1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 29 #include "disasm.h" 30 31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 33 [_id] = & _name ## _verifier_ops, 34 #define BPF_MAP_TYPE(_id, _ops) 35 #define BPF_LINK_TYPE(_id, _name) 36 #include <linux/bpf_types.h> 37 #undef BPF_PROG_TYPE 38 #undef BPF_MAP_TYPE 39 #undef BPF_LINK_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all paths through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns either pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 /* length of verifier log at the time this state was pushed on stack */ 178 u32 log_pos; 179 }; 180 181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 182 #define BPF_COMPLEXITY_LIMIT_STATES 64 183 184 #define BPF_MAP_KEY_POISON (1ULL << 63) 185 #define BPF_MAP_KEY_SEEN (1ULL << 62) 186 187 #define BPF_MAP_PTR_UNPRIV 1UL 188 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 189 POISON_POINTER_DELTA)) 190 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 191 192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 196 static int ref_set_non_owning(struct bpf_verifier_env *env, 197 struct bpf_reg_state *reg); 198 static void specialize_kfunc(struct bpf_verifier_env *env, 199 u32 func_id, u16 offset, unsigned long *addr); 200 static bool is_trusted_reg(const struct bpf_reg_state *reg); 201 202 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 203 { 204 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 205 } 206 207 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 210 } 211 212 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 213 const struct bpf_map *map, bool unpriv) 214 { 215 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 216 unpriv |= bpf_map_ptr_unpriv(aux); 217 aux->map_ptr_state = (unsigned long)map | 218 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 219 } 220 221 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 222 { 223 return aux->map_key_state & BPF_MAP_KEY_POISON; 224 } 225 226 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 227 { 228 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 229 } 230 231 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 232 { 233 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 234 } 235 236 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 237 { 238 bool poisoned = bpf_map_key_poisoned(aux); 239 240 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 241 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 242 } 243 244 static bool bpf_helper_call(const struct bpf_insn *insn) 245 { 246 return insn->code == (BPF_JMP | BPF_CALL) && 247 insn->src_reg == 0; 248 } 249 250 static bool bpf_pseudo_call(const struct bpf_insn *insn) 251 { 252 return insn->code == (BPF_JMP | BPF_CALL) && 253 insn->src_reg == BPF_PSEUDO_CALL; 254 } 255 256 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_JMP | BPF_CALL) && 259 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 260 } 261 262 struct bpf_call_arg_meta { 263 struct bpf_map *map_ptr; 264 bool raw_mode; 265 bool pkt_access; 266 u8 release_regno; 267 int regno; 268 int access_size; 269 int mem_size; 270 u64 msize_max_value; 271 int ref_obj_id; 272 int dynptr_id; 273 int map_uid; 274 int func_id; 275 struct btf *btf; 276 u32 btf_id; 277 struct btf *ret_btf; 278 u32 ret_btf_id; 279 u32 subprogno; 280 struct btf_field *kptr_field; 281 }; 282 283 struct bpf_kfunc_call_arg_meta { 284 /* In parameters */ 285 struct btf *btf; 286 u32 func_id; 287 u32 kfunc_flags; 288 const struct btf_type *func_proto; 289 const char *func_name; 290 /* Out parameters */ 291 u32 ref_obj_id; 292 u8 release_regno; 293 bool r0_rdonly; 294 u32 ret_btf_id; 295 u64 r0_size; 296 u32 subprogno; 297 struct { 298 u64 value; 299 bool found; 300 } arg_constant; 301 302 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 303 * generally to pass info about user-defined local kptr types to later 304 * verification logic 305 * bpf_obj_drop 306 * Record the local kptr type to be drop'd 307 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 308 * Record the local kptr type to be refcount_incr'd and use 309 * arg_owning_ref to determine whether refcount_acquire should be 310 * fallible 311 */ 312 struct btf *arg_btf; 313 u32 arg_btf_id; 314 bool arg_owning_ref; 315 316 struct { 317 struct btf_field *field; 318 } arg_list_head; 319 struct { 320 struct btf_field *field; 321 } arg_rbtree_root; 322 struct { 323 enum bpf_dynptr_type type; 324 u32 id; 325 u32 ref_obj_id; 326 } initialized_dynptr; 327 struct { 328 u8 spi; 329 u8 frameno; 330 } iter; 331 u64 mem_size; 332 }; 333 334 struct btf *btf_vmlinux; 335 336 static DEFINE_MUTEX(bpf_verifier_lock); 337 338 static const struct bpf_line_info * 339 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 340 { 341 const struct bpf_line_info *linfo; 342 const struct bpf_prog *prog; 343 u32 i, nr_linfo; 344 345 prog = env->prog; 346 nr_linfo = prog->aux->nr_linfo; 347 348 if (!nr_linfo || insn_off >= prog->len) 349 return NULL; 350 351 linfo = prog->aux->linfo; 352 for (i = 1; i < nr_linfo; i++) 353 if (insn_off < linfo[i].insn_off) 354 break; 355 356 return &linfo[i - 1]; 357 } 358 359 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 360 { 361 struct bpf_verifier_env *env = private_data; 362 va_list args; 363 364 if (!bpf_verifier_log_needed(&env->log)) 365 return; 366 367 va_start(args, fmt); 368 bpf_verifier_vlog(&env->log, fmt, args); 369 va_end(args); 370 } 371 372 static const char *ltrim(const char *s) 373 { 374 while (isspace(*s)) 375 s++; 376 377 return s; 378 } 379 380 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 381 u32 insn_off, 382 const char *prefix_fmt, ...) 383 { 384 const struct bpf_line_info *linfo; 385 386 if (!bpf_verifier_log_needed(&env->log)) 387 return; 388 389 linfo = find_linfo(env, insn_off); 390 if (!linfo || linfo == env->prev_linfo) 391 return; 392 393 if (prefix_fmt) { 394 va_list args; 395 396 va_start(args, prefix_fmt); 397 bpf_verifier_vlog(&env->log, prefix_fmt, args); 398 va_end(args); 399 } 400 401 verbose(env, "%s\n", 402 ltrim(btf_name_by_offset(env->prog->aux->btf, 403 linfo->line_off))); 404 405 env->prev_linfo = linfo; 406 } 407 408 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 409 struct bpf_reg_state *reg, 410 struct tnum *range, const char *ctx, 411 const char *reg_name) 412 { 413 char tn_buf[48]; 414 415 verbose(env, "At %s the register %s ", ctx, reg_name); 416 if (!tnum_is_unknown(reg->var_off)) { 417 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 418 verbose(env, "has value %s", tn_buf); 419 } else { 420 verbose(env, "has unknown scalar value"); 421 } 422 tnum_strn(tn_buf, sizeof(tn_buf), *range); 423 verbose(env, " should have been in %s\n", tn_buf); 424 } 425 426 static bool type_is_pkt_pointer(enum bpf_reg_type type) 427 { 428 type = base_type(type); 429 return type == PTR_TO_PACKET || 430 type == PTR_TO_PACKET_META; 431 } 432 433 static bool type_is_sk_pointer(enum bpf_reg_type type) 434 { 435 return type == PTR_TO_SOCKET || 436 type == PTR_TO_SOCK_COMMON || 437 type == PTR_TO_TCP_SOCK || 438 type == PTR_TO_XDP_SOCK; 439 } 440 441 static bool type_may_be_null(u32 type) 442 { 443 return type & PTR_MAYBE_NULL; 444 } 445 446 static bool reg_not_null(const struct bpf_reg_state *reg) 447 { 448 enum bpf_reg_type type; 449 450 type = reg->type; 451 if (type_may_be_null(type)) 452 return false; 453 454 type = base_type(type); 455 return type == PTR_TO_SOCKET || 456 type == PTR_TO_TCP_SOCK || 457 type == PTR_TO_MAP_VALUE || 458 type == PTR_TO_MAP_KEY || 459 type == PTR_TO_SOCK_COMMON || 460 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 461 type == PTR_TO_MEM; 462 } 463 464 static bool type_is_ptr_alloc_obj(u32 type) 465 { 466 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 467 } 468 469 static bool type_is_non_owning_ref(u32 type) 470 { 471 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 472 } 473 474 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 475 { 476 struct btf_record *rec = NULL; 477 struct btf_struct_meta *meta; 478 479 if (reg->type == PTR_TO_MAP_VALUE) { 480 rec = reg->map_ptr->record; 481 } else if (type_is_ptr_alloc_obj(reg->type)) { 482 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 483 if (meta) 484 rec = meta->record; 485 } 486 return rec; 487 } 488 489 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 490 { 491 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 492 493 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 494 } 495 496 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 497 { 498 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 499 } 500 501 static bool type_is_rdonly_mem(u32 type) 502 { 503 return type & MEM_RDONLY; 504 } 505 506 static bool is_acquire_function(enum bpf_func_id func_id, 507 const struct bpf_map *map) 508 { 509 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 510 511 if (func_id == BPF_FUNC_sk_lookup_tcp || 512 func_id == BPF_FUNC_sk_lookup_udp || 513 func_id == BPF_FUNC_skc_lookup_tcp || 514 func_id == BPF_FUNC_ringbuf_reserve || 515 func_id == BPF_FUNC_kptr_xchg) 516 return true; 517 518 if (func_id == BPF_FUNC_map_lookup_elem && 519 (map_type == BPF_MAP_TYPE_SOCKMAP || 520 map_type == BPF_MAP_TYPE_SOCKHASH)) 521 return true; 522 523 return false; 524 } 525 526 static bool is_ptr_cast_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_tcp_sock || 529 func_id == BPF_FUNC_sk_fullsock || 530 func_id == BPF_FUNC_skc_to_tcp_sock || 531 func_id == BPF_FUNC_skc_to_tcp6_sock || 532 func_id == BPF_FUNC_skc_to_udp6_sock || 533 func_id == BPF_FUNC_skc_to_mptcp_sock || 534 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 535 func_id == BPF_FUNC_skc_to_tcp_request_sock; 536 } 537 538 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 539 { 540 return func_id == BPF_FUNC_dynptr_data; 541 } 542 543 static bool is_callback_calling_kfunc(u32 btf_id); 544 545 static bool is_callback_calling_function(enum bpf_func_id func_id) 546 { 547 return func_id == BPF_FUNC_for_each_map_elem || 548 func_id == BPF_FUNC_timer_set_callback || 549 func_id == BPF_FUNC_find_vma || 550 func_id == BPF_FUNC_loop || 551 func_id == BPF_FUNC_user_ringbuf_drain; 552 } 553 554 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 555 { 556 return func_id == BPF_FUNC_timer_set_callback; 557 } 558 559 static bool is_storage_get_function(enum bpf_func_id func_id) 560 { 561 return func_id == BPF_FUNC_sk_storage_get || 562 func_id == BPF_FUNC_inode_storage_get || 563 func_id == BPF_FUNC_task_storage_get || 564 func_id == BPF_FUNC_cgrp_storage_get; 565 } 566 567 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 568 const struct bpf_map *map) 569 { 570 int ref_obj_uses = 0; 571 572 if (is_ptr_cast_function(func_id)) 573 ref_obj_uses++; 574 if (is_acquire_function(func_id, map)) 575 ref_obj_uses++; 576 if (is_dynptr_ref_function(func_id)) 577 ref_obj_uses++; 578 579 return ref_obj_uses > 1; 580 } 581 582 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 583 { 584 return BPF_CLASS(insn->code) == BPF_STX && 585 BPF_MODE(insn->code) == BPF_ATOMIC && 586 insn->imm == BPF_CMPXCHG; 587 } 588 589 /* string representation of 'enum bpf_reg_type' 590 * 591 * Note that reg_type_str() can not appear more than once in a single verbose() 592 * statement. 593 */ 594 static const char *reg_type_str(struct bpf_verifier_env *env, 595 enum bpf_reg_type type) 596 { 597 char postfix[16] = {0}, prefix[64] = {0}; 598 static const char * const str[] = { 599 [NOT_INIT] = "?", 600 [SCALAR_VALUE] = "scalar", 601 [PTR_TO_CTX] = "ctx", 602 [CONST_PTR_TO_MAP] = "map_ptr", 603 [PTR_TO_MAP_VALUE] = "map_value", 604 [PTR_TO_STACK] = "fp", 605 [PTR_TO_PACKET] = "pkt", 606 [PTR_TO_PACKET_META] = "pkt_meta", 607 [PTR_TO_PACKET_END] = "pkt_end", 608 [PTR_TO_FLOW_KEYS] = "flow_keys", 609 [PTR_TO_SOCKET] = "sock", 610 [PTR_TO_SOCK_COMMON] = "sock_common", 611 [PTR_TO_TCP_SOCK] = "tcp_sock", 612 [PTR_TO_TP_BUFFER] = "tp_buffer", 613 [PTR_TO_XDP_SOCK] = "xdp_sock", 614 [PTR_TO_BTF_ID] = "ptr_", 615 [PTR_TO_MEM] = "mem", 616 [PTR_TO_BUF] = "buf", 617 [PTR_TO_FUNC] = "func", 618 [PTR_TO_MAP_KEY] = "map_key", 619 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 620 }; 621 622 if (type & PTR_MAYBE_NULL) { 623 if (base_type(type) == PTR_TO_BTF_ID) 624 strncpy(postfix, "or_null_", 16); 625 else 626 strncpy(postfix, "_or_null", 16); 627 } 628 629 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 630 type & MEM_RDONLY ? "rdonly_" : "", 631 type & MEM_RINGBUF ? "ringbuf_" : "", 632 type & MEM_USER ? "user_" : "", 633 type & MEM_PERCPU ? "percpu_" : "", 634 type & MEM_RCU ? "rcu_" : "", 635 type & PTR_UNTRUSTED ? "untrusted_" : "", 636 type & PTR_TRUSTED ? "trusted_" : "" 637 ); 638 639 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 640 prefix, str[base_type(type)], postfix); 641 return env->tmp_str_buf; 642 } 643 644 static char slot_type_char[] = { 645 [STACK_INVALID] = '?', 646 [STACK_SPILL] = 'r', 647 [STACK_MISC] = 'm', 648 [STACK_ZERO] = '0', 649 [STACK_DYNPTR] = 'd', 650 [STACK_ITER] = 'i', 651 }; 652 653 static void print_liveness(struct bpf_verifier_env *env, 654 enum bpf_reg_liveness live) 655 { 656 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 657 verbose(env, "_"); 658 if (live & REG_LIVE_READ) 659 verbose(env, "r"); 660 if (live & REG_LIVE_WRITTEN) 661 verbose(env, "w"); 662 if (live & REG_LIVE_DONE) 663 verbose(env, "D"); 664 } 665 666 static int __get_spi(s32 off) 667 { 668 return (-off - 1) / BPF_REG_SIZE; 669 } 670 671 static struct bpf_func_state *func(struct bpf_verifier_env *env, 672 const struct bpf_reg_state *reg) 673 { 674 struct bpf_verifier_state *cur = env->cur_state; 675 676 return cur->frame[reg->frameno]; 677 } 678 679 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 680 { 681 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 682 683 /* We need to check that slots between [spi - nr_slots + 1, spi] are 684 * within [0, allocated_stack). 685 * 686 * Please note that the spi grows downwards. For example, a dynptr 687 * takes the size of two stack slots; the first slot will be at 688 * spi and the second slot will be at spi - 1. 689 */ 690 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 691 } 692 693 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 694 const char *obj_kind, int nr_slots) 695 { 696 int off, spi; 697 698 if (!tnum_is_const(reg->var_off)) { 699 verbose(env, "%s has to be at a constant offset\n", obj_kind); 700 return -EINVAL; 701 } 702 703 off = reg->off + reg->var_off.value; 704 if (off % BPF_REG_SIZE) { 705 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 706 return -EINVAL; 707 } 708 709 spi = __get_spi(off); 710 if (spi + 1 < nr_slots) { 711 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 712 return -EINVAL; 713 } 714 715 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 716 return -ERANGE; 717 return spi; 718 } 719 720 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 721 { 722 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 723 } 724 725 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 726 { 727 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 728 } 729 730 static const char *btf_type_name(const struct btf *btf, u32 id) 731 { 732 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 733 } 734 735 static const char *dynptr_type_str(enum bpf_dynptr_type type) 736 { 737 switch (type) { 738 case BPF_DYNPTR_TYPE_LOCAL: 739 return "local"; 740 case BPF_DYNPTR_TYPE_RINGBUF: 741 return "ringbuf"; 742 case BPF_DYNPTR_TYPE_SKB: 743 return "skb"; 744 case BPF_DYNPTR_TYPE_XDP: 745 return "xdp"; 746 case BPF_DYNPTR_TYPE_INVALID: 747 return "<invalid>"; 748 default: 749 WARN_ONCE(1, "unknown dynptr type %d\n", type); 750 return "<unknown>"; 751 } 752 } 753 754 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 755 { 756 if (!btf || btf_id == 0) 757 return "<invalid>"; 758 759 /* we already validated that type is valid and has conforming name */ 760 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 761 } 762 763 static const char *iter_state_str(enum bpf_iter_state state) 764 { 765 switch (state) { 766 case BPF_ITER_STATE_ACTIVE: 767 return "active"; 768 case BPF_ITER_STATE_DRAINED: 769 return "drained"; 770 case BPF_ITER_STATE_INVALID: 771 return "<invalid>"; 772 default: 773 WARN_ONCE(1, "unknown iter state %d\n", state); 774 return "<unknown>"; 775 } 776 } 777 778 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 779 { 780 env->scratched_regs |= 1U << regno; 781 } 782 783 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 784 { 785 env->scratched_stack_slots |= 1ULL << spi; 786 } 787 788 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 789 { 790 return (env->scratched_regs >> regno) & 1; 791 } 792 793 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 794 { 795 return (env->scratched_stack_slots >> regno) & 1; 796 } 797 798 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 799 { 800 return env->scratched_regs || env->scratched_stack_slots; 801 } 802 803 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 804 { 805 env->scratched_regs = 0U; 806 env->scratched_stack_slots = 0ULL; 807 } 808 809 /* Used for printing the entire verifier state. */ 810 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 811 { 812 env->scratched_regs = ~0U; 813 env->scratched_stack_slots = ~0ULL; 814 } 815 816 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 817 { 818 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 819 case DYNPTR_TYPE_LOCAL: 820 return BPF_DYNPTR_TYPE_LOCAL; 821 case DYNPTR_TYPE_RINGBUF: 822 return BPF_DYNPTR_TYPE_RINGBUF; 823 case DYNPTR_TYPE_SKB: 824 return BPF_DYNPTR_TYPE_SKB; 825 case DYNPTR_TYPE_XDP: 826 return BPF_DYNPTR_TYPE_XDP; 827 default: 828 return BPF_DYNPTR_TYPE_INVALID; 829 } 830 } 831 832 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 833 { 834 switch (type) { 835 case BPF_DYNPTR_TYPE_LOCAL: 836 return DYNPTR_TYPE_LOCAL; 837 case BPF_DYNPTR_TYPE_RINGBUF: 838 return DYNPTR_TYPE_RINGBUF; 839 case BPF_DYNPTR_TYPE_SKB: 840 return DYNPTR_TYPE_SKB; 841 case BPF_DYNPTR_TYPE_XDP: 842 return DYNPTR_TYPE_XDP; 843 default: 844 return 0; 845 } 846 } 847 848 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 849 { 850 return type == BPF_DYNPTR_TYPE_RINGBUF; 851 } 852 853 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 854 enum bpf_dynptr_type type, 855 bool first_slot, int dynptr_id); 856 857 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 858 struct bpf_reg_state *reg); 859 860 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 861 struct bpf_reg_state *sreg1, 862 struct bpf_reg_state *sreg2, 863 enum bpf_dynptr_type type) 864 { 865 int id = ++env->id_gen; 866 867 __mark_dynptr_reg(sreg1, type, true, id); 868 __mark_dynptr_reg(sreg2, type, false, id); 869 } 870 871 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 872 struct bpf_reg_state *reg, 873 enum bpf_dynptr_type type) 874 { 875 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 876 } 877 878 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 879 struct bpf_func_state *state, int spi); 880 881 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 882 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 883 { 884 struct bpf_func_state *state = func(env, reg); 885 enum bpf_dynptr_type type; 886 int spi, i, err; 887 888 spi = dynptr_get_spi(env, reg); 889 if (spi < 0) 890 return spi; 891 892 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 893 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 894 * to ensure that for the following example: 895 * [d1][d1][d2][d2] 896 * spi 3 2 1 0 897 * So marking spi = 2 should lead to destruction of both d1 and d2. In 898 * case they do belong to same dynptr, second call won't see slot_type 899 * as STACK_DYNPTR and will simply skip destruction. 900 */ 901 err = destroy_if_dynptr_stack_slot(env, state, spi); 902 if (err) 903 return err; 904 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 905 if (err) 906 return err; 907 908 for (i = 0; i < BPF_REG_SIZE; i++) { 909 state->stack[spi].slot_type[i] = STACK_DYNPTR; 910 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 911 } 912 913 type = arg_to_dynptr_type(arg_type); 914 if (type == BPF_DYNPTR_TYPE_INVALID) 915 return -EINVAL; 916 917 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 918 &state->stack[spi - 1].spilled_ptr, type); 919 920 if (dynptr_type_refcounted(type)) { 921 /* The id is used to track proper releasing */ 922 int id; 923 924 if (clone_ref_obj_id) 925 id = clone_ref_obj_id; 926 else 927 id = acquire_reference_state(env, insn_idx); 928 929 if (id < 0) 930 return id; 931 932 state->stack[spi].spilled_ptr.ref_obj_id = id; 933 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 934 } 935 936 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 937 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 938 939 return 0; 940 } 941 942 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 943 { 944 int i; 945 946 for (i = 0; i < BPF_REG_SIZE; i++) { 947 state->stack[spi].slot_type[i] = STACK_INVALID; 948 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 949 } 950 951 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 952 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 953 954 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 955 * 956 * While we don't allow reading STACK_INVALID, it is still possible to 957 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 958 * helpers or insns can do partial read of that part without failing, 959 * but check_stack_range_initialized, check_stack_read_var_off, and 960 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 961 * the slot conservatively. Hence we need to prevent those liveness 962 * marking walks. 963 * 964 * This was not a problem before because STACK_INVALID is only set by 965 * default (where the default reg state has its reg->parent as NULL), or 966 * in clean_live_states after REG_LIVE_DONE (at which point 967 * mark_reg_read won't walk reg->parent chain), but not randomly during 968 * verifier state exploration (like we did above). Hence, for our case 969 * parentage chain will still be live (i.e. reg->parent may be 970 * non-NULL), while earlier reg->parent was NULL, so we need 971 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 972 * done later on reads or by mark_dynptr_read as well to unnecessary 973 * mark registers in verifier state. 974 */ 975 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 976 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 977 } 978 979 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 980 { 981 struct bpf_func_state *state = func(env, reg); 982 int spi, ref_obj_id, i; 983 984 spi = dynptr_get_spi(env, reg); 985 if (spi < 0) 986 return spi; 987 988 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 989 invalidate_dynptr(env, state, spi); 990 return 0; 991 } 992 993 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 994 995 /* If the dynptr has a ref_obj_id, then we need to invalidate 996 * two things: 997 * 998 * 1) Any dynptrs with a matching ref_obj_id (clones) 999 * 2) Any slices derived from this dynptr. 1000 */ 1001 1002 /* Invalidate any slices associated with this dynptr */ 1003 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1004 1005 /* Invalidate any dynptr clones */ 1006 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1007 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1008 continue; 1009 1010 /* it should always be the case that if the ref obj id 1011 * matches then the stack slot also belongs to a 1012 * dynptr 1013 */ 1014 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1015 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1016 return -EFAULT; 1017 } 1018 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1019 invalidate_dynptr(env, state, i); 1020 } 1021 1022 return 0; 1023 } 1024 1025 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1026 struct bpf_reg_state *reg); 1027 1028 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1029 { 1030 if (!env->allow_ptr_leaks) 1031 __mark_reg_not_init(env, reg); 1032 else 1033 __mark_reg_unknown(env, reg); 1034 } 1035 1036 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1037 struct bpf_func_state *state, int spi) 1038 { 1039 struct bpf_func_state *fstate; 1040 struct bpf_reg_state *dreg; 1041 int i, dynptr_id; 1042 1043 /* We always ensure that STACK_DYNPTR is never set partially, 1044 * hence just checking for slot_type[0] is enough. This is 1045 * different for STACK_SPILL, where it may be only set for 1046 * 1 byte, so code has to use is_spilled_reg. 1047 */ 1048 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1049 return 0; 1050 1051 /* Reposition spi to first slot */ 1052 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1053 spi = spi + 1; 1054 1055 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1056 verbose(env, "cannot overwrite referenced dynptr\n"); 1057 return -EINVAL; 1058 } 1059 1060 mark_stack_slot_scratched(env, spi); 1061 mark_stack_slot_scratched(env, spi - 1); 1062 1063 /* Writing partially to one dynptr stack slot destroys both. */ 1064 for (i = 0; i < BPF_REG_SIZE; i++) { 1065 state->stack[spi].slot_type[i] = STACK_INVALID; 1066 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1067 } 1068 1069 dynptr_id = state->stack[spi].spilled_ptr.id; 1070 /* Invalidate any slices associated with this dynptr */ 1071 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1072 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1073 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1074 continue; 1075 if (dreg->dynptr_id == dynptr_id) 1076 mark_reg_invalid(env, dreg); 1077 })); 1078 1079 /* Do not release reference state, we are destroying dynptr on stack, 1080 * not using some helper to release it. Just reset register. 1081 */ 1082 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1083 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1084 1085 /* Same reason as unmark_stack_slots_dynptr above */ 1086 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1087 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1088 1089 return 0; 1090 } 1091 1092 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1093 { 1094 int spi; 1095 1096 if (reg->type == CONST_PTR_TO_DYNPTR) 1097 return false; 1098 1099 spi = dynptr_get_spi(env, reg); 1100 1101 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1102 * error because this just means the stack state hasn't been updated yet. 1103 * We will do check_mem_access to check and update stack bounds later. 1104 */ 1105 if (spi < 0 && spi != -ERANGE) 1106 return false; 1107 1108 /* We don't need to check if the stack slots are marked by previous 1109 * dynptr initializations because we allow overwriting existing unreferenced 1110 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1111 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1112 * touching are completely destructed before we reinitialize them for a new 1113 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1114 * instead of delaying it until the end where the user will get "Unreleased 1115 * reference" error. 1116 */ 1117 return true; 1118 } 1119 1120 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1121 { 1122 struct bpf_func_state *state = func(env, reg); 1123 int i, spi; 1124 1125 /* This already represents first slot of initialized bpf_dynptr. 1126 * 1127 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1128 * check_func_arg_reg_off's logic, so we don't need to check its 1129 * offset and alignment. 1130 */ 1131 if (reg->type == CONST_PTR_TO_DYNPTR) 1132 return true; 1133 1134 spi = dynptr_get_spi(env, reg); 1135 if (spi < 0) 1136 return false; 1137 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1138 return false; 1139 1140 for (i = 0; i < BPF_REG_SIZE; i++) { 1141 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1142 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1143 return false; 1144 } 1145 1146 return true; 1147 } 1148 1149 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1150 enum bpf_arg_type arg_type) 1151 { 1152 struct bpf_func_state *state = func(env, reg); 1153 enum bpf_dynptr_type dynptr_type; 1154 int spi; 1155 1156 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1157 if (arg_type == ARG_PTR_TO_DYNPTR) 1158 return true; 1159 1160 dynptr_type = arg_to_dynptr_type(arg_type); 1161 if (reg->type == CONST_PTR_TO_DYNPTR) { 1162 return reg->dynptr.type == dynptr_type; 1163 } else { 1164 spi = dynptr_get_spi(env, reg); 1165 if (spi < 0) 1166 return false; 1167 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1168 } 1169 } 1170 1171 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1172 1173 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1174 struct bpf_reg_state *reg, int insn_idx, 1175 struct btf *btf, u32 btf_id, int nr_slots) 1176 { 1177 struct bpf_func_state *state = func(env, reg); 1178 int spi, i, j, id; 1179 1180 spi = iter_get_spi(env, reg, nr_slots); 1181 if (spi < 0) 1182 return spi; 1183 1184 id = acquire_reference_state(env, insn_idx); 1185 if (id < 0) 1186 return id; 1187 1188 for (i = 0; i < nr_slots; i++) { 1189 struct bpf_stack_state *slot = &state->stack[spi - i]; 1190 struct bpf_reg_state *st = &slot->spilled_ptr; 1191 1192 __mark_reg_known_zero(st); 1193 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1194 st->live |= REG_LIVE_WRITTEN; 1195 st->ref_obj_id = i == 0 ? id : 0; 1196 st->iter.btf = btf; 1197 st->iter.btf_id = btf_id; 1198 st->iter.state = BPF_ITER_STATE_ACTIVE; 1199 st->iter.depth = 0; 1200 1201 for (j = 0; j < BPF_REG_SIZE; j++) 1202 slot->slot_type[j] = STACK_ITER; 1203 1204 mark_stack_slot_scratched(env, spi - i); 1205 } 1206 1207 return 0; 1208 } 1209 1210 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1211 struct bpf_reg_state *reg, int nr_slots) 1212 { 1213 struct bpf_func_state *state = func(env, reg); 1214 int spi, i, j; 1215 1216 spi = iter_get_spi(env, reg, nr_slots); 1217 if (spi < 0) 1218 return spi; 1219 1220 for (i = 0; i < nr_slots; i++) { 1221 struct bpf_stack_state *slot = &state->stack[spi - i]; 1222 struct bpf_reg_state *st = &slot->spilled_ptr; 1223 1224 if (i == 0) 1225 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1226 1227 __mark_reg_not_init(env, st); 1228 1229 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1230 st->live |= REG_LIVE_WRITTEN; 1231 1232 for (j = 0; j < BPF_REG_SIZE; j++) 1233 slot->slot_type[j] = STACK_INVALID; 1234 1235 mark_stack_slot_scratched(env, spi - i); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1242 struct bpf_reg_state *reg, int nr_slots) 1243 { 1244 struct bpf_func_state *state = func(env, reg); 1245 int spi, i, j; 1246 1247 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1248 * will do check_mem_access to check and update stack bounds later, so 1249 * return true for that case. 1250 */ 1251 spi = iter_get_spi(env, reg, nr_slots); 1252 if (spi == -ERANGE) 1253 return true; 1254 if (spi < 0) 1255 return false; 1256 1257 for (i = 0; i < nr_slots; i++) { 1258 struct bpf_stack_state *slot = &state->stack[spi - i]; 1259 1260 for (j = 0; j < BPF_REG_SIZE; j++) 1261 if (slot->slot_type[j] == STACK_ITER) 1262 return false; 1263 } 1264 1265 return true; 1266 } 1267 1268 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1269 struct btf *btf, u32 btf_id, int nr_slots) 1270 { 1271 struct bpf_func_state *state = func(env, reg); 1272 int spi, i, j; 1273 1274 spi = iter_get_spi(env, reg, nr_slots); 1275 if (spi < 0) 1276 return false; 1277 1278 for (i = 0; i < nr_slots; i++) { 1279 struct bpf_stack_state *slot = &state->stack[spi - i]; 1280 struct bpf_reg_state *st = &slot->spilled_ptr; 1281 1282 /* only main (first) slot has ref_obj_id set */ 1283 if (i == 0 && !st->ref_obj_id) 1284 return false; 1285 if (i != 0 && st->ref_obj_id) 1286 return false; 1287 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1288 return false; 1289 1290 for (j = 0; j < BPF_REG_SIZE; j++) 1291 if (slot->slot_type[j] != STACK_ITER) 1292 return false; 1293 } 1294 1295 return true; 1296 } 1297 1298 /* Check if given stack slot is "special": 1299 * - spilled register state (STACK_SPILL); 1300 * - dynptr state (STACK_DYNPTR); 1301 * - iter state (STACK_ITER). 