		dst_reg->smin_value = S64_MIN;
8455 		dst_reg->smax_value = S64_MAX;
8456 	} else {
8457 		dst_reg->smin_value = dst_reg->umin_value;
8458 		dst_reg->smax_value = dst_reg->umax_value;
8459 	}
8460 }
8461 
8462 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8463 				 struct bpf_reg_state *src_reg)
8464 {
8465 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8466 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8467 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8468 	s32 smin_val = src_reg->s32_min_value;
8469 	u32 umax_val = src_reg->u32_max_value;
8470 
8471 	if (src_known && dst_known) {
8472 		__mark_reg32_known(dst_reg, var32_off.value);
8473 		return;
8474 	}
8475 
8476 	/* We get our minimum from the var_off, since that's inherently
8477 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8478 	 */
8479 	dst_reg->u32_min_value = var32_off.value;
8480 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8481 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8482 		/* Lose signed bounds when ANDing negative numbers,
8483 		 * ain't nobody got time for that.
8484 		 */
8485 		dst_reg->s32_min_value = S32_MIN;
8486 		dst_reg->s32_max_value = S32_MAX;
8487 	} else {
8488 		/* ANDing two positives gives a positive, so safe to
8489 		 * cast result into s64.
8490 		 */
8491 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8492 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8493 	}
8494 }
8495 
8496 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8497 			       struct bpf_reg_state *src_reg)
8498 {
8499 	bool src_known = tnum_is_const(src_reg->var_off);
8500 	bool dst_known = tnum_is_const(dst_reg->var_off);
8501 	s64 smin_val = src_reg->smin_value;
8502 	u64 umax_val = src_reg->umax_value;
8503 
8504 	if (src_known && dst_known) {
8505 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8506 		return;
8507 	}
8508 
8509 	/* We get our minimum from the var_off, since that's inherently
8510 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8511 	 */
8512 	dst_reg->umin_value = dst_reg->var_off.value;
8513 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8514 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8515 		/* Lose signed bounds when ANDing negative numbers,
8516 		 * ain't nobody got time for that.
8517 		 */
8518 		dst_reg->smin_value = S64_MIN;
8519 		dst_reg->smax_value = S64_MAX;
8520 	} else {
8521 		/* ANDing two positives gives a positive, so safe to
8522 		 * cast result into s64.
8523 		 */
8524 		dst_reg->smin_value = dst_reg->umin_value;
8525 		dst_reg->smax_value = dst_reg->umax_value;
8526 	}
8527 	/* We may learn something more from the var_off */
8528 	__update_reg_bounds(dst_reg);
8529 }
8530 
8531 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8532 				struct bpf_reg_state *src_reg)
8533 {
8534 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8535 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8536 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8537 	s32 smin_val = src_reg->s32_min_value;
8538 	u32 umin_val = src_reg->u32_min_value;
8539 
8540 	if (src_known && dst_known) {
8541 		__mark_reg32_known(dst_reg, var32_off.value);
8542 		return;
8543 	}
8544 
8545 	/* We get our maximum from the var_off, and our minimum is the
8546 	 * maximum of the operands' minima
8547 	 */
8548 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8549 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8550 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8551 		/* Lose signed bounds when ORing negative numbers,
8552 		 * ain't nobody got time for that.
8553 		 */
8554 		dst_reg->s32_min_value = S32_MIN;
8555 		dst_reg->s32_max_value = S32_MAX;
8556 	} else {
8557 		/* ORing two positives gives a positive, so safe to
8558 		 * cast result into s64.
8559 		 */
8560 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8561 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8562 	}
8563 }
8564 
8565 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8566 			      struct bpf_reg_state *src_reg)
8567 {
8568 	bool src_known = tnum_is_const(src_reg->var_off);
8569 	bool dst_known = tnum_is_const(dst_reg->var_off);
8570 	s64 smin_val = src_reg->smin_value;
8571 	u64 umin_val = src_reg->umin_value;
8572 
8573 	if (src_known && dst_known) {
8574 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8575 		return;
8576 	}
8577 
8578 	/* We get our maximum from the var_off, and our minimum is the
8579 	 * maximum of the operands' minima
8580 	 */
8581 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8582 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8583 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8584 		/* Lose signed bounds when ORing negative numbers,
8585 		 * ain't nobody got time for that.
8586 		 */
8587 		dst_reg->smin_value = S64_MIN;
8588 		dst_reg->smax_value = S64_MAX;
8589 	} else {
8590 		/* ORing two positives gives a positive, so safe to
8591 		 * cast result into s64.
8592 		 */
8593 		dst_reg->smin_value = dst_reg->umin_value;
8594 		dst_reg->smax_value = dst_reg->umax_value;
8595 	}
8596 	/* We may learn something more from the var_off */
8597 	__update_reg_bounds(dst_reg);
8598 }
8599 
8600 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8601 				 struct bpf_reg_state *src_reg)
8602 {
8603 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8604 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8605 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8606 	s32 smin_val = src_reg->s32_min_value;
8607 
8608 	if (src_known && dst_known) {
8609 		__mark_reg32_known(dst_reg, var32_off.value);
8610 		return;
8611 	}
8612 
8613 	/* We get both minimum and maximum from the var32_off. */
8614 	dst_reg->u32_min_value = var32_off.value;
8615 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8616 
8617 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8618 		/* XORing two positive sign numbers gives a positive,
8619 		 * so safe to cast u32 result into s32.
8620 		 */
8621 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8622 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8623 	} else {
8624 		dst_reg->s32_min_value = S32_MIN;
8625 		dst_reg->s32_max_value = S32_MAX;
8626 	}
8627 }
8628 
8629 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8630 			       struct bpf_reg_state *src_reg)
8631 {
8632 	bool src_known = tnum_is_const(src_reg->var_off);
8633 	bool dst_known = tnum_is_const(dst_reg->var_off);
8634 	s64 smin_val = src_reg->smin_value;
8635 
8636 	if (src_known && dst_known) {
8637 		/* dst_reg->var_off.value has been updated earlier */
8638 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8639 		return;
8640 	}
8641 
8642 	/* We get both minimum and maximum from the var_off. */
8643 	dst_reg->umin_value = dst_reg->var_off.value;
8644 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8645 
8646 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8647 		/* XORing two positive sign numbers gives a positive,
8648 		 * so safe to cast u64 result into s64.
8649 		 */
8650 		dst_reg->smin_value = dst_reg->umin_value;
8651 		dst_reg->smax_value = dst_reg->umax_value;
8652 	} else {
8653 		dst_reg->smin_value = S64_MIN;
8654 		dst_reg->smax_value = S64_MAX;
8655 	}
8656 
8657 	__update_reg_bounds(dst_reg);
8658 }
8659 
8660 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8661 				   u64 umin_val, u64 umax_val)
8662 {
8663 	/* We lose all sign bit information (except what we can pick
8664 	 * up from var_off)
8665 	 */
8666 	dst_reg->s32_min_value = S32_MIN;
8667 	dst_reg->s32_max_value = S32_MAX;
8668 	/* If we might shift our top bit out, then we know nothing */
8669 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8670 		dst_reg->u32_min_value = 0;
8671 		dst_reg->u32_max_value = U32_MAX;
8672 	} else {
8673 		dst_reg->u32_min_value <<= umin_val;
8674 		dst_reg->u32_max_value <<= umax_val;
8675 	}
8676 }
8677 
8678 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8679 				 struct bpf_reg_state *src_reg)
8680 {
8681 	u32 umax_val = src_reg->u32_max_value;
8682 	u32 umin_val = src_reg->u32_min_value;
8683 	/* u32 alu operation will zext upper bits */
8684 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8685 
8686 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8687 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8688 	/* Not required but being careful mark reg64 bounds as unknown so
8689 	 * that we are forced to pick them up from tnum and zext later and
8690 	 * if some path skips this step we are still safe.
8691 	 */
8692 	__mark_reg64_unbounded(dst_reg);
8693 	__update_reg32_bounds(dst_reg);
8694 }
8695 
8696 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8697 				   u64 umin_val, u64 umax_val)
8698 {
8699 	/* Special case <<32 because it is a common compiler pattern to sign
8700 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8701 	 * positive we know this shift will also be positive so we can track
8702 	 * bounds correctly. Otherwise we lose all sign bit information except
8703 	 * what we can pick up from var_off. Perhaps we can generalize this
8704 	 * later to shifts of any length.
8705 	 */
8706 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8707 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8708 	else
8709 		dst_reg->smax_value = S64_MAX;
8710 
8711 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8712 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8713 	else
8714 		dst_reg->smin_value = S64_MIN;
8715 
8716 	/* If we might shift our top bit out, then we know nothing */
8717 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8718 		dst_reg->umin_value = 0;
8719 		dst_reg->umax_value = U64_MAX;
8720 	} else {
8721 		dst_reg->umin_value <<= umin_val;
8722 		dst_reg->umax_value <<= umax_val;
8723 	}
8724 }
8725 
8726 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8727 			       struct bpf_reg_state *src_reg)
8728 {
8729 	u64 umax_val = src_reg->umax_value;
8730 	u64 umin_val = src_reg->umin_value;
8731 
8732 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
8733 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8734 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8735 
8736 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8737 	/* We may learn something more from the var_off */
8738 	__update_reg_bounds(dst_reg);
8739 }
8740 
8741 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8742 				 struct bpf_reg_state *src_reg)
8743 {
8744 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8745 	u32 umax_val = src_reg->u32_max_value;
8746 	u32 umin_val = src_reg->u32_min_value;
8747 
8748 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8749 	 * be negative, then either:
8750 	 * 1) src_reg might be zero, so the sign bit of the result is
8751 	 *    unknown, so we lose our signed bounds
8752 	 * 2) it's known negative, thus the unsigned bounds capture the
8753 	 *    signed bounds
8754 	 * 3) the signed bounds cross zero, so they tell us nothing
8755 	 *    about the result
8756 	 * If the value in dst_reg is known nonnegative, then again the
8757 	 * unsigned bounds capture the signed bounds.
8758 	 * Thus, in all cases it suffices to blow away our signed bounds
8759 	 * and rely on inferring new ones from the unsigned bounds and
8760 	 * var_off of the result.
8761 	 */
8762 	dst_reg->s32_min_value = S32_MIN;
8763 	dst_reg->s32_max_value = S32_MAX;
8764 
8765 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
8766 	dst_reg->u32_min_value >>= umax_val;
8767 	dst_reg->u32_max_value >>= umin_val;
8768 
8769 	__mark_reg64_unbounded(dst_reg);
8770 	__update_reg32_bounds(dst_reg);
8771 }
8772 
8773 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8774 			       struct bpf_reg_state *src_reg)
8775 {
8776 	u64 umax_val = src_reg->umax_value;
8777 	u64 umin_val = src_reg->umin_value;
8778 
8779 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8780 	 * be negative, then either:
8781 	 * 1) src_reg might be zero, so the sign bit of the result is
8782 	 *    unknown, so we lose our signed bounds
8783 	 * 2) it's known negative, thus the unsigned bounds capture the
8784 	 *    signed bounds
8785 	 * 3) the signed bounds cross zero, so they tell us nothing
8786 	 *    about the result
8787 	 * If the value in dst_reg is known nonnegative, then again the
8788 	 * unsigned bounds capture the signed bounds.
8789 	 * Thus, in all cases it suffices to blow away our signed bounds
8790 	 * and rely on inferring new ones from the unsigned bounds and
8791 	 * var_off of the result.
8792 	 */
8793 	dst_reg->smin_value = S64_MIN;
8794 	dst_reg->smax_value = S64_MAX;
8795 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8796 	dst_reg->umin_value >>= umax_val;
8797 	dst_reg->umax_value >>= umin_val;
8798 
8799 	/* Its not easy to operate on alu32 bounds here because it depends
8800 	 * on bits being shifted in. Take easy way out and mark unbounded
8801 	 * so we can recalculate later from tnum.
8802 	 */
8803 	__mark_reg32_unbounded(dst_reg);
8804 	__update_reg_bounds(dst_reg);
8805 }
8806 
8807 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8808 				  struct bpf_reg_state *src_reg)
8809 {
8810 	u64 umin_val = src_reg->u32_min_value;
8811 
8812 	/* Upon reaching here, src_known is true and
8813 	 * umax_val is equal to umin_val.
8814 	 */
8815 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8816 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8817 
8818 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8819 
8820 	/* blow away the dst_reg umin_value/umax_value and rely on
8821 	 * dst_reg var_off to refine the result.
8822 	 */
8823 	dst_reg->u32_min_value = 0;
8824 	dst_reg->u32_max_value = U32_MAX;
8825 
8826 	__mark_reg64_unbounded(dst_reg);
8827 	__update_reg32_bounds(dst_reg);
8828 }
8829 
8830 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8831 				struct bpf_reg_state *src_reg)
8832 {
8833 	u64 umin_val = src_reg->umin_value;
8834 
8835 	/* Upon reaching here, src_known is true and umax_val is equal
8836 	 * to umin_val.
8837 	 */
8838 	dst_reg->smin_value >>= umin_val;
8839 	dst_reg->smax_value >>= umin_val;
8840 
8841 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8842 
8843 	/* blow away the dst_reg umin_value/umax_value and rely on
8844 	 * dst_reg var_off to refine the result.
8845 	 */
8846 	dst_reg->umin_value = 0;
8847 	dst_reg->umax_value = U64_MAX;
8848 
8849 	/* Its not easy to operate on alu32 bounds here because it depends
8850 	 * on bits being shifted in from upper 32-bits. Take easy way out
8851 	 * and mark unbounded so we can recalculate later from tnum.
8852 	 */
8853 	__mark_reg32_unbounded(dst_reg);
8854 	__update_reg_bounds(dst_reg);
8855 }
8856 
8857 /* WARNING: This function does calculations on 64-bit values, but the actual
8858  * execution may occur on 32-bit values. Therefore, things like bitshifts
8859  * need extra checks in the 32-bit case.
8860  */
8861 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8862 				      struct bpf_insn *insn,
8863 				      struct bpf_reg_state *dst_reg,
8864 				      struct bpf_reg_state src_reg)
8865 {
8866 	struct bpf_reg_state *regs = cur_regs(env);
8867 	u8 opcode = BPF_OP(insn->code);
8868 	bool src_known;
8869 	s64 smin_val, smax_val;
8870 	u64 umin_val, umax_val;
8871 	s32 s32_min_val, s32_max_val;
8872 	u32 u32_min_val, u32_max_val;
8873 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8874 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8875 	int ret;
8876 
8877 	smin_val = src_reg.smin_value;
8878 	smax_val = src_reg.smax_value;
8879 	umin_val = src_reg.umin_value;
8880 	umax_val = src_reg.umax_value;
8881 
8882 	s32_min_val = src_reg.s32_min_value;
8883 	s32_max_val = src_reg.s32_max_value;
8884 	u32_min_val = src_reg.u32_min_value;
8885 	u32_max_val = src_reg.u32_max_value;
8886 
8887 	if (alu32) {
8888 		src_known = tnum_subreg_is_const(src_reg.var_off);
8889 		if ((src_known &&
8890 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8891 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8892 			/* Taint dst register if offset had invalid bounds
8893 			 * derived from e.g. dead branches.
8894 			 */
8895 			__mark_reg_unknown(env, dst_reg);
8896 			return 0;
8897 		}
8898 	} else {
8899 		src_known = tnum_is_const(src_reg.var_off);
8900 		if ((src_known &&
8901 		     (smin_val != smax_val || umin_val != umax_val)) ||
8902 		    smin_val > smax_val || umin_val > umax_val) {
8903 			/* Taint dst register if offset had invalid bounds
8904 			 * derived from e.g. dead branches.
8905 			 */
8906 			__mark_reg_unknown(env, dst_reg);
8907 			return 0;
8908 		}
8909 	}
8910 
8911 	if (!src_known &&
8912 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8913 		__mark_reg_unknown(env, dst_reg);
8914 		return 0;
8915 	}
8916 
8917 	if (sanitize_needed(opcode)) {
8918 		ret = sanitize_val_alu(env, insn);
8919 		if (ret < 0)
8920 			return sanitize_err(env, insn, ret, NULL, NULL);
8921 	}
8922 
8923 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8924 	 * There are two classes of instructions: The first class we track both
8925 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8926 	 * greatest amount of precision when alu operations are mixed with jmp32
8927 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8928 	 * and BPF_OR. This is possible because these ops have fairly easy to
8929 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8930 	 * See alu32 verifier tests for examples. The second class of
8931 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8932 	 * with regards to tracking sign/unsigned bounds because the bits may
8933 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8934 	 * the reg unbounded in the subreg bound space and use the resulting
8935 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8936 	 */
8937 	switch (opcode) {
8938 	case BPF_ADD:
8939 		scalar32_min_max_add(dst_reg, &src_reg);
8940 		scalar_min_max_add(dst_reg, &src_reg);
8941 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8942 		break;
8943 	case BPF_SUB:
8944 		scalar32_min_max_sub(dst_reg, &src_reg);
8945 		scalar_min_max_sub(dst_reg, &src_reg);
8946 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8947 		break;
8948 	case BPF_MUL:
8949 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8950 		scalar32_min_max_mul(dst_reg, &src_reg);
8951 		scalar_min_max_mul(dst_reg, &src_reg);
8952 		break;
8953 	case BPF_AND:
8954 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8955 		scalar32_min_max_and(dst_reg, &src_reg);
8956 		scalar_min_max_and(dst_reg, &src_reg);
8957 		break;
8958 	case BPF_OR:
8959 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8960 		scalar32_min_max_or(dst_reg, &src_reg);
8961 		scalar_min_max_or(dst_reg, &src_reg);
8962 		break;
8963 	case BPF_XOR:
8964 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8965 		scalar32_min_max_xor(dst_reg, &src_reg);
8966 		scalar_min_max_xor(dst_reg, &src_reg);
8967 		break;
8968 	case BPF_LSH:
8969 		if (umax_val >= insn_bitness) {
8970 			/* Shifts greater than 31 or 63 are undefined.
8971 			 * This includes shifts by a negative number.
8972 			 */
8973 			mark_reg_unknown(env, regs, insn->dst_reg);
8974 			break;
8975 		}
8976 		if (alu32)
8977 			scalar32_min_max_lsh(dst_reg, &src_reg);
8978 		else
8979 			scalar_min_max_lsh(dst_reg, &src_reg);
8980 		break;
8981 	case BPF_RSH:
8982 		if (umax_val >= insn_bitness) {
8983 			/* Shifts greater than 31 or 63 are undefined.
8984 			 * This includes shifts by a negative number.
8985 			 */
8986 			mark_reg_unknown(env, regs, insn->dst_reg);
8987 			break;
8988 		}
8989 		if (alu32)
8990 			scalar32_min_max_rsh(dst_reg, &src_reg);
8991 		else
8992 			scalar_min_max_rsh(dst_reg, &src_reg);
8993 		break;
8994 	case BPF_ARSH:
8995 		if (umax_val >= insn_bitness) {
8996 			/* Shifts greater than 31 or 63 are undefined.
8997 			 * This includes shifts by a negative number.
8998 			 */
8999 			mark_reg_unknown(env, regs, insn->dst_reg);
9000 			break;
9001 		}
9002 		if (alu32)
9003 			scalar32_min_max_arsh(dst_reg, &src_reg);
9004 		else
9005 			scalar_min_max_arsh(dst_reg, &src_reg);
9006 		break;
9007 	default:
9008 		mark_reg_unknown(env, regs, insn->dst_reg);
9009 		break;
9010 	}
9011 
9012 	/* ALU32 ops are zero extended into 64bit register */
9013 	if (alu32)
9014 		zext_32_to_64(dst_reg);
9015 	reg_bounds_sync(dst_reg);
9016 	return 0;
9017 }
9018 
9019 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9020  * and var_off.
9021  */
9022 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9023 				   struct bpf_insn *insn)
9024 {
9025 	struct bpf_verifier_state *vstate = env->cur_state;
9026 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9027 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
9028 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9029 	u8 opcode = BPF_OP(insn->code);
9030 	int err;
9031 
9032 	dst_reg = &regs[insn->dst_reg];
9033 	src_reg = NULL;
9034 	if (dst_reg->type != SCALAR_VALUE)
9035 		ptr_reg = dst_reg;
9036 	else
9037 		/* Make sure ID is cleared otherwise dst_reg min/max could be
9038 		 * incorrectly propagated into other registers by find_equal_scalars()
9039 		 */
9040 		dst_reg->id = 0;
9041 	if (BPF_SRC(insn->code) == BPF_X) {
9042 		src_reg = &regs[insn->src_reg];
9043 		if (src_reg->type != SCALAR_VALUE) {
9044 			if (dst_reg->type != SCALAR_VALUE) {
9045 				/* Combining two pointers by any ALU op yields
9046 				 * an arbitrary scalar. Disallow all math except
9047 				 * pointer subtraction
9048 				 */
9049 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9050 					mark_reg_unknown(env, regs, insn->dst_reg);
9051 					return 0;
9052 				}
9053 				verbose(env, "R%d pointer %s pointer prohibited\n",
9054 					insn->dst_reg,
9055 					bpf_alu_string[opcode >> 4]);
9056 				return -EACCES;
9057 			} else {
9058 				/* scalar += pointer
9059 				 * This is legal, but we have to reverse our
9060 				 * src/dest handling in computing the range
9061 				 */
9062 				err = mark_chain_precision(env, insn->dst_reg);
9063 				if (err)
9064 					return err;
9065 				return adjust_ptr_min_max_vals(env, insn,
9066 							       src_reg, dst_reg);
9067 			}
9068 		} else if (ptr_reg) {
9069 			/* pointer += scalar */
9070 			err = mark_chain_precision(env, insn->src_reg);
9071 			if (err)
9072 				return err;
9073 			return adjust_ptr_min_max_vals(env, insn,
9074 						       dst_reg, src_reg);
9075 		}
9076 	} else {
9077 		/* Pretend the src is a reg with a known value, since we only
9078 		 * need to be able to read from this state.
9079 		 */
9080 		off_reg.type = SCALAR_VALUE;
9081 		__mark_reg_known(&off_reg, insn->imm);
9082 		src_reg = &off_reg;
9083 		if (ptr_reg) /* pointer += K */
9084 			return adjust_ptr_min_max_vals(env, insn,
9085 						       ptr_reg, src_reg);
9086 	}
9087 
9088 	/* Got here implies adding two SCALAR_VALUEs */
9089 	if (WARN_ON_ONCE(ptr_reg)) {
9090 		print_verifier_state(env, state, true);
9091 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
9092 		return -EINVAL;
9093 	}
9094 	if (WARN_ON(!src_reg)) {
9095 		print_verifier_state(env, state, true);
9096 		verbose(env, "verifier internal error: no src_reg\n");
9097 		return -EINVAL;
9098 	}
9099 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
9100 }
9101 
9102 /* check validity of 32-bit and 64-bit arithmetic operations */
9103 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
9104 {
9105 	struct bpf_reg_state *regs = cur_regs(env);
9106 	u8 opcode = BPF_OP(insn->code);
9107 	int err;
9108 
9109 	if (opcode == BPF_END || opcode == BPF_NEG) {
9110 		if (opcode == BPF_NEG) {
9111 			if (BPF_SRC(insn->code) != BPF_K ||
9112 			    insn->src_reg != BPF_REG_0 ||
9113 			    insn->off != 0 || insn->imm != 0) {
9114 				verbose(env, "BPF_NEG uses reserved fields\n");
9115 				return -EINVAL;
9116 			}
9117 		} else {
9118 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
9119 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9120 			    BPF_CLASS(insn->code) == BPF_ALU64) {
9121 				verbose(env, "BPF_END uses reserved fields\n");
9122 				return -EINVAL;
9123 			}
9124 		}
9125 
9126 		/* check src operand */
9127 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9128 		if (err)
9129 			return err;
9130 
9131 		if (is_pointer_value(env, insn->dst_reg)) {
9132 			verbose(env, "R%d pointer arithmetic prohibited\n",
9133 				insn->dst_reg);
9134 			return -EACCES;
9135 		}
9136 
9137 		/* check dest operand */
9138 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
9139 		if (err)
9140 			return err;
9141 
9142 	} else if (opcode == BPF_MOV) {
9143 
9144 		if (BPF_SRC(insn->code) == BPF_X) {
9145 			if (insn->imm != 0 || insn->off != 0) {
9146 				verbose(env, "BPF_MOV uses reserved fields\n");
9147 				return -EINVAL;
9148 			}
9149 
9150 			/* check src operand */
9151 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9152 			if (err)
9153 				return err;
9154 		} else {
9155 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9156 				verbose(env, "BPF_MOV uses reserved fields\n");
9157 				return -EINVAL;
9158 			}
9159 		}
9160 
9161 		/* check dest operand, mark as required later */
9162 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9163 		if (err)
9164 			return err;
9165 
9166 		if (BPF_SRC(insn->code) == BPF_X) {
9167 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
9168 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9169 
9170 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9171 				/* case: R1 = R2
9172 				 * copy register state to dest reg
9173 				 */
9174 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9175 					/* Assign src and dst registers the same ID
9176 					 * that will be used by find_equal_scalars()
9177 					 * to propagate min/max range.
9178 					 */
9179 					src_reg->id = ++env->id_gen;
9180 				*dst_reg = *src_reg;
9181 				dst_reg->live |= REG_LIVE_WRITTEN;
9182 				dst_reg->subreg_def = DEF_NOT_SUBREG;
9183 			} else {
9184 				/* R1 = (u32) R2 */
9185 				if (is_pointer_value(env, insn->src_reg)) {
9186 					verbose(env,
9187 						"R%d partial copy of pointer\n",
9188 						insn->src_reg);
9189 					return -EACCES;
9190 				} else if (src_reg->type == SCALAR_VALUE) {
9191 					*dst_reg = *src_reg;
9192 					/* Make sure ID is cleared otherwise
9193 					 * dst_reg min/max could be incorrectly
9194 					 * propagated into src_reg by find_equal_scalars()
9195 					 */
9196 					dst_reg->id = 0;
9197 					dst_reg->live |= REG_LIVE_WRITTEN;
9198 					dst_reg->subreg_def = env->insn_idx + 1;
9199 				} else {
9200 					mark_reg_unknown(env, regs,
9201 							 insn->dst_reg);
9202 				}
9203 				zext_32_to_64(dst_reg);
9204 				reg_bounds_sync(dst_reg);
9205 			}
9206 		} else {
9207 			/* case: R = imm
9208 			 * remember the value we stored into this reg
9209 			 */
9210 			/* clear any state __mark_reg_known doesn't set */
9211 			mark_reg_unknown(env, regs, insn->dst_reg);
9212 			regs[insn->dst_reg].type = SCALAR_VALUE;
9213 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9214 				__mark_reg_known(regs + insn->dst_reg,
9215 						 insn->imm);
9216 			} else {
9217 				__mark_reg_known(regs + insn->dst_reg,
9218 						 (u32)insn->imm);
9219 			}
9220 		}
9221 
9222 	} else if (opcode > BPF_END) {
9223 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
9224 		return -EINVAL;
9225 
9226 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
9227 
9228 		if (BPF_SRC(insn->code) == BPF_X) {
9229 			if (insn->imm != 0 || insn->off != 0) {
9230 				verbose(env, "BPF_ALU uses reserved fields\n");
9231 				return -EINVAL;
9232 			}
9233 			/* check src1 operand */
9234 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9235 			if (err)
9236 				return err;
9237 		} else {
9238 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9239 				verbose(env, "BPF_ALU uses reserved fields\n");
9240 				return -EINVAL;
9241 			}
9242 		}
9243 
9244 		/* check src2 operand */
9245 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9246 		if (err)
9247 			return err;
9248 
9249 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9250 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
9251 			verbose(env, "div by zero\n");
9252 			return -EINVAL;
9253 		}
9254 
9255 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9256 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9257 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9258 
9259 			if (insn->imm < 0 || insn->imm >= size) {
9260 				verbose(env, "invalid shift %d\n", insn->imm);
9261 				return -EINVAL;
9262 			}
9263 		}
9264 
9265 		/* check dest operand */
9266 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9267 		if (err)
9268 			return err;
9269 
9270 		return adjust_reg_min_max_vals(env, insn);
9271 	}
9272 
9273 	return 0;
9274 }
9275 
9276 static void __find_good_pkt_pointers(struct bpf_func_state *state,
9277 				     struct bpf_reg_state *dst_reg,
9278 				     enum bpf_reg_type type, int new_range)
9279 {
9280 	struct bpf_reg_state *reg;
9281 	int i;
9282 
9283 	for (i = 0; i < MAX_BPF_REG; i++) {
9284 		reg = &state->regs[i];
9285 		if (reg->type == type && reg->id == dst_reg->id)
9286 			/* keep the maximum range already checked */
9287 			reg->range = max(reg->range, new_range);
9288 	}
9289 
9290 	bpf_for_each_spilled_reg(i, state, reg) {
9291 		if (!reg)
9292 			continue;
9293 		if (reg->type == type && reg->id == dst_reg->id)
9294 			reg->range = max(reg->range, new_range);
9295 	}
9296 }
9297 
9298 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
9299 				   struct bpf_reg_state *dst_reg,
9300 				   enum bpf_reg_type type,
9301 				   bool range_right_open)
9302 {
9303 	int new_range, i;
9304 
9305 	if (dst_reg->off < 0 ||
9306 	    (dst_reg->off == 0 && range_right_open))
9307 		/* This doesn't give us any range */
9308 		return;
9309 
9310 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
9311 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
9312 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
9313 		 * than pkt_end, but that's because it's also less than pkt.
