1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 194 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 195 static int ref_set_non_owning(struct bpf_verifier_env *env, 196 struct bpf_reg_state *reg); 197 198 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 199 { 200 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 201 } 202 203 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 204 { 205 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 206 } 207 208 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 209 const struct bpf_map *map, bool unpriv) 210 { 211 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 212 unpriv |= bpf_map_ptr_unpriv(aux); 213 aux->map_ptr_state = (unsigned long)map | 214 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 215 } 216 217 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & BPF_MAP_KEY_POISON; 220 } 221 222 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 223 { 224 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 225 } 226 227 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 230 } 231 232 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 233 { 234 bool poisoned = bpf_map_key_poisoned(aux); 235 236 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 237 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 238 } 239 240 static bool bpf_pseudo_call(const struct bpf_insn *insn) 241 { 242 return insn->code == (BPF_JMP | BPF_CALL) && 243 insn->src_reg == BPF_PSEUDO_CALL; 244 } 245 246 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 250 } 251 252 struct bpf_call_arg_meta { 253 struct bpf_map *map_ptr; 254 bool raw_mode; 255 bool pkt_access; 256 u8 release_regno; 257 int regno; 258 int access_size; 259 int mem_size; 260 u64 msize_max_value; 261 int ref_obj_id; 262 int dynptr_id; 263 int map_uid; 264 int func_id; 265 struct btf *btf; 266 u32 btf_id; 267 struct btf *ret_btf; 268 u32 ret_btf_id; 269 u32 subprogno; 270 struct btf_field *kptr_field; 271 u8 uninit_dynptr_regno; 272 }; 273 274 struct btf *btf_vmlinux; 275 276 static DEFINE_MUTEX(bpf_verifier_lock); 277 278 static const struct bpf_line_info * 279 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 280 { 281 const struct bpf_line_info *linfo; 282 const struct bpf_prog *prog; 283 u32 i, nr_linfo; 284 285 prog = env->prog; 286 nr_linfo = prog->aux->nr_linfo; 287 288 if (!nr_linfo || insn_off >= prog->len) 289 return NULL; 290 291 linfo = prog->aux->linfo; 292 for (i = 1; i < nr_linfo; i++) 293 if (insn_off < linfo[i].insn_off) 294 break; 295 296 return &linfo[i - 1]; 297 } 298 299 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 300 va_list args) 301 { 302 unsigned int n; 303 304 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 305 306 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 307 "verifier log line truncated - local buffer too short\n"); 308 309 if (log->level == BPF_LOG_KERNEL) { 310 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 311 312 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 313 return; 314 } 315 316 n = min(log->len_total - log->len_used - 1, n); 317 log->kbuf[n] = '\0'; 318 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 319 log->len_used += n; 320 else 321 log->ubuf = NULL; 322 } 323 324 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 325 { 326 char zero = 0; 327 328 if (!bpf_verifier_log_needed(log)) 329 return; 330 331 log->len_used = new_pos; 332 if (put_user(zero, log->ubuf + new_pos)) 333 log->ubuf = NULL; 334 } 335 336 /* log_level controls verbosity level of eBPF verifier. 337 * bpf_verifier_log_write() is used to dump the verification trace to the log, 338 * so the user can figure out what's wrong with the program 339 */ 340 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 341 const char *fmt, ...) 342 { 343 va_list args; 344 345 if (!bpf_verifier_log_needed(&env->log)) 346 return; 347 348 va_start(args, fmt); 349 bpf_verifier_vlog(&env->log, fmt, args); 350 va_end(args); 351 } 352 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 353 354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 355 { 356 struct bpf_verifier_env *env = private_data; 357 va_list args; 358 359 if (!bpf_verifier_log_needed(&env->log)) 360 return; 361 362 va_start(args, fmt); 363 bpf_verifier_vlog(&env->log, fmt, args); 364 va_end(args); 365 } 366 367 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 368 const char *fmt, ...) 369 { 370 va_list args; 371 372 if (!bpf_verifier_log_needed(log)) 373 return; 374 375 va_start(args, fmt); 376 bpf_verifier_vlog(log, fmt, args); 377 va_end(args); 378 } 379 EXPORT_SYMBOL_GPL(bpf_log); 380 381 static const char *ltrim(const char *s) 382 { 383 while (isspace(*s)) 384 s++; 385 386 return s; 387 } 388 389 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 390 u32 insn_off, 391 const char *prefix_fmt, ...) 392 { 393 const struct bpf_line_info *linfo; 394 395 if (!bpf_verifier_log_needed(&env->log)) 396 return; 397 398 linfo = find_linfo(env, insn_off); 399 if (!linfo || linfo == env->prev_linfo) 400 return; 401 402 if (prefix_fmt) { 403 va_list args; 404 405 va_start(args, prefix_fmt); 406 bpf_verifier_vlog(&env->log, prefix_fmt, args); 407 va_end(args); 408 } 409 410 verbose(env, "%s\n", 411 ltrim(btf_name_by_offset(env->prog->aux->btf, 412 linfo->line_off))); 413 414 env->prev_linfo = linfo; 415 } 416 417 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 418 struct bpf_reg_state *reg, 419 struct tnum *range, const char *ctx, 420 const char *reg_name) 421 { 422 char tn_buf[48]; 423 424 verbose(env, "At %s the register %s ", ctx, reg_name); 425 if (!tnum_is_unknown(reg->var_off)) { 426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 427 verbose(env, "has value %s", tn_buf); 428 } else { 429 verbose(env, "has unknown scalar value"); 430 } 431 tnum_strn(tn_buf, sizeof(tn_buf), *range); 432 verbose(env, " should have been in %s\n", tn_buf); 433 } 434 435 static bool type_is_pkt_pointer(enum bpf_reg_type type) 436 { 437 type = base_type(type); 438 return type == PTR_TO_PACKET || 439 type == PTR_TO_PACKET_META; 440 } 441 442 static bool type_is_sk_pointer(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_SOCKET || 445 type == PTR_TO_SOCK_COMMON || 446 type == PTR_TO_TCP_SOCK || 447 type == PTR_TO_XDP_SOCK; 448 } 449 450 static bool reg_type_not_null(enum bpf_reg_type type) 451 { 452 return type == PTR_TO_SOCKET || 453 type == PTR_TO_TCP_SOCK || 454 type == PTR_TO_MAP_VALUE || 455 type == PTR_TO_MAP_KEY || 456 type == PTR_TO_SOCK_COMMON; 457 } 458 459 static bool type_is_ptr_alloc_obj(u32 type) 460 { 461 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 462 } 463 464 static bool type_is_non_owning_ref(u32 type) 465 { 466 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 467 } 468 469 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 470 { 471 struct btf_record *rec = NULL; 472 struct btf_struct_meta *meta; 473 474 if (reg->type == PTR_TO_MAP_VALUE) { 475 rec = reg->map_ptr->record; 476 } else if (type_is_ptr_alloc_obj(reg->type)) { 477 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 478 if (meta) 479 rec = meta->record; 480 } 481 return rec; 482 } 483 484 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 485 { 486 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 487 } 488 489 static bool type_is_rdonly_mem(u32 type) 490 { 491 return type & MEM_RDONLY; 492 } 493 494 static bool type_may_be_null(u32 type) 495 { 496 return type & PTR_MAYBE_NULL; 497 } 498 499 static bool is_acquire_function(enum bpf_func_id func_id, 500 const struct bpf_map *map) 501 { 502 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 503 504 if (func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_ringbuf_reserve || 508 func_id == BPF_FUNC_kptr_xchg) 509 return true; 510 511 if (func_id == BPF_FUNC_map_lookup_elem && 512 (map_type == BPF_MAP_TYPE_SOCKMAP || 513 map_type == BPF_MAP_TYPE_SOCKHASH)) 514 return true; 515 516 return false; 517 } 518 519 static bool is_ptr_cast_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_tcp_sock || 522 func_id == BPF_FUNC_sk_fullsock || 523 func_id == BPF_FUNC_skc_to_tcp_sock || 524 func_id == BPF_FUNC_skc_to_tcp6_sock || 525 func_id == BPF_FUNC_skc_to_udp6_sock || 526 func_id == BPF_FUNC_skc_to_mptcp_sock || 527 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 528 func_id == BPF_FUNC_skc_to_tcp_request_sock; 529 } 530 531 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 532 { 533 return func_id == BPF_FUNC_dynptr_data; 534 } 535 536 static bool is_callback_calling_function(enum bpf_func_id func_id) 537 { 538 return func_id == BPF_FUNC_for_each_map_elem || 539 func_id == BPF_FUNC_timer_set_callback || 540 func_id == BPF_FUNC_find_vma || 541 func_id == BPF_FUNC_loop || 542 func_id == BPF_FUNC_user_ringbuf_drain; 543 } 544 545 static bool is_storage_get_function(enum bpf_func_id func_id) 546 { 547 return func_id == BPF_FUNC_sk_storage_get || 548 func_id == BPF_FUNC_inode_storage_get || 549 func_id == BPF_FUNC_task_storage_get || 550 func_id == BPF_FUNC_cgrp_storage_get; 551 } 552 553 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 554 const struct bpf_map *map) 555 { 556 int ref_obj_uses = 0; 557 558 if (is_ptr_cast_function(func_id)) 559 ref_obj_uses++; 560 if (is_acquire_function(func_id, map)) 561 ref_obj_uses++; 562 if (is_dynptr_ref_function(func_id)) 563 ref_obj_uses++; 564 565 return ref_obj_uses > 1; 566 } 567 568 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 569 { 570 return BPF_CLASS(insn->code) == BPF_STX && 571 BPF_MODE(insn->code) == BPF_ATOMIC && 572 insn->imm == BPF_CMPXCHG; 573 } 574 575 /* string representation of 'enum bpf_reg_type' 576 * 577 * Note that reg_type_str() can not appear more than once in a single verbose() 578 * statement. 579 */ 580 static const char *reg_type_str(struct bpf_verifier_env *env, 581 enum bpf_reg_type type) 582 { 583 char postfix[16] = {0}, prefix[64] = {0}; 584 static const char * const str[] = { 585 [NOT_INIT] = "?", 586 [SCALAR_VALUE] = "scalar", 587 [PTR_TO_CTX] = "ctx", 588 [CONST_PTR_TO_MAP] = "map_ptr", 589 [PTR_TO_MAP_VALUE] = "map_value", 590 [PTR_TO_STACK] = "fp", 591 [PTR_TO_PACKET] = "pkt", 592 [PTR_TO_PACKET_META] = "pkt_meta", 593 [PTR_TO_PACKET_END] = "pkt_end", 594 [PTR_TO_FLOW_KEYS] = "flow_keys", 595 [PTR_TO_SOCKET] = "sock", 596 [PTR_TO_SOCK_COMMON] = "sock_common", 597 [PTR_TO_TCP_SOCK] = "tcp_sock", 598 [PTR_TO_TP_BUFFER] = "tp_buffer", 599 [PTR_TO_XDP_SOCK] = "xdp_sock", 600 [PTR_TO_BTF_ID] = "ptr_", 601 [PTR_TO_MEM] = "mem", 602 [PTR_TO_BUF] = "buf", 603 [PTR_TO_FUNC] = "func", 604 [PTR_TO_MAP_KEY] = "map_key", 605 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 606 }; 607 608 if (type & PTR_MAYBE_NULL) { 609 if (base_type(type) == PTR_TO_BTF_ID) 610 strncpy(postfix, "or_null_", 16); 611 else 612 strncpy(postfix, "_or_null", 16); 613 } 614 615 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 616 type & MEM_RDONLY ? "rdonly_" : "", 617 type & MEM_RINGBUF ? "ringbuf_" : "", 618 type & MEM_USER ? "user_" : "", 619 type & MEM_PERCPU ? "percpu_" : "", 620 type & MEM_RCU ? "rcu_" : "", 621 type & PTR_UNTRUSTED ? "untrusted_" : "", 622 type & PTR_TRUSTED ? "trusted_" : "" 623 ); 624 625 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 626 prefix, str[base_type(type)], postfix); 627 return env->type_str_buf; 628 } 629 630 static char slot_type_char[] = { 631 [STACK_INVALID] = '?', 632 [STACK_SPILL] = 'r', 633 [STACK_MISC] = 'm', 634 [STACK_ZERO] = '0', 635 [STACK_DYNPTR] = 'd', 636 }; 637 638 static void print_liveness(struct bpf_verifier_env *env, 639 enum bpf_reg_liveness live) 640 { 641 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 642 verbose(env, "_"); 643 if (live & REG_LIVE_READ) 644 verbose(env, "r"); 645 if (live & REG_LIVE_WRITTEN) 646 verbose(env, "w"); 647 if (live & REG_LIVE_DONE) 648 verbose(env, "D"); 649 } 650 651 static int __get_spi(s32 off) 652 { 653 return (-off - 1) / BPF_REG_SIZE; 654 } 655 656 static struct bpf_func_state *func(struct bpf_verifier_env *env, 657 const struct bpf_reg_state *reg) 658 { 659 struct bpf_verifier_state *cur = env->cur_state; 660 661 return cur->frame[reg->frameno]; 662 } 663 664 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 665 { 666 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 667 668 /* We need to check that slots between [spi - nr_slots + 1, spi] are 669 * within [0, allocated_stack). 670 * 671 * Please note that the spi grows downwards. For example, a dynptr 672 * takes the size of two stack slots; the first slot will be at 673 * spi and the second slot will be at spi - 1. 674 */ 675 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 676 } 677 678 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 679 { 680 int off, spi; 681 682 if (!tnum_is_const(reg->var_off)) { 683 verbose(env, "dynptr has to be at a constant offset\n"); 684 return -EINVAL; 685 } 686 687 off = reg->off + reg->var_off.value; 688 if (off % BPF_REG_SIZE) { 689 verbose(env, "cannot pass in dynptr at an offset=%d\n", off); 690 return -EINVAL; 691 } 692 693 spi = __get_spi(off); 694 if (spi < 1) { 695 verbose(env, "cannot pass in dynptr at an offset=%d\n", off); 696 return -EINVAL; 697 } 698 699 if (!is_spi_bounds_valid(func(env, reg), spi, BPF_DYNPTR_NR_SLOTS)) 700 return -ERANGE; 701 return spi; 702 } 703 704 static const char *kernel_type_name(const struct btf* btf, u32 id) 705 { 706 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 707 } 708 709 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 710 { 711 env->scratched_regs |= 1U << regno; 712 } 713 714 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 715 { 716 env->scratched_stack_slots |= 1ULL << spi; 717 } 718 719 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 720 { 721 return (env->scratched_regs >> regno) & 1; 722 } 723 724 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 725 { 726 return (env->scratched_stack_slots >> regno) & 1; 727 } 728 729 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 730 { 731 return env->scratched_regs || env->scratched_stack_slots; 732 } 733 734 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 735 { 736 env->scratched_regs = 0U; 737 env->scratched_stack_slots = 0ULL; 738 } 739 740 /* Used for printing the entire verifier state. */ 741 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 742 { 743 env->scratched_regs = ~0U; 744 env->scratched_stack_slots = ~0ULL; 745 } 746 747 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 748 { 749 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 750 case DYNPTR_TYPE_LOCAL: 751 return BPF_DYNPTR_TYPE_LOCAL; 752 case DYNPTR_TYPE_RINGBUF: 753 return BPF_DYNPTR_TYPE_RINGBUF; 754 default: 755 return BPF_DYNPTR_TYPE_INVALID; 756 } 757 } 758 759 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 760 { 761 return type == BPF_DYNPTR_TYPE_RINGBUF; 762 } 763 764 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 765 enum bpf_dynptr_type type, 766 bool first_slot, int dynptr_id); 767 768 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 769 struct bpf_reg_state *reg); 770 771 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 772 struct bpf_reg_state *sreg1, 773 struct bpf_reg_state *sreg2, 774 enum bpf_dynptr_type type) 775 { 776 int id = ++env->id_gen; 777 778 __mark_dynptr_reg(sreg1, type, true, id); 779 __mark_dynptr_reg(sreg2, type, false, id); 780 } 781 782 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 783 struct bpf_reg_state *reg, 784 enum bpf_dynptr_type type) 785 { 786 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 787 } 788 789 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 790 struct bpf_func_state *state, int spi); 791 792 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 793 enum bpf_arg_type arg_type, int insn_idx) 794 { 795 struct bpf_func_state *state = func(env, reg); 796 enum bpf_dynptr_type type; 797 int spi, i, id, err; 798 799 spi = dynptr_get_spi(env, reg); 800 if (spi < 0) 801 return spi; 802 803 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 804 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 805 * to ensure that for the following example: 806 * [d1][d1][d2][d2] 807 * spi 3 2 1 0 808 * So marking spi = 2 should lead to destruction of both d1 and d2. In 809 * case they do belong to same dynptr, second call won't see slot_type 810 * as STACK_DYNPTR and will simply skip destruction. 811 */ 812 err = destroy_if_dynptr_stack_slot(env, state, spi); 813 if (err) 814 return err; 815 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 816 if (err) 817 return err; 818 819 for (i = 0; i < BPF_REG_SIZE; i++) { 820 state->stack[spi].slot_type[i] = STACK_DYNPTR; 821 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 822 } 823 824 type = arg_to_dynptr_type(arg_type); 825 if (type == BPF_DYNPTR_TYPE_INVALID) 826 return -EINVAL; 827 828 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 829 &state->stack[spi - 1].spilled_ptr, type); 830 831 if (dynptr_type_refcounted(type)) { 832 /* The id is used to track proper releasing */ 833 id = acquire_reference_state(env, insn_idx); 834 if (id < 0) 835 return id; 836 837 state->stack[spi].spilled_ptr.ref_obj_id = id; 838 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 839 } 840 841 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 842 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 843 844 return 0; 845 } 846 847 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 848 { 849 struct bpf_func_state *state = func(env, reg); 850 int spi, i; 851 852 spi = dynptr_get_spi(env, reg); 853 if (spi < 0) 854 return spi; 855 856 for (i = 0; i < BPF_REG_SIZE; i++) { 857 state->stack[spi].slot_type[i] = STACK_INVALID; 858 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 859 } 860 861 /* Invalidate any slices associated with this dynptr */ 862 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 863 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 864 865 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 866 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 867 868 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 869 * 870 * While we don't allow reading STACK_INVALID, it is still possible to 871 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 872 * helpers or insns can do partial read of that part without failing, 873 * but check_stack_range_initialized, check_stack_read_var_off, and 874 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 875 * the slot conservatively. Hence we need to prevent those liveness 876 * marking walks. 877 * 878 * This was not a problem before because STACK_INVALID is only set by 879 * default (where the default reg state has its reg->parent as NULL), or 880 * in clean_live_states after REG_LIVE_DONE (at which point 881 * mark_reg_read won't walk reg->parent chain), but not randomly during 882 * verifier state exploration (like we did above). Hence, for our case 883 * parentage chain will still be live (i.e. reg->parent may be 884 * non-NULL), while earlier reg->parent was NULL, so we need 885 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 886 * done later on reads or by mark_dynptr_read as well to unnecessary 887 * mark registers in verifier state. 888 */ 889 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 890 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 891 892 return 0; 893 } 894 895 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 896 struct bpf_reg_state *reg); 897 898 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 899 struct bpf_func_state *state, int spi) 900 { 901 struct bpf_func_state *fstate; 902 struct bpf_reg_state *dreg; 903 int i, dynptr_id; 904 905 /* We always ensure that STACK_DYNPTR is never set partially, 906 * hence just checking for slot_type[0] is enough. This is 907 * different for STACK_SPILL, where it may be only set for 908 * 1 byte, so code has to use is_spilled_reg. 909 */ 910 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 911 return 0; 912 913 /* Reposition spi to first slot */ 914 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 915 spi = spi + 1; 916 917 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 918 verbose(env, "cannot overwrite referenced dynptr\n"); 919 return -EINVAL; 920 } 921 922 mark_stack_slot_scratched(env, spi); 923 mark_stack_slot_scratched(env, spi - 1); 924 925 /* Writing partially to one dynptr stack slot destroys both. */ 926 for (i = 0; i < BPF_REG_SIZE; i++) { 927 state->stack[spi].slot_type[i] = STACK_INVALID; 928 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 929 } 930 931 dynptr_id = state->stack[spi].spilled_ptr.id; 932 /* Invalidate any slices associated with this dynptr */ 933 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 934 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 935 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 936 continue; 937 if (dreg->dynptr_id == dynptr_id) { 938 if (!env->allow_ptr_leaks) 939 __mark_reg_not_init(env, dreg); 940 else 941 __mark_reg_unknown(env, dreg); 942 } 943 })); 944 945 /* Do not release reference state, we are destroying dynptr on stack, 946 * not using some helper to release it. Just reset register. 947 */ 948 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 949 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 950 951 /* Same reason as unmark_stack_slots_dynptr above */ 952 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 953 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 954 955 return 0; 956 } 957 958 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 959 int spi) 960 { 961 if (reg->type == CONST_PTR_TO_DYNPTR) 962 return false; 963 964 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 965 * will do check_mem_access to check and update stack bounds later, so 966 * return true for that case. 967 */ 968 if (spi < 0) 969 return spi == -ERANGE; 970 /* We allow overwriting existing unreferenced STACK_DYNPTR slots, see 971 * mark_stack_slots_dynptr which calls destroy_if_dynptr_stack_slot to 972 * ensure dynptr objects at the slots we are touching are completely 973 * destructed before we reinitialize them for a new one. For referenced 974 * ones, destroy_if_dynptr_stack_slot returns an error early instead of 975 * delaying it until the end where the user will get "Unreleased 976 * reference" error. 977 */ 978 return true; 979 } 980 981 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 982 int spi) 983 { 984 struct bpf_func_state *state = func(env, reg); 985 int i; 986 987 /* This already represents first slot of initialized bpf_dynptr */ 988 if (reg->type == CONST_PTR_TO_DYNPTR) 989 return true; 990 991 if (spi < 0) 992 return false; 993 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 994 return false; 995 996 for (i = 0; i < BPF_REG_SIZE; i++) { 997 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 998 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1006 enum bpf_arg_type arg_type) 1007 { 1008 struct bpf_func_state *state = func(env, reg); 1009 enum bpf_dynptr_type dynptr_type; 1010 int spi; 1011 1012 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1013 if (arg_type == ARG_PTR_TO_DYNPTR) 1014 return true; 1015 1016 dynptr_type = arg_to_dynptr_type(arg_type); 1017 if (reg->type == CONST_PTR_TO_DYNPTR) { 1018 return reg->dynptr.type == dynptr_type; 1019 } else { 1020 spi = dynptr_get_spi(env, reg); 1021 if (spi < 0) 1022 return false; 1023 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1024 } 1025 } 1026 1027 /* The reg state of a pointer or a bounded scalar was saved when 1028 * it was spilled to the stack. 1029 */ 1030 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1031 { 1032 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1033 } 1034 1035 static void scrub_spilled_slot(u8 *stype) 1036 { 1037 if (*stype != STACK_INVALID) 1038 *stype = STACK_MISC; 1039 } 1040 1041 static void print_verifier_state(struct bpf_verifier_env *env, 1042 const struct bpf_func_state *state, 1043 bool print_all) 1044 { 1045 const struct bpf_reg_state *reg; 1046 enum bpf_reg_type t; 1047 int i; 1048 1049 if (state->frameno) 1050 verbose(env, " frame%d:", state->frameno); 1051 for (i = 0; i < MAX_BPF_REG; i++) { 1052 reg = &state->regs[i]; 1053 t = reg->type; 1054 if (t == NOT_INIT) 1055 continue; 1056 if (!print_all && !reg_scratched(env, i)) 1057 continue; 1058 verbose(env, " R%d", i); 1059 print_liveness(env, reg->live); 1060 verbose(env, "="); 1061 if (t == SCALAR_VALUE && reg->precise) 1062 verbose(env, "P"); 1063 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1064 tnum_is_const(reg->var_off)) { 1065 /* reg->off should be 0 for SCALAR_VALUE */ 1066 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1067 verbose(env, "%lld", reg->var_off.value + reg->off); 1068 } else { 1069 const char *sep = ""; 1070 1071 verbose(env, "%s", reg_type_str(env, t)); 1072 if (base_type(t) == PTR_TO_BTF_ID) 1073 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 1074 verbose(env, "("); 1075 /* 1076 * _a stands for append, was shortened to avoid multiline statements below. 1077 * This macro is used to output a comma separated list of attributes. 1078 */ 1079 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1080 1081 if (reg->id) 1082 verbose_a("id=%d", reg->id); 1083 if (reg->ref_obj_id) 1084 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1085 if (type_is_non_owning_ref(reg->type)) 1086 verbose_a("%s", "non_own_ref"); 1087 if (t != SCALAR_VALUE) 1088 verbose_a("off=%d", reg->off); 1089 if (type_is_pkt_pointer(t)) 1090 verbose_a("r=%d", reg->range); 1091 else if (base_type(t) == CONST_PTR_TO_MAP || 1092 base_type(t) == PTR_TO_MAP_KEY || 1093 base_type(t) == PTR_TO_MAP_VALUE) 1094 verbose_a("ks=%d,vs=%d", 1095 reg->map_ptr->key_size, 1096 reg->map_ptr->value_size); 1097 if (tnum_is_const(reg->var_off)) { 1098 /* Typically an immediate SCALAR_VALUE, but 1099 * could be a pointer whose offset is too big 1100 * for reg->off 1101 */ 1102 verbose_a("imm=%llx", reg->var_off.value); 1103 } else { 1104 if (reg->smin_value != reg->umin_value && 1105 reg->smin_value != S64_MIN) 1106 verbose_a("smin=%lld", (long long)reg->smin_value); 1107 if (reg->smax_value != reg->umax_value && 1108 reg->smax_value != S64_MAX) 1109 verbose_a("smax=%lld", (long long)reg->smax_value); 1110 if (reg->umin_value != 0) 1111 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1112 if (reg->umax_value != U64_MAX) 1113 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1114 if (!tnum_is_unknown(reg->var_off)) { 1115 char tn_buf[48]; 1116 1117 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1118 verbose_a("var_off=%s", tn_buf); 1119 } 1120 if (reg->s32_min_value != reg->smin_value && 1121 reg->s32_min_value != S32_MIN) 1122 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1123 if (reg->s32_max_value != reg->smax_value && 1124 reg->s32_max_value != S32_MAX) 1125 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1126 if (reg->u32_min_value != reg->umin_value && 1127 reg->u32_min_value != U32_MIN) 1128 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1129 if (reg->u32_max_value != reg->umax_value && 1130 reg->u32_max_value != U32_MAX) 1131 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1132 } 1133 #undef verbose_a 1134 1135 verbose(env, ")"); 1136 } 1137 } 1138 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1139 char types_buf[BPF_REG_SIZE + 1]; 1140 bool valid = false; 1141 int j; 1142 1143 for (j = 0; j < BPF_REG_SIZE; j++) { 1144 if (state->stack[i].slot_type[j] != STACK_INVALID) 1145 valid = true; 1146 types_buf[j] = slot_type_char[ 1147 state->stack[i].slot_type[j]]; 1148 } 1149 types_buf[BPF_REG_SIZE] = 0; 1150 if (!valid) 1151 continue; 1152 if (!print_all && !stack_slot_scratched(env, i)) 1153 continue; 1154 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1155 print_liveness(env, state->stack[i].spilled_ptr.live); 1156 if (is_spilled_reg(&state->stack[i])) { 1157 reg = &state->stack[i].spilled_ptr; 1158 t = reg->type; 1159 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1160 if (t == SCALAR_VALUE && reg->precise) 1161 verbose(env, "P"); 1162 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1163 verbose(env, "%lld", reg->var_off.value + reg->off); 1164 } else { 1165 verbose(env, "=%s", types_buf); 1166 } 1167 } 1168 if (state->acquired_refs && state->refs[0].id) { 1169 verbose(env, " refs=%d", state->refs[0].id); 1170 for (i = 1; i < state->acquired_refs; i++) 1171 if (state->refs[i].id) 1172 verbose(env, ",%d", state->refs[i].id); 1173 } 1174 if (state->in_callback_fn) 1175 verbose(env, " cb"); 1176 if (state->in_async_callback_fn) 1177 verbose(env, " async_cb"); 1178 verbose(env, "\n"); 1179 mark_verifier_state_clean(env); 1180 } 1181 1182 static inline u32 vlog_alignment(u32 pos) 1183 { 1184 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1185 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1186 } 1187 1188 static void print_insn_state(struct bpf_verifier_env *env, 1189 const struct bpf_func_state *state) 1190 { 1191 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1192 /* remove new line character */ 1193 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1194 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1195 } else { 1196 verbose(env, "%d:", env->insn_idx); 1197 } 1198 print_verifier_state(env, state, false); 1199 } 1200 1201 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1202 * small to hold src. This is different from krealloc since we don't want to preserve 1203 * the contents of dst. 1204 * 1205 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1206 * not be allocated. 1207 */ 1208 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1209 { 1210 size_t alloc_bytes; 1211 void *orig = dst; 1212 size_t bytes; 1213 1214 if (ZERO_OR_NULL_PTR(src)) 1215 goto out; 1216 1217 if (unlikely(check_mul_overflow(n, size, &bytes))) 1218 return NULL; 1219 1220 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1221 dst = krealloc(orig, alloc_bytes, flags); 1222 if (!dst) { 1223 kfree(orig); 1224 return NULL; 1225 } 1226 1227 memcpy(dst, src, bytes); 1228 out: 1229 return dst ? dst : ZERO_SIZE_PTR; 1230 } 1231 1232 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1233 * small to hold new_n items. new items are zeroed out if the array grows. 1234 * 1235 * Contrary to krealloc_array, does not free arr if new_n is zero. 1236 */ 1237 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1238 { 1239 size_t alloc_size; 1240 void *new_arr; 1241 1242 if (!new_n || old_n == new_n) 1243 goto out; 1244 1245 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1246 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1247 if (!new_arr) { 1248 kfree(arr); 1249 return NULL; 1250 } 1251 arr = new_arr; 1252 1253 if (new_n > old_n) 1254 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1255 1256 out: 1257 return arr ? arr : ZERO_SIZE_PTR; 1258 } 1259 1260 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1261 { 1262 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1263 sizeof(struct bpf_reference_state), GFP_KERNEL); 1264 if (!dst->refs) 1265 return -ENOMEM; 1266 1267 dst->acquired_refs = src->acquired_refs; 1268 return 0; 1269 } 1270 1271 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1272 { 1273 size_t n = src->allocated_stack / BPF_REG_SIZE; 1274 1275 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1276 GFP_KERNEL); 1277 if (!dst->stack) 1278 return -ENOMEM; 1279 1280 dst->allocated_stack = src->allocated_stack; 1281 return 0; 1282 } 1283 1284 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1285 { 1286 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1287 sizeof(struct bpf_reference_state)); 1288 if (!state->refs) 1289 return -ENOMEM; 1290 1291 state->acquired_refs = n; 1292 return 0; 1293 } 1294 1295 static int grow_stack_state(struct bpf_func_state *state, int size) 1296 { 1297 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1298 1299 if (old_n >= n) 1300 return 0; 1301 1302 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1303 if (!state->stack) 1304 return -ENOMEM; 1305 1306 state->allocated_stack = size; 1307 return 0; 1308 } 1309 1310 /* Acquire a pointer id from the env and update the state->refs to include 1311 * this new pointer reference. 1312 * On success, returns a valid pointer id to associate with the register 1313 * On failure, returns a negative errno. 1314 */ 1315 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1316 { 1317 struct bpf_func_state *state = cur_func(env); 1318 int new_ofs = state->acquired_refs; 1319 int id, err; 1320 1321 err = resize_reference_state(state, state->acquired_refs + 1); 1322 if (err) 1323 return err; 1324 id = ++env->id_gen; 1325 state->refs[new_ofs].id = id; 1326 state->refs[new_ofs].insn_idx = insn_idx; 1327 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1328 1329 return id; 1330 } 1331 1332 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1333 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1334 { 1335 int i, last_idx; 1336 1337 last_idx = state->acquired_refs - 1; 1338 for (i = 0; i < state->acquired_refs; i++) { 1339 if (state->refs[i].id == ptr_id) { 1340 /* Cannot release caller references in callbacks */ 1341 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1342 return -EINVAL; 1343 if (last_idx && i != last_idx) 1344 memcpy(&state->refs[i], &state->refs[last_idx], 1345 sizeof(*state->refs)); 1346 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1347 state->acquired_refs--; 1348 return 0; 1349 } 1350 } 1351 return -EINVAL; 1352 } 1353 1354 static void free_func_state(struct bpf_func_state *state) 1355 { 1356 if (!state) 1357 return; 1358 kfree(state->refs); 1359 kfree(state->stack); 1360 kfree(state); 1361 } 1362 1363 static void clear_jmp_history(struct bpf_verifier_state *state) 1364 { 1365 kfree(state->jmp_history); 1366 state->jmp_history = NULL; 1367 state->jmp_history_cnt = 0; 1368 } 1369 1370 static void free_verifier_state(struct bpf_verifier_state *state, 1371 bool free_self) 1372 { 1373 int i; 1374 1375 for (i = 0; i <= state->curframe; i++) { 1376 free_func_state(state->frame[i]); 1377 state->frame[i] = NULL; 1378 } 1379 clear_jmp_history(state); 1380 if (free_self) 1381 kfree(state); 1382 } 1383 1384 /* copy verifier state from src to dst growing dst stack space 1385 * when necessary to accommodate larger src stack 1386 */ 1387 static int copy_func_state(struct bpf_func_state *dst, 1388 const struct bpf_func_state *src) 1389 { 1390 int err; 1391 1392 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1393 err = copy_reference_state(dst, src); 1394 if (err) 1395 return err; 1396 return copy_stack_state(dst, src); 1397 } 1398 1399 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1400 const struct bpf_verifier_state *src) 1401 { 1402 struct bpf_func_state *dst; 1403 int i, err; 1404 1405 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1406 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1407 GFP_USER); 1408 if (!dst_state->jmp_history) 1409 return -ENOMEM; 1410 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1411 1412 /* if dst has more stack frames then src frame, free them */ 1413 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1414 free_func_state(dst_state->frame[i]); 1415 dst_state->frame[i] = NULL; 1416 } 1417 dst_state->speculative = src->speculative; 1418 dst_state->active_rcu_lock = src->active_rcu_lock; 1419 dst_state->curframe = src->curframe; 1420 dst_state->active_lock.ptr = src->active_lock.ptr; 1421 dst_state->active_lock.id = src->active_lock.id; 1422 dst_state->branches = src->branches; 1423 dst_state->parent = src->parent; 1424 dst_state->first_insn_idx = src->first_insn_idx; 1425 dst_state->last_insn_idx = src->last_insn_idx; 1426 for (i = 0; i <= src->curframe; i++) { 1427 dst = dst_state->frame[i]; 1428 if (!dst) { 1429 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1430 if (!dst) 1431 return -ENOMEM; 1432 dst_state->frame[i] = dst; 1433 } 1434 err = copy_func_state(dst, src->frame[i]); 1435 if (err) 1436 return err; 1437 } 1438 return 0; 1439 } 1440 1441 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1442 { 1443 while (st) { 1444 u32 br = --st->branches; 1445 1446 /* WARN_ON(br > 1) technically makes sense here, 1447 * but see comment in push_stack(), hence: 1448 */ 1449 WARN_ONCE((int)br < 0, 1450 "BUG update_branch_counts:branches_to_explore=%d\n", 1451 br); 1452 if (br) 1453 break; 1454 st = st->parent; 1455 } 1456 } 1457 1458 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1459 int *insn_idx, bool pop_log) 1460 { 1461 struct bpf_verifier_state *cur = env->cur_state; 1462 struct bpf_verifier_stack_elem *elem, *head = env->head; 1463 int err; 1464 1465 if (env->head == NULL) 1466 return -ENOENT; 1467 1468 if (cur) { 1469 err = copy_verifier_state(cur, &head->st); 1470 if (err) 1471 return err; 1472 } 1473 if (pop_log) 1474 bpf_vlog_reset(&env->log, head->log_pos); 1475 if (insn_idx) 1476 *insn_idx = head->insn_idx; 1477 if (prev_insn_idx) 1478 *prev_insn_idx = head->prev_insn_idx; 1479 elem = head->next; 1480 free_verifier_state(&head->st, false); 1481 kfree(head); 1482 env->head = elem; 1483 env->stack_size--; 1484 return 0; 1485 } 1486 1487 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1488 int insn_idx, int prev_insn_idx, 1489 bool speculative) 1490 { 1491 struct bpf_verifier_state *cur = env->cur_state; 1492 struct bpf_verifier_stack_elem *elem; 1493 int err; 1494 1495 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1496 if (!elem) 1497 goto err; 1498 1499 elem->insn_idx = insn_idx; 1500 elem->prev_insn_idx = prev_insn_idx; 1501 elem->next = env->head; 1502 elem->log_pos = env->log.len_used; 1503 env->head = elem; 1504 env->stack_size++; 1505 err = copy_verifier_state(&elem->st, cur); 1506 if (err) 1507 goto err; 1508 elem->st.speculative |= speculative; 1509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1510 verbose(env, "The sequence of %d jumps is too complex.\n", 1511 env->stack_size); 1512 goto err; 1513 } 1514 if (elem->st.parent) { 1515 ++elem->st.parent->branches; 1516 /* WARN_ON(branches > 2) technically makes sense here, 1517 * but 1518 * 1. speculative states will bump 'branches' for non-branch 1519 * instructions 1520 * 2. is_state_visited() heuristics may decide not to create 1521 * a new state for a sequence of branches and all such current 1522 * and cloned states will be pointing to a single parent state 1523 * which might have large 'branches' count. 1524 */ 1525 } 1526 return &elem->st; 1527 err: 1528 free_verifier_state(env->cur_state, true); 1529 env->cur_state = NULL; 1530 /* pop all elements and return */ 1531 while (!pop_stack(env, NULL, NULL, false)); 1532 return NULL; 1533 } 1534 1535 #define CALLER_SAVED_REGS 6 1536 static const int caller_saved[CALLER_SAVED_REGS] = { 1537 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1538 }; 1539 1540 /* This helper doesn't clear reg->id */ 1541 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1542 { 1543 reg->var_off = tnum_const(imm); 1544 reg->smin_value = (s64)imm; 1545 reg->smax_value = (s64)imm; 1546 reg->umin_value = imm; 1547 reg->umax_value = imm; 1548 1549 reg->s32_min_value = (s32)imm; 1550 reg->s32_max_value = (s32)imm; 1551 reg->u32_min_value = (u32)imm; 1552 reg->u32_max_value = (u32)imm; 1553 } 1554 1555 /* Mark the unknown part of a register (variable offset or scalar value) as 1556 * known to have the value @imm. 1557 */ 1558 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1559 { 1560 /* Clear off and union(map_ptr, range) */ 1561 memset(((u8 *)reg) + sizeof(reg->type), 0, 1562 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1563 reg->id = 0; 1564 reg->ref_obj_id = 0; 1565 ___mark_reg_known(reg, imm); 1566 } 1567 1568 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1569 { 1570 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1571 reg->s32_min_value = (s32)imm; 1572 reg->s32_max_value = (s32)imm; 1573 reg->u32_min_value = (u32)imm; 1574 reg->u32_max_value = (u32)imm; 1575 } 1576 1577 /* Mark the 'variable offset' part of a register as zero. This should be 1578 * used only on registers holding a pointer type. 1579 */ 1580 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1581 { 1582 __mark_reg_known(reg, 0); 1583 } 1584 1585 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1586 { 1587 __mark_reg_known(reg, 0); 1588 reg->type = SCALAR_VALUE; 1589 } 1590 1591 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1592 struct bpf_reg_state *regs, u32 regno) 1593 { 1594 if (WARN_ON(regno >= MAX_BPF_REG)) { 1595 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1596 /* Something bad happened, let's kill all regs */ 1597 for (regno = 0; regno < MAX_BPF_REG; regno++) 1598 __mark_reg_not_init(env, regs + regno); 1599 return; 1600 } 1601 __mark_reg_known_zero(regs + regno); 1602 } 1603 1604 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1605 bool first_slot, int dynptr_id) 1606 { 1607 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1608 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1609 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1610 */ 1611 __mark_reg_known_zero(reg); 1612 reg->type = CONST_PTR_TO_DYNPTR; 1613 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1614 reg->id = dynptr_id; 1615 reg->dynptr.type = type; 1616 reg->dynptr.first_slot = first_slot; 1617 } 1618 1619 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1620 { 1621 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1622 const struct bpf_map *map = reg->map_ptr; 1623 1624 if (map->inner_map_meta) { 1625 reg->type = CONST_PTR_TO_MAP; 1626 reg->map_ptr = map->inner_map_meta; 1627 /* transfer reg's id which is unique for every map_lookup_elem 1628 * as UID of the inner map. 1629 */ 1630 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1631 reg->map_uid = reg->id; 1632 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1633 reg->type = PTR_TO_XDP_SOCK; 1634 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1635 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1636 reg->type = PTR_TO_SOCKET; 1637 } else { 1638 reg->type = PTR_TO_MAP_VALUE; 1639 } 1640 return; 1641 } 1642 1643 reg->type &= ~PTR_MAYBE_NULL; 1644 } 1645 1646 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1647 struct btf_field_graph_root *ds_head) 1648 { 1649 __mark_reg_known_zero(®s[regno]); 1650 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1651 regs[regno].btf = ds_head->btf; 1652 regs[regno].btf_id = ds_head->value_btf_id; 1653 regs[regno].off = ds_head->node_offset; 1654 } 1655 1656 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1657 { 1658 return type_is_pkt_pointer(reg->type); 1659 } 1660 1661 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1662 { 1663 return reg_is_pkt_pointer(reg) || 1664 reg->type == PTR_TO_PACKET_END; 1665 } 1666 1667 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1668 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1669 enum bpf_reg_type which) 1670 { 1671 /* The register can already have a range from prior markings. 1672 * This is fine as long as it hasn't been advanced from its 1673 * origin. 1674 */ 1675 return reg->type == which && 1676 reg->id == 0 && 1677 reg->off == 0 && 1678 tnum_equals_const(reg->var_off, 0); 1679 } 1680 1681 /* Reset the min/max bounds of a register */ 1682 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1683 { 1684 reg->smin_value = S64_MIN; 1685 reg->smax_value = S64_MAX; 1686 reg->umin_value = 0; 1687 reg->umax_value = U64_MAX; 1688 1689 reg->s32_min_value = S32_MIN; 1690 reg->s32_max_value = S32_MAX; 1691 reg->u32_min_value = 0; 1692 reg->u32_max_value = U32_MAX; 1693 } 1694 1695 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1696 { 1697 reg->smin_value = S64_MIN; 1698 reg->smax_value = S64_MAX; 1699 reg->umin_value = 0; 1700 reg->umax_value = U64_MAX; 1701 } 1702 1703 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1704 { 1705 reg->s32_min_value = S32_MIN; 1706 reg->s32_max_value = S32_MAX; 1707 reg->u32_min_value = 0; 1708 reg->u32_max_value = U32_MAX; 1709 } 1710 1711 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1712 { 1713 struct tnum var32_off = tnum_subreg(reg->var_off); 1714 1715 /* min signed is max(sign bit) | min(other bits) */ 1716 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1717 var32_off.value | (var32_off.mask & S32_MIN)); 1718 /* max signed is min(sign bit) | max(other bits) */ 1719 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1720 var32_off.value | (var32_off.mask & S32_MAX)); 1721 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1722 reg->u32_max_value = min(reg->u32_max_value, 1723 (u32)(var32_off.value | var32_off.mask)); 1724 } 1725 1726 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1727 { 1728 /* min signed is max(sign bit) | min(other bits) */ 1729 reg->smin_value = max_t(s64, reg->smin_value, 1730 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1731 /* max signed is min(sign bit) | max(other bits) */ 1732 reg->smax_value = min_t(s64, reg->smax_value, 1733 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1734 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1735 reg->umax_value = min(reg->umax_value, 1736 reg->var_off.value | reg->var_off.mask); 1737 } 1738 1739 static void __update_reg_bounds(struct bpf_reg_state *reg) 1740 { 1741 __update_reg32_bounds(reg); 1742 __update_reg64_bounds(reg); 1743 } 1744 1745 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1746 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1747 { 1748 /* Learn sign from signed bounds. 1749 * If we cannot cross the sign boundary, then signed and unsigned bounds 1750 * are the same, so combine. This works even in the negative case, e.g. 1751 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1752 */ 1753 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1754 reg->s32_min_value = reg->u32_min_value = 1755 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1756 reg->s32_max_value = reg->u32_max_value = 1757 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1758 return; 1759 } 1760 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1761 * boundary, so we must be careful. 1762 */ 1763 if ((s32)reg->u32_max_value >= 0) { 1764 /* Positive. We can't learn anything from the smin, but smax 1765 * is positive, hence safe. 1766 */ 1767 reg->s32_min_value = reg->u32_min_value; 1768 reg->s32_max_value = reg->u32_max_value = 1769 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1770 } else if ((s32)reg->u32_min_value < 0) { 1771 /* Negative. We can't learn anything from the smax, but smin 1772 * is negative, hence safe. 1773 */ 1774 reg->s32_min_value = reg->u32_min_value = 1775 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1776 reg->s32_max_value = reg->u32_max_value; 1777 } 1778 } 1779 1780 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1781 { 1782 /* Learn sign from signed bounds. 1783 * If we cannot cross the sign boundary, then signed and unsigned bounds 1784 * are the same, so combine. This works even in the negative case, e.g. 1785 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1786 */ 1787 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1788 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1789 reg->umin_value); 1790 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1791 reg->umax_value); 1792 return; 1793 } 1794 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1795 * boundary, so we must be careful. 1796 */ 1797 if ((s64)reg->umax_value >= 0) { 1798 /* Positive. We can't learn anything from the smin, but smax 1799 * is positive, hence safe. 1800 */ 1801 reg->smin_value = reg->umin_value; 1802 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1803 reg->umax_value); 1804 } else if ((s64)reg->umin_value < 0) { 1805 /* Negative. We can't learn anything from the smax, but smin 1806 * is negative, hence safe. 1807 */ 1808 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1809 reg->umin_value); 1810 reg->smax_value = reg->umax_value; 1811 } 1812 } 1813 1814 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1815 { 1816 __reg32_deduce_bounds(reg); 1817 __reg64_deduce_bounds(reg); 1818 } 1819 1820 /* Attempts to improve var_off based on unsigned min/max information */ 1821 static void __reg_bound_offset(struct bpf_reg_state *reg) 1822 { 1823 struct tnum var64_off = tnum_intersect(reg->var_off, 1824 tnum_range(reg->umin_value, 1825 reg->umax_value)); 1826 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1827 tnum_range(reg->u32_min_value, 1828 reg->u32_max_value)); 1829 1830 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1831 } 1832 1833 static void reg_bounds_sync(struct bpf_reg_state *reg) 1834 { 1835 /* We might have learned new bounds from the var_off. */ 1836 __update_reg_bounds(reg); 1837 /* We might have learned something about the sign bit. */ 1838 __reg_deduce_bounds(reg); 1839 /* We might have learned some bits from the bounds. */ 1840 __reg_bound_offset(reg); 1841 /* Intersecting with the old var_off might have improved our bounds 1842 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1843 * then new var_off is (0; 0x7f...fc) which improves our umax. 1844 */ 1845 __update_reg_bounds(reg); 1846 } 1847 1848 static bool __reg32_bound_s64(s32 a) 1849 { 1850 return a >= 0 && a <= S32_MAX; 1851 } 1852 1853 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1854 { 1855 reg->umin_value = reg->u32_min_value; 1856 reg->umax_value = reg->u32_max_value; 1857 1858 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1859 * be positive otherwise set to worse case bounds and refine later 1860 * from tnum. 1861 */ 1862 if (__reg32_bound_s64(reg->s32_min_value) && 1863 __reg32_bound_s64(reg->s32_max_value)) { 1864 reg->smin_value = reg->s32_min_value; 1865 reg->smax_value = reg->s32_max_value; 1866 } else { 1867 reg->smin_value = 0; 1868 reg->smax_value = U32_MAX; 1869 } 1870 } 1871 1872 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1873 { 1874 /* special case when 64-bit register has upper 32-bit register 1875 * zeroed. Typically happens after zext or <<32, >>32 sequence 1876 * allowing us to use 32-bit bounds directly, 1877 */ 1878 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1879 __reg_assign_32_into_64(reg); 1880 } else { 1881 /* Otherwise the best we can do is push lower 32bit known and 1882 * unknown bits into register (var_off set from jmp logic) 1883 * then learn as much as possible from the 64-bit tnum 1884 * known and unknown bits. The previous smin/smax bounds are 1885 * invalid here because of jmp32 compare so mark them unknown 1886 * so they do not impact tnum bounds calculation. 1887 */ 1888 __mark_reg64_unbounded(reg); 1889 } 1890 reg_bounds_sync(reg); 1891 } 1892 1893 static bool __reg64_bound_s32(s64 a) 1894 { 1895 return a >= S32_MIN && a <= S32_MAX; 1896 } 1897 1898 static bool __reg64_bound_u32(u64 a) 1899 { 1900 return a >= U32_MIN && a <= U32_MAX; 1901 } 1902 1903 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1904 { 1905 __mark_reg32_unbounded(reg); 1906 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1907 reg->s32_min_value = (s32)reg->smin_value; 1908 reg->s32_max_value = (s32)reg->smax_value; 1909 } 1910 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1911 reg->u32_min_value = (u32)reg->umin_value; 1912 reg->u32_max_value = (u32)reg->umax_value; 1913 } 1914 reg_bounds_sync(reg); 1915 } 1916 1917 /* Mark a register as having a completely unknown (scalar) value. */ 1918 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1919 struct bpf_reg_state *reg) 1920 { 1921 /* 1922 * Clear type, off, and union(map_ptr, range) and 1923 * padding between 'type' and union 1924 */ 1925 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1926 reg->type = SCALAR_VALUE; 1927 reg->id = 0; 1928 reg->ref_obj_id = 0; 1929 reg->var_off = tnum_unknown; 1930 reg->frameno = 0; 1931 reg->precise = !env->bpf_capable; 1932 __mark_reg_unbounded(reg); 1933 } 1934 1935 static void mark_reg_unknown(struct bpf_verifier_env *env, 1936 struct bpf_reg_state *regs, u32 regno) 1937 { 1938 if (WARN_ON(regno >= MAX_BPF_REG)) { 1939 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1940 /* Something bad happened, let's kill all regs except FP */ 1941 for (regno = 0; regno < BPF_REG_FP; regno++) 1942 __mark_reg_not_init(env, regs + regno); 1943 return; 1944 } 1945 __mark_reg_unknown(env, regs + regno); 1946 } 1947 1948 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1949 struct bpf_reg_state *reg) 1950 { 1951 __mark_reg_unknown(env, reg); 1952 reg->type = NOT_INIT; 1953 } 1954 1955 static void mark_reg_not_init(struct bpf_verifier_env *env, 1956 struct bpf_reg_state *regs, u32 regno) 1957 { 1958 if (WARN_ON(regno >= MAX_BPF_REG)) { 1959 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1960 /* Something bad happened, let's kill all regs except FP */ 1961 for (regno = 0; regno < BPF_REG_FP; regno++) 1962 __mark_reg_not_init(env, regs + regno); 1963 return; 1964 } 1965 __mark_reg_not_init(env, regs + regno); 1966 } 1967 1968 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1969 struct bpf_reg_state *regs, u32 regno, 1970 enum bpf_reg_type reg_type, 1971 struct btf *btf, u32 btf_id, 1972 enum bpf_type_flag flag) 1973 { 1974 if (reg_type == SCALAR_VALUE) { 1975 mark_reg_unknown(env, regs, regno); 1976 return; 1977 } 1978 mark_reg_known_zero(env, regs, regno); 1979 regs[regno].type = PTR_TO_BTF_ID | flag; 1980 regs[regno].btf = btf; 1981 regs[regno].btf_id = btf_id; 1982 } 1983 1984 #define DEF_NOT_SUBREG (0) 1985 static void init_reg_state(struct bpf_verifier_env *env, 1986 struct bpf_func_state *state) 1987 { 1988 struct bpf_reg_state *regs = state->regs; 1989 int i; 1990 1991 for (i = 0; i < MAX_BPF_REG; i++) { 1992 mark_reg_not_init(env, regs, i); 1993 regs[i].live = REG_LIVE_NONE; 1994 regs[i].parent = NULL; 1995 regs[i].subreg_def = DEF_NOT_SUBREG; 1996 } 1997 1998 /* frame pointer */ 1999 regs[BPF_REG_FP].type = PTR_TO_STACK; 2000 mark_reg_known_zero(env, regs, BPF_REG_FP); 2001 regs[BPF_REG_FP].frameno = state->frameno; 2002 } 2003 2004 #define BPF_MAIN_FUNC (-1) 2005 static void init_func_state(struct bpf_verifier_env *env, 2006 struct bpf_func_state *state, 2007 int callsite, int frameno, int subprogno) 2008 { 2009 state->callsite = callsite; 2010 state->frameno = frameno; 2011 state->subprogno = subprogno; 2012 state->callback_ret_range = tnum_range(0, 0); 2013 init_reg_state(env, state); 2014 mark_verifier_state_scratched(env); 2015 } 2016 2017 /* Similar to push_stack(), but for async callbacks */ 2018 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2019 int insn_idx, int prev_insn_idx, 2020 int subprog) 2021 { 2022 struct bpf_verifier_stack_elem *elem; 2023 struct bpf_func_state *frame; 2024 2025 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2026 if (!elem) 2027 goto err; 2028 2029 elem->insn_idx = insn_idx; 2030 elem->prev_insn_idx = prev_insn_idx; 2031 elem->next = env->head; 2032 elem->log_pos = env->log.len_used; 2033 env->head = elem; 2034 env->stack_size++; 2035 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2036 verbose(env, 2037 "The sequence of %d jumps is too complex for async cb.\n", 2038 env->stack_size); 2039 goto err; 2040 } 2041 /* Unlike push_stack() do not copy_verifier_state(). 2042 * The caller state doesn't matter. 2043 * This is async callback. It starts in a fresh stack. 2044 * Initialize it similar to do_check_common(). 2045 */ 2046 elem->st.branches = 1; 2047 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2048 if (!frame) 2049 goto err; 2050 init_func_state(env, frame, 2051 BPF_MAIN_FUNC /* callsite */, 2052 0 /* frameno within this callchain */, 2053 subprog /* subprog number within this prog */); 2054 elem->st.frame[0] = frame; 2055 return &elem->st; 2056 err: 2057 free_verifier_state(env->cur_state, true); 2058 env->cur_state = NULL; 2059 /* pop all elements and return */ 2060 while (!pop_stack(env, NULL, NULL, false)); 2061 return NULL; 2062 } 2063 2064 2065 enum reg_arg_type { 2066 SRC_OP, /* register is used as source operand */ 2067 DST_OP, /* register is used as destination operand */ 2068 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2069 }; 2070 2071 static int cmp_subprogs(const void *a, const void *b) 2072 { 2073 return ((struct bpf_subprog_info *)a)->start - 2074 ((struct bpf_subprog_info *)b)->start; 2075 } 2076 2077 static int find_subprog(struct bpf_verifier_env *env, int off) 2078 { 2079 struct bpf_subprog_info *p; 2080 2081 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2082 sizeof(env->subprog_info[0]), cmp_subprogs); 2083 if (!p) 2084 return -ENOENT; 2085 return p - env->subprog_info; 2086 2087 } 2088 2089 static int add_subprog(struct bpf_verifier_env *env, int off) 2090 { 2091 int insn_cnt = env->prog->len; 2092 int ret; 2093 2094 if (off >= insn_cnt || off < 0) { 2095 verbose(env, "call to invalid destination\n"); 2096 return -EINVAL; 2097 } 2098 ret = find_subprog(env, off); 2099 if (ret >= 0) 2100 return ret; 2101 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2102 verbose(env, "too many subprograms\n"); 2103 return -E2BIG; 2104 } 2105 /* determine subprog starts. The end is one before the next starts */ 2106 env->subprog_info[env->subprog_cnt++].start = off; 2107 sort(env->subprog_info, env->subprog_cnt, 2108 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2109 return env->subprog_cnt - 1; 2110 } 2111 2112 #define MAX_KFUNC_DESCS 256 2113 #define MAX_KFUNC_BTFS 256 2114 2115 struct bpf_kfunc_desc { 2116 struct btf_func_model func_model; 2117 u32 func_id; 2118 s32 imm; 2119 u16 offset; 2120 }; 2121 2122 struct bpf_kfunc_btf { 2123 struct btf *btf; 2124 struct module *module; 2125 u16 offset; 2126 }; 2127 2128 struct bpf_kfunc_desc_tab { 2129 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2130 u32 nr_descs; 2131 }; 2132 2133 struct bpf_kfunc_btf_tab { 2134 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2135 u32 nr_descs; 2136 }; 2137 2138 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2139 { 2140 const struct bpf_kfunc_desc *d0 = a; 2141 const struct bpf_kfunc_desc *d1 = b; 2142 2143 /* func_id is not greater than BTF_MAX_TYPE */ 2144 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2145 } 2146 2147 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2148 { 2149 const struct bpf_kfunc_btf *d0 = a; 2150 const struct bpf_kfunc_btf *d1 = b; 2151 2152 return d0->offset - d1->offset; 2153 } 2154 2155 static const struct bpf_kfunc_desc * 2156 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2157 { 2158 struct bpf_kfunc_desc desc = { 2159 .func_id = func_id, 2160 .offset = offset, 2161 }; 2162 struct bpf_kfunc_desc_tab *tab; 2163 2164 tab = prog->aux->kfunc_tab; 2165 return bsearch(&desc, tab->descs, tab->nr_descs, 2166 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2167 } 2168 2169 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2170 s16 offset) 2171 { 2172 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2173 struct bpf_kfunc_btf_tab *tab; 2174 struct bpf_kfunc_btf *b; 2175 struct module *mod; 2176 struct btf *btf; 2177 int btf_fd; 2178 2179 tab = env->prog->aux->kfunc_btf_tab; 2180 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2181 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2182 if (!b) { 2183 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2184 verbose(env, "too many different module BTFs\n"); 2185 return ERR_PTR(-E2BIG); 2186 } 2187 2188 if (bpfptr_is_null(env->fd_array)) { 2189 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2190 return ERR_PTR(-EPROTO); 2191 } 2192 2193 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2194 offset * sizeof(btf_fd), 2195 sizeof(btf_fd))) 2196 return ERR_PTR(-EFAULT); 2197 2198 btf = btf_get_by_fd(btf_fd); 2199 if (IS_ERR(btf)) { 2200 verbose(env, "invalid module BTF fd specified\n"); 2201 return btf; 2202 } 2203 2204 if (!btf_is_module(btf)) { 2205 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2206 btf_put(btf); 2207 return ERR_PTR(-EINVAL); 2208 } 2209 2210 mod = btf_try_get_module(btf); 2211 if (!mod) { 2212 btf_put(btf); 2213 return ERR_PTR(-ENXIO); 2214 } 2215 2216 b = &tab->descs[tab->nr_descs++]; 2217 b->btf = btf; 2218 b->module = mod; 2219 b->offset = offset; 2220 2221 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2222 kfunc_btf_cmp_by_off, NULL); 2223 } 2224 return b->btf; 2225 } 2226 2227 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2228 { 2229 if (!tab) 2230 return; 2231 2232 while (tab->nr_descs--) { 2233 module_put(tab->descs[tab->nr_descs].module); 2234 btf_put(tab->descs[tab->nr_descs].btf); 2235 } 2236 kfree(tab); 2237 } 2238 2239 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2240 { 2241 if (offset) { 2242 if (offset < 0) { 2243 /* In the future, this can be allowed to increase limit 2244 * of fd index into fd_array, interpreted as u16. 2245 */ 2246 verbose(env, "negative offset disallowed for kernel module function call\n"); 2247 return ERR_PTR(-EINVAL); 2248 } 2249 2250 return __find_kfunc_desc_btf(env, offset); 2251 } 2252 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2253 } 2254 2255 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2256 { 2257 const struct btf_type *func, *func_proto; 2258 struct bpf_kfunc_btf_tab *btf_tab; 2259 struct bpf_kfunc_desc_tab *tab; 2260 struct bpf_prog_aux *prog_aux; 2261 struct bpf_kfunc_desc *desc; 2262 const char *func_name; 2263 struct btf *desc_btf; 2264 unsigned long call_imm; 2265 unsigned long addr; 2266 int err; 2267 2268 prog_aux = env->prog->aux; 2269 tab = prog_aux->kfunc_tab; 2270 btf_tab = prog_aux->kfunc_btf_tab; 2271 if (!tab) { 2272 if (!btf_vmlinux) { 2273 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2274 return -ENOTSUPP; 2275 } 2276 2277 if (!env->prog->jit_requested) { 2278 verbose(env, "JIT is required for calling kernel function\n"); 2279 return -ENOTSUPP; 2280 } 2281 2282 if (!bpf_jit_supports_kfunc_call()) { 2283 verbose(env, "JIT does not support calling kernel function\n"); 2284 return -ENOTSUPP; 2285 } 2286 2287 if (!env->prog->gpl_compatible) { 2288 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2289 return -EINVAL; 2290 } 2291 2292 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2293 if (!tab) 2294 return -ENOMEM; 2295 prog_aux->kfunc_tab = tab; 2296 } 2297 2298 /* func_id == 0 is always invalid, but instead of returning an error, be 2299 * conservative and wait until the code elimination pass before returning 2300 * error, so that invalid calls that get pruned out can be in BPF programs 2301 * loaded from userspace. It is also required that offset be untouched 2302 * for such calls. 2303 */ 2304 if (!func_id && !offset) 2305 return 0; 2306 2307 if (!btf_tab && offset) { 2308 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2309 if (!btf_tab) 2310 return -ENOMEM; 2311 prog_aux->kfunc_btf_tab = btf_tab; 2312 } 2313 2314 desc_btf = find_kfunc_desc_btf(env, offset); 2315 if (IS_ERR(desc_btf)) { 2316 verbose(env, "failed to find BTF for kernel function\n"); 2317 return PTR_ERR(desc_btf); 2318 } 2319 2320 if (find_kfunc_desc(env->prog, func_id, offset)) 2321 return 0; 2322 2323 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2324 verbose(env, "too many different kernel function calls\n"); 2325 return -E2BIG; 2326 } 2327 2328 func = btf_type_by_id(desc_btf, func_id); 2329 if (!func || !btf_type_is_func(func)) { 2330 verbose(env, "kernel btf_id %u is not a function\n", 2331 func_id); 2332 return -EINVAL; 2333 } 2334 func_proto = btf_type_by_id(desc_btf, func->type); 2335 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2336 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2337 func_id); 2338 return -EINVAL; 2339 } 2340 2341 func_name = btf_name_by_offset(desc_btf, func->name_off); 2342 addr = kallsyms_lookup_name(func_name); 2343 if (!addr) { 2344 verbose(env, "cannot find address for kernel function %s\n", 2345 func_name); 2346 return -EINVAL; 2347 } 2348 2349 call_imm = BPF_CALL_IMM(addr); 2350 /* Check whether or not the relative offset overflows desc->imm */ 2351 if ((unsigned long)(s32)call_imm != call_imm) { 2352 verbose(env, "address of kernel function %s is out of range\n", 2353 func_name); 2354 return -EINVAL; 2355 } 2356 2357 if (bpf_dev_bound_kfunc_id(func_id)) { 2358 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2359 if (err) 2360 return err; 2361 } 2362 2363 desc = &tab->descs[tab->nr_descs++]; 2364 desc->func_id = func_id; 2365 desc->imm = call_imm; 2366 desc->offset = offset; 2367 err = btf_distill_func_proto(&env->log, desc_btf, 2368 func_proto, func_name, 2369 &desc->func_model); 2370 if (!err) 2371 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2372 kfunc_desc_cmp_by_id_off, NULL); 2373 return err; 2374 } 2375 2376 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2377 { 2378 const struct bpf_kfunc_desc *d0 = a; 2379 const struct bpf_kfunc_desc *d1 = b; 2380 2381 if (d0->imm > d1->imm) 2382 return 1; 2383 else if (d0->imm < d1->imm) 2384 return -1; 2385 return 0; 2386 } 2387 2388 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2389 { 2390 struct bpf_kfunc_desc_tab *tab; 2391 2392 tab = prog->aux->kfunc_tab; 2393 if (!tab) 2394 return; 2395 2396 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2397 kfunc_desc_cmp_by_imm, NULL); 2398 } 2399 2400 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2401 { 2402 return !!prog->aux->kfunc_tab; 2403 } 2404 2405 const struct btf_func_model * 2406 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2407 const struct bpf_insn *insn) 2408 { 2409 const struct bpf_kfunc_desc desc = { 2410 .imm = insn->imm, 2411 }; 2412 const struct bpf_kfunc_desc *res; 2413 struct bpf_kfunc_desc_tab *tab; 2414 2415 tab = prog->aux->kfunc_tab; 2416 res = bsearch(&desc, tab->descs, tab->nr_descs, 2417 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2418 2419 return res ? &res->func_model : NULL; 2420 } 2421 2422 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2423 { 2424 struct bpf_subprog_info *subprog = env->subprog_info; 2425 struct bpf_insn *insn = env->prog->insnsi; 2426 int i, ret, insn_cnt = env->prog->len; 2427 2428 /* Add entry function. */ 2429 ret = add_subprog(env, 0); 2430 if (ret) 2431 return ret; 2432 2433 for (i = 0; i < insn_cnt; i++, insn++) { 2434 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2435 !bpf_pseudo_kfunc_call(insn)) 2436 continue; 2437 2438 if (!env->bpf_capable) { 2439 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2440 return -EPERM; 2441 } 2442 2443 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2444 ret = add_subprog(env, i + insn->imm + 1); 2445 else 2446 ret = add_kfunc_call(env, insn->imm, insn->off); 2447 2448 if (ret < 0) 2449 return ret; 2450 } 2451 2452 /* Add a fake 'exit' subprog which could simplify subprog iteration 2453 * logic. 'subprog_cnt' should not be increased. 2454 */ 2455 subprog[env->subprog_cnt].start = insn_cnt; 2456 2457 if (env->log.level & BPF_LOG_LEVEL2) 2458 for (i = 0; i < env->subprog_cnt; i++) 2459 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2460 2461 return 0; 2462 } 2463 2464 static int check_subprogs(struct bpf_verifier_env *env) 2465 { 2466 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2467 struct bpf_subprog_info *subprog = env->subprog_info; 2468 struct bpf_insn *insn = env->prog->insnsi; 2469 int insn_cnt = env->prog->len; 2470 2471 /* now check that all jumps are within the same subprog */ 2472 subprog_start = subprog[cur_subprog].start; 2473 subprog_end = subprog[cur_subprog + 1].start; 2474 for (i = 0; i < insn_cnt; i++) { 2475 u8 code = insn[i].code; 2476 2477 if (code == (BPF_JMP | BPF_CALL) && 2478 insn[i].imm == BPF_FUNC_tail_call && 2479 insn[i].src_reg != BPF_PSEUDO_CALL) 2480 subprog[cur_subprog].has_tail_call = true; 2481 if (BPF_CLASS(code) == BPF_LD && 2482 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2483 subprog[cur_subprog].has_ld_abs = true; 2484 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2485 goto next; 2486 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2487 goto next; 2488 off = i + insn[i].off + 1; 2489 if (off < subprog_start || off >= subprog_end) { 2490 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2491 return -EINVAL; 2492 } 2493 next: 2494 if (i == subprog_end - 1) { 2495 /* to avoid fall-through from one subprog into another 2496 * the last insn of the subprog should be either exit 2497 * or unconditional jump back 2498 */ 2499 if (code != (BPF_JMP | BPF_EXIT) && 2500 code != (BPF_JMP | BPF_JA)) { 2501 verbose(env, "last insn is not an exit or jmp\n"); 2502 return -EINVAL; 2503 } 2504 subprog_start = subprog_end; 2505 cur_subprog++; 2506 if (cur_subprog < env->subprog_cnt) 2507 subprog_end = subprog[cur_subprog + 1].start; 2508 } 2509 } 2510 return 0; 2511 } 2512 2513 /* Parentage chain of this register (or stack slot) should take care of all 2514 * issues like callee-saved registers, stack slot allocation time, etc. 2515 */ 2516 static int mark_reg_read(struct bpf_verifier_env *env, 2517 const struct bpf_reg_state *state, 2518 struct bpf_reg_state *parent, u8 flag) 2519 { 2520 bool writes = parent == state->parent; /* Observe write marks */ 2521 int cnt = 0; 2522 2523 while (parent) { 2524 /* if read wasn't screened by an earlier write ... */ 2525 if (writes && state->live & REG_LIVE_WRITTEN) 2526 break; 2527 if (parent->live & REG_LIVE_DONE) { 2528 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2529 reg_type_str(env, parent->type), 2530 parent->var_off.value, parent->off); 2531 return -EFAULT; 2532 } 2533 /* The first condition is more likely to be true than the 2534 * second, checked it first. 2535 */ 2536 if ((parent->live & REG_LIVE_READ) == flag || 2537 parent->live & REG_LIVE_READ64) 2538 /* The parentage chain never changes and 2539 * this parent was already marked as LIVE_READ. 2540 * There is no need to keep walking the chain again and 2541 * keep re-marking all parents as LIVE_READ. 2542 * This case happens when the same register is read 2543 * multiple times without writes into it in-between. 2544 * Also, if parent has the stronger REG_LIVE_READ64 set, 2545 * then no need to set the weak REG_LIVE_READ32. 