1302 */ 1303 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1304 { 1305 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1306 1307 switch (type) { 1308 case STACK_SPILL: 1309 case STACK_DYNPTR: 1310 case STACK_ITER: 1311 return true; 1312 case STACK_INVALID: 1313 case STACK_MISC: 1314 case STACK_ZERO: 1315 return false; 1316 default: 1317 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1318 return true; 1319 } 1320 } 1321 1322 /* The reg state of a pointer or a bounded scalar was saved when 1323 * it was spilled to the stack. 1324 */ 1325 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1326 { 1327 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1328 } 1329 1330 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1331 { 1332 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1333 stack->spilled_ptr.type == SCALAR_VALUE; 1334 } 1335 1336 static void scrub_spilled_slot(u8 *stype) 1337 { 1338 if (*stype != STACK_INVALID) 1339 *stype = STACK_MISC; 1340 } 1341 1342 static void print_verifier_state(struct bpf_verifier_env *env, 1343 const struct bpf_func_state *state, 1344 bool print_all) 1345 { 1346 const struct bpf_reg_state *reg; 1347 enum bpf_reg_type t; 1348 int i; 1349 1350 if (state->frameno) 1351 verbose(env, " frame%d:", state->frameno); 1352 for (i = 0; i < MAX_BPF_REG; i++) { 1353 reg = &state->regs[i]; 1354 t = reg->type; 1355 if (t == NOT_INIT) 1356 continue; 1357 if (!print_all && !reg_scratched(env, i)) 1358 continue; 1359 verbose(env, " R%d", i); 1360 print_liveness(env, reg->live); 1361 verbose(env, "="); 1362 if (t == SCALAR_VALUE && reg->precise) 1363 verbose(env, "P"); 1364 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1365 tnum_is_const(reg->var_off)) { 1366 /* reg->off should be 0 for SCALAR_VALUE */ 1367 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1368 verbose(env, "%lld", reg->var_off.value + reg->off); 1369 } else { 1370 const char *sep = ""; 1371 1372 verbose(env, "%s", reg_type_str(env, t)); 1373 if (base_type(t) == PTR_TO_BTF_ID) 1374 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1375 verbose(env, "("); 1376 /* 1377 * _a stands for append, was shortened to avoid multiline statements below. 1378 * This macro is used to output a comma separated list of attributes. 1379 */ 1380 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1381 1382 if (reg->id) 1383 verbose_a("id=%d", reg->id); 1384 if (reg->ref_obj_id) 1385 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1386 if (type_is_non_owning_ref(reg->type)) 1387 verbose_a("%s", "non_own_ref"); 1388 if (t != SCALAR_VALUE) 1389 verbose_a("off=%d", reg->off); 1390 if (type_is_pkt_pointer(t)) 1391 verbose_a("r=%d", reg->range); 1392 else if (base_type(t) == CONST_PTR_TO_MAP || 1393 base_type(t) == PTR_TO_MAP_KEY || 1394 base_type(t) == PTR_TO_MAP_VALUE) 1395 verbose_a("ks=%d,vs=%d", 1396 reg->map_ptr->key_size, 1397 reg->map_ptr->value_size); 1398 if (tnum_is_const(reg->var_off)) { 1399 /* Typically an immediate SCALAR_VALUE, but 1400 * could be a pointer whose offset is too big 1401 * for reg->off 1402 */ 1403 verbose_a("imm=%llx", reg->var_off.value); 1404 } else { 1405 if (reg->smin_value != reg->umin_value && 1406 reg->smin_value != S64_MIN) 1407 verbose_a("smin=%lld", (long long)reg->smin_value); 1408 if (reg->smax_value != reg->umax_value && 1409 reg->smax_value != S64_MAX) 1410 verbose_a("smax=%lld", (long long)reg->smax_value); 1411 if (reg->umin_value != 0) 1412 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1413 if (reg->umax_value != U64_MAX) 1414 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1415 if (!tnum_is_unknown(reg->var_off)) { 1416 char tn_buf[48]; 1417 1418 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1419 verbose_a("var_off=%s", tn_buf); 1420 } 1421 if (reg->s32_min_value != reg->smin_value && 1422 reg->s32_min_value != S32_MIN) 1423 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1424 if (reg->s32_max_value != reg->smax_value && 1425 reg->s32_max_value != S32_MAX) 1426 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1427 if (reg->u32_min_value != reg->umin_value && 1428 reg->u32_min_value != U32_MIN) 1429 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1430 if (reg->u32_max_value != reg->umax_value && 1431 reg->u32_max_value != U32_MAX) 1432 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1433 } 1434 #undef verbose_a 1435 1436 verbose(env, ")"); 1437 } 1438 } 1439 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1440 char types_buf[BPF_REG_SIZE + 1]; 1441 bool valid = false; 1442 int j; 1443 1444 for (j = 0; j < BPF_REG_SIZE; j++) { 1445 if (state->stack[i].slot_type[j] != STACK_INVALID) 1446 valid = true; 1447 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1448 } 1449 types_buf[BPF_REG_SIZE] = 0; 1450 if (!valid) 1451 continue; 1452 if (!print_all && !stack_slot_scratched(env, i)) 1453 continue; 1454 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1455 case STACK_SPILL: 1456 reg = &state->stack[i].spilled_ptr; 1457 t = reg->type; 1458 1459 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1460 print_liveness(env, reg->live); 1461 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1462 if (t == SCALAR_VALUE && reg->precise) 1463 verbose(env, "P"); 1464 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1465 verbose(env, "%lld", reg->var_off.value + reg->off); 1466 break; 1467 case STACK_DYNPTR: 1468 i += BPF_DYNPTR_NR_SLOTS - 1; 1469 reg = &state->stack[i].spilled_ptr; 1470 1471 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1472 print_liveness(env, reg->live); 1473 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1474 if (reg->ref_obj_id) 1475 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1476 break; 1477 case STACK_ITER: 1478 /* only main slot has ref_obj_id set; skip others */ 1479 reg = &state->stack[i].spilled_ptr; 1480 if (!reg->ref_obj_id) 1481 continue; 1482 1483 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1484 print_liveness(env, reg->live); 1485 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1486 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1487 reg->ref_obj_id, iter_state_str(reg->iter.state), 1488 reg->iter.depth); 1489 break; 1490 case STACK_MISC: 1491 case STACK_ZERO: 1492 default: 1493 reg = &state->stack[i].spilled_ptr; 1494 1495 for (j = 0; j < BPF_REG_SIZE; j++) 1496 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1497 types_buf[BPF_REG_SIZE] = 0; 1498 1499 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1500 print_liveness(env, reg->live); 1501 verbose(env, "=%s", types_buf); 1502 break; 1503 } 1504 } 1505 if (state->acquired_refs && state->refs[0].id) { 1506 verbose(env, " refs=%d", state->refs[0].id); 1507 for (i = 1; i < state->acquired_refs; i++) 1508 if (state->refs[i].id) 1509 verbose(env, ",%d", state->refs[i].id); 1510 } 1511 if (state->in_callback_fn) 1512 verbose(env, " cb"); 1513 if (state->in_async_callback_fn) 1514 verbose(env, " async_cb"); 1515 verbose(env, "\n"); 1516 mark_verifier_state_clean(env); 1517 } 1518 1519 static inline u32 vlog_alignment(u32 pos) 1520 { 1521 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1522 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1523 } 1524 1525 static void print_insn_state(struct bpf_verifier_env *env, 1526 const struct bpf_func_state *state) 1527 { 1528 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1529 /* remove new line character */ 1530 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1531 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1532 } else { 1533 verbose(env, "%d:", env->insn_idx); 1534 } 1535 print_verifier_state(env, state, false); 1536 } 1537 1538 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1539 * small to hold src. This is different from krealloc since we don't want to preserve 1540 * the contents of dst. 1541 * 1542 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1543 * not be allocated. 1544 */ 1545 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1546 { 1547 size_t alloc_bytes; 1548 void *orig = dst; 1549 size_t bytes; 1550 1551 if (ZERO_OR_NULL_PTR(src)) 1552 goto out; 1553 1554 if (unlikely(check_mul_overflow(n, size, &bytes))) 1555 return NULL; 1556 1557 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1558 dst = krealloc(orig, alloc_bytes, flags); 1559 if (!dst) { 1560 kfree(orig); 1561 return NULL; 1562 } 1563 1564 memcpy(dst, src, bytes); 1565 out: 1566 return dst ? dst : ZERO_SIZE_PTR; 1567 } 1568 1569 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1570 * small to hold new_n items. new items are zeroed out if the array grows. 1571 * 1572 * Contrary to krealloc_array, does not free arr if new_n is zero. 1573 */ 1574 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1575 { 1576 size_t alloc_size; 1577 void *new_arr; 1578 1579 if (!new_n || old_n == new_n) 1580 goto out; 1581 1582 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1583 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1584 if (!new_arr) { 1585 kfree(arr); 1586 return NULL; 1587 } 1588 arr = new_arr; 1589 1590 if (new_n > old_n) 1591 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1592 1593 out: 1594 return arr ? arr : ZERO_SIZE_PTR; 1595 } 1596 1597 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1598 { 1599 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1600 sizeof(struct bpf_reference_state), GFP_KERNEL); 1601 if (!dst->refs) 1602 return -ENOMEM; 1603 1604 dst->acquired_refs = src->acquired_refs; 1605 return 0; 1606 } 1607 1608 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1609 { 1610 size_t n = src->allocated_stack / BPF_REG_SIZE; 1611 1612 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1613 GFP_KERNEL); 1614 if (!dst->stack) 1615 return -ENOMEM; 1616 1617 dst->allocated_stack = src->allocated_stack; 1618 return 0; 1619 } 1620 1621 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1622 { 1623 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1624 sizeof(struct bpf_reference_state)); 1625 if (!state->refs) 1626 return -ENOMEM; 1627 1628 state->acquired_refs = n; 1629 return 0; 1630 } 1631 1632 static int grow_stack_state(struct bpf_func_state *state, int size) 1633 { 1634 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1635 1636 if (old_n >= n) 1637 return 0; 1638 1639 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1640 if (!state->stack) 1641 return -ENOMEM; 1642 1643 state->allocated_stack = size; 1644 return 0; 1645 } 1646 1647 /* Acquire a pointer id from the env and update the state->refs to include 1648 * this new pointer reference. 1649 * On success, returns a valid pointer id to associate with the register 1650 * On failure, returns a negative errno. 1651 */ 1652 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1653 { 1654 struct bpf_func_state *state = cur_func(env); 1655 int new_ofs = state->acquired_refs; 1656 int id, err; 1657 1658 err = resize_reference_state(state, state->acquired_refs + 1); 1659 if (err) 1660 return err; 1661 id = ++env->id_gen; 1662 state->refs[new_ofs].id = id; 1663 state->refs[new_ofs].insn_idx = insn_idx; 1664 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1665 1666 return id; 1667 } 1668 1669 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1670 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1671 { 1672 int i, last_idx; 1673 1674 last_idx = state->acquired_refs - 1; 1675 for (i = 0; i < state->acquired_refs; i++) { 1676 if (state->refs[i].id == ptr_id) { 1677 /* Cannot release caller references in callbacks */ 1678 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1679 return -EINVAL; 1680 if (last_idx && i != last_idx) 1681 memcpy(&state->refs[i], &state->refs[last_idx], 1682 sizeof(*state->refs)); 1683 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1684 state->acquired_refs--; 1685 return 0; 1686 } 1687 } 1688 return -EINVAL; 1689 } 1690 1691 static void free_func_state(struct bpf_func_state *state) 1692 { 1693 if (!state) 1694 return; 1695 kfree(state->refs); 1696 kfree(state->stack); 1697 kfree(state); 1698 } 1699 1700 static void clear_jmp_history(struct bpf_verifier_state *state) 1701 { 1702 kfree(state->jmp_history); 1703 state->jmp_history = NULL; 1704 state->jmp_history_cnt = 0; 1705 } 1706 1707 static void free_verifier_state(struct bpf_verifier_state *state, 1708 bool free_self) 1709 { 1710 int i; 1711 1712 for (i = 0; i <= state->curframe; i++) { 1713 free_func_state(state->frame[i]); 1714 state->frame[i] = NULL; 1715 } 1716 clear_jmp_history(state); 1717 if (free_self) 1718 kfree(state); 1719 } 1720 1721 /* copy verifier state from src to dst growing dst stack space 1722 * when necessary to accommodate larger src stack 1723 */ 1724 static int copy_func_state(struct bpf_func_state *dst, 1725 const struct bpf_func_state *src) 1726 { 1727 int err; 1728 1729 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1730 err = copy_reference_state(dst, src); 1731 if (err) 1732 return err; 1733 return copy_stack_state(dst, src); 1734 } 1735 1736 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1737 const struct bpf_verifier_state *src) 1738 { 1739 struct bpf_func_state *dst; 1740 int i, err; 1741 1742 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1743 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1744 GFP_USER); 1745 if (!dst_state->jmp_history) 1746 return -ENOMEM; 1747 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1748 1749 /* if dst has more stack frames then src frame, free them */ 1750 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1751 free_func_state(dst_state->frame[i]); 1752 dst_state->frame[i] = NULL; 1753 } 1754 dst_state->speculative = src->speculative; 1755 dst_state->active_rcu_lock = src->active_rcu_lock; 1756 dst_state->curframe = src->curframe; 1757 dst_state->active_lock.ptr = src->active_lock.ptr; 1758 dst_state->active_lock.id = src->active_lock.id; 1759 dst_state->branches = src->branches; 1760 dst_state->parent = src->parent; 1761 dst_state->first_insn_idx = src->first_insn_idx; 1762 dst_state->last_insn_idx = src->last_insn_idx; 1763 for (i = 0; i <= src->curframe; i++) { 1764 dst = dst_state->frame[i]; 1765 if (!dst) { 1766 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1767 if (!dst) 1768 return -ENOMEM; 1769 dst_state->frame[i] = dst; 1770 } 1771 err = copy_func_state(dst, src->frame[i]); 1772 if (err) 1773 return err; 1774 } 1775 return 0; 1776 } 1777 1778 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1779 { 1780 while (st) { 1781 u32 br = --st->branches; 1782 1783 /* WARN_ON(br > 1) technically makes sense here, 1784 * but see comment in push_stack(), hence: 1785 */ 1786 WARN_ONCE((int)br < 0, 1787 "BUG update_branch_counts:branches_to_explore=%d\n", 1788 br); 1789 if (br) 1790 break; 1791 st = st->parent; 1792 } 1793 } 1794 1795 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1796 int *insn_idx, bool pop_log) 1797 { 1798 struct bpf_verifier_state *cur = env->cur_state; 1799 struct bpf_verifier_stack_elem *elem, *head = env->head; 1800 int err; 1801 1802 if (env->head == NULL) 1803 return -ENOENT; 1804 1805 if (cur) { 1806 err = copy_verifier_state(cur, &head->st); 1807 if (err) 1808 return err; 1809 } 1810 if (pop_log) 1811 bpf_vlog_reset(&env->log, head->log_pos); 1812 if (insn_idx) 1813 *insn_idx = head->insn_idx; 1814 if (prev_insn_idx) 1815 *prev_insn_idx = head->prev_insn_idx; 1816 elem = head->next; 1817 free_verifier_state(&head->st, false); 1818 kfree(head); 1819 env->head = elem; 1820 env->stack_size--; 1821 return 0; 1822 } 1823 1824 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1825 int insn_idx, int prev_insn_idx, 1826 bool speculative) 1827 { 1828 struct bpf_verifier_state *cur = env->cur_state; 1829 struct bpf_verifier_stack_elem *elem; 1830 int err; 1831 1832 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1833 if (!elem) 1834 goto err; 1835 1836 elem->insn_idx = insn_idx; 1837 elem->prev_insn_idx = prev_insn_idx; 1838 elem->next = env->head; 1839 elem->log_pos = env->log.end_pos; 1840 env->head = elem; 1841 env->stack_size++; 1842 err = copy_verifier_state(&elem->st, cur); 1843 if (err) 1844 goto err; 1845 elem->st.speculative |= speculative; 1846 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1847 verbose(env, "The sequence of %d jumps is too complex.\n", 1848 env->stack_size); 1849 goto err; 1850 } 1851 if (elem->st.parent) { 1852 ++elem->st.parent->branches; 1853 /* WARN_ON(branches > 2) technically makes sense here, 1854 * but 1855 * 1. speculative states will bump 'branches' for non-branch 1856 * instructions 1857 * 2. is_state_visited() heuristics may decide not to create 1858 * a new state for a sequence of branches and all such current 1859 * and cloned states will be pointing to a single parent state 1860 * which might have large 'branches' count. 1861 */ 1862 } 1863 return &elem->st; 1864 err: 1865 free_verifier_state(env->cur_state, true); 1866 env->cur_state = NULL; 1867 /* pop all elements and return */ 1868 while (!pop_stack(env, NULL, NULL, false)); 1869 return NULL; 1870 } 1871 1872 #define CALLER_SAVED_REGS 6 1873 static const int caller_saved[CALLER_SAVED_REGS] = { 1874 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1875 }; 1876 1877 /* This helper doesn't clear reg->id */ 1878 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1879 { 1880 reg->var_off = tnum_const(imm); 1881 reg->smin_value = (s64)imm; 1882 reg->smax_value = (s64)imm; 1883 reg->umin_value = imm; 1884 reg->umax_value = imm; 1885 1886 reg->s32_min_value = (s32)imm; 1887 reg->s32_max_value = (s32)imm; 1888 reg->u32_min_value = (u32)imm; 1889 reg->u32_max_value = (u32)imm; 1890 } 1891 1892 /* Mark the unknown part of a register (variable offset or scalar value) as 1893 * known to have the value @imm. 1894 */ 1895 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1896 { 1897 /* Clear off and union(map_ptr, range) */ 1898 memset(((u8 *)reg) + sizeof(reg->type), 0, 1899 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1900 reg->id = 0; 1901 reg->ref_obj_id = 0; 1902 ___mark_reg_known(reg, imm); 1903 } 1904 1905 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1906 { 1907 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1908 reg->s32_min_value = (s32)imm; 1909 reg->s32_max_value = (s32)imm; 1910 reg->u32_min_value = (u32)imm; 1911 reg->u32_max_value = (u32)imm; 1912 } 1913 1914 /* Mark the 'variable offset' part of a register as zero. This should be 1915 * used only on registers holding a pointer type. 1916 */ 1917 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1918 { 1919 __mark_reg_known(reg, 0); 1920 } 1921 1922 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1923 { 1924 __mark_reg_known(reg, 0); 1925 reg->type = SCALAR_VALUE; 1926 } 1927 1928 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1929 struct bpf_reg_state *regs, u32 regno) 1930 { 1931 if (WARN_ON(regno >= MAX_BPF_REG)) { 1932 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1933 /* Something bad happened, let's kill all regs */ 1934 for (regno = 0; regno < MAX_BPF_REG; regno++) 1935 __mark_reg_not_init(env, regs + regno); 1936 return; 1937 } 1938 __mark_reg_known_zero(regs + regno); 1939 } 1940 1941 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1942 bool first_slot, int dynptr_id) 1943 { 1944 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1945 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1946 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1947 */ 1948 __mark_reg_known_zero(reg); 1949 reg->type = CONST_PTR_TO_DYNPTR; 1950 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1951 reg->id = dynptr_id; 1952 reg->dynptr.type = type; 1953 reg->dynptr.first_slot = first_slot; 1954 } 1955 1956 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1957 { 1958 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1959 const struct bpf_map *map = reg->map_ptr; 1960 1961 if (map->inner_map_meta) { 1962 reg->type = CONST_PTR_TO_MAP; 1963 reg->map_ptr = map->inner_map_meta; 1964 /* transfer reg's id which is unique for every map_lookup_elem 1965 * as UID of the inner map. 1966 */ 1967 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1968 reg->map_uid = reg->id; 1969 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1970 reg->type = PTR_TO_XDP_SOCK; 1971 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1972 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1973 reg->type = PTR_TO_SOCKET; 1974 } else { 1975 reg->type = PTR_TO_MAP_VALUE; 1976 } 1977 return; 1978 } 1979 1980 reg->type &= ~PTR_MAYBE_NULL; 1981 } 1982 1983 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1984 struct btf_field_graph_root *ds_head) 1985 { 1986 __mark_reg_known_zero(®s[regno]); 1987 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1988 regs[regno].btf = ds_head->btf; 1989 regs[regno].btf_id = ds_head->value_btf_id; 1990 regs[regno].off = ds_head->node_offset; 1991 } 1992 1993 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1994 { 1995 return type_is_pkt_pointer(reg->type); 1996 } 1997 1998 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1999 { 2000 return reg_is_pkt_pointer(reg) || 2001 reg->type == PTR_TO_PACKET_END; 2002 } 2003 2004 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2005 { 2006 return base_type(reg->type) == PTR_TO_MEM && 2007 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2008 } 2009 2010 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2011 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2012 enum bpf_reg_type which) 2013 { 2014 /* The register can already have a range from prior markings. 2015 * This is fine as long as it hasn't been advanced from its 2016 * origin. 2017 */ 2018 return reg->type == which && 2019 reg->id == 0 && 2020 reg->off == 0 && 2021 tnum_equals_const(reg->var_off, 0); 2022 } 2023 2024 /* Reset the min/max bounds of a register */ 2025 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2026 { 2027 reg->smin_value = S64_MIN; 2028 reg->smax_value = S64_MAX; 2029 reg->umin_value = 0; 2030 reg->umax_value = U64_MAX; 2031 2032 reg->s32_min_value = S32_MIN; 2033 reg->s32_max_value = S32_MAX; 2034 reg->u32_min_value = 0; 2035 reg->u32_max_value = U32_MAX; 2036 } 2037 2038 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2039 { 2040 reg->smin_value = S64_MIN; 2041 reg->smax_value = S64_MAX; 2042 reg->umin_value = 0; 2043 reg->umax_value = U64_MAX; 2044 } 2045 2046 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2047 { 2048 reg->s32_min_value = S32_MIN; 2049 reg->s32_max_value = S32_MAX; 2050 reg->u32_min_value = 0; 2051 reg->u32_max_value = U32_MAX; 2052 } 2053 2054 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2055 { 2056 struct tnum var32_off = tnum_subreg(reg->var_off); 2057 2058 /* min signed is max(sign bit) | min(other bits) */ 2059 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2060 var32_off.value | (var32_off.mask & S32_MIN)); 2061 /* max signed is min(sign bit) | max(other bits) */ 2062 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2063 var32_off.value | (var32_off.mask & S32_MAX)); 2064 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2065 reg->u32_max_value = min(reg->u32_max_value, 2066 (u32)(var32_off.value | var32_off.mask)); 2067 } 2068 2069 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2070 { 2071 /* min signed is max(sign bit) | min(other bits) */ 2072 reg->smin_value = max_t(s64, reg->smin_value, 2073 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2074 /* max signed is min(sign bit) | max(other bits) */ 2075 reg->smax_value = min_t(s64, reg->smax_value, 2076 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2077 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2078 reg->umax_value = min(reg->umax_value, 2079 reg->var_off.value | reg->var_off.mask); 2080 } 2081 2082 static void __update_reg_bounds(struct bpf_reg_state *reg) 2083 { 2084 __update_reg32_bounds(reg); 2085 __update_reg64_bounds(reg); 2086 } 2087 2088 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2089 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2090 { 2091 /* Learn sign from signed bounds. 2092 * If we cannot cross the sign boundary, then signed and unsigned bounds 2093 * are the same, so combine. This works even in the negative case, e.g. 2094 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2095 */ 2096 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2097 reg->s32_min_value = reg->u32_min_value = 2098 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2099 reg->s32_max_value = reg->u32_max_value = 2100 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2101 return; 2102 } 2103 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2104 * boundary, so we must be careful. 2105 */ 2106 if ((s32)reg->u32_max_value >= 0) { 2107 /* Positive. We can't learn anything from the smin, but smax 2108 * is positive, hence safe. 2109 */ 2110 reg->s32_min_value = reg->u32_min_value; 2111 reg->s32_max_value = reg->u32_max_value = 2112 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2113 } else if ((s32)reg->u32_min_value < 0) { 2114 /* Negative. We can't learn anything from the smax, but smin 2115 * is negative, hence safe. 2116 */ 2117 reg->s32_min_value = reg->u32_min_value = 2118 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2119 reg->s32_max_value = reg->u32_max_value; 2120 } 2121 } 2122 2123 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2124 { 2125 /* Learn sign from signed bounds. 2126 * If we cannot cross the sign boundary, then signed and unsigned bounds 2127 * are the same, so combine. This works even in the negative case, e.g. 2128 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2129 */ 2130 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2131 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2132 reg->umin_value); 2133 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2134 reg->umax_value); 2135 return; 2136 } 2137 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2138 * boundary, so we must be careful. 2139 */ 2140 if ((s64)reg->umax_value >= 0) { 2141 /* Positive. We can't learn anything from the smin, but smax 2142 * is positive, hence safe. 2143 */ 2144 reg->smin_value = reg->umin_value; 2145 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2146 reg->umax_value); 2147 } else if ((s64)reg->umin_value < 0) { 2148 /* Negative. We can't learn anything from the smax, but smin 2149 * is negative, hence safe. 2150 */ 2151 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2152 reg->umin_value); 2153 reg->smax_value = reg->umax_value; 2154 } 2155 } 2156 2157 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2158 { 2159 __reg32_deduce_bounds(reg); 2160 __reg64_deduce_bounds(reg); 2161 } 2162 2163 /* Attempts to improve var_off based on unsigned min/max information */ 2164 static void __reg_bound_offset(struct bpf_reg_state *reg) 2165 { 2166 struct tnum var64_off = tnum_intersect(reg->var_off, 2167 tnum_range(reg->umin_value, 2168 reg->umax_value)); 2169 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2170 tnum_range(reg->u32_min_value, 2171 reg->u32_max_value)); 2172 2173 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2174 } 2175 2176 static void reg_bounds_sync(struct bpf_reg_state *reg) 2177 { 2178 /* We might have learned new bounds from the var_off. */ 2179 __update_reg_bounds(reg); 2180 /* We might have learned something about the sign bit. */ 2181 __reg_deduce_bounds(reg); 2182 /* We might have learned some bits from the bounds. */ 2183 __reg_bound_offset(reg); 2184 /* Intersecting with the old var_off might have improved our bounds 2185 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2186 * then new var_off is (0; 0x7f...fc) which improves our umax. 2187 */ 2188 __update_reg_bounds(reg); 2189 } 2190 2191 static bool __reg32_bound_s64(s32 a) 2192 { 2193 return a >= 0 && a <= S32_MAX; 2194 } 2195 2196 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2197 { 2198 reg->umin_value = reg->u32_min_value; 2199 reg->umax_value = reg->u32_max_value; 2200 2201 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2202 * be positive otherwise set to worse case bounds and refine later 2203 * from tnum. 2204 */ 2205 if (__reg32_bound_s64(reg->s32_min_value) && 2206 __reg32_bound_s64(reg->s32_max_value)) { 2207 reg->smin_value = reg->s32_min_value; 2208 reg->smax_value = reg->s32_max_value; 2209 } else { 2210 reg->smin_value = 0; 2211 reg->smax_value = U32_MAX; 2212 } 2213 } 2214 2215 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2216 { 2217 /* special case when 64-bit register has upper 32-bit register 2218 * zeroed. Typically happens after zext or <<32, >>32 sequence 2219 * allowing us to use 32-bit bounds directly, 2220 */ 2221 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2222 __reg_assign_32_into_64(reg); 2223 } else { 2224 /* Otherwise the best we can do is push lower 32bit known and 2225 * unknown bits into register (var_off set from jmp logic) 2226 * then learn as much as possible from the 64-bit tnum 2227 * known and unknown bits. The previous smin/smax bounds are 2228 * invalid here because of jmp32 compare so mark them unknown 2229 * so they do not impact tnum bounds calculation. 