9314 		 */
9315 		return;
9316 
9317 	new_range = dst_reg->off;
9318 	if (range_right_open)
9319 		new_range++;
9320 
9321 	/* Examples for register markings:
9322 	 *
9323 	 * pkt_data in dst register:
9324 	 *
9325 	 *   r2 = r3;
9326 	 *   r2 += 8;
9327 	 *   if (r2 > pkt_end) goto <handle exception>
9328 	 *   <access okay>
9329 	 *
9330 	 *   r2 = r3;
9331 	 *   r2 += 8;
9332 	 *   if (r2 < pkt_end) goto <access okay>
9333 	 *   <handle exception>
9334 	 *
9335 	 *   Where:
9336 	 *     r2 == dst_reg, pkt_end == src_reg
9337 	 *     r2=pkt(id=n,off=8,r=0)
9338 	 *     r3=pkt(id=n,off=0,r=0)
9339 	 *
9340 	 * pkt_data in src register:
9341 	 *
9342 	 *   r2 = r3;
9343 	 *   r2 += 8;
9344 	 *   if (pkt_end >= r2) goto <access okay>
9345 	 *   <handle exception>
9346 	 *
9347 	 *   r2 = r3;
9348 	 *   r2 += 8;
9349 	 *   if (pkt_end <= r2) goto <handle exception>
9350 	 *   <access okay>
9351 	 *
9352 	 *   Where:
9353 	 *     pkt_end == dst_reg, r2 == src_reg
9354 	 *     r2=pkt(id=n,off=8,r=0)
9355 	 *     r3=pkt(id=n,off=0,r=0)
9356 	 *
9357 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9358 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9359 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
9360 	 * the check.
9361 	 */
9362 
9363 	/* If our ids match, then we must have the same max_value.  And we
9364 	 * don't care about the other reg's fixed offset, since if it's too big
9365 	 * the range won't allow anything.
9366 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9367 	 */
9368 	for (i = 0; i <= vstate->curframe; i++)
9369 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
9370 					 new_range);
9371 }
9372 
9373 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9374 {
9375 	struct tnum subreg = tnum_subreg(reg->var_off);
9376 	s32 sval = (s32)val;
9377 
9378 	switch (opcode) {
9379 	case BPF_JEQ:
9380 		if (tnum_is_const(subreg))
9381 			return !!tnum_equals_const(subreg, val);
9382 		break;
9383 	case BPF_JNE:
9384 		if (tnum_is_const(subreg))
9385 			return !tnum_equals_const(subreg, val);
9386 		break;
9387 	case BPF_JSET:
9388 		if ((~subreg.mask & subreg.value) & val)
9389 			return 1;
9390 		if (!((subreg.mask | subreg.value) & val))
9391 			return 0;
9392 		break;
9393 	case BPF_JGT:
9394 		if (reg->u32_min_value > val)
9395 			return 1;
9396 		else if (reg->u32_max_value <= val)
9397 			return 0;
9398 		break;
9399 	case BPF_JSGT:
9400 		if (reg->s32_min_value > sval)
9401 			return 1;
9402 		else if (reg->s32_max_value <= sval)
9403 			return 0;
9404 		break;
9405 	case BPF_JLT:
9406 		if (reg->u32_max_value < val)
9407 			return 1;
9408 		else if (reg->u32_min_value >= val)
9409 			return 0;
9410 		break;
9411 	case BPF_JSLT:
9412 		if (reg->s32_max_value < sval)
9413 			return 1;
9414 		else if (reg->s32_min_value >= sval)
9415 			return 0;
9416 		break;
9417 	case BPF_JGE:
9418 		if (reg->u32_min_value >= val)
9419 			return 1;
9420 		else if (reg->u32_max_value < val)
9421 			return 0;
9422 		break;
9423 	case BPF_JSGE:
9424 		if (reg->s32_min_value >= sval)
9425 			return 1;
9426 		else if (reg->s32_max_value < sval)
9427 			return 0;
9428 		break;
9429 	case BPF_JLE:
9430 		if (reg->u32_max_value <= val)
9431 			return 1;
9432 		else if (reg->u32_min_value > val)
9433 			return 0;
9434 		break;
9435 	case BPF_JSLE:
9436 		if (reg->s32_max_value <= sval)
9437 			return 1;
9438 		else if (reg->s32_min_value > sval)
9439 			return 0;
9440 		break;
9441 	}
9442 
9443 	return -1;
9444 }
9445 
9446 
9447 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9448 {
9449 	s64 sval = (s64)val;
9450 
9451 	switch (opcode) {
9452 	case BPF_JEQ:
9453 		if (tnum_is_const(reg->var_off))
9454 			return !!tnum_equals_const(reg->var_off, val);
9455 		break;
9456 	case BPF_JNE:
9457 		if (tnum_is_const(reg->var_off))
9458 			return !tnum_equals_const(reg->var_off, val);
9459 		break;
9460 	case BPF_JSET:
9461 		if ((~reg->var_off.mask & reg->var_off.value) & val)
9462 			return 1;
9463 		if (!((reg->var_off.mask | reg->var_off.value) & val))
9464 			return 0;
9465 		break;
9466 	case BPF_JGT:
9467 		if (reg->umin_value > val)
9468 			return 1;
9469 		else if (reg->umax_value <= val)
9470 			return 0;
9471 		break;
9472 	case BPF_JSGT:
9473 		if (reg->smin_value > sval)
9474 			return 1;
9475 		else if (reg->smax_value <= sval)
9476 			return 0;
9477 		break;
9478 	case BPF_JLT:
9479 		if (reg->umax_value < val)
9480 			return 1;
9481 		else if (reg->umin_value >= val)
9482 			return 0;
9483 		break;
9484 	case BPF_JSLT:
9485 		if (reg->smax_value < sval)
9486 			return 1;
9487 		else if (reg->smin_value >= sval)
9488 			return 0;
9489 		break;
9490 	case BPF_JGE:
9491 		if (reg->umin_value >= val)
9492 			return 1;
9493 		else if (reg->umax_value < val)
9494 			return 0;
9495 		break;
9496 	case BPF_JSGE:
9497 		if (reg->smin_value >= sval)
9498 			return 1;
9499 		else if (reg->smax_value < sval)
9500 			return 0;
9501 		break;
9502 	case BPF_JLE:
9503 		if (reg->umax_value <= val)
9504 			return 1;
9505 		else if (reg->umin_value > val)
9506 			return 0;
9507 		break;
9508 	case BPF_JSLE:
9509 		if (reg->smax_value <= sval)
9510 			return 1;
9511 		else if (reg->smin_value > sval)
9512 			return 0;
9513 		break;
9514 	}
9515 
9516 	return -1;
9517 }
9518 
9519 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9520  * and return:
9521  *  1 - branch will be taken and "goto target" will be executed
9522  *  0 - branch will not be taken and fall-through to next insn
9523  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9524  *      range [0,10]
9525  */
9526 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9527 			   bool is_jmp32)
9528 {
9529 	if (__is_pointer_value(false, reg)) {
9530 		if (!reg_type_not_null(reg->type))
9531 			return -1;
9532 
9533 		/* If pointer is valid tests against zero will fail so we can
9534 		 * use this to direct branch taken.
9535 		 */
9536 		if (val != 0)
9537 			return -1;
9538 
9539 		switch (opcode) {
9540 		case BPF_JEQ:
9541 			return 0;
9542 		case BPF_JNE:
9543 			return 1;
9544 		default:
9545 			return -1;
9546 		}
9547 	}
9548 
9549 	if (is_jmp32)
9550 		return is_branch32_taken(reg, val, opcode);
9551 	return is_branch64_taken(reg, val, opcode);
9552 }
9553 
9554 static int flip_opcode(u32 opcode)
9555 {
9556 	/* How can we transform "a <op> b" into "b <op> a"? */
9557 	static const u8 opcode_flip[16] = {
9558 		/* these stay the same */
9559 		[BPF_JEQ  >> 4] = BPF_JEQ,
9560 		[BPF_JNE  >> 4] = BPF_JNE,
9561 		[BPF_JSET >> 4] = BPF_JSET,
9562 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
9563 		[BPF_JGE  >> 4] = BPF_JLE,
9564 		[BPF_JGT  >> 4] = BPF_JLT,
9565 		[BPF_JLE  >> 4] = BPF_JGE,
9566 		[BPF_JLT  >> 4] = BPF_JGT,
9567 		[BPF_JSGE >> 4] = BPF_JSLE,
9568 		[BPF_JSGT >> 4] = BPF_JSLT,
9569 		[BPF_JSLE >> 4] = BPF_JSGE,
9570 		[BPF_JSLT >> 4] = BPF_JSGT
9571 	};
9572 	return opcode_flip[opcode >> 4];
9573 }
9574 
9575 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9576 				   struct bpf_reg_state *src_reg,
9577 				   u8 opcode)
9578 {
9579 	struct bpf_reg_state *pkt;
9580 
9581 	if (src_reg->type == PTR_TO_PACKET_END) {
9582 		pkt = dst_reg;
9583 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
9584 		pkt = src_reg;
9585 		opcode = flip_opcode(opcode);
9586 	} else {
9587 		return -1;
9588 	}
9589 
9590 	if (pkt->range >= 0)
9591 		return -1;
9592 
9593 	switch (opcode) {
9594 	case BPF_JLE:
9595 		/* pkt <= pkt_end */
9596 		fallthrough;
9597 	case BPF_JGT:
9598 		/* pkt > pkt_end */
9599 		if (pkt->range == BEYOND_PKT_END)
9600 			/* pkt has at last one extra byte beyond pkt_end */
9601 			return opcode == BPF_JGT;
9602 		break;
9603 	case BPF_JLT:
9604 		/* pkt < pkt_end */
9605 		fallthrough;
9606 	case BPF_JGE:
9607 		/* pkt >= pkt_end */
9608 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9609 			return opcode == BPF_JGE;
9610 		break;
9611 	}
9612 	return -1;
9613 }
9614 
9615 /* Adjusts the register min/max values in the case that the dst_reg is the
9616  * variable register that we are working on, and src_reg is a constant or we're
9617  * simply doing a BPF_K check.
9618  * In JEQ/JNE cases we also adjust the var_off values.
9619  */
9620 static void reg_set_min_max(struct bpf_reg_state *true_reg,
9621 			    struct bpf_reg_state *false_reg,
9622 			    u64 val, u32 val32,
9623 			    u8 opcode, bool is_jmp32)
9624 {
9625 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
9626 	struct tnum false_64off = false_reg->var_off;
9627 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
9628 	struct tnum true_64off = true_reg->var_off;
9629 	s64 sval = (s64)val;
9630 	s32 sval32 = (s32)val32;
9631 
9632 	/* If the dst_reg is a pointer, we can't learn anything about its
9633 	 * variable offset from the compare (unless src_reg were a pointer into
9634 	 * the same object, but we don't bother with that.
9635 	 * Since false_reg and true_reg have the same type by construction, we
9636 	 * only need to check one of them for pointerness.
9637 	 */
9638 	if (__is_pointer_value(false, false_reg))
9639 		return;
9640 
9641 	switch (opcode) {
9642 	/* JEQ/JNE comparison doesn't change the register equivalence.
9643 	 *
9644 	 * r1 = r2;
9645 	 * if (r1 == 42) goto label;
9646 	 * ...
9647 	 * label: // here both r1 and r2 are known to be 42.
9648 	 *
9649 	 * Hence when marking register as known preserve it's ID.
9650 	 */
9651 	case BPF_JEQ:
9652 		if (is_jmp32) {
9653 			__mark_reg32_known(true_reg, val32);
9654 			true_32off = tnum_subreg(true_reg->var_off);
9655 		} else {
9656 			___mark_reg_known(true_reg, val);
9657 			true_64off = true_reg->var_off;
9658 		}
9659 		break;
9660 	case BPF_JNE:
9661 		if (is_jmp32) {
9662 			__mark_reg32_known(false_reg, val32);
9663 			false_32off = tnum_subreg(false_reg->var_off);
9664 		} else {
9665 			___mark_reg_known(false_reg, val);
9666 			false_64off = false_reg->var_off;
9667 		}
9668 		break;
9669 	case BPF_JSET:
9670 		if (is_jmp32) {
9671 			false_32off = tnum_and(false_32off, tnum_const(~val32));
9672 			if (is_power_of_2(val32))
9673 				true_32off = tnum_or(true_32off,
9674 						     tnum_const(val32));
9675 		} else {
9676 			false_64off = tnum_and(false_64off, tnum_const(~val));
9677 			if (is_power_of_2(val))
9678 				true_64off = tnum_or(true_64off,
9679 						     tnum_const(val));
9680 		}
9681 		break;
9682 	case BPF_JGE:
9683 	case BPF_JGT:
9684 	{
9685 		if (is_jmp32) {
9686 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
9687 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9688 
9689 			false_reg->u32_max_value = min(false_reg->u32_max_value,
9690 						       false_umax);
9691 			true_reg->u32_min_value = max(true_reg->u32_min_value,
9692 						      true_umin);
9693 		} else {
9694 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
9695 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9696 
9697 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
9698 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
9699 		}
9700 		break;
9701 	}
9702 	case BPF_JSGE:
9703 	case BPF_JSGT:
9704 	{
9705 		if (is_jmp32) {
9706 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
9707 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
9708 
9709 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9710 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9711 		} else {
9712 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
9713 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9714 
9715 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
9716 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
9717 		}
9718 		break;
9719 	}
9720 	case BPF_JLE:
9721 	case BPF_JLT:
9722 	{
9723 		if (is_jmp32) {
9724 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
9725 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9726 
9727 			false_reg->u32_min_value = max(false_reg->u32_min_value,
9728 						       false_umin);
9729 			true_reg->u32_max_value = min(true_reg->u32_max_value,
9730 						      true_umax);
9731 		} else {
9732 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
9733 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9734 
9735 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
9736 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
9737 		}
9738 		break;
9739 	}
9740 	case BPF_JSLE:
9741 	case BPF_JSLT:
9742 	{
9743 		if (is_jmp32) {
9744 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
9745 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
9746 
9747 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9748 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9749 		} else {
9750 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
9751 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9752 
9753 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
9754 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
9755 		}
9756 		break;
9757 	}
9758 	default:
9759 		return;
9760 	}
9761 
9762 	if (is_jmp32) {
9763 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9764 					     tnum_subreg(false_32off));
9765 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9766 					    tnum_subreg(true_32off));
9767 		__reg_combine_32_into_64(false_reg);
9768 		__reg_combine_32_into_64(true_reg);
9769 	} else {
9770 		false_reg->var_off = false_64off;
9771 		true_reg->var_off = true_64off;
9772 		__reg_combine_64_into_32(false_reg);
9773 		__reg_combine_64_into_32(true_reg);
9774 	}
9775 }
9776 
9777 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9778  * the variable reg.
9779  */
9780 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9781 				struct bpf_reg_state *false_reg,
9782 				u64 val, u32 val32,
9783 				u8 opcode, bool is_jmp32)
9784 {
9785 	opcode = flip_opcode(opcode);
9786 	/* This uses zero as "not present in table"; luckily the zero opcode,
9787 	 * BPF_JA, can't get here.
9788 	 */
9789 	if (opcode)
9790 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9791 }
9792 
9793 /* Regs are known to be equal, so intersect their min/max/var_off */
9794 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9795 				  struct bpf_reg_state *dst_reg)
9796 {
9797 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9798 							dst_reg->umin_value);
9799 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9800 							dst_reg->umax_value);
9801 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9802 							dst_reg->smin_value);
9803 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9804 							dst_reg->smax_value);
9805 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9806 							     dst_reg->var_off);
9807 	reg_bounds_sync(src_reg);
9808 	reg_bounds_sync(dst_reg);
9809 }
9810 
9811 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9812 				struct bpf_reg_state *true_dst,
9813 				struct bpf_reg_state *false_src,
9814 				struct bpf_reg_state *false_dst,
9815 				u8 opcode)
9816 {
9817 	switch (opcode) {
9818 	case BPF_JEQ:
9819 		__reg_combine_min_max(true_src, true_dst);
9820 		break;
9821 	case BPF_JNE:
9822 		__reg_combine_min_max(false_src, false_dst);
9823 		break;
9824 	}
9825 }
9826 
9827 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9828 				 struct bpf_reg_state *reg, u32 id,
9829 				 bool is_null)
9830 {
9831 	if (type_may_be_null(reg->type) && reg->id == id &&
9832 	    !WARN_ON_ONCE(!reg->id)) {
9833 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9834 				 !tnum_equals_const(reg->var_off, 0) ||
9835 				 reg->off)) {
9836 			/* Old offset (both fixed and variable parts) should
9837 			 * have been known-zero, because we don't allow pointer
9838 			 * arithmetic on pointers that might be NULL. If we
9839 			 * see this happening, don't convert the register.
9840 			 */
9841 			return;
9842 		}
9843 		if (is_null) {
9844 			reg->type = SCALAR_VALUE;
9845 			/* We don't need id and ref_obj_id from this point
9846 			 * onwards anymore, thus we should better reset it,
9847 			 * so that state pruning has chances to take effect.
9848 			 */
9849 			reg->id = 0;
9850 			reg->ref_obj_id = 0;
9851 
9852 			return;
9853 		}
9854 
9855 		mark_ptr_not_null_reg(reg);
9856 
9857 		if (!reg_may_point_to_spin_lock(reg)) {
9858 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9859 			 * in release_reg_references().
9860 			 *
9861 			 * reg->id is still used by spin_lock ptr. Other
9862 			 * than spin_lock ptr type, reg->id can be reset.
9863 			 */
9864 			reg->id = 0;
9865 		}
9866 	}
9867 }
9868 
9869 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9870 				    bool is_null)
9871 {
9872 	struct bpf_reg_state *reg;
9873 	int i;
9874 
9875 	for (i = 0; i < MAX_BPF_REG; i++)
9876 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9877 
9878 	bpf_for_each_spilled_reg(i, state, reg) {
9879 		if (!reg)
9880 			continue;
9881 		mark_ptr_or_null_reg(state, reg, id, is_null);
9882 	}
9883 }
9884 
9885 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9886  * be folded together at some point.
9887  */
9888 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9889 				  bool is_null)
9890 {
9891 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9892 	struct bpf_reg_state *regs = state->regs;
9893 	u32 ref_obj_id = regs[regno].ref_obj_id;
9894 	u32 id = regs[regno].id;
9895 	int i;
9896 
9897 	if (ref_obj_id && ref_obj_id == id && is_null)
9898 		/* regs[regno] is in the " == NULL" branch.
9899 		 * No one could have freed the reference state before
9900 		 * doing the NULL check.
9901 		 */
9902 		WARN_ON_ONCE(release_reference_state(state, id));
9903 
9904 	for (i = 0; i <= vstate->curframe; i++)
9905 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9906 }
9907 
9908 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9909 				   struct bpf_reg_state *dst_reg,
9910 				   struct bpf_reg_state *src_reg,
9911 				   struct bpf_verifier_state *this_branch,
9912 				   struct bpf_verifier_state *other_branch)
9913 {
9914 	if (BPF_SRC(insn->code) != BPF_X)
9915 		return false;
9916 
9917 	/* Pointers are always 64-bit. */
9918 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9919 		return false;
9920 
9921 	switch (BPF_OP(insn->code)) {
9922 	case BPF_JGT:
9923 		if ((dst_reg->type == PTR_TO_PACKET &&
9924 		     src_reg->type == PTR_TO_PACKET_END) ||
9925 		    (dst_reg->type == PTR_TO_PACKET_META &&
9926 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9927 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9928 			find_good_pkt_pointers(this_branch, dst_reg,
9929 					       dst_reg->type, false);
9930 			mark_pkt_end(other_branch, insn->dst_reg, true);
9931 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9932 			    src_reg->type == PTR_TO_PACKET) ||
9933 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9934 			    src_reg->type == PTR_TO_PACKET_META)) {
9935 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9936 			find_good_pkt_pointers(other_branch, src_reg,
9937 					       src_reg->type, true);
9938 			mark_pkt_end(this_branch, insn->src_reg, false);
9939 		} else {
9940 			return false;
9941 		}
9942 		break;
9943 	case BPF_JLT:
9944 		if ((dst_reg->type == PTR_TO_PACKET &&
9945 		     src_reg->type == PTR_TO_PACKET_END) ||
9946 		    (dst_reg->type == PTR_TO_PACKET_META &&
9947 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9948 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9949 			find_good_pkt_pointers(other_branch, dst_reg,
9950 					       dst_reg->type, true);
9951 			mark_pkt_end(this_branch, insn->dst_reg, false);
9952 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9953 			    src_reg->type == PTR_TO_PACKET) ||
9954 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9955 			    src_reg->type == PTR_TO_PACKET_META)) {
9956 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9957 			find_good_pkt_pointers(this_branch, src_reg,
9958 					       src_reg->type, false);
9959 			mark_pkt_end(other_branch, insn->src_reg, true);
9960 		} else {
9961 			return false;
9962 		}
9963 		break;
9964 	case BPF_JGE:
9965 		if ((dst_reg->type == PTR_TO_PACKET &&
9966 		     src_reg->type == PTR_TO_PACKET_END) ||
9967 		    (dst_reg->type == PTR_TO_PACKET_META &&
9968 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9969 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9970 			find_good_pkt_pointers(this_branch, dst_reg,
9971 					       dst_reg->type, true);
9972 			mark_pkt_end(other_branch, insn->dst_reg, false);
9973 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9974 			    src_reg->type == PTR_TO_PACKET) ||
9975 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9976 			    src_reg->type == PTR_TO_PACKET_META)) {
9977 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9978 			find_good_pkt_pointers(other_branch, src_reg,
9979 					       src_reg->type, false);
9980 			mark_pkt_end(this_branch, insn->src_reg, true);
9981 		} else {
9982 			return false;
9983 		}
9984 		break;
9985 	case BPF_JLE:
9986 		if ((dst_reg->type == PTR_TO_PACKET &&
9987 		     src_reg->type == PTR_TO_PACKET_END) ||
9988 		    (dst_reg->type == PTR_TO_PACKET_META &&
9989 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9990 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9991 			find_good_pkt_pointers(other_branch, dst_reg,
9992 					       dst_reg->type, false);
9993 			mark_pkt_end(this_branch, insn->dst_reg, true);
9994 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9995 			    src_reg->type == PTR_TO_PACKET) ||
9996 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9997 			    src_reg->type == PTR_TO_PACKET_META)) {
9998 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9999 			find_good_pkt_pointers(this_branch, src_reg,
10000 					       src_reg->type, true);
10001 			mark_pkt_end(other_branch, insn->src_reg, false);
10002 		} else {
10003 			return false;
10004 		}
10005 		break;
10006 	default:
10007 		return false;
10008 	}
10009 
10010 	return true;
10011 }
10012 
10013 static void find_equal_scalars(struct bpf_verifier_state *vstate,
10014 			       struct bpf_reg_state *known_reg)
10015 {
10016 	struct bpf_func_state *state;
10017 	struct bpf_reg_state *reg;
10018 	int i, j;
10019 
10020 	for (i = 0; i <= vstate->curframe; i++) {
10021 		state = vstate->frame[i];
10022 		for (j = 0; j < MAX_BPF_REG; j++) {
10023 			reg = &state->regs[j];
10024 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10025 				*reg = *known_reg;
10026 		}
10027 
10028 		bpf_for_each_spilled_reg(j, state, reg) {
10029 			if (!reg)
10030 				continue;
10031 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10032 				*reg = *known_reg;
10033 		}
10034 	}
10035 }
10036 
10037 static int check_cond_jmp_op(struct bpf_verifier_env *env,
10038 			     struct bpf_insn *insn, int *insn_idx)
10039 {
10040 	struct bpf_verifier_state *this_branch = env->cur_state;
10041 	struct bpf_verifier_state *other_branch;
10042 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
10043 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
10044 	u8 opcode = BPF_OP(insn->code);
10045 	bool is_jmp32;
10046 	int pred = -1;
10047 	int err;
10048 
10049 	/* Only conditional jumps are expected to reach here. */
10050 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
10051 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
10052 		return -EINVAL;
10053 	}
10054 
10055 	if (BPF_SRC(insn->code) == BPF_X) {
10056 		if (insn->imm != 0) {
10057 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10058 			return -EINVAL;
10059 		}
10060 
10061 		/* check src1 operand */
10062 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10063 		if (err)
10064 			return err;
10065 
10066 		if (is_pointer_value(env, insn->src_reg)) {
10067 			verbose(env, "R%d pointer comparison prohibited\n",
10068 				insn->src_reg);
10069 			return -EACCES;
10070 		}
10071 		src_reg = &regs[insn->src_reg];
10072 	} else {
10073 		if (insn->src_reg != BPF_REG_0) {
10074 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10075 			return -EINVAL;
10076 		}
10077 	}
10078 
10079 	/* check src2 operand */
10080 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10081 	if (err)
10082 		return err;
10083 
10084 	dst_reg = &regs[insn->dst_reg];
10085 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
10086 
10087 	if (BPF_SRC(insn->code) == BPF_K) {
10088 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10089 	} else if (src_reg->type == SCALAR_VALUE &&
10090 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10091 		pred = is_branch_taken(dst_reg,
10092 				       tnum_subreg(src_reg->var_off).value,
10093 				       opcode,
10094 				       is_jmp32);
10095 	} else if (src_reg->type == SCALAR_VALUE &&
10096 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10097 		pred = is_branch_taken(dst_reg,
10098 				       src_reg->var_off.value,
10099 				       opcode,
10100 				       is_jmp32);
10101 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
10102 		   reg_is_pkt_pointer_any(src_reg) &&
10103 		   !is_jmp32) {
10104 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
10105 	}
10106 
10107 	if (pred >= 0) {
10108 		/* If we get here with a dst_reg pointer type it is because
10109 		 * above is_branch_taken() special cased the 0 comparison.
10110 		 */
10111 		if (!__is_pointer_value(false, dst_reg))
10112 			err = mark_chain_precision(env, insn->dst_reg);
10113 		if (BPF_SRC(insn->code) == BPF_X && !err &&
10114 		    !__is_pointer_value(false, src_reg))
10115 			err = mark_chain_precision(env, insn->src_reg);
10116 		if (err)
10117 			return err;
10118 	}
10119 
10120 	if (pred == 1) {
10121 		/* Only follow the goto, ignore fall-through. If needed, push
10122 		 * the fall-through branch for simulation under speculative
10123 		 * execution.
10124 		 */
10125 		if (!env->bypass_spec_v1 &&
10126 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
10127 					       *insn_idx))
10128 			return -EFAULT;
10129 		*insn_idx += insn->off;
10130 		return 0;
10131 	} else if (pred == 0) {
10132 		/* Only follow the fall-through branch, since that's where the
10133 		 * program will go. If needed, push the goto branch for
10134 		 * simulation under speculative execution.
10135 		 */
10136 		if (!env->bypass_spec_v1 &&
10137 		    !sanitize_speculative_path(env, insn,
10138 					       *insn_idx + insn->off + 1,
10139 					       *insn_idx))
10140 			return -EFAULT;
10141 		return 0;
10142 	}
10143 
10144 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10145 				  false);
10146 	if (!other_branch)
10147 		return -EFAULT;
10148 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
10149 
10150 	/* detect if we are comparing against a constant value so we can adjust
10151 	 * our min/max values for our dst register.
10152 	 * this is only legit if both are scalars (or pointers to the same
10153 	 * object, I suppose, but we don't support that right now), because
10154 	 * otherwise the different base pointers mean the offsets aren't
10155 	 * comparable.