2546 */ 2547 break; 2548 /* ... then we depend on parent's value */ 2549 parent->live |= flag; 2550 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2551 if (flag == REG_LIVE_READ64) 2552 parent->live &= ~REG_LIVE_READ32; 2553 state = parent; 2554 parent = state->parent; 2555 writes = true; 2556 cnt++; 2557 } 2558 2559 if (env->longest_mark_read_walk < cnt) 2560 env->longest_mark_read_walk = cnt; 2561 return 0; 2562 } 2563 2564 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2565 { 2566 struct bpf_func_state *state = func(env, reg); 2567 int spi, ret; 2568 2569 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2570 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2571 * check_kfunc_call. 2572 */ 2573 if (reg->type == CONST_PTR_TO_DYNPTR) 2574 return 0; 2575 spi = dynptr_get_spi(env, reg); 2576 if (spi < 0) 2577 return spi; 2578 /* Caller ensures dynptr is valid and initialized, which means spi is in 2579 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2580 * read. 2581 */ 2582 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2583 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2584 if (ret) 2585 return ret; 2586 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2587 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2588 } 2589 2590 /* This function is supposed to be used by the following 32-bit optimization 2591 * code only. It returns TRUE if the source or destination register operates 2592 * on 64-bit, otherwise return FALSE. 2593 */ 2594 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2595 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2596 { 2597 u8 code, class, op; 2598 2599 code = insn->code; 2600 class = BPF_CLASS(code); 2601 op = BPF_OP(code); 2602 if (class == BPF_JMP) { 2603 /* BPF_EXIT for "main" will reach here. Return TRUE 2604 * conservatively. 2605 */ 2606 if (op == BPF_EXIT) 2607 return true; 2608 if (op == BPF_CALL) { 2609 /* BPF to BPF call will reach here because of marking 2610 * caller saved clobber with DST_OP_NO_MARK for which we 2611 * don't care the register def because they are anyway 2612 * marked as NOT_INIT already. 2613 */ 2614 if (insn->src_reg == BPF_PSEUDO_CALL) 2615 return false; 2616 /* Helper call will reach here because of arg type 2617 * check, conservatively return TRUE. 2618 */ 2619 if (t == SRC_OP) 2620 return true; 2621 2622 return false; 2623 } 2624 } 2625 2626 if (class == BPF_ALU64 || class == BPF_JMP || 2627 /* BPF_END always use BPF_ALU class. */ 2628 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2629 return true; 2630 2631 if (class == BPF_ALU || class == BPF_JMP32) 2632 return false; 2633 2634 if (class == BPF_LDX) { 2635 if (t != SRC_OP) 2636 return BPF_SIZE(code) == BPF_DW; 2637 /* LDX source must be ptr. */ 2638 return true; 2639 } 2640 2641 if (class == BPF_STX) { 2642 /* BPF_STX (including atomic variants) has multiple source 2643 * operands, one of which is a ptr. Check whether the caller is 2644 * asking about it. 2645 */ 2646 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2647 return true; 2648 return BPF_SIZE(code) == BPF_DW; 2649 } 2650 2651 if (class == BPF_LD) { 2652 u8 mode = BPF_MODE(code); 2653 2654 /* LD_IMM64 */ 2655 if (mode == BPF_IMM) 2656 return true; 2657 2658 /* Both LD_IND and LD_ABS return 32-bit data. */ 2659 if (t != SRC_OP) 2660 return false; 2661 2662 /* Implicit ctx ptr. */ 2663 if (regno == BPF_REG_6) 2664 return true; 2665 2666 /* Explicit source could be any width. */ 2667 return true; 2668 } 2669 2670 if (class == BPF_ST) 2671 /* The only source register for BPF_ST is a ptr. */ 2672 return true; 2673 2674 /* Conservatively return true at default. */ 2675 return true; 2676 } 2677 2678 /* Return the regno defined by the insn, or -1. */ 2679 static int insn_def_regno(const struct bpf_insn *insn) 2680 { 2681 switch (BPF_CLASS(insn->code)) { 2682 case BPF_JMP: 2683 case BPF_JMP32: 2684 case BPF_ST: 2685 return -1; 2686 case BPF_STX: 2687 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2688 (insn->imm & BPF_FETCH)) { 2689 if (insn->imm == BPF_CMPXCHG) 2690 return BPF_REG_0; 2691 else 2692 return insn->src_reg; 2693 } else { 2694 return -1; 2695 } 2696 default: 2697 return insn->dst_reg; 2698 } 2699 } 2700 2701 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2702 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2703 { 2704 int dst_reg = insn_def_regno(insn); 2705 2706 if (dst_reg == -1) 2707 return false; 2708 2709 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2710 } 2711 2712 static void mark_insn_zext(struct bpf_verifier_env *env, 2713 struct bpf_reg_state *reg) 2714 { 2715 s32 def_idx = reg->subreg_def; 2716 2717 if (def_idx == DEF_NOT_SUBREG) 2718 return; 2719 2720 env->insn_aux_data[def_idx - 1].zext_dst = true; 2721 /* The dst will be zero extended, so won't be sub-register anymore. */ 2722 reg->subreg_def = DEF_NOT_SUBREG; 2723 } 2724 2725 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2726 enum reg_arg_type t) 2727 { 2728 struct bpf_verifier_state *vstate = env->cur_state; 2729 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2730 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2731 struct bpf_reg_state *reg, *regs = state->regs; 2732 bool rw64; 2733 2734 if (regno >= MAX_BPF_REG) { 2735 verbose(env, "R%d is invalid\n", regno); 2736 return -EINVAL; 2737 } 2738 2739 mark_reg_scratched(env, regno); 2740 2741 reg = ®s[regno]; 2742 rw64 = is_reg64(env, insn, regno, reg, t); 2743 if (t == SRC_OP) { 2744 /* check whether register used as source operand can be read */ 2745 if (reg->type == NOT_INIT) { 2746 verbose(env, "R%d !read_ok\n", regno); 2747 return -EACCES; 2748 } 2749 /* We don't need to worry about FP liveness because it's read-only */ 2750 if (regno == BPF_REG_FP) 2751 return 0; 2752 2753 if (rw64) 2754 mark_insn_zext(env, reg); 2755 2756 return mark_reg_read(env, reg, reg->parent, 2757 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2758 } else { 2759 /* check whether register used as dest operand can be written to */ 2760 if (regno == BPF_REG_FP) { 2761 verbose(env, "frame pointer is read only\n"); 2762 return -EACCES; 2763 } 2764 reg->live |= REG_LIVE_WRITTEN; 2765 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2766 if (t == DST_OP) 2767 mark_reg_unknown(env, regs, regno); 2768 } 2769 return 0; 2770 } 2771 2772 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2773 { 2774 env->insn_aux_data[idx].jmp_point = true; 2775 } 2776 2777 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2778 { 2779 return env->insn_aux_data[insn_idx].jmp_point; 2780 } 2781 2782 /* for any branch, call, exit record the history of jmps in the given state */ 2783 static int push_jmp_history(struct bpf_verifier_env *env, 2784 struct bpf_verifier_state *cur) 2785 { 2786 u32 cnt = cur->jmp_history_cnt; 2787 struct bpf_idx_pair *p; 2788 size_t alloc_size; 2789 2790 if (!is_jmp_point(env, env->insn_idx)) 2791 return 0; 2792 2793 cnt++; 2794 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2795 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2796 if (!p) 2797 return -ENOMEM; 2798 p[cnt - 1].idx = env->insn_idx; 2799 p[cnt - 1].prev_idx = env->prev_insn_idx; 2800 cur->jmp_history = p; 2801 cur->jmp_history_cnt = cnt; 2802 return 0; 2803 } 2804 2805 /* Backtrack one insn at a time. If idx is not at the top of recorded 2806 * history then previous instruction came from straight line execution. 2807 */ 2808 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2809 u32 *history) 2810 { 2811 u32 cnt = *history; 2812 2813 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2814 i = st->jmp_history[cnt - 1].prev_idx; 2815 (*history)--; 2816 } else { 2817 i--; 2818 } 2819 return i; 2820 } 2821 2822 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2823 { 2824 const struct btf_type *func; 2825 struct btf *desc_btf; 2826 2827 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2828 return NULL; 2829 2830 desc_btf = find_kfunc_desc_btf(data, insn->off); 2831 if (IS_ERR(desc_btf)) 2832 return "<error>"; 2833 2834 func = btf_type_by_id(desc_btf, insn->imm); 2835 return btf_name_by_offset(desc_btf, func->name_off); 2836 } 2837 2838 /* For given verifier state backtrack_insn() is called from the last insn to 2839 * the first insn. Its purpose is to compute a bitmask of registers and 2840 * stack slots that needs precision in the parent verifier state. 2841 */ 2842 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2843 u32 *reg_mask, u64 *stack_mask) 2844 { 2845 const struct bpf_insn_cbs cbs = { 2846 .cb_call = disasm_kfunc_name, 2847 .cb_print = verbose, 2848 .private_data = env, 2849 }; 2850 struct bpf_insn *insn = env->prog->insnsi + idx; 2851 u8 class = BPF_CLASS(insn->code); 2852 u8 opcode = BPF_OP(insn->code); 2853 u8 mode = BPF_MODE(insn->code); 2854 u32 dreg = 1u << insn->dst_reg; 2855 u32 sreg = 1u << insn->src_reg; 2856 u32 spi; 2857 2858 if (insn->code == 0) 2859 return 0; 2860 if (env->log.level & BPF_LOG_LEVEL2) { 2861 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2862 verbose(env, "%d: ", idx); 2863 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2864 } 2865 2866 if (class == BPF_ALU || class == BPF_ALU64) { 2867 if (!(*reg_mask & dreg)) 2868 return 0; 2869 if (opcode == BPF_MOV) { 2870 if (BPF_SRC(insn->code) == BPF_X) { 2871 /* dreg = sreg 2872 * dreg needs precision after this insn 2873 * sreg needs precision before this insn 2874 */ 2875 *reg_mask &= ~dreg; 2876 *reg_mask |= sreg; 2877 } else { 2878 /* dreg = K 2879 * dreg needs precision after this insn. 2880 * Corresponding register is already marked 2881 * as precise=true in this verifier state. 2882 * No further markings in parent are necessary 2883 */ 2884 *reg_mask &= ~dreg; 2885 } 2886 } else { 2887 if (BPF_SRC(insn->code) == BPF_X) { 2888 /* dreg += sreg 2889 * both dreg and sreg need precision 2890 * before this insn 2891 */ 2892 *reg_mask |= sreg; 2893 } /* else dreg += K 2894 * dreg still needs precision before this insn 2895 */ 2896 } 2897 } else if (class == BPF_LDX) { 2898 if (!(*reg_mask & dreg)) 2899 return 0; 2900 *reg_mask &= ~dreg; 2901 2902 /* scalars can only be spilled into stack w/o losing precision. 2903 * Load from any other memory can be zero extended. 2904 * The desire to keep that precision is already indicated 2905 * by 'precise' mark in corresponding register of this state. 2906 * No further tracking necessary. 2907 */ 2908 if (insn->src_reg != BPF_REG_FP) 2909 return 0; 2910 2911 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2912 * that [fp - off] slot contains scalar that needs to be 2913 * tracked with precision 2914 */ 2915 spi = (-insn->off - 1) / BPF_REG_SIZE; 2916 if (spi >= 64) { 2917 verbose(env, "BUG spi %d\n", spi); 2918 WARN_ONCE(1, "verifier backtracking bug"); 2919 return -EFAULT; 2920 } 2921 *stack_mask |= 1ull << spi; 2922 } else if (class == BPF_STX || class == BPF_ST) { 2923 if (*reg_mask & dreg) 2924 /* stx & st shouldn't be using _scalar_ dst_reg 2925 * to access memory. It means backtracking 2926 * encountered a case of pointer subtraction. 2927 */ 2928 return -ENOTSUPP; 2929 /* scalars can only be spilled into stack */ 2930 if (insn->dst_reg != BPF_REG_FP) 2931 return 0; 2932 spi = (-insn->off - 1) / BPF_REG_SIZE; 2933 if (spi >= 64) { 2934 verbose(env, "BUG spi %d\n", spi); 2935 WARN_ONCE(1, "verifier backtracking bug"); 2936 return -EFAULT; 2937 } 2938 if (!(*stack_mask & (1ull << spi))) 2939 return 0; 2940 *stack_mask &= ~(1ull << spi); 2941 if (class == BPF_STX) 2942 *reg_mask |= sreg; 2943 } else if (class == BPF_JMP || class == BPF_JMP32) { 2944 if (opcode == BPF_CALL) { 2945 if (insn->src_reg == BPF_PSEUDO_CALL) 2946 return -ENOTSUPP; 2947 /* BPF helpers that invoke callback subprogs are 2948 * equivalent to BPF_PSEUDO_CALL above 2949 */ 2950 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2951 return -ENOTSUPP; 2952 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 2953 * catch this error later. Make backtracking conservative 2954 * with ENOTSUPP. 2955 */ 2956 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 2957 return -ENOTSUPP; 2958 /* regular helper call sets R0 */ 2959 *reg_mask &= ~1; 2960 if (*reg_mask & 0x3f) { 2961 /* if backtracing was looking for registers R1-R5 2962 * they should have been found already. 2963 */ 2964 verbose(env, "BUG regs %x\n", *reg_mask); 2965 WARN_ONCE(1, "verifier backtracking bug"); 2966 return -EFAULT; 2967 } 2968 } else if (opcode == BPF_EXIT) { 2969 return -ENOTSUPP; 2970 } 2971 } else if (class == BPF_LD) { 2972 if (!(*reg_mask & dreg)) 2973 return 0; 2974 *reg_mask &= ~dreg; 2975 /* It's ld_imm64 or ld_abs or ld_ind. 2976 * For ld_imm64 no further tracking of precision 2977 * into parent is necessary 2978 */ 2979 if (mode == BPF_IND || mode == BPF_ABS) 2980 /* to be analyzed */ 2981 return -ENOTSUPP; 2982 } 2983 return 0; 2984 } 2985 2986 /* the scalar precision tracking algorithm: 2987 * . at the start all registers have precise=false. 2988 * . scalar ranges are tracked as normal through alu and jmp insns. 2989 * . once precise value of the scalar register is used in: 2990 * . ptr + scalar alu 2991 * . if (scalar cond K|scalar) 2992 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2993 * backtrack through the verifier states and mark all registers and 2994 * stack slots with spilled constants that these scalar regisers 2995 * should be precise. 2996 * . during state pruning two registers (or spilled stack slots) 2997 * are equivalent if both are not precise. 2998 * 2999 * Note the verifier cannot simply walk register parentage chain, 3000 * since many different registers and stack slots could have been 3001 * used to compute single precise scalar. 3002 * 3003 * The approach of starting with precise=true for all registers and then 3004 * backtrack to mark a register as not precise when the verifier detects 3005 * that program doesn't care about specific value (e.g., when helper 3006 * takes register as ARG_ANYTHING parameter) is not safe. 3007 * 3008 * It's ok to walk single parentage chain of the verifier states. 3009 * It's possible that this backtracking will go all the way till 1st insn. 3010 * All other branches will be explored for needing precision later. 3011 * 3012 * The backtracking needs to deal with cases like: 3013 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3014 * r9 -= r8 3015 * r5 = r9 3016 * if r5 > 0x79f goto pc+7 3017 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3018 * r5 += 1 3019 * ... 3020 * call bpf_perf_event_output#25 3021 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3022 * 3023 * and this case: 3024 * r6 = 1 3025 * call foo // uses callee's r6 inside to compute r0 3026 * r0 += r6 3027 * if r0 == 0 goto 3028 * 3029 * to track above reg_mask/stack_mask needs to be independent for each frame. 3030 * 3031 * Also if parent's curframe > frame where backtracking started, 3032 * the verifier need to mark registers in both frames, otherwise callees 3033 * may incorrectly prune callers. This is similar to 3034 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3035 * 3036 * For now backtracking falls back into conservative marking. 3037 */ 3038 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3039 struct bpf_verifier_state *st) 3040 { 3041 struct bpf_func_state *func; 3042 struct bpf_reg_state *reg; 3043 int i, j; 3044 3045 /* big hammer: mark all scalars precise in this path. 3046 * pop_stack may still get !precise scalars. 3047 * We also skip current state and go straight to first parent state, 3048 * because precision markings in current non-checkpointed state are 3049 * not needed. See why in the comment in __mark_chain_precision below. 3050 */ 3051 for (st = st->parent; st; st = st->parent) { 3052 for (i = 0; i <= st->curframe; i++) { 3053 func = st->frame[i]; 3054 for (j = 0; j < BPF_REG_FP; j++) { 3055 reg = &func->regs[j]; 3056 if (reg->type != SCALAR_VALUE) 3057 continue; 3058 reg->precise = true; 3059 } 3060 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3061 if (!is_spilled_reg(&func->stack[j])) 3062 continue; 3063 reg = &func->stack[j].spilled_ptr; 3064 if (reg->type != SCALAR_VALUE) 3065 continue; 3066 reg->precise = true; 3067 } 3068 } 3069 } 3070 } 3071 3072 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3073 { 3074 struct bpf_func_state *func; 3075 struct bpf_reg_state *reg; 3076 int i, j; 3077 3078 for (i = 0; i <= st->curframe; i++) { 3079 func = st->frame[i]; 3080 for (j = 0; j < BPF_REG_FP; j++) { 3081 reg = &func->regs[j]; 3082 if (reg->type != SCALAR_VALUE) 3083 continue; 3084 reg->precise = false; 3085 } 3086 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3087 if (!is_spilled_reg(&func->stack[j])) 3088 continue; 3089 reg = &func->stack[j].spilled_ptr; 3090 if (reg->type != SCALAR_VALUE) 3091 continue; 3092 reg->precise = false; 3093 } 3094 } 3095 } 3096 3097 /* 3098 * __mark_chain_precision() backtracks BPF program instruction sequence and 3099 * chain of verifier states making sure that register *regno* (if regno >= 0) 3100 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3101 * SCALARS, as well as any other registers and slots that contribute to 3102 * a tracked state of given registers/stack slots, depending on specific BPF 3103 * assembly instructions (see backtrack_insns() for exact instruction handling 3104 * logic). This backtracking relies on recorded jmp_history and is able to 3105 * traverse entire chain of parent states. This process ends only when all the 3106 * necessary registers/slots and their transitive dependencies are marked as 3107 * precise. 3108 * 3109 * One important and subtle aspect is that precise marks *do not matter* in 3110 * the currently verified state (current state). It is important to understand 3111 * why this is the case. 3112 * 3113 * First, note that current state is the state that is not yet "checkpointed", 3114 * i.e., it is not yet put into env->explored_states, and it has no children 3115 * states as well. It's ephemeral, and can end up either a) being discarded if 3116 * compatible explored state is found at some point or BPF_EXIT instruction is 3117 * reached or b) checkpointed and put into env->explored_states, branching out 3118 * into one or more children states. 3119 * 3120 * In the former case, precise markings in current state are completely 3121 * ignored by state comparison code (see regsafe() for details). Only 3122 * checkpointed ("old") state precise markings are important, and if old 3123 * state's register/slot is precise, regsafe() assumes current state's 3124 * register/slot as precise and checks value ranges exactly and precisely. If 3125 * states turn out to be compatible, current state's necessary precise 3126 * markings and any required parent states' precise markings are enforced 3127 * after the fact with propagate_precision() logic, after the fact. But it's 3128 * important to realize that in this case, even after marking current state 3129 * registers/slots as precise, we immediately discard current state. So what 3130 * actually matters is any of the precise markings propagated into current 3131 * state's parent states, which are always checkpointed (due to b) case above). 3132 * As such, for scenario a) it doesn't matter if current state has precise 3133 * markings set or not. 3134 * 3135 * Now, for the scenario b), checkpointing and forking into child(ren) 3136 * state(s). Note that before current state gets to checkpointing step, any 3137 * processed instruction always assumes precise SCALAR register/slot 3138 * knowledge: if precise value or range is useful to prune jump branch, BPF 3139 * verifier takes this opportunity enthusiastically. Similarly, when 3140 * register's value is used to calculate offset or memory address, exact 3141 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3142 * what we mentioned above about state comparison ignoring precise markings 3143 * during state comparison, BPF verifier ignores and also assumes precise 3144 * markings *at will* during instruction verification process. But as verifier 3145 * assumes precision, it also propagates any precision dependencies across 3146 * parent states, which are not yet finalized, so can be further restricted 3147 * based on new knowledge gained from restrictions enforced by their children 3148 * states. This is so that once those parent states are finalized, i.e., when 3149 * they have no more active children state, state comparison logic in 3150 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3151 * required for correctness. 3152 * 3153 * To build a bit more intuition, note also that once a state is checkpointed, 3154 * the path we took to get to that state is not important. This is crucial 3155 * property for state pruning. When state is checkpointed and finalized at 3156 * some instruction index, it can be correctly and safely used to "short 3157 * circuit" any *compatible* state that reaches exactly the same instruction 3158 * index. I.e., if we jumped to that instruction from a completely different 3159 * code path than original finalized state was derived from, it doesn't 3160 * matter, current state can be discarded because from that instruction 3161 * forward having a compatible state will ensure we will safely reach the 3162 * exit. States describe preconditions for further exploration, but completely 3163 * forget the history of how we got here. 3164 * 3165 * This also means that even if we needed precise SCALAR range to get to 3166 * finalized state, but from that point forward *that same* SCALAR register is 3167 * never used in a precise context (i.e., it's precise value is not needed for 3168 * correctness), it's correct and safe to mark such register as "imprecise" 3169 * (i.e., precise marking set to false). This is what we rely on when we do 3170 * not set precise marking in current state. If no child state requires 3171 * precision for any given SCALAR register, it's safe to dictate that it can 3172 * be imprecise. If any child state does require this register to be precise, 3173 * we'll mark it precise later retroactively during precise markings 3174 * propagation from child state to parent states. 3175 * 3176 * Skipping precise marking setting in current state is a mild version of 3177 * relying on the above observation. But we can utilize this property even 3178 * more aggressively by proactively forgetting any precise marking in the 3179 * current state (which we inherited from the parent state), right before we 3180 * checkpoint it and branch off into new child state. This is done by 3181 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3182 * finalized states which help in short circuiting more future states. 3183 */ 3184 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 3185 int spi) 3186 { 3187 struct bpf_verifier_state *st = env->cur_state; 3188 int first_idx = st->first_insn_idx; 3189 int last_idx = env->insn_idx; 3190 struct bpf_func_state *func; 3191 struct bpf_reg_state *reg; 3192 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 3193 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 3194 bool skip_first = true; 3195 bool new_marks = false; 3196 int i, err; 3197 3198 if (!env->bpf_capable) 3199 return 0; 3200 3201 /* Do sanity checks against current state of register and/or stack 3202 * slot, but don't set precise flag in current state, as precision 3203 * tracking in the current state is unnecessary. 3204 */ 3205 func = st->frame[frame]; 3206 if (regno >= 0) { 3207 reg = &func->regs[regno]; 3208 if (reg->type != SCALAR_VALUE) { 3209 WARN_ONCE(1, "backtracing misuse"); 3210 return -EFAULT; 3211 } 3212 new_marks = true; 3213 } 3214 3215 while (spi >= 0) { 3216 if (!is_spilled_reg(&func->stack[spi])) { 3217 stack_mask = 0; 3218 break; 3219 } 3220 reg = &func->stack[spi].spilled_ptr; 3221 if (reg->type != SCALAR_VALUE) { 3222 stack_mask = 0; 3223 break; 3224 } 3225 new_marks = true; 3226 break; 3227 } 3228 3229 if (!new_marks) 3230 return 0; 3231 if (!reg_mask && !stack_mask) 3232 return 0; 3233 3234 for (;;) { 3235 DECLARE_BITMAP(mask, 64); 3236 u32 history = st->jmp_history_cnt; 3237 3238 if (env->log.level & BPF_LOG_LEVEL2) 3239 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3240 3241 if (last_idx < 0) { 3242 /* we are at the entry into subprog, which 3243 * is expected for global funcs, but only if 3244 * requested precise registers are R1-R5 3245 * (which are global func's input arguments) 3246 */ 3247 if (st->curframe == 0 && 3248 st->frame[0]->subprogno > 0 && 3249 st->frame[0]->callsite == BPF_MAIN_FUNC && 3250 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3251 bitmap_from_u64(mask, reg_mask); 3252 for_each_set_bit(i, mask, 32) { 3253 reg = &st->frame[0]->regs[i]; 3254 if (reg->type != SCALAR_VALUE) { 3255 reg_mask &= ~(1u << i); 3256 continue; 3257 } 3258 reg->precise = true; 3259 } 3260 return 0; 3261 } 3262 3263 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3264 st->frame[0]->subprogno, reg_mask, stack_mask); 3265 WARN_ONCE(1, "verifier backtracking bug"); 3266 return -EFAULT; 3267 } 3268 3269 for (i = last_idx;;) { 3270 if (skip_first) { 3271 err = 0; 3272 skip_first = false; 3273 } else { 3274 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3275 } 3276 if (err == -ENOTSUPP) { 3277 mark_all_scalars_precise(env, st); 3278 return 0; 3279 } else if (err) { 3280 return err; 3281 } 3282 if (!reg_mask && !stack_mask) 3283 /* Found assignment(s) into tracked register in this state. 3284 * Since this state is already marked, just return. 3285 * Nothing to be tracked further in the parent state. 3286 */ 3287 return 0; 3288 if (i == first_idx) 3289 break; 3290 i = get_prev_insn_idx(st, i, &history); 3291 if (i >= env->prog->len) { 3292 /* This can happen if backtracking reached insn 0 3293 * and there are still reg_mask or stack_mask 3294 * to backtrack. 3295 * It means the backtracking missed the spot where 3296 * particular register was initialized with a constant. 3297 */ 3298 verbose(env, "BUG backtracking idx %d\n", i); 3299 WARN_ONCE(1, "verifier backtracking bug"); 3300 return -EFAULT; 3301 } 3302 } 3303 st = st->parent; 3304 if (!st) 3305 break; 3306 3307 new_marks = false; 3308 func = st->frame[frame]; 3309 bitmap_from_u64(mask, reg_mask); 3310 for_each_set_bit(i, mask, 32) { 3311 reg = &func->regs[i]; 3312 if (reg->type != SCALAR_VALUE) { 3313 reg_mask &= ~(1u << i); 3314 continue; 3315 } 3316 if (!reg->precise) 3317 new_marks = true; 3318 reg->precise = true; 3319 } 3320 3321 bitmap_from_u64(mask, stack_mask); 3322 for_each_set_bit(i, mask, 64) { 3323 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3324 /* the sequence of instructions: 3325 * 2: (bf) r3 = r10 3326 * 3: (7b) *(u64 *)(r3 -8) = r0 3327 * 4: (79) r4 = *(u64 *)(r10 -8) 3328 * doesn't contain jmps. It's backtracked 3329 * as a single block. 3330 * During backtracking insn 3 is not recognized as 3331 * stack access, so at the end of backtracking 3332 * stack slot fp-8 is still marked in stack_mask. 3333 * However the parent state may not have accessed 3334 * fp-8 and it's "unallocated" stack space. 3335 * In such case fallback to conservative. 3336 */ 3337 mark_all_scalars_precise(env, st); 3338 return 0; 3339 } 3340 3341 if (!is_spilled_reg(&func->stack[i])) { 3342 stack_mask &= ~(1ull << i); 3343 continue; 3344 } 3345 reg = &func->stack[i].spilled_ptr; 3346 if (reg->type != SCALAR_VALUE) { 3347 stack_mask &= ~(1ull << i); 3348 continue; 3349 } 3350 if (!reg->precise) 3351 new_marks = true; 3352 reg->precise = true; 3353 } 3354 if (env->log.level & BPF_LOG_LEVEL2) { 3355 verbose(env, "parent %s regs=%x stack=%llx marks:", 3356 new_marks ? "didn't have" : "already had", 3357 reg_mask, stack_mask); 3358 print_verifier_state(env, func, true); 3359 } 3360 3361 if (!reg_mask && !stack_mask) 3362 break; 3363 if (!new_marks) 3364 break; 3365 3366 last_idx = st->last_insn_idx; 3367 first_idx = st->first_insn_idx; 3368 } 3369 return 0; 3370 } 3371 3372 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3373 { 3374 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3375 } 3376 3377 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3378 { 3379 return __mark_chain_precision(env, frame, regno, -1); 3380 } 3381 3382 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3383 { 3384 return __mark_chain_precision(env, frame, -1, spi); 3385 } 3386 3387 static bool is_spillable_regtype(enum bpf_reg_type type) 3388 { 3389 switch (base_type(type)) { 3390 case PTR_TO_MAP_VALUE: 3391 case PTR_TO_STACK: 3392 case PTR_TO_CTX: 3393 case PTR_TO_PACKET: 3394 case PTR_TO_PACKET_META: 3395 case PTR_TO_PACKET_END: 3396 case PTR_TO_FLOW_KEYS: 3397 case CONST_PTR_TO_MAP: 3398 case PTR_TO_SOCKET: 3399 case PTR_TO_SOCK_COMMON: 3400 case PTR_TO_TCP_SOCK: 3401 case PTR_TO_XDP_SOCK: 3402 case PTR_TO_BTF_ID: 3403 case PTR_TO_BUF: 3404 case PTR_TO_MEM: 3405 case PTR_TO_FUNC: 3406 case PTR_TO_MAP_KEY: 3407 return true; 3408 default: 3409 return false; 3410 } 3411 } 3412 3413 /* Does this register contain a constant zero? */ 3414 static bool register_is_null(struct bpf_reg_state *reg) 3415 { 3416 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3417 } 3418 3419 static bool register_is_const(struct bpf_reg_state *reg) 3420 { 3421 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3422 } 3423 3424 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3425 { 3426 return tnum_is_unknown(reg->var_off) && 3427 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3428 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3429 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3430 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3431 } 3432 3433 static bool register_is_bounded(struct bpf_reg_state *reg) 3434 { 3435 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3436 } 3437 3438 static bool __is_pointer_value(bool allow_ptr_leaks, 3439 const struct bpf_reg_state *reg) 3440 { 3441 if (allow_ptr_leaks) 3442 return false; 3443 3444 return reg->type != SCALAR_VALUE; 3445 } 3446 3447 /* Copy src state preserving dst->parent and dst->live fields */ 3448 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 3449 { 3450 struct bpf_reg_state *parent = dst->parent; 3451 enum bpf_reg_liveness live = dst->live; 3452 3453 *dst = *src; 3454 dst->parent = parent; 3455 dst->live = live; 3456 } 3457 3458 static void save_register_state(struct bpf_func_state *state, 3459 int spi, struct bpf_reg_state *reg, 3460 int size) 3461 { 3462 int i; 3463 3464 copy_register_state(&state->stack[spi].spilled_ptr, reg); 3465 if (size == BPF_REG_SIZE) 3466 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3467 3468 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3469 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3470 3471 /* size < 8 bytes spill */ 3472 for (; i; i--) 3473 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3474 } 3475 3476 static bool is_bpf_st_mem(struct bpf_insn *insn) 3477 { 3478 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 3479 } 3480 3481 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3482 * stack boundary and alignment are checked in check_mem_access() 3483 */ 3484 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3485 /* stack frame we're writing to */ 3486 struct bpf_func_state *state, 3487 int off, int size, int value_regno, 3488 int insn_idx) 3489 { 3490 struct bpf_func_state *cur; /* state of the current function */ 3491 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3492 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3493 struct bpf_reg_state *reg = NULL; 3494 u32 dst_reg = insn->dst_reg; 3495 3496 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3497 if (err) 3498 return err; 3499 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3500 * so it's aligned access and [off, off + size) are within stack limits 3501 */ 3502 if (!env->allow_ptr_leaks && 3503 state->stack[spi].slot_type[0] == STACK_SPILL && 3504 size != BPF_REG_SIZE) { 3505 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3506 return -EACCES; 3507 } 3508 3509 cur = env->cur_state->frame[env->cur_state->curframe]; 3510 if (value_regno >= 0) 3511 reg = &cur->regs[value_regno]; 3512 if (!env->bypass_spec_v4) { 3513 bool sanitize = reg && is_spillable_regtype(reg->type); 3514 3515 for (i = 0; i < size; i++) { 3516 u8 type = state->stack[spi].slot_type[i]; 3517 3518 if (type != STACK_MISC && type != STACK_ZERO) { 3519 sanitize = true; 3520 break; 3521 } 3522 } 3523 3524 if (sanitize) 3525 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3526 } 3527 3528 err = destroy_if_dynptr_stack_slot(env, state, spi); 3529 if (err) 3530 return err; 3531 3532 mark_stack_slot_scratched(env, spi); 3533 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3534 !register_is_null(reg) && env->bpf_capable) { 3535 if (dst_reg != BPF_REG_FP) { 3536 /* The backtracking logic can only recognize explicit 3537 * stack slot address like [fp - 8]. Other spill of 3538 * scalar via different register has to be conservative. 3539 * Backtrack from here and mark all registers as precise 3540 * that contributed into 'reg' being a constant. 3541 */ 3542 err = mark_chain_precision(env, value_regno); 3543 if (err) 3544 return err; 3545 } 3546 save_register_state(state, spi, reg, size); 3547 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 3548 insn->imm != 0 && env->bpf_capable) { 3549 struct bpf_reg_state fake_reg = {}; 3550 3551 __mark_reg_known(&fake_reg, (u32)insn->imm); 3552 fake_reg.type = SCALAR_VALUE; 3553 save_register_state(state, spi, &fake_reg, size); 3554 } else if (reg && is_spillable_regtype(reg->type)) { 3555 /* register containing pointer is being spilled into stack */ 3556 if (size != BPF_REG_SIZE) { 3557 verbose_linfo(env, insn_idx, "; "); 3558 verbose(env, "invalid size of register spill\n"); 3559 return -EACCES; 3560 } 3561 if (state != cur && reg->type == PTR_TO_STACK) { 3562 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3563 return -EINVAL; 3564 } 3565 save_register_state(state, spi, reg, size); 3566 } else { 3567 u8 type = STACK_MISC; 3568 3569 /* regular write of data into stack destroys any spilled ptr */ 3570 state->stack[spi].spilled_ptr.type = NOT_INIT; 3571 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3572 if (is_spilled_reg(&state->stack[spi])) 3573 for (i = 0; i < BPF_REG_SIZE; i++) 3574 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3575 3576 /* only mark the slot as written if all 8 bytes were written 3577 * otherwise read propagation may incorrectly stop too soon 3578 * when stack slots are partially written. 3579 * This heuristic means that read propagation will be 3580 * conservative, since it will add reg_live_read marks 3581 * to stack slots all the way to first state when programs 3582 * writes+reads less than 8 bytes 3583 */ 3584 if (size == BPF_REG_SIZE) 3585 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3586 3587 /* when we zero initialize stack slots mark them as such */ 3588 if ((reg && register_is_null(reg)) || 3589 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 3590 /* backtracking doesn't work for STACK_ZERO yet. */ 3591 err = mark_chain_precision(env, value_regno); 3592 if (err) 3593 return err; 3594 type = STACK_ZERO; 3595 } 3596 3597 /* Mark slots affected by this stack write. */ 3598 for (i = 0; i < size; i++) 3599 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3600 type; 3601 } 3602 return 0; 3603 } 3604 3605 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3606 * known to contain a variable offset. 3607 * This function checks whether the write is permitted and conservatively 3608 * tracks the effects of the write, considering that each stack slot in the 3609 * dynamic range is potentially written to. 3610 * 3611 * 'off' includes 'regno->off'. 3612 * 'value_regno' can be -1, meaning that an unknown value is being written to 3613 * the stack. 3614 * 3615 * Spilled pointers in range are not marked as written because we don't know 3616 * what's going to be actually written. This means that read propagation for 3617 * future reads cannot be terminated by this write. 3618 * 3619 * For privileged programs, uninitialized stack slots are considered 3620 * initialized by this write (even though we don't know exactly what offsets 3621 * are going to be written to). The idea is that we don't want the verifier to 3622 * reject future reads that access slots written to through variable offsets. 3623 */ 3624 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3625 /* func where register points to */ 3626 struct bpf_func_state *state, 3627 int ptr_regno, int off, int size, 3628 int value_regno, int insn_idx) 3629 { 3630 struct bpf_func_state *cur; /* state of the current function */ 3631 int min_off, max_off; 3632 int i, err; 3633 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3634 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3635 bool writing_zero = false; 3636 /* set if the fact that we're writing a zero is used to let any 3637 * stack slots remain STACK_ZERO 3638 */ 3639 bool zero_used = false; 3640 3641 cur = env->cur_state->frame[env->cur_state->curframe]; 3642 ptr_reg = &cur->regs[ptr_regno]; 3643 min_off = ptr_reg->smin_value + off; 3644 max_off = ptr_reg->smax_value + off + size; 3645 if (value_regno >= 0) 3646 value_reg = &cur->regs[value_regno]; 3647 if ((value_reg && register_is_null(value_reg)) || 3648 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 3649 writing_zero = true; 3650 3651 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3652 if (err) 3653 return err; 3654 3655 for (i = min_off; i < max_off; i++) { 3656 int spi; 3657 3658 spi = __get_spi(i); 3659 err = destroy_if_dynptr_stack_slot(env, state, spi); 3660 if (err) 3661 return err; 3662 } 3663 3664 /* Variable offset writes destroy any spilled pointers in range. */ 3665 for (i = min_off; i < max_off; i++) { 3666 u8 new_type, *stype; 3667 int slot, spi; 3668 3669 slot = -i - 1; 3670 spi = slot / BPF_REG_SIZE; 3671 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3672 mark_stack_slot_scratched(env, spi); 3673 3674 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3675 /* Reject the write if range we may write to has not 3676 * been initialized beforehand. If we didn't reject 3677 * here, the ptr status would be erased below (even 3678 * though not all slots are actually overwritten), 3679 * possibly opening the door to leaks. 3680 * 3681 * We do however catch STACK_INVALID case below, and 3682 * only allow reading possibly uninitialized memory 3683 * later for CAP_PERFMON, as the write may not happen to 3684 * that slot. 3685 */ 3686 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3687 insn_idx, i); 3688 return -EINVAL; 3689 } 3690 3691 /* Erase all spilled pointers. */ 3692 state->stack[spi].spilled_ptr.type = NOT_INIT; 3693 3694 /* Update the slot type. */ 3695 new_type = STACK_MISC; 3696 if (writing_zero && *stype == STACK_ZERO) { 3697 new_type = STACK_ZERO; 3698 zero_used = true; 3699 } 3700 /* If the slot is STACK_INVALID, we check whether it's OK to 3701 * pretend that it will be initialized by this write. The slot 3702 * might not actually be written to, and so if we mark it as 3703 * initialized future reads might leak uninitialized memory. 3704 * For privileged programs, we will accept such reads to slots 3705 * that may or may not be written because, if we're reject 3706 * them, the error would be too confusing. 3707 */ 3708 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3709 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3710 insn_idx, i); 3711 return -EINVAL; 3712 } 3713 *stype = new_type; 3714 } 3715 if (zero_used) { 3716 /* backtracking doesn't work for STACK_ZERO yet. */ 3717 err = mark_chain_precision(env, value_regno); 3718 if (err) 3719 return err; 3720 } 3721 return 0; 3722 } 3723 3724 /* When register 'dst_regno' is assigned some values from stack[min_off, 3725 * max_off), we set the register's type according to the types of the 3726 * respective stack slots. If all the stack values are known to be zeros, then 3727 * so is the destination reg. Otherwise, the register is considered to be 3728 * SCALAR. This function does not deal with register filling; the caller must 3729 * ensure that all spilled registers in the stack range have been marked as 3730 * read. 3731 */ 3732 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3733 /* func where src register points to */ 3734 struct bpf_func_state *ptr_state, 3735 int min_off, int max_off, int dst_regno) 3736 { 3737 struct bpf_verifier_state *vstate = env->cur_state; 3738 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3739 int i, slot, spi; 3740 u8 *stype; 3741 int zeros = 0; 3742 3743 for (i = min_off; i < max_off; i++) { 3744 slot = -i - 1; 3745 spi = slot / BPF_REG_SIZE; 3746 stype = ptr_state->stack[spi].slot_type; 3747 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3748 break; 3749 zeros++; 3750 } 3751 if (zeros == max_off - min_off) { 3752 /* any access_size read into register is zero extended, 3753 * so the whole register == const_zero 3754 */ 3755 __mark_reg_const_zero(&state->regs[dst_regno]); 3756 /* backtracking doesn't support STACK_ZERO yet, 3757 * so mark it precise here, so that later 3758 * backtracking can stop here. 3759 * Backtracking may not need this if this register 3760 * doesn't participate in pointer adjustment. 3761 * Forward propagation of precise flag is not 3762 * necessary either. This mark is only to stop 3763 * backtracking. Any register that contributed 3764 * to const 0 was marked precise before spill. 3765 */ 3766 state->regs[dst_regno].precise = true; 3767 } else { 3768 /* have read misc data from the stack */ 3769 mark_reg_unknown(env, state->regs, dst_regno); 3770 } 3771 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3772 } 3773 3774 /* Read the stack at 'off' and put the results into the register indicated by 3775 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3776 * spilled reg. 3777 * 3778 * 'dst_regno' can be -1, meaning that the read value is not going to a 3779 * register. 3780 * 3781 * The access is assumed to be within the current stack bounds. 3782 */ 3783 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3784 /* func where src register points to */ 3785 struct bpf_func_state *reg_state, 3786 int off, int size, int dst_regno) 3787 { 3788 struct bpf_verifier_state *vstate = env->cur_state; 3789 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3790 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3791 struct bpf_reg_state *reg; 3792 u8 *stype, type; 3793 3794 stype = reg_state->stack[spi].slot_type; 3795 reg = ®_state->stack[spi].spilled_ptr; 3796 3797 if (is_spilled_reg(®_state->stack[spi])) { 3798 u8 spill_size = 1; 3799 3800 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3801 spill_size++; 3802 3803 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3804 if (reg->type != SCALAR_VALUE) { 3805 verbose_linfo(env, env->insn_idx, "; "); 3806 verbose(env, "invalid size of register fill\n"); 3807 return -EACCES; 3808 } 3809 3810 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3811 if (dst_regno < 0) 3812 return 0; 3813 3814 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3815 /* The earlier check_reg_arg() has decided the 3816 * subreg_def for this insn. Save it first. 3817 */ 3818 s32 subreg_def = state->regs[dst_regno].subreg_def; 3819 3820 copy_register_state(&state->regs[dst_regno], reg); 3821 state->regs[dst_regno].subreg_def = subreg_def; 3822 } else { 3823 for (i = 0; i < size; i++) { 3824 type = stype[(slot - i) % BPF_REG_SIZE]; 3825 if (type == STACK_SPILL) 3826 continue; 3827 if (type == STACK_MISC) 3828 continue; 3829 verbose(env, "invalid read from stack off %d+%d size %d\n", 3830 off, i, size); 3831 return -EACCES; 3832 } 3833 mark_reg_unknown(env, state->regs, dst_regno); 3834 } 3835 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3836 return 0; 3837 } 3838 3839 if (dst_regno >= 0) { 3840 /* restore register state from stack */ 3841 copy_register_state(&state->regs[dst_regno], reg); 3842 /* mark reg as written since spilled pointer state likely 3843 * has its liveness marks cleared by is_state_visited() 3844 * which resets stack/reg liveness for state transitions 3845 */ 3846 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3847 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3848 /* If dst_regno==-1, the caller is asking us whether 3849 * it is acceptable to use this value as a SCALAR_VALUE 3850 * (e.g. for XADD). 3851 * We must not allow unprivileged callers to do that 3852 * with spilled pointers. 3853 */ 3854 verbose(env, "leaking pointer from stack off %d\n", 3855 off); 3856 return -EACCES; 3857 } 3858 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3859 } else { 3860 for (i = 0; i < size; i++) { 3861 type = stype[(slot - i) % BPF_REG_SIZE]; 3862 if (type == STACK_MISC) 3863 continue; 3864 if (type == STACK_ZERO) 3865 continue; 3866 verbose(env, "invalid read from stack off %d+%d size %d\n", 3867 off, i, size); 3868 return -EACCES; 3869 } 3870 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3871 if (dst_regno >= 0) 3872 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3873 } 3874 return 0; 3875 } 3876 3877 enum bpf_access_src { 3878 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3879 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3880 }; 3881 3882 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3883 int regno, int off, int access_size, 3884 bool zero_size_allowed, 3885 enum bpf_access_src type, 3886 struct bpf_call_arg_meta *meta); 3887 3888 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3889 { 3890 return cur_regs(env) + regno; 3891 } 3892 3893 /* Read the stack at 'ptr_regno + off' and put the result into the register 3894 * 'dst_regno'. 3895 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3896 * but not its variable offset. 3897 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3898 * 3899 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3900 * filling registers (i.e. reads of spilled register cannot be detected when 3901 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3902 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3903 * offset; for a fixed offset check_stack_read_fixed_off should be used 3904 * instead. 3905 */ 3906 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3907 int ptr_regno, int off, int size, int dst_regno) 3908 { 3909 /* The state of the source register. */ 3910 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3911 struct bpf_func_state *ptr_state = func(env, reg); 3912 int err; 3913 int min_off, max_off; 3914 3915 /* Note that we pass a NULL meta, so raw access will not be permitted. 3916 */ 3917 err = check_stack_range_initialized(env, ptr_regno, off, size, 3918 false, ACCESS_DIRECT, NULL); 3919 if (err) 3920 return err; 3921 3922 min_off = reg->smin_value + off; 3923 max_off = reg->smax_value + off; 3924 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3925 return 0; 3926 } 3927 3928 /* check_stack_read dispatches to check_stack_read_fixed_off or 3929 * check_stack_read_var_off. 3930 * 3931 * The caller must ensure that the offset falls within the allocated stack 3932 * bounds. 3933 * 3934 * 'dst_regno' is a register which will receive the value from the stack. It 3935 * can be -1, meaning that the read value is not going to a register. 3936 */ 3937 static int check_stack_read(struct bpf_verifier_env *env, 3938 int ptr_regno, int off, int size, 3939 int dst_regno) 3940 { 3941 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3942 struct bpf_func_state *state = func(env, reg); 3943 int err; 3944 /* Some accesses are only permitted with a static offset. */ 3945 bool var_off = !tnum_is_const(reg->var_off); 3946 3947 /* The offset is required to be static when reads don't go to a 3948 * register, in order to not leak pointers (see 3949 * check_stack_read_fixed_off). 3950 */ 3951 if (dst_regno < 0 && var_off) { 3952 char tn_buf[48]; 3953 3954 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3955 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3956 tn_buf, off, size); 3957 return -EACCES; 3958 } 3959 /* Variable offset is prohibited for unprivileged mode for simplicity 3960 * since it requires corresponding support in Spectre masking for stack 3961 * ALU. See also retrieve_ptr_limit(). 3962 */ 3963 if (!env->bypass_spec_v1 && var_off) { 3964 char tn_buf[48]; 3965 3966 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3967 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3968 ptr_regno, tn_buf); 3969 return -EACCES; 3970 } 3971 3972 if (!var_off) { 3973 off += reg->var_off.value; 3974 err = check_stack_read_fixed_off(env, state, off, size, 3975 dst_regno); 3976 } else { 3977 /* Variable offset stack reads need more conservative handling 3978 * than fixed offset ones. Note that dst_regno >= 0 on this 3979 * branch. 3980 */ 3981 err = check_stack_read_var_off(env, ptr_regno, off, size, 3982 dst_regno); 3983 } 3984 return err; 3985 } 3986 3987 3988 /* check_stack_write dispatches to check_stack_write_fixed_off or 3989 * check_stack_write_var_off. 3990 * 3991 * 'ptr_regno' is the register used as a pointer into the stack. 3992 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3993 * 'value_regno' is the register whose value we're writing to the stack. It can 3994 * be -1, meaning that we're not writing from a register. 3995 * 3996 * The caller must ensure that the offset falls within the maximum stack size. 3997 */ 3998 static int check_stack_write(struct bpf_verifier_env *env, 3999 int ptr_regno, int off, int size, 4000 int value_regno, int insn_idx) 4001 { 4002 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4003 struct bpf_func_state *state = func(env, reg); 4004 int err; 4005 4006 if (tnum_is_const(reg->var_off)) { 4007 off += reg->var_off.value; 4008 err = check_stack_write_fixed_off(env, state, off, size, 4009 value_regno, insn_idx); 4010 } else { 4011 /* Variable offset stack reads need more conservative handling 4012 * than fixed offset ones. 4013 */ 4014 err = check_stack_write_var_off(env, state, 4015 ptr_regno, off, size, 4016 value_regno, insn_idx); 4017 } 4018 return err; 4019 } 4020 4021 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4022 int off, int size, enum bpf_access_type type) 4023 { 4024 struct bpf_reg_state *regs = cur_regs(env); 4025 struct bpf_map *map = regs[regno].map_ptr; 4026 u32 cap = bpf_map_flags_to_cap(map); 4027 4028 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4029 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4030 map->value_size, off, size); 4031 return -EACCES; 4032 } 4033 4034 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4035 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4036 map->value_size, off, size); 4037 return -EACCES; 4038 } 4039 4040 return 0; 4041 } 4042 4043 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4044 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4045 int off, int size, u32 mem_size, 4046 bool zero_size_allowed) 4047 { 4048 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4049 struct bpf_reg_state *reg; 4050 4051 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4052 return 0; 4053 4054 reg = &cur_regs(env)[regno]; 4055 switch (reg->type) { 4056 case PTR_TO_MAP_KEY: 4057 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4058 mem_size, off, size); 4059 break; 4060 case PTR_TO_MAP_VALUE: 4061 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4062 mem_size, off, size); 4063 break; 4064 case PTR_TO_PACKET: 4065 case PTR_TO_PACKET_META: 4066 case PTR_TO_PACKET_END: 4067 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4068 off, size, regno, reg->id, off, mem_size); 4069 break; 4070 case PTR_TO_MEM: 4071 default: 4072 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4073 mem_size, off, size); 4074 } 4075 4076 return -EACCES; 4077 } 4078 4079 /* check read/write into a memory region with possible variable offset */ 4080 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4081 int off, int size, u32 mem_size, 4082 bool zero_size_allowed) 4083 { 4084 struct bpf_verifier_state *vstate = env->cur_state; 4085 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4086 struct bpf_reg_state *reg = &state->regs[regno]; 4087 int err; 4088 4089 /* We may have adjusted the register pointing to memory region, so we 4090 * need to try adding each of min_value and max_value to off 4091 * to make sure our theoretical access will be safe. 4092 * 4093 * The minimum value is only important with signed 4094 * comparisons where we can't assume the floor of a 4095 * value is 0. If we are using signed variables for our 4096 * index'es we need to make sure that whatever we use 4097 * will have a set floor within our range. 4098 */ 4099 if (reg->smin_value < 0 && 4100 (reg->smin_value == S64_MIN || 4101 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4102 reg->smin_value + off < 0)) { 4103 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4104 regno); 4105 return -EACCES; 4106 } 4107 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4108 mem_size, zero_size_allowed); 4109 if (err) { 4110 verbose(env, "R%d min value is outside of the allowed memory range\n", 4111 regno); 4112 return err; 4113 } 4114 4115 /* If we haven't set a max value then we need to bail since we can't be 4116 * sure we won't do bad things. 4117 * If reg->umax_value + off could overflow, treat that as unbounded too. 4118 */ 4119 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4120 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4121 regno); 4122 return -EACCES; 4123 } 4124 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4125 mem_size, zero_size_allowed); 4126 if (err) { 4127 verbose(env, "R%d max value is outside of the allowed memory range\n", 4128 regno); 4129 return err; 4130 } 4131 4132 return 0; 4133 } 4134 4135 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4136 const struct bpf_reg_state *reg, int regno, 4137 bool fixed_off_ok) 4138 { 4139 /* Access to this pointer-typed register or passing it to a helper 4140 * is only allowed in its original, unmodified form. 4141 */ 4142 4143 if (reg->off < 0) { 4144 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4145 reg_type_str(env, reg->type), regno, reg->off); 4146 return -EACCES; 4147 } 4148 4149 if (!fixed_off_ok && reg->off) { 4150 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4151 reg_type_str(env, reg->type), regno, reg->off); 4152 return -EACCES; 4153 } 4154 4155 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4156 char tn_buf[48]; 4157 4158 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4159 verbose(env, "variable %s access var_off=%s disallowed\n", 4160 reg_type_str(env, reg->type), tn_buf); 4161 return -EACCES; 4162 } 4163 4164 return 0; 4165 } 4166 4167 int check_ptr_off_reg(struct bpf_verifier_env *env, 4168 const struct bpf_reg_state *reg, int regno) 4169 { 4170 return __check_ptr_off_reg(env, reg, regno, false); 4171 } 4172 4173 static int map_kptr_match_type(struct bpf_verifier_env *env, 4174 struct btf_field *kptr_field, 4175 struct bpf_reg_state *reg, u32 regno) 4176 { 4177 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4178 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 4179 const char *reg_name = ""; 4180 4181 /* Only unreferenced case accepts untrusted pointers */ 4182 if (kptr_field->type == BPF_KPTR_UNREF) 4183 perm_flags |= PTR_UNTRUSTED; 4184 4185 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4186 goto bad_type; 4187 4188 if (!btf_is_kernel(reg->btf)) { 4189 verbose(env, "R%d must point to kernel BTF\n", regno); 4190 return -EINVAL; 4191 } 4192 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 4193 reg_name = kernel_type_name(reg->btf, reg->btf_id); 4194 4195 /* For ref_ptr case, release function check should ensure we get one 4196 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 4197 * normal store of unreferenced kptr, we must ensure var_off is zero. 4198 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 4199 * reg->off and reg->ref_obj_id are not needed here. 4200 */ 4201 if (__check_ptr_off_reg(env, reg, regno, true)) 4202 return -EACCES; 4203 4204 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 4205 * we also need to take into account the reg->off. 4206 * 4207 * We want to support cases like: 4208 * 4209 * struct foo { 4210 * struct bar br; 4211 * struct baz bz; 4212 * }; 4213 * 4214 * struct foo *v; 4215 * v = func(); // PTR_TO_BTF_ID 4216 * val->foo = v; // reg->off is zero, btf and btf_id match type 4217 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 4218 * // first member type of struct after comparison fails 4219 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 4220 * // to match type 4221 * 4222 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 4223 * is zero. We must also ensure that btf_struct_ids_match does not walk 4224 * the struct to match type against first member of struct, i.e. reject 4225 * second case from above. Hence, when type is BPF_KPTR_REF, we set 4226 * strict mode to true for type match. 4227 */ 4228 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4229 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 4230 kptr_field->type == BPF_KPTR_REF)) 4231 goto bad_type; 4232 return 0; 4233 bad_type: 4234 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 4235 reg_type_str(env, reg->type), reg_name); 4236 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4237 if (kptr_field->type == BPF_KPTR_UNREF) 4238 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4239 targ_name); 4240 else 4241 verbose(env, "\n"); 4242 return -EINVAL; 4243 } 4244 4245 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4246 int value_regno, int insn_idx, 4247 struct btf_field *kptr_field) 4248 { 4249 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4250 int class = BPF_CLASS(insn->code); 4251 struct bpf_reg_state *val_reg; 4252 4253 /* Things we already checked for in check_map_access and caller: 4254 * - Reject cases where variable offset may touch kptr 4255 * - size of access (must be BPF_DW) 4256 * - tnum_is_const(reg->var_off) 4257 * - kptr_field->offset == off + reg->var_off.value 4258 */ 4259 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4260 if (BPF_MODE(insn->code) != BPF_MEM) { 4261 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4262 return -EACCES; 4263 } 4264 4265 /* We only allow loading referenced kptr, since it will be marked as 4266 * untrusted, similar to unreferenced kptr. 4267 */ 4268 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4269 verbose(env, "store to referenced kptr disallowed\n"); 4270 return -EACCES; 4271 } 4272 4273 if (class == BPF_LDX) { 4274 val_reg = reg_state(env, value_regno); 4275 /* We can simply mark the value_regno receiving the pointer 4276 * value from map as PTR_TO_BTF_ID, with the correct type. 4277 */ 4278 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4279 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 4280 /* For mark_ptr_or_null_reg */ 4281 val_reg->id = ++env->id_gen; 4282 } else if (class == BPF_STX) { 4283 val_reg = reg_state(env, value_regno); 4284 if (!register_is_null(val_reg) && 4285 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4286 return -EACCES; 4287 } else if (class == BPF_ST) { 4288 if (insn->imm) { 4289 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4290 kptr_field->offset); 4291 return -EACCES; 4292 } 4293 } else { 4294 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4295 return -EACCES; 4296 } 4297 return 0; 4298 } 4299 4300 /* check read/write into a map element with possible variable offset */ 4301 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4302 int off, int size, bool zero_size_allowed, 4303 enum bpf_access_src src) 4304 { 4305 struct bpf_verifier_state *vstate = env->cur_state; 4306 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4307 struct bpf_reg_state *reg = &state->regs[regno]; 4308 struct bpf_map *map = reg->map_ptr; 4309 struct btf_record *rec; 4310 int err, i; 4311 4312 err = check_mem_region_access(env, regno, off, size, map->value_size, 4313 zero_size_allowed); 4314 if (err) 4315 return err; 4316 4317 if (IS_ERR_OR_NULL(map->record)) 4318 return 0; 4319 rec = map->record; 4320 for (i = 0; i < rec->cnt; i++) { 4321 struct btf_field *field = &rec->fields[i]; 4322 u32 p = field->offset; 4323 4324 /* If any part of a field can be touched by load/store, reject 4325 * this program. To check that [x1, x2) overlaps with [y1, y2), 4326 * it is sufficient to check x1 < y2 && y1 < x2. 4327 */ 4328 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4329 p < reg->umax_value + off + size) { 4330 switch (field->type) { 4331 case BPF_KPTR_UNREF: 4332 case BPF_KPTR_REF: 4333 if (src != ACCESS_DIRECT) { 4334 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4335 return -EACCES; 4336 } 4337 if (!tnum_is_const(reg->var_off)) { 4338 verbose(env, "kptr access cannot have variable offset\n"); 4339 return -EACCES; 4340 } 4341 if (p != off + reg->var_off.value) { 4342 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4343 p, off + reg->var_off.value); 4344 return -EACCES; 4345 } 4346 if (size != bpf_size_to_bytes(BPF_DW)) { 4347 verbose(env, "kptr access size must be BPF_DW\n"); 4348 return -EACCES; 4349 } 4350 break; 4351 default: 4352 verbose(env, "%s cannot be accessed directly by load/store\n", 4353 btf_field_type_name(field->type)); 4354 return -EACCES; 4355 } 4356 } 4357 } 4358 return 0; 4359 } 4360 4361 #define MAX_PACKET_OFF 0xffff 4362 4363 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4364 const struct bpf_call_arg_meta *meta, 4365 enum bpf_access_type t) 4366 { 4367 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4368 4369 switch (prog_type) { 4370 /* Program types only with direct read access go here! */ 4371 case BPF_PROG_TYPE_LWT_IN: 4372 case BPF_PROG_TYPE_LWT_OUT: 4373 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4374 case BPF_PROG_TYPE_SK_REUSEPORT: 4375 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4376 case BPF_PROG_TYPE_CGROUP_SKB: 4377 if (t == BPF_WRITE) 4378 return false; 4379 fallthrough; 4380 4381 /* Program types with direct read + write access go here! */ 4382 case BPF_PROG_TYPE_SCHED_CLS: 4383 case BPF_PROG_TYPE_SCHED_ACT: 4384 case BPF_PROG_TYPE_XDP: 4385 case BPF_PROG_TYPE_LWT_XMIT: 4386 case BPF_PROG_TYPE_SK_SKB: 4387 case BPF_PROG_TYPE_SK_MSG: 4388 if (meta) 4389 return meta->pkt_access; 4390 4391 env->seen_direct_write = true; 4392 return true; 4393 4394 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4395 if (t == BPF_WRITE) 4396 env->seen_direct_write = true; 4397 4398 return true; 4399 4400 default: 4401 return false; 4402 } 4403 } 4404 4405 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4406 int size, bool zero_size_allowed) 4407 { 4408 struct bpf_reg_state *regs = cur_regs(env); 4409 struct bpf_reg_state *reg = ®s[regno]; 4410 int err; 4411 4412 /* We may have added a variable offset to the packet pointer; but any 4413 * reg->range we have comes after that. We are only checking the fixed 4414 * offset. 4415 */ 4416 4417 /* We don't allow negative numbers, because we aren't tracking enough 4418 * detail to prove they're safe. 4419 */ 4420 if (reg->smin_value < 0) { 4421 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4422 regno); 4423 return -EACCES; 4424 } 4425 4426 err = reg->range < 0 ? -EINVAL : 4427 __check_mem_access(env, regno, off, size, reg->range, 4428 zero_size_allowed); 4429 if (err) { 4430 verbose(env, "R%d offset is outside of the packet\n", regno); 4431 return err; 4432 } 4433 4434 /* __check_mem_access has made sure "off + size - 1" is within u16. 4435 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4436 * otherwise find_good_pkt_pointers would have refused to set range info 4437 * that __check_mem_access would have rejected this pkt access. 4438 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4439 */ 4440 env->prog->aux->max_pkt_offset = 4441 max_t(u32, env->prog->aux->max_pkt_offset, 4442 off + reg->umax_value + size - 1); 4443 4444 return err; 4445 } 4446 4447 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4448 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4449 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4450 struct btf **btf, u32 *btf_id) 4451 { 4452 struct bpf_insn_access_aux info = { 4453 .reg_type = *reg_type, 4454 .log = &env->log, 4455 }; 4456 4457 if (env->ops->is_valid_access && 4458 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4459 /* A non zero info.ctx_field_size indicates that this field is a 4460 * candidate for later verifier transformation to load the whole 4461 * field and then apply a mask when accessed with a narrower 4462 * access than actual ctx access size. A zero info.ctx_field_size 4463 * will only allow for whole field access and rejects any other 4464 * type of narrower access. 4465 */ 4466 *reg_type = info.reg_type; 4467 4468 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4469 *btf = info.btf; 4470 *btf_id = info.btf_id; 4471 } else { 4472 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4473 } 4474 /* remember the offset of last byte accessed in ctx */ 4475 if (env->prog->aux->max_ctx_offset < off + size) 4476 env->prog->aux->max_ctx_offset = off + size; 4477 return 0; 4478 } 4479 4480 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4481 return -EACCES; 4482 } 4483 4484 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4485 int size) 4486 { 4487 if (size < 0 || off < 0 || 4488 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4489 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4490 off, size); 4491 return -EACCES; 4492 } 4493 return 0; 4494 } 4495 4496 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4497 u32 regno, int off, int size, 4498 enum bpf_access_type t) 4499 { 4500 struct bpf_reg_state *regs = cur_regs(env); 4501 struct bpf_reg_state *reg = ®s[regno]; 4502 struct bpf_insn_access_aux info = {}; 4503 bool valid; 4504 4505 if (reg->smin_value < 0) { 4506 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4507 regno); 4508 return -EACCES; 4509 } 4510 4511 switch (reg->type) { 4512 case PTR_TO_SOCK_COMMON: 4513 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4514 break; 4515 case PTR_TO_SOCKET: 4516 valid = bpf_sock_is_valid_access(off, size, t, &info); 4517 break; 4518 case PTR_TO_TCP_SOCK: 4519 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4520 break; 4521 case PTR_TO_XDP_SOCK: 4522 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4523 break; 4524 default: 4525 valid = false; 4526 } 4527 4528 4529 if (valid) { 4530 env->insn_aux_data[insn_idx].ctx_field_size = 4531 info.ctx_field_size; 4532 return 0; 4533 } 4534 4535 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4536 regno, reg_type_str(env, reg->type), off, size); 4537 4538 return -EACCES; 4539 } 4540 4541 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4542 { 4543 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4544 } 4545 4546 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4547 { 4548 const struct bpf_reg_state *reg = reg_state(env, regno); 4549 4550 return reg->type == PTR_TO_CTX; 4551 } 4552 4553 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4554 { 4555 const struct bpf_reg_state *reg = reg_state(env, regno); 4556 4557 return type_is_sk_pointer(reg->type); 4558 } 4559 4560 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4561 { 4562 const struct bpf_reg_state *reg = reg_state(env, regno); 4563 4564 return type_is_pkt_pointer(reg->type); 4565 } 4566 4567 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4568 { 4569 const struct bpf_reg_state *reg = reg_state(env, regno); 4570 4571 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4572 return reg->type == PTR_TO_FLOW_KEYS; 4573 } 4574 4575 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4576 { 4577 /* A referenced register is always trusted. */ 4578 if (reg->ref_obj_id) 4579 return true; 4580 4581 /* If a register is not referenced, it is trusted if it has the 4582 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4583 * other type modifiers may be safe, but we elect to take an opt-in 4584 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4585 * not. 4586 * 4587 * Eventually, we should make PTR_TRUSTED the single source of truth 4588 * for whether a register is trusted. 4589 */ 4590 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4591 !bpf_type_has_unsafe_modifiers(reg->type); 4592 } 4593 4594 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4595 { 4596 return reg->type & MEM_RCU; 4597 } 4598 4599 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4600 const struct bpf_reg_state *reg, 4601 int off, int size, bool strict) 4602 { 4603 struct tnum reg_off; 4604 int ip_align; 4605 4606 /* Byte size accesses are always allowed. */ 4607 if (!strict || size == 1) 4608 return 0; 4609 4610 /* For platforms that do not have a Kconfig enabling 4611 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4612 * NET_IP_ALIGN is universally set to '2'. And on platforms 4613 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4614 * to this code only in strict mode where we want to emulate 4615 * the NET_IP_ALIGN==2 checking. Therefore use an 4616 * unconditional IP align value of '2'. 4617 */ 4618 ip_align = 2; 4619 4620 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4621 if (!tnum_is_aligned(reg_off, size)) { 4622 char tn_buf[48]; 4623 4624 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4625 verbose(env, 4626 "misaligned packet access off %d+%s+%d+%d size %d\n", 4627 ip_align, tn_buf, reg->off, off, size); 4628 return -EACCES; 4629 } 4630 4631 return 0; 4632 } 4633 4634 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4635 const struct bpf_reg_state *reg, 4636 const char *pointer_desc, 4637 int off, int size, bool strict) 4638 { 4639 struct tnum reg_off; 4640 4641 /* Byte size accesses are always allowed. */ 4642 if (!strict || size == 1) 4643 return 0; 4644 4645 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4646 if (!tnum_is_aligned(reg_off, size)) { 4647 char tn_buf[48]; 4648 4649 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4650 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4651 pointer_desc, tn_buf, reg->off, off, size); 4652 return -EACCES; 4653 } 4654 4655 return 0; 4656 } 4657 4658 static int check_ptr_alignment(struct bpf_verifier_env *env, 4659 const struct bpf_reg_state *reg, int off, 4660 int size, bool strict_alignment_once) 4661 { 4662 bool strict = env->strict_alignment || strict_alignment_once; 4663 const char *pointer_desc = ""; 4664 4665 switch (reg->type) { 4666 case PTR_TO_PACKET: 4667 case PTR_TO_PACKET_META: 4668 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4669 * right in front, treat it the very same way. 4670 */ 4671 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4672 case PTR_TO_FLOW_KEYS: 4673 pointer_desc = "flow keys "; 4674 break; 4675 case PTR_TO_MAP_KEY: 4676 pointer_desc = "key "; 4677 break; 4678 case PTR_TO_MAP_VALUE: 4679 pointer_desc = "value "; 4680 break; 4681 case PTR_TO_CTX: 4682 pointer_desc = "context "; 4683 break; 4684 case PTR_TO_STACK: 4685 pointer_desc = "stack "; 4686 /* The stack spill tracking logic in check_stack_write_fixed_off() 4687 * and check_stack_read_fixed_off() relies on stack accesses being 4688 * aligned. 