2230 */ 2231 __mark_reg64_unbounded(reg); 2232 } 2233 reg_bounds_sync(reg); 2234 } 2235 2236 static bool __reg64_bound_s32(s64 a) 2237 { 2238 return a >= S32_MIN && a <= S32_MAX; 2239 } 2240 2241 static bool __reg64_bound_u32(u64 a) 2242 { 2243 return a >= U32_MIN && a <= U32_MAX; 2244 } 2245 2246 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2247 { 2248 __mark_reg32_unbounded(reg); 2249 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2250 reg->s32_min_value = (s32)reg->smin_value; 2251 reg->s32_max_value = (s32)reg->smax_value; 2252 } 2253 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2254 reg->u32_min_value = (u32)reg->umin_value; 2255 reg->u32_max_value = (u32)reg->umax_value; 2256 } 2257 reg_bounds_sync(reg); 2258 } 2259 2260 /* Mark a register as having a completely unknown (scalar) value. */ 2261 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2262 struct bpf_reg_state *reg) 2263 { 2264 /* 2265 * Clear type, off, and union(map_ptr, range) and 2266 * padding between 'type' and union 2267 */ 2268 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2269 reg->type = SCALAR_VALUE; 2270 reg->id = 0; 2271 reg->ref_obj_id = 0; 2272 reg->var_off = tnum_unknown; 2273 reg->frameno = 0; 2274 reg->precise = !env->bpf_capable; 2275 __mark_reg_unbounded(reg); 2276 } 2277 2278 static void mark_reg_unknown(struct bpf_verifier_env *env, 2279 struct bpf_reg_state *regs, u32 regno) 2280 { 2281 if (WARN_ON(regno >= MAX_BPF_REG)) { 2282 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2283 /* Something bad happened, let's kill all regs except FP */ 2284 for (regno = 0; regno < BPF_REG_FP; regno++) 2285 __mark_reg_not_init(env, regs + regno); 2286 return; 2287 } 2288 __mark_reg_unknown(env, regs + regno); 2289 } 2290 2291 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2292 struct bpf_reg_state *reg) 2293 { 2294 __mark_reg_unknown(env, reg); 2295 reg->type = NOT_INIT; 2296 } 2297 2298 static void mark_reg_not_init(struct bpf_verifier_env *env, 2299 struct bpf_reg_state *regs, u32 regno) 2300 { 2301 if (WARN_ON(regno >= MAX_BPF_REG)) { 2302 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2303 /* Something bad happened, let's kill all regs except FP */ 2304 for (regno = 0; regno < BPF_REG_FP; regno++) 2305 __mark_reg_not_init(env, regs + regno); 2306 return; 2307 } 2308 __mark_reg_not_init(env, regs + regno); 2309 } 2310 2311 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2312 struct bpf_reg_state *regs, u32 regno, 2313 enum bpf_reg_type reg_type, 2314 struct btf *btf, u32 btf_id, 2315 enum bpf_type_flag flag) 2316 { 2317 if (reg_type == SCALAR_VALUE) { 2318 mark_reg_unknown(env, regs, regno); 2319 return; 2320 } 2321 mark_reg_known_zero(env, regs, regno); 2322 regs[regno].type = PTR_TO_BTF_ID | flag; 2323 regs[regno].btf = btf; 2324 regs[regno].btf_id = btf_id; 2325 } 2326 2327 #define DEF_NOT_SUBREG (0) 2328 static void init_reg_state(struct bpf_verifier_env *env, 2329 struct bpf_func_state *state) 2330 { 2331 struct bpf_reg_state *regs = state->regs; 2332 int i; 2333 2334 for (i = 0; i < MAX_BPF_REG; i++) { 2335 mark_reg_not_init(env, regs, i); 2336 regs[i].live = REG_LIVE_NONE; 2337 regs[i].parent = NULL; 2338 regs[i].subreg_def = DEF_NOT_SUBREG; 2339 } 2340 2341 /* frame pointer */ 2342 regs[BPF_REG_FP].type = PTR_TO_STACK; 2343 mark_reg_known_zero(env, regs, BPF_REG_FP); 2344 regs[BPF_REG_FP].frameno = state->frameno; 2345 } 2346 2347 #define BPF_MAIN_FUNC (-1) 2348 static void init_func_state(struct bpf_verifier_env *env, 2349 struct bpf_func_state *state, 2350 int callsite, int frameno, int subprogno) 2351 { 2352 state->callsite = callsite; 2353 state->frameno = frameno; 2354 state->subprogno = subprogno; 2355 state->callback_ret_range = tnum_range(0, 0); 2356 init_reg_state(env, state); 2357 mark_verifier_state_scratched(env); 2358 } 2359 2360 /* Similar to push_stack(), but for async callbacks */ 2361 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2362 int insn_idx, int prev_insn_idx, 2363 int subprog) 2364 { 2365 struct bpf_verifier_stack_elem *elem; 2366 struct bpf_func_state *frame; 2367 2368 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2369 if (!elem) 2370 goto err; 2371 2372 elem->insn_idx = insn_idx; 2373 elem->prev_insn_idx = prev_insn_idx; 2374 elem->next = env->head; 2375 elem->log_pos = env->log.end_pos; 2376 env->head = elem; 2377 env->stack_size++; 2378 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2379 verbose(env, 2380 "The sequence of %d jumps is too complex for async cb.\n", 2381 env->stack_size); 2382 goto err; 2383 } 2384 /* Unlike push_stack() do not copy_verifier_state(). 2385 * The caller state doesn't matter. 2386 * This is async callback. It starts in a fresh stack. 2387 * Initialize it similar to do_check_common(). 2388 */ 2389 elem->st.branches = 1; 2390 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2391 if (!frame) 2392 goto err; 2393 init_func_state(env, frame, 2394 BPF_MAIN_FUNC /* callsite */, 2395 0 /* frameno within this callchain */, 2396 subprog /* subprog number within this prog */); 2397 elem->st.frame[0] = frame; 2398 return &elem->st; 2399 err: 2400 free_verifier_state(env->cur_state, true); 2401 env->cur_state = NULL; 2402 /* pop all elements and return */ 2403 while (!pop_stack(env, NULL, NULL, false)); 2404 return NULL; 2405 } 2406 2407 2408 enum reg_arg_type { 2409 SRC_OP, /* register is used as source operand */ 2410 DST_OP, /* register is used as destination operand */ 2411 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2412 }; 2413 2414 static int cmp_subprogs(const void *a, const void *b) 2415 { 2416 return ((struct bpf_subprog_info *)a)->start - 2417 ((struct bpf_subprog_info *)b)->start; 2418 } 2419 2420 static int find_subprog(struct bpf_verifier_env *env, int off) 2421 { 2422 struct bpf_subprog_info *p; 2423 2424 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2425 sizeof(env->subprog_info[0]), cmp_subprogs); 2426 if (!p) 2427 return -ENOENT; 2428 return p - env->subprog_info; 2429 2430 } 2431 2432 static int add_subprog(struct bpf_verifier_env *env, int off) 2433 { 2434 int insn_cnt = env->prog->len; 2435 int ret; 2436 2437 if (off >= insn_cnt || off < 0) { 2438 verbose(env, "call to invalid destination\n"); 2439 return -EINVAL; 2440 } 2441 ret = find_subprog(env, off); 2442 if (ret >= 0) 2443 return ret; 2444 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2445 verbose(env, "too many subprograms\n"); 2446 return -E2BIG; 2447 } 2448 /* determine subprog starts. The end is one before the next starts */ 2449 env->subprog_info[env->subprog_cnt++].start = off; 2450 sort(env->subprog_info, env->subprog_cnt, 2451 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2452 return env->subprog_cnt - 1; 2453 } 2454 2455 #define MAX_KFUNC_DESCS 256 2456 #define MAX_KFUNC_BTFS 256 2457 2458 struct bpf_kfunc_desc { 2459 struct btf_func_model func_model; 2460 u32 func_id; 2461 s32 imm; 2462 u16 offset; 2463 unsigned long addr; 2464 }; 2465 2466 struct bpf_kfunc_btf { 2467 struct btf *btf; 2468 struct module *module; 2469 u16 offset; 2470 }; 2471 2472 struct bpf_kfunc_desc_tab { 2473 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2474 * verification. JITs do lookups by bpf_insn, where func_id may not be 2475 * available, therefore at the end of verification do_misc_fixups() 2476 * sorts this by imm and offset. 2477 */ 2478 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2479 u32 nr_descs; 2480 }; 2481 2482 struct bpf_kfunc_btf_tab { 2483 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2484 u32 nr_descs; 2485 }; 2486 2487 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2488 { 2489 const struct bpf_kfunc_desc *d0 = a; 2490 const struct bpf_kfunc_desc *d1 = b; 2491 2492 /* func_id is not greater than BTF_MAX_TYPE */ 2493 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2494 } 2495 2496 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2497 { 2498 const struct bpf_kfunc_btf *d0 = a; 2499 const struct bpf_kfunc_btf *d1 = b; 2500 2501 return d0->offset - d1->offset; 2502 } 2503 2504 static const struct bpf_kfunc_desc * 2505 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2506 { 2507 struct bpf_kfunc_desc desc = { 2508 .func_id = func_id, 2509 .offset = offset, 2510 }; 2511 struct bpf_kfunc_desc_tab *tab; 2512 2513 tab = prog->aux->kfunc_tab; 2514 return bsearch(&desc, tab->descs, tab->nr_descs, 2515 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2516 } 2517 2518 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2519 u16 btf_fd_idx, u8 **func_addr) 2520 { 2521 const struct bpf_kfunc_desc *desc; 2522 2523 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2524 if (!desc) 2525 return -EFAULT; 2526 2527 *func_addr = (u8 *)desc->addr; 2528 return 0; 2529 } 2530 2531 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2532 s16 offset) 2533 { 2534 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2535 struct bpf_kfunc_btf_tab *tab; 2536 struct bpf_kfunc_btf *b; 2537 struct module *mod; 2538 struct btf *btf; 2539 int btf_fd; 2540 2541 tab = env->prog->aux->kfunc_btf_tab; 2542 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2543 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2544 if (!b) { 2545 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2546 verbose(env, "too many different module BTFs\n"); 2547 return ERR_PTR(-E2BIG); 2548 } 2549 2550 if (bpfptr_is_null(env->fd_array)) { 2551 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2552 return ERR_PTR(-EPROTO); 2553 } 2554 2555 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2556 offset * sizeof(btf_fd), 2557 sizeof(btf_fd))) 2558 return ERR_PTR(-EFAULT); 2559 2560 btf = btf_get_by_fd(btf_fd); 2561 if (IS_ERR(btf)) { 2562 verbose(env, "invalid module BTF fd specified\n"); 2563 return btf; 2564 } 2565 2566 if (!btf_is_module(btf)) { 2567 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2568 btf_put(btf); 2569 return ERR_PTR(-EINVAL); 2570 } 2571 2572 mod = btf_try_get_module(btf); 2573 if (!mod) { 2574 btf_put(btf); 2575 return ERR_PTR(-ENXIO); 2576 } 2577 2578 b = &tab->descs[tab->nr_descs++]; 2579 b->btf = btf; 2580 b->module = mod; 2581 b->offset = offset; 2582 2583 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2584 kfunc_btf_cmp_by_off, NULL); 2585 } 2586 return b->btf; 2587 } 2588 2589 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2590 { 2591 if (!tab) 2592 return; 2593 2594 while (tab->nr_descs--) { 2595 module_put(tab->descs[tab->nr_descs].module); 2596 btf_put(tab->descs[tab->nr_descs].btf); 2597 } 2598 kfree(tab); 2599 } 2600 2601 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2602 { 2603 if (offset) { 2604 if (offset < 0) { 2605 /* In the future, this can be allowed to increase limit 2606 * of fd index into fd_array, interpreted as u16. 2607 */ 2608 verbose(env, "negative offset disallowed for kernel module function call\n"); 2609 return ERR_PTR(-EINVAL); 2610 } 2611 2612 return __find_kfunc_desc_btf(env, offset); 2613 } 2614 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2615 } 2616 2617 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2618 { 2619 const struct btf_type *func, *func_proto; 2620 struct bpf_kfunc_btf_tab *btf_tab; 2621 struct bpf_kfunc_desc_tab *tab; 2622 struct bpf_prog_aux *prog_aux; 2623 struct bpf_kfunc_desc *desc; 2624 const char *func_name; 2625 struct btf *desc_btf; 2626 unsigned long call_imm; 2627 unsigned long addr; 2628 int err; 2629 2630 prog_aux = env->prog->aux; 2631 tab = prog_aux->kfunc_tab; 2632 btf_tab = prog_aux->kfunc_btf_tab; 2633 if (!tab) { 2634 if (!btf_vmlinux) { 2635 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2636 return -ENOTSUPP; 2637 } 2638 2639 if (!env->prog->jit_requested) { 2640 verbose(env, "JIT is required for calling kernel function\n"); 2641 return -ENOTSUPP; 2642 } 2643 2644 if (!bpf_jit_supports_kfunc_call()) { 2645 verbose(env, "JIT does not support calling kernel function\n"); 2646 return -ENOTSUPP; 2647 } 2648 2649 if (!env->prog->gpl_compatible) { 2650 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2651 return -EINVAL; 2652 } 2653 2654 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2655 if (!tab) 2656 return -ENOMEM; 2657 prog_aux->kfunc_tab = tab; 2658 } 2659 2660 /* func_id == 0 is always invalid, but instead of returning an error, be 2661 * conservative and wait until the code elimination pass before returning 2662 * error, so that invalid calls that get pruned out can be in BPF programs 2663 * loaded from userspace. It is also required that offset be untouched 2664 * for such calls. 2665 */ 2666 if (!func_id && !offset) 2667 return 0; 2668 2669 if (!btf_tab && offset) { 2670 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2671 if (!btf_tab) 2672 return -ENOMEM; 2673 prog_aux->kfunc_btf_tab = btf_tab; 2674 } 2675 2676 desc_btf = find_kfunc_desc_btf(env, offset); 2677 if (IS_ERR(desc_btf)) { 2678 verbose(env, "failed to find BTF for kernel function\n"); 2679 return PTR_ERR(desc_btf); 2680 } 2681 2682 if (find_kfunc_desc(env->prog, func_id, offset)) 2683 return 0; 2684 2685 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2686 verbose(env, "too many different kernel function calls\n"); 2687 return -E2BIG; 2688 } 2689 2690 func = btf_type_by_id(desc_btf, func_id); 2691 if (!func || !btf_type_is_func(func)) { 2692 verbose(env, "kernel btf_id %u is not a function\n", 2693 func_id); 2694 return -EINVAL; 2695 } 2696 func_proto = btf_type_by_id(desc_btf, func->type); 2697 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2698 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2699 func_id); 2700 return -EINVAL; 2701 } 2702 2703 func_name = btf_name_by_offset(desc_btf, func->name_off); 2704 addr = kallsyms_lookup_name(func_name); 2705 if (!addr) { 2706 verbose(env, "cannot find address for kernel function %s\n", 2707 func_name); 2708 return -EINVAL; 2709 } 2710 specialize_kfunc(env, func_id, offset, &addr); 2711 2712 if (bpf_jit_supports_far_kfunc_call()) { 2713 call_imm = func_id; 2714 } else { 2715 call_imm = BPF_CALL_IMM(addr); 2716 /* Check whether the relative offset overflows desc->imm */ 2717 if ((unsigned long)(s32)call_imm != call_imm) { 2718 verbose(env, "address of kernel function %s is out of range\n", 2719 func_name); 2720 return -EINVAL; 2721 } 2722 } 2723 2724 if (bpf_dev_bound_kfunc_id(func_id)) { 2725 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2726 if (err) 2727 return err; 2728 } 2729 2730 desc = &tab->descs[tab->nr_descs++]; 2731 desc->func_id = func_id; 2732 desc->imm = call_imm; 2733 desc->offset = offset; 2734 desc->addr = addr; 2735 err = btf_distill_func_proto(&env->log, desc_btf, 2736 func_proto, func_name, 2737 &desc->func_model); 2738 if (!err) 2739 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2740 kfunc_desc_cmp_by_id_off, NULL); 2741 return err; 2742 } 2743 2744 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2745 { 2746 const struct bpf_kfunc_desc *d0 = a; 2747 const struct bpf_kfunc_desc *d1 = b; 2748 2749 if (d0->imm != d1->imm) 2750 return d0->imm < d1->imm ? -1 : 1; 2751 if (d0->offset != d1->offset) 2752 return d0->offset < d1->offset ? -1 : 1; 2753 return 0; 2754 } 2755 2756 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2757 { 2758 struct bpf_kfunc_desc_tab *tab; 2759 2760 tab = prog->aux->kfunc_tab; 2761 if (!tab) 2762 return; 2763 2764 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2765 kfunc_desc_cmp_by_imm_off, NULL); 2766 } 2767 2768 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2769 { 2770 return !!prog->aux->kfunc_tab; 2771 } 2772 2773 const struct btf_func_model * 2774 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2775 const struct bpf_insn *insn) 2776 { 2777 const struct bpf_kfunc_desc desc = { 2778 .imm = insn->imm, 2779 .offset = insn->off, 2780 }; 2781 const struct bpf_kfunc_desc *res; 2782 struct bpf_kfunc_desc_tab *tab; 2783 2784 tab = prog->aux->kfunc_tab; 2785 res = bsearch(&desc, tab->descs, tab->nr_descs, 2786 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2787 2788 return res ? &res->func_model : NULL; 2789 } 2790 2791 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2792 { 2793 struct bpf_subprog_info *subprog = env->subprog_info; 2794 struct bpf_insn *insn = env->prog->insnsi; 2795 int i, ret, insn_cnt = env->prog->len; 2796 2797 /* Add entry function. */ 2798 ret = add_subprog(env, 0); 2799 if (ret) 2800 return ret; 2801 2802 for (i = 0; i < insn_cnt; i++, insn++) { 2803 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2804 !bpf_pseudo_kfunc_call(insn)) 2805 continue; 2806 2807 if (!env->bpf_capable) { 2808 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2809 return -EPERM; 2810 } 2811 2812 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2813 ret = add_subprog(env, i + insn->imm + 1); 2814 else 2815 ret = add_kfunc_call(env, insn->imm, insn->off); 2816 2817 if (ret < 0) 2818 return ret; 2819 } 2820 2821 /* Add a fake 'exit' subprog which could simplify subprog iteration 2822 * logic. 'subprog_cnt' should not be increased. 2823 */ 2824 subprog[env->subprog_cnt].start = insn_cnt; 2825 2826 if (env->log.level & BPF_LOG_LEVEL2) 2827 for (i = 0; i < env->subprog_cnt; i++) 2828 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2829 2830 return 0; 2831 } 2832 2833 static int check_subprogs(struct bpf_verifier_env *env) 2834 { 2835 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2836 struct bpf_subprog_info *subprog = env->subprog_info; 2837 struct bpf_insn *insn = env->prog->insnsi; 2838 int insn_cnt = env->prog->len; 2839 2840 /* now check that all jumps are within the same subprog */ 2841 subprog_start = subprog[cur_subprog].start; 2842 subprog_end = subprog[cur_subprog + 1].start; 2843 for (i = 0; i < insn_cnt; i++) { 2844 u8 code = insn[i].code; 2845 2846 if (code == (BPF_JMP | BPF_CALL) && 2847 insn[i].src_reg == 0 && 2848 insn[i].imm == BPF_FUNC_tail_call) 2849 subprog[cur_subprog].has_tail_call = true; 2850 if (BPF_CLASS(code) == BPF_LD && 2851 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2852 subprog[cur_subprog].has_ld_abs = true; 2853 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2854 goto next; 2855 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2856 goto next; 2857 off = i + insn[i].off + 1; 2858 if (off < subprog_start || off >= subprog_end) { 2859 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2860 return -EINVAL; 2861 } 2862 next: 2863 if (i == subprog_end - 1) { 2864 /* to avoid fall-through from one subprog into another 2865 * the last insn of the subprog should be either exit 2866 * or unconditional jump back 2867 */ 2868 if (code != (BPF_JMP | BPF_EXIT) && 2869 code != (BPF_JMP | BPF_JA)) { 2870 verbose(env, "last insn is not an exit or jmp\n"); 2871 return -EINVAL; 2872 } 2873 subprog_start = subprog_end; 2874 cur_subprog++; 2875 if (cur_subprog < env->subprog_cnt) 2876 subprog_end = subprog[cur_subprog + 1].start; 2877 } 2878 } 2879 return 0; 2880 } 2881 2882 /* Parentage chain of this register (or stack slot) should take care of all 2883 * issues like callee-saved registers, stack slot allocation time, etc. 2884 */ 2885 static int mark_reg_read(struct bpf_verifier_env *env, 2886 const struct bpf_reg_state *state, 2887 struct bpf_reg_state *parent, u8 flag) 2888 { 2889 bool writes = parent == state->parent; /* Observe write marks */ 2890 int cnt = 0; 2891 2892 while (parent) { 2893 /* if read wasn't screened by an earlier write ... */ 2894 if (writes && state->live & REG_LIVE_WRITTEN) 2895 break; 2896 if (parent->live & REG_LIVE_DONE) { 2897 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2898 reg_type_str(env, parent->type), 2899 parent->var_off.value, parent->off); 2900 return -EFAULT; 2901 } 2902 /* The first condition is more likely to be true than the 2903 * second, checked it first. 2904 */ 2905 if ((parent->live & REG_LIVE_READ) == flag || 2906 parent->live & REG_LIVE_READ64) 2907 /* The parentage chain never changes and 2908 * this parent was already marked as LIVE_READ. 2909 * There is no need to keep walking the chain again and 2910 * keep re-marking all parents as LIVE_READ. 2911 * This case happens when the same register is read 2912 * multiple times without writes into it in-between. 2913 * Also, if parent has the stronger REG_LIVE_READ64 set, 2914 * then no need to set the weak REG_LIVE_READ32. 2915 */ 2916 break; 2917 /* ... then we depend on parent's value */ 2918 parent->live |= flag; 2919 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2920 if (flag == REG_LIVE_READ64) 2921 parent->live &= ~REG_LIVE_READ32; 2922 state = parent; 2923 parent = state->parent; 2924 writes = true; 2925 cnt++; 2926 } 2927 2928 if (env->longest_mark_read_walk < cnt) 2929 env->longest_mark_read_walk = cnt; 2930 return 0; 2931 } 2932 2933 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2934 { 2935 struct bpf_func_state *state = func(env, reg); 2936 int spi, ret; 2937 2938 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2939 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2940 * check_kfunc_call. 2941 */ 2942 if (reg->type == CONST_PTR_TO_DYNPTR) 2943 return 0; 2944 spi = dynptr_get_spi(env, reg); 2945 if (spi < 0) 2946 return spi; 2947 /* Caller ensures dynptr is valid and initialized, which means spi is in 2948 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2949 * read. 2950 */ 2951 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2952 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2953 if (ret) 2954 return ret; 2955 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2956 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2957 } 2958 2959 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2960 int spi, int nr_slots) 2961 { 2962 struct bpf_func_state *state = func(env, reg); 2963 int err, i; 2964 2965 for (i = 0; i < nr_slots; i++) { 2966 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2967 2968 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2969 if (err) 2970 return err; 2971 2972 mark_stack_slot_scratched(env, spi - i); 2973 } 2974 2975 return 0; 2976 } 2977 2978 /* This function is supposed to be used by the following 32-bit optimization 2979 * code only. It returns TRUE if the source or destination register operates 2980 * on 64-bit, otherwise return FALSE. 2981 */ 2982 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2983 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2984 { 2985 u8 code, class, op; 2986 2987 code = insn->code; 2988 class = BPF_CLASS(code); 2989 op = BPF_OP(code); 2990 if (class == BPF_JMP) { 2991 /* BPF_EXIT for "main" will reach here. Return TRUE 2992 * conservatively. 2993 */ 2994 if (op == BPF_EXIT) 2995 return true; 2996 if (op == BPF_CALL) { 2997 /* BPF to BPF call will reach here because of marking 2998 * caller saved clobber with DST_OP_NO_MARK for which we 2999 * don't care the register def because they are anyway 3000 * marked as NOT_INIT already. 3001 */ 3002 if (insn->src_reg == BPF_PSEUDO_CALL) 3003 return false; 3004 /* Helper call will reach here because of arg type 3005 * check, conservatively return TRUE. 3006 */ 3007 if (t == SRC_OP) 3008 return true; 3009 3010 return false; 3011 } 3012 } 3013 3014 if (class == BPF_ALU64 || class == BPF_JMP || 3015 /* BPF_END always use BPF_ALU class. */ 3016 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3017 return true; 3018 3019 if (class == BPF_ALU || class == BPF_JMP32) 3020 return false; 3021 3022 if (class == BPF_LDX) { 3023 if (t != SRC_OP) 3024 return BPF_SIZE(code) == BPF_DW; 3025 /* LDX source must be ptr. */ 3026 return true; 3027 } 3028 3029 if (class == BPF_STX) { 3030 /* BPF_STX (including atomic variants) has multiple source 3031 * operands, one of which is a ptr. Check whether the caller is 3032 * asking about it. 3033 */ 3034 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3035 return true; 3036 return BPF_SIZE(code) == BPF_DW; 3037 } 3038 3039 if (class == BPF_LD) { 3040 u8 mode = BPF_MODE(code); 3041 3042 /* LD_IMM64 */ 3043 if (mode == BPF_IMM) 3044 return true; 3045 3046 /* Both LD_IND and LD_ABS return 32-bit data. */ 3047 if (t != SRC_OP) 3048 return false; 3049 3050 /* Implicit ctx ptr. */ 3051 if (regno == BPF_REG_6) 3052 return true; 3053 3054 /* Explicit source could be any width. */ 3055 return true; 3056 } 3057 3058 if (class == BPF_ST) 3059 /* The only source register for BPF_ST is a ptr. */ 3060 return true; 3061 3062 /* Conservatively return true at default. */ 3063 return true; 3064 } 3065 3066 /* Return the regno defined by the insn, or -1. */ 3067 static int insn_def_regno(const struct bpf_insn *insn) 3068 { 3069 switch (BPF_CLASS(insn->code)) { 3070 case BPF_JMP: 3071 case BPF_JMP32: 3072 case BPF_ST: 3073 return -1; 3074 case BPF_STX: 3075 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3076 (insn->imm & BPF_FETCH)) { 3077 if (insn->imm == BPF_CMPXCHG) 3078 return BPF_REG_0; 3079 else 3080 return insn->src_reg; 3081 } else { 3082 return -1; 3083 } 3084 default: 3085 return insn->dst_reg; 3086 } 3087 } 3088 3089 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3090 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3091 { 3092 int dst_reg = insn_def_regno(insn); 3093 3094 if (dst_reg == -1) 3095 return false; 3096 3097 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3098 } 3099 3100 static void mark_insn_zext(struct bpf_verifier_env *env, 3101 struct bpf_reg_state *reg) 3102 { 3103 s32 def_idx = reg->subreg_def; 3104 3105 if (def_idx == DEF_NOT_SUBREG) 3106 return; 3107 3108 env->insn_aux_data[def_idx - 1].zext_dst = true; 3109 /* The dst will be zero extended, so won't be sub-register anymore. */ 3110 reg->subreg_def = DEF_NOT_SUBREG; 3111 } 3112 3113 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3114 enum reg_arg_type t) 3115 { 3116 struct bpf_verifier_state *vstate = env->cur_state; 3117 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3118 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3119 struct bpf_reg_state *reg, *regs = state->regs; 3120 bool rw64; 3121 3122 if (regno >= MAX_BPF_REG) { 3123 verbose(env, "R%d is invalid\n", regno); 3124 return -EINVAL; 3125 } 3126 3127 mark_reg_scratched(env, regno); 3128 3129 reg = ®s[regno]; 3130 rw64 = is_reg64(env, insn, regno, reg, t); 3131 if (t == SRC_OP) { 3132 /* check whether register used as source operand can be read */ 3133 if (reg->type == NOT_INIT) { 3134 verbose(env, "R%d !read_ok\n", regno); 3135 return -EACCES; 3136 } 3137 /* We don't need to worry about FP liveness because it's read-only */ 3138 if (regno == BPF_REG_FP) 3139 return 0; 3140 3141 if (rw64) 3142 mark_insn_zext(env, reg); 3143 3144 return mark_reg_read(env, reg, reg->parent, 3145 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3146 } else { 3147 /* check whether register used as dest operand can be written to */ 3148 if (regno == BPF_REG_FP) { 3149 verbose(env, "frame pointer is read only\n"); 3150 return -EACCES; 3151 } 3152 reg->live |= REG_LIVE_WRITTEN; 3153 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3154 if (t == DST_OP) 3155 mark_reg_unknown(env, regs, regno); 3156 } 3157 return 0; 3158 } 3159 3160 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3161 { 3162 env->insn_aux_data[idx].jmp_point = true; 3163 } 3164 3165 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3166 { 3167 return env->insn_aux_data[insn_idx].jmp_point; 3168 } 3169 3170 /* for any branch, call, exit record the history of jmps in the given state */ 3171 static int push_jmp_history(struct bpf_verifier_env *env, 3172 struct bpf_verifier_state *cur) 3173 { 3174 u32 cnt = cur->jmp_history_cnt; 3175 struct bpf_idx_pair *p; 3176 size_t alloc_size; 3177 3178 if (!is_jmp_point(env, env->insn_idx)) 3179 return 0; 3180 3181 cnt++; 3182 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3183 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3184 if (!p) 3185 return -ENOMEM; 3186 p[cnt - 1].idx = env->insn_idx; 3187 p[cnt - 1].prev_idx = env->prev_insn_idx; 3188 cur->jmp_history = p; 3189 cur->jmp_history_cnt = cnt; 3190 return 0; 3191 } 3192 3193 /* Backtrack one insn at a time. If idx is not at the top of recorded 3194 * history then previous instruction came from straight line execution. 3195 */ 3196 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3197 u32 *history) 3198 { 3199 u32 cnt = *history; 3200 3201 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3202 i = st->jmp_history[cnt - 1].prev_idx; 3203 (*history)--; 3204 } else { 3205 i--; 3206 } 3207 return i; 3208 } 3209 3210 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3211 { 3212 const struct btf_type *func; 3213 struct btf *desc_btf; 3214 3215 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3216 return NULL; 3217 3218 desc_btf = find_kfunc_desc_btf(data, insn->off); 3219 if (IS_ERR(desc_btf)) 3220 return "<error>"; 3221 3222 func = btf_type_by_id(desc_btf, insn->imm); 3223 return btf_name_by_offset(desc_btf, func->name_off); 3224 } 3225 3226 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3227 { 3228 bt->frame = frame; 3229 } 3230 3231 static inline void bt_reset(struct backtrack_state *bt) 3232 { 3233 struct bpf_verifier_env *env = bt->env; 3234 3235 memset(bt, 0, sizeof(*bt)); 3236 bt->env = env; 3237 } 3238 3239 static inline u32 bt_empty(struct backtrack_state *bt) 3240 { 3241 u64 mask = 0; 3242 int i; 3243 3244 for (i = 0; i <= bt->frame; i++) 3245 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3246 3247 return mask == 0; 3248 } 3249 3250 static inline int bt_subprog_enter(struct backtrack_state *bt) 3251 { 3252 if (bt->frame == MAX_CALL_FRAMES - 1) { 3253 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3254 WARN_ONCE(1, "verifier backtracking bug"); 3255 return -EFAULT; 3256 } 3257 bt->frame++; 3258 return 0; 3259 } 3260 3261 static inline int bt_subprog_exit(struct backtrack_state *bt) 3262 { 3263 if (bt->frame == 0) { 3264 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3265 WARN_ONCE(1, "verifier backtracking bug"); 3266 return -EFAULT; 3267 } 3268 bt->frame--; 3269 return 0; 3270 } 3271 3272 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3273 { 3274 bt->reg_masks[frame] |= 1 << reg; 3275 } 3276 3277 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3278 { 3279 bt->reg_masks[frame] &= ~(1 << reg); 3280 } 3281 3282 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3283 { 3284 bt_set_frame_reg(bt, bt->frame, reg); 3285 } 3286 3287 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3288 { 3289 bt_clear_frame_reg(bt, bt->frame, reg); 3290 } 3291 3292 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3293 { 3294 bt->stack_masks[frame] |= 1ull << slot; 3295 } 3296 3297 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3298 { 3299 bt->stack_masks[frame] &= ~(1ull << slot); 3300 } 3301 3302 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3303 { 3304 bt_set_frame_slot(bt, bt->frame, slot); 3305 } 3306 3307 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3308 { 3309 bt_clear_frame_slot(bt, bt->frame, slot); 3310 } 3311 3312 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3313 { 3314 return bt->reg_masks[frame]; 3315 } 3316 3317 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3318 { 3319 return bt->reg_masks[bt->frame]; 3320 } 3321 3322 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3323 { 3324 return bt->stack_masks[frame]; 3325 } 3326 3327 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3328 { 3329 return bt->stack_masks[bt->frame]; 3330 } 3331 3332 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3333 { 3334 return bt->reg_masks[bt->frame] & (1 << reg); 3335 } 3336 3337 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3338 { 3339 return bt->stack_masks[bt->frame] & (1ull << slot); 3340 } 3341 3342 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3343 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3344 { 3345 DECLARE_BITMAP(mask, 64); 3346 bool first = true; 3347 int i, n; 3348 3349 buf[0] = '\0'; 3350 3351 bitmap_from_u64(mask, reg_mask); 3352 for_each_set_bit(i, mask, 32) { 3353 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3354 first = false; 3355 buf += n; 3356 buf_sz -= n; 3357 if (buf_sz < 0) 3358 break; 3359 } 3360 } 3361 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3362 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3363 { 3364 DECLARE_BITMAP(mask, 64); 3365 bool first = true; 3366 int i, n; 3367 3368 buf[0] = '\0'; 3369 3370 bitmap_from_u64(mask, stack_mask); 3371 for_each_set_bit(i, mask, 64) { 3372 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3373 first = false; 3374 buf += n; 3375 buf_sz -= n; 3376 if (buf_sz < 0) 3377 break; 3378 } 3379 } 3380 3381 /* For given verifier state backtrack_insn() is called from the last insn to 3382 * the first insn. Its purpose is to compute a bitmask of registers and 3383 * stack slots that needs precision in the parent verifier state. 3384 * 3385 * @idx is an index of the instruction we are currently processing; 3386 * @subseq_idx is an index of the subsequent instruction that: 3387 * - *would be* executed next, if jump history is viewed in forward order; 3388 * - *was* processed previously during backtracking. 