10156 	 */
10157 	if (BPF_SRC(insn->code) == BPF_X) {
10158 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
10159 
10160 		if (dst_reg->type == SCALAR_VALUE &&
10161 		    src_reg->type == SCALAR_VALUE) {
10162 			if (tnum_is_const(src_reg->var_off) ||
10163 			    (is_jmp32 &&
10164 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
10165 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
10166 						dst_reg,
10167 						src_reg->var_off.value,
10168 						tnum_subreg(src_reg->var_off).value,
10169 						opcode, is_jmp32);
10170 			else if (tnum_is_const(dst_reg->var_off) ||
10171 				 (is_jmp32 &&
10172 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
10173 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
10174 						    src_reg,
10175 						    dst_reg->var_off.value,
10176 						    tnum_subreg(dst_reg->var_off).value,
10177 						    opcode, is_jmp32);
10178 			else if (!is_jmp32 &&
10179 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
10180 				/* Comparing for equality, we can combine knowledge */
10181 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
10182 						    &other_branch_regs[insn->dst_reg],
10183 						    src_reg, dst_reg, opcode);
10184 			if (src_reg->id &&
10185 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
10186 				find_equal_scalars(this_branch, src_reg);
10187 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10188 			}
10189 
10190 		}
10191 	} else if (dst_reg->type == SCALAR_VALUE) {
10192 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
10193 					dst_reg, insn->imm, (u32)insn->imm,
10194 					opcode, is_jmp32);
10195 	}
10196 
10197 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10198 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
10199 		find_equal_scalars(this_branch, dst_reg);
10200 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10201 	}
10202 
10203 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10204 	 * NOTE: these optimizations below are related with pointer comparison
10205 	 *       which will never be JMP32.
10206 	 */
10207 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
10208 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
10209 	    type_may_be_null(dst_reg->type)) {
10210 		/* Mark all identical registers in each branch as either
10211 		 * safe or unknown depending R == 0 or R != 0 conditional.
10212 		 */
10213 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10214 				      opcode == BPF_JNE);
10215 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10216 				      opcode == BPF_JEQ);
10217 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
10218 					   this_branch, other_branch) &&
10219 		   is_pointer_value(env, insn->dst_reg)) {
10220 		verbose(env, "R%d pointer comparison prohibited\n",
10221 			insn->dst_reg);
10222 		return -EACCES;
10223 	}
10224 	if (env->log.level & BPF_LOG_LEVEL)
10225 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
10226 	return 0;
10227 }
10228 
10229 /* verify BPF_LD_IMM64 instruction */
10230 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
10231 {
10232 	struct bpf_insn_aux_data *aux = cur_aux(env);
10233 	struct bpf_reg_state *regs = cur_regs(env);
10234 	struct bpf_reg_state *dst_reg;
10235 	struct bpf_map *map;
10236 	int err;
10237 
10238 	if (BPF_SIZE(insn->code) != BPF_DW) {
10239 		verbose(env, "invalid BPF_LD_IMM insn\n");
10240 		return -EINVAL;
10241 	}
10242 	if (insn->off != 0) {
10243 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
10244 		return -EINVAL;
10245 	}
10246 
10247 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
10248 	if (err)
10249 		return err;
10250 
10251 	dst_reg = &regs[insn->dst_reg];
10252 	if (insn->src_reg == 0) {
10253 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10254 
10255 		dst_reg->type = SCALAR_VALUE;
10256 		__mark_reg_known(&regs[insn->dst_reg], imm);
10257 		return 0;
10258 	}
10259 
10260 	/* All special src_reg cases are listed below. From this point onwards
10261 	 * we either succeed and assign a corresponding dst_reg->type after
10262 	 * zeroing the offset, or fail and reject the program.
10263 	 */
10264 	mark_reg_known_zero(env, regs, insn->dst_reg);
10265 
10266 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
10267 		dst_reg->type = aux->btf_var.reg_type;
10268 		switch (base_type(dst_reg->type)) {
10269 		case PTR_TO_MEM:
10270 			dst_reg->mem_size = aux->btf_var.mem_size;
10271 			break;
10272 		case PTR_TO_BTF_ID:
10273 			dst_reg->btf = aux->btf_var.btf;
10274 			dst_reg->btf_id = aux->btf_var.btf_id;
10275 			break;
10276 		default:
10277 			verbose(env, "bpf verifier is misconfigured\n");
10278 			return -EFAULT;
10279 		}
10280 		return 0;
10281 	}
10282 
10283 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
10284 		struct bpf_prog_aux *aux = env->prog->aux;
10285 		u32 subprogno = find_subprog(env,
10286 					     env->insn_idx + insn->imm + 1);
10287 
10288 		if (!aux->func_info) {
10289 			verbose(env, "missing btf func_info\n");
10290 			return -EINVAL;
10291 		}
10292 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10293 			verbose(env, "callback function not static\n");
10294 			return -EINVAL;
10295 		}
10296 
10297 		dst_reg->type = PTR_TO_FUNC;
10298 		dst_reg->subprogno = subprogno;
10299 		return 0;
10300 	}
10301 
10302 	map = env->used_maps[aux->map_index];
10303 	dst_reg->map_ptr = map;
10304 
10305 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10306 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
10307 		dst_reg->type = PTR_TO_MAP_VALUE;
10308 		dst_reg->off = aux->map_off;
10309 		if (map_value_has_spin_lock(map))
10310 			dst_reg->id = ++env->id_gen;
10311 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10312 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10313 		dst_reg->type = CONST_PTR_TO_MAP;
10314 	} else {
10315 		verbose(env, "bpf verifier is misconfigured\n");
10316 		return -EINVAL;
10317 	}
10318 
10319 	return 0;
10320 }
10321 
10322 static bool may_access_skb(enum bpf_prog_type type)
10323 {
10324 	switch (type) {
10325 	case BPF_PROG_TYPE_SOCKET_FILTER:
10326 	case BPF_PROG_TYPE_SCHED_CLS:
10327 	case BPF_PROG_TYPE_SCHED_ACT:
10328 		return true;
10329 	default:
10330 		return false;
10331 	}
10332 }
10333 
10334 /* verify safety of LD_ABS|LD_IND instructions:
10335  * - they can only appear in the programs where ctx == skb
10336  * - since they are wrappers of function calls, they scratch R1-R5 registers,
10337  *   preserve R6-R9, and store return value into R0
10338  *
10339  * Implicit input:
10340  *   ctx == skb == R6 == CTX
10341  *
10342  * Explicit input:
10343  *   SRC == any register
10344  *   IMM == 32-bit immediate
10345  *
10346  * Output:
10347  *   R0 - 8/16/32-bit skb data converted to cpu endianness
10348  */
10349 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10350 {
10351 	struct bpf_reg_state *regs = cur_regs(env);
10352 	static const int ctx_reg = BPF_REG_6;
10353 	u8 mode = BPF_MODE(insn->code);
10354 	int i, err;
10355 
10356 	if (!may_access_skb(resolve_prog_type(env->prog))) {
10357 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10358 		return -EINVAL;
10359 	}
10360 
10361 	if (!env->ops->gen_ld_abs) {
10362 		verbose(env, "bpf verifier is misconfigured\n");
10363 		return -EINVAL;
10364 	}
10365 
10366 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10367 	    BPF_SIZE(insn->code) == BPF_DW ||
10368 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10369 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10370 		return -EINVAL;
10371 	}
10372 
10373 	/* check whether implicit source operand (register R6) is readable */
10374 	err = check_reg_arg(env, ctx_reg, SRC_OP);
10375 	if (err)
10376 		return err;
10377 
10378 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10379 	 * gen_ld_abs() may terminate the program at runtime, leading to
10380 	 * reference leak.
10381 	 */
10382 	err = check_reference_leak(env);
10383 	if (err) {
10384 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10385 		return err;
10386 	}
10387 
10388 	if (env->cur_state->active_spin_lock) {
10389 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10390 		return -EINVAL;
10391 	}
10392 
10393 	if (regs[ctx_reg].type != PTR_TO_CTX) {
10394 		verbose(env,
10395 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10396 		return -EINVAL;
10397 	}
10398 
10399 	if (mode == BPF_IND) {
10400 		/* check explicit source operand */
10401 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10402 		if (err)
10403 			return err;
10404 	}
10405 
10406 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
10407 	if (err < 0)
10408 		return err;
10409 
10410 	/* reset caller saved regs to unreadable */
10411 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10412 		mark_reg_not_init(env, regs, caller_saved[i]);
10413 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10414 	}
10415 
10416 	/* mark destination R0 register as readable, since it contains
10417 	 * the value fetched from the packet.
10418 	 * Already marked as written above.
10419 	 */
10420 	mark_reg_unknown(env, regs, BPF_REG_0);
10421 	/* ld_abs load up to 32-bit skb data. */
10422 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10423 	return 0;
10424 }
10425 
10426 static int check_return_code(struct bpf_verifier_env *env)
10427 {
10428 	struct tnum enforce_attach_type_range = tnum_unknown;
10429 	const struct bpf_prog *prog = env->prog;
10430 	struct bpf_reg_state *reg;
10431 	struct tnum range = tnum_range(0, 1);
10432 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10433 	int err;
10434 	struct bpf_func_state *frame = env->cur_state->frame[0];
10435 	const bool is_subprog = frame->subprogno;
10436 
10437 	/* LSM and struct_ops func-ptr's return type could be "void" */
10438 	if (!is_subprog) {
10439 		switch (prog_type) {
10440 		case BPF_PROG_TYPE_LSM:
10441 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
10442 				/* See below, can be 0 or 0-1 depending on hook. */
10443 				break;
10444 			fallthrough;
10445 		case BPF_PROG_TYPE_STRUCT_OPS:
10446 			if (!prog->aux->attach_func_proto->type)
10447 				return 0;
10448 			break;
10449 		default:
10450 			break;
10451 		}
10452 	}
10453 
10454 	/* eBPF calling convention is such that R0 is used
10455 	 * to return the value from eBPF program.
10456 	 * Make sure that it's readable at this time
10457 	 * of bpf_exit, which means that program wrote
10458 	 * something into it earlier
10459 	 */
10460 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10461 	if (err)
10462 		return err;
10463 
10464 	if (is_pointer_value(env, BPF_REG_0)) {
10465 		verbose(env, "R0 leaks addr as return value\n");
10466 		return -EACCES;
10467 	}
10468 
10469 	reg = cur_regs(env) + BPF_REG_0;
10470 
10471 	if (frame->in_async_callback_fn) {
10472 		/* enforce return zero from async callbacks like timer */
10473 		if (reg->type != SCALAR_VALUE) {
10474 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10475 				reg_type_str(env, reg->type));
10476 			return -EINVAL;
10477 		}
10478 
10479 		if (!tnum_in(tnum_const(0), reg->var_off)) {
10480 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10481 			return -EINVAL;
10482 		}
10483 		return 0;
10484 	}
10485 
10486 	if (is_subprog) {
10487 		if (reg->type != SCALAR_VALUE) {
10488 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10489 				reg_type_str(env, reg->type));
10490 			return -EINVAL;
10491 		}
10492 		return 0;
10493 	}
10494 
10495 	switch (prog_type) {
10496 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10497 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10498 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10499 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10500 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10501 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10502 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10503 			range = tnum_range(1, 1);
10504 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10505 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10506 			range = tnum_range(0, 3);
10507 		break;
10508 	case BPF_PROG_TYPE_CGROUP_SKB:
10509 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10510 			range = tnum_range(0, 3);
10511 			enforce_attach_type_range = tnum_range(2, 3);
10512 		}
10513 		break;
10514 	case BPF_PROG_TYPE_CGROUP_SOCK:
10515 	case BPF_PROG_TYPE_SOCK_OPS:
10516 	case BPF_PROG_TYPE_CGROUP_DEVICE:
10517 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
10518 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10519 		break;
10520 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10521 		if (!env->prog->aux->attach_btf_id)
10522 			return 0;
10523 		range = tnum_const(0);
10524 		break;
10525 	case BPF_PROG_TYPE_TRACING:
10526 		switch (env->prog->expected_attach_type) {
10527 		case BPF_TRACE_FENTRY:
10528 		case BPF_TRACE_FEXIT:
10529 			range = tnum_const(0);
10530 			break;
10531 		case BPF_TRACE_RAW_TP:
10532 		case BPF_MODIFY_RETURN:
10533 			return 0;
10534 		case BPF_TRACE_ITER:
10535 			break;
10536 		default:
10537 			return -ENOTSUPP;
10538 		}
10539 		break;
10540 	case BPF_PROG_TYPE_SK_LOOKUP:
10541 		range = tnum_range(SK_DROP, SK_PASS);
10542 		break;
10543 
10544 	case BPF_PROG_TYPE_LSM:
10545 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10546 			/* Regular BPF_PROG_TYPE_LSM programs can return
10547 			 * any value.
10548 			 */
10549 			return 0;
10550 		}
10551 		if (!env->prog->aux->attach_func_proto->type) {
10552 			/* Make sure programs that attach to void
10553 			 * hooks don't try to modify return value.
10554 			 */
10555 			range = tnum_range(1, 1);
10556 		}
10557 		break;
10558 
10559 	case BPF_PROG_TYPE_EXT:
10560 		/* freplace program can return anything as its return value
10561 		 * depends on the to-be-replaced kernel func or bpf program.
10562 		 */
10563 	default:
10564 		return 0;
10565 	}
10566 
10567 	if (reg->type != SCALAR_VALUE) {
10568 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10569 			reg_type_str(env, reg->type));
10570 		return -EINVAL;
10571 	}
10572 
10573 	if (!tnum_in(range, reg->var_off)) {
10574 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10575 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
10576 		    prog_type == BPF_PROG_TYPE_LSM &&
10577 		    !prog->aux->attach_func_proto->type)
10578 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10579 		return -EINVAL;
10580 	}
10581 
10582 	if (!tnum_is_unknown(enforce_attach_type_range) &&
10583 	    tnum_in(enforce_attach_type_range, reg->var_off))
10584 		env->prog->enforce_expected_attach_type = 1;
10585 	return 0;
10586 }
10587 
10588 /* non-recursive DFS pseudo code
10589  * 1  procedure DFS-iterative(G,v):
10590  * 2      label v as discovered
10591  * 3      let S be a stack
10592  * 4      S.push(v)
10593  * 5      while S is not empty
10594  * 6            t <- S.pop()
10595  * 7            if t is what we're looking for:
10596  * 8                return t
10597  * 9            for all edges e in G.adjacentEdges(t) do
10598  * 10               if edge e is already labelled
10599  * 11                   continue with the next edge
10600  * 12               w <- G.adjacentVertex(t,e)
10601  * 13               if vertex w is not discovered and not explored
10602  * 14                   label e as tree-edge
10603  * 15                   label w as discovered
10604  * 16                   S.push(w)
10605  * 17                   continue at 5
10606  * 18               else if vertex w is discovered
10607  * 19                   label e as back-edge
10608  * 20               else
10609  * 21                   // vertex w is explored
10610  * 22                   label e as forward- or cross-edge
10611  * 23           label t as explored
10612  * 24           S.pop()
10613  *
10614  * convention:
10615  * 0x10 - discovered
10616  * 0x11 - discovered and fall-through edge labelled
10617  * 0x12 - discovered and fall-through and branch edges labelled
10618  * 0x20 - explored
10619  */
10620 
10621 enum {
10622 	DISCOVERED = 0x10,
10623 	EXPLORED = 0x20,
10624 	FALLTHROUGH = 1,
10625 	BRANCH = 2,
10626 };
10627 
10628 static u32 state_htab_size(struct bpf_verifier_env *env)
10629 {
10630 	return env->prog->len;
10631 }
10632 
10633 static struct bpf_verifier_state_list **explored_state(
10634 					struct bpf_verifier_env *env,
10635 					int idx)
10636 {
10637 	struct bpf_verifier_state *cur = env->cur_state;
10638 	struct bpf_func_state *state = cur->frame[cur->curframe];
10639 
10640 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
10641 }
10642 
10643 static void init_explored_state(struct bpf_verifier_env *env, int idx)
10644 {
10645 	env->insn_aux_data[idx].prune_point = true;
10646 }
10647 
10648 enum {
10649 	DONE_EXPLORING = 0,
10650 	KEEP_EXPLORING = 1,
10651 };
10652 
10653 /* t, w, e - match pseudo-code above:
10654  * t - index of current instruction
10655  * w - next instruction
10656  * e - edge
10657  */
10658 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10659 		     bool loop_ok)
10660 {
10661 	int *insn_stack = env->cfg.insn_stack;
10662 	int *insn_state = env->cfg.insn_state;
10663 
10664 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
10665 		return DONE_EXPLORING;
10666 
10667 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
10668 		return DONE_EXPLORING;
10669 
10670 	if (w < 0 || w >= env->prog->len) {
10671 		verbose_linfo(env, t, "%d: ", t);
10672 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
10673 		return -EINVAL;
10674 	}
10675 
10676 	if (e == BRANCH)
10677 		/* mark branch target for state pruning */
10678 		init_explored_state(env, w);
10679 
10680 	if (insn_state[w] == 0) {
10681 		/* tree-edge */
10682 		insn_state[t] = DISCOVERED | e;
10683 		insn_state[w] = DISCOVERED;
10684 		if (env->cfg.cur_stack >= env->prog->len)
10685 			return -E2BIG;
10686 		insn_stack[env->cfg.cur_stack++] = w;
10687 		return KEEP_EXPLORING;
10688 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
10689 		if (loop_ok && env->bpf_capable)
10690 			return DONE_EXPLORING;
10691 		verbose_linfo(env, t, "%d: ", t);
10692 		verbose_linfo(env, w, "%d: ", w);
10693 		verbose(env, "back-edge from insn %d to %d\n", t, w);
10694 		return -EINVAL;
10695 	} else if (insn_state[w] == EXPLORED) {
10696 		/* forward- or cross-edge */
10697 		insn_state[t] = DISCOVERED | e;
10698 	} else {
10699 		verbose(env, "insn state internal bug\n");
10700 		return -EFAULT;
10701 	}
10702 	return DONE_EXPLORING;
10703 }
10704 
10705 static int visit_func_call_insn(int t, int insn_cnt,
10706 				struct bpf_insn *insns,
10707 				struct bpf_verifier_env *env,
10708 				bool visit_callee)
10709 {
10710 	int ret;
10711 
10712 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10713 	if (ret)
10714 		return ret;
10715 
10716 	if (t + 1 < insn_cnt)
10717 		init_explored_state(env, t + 1);
10718 	if (visit_callee) {
10719 		init_explored_state(env, t);
10720 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10721 				/* It's ok to allow recursion from CFG point of
10722 				 * view. __check_func_call() will do the actual
10723 				 * check.
10724 				 */
10725 				bpf_pseudo_func(insns + t));
10726 	}
10727 	return ret;
10728 }
10729 
10730 /* Visits the instruction at index t and returns one of the following:
10731  *  < 0 - an error occurred
10732  *  DONE_EXPLORING - the instruction was fully explored
10733  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
10734  */
10735 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10736 {
10737 	struct bpf_insn *insns = env->prog->insnsi;
10738 	int ret;
10739 
10740 	if (bpf_pseudo_func(insns + t))
10741 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
10742 
10743 	/* All non-branch instructions have a single fall-through edge. */
10744 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10745 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
10746 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
10747 
10748 	switch (BPF_OP(insns[t].code)) {
10749 	case BPF_EXIT:
10750 		return DONE_EXPLORING;
10751 
10752 	case BPF_CALL:
10753 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
10754 			/* Mark this call insn to trigger is_state_visited() check
10755 			 * before call itself is processed by __check_func_call().
10756 			 * Otherwise new async state will be pushed for further
10757 			 * exploration.
10758 			 */
10759 			init_explored_state(env, t);
10760 		return visit_func_call_insn(t, insn_cnt, insns, env,
10761 					    insns[t].src_reg == BPF_PSEUDO_CALL);
10762 
10763 	case BPF_JA:
10764 		if (BPF_SRC(insns[t].code) != BPF_K)
10765 			return -EINVAL;
10766 
10767 		/* unconditional jump with single edge */
10768 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10769 				true);
10770 		if (ret)
10771 			return ret;
10772 
10773 		/* unconditional jmp is not a good pruning point,
10774 		 * but it's marked, since backtracking needs
10775 		 * to record jmp history in is_state_visited().
10776 		 */
10777 		init_explored_state(env, t + insns[t].off + 1);
10778 		/* tell verifier to check for equivalent states
10779 		 * after every call and jump
10780 		 */
10781 		if (t + 1 < insn_cnt)
10782 			init_explored_state(env, t + 1);
10783 
10784 		return ret;
10785 
10786 	default:
10787 		/* conditional jump with two edges */
10788 		init_explored_state(env, t);
10789 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10790 		if (ret)
10791 			return ret;
10792 
10793 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10794 	}
10795 }
10796 
10797 /* non-recursive depth-first-search to detect loops in BPF program
10798  * loop == back-edge in directed graph
10799  */
10800 static int check_cfg(struct bpf_verifier_env *env)
10801 {
10802 	int insn_cnt = env->prog->len;
10803 	int *insn_stack, *insn_state;
10804 	int ret = 0;
10805 	int i;
10806 
10807 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10808 	if (!insn_state)
10809 		return -ENOMEM;
10810 
10811 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10812 	if (!insn_stack) {
10813 		kvfree(insn_state);
10814 		return -ENOMEM;
10815 	}
10816 
10817 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10818 	insn_stack[0] = 0; /* 0 is the first instruction */
10819 	env->cfg.cur_stack = 1;
10820 
10821 	while (env->cfg.cur_stack > 0) {
10822 		int t = insn_stack[env->cfg.cur_stack - 1];
10823 
10824 		ret = visit_insn(t, insn_cnt, env);
10825 		switch (ret) {
10826 		case DONE_EXPLORING:
10827 			insn_state[t] = EXPLORED;
10828 			env->cfg.cur_stack--;
10829 			break;
10830 		case KEEP_EXPLORING:
10831 			break;
10832 		default:
10833 			if (ret > 0) {
10834 				verbose(env, "visit_insn internal bug\n");
10835 				ret = -EFAULT;
10836 			}
10837 			goto err_free;
10838 		}
10839 	}
10840 
10841 	if (env->cfg.cur_stack < 0) {
10842 		verbose(env, "pop stack internal bug\n");
10843 		ret = -EFAULT;
10844 		goto err_free;
10845 	}
10846 
10847 	for (i = 0; i < insn_cnt; i++) {
10848 		if (insn_state[i] != EXPLORED) {
10849 			verbose(env, "unreachable insn %d\n", i);
10850 			ret = -EINVAL;
10851 			goto err_free;
10852 		}
10853 	}
10854 	ret = 0; /* cfg looks good */
10855 
10856 err_free:
10857 	kvfree(insn_state);
10858 	kvfree(insn_stack);
10859 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
10860 	return ret;
10861 }
10862 
10863 static int check_abnormal_return(struct bpf_verifier_env *env)
10864 {
10865 	int i;
10866 
10867 	for (i = 1; i < env->subprog_cnt; i++) {
10868 		if (env->subprog_info[i].has_ld_abs) {
10869 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10870 			return -EINVAL;
10871 		}
10872 		if (env->subprog_info[i].has_tail_call) {
10873 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10874 			return -EINVAL;
10875 		}
10876 	}
10877 	return 0;
10878 }
10879 
10880 /* The minimum supported BTF func info size */
10881 #define MIN_BPF_FUNCINFO_SIZE	8
10882 #define MAX_FUNCINFO_REC_SIZE	252
10883 
10884 static int check_btf_func(struct bpf_verifier_env *env,
10885 			  const union bpf_attr *attr,
10886 			  bpfptr_t uattr)
10887 {
10888 	const struct btf_type *type, *func_proto, *ret_type;
10889 	u32 i, nfuncs, urec_size, min_size;
10890 	u32 krec_size = sizeof(struct bpf_func_info);
10891 	struct bpf_func_info *krecord;
10892 	struct bpf_func_info_aux *info_aux = NULL;
10893 	struct bpf_prog *prog;
10894 	const struct btf *btf;
10895 	bpfptr_t urecord;
10896 	u32 prev_offset = 0;
10897 	bool scalar_return;
10898 	int ret = -ENOMEM;
10899 
10900 	nfuncs = attr->func_info_cnt;
10901 	if (!nfuncs) {
10902 		if (check_abnormal_return(env))
10903 			return -EINVAL;
10904 		return 0;
10905 	}
10906 
10907 	if (nfuncs != env->subprog_cnt) {
10908 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10909 		return -EINVAL;
10910 	}
10911 
10912 	urec_size = attr->func_info_rec_size;
10913 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10914 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10915 	    urec_size % sizeof(u32)) {
10916 		verbose(env, "invalid func info rec size %u\n", urec_size);
10917 		return -EINVAL;
10918 	}
10919 
10920 	prog = env->prog;
10921 	btf = prog->aux->btf;
10922 
10923 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10924 	min_size = min_t(u32, krec_size, urec_size);
10925 
10926 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10927 	if (!krecord)
10928 		return -ENOMEM;
10929 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10930 	if (!info_aux)
10931 		goto err_free;
10932 
10933 	for (i = 0; i < nfuncs; i++) {
10934 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10935 		if (ret) {
10936 			if (ret == -E2BIG) {
10937 				verbose(env, "nonzero tailing record in func info");
10938 				/* set the size kernel expects so loader can zero
10939 				 * out the rest of the record.
10940 				 */
10941 				if (copy_to_bpfptr_offset(uattr,
10942 							  offsetof(union bpf_attr, func_info_rec_size),
10943 							  &min_size, sizeof(min_size)))
10944 					ret = -EFAULT;
10945 			}
10946 			goto err_free;
10947 		}
10948 
10949 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10950 			ret = -EFAULT;
10951 			goto err_free;
10952 		}
10953 
10954 		/* check insn_off */
10955 		ret = -EINVAL;
10956 		if (i == 0) {
10957 			if (krecord[i].insn_off) {
10958 				verbose(env,
10959 					"nonzero insn_off %u for the first func info record",
10960 					krecord[i].insn_off);
10961 				goto err_free;
10962 			}
10963 		} else if (krecord[i].insn_off <= prev_offset) {
10964 			verbose(env,
10965 				"same or smaller insn offset (%u) than previous func info record (%u)",
10966 				krecord[i].insn_off, prev_offset);
10967 			goto err_free;
10968 		}
10969 
10970 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10971 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10972 			goto err_free;
10973 		}
10974 
10975 		/* check type_id */
10976 		type = btf_type_by_id(btf, krecord[i].type_id);
10977 		if (!type || !btf_type_is_func(type)) {
10978 			verbose(env, "invalid type id %d in func info",
10979 				krecord[i].type_id);
10980 			goto err_free;
10981 		}
10982 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10983 
10984 		func_proto = btf_type_by_id(btf, type->type);
10985 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10986 			/* btf_func_check() already verified it during BTF load */
10987 			goto err_free;
10988 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10989 		scalar_return =
10990 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
10991 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10992 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10993 			goto err_free;
10994 		}
10995 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10996 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10997 			goto err_free;
10998 		}
10999 
11000 		prev_offset = krecord[i].insn_off;
11001 		bpfptr_add(&urecord, urec_size);
11002 	}
11003 
11004 	prog->aux->func_info = krecord;
11005 	prog->aux->func_info_cnt = nfuncs;
11006 	prog->aux->func_info_aux = info_aux;
11007 	return 0;
11008 
11009 err_free:
11010 	kvfree(krecord);
11011 	kfree(info_aux);
11012 	return ret;
11013 }
11014 
11015 static void adjust_btf_func(struct bpf_verifier_env *env)
11016 {
11017 	struct bpf_prog_aux *aux = env->prog->aux;
11018 	int i;
11019 
11020 	if (!aux->func_info)
11021 		return;
11022 
11023 	for (i = 0; i < env->subprog_cnt; i++)
11024 		aux->func_info[i].insn_off = env->subprog_info[i].start;
11025 }
11026 
11027 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
11028 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
11029 
11030 static int check_btf_line(struct bpf_verifier_env *env,
11031 			  const union bpf_attr *attr,
11032 			  bpfptr_t uattr)
11033 {
11034 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11035 	struct bpf_subprog_info *sub;
11036 	struct bpf_line_info *linfo;
11037 	struct bpf_prog *prog;
11038 	const struct btf *btf;
11039 	bpfptr_t ulinfo;
11040 	int err;
11041 
11042 	nr_linfo = attr->line_info_cnt;
11043 	if (!nr_linfo)
11044 		return 0;
11045 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11046 		return -EINVAL;
11047 
11048 	rec_size = attr->line_info_rec_size;
11049 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11050 	    rec_size > MAX_LINEINFO_REC_SIZE ||
11051 	    rec_size & (sizeof(u32) - 1))
11052 		return -EINVAL;
11053 
11054 	/* Need to zero it in case the userspace may
11055 	 * pass in a smaller bpf_line_info object.