4689 */ 4690 strict = true; 4691 break; 4692 case PTR_TO_SOCKET: 4693 pointer_desc = "sock "; 4694 break; 4695 case PTR_TO_SOCK_COMMON: 4696 pointer_desc = "sock_common "; 4697 break; 4698 case PTR_TO_TCP_SOCK: 4699 pointer_desc = "tcp_sock "; 4700 break; 4701 case PTR_TO_XDP_SOCK: 4702 pointer_desc = "xdp_sock "; 4703 break; 4704 default: 4705 break; 4706 } 4707 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4708 strict); 4709 } 4710 4711 static int update_stack_depth(struct bpf_verifier_env *env, 4712 const struct bpf_func_state *func, 4713 int off) 4714 { 4715 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4716 4717 if (stack >= -off) 4718 return 0; 4719 4720 /* update known max for given subprogram */ 4721 env->subprog_info[func->subprogno].stack_depth = -off; 4722 return 0; 4723 } 4724 4725 /* starting from main bpf function walk all instructions of the function 4726 * and recursively walk all callees that given function can call. 4727 * Ignore jump and exit insns. 4728 * Since recursion is prevented by check_cfg() this algorithm 4729 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4730 */ 4731 static int check_max_stack_depth(struct bpf_verifier_env *env) 4732 { 4733 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4734 struct bpf_subprog_info *subprog = env->subprog_info; 4735 struct bpf_insn *insn = env->prog->insnsi; 4736 bool tail_call_reachable = false; 4737 int ret_insn[MAX_CALL_FRAMES]; 4738 int ret_prog[MAX_CALL_FRAMES]; 4739 int j; 4740 4741 process_func: 4742 /* protect against potential stack overflow that might happen when 4743 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4744 * depth for such case down to 256 so that the worst case scenario 4745 * would result in 8k stack size (32 which is tailcall limit * 256 = 4746 * 8k). 4747 * 4748 * To get the idea what might happen, see an example: 4749 * func1 -> sub rsp, 128 4750 * subfunc1 -> sub rsp, 256 4751 * tailcall1 -> add rsp, 256 4752 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4753 * subfunc2 -> sub rsp, 64 4754 * subfunc22 -> sub rsp, 128 4755 * tailcall2 -> add rsp, 128 4756 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4757 * 4758 * tailcall will unwind the current stack frame but it will not get rid 4759 * of caller's stack as shown on the example above. 4760 */ 4761 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4762 verbose(env, 4763 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4764 depth); 4765 return -EACCES; 4766 } 4767 /* round up to 32-bytes, since this is granularity 4768 * of interpreter stack size 4769 */ 4770 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4771 if (depth > MAX_BPF_STACK) { 4772 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4773 frame + 1, depth); 4774 return -EACCES; 4775 } 4776 continue_func: 4777 subprog_end = subprog[idx + 1].start; 4778 for (; i < subprog_end; i++) { 4779 int next_insn; 4780 4781 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4782 continue; 4783 /* remember insn and function to return to */ 4784 ret_insn[frame] = i + 1; 4785 ret_prog[frame] = idx; 4786 4787 /* find the callee */ 4788 next_insn = i + insn[i].imm + 1; 4789 idx = find_subprog(env, next_insn); 4790 if (idx < 0) { 4791 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4792 next_insn); 4793 return -EFAULT; 4794 } 4795 if (subprog[idx].is_async_cb) { 4796 if (subprog[idx].has_tail_call) { 4797 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4798 return -EFAULT; 4799 } 4800 /* async callbacks don't increase bpf prog stack size */ 4801 continue; 4802 } 4803 i = next_insn; 4804 4805 if (subprog[idx].has_tail_call) 4806 tail_call_reachable = true; 4807 4808 frame++; 4809 if (frame >= MAX_CALL_FRAMES) { 4810 verbose(env, "the call stack of %d frames is too deep !\n", 4811 frame); 4812 return -E2BIG; 4813 } 4814 goto process_func; 4815 } 4816 /* if tail call got detected across bpf2bpf calls then mark each of the 4817 * currently present subprog frames as tail call reachable subprogs; 4818 * this info will be utilized by JIT so that we will be preserving the 4819 * tail call counter throughout bpf2bpf calls combined with tailcalls 4820 */ 4821 if (tail_call_reachable) 4822 for (j = 0; j < frame; j++) 4823 subprog[ret_prog[j]].tail_call_reachable = true; 4824 if (subprog[0].tail_call_reachable) 4825 env->prog->aux->tail_call_reachable = true; 4826 4827 /* end of for() loop means the last insn of the 'subprog' 4828 * was reached. Doesn't matter whether it was JA or EXIT 4829 */ 4830 if (frame == 0) 4831 return 0; 4832 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4833 frame--; 4834 i = ret_insn[frame]; 4835 idx = ret_prog[frame]; 4836 goto continue_func; 4837 } 4838 4839 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4840 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4841 const struct bpf_insn *insn, int idx) 4842 { 4843 int start = idx + insn->imm + 1, subprog; 4844 4845 subprog = find_subprog(env, start); 4846 if (subprog < 0) { 4847 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4848 start); 4849 return -EFAULT; 4850 } 4851 return env->subprog_info[subprog].stack_depth; 4852 } 4853 #endif 4854 4855 static int __check_buffer_access(struct bpf_verifier_env *env, 4856 const char *buf_info, 4857 const struct bpf_reg_state *reg, 4858 int regno, int off, int size) 4859 { 4860 if (off < 0) { 4861 verbose(env, 4862 "R%d invalid %s buffer access: off=%d, size=%d\n", 4863 regno, buf_info, off, size); 4864 return -EACCES; 4865 } 4866 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4867 char tn_buf[48]; 4868 4869 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4870 verbose(env, 4871 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4872 regno, off, tn_buf); 4873 return -EACCES; 4874 } 4875 4876 return 0; 4877 } 4878 4879 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4880 const struct bpf_reg_state *reg, 4881 int regno, int off, int size) 4882 { 4883 int err; 4884 4885 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4886 if (err) 4887 return err; 4888 4889 if (off + size > env->prog->aux->max_tp_access) 4890 env->prog->aux->max_tp_access = off + size; 4891 4892 return 0; 4893 } 4894 4895 static int check_buffer_access(struct bpf_verifier_env *env, 4896 const struct bpf_reg_state *reg, 4897 int regno, int off, int size, 4898 bool zero_size_allowed, 4899 u32 *max_access) 4900 { 4901 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4902 int err; 4903 4904 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4905 if (err) 4906 return err; 4907 4908 if (off + size > *max_access) 4909 *max_access = off + size; 4910 4911 return 0; 4912 } 4913 4914 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4915 static void zext_32_to_64(struct bpf_reg_state *reg) 4916 { 4917 reg->var_off = tnum_subreg(reg->var_off); 4918 __reg_assign_32_into_64(reg); 4919 } 4920 4921 /* truncate register to smaller size (in bytes) 4922 * must be called with size < BPF_REG_SIZE 4923 */ 4924 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4925 { 4926 u64 mask; 4927 4928 /* clear high bits in bit representation */ 4929 reg->var_off = tnum_cast(reg->var_off, size); 4930 4931 /* fix arithmetic bounds */ 4932 mask = ((u64)1 << (size * 8)) - 1; 4933 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4934 reg->umin_value &= mask; 4935 reg->umax_value &= mask; 4936 } else { 4937 reg->umin_value = 0; 4938 reg->umax_value = mask; 4939 } 4940 reg->smin_value = reg->umin_value; 4941 reg->smax_value = reg->umax_value; 4942 4943 /* If size is smaller than 32bit register the 32bit register 4944 * values are also truncated so we push 64-bit bounds into 4945 * 32-bit bounds. Above were truncated < 32-bits already. 4946 */ 4947 if (size >= 4) 4948 return; 4949 __reg_combine_64_into_32(reg); 4950 } 4951 4952 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4953 { 4954 /* A map is considered read-only if the following condition are true: 4955 * 4956 * 1) BPF program side cannot change any of the map content. The 4957 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4958 * and was set at map creation time. 4959 * 2) The map value(s) have been initialized from user space by a 4960 * loader and then "frozen", such that no new map update/delete 4961 * operations from syscall side are possible for the rest of 4962 * the map's lifetime from that point onwards. 4963 * 3) Any parallel/pending map update/delete operations from syscall 4964 * side have been completed. Only after that point, it's safe to 4965 * assume that map value(s) are immutable. 4966 */ 4967 return (map->map_flags & BPF_F_RDONLY_PROG) && 4968 READ_ONCE(map->frozen) && 4969 !bpf_map_write_active(map); 4970 } 4971 4972 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4973 { 4974 void *ptr; 4975 u64 addr; 4976 int err; 4977 4978 err = map->ops->map_direct_value_addr(map, &addr, off); 4979 if (err) 4980 return err; 4981 ptr = (void *)(long)addr + off; 4982 4983 switch (size) { 4984 case sizeof(u8): 4985 *val = (u64)*(u8 *)ptr; 4986 break; 4987 case sizeof(u16): 4988 *val = (u64)*(u16 *)ptr; 4989 break; 4990 case sizeof(u32): 4991 *val = (u64)*(u32 *)ptr; 4992 break; 4993 case sizeof(u64): 4994 *val = *(u64 *)ptr; 4995 break; 4996 default: 4997 return -EINVAL; 4998 } 4999 return 0; 5000 } 5001 5002 #define BTF_TYPE_SAFE_NESTED(__type) __PASTE(__type, __safe_fields) 5003 5004 BTF_TYPE_SAFE_NESTED(struct task_struct) { 5005 const cpumask_t *cpus_ptr; 5006 }; 5007 5008 static bool nested_ptr_is_trusted(struct bpf_verifier_env *env, 5009 struct bpf_reg_state *reg, 5010 int off) 5011 { 5012 /* If its parent is not trusted, it can't regain its trusted status. */ 5013 if (!is_trusted_reg(reg)) 5014 return false; 5015 5016 BTF_TYPE_EMIT(BTF_TYPE_SAFE_NESTED(struct task_struct)); 5017 5018 return btf_nested_type_is_trusted(&env->log, reg, off); 5019 } 5020 5021 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5022 struct bpf_reg_state *regs, 5023 int regno, int off, int size, 5024 enum bpf_access_type atype, 5025 int value_regno) 5026 { 5027 struct bpf_reg_state *reg = regs + regno; 5028 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5029 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5030 enum bpf_type_flag flag = 0; 5031 u32 btf_id; 5032 int ret; 5033 5034 if (!env->allow_ptr_leaks) { 5035 verbose(env, 5036 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5037 tname); 5038 return -EPERM; 5039 } 5040 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5041 verbose(env, 5042 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5043 tname); 5044 return -EINVAL; 5045 } 5046 if (off < 0) { 5047 verbose(env, 5048 "R%d is ptr_%s invalid negative access: off=%d\n", 5049 regno, tname, off); 5050 return -EACCES; 5051 } 5052 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5053 char tn_buf[48]; 5054 5055 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5056 verbose(env, 5057 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5058 regno, tname, off, tn_buf); 5059 return -EACCES; 5060 } 5061 5062 if (reg->type & MEM_USER) { 5063 verbose(env, 5064 "R%d is ptr_%s access user memory: off=%d\n", 5065 regno, tname, off); 5066 return -EACCES; 5067 } 5068 5069 if (reg->type & MEM_PERCPU) { 5070 verbose(env, 5071 "R%d is ptr_%s access percpu memory: off=%d\n", 5072 regno, tname, off); 5073 return -EACCES; 5074 } 5075 5076 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 5077 if (!btf_is_kernel(reg->btf)) { 5078 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 5079 return -EFAULT; 5080 } 5081 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5082 } else { 5083 /* Writes are permitted with default btf_struct_access for 5084 * program allocated objects (which always have ref_obj_id > 0), 5085 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 5086 */ 5087 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 5088 verbose(env, "only read is supported\n"); 5089 return -EACCES; 5090 } 5091 5092 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 5093 !reg->ref_obj_id) { 5094 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 5095 return -EFAULT; 5096 } 5097 5098 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5099 } 5100 5101 if (ret < 0) 5102 return ret; 5103 5104 /* If this is an untrusted pointer, all pointers formed by walking it 5105 * also inherit the untrusted flag. 5106 */ 5107 if (type_flag(reg->type) & PTR_UNTRUSTED) 5108 flag |= PTR_UNTRUSTED; 5109 5110 /* By default any pointer obtained from walking a trusted pointer is no 5111 * longer trusted, unless the field being accessed has explicitly been 5112 * marked as inheriting its parent's state of trust. 5113 * 5114 * An RCU-protected pointer can also be deemed trusted if we are in an 5115 * RCU read region. This case is handled below. 5116 */ 5117 if (nested_ptr_is_trusted(env, reg, off)) 5118 flag |= PTR_TRUSTED; 5119 else 5120 flag &= ~PTR_TRUSTED; 5121 5122 if (flag & MEM_RCU) { 5123 /* Mark value register as MEM_RCU only if it is protected by 5124 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU 5125 * itself can already indicate trustedness inside the rcu 5126 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since 5127 * it could be null in some cases. 5128 */ 5129 if (!env->cur_state->active_rcu_lock || 5130 !(is_trusted_reg(reg) || is_rcu_reg(reg))) 5131 flag &= ~MEM_RCU; 5132 else 5133 flag |= PTR_MAYBE_NULL; 5134 } else if (reg->type & MEM_RCU) { 5135 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged 5136 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively. 5137 */ 5138 flag |= PTR_UNTRUSTED; 5139 } 5140 5141 if (atype == BPF_READ && value_regno >= 0) 5142 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 5143 5144 return 0; 5145 } 5146 5147 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 5148 struct bpf_reg_state *regs, 5149 int regno, int off, int size, 5150 enum bpf_access_type atype, 5151 int value_regno) 5152 { 5153 struct bpf_reg_state *reg = regs + regno; 5154 struct bpf_map *map = reg->map_ptr; 5155 struct bpf_reg_state map_reg; 5156 enum bpf_type_flag flag = 0; 5157 const struct btf_type *t; 5158 const char *tname; 5159 u32 btf_id; 5160 int ret; 5161 5162 if (!btf_vmlinux) { 5163 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 5164 return -ENOTSUPP; 5165 } 5166 5167 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 5168 verbose(env, "map_ptr access not supported for map type %d\n", 5169 map->map_type); 5170 return -ENOTSUPP; 5171 } 5172 5173 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 5174 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5175 5176 if (!env->allow_ptr_leaks) { 5177 verbose(env, 5178 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5179 tname); 5180 return -EPERM; 5181 } 5182 5183 if (off < 0) { 5184 verbose(env, "R%d is %s invalid negative access: off=%d\n", 5185 regno, tname, off); 5186 return -EACCES; 5187 } 5188 5189 if (atype != BPF_READ) { 5190 verbose(env, "only read from %s is supported\n", tname); 5191 return -EACCES; 5192 } 5193 5194 /* Simulate access to a PTR_TO_BTF_ID */ 5195 memset(&map_reg, 0, sizeof(map_reg)); 5196 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 5197 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 5198 if (ret < 0) 5199 return ret; 5200 5201 if (value_regno >= 0) 5202 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 5203 5204 return 0; 5205 } 5206 5207 /* Check that the stack access at the given offset is within bounds. The 5208 * maximum valid offset is -1. 5209 * 5210 * The minimum valid offset is -MAX_BPF_STACK for writes, and 5211 * -state->allocated_stack for reads. 5212 */ 5213 static int check_stack_slot_within_bounds(int off, 5214 struct bpf_func_state *state, 5215 enum bpf_access_type t) 5216 { 5217 int min_valid_off; 5218 5219 if (t == BPF_WRITE) 5220 min_valid_off = -MAX_BPF_STACK; 5221 else 5222 min_valid_off = -state->allocated_stack; 5223 5224 if (off < min_valid_off || off > -1) 5225 return -EACCES; 5226 return 0; 5227 } 5228 5229 /* Check that the stack access at 'regno + off' falls within the maximum stack 5230 * bounds. 5231 * 5232 * 'off' includes `regno->offset`, but not its dynamic part (if any). 5233 */ 5234 static int check_stack_access_within_bounds( 5235 struct bpf_verifier_env *env, 5236 int regno, int off, int access_size, 5237 enum bpf_access_src src, enum bpf_access_type type) 5238 { 5239 struct bpf_reg_state *regs = cur_regs(env); 5240 struct bpf_reg_state *reg = regs + regno; 5241 struct bpf_func_state *state = func(env, reg); 5242 int min_off, max_off; 5243 int err; 5244 char *err_extra; 5245 5246 if (src == ACCESS_HELPER) 5247 /* We don't know if helpers are reading or writing (or both). */ 5248 err_extra = " indirect access to"; 5249 else if (type == BPF_READ) 5250 err_extra = " read from"; 5251 else 5252 err_extra = " write to"; 5253 5254 if (tnum_is_const(reg->var_off)) { 5255 min_off = reg->var_off.value + off; 5256 if (access_size > 0) 5257 max_off = min_off + access_size - 1; 5258 else 5259 max_off = min_off; 5260 } else { 5261 if (reg->smax_value >= BPF_MAX_VAR_OFF || 5262 reg->smin_value <= -BPF_MAX_VAR_OFF) { 5263 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 5264 err_extra, regno); 5265 return -EACCES; 5266 } 5267 min_off = reg->smin_value + off; 5268 if (access_size > 0) 5269 max_off = reg->smax_value + off + access_size - 1; 5270 else 5271 max_off = min_off; 5272 } 5273 5274 err = check_stack_slot_within_bounds(min_off, state, type); 5275 if (!err) 5276 err = check_stack_slot_within_bounds(max_off, state, type); 5277 5278 if (err) { 5279 if (tnum_is_const(reg->var_off)) { 5280 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5281 err_extra, regno, off, access_size); 5282 } else { 5283 char tn_buf[48]; 5284 5285 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5286 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5287 err_extra, regno, tn_buf, access_size); 5288 } 5289 } 5290 return err; 5291 } 5292 5293 /* check whether memory at (regno + off) is accessible for t = (read | write) 5294 * if t==write, value_regno is a register which value is stored into memory 5295 * if t==read, value_regno is a register which will receive the value from memory 5296 * if t==write && value_regno==-1, some unknown value is stored into memory 5297 * if t==read && value_regno==-1, don't care what we read from memory 5298 */ 5299 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5300 int off, int bpf_size, enum bpf_access_type t, 5301 int value_regno, bool strict_alignment_once) 5302 { 5303 struct bpf_reg_state *regs = cur_regs(env); 5304 struct bpf_reg_state *reg = regs + regno; 5305 struct bpf_func_state *state; 5306 int size, err = 0; 5307 5308 size = bpf_size_to_bytes(bpf_size); 5309 if (size < 0) 5310 return size; 5311 5312 /* alignment checks will add in reg->off themselves */ 5313 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5314 if (err) 5315 return err; 5316 5317 /* for access checks, reg->off is just part of off */ 5318 off += reg->off; 5319 5320 if (reg->type == PTR_TO_MAP_KEY) { 5321 if (t == BPF_WRITE) { 5322 verbose(env, "write to change key R%d not allowed\n", regno); 5323 return -EACCES; 5324 } 5325 5326 err = check_mem_region_access(env, regno, off, size, 5327 reg->map_ptr->key_size, false); 5328 if (err) 5329 return err; 5330 if (value_regno >= 0) 5331 mark_reg_unknown(env, regs, value_regno); 5332 } else if (reg->type == PTR_TO_MAP_VALUE) { 5333 struct btf_field *kptr_field = NULL; 5334 5335 if (t == BPF_WRITE && value_regno >= 0 && 5336 is_pointer_value(env, value_regno)) { 5337 verbose(env, "R%d leaks addr into map\n", value_regno); 5338 return -EACCES; 5339 } 5340 err = check_map_access_type(env, regno, off, size, t); 5341 if (err) 5342 return err; 5343 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5344 if (err) 5345 return err; 5346 if (tnum_is_const(reg->var_off)) 5347 kptr_field = btf_record_find(reg->map_ptr->record, 5348 off + reg->var_off.value, BPF_KPTR); 5349 if (kptr_field) { 5350 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5351 } else if (t == BPF_READ && value_regno >= 0) { 5352 struct bpf_map *map = reg->map_ptr; 5353 5354 /* if map is read-only, track its contents as scalars */ 5355 if (tnum_is_const(reg->var_off) && 5356 bpf_map_is_rdonly(map) && 5357 map->ops->map_direct_value_addr) { 5358 int map_off = off + reg->var_off.value; 5359 u64 val = 0; 5360 5361 err = bpf_map_direct_read(map, map_off, size, 5362 &val); 5363 if (err) 5364 return err; 5365 5366 regs[value_regno].type = SCALAR_VALUE; 5367 __mark_reg_known(®s[value_regno], val); 5368 } else { 5369 mark_reg_unknown(env, regs, value_regno); 5370 } 5371 } 5372 } else if (base_type(reg->type) == PTR_TO_MEM) { 5373 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5374 5375 if (type_may_be_null(reg->type)) { 5376 verbose(env, "R%d invalid mem access '%s'\n", regno, 5377 reg_type_str(env, reg->type)); 5378 return -EACCES; 5379 } 5380 5381 if (t == BPF_WRITE && rdonly_mem) { 5382 verbose(env, "R%d cannot write into %s\n", 5383 regno, reg_type_str(env, reg->type)); 5384 return -EACCES; 5385 } 5386 5387 if (t == BPF_WRITE && value_regno >= 0 && 5388 is_pointer_value(env, value_regno)) { 5389 verbose(env, "R%d leaks addr into mem\n", value_regno); 5390 return -EACCES; 5391 } 5392 5393 err = check_mem_region_access(env, regno, off, size, 5394 reg->mem_size, false); 5395 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5396 mark_reg_unknown(env, regs, value_regno); 5397 } else if (reg->type == PTR_TO_CTX) { 5398 enum bpf_reg_type reg_type = SCALAR_VALUE; 5399 struct btf *btf = NULL; 5400 u32 btf_id = 0; 5401 5402 if (t == BPF_WRITE && value_regno >= 0 && 5403 is_pointer_value(env, value_regno)) { 5404 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5405 return -EACCES; 5406 } 5407 5408 err = check_ptr_off_reg(env, reg, regno); 5409 if (err < 0) 5410 return err; 5411 5412 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5413 &btf_id); 5414 if (err) 5415 verbose_linfo(env, insn_idx, "; "); 5416 if (!err && t == BPF_READ && value_regno >= 0) { 5417 /* ctx access returns either a scalar, or a 5418 * PTR_TO_PACKET[_META,_END]. In the latter 5419 * case, we know the offset is zero. 5420 */ 5421 if (reg_type == SCALAR_VALUE) { 5422 mark_reg_unknown(env, regs, value_regno); 5423 } else { 5424 mark_reg_known_zero(env, regs, 5425 value_regno); 5426 if (type_may_be_null(reg_type)) 5427 regs[value_regno].id = ++env->id_gen; 5428 /* A load of ctx field could have different 5429 * actual load size with the one encoded in the 5430 * insn. When the dst is PTR, it is for sure not 5431 * a sub-register. 5432 */ 5433 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5434 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5435 regs[value_regno].btf = btf; 5436 regs[value_regno].btf_id = btf_id; 5437 } 5438 } 5439 regs[value_regno].type = reg_type; 5440 } 5441 5442 } else if (reg->type == PTR_TO_STACK) { 5443 /* Basic bounds checks. */ 5444 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5445 if (err) 5446 return err; 5447 5448 state = func(env, reg); 5449 err = update_stack_depth(env, state, off); 5450 if (err) 5451 return err; 5452 5453 if (t == BPF_READ) 5454 err = check_stack_read(env, regno, off, size, 5455 value_regno); 5456 else 5457 err = check_stack_write(env, regno, off, size, 5458 value_regno, insn_idx); 5459 } else if (reg_is_pkt_pointer(reg)) { 5460 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5461 verbose(env, "cannot write into packet\n"); 5462 return -EACCES; 5463 } 5464 if (t == BPF_WRITE && value_regno >= 0 && 5465 is_pointer_value(env, value_regno)) { 5466 verbose(env, "R%d leaks addr into packet\n", 5467 value_regno); 5468 return -EACCES; 5469 } 5470 err = check_packet_access(env, regno, off, size, false); 5471 if (!err && t == BPF_READ && value_regno >= 0) 5472 mark_reg_unknown(env, regs, value_regno); 5473 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5474 if (t == BPF_WRITE && value_regno >= 0 && 5475 is_pointer_value(env, value_regno)) { 5476 verbose(env, "R%d leaks addr into flow keys\n", 5477 value_regno); 5478 return -EACCES; 5479 } 5480 5481 err = check_flow_keys_access(env, off, size); 5482 if (!err && t == BPF_READ && value_regno >= 0) 5483 mark_reg_unknown(env, regs, value_regno); 5484 } else if (type_is_sk_pointer(reg->type)) { 5485 if (t == BPF_WRITE) { 5486 verbose(env, "R%d cannot write into %s\n", 5487 regno, reg_type_str(env, reg->type)); 5488 return -EACCES; 5489 } 5490 err = check_sock_access(env, insn_idx, regno, off, size, t); 5491 if (!err && value_regno >= 0) 5492 mark_reg_unknown(env, regs, value_regno); 5493 } else if (reg->type == PTR_TO_TP_BUFFER) { 5494 err = check_tp_buffer_access(env, reg, regno, off, size); 5495 if (!err && t == BPF_READ && value_regno >= 0) 5496 mark_reg_unknown(env, regs, value_regno); 5497 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5498 !type_may_be_null(reg->type)) { 5499 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5500 value_regno); 5501 } else if (reg->type == CONST_PTR_TO_MAP) { 5502 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5503 value_regno); 5504 } else if (base_type(reg->type) == PTR_TO_BUF) { 5505 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5506 u32 *max_access; 5507 5508 if (rdonly_mem) { 5509 if (t == BPF_WRITE) { 5510 verbose(env, "R%d cannot write into %s\n", 5511 regno, reg_type_str(env, reg->type)); 5512 return -EACCES; 5513 } 5514 max_access = &env->prog->aux->max_rdonly_access; 5515 } else { 5516 max_access = &env->prog->aux->max_rdwr_access; 5517 } 5518 5519 err = check_buffer_access(env, reg, regno, off, size, false, 5520 max_access); 5521 5522 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5523 mark_reg_unknown(env, regs, value_regno); 5524 } else { 5525 verbose(env, "R%d invalid mem access '%s'\n", regno, 5526 reg_type_str(env, reg->type)); 5527 return -EACCES; 5528 } 5529 5530 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5531 regs[value_regno].type == SCALAR_VALUE) { 5532 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5533 coerce_reg_to_size(®s[value_regno], size); 5534 } 5535 return err; 5536 } 5537 5538 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5539 { 5540 int load_reg; 5541 int err; 5542 5543 switch (insn->imm) { 5544 case BPF_ADD: 5545 case BPF_ADD | BPF_FETCH: 5546 case BPF_AND: 5547 case BPF_AND | BPF_FETCH: 5548 case BPF_OR: 5549 case BPF_OR | BPF_FETCH: 5550 case BPF_XOR: 5551 case BPF_XOR | BPF_FETCH: 5552 case BPF_XCHG: 5553 case BPF_CMPXCHG: 5554 break; 5555 default: 5556 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5557 return -EINVAL; 5558 } 5559 5560 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5561 verbose(env, "invalid atomic operand size\n"); 5562 return -EINVAL; 5563 } 5564 5565 /* check src1 operand */ 5566 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5567 if (err) 5568 return err; 5569 5570 /* check src2 operand */ 5571 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5572 if (err) 5573 return err; 5574 5575 if (insn->imm == BPF_CMPXCHG) { 5576 /* Check comparison of R0 with memory location */ 5577 const u32 aux_reg = BPF_REG_0; 5578 5579 err = check_reg_arg(env, aux_reg, SRC_OP); 5580 if (err) 5581 return err; 5582 5583 if (is_pointer_value(env, aux_reg)) { 5584 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5585 return -EACCES; 5586 } 5587 } 5588 5589 if (is_pointer_value(env, insn->src_reg)) { 5590 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5591 return -EACCES; 5592 } 5593 5594 if (is_ctx_reg(env, insn->dst_reg) || 5595 is_pkt_reg(env, insn->dst_reg) || 5596 is_flow_key_reg(env, insn->dst_reg) || 5597 is_sk_reg(env, insn->dst_reg)) { 5598 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5599 insn->dst_reg, 5600 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5601 return -EACCES; 5602 } 5603 5604 if (insn->imm & BPF_FETCH) { 5605 if (insn->imm == BPF_CMPXCHG) 5606 load_reg = BPF_REG_0; 5607 else 5608 load_reg = insn->src_reg; 5609 5610 /* check and record load of old value */ 5611 err = check_reg_arg(env, load_reg, DST_OP); 5612 if (err) 5613 return err; 5614 } else { 5615 /* This instruction accesses a memory location but doesn't 5616 * actually load it into a register. 5617 */ 5618 load_reg = -1; 5619 } 5620 5621 /* Check whether we can read the memory, with second call for fetch 5622 * case to simulate the register fill. 5623 */ 5624 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5625 BPF_SIZE(insn->code), BPF_READ, -1, true); 5626 if (!err && load_reg >= 0) 5627 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5628 BPF_SIZE(insn->code), BPF_READ, load_reg, 5629 true); 5630 if (err) 5631 return err; 5632 5633 /* Check whether we can write into the same memory. */ 5634 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5635 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5636 if (err) 5637 return err; 5638 5639 return 0; 5640 } 5641 5642 /* When register 'regno' is used to read the stack (either directly or through 5643 * a helper function) make sure that it's within stack boundary and, depending 5644 * on the access type, that all elements of the stack are initialized. 5645 * 5646 * 'off' includes 'regno->off', but not its dynamic part (if any). 5647 * 5648 * All registers that have been spilled on the stack in the slots within the 5649 * read offsets are marked as read. 5650 */ 5651 static int check_stack_range_initialized( 5652 struct bpf_verifier_env *env, int regno, int off, 5653 int access_size, bool zero_size_allowed, 5654 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5655 { 5656 struct bpf_reg_state *reg = reg_state(env, regno); 5657 struct bpf_func_state *state = func(env, reg); 5658 int err, min_off, max_off, i, j, slot, spi; 5659 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5660 enum bpf_access_type bounds_check_type; 5661 /* Some accesses can write anything into the stack, others are 5662 * read-only. 5663 */ 5664 bool clobber = false; 5665 5666 if (access_size == 0 && !zero_size_allowed) { 5667 verbose(env, "invalid zero-sized read\n"); 5668 return -EACCES; 5669 } 5670 5671 if (type == ACCESS_HELPER) { 5672 /* The bounds checks for writes are more permissive than for 5673 * reads. However, if raw_mode is not set, we'll do extra 5674 * checks below. 5675 */ 5676 bounds_check_type = BPF_WRITE; 5677 clobber = true; 5678 } else { 5679 bounds_check_type = BPF_READ; 5680 } 5681 err = check_stack_access_within_bounds(env, regno, off, access_size, 5682 type, bounds_check_type); 5683 if (err) 5684 return err; 5685 5686 5687 if (tnum_is_const(reg->var_off)) { 5688 min_off = max_off = reg->var_off.value + off; 5689 } else { 5690 /* Variable offset is prohibited for unprivileged mode for 5691 * simplicity since it requires corresponding support in 5692 * Spectre masking for stack ALU. 5693 * See also retrieve_ptr_limit(). 5694 */ 5695 if (!env->bypass_spec_v1) { 5696 char tn_buf[48]; 5697 5698 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5699 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5700 regno, err_extra, tn_buf); 5701 return -EACCES; 5702 } 5703 /* Only initialized buffer on stack is allowed to be accessed 5704 * with variable offset. With uninitialized buffer it's hard to 5705 * guarantee that whole memory is marked as initialized on 5706 * helper return since specific bounds are unknown what may 5707 * cause uninitialized stack leaking. 5708 */ 5709 if (meta && meta->raw_mode) 5710 meta = NULL; 5711 5712 min_off = reg->smin_value + off; 5713 max_off = reg->smax_value + off; 5714 } 5715 5716 if (meta && meta->raw_mode) { 5717 /* Ensure we won't be overwriting dynptrs when simulating byte 5718 * by byte access in check_helper_call using meta.access_size. 5719 * This would be a problem if we have a helper in the future 5720 * which takes: 5721 * 5722 * helper(uninit_mem, len, dynptr) 5723 * 5724 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 5725 * may end up writing to dynptr itself when touching memory from 5726 * arg 1. This can be relaxed on a case by case basis for known 5727 * safe cases, but reject due to the possibilitiy of aliasing by 5728 * default. 5729 */ 5730 for (i = min_off; i < max_off + access_size; i++) { 5731 int stack_off = -i - 1; 5732 5733 spi = __get_spi(i); 5734 /* raw_mode may write past allocated_stack */ 5735 if (state->allocated_stack <= stack_off) 5736 continue; 5737 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 5738 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 5739 return -EACCES; 5740 } 5741 } 5742 meta->access_size = access_size; 5743 meta->regno = regno; 5744 return 0; 5745 } 5746 5747 for (i = min_off; i < max_off + access_size; i++) { 5748 u8 *stype; 5749 5750 slot = -i - 1; 5751 spi = slot / BPF_REG_SIZE; 5752 if (state->allocated_stack <= slot) 5753 goto err; 5754 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5755 if (*stype == STACK_MISC) 5756 goto mark; 5757 if (*stype == STACK_ZERO) { 5758 if (clobber) { 5759 /* helper can write anything into the stack */ 5760 *stype = STACK_MISC; 5761 } 5762 goto mark; 5763 } 5764 5765 if (is_spilled_reg(&state->stack[spi]) && 5766 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5767 env->allow_ptr_leaks)) { 5768 if (clobber) { 5769 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5770 for (j = 0; j < BPF_REG_SIZE; j++) 5771 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5772 } 5773 goto mark; 5774 } 5775 5776 err: 5777 if (tnum_is_const(reg->var_off)) { 5778 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5779 err_extra, regno, min_off, i - min_off, access_size); 5780 } else { 5781 char tn_buf[48]; 5782 5783 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5784 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5785 err_extra, regno, tn_buf, i - min_off, access_size); 5786 } 5787 return -EACCES; 5788 mark: 5789 /* reading any byte out of 8-byte 'spill_slot' will cause 5790 * the whole slot to be marked as 'read' 5791 */ 5792 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5793 state->stack[spi].spilled_ptr.parent, 5794 REG_LIVE_READ64); 5795 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5796 * be sure that whether stack slot is written to or not. Hence, 5797 * we must still conservatively propagate reads upwards even if 5798 * helper may write to the entire memory range. 5799 */ 5800 } 5801 return update_stack_depth(env, state, min_off); 5802 } 5803 5804 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5805 int access_size, bool zero_size_allowed, 5806 struct bpf_call_arg_meta *meta) 5807 { 5808 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5809 u32 *max_access; 5810 5811 switch (base_type(reg->type)) { 5812 case PTR_TO_PACKET: 5813 case PTR_TO_PACKET_META: 5814 return check_packet_access(env, regno, reg->off, access_size, 5815 zero_size_allowed); 5816 case PTR_TO_MAP_KEY: 5817 if (meta && meta->raw_mode) { 5818 verbose(env, "R%d cannot write into %s\n", regno, 5819 reg_type_str(env, reg->type)); 5820 return -EACCES; 5821 } 5822 return check_mem_region_access(env, regno, reg->off, access_size, 5823 reg->map_ptr->key_size, false); 5824 case PTR_TO_MAP_VALUE: 5825 if (check_map_access_type(env, regno, reg->off, access_size, 5826 meta && meta->raw_mode ? BPF_WRITE : 5827 BPF_READ)) 5828 return -EACCES; 5829 return check_map_access(env, regno, reg->off, access_size, 5830 zero_size_allowed, ACCESS_HELPER); 5831 case PTR_TO_MEM: 5832 if (type_is_rdonly_mem(reg->type)) { 5833 if (meta && meta->raw_mode) { 5834 verbose(env, "R%d cannot write into %s\n", regno, 5835 reg_type_str(env, reg->type)); 5836 return -EACCES; 5837 } 5838 } 5839 return check_mem_region_access(env, regno, reg->off, 5840 access_size, reg->mem_size, 5841 zero_size_allowed); 5842 case PTR_TO_BUF: 5843 if (type_is_rdonly_mem(reg->type)) { 5844 if (meta && meta->raw_mode) { 5845 verbose(env, "R%d cannot write into %s\n", regno, 5846 reg_type_str(env, reg->type)); 5847 return -EACCES; 5848 } 5849 5850 max_access = &env->prog->aux->max_rdonly_access; 5851 } else { 5852 max_access = &env->prog->aux->max_rdwr_access; 5853 } 5854 return check_buffer_access(env, reg, regno, reg->off, 5855 access_size, zero_size_allowed, 5856 max_access); 5857 case PTR_TO_STACK: 5858 return check_stack_range_initialized( 5859 env, 5860 regno, reg->off, access_size, 5861 zero_size_allowed, ACCESS_HELPER, meta); 5862 case PTR_TO_CTX: 5863 /* in case the function doesn't know how to access the context, 5864 * (because we are in a program of type SYSCALL for example), we 5865 * can not statically check its size. 5866 * Dynamically check it now. 5867 */ 5868 if (!env->ops->convert_ctx_access) { 5869 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5870 int offset = access_size - 1; 5871 5872 /* Allow zero-byte read from PTR_TO_CTX */ 5873 if (access_size == 0) 5874 return zero_size_allowed ? 0 : -EACCES; 5875 5876 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5877 atype, -1, false); 5878 } 5879 5880 fallthrough; 5881 default: /* scalar_value or invalid ptr */ 5882 /* Allow zero-byte read from NULL, regardless of pointer type */ 5883 if (zero_size_allowed && access_size == 0 && 5884 register_is_null(reg)) 5885 return 0; 5886 5887 verbose(env, "R%d type=%s ", regno, 5888 reg_type_str(env, reg->type)); 5889 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5890 return -EACCES; 5891 } 5892 } 5893 5894 static int check_mem_size_reg(struct bpf_verifier_env *env, 5895 struct bpf_reg_state *reg, u32 regno, 5896 bool zero_size_allowed, 5897 struct bpf_call_arg_meta *meta) 5898 { 5899 int err; 5900 5901 /* This is used to refine r0 return value bounds for helpers 5902 * that enforce this value as an upper bound on return values. 5903 * See do_refine_retval_range() for helpers that can refine 5904 * the return value. C type of helper is u32 so we pull register 5905 * bound from umax_value however, if negative verifier errors 5906 * out. Only upper bounds can be learned because retval is an 5907 * int type and negative retvals are allowed. 5908 */ 5909 meta->msize_max_value = reg->umax_value; 5910 5911 /* The register is SCALAR_VALUE; the access check 5912 * happens using its boundaries. 5913 */ 5914 if (!tnum_is_const(reg->var_off)) 5915 /* For unprivileged variable accesses, disable raw 5916 * mode so that the program is required to 5917 * initialize all the memory that the helper could 5918 * just partially fill up. 5919 */ 5920 meta = NULL; 5921 5922 if (reg->smin_value < 0) { 5923 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5924 regno); 5925 return -EACCES; 5926 } 5927 5928 if (reg->umin_value == 0) { 5929 err = check_helper_mem_access(env, regno - 1, 0, 5930 zero_size_allowed, 5931 meta); 5932 if (err) 5933 return err; 5934 } 5935 5936 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5937 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5938 regno); 5939 return -EACCES; 5940 } 5941 err = check_helper_mem_access(env, regno - 1, 5942 reg->umax_value, 5943 zero_size_allowed, meta); 5944 if (!err) 5945 err = mark_chain_precision(env, regno); 5946 return err; 5947 } 5948 5949 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5950 u32 regno, u32 mem_size) 5951 { 5952 bool may_be_null = type_may_be_null(reg->type); 5953 struct bpf_reg_state saved_reg; 5954 struct bpf_call_arg_meta meta; 5955 int err; 5956 5957 if (register_is_null(reg)) 5958 return 0; 5959 5960 memset(&meta, 0, sizeof(meta)); 5961 /* Assuming that the register contains a value check if the memory 5962 * access is safe. Temporarily save and restore the register's state as 5963 * the conversion shouldn't be visible to a caller. 5964 */ 5965 if (may_be_null) { 5966 saved_reg = *reg; 5967 mark_ptr_not_null_reg(reg); 5968 } 5969 5970 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5971 /* Check access for BPF_WRITE */ 5972 meta.raw_mode = true; 5973 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5974 5975 if (may_be_null) 5976 *reg = saved_reg; 5977 5978 return err; 5979 } 5980 5981 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5982 u32 regno) 5983 { 5984 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5985 bool may_be_null = type_may_be_null(mem_reg->type); 5986 struct bpf_reg_state saved_reg; 5987 struct bpf_call_arg_meta meta; 5988 int err; 5989 5990 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5991 5992 memset(&meta, 0, sizeof(meta)); 5993 5994 if (may_be_null) { 5995 saved_reg = *mem_reg; 5996 mark_ptr_not_null_reg(mem_reg); 5997 } 5998 5999 err = check_mem_size_reg(env, reg, regno, true, &meta); 6000 /* Check access for BPF_WRITE */ 6001 meta.raw_mode = true; 6002 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6003 6004 if (may_be_null) 6005 *mem_reg = saved_reg; 6006 return err; 6007 } 6008 6009 /* Implementation details: 6010 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6011 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6012 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6013 * Two separate bpf_obj_new will also have different reg->id. 6014 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6015 * clears reg->id after value_or_null->value transition, since the verifier only 6016 * cares about the range of access to valid map value pointer and doesn't care 6017 * about actual address of the map element. 6018 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6019 * reg->id > 0 after value_or_null->value transition. By doing so 6020 * two bpf_map_lookups will be considered two different pointers that 6021 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6022 * returned from bpf_obj_new. 6023 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6024 * dead-locks. 6025 * Since only one bpf_spin_lock is allowed the checks are simpler than 6026 * reg_is_refcounted() logic. The verifier needs to remember only 6027 * one spin_lock instead of array of acquired_refs. 6028 * cur_state->active_lock remembers which map value element or allocated 6029 * object got locked and clears it after bpf_spin_unlock. 6030 */ 6031 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6032 bool is_lock) 6033 { 6034 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6035 struct bpf_verifier_state *cur = env->cur_state; 6036 bool is_const = tnum_is_const(reg->var_off); 6037 u64 val = reg->var_off.value; 6038 struct bpf_map *map = NULL; 6039 struct btf *btf = NULL; 6040 struct btf_record *rec; 6041 6042 if (!is_const) { 6043 verbose(env, 6044 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6045 regno); 6046 return -EINVAL; 6047 } 6048 if (reg->type == PTR_TO_MAP_VALUE) { 6049 map = reg->map_ptr; 6050 if (!map->btf) { 6051 verbose(env, 6052 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 6053 map->name); 6054 return -EINVAL; 6055 } 6056 } else { 6057 btf = reg->btf; 6058 } 6059 6060 rec = reg_btf_record(reg); 6061 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 6062 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 6063 map ? map->name : "kptr"); 6064 return -EINVAL; 6065 } 6066 if (rec->spin_lock_off != val + reg->off) { 6067 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 6068 val + reg->off, rec->spin_lock_off); 6069 return -EINVAL; 6070 } 6071 if (is_lock) { 6072 if (cur->active_lock.ptr) { 6073 verbose(env, 6074 "Locking two bpf_spin_locks are not allowed\n"); 6075 return -EINVAL; 6076 } 6077 if (map) 6078 cur->active_lock.ptr = map; 6079 else 6080 cur->active_lock.ptr = btf; 6081 cur->active_lock.id = reg->id; 6082 } else { 6083 void *ptr; 6084 6085 if (map) 6086 ptr = map; 6087 else 6088 ptr = btf; 6089 6090 if (!cur->active_lock.ptr) { 6091 verbose(env, "bpf_spin_unlock without taking a lock\n"); 6092 return -EINVAL; 6093 } 6094 if (cur->active_lock.ptr != ptr || 6095 cur->active_lock.id != reg->id) { 6096 verbose(env, "bpf_spin_unlock of different lock\n"); 6097 return -EINVAL; 6098 } 6099 6100 invalidate_non_owning_refs(env); 6101 6102 cur->active_lock.ptr = NULL; 6103 cur->active_lock.id = 0; 6104 } 6105 return 0; 6106 } 6107 6108 static int process_timer_func(struct bpf_verifier_env *env, int regno, 6109 struct bpf_call_arg_meta *meta) 6110 { 6111 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6112 bool is_const = tnum_is_const(reg->var_off); 6113 struct bpf_map *map = reg->map_ptr; 6114 u64 val = reg->var_off.value; 6115 6116 if (!is_const) { 6117 verbose(env, 6118 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 6119 regno); 6120 return -EINVAL; 6121 } 6122 if (!map->btf) { 6123 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 6124 map->name); 6125 return -EINVAL; 6126 } 6127 if (!btf_record_has_field(map->record, BPF_TIMER)) { 6128 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 6129 return -EINVAL; 6130 } 6131 if (map->record->timer_off != val + reg->off) { 6132 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 6133 val + reg->off, map->record->timer_off); 6134 return -EINVAL; 6135 } 6136 if (meta->map_ptr) { 6137 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 6138 return -EFAULT; 6139 } 6140 meta->map_uid = reg->map_uid; 6141 meta->map_ptr = map; 6142 return 0; 6143 } 6144 6145 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 6146 struct bpf_call_arg_meta *meta) 6147 { 6148 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6149 struct bpf_map *map_ptr = reg->map_ptr; 6150 struct btf_field *kptr_field; 6151 u32 kptr_off; 6152 6153 if (!tnum_is_const(reg->var_off)) { 6154 verbose(env, 6155 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 6156 regno); 6157 return -EINVAL; 6158 } 6159 if (!map_ptr->btf) { 6160 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 6161 map_ptr->name); 6162 return -EINVAL; 6163 } 6164 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 6165 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 6166 return -EINVAL; 6167 } 6168 6169 meta->map_ptr = map_ptr; 6170 kptr_off = reg->off + reg->var_off.value; 6171 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 6172 if (!kptr_field) { 6173 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 6174 return -EACCES; 6175 } 6176 if (kptr_field->type != BPF_KPTR_REF) { 6177 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 6178 return -EACCES; 6179 } 6180 meta->kptr_field = kptr_field; 6181 return 0; 6182 } 6183 6184 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 6185 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 6186 * 6187 * In both cases we deal with the first 8 bytes, but need to mark the next 8 6188 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 6189 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 6190 * 6191 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 6192 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 6193 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 6194 * mutate the view of the dynptr and also possibly destroy it. In the latter 6195 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 6196 * memory that dynptr points to. 6197 * 6198 * The verifier will keep track both levels of mutation (bpf_dynptr's in 6199 * reg->type and the memory's in reg->dynptr.type), but there is no support for 6200 * readonly dynptr view yet, hence only the first case is tracked and checked. 6201 * 6202 * This is consistent with how C applies the const modifier to a struct object, 6203 * where the pointer itself inside bpf_dynptr becomes const but not what it 6204 * points to. 6205 * 6206 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 6207 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 6208 */ 6209 int process_dynptr_func(struct bpf_verifier_env *env, int regno, 6210 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) 6211 { 6212 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6213 int spi = 0; 6214 6215 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 6216 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 6217 */ 6218 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 6219 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 6220 return -EFAULT; 6221 } 6222 /* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 6223 * check_func_arg_reg_off's logic. We only need to check offset 6224 * and its alignment for PTR_TO_STACK. 6225 */ 6226 if (reg->type == PTR_TO_STACK) { 6227 spi = dynptr_get_spi(env, reg); 6228 if (spi < 0 && spi != -ERANGE) 6229 return spi; 6230 } 6231 6232 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 6233 * constructing a mutable bpf_dynptr object. 6234 * 6235 * Currently, this is only possible with PTR_TO_STACK 6236 * pointing to a region of at least 16 bytes which doesn't 6237 * contain an existing bpf_dynptr. 6238 * 6239 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 6240 * mutated or destroyed. However, the memory it points to 6241 * may be mutated. 6242 * 6243 * None - Points to a initialized dynptr that can be mutated and 6244 * destroyed, including mutation of the memory it points 6245 * to. 6246 */ 6247 if (arg_type & MEM_UNINIT) { 6248 if (!is_dynptr_reg_valid_uninit(env, reg, spi)) { 6249 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6250 return -EINVAL; 6251 } 6252 6253 /* We only support one dynptr being uninitialized at the moment, 6254 * which is sufficient for the helper functions we have right now. 6255 */ 6256 if (meta->uninit_dynptr_regno) { 6257 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6258 return -EFAULT; 6259 } 6260 6261 meta->uninit_dynptr_regno = regno; 6262 } else /* MEM_RDONLY and None case from above */ { 6263 int err; 6264 6265 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 6266 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 6267 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 6268 return -EINVAL; 6269 } 6270 6271 if (!is_dynptr_reg_valid_init(env, reg, spi)) { 6272 verbose(env, 6273 "Expected an initialized dynptr as arg #%d\n", 6274 regno); 6275 return -EINVAL; 6276 } 6277 6278 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 6279 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 6280 const char *err_extra = ""; 6281 6282 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6283 case DYNPTR_TYPE_LOCAL: 6284 err_extra = "local"; 6285 break; 6286 case DYNPTR_TYPE_RINGBUF: 6287 err_extra = "ringbuf"; 6288 break; 6289 default: 6290 err_extra = "<unknown>"; 6291 break; 6292 } 6293 verbose(env, 6294 "Expected a dynptr of type %s as arg #%d\n", 6295 err_extra, regno); 6296 return -EINVAL; 6297 } 6298 6299 err = mark_dynptr_read(env, reg); 6300 if (err) 6301 return err; 6302 } 6303 return 0; 6304 } 6305 6306 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6307 { 6308 return type == ARG_CONST_SIZE || 6309 type == ARG_CONST_SIZE_OR_ZERO; 6310 } 6311 6312 static bool arg_type_is_release(enum bpf_arg_type type) 6313 { 6314 return type & OBJ_RELEASE; 6315 } 6316 6317 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6318 { 6319 return base_type(type) == ARG_PTR_TO_DYNPTR; 6320 } 6321 6322 static int int_ptr_type_to_size(enum bpf_arg_type type) 6323 { 6324 if (type == ARG_PTR_TO_INT) 6325 return sizeof(u32); 6326 else if (type == ARG_PTR_TO_LONG) 6327 return sizeof(u64); 6328 6329 return -EINVAL; 6330 } 6331 6332 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6333 const struct bpf_call_arg_meta *meta, 6334 enum bpf_arg_type *arg_type) 6335 { 6336 if (!meta->map_ptr) { 6337 /* kernel subsystem misconfigured verifier */ 6338 verbose(env, "invalid map_ptr to access map->type\n"); 6339 return -EACCES; 6340 } 6341 6342 switch (meta->map_ptr->map_type) { 6343 case BPF_MAP_TYPE_SOCKMAP: 6344 case BPF_MAP_TYPE_SOCKHASH: 6345 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6346 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6347 } else { 6348 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6349 return -EINVAL; 6350 } 6351 break; 6352 case BPF_MAP_TYPE_BLOOM_FILTER: 6353 if (meta->func_id == BPF_FUNC_map_peek_elem) 6354 *arg_type = ARG_PTR_TO_MAP_VALUE; 6355 break; 6356 default: 6357 break; 6358 } 6359 return 0; 6360 } 6361 6362 struct bpf_reg_types { 6363 const enum bpf_reg_type types[10]; 6364 u32 *btf_id; 6365 }; 6366 6367 static const struct bpf_reg_types sock_types = { 6368 .types = { 6369 PTR_TO_SOCK_COMMON, 6370 PTR_TO_SOCKET, 6371 PTR_TO_TCP_SOCK, 6372 PTR_TO_XDP_SOCK, 6373 }, 6374 }; 6375 6376 #ifdef CONFIG_NET 6377 static const struct bpf_reg_types btf_id_sock_common_types = { 6378 .types = { 6379 PTR_TO_SOCK_COMMON, 6380 PTR_TO_SOCKET, 6381 PTR_TO_TCP_SOCK, 6382 PTR_TO_XDP_SOCK, 6383 PTR_TO_BTF_ID, 6384 PTR_TO_BTF_ID | PTR_TRUSTED, 6385 }, 6386 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6387 }; 6388 #endif 6389 6390 static const struct bpf_reg_types mem_types = { 6391 .types = { 6392 PTR_TO_STACK, 6393 PTR_TO_PACKET, 6394 PTR_TO_PACKET_META, 6395 PTR_TO_MAP_KEY, 6396 PTR_TO_MAP_VALUE, 6397 PTR_TO_MEM, 6398 PTR_TO_MEM | MEM_RINGBUF, 6399 PTR_TO_BUF, 6400 }, 6401 }; 6402 6403 static const struct bpf_reg_types int_ptr_types = { 6404 .types = { 6405 PTR_TO_STACK, 6406 PTR_TO_PACKET, 6407 PTR_TO_PACKET_META, 6408 PTR_TO_MAP_KEY, 6409 PTR_TO_MAP_VALUE, 6410 }, 6411 }; 6412 6413 static const struct bpf_reg_types spin_lock_types = { 6414 .types = { 6415 PTR_TO_MAP_VALUE, 6416 PTR_TO_BTF_ID | MEM_ALLOC, 6417 } 6418 }; 6419 6420 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6421 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6422 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6423 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6424 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6425 static const struct bpf_reg_types btf_ptr_types = { 6426 .types = { 6427 PTR_TO_BTF_ID, 6428 PTR_TO_BTF_ID | PTR_TRUSTED, 6429 PTR_TO_BTF_ID | MEM_RCU, 6430 }, 6431 }; 6432 static const struct bpf_reg_types percpu_btf_ptr_types = { 6433 .types = { 6434 PTR_TO_BTF_ID | MEM_PERCPU, 6435 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6436 } 6437 }; 6438 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6439 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6440 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6441 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6442 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6443 static const struct bpf_reg_types dynptr_types = { 6444 .types = { 6445 PTR_TO_STACK, 6446 CONST_PTR_TO_DYNPTR, 6447 } 6448 }; 6449 6450 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6451 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6452 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6453 [ARG_CONST_SIZE] = &scalar_types, 6454 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6455 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6456 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6457 [ARG_PTR_TO_CTX] = &context_types, 6458 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6459 #ifdef CONFIG_NET 6460 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6461 #endif 6462 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6463 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6464 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6465 [ARG_PTR_TO_MEM] = &mem_types, 6466 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6467 [ARG_PTR_TO_INT] = &int_ptr_types, 6468 [ARG_PTR_TO_LONG] = &int_ptr_types, 6469 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6470 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6471 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6472 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6473 [ARG_PTR_TO_TIMER] = &timer_types, 6474 [ARG_PTR_TO_KPTR] = &kptr_types, 6475 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6476 }; 6477 6478 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6479 enum bpf_arg_type arg_type, 6480 const u32 *arg_btf_id, 6481 struct bpf_call_arg_meta *meta) 6482 { 6483 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6484 enum bpf_reg_type expected, type = reg->type; 6485 const struct bpf_reg_types *compatible; 6486 int i, j; 6487 6488 compatible = compatible_reg_types[base_type(arg_type)]; 6489 if (!compatible) { 6490 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6491 return -EFAULT; 6492 } 6493 6494 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6495 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6496 * 6497 * Same for MAYBE_NULL: 6498 * 6499 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6500 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6501 * 6502 * Therefore we fold these flags depending on the arg_type before comparison. 6503 */ 6504 if (arg_type & MEM_RDONLY) 6505 type &= ~MEM_RDONLY; 6506 if (arg_type & PTR_MAYBE_NULL) 6507 type &= ~PTR_MAYBE_NULL; 6508 6509 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6510 expected = compatible->types[i]; 6511 if (expected == NOT_INIT) 6512 break; 6513 6514 if (type == expected) 6515 goto found; 6516 } 6517 6518 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6519 for (j = 0; j + 1 < i; j++) 6520 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6521 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6522 return -EACCES; 6523 6524 found: 6525 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 6526 /* For bpf_sk_release, it needs to match against first member 6527 * 'struct sock_common', hence make an exception for it. This 6528 * allows bpf_sk_release to work for multiple socket types. 6529 */ 6530 bool strict_type_match = arg_type_is_release(arg_type) && 6531 meta->func_id != BPF_FUNC_sk_release; 6532 6533 if (!arg_btf_id) { 6534 if (!compatible->btf_id) { 6535 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6536 return -EFAULT; 6537 } 6538 arg_btf_id = compatible->btf_id; 6539 } 6540 6541 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6542 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6543 return -EACCES; 6544 } else { 6545 if (arg_btf_id == BPF_PTR_POISON) { 6546 verbose(env, "verifier internal error:"); 6547 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6548 regno); 6549 return -EACCES; 6550 } 6551 6552 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6553 btf_vmlinux, *arg_btf_id, 6554 strict_type_match)) { 6555 verbose(env, "R%d is of type %s but %s is expected\n", 6556 regno, kernel_type_name(reg->btf, reg->btf_id), 6557 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6558 return -EACCES; 6559 } 6560 } 6561 } else if (type_is_alloc(reg->type)) { 6562 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6563 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6564 return -EFAULT; 6565 } 6566 } 6567 6568 return 0; 6569 } 6570 6571 static struct btf_field * 6572 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 6573 { 6574 struct btf_field *field; 6575 struct btf_record *rec; 6576 6577 rec = reg_btf_record(reg); 6578 if (!rec) 6579 return NULL; 6580 6581 field = btf_record_find(rec, off, fields); 6582 if (!field) 6583 return NULL; 6584 6585 return field; 6586 } 6587 6588 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6589 const struct bpf_reg_state *reg, int regno, 6590 enum bpf_arg_type arg_type) 6591 { 6592 u32 type = reg->type; 6593 6594 /* When referenced register is passed to release function, its fixed 6595 * offset must be 0. 6596 * 6597 * We will check arg_type_is_release reg has ref_obj_id when storing 6598 * meta->release_regno. 6599 */ 6600 if (arg_type_is_release(arg_type)) { 6601 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6602 * may not directly point to the object being released, but to 6603 * dynptr pointing to such object, which might be at some offset 6604 * on the stack. In that case, we simply to fallback to the 6605 * default handling. 6606 */ 6607 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6608 return 0; 6609 6610 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 6611 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 6612 return __check_ptr_off_reg(env, reg, regno, true); 6613 6614 verbose(env, "R%d must have zero offset when passed to release func\n", 6615 regno); 6616 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 6617 kernel_type_name(reg->btf, reg->btf_id), reg->off); 6618 return -EINVAL; 6619 } 6620 6621 /* Doing check_ptr_off_reg check for the offset will catch this 6622 * because fixed_off_ok is false, but checking here allows us 6623 * to give the user a better error message. 6624 */ 6625 if (reg->off) { 6626 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6627 regno); 6628 return -EINVAL; 6629 } 6630 return __check_ptr_off_reg(env, reg, regno, false); 6631 } 6632 6633 switch (type) { 6634 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6635 case PTR_TO_STACK: 6636 case PTR_TO_PACKET: 6637 case PTR_TO_PACKET_META: 6638 case PTR_TO_MAP_KEY: 6639 case PTR_TO_MAP_VALUE: 6640 case PTR_TO_MEM: 6641 case PTR_TO_MEM | MEM_RDONLY: 6642 case PTR_TO_MEM | MEM_RINGBUF: 6643 case PTR_TO_BUF: 6644 case PTR_TO_BUF | MEM_RDONLY: 6645 case SCALAR_VALUE: 6646 return 0; 6647 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6648 * fixed offset. 6649 */ 6650 case PTR_TO_BTF_ID: 6651 case PTR_TO_BTF_ID | MEM_ALLOC: 6652 case PTR_TO_BTF_ID | PTR_TRUSTED: 6653 case PTR_TO_BTF_ID | MEM_RCU: 6654 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6655 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 6656 /* When referenced PTR_TO_BTF_ID is passed to release function, 6657 * its fixed offset must be 0. In the other cases, fixed offset 6658 * can be non-zero. This was already checked above. So pass 6659 * fixed_off_ok as true to allow fixed offset for all other 6660 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6661 * still need to do checks instead of returning. 6662 */ 6663 return __check_ptr_off_reg(env, reg, regno, true); 6664 default: 6665 return __check_ptr_off_reg(env, reg, regno, false); 6666 } 6667 } 6668 6669 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6670 { 6671 struct bpf_func_state *state = func(env, reg); 6672 int spi; 6673 6674 if (reg->type == CONST_PTR_TO_DYNPTR) 6675 return reg->id; 6676 spi = dynptr_get_spi(env, reg); 6677 if (spi < 0) 6678 return spi; 6679 return state->stack[spi].spilled_ptr.id; 6680 } 6681 6682 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6683 { 6684 struct bpf_func_state *state = func(env, reg); 6685 int spi; 6686 6687 if (reg->type == CONST_PTR_TO_DYNPTR) 6688 return reg->ref_obj_id; 6689 spi = dynptr_get_spi(env, reg); 6690 if (spi < 0) 6691 return spi; 6692 return state->stack[spi].spilled_ptr.ref_obj_id; 6693 } 6694 6695 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6696 struct bpf_call_arg_meta *meta, 6697 const struct bpf_func_proto *fn) 6698 { 6699 u32 regno = BPF_REG_1 + arg; 6700 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6701 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6702 enum bpf_reg_type type = reg->type; 6703 u32 *arg_btf_id = NULL; 6704 int err = 0; 6705 6706 if (arg_type == ARG_DONTCARE) 6707 return 0; 6708 6709 err = check_reg_arg(env, regno, SRC_OP); 6710 if (err) 6711 return err; 6712 6713 if (arg_type == ARG_ANYTHING) { 6714 if (is_pointer_value(env, regno)) { 6715 verbose(env, "R%d leaks addr into helper function\n", 6716 regno); 6717 return -EACCES; 6718 } 6719 return 0; 6720 } 6721 6722 if (type_is_pkt_pointer(type) && 6723 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6724 verbose(env, "helper access to the packet is not allowed\n"); 6725 return -EACCES; 6726 } 6727 6728 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6729 err = resolve_map_arg_type(env, meta, &arg_type); 6730 if (err) 6731 return err; 6732 } 6733 6734 if (register_is_null(reg) && type_may_be_null(arg_type)) 6735 /* A NULL register has a SCALAR_VALUE type, so skip 6736 * type checking. 6737 */ 6738 goto skip_type_check; 6739 6740 /* arg_btf_id and arg_size are in a union. */ 6741 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6742 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6743 arg_btf_id = fn->arg_btf_id[arg]; 6744 6745 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6746 if (err) 6747 return err; 6748 6749 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6750 if (err) 6751 return err; 6752 6753 skip_type_check: 6754 if (arg_type_is_release(arg_type)) { 6755 if (arg_type_is_dynptr(arg_type)) { 6756 struct bpf_func_state *state = func(env, reg); 6757 int spi; 6758 6759 /* Only dynptr created on stack can be released, thus 6760 * the get_spi and stack state checks for spilled_ptr 6761 * should only be done before process_dynptr_func for 6762 * PTR_TO_STACK. 6763 */ 6764 if (reg->type == PTR_TO_STACK) { 6765 spi = dynptr_get_spi(env, reg); 6766 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 6767 verbose(env, "arg %d is an unacquired reference\n", regno); 6768 return -EINVAL; 6769 } 6770 } else { 6771 verbose(env, "cannot release unowned const bpf_dynptr\n"); 6772 return -EINVAL; 6773 } 6774 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6775 verbose(env, "R%d must be referenced when passed to release function\n", 6776 regno); 6777 return -EINVAL; 6778 } 6779 if (meta->release_regno) { 6780 verbose(env, "verifier internal error: more than one release argument\n"); 6781 return -EFAULT; 6782 } 6783 meta->release_regno = regno; 6784 } 6785 6786 if (reg->ref_obj_id) { 6787 if (meta->ref_obj_id) { 6788 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6789 regno, reg->ref_obj_id, 6790 meta->ref_obj_id); 6791 return -EFAULT; 6792 } 6793 meta->ref_obj_id = reg->ref_obj_id; 6794 } 6795 6796 switch (base_type(arg_type)) { 6797 case ARG_CONST_MAP_PTR: 6798 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6799 if (meta->map_ptr) { 6800 /* Use map_uid (which is unique id of inner map) to reject: 6801 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6802 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6803 * if (inner_map1 && inner_map2) { 6804 * timer = bpf_map_lookup_elem(inner_map1); 6805 * if (timer) 6806 * // mismatch would have been allowed 6807 * bpf_timer_init(timer, inner_map2); 6808 * } 6809 * 6810 * Comparing map_ptr is enough to distinguish normal and outer maps. 6811 */ 6812 if (meta->map_ptr != reg->map_ptr || 6813 meta->map_uid != reg->map_uid) { 6814 verbose(env, 6815 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6816 meta->map_uid, reg->map_uid); 6817 return -EINVAL; 6818 } 6819 } 6820 meta->map_ptr = reg->map_ptr; 6821 meta->map_uid = reg->map_uid; 6822 break; 6823 case ARG_PTR_TO_MAP_KEY: 6824 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6825 * check that [key, key + map->key_size) are within 6826 * stack limits and initialized 6827 */ 6828 if (!meta->map_ptr) { 6829 /* in function declaration map_ptr must come before 6830 * map_key, so that it's verified and known before 6831 * we have to check map_key here. Otherwise it means 6832 * that kernel subsystem misconfigured verifier 6833 */ 6834 verbose(env, "invalid map_ptr to access map->key\n"); 6835 return -EACCES; 6836 } 6837 err = check_helper_mem_access(env, regno, 6838 meta->map_ptr->key_size, false, 6839 NULL); 6840 break; 6841 case ARG_PTR_TO_MAP_VALUE: 6842 if (type_may_be_null(arg_type) && register_is_null(reg)) 6843 return 0; 6844 6845 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6846 * check [value, value + map->value_size) validity 6847 */ 6848 if (!meta->map_ptr) { 6849 /* kernel subsystem misconfigured verifier */ 6850 verbose(env, "invalid map_ptr to access map->value\n"); 6851 return -EACCES; 6852 } 6853 meta->raw_mode = arg_type & MEM_UNINIT; 6854 err = check_helper_mem_access(env, regno, 6855 meta->map_ptr->value_size, false, 6856 meta); 6857 break; 6858 case ARG_PTR_TO_PERCPU_BTF_ID: 6859 if (!reg->btf_id) { 6860 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6861 return -EACCES; 6862 } 6863 meta->ret_btf = reg->btf; 6864 meta->ret_btf_id = reg->btf_id; 6865 break; 6866 case ARG_PTR_TO_SPIN_LOCK: 6867 if (in_rbtree_lock_required_cb(env)) { 6868 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 6869 return -EACCES; 6870 } 6871 if (meta->func_id == BPF_FUNC_spin_lock) { 6872 err = process_spin_lock(env, regno, true); 6873 if (err) 6874 return err; 6875 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6876 err = process_spin_lock(env, regno, false); 6877 if (err) 6878 return err; 6879 } else { 6880 verbose(env, "verifier internal error\n"); 6881 return -EFAULT; 6882 } 6883 break; 6884 case ARG_PTR_TO_TIMER: 6885 err = process_timer_func(env, regno, meta); 6886 if (err) 6887 return err; 6888 break; 6889 case ARG_PTR_TO_FUNC: 6890 meta->subprogno = reg->subprogno; 6891 break; 6892 case ARG_PTR_TO_MEM: 6893 /* The access to this pointer is only checked when we hit the 6894 * next is_mem_size argument below. 