3389 */ 3390 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3391 struct backtrack_state *bt) 3392 { 3393 const struct bpf_insn_cbs cbs = { 3394 .cb_call = disasm_kfunc_name, 3395 .cb_print = verbose, 3396 .private_data = env, 3397 }; 3398 struct bpf_insn *insn = env->prog->insnsi + idx; 3399 u8 class = BPF_CLASS(insn->code); 3400 u8 opcode = BPF_OP(insn->code); 3401 u8 mode = BPF_MODE(insn->code); 3402 u32 dreg = insn->dst_reg; 3403 u32 sreg = insn->src_reg; 3404 u32 spi, i; 3405 3406 if (insn->code == 0) 3407 return 0; 3408 if (env->log.level & BPF_LOG_LEVEL2) { 3409 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3410 verbose(env, "mark_precise: frame%d: regs=%s ", 3411 bt->frame, env->tmp_str_buf); 3412 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3413 verbose(env, "stack=%s before ", env->tmp_str_buf); 3414 verbose(env, "%d: ", idx); 3415 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3416 } 3417 3418 if (class == BPF_ALU || class == BPF_ALU64) { 3419 if (!bt_is_reg_set(bt, dreg)) 3420 return 0; 3421 if (opcode == BPF_MOV) { 3422 if (BPF_SRC(insn->code) == BPF_X) { 3423 /* dreg = sreg 3424 * dreg needs precision after this insn 3425 * sreg needs precision before this insn 3426 */ 3427 bt_clear_reg(bt, dreg); 3428 bt_set_reg(bt, sreg); 3429 } else { 3430 /* dreg = K 3431 * dreg needs precision after this insn. 3432 * Corresponding register is already marked 3433 * as precise=true in this verifier state. 3434 * No further markings in parent are necessary 3435 */ 3436 bt_clear_reg(bt, dreg); 3437 } 3438 } else { 3439 if (BPF_SRC(insn->code) == BPF_X) { 3440 /* dreg += sreg 3441 * both dreg and sreg need precision 3442 * before this insn 3443 */ 3444 bt_set_reg(bt, sreg); 3445 } /* else dreg += K 3446 * dreg still needs precision before this insn 3447 */ 3448 } 3449 } else if (class == BPF_LDX) { 3450 if (!bt_is_reg_set(bt, dreg)) 3451 return 0; 3452 bt_clear_reg(bt, dreg); 3453 3454 /* scalars can only be spilled into stack w/o losing precision. 3455 * Load from any other memory can be zero extended. 3456 * The desire to keep that precision is already indicated 3457 * by 'precise' mark in corresponding register of this state. 3458 * No further tracking necessary. 3459 */ 3460 if (insn->src_reg != BPF_REG_FP) 3461 return 0; 3462 3463 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3464 * that [fp - off] slot contains scalar that needs to be 3465 * tracked with precision 3466 */ 3467 spi = (-insn->off - 1) / BPF_REG_SIZE; 3468 if (spi >= 64) { 3469 verbose(env, "BUG spi %d\n", spi); 3470 WARN_ONCE(1, "verifier backtracking bug"); 3471 return -EFAULT; 3472 } 3473 bt_set_slot(bt, spi); 3474 } else if (class == BPF_STX || class == BPF_ST) { 3475 if (bt_is_reg_set(bt, dreg)) 3476 /* stx & st shouldn't be using _scalar_ dst_reg 3477 * to access memory. It means backtracking 3478 * encountered a case of pointer subtraction. 3479 */ 3480 return -ENOTSUPP; 3481 /* scalars can only be spilled into stack */ 3482 if (insn->dst_reg != BPF_REG_FP) 3483 return 0; 3484 spi = (-insn->off - 1) / BPF_REG_SIZE; 3485 if (spi >= 64) { 3486 verbose(env, "BUG spi %d\n", spi); 3487 WARN_ONCE(1, "verifier backtracking bug"); 3488 return -EFAULT; 3489 } 3490 if (!bt_is_slot_set(bt, spi)) 3491 return 0; 3492 bt_clear_slot(bt, spi); 3493 if (class == BPF_STX) 3494 bt_set_reg(bt, sreg); 3495 } else if (class == BPF_JMP || class == BPF_JMP32) { 3496 if (bpf_pseudo_call(insn)) { 3497 int subprog_insn_idx, subprog; 3498 3499 subprog_insn_idx = idx + insn->imm + 1; 3500 subprog = find_subprog(env, subprog_insn_idx); 3501 if (subprog < 0) 3502 return -EFAULT; 3503 3504 if (subprog_is_global(env, subprog)) { 3505 /* check that jump history doesn't have any 3506 * extra instructions from subprog; the next 3507 * instruction after call to global subprog 3508 * should be literally next instruction in 3509 * caller program 3510 */ 3511 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3512 /* r1-r5 are invalidated after subprog call, 3513 * so for global func call it shouldn't be set 3514 * anymore 3515 */ 3516 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3517 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3518 WARN_ONCE(1, "verifier backtracking bug"); 3519 return -EFAULT; 3520 } 3521 /* global subprog always sets R0 */ 3522 bt_clear_reg(bt, BPF_REG_0); 3523 return 0; 3524 } else { 3525 /* static subprog call instruction, which 3526 * means that we are exiting current subprog, 3527 * so only r1-r5 could be still requested as 3528 * precise, r0 and r6-r10 or any stack slot in 3529 * the current frame should be zero by now 3530 */ 3531 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3532 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3533 WARN_ONCE(1, "verifier backtracking bug"); 3534 return -EFAULT; 3535 } 3536 /* we don't track register spills perfectly, 3537 * so fallback to force-precise instead of failing */ 3538 if (bt_stack_mask(bt) != 0) 3539 return -ENOTSUPP; 3540 /* propagate r1-r5 to the caller */ 3541 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3542 if (bt_is_reg_set(bt, i)) { 3543 bt_clear_reg(bt, i); 3544 bt_set_frame_reg(bt, bt->frame - 1, i); 3545 } 3546 } 3547 if (bt_subprog_exit(bt)) 3548 return -EFAULT; 3549 return 0; 3550 } 3551 } else if ((bpf_helper_call(insn) && 3552 is_callback_calling_function(insn->imm) && 3553 !is_async_callback_calling_function(insn->imm)) || 3554 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3555 /* callback-calling helper or kfunc call, which means 3556 * we are exiting from subprog, but unlike the subprog 3557 * call handling above, we shouldn't propagate 3558 * precision of r1-r5 (if any requested), as they are 3559 * not actually arguments passed directly to callback 3560 * subprogs 3561 */ 3562 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3563 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3564 WARN_ONCE(1, "verifier backtracking bug"); 3565 return -EFAULT; 3566 } 3567 if (bt_stack_mask(bt) != 0) 3568 return -ENOTSUPP; 3569 /* clear r1-r5 in callback subprog's mask */ 3570 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3571 bt_clear_reg(bt, i); 3572 if (bt_subprog_exit(bt)) 3573 return -EFAULT; 3574 return 0; 3575 } else if (opcode == BPF_CALL) { 3576 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3577 * catch this error later. Make backtracking conservative 3578 * with ENOTSUPP. 3579 */ 3580 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3581 return -ENOTSUPP; 3582 /* regular helper call sets R0 */ 3583 bt_clear_reg(bt, BPF_REG_0); 3584 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3585 /* if backtracing was looking for registers R1-R5 3586 * they should have been found already. 3587 */ 3588 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3589 WARN_ONCE(1, "verifier backtracking bug"); 3590 return -EFAULT; 3591 } 3592 } else if (opcode == BPF_EXIT) { 3593 bool r0_precise; 3594 3595 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3596 /* if backtracing was looking for registers R1-R5 3597 * they should have been found already. 3598 */ 3599 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3600 WARN_ONCE(1, "verifier backtracking bug"); 3601 return -EFAULT; 3602 } 3603 3604 /* BPF_EXIT in subprog or callback always returns 3605 * right after the call instruction, so by checking 3606 * whether the instruction at subseq_idx-1 is subprog 3607 * call or not we can distinguish actual exit from 3608 * *subprog* from exit from *callback*. In the former 3609 * case, we need to propagate r0 precision, if 3610 * necessary. In the former we never do that. 3611 */ 3612 r0_precise = subseq_idx - 1 >= 0 && 3613 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3614 bt_is_reg_set(bt, BPF_REG_0); 3615 3616 bt_clear_reg(bt, BPF_REG_0); 3617 if (bt_subprog_enter(bt)) 3618 return -EFAULT; 3619 3620 if (r0_precise) 3621 bt_set_reg(bt, BPF_REG_0); 3622 /* r6-r9 and stack slots will stay set in caller frame 3623 * bitmasks until we return back from callee(s) 3624 */ 3625 return 0; 3626 } else if (BPF_SRC(insn->code) == BPF_X) { 3627 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3628 return 0; 3629 /* dreg <cond> sreg 3630 * Both dreg and sreg need precision before 3631 * this insn. If only sreg was marked precise 3632 * before it would be equally necessary to 3633 * propagate it to dreg. 3634 */ 3635 bt_set_reg(bt, dreg); 3636 bt_set_reg(bt, sreg); 3637 /* else dreg <cond> K 3638 * Only dreg still needs precision before 3639 * this insn, so for the K-based conditional 3640 * there is nothing new to be marked. 3641 */ 3642 } 3643 } else if (class == BPF_LD) { 3644 if (!bt_is_reg_set(bt, dreg)) 3645 return 0; 3646 bt_clear_reg(bt, dreg); 3647 /* It's ld_imm64 or ld_abs or ld_ind. 3648 * For ld_imm64 no further tracking of precision 3649 * into parent is necessary 3650 */ 3651 if (mode == BPF_IND || mode == BPF_ABS) 3652 /* to be analyzed */ 3653 return -ENOTSUPP; 3654 } 3655 return 0; 3656 } 3657 3658 /* the scalar precision tracking algorithm: 3659 * . at the start all registers have precise=false. 3660 * . scalar ranges are tracked as normal through alu and jmp insns. 3661 * . once precise value of the scalar register is used in: 3662 * . ptr + scalar alu 3663 * . if (scalar cond K|scalar) 3664 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3665 * backtrack through the verifier states and mark all registers and 3666 * stack slots with spilled constants that these scalar regisers 3667 * should be precise. 3668 * . during state pruning two registers (or spilled stack slots) 3669 * are equivalent if both are not precise. 3670 * 3671 * Note the verifier cannot simply walk register parentage chain, 3672 * since many different registers and stack slots could have been 3673 * used to compute single precise scalar. 3674 * 3675 * The approach of starting with precise=true for all registers and then 3676 * backtrack to mark a register as not precise when the verifier detects 3677 * that program doesn't care about specific value (e.g., when helper 3678 * takes register as ARG_ANYTHING parameter) is not safe. 3679 * 3680 * It's ok to walk single parentage chain of the verifier states. 3681 * It's possible that this backtracking will go all the way till 1st insn. 3682 * All other branches will be explored for needing precision later. 3683 * 3684 * The backtracking needs to deal with cases like: 3685 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3686 * r9 -= r8 3687 * r5 = r9 3688 * if r5 > 0x79f goto pc+7 3689 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3690 * r5 += 1 3691 * ... 3692 * call bpf_perf_event_output#25 3693 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3694 * 3695 * and this case: 3696 * r6 = 1 3697 * call foo // uses callee's r6 inside to compute r0 3698 * r0 += r6 3699 * if r0 == 0 goto 3700 * 3701 * to track above reg_mask/stack_mask needs to be independent for each frame. 3702 * 3703 * Also if parent's curframe > frame where backtracking started, 3704 * the verifier need to mark registers in both frames, otherwise callees 3705 * may incorrectly prune callers. This is similar to 3706 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3707 * 3708 * For now backtracking falls back into conservative marking. 3709 */ 3710 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3711 struct bpf_verifier_state *st) 3712 { 3713 struct bpf_func_state *func; 3714 struct bpf_reg_state *reg; 3715 int i, j; 3716 3717 if (env->log.level & BPF_LOG_LEVEL2) { 3718 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3719 st->curframe); 3720 } 3721 3722 /* big hammer: mark all scalars precise in this path. 3723 * pop_stack may still get !precise scalars. 3724 * We also skip current state and go straight to first parent state, 3725 * because precision markings in current non-checkpointed state are 3726 * not needed. See why in the comment in __mark_chain_precision below. 3727 */ 3728 for (st = st->parent; st; st = st->parent) { 3729 for (i = 0; i <= st->curframe; i++) { 3730 func = st->frame[i]; 3731 for (j = 0; j < BPF_REG_FP; j++) { 3732 reg = &func->regs[j]; 3733 if (reg->type != SCALAR_VALUE || reg->precise) 3734 continue; 3735 reg->precise = true; 3736 if (env->log.level & BPF_LOG_LEVEL2) { 3737 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3738 i, j); 3739 } 3740 } 3741 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3742 if (!is_spilled_reg(&func->stack[j])) 3743 continue; 3744 reg = &func->stack[j].spilled_ptr; 3745 if (reg->type != SCALAR_VALUE || reg->precise) 3746 continue; 3747 reg->precise = true; 3748 if (env->log.level & BPF_LOG_LEVEL2) { 3749 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3750 i, -(j + 1) * 8); 3751 } 3752 } 3753 } 3754 } 3755 } 3756 3757 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3758 { 3759 struct bpf_func_state *func; 3760 struct bpf_reg_state *reg; 3761 int i, j; 3762 3763 for (i = 0; i <= st->curframe; i++) { 3764 func = st->frame[i]; 3765 for (j = 0; j < BPF_REG_FP; j++) { 3766 reg = &func->regs[j]; 3767 if (reg->type != SCALAR_VALUE) 3768 continue; 3769 reg->precise = false; 3770 } 3771 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3772 if (!is_spilled_reg(&func->stack[j])) 3773 continue; 3774 reg = &func->stack[j].spilled_ptr; 3775 if (reg->type != SCALAR_VALUE) 3776 continue; 3777 reg->precise = false; 3778 } 3779 } 3780 } 3781 3782 static bool idset_contains(struct bpf_idset *s, u32 id) 3783 { 3784 u32 i; 3785 3786 for (i = 0; i < s->count; ++i) 3787 if (s->ids[i] == id) 3788 return true; 3789 3790 return false; 3791 } 3792 3793 static int idset_push(struct bpf_idset *s, u32 id) 3794 { 3795 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3796 return -EFAULT; 3797 s->ids[s->count++] = id; 3798 return 0; 3799 } 3800 3801 static void idset_reset(struct bpf_idset *s) 3802 { 3803 s->count = 0; 3804 } 3805 3806 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3807 * Mark all registers with these IDs as precise. 3808 */ 3809 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3810 { 3811 struct bpf_idset *precise_ids = &env->idset_scratch; 3812 struct backtrack_state *bt = &env->bt; 3813 struct bpf_func_state *func; 3814 struct bpf_reg_state *reg; 3815 DECLARE_BITMAP(mask, 64); 3816 int i, fr; 3817 3818 idset_reset(precise_ids); 3819 3820 for (fr = bt->frame; fr >= 0; fr--) { 3821 func = st->frame[fr]; 3822 3823 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3824 for_each_set_bit(i, mask, 32) { 3825 reg = &func->regs[i]; 3826 if (!reg->id || reg->type != SCALAR_VALUE) 3827 continue; 3828 if (idset_push(precise_ids, reg->id)) 3829 return -EFAULT; 3830 } 3831 3832 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3833 for_each_set_bit(i, mask, 64) { 3834 if (i >= func->allocated_stack / BPF_REG_SIZE) 3835 break; 3836 if (!is_spilled_scalar_reg(&func->stack[i])) 3837 continue; 3838 reg = &func->stack[i].spilled_ptr; 3839 if (!reg->id) 3840 continue; 3841 if (idset_push(precise_ids, reg->id)) 3842 return -EFAULT; 3843 } 3844 } 3845 3846 for (fr = 0; fr <= st->curframe; ++fr) { 3847 func = st->frame[fr]; 3848 3849 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3850 reg = &func->regs[i]; 3851 if (!reg->id) 3852 continue; 3853 if (!idset_contains(precise_ids, reg->id)) 3854 continue; 3855 bt_set_frame_reg(bt, fr, i); 3856 } 3857 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3858 if (!is_spilled_scalar_reg(&func->stack[i])) 3859 continue; 3860 reg = &func->stack[i].spilled_ptr; 3861 if (!reg->id) 3862 continue; 3863 if (!idset_contains(precise_ids, reg->id)) 3864 continue; 3865 bt_set_frame_slot(bt, fr, i); 3866 } 3867 } 3868 3869 return 0; 3870 } 3871 3872 /* 3873 * __mark_chain_precision() backtracks BPF program instruction sequence and 3874 * chain of verifier states making sure that register *regno* (if regno >= 0) 3875 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3876 * SCALARS, as well as any other registers and slots that contribute to 3877 * a tracked state of given registers/stack slots, depending on specific BPF 3878 * assembly instructions (see backtrack_insns() for exact instruction handling 3879 * logic). This backtracking relies on recorded jmp_history and is able to 3880 * traverse entire chain of parent states. This process ends only when all the 3881 * necessary registers/slots and their transitive dependencies are marked as 3882 * precise. 3883 * 3884 * One important and subtle aspect is that precise marks *do not matter* in 3885 * the currently verified state (current state). It is important to understand 3886 * why this is the case. 3887 * 3888 * First, note that current state is the state that is not yet "checkpointed", 3889 * i.e., it is not yet put into env->explored_states, and it has no children 3890 * states as well. It's ephemeral, and can end up either a) being discarded if 3891 * compatible explored state is found at some point or BPF_EXIT instruction is 3892 * reached or b) checkpointed and put into env->explored_states, branching out 3893 * into one or more children states. 3894 * 3895 * In the former case, precise markings in current state are completely 3896 * ignored by state comparison code (see regsafe() for details). Only 3897 * checkpointed ("old") state precise markings are important, and if old 3898 * state's register/slot is precise, regsafe() assumes current state's 3899 * register/slot as precise and checks value ranges exactly and precisely. If 3900 * states turn out to be compatible, current state's necessary precise 3901 * markings and any required parent states' precise markings are enforced 3902 * after the fact with propagate_precision() logic, after the fact. But it's 3903 * important to realize that in this case, even after marking current state 3904 * registers/slots as precise, we immediately discard current state. So what 3905 * actually matters is any of the precise markings propagated into current 3906 * state's parent states, which are always checkpointed (due to b) case above). 3907 * As such, for scenario a) it doesn't matter if current state has precise 3908 * markings set or not. 3909 * 3910 * Now, for the scenario b), checkpointing and forking into child(ren) 3911 * state(s). Note that before current state gets to checkpointing step, any 3912 * processed instruction always assumes precise SCALAR register/slot 3913 * knowledge: if precise value or range is useful to prune jump branch, BPF 3914 * verifier takes this opportunity enthusiastically. Similarly, when 3915 * register's value is used to calculate offset or memory address, exact 3916 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3917 * what we mentioned above about state comparison ignoring precise markings 3918 * during state comparison, BPF verifier ignores and also assumes precise 3919 * markings *at will* during instruction verification process. But as verifier 3920 * assumes precision, it also propagates any precision dependencies across 3921 * parent states, which are not yet finalized, so can be further restricted 3922 * based on new knowledge gained from restrictions enforced by their children 3923 * states. This is so that once those parent states are finalized, i.e., when 3924 * they have no more active children state, state comparison logic in 3925 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3926 * required for correctness. 3927 * 3928 * To build a bit more intuition, note also that once a state is checkpointed, 3929 * the path we took to get to that state is not important. This is crucial 3930 * property for state pruning. When state is checkpointed and finalized at 3931 * some instruction index, it can be correctly and safely used to "short 3932 * circuit" any *compatible* state that reaches exactly the same instruction 3933 * index. I.e., if we jumped to that instruction from a completely different 3934 * code path than original finalized state was derived from, it doesn't 3935 * matter, current state can be discarded because from that instruction 3936 * forward having a compatible state will ensure we will safely reach the 3937 * exit. States describe preconditions for further exploration, but completely 3938 * forget the history of how we got here. 3939 * 3940 * This also means that even if we needed precise SCALAR range to get to 3941 * finalized state, but from that point forward *that same* SCALAR register is 3942 * never used in a precise context (i.e., it's precise value is not needed for 3943 * correctness), it's correct and safe to mark such register as "imprecise" 3944 * (i.e., precise marking set to false). This is what we rely on when we do 3945 * not set precise marking in current state. If no child state requires 3946 * precision for any given SCALAR register, it's safe to dictate that it can 3947 * be imprecise. If any child state does require this register to be precise, 3948 * we'll mark it precise later retroactively during precise markings 3949 * propagation from child state to parent states. 3950 * 3951 * Skipping precise marking setting in current state is a mild version of 3952 * relying on the above observation. But we can utilize this property even 3953 * more aggressively by proactively forgetting any precise marking in the 3954 * current state (which we inherited from the parent state), right before we 3955 * checkpoint it and branch off into new child state. This is done by 3956 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3957 * finalized states which help in short circuiting more future states. 3958 */ 3959 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3960 { 3961 struct backtrack_state *bt = &env->bt; 3962 struct bpf_verifier_state *st = env->cur_state; 3963 int first_idx = st->first_insn_idx; 3964 int last_idx = env->insn_idx; 3965 int subseq_idx = -1; 3966 struct bpf_func_state *func; 3967 struct bpf_reg_state *reg; 3968 bool skip_first = true; 3969 int i, fr, err; 3970 3971 if (!env->bpf_capable) 3972 return 0; 3973 3974 /* set frame number from which we are starting to backtrack */ 3975 bt_init(bt, env->cur_state->curframe); 3976 3977 /* Do sanity checks against current state of register and/or stack 3978 * slot, but don't set precise flag in current state, as precision 3979 * tracking in the current state is unnecessary. 3980 */ 3981 func = st->frame[bt->frame]; 3982 if (regno >= 0) { 3983 reg = &func->regs[regno]; 3984 if (reg->type != SCALAR_VALUE) { 3985 WARN_ONCE(1, "backtracing misuse"); 3986 return -EFAULT; 3987 } 3988 bt_set_reg(bt, regno); 3989 } 3990 3991 if (bt_empty(bt)) 3992 return 0; 3993 3994 for (;;) { 3995 DECLARE_BITMAP(mask, 64); 3996 u32 history = st->jmp_history_cnt; 3997 3998 if (env->log.level & BPF_LOG_LEVEL2) { 3999 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4000 bt->frame, last_idx, first_idx, subseq_idx); 4001 } 4002 4003 /* If some register with scalar ID is marked as precise, 4004 * make sure that all registers sharing this ID are also precise. 4005 * This is needed to estimate effect of find_equal_scalars(). 4006 * Do this at the last instruction of each state, 4007 * bpf_reg_state::id fields are valid for these instructions. 4008 * 4009 * Allows to track precision in situation like below: 4010 * 4011 * r2 = unknown value 4012 * ... 4013 * --- state #0 --- 4014 * ... 4015 * r1 = r2 // r1 and r2 now share the same ID 4016 * ... 4017 * --- state #1 {r1.id = A, r2.id = A} --- 4018 * ... 4019 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4020 * ... 4021 * --- state #2 {r1.id = A, r2.id = A} --- 4022 * r3 = r10 4023 * r3 += r1 // need to mark both r1 and r2 4024 */ 4025 if (mark_precise_scalar_ids(env, st)) 4026 return -EFAULT; 4027 4028 if (last_idx < 0) { 4029 /* we are at the entry into subprog, which 4030 * is expected for global funcs, but only if 4031 * requested precise registers are R1-R5 4032 * (which are global func's input arguments) 4033 */ 4034 if (st->curframe == 0 && 4035 st->frame[0]->subprogno > 0 && 4036 st->frame[0]->callsite == BPF_MAIN_FUNC && 4037 bt_stack_mask(bt) == 0 && 4038 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4039 bitmap_from_u64(mask, bt_reg_mask(bt)); 4040 for_each_set_bit(i, mask, 32) { 4041 reg = &st->frame[0]->regs[i]; 4042 if (reg->type != SCALAR_VALUE) { 4043 bt_clear_reg(bt, i); 4044 continue; 4045 } 4046 reg->precise = true; 4047 } 4048 return 0; 4049 } 4050 4051 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4052 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4053 WARN_ONCE(1, "verifier backtracking bug"); 4054 return -EFAULT; 4055 } 4056 4057 for (i = last_idx;;) { 4058 if (skip_first) { 4059 err = 0; 4060 skip_first = false; 4061 } else { 4062 err = backtrack_insn(env, i, subseq_idx, bt); 4063 } 4064 if (err == -ENOTSUPP) { 4065 mark_all_scalars_precise(env, env->cur_state); 4066 bt_reset(bt); 4067 return 0; 4068 } else if (err) { 4069 return err; 4070 } 4071 if (bt_empty(bt)) 4072 /* Found assignment(s) into tracked register in this state. 4073 * Since this state is already marked, just return. 4074 * Nothing to be tracked further in the parent state. 4075 */ 4076 return 0; 4077 if (i == first_idx) 4078 break; 4079 subseq_idx = i; 4080 i = get_prev_insn_idx(st, i, &history); 4081 if (i >= env->prog->len) { 4082 /* This can happen if backtracking reached insn 0 4083 * and there are still reg_mask or stack_mask 4084 * to backtrack. 4085 * It means the backtracking missed the spot where 4086 * particular register was initialized with a constant. 4087 */ 4088 verbose(env, "BUG backtracking idx %d\n", i); 4089 WARN_ONCE(1, "verifier backtracking bug"); 4090 return -EFAULT; 4091 } 4092 } 4093 st = st->parent; 4094 if (!st) 4095 break; 4096 4097 for (fr = bt->frame; fr >= 0; fr--) { 4098 func = st->frame[fr]; 4099 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4100 for_each_set_bit(i, mask, 32) { 4101 reg = &func->regs[i]; 4102 if (reg->type != SCALAR_VALUE) { 4103 bt_clear_frame_reg(bt, fr, i); 4104 continue; 4105 } 4106 if (reg->precise) 4107 bt_clear_frame_reg(bt, fr, i); 4108 else 4109 reg->precise = true; 4110 } 4111 4112 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4113 for_each_set_bit(i, mask, 64) { 4114 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4115 /* the sequence of instructions: 4116 * 2: (bf) r3 = r10 4117 * 3: (7b) *(u64 *)(r3 -8) = r0 4118 * 4: (79) r4 = *(u64 *)(r10 -8) 4119 * doesn't contain jmps. It's backtracked 4120 * as a single block. 4121 * During backtracking insn 3 is not recognized as 4122 * stack access, so at the end of backtracking 4123 * stack slot fp-8 is still marked in stack_mask. 4124 * However the parent state may not have accessed 4125 * fp-8 and it's "unallocated" stack space. 4126 * In such case fallback to conservative. 4127 */ 4128 mark_all_scalars_precise(env, env->cur_state); 4129 bt_reset(bt); 4130 return 0; 4131 } 4132 4133 if (!is_spilled_scalar_reg(&func->stack[i])) { 4134 bt_clear_frame_slot(bt, fr, i); 4135 continue; 4136 } 4137 reg = &func->stack[i].spilled_ptr; 4138 if (reg->precise) 4139 bt_clear_frame_slot(bt, fr, i); 4140 else 4141 reg->precise = true; 4142 } 4143 if (env->log.level & BPF_LOG_LEVEL2) { 4144 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4145 bt_frame_reg_mask(bt, fr)); 4146 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4147 fr, env->tmp_str_buf); 4148 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4149 bt_frame_stack_mask(bt, fr)); 4150 verbose(env, "stack=%s: ", env->tmp_str_buf); 4151 print_verifier_state(env, func, true); 4152 } 4153 } 4154 4155 if (bt_empty(bt)) 4156 return 0; 4157 4158 subseq_idx = first_idx; 4159 last_idx = st->last_insn_idx; 4160 first_idx = st->first_insn_idx; 4161 } 4162 4163 /* if we still have requested precise regs or slots, we missed 4164 * something (e.g., stack access through non-r10 register), so 4165 * fallback to marking all precise 4166 */ 4167 if (!bt_empty(bt)) { 4168 mark_all_scalars_precise(env, env->cur_state); 4169 bt_reset(bt); 4170 } 4171 4172 return 0; 4173 } 4174 4175 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4176 { 4177 return __mark_chain_precision(env, regno); 4178 } 4179 4180 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4181 * desired reg and stack masks across all relevant frames 4182 */ 4183 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4184 { 4185 return __mark_chain_precision(env, -1); 4186 } 4187 4188 static bool is_spillable_regtype(enum bpf_reg_type type) 4189 { 4190 switch (base_type(type)) { 4191 case PTR_TO_MAP_VALUE: 4192 case PTR_TO_STACK: 4193 case PTR_TO_CTX: 4194 case PTR_TO_PACKET: 4195 case PTR_TO_PACKET_META: 4196 case PTR_TO_PACKET_END: 4197 case PTR_TO_FLOW_KEYS: 4198 case CONST_PTR_TO_MAP: 4199 case PTR_TO_SOCKET: 4200 case PTR_TO_SOCK_COMMON: 4201 case PTR_TO_TCP_SOCK: 4202 case PTR_TO_XDP_SOCK: 4203 case PTR_TO_BTF_ID: 4204 case PTR_TO_BUF: 4205 case PTR_TO_MEM: 4206 case PTR_TO_FUNC: 4207 case PTR_TO_MAP_KEY: 4208 return true; 4209 default: 4210 return false; 4211 } 4212 } 4213 4214 /* Does this register contain a constant zero? */ 4215 static bool register_is_null(struct bpf_reg_state *reg) 4216 { 4217 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4218 } 4219 4220 static bool register_is_const(struct bpf_reg_state *reg) 4221 { 4222 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4223 } 4224 4225 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4226 { 4227 return tnum_is_unknown(reg->var_off) && 4228 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4229 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4230 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4231 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4232 } 4233 4234 static bool register_is_bounded(struct bpf_reg_state *reg) 4235 { 4236 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4237 } 4238 4239 static bool __is_pointer_value(bool allow_ptr_leaks, 4240 const struct bpf_reg_state *reg) 4241 { 4242 if (allow_ptr_leaks) 4243 return false; 4244 4245 return reg->type != SCALAR_VALUE; 4246 } 4247 4248 /* Copy src state preserving dst->parent and dst->live fields */ 4249 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4250 { 4251 struct bpf_reg_state *parent = dst->parent; 4252 enum bpf_reg_liveness live = dst->live; 4253 4254 *dst = *src; 4255 dst->parent = parent; 4256 dst->live = live; 4257 } 4258 4259 static void save_register_state(struct bpf_func_state *state, 4260 int spi, struct bpf_reg_state *reg, 4261 int size) 4262 { 4263 int i; 4264 4265 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4266 if (size == BPF_REG_SIZE) 4267 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4268 4269 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4270 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4271 4272 /* size < 8 bytes spill */ 4273 for (; i; i--) 4274 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4275 } 4276 4277 static bool is_bpf_st_mem(struct bpf_insn *insn) 4278 { 4279 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4280 } 4281 4282 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4283 * stack boundary and alignment are checked in check_mem_access() 4284 */ 4285 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4286 /* stack frame we're writing to */ 4287 struct bpf_func_state *state, 4288 int off, int size, int value_regno, 4289 int insn_idx) 4290 { 4291 struct bpf_func_state *cur; /* state of the current function */ 4292 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4293 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4294 struct bpf_reg_state *reg = NULL; 4295 u32 dst_reg = insn->dst_reg; 4296 4297 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4298 if (err) 4299 return err; 4300 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4301 * so it's aligned access and [off, off + size) are within stack limits 4302 */ 4303 if (!env->allow_ptr_leaks && 4304 state->stack[spi].slot_type[0] == STACK_SPILL && 4305 size != BPF_REG_SIZE) { 4306 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4307 return -EACCES; 4308 } 4309 4310 cur = env->cur_state->frame[env->cur_state->curframe]; 4311 if (value_regno >= 0) 4312 reg = &cur->regs[value_regno]; 4313 if (!env->bypass_spec_v4) { 4314 bool sanitize = reg && is_spillable_regtype(reg->type); 4315 4316 for (i = 0; i < size; i++) { 4317 u8 type = state->stack[spi].slot_type[i]; 4318 4319 if (type != STACK_MISC && type != STACK_ZERO) { 4320 sanitize = true; 4321 break; 4322 } 4323 } 4324 4325 if (sanitize) 4326 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4327 } 4328 4329 err = destroy_if_dynptr_stack_slot(env, state, spi); 4330 if (err) 4331 return err; 4332 4333 mark_stack_slot_scratched(env, spi); 4334 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4335 !register_is_null(reg) && env->bpf_capable) { 4336 if (dst_reg != BPF_REG_FP) { 4337 /* The backtracking logic can only recognize explicit 4338 * stack slot address like [fp - 8]. Other spill of 4339 * scalar via different register has to be conservative. 