11056 	 */
11057 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11058 			 GFP_KERNEL | __GFP_NOWARN);
11059 	if (!linfo)
11060 		return -ENOMEM;
11061 
11062 	prog = env->prog;
11063 	btf = prog->aux->btf;
11064 
11065 	s = 0;
11066 	sub = env->subprog_info;
11067 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
11068 	expected_size = sizeof(struct bpf_line_info);
11069 	ncopy = min_t(u32, expected_size, rec_size);
11070 	for (i = 0; i < nr_linfo; i++) {
11071 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11072 		if (err) {
11073 			if (err == -E2BIG) {
11074 				verbose(env, "nonzero tailing record in line_info");
11075 				if (copy_to_bpfptr_offset(uattr,
11076 							  offsetof(union bpf_attr, line_info_rec_size),
11077 							  &expected_size, sizeof(expected_size)))
11078 					err = -EFAULT;
11079 			}
11080 			goto err_free;
11081 		}
11082 
11083 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
11084 			err = -EFAULT;
11085 			goto err_free;
11086 		}
11087 
11088 		/*
11089 		 * Check insn_off to ensure
11090 		 * 1) strictly increasing AND
11091 		 * 2) bounded by prog->len
11092 		 *
11093 		 * The linfo[0].insn_off == 0 check logically falls into
11094 		 * the later "missing bpf_line_info for func..." case
11095 		 * because the first linfo[0].insn_off must be the
11096 		 * first sub also and the first sub must have
11097 		 * subprog_info[0].start == 0.
11098 		 */
11099 		if ((i && linfo[i].insn_off <= prev_offset) ||
11100 		    linfo[i].insn_off >= prog->len) {
11101 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11102 				i, linfo[i].insn_off, prev_offset,
11103 				prog->len);
11104 			err = -EINVAL;
11105 			goto err_free;
11106 		}
11107 
11108 		if (!prog->insnsi[linfo[i].insn_off].code) {
11109 			verbose(env,
11110 				"Invalid insn code at line_info[%u].insn_off\n",
11111 				i);
11112 			err = -EINVAL;
11113 			goto err_free;
11114 		}
11115 
11116 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11117 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
11118 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11119 			err = -EINVAL;
11120 			goto err_free;
11121 		}
11122 
11123 		if (s != env->subprog_cnt) {
11124 			if (linfo[i].insn_off == sub[s].start) {
11125 				sub[s].linfo_idx = i;
11126 				s++;
11127 			} else if (sub[s].start < linfo[i].insn_off) {
11128 				verbose(env, "missing bpf_line_info for func#%u\n", s);
11129 				err = -EINVAL;
11130 				goto err_free;
11131 			}
11132 		}
11133 
11134 		prev_offset = linfo[i].insn_off;
11135 		bpfptr_add(&ulinfo, rec_size);
11136 	}
11137 
11138 	if (s != env->subprog_cnt) {
11139 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11140 			env->subprog_cnt - s, s);
11141 		err = -EINVAL;
11142 		goto err_free;
11143 	}
11144 
11145 	prog->aux->linfo = linfo;
11146 	prog->aux->nr_linfo = nr_linfo;
11147 
11148 	return 0;
11149 
11150 err_free:
11151 	kvfree(linfo);
11152 	return err;
11153 }
11154 
11155 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
11156 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
11157 
11158 static int check_core_relo(struct bpf_verifier_env *env,
11159 			   const union bpf_attr *attr,
11160 			   bpfptr_t uattr)
11161 {
11162 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11163 	struct bpf_core_relo core_relo = {};
11164 	struct bpf_prog *prog = env->prog;
11165 	const struct btf *btf = prog->aux->btf;
11166 	struct bpf_core_ctx ctx = {
11167 		.log = &env->log,
11168 		.btf = btf,
11169 	};
11170 	bpfptr_t u_core_relo;
11171 	int err;
11172 
11173 	nr_core_relo = attr->core_relo_cnt;
11174 	if (!nr_core_relo)
11175 		return 0;
11176 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11177 		return -EINVAL;
11178 
11179 	rec_size = attr->core_relo_rec_size;
11180 	if (rec_size < MIN_CORE_RELO_SIZE ||
11181 	    rec_size > MAX_CORE_RELO_SIZE ||
11182 	    rec_size % sizeof(u32))
11183 		return -EINVAL;
11184 
11185 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11186 	expected_size = sizeof(struct bpf_core_relo);
11187 	ncopy = min_t(u32, expected_size, rec_size);
11188 
11189 	/* Unlike func_info and line_info, copy and apply each CO-RE
11190 	 * relocation record one at a time.
11191 	 */
11192 	for (i = 0; i < nr_core_relo; i++) {
11193 		/* future proofing when sizeof(bpf_core_relo) changes */
11194 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11195 		if (err) {
11196 			if (err == -E2BIG) {
11197 				verbose(env, "nonzero tailing record in core_relo");
11198 				if (copy_to_bpfptr_offset(uattr,
11199 							  offsetof(union bpf_attr, core_relo_rec_size),
11200 							  &expected_size, sizeof(expected_size)))
11201 					err = -EFAULT;
11202 			}
11203 			break;
11204 		}
11205 
11206 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11207 			err = -EFAULT;
11208 			break;
11209 		}
11210 
11211 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11212 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11213 				i, core_relo.insn_off, prog->len);
11214 			err = -EINVAL;
11215 			break;
11216 		}
11217 
11218 		err = bpf_core_apply(&ctx, &core_relo, i,
11219 				     &prog->insnsi[core_relo.insn_off / 8]);
11220 		if (err)
11221 			break;
11222 		bpfptr_add(&u_core_relo, rec_size);
11223 	}
11224 	return err;
11225 }
11226 
11227 static int check_btf_info(struct bpf_verifier_env *env,
11228 			  const union bpf_attr *attr,
11229 			  bpfptr_t uattr)
11230 {
11231 	struct btf *btf;
11232 	int err;
11233 
11234 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
11235 		if (check_abnormal_return(env))
11236 			return -EINVAL;
11237 		return 0;
11238 	}
11239 
11240 	btf = btf_get_by_fd(attr->prog_btf_fd);
11241 	if (IS_ERR(btf))
11242 		return PTR_ERR(btf);
11243 	if (btf_is_kernel(btf)) {
11244 		btf_put(btf);
11245 		return -EACCES;
11246 	}
11247 	env->prog->aux->btf = btf;
11248 
11249 	err = check_btf_func(env, attr, uattr);
11250 	if (err)
11251 		return err;
11252 
11253 	err = check_btf_line(env, attr, uattr);
11254 	if (err)
11255 		return err;
11256 
11257 	err = check_core_relo(env, attr, uattr);
11258 	if (err)
11259 		return err;
11260 
11261 	return 0;
11262 }
11263 
11264 /* check %cur's range satisfies %old's */
11265 static bool range_within(struct bpf_reg_state *old,
11266 			 struct bpf_reg_state *cur)
11267 {
11268 	return old->umin_value <= cur->umin_value &&
11269 	       old->umax_value >= cur->umax_value &&
11270 	       old->smin_value <= cur->smin_value &&
11271 	       old->smax_value >= cur->smax_value &&
11272 	       old->u32_min_value <= cur->u32_min_value &&
11273 	       old->u32_max_value >= cur->u32_max_value &&
11274 	       old->s32_min_value <= cur->s32_min_value &&
11275 	       old->s32_max_value >= cur->s32_max_value;
11276 }
11277 
11278 /* If in the old state two registers had the same id, then they need to have
11279  * the same id in the new state as well.  But that id could be different from
11280  * the old state, so we need to track the mapping from old to new ids.
11281  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11282  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
11283  * regs with a different old id could still have new id 9, we don't care about
11284  * that.
11285  * So we look through our idmap to see if this old id has been seen before.  If
11286  * so, we require the new id to match; otherwise, we add the id pair to the map.
11287  */
11288 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
11289 {
11290 	unsigned int i;
11291 
11292 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
11293 		if (!idmap[i].old) {
11294 			/* Reached an empty slot; haven't seen this id before */
11295 			idmap[i].old = old_id;
11296 			idmap[i].cur = cur_id;
11297 			return true;
11298 		}
11299 		if (idmap[i].old == old_id)
11300 			return idmap[i].cur == cur_id;
11301 	}
11302 	/* We ran out of idmap slots, which should be impossible */
11303 	WARN_ON_ONCE(1);
11304 	return false;
11305 }
11306 
11307 static void clean_func_state(struct bpf_verifier_env *env,
11308 			     struct bpf_func_state *st)
11309 {
11310 	enum bpf_reg_liveness live;
11311 	int i, j;
11312 
11313 	for (i = 0; i < BPF_REG_FP; i++) {
11314 		live = st->regs[i].live;
11315 		/* liveness must not touch this register anymore */
11316 		st->regs[i].live |= REG_LIVE_DONE;
11317 		if (!(live & REG_LIVE_READ))
11318 			/* since the register is unused, clear its state
11319 			 * to make further comparison simpler
11320 			 */
11321 			__mark_reg_not_init(env, &st->regs[i]);
11322 	}
11323 
11324 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11325 		live = st->stack[i].spilled_ptr.live;
11326 		/* liveness must not touch this stack slot anymore */
11327 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11328 		if (!(live & REG_LIVE_READ)) {
11329 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
11330 			for (j = 0; j < BPF_REG_SIZE; j++)
11331 				st->stack[i].slot_type[j] = STACK_INVALID;
11332 		}
11333 	}
11334 }
11335 
11336 static void clean_verifier_state(struct bpf_verifier_env *env,
11337 				 struct bpf_verifier_state *st)
11338 {
11339 	int i;
11340 
11341 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11342 		/* all regs in this state in all frames were already marked */
11343 		return;
11344 
11345 	for (i = 0; i <= st->curframe; i++)
11346 		clean_func_state(env, st->frame[i]);
11347 }
11348 
11349 /* the parentage chains form a tree.
11350  * the verifier states are added to state lists at given insn and
11351  * pushed into state stack for future exploration.
11352  * when the verifier reaches bpf_exit insn some of the verifer states
11353  * stored in the state lists have their final liveness state already,
11354  * but a lot of states will get revised from liveness point of view when
11355  * the verifier explores other branches.
11356  * Example:
11357  * 1: r0 = 1
11358  * 2: if r1 == 100 goto pc+1
11359  * 3: r0 = 2
11360  * 4: exit
11361  * when the verifier reaches exit insn the register r0 in the state list of
11362  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11363  * of insn 2 and goes exploring further. At the insn 4 it will walk the
11364  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11365  *
11366  * Since the verifier pushes the branch states as it sees them while exploring
11367  * the program the condition of walking the branch instruction for the second
11368  * time means that all states below this branch were already explored and
11369  * their final liveness marks are already propagated.
11370  * Hence when the verifier completes the search of state list in is_state_visited()
11371  * we can call this clean_live_states() function to mark all liveness states
11372  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11373  * will not be used.
11374  * This function also clears the registers and stack for states that !READ
11375  * to simplify state merging.
11376  *
11377  * Important note here that walking the same branch instruction in the callee
11378  * doesn't meant that the states are DONE. The verifier has to compare
11379  * the callsites
11380  */
11381 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11382 			      struct bpf_verifier_state *cur)
11383 {
11384 	struct bpf_verifier_state_list *sl;
11385 	int i;
11386 
11387 	sl = *explored_state(env, insn);
11388 	while (sl) {
11389 		if (sl->state.branches)
11390 			goto next;
11391 		if (sl->state.insn_idx != insn ||
11392 		    sl->state.curframe != cur->curframe)
11393 			goto next;
11394 		for (i = 0; i <= cur->curframe; i++)
11395 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11396 				goto next;
11397 		clean_verifier_state(env, &sl->state);
11398 next:
11399 		sl = sl->next;
11400 	}
11401 }
11402 
11403 /* Returns true if (rold safe implies rcur safe) */
11404 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11405 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11406 {
11407 	bool equal;
11408 
11409 	if (!(rold->live & REG_LIVE_READ))
11410 		/* explored state didn't use this */
11411 		return true;
11412 
11413 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11414 
11415 	if (rold->type == PTR_TO_STACK)
11416 		/* two stack pointers are equal only if they're pointing to
11417 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
11418 		 */
11419 		return equal && rold->frameno == rcur->frameno;
11420 
11421 	if (equal)
11422 		return true;
11423 
11424 	if (rold->type == NOT_INIT)
11425 		/* explored state can't have used this */
11426 		return true;
11427 	if (rcur->type == NOT_INIT)
11428 		return false;
11429 	switch (base_type(rold->type)) {
11430 	case SCALAR_VALUE:
11431 		if (env->explore_alu_limits)
11432 			return false;
11433 		if (rcur->type == SCALAR_VALUE) {
11434 			if (!rold->precise && !rcur->precise)
11435 				return true;
11436 			/* new val must satisfy old val knowledge */
11437 			return range_within(rold, rcur) &&
11438 			       tnum_in(rold->var_off, rcur->var_off);
11439 		} else {
11440 			/* We're trying to use a pointer in place of a scalar.
11441 			 * Even if the scalar was unbounded, this could lead to
11442 			 * pointer leaks because scalars are allowed to leak
11443 			 * while pointers are not. We could make this safe in
11444 			 * special cases if root is calling us, but it's
11445 			 * probably not worth the hassle.
11446 			 */
11447 			return false;
11448 		}
11449 	case PTR_TO_MAP_KEY:
11450 	case PTR_TO_MAP_VALUE:
11451 		/* a PTR_TO_MAP_VALUE could be safe to use as a
11452 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11453 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11454 		 * checked, doing so could have affected others with the same
11455 		 * id, and we can't check for that because we lost the id when
11456 		 * we converted to a PTR_TO_MAP_VALUE.
11457 		 */
11458 		if (type_may_be_null(rold->type)) {
11459 			if (!type_may_be_null(rcur->type))
11460 				return false;
11461 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11462 				return false;
11463 			/* Check our ids match any regs they're supposed to */
11464 			return check_ids(rold->id, rcur->id, idmap);
11465 		}
11466 
11467 		/* If the new min/max/var_off satisfy the old ones and
11468 		 * everything else matches, we are OK.
11469 		 * 'id' is not compared, since it's only used for maps with
11470 		 * bpf_spin_lock inside map element and in such cases if
11471 		 * the rest of the prog is valid for one map element then
11472 		 * it's valid for all map elements regardless of the key
11473 		 * used in bpf_map_lookup()
11474 		 */
11475 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11476 		       range_within(rold, rcur) &&
11477 		       tnum_in(rold->var_off, rcur->var_off);
11478 	case PTR_TO_PACKET_META:
11479 	case PTR_TO_PACKET:
11480 		if (rcur->type != rold->type)
11481 			return false;
11482 		/* We must have at least as much range as the old ptr
11483 		 * did, so that any accesses which were safe before are
11484 		 * still safe.  This is true even if old range < old off,
11485 		 * since someone could have accessed through (ptr - k), or
11486 		 * even done ptr -= k in a register, to get a safe access.
11487 		 */
11488 		if (rold->range > rcur->range)
11489 			return false;
11490 		/* If the offsets don't match, we can't trust our alignment;
11491 		 * nor can we be sure that we won't fall out of range.
11492 		 */
11493 		if (rold->off != rcur->off)
11494 			return false;
11495 		/* id relations must be preserved */
11496 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11497 			return false;
11498 		/* new val must satisfy old val knowledge */
11499 		return range_within(rold, rcur) &&
11500 		       tnum_in(rold->var_off, rcur->var_off);
11501 	case PTR_TO_CTX:
11502 	case CONST_PTR_TO_MAP:
11503 	case PTR_TO_PACKET_END:
11504 	case PTR_TO_FLOW_KEYS:
11505 	case PTR_TO_SOCKET:
11506 	case PTR_TO_SOCK_COMMON:
11507 	case PTR_TO_TCP_SOCK:
11508 	case PTR_TO_XDP_SOCK:
11509 		/* Only valid matches are exact, which memcmp() above
11510 		 * would have accepted
11511 		 */
11512 	default:
11513 		/* Don't know what's going on, just say it's not safe */
11514 		return false;
11515 	}
11516 
11517 	/* Shouldn't get here; if we do, say it's not safe */
11518 	WARN_ON_ONCE(1);
11519 	return false;
11520 }
11521 
11522 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11523 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11524 {
11525 	int i, spi;
11526 
11527 	/* walk slots of the explored stack and ignore any additional
11528 	 * slots in the current stack, since explored(safe) state
11529 	 * didn't use them
11530 	 */
11531 	for (i = 0; i < old->allocated_stack; i++) {
11532 		spi = i / BPF_REG_SIZE;
11533 
11534 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11535 			i += BPF_REG_SIZE - 1;
11536 			/* explored state didn't use this */
11537 			continue;
11538 		}
11539 
11540 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11541 			continue;
11542 
11543 		/* explored stack has more populated slots than current stack
11544 		 * and these slots were used
11545 		 */
11546 		if (i >= cur->allocated_stack)
11547 			return false;
11548 
11549 		/* if old state was safe with misc data in the stack
11550 		 * it will be safe with zero-initialized stack.
11551 		 * The opposite is not true
11552 		 */
11553 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11554 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11555 			continue;
11556 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11557 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11558 			/* Ex: old explored (safe) state has STACK_SPILL in
11559 			 * this stack slot, but current has STACK_MISC ->
11560 			 * this verifier states are not equivalent,
11561 			 * return false to continue verification of this path
11562 			 */
11563 			return false;
11564 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11565 			continue;
11566 		if (!is_spilled_reg(&old->stack[spi]))
11567 			continue;
11568 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
11569 			     &cur->stack[spi].spilled_ptr, idmap))
11570 			/* when explored and current stack slot are both storing
11571 			 * spilled registers, check that stored pointers types
11572 			 * are the same as well.
11573 			 * Ex: explored safe path could have stored
11574 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11575 			 * but current path has stored:
11576 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11577 			 * such verifier states are not equivalent.
11578 			 * return false to continue verification of this path
11579 			 */
11580 			return false;
11581 	}
11582 	return true;
11583 }
11584 
11585 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11586 {
11587 	if (old->acquired_refs != cur->acquired_refs)
11588 		return false;
11589 	return !memcmp(old->refs, cur->refs,
11590 		       sizeof(*old->refs) * old->acquired_refs);
11591 }
11592 
11593 /* compare two verifier states
11594  *
11595  * all states stored in state_list are known to be valid, since
11596  * verifier reached 'bpf_exit' instruction through them
11597  *
11598  * this function is called when verifier exploring different branches of
11599  * execution popped from the state stack. If it sees an old state that has
11600  * more strict register state and more strict stack state then this execution
11601  * branch doesn't need to be explored further, since verifier already
11602  * concluded that more strict state leads to valid finish.
11603  *
11604  * Therefore two states are equivalent if register state is more conservative
11605  * and explored stack state is more conservative than the current one.
11606  * Example:
11607  *       explored                   current
11608  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11609  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11610  *
11611  * In other words if current stack state (one being explored) has more
11612  * valid slots than old one that already passed validation, it means
11613  * the verifier can stop exploring and conclude that current state is valid too
11614  *
11615  * Similarly with registers. If explored state has register type as invalid
11616  * whereas register type in current state is meaningful, it means that
11617  * the current state will reach 'bpf_exit' instruction safely
11618  */
11619 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
11620 			      struct bpf_func_state *cur)
11621 {
11622 	int i;
11623 
11624 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11625 	for (i = 0; i < MAX_BPF_REG; i++)
11626 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
11627 			     env->idmap_scratch))
11628 			return false;
11629 
11630 	if (!stacksafe(env, old, cur, env->idmap_scratch))
11631 		return false;
11632 
11633 	if (!refsafe(old, cur))
11634 		return false;
11635 
11636 	return true;
11637 }
11638 
11639 static bool states_equal(struct bpf_verifier_env *env,
11640 			 struct bpf_verifier_state *old,
11641 			 struct bpf_verifier_state *cur)
11642 {
11643 	int i;
11644 
11645 	if (old->curframe != cur->curframe)
11646 		return false;
11647 
11648 	/* Verification state from speculative execution simulation
11649 	 * must never prune a non-speculative execution one.
11650 	 */
11651 	if (old->speculative && !cur->speculative)
11652 		return false;
11653 
11654 	if (old->active_spin_lock != cur->active_spin_lock)
11655 		return false;
11656 
11657 	/* for states to be equal callsites have to be the same
11658 	 * and all frame states need to be equivalent
11659 	 */
11660 	for (i = 0; i <= old->curframe; i++) {
11661 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
11662 			return false;
11663 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
11664 			return false;
11665 	}
11666 	return true;
11667 }
11668 
11669 /* Return 0 if no propagation happened. Return negative error code if error
11670  * happened. Otherwise, return the propagated bit.
11671  */
11672 static int propagate_liveness_reg(struct bpf_verifier_env *env,
11673 				  struct bpf_reg_state *reg,
11674 				  struct bpf_reg_state *parent_reg)
11675 {
11676 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11677 	u8 flag = reg->live & REG_LIVE_READ;
11678 	int err;
11679 
11680 	/* When comes here, read flags of PARENT_REG or REG could be any of
11681 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11682 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11683 	 */
11684 	if (parent_flag == REG_LIVE_READ64 ||
11685 	    /* Or if there is no read flag from REG. */
11686 	    !flag ||
11687 	    /* Or if the read flag from REG is the same as PARENT_REG. */
11688 	    parent_flag == flag)
11689 		return 0;
11690 
11691 	err = mark_reg_read(env, reg, parent_reg, flag);
11692 	if (err)
11693 		return err;
11694 
11695 	return flag;
11696 }
11697 
11698 /* A write screens off any subsequent reads; but write marks come from the
11699  * straight-line code between a state and its parent.  When we arrive at an
11700  * equivalent state (jump target or such) we didn't arrive by the straight-line
11701  * code, so read marks in the state must propagate to the parent regardless
11702  * of the state's write marks. That's what 'parent == state->parent' comparison
11703  * in mark_reg_read() is for.
11704  */
11705 static int propagate_liveness(struct bpf_verifier_env *env,
11706 			      const struct bpf_verifier_state *vstate,
11707 			      struct bpf_verifier_state *vparent)
11708 {
11709 	struct bpf_reg_state *state_reg, *parent_reg;
11710 	struct bpf_func_state *state, *parent;
11711 	int i, frame, err = 0;
11712 
11713 	if (vparent->curframe != vstate->curframe) {
11714 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
11715 		     vparent->curframe, vstate->curframe);
11716 		return -EFAULT;
11717 	}
11718 	/* Propagate read liveness of registers... */
11719 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
11720 	for (frame = 0; frame <= vstate->curframe; frame++) {
11721 		parent = vparent->frame[frame];
11722 		state = vstate->frame[frame];
11723 		parent_reg = parent->regs;
11724 		state_reg = state->regs;
11725 		/* We don't need to worry about FP liveness, it's read-only */
11726 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
11727 			err = propagate_liveness_reg(env, &state_reg[i],
11728 						     &parent_reg[i]);
11729 			if (err < 0)
11730 				return err;
11731 			if (err == REG_LIVE_READ64)
11732 				mark_insn_zext(env, &parent_reg[i]);
11733 		}
11734 
11735 		/* Propagate stack slots. */
11736 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11737 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
11738 			parent_reg = &parent->stack[i].spilled_ptr;
11739 			state_reg = &state->stack[i].spilled_ptr;
11740 			err = propagate_liveness_reg(env, state_reg,
11741 						     parent_reg);
11742 			if (err < 0)
11743 				return err;
11744 		}
11745 	}
11746 	return 0;
11747 }
11748 
11749 /* find precise scalars in the previous equivalent state and
11750  * propagate them into the current state
11751  */
11752 static int propagate_precision(struct bpf_verifier_env *env,
11753 			       const struct bpf_verifier_state *old)
11754 {
11755 	struct bpf_reg_state *state_reg;
11756 	struct bpf_func_state *state;
11757 	int i, err = 0;
11758 
11759 	state = old->frame[old->curframe];
11760 	state_reg = state->regs;
11761 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11762 		if (state_reg->type != SCALAR_VALUE ||
11763 		    !state_reg->precise)
11764 			continue;
11765 		if (env->log.level & BPF_LOG_LEVEL2)
11766 			verbose(env, "propagating r%d\n", i);
11767 		err = mark_chain_precision(env, i);
11768 		if (err < 0)
11769 			return err;
11770 	}
11771 
11772 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
11773 		if (!is_spilled_reg(&state->stack[i]))
11774 			continue;
11775 		state_reg = &state->stack[i].spilled_ptr;
11776 		if (state_reg->type != SCALAR_VALUE ||
11777 		    !state_reg->precise)
11778 			continue;
11779 		if (env->log.level & BPF_LOG_LEVEL2)
11780 			verbose(env, "propagating fp%d\n",
11781 				(-i - 1) * BPF_REG_SIZE);
11782 		err = mark_chain_precision_stack(env, i);
11783 		if (err < 0)
11784 			return err;
11785 	}
11786 	return 0;
11787 }
11788 
11789 static bool states_maybe_looping(struct bpf_verifier_state *old,
11790 				 struct bpf_verifier_state *cur)
11791 {
11792 	struct bpf_func_state *fold, *fcur;
11793 	int i, fr = cur->curframe;
11794 
11795 	if (old->curframe != fr)
11796 		return false;
11797 
11798 	fold = old->frame[fr];
11799 	fcur = cur->frame[fr];
11800 	for (i = 0; i < MAX_BPF_REG; i++)
11801 		if (memcmp(&fold->regs[i], &fcur->regs[i],
11802 			   offsetof(struct bpf_reg_state, parent)))
11803 			return false;
11804 	return true;
11805 }
11806 
11807 
11808 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11809 {
11810 	struct bpf_verifier_state_list *new_sl;
11811 	struct bpf_verifier_state_list *sl, **pprev;
11812 	struct bpf_verifier_state *cur = env->cur_state, *new;
11813 	int i, j, err, states_cnt = 0;
11814 	bool add_new_state = env->test_state_freq ? true : false;
11815 
11816 	cur->last_insn_idx = env->prev_insn_idx;
11817 	if (!env->insn_aux_data[insn_idx].prune_point)
11818 		/* this 'insn_idx' instruction wasn't marked, so we will not
11819 		 * be doing state search here
11820 		 */
11821 		return 0;
11822 
11823 	/* bpf progs typically have pruning point every 4 instructions
11824 	 * http://vger.kernel.org/bpfconf2019.html#session-1
11825 	 * Do not add new state for future pruning if the verifier hasn't seen
11826 	 * at least 2 jumps and at least 8 instructions.
11827 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11828 	 * In tests that amounts to up to 50% reduction into total verifier
11829 	 * memory consumption and 20% verifier time speedup.
11830 	 */
11831 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11832 	    env->insn_processed - env->prev_insn_processed >= 8)
11833 		add_new_state = true;
11834 
11835 	pprev = explored_state(env, insn_idx);
11836 	sl = *pprev;
11837 
11838 	clean_live_states(env, insn_idx, cur);
11839 
11840 	while (sl) {
11841 		states_cnt++;
11842 		if (sl->state.insn_idx != insn_idx)
11843 			goto next;
11844 
11845 		if (sl->state.branches) {
11846 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11847 
11848 			if (frame->in_async_callback_fn &&
11849 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11850 				/* Different async_entry_cnt means that the verifier is
11851 				 * processing another entry into async callback.
11852 				 * Seeing the same state is not an indication of infinite
11853 				 * loop or infinite recursion.
11854 				 * But finding the same state doesn't mean that it's safe
11855 				 * to stop processing the current state. The previous state
11856 				 * hasn't yet reached bpf_exit, since state.branches > 0.
11857 				 * Checking in_async_callback_fn alone is not enough either.
11858 				 * Since the verifier still needs to catch infinite loops
11859 				 * inside async callbacks.
11860 				 */
11861 			} else if (states_maybe_looping(&sl->state, cur) &&
11862 				   states_equal(env, &sl->state, cur)) {
11863 				verbose_linfo(env, insn_idx, "; ");
11864 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11865 				return -EINVAL;
11866 			}
11867 			/* if the verifier is processing a loop, avoid adding new state
11868 			 * too often, since different loop iterations have distinct
11869 			 * states and may not help future pruning.