6895 */ 6896 meta->raw_mode = arg_type & MEM_UNINIT; 6897 if (arg_type & MEM_FIXED_SIZE) { 6898 err = check_helper_mem_access(env, regno, 6899 fn->arg_size[arg], false, 6900 meta); 6901 } 6902 break; 6903 case ARG_CONST_SIZE: 6904 err = check_mem_size_reg(env, reg, regno, false, meta); 6905 break; 6906 case ARG_CONST_SIZE_OR_ZERO: 6907 err = check_mem_size_reg(env, reg, regno, true, meta); 6908 break; 6909 case ARG_PTR_TO_DYNPTR: 6910 err = process_dynptr_func(env, regno, arg_type, meta); 6911 if (err) 6912 return err; 6913 break; 6914 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6915 if (!tnum_is_const(reg->var_off)) { 6916 verbose(env, "R%d is not a known constant'\n", 6917 regno); 6918 return -EACCES; 6919 } 6920 meta->mem_size = reg->var_off.value; 6921 err = mark_chain_precision(env, regno); 6922 if (err) 6923 return err; 6924 break; 6925 case ARG_PTR_TO_INT: 6926 case ARG_PTR_TO_LONG: 6927 { 6928 int size = int_ptr_type_to_size(arg_type); 6929 6930 err = check_helper_mem_access(env, regno, size, false, meta); 6931 if (err) 6932 return err; 6933 err = check_ptr_alignment(env, reg, 0, size, true); 6934 break; 6935 } 6936 case ARG_PTR_TO_CONST_STR: 6937 { 6938 struct bpf_map *map = reg->map_ptr; 6939 int map_off; 6940 u64 map_addr; 6941 char *str_ptr; 6942 6943 if (!bpf_map_is_rdonly(map)) { 6944 verbose(env, "R%d does not point to a readonly map'\n", regno); 6945 return -EACCES; 6946 } 6947 6948 if (!tnum_is_const(reg->var_off)) { 6949 verbose(env, "R%d is not a constant address'\n", regno); 6950 return -EACCES; 6951 } 6952 6953 if (!map->ops->map_direct_value_addr) { 6954 verbose(env, "no direct value access support for this map type\n"); 6955 return -EACCES; 6956 } 6957 6958 err = check_map_access(env, regno, reg->off, 6959 map->value_size - reg->off, false, 6960 ACCESS_HELPER); 6961 if (err) 6962 return err; 6963 6964 map_off = reg->off + reg->var_off.value; 6965 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6966 if (err) { 6967 verbose(env, "direct value access on string failed\n"); 6968 return err; 6969 } 6970 6971 str_ptr = (char *)(long)(map_addr); 6972 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6973 verbose(env, "string is not zero-terminated\n"); 6974 return -EINVAL; 6975 } 6976 break; 6977 } 6978 case ARG_PTR_TO_KPTR: 6979 err = process_kptr_func(env, regno, meta); 6980 if (err) 6981 return err; 6982 break; 6983 } 6984 6985 return err; 6986 } 6987 6988 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6989 { 6990 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6991 enum bpf_prog_type type = resolve_prog_type(env->prog); 6992 6993 if (func_id != BPF_FUNC_map_update_elem) 6994 return false; 6995 6996 /* It's not possible to get access to a locked struct sock in these 6997 * contexts, so updating is safe. 6998 */ 6999 switch (type) { 7000 case BPF_PROG_TYPE_TRACING: 7001 if (eatype == BPF_TRACE_ITER) 7002 return true; 7003 break; 7004 case BPF_PROG_TYPE_SOCKET_FILTER: 7005 case BPF_PROG_TYPE_SCHED_CLS: 7006 case BPF_PROG_TYPE_SCHED_ACT: 7007 case BPF_PROG_TYPE_XDP: 7008 case BPF_PROG_TYPE_SK_REUSEPORT: 7009 case BPF_PROG_TYPE_FLOW_DISSECTOR: 7010 case BPF_PROG_TYPE_SK_LOOKUP: 7011 return true; 7012 default: 7013 break; 7014 } 7015 7016 verbose(env, "cannot update sockmap in this context\n"); 7017 return false; 7018 } 7019 7020 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 7021 { 7022 return env->prog->jit_requested && 7023 bpf_jit_supports_subprog_tailcalls(); 7024 } 7025 7026 static int check_map_func_compatibility(struct bpf_verifier_env *env, 7027 struct bpf_map *map, int func_id) 7028 { 7029 if (!map) 7030 return 0; 7031 7032 /* We need a two way check, first is from map perspective ... */ 7033 switch (map->map_type) { 7034 case BPF_MAP_TYPE_PROG_ARRAY: 7035 if (func_id != BPF_FUNC_tail_call) 7036 goto error; 7037 break; 7038 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 7039 if (func_id != BPF_FUNC_perf_event_read && 7040 func_id != BPF_FUNC_perf_event_output && 7041 func_id != BPF_FUNC_skb_output && 7042 func_id != BPF_FUNC_perf_event_read_value && 7043 func_id != BPF_FUNC_xdp_output) 7044 goto error; 7045 break; 7046 case BPF_MAP_TYPE_RINGBUF: 7047 if (func_id != BPF_FUNC_ringbuf_output && 7048 func_id != BPF_FUNC_ringbuf_reserve && 7049 func_id != BPF_FUNC_ringbuf_query && 7050 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 7051 func_id != BPF_FUNC_ringbuf_submit_dynptr && 7052 func_id != BPF_FUNC_ringbuf_discard_dynptr) 7053 goto error; 7054 break; 7055 case BPF_MAP_TYPE_USER_RINGBUF: 7056 if (func_id != BPF_FUNC_user_ringbuf_drain) 7057 goto error; 7058 break; 7059 case BPF_MAP_TYPE_STACK_TRACE: 7060 if (func_id != BPF_FUNC_get_stackid) 7061 goto error; 7062 break; 7063 case BPF_MAP_TYPE_CGROUP_ARRAY: 7064 if (func_id != BPF_FUNC_skb_under_cgroup && 7065 func_id != BPF_FUNC_current_task_under_cgroup) 7066 goto error; 7067 break; 7068 case BPF_MAP_TYPE_CGROUP_STORAGE: 7069 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 7070 if (func_id != BPF_FUNC_get_local_storage) 7071 goto error; 7072 break; 7073 case BPF_MAP_TYPE_DEVMAP: 7074 case BPF_MAP_TYPE_DEVMAP_HASH: 7075 if (func_id != BPF_FUNC_redirect_map && 7076 func_id != BPF_FUNC_map_lookup_elem) 7077 goto error; 7078 break; 7079 /* Restrict bpf side of cpumap and xskmap, open when use-cases 7080 * appear. 7081 */ 7082 case BPF_MAP_TYPE_CPUMAP: 7083 if (func_id != BPF_FUNC_redirect_map) 7084 goto error; 7085 break; 7086 case BPF_MAP_TYPE_XSKMAP: 7087 if (func_id != BPF_FUNC_redirect_map && 7088 func_id != BPF_FUNC_map_lookup_elem) 7089 goto error; 7090 break; 7091 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 7092 case BPF_MAP_TYPE_HASH_OF_MAPS: 7093 if (func_id != BPF_FUNC_map_lookup_elem) 7094 goto error; 7095 break; 7096 case BPF_MAP_TYPE_SOCKMAP: 7097 if (func_id != BPF_FUNC_sk_redirect_map && 7098 func_id != BPF_FUNC_sock_map_update && 7099 func_id != BPF_FUNC_map_delete_elem && 7100 func_id != BPF_FUNC_msg_redirect_map && 7101 func_id != BPF_FUNC_sk_select_reuseport && 7102 func_id != BPF_FUNC_map_lookup_elem && 7103 !may_update_sockmap(env, func_id)) 7104 goto error; 7105 break; 7106 case BPF_MAP_TYPE_SOCKHASH: 7107 if (func_id != BPF_FUNC_sk_redirect_hash && 7108 func_id != BPF_FUNC_sock_hash_update && 7109 func_id != BPF_FUNC_map_delete_elem && 7110 func_id != BPF_FUNC_msg_redirect_hash && 7111 func_id != BPF_FUNC_sk_select_reuseport && 7112 func_id != BPF_FUNC_map_lookup_elem && 7113 !may_update_sockmap(env, func_id)) 7114 goto error; 7115 break; 7116 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 7117 if (func_id != BPF_FUNC_sk_select_reuseport) 7118 goto error; 7119 break; 7120 case BPF_MAP_TYPE_QUEUE: 7121 case BPF_MAP_TYPE_STACK: 7122 if (func_id != BPF_FUNC_map_peek_elem && 7123 func_id != BPF_FUNC_map_pop_elem && 7124 func_id != BPF_FUNC_map_push_elem) 7125 goto error; 7126 break; 7127 case BPF_MAP_TYPE_SK_STORAGE: 7128 if (func_id != BPF_FUNC_sk_storage_get && 7129 func_id != BPF_FUNC_sk_storage_delete) 7130 goto error; 7131 break; 7132 case BPF_MAP_TYPE_INODE_STORAGE: 7133 if (func_id != BPF_FUNC_inode_storage_get && 7134 func_id != BPF_FUNC_inode_storage_delete) 7135 goto error; 7136 break; 7137 case BPF_MAP_TYPE_TASK_STORAGE: 7138 if (func_id != BPF_FUNC_task_storage_get && 7139 func_id != BPF_FUNC_task_storage_delete) 7140 goto error; 7141 break; 7142 case BPF_MAP_TYPE_CGRP_STORAGE: 7143 if (func_id != BPF_FUNC_cgrp_storage_get && 7144 func_id != BPF_FUNC_cgrp_storage_delete) 7145 goto error; 7146 break; 7147 case BPF_MAP_TYPE_BLOOM_FILTER: 7148 if (func_id != BPF_FUNC_map_peek_elem && 7149 func_id != BPF_FUNC_map_push_elem) 7150 goto error; 7151 break; 7152 default: 7153 break; 7154 } 7155 7156 /* ... and second from the function itself. */ 7157 switch (func_id) { 7158 case BPF_FUNC_tail_call: 7159 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 7160 goto error; 7161 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 7162 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 7163 return -EINVAL; 7164 } 7165 break; 7166 case BPF_FUNC_perf_event_read: 7167 case BPF_FUNC_perf_event_output: 7168 case BPF_FUNC_perf_event_read_value: 7169 case BPF_FUNC_skb_output: 7170 case BPF_FUNC_xdp_output: 7171 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 7172 goto error; 7173 break; 7174 case BPF_FUNC_ringbuf_output: 7175 case BPF_FUNC_ringbuf_reserve: 7176 case BPF_FUNC_ringbuf_query: 7177 case BPF_FUNC_ringbuf_reserve_dynptr: 7178 case BPF_FUNC_ringbuf_submit_dynptr: 7179 case BPF_FUNC_ringbuf_discard_dynptr: 7180 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 7181 goto error; 7182 break; 7183 case BPF_FUNC_user_ringbuf_drain: 7184 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 7185 goto error; 7186 break; 7187 case BPF_FUNC_get_stackid: 7188 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 7189 goto error; 7190 break; 7191 case BPF_FUNC_current_task_under_cgroup: 7192 case BPF_FUNC_skb_under_cgroup: 7193 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 7194 goto error; 7195 break; 7196 case BPF_FUNC_redirect_map: 7197 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 7198 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 7199 map->map_type != BPF_MAP_TYPE_CPUMAP && 7200 map->map_type != BPF_MAP_TYPE_XSKMAP) 7201 goto error; 7202 break; 7203 case BPF_FUNC_sk_redirect_map: 7204 case BPF_FUNC_msg_redirect_map: 7205 case BPF_FUNC_sock_map_update: 7206 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 7207 goto error; 7208 break; 7209 case BPF_FUNC_sk_redirect_hash: 7210 case BPF_FUNC_msg_redirect_hash: 7211 case BPF_FUNC_sock_hash_update: 7212 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 7213 goto error; 7214 break; 7215 case BPF_FUNC_get_local_storage: 7216 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 7217 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 7218 goto error; 7219 break; 7220 case BPF_FUNC_sk_select_reuseport: 7221 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 7222 map->map_type != BPF_MAP_TYPE_SOCKMAP && 7223 map->map_type != BPF_MAP_TYPE_SOCKHASH) 7224 goto error; 7225 break; 7226 case BPF_FUNC_map_pop_elem: 7227 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7228 map->map_type != BPF_MAP_TYPE_STACK) 7229 goto error; 7230 break; 7231 case BPF_FUNC_map_peek_elem: 7232 case BPF_FUNC_map_push_elem: 7233 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7234 map->map_type != BPF_MAP_TYPE_STACK && 7235 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 7236 goto error; 7237 break; 7238 case BPF_FUNC_map_lookup_percpu_elem: 7239 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 7240 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7241 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 7242 goto error; 7243 break; 7244 case BPF_FUNC_sk_storage_get: 7245 case BPF_FUNC_sk_storage_delete: 7246 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 7247 goto error; 7248 break; 7249 case BPF_FUNC_inode_storage_get: 7250 case BPF_FUNC_inode_storage_delete: 7251 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 7252 goto error; 7253 break; 7254 case BPF_FUNC_task_storage_get: 7255 case BPF_FUNC_task_storage_delete: 7256 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 7257 goto error; 7258 break; 7259 case BPF_FUNC_cgrp_storage_get: 7260 case BPF_FUNC_cgrp_storage_delete: 7261 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 7262 goto error; 7263 break; 7264 default: 7265 break; 7266 } 7267 7268 return 0; 7269 error: 7270 verbose(env, "cannot pass map_type %d into func %s#%d\n", 7271 map->map_type, func_id_name(func_id), func_id); 7272 return -EINVAL; 7273 } 7274 7275 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 7276 { 7277 int count = 0; 7278 7279 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 7280 count++; 7281 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 7282 count++; 7283 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 7284 count++; 7285 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 7286 count++; 7287 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 7288 count++; 7289 7290 /* We only support one arg being in raw mode at the moment, 7291 * which is sufficient for the helper functions we have 7292 * right now. 7293 */ 7294 return count <= 1; 7295 } 7296 7297 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 7298 { 7299 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 7300 bool has_size = fn->arg_size[arg] != 0; 7301 bool is_next_size = false; 7302 7303 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 7304 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 7305 7306 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 7307 return is_next_size; 7308 7309 return has_size == is_next_size || is_next_size == is_fixed; 7310 } 7311 7312 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 7313 { 7314 /* bpf_xxx(..., buf, len) call will access 'len' 7315 * bytes from memory 'buf'. Both arg types need 7316 * to be paired, so make sure there's no buggy 7317 * helper function specification. 7318 */ 7319 if (arg_type_is_mem_size(fn->arg1_type) || 7320 check_args_pair_invalid(fn, 0) || 7321 check_args_pair_invalid(fn, 1) || 7322 check_args_pair_invalid(fn, 2) || 7323 check_args_pair_invalid(fn, 3) || 7324 check_args_pair_invalid(fn, 4)) 7325 return false; 7326 7327 return true; 7328 } 7329 7330 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 7331 { 7332 int i; 7333 7334 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 7335 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 7336 return !!fn->arg_btf_id[i]; 7337 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 7338 return fn->arg_btf_id[i] == BPF_PTR_POISON; 7339 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 7340 /* arg_btf_id and arg_size are in a union. */ 7341 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7342 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7343 return false; 7344 } 7345 7346 return true; 7347 } 7348 7349 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7350 { 7351 return check_raw_mode_ok(fn) && 7352 check_arg_pair_ok(fn) && 7353 check_btf_id_ok(fn) ? 0 : -EINVAL; 7354 } 7355 7356 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7357 * are now invalid, so turn them into unknown SCALAR_VALUE. 7358 */ 7359 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7360 { 7361 struct bpf_func_state *state; 7362 struct bpf_reg_state *reg; 7363 7364 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7365 if (reg_is_pkt_pointer_any(reg)) 7366 __mark_reg_unknown(env, reg); 7367 })); 7368 } 7369 7370 enum { 7371 AT_PKT_END = -1, 7372 BEYOND_PKT_END = -2, 7373 }; 7374 7375 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7376 { 7377 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7378 struct bpf_reg_state *reg = &state->regs[regn]; 7379 7380 if (reg->type != PTR_TO_PACKET) 7381 /* PTR_TO_PACKET_META is not supported yet */ 7382 return; 7383 7384 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7385 * How far beyond pkt_end it goes is unknown. 7386 * if (!range_open) it's the case of pkt >= pkt_end 7387 * if (range_open) it's the case of pkt > pkt_end 7388 * hence this pointer is at least 1 byte bigger than pkt_end 7389 */ 7390 if (range_open) 7391 reg->range = BEYOND_PKT_END; 7392 else 7393 reg->range = AT_PKT_END; 7394 } 7395 7396 /* The pointer with the specified id has released its reference to kernel 7397 * resources. Identify all copies of the same pointer and clear the reference. 7398 */ 7399 static int release_reference(struct bpf_verifier_env *env, 7400 int ref_obj_id) 7401 { 7402 struct bpf_func_state *state; 7403 struct bpf_reg_state *reg; 7404 int err; 7405 7406 err = release_reference_state(cur_func(env), ref_obj_id); 7407 if (err) 7408 return err; 7409 7410 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7411 if (reg->ref_obj_id == ref_obj_id) { 7412 if (!env->allow_ptr_leaks) 7413 __mark_reg_not_init(env, reg); 7414 else 7415 __mark_reg_unknown(env, reg); 7416 } 7417 })); 7418 7419 return 0; 7420 } 7421 7422 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 7423 { 7424 struct bpf_func_state *unused; 7425 struct bpf_reg_state *reg; 7426 7427 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 7428 if (type_is_non_owning_ref(reg->type)) 7429 __mark_reg_unknown(env, reg); 7430 })); 7431 } 7432 7433 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7434 struct bpf_reg_state *regs) 7435 { 7436 int i; 7437 7438 /* after the call registers r0 - r5 were scratched */ 7439 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7440 mark_reg_not_init(env, regs, caller_saved[i]); 7441 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7442 } 7443 } 7444 7445 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7446 struct bpf_func_state *caller, 7447 struct bpf_func_state *callee, 7448 int insn_idx); 7449 7450 static int set_callee_state(struct bpf_verifier_env *env, 7451 struct bpf_func_state *caller, 7452 struct bpf_func_state *callee, int insn_idx); 7453 7454 static bool is_callback_calling_kfunc(u32 btf_id); 7455 7456 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7457 int *insn_idx, int subprog, 7458 set_callee_state_fn set_callee_state_cb) 7459 { 7460 struct bpf_verifier_state *state = env->cur_state; 7461 struct bpf_func_info_aux *func_info_aux; 7462 struct bpf_func_state *caller, *callee; 7463 int err; 7464 bool is_global = false; 7465 7466 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7467 verbose(env, "the call stack of %d frames is too deep\n", 7468 state->curframe + 2); 7469 return -E2BIG; 7470 } 7471 7472 caller = state->frame[state->curframe]; 7473 if (state->frame[state->curframe + 1]) { 7474 verbose(env, "verifier bug. Frame %d already allocated\n", 7475 state->curframe + 1); 7476 return -EFAULT; 7477 } 7478 7479 func_info_aux = env->prog->aux->func_info_aux; 7480 if (func_info_aux) 7481 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7482 err = btf_check_subprog_call(env, subprog, caller->regs); 7483 if (err == -EFAULT) 7484 return err; 7485 if (is_global) { 7486 if (err) { 7487 verbose(env, "Caller passes invalid args into func#%d\n", 7488 subprog); 7489 return err; 7490 } else { 7491 if (env->log.level & BPF_LOG_LEVEL) 7492 verbose(env, 7493 "Func#%d is global and valid. Skipping.\n", 7494 subprog); 7495 clear_caller_saved_regs(env, caller->regs); 7496 7497 /* All global functions return a 64-bit SCALAR_VALUE */ 7498 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7499 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7500 7501 /* continue with next insn after call */ 7502 return 0; 7503 } 7504 } 7505 7506 /* set_callee_state is used for direct subprog calls, but we are 7507 * interested in validating only BPF helpers that can call subprogs as 7508 * callbacks 7509 */ 7510 if (set_callee_state_cb != set_callee_state) { 7511 if (bpf_pseudo_kfunc_call(insn) && 7512 !is_callback_calling_kfunc(insn->imm)) { 7513 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 7514 func_id_name(insn->imm), insn->imm); 7515 return -EFAULT; 7516 } else if (!bpf_pseudo_kfunc_call(insn) && 7517 !is_callback_calling_function(insn->imm)) { /* helper */ 7518 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 7519 func_id_name(insn->imm), insn->imm); 7520 return -EFAULT; 7521 } 7522 } 7523 7524 if (insn->code == (BPF_JMP | BPF_CALL) && 7525 insn->src_reg == 0 && 7526 insn->imm == BPF_FUNC_timer_set_callback) { 7527 struct bpf_verifier_state *async_cb; 7528 7529 /* there is no real recursion here. timer callbacks are async */ 7530 env->subprog_info[subprog].is_async_cb = true; 7531 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7532 *insn_idx, subprog); 7533 if (!async_cb) 7534 return -EFAULT; 7535 callee = async_cb->frame[0]; 7536 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7537 7538 /* Convert bpf_timer_set_callback() args into timer callback args */ 7539 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7540 if (err) 7541 return err; 7542 7543 clear_caller_saved_regs(env, caller->regs); 7544 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7545 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7546 /* continue with next insn after call */ 7547 return 0; 7548 } 7549 7550 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7551 if (!callee) 7552 return -ENOMEM; 7553 state->frame[state->curframe + 1] = callee; 7554 7555 /* callee cannot access r0, r6 - r9 for reading and has to write 7556 * into its own stack before reading from it. 7557 * callee can read/write into caller's stack 7558 */ 7559 init_func_state(env, callee, 7560 /* remember the callsite, it will be used by bpf_exit */ 7561 *insn_idx /* callsite */, 7562 state->curframe + 1 /* frameno within this callchain */, 7563 subprog /* subprog number within this prog */); 7564 7565 /* Transfer references to the callee */ 7566 err = copy_reference_state(callee, caller); 7567 if (err) 7568 goto err_out; 7569 7570 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7571 if (err) 7572 goto err_out; 7573 7574 clear_caller_saved_regs(env, caller->regs); 7575 7576 /* only increment it after check_reg_arg() finished */ 7577 state->curframe++; 7578 7579 /* and go analyze first insn of the callee */ 7580 *insn_idx = env->subprog_info[subprog].start - 1; 7581 7582 if (env->log.level & BPF_LOG_LEVEL) { 7583 verbose(env, "caller:\n"); 7584 print_verifier_state(env, caller, true); 7585 verbose(env, "callee:\n"); 7586 print_verifier_state(env, callee, true); 7587 } 7588 return 0; 7589 7590 err_out: 7591 free_func_state(callee); 7592 state->frame[state->curframe + 1] = NULL; 7593 return err; 7594 } 7595 7596 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7597 struct bpf_func_state *caller, 7598 struct bpf_func_state *callee) 7599 { 7600 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7601 * void *callback_ctx, u64 flags); 7602 * callback_fn(struct bpf_map *map, void *key, void *value, 7603 * void *callback_ctx); 7604 */ 7605 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7606 7607 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7608 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7609 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7610 7611 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7612 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7613 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7614 7615 /* pointer to stack or null */ 7616 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7617 7618 /* unused */ 7619 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7620 return 0; 7621 } 7622 7623 static int set_callee_state(struct bpf_verifier_env *env, 7624 struct bpf_func_state *caller, 7625 struct bpf_func_state *callee, int insn_idx) 7626 { 7627 int i; 7628 7629 /* copy r1 - r5 args that callee can access. The copy includes parent 7630 * pointers, which connects us up to the liveness chain 7631 */ 7632 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7633 callee->regs[i] = caller->regs[i]; 7634 return 0; 7635 } 7636 7637 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7638 int *insn_idx) 7639 { 7640 int subprog, target_insn; 7641 7642 target_insn = *insn_idx + insn->imm + 1; 7643 subprog = find_subprog(env, target_insn); 7644 if (subprog < 0) { 7645 verbose(env, "verifier bug. No program starts at insn %d\n", 7646 target_insn); 7647 return -EFAULT; 7648 } 7649 7650 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7651 } 7652 7653 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7654 struct bpf_func_state *caller, 7655 struct bpf_func_state *callee, 7656 int insn_idx) 7657 { 7658 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7659 struct bpf_map *map; 7660 int err; 7661 7662 if (bpf_map_ptr_poisoned(insn_aux)) { 7663 verbose(env, "tail_call abusing map_ptr\n"); 7664 return -EINVAL; 7665 } 7666 7667 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7668 if (!map->ops->map_set_for_each_callback_args || 7669 !map->ops->map_for_each_callback) { 7670 verbose(env, "callback function not allowed for map\n"); 7671 return -ENOTSUPP; 7672 } 7673 7674 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7675 if (err) 7676 return err; 7677 7678 callee->in_callback_fn = true; 7679 callee->callback_ret_range = tnum_range(0, 1); 7680 return 0; 7681 } 7682 7683 static int set_loop_callback_state(struct bpf_verifier_env *env, 7684 struct bpf_func_state *caller, 7685 struct bpf_func_state *callee, 7686 int insn_idx) 7687 { 7688 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7689 * u64 flags); 7690 * callback_fn(u32 index, void *callback_ctx); 7691 */ 7692 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7693 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7694 7695 /* unused */ 7696 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7697 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7698 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7699 7700 callee->in_callback_fn = true; 7701 callee->callback_ret_range = tnum_range(0, 1); 7702 return 0; 7703 } 7704 7705 static int set_timer_callback_state(struct bpf_verifier_env *env, 7706 struct bpf_func_state *caller, 7707 struct bpf_func_state *callee, 7708 int insn_idx) 7709 { 7710 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7711 7712 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7713 * callback_fn(struct bpf_map *map, void *key, void *value); 7714 */ 7715 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7716 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7717 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7718 7719 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7720 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7721 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7722 7723 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7724 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7725 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7726 7727 /* unused */ 7728 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7729 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7730 callee->in_async_callback_fn = true; 7731 callee->callback_ret_range = tnum_range(0, 1); 7732 return 0; 7733 } 7734 7735 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7736 struct bpf_func_state *caller, 7737 struct bpf_func_state *callee, 7738 int insn_idx) 7739 { 7740 /* bpf_find_vma(struct task_struct *task, u64 addr, 7741 * void *callback_fn, void *callback_ctx, u64 flags) 7742 * (callback_fn)(struct task_struct *task, 7743 * struct vm_area_struct *vma, void *callback_ctx); 7744 */ 7745 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7746 7747 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7748 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7749 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7750 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7751 7752 /* pointer to stack or null */ 7753 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7754 7755 /* unused */ 7756 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7757 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7758 callee->in_callback_fn = true; 7759 callee->callback_ret_range = tnum_range(0, 1); 7760 return 0; 7761 } 7762 7763 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7764 struct bpf_func_state *caller, 7765 struct bpf_func_state *callee, 7766 int insn_idx) 7767 { 7768 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7769 * callback_ctx, u64 flags); 7770 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 7771 */ 7772 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7773 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 7774 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7775 7776 /* unused */ 7777 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7778 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7779 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7780 7781 callee->in_callback_fn = true; 7782 callee->callback_ret_range = tnum_range(0, 1); 7783 return 0; 7784 } 7785 7786 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 7787 struct bpf_func_state *caller, 7788 struct bpf_func_state *callee, 7789 int insn_idx) 7790 { 7791 /* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node, 7792 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 7793 * 7794 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset 7795 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 7796 * by this point, so look at 'root' 7797 */ 7798 struct btf_field *field; 7799 7800 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 7801 BPF_RB_ROOT); 7802 if (!field || !field->graph_root.value_btf_id) 7803 return -EFAULT; 7804 7805 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 7806 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 7807 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 7808 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 7809 7810 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7811 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7812 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7813 callee->in_callback_fn = true; 7814 callee->callback_ret_range = tnum_range(0, 1); 7815 return 0; 7816 } 7817 7818 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 7819 7820 /* Are we currently verifying the callback for a rbtree helper that must 7821 * be called with lock held? If so, no need to complain about unreleased 7822 * lock 7823 */ 7824 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 7825 { 7826 struct bpf_verifier_state *state = env->cur_state; 7827 struct bpf_insn *insn = env->prog->insnsi; 7828 struct bpf_func_state *callee; 7829 int kfunc_btf_id; 7830 7831 if (!state->curframe) 7832 return false; 7833 7834 callee = state->frame[state->curframe]; 7835 7836 if (!callee->in_callback_fn) 7837 return false; 7838 7839 kfunc_btf_id = insn[callee->callsite].imm; 7840 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 7841 } 7842 7843 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7844 { 7845 struct bpf_verifier_state *state = env->cur_state; 7846 struct bpf_func_state *caller, *callee; 7847 struct bpf_reg_state *r0; 7848 int err; 7849 7850 callee = state->frame[state->curframe]; 7851 r0 = &callee->regs[BPF_REG_0]; 7852 if (r0->type == PTR_TO_STACK) { 7853 /* technically it's ok to return caller's stack pointer 7854 * (or caller's caller's pointer) back to the caller, 7855 * since these pointers are valid. Only current stack 7856 * pointer will be invalid as soon as function exits, 7857 * but let's be conservative 7858 */ 7859 verbose(env, "cannot return stack pointer to the caller\n"); 7860 return -EINVAL; 7861 } 7862 7863 caller = state->frame[state->curframe - 1]; 7864 if (callee->in_callback_fn) { 7865 /* enforce R0 return value range [0, 1]. */ 7866 struct tnum range = callee->callback_ret_range; 7867 7868 if (r0->type != SCALAR_VALUE) { 7869 verbose(env, "R0 not a scalar value\n"); 7870 return -EACCES; 7871 } 7872 if (!tnum_in(range, r0->var_off)) { 7873 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7874 return -EINVAL; 7875 } 7876 } else { 7877 /* return to the caller whatever r0 had in the callee */ 7878 caller->regs[BPF_REG_0] = *r0; 7879 } 7880 7881 /* callback_fn frame should have released its own additions to parent's 7882 * reference state at this point, or check_reference_leak would 7883 * complain, hence it must be the same as the caller. There is no need 7884 * to copy it back. 7885 */ 7886 if (!callee->in_callback_fn) { 7887 /* Transfer references to the caller */ 7888 err = copy_reference_state(caller, callee); 7889 if (err) 7890 return err; 7891 } 7892 7893 *insn_idx = callee->callsite + 1; 7894 if (env->log.level & BPF_LOG_LEVEL) { 7895 verbose(env, "returning from callee:\n"); 7896 print_verifier_state(env, callee, true); 7897 verbose(env, "to caller at %d:\n", *insn_idx); 7898 print_verifier_state(env, caller, true); 7899 } 7900 /* clear everything in the callee */ 7901 free_func_state(callee); 7902 state->frame[state->curframe--] = NULL; 7903 return 0; 7904 } 7905 7906 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7907 int func_id, 7908 struct bpf_call_arg_meta *meta) 7909 { 7910 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7911 7912 if (ret_type != RET_INTEGER || 7913 (func_id != BPF_FUNC_get_stack && 7914 func_id != BPF_FUNC_get_task_stack && 7915 func_id != BPF_FUNC_probe_read_str && 7916 func_id != BPF_FUNC_probe_read_kernel_str && 7917 func_id != BPF_FUNC_probe_read_user_str)) 7918 return; 7919 7920 ret_reg->smax_value = meta->msize_max_value; 7921 ret_reg->s32_max_value = meta->msize_max_value; 7922 ret_reg->smin_value = -MAX_ERRNO; 7923 ret_reg->s32_min_value = -MAX_ERRNO; 7924 reg_bounds_sync(ret_reg); 7925 } 7926 7927 static int 7928 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7929 int func_id, int insn_idx) 7930 { 7931 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7932 struct bpf_map *map = meta->map_ptr; 7933 7934 if (func_id != BPF_FUNC_tail_call && 7935 func_id != BPF_FUNC_map_lookup_elem && 7936 func_id != BPF_FUNC_map_update_elem && 7937 func_id != BPF_FUNC_map_delete_elem && 7938 func_id != BPF_FUNC_map_push_elem && 7939 func_id != BPF_FUNC_map_pop_elem && 7940 func_id != BPF_FUNC_map_peek_elem && 7941 func_id != BPF_FUNC_for_each_map_elem && 7942 func_id != BPF_FUNC_redirect_map && 7943 func_id != BPF_FUNC_map_lookup_percpu_elem) 7944 return 0; 7945 7946 if (map == NULL) { 7947 verbose(env, "kernel subsystem misconfigured verifier\n"); 7948 return -EINVAL; 7949 } 7950 7951 /* In case of read-only, some additional restrictions 7952 * need to be applied in order to prevent altering the 7953 * state of the map from program side. 7954 */ 7955 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7956 (func_id == BPF_FUNC_map_delete_elem || 7957 func_id == BPF_FUNC_map_update_elem || 7958 func_id == BPF_FUNC_map_push_elem || 7959 func_id == BPF_FUNC_map_pop_elem)) { 7960 verbose(env, "write into map forbidden\n"); 7961 return -EACCES; 7962 } 7963 7964 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7965 bpf_map_ptr_store(aux, meta->map_ptr, 7966 !meta->map_ptr->bypass_spec_v1); 7967 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7968 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7969 !meta->map_ptr->bypass_spec_v1); 7970 return 0; 7971 } 7972 7973 static int 7974 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7975 int func_id, int insn_idx) 7976 { 7977 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7978 struct bpf_reg_state *regs = cur_regs(env), *reg; 7979 struct bpf_map *map = meta->map_ptr; 7980 u64 val, max; 7981 int err; 7982 7983 if (func_id != BPF_FUNC_tail_call) 7984 return 0; 7985 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7986 verbose(env, "kernel subsystem misconfigured verifier\n"); 7987 return -EINVAL; 7988 } 7989 7990 reg = ®s[BPF_REG_3]; 7991 val = reg->var_off.value; 7992 max = map->max_entries; 7993 7994 if (!(register_is_const(reg) && val < max)) { 7995 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7996 return 0; 7997 } 7998 7999 err = mark_chain_precision(env, BPF_REG_3); 8000 if (err) 8001 return err; 8002 if (bpf_map_key_unseen(aux)) 8003 bpf_map_key_store(aux, val); 8004 else if (!bpf_map_key_poisoned(aux) && 8005 bpf_map_key_immediate(aux) != val) 8006 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 8007 return 0; 8008 } 8009 8010 static int check_reference_leak(struct bpf_verifier_env *env) 8011 { 8012 struct bpf_func_state *state = cur_func(env); 8013 bool refs_lingering = false; 8014 int i; 8015 8016 if (state->frameno && !state->in_callback_fn) 8017 return 0; 8018 8019 for (i = 0; i < state->acquired_refs; i++) { 8020 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 8021 continue; 8022 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 8023 state->refs[i].id, state->refs[i].insn_idx); 8024 refs_lingering = true; 8025 } 8026 return refs_lingering ? -EINVAL : 0; 8027 } 8028 8029 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 8030 struct bpf_reg_state *regs) 8031 { 8032 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 8033 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 8034 struct bpf_map *fmt_map = fmt_reg->map_ptr; 8035 struct bpf_bprintf_data data = {}; 8036 int err, fmt_map_off, num_args; 8037 u64 fmt_addr; 8038 char *fmt; 8039 8040 /* data must be an array of u64 */ 8041 if (data_len_reg->var_off.value % 8) 8042 return -EINVAL; 8043 num_args = data_len_reg->var_off.value / 8; 8044 8045 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 8046 * and map_direct_value_addr is set. 8047 */ 8048 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 8049 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 8050 fmt_map_off); 8051 if (err) { 8052 verbose(env, "verifier bug\n"); 8053 return -EFAULT; 8054 } 8055 fmt = (char *)(long)fmt_addr + fmt_map_off; 8056 8057 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 8058 * can focus on validating the format specifiers. 8059 */ 8060 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 8061 if (err < 0) 8062 verbose(env, "Invalid format string\n"); 8063 8064 return err; 8065 } 8066 8067 static int check_get_func_ip(struct bpf_verifier_env *env) 8068 { 8069 enum bpf_prog_type type = resolve_prog_type(env->prog); 8070 int func_id = BPF_FUNC_get_func_ip; 8071 8072 if (type == BPF_PROG_TYPE_TRACING) { 8073 if (!bpf_prog_has_trampoline(env->prog)) { 8074 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 8075 func_id_name(func_id), func_id); 8076 return -ENOTSUPP; 8077 } 8078 return 0; 8079 } else if (type == BPF_PROG_TYPE_KPROBE) { 8080 return 0; 8081 } 8082 8083 verbose(env, "func %s#%d not supported for program type %d\n", 8084 func_id_name(func_id), func_id, type); 8085 return -ENOTSUPP; 8086 } 8087 8088 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 8089 { 8090 return &env->insn_aux_data[env->insn_idx]; 8091 } 8092 8093 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 8094 { 8095 struct bpf_reg_state *regs = cur_regs(env); 8096 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 8097 bool reg_is_null = register_is_null(reg); 8098 8099 if (reg_is_null) 8100 mark_chain_precision(env, BPF_REG_4); 8101 8102 return reg_is_null; 8103 } 8104 8105 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 8106 { 8107 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 8108 8109 if (!state->initialized) { 8110 state->initialized = 1; 8111 state->fit_for_inline = loop_flag_is_zero(env); 8112 state->callback_subprogno = subprogno; 8113 return; 8114 } 8115 8116 if (!state->fit_for_inline) 8117 return; 8118 8119 state->fit_for_inline = (loop_flag_is_zero(env) && 8120 state->callback_subprogno == subprogno); 8121 } 8122 8123 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8124 int *insn_idx_p) 8125 { 8126 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8127 const struct bpf_func_proto *fn = NULL; 8128 enum bpf_return_type ret_type; 8129 enum bpf_type_flag ret_flag; 8130 struct bpf_reg_state *regs; 8131 struct bpf_call_arg_meta meta; 8132 int insn_idx = *insn_idx_p; 8133 bool changes_data; 8134 int i, err, func_id; 8135 8136 /* find function prototype */ 8137 func_id = insn->imm; 8138 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 8139 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 8140 func_id); 8141 return -EINVAL; 8142 } 8143 8144 if (env->ops->get_func_proto) 8145 fn = env->ops->get_func_proto(func_id, env->prog); 8146 if (!fn) { 8147 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 8148 func_id); 8149 return -EINVAL; 8150 } 8151 8152 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 8153 if (!env->prog->gpl_compatible && fn->gpl_only) { 8154 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 8155 return -EINVAL; 8156 } 8157 8158 if (fn->allowed && !fn->allowed(env->prog)) { 8159 verbose(env, "helper call is not allowed in probe\n"); 8160 return -EINVAL; 8161 } 8162 8163 if (!env->prog->aux->sleepable && fn->might_sleep) { 8164 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 8165 return -EINVAL; 8166 } 8167 8168 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 8169 changes_data = bpf_helper_changes_pkt_data(fn->func); 8170 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 8171 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 8172 func_id_name(func_id), func_id); 8173 return -EINVAL; 8174 } 8175 8176 memset(&meta, 0, sizeof(meta)); 8177 meta.pkt_access = fn->pkt_access; 8178 8179 err = check_func_proto(fn, func_id); 8180 if (err) { 8181 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 8182 func_id_name(func_id), func_id); 8183 return err; 8184 } 8185 8186 if (env->cur_state->active_rcu_lock) { 8187 if (fn->might_sleep) { 8188 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 8189 func_id_name(func_id), func_id); 8190 return -EINVAL; 8191 } 8192 8193 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 8194 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 8195 } 8196 8197 meta.func_id = func_id; 8198 /* check args */ 8199 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 8200 err = check_func_arg(env, i, &meta, fn); 8201 if (err) 8202 return err; 8203 } 8204 8205 err = record_func_map(env, &meta, func_id, insn_idx); 8206 if (err) 8207 return err; 8208 8209 err = record_func_key(env, &meta, func_id, insn_idx); 8210 if (err) 8211 return err; 8212 8213 /* Mark slots with STACK_MISC in case of raw mode, stack offset 8214 * is inferred from register state. 8215 */ 8216 for (i = 0; i < meta.access_size; i++) { 8217 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 8218 BPF_WRITE, -1, false); 8219 if (err) 8220 return err; 8221 } 8222 8223 regs = cur_regs(env); 8224 8225 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 8226 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr 8227 * is safe to do directly. 8228 */ 8229 if (meta.uninit_dynptr_regno) { 8230 if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) { 8231 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n"); 8232 return -EFAULT; 8233 } 8234 /* we write BPF_DW bits (8 bytes) at a time */ 8235 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8236 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 8237 i, BPF_DW, BPF_WRITE, -1, false); 8238 if (err) 8239 return err; 8240 } 8241 8242 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 8243 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 8244 insn_idx); 8245 if (err) 8246 return err; 8247 } 8248 8249 if (meta.release_regno) { 8250 err = -EINVAL; 8251 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 8252 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 8253 * is safe to do directly. 8254 */ 8255 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 8256 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 8257 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 8258 return -EFAULT; 8259 } 8260 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 8261 } else if (meta.ref_obj_id) { 8262 err = release_reference(env, meta.ref_obj_id); 8263 } else if (register_is_null(®s[meta.release_regno])) { 8264 /* meta.ref_obj_id can only be 0 if register that is meant to be 8265 * released is NULL, which must be > R0. 8266 */ 8267 err = 0; 8268 } 8269 if (err) { 8270 verbose(env, "func %s#%d reference has not been acquired before\n", 8271 func_id_name(func_id), func_id); 8272 return err; 8273 } 8274 } 8275 8276 switch (func_id) { 8277 case BPF_FUNC_tail_call: 8278 err = check_reference_leak(env); 8279 if (err) { 8280 verbose(env, "tail_call would lead to reference leak\n"); 8281 return err; 8282 } 8283 break; 8284 case BPF_FUNC_get_local_storage: 8285 /* check that flags argument in get_local_storage(map, flags) is 0, 8286 * this is required because get_local_storage() can't return an error. 8287 */ 8288 if (!register_is_null(®s[BPF_REG_2])) { 8289 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 8290 return -EINVAL; 8291 } 8292 break; 8293 case BPF_FUNC_for_each_map_elem: 8294 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8295 set_map_elem_callback_state); 8296 break; 8297 case BPF_FUNC_timer_set_callback: 8298 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8299 set_timer_callback_state); 8300 break; 8301 case BPF_FUNC_find_vma: 8302 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8303 set_find_vma_callback_state); 8304 break; 8305 case BPF_FUNC_snprintf: 8306 err = check_bpf_snprintf_call(env, regs); 8307 break; 8308 case BPF_FUNC_loop: 8309 update_loop_inline_state(env, meta.subprogno); 8310 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8311 set_loop_callback_state); 8312 break; 8313 case BPF_FUNC_dynptr_from_mem: 8314 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 8315 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 8316 reg_type_str(env, regs[BPF_REG_1].type)); 8317 return -EACCES; 8318 } 8319 break; 8320 case BPF_FUNC_set_retval: 8321 if (prog_type == BPF_PROG_TYPE_LSM && 8322 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 8323 if (!env->prog->aux->attach_func_proto->type) { 8324 /* Make sure programs that attach to void 8325 * hooks don't try to modify return value. 8326 */ 8327 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 8328 return -EINVAL; 8329 } 8330 } 8331 break; 8332 case BPF_FUNC_dynptr_data: 8333 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 8334 if (arg_type_is_dynptr(fn->arg_type[i])) { 8335 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 8336 int id, ref_obj_id; 8337 8338 if (meta.dynptr_id) { 8339 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 8340 return -EFAULT; 8341 } 8342 8343 if (meta.ref_obj_id) { 8344 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 8345 return -EFAULT; 8346 } 8347 8348 id = dynptr_id(env, reg); 8349 if (id < 0) { 8350 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 8351 return id; 8352 } 8353 8354 ref_obj_id = dynptr_ref_obj_id(env, reg); 8355 if (ref_obj_id < 0) { 8356 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 8357 return ref_obj_id; 8358 } 8359 8360 meta.dynptr_id = id; 8361 meta.ref_obj_id = ref_obj_id; 8362 break; 8363 } 8364 } 8365 if (i == MAX_BPF_FUNC_REG_ARGS) { 8366 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 8367 return -EFAULT; 8368 } 8369 break; 8370 case BPF_FUNC_user_ringbuf_drain: 8371 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8372 set_user_ringbuf_callback_state); 8373 break; 8374 } 8375 8376 if (err) 8377 return err; 8378 8379 /* reset caller saved regs */ 8380 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8381 mark_reg_not_init(env, regs, caller_saved[i]); 8382 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8383 } 8384 8385 /* helper call returns 64-bit value. */ 8386 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8387 8388 /* update return register (already marked as written above) */ 8389 ret_type = fn->ret_type; 8390 ret_flag = type_flag(ret_type); 8391 8392 switch (base_type(ret_type)) { 8393 case RET_INTEGER: 8394 /* sets type to SCALAR_VALUE */ 8395 mark_reg_unknown(env, regs, BPF_REG_0); 8396 break; 8397 case RET_VOID: 8398 regs[BPF_REG_0].type = NOT_INIT; 8399 break; 8400 case RET_PTR_TO_MAP_VALUE: 8401 /* There is no offset yet applied, variable or fixed */ 8402 mark_reg_known_zero(env, regs, BPF_REG_0); 8403 /* remember map_ptr, so that check_map_access() 8404 * can check 'value_size' boundary of memory access 8405 * to map element returned from bpf_map_lookup_elem() 8406 */ 8407 if (meta.map_ptr == NULL) { 8408 verbose(env, 8409 "kernel subsystem misconfigured verifier\n"); 8410 return -EINVAL; 8411 } 8412 regs[BPF_REG_0].map_ptr = meta.map_ptr; 8413 regs[BPF_REG_0].map_uid = meta.map_uid; 8414 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 8415 if (!type_may_be_null(ret_type) && 8416 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 8417 regs[BPF_REG_0].id = ++env->id_gen; 8418 } 8419 break; 8420 case RET_PTR_TO_SOCKET: 8421 mark_reg_known_zero(env, regs, BPF_REG_0); 8422 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 8423 break; 8424 case RET_PTR_TO_SOCK_COMMON: 8425 mark_reg_known_zero(env, regs, BPF_REG_0); 8426 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 8427 break; 8428 case RET_PTR_TO_TCP_SOCK: 8429 mark_reg_known_zero(env, regs, BPF_REG_0); 8430 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 8431 break; 8432 case RET_PTR_TO_MEM: 8433 mark_reg_known_zero(env, regs, BPF_REG_0); 8434 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8435 regs[BPF_REG_0].mem_size = meta.mem_size; 8436 break; 8437 case RET_PTR_TO_MEM_OR_BTF_ID: 8438 { 8439 const struct btf_type *t; 8440 8441 mark_reg_known_zero(env, regs, BPF_REG_0); 8442 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8443 if (!btf_type_is_struct(t)) { 8444 u32 tsize; 8445 const struct btf_type *ret; 8446 const char *tname; 8447 8448 /* resolve the type size of ksym. */ 8449 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8450 if (IS_ERR(ret)) { 8451 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8452 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8453 tname, PTR_ERR(ret)); 8454 return -EINVAL; 8455 } 8456 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8457 regs[BPF_REG_0].mem_size = tsize; 8458 } else { 8459 /* MEM_RDONLY may be carried from ret_flag, but it 8460 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8461 * it will confuse the check of PTR_TO_BTF_ID in 8462 * check_mem_access(). 8463 */ 8464 ret_flag &= ~MEM_RDONLY; 8465 8466 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8467 regs[BPF_REG_0].btf = meta.ret_btf; 8468 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8469 } 8470 break; 8471 } 8472 case RET_PTR_TO_BTF_ID: 8473 { 8474 struct btf *ret_btf; 8475 int ret_btf_id; 8476 8477 mark_reg_known_zero(env, regs, BPF_REG_0); 8478 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8479 if (func_id == BPF_FUNC_kptr_xchg) { 8480 ret_btf = meta.kptr_field->kptr.btf; 8481 ret_btf_id = meta.kptr_field->kptr.btf_id; 8482 } else { 8483 if (fn->ret_btf_id == BPF_PTR_POISON) { 8484 verbose(env, "verifier internal error:"); 8485 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8486 func_id_name(func_id)); 8487 return -EINVAL; 8488 } 8489 ret_btf = btf_vmlinux; 8490 ret_btf_id = *fn->ret_btf_id; 8491 } 8492 if (ret_btf_id == 0) { 8493 verbose(env, "invalid return type %u of func %s#%d\n", 8494 base_type(ret_type), func_id_name(func_id), 8495 func_id); 8496 return -EINVAL; 8497 } 8498 regs[BPF_REG_0].btf = ret_btf; 8499 regs[BPF_REG_0].btf_id = ret_btf_id; 8500 break; 8501 } 8502 default: 8503 verbose(env, "unknown return type %u of func %s#%d\n", 8504 base_type(ret_type), func_id_name(func_id), func_id); 8505 return -EINVAL; 8506 } 8507 8508 if (type_may_be_null(regs[BPF_REG_0].type)) 8509 regs[BPF_REG_0].id = ++env->id_gen; 8510 8511 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8512 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8513 func_id_name(func_id), func_id); 8514 return -EFAULT; 8515 } 8516 8517 if (is_dynptr_ref_function(func_id)) 8518 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 8519 8520 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8521 /* For release_reference() */ 8522 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8523 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8524 int id = acquire_reference_state(env, insn_idx); 8525 8526 if (id < 0) 8527 return id; 8528 /* For mark_ptr_or_null_reg() */ 8529 regs[BPF_REG_0].id = id; 8530 /* For release_reference() */ 8531 regs[BPF_REG_0].ref_obj_id = id; 8532 } 8533 8534 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8535 8536 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8537 if (err) 8538 return err; 8539 8540 if ((func_id == BPF_FUNC_get_stack || 8541 func_id == BPF_FUNC_get_task_stack) && 8542 !env->prog->has_callchain_buf) { 8543 const char *err_str; 8544 8545 #ifdef CONFIG_PERF_EVENTS 8546 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8547 err_str = "cannot get callchain buffer for func %s#%d\n"; 8548 #else 8549 err = -ENOTSUPP; 8550 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8551 #endif 8552 if (err) { 8553 verbose(env, err_str, func_id_name(func_id), func_id); 8554 return err; 8555 } 8556 8557 env->prog->has_callchain_buf = true; 8558 } 8559 8560 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8561 env->prog->call_get_stack = true; 8562 8563 if (func_id == BPF_FUNC_get_func_ip) { 8564 if (check_get_func_ip(env)) 8565 return -ENOTSUPP; 8566 env->prog->call_get_func_ip = true; 8567 } 8568 8569 if (changes_data) 8570 clear_all_pkt_pointers(env); 8571 return 0; 8572 } 8573 8574 /* mark_btf_func_reg_size() is used when the reg size is determined by 8575 * the BTF func_proto's return value size and argument. 8576 */ 8577 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8578 size_t reg_size) 8579 { 8580 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8581 8582 if (regno == BPF_REG_0) { 8583 /* Function return value */ 8584 reg->live |= REG_LIVE_WRITTEN; 8585 reg->subreg_def = reg_size == sizeof(u64) ? 8586 DEF_NOT_SUBREG : env->insn_idx + 1; 8587 } else { 8588 /* Function argument */ 8589 if (reg_size == sizeof(u64)) { 8590 mark_insn_zext(env, reg); 8591 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8592 } else { 8593 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8594 } 8595 } 8596 } 8597 8598 struct bpf_kfunc_call_arg_meta { 8599 /* In parameters */ 8600 struct btf *btf; 8601 u32 func_id; 8602 u32 kfunc_flags; 8603 const struct btf_type *func_proto; 8604 const char *func_name; 8605 /* Out parameters */ 8606 u32 ref_obj_id; 8607 u8 release_regno; 8608 bool r0_rdonly; 8609 u32 ret_btf_id; 8610 u64 r0_size; 8611 u32 subprogno; 8612 struct { 8613 u64 value; 8614 bool found; 8615 } arg_constant; 8616 struct { 8617 struct btf *btf; 8618 u32 btf_id; 8619 } arg_obj_drop; 8620 struct { 8621 struct btf_field *field; 8622 } arg_list_head; 8623 struct { 8624 struct btf_field *field; 8625 } arg_rbtree_root; 8626 }; 8627 8628 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8629 { 8630 return meta->kfunc_flags & KF_ACQUIRE; 8631 } 8632 8633 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8634 { 8635 return meta->kfunc_flags & KF_RET_NULL; 8636 } 8637 8638 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8639 { 8640 return meta->kfunc_flags & KF_RELEASE; 8641 } 8642 8643 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8644 { 8645 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8646 } 8647 8648 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8649 { 8650 return meta->kfunc_flags & KF_SLEEPABLE; 8651 } 8652 8653 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8654 { 8655 return meta->kfunc_flags & KF_DESTRUCTIVE; 8656 } 8657 8658 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8659 { 8660 return meta->kfunc_flags & KF_RCU; 8661 } 8662 8663 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8664 { 8665 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8666 } 8667 8668 static bool __kfunc_param_match_suffix(const struct btf *btf, 8669 const struct btf_param *arg, 8670 const char *suffix) 8671 { 8672 int suffix_len = strlen(suffix), len; 8673 const char *param_name; 8674 8675 /* In the future, this can be ported to use BTF tagging */ 8676 param_name = btf_name_by_offset(btf, arg->name_off); 8677 if (str_is_empty(param_name)) 8678 return false; 8679 len = strlen(param_name); 8680 if (len < suffix_len) 8681 return false; 8682 param_name += len - suffix_len; 8683 return !strncmp(param_name, suffix, suffix_len); 8684 } 8685 8686 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8687 const struct btf_param *arg, 8688 const struct bpf_reg_state *reg) 8689 { 8690 const struct btf_type *t; 8691 8692 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8693 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8694 return false; 8695 8696 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8697 } 8698 8699 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8700 { 8701 return __kfunc_param_match_suffix(btf, arg, "__k"); 8702 } 8703 8704 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8705 { 8706 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8707 } 8708 8709 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8710 { 8711 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8712 } 8713 8714 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8715 const struct btf_param *arg, 8716 const char *name) 8717 { 8718 int len, target_len = strlen(name); 8719 const char *param_name; 8720 8721 param_name = btf_name_by_offset(btf, arg->name_off); 8722 if (str_is_empty(param_name)) 8723 return false; 8724 len = strlen(param_name); 8725 if (len != target_len) 8726 return false; 8727 if (strcmp(param_name, name)) 8728 return false; 8729 8730 return true; 8731 } 8732 8733 enum { 8734 KF_ARG_DYNPTR_ID, 8735 KF_ARG_LIST_HEAD_ID, 8736 KF_ARG_LIST_NODE_ID, 8737 KF_ARG_RB_ROOT_ID, 8738 KF_ARG_RB_NODE_ID, 8739 }; 8740 8741 BTF_ID_LIST(kf_arg_btf_ids) 8742 BTF_ID(struct, bpf_dynptr_kern) 8743 BTF_ID(struct, bpf_list_head) 8744 BTF_ID(struct, bpf_list_node) 8745 BTF_ID(struct, bpf_rb_root) 8746 BTF_ID(struct, bpf_rb_node) 8747 8748 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8749 const struct btf_param *arg, int type) 8750 { 8751 const struct btf_type *t; 8752 u32 res_id; 8753 8754 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8755 if (!t) 8756 return false; 8757 if (!btf_type_is_ptr(t)) 8758 return false; 8759 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8760 if (!t) 8761 return false; 8762 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8763 } 8764 8765 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8766 { 8767 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8768 } 8769 8770 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8771 { 8772 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8773 } 8774 8775 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8776 { 8777 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8778 } 8779 8780 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 8781 { 8782 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 8783 } 8784 8785 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 8786 { 8787 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 8788 } 8789 8790 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 8791 const struct btf_param *arg) 8792 { 8793 const struct btf_type *t; 8794 8795 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 8796 if (!t) 8797 return false; 8798 8799 return true; 8800 } 8801 8802 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8803 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8804 const struct btf *btf, 8805 const struct btf_type *t, int rec) 8806 { 8807 const struct btf_type *member_type; 8808 const struct btf_member *member; 8809 u32 i; 8810 8811 if (!btf_type_is_struct(t)) 8812 return false; 8813 8814 for_each_member(i, t, member) { 8815 const struct btf_array *array; 8816 8817 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8818 if (btf_type_is_struct(member_type)) { 8819 if (rec >= 3) { 8820 verbose(env, "max struct nesting depth exceeded\n"); 8821 return false; 8822 } 8823 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8824 return false; 8825 continue; 8826 } 8827 if (btf_type_is_array(member_type)) { 8828 array = btf_array(member_type); 8829 if (!array->nelems) 8830 return false; 8831 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8832 if (!btf_type_is_scalar(member_type)) 8833 return false; 8834 continue; 8835 } 8836 if (!btf_type_is_scalar(member_type)) 8837 return false; 8838 } 8839 return true; 8840 } 8841 8842 8843 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8844 #ifdef CONFIG_NET 8845 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8846 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8847 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8848 #endif 8849 }; 8850 8851 enum kfunc_ptr_arg_type { 8852 KF_ARG_PTR_TO_CTX, 8853 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8854 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8855 KF_ARG_PTR_TO_DYNPTR, 8856 KF_ARG_PTR_TO_LIST_HEAD, 8857 KF_ARG_PTR_TO_LIST_NODE, 8858 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8859 KF_ARG_PTR_TO_MEM, 8860 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8861 KF_ARG_PTR_TO_CALLBACK, 8862 KF_ARG_PTR_TO_RB_ROOT, 8863 KF_ARG_PTR_TO_RB_NODE, 8864 }; 8865 8866 enum special_kfunc_type { 8867 KF_bpf_obj_new_impl, 8868 KF_bpf_obj_drop_impl, 8869 KF_bpf_list_push_front, 8870 KF_bpf_list_push_back, 8871 KF_bpf_list_pop_front, 8872 KF_bpf_list_pop_back, 8873 KF_bpf_cast_to_kern_ctx, 8874 KF_bpf_rdonly_cast, 8875 KF_bpf_rcu_read_lock, 8876 KF_bpf_rcu_read_unlock, 8877 KF_bpf_rbtree_remove, 8878 KF_bpf_rbtree_add, 8879 KF_bpf_rbtree_first, 8880 }; 8881 8882 BTF_SET_START(special_kfunc_set) 8883 BTF_ID(func, bpf_obj_new_impl) 8884 BTF_ID(func, bpf_obj_drop_impl) 8885 BTF_ID(func, bpf_list_push_front) 8886 BTF_ID(func, bpf_list_push_back) 8887 BTF_ID(func, bpf_list_pop_front) 8888 BTF_ID(func, bpf_list_pop_back) 8889 BTF_ID(func, bpf_cast_to_kern_ctx) 8890 BTF_ID(func, bpf_rdonly_cast) 8891 BTF_ID(func, bpf_rbtree_remove) 8892 BTF_ID(func, bpf_rbtree_add) 8893 BTF_ID(func, bpf_rbtree_first) 8894 BTF_SET_END(special_kfunc_set) 8895 8896 BTF_ID_LIST(special_kfunc_list) 8897 BTF_ID(func, bpf_obj_new_impl) 8898 BTF_ID(func, bpf_obj_drop_impl) 8899 BTF_ID(func, bpf_list_push_front) 8900 BTF_ID(func, bpf_list_push_back) 8901 BTF_ID(func, bpf_list_pop_front) 8902 BTF_ID(func, bpf_list_pop_back) 8903 BTF_ID(func, bpf_cast_to_kern_ctx) 8904 BTF_ID(func, bpf_rdonly_cast) 8905 BTF_ID(func, bpf_rcu_read_lock) 8906 BTF_ID(func, bpf_rcu_read_unlock) 8907 BTF_ID(func, bpf_rbtree_remove) 8908 BTF_ID(func, bpf_rbtree_add) 8909 BTF_ID(func, bpf_rbtree_first) 8910 8911 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 8912 { 8913 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 8914 } 8915 8916 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 8917 { 8918 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 8919 } 8920 8921 static enum kfunc_ptr_arg_type 8922 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8923 struct bpf_kfunc_call_arg_meta *meta, 8924 const struct btf_type *t, const struct btf_type *ref_t, 8925 const char *ref_tname, const struct btf_param *args, 8926 int argno, int nargs) 8927 { 8928 u32 regno = argno + 1; 8929 struct bpf_reg_state *regs = cur_regs(env); 8930 struct bpf_reg_state *reg = ®s[regno]; 8931 bool arg_mem_size = false; 8932 8933 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 8934 return KF_ARG_PTR_TO_CTX; 8935 8936 /* In this function, we verify the kfunc's BTF as per the argument type, 8937 * leaving the rest of the verification with respect to the register 8938 * type to our caller. When a set of conditions hold in the BTF type of 8939 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8940 */ 8941 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8942 return KF_ARG_PTR_TO_CTX; 8943 8944 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8945 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8946 8947 if (is_kfunc_arg_kptr_get(meta, argno)) { 8948 if (!btf_type_is_ptr(ref_t)) { 8949 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8950 return -EINVAL; 8951 } 8952 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8953 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8954 if (!btf_type_is_struct(ref_t)) { 8955 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8956 meta->func_name, btf_type_str(ref_t), ref_tname); 8957 return -EINVAL; 8958 } 8959 return KF_ARG_PTR_TO_KPTR; 8960 } 8961 8962 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8963 return KF_ARG_PTR_TO_DYNPTR; 8964 8965 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8966 return KF_ARG_PTR_TO_LIST_HEAD; 8967 8968 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8969 return KF_ARG_PTR_TO_LIST_NODE; 8970 8971 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 8972 return KF_ARG_PTR_TO_RB_ROOT; 8973 8974 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 8975 return KF_ARG_PTR_TO_RB_NODE; 8976 8977 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8978 if (!btf_type_is_struct(ref_t)) { 8979 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8980 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8981 return -EINVAL; 8982 } 8983 return KF_ARG_PTR_TO_BTF_ID; 8984 } 8985 8986 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 8987 return KF_ARG_PTR_TO_CALLBACK; 8988 8989 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8990 arg_mem_size = true; 8991 8992 /* This is the catch all argument type of register types supported by 8993 * check_helper_mem_access. However, we only allow when argument type is 8994 * pointer to scalar, or struct composed (recursively) of scalars. When 8995 * arg_mem_size is true, the pointer can be void *. 8996 */ 8997 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 8998 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 8999 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 9000 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 9001 return -EINVAL; 9002 } 9003 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 9004 } 9005 9006 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 9007 struct bpf_reg_state *reg, 9008 const struct btf_type *ref_t, 9009 const char *ref_tname, u32 ref_id, 9010 struct bpf_kfunc_call_arg_meta *meta, 9011 int argno) 9012 { 9013 const struct btf_type *reg_ref_t; 9014 bool strict_type_match = false; 9015 const struct btf *reg_btf; 9016 const char *reg_ref_tname; 9017 u32 reg_ref_id; 9018 9019 if (base_type(reg->type) == PTR_TO_BTF_ID) { 9020 reg_btf = reg->btf; 9021 reg_ref_id = reg->btf_id; 9022 } else { 9023 reg_btf = btf_vmlinux; 9024 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 9025 } 9026 9027 /* Enforce strict type matching for calls to kfuncs that are acquiring 9028 * or releasing a reference, or are no-cast aliases. We do _not_ 9029 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 9030 * as we want to enable BPF programs to pass types that are bitwise 9031 * equivalent without forcing them to explicitly cast with something 9032 * like bpf_cast_to_kern_ctx(). 9033 * 9034 * For example, say we had a type like the following: 9035 * 9036 * struct bpf_cpumask { 9037 * cpumask_t cpumask; 9038 * refcount_t usage; 9039 * }; 9040 * 9041 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 9042 * to a struct cpumask, so it would be safe to pass a struct 9043 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 9044 * 9045 * The philosophy here is similar to how we allow scalars of different 9046 * types to be passed to kfuncs as long as the size is the same. The 9047 * only difference here is that we're simply allowing 9048 * btf_struct_ids_match() to walk the struct at the 0th offset, and 9049 * resolve types. 9050 */ 9051 if (is_kfunc_acquire(meta) || 9052 (is_kfunc_release(meta) && reg->ref_obj_id) || 9053 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 9054 strict_type_match = true; 9055 9056 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 9057 9058 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 9059 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 9060 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 9061 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 9062 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 9063 btf_type_str(reg_ref_t), reg_ref_tname); 9064 return -EINVAL; 9065 } 9066 return 0; 9067 } 9068 9069 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 9070 struct bpf_reg_state *reg, 9071 const struct btf_type *ref_t, 9072 const char *ref_tname, 9073 struct bpf_kfunc_call_arg_meta *meta, 9074 int argno) 9075 { 9076 struct btf_field *kptr_field; 9077 9078 /* check_func_arg_reg_off allows var_off for 9079 * PTR_TO_MAP_VALUE, but we need fixed offset to find 9080 * off_desc. 9081 */ 9082 if (!tnum_is_const(reg->var_off)) { 9083 verbose(env, "arg#0 must have constant offset\n"); 9084 return -EINVAL; 9085 } 9086 9087 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 9088 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 9089 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 9090 reg->off + reg->var_off.value); 9091 return -EINVAL; 9092 } 9093 9094 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 9095 kptr_field->kptr.btf_id, true)) { 9096 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 9097 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 9098 return -EINVAL; 9099 } 9100 return 0; 9101 } 9102 9103 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9104 { 9105 struct bpf_verifier_state *state = env->cur_state; 9106 9107 if (!state->active_lock.ptr) { 9108 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 9109 return -EFAULT; 9110 } 9111 9112 if (type_flag(reg->type) & NON_OWN_REF) { 9113 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 9114 return -EFAULT; 9115 } 9116 9117 reg->type |= NON_OWN_REF; 9118 return 0; 9119 } 9120 9121 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 9122 { 9123 struct bpf_func_state *state, *unused; 9124 struct bpf_reg_state *reg; 9125 int i; 9126 9127 state = cur_func(env); 9128 9129 if (!ref_obj_id) { 9130 verbose(env, "verifier internal error: ref_obj_id is zero for " 9131 "owning -> non-owning conversion\n"); 9132 return -EFAULT; 9133 } 9134 9135 for (i = 0; i < state->acquired_refs; i++) { 9136 if (state->refs[i].id != ref_obj_id) 9137 continue; 9138 9139 /* Clear ref_obj_id here so release_reference doesn't clobber 9140 * the whole reg 9141 */ 9142 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9143 if (reg->ref_obj_id == ref_obj_id) { 9144 reg->ref_obj_id = 0; 9145 ref_set_non_owning(env, reg); 9146 } 9147 })); 9148 return 0; 9149 } 9150 9151 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 9152 return -EFAULT; 9153 } 9154 9155 /* Implementation details: 9156 * 9157 * Each register points to some region of memory, which we define as an 9158 * allocation. Each allocation may embed a bpf_spin_lock which protects any 9159 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 9160 * allocation. The lock and the data it protects are colocated in the same 9161 * memory region. 9162 * 9163 * Hence, everytime a register holds a pointer value pointing to such 9164 * allocation, the verifier preserves a unique reg->id for it. 9165 * 9166 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 9167 * bpf_spin_lock is called. 9168 * 9169 * To enable this, lock state in the verifier captures two values: 9170 * active_lock.ptr = Register's type specific pointer 9171 * active_lock.id = A unique ID for each register pointer value 9172 * 9173 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 9174 * supported register types. 