4340 * Backtrack from here and mark all registers as precise 4341 * that contributed into 'reg' being a constant. 4342 */ 4343 err = mark_chain_precision(env, value_regno); 4344 if (err) 4345 return err; 4346 } 4347 save_register_state(state, spi, reg, size); 4348 /* Break the relation on a narrowing spill. */ 4349 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4350 state->stack[spi].spilled_ptr.id = 0; 4351 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4352 insn->imm != 0 && env->bpf_capable) { 4353 struct bpf_reg_state fake_reg = {}; 4354 4355 __mark_reg_known(&fake_reg, (u32)insn->imm); 4356 fake_reg.type = SCALAR_VALUE; 4357 save_register_state(state, spi, &fake_reg, size); 4358 } else if (reg && is_spillable_regtype(reg->type)) { 4359 /* register containing pointer is being spilled into stack */ 4360 if (size != BPF_REG_SIZE) { 4361 verbose_linfo(env, insn_idx, "; "); 4362 verbose(env, "invalid size of register spill\n"); 4363 return -EACCES; 4364 } 4365 if (state != cur && reg->type == PTR_TO_STACK) { 4366 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4367 return -EINVAL; 4368 } 4369 save_register_state(state, spi, reg, size); 4370 } else { 4371 u8 type = STACK_MISC; 4372 4373 /* regular write of data into stack destroys any spilled ptr */ 4374 state->stack[spi].spilled_ptr.type = NOT_INIT; 4375 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4376 if (is_stack_slot_special(&state->stack[spi])) 4377 for (i = 0; i < BPF_REG_SIZE; i++) 4378 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4379 4380 /* only mark the slot as written if all 8 bytes were written 4381 * otherwise read propagation may incorrectly stop too soon 4382 * when stack slots are partially written. 4383 * This heuristic means that read propagation will be 4384 * conservative, since it will add reg_live_read marks 4385 * to stack slots all the way to first state when programs 4386 * writes+reads less than 8 bytes 4387 */ 4388 if (size == BPF_REG_SIZE) 4389 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4390 4391 /* when we zero initialize stack slots mark them as such */ 4392 if ((reg && register_is_null(reg)) || 4393 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4394 /* backtracking doesn't work for STACK_ZERO yet. */ 4395 err = mark_chain_precision(env, value_regno); 4396 if (err) 4397 return err; 4398 type = STACK_ZERO; 4399 } 4400 4401 /* Mark slots affected by this stack write. */ 4402 for (i = 0; i < size; i++) 4403 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4404 type; 4405 } 4406 return 0; 4407 } 4408 4409 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4410 * known to contain a variable offset. 4411 * This function checks whether the write is permitted and conservatively 4412 * tracks the effects of the write, considering that each stack slot in the 4413 * dynamic range is potentially written to. 4414 * 4415 * 'off' includes 'regno->off'. 4416 * 'value_regno' can be -1, meaning that an unknown value is being written to 4417 * the stack. 4418 * 4419 * Spilled pointers in range are not marked as written because we don't know 4420 * what's going to be actually written. This means that read propagation for 4421 * future reads cannot be terminated by this write. 4422 * 4423 * For privileged programs, uninitialized stack slots are considered 4424 * initialized by this write (even though we don't know exactly what offsets 4425 * are going to be written to). The idea is that we don't want the verifier to 4426 * reject future reads that access slots written to through variable offsets. 4427 */ 4428 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4429 /* func where register points to */ 4430 struct bpf_func_state *state, 4431 int ptr_regno, int off, int size, 4432 int value_regno, int insn_idx) 4433 { 4434 struct bpf_func_state *cur; /* state of the current function */ 4435 int min_off, max_off; 4436 int i, err; 4437 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4438 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4439 bool writing_zero = false; 4440 /* set if the fact that we're writing a zero is used to let any 4441 * stack slots remain STACK_ZERO 4442 */ 4443 bool zero_used = false; 4444 4445 cur = env->cur_state->frame[env->cur_state->curframe]; 4446 ptr_reg = &cur->regs[ptr_regno]; 4447 min_off = ptr_reg->smin_value + off; 4448 max_off = ptr_reg->smax_value + off + size; 4449 if (value_regno >= 0) 4450 value_reg = &cur->regs[value_regno]; 4451 if ((value_reg && register_is_null(value_reg)) || 4452 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4453 writing_zero = true; 4454 4455 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4456 if (err) 4457 return err; 4458 4459 for (i = min_off; i < max_off; i++) { 4460 int spi; 4461 4462 spi = __get_spi(i); 4463 err = destroy_if_dynptr_stack_slot(env, state, spi); 4464 if (err) 4465 return err; 4466 } 4467 4468 /* Variable offset writes destroy any spilled pointers in range. */ 4469 for (i = min_off; i < max_off; i++) { 4470 u8 new_type, *stype; 4471 int slot, spi; 4472 4473 slot = -i - 1; 4474 spi = slot / BPF_REG_SIZE; 4475 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4476 mark_stack_slot_scratched(env, spi); 4477 4478 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4479 /* Reject the write if range we may write to has not 4480 * been initialized beforehand. If we didn't reject 4481 * here, the ptr status would be erased below (even 4482 * though not all slots are actually overwritten), 4483 * possibly opening the door to leaks. 4484 * 4485 * We do however catch STACK_INVALID case below, and 4486 * only allow reading possibly uninitialized memory 4487 * later for CAP_PERFMON, as the write may not happen to 4488 * that slot. 4489 */ 4490 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4491 insn_idx, i); 4492 return -EINVAL; 4493 } 4494 4495 /* Erase all spilled pointers. */ 4496 state->stack[spi].spilled_ptr.type = NOT_INIT; 4497 4498 /* Update the slot type. */ 4499 new_type = STACK_MISC; 4500 if (writing_zero && *stype == STACK_ZERO) { 4501 new_type = STACK_ZERO; 4502 zero_used = true; 4503 } 4504 /* If the slot is STACK_INVALID, we check whether it's OK to 4505 * pretend that it will be initialized by this write. The slot 4506 * might not actually be written to, and so if we mark it as 4507 * initialized future reads might leak uninitialized memory. 4508 * For privileged programs, we will accept such reads to slots 4509 * that may or may not be written because, if we're reject 4510 * them, the error would be too confusing. 4511 */ 4512 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4513 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4514 insn_idx, i); 4515 return -EINVAL; 4516 } 4517 *stype = new_type; 4518 } 4519 if (zero_used) { 4520 /* backtracking doesn't work for STACK_ZERO yet. */ 4521 err = mark_chain_precision(env, value_regno); 4522 if (err) 4523 return err; 4524 } 4525 return 0; 4526 } 4527 4528 /* When register 'dst_regno' is assigned some values from stack[min_off, 4529 * max_off), we set the register's type according to the types of the 4530 * respective stack slots. If all the stack values are known to be zeros, then 4531 * so is the destination reg. Otherwise, the register is considered to be 4532 * SCALAR. This function does not deal with register filling; the caller must 4533 * ensure that all spilled registers in the stack range have been marked as 4534 * read. 4535 */ 4536 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4537 /* func where src register points to */ 4538 struct bpf_func_state *ptr_state, 4539 int min_off, int max_off, int dst_regno) 4540 { 4541 struct bpf_verifier_state *vstate = env->cur_state; 4542 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4543 int i, slot, spi; 4544 u8 *stype; 4545 int zeros = 0; 4546 4547 for (i = min_off; i < max_off; i++) { 4548 slot = -i - 1; 4549 spi = slot / BPF_REG_SIZE; 4550 mark_stack_slot_scratched(env, spi); 4551 stype = ptr_state->stack[spi].slot_type; 4552 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4553 break; 4554 zeros++; 4555 } 4556 if (zeros == max_off - min_off) { 4557 /* any access_size read into register is zero extended, 4558 * so the whole register == const_zero 4559 */ 4560 __mark_reg_const_zero(&state->regs[dst_regno]); 4561 /* backtracking doesn't support STACK_ZERO yet, 4562 * so mark it precise here, so that later 4563 * backtracking can stop here. 4564 * Backtracking may not need this if this register 4565 * doesn't participate in pointer adjustment. 4566 * Forward propagation of precise flag is not 4567 * necessary either. This mark is only to stop 4568 * backtracking. Any register that contributed 4569 * to const 0 was marked precise before spill. 4570 */ 4571 state->regs[dst_regno].precise = true; 4572 } else { 4573 /* have read misc data from the stack */ 4574 mark_reg_unknown(env, state->regs, dst_regno); 4575 } 4576 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4577 } 4578 4579 /* Read the stack at 'off' and put the results into the register indicated by 4580 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4581 * spilled reg. 4582 * 4583 * 'dst_regno' can be -1, meaning that the read value is not going to a 4584 * register. 4585 * 4586 * The access is assumed to be within the current stack bounds. 4587 */ 4588 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4589 /* func where src register points to */ 4590 struct bpf_func_state *reg_state, 4591 int off, int size, int dst_regno) 4592 { 4593 struct bpf_verifier_state *vstate = env->cur_state; 4594 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4595 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4596 struct bpf_reg_state *reg; 4597 u8 *stype, type; 4598 4599 stype = reg_state->stack[spi].slot_type; 4600 reg = ®_state->stack[spi].spilled_ptr; 4601 4602 mark_stack_slot_scratched(env, spi); 4603 4604 if (is_spilled_reg(®_state->stack[spi])) { 4605 u8 spill_size = 1; 4606 4607 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4608 spill_size++; 4609 4610 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4611 if (reg->type != SCALAR_VALUE) { 4612 verbose_linfo(env, env->insn_idx, "; "); 4613 verbose(env, "invalid size of register fill\n"); 4614 return -EACCES; 4615 } 4616 4617 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4618 if (dst_regno < 0) 4619 return 0; 4620 4621 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4622 /* The earlier check_reg_arg() has decided the 4623 * subreg_def for this insn. Save it first. 4624 */ 4625 s32 subreg_def = state->regs[dst_regno].subreg_def; 4626 4627 copy_register_state(&state->regs[dst_regno], reg); 4628 state->regs[dst_regno].subreg_def = subreg_def; 4629 } else { 4630 for (i = 0; i < size; i++) { 4631 type = stype[(slot - i) % BPF_REG_SIZE]; 4632 if (type == STACK_SPILL) 4633 continue; 4634 if (type == STACK_MISC) 4635 continue; 4636 if (type == STACK_INVALID && env->allow_uninit_stack) 4637 continue; 4638 verbose(env, "invalid read from stack off %d+%d size %d\n", 4639 off, i, size); 4640 return -EACCES; 4641 } 4642 mark_reg_unknown(env, state->regs, dst_regno); 4643 } 4644 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4645 return 0; 4646 } 4647 4648 if (dst_regno >= 0) { 4649 /* restore register state from stack */ 4650 copy_register_state(&state->regs[dst_regno], reg); 4651 /* mark reg as written since spilled pointer state likely 4652 * has its liveness marks cleared by is_state_visited() 4653 * which resets stack/reg liveness for state transitions 4654 */ 4655 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4656 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4657 /* If dst_regno==-1, the caller is asking us whether 4658 * it is acceptable to use this value as a SCALAR_VALUE 4659 * (e.g. for XADD). 4660 * We must not allow unprivileged callers to do that 4661 * with spilled pointers. 4662 */ 4663 verbose(env, "leaking pointer from stack off %d\n", 4664 off); 4665 return -EACCES; 4666 } 4667 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4668 } else { 4669 for (i = 0; i < size; i++) { 4670 type = stype[(slot - i) % BPF_REG_SIZE]; 4671 if (type == STACK_MISC) 4672 continue; 4673 if (type == STACK_ZERO) 4674 continue; 4675 if (type == STACK_INVALID && env->allow_uninit_stack) 4676 continue; 4677 verbose(env, "invalid read from stack off %d+%d size %d\n", 4678 off, i, size); 4679 return -EACCES; 4680 } 4681 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4682 if (dst_regno >= 0) 4683 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4684 } 4685 return 0; 4686 } 4687 4688 enum bpf_access_src { 4689 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4690 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4691 }; 4692 4693 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4694 int regno, int off, int access_size, 4695 bool zero_size_allowed, 4696 enum bpf_access_src type, 4697 struct bpf_call_arg_meta *meta); 4698 4699 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4700 { 4701 return cur_regs(env) + regno; 4702 } 4703 4704 /* Read the stack at 'ptr_regno + off' and put the result into the register 4705 * 'dst_regno'. 4706 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4707 * but not its variable offset. 4708 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4709 * 4710 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4711 * filling registers (i.e. reads of spilled register cannot be detected when 4712 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4713 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4714 * offset; for a fixed offset check_stack_read_fixed_off should be used 4715 * instead. 4716 */ 4717 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4718 int ptr_regno, int off, int size, int dst_regno) 4719 { 4720 /* The state of the source register. */ 4721 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4722 struct bpf_func_state *ptr_state = func(env, reg); 4723 int err; 4724 int min_off, max_off; 4725 4726 /* Note that we pass a NULL meta, so raw access will not be permitted. 4727 */ 4728 err = check_stack_range_initialized(env, ptr_regno, off, size, 4729 false, ACCESS_DIRECT, NULL); 4730 if (err) 4731 return err; 4732 4733 min_off = reg->smin_value + off; 4734 max_off = reg->smax_value + off; 4735 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4736 return 0; 4737 } 4738 4739 /* check_stack_read dispatches to check_stack_read_fixed_off or 4740 * check_stack_read_var_off. 4741 * 4742 * The caller must ensure that the offset falls within the allocated stack 4743 * bounds. 4744 * 4745 * 'dst_regno' is a register which will receive the value from the stack. It 4746 * can be -1, meaning that the read value is not going to a register. 4747 */ 4748 static int check_stack_read(struct bpf_verifier_env *env, 4749 int ptr_regno, int off, int size, 4750 int dst_regno) 4751 { 4752 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4753 struct bpf_func_state *state = func(env, reg); 4754 int err; 4755 /* Some accesses are only permitted with a static offset. */ 4756 bool var_off = !tnum_is_const(reg->var_off); 4757 4758 /* The offset is required to be static when reads don't go to a 4759 * register, in order to not leak pointers (see 4760 * check_stack_read_fixed_off). 4761 */ 4762 if (dst_regno < 0 && var_off) { 4763 char tn_buf[48]; 4764 4765 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4766 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4767 tn_buf, off, size); 4768 return -EACCES; 4769 } 4770 /* Variable offset is prohibited for unprivileged mode for simplicity 4771 * since it requires corresponding support in Spectre masking for stack 4772 * ALU. See also retrieve_ptr_limit(). The check in 4773 * check_stack_access_for_ptr_arithmetic() called by 4774 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4775 * with variable offsets, therefore no check is required here. Further, 4776 * just checking it here would be insufficient as speculative stack 4777 * writes could still lead to unsafe speculative behaviour. 4778 */ 4779 if (!var_off) { 4780 off += reg->var_off.value; 4781 err = check_stack_read_fixed_off(env, state, off, size, 4782 dst_regno); 4783 } else { 4784 /* Variable offset stack reads need more conservative handling 4785 * than fixed offset ones. Note that dst_regno >= 0 on this 4786 * branch. 4787 */ 4788 err = check_stack_read_var_off(env, ptr_regno, off, size, 4789 dst_regno); 4790 } 4791 return err; 4792 } 4793 4794 4795 /* check_stack_write dispatches to check_stack_write_fixed_off or 4796 * check_stack_write_var_off. 4797 * 4798 * 'ptr_regno' is the register used as a pointer into the stack. 4799 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4800 * 'value_regno' is the register whose value we're writing to the stack. It can 4801 * be -1, meaning that we're not writing from a register. 4802 * 4803 * The caller must ensure that the offset falls within the maximum stack size. 4804 */ 4805 static int check_stack_write(struct bpf_verifier_env *env, 4806 int ptr_regno, int off, int size, 4807 int value_regno, int insn_idx) 4808 { 4809 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4810 struct bpf_func_state *state = func(env, reg); 4811 int err; 4812 4813 if (tnum_is_const(reg->var_off)) { 4814 off += reg->var_off.value; 4815 err = check_stack_write_fixed_off(env, state, off, size, 4816 value_regno, insn_idx); 4817 } else { 4818 /* Variable offset stack reads need more conservative handling 4819 * than fixed offset ones. 4820 */ 4821 err = check_stack_write_var_off(env, state, 4822 ptr_regno, off, size, 4823 value_regno, insn_idx); 4824 } 4825 return err; 4826 } 4827 4828 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4829 int off, int size, enum bpf_access_type type) 4830 { 4831 struct bpf_reg_state *regs = cur_regs(env); 4832 struct bpf_map *map = regs[regno].map_ptr; 4833 u32 cap = bpf_map_flags_to_cap(map); 4834 4835 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4836 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4837 map->value_size, off, size); 4838 return -EACCES; 4839 } 4840 4841 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4842 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4843 map->value_size, off, size); 4844 return -EACCES; 4845 } 4846 4847 return 0; 4848 } 4849 4850 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4851 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4852 int off, int size, u32 mem_size, 4853 bool zero_size_allowed) 4854 { 4855 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4856 struct bpf_reg_state *reg; 4857 4858 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4859 return 0; 4860 4861 reg = &cur_regs(env)[regno]; 4862 switch (reg->type) { 4863 case PTR_TO_MAP_KEY: 4864 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4865 mem_size, off, size); 4866 break; 4867 case PTR_TO_MAP_VALUE: 4868 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4869 mem_size, off, size); 4870 break; 4871 case PTR_TO_PACKET: 4872 case PTR_TO_PACKET_META: 4873 case PTR_TO_PACKET_END: 4874 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4875 off, size, regno, reg->id, off, mem_size); 4876 break; 4877 case PTR_TO_MEM: 4878 default: 4879 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4880 mem_size, off, size); 4881 } 4882 4883 return -EACCES; 4884 } 4885 4886 /* check read/write into a memory region with possible variable offset */ 4887 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4888 int off, int size, u32 mem_size, 4889 bool zero_size_allowed) 4890 { 4891 struct bpf_verifier_state *vstate = env->cur_state; 4892 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4893 struct bpf_reg_state *reg = &state->regs[regno]; 4894 int err; 4895 4896 /* We may have adjusted the register pointing to memory region, so we 4897 * need to try adding each of min_value and max_value to off 4898 * to make sure our theoretical access will be safe. 4899 * 4900 * The minimum value is only important with signed 4901 * comparisons where we can't assume the floor of a 4902 * value is 0. If we are using signed variables for our 4903 * index'es we need to make sure that whatever we use 4904 * will have a set floor within our range. 4905 */ 4906 if (reg->smin_value < 0 && 4907 (reg->smin_value == S64_MIN || 4908 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4909 reg->smin_value + off < 0)) { 4910 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4911 regno); 4912 return -EACCES; 4913 } 4914 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4915 mem_size, zero_size_allowed); 4916 if (err) { 4917 verbose(env, "R%d min value is outside of the allowed memory range\n", 4918 regno); 4919 return err; 4920 } 4921 4922 /* If we haven't set a max value then we need to bail since we can't be 4923 * sure we won't do bad things. 4924 * If reg->umax_value + off could overflow, treat that as unbounded too. 4925 */ 4926 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4927 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4928 regno); 4929 return -EACCES; 4930 } 4931 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4932 mem_size, zero_size_allowed); 4933 if (err) { 4934 verbose(env, "R%d max value is outside of the allowed memory range\n", 4935 regno); 4936 return err; 4937 } 4938 4939 return 0; 4940 } 4941 4942 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4943 const struct bpf_reg_state *reg, int regno, 4944 bool fixed_off_ok) 4945 { 4946 /* Access to this pointer-typed register or passing it to a helper 4947 * is only allowed in its original, unmodified form. 4948 */ 4949 4950 if (reg->off < 0) { 4951 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4952 reg_type_str(env, reg->type), regno, reg->off); 4953 return -EACCES; 4954 } 4955 4956 if (!fixed_off_ok && reg->off) { 4957 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4958 reg_type_str(env, reg->type), regno, reg->off); 4959 return -EACCES; 4960 } 4961 4962 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4963 char tn_buf[48]; 4964 4965 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4966 verbose(env, "variable %s access var_off=%s disallowed\n", 4967 reg_type_str(env, reg->type), tn_buf); 4968 return -EACCES; 4969 } 4970 4971 return 0; 4972 } 4973 4974 int check_ptr_off_reg(struct bpf_verifier_env *env, 4975 const struct bpf_reg_state *reg, int regno) 4976 { 4977 return __check_ptr_off_reg(env, reg, regno, false); 4978 } 4979 4980 static int map_kptr_match_type(struct bpf_verifier_env *env, 4981 struct btf_field *kptr_field, 4982 struct bpf_reg_state *reg, u32 regno) 4983 { 4984 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4985 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4986 const char *reg_name = ""; 4987 4988 /* Only unreferenced case accepts untrusted pointers */ 4989 if (kptr_field->type == BPF_KPTR_UNREF) 4990 perm_flags |= PTR_UNTRUSTED; 4991 4992 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4993 goto bad_type; 4994 4995 if (!btf_is_kernel(reg->btf)) { 4996 verbose(env, "R%d must point to kernel BTF\n", regno); 4997 return -EINVAL; 4998 } 4999 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5000 reg_name = btf_type_name(reg->btf, reg->btf_id); 5001 5002 /* For ref_ptr case, release function check should ensure we get one 5003 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5004 * normal store of unreferenced kptr, we must ensure var_off is zero. 5005 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5006 * reg->off and reg->ref_obj_id are not needed here. 5007 */ 5008 if (__check_ptr_off_reg(env, reg, regno, true)) 5009 return -EACCES; 5010 5011 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 5012 * we also need to take into account the reg->off. 5013 * 5014 * We want to support cases like: 5015 * 5016 * struct foo { 5017 * struct bar br; 5018 * struct baz bz; 5019 * }; 5020 * 5021 * struct foo *v; 5022 * v = func(); // PTR_TO_BTF_ID 5023 * val->foo = v; // reg->off is zero, btf and btf_id match type 5024 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5025 * // first member type of struct after comparison fails 5026 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5027 * // to match type 5028 * 5029 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5030 * is zero. We must also ensure that btf_struct_ids_match does not walk 5031 * the struct to match type against first member of struct, i.e. reject 5032 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5033 * strict mode to true for type match. 5034 */ 5035 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5036 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5037 kptr_field->type == BPF_KPTR_REF)) 5038 goto bad_type; 5039 return 0; 5040 bad_type: 5041 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5042 reg_type_str(env, reg->type), reg_name); 5043 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5044 if (kptr_field->type == BPF_KPTR_UNREF) 5045 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5046 targ_name); 5047 else 5048 verbose(env, "\n"); 5049 return -EINVAL; 5050 } 5051 5052 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5053 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5054 */ 5055 static bool in_rcu_cs(struct bpf_verifier_env *env) 5056 { 5057 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 5058 } 5059 5060 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5061 BTF_SET_START(rcu_protected_types) 5062 BTF_ID(struct, prog_test_ref_kfunc) 5063 BTF_ID(struct, cgroup) 5064 BTF_ID(struct, bpf_cpumask) 5065 BTF_ID(struct, task_struct) 5066 BTF_SET_END(rcu_protected_types) 5067 5068 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5069 { 5070 if (!btf_is_kernel(btf)) 5071 return false; 5072 return btf_id_set_contains(&rcu_protected_types, btf_id); 5073 } 5074 5075 static bool rcu_safe_kptr(const struct btf_field *field) 5076 { 5077 const struct btf_field_kptr *kptr = &field->kptr; 5078 5079 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5080 } 5081 5082 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5083 int value_regno, int insn_idx, 5084 struct btf_field *kptr_field) 5085 { 5086 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5087 int class = BPF_CLASS(insn->code); 5088 struct bpf_reg_state *val_reg; 5089 5090 /* Things we already checked for in check_map_access and caller: 5091 * - Reject cases where variable offset may touch kptr 5092 * - size of access (must be BPF_DW) 5093 * - tnum_is_const(reg->var_off) 5094 * - kptr_field->offset == off + reg->var_off.value 5095 */ 5096 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5097 if (BPF_MODE(insn->code) != BPF_MEM) { 5098 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5099 return -EACCES; 5100 } 5101 5102 /* We only allow loading referenced kptr, since it will be marked as 5103 * untrusted, similar to unreferenced kptr. 5104 */ 5105 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5106 verbose(env, "store to referenced kptr disallowed\n"); 5107 return -EACCES; 5108 } 5109 5110 if (class == BPF_LDX) { 5111 val_reg = reg_state(env, value_regno); 5112 /* We can simply mark the value_regno receiving the pointer 5113 * value from map as PTR_TO_BTF_ID, with the correct type. 5114 */ 5115 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5116 kptr_field->kptr.btf_id, 5117 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5118 PTR_MAYBE_NULL | MEM_RCU : 5119 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5120 /* For mark_ptr_or_null_reg */ 5121 val_reg->id = ++env->id_gen; 5122 } else if (class == BPF_STX) { 5123 val_reg = reg_state(env, value_regno); 5124 if (!register_is_null(val_reg) && 5125 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5126 return -EACCES; 5127 } else if (class == BPF_ST) { 5128 if (insn->imm) { 5129 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5130 kptr_field->offset); 5131 return -EACCES; 5132 } 5133 } else { 5134 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5135 return -EACCES; 5136 } 5137 return 0; 5138 } 5139 5140 /* check read/write into a map element with possible variable offset */ 5141 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5142 int off, int size, bool zero_size_allowed, 5143 enum bpf_access_src src) 5144 { 5145 struct bpf_verifier_state *vstate = env->cur_state; 5146 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5147 struct bpf_reg_state *reg = &state->regs[regno]; 5148 struct bpf_map *map = reg->map_ptr; 5149 struct btf_record *rec; 5150 int err, i; 5151 5152 err = check_mem_region_access(env, regno, off, size, map->value_size, 5153 zero_size_allowed); 5154 if (err) 5155 return err; 5156 5157 if (IS_ERR_OR_NULL(map->record)) 5158 return 0; 5159 rec = map->record; 5160 for (i = 0; i < rec->cnt; i++) { 5161 struct btf_field *field = &rec->fields[i]; 5162 u32 p = field->offset; 5163 5164 /* If any part of a field can be touched by load/store, reject 5165 * this program. To check that [x1, x2) overlaps with [y1, y2), 5166 * it is sufficient to check x1 < y2 && y1 < x2. 5167 */ 5168 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5169 p < reg->umax_value + off + size) { 5170 switch (field->type) { 5171 case BPF_KPTR_UNREF: 5172 case BPF_KPTR_REF: 5173 if (src != ACCESS_DIRECT) { 5174 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5175 return -EACCES; 5176 } 5177 if (!tnum_is_const(reg->var_off)) { 5178 verbose(env, "kptr access cannot have variable offset\n"); 5179 return -EACCES; 5180 } 5181 if (p != off + reg->var_off.value) { 5182 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5183 p, off + reg->var_off.value); 5184 return -EACCES; 5185 } 5186 if (size != bpf_size_to_bytes(BPF_DW)) { 5187 verbose(env, "kptr access size must be BPF_DW\n"); 5188 return -EACCES; 5189 } 5190 break; 5191 default: 5192 verbose(env, "%s cannot be accessed directly by load/store\n", 5193 btf_field_type_name(field->type)); 5194 return -EACCES; 5195 } 5196 } 5197 } 5198 return 0; 5199 } 5200 5201 #define MAX_PACKET_OFF 0xffff 5202 5203 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5204 const struct bpf_call_arg_meta *meta, 5205 enum bpf_access_type t) 5206 { 5207 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5208 5209 switch (prog_type) { 5210 /* Program types only with direct read access go here! */ 5211 case BPF_PROG_TYPE_LWT_IN: 5212 case BPF_PROG_TYPE_LWT_OUT: 5213 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5214 case BPF_PROG_TYPE_SK_REUSEPORT: 5215 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5216 case BPF_PROG_TYPE_CGROUP_SKB: 5217 if (t == BPF_WRITE) 5218 return false; 5219 fallthrough; 5220 5221 /* Program types with direct read + write access go here! */ 5222 case BPF_PROG_TYPE_SCHED_CLS: 5223 case BPF_PROG_TYPE_SCHED_ACT: 5224 case BPF_PROG_TYPE_XDP: 5225 case BPF_PROG_TYPE_LWT_XMIT: 5226 case BPF_PROG_TYPE_SK_SKB: 5227 case BPF_PROG_TYPE_SK_MSG: 5228 if (meta) 5229 return meta->pkt_access; 5230 5231 env->seen_direct_write = true; 5232 return true; 5233 5234 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5235 if (t == BPF_WRITE) 5236 env->seen_direct_write = true; 5237 5238 return true; 5239 5240 default: 5241 return false; 5242 } 5243 } 5244 5245 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5246 int size, bool zero_size_allowed) 5247 { 5248 struct bpf_reg_state *regs = cur_regs(env); 5249 struct bpf_reg_state *reg = ®s[regno]; 5250 int err; 5251 5252 /* We may have added a variable offset to the packet pointer; but any 5253 * reg->range we have comes after that. We are only checking the fixed 5254 * offset. 