11870 			 * This threshold shouldn't be too low to make sure that
11871 			 * a loop with large bound will be rejected quickly.
11872 			 * The most abusive loop will be:
11873 			 * r1 += 1
11874 			 * if r1 < 1000000 goto pc-2
11875 			 * 1M insn_procssed limit / 100 == 10k peak states.
11876 			 * This threshold shouldn't be too high either, since states
11877 			 * at the end of the loop are likely to be useful in pruning.
11878 			 */
11879 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11880 			    env->insn_processed - env->prev_insn_processed < 100)
11881 				add_new_state = false;
11882 			goto miss;
11883 		}
11884 		if (states_equal(env, &sl->state, cur)) {
11885 			sl->hit_cnt++;
11886 			/* reached equivalent register/stack state,
11887 			 * prune the search.
11888 			 * Registers read by the continuation are read by us.
11889 			 * If we have any write marks in env->cur_state, they
11890 			 * will prevent corresponding reads in the continuation
11891 			 * from reaching our parent (an explored_state).  Our
11892 			 * own state will get the read marks recorded, but
11893 			 * they'll be immediately forgotten as we're pruning
11894 			 * this state and will pop a new one.
11895 			 */
11896 			err = propagate_liveness(env, &sl->state, cur);
11897 
11898 			/* if previous state reached the exit with precision and
11899 			 * current state is equivalent to it (except precsion marks)
11900 			 * the precision needs to be propagated back in
11901 			 * the current state.
11902 			 */
11903 			err = err ? : push_jmp_history(env, cur);
11904 			err = err ? : propagate_precision(env, &sl->state);
11905 			if (err)
11906 				return err;
11907 			return 1;
11908 		}
11909 miss:
11910 		/* when new state is not going to be added do not increase miss count.
11911 		 * Otherwise several loop iterations will remove the state
11912 		 * recorded earlier. The goal of these heuristics is to have
11913 		 * states from some iterations of the loop (some in the beginning
11914 		 * and some at the end) to help pruning.
11915 		 */
11916 		if (add_new_state)
11917 			sl->miss_cnt++;
11918 		/* heuristic to determine whether this state is beneficial
11919 		 * to keep checking from state equivalence point of view.
11920 		 * Higher numbers increase max_states_per_insn and verification time,
11921 		 * but do not meaningfully decrease insn_processed.
11922 		 */
11923 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11924 			/* the state is unlikely to be useful. Remove it to
11925 			 * speed up verification
11926 			 */
11927 			*pprev = sl->next;
11928 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
11929 				u32 br = sl->state.branches;
11930 
11931 				WARN_ONCE(br,
11932 					  "BUG live_done but branches_to_explore %d\n",
11933 					  br);
11934 				free_verifier_state(&sl->state, false);
11935 				kfree(sl);
11936 				env->peak_states--;
11937 			} else {
11938 				/* cannot free this state, since parentage chain may
11939 				 * walk it later. Add it for free_list instead to
11940 				 * be freed at the end of verification
11941 				 */
11942 				sl->next = env->free_list;
11943 				env->free_list = sl;
11944 			}
11945 			sl = *pprev;
11946 			continue;
11947 		}
11948 next:
11949 		pprev = &sl->next;
11950 		sl = *pprev;
11951 	}
11952 
11953 	if (env->max_states_per_insn < states_cnt)
11954 		env->max_states_per_insn = states_cnt;
11955 
11956 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11957 		return push_jmp_history(env, cur);
11958 
11959 	if (!add_new_state)
11960 		return push_jmp_history(env, cur);
11961 
11962 	/* There were no equivalent states, remember the current one.
11963 	 * Technically the current state is not proven to be safe yet,
11964 	 * but it will either reach outer most bpf_exit (which means it's safe)
11965 	 * or it will be rejected. When there are no loops the verifier won't be
11966 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11967 	 * again on the way to bpf_exit.
11968 	 * When looping the sl->state.branches will be > 0 and this state
11969 	 * will not be considered for equivalence until branches == 0.
11970 	 */
11971 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11972 	if (!new_sl)
11973 		return -ENOMEM;
11974 	env->total_states++;
11975 	env->peak_states++;
11976 	env->prev_jmps_processed = env->jmps_processed;
11977 	env->prev_insn_processed = env->insn_processed;
11978 
11979 	/* add new state to the head of linked list */
11980 	new = &new_sl->state;
11981 	err = copy_verifier_state(new, cur);
11982 	if (err) {
11983 		free_verifier_state(new, false);
11984 		kfree(new_sl);
11985 		return err;
11986 	}
11987 	new->insn_idx = insn_idx;
11988 	WARN_ONCE(new->branches != 1,
11989 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11990 
11991 	cur->parent = new;
11992 	cur->first_insn_idx = insn_idx;
11993 	clear_jmp_history(cur);
11994 	new_sl->next = *explored_state(env, insn_idx);
11995 	*explored_state(env, insn_idx) = new_sl;
11996 	/* connect new state to parentage chain. Current frame needs all
11997 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11998 	 * to the stack implicitly by JITs) so in callers' frames connect just
11999 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12000 	 * the state of the call instruction (with WRITTEN set), and r0 comes
12001 	 * from callee with its full parentage chain, anyway.
12002 	 */
12003 	/* clear write marks in current state: the writes we did are not writes
12004 	 * our child did, so they don't screen off its reads from us.
12005 	 * (There are no read marks in current state, because reads always mark
12006 	 * their parent and current state never has children yet.  Only
12007 	 * explored_states can get read marks.)
12008 	 */
12009 	for (j = 0; j <= cur->curframe; j++) {
12010 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12011 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12012 		for (i = 0; i < BPF_REG_FP; i++)
12013 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12014 	}
12015 
12016 	/* all stack frames are accessible from callee, clear them all */
12017 	for (j = 0; j <= cur->curframe; j++) {
12018 		struct bpf_func_state *frame = cur->frame[j];
12019 		struct bpf_func_state *newframe = new->frame[j];
12020 
12021 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
12022 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
12023 			frame->stack[i].spilled_ptr.parent =
12024 						&newframe->stack[i].spilled_ptr;
12025 		}
12026 	}
12027 	return 0;
12028 }
12029 
12030 /* Return true if it's OK to have the same insn return a different type. */
12031 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12032 {
12033 	switch (base_type(type)) {
12034 	case PTR_TO_CTX:
12035 	case PTR_TO_SOCKET:
12036 	case PTR_TO_SOCK_COMMON:
12037 	case PTR_TO_TCP_SOCK:
12038 	case PTR_TO_XDP_SOCK:
12039 	case PTR_TO_BTF_ID:
12040 		return false;
12041 	default:
12042 		return true;
12043 	}
12044 }
12045 
12046 /* If an instruction was previously used with particular pointer types, then we
12047  * need to be careful to avoid cases such as the below, where it may be ok
12048  * for one branch accessing the pointer, but not ok for the other branch:
12049  *
12050  * R1 = sock_ptr
12051  * goto X;
12052  * ...
12053  * R1 = some_other_valid_ptr;
12054  * goto X;
12055  * ...
12056  * R2 = *(u32 *)(R1 + 0);
12057  */
12058 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12059 {
12060 	return src != prev && (!reg_type_mismatch_ok(src) ||
12061 			       !reg_type_mismatch_ok(prev));
12062 }
12063 
12064 static int do_check(struct bpf_verifier_env *env)
12065 {
12066 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12067 	struct bpf_verifier_state *state = env->cur_state;
12068 	struct bpf_insn *insns = env->prog->insnsi;
12069 	struct bpf_reg_state *regs;
12070 	int insn_cnt = env->prog->len;
12071 	bool do_print_state = false;
12072 	int prev_insn_idx = -1;
12073 
12074 	for (;;) {
12075 		struct bpf_insn *insn;
12076 		u8 class;
12077 		int err;
12078 
12079 		env->prev_insn_idx = prev_insn_idx;
12080 		if (env->insn_idx >= insn_cnt) {
12081 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
12082 				env->insn_idx, insn_cnt);
12083 			return -EFAULT;
12084 		}
12085 
12086 		insn = &insns[env->insn_idx];
12087 		class = BPF_CLASS(insn->code);
12088 
12089 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
12090 			verbose(env,
12091 				"BPF program is too large. Processed %d insn\n",
12092 				env->insn_processed);
12093 			return -E2BIG;
12094 		}
12095 
12096 		err = is_state_visited(env, env->insn_idx);
12097 		if (err < 0)
12098 			return err;
12099 		if (err == 1) {
12100 			/* found equivalent state, can prune the search */
12101 			if (env->log.level & BPF_LOG_LEVEL) {
12102 				if (do_print_state)
12103 					verbose(env, "\nfrom %d to %d%s: safe\n",
12104 						env->prev_insn_idx, env->insn_idx,
12105 						env->cur_state->speculative ?
12106 						" (speculative execution)" : "");
12107 				else
12108 					verbose(env, "%d: safe\n", env->insn_idx);
12109 			}
12110 			goto process_bpf_exit;
12111 		}
12112 
12113 		if (signal_pending(current))
12114 			return -EAGAIN;
12115 
12116 		if (need_resched())
12117 			cond_resched();
12118 
12119 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12120 			verbose(env, "\nfrom %d to %d%s:",
12121 				env->prev_insn_idx, env->insn_idx,
12122 				env->cur_state->speculative ?
12123 				" (speculative execution)" : "");
12124 			print_verifier_state(env, state->frame[state->curframe], true);
12125 			do_print_state = false;
12126 		}
12127 
12128 		if (env->log.level & BPF_LOG_LEVEL) {
12129 			const struct bpf_insn_cbs cbs = {
12130 				.cb_call	= disasm_kfunc_name,
12131 				.cb_print	= verbose,
12132 				.private_data	= env,
12133 			};
12134 
12135 			if (verifier_state_scratched(env))
12136 				print_insn_state(env, state->frame[state->curframe]);
12137 
12138 			verbose_linfo(env, env->insn_idx, "; ");
12139 			env->prev_log_len = env->log.len_used;
12140 			verbose(env, "%d: ", env->insn_idx);
12141 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12142 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12143 			env->prev_log_len = env->log.len_used;
12144 		}
12145 
12146 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
12147 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12148 							   env->prev_insn_idx);
12149 			if (err)
12150 				return err;
12151 		}
12152 
12153 		regs = cur_regs(env);
12154 		sanitize_mark_insn_seen(env);
12155 		prev_insn_idx = env->insn_idx;
12156 
12157 		if (class == BPF_ALU || class == BPF_ALU64) {
12158 			err = check_alu_op(env, insn);
12159 			if (err)
12160 				return err;
12161 
12162 		} else if (class == BPF_LDX) {
12163 			enum bpf_reg_type *prev_src_type, src_reg_type;
12164 
12165 			/* check for reserved fields is already done */
12166 
12167 			/* check src operand */
12168 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12169 			if (err)
12170 				return err;
12171 
12172 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12173 			if (err)
12174 				return err;
12175 
12176 			src_reg_type = regs[insn->src_reg].type;
12177 
12178 			/* check that memory (src_reg + off) is readable,
12179 			 * the state of dst_reg will be updated by this func
12180 			 */
12181 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
12182 					       insn->off, BPF_SIZE(insn->code),
12183 					       BPF_READ, insn->dst_reg, false);
12184 			if (err)
12185 				return err;
12186 
12187 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12188 
12189 			if (*prev_src_type == NOT_INIT) {
12190 				/* saw a valid insn
12191 				 * dst_reg = *(u32 *)(src_reg + off)
12192 				 * save type to validate intersecting paths
12193 				 */
12194 				*prev_src_type = src_reg_type;
12195 
12196 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
12197 				/* ABuser program is trying to use the same insn
12198 				 * dst_reg = *(u32*) (src_reg + off)
12199 				 * with different pointer types:
12200 				 * src_reg == ctx in one branch and
12201 				 * src_reg == stack|map in some other branch.
12202 				 * Reject it.
12203 				 */
12204 				verbose(env, "same insn cannot be used with different pointers\n");
12205 				return -EINVAL;
12206 			}
12207 
12208 		} else if (class == BPF_STX) {
12209 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
12210 
12211 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12212 				err = check_atomic(env, env->insn_idx, insn);
12213 				if (err)
12214 					return err;
12215 				env->insn_idx++;
12216 				continue;
12217 			}
12218 
12219 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12220 				verbose(env, "BPF_STX uses reserved fields\n");
12221 				return -EINVAL;
12222 			}
12223 
12224 			/* check src1 operand */
12225 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12226 			if (err)
12227 				return err;
12228 			/* check src2 operand */
12229 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12230 			if (err)
12231 				return err;
12232 
12233 			dst_reg_type = regs[insn->dst_reg].type;
12234 
12235 			/* check that memory (dst_reg + off) is writeable */
12236 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12237 					       insn->off, BPF_SIZE(insn->code),
12238 					       BPF_WRITE, insn->src_reg, false);
12239 			if (err)
12240 				return err;
12241 
12242 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12243 
12244 			if (*prev_dst_type == NOT_INIT) {
12245 				*prev_dst_type = dst_reg_type;
12246 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
12247 				verbose(env, "same insn cannot be used with different pointers\n");
12248 				return -EINVAL;
12249 			}
12250 
12251 		} else if (class == BPF_ST) {
12252 			if (BPF_MODE(insn->code) != BPF_MEM ||
12253 			    insn->src_reg != BPF_REG_0) {
12254 				verbose(env, "BPF_ST uses reserved fields\n");
12255 				return -EINVAL;
12256 			}
12257 			/* check src operand */
12258 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12259 			if (err)
12260 				return err;
12261 
12262 			if (is_ctx_reg(env, insn->dst_reg)) {
12263 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
12264 					insn->dst_reg,
12265 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
12266 				return -EACCES;
12267 			}
12268 
12269 			/* check that memory (dst_reg + off) is writeable */
12270 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12271 					       insn->off, BPF_SIZE(insn->code),
12272 					       BPF_WRITE, -1, false);
12273 			if (err)
12274 				return err;
12275 
12276 		} else if (class == BPF_JMP || class == BPF_JMP32) {
12277 			u8 opcode = BPF_OP(insn->code);
12278 
12279 			env->jmps_processed++;
12280 			if (opcode == BPF_CALL) {
12281 				if (BPF_SRC(insn->code) != BPF_K ||
12282 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12283 				     && insn->off != 0) ||
12284 				    (insn->src_reg != BPF_REG_0 &&
12285 				     insn->src_reg != BPF_PSEUDO_CALL &&
12286 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
12287 				    insn->dst_reg != BPF_REG_0 ||
12288 				    class == BPF_JMP32) {
12289 					verbose(env, "BPF_CALL uses reserved fields\n");
12290 					return -EINVAL;
12291 				}
12292 
12293 				if (env->cur_state->active_spin_lock &&
12294 				    (insn->src_reg == BPF_PSEUDO_CALL ||
12295 				     insn->imm != BPF_FUNC_spin_unlock)) {
12296 					verbose(env, "function calls are not allowed while holding a lock\n");
12297 					return -EINVAL;
12298 				}
12299 				if (insn->src_reg == BPF_PSEUDO_CALL)
12300 					err = check_func_call(env, insn, &env->insn_idx);
12301 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
12302 					err = check_kfunc_call(env, insn, &env->insn_idx);
12303 				else
12304 					err = check_helper_call(env, insn, &env->insn_idx);
12305 				if (err)
12306 					return err;
12307 			} else if (opcode == BPF_JA) {
12308 				if (BPF_SRC(insn->code) != BPF_K ||
12309 				    insn->imm != 0 ||
12310 				    insn->src_reg != BPF_REG_0 ||
12311 				    insn->dst_reg != BPF_REG_0 ||
12312 				    class == BPF_JMP32) {
12313 					verbose(env, "BPF_JA uses reserved fields\n");
12314 					return -EINVAL;
12315 				}
12316 
12317 				env->insn_idx += insn->off + 1;
12318 				continue;
12319 
12320 			} else if (opcode == BPF_EXIT) {
12321 				if (BPF_SRC(insn->code) != BPF_K ||
12322 				    insn->imm != 0 ||
12323 				    insn->src_reg != BPF_REG_0 ||
12324 				    insn->dst_reg != BPF_REG_0 ||
12325 				    class == BPF_JMP32) {
12326 					verbose(env, "BPF_EXIT uses reserved fields\n");
12327 					return -EINVAL;
12328 				}
12329 
12330 				if (env->cur_state->active_spin_lock) {
12331 					verbose(env, "bpf_spin_unlock is missing\n");
12332 					return -EINVAL;
12333 				}
12334 
12335 				if (state->curframe) {
12336 					/* exit from nested function */
12337 					err = prepare_func_exit(env, &env->insn_idx);
12338 					if (err)
12339 						return err;
12340 					do_print_state = true;
12341 					continue;
12342 				}
12343 
12344 				err = check_reference_leak(env);
12345 				if (err)
12346 					return err;
12347 
12348 				err = check_return_code(env);
12349 				if (err)
12350 					return err;
12351 process_bpf_exit:
12352 				mark_verifier_state_scratched(env);
12353 				update_branch_counts(env, env->cur_state);
12354 				err = pop_stack(env, &prev_insn_idx,
12355 						&env->insn_idx, pop_log);
12356 				if (err < 0) {
12357 					if (err != -ENOENT)
12358 						return err;
12359 					break;
12360 				} else {
12361 					do_print_state = true;
12362 					continue;
12363 				}
12364 			} else {
12365 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
12366 				if (err)
12367 					return err;
12368 			}
12369 		} else if (class == BPF_LD) {
12370 			u8 mode = BPF_MODE(insn->code);
12371 
12372 			if (mode == BPF_ABS || mode == BPF_IND) {
12373 				err = check_ld_abs(env, insn);
12374 				if (err)
12375 					return err;
12376 
12377 			} else if (mode == BPF_IMM) {
12378 				err = check_ld_imm(env, insn);
12379 				if (err)
12380 					return err;
12381 
12382 				env->insn_idx++;
12383 				sanitize_mark_insn_seen(env);
12384 			} else {
12385 				verbose(env, "invalid BPF_LD mode\n");
12386 				return -EINVAL;
12387 			}
12388 		} else {
12389 			verbose(env, "unknown insn class %d\n", class);
12390 			return -EINVAL;
12391 		}
12392 
12393 		env->insn_idx++;
12394 	}
12395 
12396 	return 0;
12397 }
12398 
12399 static int find_btf_percpu_datasec(struct btf *btf)
12400 {
12401 	const struct btf_type *t;
12402 	const char *tname;
12403 	int i, n;
12404 
12405 	/*
12406 	 * Both vmlinux and module each have their own ".data..percpu"
12407 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12408 	 * types to look at only module's own BTF types.
12409 	 */
12410 	n = btf_nr_types(btf);
12411 	if (btf_is_module(btf))
12412 		i = btf_nr_types(btf_vmlinux);
12413 	else
12414 		i = 1;
12415 
12416 	for(; i < n; i++) {
12417 		t = btf_type_by_id(btf, i);
12418 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12419 			continue;
12420 
12421 		tname = btf_name_by_offset(btf, t->name_off);
12422 		if (!strcmp(tname, ".data..percpu"))
12423 			return i;
12424 	}
12425 
12426 	return -ENOENT;
12427 }
12428 
12429 /* replace pseudo btf_id with kernel symbol address */
12430 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12431 			       struct bpf_insn *insn,
12432 			       struct bpf_insn_aux_data *aux)
12433 {
12434 	const struct btf_var_secinfo *vsi;
12435 	const struct btf_type *datasec;
12436 	struct btf_mod_pair *btf_mod;
12437 	const struct btf_type *t;
12438 	const char *sym_name;
12439 	bool percpu = false;
12440 	u32 type, id = insn->imm;
12441 	struct btf *btf;
12442 	s32 datasec_id;
12443 	u64 addr;
12444 	int i, btf_fd, err;
12445 
12446 	btf_fd = insn[1].imm;
12447 	if (btf_fd) {
12448 		btf = btf_get_by_fd(btf_fd);
12449 		if (IS_ERR(btf)) {
12450 			verbose(env, "invalid module BTF object FD specified.\n");
12451 			return -EINVAL;
12452 		}
12453 	} else {
12454 		if (!btf_vmlinux) {
12455 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12456 			return -EINVAL;
12457 		}
12458 		btf = btf_vmlinux;
12459 		btf_get(btf);
12460 	}
12461 
12462 	t = btf_type_by_id(btf, id);
12463 	if (!t) {
12464 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12465 		err = -ENOENT;
12466 		goto err_put;
12467 	}
12468 
12469 	if (!btf_type_is_var(t)) {
12470 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12471 		err = -EINVAL;
12472 		goto err_put;
12473 	}
12474 
12475 	sym_name = btf_name_by_offset(btf, t->name_off);
12476 	addr = kallsyms_lookup_name(sym_name);
12477 	if (!addr) {
12478 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12479 			sym_name);
12480 		err = -ENOENT;
12481 		goto err_put;
12482 	}
12483 
12484 	datasec_id = find_btf_percpu_datasec(btf);
12485 	if (datasec_id > 0) {
12486 		datasec = btf_type_by_id(btf, datasec_id);
12487 		for_each_vsi(i, datasec, vsi) {
12488 			if (vsi->type == id) {
12489 				percpu = true;
12490 				break;
12491 			}
12492 		}
12493 	}
12494 
12495 	insn[0].imm = (u32)addr;
12496 	insn[1].imm = addr >> 32;
12497 
12498 	type = t->type;
12499 	t = btf_type_skip_modifiers(btf, type, NULL);
12500 	if (percpu) {
12501 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12502 		aux->btf_var.btf = btf;
12503 		aux->btf_var.btf_id = type;
12504 	} else if (!btf_type_is_struct(t)) {
12505 		const struct btf_type *ret;
12506 		const char *tname;
12507 		u32 tsize;
12508 
12509 		/* resolve the type size of ksym. */
12510 		ret = btf_resolve_size(btf, t, &tsize);
12511 		if (IS_ERR(ret)) {
12512 			tname = btf_name_by_offset(btf, t->name_off);
12513 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12514 				tname, PTR_ERR(ret));
12515 			err = -EINVAL;
12516 			goto err_put;
12517 		}
12518 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12519 		aux->btf_var.mem_size = tsize;
12520 	} else {
12521 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
12522 		aux->btf_var.btf = btf;
12523 		aux->btf_var.btf_id = type;
12524 	}
12525 
12526 	/* check whether we recorded this BTF (and maybe module) already */
12527 	for (i = 0; i < env->used_btf_cnt; i++) {
12528 		if (env->used_btfs[i].btf == btf) {
12529 			btf_put(btf);
12530 			return 0;
12531 		}
12532 	}
12533 
12534 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
12535 		err = -E2BIG;
12536 		goto err_put;
12537 	}
12538 
12539 	btf_mod = &env->used_btfs[env->used_btf_cnt];
12540 	btf_mod->btf = btf;
12541 	btf_mod->module = NULL;
12542 
12543 	/* if we reference variables from kernel module, bump its refcount */
12544 	if (btf_is_module(btf)) {
12545 		btf_mod->module = btf_try_get_module(btf);
12546 		if (!btf_mod->module) {
12547 			err = -ENXIO;
12548 			goto err_put;
12549 		}
12550 	}
12551 
12552 	env->used_btf_cnt++;
12553 
12554 	return 0;
12555 err_put:
12556 	btf_put(btf);
12557 	return err;
12558 }
12559 
12560 static int check_map_prealloc(struct bpf_map *map)
12561 {
12562 	return (map->map_type != BPF_MAP_TYPE_HASH &&
12563 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
12564 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
12565 		!(map->map_flags & BPF_F_NO_PREALLOC);
12566 }
12567 
12568 static bool is_tracing_prog_type(enum bpf_prog_type type)
12569 {
12570 	switch (type) {
12571 	case BPF_PROG_TYPE_KPROBE:
12572 	case BPF_PROG_TYPE_TRACEPOINT:
12573 	case BPF_PROG_TYPE_PERF_EVENT:
12574 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12575 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
12576 		return true;
12577 	default:
12578 		return false;
12579 	}
12580 }
12581 
12582 static bool is_preallocated_map(struct bpf_map *map)
12583 {
12584 	if (!check_map_prealloc(map))
12585 		return false;
12586 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
12587 		return false;
12588 	return true;
12589 }
12590 
12591 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12592 					struct bpf_map *map,
12593 					struct bpf_prog *prog)
12594 
12595 {
12596 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12597 	/*
12598 	 * Validate that trace type programs use preallocated hash maps.
12599 	 *
12600 	 * For programs attached to PERF events this is mandatory as the
12601 	 * perf NMI can hit any arbitrary code sequence.
12602 	 *
12603 	 * All other trace types using preallocated hash maps are unsafe as
12604 	 * well because tracepoint or kprobes can be inside locked regions
12605 	 * of the memory allocator or at a place where a recursion into the
12606 	 * memory allocator would see inconsistent state.
12607 	 *
12608 	 * On RT enabled kernels run-time allocation of all trace type
12609 	 * programs is strictly prohibited due to lock type constraints. On
12610 	 * !RT kernels it is allowed for backwards compatibility reasons for
12611 	 * now, but warnings are emitted so developers are made aware of
12612 	 * the unsafety and can fix their programs before this is enforced.
12613 	 */
12614 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
12615 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
12616 			verbose(env, "perf_event programs can only use preallocated hash map\n");
12617 			return -EINVAL;
12618 		}
12619 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
12620 			verbose(env, "trace type programs can only use preallocated hash map\n");
12621 			return -EINVAL;
12622 		}
12623 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
12624 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
12625 	}
12626 
12627 	if (map_value_has_spin_lock(map)) {
12628 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12629 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12630 			return -EINVAL;
12631 		}
12632 
12633 		if (is_tracing_prog_type(prog_type)) {
12634 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12635 			return -EINVAL;
12636 		}
12637 
12638 		if (prog->aux->sleepable) {
12639 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12640 			return -EINVAL;
12641 		}
12642 	}
12643 
12644 	if (map_value_has_timer(map)) {
12645 		if (is_tracing_prog_type(prog_type)) {
12646 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
12647 			return -EINVAL;
12648 		}
12649 	}
12650 
12651 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
12652 	    !bpf_offload_prog_map_match(prog, map)) {
12653 		verbose(env, "offload device mismatch between prog and map\n");
12654 		return -EINVAL;
12655 	}
12656 
12657 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12658 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12659 		return -EINVAL;
12660 	}
12661 
12662 	if (prog->aux->sleepable)
12663 		switch (map->map_type) {
12664 		case BPF_MAP_TYPE_HASH:
12665 		case BPF_MAP_TYPE_LRU_HASH:
12666 		case BPF_MAP_TYPE_ARRAY:
12667 		case BPF_MAP_TYPE_PERCPU_HASH:
12668 		case BPF_MAP_TYPE_PERCPU_ARRAY:
12669 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12670 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12671 		case BPF_MAP_TYPE_HASH_OF_MAPS:
12672 			if (!is_preallocated_map(map)) {
12673 				verbose(env,
12674 					"Sleepable programs can only use preallocated maps\n");
12675 				return -EINVAL;
12676 			}
12677 			break;
12678 		case BPF_MAP_TYPE_RINGBUF:
12679 		case BPF_MAP_TYPE_INODE_STORAGE:
12680 		case BPF_MAP_TYPE_SK_STORAGE:
12681 		case BPF_MAP_TYPE_TASK_STORAGE:
12682 			break;
12683 		default:
12684 			verbose(env,
12685 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
12686 			return -EINVAL;
12687 		}
12688 
12689 	return 0;
12690 }
12691 
12692 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12693 {
12694 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12695 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12696 }
12697 
12698 /* find and rewrite pseudo imm in ld_imm64 instructions:
12699  *
12700  * 1. if it accesses map FD, replace it with actual map pointer.