9175 * 9176 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 9177 * allocated objects is the reg->btf pointer. 9178 * 9179 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 9180 * can establish the provenance of the map value statically for each distinct 9181 * lookup into such maps. They always contain a single map value hence unique 9182 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 9183 * 9184 * So, in case of global variables, they use array maps with max_entries = 1, 9185 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 9186 * into the same map value as max_entries is 1, as described above). 9187 * 9188 * In case of inner map lookups, the inner map pointer has same map_ptr as the 9189 * outer map pointer (in verifier context), but each lookup into an inner map 9190 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 9191 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 9192 * will get different reg->id assigned to each lookup, hence different 9193 * active_lock.id. 9194 * 9195 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 9196 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 9197 * returned from bpf_obj_new. Each allocation receives a new reg->id. 9198 */ 9199 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9200 { 9201 void *ptr; 9202 u32 id; 9203 9204 switch ((int)reg->type) { 9205 case PTR_TO_MAP_VALUE: 9206 ptr = reg->map_ptr; 9207 break; 9208 case PTR_TO_BTF_ID | MEM_ALLOC: 9209 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 9210 ptr = reg->btf; 9211 break; 9212 default: 9213 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 9214 return -EFAULT; 9215 } 9216 id = reg->id; 9217 9218 if (!env->cur_state->active_lock.ptr) 9219 return -EINVAL; 9220 if (env->cur_state->active_lock.ptr != ptr || 9221 env->cur_state->active_lock.id != id) { 9222 verbose(env, "held lock and object are not in the same allocation\n"); 9223 return -EINVAL; 9224 } 9225 return 0; 9226 } 9227 9228 static bool is_bpf_list_api_kfunc(u32 btf_id) 9229 { 9230 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9231 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 9232 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 9233 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 9234 } 9235 9236 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 9237 { 9238 return btf_id == special_kfunc_list[KF_bpf_rbtree_add] || 9239 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9240 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 9241 } 9242 9243 static bool is_bpf_graph_api_kfunc(u32 btf_id) 9244 { 9245 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id); 9246 } 9247 9248 static bool is_callback_calling_kfunc(u32 btf_id) 9249 { 9250 return btf_id == special_kfunc_list[KF_bpf_rbtree_add]; 9251 } 9252 9253 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 9254 { 9255 return is_bpf_rbtree_api_kfunc(btf_id); 9256 } 9257 9258 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 9259 enum btf_field_type head_field_type, 9260 u32 kfunc_btf_id) 9261 { 9262 bool ret; 9263 9264 switch (head_field_type) { 9265 case BPF_LIST_HEAD: 9266 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 9267 break; 9268 case BPF_RB_ROOT: 9269 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 9270 break; 9271 default: 9272 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 9273 btf_field_type_name(head_field_type)); 9274 return false; 9275 } 9276 9277 if (!ret) 9278 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 9279 btf_field_type_name(head_field_type)); 9280 return ret; 9281 } 9282 9283 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 9284 enum btf_field_type node_field_type, 9285 u32 kfunc_btf_id) 9286 { 9287 bool ret; 9288 9289 switch (node_field_type) { 9290 case BPF_LIST_NODE: 9291 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9292 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]); 9293 break; 9294 case BPF_RB_NODE: 9295 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9296 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]); 9297 break; 9298 default: 9299 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 9300 btf_field_type_name(node_field_type)); 9301 return false; 9302 } 9303 9304 if (!ret) 9305 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 9306 btf_field_type_name(node_field_type)); 9307 return ret; 9308 } 9309 9310 static int 9311 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 9312 struct bpf_reg_state *reg, u32 regno, 9313 struct bpf_kfunc_call_arg_meta *meta, 9314 enum btf_field_type head_field_type, 9315 struct btf_field **head_field) 9316 { 9317 const char *head_type_name; 9318 struct btf_field *field; 9319 struct btf_record *rec; 9320 u32 head_off; 9321 9322 if (meta->btf != btf_vmlinux) { 9323 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9324 return -EFAULT; 9325 } 9326 9327 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 9328 return -EFAULT; 9329 9330 head_type_name = btf_field_type_name(head_field_type); 9331 if (!tnum_is_const(reg->var_off)) { 9332 verbose(env, 9333 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9334 regno, head_type_name); 9335 return -EINVAL; 9336 } 9337 9338 rec = reg_btf_record(reg); 9339 head_off = reg->off + reg->var_off.value; 9340 field = btf_record_find(rec, head_off, head_field_type); 9341 if (!field) { 9342 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 9343 return -EINVAL; 9344 } 9345 9346 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 9347 if (check_reg_allocation_locked(env, reg)) { 9348 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 9349 rec->spin_lock_off, head_type_name); 9350 return -EINVAL; 9351 } 9352 9353 if (*head_field) { 9354 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 9355 return -EFAULT; 9356 } 9357 *head_field = field; 9358 return 0; 9359 } 9360 9361 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 9362 struct bpf_reg_state *reg, u32 regno, 9363 struct bpf_kfunc_call_arg_meta *meta) 9364 { 9365 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 9366 &meta->arg_list_head.field); 9367 } 9368 9369 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 9370 struct bpf_reg_state *reg, u32 regno, 9371 struct bpf_kfunc_call_arg_meta *meta) 9372 { 9373 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 9374 &meta->arg_rbtree_root.field); 9375 } 9376 9377 static int 9378 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 9379 struct bpf_reg_state *reg, u32 regno, 9380 struct bpf_kfunc_call_arg_meta *meta, 9381 enum btf_field_type head_field_type, 9382 enum btf_field_type node_field_type, 9383 struct btf_field **node_field) 9384 { 9385 const char *node_type_name; 9386 const struct btf_type *et, *t; 9387 struct btf_field *field; 9388 u32 node_off; 9389 9390 if (meta->btf != btf_vmlinux) { 9391 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9392 return -EFAULT; 9393 } 9394 9395 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 9396 return -EFAULT; 9397 9398 node_type_name = btf_field_type_name(node_field_type); 9399 if (!tnum_is_const(reg->var_off)) { 9400 verbose(env, 9401 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9402 regno, node_type_name); 9403 return -EINVAL; 9404 } 9405 9406 node_off = reg->off + reg->var_off.value; 9407 field = reg_find_field_offset(reg, node_off, node_field_type); 9408 if (!field || field->offset != node_off) { 9409 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 9410 return -EINVAL; 9411 } 9412 9413 field = *node_field; 9414 9415 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 9416 t = btf_type_by_id(reg->btf, reg->btf_id); 9417 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 9418 field->graph_root.value_btf_id, true)) { 9419 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 9420 "in struct %s, but arg is at offset=%d in struct %s\n", 9421 btf_field_type_name(head_field_type), 9422 btf_field_type_name(node_field_type), 9423 field->graph_root.node_offset, 9424 btf_name_by_offset(field->graph_root.btf, et->name_off), 9425 node_off, btf_name_by_offset(reg->btf, t->name_off)); 9426 return -EINVAL; 9427 } 9428 9429 if (node_off != field->graph_root.node_offset) { 9430 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 9431 node_off, btf_field_type_name(node_field_type), 9432 field->graph_root.node_offset, 9433 btf_name_by_offset(field->graph_root.btf, et->name_off)); 9434 return -EINVAL; 9435 } 9436 9437 return 0; 9438 } 9439 9440 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 9441 struct bpf_reg_state *reg, u32 regno, 9442 struct bpf_kfunc_call_arg_meta *meta) 9443 { 9444 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9445 BPF_LIST_HEAD, BPF_LIST_NODE, 9446 &meta->arg_list_head.field); 9447 } 9448 9449 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 9450 struct bpf_reg_state *reg, u32 regno, 9451 struct bpf_kfunc_call_arg_meta *meta) 9452 { 9453 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9454 BPF_RB_ROOT, BPF_RB_NODE, 9455 &meta->arg_rbtree_root.field); 9456 } 9457 9458 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 9459 { 9460 const char *func_name = meta->func_name, *ref_tname; 9461 const struct btf *btf = meta->btf; 9462 const struct btf_param *args; 9463 u32 i, nargs; 9464 int ret; 9465 9466 args = (const struct btf_param *)(meta->func_proto + 1); 9467 nargs = btf_type_vlen(meta->func_proto); 9468 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 9469 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 9470 MAX_BPF_FUNC_REG_ARGS); 9471 return -EINVAL; 9472 } 9473 9474 /* Check that BTF function arguments match actual types that the 9475 * verifier sees. 9476 */ 9477 for (i = 0; i < nargs; i++) { 9478 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 9479 const struct btf_type *t, *ref_t, *resolve_ret; 9480 enum bpf_arg_type arg_type = ARG_DONTCARE; 9481 u32 regno = i + 1, ref_id, type_size; 9482 bool is_ret_buf_sz = false; 9483 int kf_arg_type; 9484 9485 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 9486 9487 if (is_kfunc_arg_ignore(btf, &args[i])) 9488 continue; 9489 9490 if (btf_type_is_scalar(t)) { 9491 if (reg->type != SCALAR_VALUE) { 9492 verbose(env, "R%d is not a scalar\n", regno); 9493 return -EINVAL; 9494 } 9495 9496 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 9497 if (meta->arg_constant.found) { 9498 verbose(env, "verifier internal error: only one constant argument permitted\n"); 9499 return -EFAULT; 9500 } 9501 if (!tnum_is_const(reg->var_off)) { 9502 verbose(env, "R%d must be a known constant\n", regno); 9503 return -EINVAL; 9504 } 9505 ret = mark_chain_precision(env, regno); 9506 if (ret < 0) 9507 return ret; 9508 meta->arg_constant.found = true; 9509 meta->arg_constant.value = reg->var_off.value; 9510 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 9511 meta->r0_rdonly = true; 9512 is_ret_buf_sz = true; 9513 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 9514 is_ret_buf_sz = true; 9515 } 9516 9517 if (is_ret_buf_sz) { 9518 if (meta->r0_size) { 9519 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 9520 return -EINVAL; 9521 } 9522 9523 if (!tnum_is_const(reg->var_off)) { 9524 verbose(env, "R%d is not a const\n", regno); 9525 return -EINVAL; 9526 } 9527 9528 meta->r0_size = reg->var_off.value; 9529 ret = mark_chain_precision(env, regno); 9530 if (ret) 9531 return ret; 9532 } 9533 continue; 9534 } 9535 9536 if (!btf_type_is_ptr(t)) { 9537 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 9538 return -EINVAL; 9539 } 9540 9541 if (is_kfunc_trusted_args(meta) && 9542 (register_is_null(reg) || type_may_be_null(reg->type))) { 9543 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 9544 return -EACCES; 9545 } 9546 9547 if (reg->ref_obj_id) { 9548 if (is_kfunc_release(meta) && meta->ref_obj_id) { 9549 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9550 regno, reg->ref_obj_id, 9551 meta->ref_obj_id); 9552 return -EFAULT; 9553 } 9554 meta->ref_obj_id = reg->ref_obj_id; 9555 if (is_kfunc_release(meta)) 9556 meta->release_regno = regno; 9557 } 9558 9559 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 9560 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 9561 9562 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 9563 if (kf_arg_type < 0) 9564 return kf_arg_type; 9565 9566 switch (kf_arg_type) { 9567 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9568 case KF_ARG_PTR_TO_BTF_ID: 9569 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 9570 break; 9571 9572 if (!is_trusted_reg(reg)) { 9573 if (!is_kfunc_rcu(meta)) { 9574 verbose(env, "R%d must be referenced or trusted\n", regno); 9575 return -EINVAL; 9576 } 9577 if (!is_rcu_reg(reg)) { 9578 verbose(env, "R%d must be a rcu pointer\n", regno); 9579 return -EINVAL; 9580 } 9581 } 9582 9583 fallthrough; 9584 case KF_ARG_PTR_TO_CTX: 9585 /* Trusted arguments have the same offset checks as release arguments */ 9586 arg_type |= OBJ_RELEASE; 9587 break; 9588 case KF_ARG_PTR_TO_KPTR: 9589 case KF_ARG_PTR_TO_DYNPTR: 9590 case KF_ARG_PTR_TO_LIST_HEAD: 9591 case KF_ARG_PTR_TO_LIST_NODE: 9592 case KF_ARG_PTR_TO_RB_ROOT: 9593 case KF_ARG_PTR_TO_RB_NODE: 9594 case KF_ARG_PTR_TO_MEM: 9595 case KF_ARG_PTR_TO_MEM_SIZE: 9596 case KF_ARG_PTR_TO_CALLBACK: 9597 /* Trusted by default */ 9598 break; 9599 default: 9600 WARN_ON_ONCE(1); 9601 return -EFAULT; 9602 } 9603 9604 if (is_kfunc_release(meta) && reg->ref_obj_id) 9605 arg_type |= OBJ_RELEASE; 9606 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 9607 if (ret < 0) 9608 return ret; 9609 9610 switch (kf_arg_type) { 9611 case KF_ARG_PTR_TO_CTX: 9612 if (reg->type != PTR_TO_CTX) { 9613 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 9614 return -EINVAL; 9615 } 9616 9617 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9618 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 9619 if (ret < 0) 9620 return -EINVAL; 9621 meta->ret_btf_id = ret; 9622 } 9623 break; 9624 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9625 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9626 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9627 return -EINVAL; 9628 } 9629 if (!reg->ref_obj_id) { 9630 verbose(env, "allocated object must be referenced\n"); 9631 return -EINVAL; 9632 } 9633 if (meta->btf == btf_vmlinux && 9634 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9635 meta->arg_obj_drop.btf = reg->btf; 9636 meta->arg_obj_drop.btf_id = reg->btf_id; 9637 } 9638 break; 9639 case KF_ARG_PTR_TO_KPTR: 9640 if (reg->type != PTR_TO_MAP_VALUE) { 9641 verbose(env, "arg#0 expected pointer to map value\n"); 9642 return -EINVAL; 9643 } 9644 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 9645 if (ret < 0) 9646 return ret; 9647 break; 9648 case KF_ARG_PTR_TO_DYNPTR: 9649 if (reg->type != PTR_TO_STACK && 9650 reg->type != CONST_PTR_TO_DYNPTR) { 9651 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 9652 return -EINVAL; 9653 } 9654 9655 ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL); 9656 if (ret < 0) 9657 return ret; 9658 break; 9659 case KF_ARG_PTR_TO_LIST_HEAD: 9660 if (reg->type != PTR_TO_MAP_VALUE && 9661 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9662 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9663 return -EINVAL; 9664 } 9665 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9666 verbose(env, "allocated object must be referenced\n"); 9667 return -EINVAL; 9668 } 9669 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 9670 if (ret < 0) 9671 return ret; 9672 break; 9673 case KF_ARG_PTR_TO_RB_ROOT: 9674 if (reg->type != PTR_TO_MAP_VALUE && 9675 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9676 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9677 return -EINVAL; 9678 } 9679 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9680 verbose(env, "allocated object must be referenced\n"); 9681 return -EINVAL; 9682 } 9683 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 9684 if (ret < 0) 9685 return ret; 9686 break; 9687 case KF_ARG_PTR_TO_LIST_NODE: 9688 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9689 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9690 return -EINVAL; 9691 } 9692 if (!reg->ref_obj_id) { 9693 verbose(env, "allocated object must be referenced\n"); 9694 return -EINVAL; 9695 } 9696 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9697 if (ret < 0) 9698 return ret; 9699 break; 9700 case KF_ARG_PTR_TO_RB_NODE: 9701 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 9702 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 9703 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 9704 return -EINVAL; 9705 } 9706 if (in_rbtree_lock_required_cb(env)) { 9707 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 9708 return -EINVAL; 9709 } 9710 } else { 9711 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9712 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9713 return -EINVAL; 9714 } 9715 if (!reg->ref_obj_id) { 9716 verbose(env, "allocated object must be referenced\n"); 9717 return -EINVAL; 9718 } 9719 } 9720 9721 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 9722 if (ret < 0) 9723 return ret; 9724 break; 9725 case KF_ARG_PTR_TO_BTF_ID: 9726 /* Only base_type is checked, further checks are done here */ 9727 if ((base_type(reg->type) != PTR_TO_BTF_ID || 9728 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 9729 !reg2btf_ids[base_type(reg->type)]) { 9730 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 9731 verbose(env, "expected %s or socket\n", 9732 reg_type_str(env, base_type(reg->type) | 9733 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 9734 return -EINVAL; 9735 } 9736 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 9737 if (ret < 0) 9738 return ret; 9739 break; 9740 case KF_ARG_PTR_TO_MEM: 9741 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 9742 if (IS_ERR(resolve_ret)) { 9743 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 9744 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 9745 return -EINVAL; 9746 } 9747 ret = check_mem_reg(env, reg, regno, type_size); 9748 if (ret < 0) 9749 return ret; 9750 break; 9751 case KF_ARG_PTR_TO_MEM_SIZE: 9752 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 9753 if (ret < 0) { 9754 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 9755 return ret; 9756 } 9757 /* Skip next '__sz' argument */ 9758 i++; 9759 break; 9760 case KF_ARG_PTR_TO_CALLBACK: 9761 meta->subprogno = reg->subprogno; 9762 break; 9763 } 9764 } 9765 9766 if (is_kfunc_release(meta) && !meta->release_regno) { 9767 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 9768 func_name); 9769 return -EINVAL; 9770 } 9771 9772 return 0; 9773 } 9774 9775 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9776 int *insn_idx_p) 9777 { 9778 const struct btf_type *t, *func, *func_proto, *ptr_type; 9779 u32 i, nargs, func_id, ptr_type_id, release_ref_obj_id; 9780 struct bpf_reg_state *regs = cur_regs(env); 9781 const char *func_name, *ptr_type_name; 9782 bool sleepable, rcu_lock, rcu_unlock; 9783 struct bpf_kfunc_call_arg_meta meta; 9784 int err, insn_idx = *insn_idx_p; 9785 const struct btf_param *args; 9786 const struct btf_type *ret_t; 9787 struct btf *desc_btf; 9788 u32 *kfunc_flags; 9789 9790 /* skip for now, but return error when we find this in fixup_kfunc_call */ 9791 if (!insn->imm) 9792 return 0; 9793 9794 desc_btf = find_kfunc_desc_btf(env, insn->off); 9795 if (IS_ERR(desc_btf)) 9796 return PTR_ERR(desc_btf); 9797 9798 func_id = insn->imm; 9799 func = btf_type_by_id(desc_btf, func_id); 9800 func_name = btf_name_by_offset(desc_btf, func->name_off); 9801 func_proto = btf_type_by_id(desc_btf, func->type); 9802 9803 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 9804 if (!kfunc_flags) { 9805 verbose(env, "calling kernel function %s is not allowed\n", 9806 func_name); 9807 return -EACCES; 9808 } 9809 9810 /* Prepare kfunc call metadata */ 9811 memset(&meta, 0, sizeof(meta)); 9812 meta.btf = desc_btf; 9813 meta.func_id = func_id; 9814 meta.kfunc_flags = *kfunc_flags; 9815 meta.func_proto = func_proto; 9816 meta.func_name = func_name; 9817 9818 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 9819 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 9820 return -EACCES; 9821 } 9822 9823 sleepable = is_kfunc_sleepable(&meta); 9824 if (sleepable && !env->prog->aux->sleepable) { 9825 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 9826 return -EACCES; 9827 } 9828 9829 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 9830 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 9831 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) { 9832 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name); 9833 return -EACCES; 9834 } 9835 9836 if (env->cur_state->active_rcu_lock) { 9837 struct bpf_func_state *state; 9838 struct bpf_reg_state *reg; 9839 9840 if (rcu_lock) { 9841 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 9842 return -EINVAL; 9843 } else if (rcu_unlock) { 9844 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9845 if (reg->type & MEM_RCU) { 9846 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 9847 reg->type |= PTR_UNTRUSTED; 9848 } 9849 })); 9850 env->cur_state->active_rcu_lock = false; 9851 } else if (sleepable) { 9852 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 9853 return -EACCES; 9854 } 9855 } else if (rcu_lock) { 9856 env->cur_state->active_rcu_lock = true; 9857 } else if (rcu_unlock) { 9858 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 9859 return -EINVAL; 9860 } 9861 9862 /* Check the arguments */ 9863 err = check_kfunc_args(env, &meta); 9864 if (err < 0) 9865 return err; 9866 /* In case of release function, we get register number of refcounted 9867 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 9868 */ 9869 if (meta.release_regno) { 9870 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 9871 if (err) { 9872 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9873 func_name, func_id); 9874 return err; 9875 } 9876 } 9877 9878 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] || 9879 meta.func_id == special_kfunc_list[KF_bpf_list_push_back] || 9880 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 9881 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 9882 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 9883 if (err) { 9884 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 9885 func_name, func_id); 9886 return err; 9887 } 9888 9889 err = release_reference(env, release_ref_obj_id); 9890 if (err) { 9891 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9892 func_name, func_id); 9893 return err; 9894 } 9895 } 9896 9897 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 9898 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9899 set_rbtree_add_callback_state); 9900 if (err) { 9901 verbose(env, "kfunc %s#%d failed callback verification\n", 9902 func_name, func_id); 9903 return err; 9904 } 9905 } 9906 9907 for (i = 0; i < CALLER_SAVED_REGS; i++) 9908 mark_reg_not_init(env, regs, caller_saved[i]); 9909 9910 /* Check return type */ 9911 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 9912 9913 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 9914 /* Only exception is bpf_obj_new_impl */ 9915 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 9916 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 9917 return -EINVAL; 9918 } 9919 } 9920 9921 if (btf_type_is_scalar(t)) { 9922 mark_reg_unknown(env, regs, BPF_REG_0); 9923 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 9924 } else if (btf_type_is_ptr(t)) { 9925 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 9926 9927 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 9928 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 9929 struct btf *ret_btf; 9930 u32 ret_btf_id; 9931 9932 if (unlikely(!bpf_global_ma_set)) 9933 return -ENOMEM; 9934 9935 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 9936 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 9937 return -EINVAL; 9938 } 9939 9940 ret_btf = env->prog->aux->btf; 9941 ret_btf_id = meta.arg_constant.value; 9942 9943 /* This may be NULL due to user not supplying a BTF */ 9944 if (!ret_btf) { 9945 verbose(env, "bpf_obj_new requires prog BTF\n"); 9946 return -EINVAL; 9947 } 9948 9949 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 9950 if (!ret_t || !__btf_type_is_struct(ret_t)) { 9951 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 9952 return -EINVAL; 9953 } 9954 9955 mark_reg_known_zero(env, regs, BPF_REG_0); 9956 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9957 regs[BPF_REG_0].btf = ret_btf; 9958 regs[BPF_REG_0].btf_id = ret_btf_id; 9959 9960 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 9961 env->insn_aux_data[insn_idx].kptr_struct_meta = 9962 btf_find_struct_meta(ret_btf, ret_btf_id); 9963 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9964 env->insn_aux_data[insn_idx].kptr_struct_meta = 9965 btf_find_struct_meta(meta.arg_obj_drop.btf, 9966 meta.arg_obj_drop.btf_id); 9967 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 9968 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 9969 struct btf_field *field = meta.arg_list_head.field; 9970 9971 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 9972 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9973 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 9974 struct btf_field *field = meta.arg_rbtree_root.field; 9975 9976 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 9977 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9978 mark_reg_known_zero(env, regs, BPF_REG_0); 9979 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 9980 regs[BPF_REG_0].btf = desc_btf; 9981 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9982 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 9983 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 9984 if (!ret_t || !btf_type_is_struct(ret_t)) { 9985 verbose(env, 9986 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 9987 return -EINVAL; 9988 } 9989 9990 mark_reg_known_zero(env, regs, BPF_REG_0); 9991 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 9992 regs[BPF_REG_0].btf = desc_btf; 9993 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 9994 } else { 9995 verbose(env, "kernel function %s unhandled dynamic return type\n", 9996 meta.func_name); 9997 return -EFAULT; 9998 } 9999 } else if (!__btf_type_is_struct(ptr_type)) { 10000 if (!meta.r0_size) { 10001 ptr_type_name = btf_name_by_offset(desc_btf, 10002 ptr_type->name_off); 10003 verbose(env, 10004 "kernel function %s returns pointer type %s %s is not supported\n", 10005 func_name, 10006 btf_type_str(ptr_type), 10007 ptr_type_name); 10008 return -EINVAL; 10009 } 10010 10011 mark_reg_known_zero(env, regs, BPF_REG_0); 10012 regs[BPF_REG_0].type = PTR_TO_MEM; 10013 regs[BPF_REG_0].mem_size = meta.r0_size; 10014 10015 if (meta.r0_rdonly) 10016 regs[BPF_REG_0].type |= MEM_RDONLY; 10017 10018 /* Ensures we don't access the memory after a release_reference() */ 10019 if (meta.ref_obj_id) 10020 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10021 } else { 10022 mark_reg_known_zero(env, regs, BPF_REG_0); 10023 regs[BPF_REG_0].btf = desc_btf; 10024 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 10025 regs[BPF_REG_0].btf_id = ptr_type_id; 10026 } 10027 10028 if (is_kfunc_ret_null(&meta)) { 10029 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 10030 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 10031 regs[BPF_REG_0].id = ++env->id_gen; 10032 } 10033 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 10034 if (is_kfunc_acquire(&meta)) { 10035 int id = acquire_reference_state(env, insn_idx); 10036 10037 if (id < 0) 10038 return id; 10039 if (is_kfunc_ret_null(&meta)) 10040 regs[BPF_REG_0].id = id; 10041 regs[BPF_REG_0].ref_obj_id = id; 10042 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 10043 ref_set_non_owning(env, ®s[BPF_REG_0]); 10044 } 10045 10046 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove]) 10047 invalidate_non_owning_refs(env); 10048 10049 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 10050 regs[BPF_REG_0].id = ++env->id_gen; 10051 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 10052 10053 nargs = btf_type_vlen(func_proto); 10054 args = (const struct btf_param *)(func_proto + 1); 10055 for (i = 0; i < nargs; i++) { 10056 u32 regno = i + 1; 10057 10058 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 10059 if (btf_type_is_ptr(t)) 10060 mark_btf_func_reg_size(env, regno, sizeof(void *)); 10061 else 10062 /* scalar. ensured by btf_check_kfunc_arg_match() */ 10063 mark_btf_func_reg_size(env, regno, t->size); 10064 } 10065 10066 return 0; 10067 } 10068 10069 static bool signed_add_overflows(s64 a, s64 b) 10070 { 10071 /* Do the add in u64, where overflow is well-defined */ 10072 s64 res = (s64)((u64)a + (u64)b); 10073 10074 if (b < 0) 10075 return res > a; 10076 return res < a; 10077 } 10078 10079 static bool signed_add32_overflows(s32 a, s32 b) 10080 { 10081 /* Do the add in u32, where overflow is well-defined */ 10082 s32 res = (s32)((u32)a + (u32)b); 10083 10084 if (b < 0) 10085 return res > a; 10086 return res < a; 10087 } 10088 10089 static bool signed_sub_overflows(s64 a, s64 b) 10090 { 10091 /* Do the sub in u64, where overflow is well-defined */ 10092 s64 res = (s64)((u64)a - (u64)b); 10093 10094 if (b < 0) 10095 return res < a; 10096 return res > a; 10097 } 10098 10099 static bool signed_sub32_overflows(s32 a, s32 b) 10100 { 10101 /* Do the sub in u32, where overflow is well-defined */ 10102 s32 res = (s32)((u32)a - (u32)b); 10103 10104 if (b < 0) 10105 return res < a; 10106 return res > a; 10107 } 10108 10109 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 10110 const struct bpf_reg_state *reg, 10111 enum bpf_reg_type type) 10112 { 10113 bool known = tnum_is_const(reg->var_off); 10114 s64 val = reg->var_off.value; 10115 s64 smin = reg->smin_value; 10116 10117 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 10118 verbose(env, "math between %s pointer and %lld is not allowed\n", 10119 reg_type_str(env, type), val); 10120 return false; 10121 } 10122 10123 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 10124 verbose(env, "%s pointer offset %d is not allowed\n", 10125 reg_type_str(env, type), reg->off); 10126 return false; 10127 } 10128 10129 if (smin == S64_MIN) { 10130 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 10131 reg_type_str(env, type)); 10132 return false; 10133 } 10134 10135 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 10136 verbose(env, "value %lld makes %s pointer be out of bounds\n", 10137 smin, reg_type_str(env, type)); 10138 return false; 10139 } 10140 10141 return true; 10142 } 10143 10144 enum { 10145 REASON_BOUNDS = -1, 10146 REASON_TYPE = -2, 10147 REASON_PATHS = -3, 10148 REASON_LIMIT = -4, 10149 REASON_STACK = -5, 10150 }; 10151 10152 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 10153 u32 *alu_limit, bool mask_to_left) 10154 { 10155 u32 max = 0, ptr_limit = 0; 10156 10157 switch (ptr_reg->type) { 10158 case PTR_TO_STACK: 10159 /* Offset 0 is out-of-bounds, but acceptable start for the 10160 * left direction, see BPF_REG_FP. Also, unknown scalar 10161 * offset where we would need to deal with min/max bounds is 10162 * currently prohibited for unprivileged. 10163 */ 10164 max = MAX_BPF_STACK + mask_to_left; 10165 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 10166 break; 10167 case PTR_TO_MAP_VALUE: 10168 max = ptr_reg->map_ptr->value_size; 10169 ptr_limit = (mask_to_left ? 10170 ptr_reg->smin_value : 10171 ptr_reg->umax_value) + ptr_reg->off; 10172 break; 10173 default: 10174 return REASON_TYPE; 10175 } 10176 10177 if (ptr_limit >= max) 10178 return REASON_LIMIT; 10179 *alu_limit = ptr_limit; 10180 return 0; 10181 } 10182 10183 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 10184 const struct bpf_insn *insn) 10185 { 10186 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 10187 } 10188 10189 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 10190 u32 alu_state, u32 alu_limit) 10191 { 10192 /* If we arrived here from different branches with different 10193 * state or limits to sanitize, then this won't work. 10194 */ 10195 if (aux->alu_state && 10196 (aux->alu_state != alu_state || 10197 aux->alu_limit != alu_limit)) 10198 return REASON_PATHS; 10199 10200 /* Corresponding fixup done in do_misc_fixups(). */ 10201 aux->alu_state = alu_state; 10202 aux->alu_limit = alu_limit; 10203 return 0; 10204 } 10205 10206 static int sanitize_val_alu(struct bpf_verifier_env *env, 10207 struct bpf_insn *insn) 10208 { 10209 struct bpf_insn_aux_data *aux = cur_aux(env); 10210 10211 if (can_skip_alu_sanitation(env, insn)) 10212 return 0; 10213 10214 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 10215 } 10216 10217 static bool sanitize_needed(u8 opcode) 10218 { 10219 return opcode == BPF_ADD || opcode == BPF_SUB; 10220 } 10221 10222 struct bpf_sanitize_info { 10223 struct bpf_insn_aux_data aux; 10224 bool mask_to_left; 10225 }; 10226 10227 static struct bpf_verifier_state * 10228 sanitize_speculative_path(struct bpf_verifier_env *env, 10229 const struct bpf_insn *insn, 10230 u32 next_idx, u32 curr_idx) 10231 { 10232 struct bpf_verifier_state *branch; 10233 struct bpf_reg_state *regs; 10234 10235 branch = push_stack(env, next_idx, curr_idx, true); 10236 if (branch && insn) { 10237 regs = branch->frame[branch->curframe]->regs; 10238 if (BPF_SRC(insn->code) == BPF_K) { 10239 mark_reg_unknown(env, regs, insn->dst_reg); 10240 } else if (BPF_SRC(insn->code) == BPF_X) { 10241 mark_reg_unknown(env, regs, insn->dst_reg); 10242 mark_reg_unknown(env, regs, insn->src_reg); 10243 } 10244 } 10245 return branch; 10246 } 10247 10248 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 10249 struct bpf_insn *insn, 10250 const struct bpf_reg_state *ptr_reg, 10251 const struct bpf_reg_state *off_reg, 10252 struct bpf_reg_state *dst_reg, 10253 struct bpf_sanitize_info *info, 10254 const bool commit_window) 10255 { 10256 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 10257 struct bpf_verifier_state *vstate = env->cur_state; 10258 bool off_is_imm = tnum_is_const(off_reg->var_off); 10259 bool off_is_neg = off_reg->smin_value < 0; 10260 bool ptr_is_dst_reg = ptr_reg == dst_reg; 10261 u8 opcode = BPF_OP(insn->code); 10262 u32 alu_state, alu_limit; 10263 struct bpf_reg_state tmp; 10264 bool ret; 10265 int err; 10266 10267 if (can_skip_alu_sanitation(env, insn)) 10268 return 0; 10269 10270 /* We already marked aux for masking from non-speculative 10271 * paths, thus we got here in the first place. We only care 10272 * to explore bad access from here. 10273 */ 10274 if (vstate->speculative) 10275 goto do_sim; 10276 10277 if (!commit_window) { 10278 if (!tnum_is_const(off_reg->var_off) && 10279 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 10280 return REASON_BOUNDS; 10281 10282 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 10283 (opcode == BPF_SUB && !off_is_neg); 10284 } 10285 10286 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 10287 if (err < 0) 10288 return err; 10289 10290 if (commit_window) { 10291 /* In commit phase we narrow the masking window based on 10292 * the observed pointer move after the simulated operation. 10293 */ 10294 alu_state = info->aux.alu_state; 10295 alu_limit = abs(info->aux.alu_limit - alu_limit); 10296 } else { 10297 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 10298 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 10299 alu_state |= ptr_is_dst_reg ? 10300 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 10301 10302 /* Limit pruning on unknown scalars to enable deep search for 10303 * potential masking differences from other program paths. 10304 */ 10305 if (!off_is_imm) 10306 env->explore_alu_limits = true; 10307 } 10308 10309 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 10310 if (err < 0) 10311 return err; 10312 do_sim: 10313 /* If we're in commit phase, we're done here given we already 10314 * pushed the truncated dst_reg into the speculative verification 10315 * stack. 10316 * 10317 * Also, when register is a known constant, we rewrite register-based 10318 * operation to immediate-based, and thus do not need masking (and as 10319 * a consequence, do not need to simulate the zero-truncation either). 10320 */ 10321 if (commit_window || off_is_imm) 10322 return 0; 10323 10324 /* Simulate and find potential out-of-bounds access under 10325 * speculative execution from truncation as a result of 10326 * masking when off was not within expected range. If off 10327 * sits in dst, then we temporarily need to move ptr there 10328 * to simulate dst (== 0) +/-= ptr. Needed, for example, 10329 * for cases where we use K-based arithmetic in one direction 10330 * and truncated reg-based in the other in order to explore 10331 * bad access. 10332 */ 10333 if (!ptr_is_dst_reg) { 10334 tmp = *dst_reg; 10335 copy_register_state(dst_reg, ptr_reg); 10336 } 10337 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 10338 env->insn_idx); 10339 if (!ptr_is_dst_reg && ret) 10340 *dst_reg = tmp; 10341 return !ret ? REASON_STACK : 0; 10342 } 10343 10344 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 10345 { 10346 struct bpf_verifier_state *vstate = env->cur_state; 10347 10348 /* If we simulate paths under speculation, we don't update the 10349 * insn as 'seen' such that when we verify unreachable paths in 10350 * the non-speculative domain, sanitize_dead_code() can still 10351 * rewrite/sanitize them. 10352 */ 10353 if (!vstate->speculative) 10354 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10355 } 10356 10357 static int sanitize_err(struct bpf_verifier_env *env, 10358 const struct bpf_insn *insn, int reason, 10359 const struct bpf_reg_state *off_reg, 10360 const struct bpf_reg_state *dst_reg) 10361 { 10362 static const char *err = "pointer arithmetic with it prohibited for !root"; 10363 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 10364 u32 dst = insn->dst_reg, src = insn->src_reg; 10365 10366 switch (reason) { 10367 case REASON_BOUNDS: 10368 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 10369 off_reg == dst_reg ? dst : src, err); 10370 break; 10371 case REASON_TYPE: 10372 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 10373 off_reg == dst_reg ? src : dst, err); 10374 break; 10375 case REASON_PATHS: 10376 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 10377 dst, op, err); 10378 break; 10379 case REASON_LIMIT: 10380 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 10381 dst, op, err); 10382 break; 10383 case REASON_STACK: 10384 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 10385 dst, err); 10386 break; 10387 default: 10388 verbose(env, "verifier internal error: unknown reason (%d)\n", 10389 reason); 10390 break; 10391 } 10392 10393 return -EACCES; 10394 } 10395 10396 /* check that stack access falls within stack limits and that 'reg' doesn't 10397 * have a variable offset. 10398 * 10399 * Variable offset is prohibited for unprivileged mode for simplicity since it 10400 * requires corresponding support in Spectre masking for stack ALU. See also 10401 * retrieve_ptr_limit(). 10402 * 10403 * 10404 * 'off' includes 'reg->off'. 10405 */ 10406 static int check_stack_access_for_ptr_arithmetic( 10407 struct bpf_verifier_env *env, 10408 int regno, 10409 const struct bpf_reg_state *reg, 10410 int off) 10411 { 10412 if (!tnum_is_const(reg->var_off)) { 10413 char tn_buf[48]; 10414 10415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 10416 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 10417 regno, tn_buf, off); 10418 return -EACCES; 10419 } 10420 10421 if (off >= 0 || off < -MAX_BPF_STACK) { 10422 verbose(env, "R%d stack pointer arithmetic goes out of range, " 10423 "prohibited for !root; off=%d\n", regno, off); 10424 return -EACCES; 10425 } 10426 10427 return 0; 10428 } 10429 10430 static int sanitize_check_bounds(struct bpf_verifier_env *env, 10431 const struct bpf_insn *insn, 10432 const struct bpf_reg_state *dst_reg) 10433 { 10434 u32 dst = insn->dst_reg; 10435 10436 /* For unprivileged we require that resulting offset must be in bounds 10437 * in order to be able to sanitize access later on. 10438 */ 10439 if (env->bypass_spec_v1) 10440 return 0; 10441 10442 switch (dst_reg->type) { 10443 case PTR_TO_STACK: 10444 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 10445 dst_reg->off + dst_reg->var_off.value)) 10446 return -EACCES; 10447 break; 10448 case PTR_TO_MAP_VALUE: 10449 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 10450 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 10451 "prohibited for !root\n", dst); 10452 return -EACCES; 10453 } 10454 break; 10455 default: 10456 break; 10457 } 10458 10459 return 0; 10460 } 10461 10462 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 10463 * Caller should also handle BPF_MOV case separately. 10464 * If we return -EACCES, caller may want to try again treating pointer as a 10465 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 10466 */ 10467 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 10468 struct bpf_insn *insn, 10469 const struct bpf_reg_state *ptr_reg, 10470 const struct bpf_reg_state *off_reg) 10471 { 10472 struct bpf_verifier_state *vstate = env->cur_state; 10473 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10474 struct bpf_reg_state *regs = state->regs, *dst_reg; 10475 bool known = tnum_is_const(off_reg->var_off); 10476 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 10477 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 10478 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 10479 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 10480 struct bpf_sanitize_info info = {}; 10481 u8 opcode = BPF_OP(insn->code); 10482 u32 dst = insn->dst_reg; 10483 int ret; 10484 10485 dst_reg = ®s[dst]; 10486 10487 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 10488 smin_val > smax_val || umin_val > umax_val) { 10489 /* Taint dst register if offset had invalid bounds derived from 10490 * e.g. dead branches. 10491 */ 10492 __mark_reg_unknown(env, dst_reg); 10493 return 0; 10494 } 10495 10496 if (BPF_CLASS(insn->code) != BPF_ALU64) { 10497 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 10498 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10499 __mark_reg_unknown(env, dst_reg); 10500 return 0; 10501 } 10502 10503 verbose(env, 10504 "R%d 32-bit pointer arithmetic prohibited\n", 10505 dst); 10506 return -EACCES; 10507 } 10508 10509 if (ptr_reg->type & PTR_MAYBE_NULL) { 10510 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 10511 dst, reg_type_str(env, ptr_reg->type)); 10512 return -EACCES; 10513 } 10514 10515 switch (base_type(ptr_reg->type)) { 10516 case CONST_PTR_TO_MAP: 10517 /* smin_val represents the known value */ 10518 if (known && smin_val == 0 && opcode == BPF_ADD) 10519 break; 10520 fallthrough; 10521 case PTR_TO_PACKET_END: 10522 case PTR_TO_SOCKET: 10523 case PTR_TO_SOCK_COMMON: 10524 case PTR_TO_TCP_SOCK: 10525 case PTR_TO_XDP_SOCK: 10526 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 10527 dst, reg_type_str(env, ptr_reg->type)); 10528 return -EACCES; 10529 default: 10530 break; 10531 } 10532 10533 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 10534 * The id may be overwritten later if we create a new variable offset. 10535 */ 10536 dst_reg->type = ptr_reg->type; 10537 dst_reg->id = ptr_reg->id; 10538 10539 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 10540 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 10541 return -EINVAL; 10542 10543 /* pointer types do not carry 32-bit bounds at the moment. */ 10544 __mark_reg32_unbounded(dst_reg); 10545 10546 if (sanitize_needed(opcode)) { 10547 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 10548 &info, false); 10549 if (ret < 0) 10550 return sanitize_err(env, insn, ret, off_reg, dst_reg); 10551 } 10552 10553 switch (opcode) { 10554 case BPF_ADD: 10555 /* We can take a fixed offset as long as it doesn't overflow 10556 * the s32 'off' field 10557 */ 10558 if (known && (ptr_reg->off + smin_val == 10559 (s64)(s32)(ptr_reg->off + smin_val))) { 10560 /* pointer += K. Accumulate it into fixed offset */ 10561 dst_reg->smin_value = smin_ptr; 10562 dst_reg->smax_value = smax_ptr; 10563 dst_reg->umin_value = umin_ptr; 10564 dst_reg->umax_value = umax_ptr; 10565 dst_reg->var_off = ptr_reg->var_off; 10566 dst_reg->off = ptr_reg->off + smin_val; 10567 dst_reg->raw = ptr_reg->raw; 10568 break; 10569 } 10570 /* A new variable offset is created. Note that off_reg->off 10571 * == 0, since it's a scalar. 10572 * dst_reg gets the pointer type and since some positive 10573 * integer value was added to the pointer, give it a new 'id' 10574 * if it's a PTR_TO_PACKET. 10575 * this creates a new 'base' pointer, off_reg (variable) gets 10576 * added into the variable offset, and we copy the fixed offset 10577 * from ptr_reg. 10578 */ 10579 if (signed_add_overflows(smin_ptr, smin_val) || 10580 signed_add_overflows(smax_ptr, smax_val)) { 10581 dst_reg->smin_value = S64_MIN; 10582 dst_reg->smax_value = S64_MAX; 10583 } else { 10584 dst_reg->smin_value = smin_ptr + smin_val; 10585 dst_reg->smax_value = smax_ptr + smax_val; 10586 } 10587 if (umin_ptr + umin_val < umin_ptr || 10588 umax_ptr + umax_val < umax_ptr) { 10589 dst_reg->umin_value = 0; 10590 dst_reg->umax_value = U64_MAX; 10591 } else { 10592 dst_reg->umin_value = umin_ptr + umin_val; 10593 dst_reg->umax_value = umax_ptr + umax_val; 10594 } 10595 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 10596 dst_reg->off = ptr_reg->off; 10597 dst_reg->raw = ptr_reg->raw; 10598 if (reg_is_pkt_pointer(ptr_reg)) { 10599 dst_reg->id = ++env->id_gen; 10600 /* something was added to pkt_ptr, set range to zero */ 10601 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 10602 } 10603 break; 10604 case BPF_SUB: 10605 if (dst_reg == off_reg) { 10606 /* scalar -= pointer. Creates an unknown scalar */ 10607 verbose(env, "R%d tried to subtract pointer from scalar\n", 10608 dst); 10609 return -EACCES; 10610 } 10611 /* We don't allow subtraction from FP, because (according to 10612 * test_verifier.c test "invalid fp arithmetic", JITs might not 10613 * be able to deal with it. 10614 */ 10615 if (ptr_reg->type == PTR_TO_STACK) { 10616 verbose(env, "R%d subtraction from stack pointer prohibited\n", 10617 dst); 10618 return -EACCES; 10619 } 10620 if (known && (ptr_reg->off - smin_val == 10621 (s64)(s32)(ptr_reg->off - smin_val))) { 10622 /* pointer -= K. Subtract it from fixed offset */ 10623 dst_reg->smin_value = smin_ptr; 10624 dst_reg->smax_value = smax_ptr; 10625 dst_reg->umin_value = umin_ptr; 10626 dst_reg->umax_value = umax_ptr; 10627 dst_reg->var_off = ptr_reg->var_off; 10628 dst_reg->id = ptr_reg->id; 10629 dst_reg->off = ptr_reg->off - smin_val; 10630 dst_reg->raw = ptr_reg->raw; 10631 break; 10632 } 10633 /* A new variable offset is created. If the subtrahend is known 10634 * nonnegative, then any reg->range we had before is still good. 10635 */ 10636 if (signed_sub_overflows(smin_ptr, smax_val) || 10637 signed_sub_overflows(smax_ptr, smin_val)) { 10638 /* Overflow possible, we know nothing */ 10639 dst_reg->smin_value = S64_MIN; 10640 dst_reg->smax_value = S64_MAX; 10641 } else { 10642 dst_reg->smin_value = smin_ptr - smax_val; 10643 dst_reg->smax_value = smax_ptr - smin_val; 10644 } 10645 if (umin_ptr < umax_val) { 10646 /* Overflow possible, we know nothing */ 10647 dst_reg->umin_value = 0; 10648 dst_reg->umax_value = U64_MAX; 10649 } else { 10650 /* Cannot overflow (as long as bounds are consistent) */ 10651 dst_reg->umin_value = umin_ptr - umax_val; 10652 dst_reg->umax_value = umax_ptr - umin_val; 10653 } 10654 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 10655 dst_reg->off = ptr_reg->off; 10656 dst_reg->raw = ptr_reg->raw; 10657 if (reg_is_pkt_pointer(ptr_reg)) { 10658 dst_reg->id = ++env->id_gen; 10659 /* something was added to pkt_ptr, set range to zero */ 10660 if (smin_val < 0) 10661 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 10662 } 10663 break; 10664 case BPF_AND: 10665 case BPF_OR: 10666 case BPF_XOR: 10667 /* bitwise ops on pointers are troublesome, prohibit. */ 10668 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 10669 dst, bpf_alu_string[opcode >> 4]); 10670 return -EACCES; 10671 default: 10672 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 10673 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 10674 dst, bpf_alu_string[opcode >> 4]); 10675 return -EACCES; 10676 } 10677 10678 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 10679 return -EINVAL; 10680 reg_bounds_sync(dst_reg); 10681 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 10682 return -EACCES; 10683 if (sanitize_needed(opcode)) { 10684 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 10685 &info, true); 10686 if (ret < 0) 10687 return sanitize_err(env, insn, ret, off_reg, dst_reg); 10688 } 10689 10690 return 0; 10691 } 10692 10693 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 10694 struct bpf_reg_state *src_reg) 10695 { 10696 s32 smin_val = src_reg->s32_min_value; 10697 s32 smax_val = src_reg->s32_max_value; 10698 u32 umin_val = src_reg->u32_min_value; 10699 u32 umax_val = src_reg->u32_max_value; 10700 10701 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 10702 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 10703 dst_reg->s32_min_value = S32_MIN; 10704 dst_reg->s32_max_value = S32_MAX; 10705 } else { 10706 dst_reg->s32_min_value += smin_val; 10707 dst_reg->s32_max_value += smax_val; 10708 } 10709 if (dst_reg->u32_min_value + umin_val < umin_val || 10710 dst_reg->u32_max_value + umax_val < umax_val) { 10711 dst_reg->u32_min_value = 0; 10712 dst_reg->u32_max_value = U32_MAX; 10713 } else { 10714 dst_reg->u32_min_value += umin_val; 10715 dst_reg->u32_max_value += umax_val; 10716 } 10717 } 10718 10719 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 10720 struct bpf_reg_state *src_reg) 10721 { 10722 s64 smin_val = src_reg->smin_value; 10723 s64 smax_val = src_reg->smax_value; 10724 u64 umin_val = src_reg->umin_value; 10725 u64 umax_val = src_reg->umax_value; 10726 10727 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 10728 signed_add_overflows(dst_reg->smax_value, smax_val)) { 10729 dst_reg->smin_value = S64_MIN; 10730 dst_reg->smax_value = S64_MAX; 10731 } else { 10732 dst_reg->smin_value += smin_val; 10733 dst_reg->smax_value += smax_val; 10734 } 10735 if (dst_reg->umin_value + umin_val < umin_val || 10736 dst_reg->umax_value + umax_val < umax_val) { 10737 dst_reg->umin_value = 0; 10738 dst_reg->umax_value = U64_MAX; 10739 } else { 10740 dst_reg->umin_value += umin_val; 10741 dst_reg->umax_value += umax_val; 10742 } 10743 } 10744 10745 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 10746 struct bpf_reg_state *src_reg) 10747 { 10748 s32 smin_val = src_reg->s32_min_value; 10749 s32 smax_val = src_reg->s32_max_value; 10750 u32 umin_val = src_reg->u32_min_value; 10751 u32 umax_val = src_reg->u32_max_value; 10752 10753 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 10754 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 10755 /* Overflow possible, we know nothing */ 10756 dst_reg->s32_min_value = S32_MIN; 10757 dst_reg->s32_max_value = S32_MAX; 10758 } else { 10759 dst_reg->s32_min_value -= smax_val; 10760 dst_reg->s32_max_value -= smin_val; 10761 } 10762 if (dst_reg->u32_min_value < umax_val) { 10763 /* Overflow possible, we know nothing */ 10764 dst_reg->u32_min_value = 0; 10765 dst_reg->u32_max_value = U32_MAX; 10766 } else { 10767 /* Cannot overflow (as long as bounds are consistent) */ 10768 dst_reg->u32_min_value -= umax_val; 10769 dst_reg->u32_max_value -= umin_val; 10770 } 10771 } 10772 10773 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 10774 struct bpf_reg_state *src_reg) 10775 { 10776 s64 smin_val = src_reg->smin_value; 10777 s64 smax_val = src_reg->smax_value; 10778 u64 umin_val = src_reg->umin_value; 10779 u64 umax_val = src_reg->umax_value; 10780 10781 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 10782 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 10783 /* Overflow possible, we know nothing */ 10784 dst_reg->smin_value = S64_MIN; 10785 dst_reg->smax_value = S64_MAX; 10786 } else { 10787 dst_reg->smin_value -= smax_val; 10788 dst_reg->smax_value -= smin_val; 10789 } 10790 if (dst_reg->umin_value < umax_val) { 10791 /* Overflow possible, we know nothing */ 10792 dst_reg->umin_value = 0; 10793 dst_reg->umax_value = U64_MAX; 10794 } else { 10795 /* Cannot overflow (as long as bounds are consistent) */ 10796 dst_reg->umin_value -= umax_val; 10797 dst_reg->umax_value -= umin_val; 10798 } 10799 } 10800 10801 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 10802 struct bpf_reg_state *src_reg) 10803 { 10804 s32 smin_val = src_reg->s32_min_value; 10805 u32 umin_val = src_reg->u32_min_value; 10806 u32 umax_val = src_reg->u32_max_value; 10807 10808 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 10809 /* Ain't nobody got time to multiply that sign */ 10810 __mark_reg32_unbounded(dst_reg); 10811 return; 10812 } 10813 /* Both values are positive, so we can work with unsigned and 10814 * copy the result to signed (unless it exceeds S32_MAX). 10815 */ 10816 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 10817 /* Potential overflow, we know nothing */ 10818 __mark_reg32_unbounded(dst_reg); 10819 return; 10820 } 10821 dst_reg->u32_min_value *= umin_val; 10822 dst_reg->u32_max_value *= umax_val; 10823 if (dst_reg->u32_max_value > S32_MAX) { 10824 /* Overflow possible, we know nothing */ 10825 dst_reg->s32_min_value = S32_MIN; 10826 dst_reg->s32_max_value = S32_MAX; 10827 } else { 10828 dst_reg->s32_min_value = dst_reg->u32_min_value; 10829 dst_reg->s32_max_value = dst_reg->u32_max_value; 10830 } 10831 } 10832 10833 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 10834 struct bpf_reg_state *src_reg) 10835 { 10836 s64 smin_val = src_reg->smin_value; 10837 u64 umin_val = src_reg->umin_value; 10838 u64 umax_val = src_reg->umax_value; 10839 10840 if (smin_val < 0 || dst_reg->smin_value < 0) { 10841 /* Ain't nobody got time to multiply that sign */ 10842 __mark_reg64_unbounded(dst_reg); 10843 return; 10844 } 10845 /* Both values are positive, so we can work with unsigned and 10846 * copy the result to signed (unless it exceeds S64_MAX). 10847 */ 10848 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 10849 /* Potential overflow, we know nothing */ 10850 __mark_reg64_unbounded(dst_reg); 10851 return; 10852 } 10853 dst_reg->umin_value *= umin_val; 10854 dst_reg->umax_value *= umax_val; 10855 if (dst_reg->umax_value > S64_MAX) { 10856 /* Overflow possible, we know nothing */ 10857 dst_reg->smin_value = S64_MIN; 10858 dst_reg->smax_value = S64_MAX; 10859 } else { 10860 dst_reg->smin_value = dst_reg->umin_value; 10861 dst_reg->smax_value = dst_reg->umax_value; 10862 } 10863 } 10864 10865 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 10866 struct bpf_reg_state *src_reg) 10867 { 10868 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10869 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10870 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10871 s32 smin_val = src_reg->s32_min_value; 10872 u32 umax_val = src_reg->u32_max_value; 10873 10874 if (src_known && dst_known) { 10875 __mark_reg32_known(dst_reg, var32_off.value); 10876 return; 10877 } 10878 10879 /* We get our minimum from the var_off, since that's inherently 10880 * bitwise. Our maximum is the minimum of the operands' maxima. 10881 */ 10882 dst_reg->u32_min_value = var32_off.value; 10883 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 10884 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10885 /* Lose signed bounds when ANDing negative numbers, 10886 * ain't nobody got time for that. 10887 */ 10888 dst_reg->s32_min_value = S32_MIN; 10889 dst_reg->s32_max_value = S32_MAX; 10890 } else { 10891 /* ANDing two positives gives a positive, so safe to 10892 * cast result into s64. 10893 */ 10894 dst_reg->s32_min_value = dst_reg->u32_min_value; 10895 dst_reg->s32_max_value = dst_reg->u32_max_value; 10896 } 10897 } 10898 10899 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 10900 struct bpf_reg_state *src_reg) 10901 { 10902 bool src_known = tnum_is_const(src_reg->var_off); 10903 bool dst_known = tnum_is_const(dst_reg->var_off); 10904 s64 smin_val = src_reg->smin_value; 10905 u64 umax_val = src_reg->umax_value; 10906 10907 if (src_known && dst_known) { 10908 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10909 return; 10910 } 10911 10912 /* We get our minimum from the var_off, since that's inherently 10913 * bitwise. Our maximum is the minimum of the operands' maxima. 10914 */ 10915 dst_reg->umin_value = dst_reg->var_off.value; 10916 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 10917 if (dst_reg->smin_value < 0 || smin_val < 0) { 10918 /* Lose signed bounds when ANDing negative numbers, 10919 * ain't nobody got time for that. 10920 */ 10921 dst_reg->smin_value = S64_MIN; 10922 dst_reg->smax_value = S64_MAX; 10923 } else { 10924 /* ANDing two positives gives a positive, so safe to 10925 * cast result into s64. 10926 */ 10927 dst_reg->smin_value = dst_reg->umin_value; 10928 dst_reg->smax_value = dst_reg->umax_value; 10929 } 10930 /* We may learn something more from the var_off */ 10931 __update_reg_bounds(dst_reg); 10932 } 10933 10934 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 10935 struct bpf_reg_state *src_reg) 10936 { 10937 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10938 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10939 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10940 s32 smin_val = src_reg->s32_min_value; 10941 u32 umin_val = src_reg->u32_min_value; 10942 10943 if (src_known && dst_known) { 10944 __mark_reg32_known(dst_reg, var32_off.value); 10945 return; 10946 } 10947 10948 /* We get our maximum from the var_off, and our minimum is the 10949 * maximum of the operands' minima 10950 */ 10951 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 10952 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10953 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10954 /* Lose signed bounds when ORing negative numbers, 10955 * ain't nobody got time for that. 10956 */ 10957 dst_reg->s32_min_value = S32_MIN; 10958 dst_reg->s32_max_value = S32_MAX; 10959 } else { 10960 /* ORing two positives gives a positive, so safe to 10961 * cast result into s64. 10962 */ 10963 dst_reg->s32_min_value = dst_reg->u32_min_value; 10964 dst_reg->s32_max_value = dst_reg->u32_max_value; 10965 } 10966 } 10967 10968 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 10969 struct bpf_reg_state *src_reg) 10970 { 10971 bool src_known = tnum_is_const(src_reg->var_off); 10972 bool dst_known = tnum_is_const(dst_reg->var_off); 10973 s64 smin_val = src_reg->smin_value; 10974 u64 umin_val = src_reg->umin_value; 10975 10976 if (src_known && dst_known) { 10977 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10978 return; 10979 } 10980 10981 /* We get our maximum from the var_off, and our minimum is the 10982 * maximum of the operands' minima 10983 */ 10984 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 10985 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10986 if (dst_reg->smin_value < 0 || smin_val < 0) { 10987 /* Lose signed bounds when ORing negative numbers, 10988 * ain't nobody got time for that. 10989 */ 10990 dst_reg->smin_value = S64_MIN; 10991 dst_reg->smax_value = S64_MAX; 10992 } else { 10993 /* ORing two positives gives a positive, so safe to 10994 * cast result into s64. 10995 */ 10996 dst_reg->smin_value = dst_reg->umin_value; 10997 dst_reg->smax_value = dst_reg->umax_value; 10998 } 10999 /* We may learn something more from the var_off */ 11000 __update_reg_bounds(dst_reg); 11001 } 11002 11003 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 11004 struct bpf_reg_state *src_reg) 11005 { 11006 bool src_known = tnum_subreg_is_const(src_reg->var_off); 11007 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 11008 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 11009 s32 smin_val = src_reg->s32_min_value; 11010 11011 if (src_known && dst_known) { 11012 __mark_reg32_known(dst_reg, var32_off.value); 11013 return; 11014 } 11015 11016 /* We get both minimum and maximum from the var32_off. */ 11017 dst_reg->u32_min_value = var32_off.value; 11018 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 11019 11020 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 11021 /* XORing two positive sign numbers gives a positive, 11022 * so safe to cast u32 result into s32. 11023 */ 11024 dst_reg->s32_min_value = dst_reg->u32_min_value; 11025 dst_reg->s32_max_value = dst_reg->u32_max_value; 11026 } else { 11027 dst_reg->s32_min_value = S32_MIN; 11028 dst_reg->s32_max_value = S32_MAX; 11029 } 11030 } 11031 11032 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 11033 struct bpf_reg_state *src_reg) 11034 { 11035 bool src_known = tnum_is_const(src_reg->var_off); 11036 bool dst_known = tnum_is_const(dst_reg->var_off); 11037 s64 smin_val = src_reg->smin_value; 11038 11039 if (src_known && dst_known) { 11040 /* dst_reg->var_off.value has been updated earlier */ 11041 __mark_reg_known(dst_reg, dst_reg->var_off.value); 11042 return; 11043 } 11044 11045 /* We get both minimum and maximum from the var_off. */ 11046 dst_reg->umin_value = dst_reg->var_off.value; 11047 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 11048 11049 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 11050 /* XORing two positive sign numbers gives a positive, 11051 * so safe to cast u64 result into s64. 11052 */ 11053 dst_reg->smin_value = dst_reg->umin_value; 11054 dst_reg->smax_value = dst_reg->umax_value; 11055 } else { 11056 dst_reg->smin_value = S64_MIN; 11057 dst_reg->smax_value = S64_MAX; 11058 } 11059 11060 __update_reg_bounds(dst_reg); 11061 } 11062 11063 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11064 u64 umin_val, u64 umax_val) 11065 { 11066 /* We lose all sign bit information (except what we can pick 11067 * up from var_off) 11068 */ 11069 dst_reg->s32_min_value = S32_MIN; 11070 dst_reg->s32_max_value = S32_MAX; 11071 /* If we might shift our top bit out, then we know nothing */ 11072 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 11073 dst_reg->u32_min_value = 0; 11074 dst_reg->u32_max_value = U32_MAX; 11075 } else { 11076 dst_reg->u32_min_value <<= umin_val; 11077 dst_reg->u32_max_value <<= umax_val; 11078 } 11079 } 11080 11081 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11082 struct bpf_reg_state *src_reg) 11083 { 11084 u32 umax_val = src_reg->u32_max_value; 11085 u32 umin_val = src_reg->u32_min_value; 11086 /* u32 alu operation will zext upper bits */ 11087 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11088 11089 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11090 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 11091 /* Not required but being careful mark reg64 bounds as unknown so 11092 * that we are forced to pick them up from tnum and zext later and 11093 * if some path skips this step we are still safe. 11094 */ 11095 __mark_reg64_unbounded(dst_reg); 11096 __update_reg32_bounds(dst_reg); 11097 } 11098 11099 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 11100 u64 umin_val, u64 umax_val) 11101 { 11102 /* Special case <<32 because it is a common compiler pattern to sign 11103 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 11104 * positive we know this shift will also be positive so we can track 11105 * bounds correctly. Otherwise we lose all sign bit information except 11106 * what we can pick up from var_off. Perhaps we can generalize this 11107 * later to shifts of any length. 11108 */ 11109 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 11110 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 11111 else 11112 dst_reg->smax_value = S64_MAX; 11113 11114 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 11115 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 11116 else 11117 dst_reg->smin_value = S64_MIN; 11118 11119 /* If we might shift our top bit out, then we know nothing */ 11120 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 11121 dst_reg->umin_value = 0; 11122 dst_reg->umax_value = U64_MAX; 11123 } else { 11124 dst_reg->umin_value <<= umin_val; 11125 dst_reg->umax_value <<= umax_val; 11126 } 11127 } 11128 11129 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 11130 struct bpf_reg_state *src_reg) 11131 { 11132 u64 umax_val = src_reg->umax_value; 11133 u64 umin_val = src_reg->umin_value; 11134 11135 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 11136 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 11137 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11138 11139 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 11140 /* We may learn something more from the var_off */ 11141 __update_reg_bounds(dst_reg); 11142 } 11143 11144 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 11145 struct bpf_reg_state *src_reg) 11146 { 11147 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11148 u32 umax_val = src_reg->u32_max_value; 11149 u32 umin_val = src_reg->u32_min_value; 11150 11151 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11152 * be negative, then either: 11153 * 1) src_reg might be zero, so the sign bit of the result is 11154 * unknown, so we lose our signed bounds 11155 * 2) it's known negative, thus the unsigned bounds capture the 11156 * signed bounds 11157 * 3) the signed bounds cross zero, so they tell us nothing 11158 * about the result 11159 * If the value in dst_reg is known nonnegative, then again the 11160 * unsigned bounds capture the signed bounds. 11161 * Thus, in all cases it suffices to blow away our signed bounds 11162 * and rely on inferring new ones from the unsigned bounds and 11163 * var_off of the result. 11164 */ 11165 dst_reg->s32_min_value = S32_MIN; 11166 dst_reg->s32_max_value = S32_MAX; 11167 11168 dst_reg->var_off = tnum_rshift(subreg, umin_val); 11169 dst_reg->u32_min_value >>= umax_val; 11170 dst_reg->u32_max_value >>= umin_val; 11171 11172 __mark_reg64_unbounded(dst_reg); 11173 __update_reg32_bounds(dst_reg); 11174 } 11175 11176 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 11177 struct bpf_reg_state *src_reg) 11178 { 11179 u64 umax_val = src_reg->umax_value; 11180 u64 umin_val = src_reg->umin_value; 11181 11182 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11183 * be negative, then either: 11184 * 1) src_reg might be zero, so the sign bit of the result is 11185 * unknown, so we lose our signed bounds 11186 * 2) it's known negative, thus the unsigned bounds capture the 11187 * signed bounds 11188 * 3) the signed bounds cross zero, so they tell us nothing 11189 * about the result 11190 * If the value in dst_reg is known nonnegative, then again the 11191 * unsigned bounds capture the signed bounds. 11192 * Thus, in all cases it suffices to blow away our signed bounds 11193 * and rely on inferring new ones from the unsigned bounds and 11194 * var_off of the result. 11195 */ 11196 dst_reg->smin_value = S64_MIN; 11197 dst_reg->smax_value = S64_MAX; 11198 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 11199 dst_reg->umin_value >>= umax_val; 11200 dst_reg->umax_value >>= umin_val; 11201 11202 /* Its not easy to operate on alu32 bounds here because it depends 11203 * on bits being shifted in. Take easy way out and mark unbounded 11204 * so we can recalculate later from tnum. 11205 */ 11206 __mark_reg32_unbounded(dst_reg); 11207 __update_reg_bounds(dst_reg); 11208 } 11209 11210 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 11211 struct bpf_reg_state *src_reg) 11212 { 11213 u64 umin_val = src_reg->u32_min_value; 11214 11215 /* Upon reaching here, src_known is true and 11216 * umax_val is equal to umin_val. 11217 */ 11218 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 11219 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 11220 11221 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 11222 11223 /* blow away the dst_reg umin_value/umax_value and rely on 11224 * dst_reg var_off to refine the result. 11225 */ 11226 dst_reg->u32_min_value = 0; 11227 dst_reg->u32_max_value = U32_MAX; 11228 11229 __mark_reg64_unbounded(dst_reg); 11230 __update_reg32_bounds(dst_reg); 11231 } 11232 11233 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 11234 struct bpf_reg_state *src_reg) 11235 { 11236 u64 umin_val = src_reg->umin_value; 11237 11238 /* Upon reaching here, src_known is true and umax_val is equal 11239 * to umin_val. 11240 */ 11241 dst_reg->smin_value >>= umin_val; 11242 dst_reg->smax_value >>= umin_val; 11243 11244 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 11245 11246 /* blow away the dst_reg umin_value/umax_value and rely on 11247 * dst_reg var_off to refine the result. 11248 */ 11249 dst_reg->umin_value = 0; 11250 dst_reg->umax_value = U64_MAX; 11251 11252 /* Its not easy to operate on alu32 bounds here because it depends 11253 * on bits being shifted in from upper 32-bits. Take easy way out 11254 * and mark unbounded so we can recalculate later from tnum. 11255 */ 11256 __mark_reg32_unbounded(dst_reg); 11257 __update_reg_bounds(dst_reg); 11258 } 11259 11260 /* WARNING: This function does calculations on 64-bit values, but the actual 11261 * execution may occur on 32-bit values. Therefore, things like bitshifts 11262 * need extra checks in the 32-bit case. 11263 */ 11264 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 11265 struct bpf_insn *insn, 11266 struct bpf_reg_state *dst_reg, 11267 struct bpf_reg_state src_reg) 11268 { 11269 struct bpf_reg_state *regs = cur_regs(env); 11270 u8 opcode = BPF_OP(insn->code); 11271 bool src_known; 11272 s64 smin_val, smax_val; 11273 u64 umin_val, umax_val; 11274 s32 s32_min_val, s32_max_val; 11275 u32 u32_min_val, u32_max_val; 11276 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 11277 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 11278 int ret; 11279 11280 smin_val = src_reg.smin_value; 11281 smax_val = src_reg.smax_value; 11282 umin_val = src_reg.umin_value; 11283 umax_val = src_reg.umax_value; 11284 11285 s32_min_val = src_reg.s32_min_value; 11286 s32_max_val = src_reg.s32_max_value; 11287 u32_min_val = src_reg.u32_min_value; 11288 u32_max_val = src_reg.u32_max_value; 11289 11290 if (alu32) { 11291 src_known = tnum_subreg_is_const(src_reg.var_off); 11292 if ((src_known && 11293 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 11294 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 11295 /* Taint dst register if offset had invalid bounds 11296 * derived from e.g. dead branches. 