5255 */ 5256 5257 /* We don't allow negative numbers, because we aren't tracking enough 5258 * detail to prove they're safe. 5259 */ 5260 if (reg->smin_value < 0) { 5261 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5262 regno); 5263 return -EACCES; 5264 } 5265 5266 err = reg->range < 0 ? -EINVAL : 5267 __check_mem_access(env, regno, off, size, reg->range, 5268 zero_size_allowed); 5269 if (err) { 5270 verbose(env, "R%d offset is outside of the packet\n", regno); 5271 return err; 5272 } 5273 5274 /* __check_mem_access has made sure "off + size - 1" is within u16. 5275 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5276 * otherwise find_good_pkt_pointers would have refused to set range info 5277 * that __check_mem_access would have rejected this pkt access. 5278 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5279 */ 5280 env->prog->aux->max_pkt_offset = 5281 max_t(u32, env->prog->aux->max_pkt_offset, 5282 off + reg->umax_value + size - 1); 5283 5284 return err; 5285 } 5286 5287 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5288 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5289 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5290 struct btf **btf, u32 *btf_id) 5291 { 5292 struct bpf_insn_access_aux info = { 5293 .reg_type = *reg_type, 5294 .log = &env->log, 5295 }; 5296 5297 if (env->ops->is_valid_access && 5298 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5299 /* A non zero info.ctx_field_size indicates that this field is a 5300 * candidate for later verifier transformation to load the whole 5301 * field and then apply a mask when accessed with a narrower 5302 * access than actual ctx access size. A zero info.ctx_field_size 5303 * will only allow for whole field access and rejects any other 5304 * type of narrower access. 5305 */ 5306 *reg_type = info.reg_type; 5307 5308 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5309 *btf = info.btf; 5310 *btf_id = info.btf_id; 5311 } else { 5312 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5313 } 5314 /* remember the offset of last byte accessed in ctx */ 5315 if (env->prog->aux->max_ctx_offset < off + size) 5316 env->prog->aux->max_ctx_offset = off + size; 5317 return 0; 5318 } 5319 5320 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5321 return -EACCES; 5322 } 5323 5324 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5325 int size) 5326 { 5327 if (size < 0 || off < 0 || 5328 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5329 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5330 off, size); 5331 return -EACCES; 5332 } 5333 return 0; 5334 } 5335 5336 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5337 u32 regno, int off, int size, 5338 enum bpf_access_type t) 5339 { 5340 struct bpf_reg_state *regs = cur_regs(env); 5341 struct bpf_reg_state *reg = ®s[regno]; 5342 struct bpf_insn_access_aux info = {}; 5343 bool valid; 5344 5345 if (reg->smin_value < 0) { 5346 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5347 regno); 5348 return -EACCES; 5349 } 5350 5351 switch (reg->type) { 5352 case PTR_TO_SOCK_COMMON: 5353 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5354 break; 5355 case PTR_TO_SOCKET: 5356 valid = bpf_sock_is_valid_access(off, size, t, &info); 5357 break; 5358 case PTR_TO_TCP_SOCK: 5359 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5360 break; 5361 case PTR_TO_XDP_SOCK: 5362 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5363 break; 5364 default: 5365 valid = false; 5366 } 5367 5368 5369 if (valid) { 5370 env->insn_aux_data[insn_idx].ctx_field_size = 5371 info.ctx_field_size; 5372 return 0; 5373 } 5374 5375 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5376 regno, reg_type_str(env, reg->type), off, size); 5377 5378 return -EACCES; 5379 } 5380 5381 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5382 { 5383 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5384 } 5385 5386 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5387 { 5388 const struct bpf_reg_state *reg = reg_state(env, regno); 5389 5390 return reg->type == PTR_TO_CTX; 5391 } 5392 5393 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5394 { 5395 const struct bpf_reg_state *reg = reg_state(env, regno); 5396 5397 return type_is_sk_pointer(reg->type); 5398 } 5399 5400 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5401 { 5402 const struct bpf_reg_state *reg = reg_state(env, regno); 5403 5404 return type_is_pkt_pointer(reg->type); 5405 } 5406 5407 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5408 { 5409 const struct bpf_reg_state *reg = reg_state(env, regno); 5410 5411 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5412 return reg->type == PTR_TO_FLOW_KEYS; 5413 } 5414 5415 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5416 { 5417 /* A referenced register is always trusted. */ 5418 if (reg->ref_obj_id) 5419 return true; 5420 5421 /* If a register is not referenced, it is trusted if it has the 5422 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5423 * other type modifiers may be safe, but we elect to take an opt-in 5424 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5425 * not. 5426 * 5427 * Eventually, we should make PTR_TRUSTED the single source of truth 5428 * for whether a register is trusted. 5429 */ 5430 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5431 !bpf_type_has_unsafe_modifiers(reg->type); 5432 } 5433 5434 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5435 { 5436 return reg->type & MEM_RCU; 5437 } 5438 5439 static void clear_trusted_flags(enum bpf_type_flag *flag) 5440 { 5441 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5442 } 5443 5444 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5445 const struct bpf_reg_state *reg, 5446 int off, int size, bool strict) 5447 { 5448 struct tnum reg_off; 5449 int ip_align; 5450 5451 /* Byte size accesses are always allowed. */ 5452 if (!strict || size == 1) 5453 return 0; 5454 5455 /* For platforms that do not have a Kconfig enabling 5456 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5457 * NET_IP_ALIGN is universally set to '2'. And on platforms 5458 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5459 * to this code only in strict mode where we want to emulate 5460 * the NET_IP_ALIGN==2 checking. Therefore use an 5461 * unconditional IP align value of '2'. 5462 */ 5463 ip_align = 2; 5464 5465 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5466 if (!tnum_is_aligned(reg_off, size)) { 5467 char tn_buf[48]; 5468 5469 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5470 verbose(env, 5471 "misaligned packet access off %d+%s+%d+%d size %d\n", 5472 ip_align, tn_buf, reg->off, off, size); 5473 return -EACCES; 5474 } 5475 5476 return 0; 5477 } 5478 5479 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5480 const struct bpf_reg_state *reg, 5481 const char *pointer_desc, 5482 int off, int size, bool strict) 5483 { 5484 struct tnum reg_off; 5485 5486 /* Byte size accesses are always allowed. */ 5487 if (!strict || size == 1) 5488 return 0; 5489 5490 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5491 if (!tnum_is_aligned(reg_off, size)) { 5492 char tn_buf[48]; 5493 5494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5495 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5496 pointer_desc, tn_buf, reg->off, off, size); 5497 return -EACCES; 5498 } 5499 5500 return 0; 5501 } 5502 5503 static int check_ptr_alignment(struct bpf_verifier_env *env, 5504 const struct bpf_reg_state *reg, int off, 5505 int size, bool strict_alignment_once) 5506 { 5507 bool strict = env->strict_alignment || strict_alignment_once; 5508 const char *pointer_desc = ""; 5509 5510 switch (reg->type) { 5511 case PTR_TO_PACKET: 5512 case PTR_TO_PACKET_META: 5513 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5514 * right in front, treat it the very same way. 5515 */ 5516 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5517 case PTR_TO_FLOW_KEYS: 5518 pointer_desc = "flow keys "; 5519 break; 5520 case PTR_TO_MAP_KEY: 5521 pointer_desc = "key "; 5522 break; 5523 case PTR_TO_MAP_VALUE: 5524 pointer_desc = "value "; 5525 break; 5526 case PTR_TO_CTX: 5527 pointer_desc = "context "; 5528 break; 5529 case PTR_TO_STACK: 5530 pointer_desc = "stack "; 5531 /* The stack spill tracking logic in check_stack_write_fixed_off() 5532 * and check_stack_read_fixed_off() relies on stack accesses being 5533 * aligned. 5534 */ 5535 strict = true; 5536 break; 5537 case PTR_TO_SOCKET: 5538 pointer_desc = "sock "; 5539 break; 5540 case PTR_TO_SOCK_COMMON: 5541 pointer_desc = "sock_common "; 5542 break; 5543 case PTR_TO_TCP_SOCK: 5544 pointer_desc = "tcp_sock "; 5545 break; 5546 case PTR_TO_XDP_SOCK: 5547 pointer_desc = "xdp_sock "; 5548 break; 5549 default: 5550 break; 5551 } 5552 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5553 strict); 5554 } 5555 5556 static int update_stack_depth(struct bpf_verifier_env *env, 5557 const struct bpf_func_state *func, 5558 int off) 5559 { 5560 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5561 5562 if (stack >= -off) 5563 return 0; 5564 5565 /* update known max for given subprogram */ 5566 env->subprog_info[func->subprogno].stack_depth = -off; 5567 return 0; 5568 } 5569 5570 /* starting from main bpf function walk all instructions of the function 5571 * and recursively walk all callees that given function can call. 5572 * Ignore jump and exit insns. 5573 * Since recursion is prevented by check_cfg() this algorithm 5574 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5575 */ 5576 static int check_max_stack_depth(struct bpf_verifier_env *env) 5577 { 5578 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 5579 struct bpf_subprog_info *subprog = env->subprog_info; 5580 struct bpf_insn *insn = env->prog->insnsi; 5581 bool tail_call_reachable = false; 5582 int ret_insn[MAX_CALL_FRAMES]; 5583 int ret_prog[MAX_CALL_FRAMES]; 5584 int j; 5585 5586 process_func: 5587 /* protect against potential stack overflow that might happen when 5588 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5589 * depth for such case down to 256 so that the worst case scenario 5590 * would result in 8k stack size (32 which is tailcall limit * 256 = 5591 * 8k). 5592 * 5593 * To get the idea what might happen, see an example: 5594 * func1 -> sub rsp, 128 5595 * subfunc1 -> sub rsp, 256 5596 * tailcall1 -> add rsp, 256 5597 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5598 * subfunc2 -> sub rsp, 64 5599 * subfunc22 -> sub rsp, 128 5600 * tailcall2 -> add rsp, 128 5601 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5602 * 5603 * tailcall will unwind the current stack frame but it will not get rid 5604 * of caller's stack as shown on the example above. 5605 */ 5606 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5607 verbose(env, 5608 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5609 depth); 5610 return -EACCES; 5611 } 5612 /* round up to 32-bytes, since this is granularity 5613 * of interpreter stack size 5614 */ 5615 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5616 if (depth > MAX_BPF_STACK) { 5617 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5618 frame + 1, depth); 5619 return -EACCES; 5620 } 5621 continue_func: 5622 subprog_end = subprog[idx + 1].start; 5623 for (; i < subprog_end; i++) { 5624 int next_insn; 5625 5626 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5627 continue; 5628 /* remember insn and function to return to */ 5629 ret_insn[frame] = i + 1; 5630 ret_prog[frame] = idx; 5631 5632 /* find the callee */ 5633 next_insn = i + insn[i].imm + 1; 5634 idx = find_subprog(env, next_insn); 5635 if (idx < 0) { 5636 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5637 next_insn); 5638 return -EFAULT; 5639 } 5640 if (subprog[idx].is_async_cb) { 5641 if (subprog[idx].has_tail_call) { 5642 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5643 return -EFAULT; 5644 } 5645 /* async callbacks don't increase bpf prog stack size */ 5646 continue; 5647 } 5648 i = next_insn; 5649 5650 if (subprog[idx].has_tail_call) 5651 tail_call_reachable = true; 5652 5653 frame++; 5654 if (frame >= MAX_CALL_FRAMES) { 5655 verbose(env, "the call stack of %d frames is too deep !\n", 5656 frame); 5657 return -E2BIG; 5658 } 5659 goto process_func; 5660 } 5661 /* if tail call got detected across bpf2bpf calls then mark each of the 5662 * currently present subprog frames as tail call reachable subprogs; 5663 * this info will be utilized by JIT so that we will be preserving the 5664 * tail call counter throughout bpf2bpf calls combined with tailcalls 5665 */ 5666 if (tail_call_reachable) 5667 for (j = 0; j < frame; j++) 5668 subprog[ret_prog[j]].tail_call_reachable = true; 5669 if (subprog[0].tail_call_reachable) 5670 env->prog->aux->tail_call_reachable = true; 5671 5672 /* end of for() loop means the last insn of the 'subprog' 5673 * was reached. Doesn't matter whether it was JA or EXIT 5674 */ 5675 if (frame == 0) 5676 return 0; 5677 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5678 frame--; 5679 i = ret_insn[frame]; 5680 idx = ret_prog[frame]; 5681 goto continue_func; 5682 } 5683 5684 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5685 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5686 const struct bpf_insn *insn, int idx) 5687 { 5688 int start = idx + insn->imm + 1, subprog; 5689 5690 subprog = find_subprog(env, start); 5691 if (subprog < 0) { 5692 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5693 start); 5694 return -EFAULT; 5695 } 5696 return env->subprog_info[subprog].stack_depth; 5697 } 5698 #endif 5699 5700 static int __check_buffer_access(struct bpf_verifier_env *env, 5701 const char *buf_info, 5702 const struct bpf_reg_state *reg, 5703 int regno, int off, int size) 5704 { 5705 if (off < 0) { 5706 verbose(env, 5707 "R%d invalid %s buffer access: off=%d, size=%d\n", 5708 regno, buf_info, off, size); 5709 return -EACCES; 5710 } 5711 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5712 char tn_buf[48]; 5713 5714 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5715 verbose(env, 5716 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5717 regno, off, tn_buf); 5718 return -EACCES; 5719 } 5720 5721 return 0; 5722 } 5723 5724 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5725 const struct bpf_reg_state *reg, 5726 int regno, int off, int size) 5727 { 5728 int err; 5729 5730 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5731 if (err) 5732 return err; 5733 5734 if (off + size > env->prog->aux->max_tp_access) 5735 env->prog->aux->max_tp_access = off + size; 5736 5737 return 0; 5738 } 5739 5740 static int check_buffer_access(struct bpf_verifier_env *env, 5741 const struct bpf_reg_state *reg, 5742 int regno, int off, int size, 5743 bool zero_size_allowed, 5744 u32 *max_access) 5745 { 5746 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5747 int err; 5748 5749 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5750 if (err) 5751 return err; 5752 5753 if (off + size > *max_access) 5754 *max_access = off + size; 5755 5756 return 0; 5757 } 5758 5759 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5760 static void zext_32_to_64(struct bpf_reg_state *reg) 5761 { 5762 reg->var_off = tnum_subreg(reg->var_off); 5763 __reg_assign_32_into_64(reg); 5764 } 5765 5766 /* truncate register to smaller size (in bytes) 5767 * must be called with size < BPF_REG_SIZE 5768 */ 5769 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5770 { 5771 u64 mask; 5772 5773 /* clear high bits in bit representation */ 5774 reg->var_off = tnum_cast(reg->var_off, size); 5775 5776 /* fix arithmetic bounds */ 5777 mask = ((u64)1 << (size * 8)) - 1; 5778 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5779 reg->umin_value &= mask; 5780 reg->umax_value &= mask; 5781 } else { 5782 reg->umin_value = 0; 5783 reg->umax_value = mask; 5784 } 5785 reg->smin_value = reg->umin_value; 5786 reg->smax_value = reg->umax_value; 5787 5788 /* If size is smaller than 32bit register the 32bit register 5789 * values are also truncated so we push 64-bit bounds into 5790 * 32-bit bounds. Above were truncated < 32-bits already. 5791 */ 5792 if (size >= 4) 5793 return; 5794 __reg_combine_64_into_32(reg); 5795 } 5796 5797 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5798 { 5799 /* A map is considered read-only if the following condition are true: 5800 * 5801 * 1) BPF program side cannot change any of the map content. The 5802 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5803 * and was set at map creation time. 5804 * 2) The map value(s) have been initialized from user space by a 5805 * loader and then "frozen", such that no new map update/delete 5806 * operations from syscall side are possible for the rest of 5807 * the map's lifetime from that point onwards. 5808 * 3) Any parallel/pending map update/delete operations from syscall 5809 * side have been completed. Only after that point, it's safe to 5810 * assume that map value(s) are immutable. 5811 */ 5812 return (map->map_flags & BPF_F_RDONLY_PROG) && 5813 READ_ONCE(map->frozen) && 5814 !bpf_map_write_active(map); 5815 } 5816 5817 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 5818 { 5819 void *ptr; 5820 u64 addr; 5821 int err; 5822 5823 err = map->ops->map_direct_value_addr(map, &addr, off); 5824 if (err) 5825 return err; 5826 ptr = (void *)(long)addr + off; 5827 5828 switch (size) { 5829 case sizeof(u8): 5830 *val = (u64)*(u8 *)ptr; 5831 break; 5832 case sizeof(u16): 5833 *val = (u64)*(u16 *)ptr; 5834 break; 5835 case sizeof(u32): 5836 *val = (u64)*(u32 *)ptr; 5837 break; 5838 case sizeof(u64): 5839 *val = *(u64 *)ptr; 5840 break; 5841 default: 5842 return -EINVAL; 5843 } 5844 return 0; 5845 } 5846 5847 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 5848 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 5849 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 5850 5851 /* 5852 * Allow list few fields as RCU trusted or full trusted. 5853 * This logic doesn't allow mix tagging and will be removed once GCC supports 5854 * btf_type_tag. 5855 */ 5856 5857 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 5858 BTF_TYPE_SAFE_RCU(struct task_struct) { 5859 const cpumask_t *cpus_ptr; 5860 struct css_set __rcu *cgroups; 5861 struct task_struct __rcu *real_parent; 5862 struct task_struct *group_leader; 5863 }; 5864 5865 BTF_TYPE_SAFE_RCU(struct cgroup) { 5866 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 5867 struct kernfs_node *kn; 5868 }; 5869 5870 BTF_TYPE_SAFE_RCU(struct css_set) { 5871 struct cgroup *dfl_cgrp; 5872 }; 5873 5874 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 5875 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 5876 struct file __rcu *exe_file; 5877 }; 5878 5879 /* skb->sk, req->sk are not RCU protected, but we mark them as such 5880 * because bpf prog accessible sockets are SOCK_RCU_FREE. 5881 */ 5882 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 5883 struct sock *sk; 5884 }; 5885 5886 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 5887 struct sock *sk; 5888 }; 5889 5890 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 5891 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 5892 struct seq_file *seq; 5893 }; 5894 5895 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 5896 struct bpf_iter_meta *meta; 5897 struct task_struct *task; 5898 }; 5899 5900 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 5901 struct file *file; 5902 }; 5903 5904 BTF_TYPE_SAFE_TRUSTED(struct file) { 5905 struct inode *f_inode; 5906 }; 5907 5908 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 5909 /* no negative dentry-s in places where bpf can see it */ 5910 struct inode *d_inode; 5911 }; 5912 5913 BTF_TYPE_SAFE_TRUSTED(struct socket) { 5914 struct sock *sk; 5915 }; 5916 5917 static bool type_is_rcu(struct bpf_verifier_env *env, 5918 struct bpf_reg_state *reg, 5919 const char *field_name, u32 btf_id) 5920 { 5921 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 5922 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 5923 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 5924 5925 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 5926 } 5927 5928 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 5929 struct bpf_reg_state *reg, 5930 const char *field_name, u32 btf_id) 5931 { 5932 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 5933 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 5934 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 5935 5936 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 5937 } 5938 5939 static bool type_is_trusted(struct bpf_verifier_env *env, 5940 struct bpf_reg_state *reg, 5941 const char *field_name, u32 btf_id) 5942 { 5943 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 5944 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 5945 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 5946 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 5947 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 5948 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 5949 5950 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 5951 } 5952 5953 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5954 struct bpf_reg_state *regs, 5955 int regno, int off, int size, 5956 enum bpf_access_type atype, 5957 int value_regno) 5958 { 5959 struct bpf_reg_state *reg = regs + regno; 5960 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5961 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5962 const char *field_name = NULL; 5963 enum bpf_type_flag flag = 0; 5964 u32 btf_id = 0; 5965 int ret; 5966 5967 if (!env->allow_ptr_leaks) { 5968 verbose(env, 5969 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5970 tname); 5971 return -EPERM; 5972 } 5973 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5974 verbose(env, 5975 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5976 tname); 5977 return -EINVAL; 5978 } 5979 if (off < 0) { 5980 verbose(env, 5981 "R%d is ptr_%s invalid negative access: off=%d\n", 5982 regno, tname, off); 5983 return -EACCES; 5984 } 5985 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5986 char tn_buf[48]; 5987 5988 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5989 verbose(env, 5990 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5991 regno, tname, off, tn_buf); 5992 return -EACCES; 5993 } 5994 5995 if (reg->type & MEM_USER) { 5996 verbose(env, 5997 "R%d is ptr_%s access user memory: off=%d\n", 5998 regno, tname, off); 5999 return -EACCES; 6000 } 6001 6002 if (reg->type & MEM_PERCPU) { 6003 verbose(env, 6004 "R%d is ptr_%s access percpu memory: off=%d\n", 6005 regno, tname, off); 6006 return -EACCES; 6007 } 6008 6009 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6010 if (!btf_is_kernel(reg->btf)) { 6011 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6012 return -EFAULT; 6013 } 6014 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6015 } else { 6016 /* Writes are permitted with default btf_struct_access for 6017 * program allocated objects (which always have ref_obj_id > 0), 6018 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6019 */ 6020 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6021 verbose(env, "only read is supported\n"); 6022 return -EACCES; 6023 } 6024 6025 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6026 !reg->ref_obj_id) { 6027 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6028 return -EFAULT; 6029 } 6030 6031 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6032 } 6033 6034 if (ret < 0) 6035 return ret; 6036 6037 if (ret != PTR_TO_BTF_ID) { 6038 /* just mark; */ 6039 6040 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6041 /* If this is an untrusted pointer, all pointers formed by walking it 6042 * also inherit the untrusted flag. 6043 */ 6044 flag = PTR_UNTRUSTED; 6045 6046 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6047 /* By default any pointer obtained from walking a trusted pointer is no 6048 * longer trusted, unless the field being accessed has explicitly been 6049 * marked as inheriting its parent's state of trust (either full or RCU). 6050 * For example: 6051 * 'cgroups' pointer is untrusted if task->cgroups dereference 6052 * happened in a sleepable program outside of bpf_rcu_read_lock() 6053 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6054 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6055 * 6056 * A regular RCU-protected pointer with __rcu tag can also be deemed 6057 * trusted if we are in an RCU CS. Such pointer can be NULL. 6058 */ 6059 if (type_is_trusted(env, reg, field_name, btf_id)) { 6060 flag |= PTR_TRUSTED; 6061 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6062 if (type_is_rcu(env, reg, field_name, btf_id)) { 6063 /* ignore __rcu tag and mark it MEM_RCU */ 6064 flag |= MEM_RCU; 6065 } else if (flag & MEM_RCU || 6066 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6067 /* __rcu tagged pointers can be NULL */ 6068 flag |= MEM_RCU | PTR_MAYBE_NULL; 6069 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6070 /* keep as-is */ 6071 } else { 6072 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6073 clear_trusted_flags(&flag); 6074 } 6075 } else { 6076 /* 6077 * If not in RCU CS or MEM_RCU pointer can be NULL then 6078 * aggressively mark as untrusted otherwise such 6079 * pointers will be plain PTR_TO_BTF_ID without flags 6080 * and will be allowed to be passed into helpers for 6081 * compat reasons. 6082 */ 6083 flag = PTR_UNTRUSTED; 6084 } 6085 } else { 6086 /* Old compat. Deprecated */ 6087 clear_trusted_flags(&flag); 6088 } 6089 6090 if (atype == BPF_READ && value_regno >= 0) 6091 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6092 6093 return 0; 6094 } 6095 6096 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6097 struct bpf_reg_state *regs, 6098 int regno, int off, int size, 6099 enum bpf_access_type atype, 6100 int value_regno) 6101 { 6102 struct bpf_reg_state *reg = regs + regno; 6103 struct bpf_map *map = reg->map_ptr; 6104 struct bpf_reg_state map_reg; 6105 enum bpf_type_flag flag = 0; 6106 const struct btf_type *t; 6107 const char *tname; 6108 u32 btf_id; 6109 int ret; 6110 6111 if (!btf_vmlinux) { 6112 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6113 return -ENOTSUPP; 6114 } 6115 6116 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6117 verbose(env, "map_ptr access not supported for map type %d\n", 6118 map->map_type); 6119 return -ENOTSUPP; 6120 } 6121 6122 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6123 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6124 6125 if (!env->allow_ptr_leaks) { 6126 verbose(env, 6127 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6128 tname); 6129 return -EPERM; 6130 } 6131 6132 if (off < 0) { 6133 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6134 regno, tname, off); 6135 return -EACCES; 6136 } 6137 6138 if (atype != BPF_READ) { 6139 verbose(env, "only read from %s is supported\n", tname); 6140 return -EACCES; 6141 } 6142 6143 /* Simulate access to a PTR_TO_BTF_ID */ 6144 memset(&map_reg, 0, sizeof(map_reg)); 6145 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6146 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6147 if (ret < 0) 6148 return ret; 6149 6150 if (value_regno >= 0) 6151 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6152 6153 return 0; 6154 } 6155 6156 /* Check that the stack access at the given offset is within bounds. The 6157 * maximum valid offset is -1. 6158 * 6159 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6160 * -state->allocated_stack for reads. 6161 */ 6162 static int check_stack_slot_within_bounds(int off, 6163 struct bpf_func_state *state, 6164 enum bpf_access_type t) 6165 { 6166 int min_valid_off; 6167 6168 if (t == BPF_WRITE) 6169 min_valid_off = -MAX_BPF_STACK; 6170 else 6171 min_valid_off = -state->allocated_stack; 6172 6173 if (off < min_valid_off || off > -1) 6174 return -EACCES; 6175 return 0; 6176 } 6177 6178 /* Check that the stack access at 'regno + off' falls within the maximum stack 6179 * bounds. 