12701  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12702  *
12703  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
12704  */
12705 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
12706 {
12707 	struct bpf_insn *insn = env->prog->insnsi;
12708 	int insn_cnt = env->prog->len;
12709 	int i, j, err;
12710 
12711 	err = bpf_prog_calc_tag(env->prog);
12712 	if (err)
12713 		return err;
12714 
12715 	for (i = 0; i < insn_cnt; i++, insn++) {
12716 		if (BPF_CLASS(insn->code) == BPF_LDX &&
12717 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
12718 			verbose(env, "BPF_LDX uses reserved fields\n");
12719 			return -EINVAL;
12720 		}
12721 
12722 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
12723 			struct bpf_insn_aux_data *aux;
12724 			struct bpf_map *map;
12725 			struct fd f;
12726 			u64 addr;
12727 			u32 fd;
12728 
12729 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
12730 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12731 			    insn[1].off != 0) {
12732 				verbose(env, "invalid bpf_ld_imm64 insn\n");
12733 				return -EINVAL;
12734 			}
12735 
12736 			if (insn[0].src_reg == 0)
12737 				/* valid generic load 64-bit imm */
12738 				goto next_insn;
12739 
12740 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12741 				aux = &env->insn_aux_data[i];
12742 				err = check_pseudo_btf_id(env, insn, aux);
12743 				if (err)
12744 					return err;
12745 				goto next_insn;
12746 			}
12747 
12748 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12749 				aux = &env->insn_aux_data[i];
12750 				aux->ptr_type = PTR_TO_FUNC;
12751 				goto next_insn;
12752 			}
12753 
12754 			/* In final convert_pseudo_ld_imm64() step, this is
12755 			 * converted into regular 64-bit imm load insn.
12756 			 */
12757 			switch (insn[0].src_reg) {
12758 			case BPF_PSEUDO_MAP_VALUE:
12759 			case BPF_PSEUDO_MAP_IDX_VALUE:
12760 				break;
12761 			case BPF_PSEUDO_MAP_FD:
12762 			case BPF_PSEUDO_MAP_IDX:
12763 				if (insn[1].imm == 0)
12764 					break;
12765 				fallthrough;
12766 			default:
12767 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
12768 				return -EINVAL;
12769 			}
12770 
12771 			switch (insn[0].src_reg) {
12772 			case BPF_PSEUDO_MAP_IDX_VALUE:
12773 			case BPF_PSEUDO_MAP_IDX:
12774 				if (bpfptr_is_null(env->fd_array)) {
12775 					verbose(env, "fd_idx without fd_array is invalid\n");
12776 					return -EPROTO;
12777 				}
12778 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
12779 							    insn[0].imm * sizeof(fd),
12780 							    sizeof(fd)))
12781 					return -EFAULT;
12782 				break;
12783 			default:
12784 				fd = insn[0].imm;
12785 				break;
12786 			}
12787 
12788 			f = fdget(fd);
12789 			map = __bpf_map_get(f);
12790 			if (IS_ERR(map)) {
12791 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
12792 					insn[0].imm);
12793 				return PTR_ERR(map);
12794 			}
12795 
12796 			err = check_map_prog_compatibility(env, map, env->prog);
12797 			if (err) {
12798 				fdput(f);
12799 				return err;
12800 			}
12801 
12802 			aux = &env->insn_aux_data[i];
12803 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12804 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12805 				addr = (unsigned long)map;
12806 			} else {
12807 				u32 off = insn[1].imm;
12808 
12809 				if (off >= BPF_MAX_VAR_OFF) {
12810 					verbose(env, "direct value offset of %u is not allowed\n", off);
12811 					fdput(f);
12812 					return -EINVAL;
12813 				}
12814 
12815 				if (!map->ops->map_direct_value_addr) {
12816 					verbose(env, "no direct value access support for this map type\n");
12817 					fdput(f);
12818 					return -EINVAL;
12819 				}
12820 
12821 				err = map->ops->map_direct_value_addr(map, &addr, off);
12822 				if (err) {
12823 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12824 						map->value_size, off);
12825 					fdput(f);
12826 					return err;
12827 				}
12828 
12829 				aux->map_off = off;
12830 				addr += off;
12831 			}
12832 
12833 			insn[0].imm = (u32)addr;
12834 			insn[1].imm = addr >> 32;
12835 
12836 			/* check whether we recorded this map already */
12837 			for (j = 0; j < env->used_map_cnt; j++) {
12838 				if (env->used_maps[j] == map) {
12839 					aux->map_index = j;
12840 					fdput(f);
12841 					goto next_insn;
12842 				}
12843 			}
12844 
12845 			if (env->used_map_cnt >= MAX_USED_MAPS) {
12846 				fdput(f);
12847 				return -E2BIG;
12848 			}
12849 
12850 			/* hold the map. If the program is rejected by verifier,
12851 			 * the map will be released by release_maps() or it
12852 			 * will be used by the valid program until it's unloaded
12853 			 * and all maps are released in free_used_maps()
12854 			 */
12855 			bpf_map_inc(map);
12856 
12857 			aux->map_index = env->used_map_cnt;
12858 			env->used_maps[env->used_map_cnt++] = map;
12859 
12860 			if (bpf_map_is_cgroup_storage(map) &&
12861 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
12862 				verbose(env, "only one cgroup storage of each type is allowed\n");
12863 				fdput(f);
12864 				return -EBUSY;
12865 			}
12866 
12867 			fdput(f);
12868 next_insn:
12869 			insn++;
12870 			i++;
12871 			continue;
12872 		}
12873 
12874 		/* Basic sanity check before we invest more work here. */
12875 		if (!bpf_opcode_in_insntable(insn->code)) {
12876 			verbose(env, "unknown opcode %02x\n", insn->code);
12877 			return -EINVAL;
12878 		}
12879 	}
12880 
12881 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12882 	 * 'struct bpf_map *' into a register instead of user map_fd.
12883 	 * These pointers will be used later by verifier to validate map access.
12884 	 */
12885 	return 0;
12886 }
12887 
12888 /* drop refcnt of maps used by the rejected program */
12889 static void release_maps(struct bpf_verifier_env *env)
12890 {
12891 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12892 			     env->used_map_cnt);
12893 }
12894 
12895 /* drop refcnt of maps used by the rejected program */
12896 static void release_btfs(struct bpf_verifier_env *env)
12897 {
12898 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12899 			     env->used_btf_cnt);
12900 }
12901 
12902 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12903 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12904 {
12905 	struct bpf_insn *insn = env->prog->insnsi;
12906 	int insn_cnt = env->prog->len;
12907 	int i;
12908 
12909 	for (i = 0; i < insn_cnt; i++, insn++) {
12910 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12911 			continue;
12912 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12913 			continue;
12914 		insn->src_reg = 0;
12915 	}
12916 }
12917 
12918 /* single env->prog->insni[off] instruction was replaced with the range
12919  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12920  * [0, off) and [off, end) to new locations, so the patched range stays zero
12921  */
12922 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12923 				 struct bpf_insn_aux_data *new_data,
12924 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12925 {
12926 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12927 	struct bpf_insn *insn = new_prog->insnsi;
12928 	u32 old_seen = old_data[off].seen;
12929 	u32 prog_len;
12930 	int i;
12931 
12932 	/* aux info at OFF always needs adjustment, no matter fast path
12933 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12934 	 * original insn at old prog.
12935 	 */
12936 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12937 
12938 	if (cnt == 1)
12939 		return;
12940 	prog_len = new_prog->len;
12941 
12942 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12943 	memcpy(new_data + off + cnt - 1, old_data + off,
12944 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12945 	for (i = off; i < off + cnt - 1; i++) {
12946 		/* Expand insni[off]'s seen count to the patched range. */
12947 		new_data[i].seen = old_seen;
12948 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12949 	}
12950 	env->insn_aux_data = new_data;
12951 	vfree(old_data);
12952 }
12953 
12954 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12955 {
12956 	int i;
12957 
12958 	if (len == 1)
12959 		return;
12960 	/* NOTE: fake 'exit' subprog should be updated as well. */
12961 	for (i = 0; i <= env->subprog_cnt; i++) {
12962 		if (env->subprog_info[i].start <= off)
12963 			continue;
12964 		env->subprog_info[i].start += len - 1;
12965 	}
12966 }
12967 
12968 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12969 {
12970 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12971 	int i, sz = prog->aux->size_poke_tab;
12972 	struct bpf_jit_poke_descriptor *desc;
12973 
12974 	for (i = 0; i < sz; i++) {
12975 		desc = &tab[i];
12976 		if (desc->insn_idx <= off)
12977 			continue;
12978 		desc->insn_idx += len - 1;
12979 	}
12980 }
12981 
12982 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12983 					    const struct bpf_insn *patch, u32 len)
12984 {
12985 	struct bpf_prog *new_prog;
12986 	struct bpf_insn_aux_data *new_data = NULL;
12987 
12988 	if (len > 1) {
12989 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12990 					      sizeof(struct bpf_insn_aux_data)));
12991 		if (!new_data)
12992 			return NULL;
12993 	}
12994 
12995 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12996 	if (IS_ERR(new_prog)) {
12997 		if (PTR_ERR(new_prog) == -ERANGE)
12998 			verbose(env,
12999 				"insn %d cannot be patched due to 16-bit range\n",
13000 				env->insn_aux_data[off].orig_idx);
13001 		vfree(new_data);
13002 		return NULL;
13003 	}
13004 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
13005 	adjust_subprog_starts(env, off, len);
13006 	adjust_poke_descs(new_prog, off, len);
13007 	return new_prog;
13008 }
13009 
13010 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13011 					      u32 off, u32 cnt)
13012 {
13013 	int i, j;
13014 
13015 	/* find first prog starting at or after off (first to remove) */
13016 	for (i = 0; i < env->subprog_cnt; i++)
13017 		if (env->subprog_info[i].start >= off)
13018 			break;
13019 	/* find first prog starting at or after off + cnt (first to stay) */
13020 	for (j = i; j < env->subprog_cnt; j++)
13021 		if (env->subprog_info[j].start >= off + cnt)
13022 			break;
13023 	/* if j doesn't start exactly at off + cnt, we are just removing
13024 	 * the front of previous prog
13025 	 */
13026 	if (env->subprog_info[j].start != off + cnt)
13027 		j--;
13028 
13029 	if (j > i) {
13030 		struct bpf_prog_aux *aux = env->prog->aux;
13031 		int move;
13032 
13033 		/* move fake 'exit' subprog as well */
13034 		move = env->subprog_cnt + 1 - j;
13035 
13036 		memmove(env->subprog_info + i,
13037 			env->subprog_info + j,
13038 			sizeof(*env->subprog_info) * move);
13039 		env->subprog_cnt -= j - i;
13040 
13041 		/* remove func_info */
13042 		if (aux->func_info) {
13043 			move = aux->func_info_cnt - j;
13044 
13045 			memmove(aux->func_info + i,
13046 				aux->func_info + j,
13047 				sizeof(*aux->func_info) * move);
13048 			aux->func_info_cnt -= j - i;
13049 			/* func_info->insn_off is set after all code rewrites,
13050 			 * in adjust_btf_func() - no need to adjust
13051 			 */
13052 		}
13053 	} else {
13054 		/* convert i from "first prog to remove" to "first to adjust" */
13055 		if (env->subprog_info[i].start == off)
13056 			i++;
13057 	}
13058 
13059 	/* update fake 'exit' subprog as well */
13060 	for (; i <= env->subprog_cnt; i++)
13061 		env->subprog_info[i].start -= cnt;
13062 
13063 	return 0;
13064 }
13065 
13066 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13067 				      u32 cnt)
13068 {
13069 	struct bpf_prog *prog = env->prog;
13070 	u32 i, l_off, l_cnt, nr_linfo;
13071 	struct bpf_line_info *linfo;
13072 
13073 	nr_linfo = prog->aux->nr_linfo;
13074 	if (!nr_linfo)
13075 		return 0;
13076 
13077 	linfo = prog->aux->linfo;
13078 
13079 	/* find first line info to remove, count lines to be removed */
13080 	for (i = 0; i < nr_linfo; i++)
13081 		if (linfo[i].insn_off >= off)
13082 			break;
13083 
13084 	l_off = i;
13085 	l_cnt = 0;
13086 	for (; i < nr_linfo; i++)
13087 		if (linfo[i].insn_off < off + cnt)
13088 			l_cnt++;
13089 		else
13090 			break;
13091 
13092 	/* First live insn doesn't match first live linfo, it needs to "inherit"
13093 	 * last removed linfo.  prog is already modified, so prog->len == off
13094 	 * means no live instructions after (tail of the program was removed).
13095 	 */
13096 	if (prog->len != off && l_cnt &&
13097 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13098 		l_cnt--;
13099 		linfo[--i].insn_off = off + cnt;
13100 	}
13101 
13102 	/* remove the line info which refer to the removed instructions */
13103 	if (l_cnt) {
13104 		memmove(linfo + l_off, linfo + i,
13105 			sizeof(*linfo) * (nr_linfo - i));
13106 
13107 		prog->aux->nr_linfo -= l_cnt;
13108 		nr_linfo = prog->aux->nr_linfo;
13109 	}
13110 
13111 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
13112 	for (i = l_off; i < nr_linfo; i++)
13113 		linfo[i].insn_off -= cnt;
13114 
13115 	/* fix up all subprogs (incl. 'exit') which start >= off */
13116 	for (i = 0; i <= env->subprog_cnt; i++)
13117 		if (env->subprog_info[i].linfo_idx > l_off) {
13118 			/* program may have started in the removed region but
13119 			 * may not be fully removed
13120 			 */
13121 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13122 				env->subprog_info[i].linfo_idx -= l_cnt;
13123 			else
13124 				env->subprog_info[i].linfo_idx = l_off;
13125 		}
13126 
13127 	return 0;
13128 }
13129 
13130 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13131 {
13132 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13133 	unsigned int orig_prog_len = env->prog->len;
13134 	int err;
13135 
13136 	if (bpf_prog_is_dev_bound(env->prog->aux))
13137 		bpf_prog_offload_remove_insns(env, off, cnt);
13138 
13139 	err = bpf_remove_insns(env->prog, off, cnt);
13140 	if (err)
13141 		return err;
13142 
13143 	err = adjust_subprog_starts_after_remove(env, off, cnt);
13144 	if (err)
13145 		return err;
13146 
13147 	err = bpf_adj_linfo_after_remove(env, off, cnt);
13148 	if (err)
13149 		return err;
13150 
13151 	memmove(aux_data + off,	aux_data + off + cnt,
13152 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
13153 
13154 	return 0;
13155 }
13156 
13157 /* The verifier does more data flow analysis than llvm and will not
13158  * explore branches that are dead at run time. Malicious programs can
13159  * have dead code too. Therefore replace all dead at-run-time code
13160  * with 'ja -1'.
13161  *
13162  * Just nops are not optimal, e.g. if they would sit at the end of the
13163  * program and through another bug we would manage to jump there, then
13164  * we'd execute beyond program memory otherwise. Returning exception
13165  * code also wouldn't work since we can have subprogs where the dead
13166  * code could be located.
13167  */
13168 static void sanitize_dead_code(struct bpf_verifier_env *env)
13169 {
13170 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13171 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
13172 	struct bpf_insn *insn = env->prog->insnsi;
13173 	const int insn_cnt = env->prog->len;
13174 	int i;
13175 
13176 	for (i = 0; i < insn_cnt; i++) {
13177 		if (aux_data[i].seen)
13178 			continue;
13179 		memcpy(insn + i, &trap, sizeof(trap));
13180 		aux_data[i].zext_dst = false;
13181 	}
13182 }
13183 
13184 static bool insn_is_cond_jump(u8 code)
13185 {
13186 	u8 op;
13187 
13188 	if (BPF_CLASS(code) == BPF_JMP32)
13189 		return true;
13190 
13191 	if (BPF_CLASS(code) != BPF_JMP)
13192 		return false;
13193 
13194 	op = BPF_OP(code);
13195 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13196 }
13197 
13198 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13199 {
13200 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13201 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13202 	struct bpf_insn *insn = env->prog->insnsi;
13203 	const int insn_cnt = env->prog->len;
13204 	int i;
13205 
13206 	for (i = 0; i < insn_cnt; i++, insn++) {
13207 		if (!insn_is_cond_jump(insn->code))
13208 			continue;
13209 
13210 		if (!aux_data[i + 1].seen)
13211 			ja.off = insn->off;
13212 		else if (!aux_data[i + 1 + insn->off].seen)
13213 			ja.off = 0;
13214 		else
13215 			continue;
13216 
13217 		if (bpf_prog_is_dev_bound(env->prog->aux))
13218 			bpf_prog_offload_replace_insn(env, i, &ja);
13219 
13220 		memcpy(insn, &ja, sizeof(ja));
13221 	}
13222 }
13223 
13224 static int opt_remove_dead_code(struct bpf_verifier_env *env)
13225 {
13226 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13227 	int insn_cnt = env->prog->len;
13228 	int i, err;
13229 
13230 	for (i = 0; i < insn_cnt; i++) {
13231 		int j;
13232 
13233 		j = 0;
13234 		while (i + j < insn_cnt && !aux_data[i + j].seen)
13235 			j++;
13236 		if (!j)
13237 			continue;
13238 
13239 		err = verifier_remove_insns(env, i, j);
13240 		if (err)
13241 			return err;
13242 		insn_cnt = env->prog->len;
13243 	}
13244 
13245 	return 0;
13246 }
13247 
13248 static int opt_remove_nops(struct bpf_verifier_env *env)
13249 {
13250 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13251 	struct bpf_insn *insn = env->prog->insnsi;
13252 	int insn_cnt = env->prog->len;
13253 	int i, err;
13254 
13255 	for (i = 0; i < insn_cnt; i++) {
13256 		if (memcmp(&insn[i], &ja, sizeof(ja)))
13257 			continue;
13258 
13259 		err = verifier_remove_insns(env, i, 1);
13260 		if (err)
13261 			return err;
13262 		insn_cnt--;
13263 		i--;
13264 	}
13265 
13266 	return 0;
13267 }
13268 
13269 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13270 					 const union bpf_attr *attr)
13271 {
13272 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
13273 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
13274 	int i, patch_len, delta = 0, len = env->prog->len;
13275 	struct bpf_insn *insns = env->prog->insnsi;
13276 	struct bpf_prog *new_prog;
13277 	bool rnd_hi32;
13278 
13279 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
13280 	zext_patch[1] = BPF_ZEXT_REG(0);
13281 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13282 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13283 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
13284 	for (i = 0; i < len; i++) {
13285 		int adj_idx = i + delta;
13286 		struct bpf_insn insn;
13287 		int load_reg;
13288 
13289 		insn = insns[adj_idx];
13290 		load_reg = insn_def_regno(&insn);
13291 		if (!aux[adj_idx].zext_dst) {
13292 			u8 code, class;
13293 			u32 imm_rnd;
13294 
13295 			if (!rnd_hi32)
13296 				continue;
13297 
13298 			code = insn.code;
13299 			class = BPF_CLASS(code);
13300 			if (load_reg == -1)
13301 				continue;
13302 
13303 			/* NOTE: arg "reg" (the fourth one) is only used for
13304 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
13305 			 *       here.
13306 			 */
13307 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
13308 				if (class == BPF_LD &&
13309 				    BPF_MODE(code) == BPF_IMM)
13310 					i++;
13311 				continue;
13312 			}
13313 
13314 			/* ctx load could be transformed into wider load. */
13315 			if (class == BPF_LDX &&
13316 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
13317 				continue;
13318 
13319 			imm_rnd = get_random_int();
13320 			rnd_hi32_patch[0] = insn;
13321 			rnd_hi32_patch[1].imm = imm_rnd;
13322 			rnd_hi32_patch[3].dst_reg = load_reg;
13323 			patch = rnd_hi32_patch;
13324 			patch_len = 4;
13325 			goto apply_patch_buffer;
13326 		}
13327 
13328 		/* Add in an zero-extend instruction if a) the JIT has requested
13329 		 * it or b) it's a CMPXCHG.
13330 		 *
13331 		 * The latter is because: BPF_CMPXCHG always loads a value into
13332 		 * R0, therefore always zero-extends. However some archs'
13333 		 * equivalent instruction only does this load when the
13334 		 * comparison is successful. This detail of CMPXCHG is
13335 		 * orthogonal to the general zero-extension behaviour of the
13336 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
13337 		 */
13338 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13339 			continue;
13340 
13341 		if (WARN_ON(load_reg == -1)) {
13342 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13343 			return -EFAULT;
13344 		}
13345 
13346 		zext_patch[0] = insn;
13347 		zext_patch[1].dst_reg = load_reg;
13348 		zext_patch[1].src_reg = load_reg;
13349 		patch = zext_patch;
13350 		patch_len = 2;
13351 apply_patch_buffer:
13352 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13353 		if (!new_prog)
13354 			return -ENOMEM;
13355 		env->prog = new_prog;
13356 		insns = new_prog->insnsi;
13357 		aux = env->insn_aux_data;
13358 		delta += patch_len - 1;
13359 	}
13360 
13361 	return 0;
13362 }
13363 
13364 /* convert load instructions that access fields of a context type into a
13365  * sequence of instructions that access fields of the underlying structure:
13366  *     struct __sk_buff    -> struct sk_buff
13367  *     struct bpf_sock_ops -> struct sock
13368  */
13369 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13370 {
13371 	const struct bpf_verifier_ops *ops = env->ops;
13372 	int i, cnt, size, ctx_field_size, delta = 0;
13373 	const int insn_cnt = env->prog->len;
13374 	struct bpf_insn insn_buf[16], *insn;
13375 	u32 target_size, size_default, off;
13376 	struct bpf_prog *new_prog;
13377 	enum bpf_access_type type;
13378 	bool is_narrower_load;
13379 
13380 	if (ops->gen_prologue || env->seen_direct_write) {
13381 		if (!ops->gen_prologue) {
13382 			verbose(env, "bpf verifier is misconfigured\n");
13383 			return -EINVAL;
13384 		}
13385 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13386 					env->prog);
13387 		if (cnt >= ARRAY_SIZE(insn_buf)) {
13388 			verbose(env, "bpf verifier is misconfigured\n");
13389 			return -EINVAL;
13390 		} else if (cnt) {
13391 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13392 			if (!new_prog)
13393 				return -ENOMEM;
13394 
13395 			env->prog = new_prog;
13396 			delta += cnt - 1;
13397 		}
13398 	}
13399 
13400 	if (bpf_prog_is_dev_bound(env->prog->aux))
13401 		return 0;
13402 
13403 	insn = env->prog->insnsi + delta;
13404 
13405 	for (i = 0; i < insn_cnt; i++, insn++) {
13406 		bpf_convert_ctx_access_t convert_ctx_access;
13407 		bool ctx_access;
13408 
13409 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13410 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13411 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13412 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13413 			type = BPF_READ;
13414 			ctx_access = true;
13415 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13416 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13417 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13418 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13419 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13420 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13421 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13422 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13423 			type = BPF_WRITE;
13424 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13425 		} else {
13426 			continue;
13427 		}
13428 
13429 		if (type == BPF_WRITE &&
13430 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
13431 			struct bpf_insn patch[] = {
13432 				*insn,
13433 				BPF_ST_NOSPEC(),
13434 			};
13435 
13436 			cnt = ARRAY_SIZE(patch);
13437 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13438 			if (!new_prog)
13439 				return -ENOMEM;
13440 
13441 			delta    += cnt - 1;
13442 			env->prog = new_prog;
13443 			insn      = new_prog->insnsi + i + delta;
13444 			continue;
13445 		}
13446 
13447 		if (!ctx_access)
13448 			continue;
13449 
13450 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13451 		case PTR_TO_CTX:
13452 			if (!ops->convert_ctx_access)
13453 				continue;
13454 			convert_ctx_access = ops->convert_ctx_access;
13455 			break;
13456 		case PTR_TO_SOCKET:
13457 		case PTR_TO_SOCK_COMMON:
13458 			convert_ctx_access = bpf_sock_convert_ctx_access;
13459 			break;
13460 		case PTR_TO_TCP_SOCK:
13461 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13462 			break;
13463 		case PTR_TO_XDP_SOCK:
13464 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13465 			break;
13466 		case PTR_TO_BTF_ID:
13467 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13468 			if (type == BPF_READ) {
13469 				insn->code = BPF_LDX | BPF_PROBE_MEM |
13470 					BPF_SIZE((insn)->code);
13471 				env->prog->aux->num_exentries++;
13472 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
13473 				verbose(env, "Writes through BTF pointers are not allowed\n");
13474 				return -EINVAL;
13475 			}
13476 			continue;
13477 		default:
13478 			continue;
13479 		}
13480 
13481 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13482 		size = BPF_LDST_BYTES(insn);
13483 
13484 		/* If the read access is a narrower load of the field,
13485 		 * convert to a 4/8-byte load, to minimum program type specific
13486 		 * convert_ctx_access changes. If conversion is successful,
13487 		 * we will apply proper mask to the result.
13488 		 */
13489 		is_narrower_load = size < ctx_field_size;
13490 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13491 		off = insn->off;
13492 		if (is_narrower_load) {
13493 			u8 size_code;
13494 
13495 			if (type == BPF_WRITE) {
13496 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13497 				return -EINVAL;
13498 			}
13499 
13500 			size_code = BPF_H;
13501 			if (ctx_field_size == 4)
13502 				size_code = BPF_W;
13503 			else if (ctx_field_size == 8)
13504 				size_code = BPF_DW;
13505 
13506 			insn->off = off & ~(size_default - 1);
13507 			insn->code = BPF_LDX | BPF_MEM | size_code;
13508 		}
13509 
13510 		target_size = 0;
13511 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13512 					 &target_size);
13513 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13514 		    (ctx_field_size && !target_size)) {
13515 			verbose(env, "bpf verifier is misconfigured\n");
13516 			return -EINVAL;
13517 		}
13518 
13519 		if (is_narrower_load && size < target_size) {
13520 			u8 shift = bpf_ctx_narrow_access_offset(
13521 				off, size, size_default) * 8;
13522 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13523 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13524 				return -EINVAL;
13525 			}
13526 			if (ctx_field_size <= 4) {
13527 				if (shift)
13528 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13529 									insn->dst_reg,
13530 									shift);
13531 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13532 								(1 << size * 8) - 1);
13533 			} else {
13534 				if (shift)
13535 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13536 									insn->dst_reg,
13537 									shift);
13538 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
13539 								(1ULL << size * 8) - 1);
13540 			}
13541 		}
13542 
13543 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13544 		if (!new_prog)
13545 			return -ENOMEM;
13546 
13547 		delta += cnt - 1;
13548 
13549 		/* keep walking new program and skip insns we just inserted */
13550 		env->prog = new_prog;
13551 		insn      = new_prog->insnsi + i + delta;
13552 	}
13553 
13554 	return 0;
13555 }
13556 
13557 static int jit_subprogs(struct bpf_verifier_env *env)
13558 {
13559 	struct bpf_prog *prog = env->prog, **func, *tmp;
13560 	int i, j, subprog_start, subprog_end = 0, len, subprog;
13561 	struct bpf_map *map_ptr;
13562 	struct bpf_insn *insn;
13563 	void *old_bpf_func;
13564 	int err, num_exentries;
13565 
13566 	if (env->subprog_cnt <= 1)
13567 		return 0;
13568 
13569 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13570 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13571 			continue;
13572 
13573 		/* Upon error here we cannot fall back to interpreter but
13574 		 * need a hard reject of the program. Thus -EFAULT is
13575 		 * propagated in any case.
13576 		 */
13577 		subprog = find_subprog(env, i + insn->imm + 1);
13578 		if (subprog < 0) {
13579 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13580 				  i + insn->imm + 1);
13581 			return -EFAULT;
13582 		}
13583 		/* temporarily remember subprog id inside insn instead of
13584 		 * aux_data, since next loop will split up all insns into funcs
13585 		 */
13586 		insn->off = subprog;
13587 		/* remember original imm in case JIT fails and fallback
13588 		 * to interpreter will be needed
13589 		 */
13590 		env->insn_aux_data[i].call_imm = insn->imm;
13591 		/* point imm to __bpf_call_base+1 from JITs point of view */
13592 		insn->imm = 1;
13593 		if (bpf_pseudo_func(insn))
13594 			/* jit (e.g. x86_64) may emit fewer instructions
13595 			 * if it learns a u32 imm is the same as a u64 imm.
13596 			 * Force a non zero here.
13597 			 */
13598 			insn[1].imm = 1;
13599 	}
13600 
13601 	err = bpf_prog_alloc_jited_linfo(prog);
13602 	if (err)
13603 		goto out_undo_insn;
13604 
13605 	err = -ENOMEM;
13606 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13607 	if (!func)
13608 		goto out_undo_insn;
13609 
13610 	for (i = 0; i < env->subprog_cnt; i++) {
13611 		subprog_start = subprog_end;
13612 		subprog_end = env->subprog_info[i + 1].start;
13613 
13614 		len = subprog_end - subprog_start;
13615 		/* bpf_prog_run() doesn't call subprogs directly,
13616 		 * hence main prog stats include the runtime of subprogs.