11297 */ 11298 __mark_reg_unknown(env, dst_reg); 11299 return 0; 11300 } 11301 } else { 11302 src_known = tnum_is_const(src_reg.var_off); 11303 if ((src_known && 11304 (smin_val != smax_val || umin_val != umax_val)) || 11305 smin_val > smax_val || umin_val > umax_val) { 11306 /* Taint dst register if offset had invalid bounds 11307 * derived from e.g. dead branches. 11308 */ 11309 __mark_reg_unknown(env, dst_reg); 11310 return 0; 11311 } 11312 } 11313 11314 if (!src_known && 11315 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 11316 __mark_reg_unknown(env, dst_reg); 11317 return 0; 11318 } 11319 11320 if (sanitize_needed(opcode)) { 11321 ret = sanitize_val_alu(env, insn); 11322 if (ret < 0) 11323 return sanitize_err(env, insn, ret, NULL, NULL); 11324 } 11325 11326 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 11327 * There are two classes of instructions: The first class we track both 11328 * alu32 and alu64 sign/unsigned bounds independently this provides the 11329 * greatest amount of precision when alu operations are mixed with jmp32 11330 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 11331 * and BPF_OR. This is possible because these ops have fairly easy to 11332 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 11333 * See alu32 verifier tests for examples. The second class of 11334 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 11335 * with regards to tracking sign/unsigned bounds because the bits may 11336 * cross subreg boundaries in the alu64 case. When this happens we mark 11337 * the reg unbounded in the subreg bound space and use the resulting 11338 * tnum to calculate an approximation of the sign/unsigned bounds. 11339 */ 11340 switch (opcode) { 11341 case BPF_ADD: 11342 scalar32_min_max_add(dst_reg, &src_reg); 11343 scalar_min_max_add(dst_reg, &src_reg); 11344 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 11345 break; 11346 case BPF_SUB: 11347 scalar32_min_max_sub(dst_reg, &src_reg); 11348 scalar_min_max_sub(dst_reg, &src_reg); 11349 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 11350 break; 11351 case BPF_MUL: 11352 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 11353 scalar32_min_max_mul(dst_reg, &src_reg); 11354 scalar_min_max_mul(dst_reg, &src_reg); 11355 break; 11356 case BPF_AND: 11357 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 11358 scalar32_min_max_and(dst_reg, &src_reg); 11359 scalar_min_max_and(dst_reg, &src_reg); 11360 break; 11361 case BPF_OR: 11362 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 11363 scalar32_min_max_or(dst_reg, &src_reg); 11364 scalar_min_max_or(dst_reg, &src_reg); 11365 break; 11366 case BPF_XOR: 11367 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 11368 scalar32_min_max_xor(dst_reg, &src_reg); 11369 scalar_min_max_xor(dst_reg, &src_reg); 11370 break; 11371 case BPF_LSH: 11372 if (umax_val >= insn_bitness) { 11373 /* Shifts greater than 31 or 63 are undefined. 11374 * This includes shifts by a negative number. 11375 */ 11376 mark_reg_unknown(env, regs, insn->dst_reg); 11377 break; 11378 } 11379 if (alu32) 11380 scalar32_min_max_lsh(dst_reg, &src_reg); 11381 else 11382 scalar_min_max_lsh(dst_reg, &src_reg); 11383 break; 11384 case BPF_RSH: 11385 if (umax_val >= insn_bitness) { 11386 /* Shifts greater than 31 or 63 are undefined. 11387 * This includes shifts by a negative number. 11388 */ 11389 mark_reg_unknown(env, regs, insn->dst_reg); 11390 break; 11391 } 11392 if (alu32) 11393 scalar32_min_max_rsh(dst_reg, &src_reg); 11394 else 11395 scalar_min_max_rsh(dst_reg, &src_reg); 11396 break; 11397 case BPF_ARSH: 11398 if (umax_val >= insn_bitness) { 11399 /* Shifts greater than 31 or 63 are undefined. 11400 * This includes shifts by a negative number. 11401 */ 11402 mark_reg_unknown(env, regs, insn->dst_reg); 11403 break; 11404 } 11405 if (alu32) 11406 scalar32_min_max_arsh(dst_reg, &src_reg); 11407 else 11408 scalar_min_max_arsh(dst_reg, &src_reg); 11409 break; 11410 default: 11411 mark_reg_unknown(env, regs, insn->dst_reg); 11412 break; 11413 } 11414 11415 /* ALU32 ops are zero extended into 64bit register */ 11416 if (alu32) 11417 zext_32_to_64(dst_reg); 11418 reg_bounds_sync(dst_reg); 11419 return 0; 11420 } 11421 11422 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 11423 * and var_off. 11424 */ 11425 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 11426 struct bpf_insn *insn) 11427 { 11428 struct bpf_verifier_state *vstate = env->cur_state; 11429 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11430 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 11431 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 11432 u8 opcode = BPF_OP(insn->code); 11433 int err; 11434 11435 dst_reg = ®s[insn->dst_reg]; 11436 src_reg = NULL; 11437 if (dst_reg->type != SCALAR_VALUE) 11438 ptr_reg = dst_reg; 11439 else 11440 /* Make sure ID is cleared otherwise dst_reg min/max could be 11441 * incorrectly propagated into other registers by find_equal_scalars() 11442 */ 11443 dst_reg->id = 0; 11444 if (BPF_SRC(insn->code) == BPF_X) { 11445 src_reg = ®s[insn->src_reg]; 11446 if (src_reg->type != SCALAR_VALUE) { 11447 if (dst_reg->type != SCALAR_VALUE) { 11448 /* Combining two pointers by any ALU op yields 11449 * an arbitrary scalar. Disallow all math except 11450 * pointer subtraction 11451 */ 11452 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11453 mark_reg_unknown(env, regs, insn->dst_reg); 11454 return 0; 11455 } 11456 verbose(env, "R%d pointer %s pointer prohibited\n", 11457 insn->dst_reg, 11458 bpf_alu_string[opcode >> 4]); 11459 return -EACCES; 11460 } else { 11461 /* scalar += pointer 11462 * This is legal, but we have to reverse our 11463 * src/dest handling in computing the range 11464 */ 11465 err = mark_chain_precision(env, insn->dst_reg); 11466 if (err) 11467 return err; 11468 return adjust_ptr_min_max_vals(env, insn, 11469 src_reg, dst_reg); 11470 } 11471 } else if (ptr_reg) { 11472 /* pointer += scalar */ 11473 err = mark_chain_precision(env, insn->src_reg); 11474 if (err) 11475 return err; 11476 return adjust_ptr_min_max_vals(env, insn, 11477 dst_reg, src_reg); 11478 } else if (dst_reg->precise) { 11479 /* if dst_reg is precise, src_reg should be precise as well */ 11480 err = mark_chain_precision(env, insn->src_reg); 11481 if (err) 11482 return err; 11483 } 11484 } else { 11485 /* Pretend the src is a reg with a known value, since we only 11486 * need to be able to read from this state. 11487 */ 11488 off_reg.type = SCALAR_VALUE; 11489 __mark_reg_known(&off_reg, insn->imm); 11490 src_reg = &off_reg; 11491 if (ptr_reg) /* pointer += K */ 11492 return adjust_ptr_min_max_vals(env, insn, 11493 ptr_reg, src_reg); 11494 } 11495 11496 /* Got here implies adding two SCALAR_VALUEs */ 11497 if (WARN_ON_ONCE(ptr_reg)) { 11498 print_verifier_state(env, state, true); 11499 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 11500 return -EINVAL; 11501 } 11502 if (WARN_ON(!src_reg)) { 11503 print_verifier_state(env, state, true); 11504 verbose(env, "verifier internal error: no src_reg\n"); 11505 return -EINVAL; 11506 } 11507 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 11508 } 11509 11510 /* check validity of 32-bit and 64-bit arithmetic operations */ 11511 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 11512 { 11513 struct bpf_reg_state *regs = cur_regs(env); 11514 u8 opcode = BPF_OP(insn->code); 11515 int err; 11516 11517 if (opcode == BPF_END || opcode == BPF_NEG) { 11518 if (opcode == BPF_NEG) { 11519 if (BPF_SRC(insn->code) != BPF_K || 11520 insn->src_reg != BPF_REG_0 || 11521 insn->off != 0 || insn->imm != 0) { 11522 verbose(env, "BPF_NEG uses reserved fields\n"); 11523 return -EINVAL; 11524 } 11525 } else { 11526 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 11527 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 11528 BPF_CLASS(insn->code) == BPF_ALU64) { 11529 verbose(env, "BPF_END uses reserved fields\n"); 11530 return -EINVAL; 11531 } 11532 } 11533 11534 /* check src operand */ 11535 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11536 if (err) 11537 return err; 11538 11539 if (is_pointer_value(env, insn->dst_reg)) { 11540 verbose(env, "R%d pointer arithmetic prohibited\n", 11541 insn->dst_reg); 11542 return -EACCES; 11543 } 11544 11545 /* check dest operand */ 11546 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11547 if (err) 11548 return err; 11549 11550 } else if (opcode == BPF_MOV) { 11551 11552 if (BPF_SRC(insn->code) == BPF_X) { 11553 if (insn->imm != 0 || insn->off != 0) { 11554 verbose(env, "BPF_MOV uses reserved fields\n"); 11555 return -EINVAL; 11556 } 11557 11558 /* check src operand */ 11559 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11560 if (err) 11561 return err; 11562 } else { 11563 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11564 verbose(env, "BPF_MOV uses reserved fields\n"); 11565 return -EINVAL; 11566 } 11567 } 11568 11569 /* check dest operand, mark as required later */ 11570 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11571 if (err) 11572 return err; 11573 11574 if (BPF_SRC(insn->code) == BPF_X) { 11575 struct bpf_reg_state *src_reg = regs + insn->src_reg; 11576 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 11577 11578 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11579 /* case: R1 = R2 11580 * copy register state to dest reg 11581 */ 11582 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 11583 /* Assign src and dst registers the same ID 11584 * that will be used by find_equal_scalars() 11585 * to propagate min/max range. 11586 */ 11587 src_reg->id = ++env->id_gen; 11588 copy_register_state(dst_reg, src_reg); 11589 dst_reg->live |= REG_LIVE_WRITTEN; 11590 dst_reg->subreg_def = DEF_NOT_SUBREG; 11591 } else { 11592 /* R1 = (u32) R2 */ 11593 if (is_pointer_value(env, insn->src_reg)) { 11594 verbose(env, 11595 "R%d partial copy of pointer\n", 11596 insn->src_reg); 11597 return -EACCES; 11598 } else if (src_reg->type == SCALAR_VALUE) { 11599 copy_register_state(dst_reg, src_reg); 11600 /* Make sure ID is cleared otherwise 11601 * dst_reg min/max could be incorrectly 11602 * propagated into src_reg by find_equal_scalars() 11603 */ 11604 dst_reg->id = 0; 11605 dst_reg->live |= REG_LIVE_WRITTEN; 11606 dst_reg->subreg_def = env->insn_idx + 1; 11607 } else { 11608 mark_reg_unknown(env, regs, 11609 insn->dst_reg); 11610 } 11611 zext_32_to_64(dst_reg); 11612 reg_bounds_sync(dst_reg); 11613 } 11614 } else { 11615 /* case: R = imm 11616 * remember the value we stored into this reg 11617 */ 11618 /* clear any state __mark_reg_known doesn't set */ 11619 mark_reg_unknown(env, regs, insn->dst_reg); 11620 regs[insn->dst_reg].type = SCALAR_VALUE; 11621 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11622 __mark_reg_known(regs + insn->dst_reg, 11623 insn->imm); 11624 } else { 11625 __mark_reg_known(regs + insn->dst_reg, 11626 (u32)insn->imm); 11627 } 11628 } 11629 11630 } else if (opcode > BPF_END) { 11631 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 11632 return -EINVAL; 11633 11634 } else { /* all other ALU ops: and, sub, xor, add, ... */ 11635 11636 if (BPF_SRC(insn->code) == BPF_X) { 11637 if (insn->imm != 0 || insn->off != 0) { 11638 verbose(env, "BPF_ALU uses reserved fields\n"); 11639 return -EINVAL; 11640 } 11641 /* check src1 operand */ 11642 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11643 if (err) 11644 return err; 11645 } else { 11646 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11647 verbose(env, "BPF_ALU uses reserved fields\n"); 11648 return -EINVAL; 11649 } 11650 } 11651 11652 /* check src2 operand */ 11653 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11654 if (err) 11655 return err; 11656 11657 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 11658 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 11659 verbose(env, "div by zero\n"); 11660 return -EINVAL; 11661 } 11662 11663 if ((opcode == BPF_LSH || opcode == BPF_RSH || 11664 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 11665 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 11666 11667 if (insn->imm < 0 || insn->imm >= size) { 11668 verbose(env, "invalid shift %d\n", insn->imm); 11669 return -EINVAL; 11670 } 11671 } 11672 11673 /* check dest operand */ 11674 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11675 if (err) 11676 return err; 11677 11678 return adjust_reg_min_max_vals(env, insn); 11679 } 11680 11681 return 0; 11682 } 11683 11684 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 11685 struct bpf_reg_state *dst_reg, 11686 enum bpf_reg_type type, 11687 bool range_right_open) 11688 { 11689 struct bpf_func_state *state; 11690 struct bpf_reg_state *reg; 11691 int new_range; 11692 11693 if (dst_reg->off < 0 || 11694 (dst_reg->off == 0 && range_right_open)) 11695 /* This doesn't give us any range */ 11696 return; 11697 11698 if (dst_reg->umax_value > MAX_PACKET_OFF || 11699 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 11700 /* Risk of overflow. For instance, ptr + (1<<63) may be less 11701 * than pkt_end, but that's because it's also less than pkt. 11702 */ 11703 return; 11704 11705 new_range = dst_reg->off; 11706 if (range_right_open) 11707 new_range++; 11708 11709 /* Examples for register markings: 11710 * 11711 * pkt_data in dst register: 11712 * 11713 * r2 = r3; 11714 * r2 += 8; 11715 * if (r2 > pkt_end) goto <handle exception> 11716 * <access okay> 11717 * 11718 * r2 = r3; 11719 * r2 += 8; 11720 * if (r2 < pkt_end) goto <access okay> 11721 * <handle exception> 11722 * 11723 * Where: 11724 * r2 == dst_reg, pkt_end == src_reg 11725 * r2=pkt(id=n,off=8,r=0) 11726 * r3=pkt(id=n,off=0,r=0) 11727 * 11728 * pkt_data in src register: 11729 * 11730 * r2 = r3; 11731 * r2 += 8; 11732 * if (pkt_end >= r2) goto <access okay> 11733 * <handle exception> 11734 * 11735 * r2 = r3; 11736 * r2 += 8; 11737 * if (pkt_end <= r2) goto <handle exception> 11738 * <access okay> 11739 * 11740 * Where: 11741 * pkt_end == dst_reg, r2 == src_reg 11742 * r2=pkt(id=n,off=8,r=0) 11743 * r3=pkt(id=n,off=0,r=0) 11744 * 11745 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 11746 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 11747 * and [r3, r3 + 8-1) respectively is safe to access depending on 11748 * the check. 11749 */ 11750 11751 /* If our ids match, then we must have the same max_value. And we 11752 * don't care about the other reg's fixed offset, since if it's too big 11753 * the range won't allow anything. 11754 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 11755 */ 11756 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11757 if (reg->type == type && reg->id == dst_reg->id) 11758 /* keep the maximum range already checked */ 11759 reg->range = max(reg->range, new_range); 11760 })); 11761 } 11762 11763 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 11764 { 11765 struct tnum subreg = tnum_subreg(reg->var_off); 11766 s32 sval = (s32)val; 11767 11768 switch (opcode) { 11769 case BPF_JEQ: 11770 if (tnum_is_const(subreg)) 11771 return !!tnum_equals_const(subreg, val); 11772 break; 11773 case BPF_JNE: 11774 if (tnum_is_const(subreg)) 11775 return !tnum_equals_const(subreg, val); 11776 break; 11777 case BPF_JSET: 11778 if ((~subreg.mask & subreg.value) & val) 11779 return 1; 11780 if (!((subreg.mask | subreg.value) & val)) 11781 return 0; 11782 break; 11783 case BPF_JGT: 11784 if (reg->u32_min_value > val) 11785 return 1; 11786 else if (reg->u32_max_value <= val) 11787 return 0; 11788 break; 11789 case BPF_JSGT: 11790 if (reg->s32_min_value > sval) 11791 return 1; 11792 else if (reg->s32_max_value <= sval) 11793 return 0; 11794 break; 11795 case BPF_JLT: 11796 if (reg->u32_max_value < val) 11797 return 1; 11798 else if (reg->u32_min_value >= val) 11799 return 0; 11800 break; 11801 case BPF_JSLT: 11802 if (reg->s32_max_value < sval) 11803 return 1; 11804 else if (reg->s32_min_value >= sval) 11805 return 0; 11806 break; 11807 case BPF_JGE: 11808 if (reg->u32_min_value >= val) 11809 return 1; 11810 else if (reg->u32_max_value < val) 11811 return 0; 11812 break; 11813 case BPF_JSGE: 11814 if (reg->s32_min_value >= sval) 11815 return 1; 11816 else if (reg->s32_max_value < sval) 11817 return 0; 11818 break; 11819 case BPF_JLE: 11820 if (reg->u32_max_value <= val) 11821 return 1; 11822 else if (reg->u32_min_value > val) 11823 return 0; 11824 break; 11825 case BPF_JSLE: 11826 if (reg->s32_max_value <= sval) 11827 return 1; 11828 else if (reg->s32_min_value > sval) 11829 return 0; 11830 break; 11831 } 11832 11833 return -1; 11834 } 11835 11836 11837 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 11838 { 11839 s64 sval = (s64)val; 11840 11841 switch (opcode) { 11842 case BPF_JEQ: 11843 if (tnum_is_const(reg->var_off)) 11844 return !!tnum_equals_const(reg->var_off, val); 11845 break; 11846 case BPF_JNE: 11847 if (tnum_is_const(reg->var_off)) 11848 return !tnum_equals_const(reg->var_off, val); 11849 break; 11850 case BPF_JSET: 11851 if ((~reg->var_off.mask & reg->var_off.value) & val) 11852 return 1; 11853 if (!((reg->var_off.mask | reg->var_off.value) & val)) 11854 return 0; 11855 break; 11856 case BPF_JGT: 11857 if (reg->umin_value > val) 11858 return 1; 11859 else if (reg->umax_value <= val) 11860 return 0; 11861 break; 11862 case BPF_JSGT: 11863 if (reg->smin_value > sval) 11864 return 1; 11865 else if (reg->smax_value <= sval) 11866 return 0; 11867 break; 11868 case BPF_JLT: 11869 if (reg->umax_value < val) 11870 return 1; 11871 else if (reg->umin_value >= val) 11872 return 0; 11873 break; 11874 case BPF_JSLT: 11875 if (reg->smax_value < sval) 11876 return 1; 11877 else if (reg->smin_value >= sval) 11878 return 0; 11879 break; 11880 case BPF_JGE: 11881 if (reg->umin_value >= val) 11882 return 1; 11883 else if (reg->umax_value < val) 11884 return 0; 11885 break; 11886 case BPF_JSGE: 11887 if (reg->smin_value >= sval) 11888 return 1; 11889 else if (reg->smax_value < sval) 11890 return 0; 11891 break; 11892 case BPF_JLE: 11893 if (reg->umax_value <= val) 11894 return 1; 11895 else if (reg->umin_value > val) 11896 return 0; 11897 break; 11898 case BPF_JSLE: 11899 if (reg->smax_value <= sval) 11900 return 1; 11901 else if (reg->smin_value > sval) 11902 return 0; 11903 break; 11904 } 11905 11906 return -1; 11907 } 11908 11909 /* compute branch direction of the expression "if (reg opcode val) goto target;" 11910 * and return: 11911 * 1 - branch will be taken and "goto target" will be executed 11912 * 0 - branch will not be taken and fall-through to next insn 11913 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 11914 * range [0,10] 11915 */ 11916 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 11917 bool is_jmp32) 11918 { 11919 if (__is_pointer_value(false, reg)) { 11920 if (!reg_type_not_null(reg->type)) 11921 return -1; 11922 11923 /* If pointer is valid tests against zero will fail so we can 11924 * use this to direct branch taken. 11925 */ 11926 if (val != 0) 11927 return -1; 11928 11929 switch (opcode) { 11930 case BPF_JEQ: 11931 return 0; 11932 case BPF_JNE: 11933 return 1; 11934 default: 11935 return -1; 11936 } 11937 } 11938 11939 if (is_jmp32) 11940 return is_branch32_taken(reg, val, opcode); 11941 return is_branch64_taken(reg, val, opcode); 11942 } 11943 11944 static int flip_opcode(u32 opcode) 11945 { 11946 /* How can we transform "a <op> b" into "b <op> a"? */ 11947 static const u8 opcode_flip[16] = { 11948 /* these stay the same */ 11949 [BPF_JEQ >> 4] = BPF_JEQ, 11950 [BPF_JNE >> 4] = BPF_JNE, 11951 [BPF_JSET >> 4] = BPF_JSET, 11952 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 11953 [BPF_JGE >> 4] = BPF_JLE, 11954 [BPF_JGT >> 4] = BPF_JLT, 11955 [BPF_JLE >> 4] = BPF_JGE, 11956 [BPF_JLT >> 4] = BPF_JGT, 11957 [BPF_JSGE >> 4] = BPF_JSLE, 11958 [BPF_JSGT >> 4] = BPF_JSLT, 11959 [BPF_JSLE >> 4] = BPF_JSGE, 11960 [BPF_JSLT >> 4] = BPF_JSGT 11961 }; 11962 return opcode_flip[opcode >> 4]; 11963 } 11964 11965 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 11966 struct bpf_reg_state *src_reg, 11967 u8 opcode) 11968 { 11969 struct bpf_reg_state *pkt; 11970 11971 if (src_reg->type == PTR_TO_PACKET_END) { 11972 pkt = dst_reg; 11973 } else if (dst_reg->type == PTR_TO_PACKET_END) { 11974 pkt = src_reg; 11975 opcode = flip_opcode(opcode); 11976 } else { 11977 return -1; 11978 } 11979 11980 if (pkt->range >= 0) 11981 return -1; 11982 11983 switch (opcode) { 11984 case BPF_JLE: 11985 /* pkt <= pkt_end */ 11986 fallthrough; 11987 case BPF_JGT: 11988 /* pkt > pkt_end */ 11989 if (pkt->range == BEYOND_PKT_END) 11990 /* pkt has at last one extra byte beyond pkt_end */ 11991 return opcode == BPF_JGT; 11992 break; 11993 case BPF_JLT: 11994 /* pkt < pkt_end */ 11995 fallthrough; 11996 case BPF_JGE: 11997 /* pkt >= pkt_end */ 11998 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 11999 return opcode == BPF_JGE; 12000 break; 12001 } 12002 return -1; 12003 } 12004 12005 /* Adjusts the register min/max values in the case that the dst_reg is the 12006 * variable register that we are working on, and src_reg is a constant or we're 12007 * simply doing a BPF_K check. 12008 * In JEQ/JNE cases we also adjust the var_off values. 12009 */ 12010 static void reg_set_min_max(struct bpf_reg_state *true_reg, 12011 struct bpf_reg_state *false_reg, 12012 u64 val, u32 val32, 12013 u8 opcode, bool is_jmp32) 12014 { 12015 struct tnum false_32off = tnum_subreg(false_reg->var_off); 12016 struct tnum false_64off = false_reg->var_off; 12017 struct tnum true_32off = tnum_subreg(true_reg->var_off); 12018 struct tnum true_64off = true_reg->var_off; 12019 s64 sval = (s64)val; 12020 s32 sval32 = (s32)val32; 12021 12022 /* If the dst_reg is a pointer, we can't learn anything about its 12023 * variable offset from the compare (unless src_reg were a pointer into 12024 * the same object, but we don't bother with that. 12025 * Since false_reg and true_reg have the same type by construction, we 12026 * only need to check one of them for pointerness. 12027 */ 12028 if (__is_pointer_value(false, false_reg)) 12029 return; 12030 12031 switch (opcode) { 12032 /* JEQ/JNE comparison doesn't change the register equivalence. 12033 * 12034 * r1 = r2; 12035 * if (r1 == 42) goto label; 12036 * ... 12037 * label: // here both r1 and r2 are known to be 42. 12038 * 12039 * Hence when marking register as known preserve it's ID. 12040 */ 12041 case BPF_JEQ: 12042 if (is_jmp32) { 12043 __mark_reg32_known(true_reg, val32); 12044 true_32off = tnum_subreg(true_reg->var_off); 12045 } else { 12046 ___mark_reg_known(true_reg, val); 12047 true_64off = true_reg->var_off; 12048 } 12049 break; 12050 case BPF_JNE: 12051 if (is_jmp32) { 12052 __mark_reg32_known(false_reg, val32); 12053 false_32off = tnum_subreg(false_reg->var_off); 12054 } else { 12055 ___mark_reg_known(false_reg, val); 12056 false_64off = false_reg->var_off; 12057 } 12058 break; 12059 case BPF_JSET: 12060 if (is_jmp32) { 12061 false_32off = tnum_and(false_32off, tnum_const(~val32)); 12062 if (is_power_of_2(val32)) 12063 true_32off = tnum_or(true_32off, 12064 tnum_const(val32)); 12065 } else { 12066 false_64off = tnum_and(false_64off, tnum_const(~val)); 12067 if (is_power_of_2(val)) 12068 true_64off = tnum_or(true_64off, 12069 tnum_const(val)); 12070 } 12071 break; 12072 case BPF_JGE: 12073 case BPF_JGT: 12074 { 12075 if (is_jmp32) { 12076 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 12077 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 12078 12079 false_reg->u32_max_value = min(false_reg->u32_max_value, 12080 false_umax); 12081 true_reg->u32_min_value = max(true_reg->u32_min_value, 12082 true_umin); 12083 } else { 12084 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 12085 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 12086 12087 false_reg->umax_value = min(false_reg->umax_value, false_umax); 12088 true_reg->umin_value = max(true_reg->umin_value, true_umin); 12089 } 12090 break; 12091 } 12092 case BPF_JSGE: 12093 case BPF_JSGT: 12094 { 12095 if (is_jmp32) { 12096 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 12097 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 12098 12099 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 12100 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 12101 } else { 12102 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 12103 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 12104 12105 false_reg->smax_value = min(false_reg->smax_value, false_smax); 12106 true_reg->smin_value = max(true_reg->smin_value, true_smin); 12107 } 12108 break; 12109 } 12110 case BPF_JLE: 12111 case BPF_JLT: 12112 { 12113 if (is_jmp32) { 12114 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 12115 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 12116 12117 false_reg->u32_min_value = max(false_reg->u32_min_value, 12118 false_umin); 12119 true_reg->u32_max_value = min(true_reg->u32_max_value, 12120 true_umax); 12121 } else { 12122 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 12123 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 12124 12125 false_reg->umin_value = max(false_reg->umin_value, false_umin); 12126 true_reg->umax_value = min(true_reg->umax_value, true_umax); 12127 } 12128 break; 12129 } 12130 case BPF_JSLE: 12131 case BPF_JSLT: 12132 { 12133 if (is_jmp32) { 12134 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 12135 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 12136 12137 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 12138 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 12139 } else { 12140 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 12141 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 12142 12143 false_reg->smin_value = max(false_reg->smin_value, false_smin); 12144 true_reg->smax_value = min(true_reg->smax_value, true_smax); 12145 } 12146 break; 12147 } 12148 default: 12149 return; 12150 } 12151 12152 if (is_jmp32) { 12153 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 12154 tnum_subreg(false_32off)); 12155 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 12156 tnum_subreg(true_32off)); 12157 __reg_combine_32_into_64(false_reg); 12158 __reg_combine_32_into_64(true_reg); 12159 } else { 12160 false_reg->var_off = false_64off; 12161 true_reg->var_off = true_64off; 12162 __reg_combine_64_into_32(false_reg); 12163 __reg_combine_64_into_32(true_reg); 12164 } 12165 } 12166 12167 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 12168 * the variable reg. 12169 */ 12170 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 12171 struct bpf_reg_state *false_reg, 12172 u64 val, u32 val32, 12173 u8 opcode, bool is_jmp32) 12174 { 12175 opcode = flip_opcode(opcode); 12176 /* This uses zero as "not present in table"; luckily the zero opcode, 12177 * BPF_JA, can't get here. 12178 */ 12179 if (opcode) 12180 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 12181 } 12182 12183 /* Regs are known to be equal, so intersect their min/max/var_off */ 12184 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 12185 struct bpf_reg_state *dst_reg) 12186 { 12187 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 12188 dst_reg->umin_value); 12189 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 12190 dst_reg->umax_value); 12191 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 12192 dst_reg->smin_value); 12193 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 12194 dst_reg->smax_value); 12195 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 12196 dst_reg->var_off); 12197 reg_bounds_sync(src_reg); 12198 reg_bounds_sync(dst_reg); 12199 } 12200 12201 static void reg_combine_min_max(struct bpf_reg_state *true_src, 12202 struct bpf_reg_state *true_dst, 12203 struct bpf_reg_state *false_src, 12204 struct bpf_reg_state *false_dst, 12205 u8 opcode) 12206 { 12207 switch (opcode) { 12208 case BPF_JEQ: 12209 __reg_combine_min_max(true_src, true_dst); 12210 break; 12211 case BPF_JNE: 12212 __reg_combine_min_max(false_src, false_dst); 12213 break; 12214 } 12215 } 12216 12217 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 12218 struct bpf_reg_state *reg, u32 id, 12219 bool is_null) 12220 { 12221 if (type_may_be_null(reg->type) && reg->id == id && 12222 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 12223 /* Old offset (both fixed and variable parts) should have been 12224 * known-zero, because we don't allow pointer arithmetic on 12225 * pointers that might be NULL. If we see this happening, don't 12226 * convert the register. 12227 * 12228 * But in some cases, some helpers that return local kptrs 12229 * advance offset for the returned pointer. In those cases, it 12230 * is fine to expect to see reg->off. 12231 */ 12232 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 12233 return; 12234 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 12235 WARN_ON_ONCE(reg->off)) 12236 return; 12237 12238 if (is_null) { 12239 reg->type = SCALAR_VALUE; 12240 /* We don't need id and ref_obj_id from this point 12241 * onwards anymore, thus we should better reset it, 12242 * so that state pruning has chances to take effect. 12243 */ 12244 reg->id = 0; 12245 reg->ref_obj_id = 0; 12246 12247 return; 12248 } 12249 12250 mark_ptr_not_null_reg(reg); 12251 12252 if (!reg_may_point_to_spin_lock(reg)) { 12253 /* For not-NULL ptr, reg->ref_obj_id will be reset 12254 * in release_reference(). 12255 * 12256 * reg->id is still used by spin_lock ptr. Other 12257 * than spin_lock ptr type, reg->id can be reset. 12258 */ 12259 reg->id = 0; 12260 } 12261 } 12262 } 12263 12264 /* The logic is similar to find_good_pkt_pointers(), both could eventually 12265 * be folded together at some point. 12266 */ 12267 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 12268 bool is_null) 12269 { 12270 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12271 struct bpf_reg_state *regs = state->regs, *reg; 12272 u32 ref_obj_id = regs[regno].ref_obj_id; 12273 u32 id = regs[regno].id; 12274 12275 if (ref_obj_id && ref_obj_id == id && is_null) 12276 /* regs[regno] is in the " == NULL" branch. 12277 * No one could have freed the reference state before 12278 * doing the NULL check. 12279 */ 12280 WARN_ON_ONCE(release_reference_state(state, id)); 12281 12282 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12283 mark_ptr_or_null_reg(state, reg, id, is_null); 12284 })); 12285 } 12286 12287 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 12288 struct bpf_reg_state *dst_reg, 12289 struct bpf_reg_state *src_reg, 12290 struct bpf_verifier_state *this_branch, 12291 struct bpf_verifier_state *other_branch) 12292 { 12293 if (BPF_SRC(insn->code) != BPF_X) 12294 return false; 12295 12296 /* Pointers are always 64-bit. */ 12297 if (BPF_CLASS(insn->code) == BPF_JMP32) 12298 return false; 12299 12300 switch (BPF_OP(insn->code)) { 12301 case BPF_JGT: 12302 if ((dst_reg->type == PTR_TO_PACKET && 12303 src_reg->type == PTR_TO_PACKET_END) || 12304 (dst_reg->type == PTR_TO_PACKET_META && 12305 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12306 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 12307 find_good_pkt_pointers(this_branch, dst_reg, 12308 dst_reg->type, false); 12309 mark_pkt_end(other_branch, insn->dst_reg, true); 12310 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12311 src_reg->type == PTR_TO_PACKET) || 12312 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12313 src_reg->type == PTR_TO_PACKET_META)) { 12314 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 12315 find_good_pkt_pointers(other_branch, src_reg, 12316 src_reg->type, true); 12317 mark_pkt_end(this_branch, insn->src_reg, false); 12318 } else { 12319 return false; 12320 } 12321 break; 12322 case BPF_JLT: 12323 if ((dst_reg->type == PTR_TO_PACKET && 12324 src_reg->type == PTR_TO_PACKET_END) || 12325 (dst_reg->type == PTR_TO_PACKET_META && 12326 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12327 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 12328 find_good_pkt_pointers(other_branch, dst_reg, 12329 dst_reg->type, true); 12330 mark_pkt_end(this_branch, insn->dst_reg, false); 12331 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12332 src_reg->type == PTR_TO_PACKET) || 12333 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12334 src_reg->type == PTR_TO_PACKET_META)) { 12335 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 12336 find_good_pkt_pointers(this_branch, src_reg, 12337 src_reg->type, false); 12338 mark_pkt_end(other_branch, insn->src_reg, true); 12339 } else { 12340 return false; 12341 } 12342 break; 12343 case BPF_JGE: 12344 if ((dst_reg->type == PTR_TO_PACKET && 12345 src_reg->type == PTR_TO_PACKET_END) || 12346 (dst_reg->type == PTR_TO_PACKET_META && 12347 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12348 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 12349 find_good_pkt_pointers(this_branch, dst_reg, 12350 dst_reg->type, true); 12351 mark_pkt_end(other_branch, insn->dst_reg, false); 12352 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12353 src_reg->type == PTR_TO_PACKET) || 12354 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12355 src_reg->type == PTR_TO_PACKET_META)) { 12356 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 12357 find_good_pkt_pointers(other_branch, src_reg, 12358 src_reg->type, false); 12359 mark_pkt_end(this_branch, insn->src_reg, true); 12360 } else { 12361 return false; 12362 } 12363 break; 12364 case BPF_JLE: 12365 if ((dst_reg->type == PTR_TO_PACKET && 12366 src_reg->type == PTR_TO_PACKET_END) || 12367 (dst_reg->type == PTR_TO_PACKET_META && 12368 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12369 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 12370 find_good_pkt_pointers(other_branch, dst_reg, 12371 dst_reg->type, false); 12372 mark_pkt_end(this_branch, insn->dst_reg, true); 12373 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12374 src_reg->type == PTR_TO_PACKET) || 12375 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12376 src_reg->type == PTR_TO_PACKET_META)) { 12377 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 12378 find_good_pkt_pointers(this_branch, src_reg, 12379 src_reg->type, true); 12380 mark_pkt_end(other_branch, insn->src_reg, false); 12381 } else { 12382 return false; 12383 } 12384 break; 12385 default: 12386 return false; 12387 } 12388 12389 return true; 12390 } 12391 12392 static void find_equal_scalars(struct bpf_verifier_state *vstate, 12393 struct bpf_reg_state *known_reg) 12394 { 12395 struct bpf_func_state *state; 12396 struct bpf_reg_state *reg; 12397 12398 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12399 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 12400 copy_register_state(reg, known_reg); 12401 })); 12402 } 12403 12404 static int check_cond_jmp_op(struct bpf_verifier_env *env, 12405 struct bpf_insn *insn, int *insn_idx) 12406 { 12407 struct bpf_verifier_state *this_branch = env->cur_state; 12408 struct bpf_verifier_state *other_branch; 12409 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 12410 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 12411 struct bpf_reg_state *eq_branch_regs; 12412 u8 opcode = BPF_OP(insn->code); 12413 bool is_jmp32; 12414 int pred = -1; 12415 int err; 12416 12417 /* Only conditional jumps are expected to reach here. */ 12418 if (opcode == BPF_JA || opcode > BPF_JSLE) { 12419 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 12420 return -EINVAL; 12421 } 12422 12423 if (BPF_SRC(insn->code) == BPF_X) { 12424 if (insn->imm != 0) { 12425 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12426 return -EINVAL; 12427 } 12428 12429 /* check src1 operand */ 12430 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12431 if (err) 12432 return err; 12433 12434 if (is_pointer_value(env, insn->src_reg)) { 12435 verbose(env, "R%d pointer comparison prohibited\n", 12436 insn->src_reg); 12437 return -EACCES; 12438 } 12439 src_reg = ®s[insn->src_reg]; 12440 } else { 12441 if (insn->src_reg != BPF_REG_0) { 12442 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12443 return -EINVAL; 12444 } 12445 } 12446 12447 /* check src2 operand */ 12448 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12449 if (err) 12450 return err; 12451 12452 dst_reg = ®s[insn->dst_reg]; 12453 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 12454 12455 if (BPF_SRC(insn->code) == BPF_K) { 12456 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 12457 } else if (src_reg->type == SCALAR_VALUE && 12458 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 12459 pred = is_branch_taken(dst_reg, 12460 tnum_subreg(src_reg->var_off).value, 12461 opcode, 12462 is_jmp32); 12463 } else if (src_reg->type == SCALAR_VALUE && 12464 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 12465 pred = is_branch_taken(dst_reg, 12466 src_reg->var_off.value, 12467 opcode, 12468 is_jmp32); 12469 } else if (reg_is_pkt_pointer_any(dst_reg) && 12470 reg_is_pkt_pointer_any(src_reg) && 12471 !is_jmp32) { 12472 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 12473 } 12474 12475 if (pred >= 0) { 12476 /* If we get here with a dst_reg pointer type it is because 12477 * above is_branch_taken() special cased the 0 comparison. 12478 */ 12479 if (!__is_pointer_value(false, dst_reg)) 12480 err = mark_chain_precision(env, insn->dst_reg); 12481 if (BPF_SRC(insn->code) == BPF_X && !err && 12482 !__is_pointer_value(false, src_reg)) 12483 err = mark_chain_precision(env, insn->src_reg); 12484 if (err) 12485 return err; 12486 } 12487 12488 if (pred == 1) { 12489 /* Only follow the goto, ignore fall-through. If needed, push 12490 * the fall-through branch for simulation under speculative 12491 * execution. 12492 */ 12493 if (!env->bypass_spec_v1 && 12494 !sanitize_speculative_path(env, insn, *insn_idx + 1, 12495 *insn_idx)) 12496 return -EFAULT; 12497 *insn_idx += insn->off; 12498 return 0; 12499 } else if (pred == 0) { 12500 /* Only follow the fall-through branch, since that's where the 12501 * program will go. If needed, push the goto branch for 12502 * simulation under speculative execution. 12503 */ 12504 if (!env->bypass_spec_v1 && 12505 !sanitize_speculative_path(env, insn, 12506 *insn_idx + insn->off + 1, 12507 *insn_idx)) 12508 return -EFAULT; 12509 return 0; 12510 } 12511 12512 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 12513 false); 12514 if (!other_branch) 12515 return -EFAULT; 12516 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 12517 12518 /* detect if we are comparing against a constant value so we can adjust 12519 * our min/max values for our dst register. 12520 * this is only legit if both are scalars (or pointers to the same 12521 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 12522 * because otherwise the different base pointers mean the offsets aren't 12523 * comparable. 12524 */ 12525 if (BPF_SRC(insn->code) == BPF_X) { 12526 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 12527 12528 if (dst_reg->type == SCALAR_VALUE && 12529 src_reg->type == SCALAR_VALUE) { 12530 if (tnum_is_const(src_reg->var_off) || 12531 (is_jmp32 && 12532 tnum_is_const(tnum_subreg(src_reg->var_off)))) 12533 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12534 dst_reg, 12535 src_reg->var_off.value, 12536 tnum_subreg(src_reg->var_off).value, 12537 opcode, is_jmp32); 12538 else if (tnum_is_const(dst_reg->var_off) || 12539 (is_jmp32 && 12540 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 12541 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 12542 src_reg, 12543 dst_reg->var_off.value, 12544 tnum_subreg(dst_reg->var_off).value, 12545 opcode, is_jmp32); 12546 else if (!is_jmp32 && 12547 (opcode == BPF_JEQ || opcode == BPF_JNE)) 12548 /* Comparing for equality, we can combine knowledge */ 12549 reg_combine_min_max(&other_branch_regs[insn->src_reg], 12550 &other_branch_regs[insn->dst_reg], 12551 src_reg, dst_reg, opcode); 12552 if (src_reg->id && 12553 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 12554 find_equal_scalars(this_branch, src_reg); 12555 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 12556 } 12557 12558 } 12559 } else if (dst_reg->type == SCALAR_VALUE) { 12560 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12561 dst_reg, insn->imm, (u32)insn->imm, 12562 opcode, is_jmp32); 12563 } 12564 12565 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 12566 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 12567 find_equal_scalars(this_branch, dst_reg); 12568 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 12569 } 12570 12571 /* if one pointer register is compared to another pointer 12572 * register check if PTR_MAYBE_NULL could be lifted. 12573 * E.g. register A - maybe null 12574 * register B - not null 12575 * for JNE A, B, ... - A is not null in the false branch; 12576 * for JEQ A, B, ... - A is not null in the true branch. 12577 * 12578 * Since PTR_TO_BTF_ID points to a kernel struct that does 12579 * not need to be null checked by the BPF program, i.e., 12580 * could be null even without PTR_MAYBE_NULL marking, so 12581 * only propagate nullness when neither reg is that type. 12582 */ 12583 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 12584 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 12585 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 12586 base_type(src_reg->type) != PTR_TO_BTF_ID && 12587 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 12588 eq_branch_regs = NULL; 12589 switch (opcode) { 12590 case BPF_JEQ: 12591 eq_branch_regs = other_branch_regs; 12592 break; 12593 case BPF_JNE: 12594 eq_branch_regs = regs; 12595 break; 12596 default: 12597 /* do nothing */ 12598 break; 12599 } 12600 if (eq_branch_regs) { 12601 if (type_may_be_null(src_reg->type)) 12602 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 12603 else 12604 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 12605 } 12606 } 12607 12608 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 12609 * NOTE: these optimizations below are related with pointer comparison 12610 * which will never be JMP32. 12611 */ 12612 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 12613 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 12614 type_may_be_null(dst_reg->type)) { 12615 /* Mark all identical registers in each branch as either 12616 * safe or unknown depending R == 0 or R != 0 conditional. 12617 */ 12618 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 12619 opcode == BPF_JNE); 12620 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 12621 opcode == BPF_JEQ); 12622 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 12623 this_branch, other_branch) && 12624 is_pointer_value(env, insn->dst_reg)) { 12625 verbose(env, "R%d pointer comparison prohibited\n", 12626 insn->dst_reg); 12627 return -EACCES; 12628 } 12629 if (env->log.level & BPF_LOG_LEVEL) 12630 print_insn_state(env, this_branch->frame[this_branch->curframe]); 12631 return 0; 12632 } 12633 12634 /* verify BPF_LD_IMM64 instruction */ 12635 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 12636 { 12637 struct bpf_insn_aux_data *aux = cur_aux(env); 12638 struct bpf_reg_state *regs = cur_regs(env); 12639 struct bpf_reg_state *dst_reg; 12640 struct bpf_map *map; 12641 int err; 12642 12643 if (BPF_SIZE(insn->code) != BPF_DW) { 12644 verbose(env, "invalid BPF_LD_IMM insn\n"); 12645 return -EINVAL; 12646 } 12647 if (insn->off != 0) { 12648 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 12649 return -EINVAL; 12650 } 12651 12652 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12653 if (err) 12654 return err; 12655 12656 dst_reg = ®s[insn->dst_reg]; 12657 if (insn->src_reg == 0) { 12658 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 12659 12660 dst_reg->type = SCALAR_VALUE; 12661 __mark_reg_known(®s[insn->dst_reg], imm); 12662 return 0; 12663 } 12664 12665 /* All special src_reg cases are listed below. From this point onwards 12666 * we either succeed and assign a corresponding dst_reg->type after 12667 * zeroing the offset, or fail and reject the program. 12668 */ 12669 mark_reg_known_zero(env, regs, insn->dst_reg); 12670 12671 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 12672 dst_reg->type = aux->btf_var.reg_type; 12673 switch (base_type(dst_reg->type)) { 12674 case PTR_TO_MEM: 12675 dst_reg->mem_size = aux->btf_var.mem_size; 12676 break; 12677 case PTR_TO_BTF_ID: 12678 dst_reg->btf = aux->btf_var.btf; 12679 dst_reg->btf_id = aux->btf_var.btf_id; 12680 break; 12681 default: 12682 verbose(env, "bpf verifier is misconfigured\n"); 12683 return -EFAULT; 12684 } 12685 return 0; 12686 } 12687 12688 if (insn->src_reg == BPF_PSEUDO_FUNC) { 12689 struct bpf_prog_aux *aux = env->prog->aux; 12690 u32 subprogno = find_subprog(env, 12691 env->insn_idx + insn->imm + 1); 12692 12693 if (!aux->func_info) { 12694 verbose(env, "missing btf func_info\n"); 12695 return -EINVAL; 12696 } 12697 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 12698 verbose(env, "callback function not static\n"); 12699 return -EINVAL; 12700 } 12701 12702 dst_reg->type = PTR_TO_FUNC; 12703 dst_reg->subprogno = subprogno; 12704 return 0; 12705 } 12706 12707 map = env->used_maps[aux->map_index]; 12708 dst_reg->map_ptr = map; 12709 12710 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 12711 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 12712 dst_reg->type = PTR_TO_MAP_VALUE; 12713 dst_reg->off = aux->map_off; 12714 WARN_ON_ONCE(map->max_entries != 1); 12715 /* We want reg->id to be same (0) as map_value is not distinct */ 12716 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 12717 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 12718 dst_reg->type = CONST_PTR_TO_MAP; 12719 } else { 12720 verbose(env, "bpf verifier is misconfigured\n"); 12721 return -EINVAL; 12722 } 12723 12724 return 0; 12725 } 12726 12727 static bool may_access_skb(enum bpf_prog_type type) 12728 { 12729 switch (type) { 12730 case BPF_PROG_TYPE_SOCKET_FILTER: 12731 case BPF_PROG_TYPE_SCHED_CLS: 12732 case BPF_PROG_TYPE_SCHED_ACT: 12733 return true; 12734 default: 12735 return false; 12736 } 12737 } 12738 12739 /* verify safety of LD_ABS|LD_IND instructions: 12740 * - they can only appear in the programs where ctx == skb 12741 * - since they are wrappers of function calls, they scratch R1-R5 registers, 12742 * preserve R6-R9, and store return value into R0 12743 * 12744 * Implicit input: 12745 * ctx == skb == R6 == CTX 12746 * 12747 * Explicit input: 12748 * SRC == any register 12749 * IMM == 32-bit immediate 12750 * 12751 * Output: 12752 * R0 - 8/16/32-bit skb data converted to cpu endianness 12753 */ 12754 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 12755 { 12756 struct bpf_reg_state *regs = cur_regs(env); 12757 static const int ctx_reg = BPF_REG_6; 12758 u8 mode = BPF_MODE(insn->code); 12759 int i, err; 12760 12761 if (!may_access_skb(resolve_prog_type(env->prog))) { 12762 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 12763 return -EINVAL; 12764 } 12765 12766 if (!env->ops->gen_ld_abs) { 12767 verbose(env, "bpf verifier is misconfigured\n"); 12768 return -EINVAL; 12769 } 12770 12771 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 12772 BPF_SIZE(insn->code) == BPF_DW || 12773 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 12774 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 12775 return -EINVAL; 12776 } 12777 12778 /* check whether implicit source operand (register R6) is readable */ 12779 err = check_reg_arg(env, ctx_reg, SRC_OP); 12780 if (err) 12781 return err; 12782 12783 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 12784 * gen_ld_abs() may terminate the program at runtime, leading to 12785 * reference leak. 12786 */ 12787 err = check_reference_leak(env); 12788 if (err) { 12789 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 12790 return err; 12791 } 12792 12793 if (env->cur_state->active_lock.ptr) { 12794 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 12795 return -EINVAL; 12796 } 12797 12798 if (env->cur_state->active_rcu_lock) { 12799 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 12800 return -EINVAL; 12801 } 12802 12803 if (regs[ctx_reg].type != PTR_TO_CTX) { 12804 verbose(env, 12805 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 12806 return -EINVAL; 12807 } 12808 12809 if (mode == BPF_IND) { 12810 /* check explicit source operand */ 12811 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12812 if (err) 12813 return err; 12814 } 12815 12816 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 12817 if (err < 0) 12818 return err; 12819 12820 /* reset caller saved regs to unreadable */ 12821 for (i = 0; i < CALLER_SAVED_REGS; i++) { 12822 mark_reg_not_init(env, regs, caller_saved[i]); 12823 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 12824 } 12825 12826 /* mark destination R0 register as readable, since it contains 12827 * the value fetched from the packet. 12828 * Already marked as written above. 12829 */ 12830 mark_reg_unknown(env, regs, BPF_REG_0); 12831 /* ld_abs load up to 32-bit skb data. */ 12832 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 12833 return 0; 12834 } 12835 12836 static int check_return_code(struct bpf_verifier_env *env) 12837 { 12838 struct tnum enforce_attach_type_range = tnum_unknown; 12839 const struct bpf_prog *prog = env->prog; 12840 struct bpf_reg_state *reg; 12841 struct tnum range = tnum_range(0, 1); 12842 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12843 int err; 12844 struct bpf_func_state *frame = env->cur_state->frame[0]; 12845 const bool is_subprog = frame->subprogno; 12846 12847 /* LSM and struct_ops func-ptr's return type could be "void" */ 12848 if (!is_subprog) { 12849 switch (prog_type) { 12850 case BPF_PROG_TYPE_LSM: 12851 if (prog->expected_attach_type == BPF_LSM_CGROUP) 12852 /* See below, can be 0 or 0-1 depending on hook. */ 12853 break; 12854 fallthrough; 12855 case BPF_PROG_TYPE_STRUCT_OPS: 12856 if (!prog->aux->attach_func_proto->type) 12857 return 0; 12858 break; 12859 default: 12860 break; 12861 } 12862 } 12863 12864 /* eBPF calling convention is such that R0 is used 12865 * to return the value from eBPF program. 12866 * Make sure that it's readable at this time 12867 * of bpf_exit, which means that program wrote 12868 * something into it earlier 12869 */ 12870 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 12871 if (err) 12872 return err; 12873 12874 if (is_pointer_value(env, BPF_REG_0)) { 12875 verbose(env, "R0 leaks addr as return value\n"); 12876 return -EACCES; 12877 } 12878 12879 reg = cur_regs(env) + BPF_REG_0; 12880 12881 if (frame->in_async_callback_fn) { 12882 /* enforce return zero from async callbacks like timer */ 12883 if (reg->type != SCALAR_VALUE) { 12884 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 12885 reg_type_str(env, reg->type)); 12886 return -EINVAL; 12887 } 12888 12889 if (!tnum_in(tnum_const(0), reg->var_off)) { 12890 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 12891 return -EINVAL; 12892 } 12893 return 0; 12894 } 12895 12896 if (is_subprog) { 12897 if (reg->type != SCALAR_VALUE) { 12898 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 12899 reg_type_str(env, reg->type)); 12900 return -EINVAL; 12901 } 12902 return 0; 12903 } 12904 12905 switch (prog_type) { 12906 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 12907 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 12908 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 12909 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 12910 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 12911 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 12912 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 12913 range = tnum_range(1, 1); 12914 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 12915 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 12916 range = tnum_range(0, 3); 12917 break; 12918 case BPF_PROG_TYPE_CGROUP_SKB: 12919 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 12920 range = tnum_range(0, 3); 12921 enforce_attach_type_range = tnum_range(2, 3); 12922 } 12923 break; 12924 case BPF_PROG_TYPE_CGROUP_SOCK: 12925 case BPF_PROG_TYPE_SOCK_OPS: 12926 case BPF_PROG_TYPE_CGROUP_DEVICE: 12927 case BPF_PROG_TYPE_CGROUP_SYSCTL: 12928 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 12929 break; 12930 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12931 if (!env->prog->aux->attach_btf_id) 12932 return 0; 12933 range = tnum_const(0); 12934 break; 12935 case BPF_PROG_TYPE_TRACING: 12936 switch (env->prog->expected_attach_type) { 12937 case BPF_TRACE_FENTRY: 12938 case BPF_TRACE_FEXIT: 12939 range = tnum_const(0); 12940 break; 12941 case BPF_TRACE_RAW_TP: 12942 case BPF_MODIFY_RETURN: 12943 return 0; 12944 case BPF_TRACE_ITER: 12945 break; 12946 default: 12947 return -ENOTSUPP; 12948 } 12949 break; 12950 case BPF_PROG_TYPE_SK_LOOKUP: 12951 range = tnum_range(SK_DROP, SK_PASS); 12952 break; 12953 12954 case BPF_PROG_TYPE_LSM: 12955 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 12956 /* Regular BPF_PROG_TYPE_LSM programs can return 12957 * any value. 12958 */ 12959 return 0; 12960 } 12961 if (!env->prog->aux->attach_func_proto->type) { 12962 /* Make sure programs that attach to void 12963 * hooks don't try to modify return value. 12964 */ 12965 range = tnum_range(1, 1); 12966 } 12967 break; 12968 12969 case BPF_PROG_TYPE_EXT: 12970 /* freplace program can return anything as its return value 12971 * depends on the to-be-replaced kernel func or bpf program. 12972 */ 12973 default: 12974 return 0; 12975 } 12976 12977 if (reg->type != SCALAR_VALUE) { 12978 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 12979 reg_type_str(env, reg->type)); 12980 return -EINVAL; 12981 } 12982 12983 if (!tnum_in(range, reg->var_off)) { 12984 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 12985 if (prog->expected_attach_type == BPF_LSM_CGROUP && 12986 prog_type == BPF_PROG_TYPE_LSM && 12987 !prog->aux->attach_func_proto->type) 12988 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 12989 return -EINVAL; 12990 } 12991 12992 if (!tnum_is_unknown(enforce_attach_type_range) && 12993 tnum_in(enforce_attach_type_range, reg->var_off)) 12994 env->prog->enforce_expected_attach_type = 1; 12995 return 0; 12996 } 12997 12998 /* non-recursive DFS pseudo code 12999 * 1 procedure DFS-iterative(G,v): 13000 * 2 label v as discovered 13001 * 3 let S be a stack 13002 * 4 S.push(v) 13003 * 5 while S is not empty 13004 * 6 t <- S.peek() 13005 * 7 if t is what we're looking for: 13006 * 8 return t 13007 * 9 for all edges e in G.adjacentEdges(t) do 13008 * 10 if edge e is already labelled 13009 * 11 continue with the next edge 13010 * 12 w <- G.adjacentVertex(t,e) 13011 * 13 if vertex w is not discovered and not explored 13012 * 14 label e as tree-edge 13013 * 15 label w as discovered 13014 * 16 S.push(w) 13015 * 17 continue at 5 13016 * 18 else if vertex w is discovered 13017 * 19 label e as back-edge 13018 * 20 else 13019 * 21 // vertex w is explored 13020 * 22 label e as forward- or cross-edge 13021 * 23 label t as explored 13022 * 24 S.pop() 13023 * 13024 * convention: 13025 * 0x10 - discovered 13026 * 0x11 - discovered and fall-through edge labelled 13027 * 0x12 - discovered and fall-through and branch edges labelled 13028 * 0x20 - explored 13029 */ 13030 13031 enum { 13032 DISCOVERED = 0x10, 13033 EXPLORED = 0x20, 13034 FALLTHROUGH = 1, 13035 BRANCH = 2, 13036 }; 13037 13038 static u32 state_htab_size(struct bpf_verifier_env *env) 13039 { 13040 return env->prog->len; 13041 } 13042 13043 static struct bpf_verifier_state_list **explored_state( 13044 struct bpf_verifier_env *env, 13045 int idx) 13046 { 13047 struct bpf_verifier_state *cur = env->cur_state; 13048 struct bpf_func_state *state = cur->frame[cur->curframe]; 13049 13050 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 13051 } 13052 13053 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 13054 { 13055 env->insn_aux_data[idx].prune_point = true; 13056 } 13057 13058 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 13059 { 13060 return env->insn_aux_data[insn_idx].prune_point; 13061 } 13062 13063 enum { 13064 DONE_EXPLORING = 0, 13065 KEEP_EXPLORING = 1, 13066 }; 13067 13068 /* t, w, e - match pseudo-code above: 13069 * t - index of current instruction 13070 * w - next instruction 13071 * e - edge 13072 */ 13073 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 13074 bool loop_ok) 13075 { 13076 int *insn_stack = env->cfg.insn_stack; 13077 int *insn_state = env->cfg.insn_state; 13078 13079 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 13080 return DONE_EXPLORING; 13081 13082 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 13083 return DONE_EXPLORING; 13084 13085 if (w < 0 || w >= env->prog->len) { 13086 verbose_linfo(env, t, "%d: ", t); 13087 verbose(env, "jump out of range from insn %d to %d\n", t, w); 13088 return -EINVAL; 13089 } 13090 13091 if (e == BRANCH) { 13092 /* mark branch target for state pruning */ 13093 mark_prune_point(env, w); 13094 mark_jmp_point(env, w); 13095 } 13096 13097 if (insn_state[w] == 0) { 13098 /* tree-edge */ 13099 insn_state[t] = DISCOVERED | e; 13100 insn_state[w] = DISCOVERED; 13101 if (env->cfg.cur_stack >= env->prog->len) 13102 return -E2BIG; 13103 insn_stack[env->cfg.cur_stack++] = w; 13104 return KEEP_EXPLORING; 13105 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 13106 if (loop_ok && env->bpf_capable) 13107 return DONE_EXPLORING; 13108 verbose_linfo(env, t, "%d: ", t); 13109 verbose_linfo(env, w, "%d: ", w); 13110 verbose(env, "back-edge from insn %d to %d\n", t, w); 13111 return -EINVAL; 13112 } else if (insn_state[w] == EXPLORED) { 13113 /* forward- or cross-edge */ 13114 insn_state[t] = DISCOVERED | e; 13115 } else { 13116 verbose(env, "insn state internal bug\n"); 13117 return -EFAULT; 13118 } 13119 return DONE_EXPLORING; 13120 } 13121 13122 static int visit_func_call_insn(int t, struct bpf_insn *insns, 13123 struct bpf_verifier_env *env, 13124 bool visit_callee) 13125 { 13126 int ret; 13127 13128 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 13129 if (ret) 13130 return ret; 13131 13132 mark_prune_point(env, t + 1); 13133 /* when we exit from subprog, we need to record non-linear history */ 13134 mark_jmp_point(env, t + 1); 13135 13136 if (visit_callee) { 13137 mark_prune_point(env, t); 13138 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 13139 /* It's ok to allow recursion from CFG point of 13140 * view. __check_func_call() will do the actual 13141 * check. 13142 */ 13143 bpf_pseudo_func(insns + t)); 13144 } 13145 return ret; 13146 } 13147 13148 /* Visits the instruction at index t and returns one of the following: 13149 * < 0 - an error occurred 13150 * DONE_EXPLORING - the instruction was fully explored 13151 * KEEP_EXPLORING - there is still work to be done before it is fully explored 13152 */ 13153 static int visit_insn(int t, struct bpf_verifier_env *env) 13154 { 13155 struct bpf_insn *insns = env->prog->insnsi; 13156 int ret; 13157 13158 if (bpf_pseudo_func(insns + t)) 13159 return visit_func_call_insn(t, insns, env, true); 13160 13161 /* All non-branch instructions have a single fall-through edge. */ 13162 if (BPF_CLASS(insns[t].code) != BPF_JMP && 13163 BPF_CLASS(insns[t].code) != BPF_JMP32) 13164 return push_insn(t, t + 1, FALLTHROUGH, env, false); 13165 13166 switch (BPF_OP(insns[t].code)) { 13167 case BPF_EXIT: 13168 return DONE_EXPLORING; 13169 13170 case BPF_CALL: 13171 if (insns[t].imm == BPF_FUNC_timer_set_callback) 13172 /* Mark this call insn as a prune point to trigger 13173 * is_state_visited() check before call itself is 13174 * processed by __check_func_call(). Otherwise new 13175 * async state will be pushed for further exploration. 13176 */ 13177 mark_prune_point(env, t); 13178 return visit_func_call_insn(t, insns, env, 13179 insns[t].src_reg == BPF_PSEUDO_CALL); 13180 13181 case BPF_JA: 13182 if (BPF_SRC(insns[t].code) != BPF_K) 13183 return -EINVAL; 13184 13185 /* unconditional jump with single edge */ 13186 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 13187 true); 13188 if (ret) 13189 return ret; 13190 13191 mark_prune_point(env, t + insns[t].off + 1); 13192 mark_jmp_point(env, t + insns[t].off + 1); 13193 13194 return ret; 13195 13196 default: 13197 /* conditional jump with two edges */ 13198 mark_prune_point(env, t); 13199 13200 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 13201 if (ret) 13202 return ret; 13203 13204 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 13205 } 13206 } 13207 13208 /* non-recursive depth-first-search to detect loops in BPF program 13209 * loop == back-edge in directed graph 13210 */ 13211 static int check_cfg(struct bpf_verifier_env *env) 13212 { 13213 int insn_cnt = env->prog->len; 13214 int *insn_stack, *insn_state; 13215 int ret = 0; 13216 int i; 13217 13218 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13219 if (!insn_state) 13220 return -ENOMEM; 13221 13222 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13223 if (!insn_stack) { 13224 kvfree(insn_state); 13225 return -ENOMEM; 13226 } 13227 13228 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 13229 insn_stack[0] = 0; /* 0 is the first instruction */ 13230 env->cfg.cur_stack = 1; 13231 13232 while (env->cfg.cur_stack > 0) { 13233 int t = insn_stack[env->cfg.cur_stack - 1]; 13234 13235 ret = visit_insn(t, env); 13236 switch (ret) { 13237 case DONE_EXPLORING: 13238 insn_state[t] = EXPLORED; 13239 env->cfg.cur_stack--; 13240 break; 13241 case KEEP_EXPLORING: 13242 break; 13243 default: 13244 if (ret > 0) { 13245 verbose(env, "visit_insn internal bug\n"); 13246 ret = -EFAULT; 13247 } 13248 goto err_free; 13249 } 13250 } 13251 13252 if (env->cfg.cur_stack < 0) { 13253 verbose(env, "pop stack internal bug\n"); 13254 ret = -EFAULT; 13255 goto err_free; 13256 } 13257 13258 for (i = 0; i < insn_cnt; i++) { 13259 if (insn_state[i] != EXPLORED) { 13260 verbose(env, "unreachable insn %d\n", i); 13261 ret = -EINVAL; 13262 goto err_free; 13263 } 13264 } 13265 ret = 0; /* cfg looks good */ 13266 13267 err_free: 13268 kvfree(insn_state); 13269 kvfree(insn_stack); 13270 env->cfg.insn_state = env->cfg.insn_stack = NULL; 13271 return ret; 13272 } 13273 13274 static int check_abnormal_return(struct bpf_verifier_env *env) 13275 { 13276 int i; 13277 13278 for (i = 1; i < env->subprog_cnt; i++) { 13279 if (env->subprog_info[i].has_ld_abs) { 13280 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 13281 return -EINVAL; 13282 } 13283 if (env->subprog_info[i].has_tail_call) { 13284 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 13285 return -EINVAL; 13286 } 13287 } 13288 return 0; 13289 } 13290 13291 /* The minimum supported BTF func info size */ 13292 #define MIN_BPF_FUNCINFO_SIZE 8 13293 #define MAX_FUNCINFO_REC_SIZE 252 13294 13295 static int check_btf_func(struct bpf_verifier_env *env, 13296 const union bpf_attr *attr, 13297 bpfptr_t uattr) 13298 { 13299 const struct btf_type *type, *func_proto, *ret_type; 13300 u32 i, nfuncs, urec_size, min_size; 13301 u32 krec_size = sizeof(struct bpf_func_info); 13302 struct bpf_func_info *krecord; 13303 struct bpf_func_info_aux *info_aux = NULL; 13304 struct bpf_prog *prog; 13305 const struct btf *btf; 13306 bpfptr_t urecord; 13307 u32 prev_offset = 0; 13308 bool scalar_return; 13309 int ret = -ENOMEM; 13310 13311 nfuncs = attr->func_info_cnt; 13312 if (!nfuncs) { 13313 if (check_abnormal_return(env)) 13314 return -EINVAL; 13315 return 0; 13316 } 13317 13318 if (nfuncs != env->subprog_cnt) { 13319 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 13320 return -EINVAL; 13321 } 13322 13323 urec_size = attr->func_info_rec_size; 13324 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 13325 urec_size > MAX_FUNCINFO_REC_SIZE || 13326 urec_size % sizeof(u32)) { 13327 verbose(env, "invalid func info rec size %u\n", urec_size); 13328 return -EINVAL; 13329 } 13330 13331 prog = env->prog; 13332 btf = prog->aux->btf; 13333 13334 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 13335 min_size = min_t(u32, krec_size, urec_size); 13336 13337 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 13338 if (!krecord) 13339 return -ENOMEM; 13340 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 13341 if (!info_aux) 13342 goto err_free; 13343 13344 for (i = 0; i < nfuncs; i++) { 13345 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 13346 if (ret) { 13347 if (ret == -E2BIG) { 13348 verbose(env, "nonzero tailing record in func info"); 13349 /* set the size kernel expects so loader can zero 13350 * out the rest of the record. 13351 */ 13352 if (copy_to_bpfptr_offset(uattr, 13353 offsetof(union bpf_attr, func_info_rec_size), 13354 &min_size, sizeof(min_size))) 13355 ret = -EFAULT; 13356 } 13357 goto err_free; 13358 } 13359 13360 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 13361 ret = -EFAULT; 13362 goto err_free; 13363 } 13364 13365 /* check insn_off */ 13366 ret = -EINVAL; 13367 if (i == 0) { 13368 if (krecord[i].insn_off) { 13369 verbose(env, 13370 "nonzero insn_off %u for the first func info record", 13371 krecord[i].insn_off); 13372 goto err_free; 13373 } 13374 } else if (krecord[i].insn_off <= prev_offset) { 13375 verbose(env, 13376 "same or smaller insn offset (%u) than previous func info record (%u)", 13377 krecord[i].insn_off, prev_offset); 13378 goto err_free; 13379 } 13380 13381 if (env->subprog_info[i].start != krecord[i].insn_off) { 13382 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 13383 goto err_free; 13384 } 13385 13386 /* check type_id */ 13387 type = btf_type_by_id(btf, krecord[i].type_id); 13388 if (!type || !btf_type_is_func(type)) { 13389 verbose(env, "invalid type id %d in func info", 13390 krecord[i].type_id); 13391 goto err_free; 13392 } 13393 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 13394 13395 func_proto = btf_type_by_id(btf, type->type); 13396 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 13397 /* btf_func_check() already verified it during BTF load */ 13398 goto err_free; 13399 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 13400 scalar_return = 13401 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 13402 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 13403 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 13404 goto err_free; 13405 } 13406 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 13407 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 13408 goto err_free; 13409 } 13410 13411 prev_offset = krecord[i].insn_off; 13412 bpfptr_add(&urecord, urec_size); 13413 } 13414 13415 prog->aux->func_info = krecord; 13416 prog->aux->func_info_cnt = nfuncs; 13417 prog->aux->func_info_aux = info_aux; 13418 return 0; 13419 13420 err_free: 13421 kvfree(krecord); 13422 kfree(info_aux); 13423 return ret; 13424 } 13425 13426 static void adjust_btf_func(struct bpf_verifier_env *env) 13427 { 13428 struct bpf_prog_aux *aux = env->prog->aux; 13429 int i; 13430 13431 if (!aux->func_info) 13432 return; 13433 13434 for (i = 0; i < env->subprog_cnt; i++) 13435 aux->func_info[i].insn_off = env->subprog_info[i].start; 13436 } 13437 13438 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 13439 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 13440 13441 static int check_btf_line(struct bpf_verifier_env *env, 13442 const union bpf_attr *attr, 13443 bpfptr_t uattr) 13444 { 13445 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 13446 struct bpf_subprog_info *sub; 13447 struct bpf_line_info *linfo; 13448 struct bpf_prog *prog; 13449 const struct btf *btf; 13450 bpfptr_t ulinfo; 13451 int err; 13452 13453 nr_linfo = attr->line_info_cnt; 13454 if (!nr_linfo) 13455 return 0; 13456 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 13457 return -EINVAL; 13458 13459 rec_size = attr->line_info_rec_size; 13460 if (rec_size < MIN_BPF_LINEINFO_SIZE || 13461 rec_size > MAX_LINEINFO_REC_SIZE || 13462 rec_size & (sizeof(u32) - 1)) 13463 return -EINVAL; 13464 13465 /* Need to zero it in case the userspace may 13466 * pass in a smaller bpf_line_info object. 13467 */ 13468 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 13469 GFP_KERNEL | __GFP_NOWARN); 13470 if (!linfo) 13471 return -ENOMEM; 13472 13473 prog = env->prog; 13474 btf = prog->aux->btf; 13475 13476 s = 0; 13477 sub = env->subprog_info; 13478 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 13479 expected_size = sizeof(struct bpf_line_info); 13480 ncopy = min_t(u32, expected_size, rec_size); 13481 for (i = 0; i < nr_linfo; i++) { 13482 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 13483 if (err) { 13484 if (err == -E2BIG) { 13485 verbose(env, "nonzero tailing record in line_info"); 13486 if (copy_to_bpfptr_offset(uattr, 13487 offsetof(union bpf_attr, line_info_rec_size), 13488 &expected_size, sizeof(expected_size))) 13489 err = -EFAULT; 13490 } 13491 goto err_free; 13492 } 13493 13494 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 13495 err = -EFAULT; 13496 goto err_free; 13497 } 13498 13499 /* 13500 * Check insn_off to ensure 13501 * 1) strictly increasing AND 13502 * 2) bounded by prog->len 13503 * 13504 * The linfo[0].insn_off == 0 check logically falls into 13505 * the later "missing bpf_line_info for func..." case 13506 * because the first linfo[0].insn_off must be the 13507 * first sub also and the first sub must have 13508 * subprog_info[0].start == 0. 