6180 * 6181 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6182 */ 6183 static int check_stack_access_within_bounds( 6184 struct bpf_verifier_env *env, 6185 int regno, int off, int access_size, 6186 enum bpf_access_src src, enum bpf_access_type type) 6187 { 6188 struct bpf_reg_state *regs = cur_regs(env); 6189 struct bpf_reg_state *reg = regs + regno; 6190 struct bpf_func_state *state = func(env, reg); 6191 int min_off, max_off; 6192 int err; 6193 char *err_extra; 6194 6195 if (src == ACCESS_HELPER) 6196 /* We don't know if helpers are reading or writing (or both). */ 6197 err_extra = " indirect access to"; 6198 else if (type == BPF_READ) 6199 err_extra = " read from"; 6200 else 6201 err_extra = " write to"; 6202 6203 if (tnum_is_const(reg->var_off)) { 6204 min_off = reg->var_off.value + off; 6205 if (access_size > 0) 6206 max_off = min_off + access_size - 1; 6207 else 6208 max_off = min_off; 6209 } else { 6210 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6211 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6212 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6213 err_extra, regno); 6214 return -EACCES; 6215 } 6216 min_off = reg->smin_value + off; 6217 if (access_size > 0) 6218 max_off = reg->smax_value + off + access_size - 1; 6219 else 6220 max_off = min_off; 6221 } 6222 6223 err = check_stack_slot_within_bounds(min_off, state, type); 6224 if (!err) 6225 err = check_stack_slot_within_bounds(max_off, state, type); 6226 6227 if (err) { 6228 if (tnum_is_const(reg->var_off)) { 6229 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6230 err_extra, regno, off, access_size); 6231 } else { 6232 char tn_buf[48]; 6233 6234 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6235 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6236 err_extra, regno, tn_buf, access_size); 6237 } 6238 } 6239 return err; 6240 } 6241 6242 /* check whether memory at (regno + off) is accessible for t = (read | write) 6243 * if t==write, value_regno is a register which value is stored into memory 6244 * if t==read, value_regno is a register which will receive the value from memory 6245 * if t==write && value_regno==-1, some unknown value is stored into memory 6246 * if t==read && value_regno==-1, don't care what we read from memory 6247 */ 6248 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6249 int off, int bpf_size, enum bpf_access_type t, 6250 int value_regno, bool strict_alignment_once) 6251 { 6252 struct bpf_reg_state *regs = cur_regs(env); 6253 struct bpf_reg_state *reg = regs + regno; 6254 struct bpf_func_state *state; 6255 int size, err = 0; 6256 6257 size = bpf_size_to_bytes(bpf_size); 6258 if (size < 0) 6259 return size; 6260 6261 /* alignment checks will add in reg->off themselves */ 6262 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6263 if (err) 6264 return err; 6265 6266 /* for access checks, reg->off is just part of off */ 6267 off += reg->off; 6268 6269 if (reg->type == PTR_TO_MAP_KEY) { 6270 if (t == BPF_WRITE) { 6271 verbose(env, "write to change key R%d not allowed\n", regno); 6272 return -EACCES; 6273 } 6274 6275 err = check_mem_region_access(env, regno, off, size, 6276 reg->map_ptr->key_size, false); 6277 if (err) 6278 return err; 6279 if (value_regno >= 0) 6280 mark_reg_unknown(env, regs, value_regno); 6281 } else if (reg->type == PTR_TO_MAP_VALUE) { 6282 struct btf_field *kptr_field = NULL; 6283 6284 if (t == BPF_WRITE && value_regno >= 0 && 6285 is_pointer_value(env, value_regno)) { 6286 verbose(env, "R%d leaks addr into map\n", value_regno); 6287 return -EACCES; 6288 } 6289 err = check_map_access_type(env, regno, off, size, t); 6290 if (err) 6291 return err; 6292 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6293 if (err) 6294 return err; 6295 if (tnum_is_const(reg->var_off)) 6296 kptr_field = btf_record_find(reg->map_ptr->record, 6297 off + reg->var_off.value, BPF_KPTR); 6298 if (kptr_field) { 6299 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6300 } else if (t == BPF_READ && value_regno >= 0) { 6301 struct bpf_map *map = reg->map_ptr; 6302 6303 /* if map is read-only, track its contents as scalars */ 6304 if (tnum_is_const(reg->var_off) && 6305 bpf_map_is_rdonly(map) && 6306 map->ops->map_direct_value_addr) { 6307 int map_off = off + reg->var_off.value; 6308 u64 val = 0; 6309 6310 err = bpf_map_direct_read(map, map_off, size, 6311 &val); 6312 if (err) 6313 return err; 6314 6315 regs[value_regno].type = SCALAR_VALUE; 6316 __mark_reg_known(®s[value_regno], val); 6317 } else { 6318 mark_reg_unknown(env, regs, value_regno); 6319 } 6320 } 6321 } else if (base_type(reg->type) == PTR_TO_MEM) { 6322 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6323 6324 if (type_may_be_null(reg->type)) { 6325 verbose(env, "R%d invalid mem access '%s'\n", regno, 6326 reg_type_str(env, reg->type)); 6327 return -EACCES; 6328 } 6329 6330 if (t == BPF_WRITE && rdonly_mem) { 6331 verbose(env, "R%d cannot write into %s\n", 6332 regno, reg_type_str(env, reg->type)); 6333 return -EACCES; 6334 } 6335 6336 if (t == BPF_WRITE && value_regno >= 0 && 6337 is_pointer_value(env, value_regno)) { 6338 verbose(env, "R%d leaks addr into mem\n", value_regno); 6339 return -EACCES; 6340 } 6341 6342 err = check_mem_region_access(env, regno, off, size, 6343 reg->mem_size, false); 6344 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6345 mark_reg_unknown(env, regs, value_regno); 6346 } else if (reg->type == PTR_TO_CTX) { 6347 enum bpf_reg_type reg_type = SCALAR_VALUE; 6348 struct btf *btf = NULL; 6349 u32 btf_id = 0; 6350 6351 if (t == BPF_WRITE && value_regno >= 0 && 6352 is_pointer_value(env, value_regno)) { 6353 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6354 return -EACCES; 6355 } 6356 6357 err = check_ptr_off_reg(env, reg, regno); 6358 if (err < 0) 6359 return err; 6360 6361 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6362 &btf_id); 6363 if (err) 6364 verbose_linfo(env, insn_idx, "; "); 6365 if (!err && t == BPF_READ && value_regno >= 0) { 6366 /* ctx access returns either a scalar, or a 6367 * PTR_TO_PACKET[_META,_END]. In the latter 6368 * case, we know the offset is zero. 6369 */ 6370 if (reg_type == SCALAR_VALUE) { 6371 mark_reg_unknown(env, regs, value_regno); 6372 } else { 6373 mark_reg_known_zero(env, regs, 6374 value_regno); 6375 if (type_may_be_null(reg_type)) 6376 regs[value_regno].id = ++env->id_gen; 6377 /* A load of ctx field could have different 6378 * actual load size with the one encoded in the 6379 * insn. When the dst is PTR, it is for sure not 6380 * a sub-register. 6381 */ 6382 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6383 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6384 regs[value_regno].btf = btf; 6385 regs[value_regno].btf_id = btf_id; 6386 } 6387 } 6388 regs[value_regno].type = reg_type; 6389 } 6390 6391 } else if (reg->type == PTR_TO_STACK) { 6392 /* Basic bounds checks. */ 6393 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6394 if (err) 6395 return err; 6396 6397 state = func(env, reg); 6398 err = update_stack_depth(env, state, off); 6399 if (err) 6400 return err; 6401 6402 if (t == BPF_READ) 6403 err = check_stack_read(env, regno, off, size, 6404 value_regno); 6405 else 6406 err = check_stack_write(env, regno, off, size, 6407 value_regno, insn_idx); 6408 } else if (reg_is_pkt_pointer(reg)) { 6409 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6410 verbose(env, "cannot write into packet\n"); 6411 return -EACCES; 6412 } 6413 if (t == BPF_WRITE && value_regno >= 0 && 6414 is_pointer_value(env, value_regno)) { 6415 verbose(env, "R%d leaks addr into packet\n", 6416 value_regno); 6417 return -EACCES; 6418 } 6419 err = check_packet_access(env, regno, off, size, false); 6420 if (!err && t == BPF_READ && value_regno >= 0) 6421 mark_reg_unknown(env, regs, value_regno); 6422 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6423 if (t == BPF_WRITE && value_regno >= 0 && 6424 is_pointer_value(env, value_regno)) { 6425 verbose(env, "R%d leaks addr into flow keys\n", 6426 value_regno); 6427 return -EACCES; 6428 } 6429 6430 err = check_flow_keys_access(env, off, size); 6431 if (!err && t == BPF_READ && value_regno >= 0) 6432 mark_reg_unknown(env, regs, value_regno); 6433 } else if (type_is_sk_pointer(reg->type)) { 6434 if (t == BPF_WRITE) { 6435 verbose(env, "R%d cannot write into %s\n", 6436 regno, reg_type_str(env, reg->type)); 6437 return -EACCES; 6438 } 6439 err = check_sock_access(env, insn_idx, regno, off, size, t); 6440 if (!err && value_regno >= 0) 6441 mark_reg_unknown(env, regs, value_regno); 6442 } else if (reg->type == PTR_TO_TP_BUFFER) { 6443 err = check_tp_buffer_access(env, reg, regno, off, size); 6444 if (!err && t == BPF_READ && value_regno >= 0) 6445 mark_reg_unknown(env, regs, value_regno); 6446 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6447 !type_may_be_null(reg->type)) { 6448 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6449 value_regno); 6450 } else if (reg->type == CONST_PTR_TO_MAP) { 6451 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6452 value_regno); 6453 } else if (base_type(reg->type) == PTR_TO_BUF) { 6454 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6455 u32 *max_access; 6456 6457 if (rdonly_mem) { 6458 if (t == BPF_WRITE) { 6459 verbose(env, "R%d cannot write into %s\n", 6460 regno, reg_type_str(env, reg->type)); 6461 return -EACCES; 6462 } 6463 max_access = &env->prog->aux->max_rdonly_access; 6464 } else { 6465 max_access = &env->prog->aux->max_rdwr_access; 6466 } 6467 6468 err = check_buffer_access(env, reg, regno, off, size, false, 6469 max_access); 6470 6471 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6472 mark_reg_unknown(env, regs, value_regno); 6473 } else { 6474 verbose(env, "R%d invalid mem access '%s'\n", regno, 6475 reg_type_str(env, reg->type)); 6476 return -EACCES; 6477 } 6478 6479 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6480 regs[value_regno].type == SCALAR_VALUE) { 6481 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6482 coerce_reg_to_size(®s[value_regno], size); 6483 } 6484 return err; 6485 } 6486 6487 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6488 { 6489 int load_reg; 6490 int err; 6491 6492 switch (insn->imm) { 6493 case BPF_ADD: 6494 case BPF_ADD | BPF_FETCH: 6495 case BPF_AND: 6496 case BPF_AND | BPF_FETCH: 6497 case BPF_OR: 6498 case BPF_OR | BPF_FETCH: 6499 case BPF_XOR: 6500 case BPF_XOR | BPF_FETCH: 6501 case BPF_XCHG: 6502 case BPF_CMPXCHG: 6503 break; 6504 default: 6505 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6506 return -EINVAL; 6507 } 6508 6509 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6510 verbose(env, "invalid atomic operand size\n"); 6511 return -EINVAL; 6512 } 6513 6514 /* check src1 operand */ 6515 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6516 if (err) 6517 return err; 6518 6519 /* check src2 operand */ 6520 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6521 if (err) 6522 return err; 6523 6524 if (insn->imm == BPF_CMPXCHG) { 6525 /* Check comparison of R0 with memory location */ 6526 const u32 aux_reg = BPF_REG_0; 6527 6528 err = check_reg_arg(env, aux_reg, SRC_OP); 6529 if (err) 6530 return err; 6531 6532 if (is_pointer_value(env, aux_reg)) { 6533 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6534 return -EACCES; 6535 } 6536 } 6537 6538 if (is_pointer_value(env, insn->src_reg)) { 6539 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6540 return -EACCES; 6541 } 6542 6543 if (is_ctx_reg(env, insn->dst_reg) || 6544 is_pkt_reg(env, insn->dst_reg) || 6545 is_flow_key_reg(env, insn->dst_reg) || 6546 is_sk_reg(env, insn->dst_reg)) { 6547 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6548 insn->dst_reg, 6549 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6550 return -EACCES; 6551 } 6552 6553 if (insn->imm & BPF_FETCH) { 6554 if (insn->imm == BPF_CMPXCHG) 6555 load_reg = BPF_REG_0; 6556 else 6557 load_reg = insn->src_reg; 6558 6559 /* check and record load of old value */ 6560 err = check_reg_arg(env, load_reg, DST_OP); 6561 if (err) 6562 return err; 6563 } else { 6564 /* This instruction accesses a memory location but doesn't 6565 * actually load it into a register. 6566 */ 6567 load_reg = -1; 6568 } 6569 6570 /* Check whether we can read the memory, with second call for fetch 6571 * case to simulate the register fill. 6572 */ 6573 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6574 BPF_SIZE(insn->code), BPF_READ, -1, true); 6575 if (!err && load_reg >= 0) 6576 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6577 BPF_SIZE(insn->code), BPF_READ, load_reg, 6578 true); 6579 if (err) 6580 return err; 6581 6582 /* Check whether we can write into the same memory. */ 6583 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6584 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 6585 if (err) 6586 return err; 6587 6588 return 0; 6589 } 6590 6591 /* When register 'regno' is used to read the stack (either directly or through 6592 * a helper function) make sure that it's within stack boundary and, depending 6593 * on the access type, that all elements of the stack are initialized. 6594 * 6595 * 'off' includes 'regno->off', but not its dynamic part (if any). 6596 * 6597 * All registers that have been spilled on the stack in the slots within the 6598 * read offsets are marked as read. 6599 */ 6600 static int check_stack_range_initialized( 6601 struct bpf_verifier_env *env, int regno, int off, 6602 int access_size, bool zero_size_allowed, 6603 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6604 { 6605 struct bpf_reg_state *reg = reg_state(env, regno); 6606 struct bpf_func_state *state = func(env, reg); 6607 int err, min_off, max_off, i, j, slot, spi; 6608 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6609 enum bpf_access_type bounds_check_type; 6610 /* Some accesses can write anything into the stack, others are 6611 * read-only. 6612 */ 6613 bool clobber = false; 6614 6615 if (access_size == 0 && !zero_size_allowed) { 6616 verbose(env, "invalid zero-sized read\n"); 6617 return -EACCES; 6618 } 6619 6620 if (type == ACCESS_HELPER) { 6621 /* The bounds checks for writes are more permissive than for 6622 * reads. However, if raw_mode is not set, we'll do extra 6623 * checks below. 6624 */ 6625 bounds_check_type = BPF_WRITE; 6626 clobber = true; 6627 } else { 6628 bounds_check_type = BPF_READ; 6629 } 6630 err = check_stack_access_within_bounds(env, regno, off, access_size, 6631 type, bounds_check_type); 6632 if (err) 6633 return err; 6634 6635 6636 if (tnum_is_const(reg->var_off)) { 6637 min_off = max_off = reg->var_off.value + off; 6638 } else { 6639 /* Variable offset is prohibited for unprivileged mode for 6640 * simplicity since it requires corresponding support in 6641 * Spectre masking for stack ALU. 6642 * See also retrieve_ptr_limit(). 6643 */ 6644 if (!env->bypass_spec_v1) { 6645 char tn_buf[48]; 6646 6647 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6648 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6649 regno, err_extra, tn_buf); 6650 return -EACCES; 6651 } 6652 /* Only initialized buffer on stack is allowed to be accessed 6653 * with variable offset. With uninitialized buffer it's hard to 6654 * guarantee that whole memory is marked as initialized on 6655 * helper return since specific bounds are unknown what may 6656 * cause uninitialized stack leaking. 6657 */ 6658 if (meta && meta->raw_mode) 6659 meta = NULL; 6660 6661 min_off = reg->smin_value + off; 6662 max_off = reg->smax_value + off; 6663 } 6664 6665 if (meta && meta->raw_mode) { 6666 /* Ensure we won't be overwriting dynptrs when simulating byte 6667 * by byte access in check_helper_call using meta.access_size. 6668 * This would be a problem if we have a helper in the future 6669 * which takes: 6670 * 6671 * helper(uninit_mem, len, dynptr) 6672 * 6673 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6674 * may end up writing to dynptr itself when touching memory from 6675 * arg 1. This can be relaxed on a case by case basis for known 6676 * safe cases, but reject due to the possibilitiy of aliasing by 6677 * default. 6678 */ 6679 for (i = min_off; i < max_off + access_size; i++) { 6680 int stack_off = -i - 1; 6681 6682 spi = __get_spi(i); 6683 /* raw_mode may write past allocated_stack */ 6684 if (state->allocated_stack <= stack_off) 6685 continue; 6686 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6687 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6688 return -EACCES; 6689 } 6690 } 6691 meta->access_size = access_size; 6692 meta->regno = regno; 6693 return 0; 6694 } 6695 6696 for (i = min_off; i < max_off + access_size; i++) { 6697 u8 *stype; 6698 6699 slot = -i - 1; 6700 spi = slot / BPF_REG_SIZE; 6701 if (state->allocated_stack <= slot) 6702 goto err; 6703 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6704 if (*stype == STACK_MISC) 6705 goto mark; 6706 if ((*stype == STACK_ZERO) || 6707 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6708 if (clobber) { 6709 /* helper can write anything into the stack */ 6710 *stype = STACK_MISC; 6711 } 6712 goto mark; 6713 } 6714 6715 if (is_spilled_reg(&state->stack[spi]) && 6716 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6717 env->allow_ptr_leaks)) { 6718 if (clobber) { 6719 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6720 for (j = 0; j < BPF_REG_SIZE; j++) 6721 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6722 } 6723 goto mark; 6724 } 6725 6726 err: 6727 if (tnum_is_const(reg->var_off)) { 6728 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6729 err_extra, regno, min_off, i - min_off, access_size); 6730 } else { 6731 char tn_buf[48]; 6732 6733 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6734 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6735 err_extra, regno, tn_buf, i - min_off, access_size); 6736 } 6737 return -EACCES; 6738 mark: 6739 /* reading any byte out of 8-byte 'spill_slot' will cause 6740 * the whole slot to be marked as 'read' 6741 */ 6742 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6743 state->stack[spi].spilled_ptr.parent, 6744 REG_LIVE_READ64); 6745 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6746 * be sure that whether stack slot is written to or not. Hence, 6747 * we must still conservatively propagate reads upwards even if 6748 * helper may write to the entire memory range. 6749 */ 6750 } 6751 return update_stack_depth(env, state, min_off); 6752 } 6753 6754 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6755 int access_size, bool zero_size_allowed, 6756 struct bpf_call_arg_meta *meta) 6757 { 6758 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6759 u32 *max_access; 6760 6761 switch (base_type(reg->type)) { 6762 case PTR_TO_PACKET: 6763 case PTR_TO_PACKET_META: 6764 return check_packet_access(env, regno, reg->off, access_size, 6765 zero_size_allowed); 6766 case PTR_TO_MAP_KEY: 6767 if (meta && meta->raw_mode) { 6768 verbose(env, "R%d cannot write into %s\n", regno, 6769 reg_type_str(env, reg->type)); 6770 return -EACCES; 6771 } 6772 return check_mem_region_access(env, regno, reg->off, access_size, 6773 reg->map_ptr->key_size, false); 6774 case PTR_TO_MAP_VALUE: 6775 if (check_map_access_type(env, regno, reg->off, access_size, 6776 meta && meta->raw_mode ? BPF_WRITE : 6777 BPF_READ)) 6778 return -EACCES; 6779 return check_map_access(env, regno, reg->off, access_size, 6780 zero_size_allowed, ACCESS_HELPER); 6781 case PTR_TO_MEM: 6782 if (type_is_rdonly_mem(reg->type)) { 6783 if (meta && meta->raw_mode) { 6784 verbose(env, "R%d cannot write into %s\n", regno, 6785 reg_type_str(env, reg->type)); 6786 return -EACCES; 6787 } 6788 } 6789 return check_mem_region_access(env, regno, reg->off, 6790 access_size, reg->mem_size, 6791 zero_size_allowed); 6792 case PTR_TO_BUF: 6793 if (type_is_rdonly_mem(reg->type)) { 6794 if (meta && meta->raw_mode) { 6795 verbose(env, "R%d cannot write into %s\n", regno, 6796 reg_type_str(env, reg->type)); 6797 return -EACCES; 6798 } 6799 6800 max_access = &env->prog->aux->max_rdonly_access; 6801 } else { 6802 max_access = &env->prog->aux->max_rdwr_access; 6803 } 6804 return check_buffer_access(env, reg, regno, reg->off, 6805 access_size, zero_size_allowed, 6806 max_access); 6807 case PTR_TO_STACK: 6808 return check_stack_range_initialized( 6809 env, 6810 regno, reg->off, access_size, 6811 zero_size_allowed, ACCESS_HELPER, meta); 6812 case PTR_TO_BTF_ID: 6813 return check_ptr_to_btf_access(env, regs, regno, reg->off, 6814 access_size, BPF_READ, -1); 6815 case PTR_TO_CTX: 6816 /* in case the function doesn't know how to access the context, 6817 * (because we are in a program of type SYSCALL for example), we 6818 * can not statically check its size. 6819 * Dynamically check it now. 6820 */ 6821 if (!env->ops->convert_ctx_access) { 6822 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 6823 int offset = access_size - 1; 6824 6825 /* Allow zero-byte read from PTR_TO_CTX */ 6826 if (access_size == 0) 6827 return zero_size_allowed ? 0 : -EACCES; 6828 6829 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 6830 atype, -1, false); 6831 } 6832 6833 fallthrough; 6834 default: /* scalar_value or invalid ptr */ 6835 /* Allow zero-byte read from NULL, regardless of pointer type */ 6836 if (zero_size_allowed && access_size == 0 && 6837 register_is_null(reg)) 6838 return 0; 6839 6840 verbose(env, "R%d type=%s ", regno, 6841 reg_type_str(env, reg->type)); 6842 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 6843 return -EACCES; 6844 } 6845 } 6846 6847 static int check_mem_size_reg(struct bpf_verifier_env *env, 6848 struct bpf_reg_state *reg, u32 regno, 6849 bool zero_size_allowed, 6850 struct bpf_call_arg_meta *meta) 6851 { 6852 int err; 6853 6854 /* This is used to refine r0 return value bounds for helpers 6855 * that enforce this value as an upper bound on return values. 6856 * See do_refine_retval_range() for helpers that can refine 6857 * the return value. C type of helper is u32 so we pull register 6858 * bound from umax_value however, if negative verifier errors 6859 * out. Only upper bounds can be learned because retval is an 6860 * int type and negative retvals are allowed. 6861 */ 6862 meta->msize_max_value = reg->umax_value; 6863 6864 /* The register is SCALAR_VALUE; the access check 6865 * happens using its boundaries. 6866 */ 6867 if (!tnum_is_const(reg->var_off)) 6868 /* For unprivileged variable accesses, disable raw 6869 * mode so that the program is required to 6870 * initialize all the memory that the helper could 6871 * just partially fill up. 6872 */ 6873 meta = NULL; 6874 6875 if (reg->smin_value < 0) { 6876 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 6877 regno); 6878 return -EACCES; 6879 } 6880 6881 if (reg->umin_value == 0) { 6882 err = check_helper_mem_access(env, regno - 1, 0, 6883 zero_size_allowed, 6884 meta); 6885 if (err) 6886 return err; 6887 } 6888 6889 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 6890 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 6891 regno); 6892 return -EACCES; 6893 } 6894 err = check_helper_mem_access(env, regno - 1, 6895 reg->umax_value, 6896 zero_size_allowed, meta); 6897 if (!err) 6898 err = mark_chain_precision(env, regno); 6899 return err; 6900 } 6901 6902 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6903 u32 regno, u32 mem_size) 6904 { 6905 bool may_be_null = type_may_be_null(reg->type); 6906 struct bpf_reg_state saved_reg; 6907 struct bpf_call_arg_meta meta; 6908 int err; 6909 6910 if (register_is_null(reg)) 6911 return 0; 6912 6913 memset(&meta, 0, sizeof(meta)); 6914 /* Assuming that the register contains a value check if the memory 6915 * access is safe. Temporarily save and restore the register's state as 6916 * the conversion shouldn't be visible to a caller. 6917 */ 6918 if (may_be_null) { 6919 saved_reg = *reg; 6920 mark_ptr_not_null_reg(reg); 6921 } 6922 6923 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 6924 /* Check access for BPF_WRITE */ 6925 meta.raw_mode = true; 6926 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 6927 6928 if (may_be_null) 6929 *reg = saved_reg; 6930 6931 return err; 6932 } 6933 6934 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6935 u32 regno) 6936 { 6937 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 6938 bool may_be_null = type_may_be_null(mem_reg->type); 6939 struct bpf_reg_state saved_reg; 6940 struct bpf_call_arg_meta meta; 6941 int err; 6942 6943 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 6944 6945 memset(&meta, 0, sizeof(meta)); 6946 6947 if (may_be_null) { 6948 saved_reg = *mem_reg; 6949 mark_ptr_not_null_reg(mem_reg); 6950 } 6951 6952 err = check_mem_size_reg(env, reg, regno, true, &meta); 6953 /* Check access for BPF_WRITE */ 6954 meta.raw_mode = true; 6955 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6956 6957 if (may_be_null) 6958 *mem_reg = saved_reg; 6959 return err; 6960 } 6961 6962 /* Implementation details: 6963 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6964 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6965 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6966 * Two separate bpf_obj_new will also have different reg->id. 6967 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6968 * clears reg->id after value_or_null->value transition, since the verifier only 6969 * cares about the range of access to valid map value pointer and doesn't care 6970 * about actual address of the map element. 6971 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6972 * reg->id > 0 after value_or_null->value transition. By doing so 6973 * two bpf_map_lookups will be considered two different pointers that 6974 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6975 * returned from bpf_obj_new. 6976 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6977 * dead-locks. 6978 * Since only one bpf_spin_lock is allowed the checks are simpler than 6979 * reg_is_refcounted() logic. The verifier needs to remember only 6980 * one spin_lock instead of array of acquired_refs. 6981 * cur_state->active_lock remembers which map value element or allocated 6982 * object got locked and clears it after bpf_spin_unlock. 6983 */ 6984 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6985 bool is_lock) 6986 { 6987 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6988 struct bpf_verifier_state *cur = env->cur_state; 6989 bool is_const = tnum_is_const(reg->var_off); 6990 u64 val = reg->var_off.value; 6991 struct bpf_map *map = NULL; 6992 struct btf *btf = NULL; 6993 struct btf_record *rec; 6994 6995 if (!is_const) { 6996 verbose(env, 6997 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6998 regno); 6999 return -EINVAL; 7000 } 7001 if (reg->type == PTR_TO_MAP_VALUE) { 7002 map = reg->map_ptr; 7003 if (!map->btf) { 7004 verbose(env, 7005 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7006 map->name); 7007 return -EINVAL; 7008 } 7009 } else { 7010 btf = reg->btf; 7011 } 7012 7013 rec = reg_btf_record(reg); 7014 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7015 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7016 map ? map->name : "kptr"); 7017 return -EINVAL; 7018 } 7019 if (rec->spin_lock_off != val + reg->off) { 7020 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7021 val + reg->off, rec->spin_lock_off); 7022 return -EINVAL; 7023 } 7024 if (is_lock) { 7025 if (cur->active_lock.ptr) { 7026 verbose(env, 7027 "Locking two bpf_spin_locks are not allowed\n"); 7028 return -EINVAL; 7029 } 7030 if (map) 7031 cur->active_lock.ptr = map; 7032 else 7033 cur->active_lock.ptr = btf; 7034 cur->active_lock.id = reg->id; 7035 } else { 7036 void *ptr; 7037 7038 if (map) 7039 ptr = map; 7040 else 7041 ptr = btf; 7042 7043 if (!cur->active_lock.ptr) { 7044 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7045 return -EINVAL; 7046 } 7047 if (cur->active_lock.ptr != ptr || 7048 cur->active_lock.id != reg->id) { 7049 verbose(env, "bpf_spin_unlock of different lock\n"); 7050 return -EINVAL; 7051 } 7052 7053 invalidate_non_owning_refs(env); 7054 7055 cur->active_lock.ptr = NULL; 7056 cur->active_lock.id = 0; 7057 } 7058 return 0; 7059 } 7060 7061 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7062 struct bpf_call_arg_meta *meta) 7063 { 7064 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7065 bool is_const = tnum_is_const(reg->var_off); 7066 struct bpf_map *map = reg->map_ptr; 7067 u64 val = reg->var_off.value; 7068 7069 if (!is_const) { 7070 verbose(env, 7071 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7072 regno); 7073 return -EINVAL; 7074 } 7075 if (!map->btf) { 7076 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7077 map->name); 7078 return -EINVAL; 7079 } 7080 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7081 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7082 return -EINVAL; 7083 } 7084 if (map->record->timer_off != val + reg->off) { 7085 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7086 val + reg->off, map->record->timer_off); 7087 return -EINVAL; 7088 } 7089 if (meta->map_ptr) { 7090 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7091 return -EFAULT; 7092 } 7093 meta->map_uid = reg->map_uid; 7094 meta->map_ptr = map; 7095 return 0; 7096 } 7097 7098 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7099 struct bpf_call_arg_meta *meta) 7100 { 7101 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7102 struct bpf_map *map_ptr = reg->map_ptr; 7103 struct btf_field *kptr_field; 7104 u32 kptr_off; 7105 7106 if (!tnum_is_const(reg->var_off)) { 7107 verbose(env, 7108 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7109 regno); 7110 return -EINVAL; 7111 } 7112 if (!map_ptr->btf) { 7113 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7114 map_ptr->name); 7115 return -EINVAL; 7116 } 7117 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7118 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7119 return -EINVAL; 7120 } 7121 7122 meta->map_ptr = map_ptr; 7123 kptr_off = reg->off + reg->var_off.value; 7124 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7125 if (!kptr_field) { 7126 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7127 return -EACCES; 7128 } 7129 if (kptr_field->type != BPF_KPTR_REF) { 7130 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7131 return -EACCES; 7132 } 7133 meta->kptr_field = kptr_field; 7134 return 0; 7135 } 7136 7137 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7138 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7139 * 7140 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7141 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7142 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7143 * 7144 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7145 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7146 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7147 * mutate the view of the dynptr and also possibly destroy it. In the latter 7148 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7149 * memory that dynptr points to. 7150 * 7151 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7152 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7153 * readonly dynptr view yet, hence only the first case is tracked and checked. 7154 * 7155 * This is consistent with how C applies the const modifier to a struct object, 7156 * where the pointer itself inside bpf_dynptr becomes const but not what it 7157 * points to. 7158 * 7159 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7160 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7161 */ 7162 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7163 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7164 { 7165 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7166 int err; 7167 7168 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7169 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7170 */ 7171 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7172 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7173 return -EFAULT; 7174 } 7175 7176 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7177 * constructing a mutable bpf_dynptr object. 7178 * 7179 * Currently, this is only possible with PTR_TO_STACK 7180 * pointing to a region of at least 16 bytes which doesn't 7181 * contain an existing bpf_dynptr. 7182 * 7183 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7184 * mutated or destroyed. However, the memory it points to 7185 * may be mutated. 