13617 		 * subprogs don't have IDs and not reachable via prog_get_next_id
13618 		 * func[i]->stats will never be accessed and stays NULL
13619 		 */
13620 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13621 		if (!func[i])
13622 			goto out_free;
13623 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13624 		       len * sizeof(struct bpf_insn));
13625 		func[i]->type = prog->type;
13626 		func[i]->len = len;
13627 		if (bpf_prog_calc_tag(func[i]))
13628 			goto out_free;
13629 		func[i]->is_func = 1;
13630 		func[i]->aux->func_idx = i;
13631 		/* Below members will be freed only at prog->aux */
13632 		func[i]->aux->btf = prog->aux->btf;
13633 		func[i]->aux->func_info = prog->aux->func_info;
13634 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
13635 		func[i]->aux->poke_tab = prog->aux->poke_tab;
13636 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13637 
13638 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
13639 			struct bpf_jit_poke_descriptor *poke;
13640 
13641 			poke = &prog->aux->poke_tab[j];
13642 			if (poke->insn_idx < subprog_end &&
13643 			    poke->insn_idx >= subprog_start)
13644 				poke->aux = func[i]->aux;
13645 		}
13646 
13647 		func[i]->aux->name[0] = 'F';
13648 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13649 		func[i]->jit_requested = 1;
13650 		func[i]->blinding_requested = prog->blinding_requested;
13651 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13652 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
13653 		func[i]->aux->linfo = prog->aux->linfo;
13654 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13655 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13656 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
13657 		num_exentries = 0;
13658 		insn = func[i]->insnsi;
13659 		for (j = 0; j < func[i]->len; j++, insn++) {
13660 			if (BPF_CLASS(insn->code) == BPF_LDX &&
13661 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
13662 				num_exentries++;
13663 		}
13664 		func[i]->aux->num_exentries = num_exentries;
13665 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
13666 		func[i] = bpf_int_jit_compile(func[i]);
13667 		if (!func[i]->jited) {
13668 			err = -ENOTSUPP;
13669 			goto out_free;
13670 		}
13671 		cond_resched();
13672 	}
13673 
13674 	/* at this point all bpf functions were successfully JITed
13675 	 * now populate all bpf_calls with correct addresses and
13676 	 * run last pass of JIT
13677 	 */
13678 	for (i = 0; i < env->subprog_cnt; i++) {
13679 		insn = func[i]->insnsi;
13680 		for (j = 0; j < func[i]->len; j++, insn++) {
13681 			if (bpf_pseudo_func(insn)) {
13682 				subprog = insn->off;
13683 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13684 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13685 				continue;
13686 			}
13687 			if (!bpf_pseudo_call(insn))
13688 				continue;
13689 			subprog = insn->off;
13690 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
13691 		}
13692 
13693 		/* we use the aux data to keep a list of the start addresses
13694 		 * of the JITed images for each function in the program
13695 		 *
13696 		 * for some architectures, such as powerpc64, the imm field
13697 		 * might not be large enough to hold the offset of the start
13698 		 * address of the callee's JITed image from __bpf_call_base
13699 		 *
13700 		 * in such cases, we can lookup the start address of a callee
13701 		 * by using its subprog id, available from the off field of
13702 		 * the call instruction, as an index for this list
13703 		 */
13704 		func[i]->aux->func = func;
13705 		func[i]->aux->func_cnt = env->subprog_cnt;
13706 	}
13707 	for (i = 0; i < env->subprog_cnt; i++) {
13708 		old_bpf_func = func[i]->bpf_func;
13709 		tmp = bpf_int_jit_compile(func[i]);
13710 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13711 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
13712 			err = -ENOTSUPP;
13713 			goto out_free;
13714 		}
13715 		cond_resched();
13716 	}
13717 
13718 	/* finally lock prog and jit images for all functions and
13719 	 * populate kallsysm
13720 	 */
13721 	for (i = 0; i < env->subprog_cnt; i++) {
13722 		bpf_prog_lock_ro(func[i]);
13723 		bpf_prog_kallsyms_add(func[i]);
13724 	}
13725 
13726 	/* Last step: make now unused interpreter insns from main
13727 	 * prog consistent for later dump requests, so they can
13728 	 * later look the same as if they were interpreted only.
13729 	 */
13730 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13731 		if (bpf_pseudo_func(insn)) {
13732 			insn[0].imm = env->insn_aux_data[i].call_imm;
13733 			insn[1].imm = insn->off;
13734 			insn->off = 0;
13735 			continue;
13736 		}
13737 		if (!bpf_pseudo_call(insn))
13738 			continue;
13739 		insn->off = env->insn_aux_data[i].call_imm;
13740 		subprog = find_subprog(env, i + insn->off + 1);
13741 		insn->imm = subprog;
13742 	}
13743 
13744 	prog->jited = 1;
13745 	prog->bpf_func = func[0]->bpf_func;
13746 	prog->jited_len = func[0]->jited_len;
13747 	prog->aux->func = func;
13748 	prog->aux->func_cnt = env->subprog_cnt;
13749 	bpf_prog_jit_attempt_done(prog);
13750 	return 0;
13751 out_free:
13752 	/* We failed JIT'ing, so at this point we need to unregister poke
13753 	 * descriptors from subprogs, so that kernel is not attempting to
13754 	 * patch it anymore as we're freeing the subprog JIT memory.
13755 	 */
13756 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13757 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13758 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13759 	}
13760 	/* At this point we're guaranteed that poke descriptors are not
13761 	 * live anymore. We can just unlink its descriptor table as it's
13762 	 * released with the main prog.
13763 	 */
13764 	for (i = 0; i < env->subprog_cnt; i++) {
13765 		if (!func[i])
13766 			continue;
13767 		func[i]->aux->poke_tab = NULL;
13768 		bpf_jit_free(func[i]);
13769 	}
13770 	kfree(func);
13771 out_undo_insn:
13772 	/* cleanup main prog to be interpreted */
13773 	prog->jit_requested = 0;
13774 	prog->blinding_requested = 0;
13775 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13776 		if (!bpf_pseudo_call(insn))
13777 			continue;
13778 		insn->off = 0;
13779 		insn->imm = env->insn_aux_data[i].call_imm;
13780 	}
13781 	bpf_prog_jit_attempt_done(prog);
13782 	return err;
13783 }
13784 
13785 static int fixup_call_args(struct bpf_verifier_env *env)
13786 {
13787 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13788 	struct bpf_prog *prog = env->prog;
13789 	struct bpf_insn *insn = prog->insnsi;
13790 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13791 	int i, depth;
13792 #endif
13793 	int err = 0;
13794 
13795 	if (env->prog->jit_requested &&
13796 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
13797 		err = jit_subprogs(env);
13798 		if (err == 0)
13799 			return 0;
13800 		if (err == -EFAULT)
13801 			return err;
13802 	}
13803 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13804 	if (has_kfunc_call) {
13805 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13806 		return -EINVAL;
13807 	}
13808 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13809 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
13810 		 * have to be rejected, since interpreter doesn't support them yet.
13811 		 */
13812 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13813 		return -EINVAL;
13814 	}
13815 	for (i = 0; i < prog->len; i++, insn++) {
13816 		if (bpf_pseudo_func(insn)) {
13817 			/* When JIT fails the progs with callback calls
13818 			 * have to be rejected, since interpreter doesn't support them yet.
13819 			 */
13820 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
13821 			return -EINVAL;
13822 		}
13823 
13824 		if (!bpf_pseudo_call(insn))
13825 			continue;
13826 		depth = get_callee_stack_depth(env, insn, i);
13827 		if (depth < 0)
13828 			return depth;
13829 		bpf_patch_call_args(insn, depth);
13830 	}
13831 	err = 0;
13832 #endif
13833 	return err;
13834 }
13835 
13836 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13837 			    struct bpf_insn *insn)
13838 {
13839 	const struct bpf_kfunc_desc *desc;
13840 
13841 	if (!insn->imm) {
13842 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13843 		return -EINVAL;
13844 	}
13845 
13846 	/* insn->imm has the btf func_id. Replace it with
13847 	 * an address (relative to __bpf_base_call).
13848 	 */
13849 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13850 	if (!desc) {
13851 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13852 			insn->imm);
13853 		return -EFAULT;
13854 	}
13855 
13856 	insn->imm = desc->imm;
13857 
13858 	return 0;
13859 }
13860 
13861 /* Do various post-verification rewrites in a single program pass.
13862  * These rewrites simplify JIT and interpreter implementations.
13863  */
13864 static int do_misc_fixups(struct bpf_verifier_env *env)
13865 {
13866 	struct bpf_prog *prog = env->prog;
13867 	enum bpf_attach_type eatype = prog->expected_attach_type;
13868 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13869 	struct bpf_insn *insn = prog->insnsi;
13870 	const struct bpf_func_proto *fn;
13871 	const int insn_cnt = prog->len;
13872 	const struct bpf_map_ops *ops;
13873 	struct bpf_insn_aux_data *aux;
13874 	struct bpf_insn insn_buf[16];
13875 	struct bpf_prog *new_prog;
13876 	struct bpf_map *map_ptr;
13877 	int i, ret, cnt, delta = 0;
13878 
13879 	for (i = 0; i < insn_cnt; i++, insn++) {
13880 		/* Make divide-by-zero exceptions impossible. */
13881 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13882 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13883 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13884 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13885 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13886 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13887 			struct bpf_insn *patchlet;
13888 			struct bpf_insn chk_and_div[] = {
13889 				/* [R,W]x div 0 -> 0 */
13890 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13891 					     BPF_JNE | BPF_K, insn->src_reg,
13892 					     0, 2, 0),
13893 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13894 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13895 				*insn,
13896 			};
13897 			struct bpf_insn chk_and_mod[] = {
13898 				/* [R,W]x mod 0 -> [R,W]x */
13899 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13900 					     BPF_JEQ | BPF_K, insn->src_reg,
13901 					     0, 1 + (is64 ? 0 : 1), 0),
13902 				*insn,
13903 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13904 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13905 			};
13906 
13907 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13908 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13909 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13910 
13911 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13912 			if (!new_prog)
13913 				return -ENOMEM;
13914 
13915 			delta    += cnt - 1;
13916 			env->prog = prog = new_prog;
13917 			insn      = new_prog->insnsi + i + delta;
13918 			continue;
13919 		}
13920 
13921 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13922 		if (BPF_CLASS(insn->code) == BPF_LD &&
13923 		    (BPF_MODE(insn->code) == BPF_ABS ||
13924 		     BPF_MODE(insn->code) == BPF_IND)) {
13925 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13926 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13927 				verbose(env, "bpf verifier is misconfigured\n");
13928 				return -EINVAL;
13929 			}
13930 
13931 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13932 			if (!new_prog)
13933 				return -ENOMEM;
13934 
13935 			delta    += cnt - 1;
13936 			env->prog = prog = new_prog;
13937 			insn      = new_prog->insnsi + i + delta;
13938 			continue;
13939 		}
13940 
13941 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13942 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13943 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13944 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13945 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13946 			struct bpf_insn *patch = &insn_buf[0];
13947 			bool issrc, isneg, isimm;
13948 			u32 off_reg;
13949 
13950 			aux = &env->insn_aux_data[i + delta];
13951 			if (!aux->alu_state ||
13952 			    aux->alu_state == BPF_ALU_NON_POINTER)
13953 				continue;
13954 
13955 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13956 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13957 				BPF_ALU_SANITIZE_SRC;
13958 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13959 
13960 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
13961 			if (isimm) {
13962 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13963 			} else {
13964 				if (isneg)
13965 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13966 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13967 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13968 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13969 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13970 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13971 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13972 			}
13973 			if (!issrc)
13974 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13975 			insn->src_reg = BPF_REG_AX;
13976 			if (isneg)
13977 				insn->code = insn->code == code_add ?
13978 					     code_sub : code_add;
13979 			*patch++ = *insn;
13980 			if (issrc && isneg && !isimm)
13981 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13982 			cnt = patch - insn_buf;
13983 
13984 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13985 			if (!new_prog)
13986 				return -ENOMEM;
13987 
13988 			delta    += cnt - 1;
13989 			env->prog = prog = new_prog;
13990 			insn      = new_prog->insnsi + i + delta;
13991 			continue;
13992 		}
13993 
13994 		if (insn->code != (BPF_JMP | BPF_CALL))
13995 			continue;
13996 		if (insn->src_reg == BPF_PSEUDO_CALL)
13997 			continue;
13998 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13999 			ret = fixup_kfunc_call(env, insn);
14000 			if (ret)
14001 				return ret;
14002 			continue;
14003 		}
14004 
14005 		if (insn->imm == BPF_FUNC_get_route_realm)
14006 			prog->dst_needed = 1;
14007 		if (insn->imm == BPF_FUNC_get_prandom_u32)
14008 			bpf_user_rnd_init_once();
14009 		if (insn->imm == BPF_FUNC_override_return)
14010 			prog->kprobe_override = 1;
14011 		if (insn->imm == BPF_FUNC_tail_call) {
14012 			/* If we tail call into other programs, we
14013 			 * cannot make any assumptions since they can
14014 			 * be replaced dynamically during runtime in
14015 			 * the program array.
14016 			 */
14017 			prog->cb_access = 1;
14018 			if (!allow_tail_call_in_subprogs(env))
14019 				prog->aux->stack_depth = MAX_BPF_STACK;
14020 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
14021 
14022 			/* mark bpf_tail_call as different opcode to avoid
14023 			 * conditional branch in the interpreter for every normal
14024 			 * call and to prevent accidental JITing by JIT compiler
14025 			 * that doesn't support bpf_tail_call yet
14026 			 */
14027 			insn->imm = 0;
14028 			insn->code = BPF_JMP | BPF_TAIL_CALL;
14029 
14030 			aux = &env->insn_aux_data[i + delta];
14031 			if (env->bpf_capable && !prog->blinding_requested &&
14032 			    prog->jit_requested &&
14033 			    !bpf_map_key_poisoned(aux) &&
14034 			    !bpf_map_ptr_poisoned(aux) &&
14035 			    !bpf_map_ptr_unpriv(aux)) {
14036 				struct bpf_jit_poke_descriptor desc = {
14037 					.reason = BPF_POKE_REASON_TAIL_CALL,
14038 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14039 					.tail_call.key = bpf_map_key_immediate(aux),
14040 					.insn_idx = i + delta,
14041 				};
14042 
14043 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
14044 				if (ret < 0) {
14045 					verbose(env, "adding tail call poke descriptor failed\n");
14046 					return ret;
14047 				}
14048 
14049 				insn->imm = ret + 1;
14050 				continue;
14051 			}
14052 
14053 			if (!bpf_map_ptr_unpriv(aux))
14054 				continue;
14055 
14056 			/* instead of changing every JIT dealing with tail_call
14057 			 * emit two extra insns:
14058 			 * if (index >= max_entries) goto out;
14059 			 * index &= array->index_mask;
14060 			 * to avoid out-of-bounds cpu speculation
14061 			 */
14062 			if (bpf_map_ptr_poisoned(aux)) {
14063 				verbose(env, "tail_call abusing map_ptr\n");
14064 				return -EINVAL;
14065 			}
14066 
14067 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14068 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14069 						  map_ptr->max_entries, 2);
14070 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14071 						    container_of(map_ptr,
14072 								 struct bpf_array,
14073 								 map)->index_mask);
14074 			insn_buf[2] = *insn;
14075 			cnt = 3;
14076 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14077 			if (!new_prog)
14078 				return -ENOMEM;
14079 
14080 			delta    += cnt - 1;
14081 			env->prog = prog = new_prog;
14082 			insn      = new_prog->insnsi + i + delta;
14083 			continue;
14084 		}
14085 
14086 		if (insn->imm == BPF_FUNC_timer_set_callback) {
14087 			/* The verifier will process callback_fn as many times as necessary
14088 			 * with different maps and the register states prepared by
14089 			 * set_timer_callback_state will be accurate.
14090 			 *
14091 			 * The following use case is valid:
14092 			 *   map1 is shared by prog1, prog2, prog3.
14093 			 *   prog1 calls bpf_timer_init for some map1 elements
14094 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
14095 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
14096 			 *   prog3 calls bpf_timer_start for some map1 elements.
14097 			 *     Those that were not both bpf_timer_init-ed and
14098 			 *     bpf_timer_set_callback-ed will return -EINVAL.
14099 			 */
14100 			struct bpf_insn ld_addrs[2] = {
14101 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14102 			};
14103 
14104 			insn_buf[0] = ld_addrs[0];
14105 			insn_buf[1] = ld_addrs[1];
14106 			insn_buf[2] = *insn;
14107 			cnt = 3;
14108 
14109 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14110 			if (!new_prog)
14111 				return -ENOMEM;
14112 
14113 			delta    += cnt - 1;
14114 			env->prog = prog = new_prog;
14115 			insn      = new_prog->insnsi + i + delta;
14116 			goto patch_call_imm;
14117 		}
14118 
14119 		if (insn->imm == BPF_FUNC_task_storage_get ||
14120 		    insn->imm == BPF_FUNC_sk_storage_get ||
14121 		    insn->imm == BPF_FUNC_inode_storage_get) {
14122 			if (env->prog->aux->sleepable)
14123 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
14124 			else
14125 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
14126 			insn_buf[1] = *insn;
14127 			cnt = 2;
14128 
14129 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14130 			if (!new_prog)
14131 				return -ENOMEM;
14132 
14133 			delta += cnt - 1;
14134 			env->prog = prog = new_prog;
14135 			insn = new_prog->insnsi + i + delta;
14136 			goto patch_call_imm;
14137 		}
14138 
14139 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
14140 		 * and other inlining handlers are currently limited to 64 bit
14141 		 * only.
14142 		 */
14143 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14144 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
14145 		     insn->imm == BPF_FUNC_map_update_elem ||
14146 		     insn->imm == BPF_FUNC_map_delete_elem ||
14147 		     insn->imm == BPF_FUNC_map_push_elem   ||
14148 		     insn->imm == BPF_FUNC_map_pop_elem    ||
14149 		     insn->imm == BPF_FUNC_map_peek_elem   ||
14150 		     insn->imm == BPF_FUNC_redirect_map    ||
14151 		     insn->imm == BPF_FUNC_for_each_map_elem ||
14152 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
14153 			aux = &env->insn_aux_data[i + delta];
14154 			if (bpf_map_ptr_poisoned(aux))
14155 				goto patch_call_imm;
14156 
14157 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14158 			ops = map_ptr->ops;
14159 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
14160 			    ops->map_gen_lookup) {
14161 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
14162 				if (cnt == -EOPNOTSUPP)
14163 					goto patch_map_ops_generic;
14164 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14165 					verbose(env, "bpf verifier is misconfigured\n");
14166 					return -EINVAL;
14167 				}
14168 
14169 				new_prog = bpf_patch_insn_data(env, i + delta,
14170 							       insn_buf, cnt);
14171 				if (!new_prog)
14172 					return -ENOMEM;
14173 
14174 				delta    += cnt - 1;
14175 				env->prog = prog = new_prog;
14176 				insn      = new_prog->insnsi + i + delta;
14177 				continue;
14178 			}
14179 
14180 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14181 				     (void *(*)(struct bpf_map *map, void *key))NULL));
14182 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14183 				     (int (*)(struct bpf_map *map, void *key))NULL));
14184 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14185 				     (int (*)(struct bpf_map *map, void *key, void *value,
14186 					      u64 flags))NULL));
14187 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14188 				     (int (*)(struct bpf_map *map, void *value,
14189 					      u64 flags))NULL));
14190 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14191 				     (int (*)(struct bpf_map *map, void *value))NULL));
14192 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14193 				     (int (*)(struct bpf_map *map, void *value))NULL));
14194 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
14195 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
14196 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14197 				     (int (*)(struct bpf_map *map,
14198 					      bpf_callback_t callback_fn,
14199 					      void *callback_ctx,
14200 					      u64 flags))NULL));
14201 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14202 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
14203 
14204 patch_map_ops_generic:
14205 			switch (insn->imm) {
14206 			case BPF_FUNC_map_lookup_elem:
14207 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
14208 				continue;
14209 			case BPF_FUNC_map_update_elem:
14210 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
14211 				continue;
14212 			case BPF_FUNC_map_delete_elem:
14213 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
14214 				continue;
14215 			case BPF_FUNC_map_push_elem:
14216 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
14217 				continue;
14218 			case BPF_FUNC_map_pop_elem:
14219 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
14220 				continue;
14221 			case BPF_FUNC_map_peek_elem:
14222 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
14223 				continue;
14224 			case BPF_FUNC_redirect_map:
14225 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
14226 				continue;
14227 			case BPF_FUNC_for_each_map_elem:
14228 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
14229 				continue;
14230 			case BPF_FUNC_map_lookup_percpu_elem:
14231 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14232 				continue;
14233 			}
14234 
14235 			goto patch_call_imm;
14236 		}
14237 
14238 		/* Implement bpf_jiffies64 inline. */
14239 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14240 		    insn->imm == BPF_FUNC_jiffies64) {
14241 			struct bpf_insn ld_jiffies_addr[2] = {
14242 				BPF_LD_IMM64(BPF_REG_0,
14243 					     (unsigned long)&jiffies),
14244 			};
14245 
14246 			insn_buf[0] = ld_jiffies_addr[0];
14247 			insn_buf[1] = ld_jiffies_addr[1];
14248 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14249 						  BPF_REG_0, 0);
14250 			cnt = 3;
14251 
14252 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14253 						       cnt);
14254 			if (!new_prog)
14255 				return -ENOMEM;
14256 
14257 			delta    += cnt - 1;
14258 			env->prog = prog = new_prog;
14259 			insn      = new_prog->insnsi + i + delta;
14260 			continue;
14261 		}
14262 
14263 		/* Implement bpf_get_func_arg inline. */
14264 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14265 		    insn->imm == BPF_FUNC_get_func_arg) {
14266 			/* Load nr_args from ctx - 8 */
14267 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14268 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14269 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14270 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14271 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14272 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14273 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14274 			insn_buf[7] = BPF_JMP_A(1);
14275 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14276 			cnt = 9;
14277 
14278 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14279 			if (!new_prog)
14280 				return -ENOMEM;
14281 
14282 			delta    += cnt - 1;
14283 			env->prog = prog = new_prog;
14284 			insn      = new_prog->insnsi + i + delta;
14285 			continue;
14286 		}
14287 
14288 		/* Implement bpf_get_func_ret inline. */
14289 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14290 		    insn->imm == BPF_FUNC_get_func_ret) {
14291 			if (eatype == BPF_TRACE_FEXIT ||
14292 			    eatype == BPF_MODIFY_RETURN) {
14293 				/* Load nr_args from ctx - 8 */
14294 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14295 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14296 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14297 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14298 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14299 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14300 				cnt = 6;
14301 			} else {
14302 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14303 				cnt = 1;
14304 			}
14305 
14306 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14307 			if (!new_prog)
14308 				return -ENOMEM;
14309 
14310 			delta    += cnt - 1;
14311 			env->prog = prog = new_prog;
14312 			insn      = new_prog->insnsi + i + delta;
14313 			continue;
14314 		}
14315 
14316 		/* Implement get_func_arg_cnt inline. */
14317 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14318 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
14319 			/* Load nr_args from ctx - 8 */
14320 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14321 
14322 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14323 			if (!new_prog)
14324 				return -ENOMEM;
14325 
14326 			env->prog = prog = new_prog;
14327 			insn      = new_prog->insnsi + i + delta;
14328 			continue;
14329 		}
14330 
14331 		/* Implement bpf_get_func_ip inline. */
14332 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14333 		    insn->imm == BPF_FUNC_get_func_ip) {
14334 			/* Load IP address from ctx - 16 */
14335 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
14336 
14337 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14338 			if (!new_prog)
14339 				return -ENOMEM;
14340 
14341 			env->prog = prog = new_prog;
14342 			insn      = new_prog->insnsi + i + delta;
14343 			continue;
14344 		}
14345 
14346 patch_call_imm:
14347 		fn = env->ops->get_func_proto(insn->imm, env->prog);
14348 		/* all functions that have prototype and verifier allowed
14349 		 * programs to call them, must be real in-kernel functions
14350 		 */
14351 		if (!fn->func) {
14352 			verbose(env,
14353 				"kernel subsystem misconfigured func %s#%d\n",
14354 				func_id_name(insn->imm), insn->imm);
14355 			return -EFAULT;
14356 		}
14357 		insn->imm = fn->func - __bpf_call_base;
14358 	}
14359 
14360 	/* Since poke tab is now finalized, publish aux to tracker. */
14361 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
14362 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
14363 		if (!map_ptr->ops->map_poke_track ||
14364 		    !map_ptr->ops->map_poke_untrack ||
14365 		    !map_ptr->ops->map_poke_run) {
14366 			verbose(env, "bpf verifier is misconfigured\n");
14367 			return -EINVAL;
14368 		}
14369 
14370 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14371 		if (ret < 0) {
14372 			verbose(env, "tracking tail call prog failed\n");
14373 			return ret;
14374 		}
14375 	}
14376 
14377 	sort_kfunc_descs_by_imm(env->prog);
14378 
14379 	return 0;
14380 }
14381 
14382 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14383 					int position,
14384 					s32 stack_base,
14385 					u32 callback_subprogno,
14386 					u32 *cnt)
14387 {
14388 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14389 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14390 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14391 	int reg_loop_max = BPF_REG_6;
14392 	int reg_loop_cnt = BPF_REG_7;
14393 	int reg_loop_ctx = BPF_REG_8;
14394 
14395 	struct bpf_prog *new_prog;
14396 	u32 callback_start;
14397 	u32 call_insn_offset;
14398 	s32 callback_offset;
14399 
14400 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
14401 	 * be careful to modify this code in sync.
14402 	 */
14403 	struct bpf_insn insn_buf[] = {
14404 		/* Return error and jump to the end of the patch if
14405 		 * expected number of iterations is too big.
14406 		 */
14407 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14408 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14409 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14410 		/* spill R6, R7, R8 to use these as loop vars */
14411 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14412 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14413 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14414 		/* initialize loop vars */
14415 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14416 		BPF_MOV32_IMM(reg_loop_cnt, 0),
14417 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14418 		/* loop header,
14419 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
14420 		 */
14421 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14422 		/* callback call,
14423 		 * correct callback offset would be set after patching
14424 		 */
14425 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14426 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14427 		BPF_CALL_REL(0),
14428 		/* increment loop counter */
14429 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14430 		/* jump to loop header if callback returned 0 */
14431 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14432 		/* return value of bpf_loop,
14433 		 * set R0 to the number of iterations
14434 		 */
14435 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14436 		/* restore original values of R6, R7, R8 */
14437 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14438 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14439 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14440 	};
14441 
14442 	*cnt = ARRAY_SIZE(insn_buf);
14443 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14444 	if (!new_prog)
14445 		return new_prog;
14446 
14447 	/* callback start is known only after patching */
14448 	callback_start = env->subprog_info[callback_subprogno].start;
14449 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14450 	call_insn_offset = position + 12;
14451 	callback_offset = callback_start - call_insn_offset - 1;
14452 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
14453 
14454 	return new_prog;
14455 }
14456 
14457 static bool is_bpf_loop_call(struct bpf_insn *insn)
14458 {
14459 	return insn->code == (BPF_JMP | BPF_CALL) &&
14460 		insn->src_reg == 0 &&
14461 		insn->imm == BPF_FUNC_loop;
14462 }
14463 
14464 /* For all sub-programs in the program (including main) check
14465  * insn_aux_data to see if there are bpf_loop calls that require
14466  * inlining. If such calls are found the calls are replaced with a
14467  * sequence of instructions produced by `inline_bpf_loop` function and
14468  * subprog stack_depth is increased by the size of 3 registers.
14469  * This stack space is used to spill values of the R6, R7, R8.  These
14470  * registers are used to store the loop bound, counter and context
14471  * variables.