13509 */ 13510 if ((i && linfo[i].insn_off <= prev_offset) || 13511 linfo[i].insn_off >= prog->len) { 13512 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 13513 i, linfo[i].insn_off, prev_offset, 13514 prog->len); 13515 err = -EINVAL; 13516 goto err_free; 13517 } 13518 13519 if (!prog->insnsi[linfo[i].insn_off].code) { 13520 verbose(env, 13521 "Invalid insn code at line_info[%u].insn_off\n", 13522 i); 13523 err = -EINVAL; 13524 goto err_free; 13525 } 13526 13527 if (!btf_name_by_offset(btf, linfo[i].line_off) || 13528 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 13529 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 13530 err = -EINVAL; 13531 goto err_free; 13532 } 13533 13534 if (s != env->subprog_cnt) { 13535 if (linfo[i].insn_off == sub[s].start) { 13536 sub[s].linfo_idx = i; 13537 s++; 13538 } else if (sub[s].start < linfo[i].insn_off) { 13539 verbose(env, "missing bpf_line_info for func#%u\n", s); 13540 err = -EINVAL; 13541 goto err_free; 13542 } 13543 } 13544 13545 prev_offset = linfo[i].insn_off; 13546 bpfptr_add(&ulinfo, rec_size); 13547 } 13548 13549 if (s != env->subprog_cnt) { 13550 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 13551 env->subprog_cnt - s, s); 13552 err = -EINVAL; 13553 goto err_free; 13554 } 13555 13556 prog->aux->linfo = linfo; 13557 prog->aux->nr_linfo = nr_linfo; 13558 13559 return 0; 13560 13561 err_free: 13562 kvfree(linfo); 13563 return err; 13564 } 13565 13566 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 13567 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 13568 13569 static int check_core_relo(struct bpf_verifier_env *env, 13570 const union bpf_attr *attr, 13571 bpfptr_t uattr) 13572 { 13573 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 13574 struct bpf_core_relo core_relo = {}; 13575 struct bpf_prog *prog = env->prog; 13576 const struct btf *btf = prog->aux->btf; 13577 struct bpf_core_ctx ctx = { 13578 .log = &env->log, 13579 .btf = btf, 13580 }; 13581 bpfptr_t u_core_relo; 13582 int err; 13583 13584 nr_core_relo = attr->core_relo_cnt; 13585 if (!nr_core_relo) 13586 return 0; 13587 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 13588 return -EINVAL; 13589 13590 rec_size = attr->core_relo_rec_size; 13591 if (rec_size < MIN_CORE_RELO_SIZE || 13592 rec_size > MAX_CORE_RELO_SIZE || 13593 rec_size % sizeof(u32)) 13594 return -EINVAL; 13595 13596 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 13597 expected_size = sizeof(struct bpf_core_relo); 13598 ncopy = min_t(u32, expected_size, rec_size); 13599 13600 /* Unlike func_info and line_info, copy and apply each CO-RE 13601 * relocation record one at a time. 13602 */ 13603 for (i = 0; i < nr_core_relo; i++) { 13604 /* future proofing when sizeof(bpf_core_relo) changes */ 13605 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 13606 if (err) { 13607 if (err == -E2BIG) { 13608 verbose(env, "nonzero tailing record in core_relo"); 13609 if (copy_to_bpfptr_offset(uattr, 13610 offsetof(union bpf_attr, core_relo_rec_size), 13611 &expected_size, sizeof(expected_size))) 13612 err = -EFAULT; 13613 } 13614 break; 13615 } 13616 13617 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 13618 err = -EFAULT; 13619 break; 13620 } 13621 13622 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 13623 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 13624 i, core_relo.insn_off, prog->len); 13625 err = -EINVAL; 13626 break; 13627 } 13628 13629 err = bpf_core_apply(&ctx, &core_relo, i, 13630 &prog->insnsi[core_relo.insn_off / 8]); 13631 if (err) 13632 break; 13633 bpfptr_add(&u_core_relo, rec_size); 13634 } 13635 return err; 13636 } 13637 13638 static int check_btf_info(struct bpf_verifier_env *env, 13639 const union bpf_attr *attr, 13640 bpfptr_t uattr) 13641 { 13642 struct btf *btf; 13643 int err; 13644 13645 if (!attr->func_info_cnt && !attr->line_info_cnt) { 13646 if (check_abnormal_return(env)) 13647 return -EINVAL; 13648 return 0; 13649 } 13650 13651 btf = btf_get_by_fd(attr->prog_btf_fd); 13652 if (IS_ERR(btf)) 13653 return PTR_ERR(btf); 13654 if (btf_is_kernel(btf)) { 13655 btf_put(btf); 13656 return -EACCES; 13657 } 13658 env->prog->aux->btf = btf; 13659 13660 err = check_btf_func(env, attr, uattr); 13661 if (err) 13662 return err; 13663 13664 err = check_btf_line(env, attr, uattr); 13665 if (err) 13666 return err; 13667 13668 err = check_core_relo(env, attr, uattr); 13669 if (err) 13670 return err; 13671 13672 return 0; 13673 } 13674 13675 /* check %cur's range satisfies %old's */ 13676 static bool range_within(struct bpf_reg_state *old, 13677 struct bpf_reg_state *cur) 13678 { 13679 return old->umin_value <= cur->umin_value && 13680 old->umax_value >= cur->umax_value && 13681 old->smin_value <= cur->smin_value && 13682 old->smax_value >= cur->smax_value && 13683 old->u32_min_value <= cur->u32_min_value && 13684 old->u32_max_value >= cur->u32_max_value && 13685 old->s32_min_value <= cur->s32_min_value && 13686 old->s32_max_value >= cur->s32_max_value; 13687 } 13688 13689 /* If in the old state two registers had the same id, then they need to have 13690 * the same id in the new state as well. But that id could be different from 13691 * the old state, so we need to track the mapping from old to new ids. 13692 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 13693 * regs with old id 5 must also have new id 9 for the new state to be safe. But 13694 * regs with a different old id could still have new id 9, we don't care about 13695 * that. 13696 * So we look through our idmap to see if this old id has been seen before. If 13697 * so, we require the new id to match; otherwise, we add the id pair to the map. 13698 */ 13699 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 13700 { 13701 unsigned int i; 13702 13703 /* either both IDs should be set or both should be zero */ 13704 if (!!old_id != !!cur_id) 13705 return false; 13706 13707 if (old_id == 0) /* cur_id == 0 as well */ 13708 return true; 13709 13710 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 13711 if (!idmap[i].old) { 13712 /* Reached an empty slot; haven't seen this id before */ 13713 idmap[i].old = old_id; 13714 idmap[i].cur = cur_id; 13715 return true; 13716 } 13717 if (idmap[i].old == old_id) 13718 return idmap[i].cur == cur_id; 13719 } 13720 /* We ran out of idmap slots, which should be impossible */ 13721 WARN_ON_ONCE(1); 13722 return false; 13723 } 13724 13725 static void clean_func_state(struct bpf_verifier_env *env, 13726 struct bpf_func_state *st) 13727 { 13728 enum bpf_reg_liveness live; 13729 int i, j; 13730 13731 for (i = 0; i < BPF_REG_FP; i++) { 13732 live = st->regs[i].live; 13733 /* liveness must not touch this register anymore */ 13734 st->regs[i].live |= REG_LIVE_DONE; 13735 if (!(live & REG_LIVE_READ)) 13736 /* since the register is unused, clear its state 13737 * to make further comparison simpler 13738 */ 13739 __mark_reg_not_init(env, &st->regs[i]); 13740 } 13741 13742 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 13743 live = st->stack[i].spilled_ptr.live; 13744 /* liveness must not touch this stack slot anymore */ 13745 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 13746 if (!(live & REG_LIVE_READ)) { 13747 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 13748 for (j = 0; j < BPF_REG_SIZE; j++) 13749 st->stack[i].slot_type[j] = STACK_INVALID; 13750 } 13751 } 13752 } 13753 13754 static void clean_verifier_state(struct bpf_verifier_env *env, 13755 struct bpf_verifier_state *st) 13756 { 13757 int i; 13758 13759 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 13760 /* all regs in this state in all frames were already marked */ 13761 return; 13762 13763 for (i = 0; i <= st->curframe; i++) 13764 clean_func_state(env, st->frame[i]); 13765 } 13766 13767 /* the parentage chains form a tree. 13768 * the verifier states are added to state lists at given insn and 13769 * pushed into state stack for future exploration. 13770 * when the verifier reaches bpf_exit insn some of the verifer states 13771 * stored in the state lists have their final liveness state already, 13772 * but a lot of states will get revised from liveness point of view when 13773 * the verifier explores other branches. 13774 * Example: 13775 * 1: r0 = 1 13776 * 2: if r1 == 100 goto pc+1 13777 * 3: r0 = 2 13778 * 4: exit 13779 * when the verifier reaches exit insn the register r0 in the state list of 13780 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 13781 * of insn 2 and goes exploring further. At the insn 4 it will walk the 13782 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 13783 * 13784 * Since the verifier pushes the branch states as it sees them while exploring 13785 * the program the condition of walking the branch instruction for the second 13786 * time means that all states below this branch were already explored and 13787 * their final liveness marks are already propagated. 13788 * Hence when the verifier completes the search of state list in is_state_visited() 13789 * we can call this clean_live_states() function to mark all liveness states 13790 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 13791 * will not be used. 13792 * This function also clears the registers and stack for states that !READ 13793 * to simplify state merging. 13794 * 13795 * Important note here that walking the same branch instruction in the callee 13796 * doesn't meant that the states are DONE. The verifier has to compare 13797 * the callsites 13798 */ 13799 static void clean_live_states(struct bpf_verifier_env *env, int insn, 13800 struct bpf_verifier_state *cur) 13801 { 13802 struct bpf_verifier_state_list *sl; 13803 int i; 13804 13805 sl = *explored_state(env, insn); 13806 while (sl) { 13807 if (sl->state.branches) 13808 goto next; 13809 if (sl->state.insn_idx != insn || 13810 sl->state.curframe != cur->curframe) 13811 goto next; 13812 for (i = 0; i <= cur->curframe; i++) 13813 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 13814 goto next; 13815 clean_verifier_state(env, &sl->state); 13816 next: 13817 sl = sl->next; 13818 } 13819 } 13820 13821 static bool regs_exact(const struct bpf_reg_state *rold, 13822 const struct bpf_reg_state *rcur, 13823 struct bpf_id_pair *idmap) 13824 { 13825 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 13826 check_ids(rold->id, rcur->id, idmap) && 13827 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 13828 } 13829 13830 /* Returns true if (rold safe implies rcur safe) */ 13831 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 13832 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 13833 { 13834 if (!(rold->live & REG_LIVE_READ)) 13835 /* explored state didn't use this */ 13836 return true; 13837 if (rold->type == NOT_INIT) 13838 /* explored state can't have used this */ 13839 return true; 13840 if (rcur->type == NOT_INIT) 13841 return false; 13842 13843 /* Enforce that register types have to match exactly, including their 13844 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 13845 * rule. 13846 * 13847 * One can make a point that using a pointer register as unbounded 13848 * SCALAR would be technically acceptable, but this could lead to 13849 * pointer leaks because scalars are allowed to leak while pointers 13850 * are not. We could make this safe in special cases if root is 13851 * calling us, but it's probably not worth the hassle. 13852 * 13853 * Also, register types that are *not* MAYBE_NULL could technically be 13854 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 13855 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 13856 * to the same map). 13857 * However, if the old MAYBE_NULL register then got NULL checked, 13858 * doing so could have affected others with the same id, and we can't 13859 * check for that because we lost the id when we converted to 13860 * a non-MAYBE_NULL variant. 13861 * So, as a general rule we don't allow mixing MAYBE_NULL and 13862 * non-MAYBE_NULL registers as well. 13863 */ 13864 if (rold->type != rcur->type) 13865 return false; 13866 13867 switch (base_type(rold->type)) { 13868 case SCALAR_VALUE: 13869 if (regs_exact(rold, rcur, idmap)) 13870 return true; 13871 if (env->explore_alu_limits) 13872 return false; 13873 if (!rold->precise) 13874 return true; 13875 /* new val must satisfy old val knowledge */ 13876 return range_within(rold, rcur) && 13877 tnum_in(rold->var_off, rcur->var_off); 13878 case PTR_TO_MAP_KEY: 13879 case PTR_TO_MAP_VALUE: 13880 /* If the new min/max/var_off satisfy the old ones and 13881 * everything else matches, we are OK. 13882 */ 13883 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 13884 range_within(rold, rcur) && 13885 tnum_in(rold->var_off, rcur->var_off) && 13886 check_ids(rold->id, rcur->id, idmap); 13887 case PTR_TO_PACKET_META: 13888 case PTR_TO_PACKET: 13889 /* We must have at least as much range as the old ptr 13890 * did, so that any accesses which were safe before are 13891 * still safe. This is true even if old range < old off, 13892 * since someone could have accessed through (ptr - k), or 13893 * even done ptr -= k in a register, to get a safe access. 13894 */ 13895 if (rold->range > rcur->range) 13896 return false; 13897 /* If the offsets don't match, we can't trust our alignment; 13898 * nor can we be sure that we won't fall out of range. 13899 */ 13900 if (rold->off != rcur->off) 13901 return false; 13902 /* id relations must be preserved */ 13903 if (!check_ids(rold->id, rcur->id, idmap)) 13904 return false; 13905 /* new val must satisfy old val knowledge */ 13906 return range_within(rold, rcur) && 13907 tnum_in(rold->var_off, rcur->var_off); 13908 case PTR_TO_STACK: 13909 /* two stack pointers are equal only if they're pointing to 13910 * the same stack frame, since fp-8 in foo != fp-8 in bar 13911 */ 13912 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 13913 default: 13914 return regs_exact(rold, rcur, idmap); 13915 } 13916 } 13917 13918 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 13919 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 13920 { 13921 int i, spi; 13922 13923 /* walk slots of the explored stack and ignore any additional 13924 * slots in the current stack, since explored(safe) state 13925 * didn't use them 13926 */ 13927 for (i = 0; i < old->allocated_stack; i++) { 13928 spi = i / BPF_REG_SIZE; 13929 13930 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 13931 i += BPF_REG_SIZE - 1; 13932 /* explored state didn't use this */ 13933 continue; 13934 } 13935 13936 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 13937 continue; 13938 13939 /* explored stack has more populated slots than current stack 13940 * and these slots were used 13941 */ 13942 if (i >= cur->allocated_stack) 13943 return false; 13944 13945 /* if old state was safe with misc data in the stack 13946 * it will be safe with zero-initialized stack. 13947 * The opposite is not true 13948 */ 13949 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 13950 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 13951 continue; 13952 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 13953 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 13954 /* Ex: old explored (safe) state has STACK_SPILL in 13955 * this stack slot, but current has STACK_MISC -> 13956 * this verifier states are not equivalent, 13957 * return false to continue verification of this path 13958 */ 13959 return false; 13960 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 13961 continue; 13962 /* Both old and cur are having same slot_type */ 13963 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 13964 case STACK_SPILL: 13965 /* when explored and current stack slot are both storing 13966 * spilled registers, check that stored pointers types 13967 * are the same as well. 13968 * Ex: explored safe path could have stored 13969 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 13970 * but current path has stored: 13971 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 13972 * such verifier states are not equivalent. 13973 * return false to continue verification of this path 13974 */ 13975 if (!regsafe(env, &old->stack[spi].spilled_ptr, 13976 &cur->stack[spi].spilled_ptr, idmap)) 13977 return false; 13978 break; 13979 case STACK_DYNPTR: 13980 { 13981 const struct bpf_reg_state *old_reg, *cur_reg; 13982 13983 old_reg = &old->stack[spi].spilled_ptr; 13984 cur_reg = &cur->stack[spi].spilled_ptr; 13985 if (old_reg->dynptr.type != cur_reg->dynptr.type || 13986 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 13987 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 13988 return false; 13989 break; 13990 } 13991 case STACK_MISC: 13992 case STACK_ZERO: 13993 case STACK_INVALID: 13994 continue; 13995 /* Ensure that new unhandled slot types return false by default */ 13996 default: 13997 return false; 13998 } 13999 } 14000 return true; 14001 } 14002 14003 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 14004 struct bpf_id_pair *idmap) 14005 { 14006 int i; 14007 14008 if (old->acquired_refs != cur->acquired_refs) 14009 return false; 14010 14011 for (i = 0; i < old->acquired_refs; i++) { 14012 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 14013 return false; 14014 } 14015 14016 return true; 14017 } 14018 14019 /* compare two verifier states 14020 * 14021 * all states stored in state_list are known to be valid, since 14022 * verifier reached 'bpf_exit' instruction through them 14023 * 14024 * this function is called when verifier exploring different branches of 14025 * execution popped from the state stack. If it sees an old state that has 14026 * more strict register state and more strict stack state then this execution 14027 * branch doesn't need to be explored further, since verifier already 14028 * concluded that more strict state leads to valid finish. 14029 * 14030 * Therefore two states are equivalent if register state is more conservative 14031 * and explored stack state is more conservative than the current one. 14032 * Example: 14033 * explored current 14034 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 14035 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 14036 * 14037 * In other words if current stack state (one being explored) has more 14038 * valid slots than old one that already passed validation, it means 14039 * the verifier can stop exploring and conclude that current state is valid too 14040 * 14041 * Similarly with registers. If explored state has register type as invalid 14042 * whereas register type in current state is meaningful, it means that 14043 * the current state will reach 'bpf_exit' instruction safely 14044 */ 14045 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 14046 struct bpf_func_state *cur) 14047 { 14048 int i; 14049 14050 for (i = 0; i < MAX_BPF_REG; i++) 14051 if (!regsafe(env, &old->regs[i], &cur->regs[i], 14052 env->idmap_scratch)) 14053 return false; 14054 14055 if (!stacksafe(env, old, cur, env->idmap_scratch)) 14056 return false; 14057 14058 if (!refsafe(old, cur, env->idmap_scratch)) 14059 return false; 14060 14061 return true; 14062 } 14063 14064 static bool states_equal(struct bpf_verifier_env *env, 14065 struct bpf_verifier_state *old, 14066 struct bpf_verifier_state *cur) 14067 { 14068 int i; 14069 14070 if (old->curframe != cur->curframe) 14071 return false; 14072 14073 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 14074 14075 /* Verification state from speculative execution simulation 14076 * must never prune a non-speculative execution one. 14077 */ 14078 if (old->speculative && !cur->speculative) 14079 return false; 14080 14081 if (old->active_lock.ptr != cur->active_lock.ptr) 14082 return false; 14083 14084 /* Old and cur active_lock's have to be either both present 14085 * or both absent. 14086 */ 14087 if (!!old->active_lock.id != !!cur->active_lock.id) 14088 return false; 14089 14090 if (old->active_lock.id && 14091 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 14092 return false; 14093 14094 if (old->active_rcu_lock != cur->active_rcu_lock) 14095 return false; 14096 14097 /* for states to be equal callsites have to be the same 14098 * and all frame states need to be equivalent 14099 */ 14100 for (i = 0; i <= old->curframe; i++) { 14101 if (old->frame[i]->callsite != cur->frame[i]->callsite) 14102 return false; 14103 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 14104 return false; 14105 } 14106 return true; 14107 } 14108 14109 /* Return 0 if no propagation happened. Return negative error code if error 14110 * happened. Otherwise, return the propagated bit. 14111 */ 14112 static int propagate_liveness_reg(struct bpf_verifier_env *env, 14113 struct bpf_reg_state *reg, 14114 struct bpf_reg_state *parent_reg) 14115 { 14116 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 14117 u8 flag = reg->live & REG_LIVE_READ; 14118 int err; 14119 14120 /* When comes here, read flags of PARENT_REG or REG could be any of 14121 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 14122 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 14123 */ 14124 if (parent_flag == REG_LIVE_READ64 || 14125 /* Or if there is no read flag from REG. */ 14126 !flag || 14127 /* Or if the read flag from REG is the same as PARENT_REG. */ 14128 parent_flag == flag) 14129 return 0; 14130 14131 err = mark_reg_read(env, reg, parent_reg, flag); 14132 if (err) 14133 return err; 14134 14135 return flag; 14136 } 14137 14138 /* A write screens off any subsequent reads; but write marks come from the 14139 * straight-line code between a state and its parent. When we arrive at an 14140 * equivalent state (jump target or such) we didn't arrive by the straight-line 14141 * code, so read marks in the state must propagate to the parent regardless 14142 * of the state's write marks. That's what 'parent == state->parent' comparison 14143 * in mark_reg_read() is for. 14144 */ 14145 static int propagate_liveness(struct bpf_verifier_env *env, 14146 const struct bpf_verifier_state *vstate, 14147 struct bpf_verifier_state *vparent) 14148 { 14149 struct bpf_reg_state *state_reg, *parent_reg; 14150 struct bpf_func_state *state, *parent; 14151 int i, frame, err = 0; 14152 14153 if (vparent->curframe != vstate->curframe) { 14154 WARN(1, "propagate_live: parent frame %d current frame %d\n", 14155 vparent->curframe, vstate->curframe); 14156 return -EFAULT; 14157 } 14158 /* Propagate read liveness of registers... */ 14159 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 14160 for (frame = 0; frame <= vstate->curframe; frame++) { 14161 parent = vparent->frame[frame]; 14162 state = vstate->frame[frame]; 14163 parent_reg = parent->regs; 14164 state_reg = state->regs; 14165 /* We don't need to worry about FP liveness, it's read-only */ 14166 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 14167 err = propagate_liveness_reg(env, &state_reg[i], 14168 &parent_reg[i]); 14169 if (err < 0) 14170 return err; 14171 if (err == REG_LIVE_READ64) 14172 mark_insn_zext(env, &parent_reg[i]); 14173 } 14174 14175 /* Propagate stack slots. */ 14176 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 14177 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 14178 parent_reg = &parent->stack[i].spilled_ptr; 14179 state_reg = &state->stack[i].spilled_ptr; 14180 err = propagate_liveness_reg(env, state_reg, 14181 parent_reg); 14182 if (err < 0) 14183 return err; 14184 } 14185 } 14186 return 0; 14187 } 14188 14189 /* find precise scalars in the previous equivalent state and 14190 * propagate them into the current state 14191 */ 14192 static int propagate_precision(struct bpf_verifier_env *env, 14193 const struct bpf_verifier_state *old) 14194 { 14195 struct bpf_reg_state *state_reg; 14196 struct bpf_func_state *state; 14197 int i, err = 0, fr; 14198 14199 for (fr = old->curframe; fr >= 0; fr--) { 14200 state = old->frame[fr]; 14201 state_reg = state->regs; 14202 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 14203 if (state_reg->type != SCALAR_VALUE || 14204 !state_reg->precise) 14205 continue; 14206 if (env->log.level & BPF_LOG_LEVEL2) 14207 verbose(env, "frame %d: propagating r%d\n", i, fr); 14208 err = mark_chain_precision_frame(env, fr, i); 14209 if (err < 0) 14210 return err; 14211 } 14212 14213 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 14214 if (!is_spilled_reg(&state->stack[i])) 14215 continue; 14216 state_reg = &state->stack[i].spilled_ptr; 14217 if (state_reg->type != SCALAR_VALUE || 14218 !state_reg->precise) 14219 continue; 14220 if (env->log.level & BPF_LOG_LEVEL2) 14221 verbose(env, "frame %d: propagating fp%d\n", 14222 (-i - 1) * BPF_REG_SIZE, fr); 14223 err = mark_chain_precision_stack_frame(env, fr, i); 14224 if (err < 0) 14225 return err; 14226 } 14227 } 14228 return 0; 14229 } 14230 14231 static bool states_maybe_looping(struct bpf_verifier_state *old, 14232 struct bpf_verifier_state *cur) 14233 { 14234 struct bpf_func_state *fold, *fcur; 14235 int i, fr = cur->curframe; 14236 14237 if (old->curframe != fr) 14238 return false; 14239 14240 fold = old->frame[fr]; 14241 fcur = cur->frame[fr]; 14242 for (i = 0; i < MAX_BPF_REG; i++) 14243 if (memcmp(&fold->regs[i], &fcur->regs[i], 14244 offsetof(struct bpf_reg_state, parent))) 14245 return false; 14246 return true; 14247 } 14248 14249 14250 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 14251 { 14252 struct bpf_verifier_state_list *new_sl; 14253 struct bpf_verifier_state_list *sl, **pprev; 14254 struct bpf_verifier_state *cur = env->cur_state, *new; 14255 int i, j, err, states_cnt = 0; 14256 bool add_new_state = env->test_state_freq ? true : false; 14257 14258 /* bpf progs typically have pruning point every 4 instructions 14259 * http://vger.kernel.org/bpfconf2019.html#session-1 14260 * Do not add new state for future pruning if the verifier hasn't seen 14261 * at least 2 jumps and at least 8 instructions. 14262 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 14263 * In tests that amounts to up to 50% reduction into total verifier 14264 * memory consumption and 20% verifier time speedup. 14265 */ 14266 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 14267 env->insn_processed - env->prev_insn_processed >= 8) 14268 add_new_state = true; 14269 14270 pprev = explored_state(env, insn_idx); 14271 sl = *pprev; 14272 14273 clean_live_states(env, insn_idx, cur); 14274 14275 while (sl) { 14276 states_cnt++; 14277 if (sl->state.insn_idx != insn_idx) 14278 goto next; 14279 14280 if (sl->state.branches) { 14281 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 14282 14283 if (frame->in_async_callback_fn && 14284 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 14285 /* Different async_entry_cnt means that the verifier is 14286 * processing another entry into async callback. 14287 * Seeing the same state is not an indication of infinite 14288 * loop or infinite recursion. 14289 * But finding the same state doesn't mean that it's safe 14290 * to stop processing the current state. The previous state 14291 * hasn't yet reached bpf_exit, since state.branches > 0. 14292 * Checking in_async_callback_fn alone is not enough either. 14293 * Since the verifier still needs to catch infinite loops 14294 * inside async callbacks. 14295 */ 14296 } else if (states_maybe_looping(&sl->state, cur) && 14297 states_equal(env, &sl->state, cur)) { 14298 verbose_linfo(env, insn_idx, "; "); 14299 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 14300 return -EINVAL; 14301 } 14302 /* if the verifier is processing a loop, avoid adding new state 14303 * too often, since different loop iterations have distinct 14304 * states and may not help future pruning. 14305 * This threshold shouldn't be too low to make sure that 14306 * a loop with large bound will be rejected quickly. 14307 * The most abusive loop will be: 14308 * r1 += 1 14309 * if r1 < 1000000 goto pc-2 14310 * 1M insn_procssed limit / 100 == 10k peak states. 14311 * This threshold shouldn't be too high either, since states 14312 * at the end of the loop are likely to be useful in pruning. 14313 */ 14314 if (env->jmps_processed - env->prev_jmps_processed < 20 && 14315 env->insn_processed - env->prev_insn_processed < 100) 14316 add_new_state = false; 14317 goto miss; 14318 } 14319 if (states_equal(env, &sl->state, cur)) { 14320 sl->hit_cnt++; 14321 /* reached equivalent register/stack state, 14322 * prune the search. 14323 * Registers read by the continuation are read by us. 14324 * If we have any write marks in env->cur_state, they 14325 * will prevent corresponding reads in the continuation 14326 * from reaching our parent (an explored_state). Our 14327 * own state will get the read marks recorded, but 14328 * they'll be immediately forgotten as we're pruning 14329 * this state and will pop a new one. 14330 */ 14331 err = propagate_liveness(env, &sl->state, cur); 14332 14333 /* if previous state reached the exit with precision and 14334 * current state is equivalent to it (except precsion marks) 14335 * the precision needs to be propagated back in 14336 * the current state. 14337 */ 14338 err = err ? : push_jmp_history(env, cur); 14339 err = err ? : propagate_precision(env, &sl->state); 14340 if (err) 14341 return err; 14342 return 1; 14343 } 14344 miss: 14345 /* when new state is not going to be added do not increase miss count. 14346 * Otherwise several loop iterations will remove the state 14347 * recorded earlier. The goal of these heuristics is to have 14348 * states from some iterations of the loop (some in the beginning 14349 * and some at the end) to help pruning. 14350 */ 14351 if (add_new_state) 14352 sl->miss_cnt++; 14353 /* heuristic to determine whether this state is beneficial 14354 * to keep checking from state equivalence point of view. 14355 * Higher numbers increase max_states_per_insn and verification time, 14356 * but do not meaningfully decrease insn_processed. 14357 */ 14358 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 14359 /* the state is unlikely to be useful. Remove it to 14360 * speed up verification 14361 */ 14362 *pprev = sl->next; 14363 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 14364 u32 br = sl->state.branches; 14365 14366 WARN_ONCE(br, 14367 "BUG live_done but branches_to_explore %d\n", 14368 br); 14369 free_verifier_state(&sl->state, false); 14370 kfree(sl); 14371 env->peak_states--; 14372 } else { 14373 /* cannot free this state, since parentage chain may 14374 * walk it later. Add it for free_list instead to 14375 * be freed at the end of verification 14376 */ 14377 sl->next = env->free_list; 14378 env->free_list = sl; 14379 } 14380 sl = *pprev; 14381 continue; 14382 } 14383 next: 14384 pprev = &sl->next; 14385 sl = *pprev; 14386 } 14387 14388 if (env->max_states_per_insn < states_cnt) 14389 env->max_states_per_insn = states_cnt; 14390 14391 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 14392 return 0; 14393 14394 if (!add_new_state) 14395 return 0; 14396 14397 /* There were no equivalent states, remember the current one. 14398 * Technically the current state is not proven to be safe yet, 14399 * but it will either reach outer most bpf_exit (which means it's safe) 14400 * or it will be rejected. When there are no loops the verifier won't be 14401 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 14402 * again on the way to bpf_exit. 14403 * When looping the sl->state.branches will be > 0 and this state 14404 * will not be considered for equivalence until branches == 0. 14405 */ 14406 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 14407 if (!new_sl) 14408 return -ENOMEM; 14409 env->total_states++; 14410 env->peak_states++; 14411 env->prev_jmps_processed = env->jmps_processed; 14412 env->prev_insn_processed = env->insn_processed; 14413 14414 /* forget precise markings we inherited, see __mark_chain_precision */ 14415 if (env->bpf_capable) 14416 mark_all_scalars_imprecise(env, cur); 14417 14418 /* add new state to the head of linked list */ 14419 new = &new_sl->state; 14420 err = copy_verifier_state(new, cur); 14421 if (err) { 14422 free_verifier_state(new, false); 14423 kfree(new_sl); 14424 return err; 14425 } 14426 new->insn_idx = insn_idx; 14427 WARN_ONCE(new->branches != 1, 14428 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 14429 14430 cur->parent = new; 14431 cur->first_insn_idx = insn_idx; 14432 clear_jmp_history(cur); 14433 new_sl->next = *explored_state(env, insn_idx); 14434 *explored_state(env, insn_idx) = new_sl; 14435 /* connect new state to parentage chain. Current frame needs all 14436 * registers connected. Only r6 - r9 of the callers are alive (pushed 14437 * to the stack implicitly by JITs) so in callers' frames connect just 14438 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 14439 * the state of the call instruction (with WRITTEN set), and r0 comes 14440 * from callee with its full parentage chain, anyway. 14441 */ 14442 /* clear write marks in current state: the writes we did are not writes 14443 * our child did, so they don't screen off its reads from us. 14444 * (There are no read marks in current state, because reads always mark 14445 * their parent and current state never has children yet. Only 14446 * explored_states can get read marks.) 14447 */ 14448 for (j = 0; j <= cur->curframe; j++) { 14449 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 14450 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 14451 for (i = 0; i < BPF_REG_FP; i++) 14452 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 14453 } 14454 14455 /* all stack frames are accessible from callee, clear them all */ 14456 for (j = 0; j <= cur->curframe; j++) { 14457 struct bpf_func_state *frame = cur->frame[j]; 14458 struct bpf_func_state *newframe = new->frame[j]; 14459 14460 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 14461 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 14462 frame->stack[i].spilled_ptr.parent = 14463 &newframe->stack[i].spilled_ptr; 14464 } 14465 } 14466 return 0; 14467 } 14468 14469 /* Return true if it's OK to have the same insn return a different type. */ 14470 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 14471 { 14472 switch (base_type(type)) { 14473 case PTR_TO_CTX: 14474 case PTR_TO_SOCKET: 14475 case PTR_TO_SOCK_COMMON: 14476 case PTR_TO_TCP_SOCK: 14477 case PTR_TO_XDP_SOCK: 14478 case PTR_TO_BTF_ID: 14479 return false; 14480 default: 14481 return true; 14482 } 14483 } 14484 14485 /* If an instruction was previously used with particular pointer types, then we 14486 * need to be careful to avoid cases such as the below, where it may be ok 14487 * for one branch accessing the pointer, but not ok for the other branch: 14488 * 14489 * R1 = sock_ptr 14490 * goto X; 14491 * ... 14492 * R1 = some_other_valid_ptr; 14493 * goto X; 14494 * ... 14495 * R2 = *(u32 *)(R1 + 0); 14496 */ 14497 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 14498 { 14499 return src != prev && (!reg_type_mismatch_ok(src) || 14500 !reg_type_mismatch_ok(prev)); 14501 } 14502 14503 static int do_check(struct bpf_verifier_env *env) 14504 { 14505 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14506 struct bpf_verifier_state *state = env->cur_state; 14507 struct bpf_insn *insns = env->prog->insnsi; 14508 struct bpf_reg_state *regs; 14509 int insn_cnt = env->prog->len; 14510 bool do_print_state = false; 14511 int prev_insn_idx = -1; 14512 14513 for (;;) { 14514 struct bpf_insn *insn; 14515 u8 class; 14516 int err; 14517 14518 env->prev_insn_idx = prev_insn_idx; 14519 if (env->insn_idx >= insn_cnt) { 14520 verbose(env, "invalid insn idx %d insn_cnt %d\n", 14521 env->insn_idx, insn_cnt); 14522 return -EFAULT; 14523 } 14524 14525 insn = &insns[env->insn_idx]; 14526 class = BPF_CLASS(insn->code); 14527 14528 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 14529 verbose(env, 14530 "BPF program is too large. Processed %d insn\n", 14531 env->insn_processed); 14532 return -E2BIG; 14533 } 14534 14535 state->last_insn_idx = env->prev_insn_idx; 14536 14537 if (is_prune_point(env, env->insn_idx)) { 14538 err = is_state_visited(env, env->insn_idx); 14539 if (err < 0) 14540 return err; 14541 if (err == 1) { 14542 /* found equivalent state, can prune the search */ 14543 if (env->log.level & BPF_LOG_LEVEL) { 14544 if (do_print_state) 14545 verbose(env, "\nfrom %d to %d%s: safe\n", 14546 env->prev_insn_idx, env->insn_idx, 14547 env->cur_state->speculative ? 14548 " (speculative execution)" : ""); 14549 else 14550 verbose(env, "%d: safe\n", env->insn_idx); 14551 } 14552 goto process_bpf_exit; 14553 } 14554 } 14555 14556 if (is_jmp_point(env, env->insn_idx)) { 14557 err = push_jmp_history(env, state); 14558 if (err) 14559 return err; 14560 } 14561 14562 if (signal_pending(current)) 14563 return -EAGAIN; 14564 14565 if (need_resched()) 14566 cond_resched(); 14567 14568 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 14569 verbose(env, "\nfrom %d to %d%s:", 14570 env->prev_insn_idx, env->insn_idx, 14571 env->cur_state->speculative ? 14572 " (speculative execution)" : ""); 14573 print_verifier_state(env, state->frame[state->curframe], true); 14574 do_print_state = false; 14575 } 14576 14577 if (env->log.level & BPF_LOG_LEVEL) { 14578 const struct bpf_insn_cbs cbs = { 14579 .cb_call = disasm_kfunc_name, 14580 .cb_print = verbose, 14581 .private_data = env, 14582 }; 14583 14584 if (verifier_state_scratched(env)) 14585 print_insn_state(env, state->frame[state->curframe]); 14586 14587 verbose_linfo(env, env->insn_idx, "; "); 14588 env->prev_log_len = env->log.len_used; 14589 verbose(env, "%d: ", env->insn_idx); 14590 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 14591 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 14592 env->prev_log_len = env->log.len_used; 14593 } 14594 14595 if (bpf_prog_is_offloaded(env->prog->aux)) { 14596 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 14597 env->prev_insn_idx); 14598 if (err) 14599 return err; 14600 } 14601 14602 regs = cur_regs(env); 14603 sanitize_mark_insn_seen(env); 14604 prev_insn_idx = env->insn_idx; 14605 14606 if (class == BPF_ALU || class == BPF_ALU64) { 14607 err = check_alu_op(env, insn); 14608 if (err) 14609 return err; 14610 14611 } else if (class == BPF_LDX) { 14612 enum bpf_reg_type *prev_src_type, src_reg_type; 14613 14614 /* check for reserved fields is already done */ 14615 14616 /* check src operand */ 14617 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14618 if (err) 14619 return err; 14620 14621 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14622 if (err) 14623 return err; 14624 14625 src_reg_type = regs[insn->src_reg].type; 14626 14627 /* check that memory (src_reg + off) is readable, 14628 * the state of dst_reg will be updated by this func 14629 */ 14630 err = check_mem_access(env, env->insn_idx, insn->src_reg, 14631 insn->off, BPF_SIZE(insn->code), 14632 BPF_READ, insn->dst_reg, false); 14633 if (err) 14634 return err; 14635 14636 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 14637 14638 if (*prev_src_type == NOT_INIT) { 14639 /* saw a valid insn 14640 * dst_reg = *(u32 *)(src_reg + off) 14641 * save type to validate intersecting paths 14642 */ 14643 *prev_src_type = src_reg_type; 14644 14645 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 14646 /* ABuser program is trying to use the same insn 14647 * dst_reg = *(u32*) (src_reg + off) 14648 * with different pointer types: 14649 * src_reg == ctx in one branch and 14650 * src_reg == stack|map in some other branch. 14651 * Reject it. 14652 */ 14653 verbose(env, "same insn cannot be used with different pointers\n"); 14654 return -EINVAL; 14655 } 14656 14657 } else if (class == BPF_STX) { 14658 enum bpf_reg_type *prev_dst_type, dst_reg_type; 14659 14660 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 14661 err = check_atomic(env, env->insn_idx, insn); 14662 if (err) 14663 return err; 14664 env->insn_idx++; 14665 continue; 14666 } 14667 14668 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 14669 verbose(env, "BPF_STX uses reserved fields\n"); 14670 return -EINVAL; 14671 } 14672 14673 /* check src1 operand */ 14674 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14675 if (err) 14676 return err; 14677 /* check src2 operand */ 14678 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14679 if (err) 14680 return err; 14681 14682 dst_reg_type = regs[insn->dst_reg].type; 14683 14684 /* check that memory (dst_reg + off) is writeable */ 14685 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 14686 insn->off, BPF_SIZE(insn->code), 14687 BPF_WRITE, insn->src_reg, false); 14688 if (err) 14689 return err; 14690 14691 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 14692 14693 if (*prev_dst_type == NOT_INIT) { 14694 *prev_dst_type = dst_reg_type; 14695 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 14696 verbose(env, "same insn cannot be used with different pointers\n"); 14697 return -EINVAL; 14698 } 14699 14700 } else if (class == BPF_ST) { 14701 if (BPF_MODE(insn->code) != BPF_MEM || 14702 insn->src_reg != BPF_REG_0) { 14703 verbose(env, "BPF_ST uses reserved fields\n"); 14704 return -EINVAL; 14705 } 14706 /* check src operand */ 14707 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14708 if (err) 14709 return err; 14710 14711 if (is_ctx_reg(env, insn->dst_reg)) { 14712 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 14713 insn->dst_reg, 14714 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 14715 return -EACCES; 14716 } 14717 14718 /* check that memory (dst_reg + off) is writeable */ 14719 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 14720 insn->off, BPF_SIZE(insn->code), 14721 BPF_WRITE, -1, false); 14722 if (err) 14723 return err; 14724 14725 } else if (class == BPF_JMP || class == BPF_JMP32) { 14726 u8 opcode = BPF_OP(insn->code); 14727 14728 env->jmps_processed++; 14729 if (opcode == BPF_CALL) { 14730 if (BPF_SRC(insn->code) != BPF_K || 14731 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 14732 && insn->off != 0) || 14733 (insn->src_reg != BPF_REG_0 && 14734 insn->src_reg != BPF_PSEUDO_CALL && 14735 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 14736 insn->dst_reg != BPF_REG_0 || 14737 class == BPF_JMP32) { 14738 verbose(env, "BPF_CALL uses reserved fields\n"); 14739 return -EINVAL; 14740 } 14741 14742 if (env->cur_state->active_lock.ptr) { 14743 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 14744 (insn->src_reg == BPF_PSEUDO_CALL) || 14745 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 14746 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 14747 verbose(env, "function calls are not allowed while holding a lock\n"); 14748 return -EINVAL; 14749 } 14750 } 14751 if (insn->src_reg == BPF_PSEUDO_CALL) 14752 err = check_func_call(env, insn, &env->insn_idx); 14753 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 14754 err = check_kfunc_call(env, insn, &env->insn_idx); 14755 else 14756 err = check_helper_call(env, insn, &env->insn_idx); 14757 if (err) 14758 return err; 14759 } else if (opcode == BPF_JA) { 14760 if (BPF_SRC(insn->code) != BPF_K || 14761 insn->imm != 0 || 14762 insn->src_reg != BPF_REG_0 || 14763 insn->dst_reg != BPF_REG_0 || 14764 class == BPF_JMP32) { 14765 verbose(env, "BPF_JA uses reserved fields\n"); 14766 return -EINVAL; 14767 } 14768 14769 env->insn_idx += insn->off + 1; 14770 continue; 14771 14772 } else if (opcode == BPF_EXIT) { 14773 if (BPF_SRC(insn->code) != BPF_K || 14774 insn->imm != 0 || 14775 insn->src_reg != BPF_REG_0 || 14776 insn->dst_reg != BPF_REG_0 || 14777 class == BPF_JMP32) { 14778 verbose(env, "BPF_EXIT uses reserved fields\n"); 14779 return -EINVAL; 14780 } 14781 14782 if (env->cur_state->active_lock.ptr && 14783 !in_rbtree_lock_required_cb(env)) { 14784 verbose(env, "bpf_spin_unlock is missing\n"); 14785 return -EINVAL; 14786 } 14787 14788 if (env->cur_state->active_rcu_lock) { 14789 verbose(env, "bpf_rcu_read_unlock is missing\n"); 14790 return -EINVAL; 14791 } 14792 14793 /* We must do check_reference_leak here before 14794 * prepare_func_exit to handle the case when 14795 * state->curframe > 0, it may be a callback 14796 * function, for which reference_state must 14797 * match caller reference state when it exits. 14798 */ 14799 err = check_reference_leak(env); 14800 if (err) 14801 return err; 14802 14803 if (state->curframe) { 14804 /* exit from nested function */ 14805 err = prepare_func_exit(env, &env->insn_idx); 14806 if (err) 14807 return err; 14808 do_print_state = true; 14809 continue; 14810 } 14811 14812 err = check_return_code(env); 14813 if (err) 14814 return err; 14815 process_bpf_exit: 14816 mark_verifier_state_scratched(env); 14817 update_branch_counts(env, env->cur_state); 14818 err = pop_stack(env, &prev_insn_idx, 14819 &env->insn_idx, pop_log); 14820 if (err < 0) { 14821 if (err != -ENOENT) 14822 return err; 14823 break; 14824 } else { 14825 do_print_state = true; 14826 continue; 14827 } 14828 } else { 14829 err = check_cond_jmp_op(env, insn, &env->insn_idx); 14830 if (err) 14831 return err; 14832 } 14833 } else if (class == BPF_LD) { 14834 u8 mode = BPF_MODE(insn->code); 14835 14836 if (mode == BPF_ABS || mode == BPF_IND) { 14837 err = check_ld_abs(env, insn); 14838 if (err) 14839 return err; 14840 14841 } else if (mode == BPF_IMM) { 14842 err = check_ld_imm(env, insn); 14843 if (err) 14844 return err; 14845 14846 env->insn_idx++; 14847 sanitize_mark_insn_seen(env); 14848 } else { 14849 verbose(env, "invalid BPF_LD mode\n"); 14850 return -EINVAL; 14851 } 14852 } else { 14853 verbose(env, "unknown insn class %d\n", class); 14854 return -EINVAL; 14855 } 14856 14857 env->insn_idx++; 14858 } 14859 14860 return 0; 14861 } 14862 14863 static int find_btf_percpu_datasec(struct btf *btf) 14864 { 14865 const struct btf_type *t; 14866 const char *tname; 14867 int i, n; 14868 14869 /* 14870 * Both vmlinux and module each have their own ".data..percpu" 14871 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 14872 * types to look at only module's own BTF types. 14873 */ 14874 n = btf_nr_types(btf); 14875 if (btf_is_module(btf)) 14876 i = btf_nr_types(btf_vmlinux); 14877 else 14878 i = 1; 14879 14880 for(; i < n; i++) { 14881 t = btf_type_by_id(btf, i); 14882 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 14883 continue; 14884 14885 tname = btf_name_by_offset(btf, t->name_off); 14886 if (!strcmp(tname, ".data..percpu")) 14887 return i; 14888 } 14889 14890 return -ENOENT; 14891 } 14892 14893 /* replace pseudo btf_id with kernel symbol address */ 14894 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 14895 struct bpf_insn *insn, 14896 struct bpf_insn_aux_data *aux) 14897 { 14898 const struct btf_var_secinfo *vsi; 14899 const struct btf_type *datasec; 14900 struct btf_mod_pair *btf_mod; 14901 const struct btf_type *t; 14902 const char *sym_name; 14903 bool percpu = false; 14904 u32 type, id = insn->imm; 14905 struct btf *btf; 14906 s32 datasec_id; 14907 u64 addr; 14908 int i, btf_fd, err; 14909 14910 btf_fd = insn[1].imm; 14911 if (btf_fd) { 14912 btf = btf_get_by_fd(btf_fd); 14913 if (IS_ERR(btf)) { 14914 verbose(env, "invalid module BTF object FD specified.\n"); 14915 return -EINVAL; 14916 } 14917 } else { 14918 if (!btf_vmlinux) { 14919 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 14920 return -EINVAL; 14921 } 14922 btf = btf_vmlinux; 14923 btf_get(btf); 14924 } 14925 14926 t = btf_type_by_id(btf, id); 14927 if (!t) { 14928 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 14929 err = -ENOENT; 14930 goto err_put; 14931 } 14932 14933 if (!btf_type_is_var(t)) { 14934 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 14935 err = -EINVAL; 14936 goto err_put; 14937 } 14938 14939 sym_name = btf_name_by_offset(btf, t->name_off); 14940 addr = kallsyms_lookup_name(sym_name); 14941 if (!addr) { 14942 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 14943 sym_name); 14944 err = -ENOENT; 14945 goto err_put; 14946 } 14947 14948 datasec_id = find_btf_percpu_datasec(btf); 14949 if (datasec_id > 0) { 14950 datasec = btf_type_by_id(btf, datasec_id); 14951 for_each_vsi(i, datasec, vsi) { 14952 if (vsi->type == id) { 14953 percpu = true; 14954 break; 14955 } 14956 } 14957 } 14958 14959 insn[0].imm = (u32)addr; 14960 insn[1].imm = addr >> 32; 14961 14962 type = t->type; 14963 t = btf_type_skip_modifiers(btf, type, NULL); 14964 if (percpu) { 14965 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 14966 aux->btf_var.btf = btf; 14967 aux->btf_var.btf_id = type; 14968 } else if (!btf_type_is_struct(t)) { 14969 const struct btf_type *ret; 14970 const char *tname; 14971 u32 tsize; 14972 14973 /* resolve the type size of ksym. */ 14974 ret = btf_resolve_size(btf, t, &tsize); 14975 if (IS_ERR(ret)) { 14976 tname = btf_name_by_offset(btf, t->name_off); 14977 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 14978 tname, PTR_ERR(ret)); 14979 err = -EINVAL; 14980 goto err_put; 14981 } 14982 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 14983 aux->btf_var.mem_size = tsize; 14984 } else { 14985 aux->btf_var.reg_type = PTR_TO_BTF_ID; 14986 aux->btf_var.btf = btf; 14987 aux->btf_var.btf_id = type; 14988 } 14989 14990 /* check whether we recorded this BTF (and maybe module) already */ 14991 for (i = 0; i < env->used_btf_cnt; i++) { 14992 if (env->used_btfs[i].btf == btf) { 14993 btf_put(btf); 14994 return 0; 14995 } 14996 } 14997 14998 if (env->used_btf_cnt >= MAX_USED_BTFS) { 14999 err = -E2BIG; 15000 goto err_put; 15001 } 15002 15003 btf_mod = &env->used_btfs[env->used_btf_cnt]; 15004 btf_mod->btf = btf; 15005 btf_mod->module = NULL; 15006 15007 /* if we reference variables from kernel module, bump its refcount */ 15008 if (btf_is_module(btf)) { 15009 btf_mod->module = btf_try_get_module(btf); 15010 if (!btf_mod->module) { 15011 err = -ENXIO; 15012 goto err_put; 15013 } 15014 } 15015 15016 env->used_btf_cnt++; 15017 15018 return 0; 15019 err_put: 15020 btf_put(btf); 15021 return err; 15022 } 15023 15024 static bool is_tracing_prog_type(enum bpf_prog_type type) 15025 { 15026 switch (type) { 15027 case BPF_PROG_TYPE_KPROBE: 15028 case BPF_PROG_TYPE_TRACEPOINT: 15029 case BPF_PROG_TYPE_PERF_EVENT: 15030 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15031 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 15032 return true; 15033 default: 15034 return false; 15035 } 15036 } 15037 15038 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 15039 struct bpf_map *map, 15040 struct bpf_prog *prog) 15041 15042 { 15043 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15044 15045 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 15046 btf_record_has_field(map->record, BPF_RB_ROOT)) { 15047 if (is_tracing_prog_type(prog_type)) { 15048 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 15049 return -EINVAL; 15050 } 15051 } 15052 15053 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 15054 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 15055 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 15056 return -EINVAL; 15057 } 15058 15059 if (is_tracing_prog_type(prog_type)) { 15060 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 15061 return -EINVAL; 15062 } 15063 15064 if (prog->aux->sleepable) { 15065 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 15066 return -EINVAL; 15067 } 15068 } 15069 15070 if (btf_record_has_field(map->record, BPF_TIMER)) { 15071 if (is_tracing_prog_type(prog_type)) { 15072 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 15073 return -EINVAL; 15074 } 15075 } 15076 15077 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 15078 !bpf_offload_prog_map_match(prog, map)) { 15079 verbose(env, "offload device mismatch between prog and map\n"); 15080 return -EINVAL; 15081 } 15082 15083 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 15084 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 15085 return -EINVAL; 15086 } 15087 15088 if (prog->aux->sleepable) 15089 switch (map->map_type) { 15090 case BPF_MAP_TYPE_HASH: 15091 case BPF_MAP_TYPE_LRU_HASH: 15092 case BPF_MAP_TYPE_ARRAY: 15093 case BPF_MAP_TYPE_PERCPU_HASH: 15094 case BPF_MAP_TYPE_PERCPU_ARRAY: 15095 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 15096 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 15097 case BPF_MAP_TYPE_HASH_OF_MAPS: 15098 case BPF_MAP_TYPE_RINGBUF: 15099 case BPF_MAP_TYPE_USER_RINGBUF: 15100 case BPF_MAP_TYPE_INODE_STORAGE: 15101 case BPF_MAP_TYPE_SK_STORAGE: 15102 case BPF_MAP_TYPE_TASK_STORAGE: 15103 case BPF_MAP_TYPE_CGRP_STORAGE: 15104 break; 15105 default: 15106 verbose(env, 15107 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 15108 return -EINVAL; 15109 } 15110 15111 return 0; 15112 } 15113 15114 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 15115 { 15116 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 15117 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 15118 } 15119 15120 /* find and rewrite pseudo imm in ld_imm64 instructions: 15121 * 15122 * 1. if it accesses map FD, replace it with actual map pointer. 15123 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 15124 * 15125 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 15126 */ 15127 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 15128 { 15129 struct bpf_insn *insn = env->prog->insnsi; 15130 int insn_cnt = env->prog->len; 15131 int i, j, err; 15132 15133 err = bpf_prog_calc_tag(env->prog); 15134 if (err) 15135 return err; 15136 15137 for (i = 0; i < insn_cnt; i++, insn++) { 15138 if (BPF_CLASS(insn->code) == BPF_LDX && 15139 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 15140 verbose(env, "BPF_LDX uses reserved fields\n"); 15141 return -EINVAL; 15142 } 15143 15144 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 15145 struct bpf_insn_aux_data *aux; 15146 struct bpf_map *map; 15147 struct fd f; 15148 u64 addr; 15149 u32 fd; 15150 15151 if (i == insn_cnt - 1 || insn[1].code != 0 || 15152 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 15153 insn[1].off != 0) { 15154 verbose(env, "invalid bpf_ld_imm64 insn\n"); 15155 return -EINVAL; 15156 } 15157 15158 if (insn[0].src_reg == 0) 15159 /* valid generic load 64-bit imm */ 15160 goto next_insn; 15161 15162 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 15163 aux = &env->insn_aux_data[i]; 15164 err = check_pseudo_btf_id(env, insn, aux); 15165 if (err) 15166 return err; 15167 goto next_insn; 15168 } 15169 15170 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 15171 aux = &env->insn_aux_data[i]; 15172 aux->ptr_type = PTR_TO_FUNC; 15173 goto next_insn; 15174 } 15175 15176 /* In final convert_pseudo_ld_imm64() step, this is 15177 * converted into regular 64-bit imm load insn. 15178 */ 15179 switch (insn[0].src_reg) { 15180 case BPF_PSEUDO_MAP_VALUE: 15181 case BPF_PSEUDO_MAP_IDX_VALUE: 15182 break; 15183 case BPF_PSEUDO_MAP_FD: 15184 case BPF_PSEUDO_MAP_IDX: 15185 if (insn[1].imm == 0) 15186 break; 15187 fallthrough; 15188 default: 15189 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 15190 return -EINVAL; 15191 } 15192 15193 switch (insn[0].src_reg) { 15194 case BPF_PSEUDO_MAP_IDX_VALUE: 15195 case BPF_PSEUDO_MAP_IDX: 15196 if (bpfptr_is_null(env->fd_array)) { 15197 verbose(env, "fd_idx without fd_array is invalid\n"); 15198 return -EPROTO; 15199 } 15200 if (copy_from_bpfptr_offset(&fd, env->fd_array, 15201 insn[0].imm * sizeof(fd), 15202 sizeof(fd))) 15203 return -EFAULT; 15204 break; 15205 default: 15206 fd = insn[0].imm; 15207 break; 15208 } 15209 15210 f = fdget(fd); 15211 map = __bpf_map_get(f); 15212 if (IS_ERR(map)) { 15213 verbose(env, "fd %d is not pointing to valid bpf_map\n", 15214 insn[0].imm); 15215 return PTR_ERR(map); 15216 } 15217 15218 err = check_map_prog_compatibility(env, map, env->prog); 15219 if (err) { 15220 fdput(f); 15221 return err; 15222 } 15223 15224 aux = &env->insn_aux_data[i]; 15225 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 15226 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 15227 addr = (unsigned long)map; 15228 } else { 15229 u32 off = insn[1].imm; 15230 15231 if (off >= BPF_MAX_VAR_OFF) { 15232 verbose(env, "direct value offset of %u is not allowed\n", off); 15233 fdput(f); 15234 return -EINVAL; 15235 } 15236 15237 if (!map->ops->map_direct_value_addr) { 15238 verbose(env, "no direct value access support for this map type\n"); 15239 fdput(f); 15240 return -EINVAL; 15241 } 15242 15243 err = map->ops->map_direct_value_addr(map, &addr, off); 15244 if (err) { 15245 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 15246 map->value_size, off); 15247 fdput(f); 15248 return err; 15249 } 15250 15251 aux->map_off = off; 15252 addr += off; 15253 } 15254 15255 insn[0].imm = (u32)addr; 15256 insn[1].imm = addr >> 32; 15257 15258 /* check whether we recorded this map already */ 15259 for (j = 0; j < env->used_map_cnt; j++) { 15260 if (env->used_maps[j] == map) { 15261 aux->map_index = j; 15262 fdput(f); 15263 goto next_insn; 15264 } 15265 } 15266 15267 if (env->used_map_cnt >= MAX_USED_MAPS) { 15268 fdput(f); 15269 return -E2BIG; 15270 } 15271 15272 /* hold the map. If the program is rejected by verifier, 15273 * the map will be released by release_maps() or it 15274 * will be used by the valid program until it's unloaded 15275 * and all maps are released in free_used_maps() 15276 */ 15277 bpf_map_inc(map); 15278 15279 aux->map_index = env->used_map_cnt; 15280 env->used_maps[env->used_map_cnt++] = map; 15281 15282 if (bpf_map_is_cgroup_storage(map) && 15283 bpf_cgroup_storage_assign(env->prog->aux, map)) { 15284 verbose(env, "only one cgroup storage of each type is allowed\n"); 15285 fdput(f); 15286 return -EBUSY; 15287 } 15288 15289 fdput(f); 15290 next_insn: 15291 insn++; 15292 i++; 15293 continue; 15294 } 15295 15296 /* Basic sanity check before we invest more work here. */ 15297 if (!bpf_opcode_in_insntable(insn->code)) { 15298 verbose(env, "unknown opcode %02x\n", insn->code); 15299 return -EINVAL; 15300 } 15301 } 15302 15303 /* now all pseudo BPF_LD_IMM64 instructions load valid 15304 * 'struct bpf_map *' into a register instead of user map_fd. 15305 * These pointers will be used later by verifier to validate map access. 15306 */ 15307 return 0; 15308 } 15309 15310 /* drop refcnt of maps used by the rejected program */ 15311 static void release_maps(struct bpf_verifier_env *env) 15312 { 15313 __bpf_free_used_maps(env->prog->aux, env->used_maps, 15314 env->used_map_cnt); 15315 } 15316 15317 /* drop refcnt of maps used by the rejected program */ 15318 static void release_btfs(struct bpf_verifier_env *env) 15319 { 15320 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 15321 env->used_btf_cnt); 15322 } 15323 15324 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 15325 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 15326 { 15327 struct bpf_insn *insn = env->prog->insnsi; 15328 int insn_cnt = env->prog->len; 15329 int i; 15330 15331 for (i = 0; i < insn_cnt; i++, insn++) { 15332 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 15333 continue; 15334 if (insn->src_reg == BPF_PSEUDO_FUNC) 15335 continue; 15336 insn->src_reg = 0; 15337 } 15338 } 15339 15340 /* single env->prog->insni[off] instruction was replaced with the range 15341 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 15342 * [0, off) and [off, end) to new locations, so the patched range stays zero 15343 */ 15344 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 15345 struct bpf_insn_aux_data *new_data, 15346 struct bpf_prog *new_prog, u32 off, u32 cnt) 15347 { 15348 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 15349 struct bpf_insn *insn = new_prog->insnsi; 15350 u32 old_seen = old_data[off].seen; 15351 u32 prog_len; 15352 int i; 15353 15354 /* aux info at OFF always needs adjustment, no matter fast path 15355 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 15356 * original insn at old prog. 15357 */ 15358 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 15359 15360 if (cnt == 1) 15361 return; 15362 prog_len = new_prog->len; 15363 15364 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 15365 memcpy(new_data + off + cnt - 1, old_data + off, 15366 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 15367 for (i = off; i < off + cnt - 1; i++) { 15368 /* Expand insni[off]'s seen count to the patched range. */ 15369 new_data[i].seen = old_seen; 15370 new_data[i].zext_dst = insn_has_def32(env, insn + i); 15371 } 15372 env->insn_aux_data = new_data; 15373 vfree(old_data); 15374 } 15375 15376 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 15377 { 15378 int i; 15379 15380 if (len == 1) 15381 return; 15382 /* NOTE: fake 'exit' subprog should be updated as well. */ 15383 for (i = 0; i <= env->subprog_cnt; i++) { 15384 if (env->subprog_info[i].start <= off) 15385 continue; 15386 env->subprog_info[i].start += len - 1; 15387 } 15388 } 15389 15390 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 15391 { 15392 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 15393 int i, sz = prog->aux->size_poke_tab; 15394 struct bpf_jit_poke_descriptor *desc; 15395 15396 for (i = 0; i < sz; i++) { 15397 desc = &tab[i]; 15398 if (desc->insn_idx <= off) 15399 continue; 15400 desc->insn_idx += len - 1; 15401 } 15402 } 15403 15404 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 15405 const struct bpf_insn *patch, u32 len) 15406 { 15407 struct bpf_prog *new_prog; 15408 struct bpf_insn_aux_data *new_data = NULL; 15409 15410 if (len > 1) { 15411 new_data = vzalloc(array_size(env->prog->len + len - 1, 15412 sizeof(struct bpf_insn_aux_data))); 15413 if (!new_data) 15414 return NULL; 15415 } 15416 15417 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 15418 if (IS_ERR(new_prog)) { 15419 if (PTR_ERR(new_prog) == -ERANGE) 15420 verbose(env, 15421 "insn %d cannot be patched due to 16-bit range\n", 15422 env->insn_aux_data[off].orig_idx); 15423 vfree(new_data); 15424 return NULL; 15425 } 15426 adjust_insn_aux_data(env, new_data, new_prog, off, len); 15427 adjust_subprog_starts(env, off, len); 15428 adjust_poke_descs(new_prog, off, len); 15429 return new_prog; 15430 } 15431 15432 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 15433 u32 off, u32 cnt) 15434 { 15435 int i, j; 15436 15437 /* find first prog starting at or after off (first to remove) */ 15438 for (i = 0; i < env->subprog_cnt; i++) 15439 if (env->subprog_info[i].start >= off) 15440 break; 15441 /* find first prog starting at or after off + cnt (first to stay) */ 15442 for (j = i; j < env->subprog_cnt; j++) 15443 if (env->subprog_info[j].start >= off + cnt) 15444 break; 15445 /* if j doesn't start exactly at off + cnt, we are just removing 15446 * the front of previous prog 15447 */ 15448 if (env->subprog_info[j].start != off + cnt) 15449 j--; 15450 15451 if (j > i) { 15452 struct bpf_prog_aux *aux = env->prog->aux; 15453 int move; 15454 15455 /* move fake 'exit' subprog as well */ 15456 move = env->subprog_cnt + 1 - j; 15457 15458 memmove(env->subprog_info + i, 15459 env->subprog_info + j, 15460 sizeof(*env->subprog_info) * move); 15461 env->subprog_cnt -= j - i; 15462 15463 /* remove func_info */ 15464 if (aux->func_info) { 15465 move = aux->func_info_cnt - j; 15466 15467 memmove(aux->func_info + i, 15468 aux->func_info + j, 15469 sizeof(*aux->func_info) * move); 15470 aux->func_info_cnt -= j - i; 15471 /* func_info->insn_off is set after all code rewrites, 15472 * in adjust_btf_func() - no need to adjust 15473 */ 15474 } 15475 } else { 15476 /* convert i from "first prog to remove" to "first to adjust" */ 15477 if (env->subprog_info[i].start == off) 15478 i++; 15479 } 15480 15481 /* update fake 'exit' subprog as well */ 15482 for (; i <= env->subprog_cnt; i++) 15483 env->subprog_info[i].start -= cnt; 15484 15485 return 0; 15486 } 15487 15488 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 15489 u32 cnt) 15490 { 15491 struct bpf_prog *prog = env->prog; 15492 u32 i, l_off, l_cnt, nr_linfo; 15493 struct bpf_line_info *linfo; 15494 15495 nr_linfo = prog->aux->nr_linfo; 15496 if (!nr_linfo) 15497 return 0; 15498 15499 linfo = prog->aux->linfo; 15500 15501 /* find first line info to remove, count lines to be removed */ 15502 for (i = 0; i < nr_linfo; i++) 15503 if (linfo[i].insn_off >= off) 15504 break; 15505 15506 l_off = i; 15507 l_cnt = 0; 15508 for (; i < nr_linfo; i++) 15509 if (linfo[i].insn_off < off + cnt) 15510 l_cnt++; 15511 else 15512 break; 15513 15514 /* First live insn doesn't match first live linfo, it needs to "inherit" 15515 * last removed linfo. prog is already modified, so prog->len == off 15516 * means no live instructions after (tail of the program was removed). 15517 */ 15518 if (prog->len != off && l_cnt && 15519 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 15520 l_cnt--; 15521 linfo[--i].insn_off = off + cnt; 15522 } 15523 15524 /* remove the line info which refer to the removed instructions */ 15525 if (l_cnt) { 15526 memmove(linfo + l_off, linfo + i, 15527 sizeof(*linfo) * (nr_linfo - i)); 15528 15529 prog->aux->nr_linfo -= l_cnt; 15530 nr_linfo = prog->aux->nr_linfo; 15531 } 15532 15533 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 15534 for (i = l_off; i < nr_linfo; i++) 15535 linfo[i].insn_off -= cnt; 15536 15537 /* fix up all subprogs (incl. 'exit') which start >= off */ 15538 for (i = 0; i <= env->subprog_cnt; i++) 15539 if (env->subprog_info[i].linfo_idx > l_off) { 15540 /* program may have started in the removed region but 15541 * may not be fully removed 15542 */ 15543 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 15544 env->subprog_info[i].linfo_idx -= l_cnt; 15545 else 15546 env->subprog_info[i].linfo_idx = l_off; 15547 } 15548 15549 return 0; 15550 } 15551 15552 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 15553 { 15554 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15555 unsigned int orig_prog_len = env->prog->len; 15556 int err; 15557 15558 if (bpf_prog_is_offloaded(env->prog->aux)) 15559 bpf_prog_offload_remove_insns(env, off, cnt); 15560 15561 err = bpf_remove_insns(env->prog, off, cnt); 15562 if (err) 15563 return err; 15564 15565 err = adjust_subprog_starts_after_remove(env, off, cnt); 15566 if (err) 15567 return err; 15568 15569 err = bpf_adj_linfo_after_remove(env, off, cnt); 15570 if (err) 15571 return err; 15572 15573 memmove(aux_data + off, aux_data + off + cnt, 15574 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 15575 15576 return 0; 15577 } 15578 15579 /* The verifier does more data flow analysis than llvm and will not 15580 * explore branches that are dead at run time. Malicious programs can 15581 * have dead code too. Therefore replace all dead at-run-time code 15582 * with 'ja -1'. 15583 * 15584 * Just nops are not optimal, e.g. if they would sit at the end of the 15585 * program and through another bug we would manage to jump there, then 15586 * we'd execute beyond program memory otherwise. Returning exception 15587 * code also wouldn't work since we can have subprogs where the dead 15588 * code could be located. 15589 */ 15590 static void sanitize_dead_code(struct bpf_verifier_env *env) 15591 { 15592 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15593 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 15594 struct bpf_insn *insn = env->prog->insnsi; 15595 const int insn_cnt = env->prog->len; 15596 int i; 15597 15598 for (i = 0; i < insn_cnt; i++) { 15599 if (aux_data[i].seen) 15600 continue; 15601 memcpy(insn + i, &trap, sizeof(trap)); 15602 aux_data[i].zext_dst = false; 15603 } 15604 } 15605 15606 static bool insn_is_cond_jump(u8 code) 15607 { 15608 u8 op; 15609 15610 if (BPF_CLASS(code) == BPF_JMP32) 15611 return true; 15612 15613 if (BPF_CLASS(code) != BPF_JMP) 15614 return false; 15615 15616 op = BPF_OP(code); 15617 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 15618 } 15619 15620 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 15621 { 15622 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15623 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 15624 struct bpf_insn *insn = env->prog->insnsi; 15625 const int insn_cnt = env->prog->len; 15626 int i; 15627 15628 for (i = 0; i < insn_cnt; i++, insn++) { 15629 if (!insn_is_cond_jump(insn->code)) 15630 continue; 15631 15632 if (!aux_data[i + 1].seen) 15633 ja.off = insn->off; 15634 else if (!aux_data[i + 1 + insn->off].seen) 15635 ja.off = 0; 15636 else 15637 continue; 15638 15639 if (bpf_prog_is_offloaded(env->prog->aux)) 15640 bpf_prog_offload_replace_insn(env, i, &ja); 15641 15642 memcpy(insn, &ja, sizeof(ja)); 15643 } 15644 } 15645 15646 static int opt_remove_dead_code(struct bpf_verifier_env *env) 15647 { 15648 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15649 int insn_cnt = env->prog->len; 15650 int i, err; 15651 15652 for (i = 0; i < insn_cnt; i++) { 15653 int j; 15654 15655 j = 0; 15656 while (i + j < insn_cnt && !aux_data[i + j].seen) 15657 j++; 15658 if (!j) 15659 continue; 15660 15661 err = verifier_remove_insns(env, i, j); 15662 if (err) 15663 return err; 15664 insn_cnt = env->prog->len; 15665 } 15666 15667 return 0; 15668 } 15669 15670 static int opt_remove_nops(struct bpf_verifier_env *env) 15671 { 15672 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 15673 struct bpf_insn *insn = env->prog->insnsi; 15674 int insn_cnt = env->prog->len; 15675 int i, err; 15676 15677 for (i = 0; i < insn_cnt; i++) { 15678 if (memcmp(&insn[i], &ja, sizeof(ja))) 15679 continue; 15680 15681 err = verifier_remove_insns(env, i, 1); 15682 if (err) 15683 return err; 15684 insn_cnt--; 15685 i--; 15686 } 15687 15688 return 0; 15689 } 15690 15691 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 15692 const union bpf_attr *attr) 15693 { 15694 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 15695 struct bpf_insn_aux_data *aux = env->insn_aux_data; 15696 int i, patch_len, delta = 0, len = env->prog->len; 15697 struct bpf_insn *insns = env->prog->insnsi; 15698 struct bpf_prog *new_prog; 15699 bool rnd_hi32; 15700 15701 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 15702 zext_patch[1] = BPF_ZEXT_REG(0); 15703 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 15704 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 15705 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 15706 for (i = 0; i < len; i++) { 15707 int adj_idx = i + delta; 15708 struct bpf_insn insn; 15709 int load_reg; 15710 15711 insn = insns[adj_idx]; 15712 load_reg = insn_def_regno(&insn); 15713 if (!aux[adj_idx].zext_dst) { 15714 u8 code, class; 15715 u32 imm_rnd; 15716 15717 if (!rnd_hi32) 15718 continue; 15719 15720 code = insn.code; 15721 class = BPF_CLASS(code); 15722 if (load_reg == -1) 15723 continue; 15724 15725 /* NOTE: arg "reg" (the fourth one) is only used for 15726 * BPF_STX + SRC_OP, so it is safe to pass NULL 15727 * here. 15728 */ 15729 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 15730 if (class == BPF_LD && 15731 BPF_MODE(code) == BPF_IMM) 15732 i++; 15733 continue; 15734 } 15735 15736 /* ctx load could be transformed into wider load. */ 15737 if (class == BPF_LDX && 15738 aux[adj_idx].ptr_type == PTR_TO_CTX) 15739 continue; 15740 15741 imm_rnd = get_random_u32(); 15742 rnd_hi32_patch[0] = insn; 15743 rnd_hi32_patch[1].imm = imm_rnd; 15744 rnd_hi32_patch[3].dst_reg = load_reg; 15745 patch = rnd_hi32_patch; 15746 patch_len = 4; 15747 goto apply_patch_buffer; 15748 } 15749 15750 /* Add in an zero-extend instruction if a) the JIT has requested 15751 * it or b) it's a CMPXCHG. 