14472  */
14473 static int optimize_bpf_loop(struct bpf_verifier_env *env)
14474 {
14475 	struct bpf_subprog_info *subprogs = env->subprog_info;
14476 	int i, cur_subprog = 0, cnt, delta = 0;
14477 	struct bpf_insn *insn = env->prog->insnsi;
14478 	int insn_cnt = env->prog->len;
14479 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
14480 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14481 	u16 stack_depth_extra = 0;
14482 
14483 	for (i = 0; i < insn_cnt; i++, insn++) {
14484 		struct bpf_loop_inline_state *inline_state =
14485 			&env->insn_aux_data[i + delta].loop_inline_state;
14486 
14487 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14488 			struct bpf_prog *new_prog;
14489 
14490 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14491 			new_prog = inline_bpf_loop(env,
14492 						   i + delta,
14493 						   -(stack_depth + stack_depth_extra),
14494 						   inline_state->callback_subprogno,
14495 						   &cnt);
14496 			if (!new_prog)
14497 				return -ENOMEM;
14498 
14499 			delta     += cnt - 1;
14500 			env->prog  = new_prog;
14501 			insn       = new_prog->insnsi + i + delta;
14502 		}
14503 
14504 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14505 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
14506 			cur_subprog++;
14507 			stack_depth = subprogs[cur_subprog].stack_depth;
14508 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14509 			stack_depth_extra = 0;
14510 		}
14511 	}
14512 
14513 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14514 
14515 	return 0;
14516 }
14517 
14518 static void free_states(struct bpf_verifier_env *env)
14519 {
14520 	struct bpf_verifier_state_list *sl, *sln;
14521 	int i;
14522 
14523 	sl = env->free_list;
14524 	while (sl) {
14525 		sln = sl->next;
14526 		free_verifier_state(&sl->state, false);
14527 		kfree(sl);
14528 		sl = sln;
14529 	}
14530 	env->free_list = NULL;
14531 
14532 	if (!env->explored_states)
14533 		return;
14534 
14535 	for (i = 0; i < state_htab_size(env); i++) {
14536 		sl = env->explored_states[i];
14537 
14538 		while (sl) {
14539 			sln = sl->next;
14540 			free_verifier_state(&sl->state, false);
14541 			kfree(sl);
14542 			sl = sln;
14543 		}
14544 		env->explored_states[i] = NULL;
14545 	}
14546 }
14547 
14548 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14549 {
14550 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14551 	struct bpf_verifier_state *state;
14552 	struct bpf_reg_state *regs;
14553 	int ret, i;
14554 
14555 	env->prev_linfo = NULL;
14556 	env->pass_cnt++;
14557 
14558 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14559 	if (!state)
14560 		return -ENOMEM;
14561 	state->curframe = 0;
14562 	state->speculative = false;
14563 	state->branches = 1;
14564 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14565 	if (!state->frame[0]) {
14566 		kfree(state);
14567 		return -ENOMEM;
14568 	}
14569 	env->cur_state = state;
14570 	init_func_state(env, state->frame[0],
14571 			BPF_MAIN_FUNC /* callsite */,
14572 			0 /* frameno */,
14573 			subprog);
14574 
14575 	regs = state->frame[state->curframe]->regs;
14576 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14577 		ret = btf_prepare_func_args(env, subprog, regs);
14578 		if (ret)
14579 			goto out;
14580 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14581 			if (regs[i].type == PTR_TO_CTX)
14582 				mark_reg_known_zero(env, regs, i);
14583 			else if (regs[i].type == SCALAR_VALUE)
14584 				mark_reg_unknown(env, regs, i);
14585 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
14586 				const u32 mem_size = regs[i].mem_size;
14587 
14588 				mark_reg_known_zero(env, regs, i);
14589 				regs[i].mem_size = mem_size;
14590 				regs[i].id = ++env->id_gen;
14591 			}
14592 		}
14593 	} else {
14594 		/* 1st arg to a function */
14595 		regs[BPF_REG_1].type = PTR_TO_CTX;
14596 		mark_reg_known_zero(env, regs, BPF_REG_1);
14597 		ret = btf_check_subprog_arg_match(env, subprog, regs);
14598 		if (ret == -EFAULT)
14599 			/* unlikely verifier bug. abort.
14600 			 * ret == 0 and ret < 0 are sadly acceptable for
14601 			 * main() function due to backward compatibility.
14602 			 * Like socket filter program may be written as:
14603 			 * int bpf_prog(struct pt_regs *ctx)
14604 			 * and never dereference that ctx in the program.
14605 			 * 'struct pt_regs' is a type mismatch for socket
14606 			 * filter that should be using 'struct __sk_buff'.
14607 			 */
14608 			goto out;
14609 	}
14610 
14611 	ret = do_check(env);
14612 out:
14613 	/* check for NULL is necessary, since cur_state can be freed inside
14614 	 * do_check() under memory pressure.
14615 	 */
14616 	if (env->cur_state) {
14617 		free_verifier_state(env->cur_state, true);
14618 		env->cur_state = NULL;
14619 	}
14620 	while (!pop_stack(env, NULL, NULL, false));
14621 	if (!ret && pop_log)
14622 		bpf_vlog_reset(&env->log, 0);
14623 	free_states(env);
14624 	return ret;
14625 }
14626 
14627 /* Verify all global functions in a BPF program one by one based on their BTF.
14628  * All global functions must pass verification. Otherwise the whole program is rejected.
14629  * Consider:
14630  * int bar(int);
14631  * int foo(int f)
14632  * {
14633  *    return bar(f);
14634  * }
14635  * int bar(int b)
14636  * {
14637  *    ...
14638  * }
14639  * foo() will be verified first for R1=any_scalar_value. During verification it
14640  * will be assumed that bar() already verified successfully and call to bar()
14641  * from foo() will be checked for type match only. Later bar() will be verified
14642  * independently to check that it's safe for R1=any_scalar_value.
14643  */
14644 static int do_check_subprogs(struct bpf_verifier_env *env)
14645 {
14646 	struct bpf_prog_aux *aux = env->prog->aux;
14647 	int i, ret;
14648 
14649 	if (!aux->func_info)
14650 		return 0;
14651 
14652 	for (i = 1; i < env->subprog_cnt; i++) {
14653 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14654 			continue;
14655 		env->insn_idx = env->subprog_info[i].start;
14656 		WARN_ON_ONCE(env->insn_idx == 0);
14657 		ret = do_check_common(env, i);
14658 		if (ret) {
14659 			return ret;
14660 		} else if (env->log.level & BPF_LOG_LEVEL) {
14661 			verbose(env,
14662 				"Func#%d is safe for any args that match its prototype\n",
14663 				i);
14664 		}
14665 	}
14666 	return 0;
14667 }
14668 
14669 static int do_check_main(struct bpf_verifier_env *env)
14670 {
14671 	int ret;
14672 
14673 	env->insn_idx = 0;
14674 	ret = do_check_common(env, 0);
14675 	if (!ret)
14676 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14677 	return ret;
14678 }
14679 
14680 
14681 static void print_verification_stats(struct bpf_verifier_env *env)
14682 {
14683 	int i;
14684 
14685 	if (env->log.level & BPF_LOG_STATS) {
14686 		verbose(env, "verification time %lld usec\n",
14687 			div_u64(env->verification_time, 1000));
14688 		verbose(env, "stack depth ");
14689 		for (i = 0; i < env->subprog_cnt; i++) {
14690 			u32 depth = env->subprog_info[i].stack_depth;
14691 
14692 			verbose(env, "%d", depth);
14693 			if (i + 1 < env->subprog_cnt)
14694 				verbose(env, "+");
14695 		}
14696 		verbose(env, "\n");
14697 	}
14698 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14699 		"total_states %d peak_states %d mark_read %d\n",
14700 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14701 		env->max_states_per_insn, env->total_states,
14702 		env->peak_states, env->longest_mark_read_walk);
14703 }
14704 
14705 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14706 {
14707 	const struct btf_type *t, *func_proto;
14708 	const struct bpf_struct_ops *st_ops;
14709 	const struct btf_member *member;
14710 	struct bpf_prog *prog = env->prog;
14711 	u32 btf_id, member_idx;
14712 	const char *mname;
14713 
14714 	if (!prog->gpl_compatible) {
14715 		verbose(env, "struct ops programs must have a GPL compatible license\n");
14716 		return -EINVAL;
14717 	}
14718 
14719 	btf_id = prog->aux->attach_btf_id;
14720 	st_ops = bpf_struct_ops_find(btf_id);
14721 	if (!st_ops) {
14722 		verbose(env, "attach_btf_id %u is not a supported struct\n",
14723 			btf_id);
14724 		return -ENOTSUPP;
14725 	}
14726 
14727 	t = st_ops->type;
14728 	member_idx = prog->expected_attach_type;
14729 	if (member_idx >= btf_type_vlen(t)) {
14730 		verbose(env, "attach to invalid member idx %u of struct %s\n",
14731 			member_idx, st_ops->name);
14732 		return -EINVAL;
14733 	}
14734 
14735 	member = &btf_type_member(t)[member_idx];
14736 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14737 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14738 					       NULL);
14739 	if (!func_proto) {
14740 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14741 			mname, member_idx, st_ops->name);
14742 		return -EINVAL;
14743 	}
14744 
14745 	if (st_ops->check_member) {
14746 		int err = st_ops->check_member(t, member);
14747 
14748 		if (err) {
14749 			verbose(env, "attach to unsupported member %s of struct %s\n",
14750 				mname, st_ops->name);
14751 			return err;
14752 		}
14753 	}
14754 
14755 	prog->aux->attach_func_proto = func_proto;
14756 	prog->aux->attach_func_name = mname;
14757 	env->ops = st_ops->verifier_ops;
14758 
14759 	return 0;
14760 }
14761 #define SECURITY_PREFIX "security_"
14762 
14763 static int check_attach_modify_return(unsigned long addr, const char *func_name)
14764 {
14765 	if (within_error_injection_list(addr) ||
14766 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
14767 		return 0;
14768 
14769 	return -EINVAL;
14770 }
14771 
14772 /* list of non-sleepable functions that are otherwise on
14773  * ALLOW_ERROR_INJECTION list
14774  */
14775 BTF_SET_START(btf_non_sleepable_error_inject)
14776 /* Three functions below can be called from sleepable and non-sleepable context.
14777  * Assume non-sleepable from bpf safety point of view.
14778  */
14779 BTF_ID(func, __filemap_add_folio)
14780 BTF_ID(func, should_fail_alloc_page)
14781 BTF_ID(func, should_failslab)
14782 BTF_SET_END(btf_non_sleepable_error_inject)
14783 
14784 static int check_non_sleepable_error_inject(u32 btf_id)
14785 {
14786 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14787 }
14788 
14789 int bpf_check_attach_target(struct bpf_verifier_log *log,
14790 			    const struct bpf_prog *prog,
14791 			    const struct bpf_prog *tgt_prog,
14792 			    u32 btf_id,
14793 			    struct bpf_attach_target_info *tgt_info)
14794 {
14795 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
14796 	const char prefix[] = "btf_trace_";
14797 	int ret = 0, subprog = -1, i;
14798 	const struct btf_type *t;
14799 	bool conservative = true;
14800 	const char *tname;
14801 	struct btf *btf;
14802 	long addr = 0;
14803 
14804 	if (!btf_id) {
14805 		bpf_log(log, "Tracing programs must provide btf_id\n");
14806 		return -EINVAL;
14807 	}
14808 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
14809 	if (!btf) {
14810 		bpf_log(log,
14811 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14812 		return -EINVAL;
14813 	}
14814 	t = btf_type_by_id(btf, btf_id);
14815 	if (!t) {
14816 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
14817 		return -EINVAL;
14818 	}
14819 	tname = btf_name_by_offset(btf, t->name_off);
14820 	if (!tname) {
14821 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
14822 		return -EINVAL;
14823 	}
14824 	if (tgt_prog) {
14825 		struct bpf_prog_aux *aux = tgt_prog->aux;
14826 
14827 		for (i = 0; i < aux->func_info_cnt; i++)
14828 			if (aux->func_info[i].type_id == btf_id) {
14829 				subprog = i;
14830 				break;
14831 			}
14832 		if (subprog == -1) {
14833 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
14834 			return -EINVAL;
14835 		}
14836 		conservative = aux->func_info_aux[subprog].unreliable;
14837 		if (prog_extension) {
14838 			if (conservative) {
14839 				bpf_log(log,
14840 					"Cannot replace static functions\n");
14841 				return -EINVAL;
14842 			}
14843 			if (!prog->jit_requested) {
14844 				bpf_log(log,
14845 					"Extension programs should be JITed\n");
14846 				return -EINVAL;
14847 			}
14848 		}
14849 		if (!tgt_prog->jited) {
14850 			bpf_log(log, "Can attach to only JITed progs\n");
14851 			return -EINVAL;
14852 		}
14853 		if (tgt_prog->type == prog->type) {
14854 			/* Cannot fentry/fexit another fentry/fexit program.
14855 			 * Cannot attach program extension to another extension.
14856 			 * It's ok to attach fentry/fexit to extension program.
14857 			 */
14858 			bpf_log(log, "Cannot recursively attach\n");
14859 			return -EINVAL;
14860 		}
14861 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14862 		    prog_extension &&
14863 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14864 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14865 			/* Program extensions can extend all program types
14866 			 * except fentry/fexit. The reason is the following.
14867 			 * The fentry/fexit programs are used for performance
14868 			 * analysis, stats and can be attached to any program
14869 			 * type except themselves. When extension program is
14870 			 * replacing XDP function it is necessary to allow
14871 			 * performance analysis of all functions. Both original
14872 			 * XDP program and its program extension. Hence
14873 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14874 			 * allowed. If extending of fentry/fexit was allowed it
14875 			 * would be possible to create long call chain
14876 			 * fentry->extension->fentry->extension beyond
14877 			 * reasonable stack size. Hence extending fentry is not
14878 			 * allowed.
14879 			 */
14880 			bpf_log(log, "Cannot extend fentry/fexit\n");
14881 			return -EINVAL;
14882 		}
14883 	} else {
14884 		if (prog_extension) {
14885 			bpf_log(log, "Cannot replace kernel functions\n");
14886 			return -EINVAL;
14887 		}
14888 	}
14889 
14890 	switch (prog->expected_attach_type) {
14891 	case BPF_TRACE_RAW_TP:
14892 		if (tgt_prog) {
14893 			bpf_log(log,
14894 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14895 			return -EINVAL;
14896 		}
14897 		if (!btf_type_is_typedef(t)) {
14898 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
14899 				btf_id);
14900 			return -EINVAL;
14901 		}
14902 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
14903 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
14904 				btf_id, tname);
14905 			return -EINVAL;
14906 		}
14907 		tname += sizeof(prefix) - 1;
14908 		t = btf_type_by_id(btf, t->type);
14909 		if (!btf_type_is_ptr(t))
14910 			/* should never happen in valid vmlinux build */
14911 			return -EINVAL;
14912 		t = btf_type_by_id(btf, t->type);
14913 		if (!btf_type_is_func_proto(t))
14914 			/* should never happen in valid vmlinux build */
14915 			return -EINVAL;
14916 
14917 		break;
14918 	case BPF_TRACE_ITER:
14919 		if (!btf_type_is_func(t)) {
14920 			bpf_log(log, "attach_btf_id %u is not a function\n",
14921 				btf_id);
14922 			return -EINVAL;
14923 		}
14924 		t = btf_type_by_id(btf, t->type);
14925 		if (!btf_type_is_func_proto(t))
14926 			return -EINVAL;
14927 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14928 		if (ret)
14929 			return ret;
14930 		break;
14931 	default:
14932 		if (!prog_extension)
14933 			return -EINVAL;
14934 		fallthrough;
14935 	case BPF_MODIFY_RETURN:
14936 	case BPF_LSM_MAC:
14937 	case BPF_LSM_CGROUP:
14938 	case BPF_TRACE_FENTRY:
14939 	case BPF_TRACE_FEXIT:
14940 		if (!btf_type_is_func(t)) {
14941 			bpf_log(log, "attach_btf_id %u is not a function\n",
14942 				btf_id);
14943 			return -EINVAL;
14944 		}
14945 		if (prog_extension &&
14946 		    btf_check_type_match(log, prog, btf, t))
14947 			return -EINVAL;
14948 		t = btf_type_by_id(btf, t->type);
14949 		if (!btf_type_is_func_proto(t))
14950 			return -EINVAL;
14951 
14952 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14953 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14954 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
14955 			return -EINVAL;
14956 
14957 		if (tgt_prog && conservative)
14958 			t = NULL;
14959 
14960 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14961 		if (ret < 0)
14962 			return ret;
14963 
14964 		if (tgt_prog) {
14965 			if (subprog == 0)
14966 				addr = (long) tgt_prog->bpf_func;
14967 			else
14968 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
14969 		} else {
14970 			addr = kallsyms_lookup_name(tname);
14971 			if (!addr) {
14972 				bpf_log(log,
14973 					"The address of function %s cannot be found\n",
14974 					tname);
14975 				return -ENOENT;
14976 			}
14977 		}
14978 
14979 		if (prog->aux->sleepable) {
14980 			ret = -EINVAL;
14981 			switch (prog->type) {
14982 			case BPF_PROG_TYPE_TRACING:
14983 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
14984 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14985 				 */
14986 				if (!check_non_sleepable_error_inject(btf_id) &&
14987 				    within_error_injection_list(addr))
14988 					ret = 0;
14989 				break;
14990 			case BPF_PROG_TYPE_LSM:
14991 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
14992 				 * Only some of them are sleepable.
14993 				 */
14994 				if (bpf_lsm_is_sleepable_hook(btf_id))
14995 					ret = 0;
14996 				break;
14997 			default:
14998 				break;
14999 			}
15000 			if (ret) {
15001 				bpf_log(log, "%s is not sleepable\n", tname);
15002 				return ret;
15003 			}
15004 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
15005 			if (tgt_prog) {
15006 				bpf_log(log, "can't modify return codes of BPF programs\n");
15007 				return -EINVAL;
15008 			}
15009 			ret = check_attach_modify_return(addr, tname);
15010 			if (ret) {
15011 				bpf_log(log, "%s() is not modifiable\n", tname);
15012 				return ret;
15013 			}
15014 		}
15015 
15016 		break;
15017 	}
15018 	tgt_info->tgt_addr = addr;
15019 	tgt_info->tgt_name = tname;
15020 	tgt_info->tgt_type = t;
15021 	return 0;
15022 }
15023 
15024 BTF_SET_START(btf_id_deny)
15025 BTF_ID_UNUSED
15026 #ifdef CONFIG_SMP
15027 BTF_ID(func, migrate_disable)
15028 BTF_ID(func, migrate_enable)
15029 #endif
15030 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15031 BTF_ID(func, rcu_read_unlock_strict)
15032 #endif
15033 BTF_SET_END(btf_id_deny)
15034 
15035 static int check_attach_btf_id(struct bpf_verifier_env *env)
15036 {
15037 	struct bpf_prog *prog = env->prog;
15038 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
15039 	struct bpf_attach_target_info tgt_info = {};
15040 	u32 btf_id = prog->aux->attach_btf_id;
15041 	struct bpf_trampoline *tr;
15042 	int ret;
15043 	u64 key;
15044 
15045 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15046 		if (prog->aux->sleepable)
15047 			/* attach_btf_id checked to be zero already */
15048 			return 0;
15049 		verbose(env, "Syscall programs can only be sleepable\n");
15050 		return -EINVAL;
15051 	}
15052 
15053 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
15054 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15055 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
15056 		return -EINVAL;
15057 	}
15058 
15059 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15060 		return check_struct_ops_btf_id(env);
15061 
15062 	if (prog->type != BPF_PROG_TYPE_TRACING &&
15063 	    prog->type != BPF_PROG_TYPE_LSM &&
15064 	    prog->type != BPF_PROG_TYPE_EXT)
15065 		return 0;
15066 
15067 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15068 	if (ret)
15069 		return ret;
15070 
15071 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
15072 		/* to make freplace equivalent to their targets, they need to
15073 		 * inherit env->ops and expected_attach_type for the rest of the
15074 		 * verification
15075 		 */
15076 		env->ops = bpf_verifier_ops[tgt_prog->type];
15077 		prog->expected_attach_type = tgt_prog->expected_attach_type;
15078 	}
15079 
15080 	/* store info about the attachment target that will be used later */
15081 	prog->aux->attach_func_proto = tgt_info.tgt_type;
15082 	prog->aux->attach_func_name = tgt_info.tgt_name;
15083 
15084 	if (tgt_prog) {
15085 		prog->aux->saved_dst_prog_type = tgt_prog->type;
15086 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15087 	}
15088 
15089 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15090 		prog->aux->attach_btf_trace = true;
15091 		return 0;
15092 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15093 		if (!bpf_iter_prog_supported(prog))
15094 			return -EINVAL;
15095 		return 0;
15096 	}
15097 
15098 	if (prog->type == BPF_PROG_TYPE_LSM) {
15099 		ret = bpf_lsm_verify_prog(&env->log, prog);
15100 		if (ret < 0)
15101 			return ret;
15102 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
15103 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
15104 		return -EINVAL;
15105 	}
15106 
15107 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
15108 	tr = bpf_trampoline_get(key, &tgt_info);
15109 	if (!tr)
15110 		return -ENOMEM;
15111 
15112 	prog->aux->dst_trampoline = tr;
15113 	return 0;
15114 }
15115 
15116 struct btf *bpf_get_btf_vmlinux(void)
15117 {
15118 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15119 		mutex_lock(&bpf_verifier_lock);
15120 		if (!btf_vmlinux)
15121 			btf_vmlinux = btf_parse_vmlinux();
15122 		mutex_unlock(&bpf_verifier_lock);
15123 	}
15124 	return btf_vmlinux;
15125 }
15126 
15127 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
15128 {
15129 	u64 start_time = ktime_get_ns();
15130 	struct bpf_verifier_env *env;
15131 	struct bpf_verifier_log *log;
15132 	int i, len, ret = -EINVAL;
15133 	bool is_priv;
15134 
15135 	/* no program is valid */
15136 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15137 		return -EINVAL;
15138 
15139 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
15140 	 * allocate/free it every time bpf_check() is called
15141 	 */
15142 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
15143 	if (!env)
15144 		return -ENOMEM;
15145 	log = &env->log;
15146 
15147 	len = (*prog)->len;
15148 	env->insn_aux_data =
15149 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
15150 	ret = -ENOMEM;
15151 	if (!env->insn_aux_data)
15152 		goto err_free_env;
15153 	for (i = 0; i < len; i++)
15154 		env->insn_aux_data[i].orig_idx = i;
15155 	env->prog = *prog;
15156 	env->ops = bpf_verifier_ops[env->prog->type];
15157 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
15158 	is_priv = bpf_capable();
15159 
15160 	bpf_get_btf_vmlinux();
15161 
15162 	/* grab the mutex to protect few globals used by verifier */
15163 	if (!is_priv)
15164 		mutex_lock(&bpf_verifier_lock);
15165 
15166 	if (attr->log_level || attr->log_buf || attr->log_size) {
15167 		/* user requested verbose verifier output
15168 		 * and supplied buffer to store the verification trace
15169 		 */
15170 		log->level = attr->log_level;
15171 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15172 		log->len_total = attr->log_size;
15173 
15174 		/* log attributes have to be sane */
15175 		if (!bpf_verifier_log_attr_valid(log)) {
15176 			ret = -EINVAL;
15177 			goto err_unlock;
15178 		}
15179 	}
15180 
15181 	mark_verifier_state_clean(env);
15182 
15183 	if (IS_ERR(btf_vmlinux)) {
15184 		/* Either gcc or pahole or kernel are broken. */
15185 		verbose(env, "in-kernel BTF is malformed\n");
15186 		ret = PTR_ERR(btf_vmlinux);
15187 		goto skip_full_check;
15188 	}
15189 
15190 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15191 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
15192 		env->strict_alignment = true;
15193 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15194 		env->strict_alignment = false;
15195 
15196 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
15197 	env->allow_uninit_stack = bpf_allow_uninit_stack();
15198 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
15199 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
15200 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
15201 	env->bpf_capable = bpf_capable();
15202 
15203 	if (is_priv)
15204 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15205 
15206 	env->explored_states = kvcalloc(state_htab_size(env),
15207 				       sizeof(struct bpf_verifier_state_list *),
15208 				       GFP_USER);
15209 	ret = -ENOMEM;
15210 	if (!env->explored_states)
15211 		goto skip_full_check;
15212 
15213 	ret = add_subprog_and_kfunc(env);
15214 	if (ret < 0)
15215 		goto skip_full_check;
15216 
15217 	ret = check_subprogs(env);
15218 	if (ret < 0)
15219 		goto skip_full_check;
15220 
15221 	ret = check_btf_info(env, attr, uattr);
15222 	if (ret < 0)
15223 		goto skip_full_check;
15224 
15225 	ret = check_attach_btf_id(env);
15226 	if (ret)
15227 		goto skip_full_check;
15228 
15229 	ret = resolve_pseudo_ldimm64(env);
15230 	if (ret < 0)
15231 		goto skip_full_check;
15232 
15233 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
15234 		ret = bpf_prog_offload_verifier_prep(env->prog);
15235 		if (ret)
15236 			goto skip_full_check;
15237 	}
15238 
15239 	ret = check_cfg(env);
15240 	if (ret < 0)
15241 		goto skip_full_check;
15242 
15243 	ret = do_check_subprogs(env);
15244 	ret = ret ?: do_check_main(env);
15245 
15246 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15247 		ret = bpf_prog_offload_finalize(env);
15248 
15249 skip_full_check:
15250 	kvfree(env->explored_states);
15251 
15252 	if (ret == 0)
15253 		ret = check_max_stack_depth(env);
15254 
15255 	/* instruction rewrites happen after this point */
15256 	if (ret == 0)
15257 		ret = optimize_bpf_loop(env);
15258 
15259 	if (is_priv) {
15260 		if (ret == 0)
15261 			opt_hard_wire_dead_code_branches(env);
15262 		if (ret == 0)
15263 			ret = opt_remove_dead_code(env);
15264 		if (ret == 0)
15265 			ret = opt_remove_nops(env);
15266 	} else {
15267 		if (ret == 0)
15268 			sanitize_dead_code(env);
15269 	}
15270 
15271 	if (ret == 0)
15272 		/* program is valid, convert *(u32*)(ctx + off) accesses */
15273 		ret = convert_ctx_accesses(env);
15274 
15275 	if (ret == 0)
15276 		ret = do_misc_fixups(env);
15277 
15278 	/* do 32-bit optimization after insn patching has done so those patched
15279 	 * insns could be handled correctly.
15280 	 */
15281 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15282 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15283 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15284 								     : false;
15285 	}
15286 
15287 	if (ret == 0)
15288 		ret = fixup_call_args(env);
15289 
15290 	env->verification_time = ktime_get_ns() - start_time;
15291 	print_verification_stats(env);
15292 	env->prog->aux->verified_insns = env->insn_processed;
15293 
15294 	if (log->level && bpf_verifier_log_full(log))
15295 		ret = -ENOSPC;
15296 	if (log->level && !log->ubuf) {
15297 		ret = -EFAULT;
15298 		goto err_release_maps;
15299 	}
15300 
15301 	if (ret)
15302 		goto err_release_maps;
15303 
15304 	if (env->used_map_cnt) {
15305 		/* if program passed verifier, update used_maps in bpf_prog_info */
15306 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15307 							  sizeof(env->used_maps[0]),
15308 							  GFP_KERNEL);
15309 
15310 		if (!env->prog->aux->used_maps) {
15311 			ret = -ENOMEM;
15312 			goto err_release_maps;
15313 		}
15314 
15315 		memcpy(env->prog->aux->used_maps, env->used_maps,
15316 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
15317 		env->prog->aux->used_map_cnt = env->used_map_cnt;
15318 	}
15319 	if (env->used_btf_cnt) {
15320 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
15321 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15322 							  sizeof(env->used_btfs[0]),
15323 							  GFP_KERNEL);
15324 		if (!env->prog->aux->used_btfs) {
15325 			ret = -ENOMEM;
15326 			goto err_release_maps;
15327 		}
15328 
15329 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
15330 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15331 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15332 	}
15333 	if (env->used_map_cnt || env->used_btf_cnt) {
15334 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
15335 		 * bpf_ld_imm64 instructions
15336 		 */
15337 		convert_pseudo_ld_imm64(env);
15338 	}
15339 
15340 	adjust_btf_func(env);
15341 
15342 err_release_maps:
15343 	if (!env->prog->aux->used_maps)
15344 		/* if we didn't copy map pointers into bpf_prog_info, release
15345 		 * them now. Otherwise free_used_maps() will release them.
15346 		 */
15347 		release_maps(env);
15348 	if (!env->prog->aux->used_btfs)
15349 		release_btfs(env);
15350 
15351 	/* extension progs temporarily inherit the attach_type of their targets
15352 	   for verification purposes, so set it back to zero before returning
15353 	 */
15354 	if (env->prog->type == BPF_PROG_TYPE_EXT)
15355 		env->prog->expected_attach_type = 0;
15356 
15357 	*prog = env->prog;
15358 err_unlock:
15359 	if (!is_priv)
15360 		mutex_unlock(&bpf_verifier_lock);
15361 	vfree(env->insn_aux_data);
15362 err_free_env:
15363 	kfree(env);
15364 	return ret;
15365 }
15366