15752 * 15753 * The latter is because: BPF_CMPXCHG always loads a value into 15754 * R0, therefore always zero-extends. However some archs' 15755 * equivalent instruction only does this load when the 15756 * comparison is successful. This detail of CMPXCHG is 15757 * orthogonal to the general zero-extension behaviour of the 15758 * CPU, so it's treated independently of bpf_jit_needs_zext. 15759 */ 15760 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 15761 continue; 15762 15763 /* Zero-extension is done by the caller. */ 15764 if (bpf_pseudo_kfunc_call(&insn)) 15765 continue; 15766 15767 if (WARN_ON(load_reg == -1)) { 15768 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 15769 return -EFAULT; 15770 } 15771 15772 zext_patch[0] = insn; 15773 zext_patch[1].dst_reg = load_reg; 15774 zext_patch[1].src_reg = load_reg; 15775 patch = zext_patch; 15776 patch_len = 2; 15777 apply_patch_buffer: 15778 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 15779 if (!new_prog) 15780 return -ENOMEM; 15781 env->prog = new_prog; 15782 insns = new_prog->insnsi; 15783 aux = env->insn_aux_data; 15784 delta += patch_len - 1; 15785 } 15786 15787 return 0; 15788 } 15789 15790 /* convert load instructions that access fields of a context type into a 15791 * sequence of instructions that access fields of the underlying structure: 15792 * struct __sk_buff -> struct sk_buff 15793 * struct bpf_sock_ops -> struct sock 15794 */ 15795 static int convert_ctx_accesses(struct bpf_verifier_env *env) 15796 { 15797 const struct bpf_verifier_ops *ops = env->ops; 15798 int i, cnt, size, ctx_field_size, delta = 0; 15799 const int insn_cnt = env->prog->len; 15800 struct bpf_insn insn_buf[16], *insn; 15801 u32 target_size, size_default, off; 15802 struct bpf_prog *new_prog; 15803 enum bpf_access_type type; 15804 bool is_narrower_load; 15805 15806 if (ops->gen_prologue || env->seen_direct_write) { 15807 if (!ops->gen_prologue) { 15808 verbose(env, "bpf verifier is misconfigured\n"); 15809 return -EINVAL; 15810 } 15811 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 15812 env->prog); 15813 if (cnt >= ARRAY_SIZE(insn_buf)) { 15814 verbose(env, "bpf verifier is misconfigured\n"); 15815 return -EINVAL; 15816 } else if (cnt) { 15817 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 15818 if (!new_prog) 15819 return -ENOMEM; 15820 15821 env->prog = new_prog; 15822 delta += cnt - 1; 15823 } 15824 } 15825 15826 if (bpf_prog_is_offloaded(env->prog->aux)) 15827 return 0; 15828 15829 insn = env->prog->insnsi + delta; 15830 15831 for (i = 0; i < insn_cnt; i++, insn++) { 15832 bpf_convert_ctx_access_t convert_ctx_access; 15833 bool ctx_access; 15834 15835 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 15836 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 15837 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 15838 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 15839 type = BPF_READ; 15840 ctx_access = true; 15841 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 15842 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 15843 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 15844 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 15845 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 15846 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 15847 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 15848 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 15849 type = BPF_WRITE; 15850 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 15851 } else { 15852 continue; 15853 } 15854 15855 if (type == BPF_WRITE && 15856 env->insn_aux_data[i + delta].sanitize_stack_spill) { 15857 struct bpf_insn patch[] = { 15858 *insn, 15859 BPF_ST_NOSPEC(), 15860 }; 15861 15862 cnt = ARRAY_SIZE(patch); 15863 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 15864 if (!new_prog) 15865 return -ENOMEM; 15866 15867 delta += cnt - 1; 15868 env->prog = new_prog; 15869 insn = new_prog->insnsi + i + delta; 15870 continue; 15871 } 15872 15873 if (!ctx_access) 15874 continue; 15875 15876 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 15877 case PTR_TO_CTX: 15878 if (!ops->convert_ctx_access) 15879 continue; 15880 convert_ctx_access = ops->convert_ctx_access; 15881 break; 15882 case PTR_TO_SOCKET: 15883 case PTR_TO_SOCK_COMMON: 15884 convert_ctx_access = bpf_sock_convert_ctx_access; 15885 break; 15886 case PTR_TO_TCP_SOCK: 15887 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 15888 break; 15889 case PTR_TO_XDP_SOCK: 15890 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 15891 break; 15892 case PTR_TO_BTF_ID: 15893 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 15894 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 15895 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 15896 * be said once it is marked PTR_UNTRUSTED, hence we must handle 15897 * any faults for loads into such types. BPF_WRITE is disallowed 15898 * for this case. 15899 */ 15900 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 15901 if (type == BPF_READ) { 15902 insn->code = BPF_LDX | BPF_PROBE_MEM | 15903 BPF_SIZE((insn)->code); 15904 env->prog->aux->num_exentries++; 15905 } 15906 continue; 15907 default: 15908 continue; 15909 } 15910 15911 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 15912 size = BPF_LDST_BYTES(insn); 15913 15914 /* If the read access is a narrower load of the field, 15915 * convert to a 4/8-byte load, to minimum program type specific 15916 * convert_ctx_access changes. If conversion is successful, 15917 * we will apply proper mask to the result. 15918 */ 15919 is_narrower_load = size < ctx_field_size; 15920 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 15921 off = insn->off; 15922 if (is_narrower_load) { 15923 u8 size_code; 15924 15925 if (type == BPF_WRITE) { 15926 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 15927 return -EINVAL; 15928 } 15929 15930 size_code = BPF_H; 15931 if (ctx_field_size == 4) 15932 size_code = BPF_W; 15933 else if (ctx_field_size == 8) 15934 size_code = BPF_DW; 15935 15936 insn->off = off & ~(size_default - 1); 15937 insn->code = BPF_LDX | BPF_MEM | size_code; 15938 } 15939 15940 target_size = 0; 15941 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 15942 &target_size); 15943 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 15944 (ctx_field_size && !target_size)) { 15945 verbose(env, "bpf verifier is misconfigured\n"); 15946 return -EINVAL; 15947 } 15948 15949 if (is_narrower_load && size < target_size) { 15950 u8 shift = bpf_ctx_narrow_access_offset( 15951 off, size, size_default) * 8; 15952 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 15953 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 15954 return -EINVAL; 15955 } 15956 if (ctx_field_size <= 4) { 15957 if (shift) 15958 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 15959 insn->dst_reg, 15960 shift); 15961 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 15962 (1 << size * 8) - 1); 15963 } else { 15964 if (shift) 15965 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 15966 insn->dst_reg, 15967 shift); 15968 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 15969 (1ULL << size * 8) - 1); 15970 } 15971 } 15972 15973 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15974 if (!new_prog) 15975 return -ENOMEM; 15976 15977 delta += cnt - 1; 15978 15979 /* keep walking new program and skip insns we just inserted */ 15980 env->prog = new_prog; 15981 insn = new_prog->insnsi + i + delta; 15982 } 15983 15984 return 0; 15985 } 15986 15987 static int jit_subprogs(struct bpf_verifier_env *env) 15988 { 15989 struct bpf_prog *prog = env->prog, **func, *tmp; 15990 int i, j, subprog_start, subprog_end = 0, len, subprog; 15991 struct bpf_map *map_ptr; 15992 struct bpf_insn *insn; 15993 void *old_bpf_func; 15994 int err, num_exentries; 15995 15996 if (env->subprog_cnt <= 1) 15997 return 0; 15998 15999 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16000 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 16001 continue; 16002 16003 /* Upon error here we cannot fall back to interpreter but 16004 * need a hard reject of the program. Thus -EFAULT is 16005 * propagated in any case. 16006 */ 16007 subprog = find_subprog(env, i + insn->imm + 1); 16008 if (subprog < 0) { 16009 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 16010 i + insn->imm + 1); 16011 return -EFAULT; 16012 } 16013 /* temporarily remember subprog id inside insn instead of 16014 * aux_data, since next loop will split up all insns into funcs 16015 */ 16016 insn->off = subprog; 16017 /* remember original imm in case JIT fails and fallback 16018 * to interpreter will be needed 16019 */ 16020 env->insn_aux_data[i].call_imm = insn->imm; 16021 /* point imm to __bpf_call_base+1 from JITs point of view */ 16022 insn->imm = 1; 16023 if (bpf_pseudo_func(insn)) 16024 /* jit (e.g. x86_64) may emit fewer instructions 16025 * if it learns a u32 imm is the same as a u64 imm. 16026 * Force a non zero here. 16027 */ 16028 insn[1].imm = 1; 16029 } 16030 16031 err = bpf_prog_alloc_jited_linfo(prog); 16032 if (err) 16033 goto out_undo_insn; 16034 16035 err = -ENOMEM; 16036 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 16037 if (!func) 16038 goto out_undo_insn; 16039 16040 for (i = 0; i < env->subprog_cnt; i++) { 16041 subprog_start = subprog_end; 16042 subprog_end = env->subprog_info[i + 1].start; 16043 16044 len = subprog_end - subprog_start; 16045 /* bpf_prog_run() doesn't call subprogs directly, 16046 * hence main prog stats include the runtime of subprogs. 16047 * subprogs don't have IDs and not reachable via prog_get_next_id 16048 * func[i]->stats will never be accessed and stays NULL 16049 */ 16050 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 16051 if (!func[i]) 16052 goto out_free; 16053 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 16054 len * sizeof(struct bpf_insn)); 16055 func[i]->type = prog->type; 16056 func[i]->len = len; 16057 if (bpf_prog_calc_tag(func[i])) 16058 goto out_free; 16059 func[i]->is_func = 1; 16060 func[i]->aux->func_idx = i; 16061 /* Below members will be freed only at prog->aux */ 16062 func[i]->aux->btf = prog->aux->btf; 16063 func[i]->aux->func_info = prog->aux->func_info; 16064 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 16065 func[i]->aux->poke_tab = prog->aux->poke_tab; 16066 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 16067 16068 for (j = 0; j < prog->aux->size_poke_tab; j++) { 16069 struct bpf_jit_poke_descriptor *poke; 16070 16071 poke = &prog->aux->poke_tab[j]; 16072 if (poke->insn_idx < subprog_end && 16073 poke->insn_idx >= subprog_start) 16074 poke->aux = func[i]->aux; 16075 } 16076 16077 func[i]->aux->name[0] = 'F'; 16078 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 16079 func[i]->jit_requested = 1; 16080 func[i]->blinding_requested = prog->blinding_requested; 16081 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 16082 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 16083 func[i]->aux->linfo = prog->aux->linfo; 16084 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 16085 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 16086 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 16087 num_exentries = 0; 16088 insn = func[i]->insnsi; 16089 for (j = 0; j < func[i]->len; j++, insn++) { 16090 if (BPF_CLASS(insn->code) == BPF_LDX && 16091 BPF_MODE(insn->code) == BPF_PROBE_MEM) 16092 num_exentries++; 16093 } 16094 func[i]->aux->num_exentries = num_exentries; 16095 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 16096 func[i] = bpf_int_jit_compile(func[i]); 16097 if (!func[i]->jited) { 16098 err = -ENOTSUPP; 16099 goto out_free; 16100 } 16101 cond_resched(); 16102 } 16103 16104 /* at this point all bpf functions were successfully JITed 16105 * now populate all bpf_calls with correct addresses and 16106 * run last pass of JIT 16107 */ 16108 for (i = 0; i < env->subprog_cnt; i++) { 16109 insn = func[i]->insnsi; 16110 for (j = 0; j < func[i]->len; j++, insn++) { 16111 if (bpf_pseudo_func(insn)) { 16112 subprog = insn->off; 16113 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 16114 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 16115 continue; 16116 } 16117 if (!bpf_pseudo_call(insn)) 16118 continue; 16119 subprog = insn->off; 16120 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 16121 } 16122 16123 /* we use the aux data to keep a list of the start addresses 16124 * of the JITed images for each function in the program 16125 * 16126 * for some architectures, such as powerpc64, the imm field 16127 * might not be large enough to hold the offset of the start 16128 * address of the callee's JITed image from __bpf_call_base 16129 * 16130 * in such cases, we can lookup the start address of a callee 16131 * by using its subprog id, available from the off field of 16132 * the call instruction, as an index for this list 16133 */ 16134 func[i]->aux->func = func; 16135 func[i]->aux->func_cnt = env->subprog_cnt; 16136 } 16137 for (i = 0; i < env->subprog_cnt; i++) { 16138 old_bpf_func = func[i]->bpf_func; 16139 tmp = bpf_int_jit_compile(func[i]); 16140 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 16141 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 16142 err = -ENOTSUPP; 16143 goto out_free; 16144 } 16145 cond_resched(); 16146 } 16147 16148 /* finally lock prog and jit images for all functions and 16149 * populate kallsysm 16150 */ 16151 for (i = 0; i < env->subprog_cnt; i++) { 16152 bpf_prog_lock_ro(func[i]); 16153 bpf_prog_kallsyms_add(func[i]); 16154 } 16155 16156 /* Last step: make now unused interpreter insns from main 16157 * prog consistent for later dump requests, so they can 16158 * later look the same as if they were interpreted only. 16159 */ 16160 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16161 if (bpf_pseudo_func(insn)) { 16162 insn[0].imm = env->insn_aux_data[i].call_imm; 16163 insn[1].imm = insn->off; 16164 insn->off = 0; 16165 continue; 16166 } 16167 if (!bpf_pseudo_call(insn)) 16168 continue; 16169 insn->off = env->insn_aux_data[i].call_imm; 16170 subprog = find_subprog(env, i + insn->off + 1); 16171 insn->imm = subprog; 16172 } 16173 16174 prog->jited = 1; 16175 prog->bpf_func = func[0]->bpf_func; 16176 prog->jited_len = func[0]->jited_len; 16177 prog->aux->func = func; 16178 prog->aux->func_cnt = env->subprog_cnt; 16179 bpf_prog_jit_attempt_done(prog); 16180 return 0; 16181 out_free: 16182 /* We failed JIT'ing, so at this point we need to unregister poke 16183 * descriptors from subprogs, so that kernel is not attempting to 16184 * patch it anymore as we're freeing the subprog JIT memory. 16185 */ 16186 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16187 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16188 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 16189 } 16190 /* At this point we're guaranteed that poke descriptors are not 16191 * live anymore. We can just unlink its descriptor table as it's 16192 * released with the main prog. 16193 */ 16194 for (i = 0; i < env->subprog_cnt; i++) { 16195 if (!func[i]) 16196 continue; 16197 func[i]->aux->poke_tab = NULL; 16198 bpf_jit_free(func[i]); 16199 } 16200 kfree(func); 16201 out_undo_insn: 16202 /* cleanup main prog to be interpreted */ 16203 prog->jit_requested = 0; 16204 prog->blinding_requested = 0; 16205 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16206 if (!bpf_pseudo_call(insn)) 16207 continue; 16208 insn->off = 0; 16209 insn->imm = env->insn_aux_data[i].call_imm; 16210 } 16211 bpf_prog_jit_attempt_done(prog); 16212 return err; 16213 } 16214 16215 static int fixup_call_args(struct bpf_verifier_env *env) 16216 { 16217 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16218 struct bpf_prog *prog = env->prog; 16219 struct bpf_insn *insn = prog->insnsi; 16220 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 16221 int i, depth; 16222 #endif 16223 int err = 0; 16224 16225 if (env->prog->jit_requested && 16226 !bpf_prog_is_offloaded(env->prog->aux)) { 16227 err = jit_subprogs(env); 16228 if (err == 0) 16229 return 0; 16230 if (err == -EFAULT) 16231 return err; 16232 } 16233 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16234 if (has_kfunc_call) { 16235 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 16236 return -EINVAL; 16237 } 16238 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 16239 /* When JIT fails the progs with bpf2bpf calls and tail_calls 16240 * have to be rejected, since interpreter doesn't support them yet. 16241 */ 16242 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 16243 return -EINVAL; 16244 } 16245 for (i = 0; i < prog->len; i++, insn++) { 16246 if (bpf_pseudo_func(insn)) { 16247 /* When JIT fails the progs with callback calls 16248 * have to be rejected, since interpreter doesn't support them yet. 16249 */ 16250 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 16251 return -EINVAL; 16252 } 16253 16254 if (!bpf_pseudo_call(insn)) 16255 continue; 16256 depth = get_callee_stack_depth(env, insn, i); 16257 if (depth < 0) 16258 return depth; 16259 bpf_patch_call_args(insn, depth); 16260 } 16261 err = 0; 16262 #endif 16263 return err; 16264 } 16265 16266 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 16267 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 16268 { 16269 const struct bpf_kfunc_desc *desc; 16270 void *xdp_kfunc; 16271 16272 if (!insn->imm) { 16273 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 16274 return -EINVAL; 16275 } 16276 16277 *cnt = 0; 16278 16279 if (bpf_dev_bound_kfunc_id(insn->imm)) { 16280 xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm); 16281 if (xdp_kfunc) { 16282 insn->imm = BPF_CALL_IMM(xdp_kfunc); 16283 return 0; 16284 } 16285 16286 /* fallback to default kfunc when not supported by netdev */ 16287 } 16288 16289 /* insn->imm has the btf func_id. Replace it with 16290 * an address (relative to __bpf_call_base). 16291 */ 16292 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 16293 if (!desc) { 16294 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 16295 insn->imm); 16296 return -EFAULT; 16297 } 16298 16299 insn->imm = desc->imm; 16300 if (insn->off) 16301 return 0; 16302 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 16303 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16304 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16305 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 16306 16307 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 16308 insn_buf[1] = addr[0]; 16309 insn_buf[2] = addr[1]; 16310 insn_buf[3] = *insn; 16311 *cnt = 4; 16312 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 16313 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16314 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16315 16316 insn_buf[0] = addr[0]; 16317 insn_buf[1] = addr[1]; 16318 insn_buf[2] = *insn; 16319 *cnt = 3; 16320 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 16321 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 16322 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 16323 *cnt = 1; 16324 } 16325 return 0; 16326 } 16327 16328 /* Do various post-verification rewrites in a single program pass. 16329 * These rewrites simplify JIT and interpreter implementations. 16330 */ 16331 static int do_misc_fixups(struct bpf_verifier_env *env) 16332 { 16333 struct bpf_prog *prog = env->prog; 16334 enum bpf_attach_type eatype = prog->expected_attach_type; 16335 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16336 struct bpf_insn *insn = prog->insnsi; 16337 const struct bpf_func_proto *fn; 16338 const int insn_cnt = prog->len; 16339 const struct bpf_map_ops *ops; 16340 struct bpf_insn_aux_data *aux; 16341 struct bpf_insn insn_buf[16]; 16342 struct bpf_prog *new_prog; 16343 struct bpf_map *map_ptr; 16344 int i, ret, cnt, delta = 0; 16345 16346 for (i = 0; i < insn_cnt; i++, insn++) { 16347 /* Make divide-by-zero exceptions impossible. */ 16348 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 16349 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 16350 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 16351 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 16352 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 16353 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 16354 struct bpf_insn *patchlet; 16355 struct bpf_insn chk_and_div[] = { 16356 /* [R,W]x div 0 -> 0 */ 16357 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16358 BPF_JNE | BPF_K, insn->src_reg, 16359 0, 2, 0), 16360 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 16361 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16362 *insn, 16363 }; 16364 struct bpf_insn chk_and_mod[] = { 16365 /* [R,W]x mod 0 -> [R,W]x */ 16366 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16367 BPF_JEQ | BPF_K, insn->src_reg, 16368 0, 1 + (is64 ? 0 : 1), 0), 16369 *insn, 16370 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16371 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 16372 }; 16373 16374 patchlet = isdiv ? chk_and_div : chk_and_mod; 16375 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 16376 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 16377 16378 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 16379 if (!new_prog) 16380 return -ENOMEM; 16381 16382 delta += cnt - 1; 16383 env->prog = prog = new_prog; 16384 insn = new_prog->insnsi + i + delta; 16385 continue; 16386 } 16387 16388 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 16389 if (BPF_CLASS(insn->code) == BPF_LD && 16390 (BPF_MODE(insn->code) == BPF_ABS || 16391 BPF_MODE(insn->code) == BPF_IND)) { 16392 cnt = env->ops->gen_ld_abs(insn, insn_buf); 16393 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 16394 verbose(env, "bpf verifier is misconfigured\n"); 16395 return -EINVAL; 16396 } 16397 16398 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16399 if (!new_prog) 16400 return -ENOMEM; 16401 16402 delta += cnt - 1; 16403 env->prog = prog = new_prog; 16404 insn = new_prog->insnsi + i + delta; 16405 continue; 16406 } 16407 16408 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 16409 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 16410 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 16411 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 16412 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 16413 struct bpf_insn *patch = &insn_buf[0]; 16414 bool issrc, isneg, isimm; 16415 u32 off_reg; 16416 16417 aux = &env->insn_aux_data[i + delta]; 16418 if (!aux->alu_state || 16419 aux->alu_state == BPF_ALU_NON_POINTER) 16420 continue; 16421 16422 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 16423 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 16424 BPF_ALU_SANITIZE_SRC; 16425 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 16426 16427 off_reg = issrc ? insn->src_reg : insn->dst_reg; 16428 if (isimm) { 16429 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16430 } else { 16431 if (isneg) 16432 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16433 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16434 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 16435 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 16436 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 16437 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 16438 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 16439 } 16440 if (!issrc) 16441 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 16442 insn->src_reg = BPF_REG_AX; 16443 if (isneg) 16444 insn->code = insn->code == code_add ? 16445 code_sub : code_add; 16446 *patch++ = *insn; 16447 if (issrc && isneg && !isimm) 16448 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16449 cnt = patch - insn_buf; 16450 16451 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16452 if (!new_prog) 16453 return -ENOMEM; 16454 16455 delta += cnt - 1; 16456 env->prog = prog = new_prog; 16457 insn = new_prog->insnsi + i + delta; 16458 continue; 16459 } 16460 16461 if (insn->code != (BPF_JMP | BPF_CALL)) 16462 continue; 16463 if (insn->src_reg == BPF_PSEUDO_CALL) 16464 continue; 16465 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16466 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 16467 if (ret) 16468 return ret; 16469 if (cnt == 0) 16470 continue; 16471 16472 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16473 if (!new_prog) 16474 return -ENOMEM; 16475 16476 delta += cnt - 1; 16477 env->prog = prog = new_prog; 16478 insn = new_prog->insnsi + i + delta; 16479 continue; 16480 } 16481 16482 if (insn->imm == BPF_FUNC_get_route_realm) 16483 prog->dst_needed = 1; 16484 if (insn->imm == BPF_FUNC_get_prandom_u32) 16485 bpf_user_rnd_init_once(); 16486 if (insn->imm == BPF_FUNC_override_return) 16487 prog->kprobe_override = 1; 16488 if (insn->imm == BPF_FUNC_tail_call) { 16489 /* If we tail call into other programs, we 16490 * cannot make any assumptions since they can 16491 * be replaced dynamically during runtime in 16492 * the program array. 16493 */ 16494 prog->cb_access = 1; 16495 if (!allow_tail_call_in_subprogs(env)) 16496 prog->aux->stack_depth = MAX_BPF_STACK; 16497 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 16498 16499 /* mark bpf_tail_call as different opcode to avoid 16500 * conditional branch in the interpreter for every normal 16501 * call and to prevent accidental JITing by JIT compiler 16502 * that doesn't support bpf_tail_call yet 16503 */ 16504 insn->imm = 0; 16505 insn->code = BPF_JMP | BPF_TAIL_CALL; 16506 16507 aux = &env->insn_aux_data[i + delta]; 16508 if (env->bpf_capable && !prog->blinding_requested && 16509 prog->jit_requested && 16510 !bpf_map_key_poisoned(aux) && 16511 !bpf_map_ptr_poisoned(aux) && 16512 !bpf_map_ptr_unpriv(aux)) { 16513 struct bpf_jit_poke_descriptor desc = { 16514 .reason = BPF_POKE_REASON_TAIL_CALL, 16515 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 16516 .tail_call.key = bpf_map_key_immediate(aux), 16517 .insn_idx = i + delta, 16518 }; 16519 16520 ret = bpf_jit_add_poke_descriptor(prog, &desc); 16521 if (ret < 0) { 16522 verbose(env, "adding tail call poke descriptor failed\n"); 16523 return ret; 16524 } 16525 16526 insn->imm = ret + 1; 16527 continue; 16528 } 16529 16530 if (!bpf_map_ptr_unpriv(aux)) 16531 continue; 16532 16533 /* instead of changing every JIT dealing with tail_call 16534 * emit two extra insns: 16535 * if (index >= max_entries) goto out; 16536 * index &= array->index_mask; 16537 * to avoid out-of-bounds cpu speculation 16538 */ 16539 if (bpf_map_ptr_poisoned(aux)) { 16540 verbose(env, "tail_call abusing map_ptr\n"); 16541 return -EINVAL; 16542 } 16543 16544 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 16545 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 16546 map_ptr->max_entries, 2); 16547 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 16548 container_of(map_ptr, 16549 struct bpf_array, 16550 map)->index_mask); 16551 insn_buf[2] = *insn; 16552 cnt = 3; 16553 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16554 if (!new_prog) 16555 return -ENOMEM; 16556 16557 delta += cnt - 1; 16558 env->prog = prog = new_prog; 16559 insn = new_prog->insnsi + i + delta; 16560 continue; 16561 } 16562 16563 if (insn->imm == BPF_FUNC_timer_set_callback) { 16564 /* The verifier will process callback_fn as many times as necessary 16565 * with different maps and the register states prepared by 16566 * set_timer_callback_state will be accurate. 16567 * 16568 * The following use case is valid: 16569 * map1 is shared by prog1, prog2, prog3. 16570 * prog1 calls bpf_timer_init for some map1 elements 16571 * prog2 calls bpf_timer_set_callback for some map1 elements. 16572 * Those that were not bpf_timer_init-ed will return -EINVAL. 16573 * prog3 calls bpf_timer_start for some map1 elements. 16574 * Those that were not both bpf_timer_init-ed and 16575 * bpf_timer_set_callback-ed will return -EINVAL. 16576 */ 16577 struct bpf_insn ld_addrs[2] = { 16578 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 16579 }; 16580 16581 insn_buf[0] = ld_addrs[0]; 16582 insn_buf[1] = ld_addrs[1]; 16583 insn_buf[2] = *insn; 16584 cnt = 3; 16585 16586 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16587 if (!new_prog) 16588 return -ENOMEM; 16589 16590 delta += cnt - 1; 16591 env->prog = prog = new_prog; 16592 insn = new_prog->insnsi + i + delta; 16593 goto patch_call_imm; 16594 } 16595 16596 if (is_storage_get_function(insn->imm)) { 16597 if (!env->prog->aux->sleepable || 16598 env->insn_aux_data[i + delta].storage_get_func_atomic) 16599 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 16600 else 16601 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 16602 insn_buf[1] = *insn; 16603 cnt = 2; 16604 16605 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16606 if (!new_prog) 16607 return -ENOMEM; 16608 16609 delta += cnt - 1; 16610 env->prog = prog = new_prog; 16611 insn = new_prog->insnsi + i + delta; 16612 goto patch_call_imm; 16613 } 16614 16615 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 16616 * and other inlining handlers are currently limited to 64 bit 16617 * only. 16618 */ 16619 if (prog->jit_requested && BITS_PER_LONG == 64 && 16620 (insn->imm == BPF_FUNC_map_lookup_elem || 16621 insn->imm == BPF_FUNC_map_update_elem || 16622 insn->imm == BPF_FUNC_map_delete_elem || 16623 insn->imm == BPF_FUNC_map_push_elem || 16624 insn->imm == BPF_FUNC_map_pop_elem || 16625 insn->imm == BPF_FUNC_map_peek_elem || 16626 insn->imm == BPF_FUNC_redirect_map || 16627 insn->imm == BPF_FUNC_for_each_map_elem || 16628 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 16629 aux = &env->insn_aux_data[i + delta]; 16630 if (bpf_map_ptr_poisoned(aux)) 16631 goto patch_call_imm; 16632 16633 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 16634 ops = map_ptr->ops; 16635 if (insn->imm == BPF_FUNC_map_lookup_elem && 16636 ops->map_gen_lookup) { 16637 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 16638 if (cnt == -EOPNOTSUPP) 16639 goto patch_map_ops_generic; 16640 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 16641 verbose(env, "bpf verifier is misconfigured\n"); 16642 return -EINVAL; 16643 } 16644 16645 new_prog = bpf_patch_insn_data(env, i + delta, 16646 insn_buf, cnt); 16647 if (!new_prog) 16648 return -ENOMEM; 16649 16650 delta += cnt - 1; 16651 env->prog = prog = new_prog; 16652 insn = new_prog->insnsi + i + delta; 16653 continue; 16654 } 16655 16656 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 16657 (void *(*)(struct bpf_map *map, void *key))NULL)); 16658 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 16659 (int (*)(struct bpf_map *map, void *key))NULL)); 16660 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 16661 (int (*)(struct bpf_map *map, void *key, void *value, 16662 u64 flags))NULL)); 16663 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 16664 (int (*)(struct bpf_map *map, void *value, 16665 u64 flags))NULL)); 16666 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 16667 (int (*)(struct bpf_map *map, void *value))NULL)); 16668 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 16669 (int (*)(struct bpf_map *map, void *value))NULL)); 16670 BUILD_BUG_ON(!__same_type(ops->map_redirect, 16671 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 16672 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 16673 (int (*)(struct bpf_map *map, 16674 bpf_callback_t callback_fn, 16675 void *callback_ctx, 16676 u64 flags))NULL)); 16677 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 16678 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 16679 16680 patch_map_ops_generic: 16681 switch (insn->imm) { 16682 case BPF_FUNC_map_lookup_elem: 16683 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 16684 continue; 16685 case BPF_FUNC_map_update_elem: 16686 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 16687 continue; 16688 case BPF_FUNC_map_delete_elem: 16689 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 16690 continue; 16691 case BPF_FUNC_map_push_elem: 16692 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 16693 continue; 16694 case BPF_FUNC_map_pop_elem: 16695 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 16696 continue; 16697 case BPF_FUNC_map_peek_elem: 16698 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 16699 continue; 16700 case BPF_FUNC_redirect_map: 16701 insn->imm = BPF_CALL_IMM(ops->map_redirect); 16702 continue; 16703 case BPF_FUNC_for_each_map_elem: 16704 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 16705 continue; 16706 case BPF_FUNC_map_lookup_percpu_elem: 16707 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 16708 continue; 16709 } 16710 16711 goto patch_call_imm; 16712 } 16713 16714 /* Implement bpf_jiffies64 inline. */ 16715 if (prog->jit_requested && BITS_PER_LONG == 64 && 16716 insn->imm == BPF_FUNC_jiffies64) { 16717 struct bpf_insn ld_jiffies_addr[2] = { 16718 BPF_LD_IMM64(BPF_REG_0, 16719 (unsigned long)&jiffies), 16720 }; 16721 16722 insn_buf[0] = ld_jiffies_addr[0]; 16723 insn_buf[1] = ld_jiffies_addr[1]; 16724 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 16725 BPF_REG_0, 0); 16726 cnt = 3; 16727 16728 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 16729 cnt); 16730 if (!new_prog) 16731 return -ENOMEM; 16732 16733 delta += cnt - 1; 16734 env->prog = prog = new_prog; 16735 insn = new_prog->insnsi + i + delta; 16736 continue; 16737 } 16738 16739 /* Implement bpf_get_func_arg inline. */ 16740 if (prog_type == BPF_PROG_TYPE_TRACING && 16741 insn->imm == BPF_FUNC_get_func_arg) { 16742 /* Load nr_args from ctx - 8 */ 16743 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16744 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 16745 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 16746 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 16747 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 16748 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 16749 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 16750 insn_buf[7] = BPF_JMP_A(1); 16751 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 16752 cnt = 9; 16753 16754 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16755 if (!new_prog) 16756 return -ENOMEM; 16757 16758 delta += cnt - 1; 16759 env->prog = prog = new_prog; 16760 insn = new_prog->insnsi + i + delta; 16761 continue; 16762 } 16763 16764 /* Implement bpf_get_func_ret inline. */ 16765 if (prog_type == BPF_PROG_TYPE_TRACING && 16766 insn->imm == BPF_FUNC_get_func_ret) { 16767 if (eatype == BPF_TRACE_FEXIT || 16768 eatype == BPF_MODIFY_RETURN) { 16769 /* Load nr_args from ctx - 8 */ 16770 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16771 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 16772 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 16773 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 16774 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 16775 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 16776 cnt = 6; 16777 } else { 16778 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 16779 cnt = 1; 16780 } 16781 16782 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16783 if (!new_prog) 16784 return -ENOMEM; 16785 16786 delta += cnt - 1; 16787 env->prog = prog = new_prog; 16788 insn = new_prog->insnsi + i + delta; 16789 continue; 16790 } 16791 16792 /* Implement get_func_arg_cnt inline. */ 16793 if (prog_type == BPF_PROG_TYPE_TRACING && 16794 insn->imm == BPF_FUNC_get_func_arg_cnt) { 16795 /* Load nr_args from ctx - 8 */ 16796 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16797 16798 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16799 if (!new_prog) 16800 return -ENOMEM; 16801 16802 env->prog = prog = new_prog; 16803 insn = new_prog->insnsi + i + delta; 16804 continue; 16805 } 16806 16807 /* Implement bpf_get_func_ip inline. */ 16808 if (prog_type == BPF_PROG_TYPE_TRACING && 16809 insn->imm == BPF_FUNC_get_func_ip) { 16810 /* Load IP address from ctx - 16 */ 16811 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 16812 16813 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16814 if (!new_prog) 16815 return -ENOMEM; 16816 16817 env->prog = prog = new_prog; 16818 insn = new_prog->insnsi + i + delta; 16819 continue; 16820 } 16821 16822 patch_call_imm: 16823 fn = env->ops->get_func_proto(insn->imm, env->prog); 16824 /* all functions that have prototype and verifier allowed 16825 * programs to call them, must be real in-kernel functions 16826 */ 16827 if (!fn->func) { 16828 verbose(env, 16829 "kernel subsystem misconfigured func %s#%d\n", 16830 func_id_name(insn->imm), insn->imm); 16831 return -EFAULT; 16832 } 16833 insn->imm = fn->func - __bpf_call_base; 16834 } 16835 16836 /* Since poke tab is now finalized, publish aux to tracker. */ 16837 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16838 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16839 if (!map_ptr->ops->map_poke_track || 16840 !map_ptr->ops->map_poke_untrack || 16841 !map_ptr->ops->map_poke_run) { 16842 verbose(env, "bpf verifier is misconfigured\n"); 16843 return -EINVAL; 16844 } 16845 16846 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 16847 if (ret < 0) { 16848 verbose(env, "tracking tail call prog failed\n"); 16849 return ret; 16850 } 16851 } 16852 16853 sort_kfunc_descs_by_imm(env->prog); 16854 16855 return 0; 16856 } 16857 16858 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 16859 int position, 16860 s32 stack_base, 16861 u32 callback_subprogno, 16862 u32 *cnt) 16863 { 16864 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 16865 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 16866 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 16867 int reg_loop_max = BPF_REG_6; 16868 int reg_loop_cnt = BPF_REG_7; 16869 int reg_loop_ctx = BPF_REG_8; 16870 16871 struct bpf_prog *new_prog; 16872 u32 callback_start; 16873 u32 call_insn_offset; 16874 s32 callback_offset; 16875 16876 /* This represents an inlined version of bpf_iter.c:bpf_loop, 16877 * be careful to modify this code in sync. 16878 */ 16879 struct bpf_insn insn_buf[] = { 16880 /* Return error and jump to the end of the patch if 16881 * expected number of iterations is too big. 16882 */ 16883 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 16884 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 16885 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 16886 /* spill R6, R7, R8 to use these as loop vars */ 16887 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 16888 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 16889 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 16890 /* initialize loop vars */ 16891 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 16892 BPF_MOV32_IMM(reg_loop_cnt, 0), 16893 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 16894 /* loop header, 16895 * if reg_loop_cnt >= reg_loop_max skip the loop body 16896 */ 16897 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 16898 /* callback call, 16899 * correct callback offset would be set after patching 16900 */ 16901 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 16902 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 16903 BPF_CALL_REL(0), 16904 /* increment loop counter */ 16905 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 16906 /* jump to loop header if callback returned 0 */ 16907 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 16908 /* return value of bpf_loop, 16909 * set R0 to the number of iterations 16910 */ 16911 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 16912 /* restore original values of R6, R7, R8 */ 16913 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 16914 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 16915 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 16916 }; 16917 16918 *cnt = ARRAY_SIZE(insn_buf); 16919 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 16920 if (!new_prog) 16921 return new_prog; 16922 16923 /* callback start is known only after patching */ 16924 callback_start = env->subprog_info[callback_subprogno].start; 16925 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 16926 call_insn_offset = position + 12; 16927 callback_offset = callback_start - call_insn_offset - 1; 16928 new_prog->insnsi[call_insn_offset].imm = callback_offset; 16929 16930 return new_prog; 16931 } 16932 16933 static bool is_bpf_loop_call(struct bpf_insn *insn) 16934 { 16935 return insn->code == (BPF_JMP | BPF_CALL) && 16936 insn->src_reg == 0 && 16937 insn->imm == BPF_FUNC_loop; 16938 } 16939 16940 /* For all sub-programs in the program (including main) check 16941 * insn_aux_data to see if there are bpf_loop calls that require 16942 * inlining. If such calls are found the calls are replaced with a 16943 * sequence of instructions produced by `inline_bpf_loop` function and 16944 * subprog stack_depth is increased by the size of 3 registers. 16945 * This stack space is used to spill values of the R6, R7, R8. These 16946 * registers are used to store the loop bound, counter and context 16947 * variables. 16948 */ 16949 static int optimize_bpf_loop(struct bpf_verifier_env *env) 16950 { 16951 struct bpf_subprog_info *subprogs = env->subprog_info; 16952 int i, cur_subprog = 0, cnt, delta = 0; 16953 struct bpf_insn *insn = env->prog->insnsi; 16954 int insn_cnt = env->prog->len; 16955 u16 stack_depth = subprogs[cur_subprog].stack_depth; 16956 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16957 u16 stack_depth_extra = 0; 16958 16959 for (i = 0; i < insn_cnt; i++, insn++) { 16960 struct bpf_loop_inline_state *inline_state = 16961 &env->insn_aux_data[i + delta].loop_inline_state; 16962 16963 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 16964 struct bpf_prog *new_prog; 16965 16966 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 16967 new_prog = inline_bpf_loop(env, 16968 i + delta, 16969 -(stack_depth + stack_depth_extra), 16970 inline_state->callback_subprogno, 16971 &cnt); 16972 if (!new_prog) 16973 return -ENOMEM; 16974 16975 delta += cnt - 1; 16976 env->prog = new_prog; 16977 insn = new_prog->insnsi + i + delta; 16978 } 16979 16980 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 16981 subprogs[cur_subprog].stack_depth += stack_depth_extra; 16982 cur_subprog++; 16983 stack_depth = subprogs[cur_subprog].stack_depth; 16984 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16985 stack_depth_extra = 0; 16986 } 16987 } 16988 16989 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16990 16991 return 0; 16992 } 16993 16994 static void free_states(struct bpf_verifier_env *env) 16995 { 16996 struct bpf_verifier_state_list *sl, *sln; 16997 int i; 16998 16999 sl = env->free_list; 17000 while (sl) { 17001 sln = sl->next; 17002 free_verifier_state(&sl->state, false); 17003 kfree(sl); 17004 sl = sln; 17005 } 17006 env->free_list = NULL; 17007 17008 if (!env->explored_states) 17009 return; 17010 17011 for (i = 0; i < state_htab_size(env); i++) { 17012 sl = env->explored_states[i]; 17013 17014 while (sl) { 17015 sln = sl->next; 17016 free_verifier_state(&sl->state, false); 17017 kfree(sl); 17018 sl = sln; 17019 } 17020 env->explored_states[i] = NULL; 17021 } 17022 } 17023 17024 static int do_check_common(struct bpf_verifier_env *env, int subprog) 17025 { 17026 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17027 struct bpf_verifier_state *state; 17028 struct bpf_reg_state *regs; 17029 int ret, i; 17030 17031 env->prev_linfo = NULL; 17032 env->pass_cnt++; 17033 17034 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 17035 if (!state) 17036 return -ENOMEM; 17037 state->curframe = 0; 17038 state->speculative = false; 17039 state->branches = 1; 17040 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 17041 if (!state->frame[0]) { 17042 kfree(state); 17043 return -ENOMEM; 17044 } 17045 env->cur_state = state; 17046 init_func_state(env, state->frame[0], 17047 BPF_MAIN_FUNC /* callsite */, 17048 0 /* frameno */, 17049 subprog); 17050 state->first_insn_idx = env->subprog_info[subprog].start; 17051 state->last_insn_idx = -1; 17052 17053 regs = state->frame[state->curframe]->regs; 17054 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 17055 ret = btf_prepare_func_args(env, subprog, regs); 17056 if (ret) 17057 goto out; 17058 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 17059 if (regs[i].type == PTR_TO_CTX) 17060 mark_reg_known_zero(env, regs, i); 17061 else if (regs[i].type == SCALAR_VALUE) 17062 mark_reg_unknown(env, regs, i); 17063 else if (base_type(regs[i].type) == PTR_TO_MEM) { 17064 const u32 mem_size = regs[i].mem_size; 17065 17066 mark_reg_known_zero(env, regs, i); 17067 regs[i].mem_size = mem_size; 17068 regs[i].id = ++env->id_gen; 17069 } 17070 } 17071 } else { 17072 /* 1st arg to a function */ 17073 regs[BPF_REG_1].type = PTR_TO_CTX; 17074 mark_reg_known_zero(env, regs, BPF_REG_1); 17075 ret = btf_check_subprog_arg_match(env, subprog, regs); 17076 if (ret == -EFAULT) 17077 /* unlikely verifier bug. abort. 17078 * ret == 0 and ret < 0 are sadly acceptable for 17079 * main() function due to backward compatibility. 17080 * Like socket filter program may be written as: 17081 * int bpf_prog(struct pt_regs *ctx) 17082 * and never dereference that ctx in the program. 17083 * 'struct pt_regs' is a type mismatch for socket 17084 * filter that should be using 'struct __sk_buff'. 17085 */ 17086 goto out; 17087 } 17088 17089 ret = do_check(env); 17090 out: 17091 /* check for NULL is necessary, since cur_state can be freed inside 17092 * do_check() under memory pressure. 17093 */ 17094 if (env->cur_state) { 17095 free_verifier_state(env->cur_state, true); 17096 env->cur_state = NULL; 17097 } 17098 while (!pop_stack(env, NULL, NULL, false)); 17099 if (!ret && pop_log) 17100 bpf_vlog_reset(&env->log, 0); 17101 free_states(env); 17102 return ret; 17103 } 17104 17105 /* Verify all global functions in a BPF program one by one based on their BTF. 17106 * All global functions must pass verification. Otherwise the whole program is rejected. 17107 * Consider: 17108 * int bar(int); 17109 * int foo(int f) 17110 * { 17111 * return bar(f); 17112 * } 17113 * int bar(int b) 17114 * { 17115 * ... 17116 * } 17117 * foo() will be verified first for R1=any_scalar_value. During verification it 17118 * will be assumed that bar() already verified successfully and call to bar() 17119 * from foo() will be checked for type match only. Later bar() will be verified 17120 * independently to check that it's safe for R1=any_scalar_value. 17121 */ 17122 static int do_check_subprogs(struct bpf_verifier_env *env) 17123 { 17124 struct bpf_prog_aux *aux = env->prog->aux; 17125 int i, ret; 17126 17127 if (!aux->func_info) 17128 return 0; 17129 17130 for (i = 1; i < env->subprog_cnt; i++) { 17131 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 17132 continue; 17133 env->insn_idx = env->subprog_info[i].start; 17134 WARN_ON_ONCE(env->insn_idx == 0); 17135 ret = do_check_common(env, i); 17136 if (ret) { 17137 return ret; 17138 } else if (env->log.level & BPF_LOG_LEVEL) { 17139 verbose(env, 17140 "Func#%d is safe for any args that match its prototype\n", 17141 i); 17142 } 17143 } 17144 return 0; 17145 } 17146 17147 static int do_check_main(struct bpf_verifier_env *env) 17148 { 17149 int ret; 17150 17151 env->insn_idx = 0; 17152 ret = do_check_common(env, 0); 17153 if (!ret) 17154 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 17155 return ret; 17156 } 17157 17158 17159 static void print_verification_stats(struct bpf_verifier_env *env) 17160 { 17161 int i; 17162 17163 if (env->log.level & BPF_LOG_STATS) { 17164 verbose(env, "verification time %lld usec\n", 17165 div_u64(env->verification_time, 1000)); 17166 verbose(env, "stack depth "); 17167 for (i = 0; i < env->subprog_cnt; i++) { 17168 u32 depth = env->subprog_info[i].stack_depth; 17169 17170 verbose(env, "%d", depth); 17171 if (i + 1 < env->subprog_cnt) 17172 verbose(env, "+"); 17173 } 17174 verbose(env, "\n"); 17175 } 17176 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 17177 "total_states %d peak_states %d mark_read %d\n", 17178 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 17179 env->max_states_per_insn, env->total_states, 17180 env->peak_states, env->longest_mark_read_walk); 17181 } 17182 17183 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 17184 { 17185 const struct btf_type *t, *func_proto; 17186 const struct bpf_struct_ops *st_ops; 17187 const struct btf_member *member; 17188 struct bpf_prog *prog = env->prog; 17189 u32 btf_id, member_idx; 17190 const char *mname; 17191 17192 if (!prog->gpl_compatible) { 17193 verbose(env, "struct ops programs must have a GPL compatible license\n"); 17194 return -EINVAL; 17195 } 17196 17197 btf_id = prog->aux->attach_btf_id; 17198 st_ops = bpf_struct_ops_find(btf_id); 17199 if (!st_ops) { 17200 verbose(env, "attach_btf_id %u is not a supported struct\n", 17201 btf_id); 17202 return -ENOTSUPP; 17203 } 17204 17205 t = st_ops->type; 17206 member_idx = prog->expected_attach_type; 17207 if (member_idx >= btf_type_vlen(t)) { 17208 verbose(env, "attach to invalid member idx %u of struct %s\n", 17209 member_idx, st_ops->name); 17210 return -EINVAL; 17211 } 17212 17213 member = &btf_type_member(t)[member_idx]; 17214 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 17215 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 17216 NULL); 17217 if (!func_proto) { 17218 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 17219 mname, member_idx, st_ops->name); 17220 return -EINVAL; 17221 } 17222 17223 if (st_ops->check_member) { 17224 int err = st_ops->check_member(t, member, prog); 17225 17226 if (err) { 17227 verbose(env, "attach to unsupported member %s of struct %s\n", 17228 mname, st_ops->name); 17229 return err; 17230 } 17231 } 17232 17233 prog->aux->attach_func_proto = func_proto; 17234 prog->aux->attach_func_name = mname; 17235 env->ops = st_ops->verifier_ops; 17236 17237 return 0; 17238 } 17239 #define SECURITY_PREFIX "security_" 17240 17241 static int check_attach_modify_return(unsigned long addr, const char *func_name) 17242 { 17243 if (within_error_injection_list(addr) || 17244 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 17245 return 0; 17246 17247 return -EINVAL; 17248 } 17249 17250 /* list of non-sleepable functions that are otherwise on 17251 * ALLOW_ERROR_INJECTION list 17252 */ 17253 BTF_SET_START(btf_non_sleepable_error_inject) 17254 /* Three functions below can be called from sleepable and non-sleepable context. 17255 * Assume non-sleepable from bpf safety point of view. 17256 */ 17257 BTF_ID(func, __filemap_add_folio) 17258 BTF_ID(func, should_fail_alloc_page) 17259 BTF_ID(func, should_failslab) 17260 BTF_SET_END(btf_non_sleepable_error_inject) 17261 17262 static int check_non_sleepable_error_inject(u32 btf_id) 17263 { 17264 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 17265 } 17266 17267 int bpf_check_attach_target(struct bpf_verifier_log *log, 17268 const struct bpf_prog *prog, 17269 const struct bpf_prog *tgt_prog, 17270 u32 btf_id, 17271 struct bpf_attach_target_info *tgt_info) 17272 { 17273 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 17274 const char prefix[] = "btf_trace_"; 17275 int ret = 0, subprog = -1, i; 17276 const struct btf_type *t; 17277 bool conservative = true; 17278 const char *tname; 17279 struct btf *btf; 17280 long addr = 0; 17281 17282 if (!btf_id) { 17283 bpf_log(log, "Tracing programs must provide btf_id\n"); 17284 return -EINVAL; 17285 } 17286 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 17287 if (!btf) { 17288 bpf_log(log, 17289 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 17290 return -EINVAL; 17291 } 17292 t = btf_type_by_id(btf, btf_id); 17293 if (!t) { 17294 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 17295 return -EINVAL; 17296 } 17297 tname = btf_name_by_offset(btf, t->name_off); 17298 if (!tname) { 17299 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 17300 return -EINVAL; 17301 } 17302 if (tgt_prog) { 17303 struct bpf_prog_aux *aux = tgt_prog->aux; 17304 17305 if (bpf_prog_is_dev_bound(prog->aux) && 17306 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 17307 bpf_log(log, "Target program bound device mismatch"); 17308 return -EINVAL; 17309 } 17310 17311 for (i = 0; i < aux->func_info_cnt; i++) 17312 if (aux->func_info[i].type_id == btf_id) { 17313 subprog = i; 17314 break; 17315 } 17316 if (subprog == -1) { 17317 bpf_log(log, "Subprog %s doesn't exist\n", tname); 17318 return -EINVAL; 17319 } 17320 conservative = aux->func_info_aux[subprog].unreliable; 17321 if (prog_extension) { 17322 if (conservative) { 17323 bpf_log(log, 17324 "Cannot replace static functions\n"); 17325 return -EINVAL; 17326 } 17327 if (!prog->jit_requested) { 17328 bpf_log(log, 17329 "Extension programs should be JITed\n"); 17330 return -EINVAL; 17331 } 17332 } 17333 if (!tgt_prog->jited) { 17334 bpf_log(log, "Can attach to only JITed progs\n"); 17335 return -EINVAL; 17336 } 17337 if (tgt_prog->type == prog->type) { 17338 /* Cannot fentry/fexit another fentry/fexit program. 17339 * Cannot attach program extension to another extension. 17340 * It's ok to attach fentry/fexit to extension program. 17341 */ 17342 bpf_log(log, "Cannot recursively attach\n"); 17343 return -EINVAL; 17344 } 17345 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 17346 prog_extension && 17347 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 17348 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 17349 /* Program extensions can extend all program types 17350 * except fentry/fexit. The reason is the following. 17351 * The fentry/fexit programs are used for performance 17352 * analysis, stats and can be attached to any program 17353 * type except themselves. When extension program is 17354 * replacing XDP function it is necessary to allow 17355 * performance analysis of all functions. Both original 17356 * XDP program and its program extension. Hence 17357 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 17358 * allowed. If extending of fentry/fexit was allowed it 17359 * would be possible to create long call chain 17360 * fentry->extension->fentry->extension beyond 17361 * reasonable stack size. Hence extending fentry is not 17362 * allowed. 17363 */ 17364 bpf_log(log, "Cannot extend fentry/fexit\n"); 17365 return -EINVAL; 17366 } 17367 } else { 17368 if (prog_extension) { 17369 bpf_log(log, "Cannot replace kernel functions\n"); 17370 return -EINVAL; 17371 } 17372 } 17373 17374 switch (prog->expected_attach_type) { 17375 case BPF_TRACE_RAW_TP: 17376 if (tgt_prog) { 17377 bpf_log(log, 17378 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 17379 return -EINVAL; 17380 } 17381 if (!btf_type_is_typedef(t)) { 17382 bpf_log(log, "attach_btf_id %u is not a typedef\n", 17383 btf_id); 17384 return -EINVAL; 17385 } 17386 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 17387 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 17388 btf_id, tname); 17389 return -EINVAL; 17390 } 17391 tname += sizeof(prefix) - 1; 17392 t = btf_type_by_id(btf, t->type); 17393 if (!btf_type_is_ptr(t)) 17394 /* should never happen in valid vmlinux build */ 17395 return -EINVAL; 17396 t = btf_type_by_id(btf, t->type); 17397 if (!btf_type_is_func_proto(t)) 17398 /* should never happen in valid vmlinux build */ 17399 return -EINVAL; 17400 17401 break; 17402 case BPF_TRACE_ITER: 17403 if (!btf_type_is_func(t)) { 17404 bpf_log(log, "attach_btf_id %u is not a function\n", 17405 btf_id); 17406 return -EINVAL; 17407 } 17408 t = btf_type_by_id(btf, t->type); 17409 if (!btf_type_is_func_proto(t)) 17410 return -EINVAL; 17411 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17412 if (ret) 17413 return ret; 17414 break; 17415 default: 17416 if (!prog_extension) 17417 return -EINVAL; 17418 fallthrough; 17419 case BPF_MODIFY_RETURN: 17420 case BPF_LSM_MAC: 17421 case BPF_LSM_CGROUP: 17422 case BPF_TRACE_FENTRY: 17423 case BPF_TRACE_FEXIT: 17424 if (!btf_type_is_func(t)) { 17425 bpf_log(log, "attach_btf_id %u is not a function\n", 17426 btf_id); 17427 return -EINVAL; 17428 } 17429 if (prog_extension && 17430 btf_check_type_match(log, prog, btf, t)) 17431 return -EINVAL; 17432 t = btf_type_by_id(btf, t->type); 17433 if (!btf_type_is_func_proto(t)) 17434 return -EINVAL; 17435 17436 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 17437 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 17438 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 17439 return -EINVAL; 17440 17441 if (tgt_prog && conservative) 17442 t = NULL; 17443 17444 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17445 if (ret < 0) 17446 return ret; 17447 17448 if (tgt_prog) { 17449 if (subprog == 0) 17450 addr = (long) tgt_prog->bpf_func; 17451 else 17452 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 17453 } else { 17454 addr = kallsyms_lookup_name(tname); 17455 if (!addr) { 17456 bpf_log(log, 17457 "The address of function %s cannot be found\n", 17458 tname); 17459 return -ENOENT; 17460 } 17461 } 17462 17463 if (prog->aux->sleepable) { 17464 ret = -EINVAL; 17465 switch (prog->type) { 17466 case BPF_PROG_TYPE_TRACING: 17467 17468 /* fentry/fexit/fmod_ret progs can be sleepable if they are 17469 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 17470 */ 17471 if (!check_non_sleepable_error_inject(btf_id) && 17472 within_error_injection_list(addr)) 17473 ret = 0; 17474 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 17475 * in the fmodret id set with the KF_SLEEPABLE flag. 17476 */ 17477 else { 17478 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 17479 17480 if (flags && (*flags & KF_SLEEPABLE)) 17481 ret = 0; 17482 } 17483 break; 17484 case BPF_PROG_TYPE_LSM: 17485 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 17486 * Only some of them are sleepable. 17487 */ 17488 if (bpf_lsm_is_sleepable_hook(btf_id)) 17489 ret = 0; 17490 break; 17491 default: 17492 break; 17493 } 17494 if (ret) { 17495 bpf_log(log, "%s is not sleepable\n", tname); 17496 return ret; 17497 } 17498 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 17499 if (tgt_prog) { 17500 bpf_log(log, "can't modify return codes of BPF programs\n"); 17501 return -EINVAL; 17502 } 17503 ret = -EINVAL; 17504 if (btf_kfunc_is_modify_return(btf, btf_id) || 17505 !check_attach_modify_return(addr, tname)) 17506 ret = 0; 17507 if (ret) { 17508 bpf_log(log, "%s() is not modifiable\n", tname); 17509 return ret; 17510 } 17511 } 17512 17513 break; 17514 } 17515 tgt_info->tgt_addr = addr; 17516 tgt_info->tgt_name = tname; 17517 tgt_info->tgt_type = t; 17518 return 0; 17519 } 17520 17521 BTF_SET_START(btf_id_deny) 17522 BTF_ID_UNUSED 17523 #ifdef CONFIG_SMP 17524 BTF_ID(func, migrate_disable) 17525 BTF_ID(func, migrate_enable) 17526 #endif 17527 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 17528 BTF_ID(func, rcu_read_unlock_strict) 17529 #endif 17530 BTF_SET_END(btf_id_deny) 17531 17532 static bool can_be_sleepable(struct bpf_prog *prog) 17533 { 17534 if (prog->type == BPF_PROG_TYPE_TRACING) { 17535 switch (prog->expected_attach_type) { 17536 case BPF_TRACE_FENTRY: 17537 case BPF_TRACE_FEXIT: 17538 case BPF_MODIFY_RETURN: 17539 case BPF_TRACE_ITER: 17540 return true; 17541 default: 17542 return false; 17543 } 17544 } 17545 return prog->type == BPF_PROG_TYPE_LSM || 17546 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 17547 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 17548 } 17549 17550 static int check_attach_btf_id(struct bpf_verifier_env *env) 17551 { 17552 struct bpf_prog *prog = env->prog; 17553 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 17554 struct bpf_attach_target_info tgt_info = {}; 17555 u32 btf_id = prog->aux->attach_btf_id; 17556 struct bpf_trampoline *tr; 17557 int ret; 17558 u64 key; 17559 17560 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 17561 if (prog->aux->sleepable) 17562 /* attach_btf_id checked to be zero already */ 17563 return 0; 17564 verbose(env, "Syscall programs can only be sleepable\n"); 17565 return -EINVAL; 17566 } 17567 17568 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 17569 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 17570 return -EINVAL; 17571 } 17572 17573 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 17574 return check_struct_ops_btf_id(env); 17575 17576 if (prog->type != BPF_PROG_TYPE_TRACING && 17577 prog->type != BPF_PROG_TYPE_LSM && 17578 prog->type != BPF_PROG_TYPE_EXT) 17579 return 0; 17580 17581 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 17582 if (ret) 17583 return ret; 17584 17585 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 17586 /* to make freplace equivalent to their targets, they need to 17587 * inherit env->ops and expected_attach_type for the rest of the 17588 * verification 17589 */ 17590 env->ops = bpf_verifier_ops[tgt_prog->type]; 17591 prog->expected_attach_type = tgt_prog->expected_attach_type; 17592 } 17593 17594 /* store info about the attachment target that will be used later */ 17595 prog->aux->attach_func_proto = tgt_info.tgt_type; 17596 prog->aux->attach_func_name = tgt_info.tgt_name; 17597 17598 if (tgt_prog) { 17599 prog->aux->saved_dst_prog_type = tgt_prog->type; 17600 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 17601 } 17602 17603 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 17604 prog->aux->attach_btf_trace = true; 17605 return 0; 17606 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 17607 if (!bpf_iter_prog_supported(prog)) 17608 return -EINVAL; 17609 return 0; 17610 } 17611 17612 if (prog->type == BPF_PROG_TYPE_LSM) { 17613 ret = bpf_lsm_verify_prog(&env->log, prog); 17614 if (ret < 0) 17615 return ret; 17616 } else if (prog->type == BPF_PROG_TYPE_TRACING && 17617 btf_id_set_contains(&btf_id_deny, btf_id)) { 17618 return -EINVAL; 17619 } 17620 17621 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 17622 tr = bpf_trampoline_get(key, &tgt_info); 17623 if (!tr) 17624 return -ENOMEM; 17625 17626 prog->aux->dst_trampoline = tr; 17627 return 0; 17628 } 17629 17630 struct btf *bpf_get_btf_vmlinux(void) 17631 { 17632 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 17633 mutex_lock(&bpf_verifier_lock); 17634 if (!btf_vmlinux) 17635 btf_vmlinux = btf_parse_vmlinux(); 17636 mutex_unlock(&bpf_verifier_lock); 17637 } 17638 return btf_vmlinux; 17639 } 17640 17641 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 17642 { 17643 u64 start_time = ktime_get_ns(); 17644 struct bpf_verifier_env *env; 17645 struct bpf_verifier_log *log; 17646 int i, len, ret = -EINVAL; 17647 bool is_priv; 17648 17649 /* no program is valid */ 17650 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 17651 return -EINVAL; 17652 17653 /* 'struct bpf_verifier_env' can be global, but since it's not small, 17654 * allocate/free it every time bpf_check() is called 17655 */ 17656 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 17657 if (!env) 17658 return -ENOMEM; 17659 log = &env->log; 17660 17661 len = (*prog)->len; 17662 env->insn_aux_data = 17663 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 17664 ret = -ENOMEM; 17665 if (!env->insn_aux_data) 17666 goto err_free_env; 17667 for (i = 0; i < len; i++) 17668 env->insn_aux_data[i].orig_idx = i; 17669 env->prog = *prog; 17670 env->ops = bpf_verifier_ops[env->prog->type]; 17671 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 17672 is_priv = bpf_capable(); 17673 17674 bpf_get_btf_vmlinux(); 17675 17676 /* grab the mutex to protect few globals used by verifier */ 17677 if (!is_priv) 17678 mutex_lock(&bpf_verifier_lock); 17679 17680 if (attr->log_level || attr->log_buf || attr->log_size) { 17681 /* user requested verbose verifier output 17682 * and supplied buffer to store the verification trace 17683 */ 17684 log->level = attr->log_level; 17685 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 17686 log->len_total = attr->log_size; 17687 17688 /* log attributes have to be sane */ 17689 if (!bpf_verifier_log_attr_valid(log)) { 17690 ret = -EINVAL; 17691 goto err_unlock; 17692 } 17693 } 17694 17695 mark_verifier_state_clean(env); 17696 17697 if (IS_ERR(btf_vmlinux)) { 17698 /* Either gcc or pahole or kernel are broken. */ 17699 verbose(env, "in-kernel BTF is malformed\n"); 17700 ret = PTR_ERR(btf_vmlinux); 17701 goto skip_full_check; 17702 } 17703 17704 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 17705 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 17706 env->strict_alignment = true; 17707 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 17708 env->strict_alignment = false; 17709 17710 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 17711 env->allow_uninit_stack = bpf_allow_uninit_stack(); 17712 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 17713 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 17714 env->bpf_capable = bpf_capable(); 17715 env->rcu_tag_supported = btf_vmlinux && 17716 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0; 17717 17718 if (is_priv) 17719 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 17720 17721 env->explored_states = kvcalloc(state_htab_size(env), 17722 sizeof(struct bpf_verifier_state_list *), 17723 GFP_USER); 17724 ret = -ENOMEM; 17725 if (!env->explored_states) 17726 goto skip_full_check; 17727 17728 ret = add_subprog_and_kfunc(env); 17729 if (ret < 0) 17730 goto skip_full_check; 17731 17732 ret = check_subprogs(env); 17733 if (ret < 0) 17734 goto skip_full_check; 17735 17736 ret = check_btf_info(env, attr, uattr); 17737 if (ret < 0) 17738 goto skip_full_check; 17739 17740 ret = check_attach_btf_id(env); 17741 if (ret) 17742 goto skip_full_check; 17743 17744 ret = resolve_pseudo_ldimm64(env); 17745 if (ret < 0) 17746 goto skip_full_check; 17747 17748 if (bpf_prog_is_offloaded(env->prog->aux)) { 17749 ret = bpf_prog_offload_verifier_prep(env->prog); 17750 if (ret) 17751 goto skip_full_check; 17752 } 17753 17754 ret = check_cfg(env); 17755 if (ret < 0) 17756 goto skip_full_check; 17757 17758 ret = do_check_subprogs(env); 17759 ret = ret ?: do_check_main(env); 17760 17761 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 17762 ret = bpf_prog_offload_finalize(env); 17763 17764 skip_full_check: 17765 kvfree(env->explored_states); 17766 17767 if (ret == 0) 17768 ret = check_max_stack_depth(env); 17769 17770 /* instruction rewrites happen after this point */ 17771 if (ret == 0) 17772 ret = optimize_bpf_loop(env); 17773 17774 if (is_priv) { 17775 if (ret == 0) 17776 opt_hard_wire_dead_code_branches(env); 17777 if (ret == 0) 17778 ret = opt_remove_dead_code(env); 17779 if (ret == 0) 17780 ret = opt_remove_nops(env); 17781 } else { 17782 if (ret == 0) 17783 sanitize_dead_code(env); 17784 } 17785 17786 if (ret == 0) 17787 /* program is valid, convert *(u32*)(ctx + off) accesses */ 17788 ret = convert_ctx_accesses(env); 17789 17790 if (ret == 0) 17791 ret = do_misc_fixups(env); 17792 17793 /* do 32-bit optimization after insn patching has done so those patched 17794 * insns could be handled correctly. 17795 */ 17796 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 17797 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 17798 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 17799 : false; 17800 } 17801 17802 if (ret == 0) 17803 ret = fixup_call_args(env); 17804 17805 env->verification_time = ktime_get_ns() - start_time; 17806 print_verification_stats(env); 17807 env->prog->aux->verified_insns = env->insn_processed; 17808 17809 if (log->level && bpf_verifier_log_full(log)) 17810 ret = -ENOSPC; 17811 if (log->level && !log->ubuf) { 17812 ret = -EFAULT; 17813 goto err_release_maps; 17814 } 17815 17816 if (ret) 17817 goto err_release_maps; 17818 17819 if (env->used_map_cnt) { 17820 /* if program passed verifier, update used_maps in bpf_prog_info */ 17821 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 17822 sizeof(env->used_maps[0]), 17823 GFP_KERNEL); 17824 17825 if (!env->prog->aux->used_maps) { 17826 ret = -ENOMEM; 17827 goto err_release_maps; 17828 } 17829 17830 memcpy(env->prog->aux->used_maps, env->used_maps, 17831 sizeof(env->used_maps[0]) * env->used_map_cnt); 17832 env->prog->aux->used_map_cnt = env->used_map_cnt; 17833 } 17834 if (env->used_btf_cnt) { 17835 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 17836 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 17837 sizeof(env->used_btfs[0]), 17838 GFP_KERNEL); 17839 if (!env->prog->aux->used_btfs) { 17840 ret = -ENOMEM; 17841 goto err_release_maps; 17842 } 17843 17844 memcpy(env->prog->aux->used_btfs, env->used_btfs, 17845 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 17846 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 17847 } 17848 if (env->used_map_cnt || env->used_btf_cnt) { 17849 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 17850 * bpf_ld_imm64 instructions 17851 */ 17852 convert_pseudo_ld_imm64(env); 17853 } 17854 17855 adjust_btf_func(env); 17856 17857 err_release_maps: 17858 if (!env->prog->aux->used_maps) 17859 /* if we didn't copy map pointers into bpf_prog_info, release 17860 * them now. Otherwise free_used_maps() will release them. 17861 */ 17862 release_maps(env); 17863 if (!env->prog->aux->used_btfs) 17864 release_btfs(env); 17865 17866 /* extension progs temporarily inherit the attach_type of their targets 17867 for verification purposes, so set it back to zero before returning 17868 */ 17869 if (env->prog->type == BPF_PROG_TYPE_EXT) 17870 env->prog->expected_attach_type = 0; 17871 17872 *prog = env->prog; 17873 err_unlock: 17874 if (!is_priv) 17875 mutex_unlock(&bpf_verifier_lock); 17876 vfree(env->insn_aux_data); 17877 err_free_env: 17878 kfree(env); 17879 return ret; 17880 } 17881