7186 * 7187 * None - Points to a initialized dynptr that can be mutated and 7188 * destroyed, including mutation of the memory it points 7189 * to. 7190 */ 7191 if (arg_type & MEM_UNINIT) { 7192 int i; 7193 7194 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7195 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7196 return -EINVAL; 7197 } 7198 7199 /* we write BPF_DW bits (8 bytes) at a time */ 7200 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7201 err = check_mem_access(env, insn_idx, regno, 7202 i, BPF_DW, BPF_WRITE, -1, false); 7203 if (err) 7204 return err; 7205 } 7206 7207 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7208 } else /* MEM_RDONLY and None case from above */ { 7209 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7210 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7211 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7212 return -EINVAL; 7213 } 7214 7215 if (!is_dynptr_reg_valid_init(env, reg)) { 7216 verbose(env, 7217 "Expected an initialized dynptr as arg #%d\n", 7218 regno); 7219 return -EINVAL; 7220 } 7221 7222 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7223 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7224 verbose(env, 7225 "Expected a dynptr of type %s as arg #%d\n", 7226 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7227 return -EINVAL; 7228 } 7229 7230 err = mark_dynptr_read(env, reg); 7231 } 7232 return err; 7233 } 7234 7235 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7236 { 7237 struct bpf_func_state *state = func(env, reg); 7238 7239 return state->stack[spi].spilled_ptr.ref_obj_id; 7240 } 7241 7242 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7243 { 7244 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7245 } 7246 7247 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7248 { 7249 return meta->kfunc_flags & KF_ITER_NEW; 7250 } 7251 7252 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7253 { 7254 return meta->kfunc_flags & KF_ITER_NEXT; 7255 } 7256 7257 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7258 { 7259 return meta->kfunc_flags & KF_ITER_DESTROY; 7260 } 7261 7262 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7263 { 7264 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7265 * kfunc is iter state pointer 7266 */ 7267 return arg == 0 && is_iter_kfunc(meta); 7268 } 7269 7270 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7271 struct bpf_kfunc_call_arg_meta *meta) 7272 { 7273 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7274 const struct btf_type *t; 7275 const struct btf_param *arg; 7276 int spi, err, i, nr_slots; 7277 u32 btf_id; 7278 7279 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7280 arg = &btf_params(meta->func_proto)[0]; 7281 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7282 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7283 nr_slots = t->size / BPF_REG_SIZE; 7284 7285 if (is_iter_new_kfunc(meta)) { 7286 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7287 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7288 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7289 iter_type_str(meta->btf, btf_id), regno); 7290 return -EINVAL; 7291 } 7292 7293 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7294 err = check_mem_access(env, insn_idx, regno, 7295 i, BPF_DW, BPF_WRITE, -1, false); 7296 if (err) 7297 return err; 7298 } 7299 7300 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7301 if (err) 7302 return err; 7303 } else { 7304 /* iter_next() or iter_destroy() expect initialized iter state*/ 7305 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7306 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7307 iter_type_str(meta->btf, btf_id), regno); 7308 return -EINVAL; 7309 } 7310 7311 spi = iter_get_spi(env, reg, nr_slots); 7312 if (spi < 0) 7313 return spi; 7314 7315 err = mark_iter_read(env, reg, spi, nr_slots); 7316 if (err) 7317 return err; 7318 7319 /* remember meta->iter info for process_iter_next_call() */ 7320 meta->iter.spi = spi; 7321 meta->iter.frameno = reg->frameno; 7322 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7323 7324 if (is_iter_destroy_kfunc(meta)) { 7325 err = unmark_stack_slots_iter(env, reg, nr_slots); 7326 if (err) 7327 return err; 7328 } 7329 } 7330 7331 return 0; 7332 } 7333 7334 /* process_iter_next_call() is called when verifier gets to iterator's next 7335 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7336 * to it as just "iter_next()" in comments below. 7337 * 7338 * BPF verifier relies on a crucial contract for any iter_next() 7339 * implementation: it should *eventually* return NULL, and once that happens 7340 * it should keep returning NULL. That is, once iterator exhausts elements to 7341 * iterate, it should never reset or spuriously return new elements. 7342 * 7343 * With the assumption of such contract, process_iter_next_call() simulates 7344 * a fork in the verifier state to validate loop logic correctness and safety 7345 * without having to simulate infinite amount of iterations. 7346 * 7347 * In current state, we first assume that iter_next() returned NULL and 7348 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7349 * conditions we should not form an infinite loop and should eventually reach 7350 * exit. 7351 * 7352 * Besides that, we also fork current state and enqueue it for later 7353 * verification. In a forked state we keep iterator state as ACTIVE 7354 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7355 * also bump iteration depth to prevent erroneous infinite loop detection 7356 * later on (see iter_active_depths_differ() comment for details). In this 7357 * state we assume that we'll eventually loop back to another iter_next() 7358 * calls (it could be in exactly same location or in some other instruction, 7359 * it doesn't matter, we don't make any unnecessary assumptions about this, 7360 * everything revolves around iterator state in a stack slot, not which 7361 * instruction is calling iter_next()). When that happens, we either will come 7362 * to iter_next() with equivalent state and can conclude that next iteration 7363 * will proceed in exactly the same way as we just verified, so it's safe to 7364 * assume that loop converges. If not, we'll go on another iteration 7365 * simulation with a different input state, until all possible starting states 7366 * are validated or we reach maximum number of instructions limit. 7367 * 7368 * This way, we will either exhaustively discover all possible input states 7369 * that iterator loop can start with and eventually will converge, or we'll 7370 * effectively regress into bounded loop simulation logic and either reach 7371 * maximum number of instructions if loop is not provably convergent, or there 7372 * is some statically known limit on number of iterations (e.g., if there is 7373 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7374 * 7375 * One very subtle but very important aspect is that we *always* simulate NULL 7376 * condition first (as the current state) before we simulate non-NULL case. 7377 * This has to do with intricacies of scalar precision tracking. By simulating 7378 * "exit condition" of iter_next() returning NULL first, we make sure all the 7379 * relevant precision marks *that will be set **after** we exit iterator loop* 7380 * are propagated backwards to common parent state of NULL and non-NULL 7381 * branches. Thanks to that, state equivalence checks done later in forked 7382 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7383 * precision marks are finalized and won't change. Because simulating another 7384 * ACTIVE iterator iteration won't change them (because given same input 7385 * states we'll end up with exactly same output states which we are currently 7386 * comparing; and verification after the loop already propagated back what 7387 * needs to be **additionally** tracked as precise). It's subtle, grok 7388 * precision tracking for more intuitive understanding. 7389 */ 7390 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7391 struct bpf_kfunc_call_arg_meta *meta) 7392 { 7393 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7394 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7395 struct bpf_reg_state *cur_iter, *queued_iter; 7396 int iter_frameno = meta->iter.frameno; 7397 int iter_spi = meta->iter.spi; 7398 7399 BTF_TYPE_EMIT(struct bpf_iter); 7400 7401 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7402 7403 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7404 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7405 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7406 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7407 return -EFAULT; 7408 } 7409 7410 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7411 /* branch out active iter state */ 7412 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7413 if (!queued_st) 7414 return -ENOMEM; 7415 7416 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7417 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7418 queued_iter->iter.depth++; 7419 7420 queued_fr = queued_st->frame[queued_st->curframe]; 7421 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7422 } 7423 7424 /* switch to DRAINED state, but keep the depth unchanged */ 7425 /* mark current iter state as drained and assume returned NULL */ 7426 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7427 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7428 7429 return 0; 7430 } 7431 7432 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7433 { 7434 return type == ARG_CONST_SIZE || 7435 type == ARG_CONST_SIZE_OR_ZERO; 7436 } 7437 7438 static bool arg_type_is_release(enum bpf_arg_type type) 7439 { 7440 return type & OBJ_RELEASE; 7441 } 7442 7443 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7444 { 7445 return base_type(type) == ARG_PTR_TO_DYNPTR; 7446 } 7447 7448 static int int_ptr_type_to_size(enum bpf_arg_type type) 7449 { 7450 if (type == ARG_PTR_TO_INT) 7451 return sizeof(u32); 7452 else if (type == ARG_PTR_TO_LONG) 7453 return sizeof(u64); 7454 7455 return -EINVAL; 7456 } 7457 7458 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7459 const struct bpf_call_arg_meta *meta, 7460 enum bpf_arg_type *arg_type) 7461 { 7462 if (!meta->map_ptr) { 7463 /* kernel subsystem misconfigured verifier */ 7464 verbose(env, "invalid map_ptr to access map->type\n"); 7465 return -EACCES; 7466 } 7467 7468 switch (meta->map_ptr->map_type) { 7469 case BPF_MAP_TYPE_SOCKMAP: 7470 case BPF_MAP_TYPE_SOCKHASH: 7471 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7472 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7473 } else { 7474 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7475 return -EINVAL; 7476 } 7477 break; 7478 case BPF_MAP_TYPE_BLOOM_FILTER: 7479 if (meta->func_id == BPF_FUNC_map_peek_elem) 7480 *arg_type = ARG_PTR_TO_MAP_VALUE; 7481 break; 7482 default: 7483 break; 7484 } 7485 return 0; 7486 } 7487 7488 struct bpf_reg_types { 7489 const enum bpf_reg_type types[10]; 7490 u32 *btf_id; 7491 }; 7492 7493 static const struct bpf_reg_types sock_types = { 7494 .types = { 7495 PTR_TO_SOCK_COMMON, 7496 PTR_TO_SOCKET, 7497 PTR_TO_TCP_SOCK, 7498 PTR_TO_XDP_SOCK, 7499 }, 7500 }; 7501 7502 #ifdef CONFIG_NET 7503 static const struct bpf_reg_types btf_id_sock_common_types = { 7504 .types = { 7505 PTR_TO_SOCK_COMMON, 7506 PTR_TO_SOCKET, 7507 PTR_TO_TCP_SOCK, 7508 PTR_TO_XDP_SOCK, 7509 PTR_TO_BTF_ID, 7510 PTR_TO_BTF_ID | PTR_TRUSTED, 7511 }, 7512 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7513 }; 7514 #endif 7515 7516 static const struct bpf_reg_types mem_types = { 7517 .types = { 7518 PTR_TO_STACK, 7519 PTR_TO_PACKET, 7520 PTR_TO_PACKET_META, 7521 PTR_TO_MAP_KEY, 7522 PTR_TO_MAP_VALUE, 7523 PTR_TO_MEM, 7524 PTR_TO_MEM | MEM_RINGBUF, 7525 PTR_TO_BUF, 7526 PTR_TO_BTF_ID | PTR_TRUSTED, 7527 }, 7528 }; 7529 7530 static const struct bpf_reg_types int_ptr_types = { 7531 .types = { 7532 PTR_TO_STACK, 7533 PTR_TO_PACKET, 7534 PTR_TO_PACKET_META, 7535 PTR_TO_MAP_KEY, 7536 PTR_TO_MAP_VALUE, 7537 }, 7538 }; 7539 7540 static const struct bpf_reg_types spin_lock_types = { 7541 .types = { 7542 PTR_TO_MAP_VALUE, 7543 PTR_TO_BTF_ID | MEM_ALLOC, 7544 } 7545 }; 7546 7547 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7548 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7549 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7550 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7551 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7552 static const struct bpf_reg_types btf_ptr_types = { 7553 .types = { 7554 PTR_TO_BTF_ID, 7555 PTR_TO_BTF_ID | PTR_TRUSTED, 7556 PTR_TO_BTF_ID | MEM_RCU, 7557 }, 7558 }; 7559 static const struct bpf_reg_types percpu_btf_ptr_types = { 7560 .types = { 7561 PTR_TO_BTF_ID | MEM_PERCPU, 7562 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7563 } 7564 }; 7565 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7566 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7567 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7568 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7569 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7570 static const struct bpf_reg_types dynptr_types = { 7571 .types = { 7572 PTR_TO_STACK, 7573 CONST_PTR_TO_DYNPTR, 7574 } 7575 }; 7576 7577 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7578 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7579 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7580 [ARG_CONST_SIZE] = &scalar_types, 7581 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7582 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7583 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7584 [ARG_PTR_TO_CTX] = &context_types, 7585 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7586 #ifdef CONFIG_NET 7587 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7588 #endif 7589 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7590 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7591 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7592 [ARG_PTR_TO_MEM] = &mem_types, 7593 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7594 [ARG_PTR_TO_INT] = &int_ptr_types, 7595 [ARG_PTR_TO_LONG] = &int_ptr_types, 7596 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7597 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7598 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7599 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7600 [ARG_PTR_TO_TIMER] = &timer_types, 7601 [ARG_PTR_TO_KPTR] = &kptr_types, 7602 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7603 }; 7604 7605 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7606 enum bpf_arg_type arg_type, 7607 const u32 *arg_btf_id, 7608 struct bpf_call_arg_meta *meta) 7609 { 7610 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7611 enum bpf_reg_type expected, type = reg->type; 7612 const struct bpf_reg_types *compatible; 7613 int i, j; 7614 7615 compatible = compatible_reg_types[base_type(arg_type)]; 7616 if (!compatible) { 7617 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7618 return -EFAULT; 7619 } 7620 7621 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7622 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7623 * 7624 * Same for MAYBE_NULL: 7625 * 7626 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7627 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7628 * 7629 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7630 * 7631 * Therefore we fold these flags depending on the arg_type before comparison. 7632 */ 7633 if (arg_type & MEM_RDONLY) 7634 type &= ~MEM_RDONLY; 7635 if (arg_type & PTR_MAYBE_NULL) 7636 type &= ~PTR_MAYBE_NULL; 7637 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7638 type &= ~DYNPTR_TYPE_FLAG_MASK; 7639 7640 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7641 type &= ~MEM_ALLOC; 7642 7643 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7644 expected = compatible->types[i]; 7645 if (expected == NOT_INIT) 7646 break; 7647 7648 if (type == expected) 7649 goto found; 7650 } 7651 7652 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7653 for (j = 0; j + 1 < i; j++) 7654 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7655 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7656 return -EACCES; 7657 7658 found: 7659 if (base_type(reg->type) != PTR_TO_BTF_ID) 7660 return 0; 7661 7662 if (compatible == &mem_types) { 7663 if (!(arg_type & MEM_RDONLY)) { 7664 verbose(env, 7665 "%s() may write into memory pointed by R%d type=%s\n", 7666 func_id_name(meta->func_id), 7667 regno, reg_type_str(env, reg->type)); 7668 return -EACCES; 7669 } 7670 return 0; 7671 } 7672 7673 switch ((int)reg->type) { 7674 case PTR_TO_BTF_ID: 7675 case PTR_TO_BTF_ID | PTR_TRUSTED: 7676 case PTR_TO_BTF_ID | MEM_RCU: 7677 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7678 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7679 { 7680 /* For bpf_sk_release, it needs to match against first member 7681 * 'struct sock_common', hence make an exception for it. This 7682 * allows bpf_sk_release to work for multiple socket types. 7683 */ 7684 bool strict_type_match = arg_type_is_release(arg_type) && 7685 meta->func_id != BPF_FUNC_sk_release; 7686 7687 if (type_may_be_null(reg->type) && 7688 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7689 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7690 return -EACCES; 7691 } 7692 7693 if (!arg_btf_id) { 7694 if (!compatible->btf_id) { 7695 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7696 return -EFAULT; 7697 } 7698 arg_btf_id = compatible->btf_id; 7699 } 7700 7701 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7702 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7703 return -EACCES; 7704 } else { 7705 if (arg_btf_id == BPF_PTR_POISON) { 7706 verbose(env, "verifier internal error:"); 7707 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7708 regno); 7709 return -EACCES; 7710 } 7711 7712 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7713 btf_vmlinux, *arg_btf_id, 7714 strict_type_match)) { 7715 verbose(env, "R%d is of type %s but %s is expected\n", 7716 regno, btf_type_name(reg->btf, reg->btf_id), 7717 btf_type_name(btf_vmlinux, *arg_btf_id)); 7718 return -EACCES; 7719 } 7720 } 7721 break; 7722 } 7723 case PTR_TO_BTF_ID | MEM_ALLOC: 7724 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7725 meta->func_id != BPF_FUNC_kptr_xchg) { 7726 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7727 return -EFAULT; 7728 } 7729 /* Handled by helper specific checks */ 7730 break; 7731 case PTR_TO_BTF_ID | MEM_PERCPU: 7732 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7733 /* Handled by helper specific checks */ 7734 break; 7735 default: 7736 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7737 return -EFAULT; 7738 } 7739 return 0; 7740 } 7741 7742 static struct btf_field * 7743 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7744 { 7745 struct btf_field *field; 7746 struct btf_record *rec; 7747 7748 rec = reg_btf_record(reg); 7749 if (!rec) 7750 return NULL; 7751 7752 field = btf_record_find(rec, off, fields); 7753 if (!field) 7754 return NULL; 7755 7756 return field; 7757 } 7758 7759 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7760 const struct bpf_reg_state *reg, int regno, 7761 enum bpf_arg_type arg_type) 7762 { 7763 u32 type = reg->type; 7764 7765 /* When referenced register is passed to release function, its fixed 7766 * offset must be 0. 7767 * 7768 * We will check arg_type_is_release reg has ref_obj_id when storing 7769 * meta->release_regno. 7770 */ 7771 if (arg_type_is_release(arg_type)) { 7772 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7773 * may not directly point to the object being released, but to 7774 * dynptr pointing to such object, which might be at some offset 7775 * on the stack. In that case, we simply to fallback to the 7776 * default handling. 7777 */ 7778 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7779 return 0; 7780 7781 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 7782 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 7783 return __check_ptr_off_reg(env, reg, regno, true); 7784 7785 verbose(env, "R%d must have zero offset when passed to release func\n", 7786 regno); 7787 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 7788 btf_type_name(reg->btf, reg->btf_id), reg->off); 7789 return -EINVAL; 7790 } 7791 7792 /* Doing check_ptr_off_reg check for the offset will catch this 7793 * because fixed_off_ok is false, but checking here allows us 7794 * to give the user a better error message. 7795 */ 7796 if (reg->off) { 7797 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7798 regno); 7799 return -EINVAL; 7800 } 7801 return __check_ptr_off_reg(env, reg, regno, false); 7802 } 7803 7804 switch (type) { 7805 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7806 case PTR_TO_STACK: 7807 case PTR_TO_PACKET: 7808 case PTR_TO_PACKET_META: 7809 case PTR_TO_MAP_KEY: 7810 case PTR_TO_MAP_VALUE: 7811 case PTR_TO_MEM: 7812 case PTR_TO_MEM | MEM_RDONLY: 7813 case PTR_TO_MEM | MEM_RINGBUF: 7814 case PTR_TO_BUF: 7815 case PTR_TO_BUF | MEM_RDONLY: 7816 case SCALAR_VALUE: 7817 return 0; 7818 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 7819 * fixed offset. 7820 */ 7821 case PTR_TO_BTF_ID: 7822 case PTR_TO_BTF_ID | MEM_ALLOC: 7823 case PTR_TO_BTF_ID | PTR_TRUSTED: 7824 case PTR_TO_BTF_ID | MEM_RCU: 7825 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 7826 /* When referenced PTR_TO_BTF_ID is passed to release function, 7827 * its fixed offset must be 0. In the other cases, fixed offset 7828 * can be non-zero. This was already checked above. So pass 7829 * fixed_off_ok as true to allow fixed offset for all other 7830 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 7831 * still need to do checks instead of returning. 7832 */ 7833 return __check_ptr_off_reg(env, reg, regno, true); 7834 default: 7835 return __check_ptr_off_reg(env, reg, regno, false); 7836 } 7837 } 7838 7839 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 7840 const struct bpf_func_proto *fn, 7841 struct bpf_reg_state *regs) 7842 { 7843 struct bpf_reg_state *state = NULL; 7844 int i; 7845 7846 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 7847 if (arg_type_is_dynptr(fn->arg_type[i])) { 7848 if (state) { 7849 verbose(env, "verifier internal error: multiple dynptr args\n"); 7850 return NULL; 7851 } 7852 state = ®s[BPF_REG_1 + i]; 7853 } 7854 7855 if (!state) 7856 verbose(env, "verifier internal error: no dynptr arg found\n"); 7857 7858 return state; 7859 } 7860 7861 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7862 { 7863 struct bpf_func_state *state = func(env, reg); 7864 int spi; 7865 7866 if (reg->type == CONST_PTR_TO_DYNPTR) 7867 return reg->id; 7868 spi = dynptr_get_spi(env, reg); 7869 if (spi < 0) 7870 return spi; 7871 return state->stack[spi].spilled_ptr.id; 7872 } 7873 7874 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7875 { 7876 struct bpf_func_state *state = func(env, reg); 7877 int spi; 7878 7879 if (reg->type == CONST_PTR_TO_DYNPTR) 7880 return reg->ref_obj_id; 7881 spi = dynptr_get_spi(env, reg); 7882 if (spi < 0) 7883 return spi; 7884 return state->stack[spi].spilled_ptr.ref_obj_id; 7885 } 7886 7887 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 7888 struct bpf_reg_state *reg) 7889 { 7890 struct bpf_func_state *state = func(env, reg); 7891 int spi; 7892 7893 if (reg->type == CONST_PTR_TO_DYNPTR) 7894 return reg->dynptr.type; 7895 7896 spi = __get_spi(reg->off); 7897 if (spi < 0) { 7898 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 7899 return BPF_DYNPTR_TYPE_INVALID; 7900 } 7901 7902 return state->stack[spi].spilled_ptr.dynptr.type; 7903 } 7904 7905 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 7906 struct bpf_call_arg_meta *meta, 7907 const struct bpf_func_proto *fn, 7908 int insn_idx) 7909 { 7910 u32 regno = BPF_REG_1 + arg; 7911 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7912 enum bpf_arg_type arg_type = fn->arg_type[arg]; 7913 enum bpf_reg_type type = reg->type; 7914 u32 *arg_btf_id = NULL; 7915 int err = 0; 7916 7917 if (arg_type == ARG_DONTCARE) 7918 return 0; 7919 7920 err = check_reg_arg(env, regno, SRC_OP); 7921 if (err) 7922 return err; 7923 7924 if (arg_type == ARG_ANYTHING) { 7925 if (is_pointer_value(env, regno)) { 7926 verbose(env, "R%d leaks addr into helper function\n", 7927 regno); 7928 return -EACCES; 7929 } 7930 return 0; 7931 } 7932 7933 if (type_is_pkt_pointer(type) && 7934 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 7935 verbose(env, "helper access to the packet is not allowed\n"); 7936 return -EACCES; 7937 } 7938 7939 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 7940 err = resolve_map_arg_type(env, meta, &arg_type); 7941 if (err) 7942 return err; 7943 } 7944 7945 if (register_is_null(reg) && type_may_be_null(arg_type)) 7946 /* A NULL register has a SCALAR_VALUE type, so skip 7947 * type checking. 7948 */ 7949 goto skip_type_check; 7950 7951 /* arg_btf_id and arg_size are in a union. */ 7952 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 7953 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 7954 arg_btf_id = fn->arg_btf_id[arg]; 7955 7956 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 7957 if (err) 7958 return err; 7959 7960 err = check_func_arg_reg_off(env, reg, regno, arg_type); 7961 if (err) 7962 return err; 7963 7964 skip_type_check: 7965 if (arg_type_is_release(arg_type)) { 7966 if (arg_type_is_dynptr(arg_type)) { 7967 struct bpf_func_state *state = func(env, reg); 7968 int spi; 7969 7970 /* Only dynptr created on stack can be released, thus 7971 * the get_spi and stack state checks for spilled_ptr 7972 * should only be done before process_dynptr_func for 7973 * PTR_TO_STACK. 7974 */ 7975 if (reg->type == PTR_TO_STACK) { 7976 spi = dynptr_get_spi(env, reg); 7977 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 7978 verbose(env, "arg %d is an unacquired reference\n", regno); 7979 return -EINVAL; 7980 } 7981 } else { 7982 verbose(env, "cannot release unowned const bpf_dynptr\n"); 7983 return -EINVAL; 7984 } 7985 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 7986 verbose(env, "R%d must be referenced when passed to release function\n", 7987 regno); 7988 return -EINVAL; 7989 } 7990 if (meta->release_regno) { 7991 verbose(env, "verifier internal error: more than one release argument\n"); 7992 return -EFAULT; 7993 } 7994 meta->release_regno = regno; 7995 } 7996 7997 if (reg->ref_obj_id) { 7998 if (meta->ref_obj_id) { 7999 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8000 regno, reg->ref_obj_id, 8001 meta->ref_obj_id); 8002 return -EFAULT; 8003 } 8004 meta->ref_obj_id = reg->ref_obj_id; 8005 } 8006 8007 switch (base_type(arg_type)) { 8008 case ARG_CONST_MAP_PTR: 8009 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8010 if (meta->map_ptr) { 8011 /* Use map_uid (which is unique id of inner map) to reject: 8012 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8013 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8014 * if (inner_map1 && inner_map2) { 8015 * timer = bpf_map_lookup_elem(inner_map1); 8016 * if (timer) 8017 * // mismatch would have been allowed 8018 * bpf_timer_init(timer, inner_map2); 8019 * } 8020 * 8021 * Comparing map_ptr is enough to distinguish normal and outer maps. 8022 */ 8023 if (meta->map_ptr != reg->map_ptr || 8024 meta->map_uid != reg->map_uid) { 8025 verbose(env, 8026 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8027 meta->map_uid, reg->map_uid); 8028 return -EINVAL; 8029 } 8030 } 8031 meta->map_ptr = reg->map_ptr; 8032 meta->map_uid = reg->map_uid; 8033 break; 8034 case ARG_PTR_TO_MAP_KEY: 8035 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8036 * check that [key, key + map->key_size) are within 8037 * stack limits and initialized 8038 */ 8039 if (!meta->map_ptr) { 8040 /* in function declaration map_ptr must come before 8041 * map_key, so that it's verified and known before 8042 * we have to check map_key here. Otherwise it means 8043 * that kernel subsystem misconfigured verifier 8044 */ 8045 verbose(env, "invalid map_ptr to access map->key\n"); 8046 return -EACCES; 8047 } 8048 err = check_helper_mem_access(env, regno, 8049 meta->map_ptr->key_size, false, 8050 NULL); 8051 break; 8052 case ARG_PTR_TO_MAP_VALUE: 8053 if (type_may_be_null(arg_type) && register_is_null(reg)) 8054 return 0; 8055 8056 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8057 * check [value, value + map->value_size) validity 8058 */ 8059 if (!meta->map_ptr) { 8060 /* kernel subsystem misconfigured verifier */ 8061 verbose(env, "invalid map_ptr to access map->value\n"); 8062 return -EACCES; 8063 } 8064 meta->raw_mode = arg_type & MEM_UNINIT; 8065 err = check_helper_mem_access(env, regno, 8066 meta->map_ptr->value_size, false, 8067 meta); 8068 break; 8069 case ARG_PTR_TO_PERCPU_BTF_ID: 8070 if (!reg->btf_id) { 8071 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8072 return -EACCES; 8073 } 8074 meta->ret_btf = reg->btf; 8075 meta->ret_btf_id = reg->btf_id; 8076 break; 8077 case ARG_PTR_TO_SPIN_LOCK: 8078 if (in_rbtree_lock_required_cb(env)) { 8079 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8080 return -EACCES; 8081 } 8082 if (meta->func_id == BPF_FUNC_spin_lock) { 8083 err = process_spin_lock(env, regno, true); 8084 if (err) 8085 return err; 8086 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8087 err = process_spin_lock(env, regno, false); 8088 if (err) 8089 return err; 8090 } else { 8091 verbose(env, "verifier internal error\n"); 8092 return -EFAULT; 8093 } 8094 break; 8095 case ARG_PTR_TO_TIMER: 8096 err = process_timer_func(env, regno, meta); 8097 if (err) 8098 return err; 8099 break; 8100 case ARG_PTR_TO_FUNC: 8101 meta->subprogno = reg->subprogno; 8102 break; 8103 case ARG_PTR_TO_MEM: 8104 /* The access to this pointer is only checked when we hit the 8105 * next is_mem_size argument below. 8106 */ 8107 meta->raw_mode = arg_type & MEM_UNINIT; 8108 if (arg_type & MEM_FIXED_SIZE) { 8109 err = check_helper_mem_access(env, regno, 8110 fn->arg_size[arg], false, 8111 meta); 8112 } 8113 break; 8114 case ARG_CONST_SIZE: 8115 err = check_mem_size_reg(env, reg, regno, false, meta); 8116 break; 8117 case ARG_CONST_SIZE_OR_ZERO: 8118 err = check_mem_size_reg(env, reg, regno, true, meta); 8119 break; 8120 case ARG_PTR_TO_DYNPTR: 8121 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8122 if (err) 8123 return err; 8124 break; 8125 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8126 if (!tnum_is_const(reg->var_off)) { 8127 verbose(env, "R%d is not a known constant'\n", 8128 regno); 8129 return -EACCES; 8130 } 8131 meta->mem_size = reg->var_off.value; 8132 err = mark_chain_precision(env, regno); 8133 if (err) 8134 return err; 8135 break; 8136 case ARG_PTR_TO_INT: 8137 case ARG_PTR_TO_LONG: 8138 { 8139 int size = int_ptr_type_to_size(arg_type); 8140 8141 err = check_helper_mem_access(env, regno, size, false, meta); 8142 if (err) 8143 return err; 8144 err = check_ptr_alignment(env, reg, 0, size, true); 8145 break; 8146 } 8147 case ARG_PTR_TO_CONST_STR: 8148 { 8149 struct bpf_map *map = reg->map_ptr; 8150 int map_off; 8151 u64 map_addr; 8152 char *str_ptr; 8153 8154 if (!bpf_map_is_rdonly(map)) { 8155 verbose(env, "R%d does not point to a readonly map'\n", regno); 8156 return -EACCES; 8157 } 8158 8159 if (!tnum_is_const(reg->var_off)) { 8160 verbose(env, "R%d is not a constant address'\n", regno); 8161 return -EACCES; 8162 } 8163 8164 if (!map->ops->map_direct_value_addr) { 8165 verbose(env, "no direct value access support for this map type\n"); 8166 return -EACCES; 8167 } 8168 8169 err = check_map_access(env, regno, reg->off, 8170 map->value_size - reg->off, false, 8171 ACCESS_HELPER); 8172 if (err) 8173 return err; 8174 8175 map_off = reg->off + reg->var_off.value; 8176 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8177 if (err) { 8178 verbose(env, "direct value access on string failed\n"); 8179 return err; 8180 } 8181 8182 str_ptr = (char *)(long)(map_addr); 8183 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8184 verbose(env, "string is not zero-terminated\n"); 8185 return -EINVAL; 8186 } 8187 break; 8188 } 8189 case ARG_PTR_TO_KPTR: 8190 err = process_kptr_func(env, regno, meta); 8191 if (err) 8192 return err; 8193 break; 8194 } 8195 8196 return err; 8197 } 8198 8199 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8200 { 8201 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8202 enum bpf_prog_type type = resolve_prog_type(env->prog); 8203 8204 if (func_id != BPF_FUNC_map_update_elem) 8205 return false; 8206 8207 /* It's not possible to get access to a locked struct sock in these 8208 * contexts, so updating is safe. 8209 */ 8210 switch (type) { 8211 case BPF_PROG_TYPE_TRACING: 8212 if (eatype == BPF_TRACE_ITER) 8213 return true; 8214 break; 8215 case BPF_PROG_TYPE_SOCKET_FILTER: 8216 case BPF_PROG_TYPE_SCHED_CLS: 8217 case BPF_PROG_TYPE_SCHED_ACT: 8218 case BPF_PROG_TYPE_XDP: 8219 case BPF_PROG_TYPE_SK_REUSEPORT: 8220 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8221 case BPF_PROG_TYPE_SK_LOOKUP: 8222 return true; 8223 default: 8224 break; 8225 } 8226 8227 verbose(env, "cannot update sockmap in this context\n"); 8228 return false; 8229 } 8230 8231 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8232 { 8233 return env->prog->jit_requested && 8234 bpf_jit_supports_subprog_tailcalls(); 8235 } 8236 8237 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8238 struct bpf_map *map, int func_id) 8239 { 8240 if (!map) 8241 return 0; 8242 8243 /* We need a two way check, first is from map perspective ... */ 8244 switch (map->map_type) { 8245 case BPF_MAP_TYPE_PROG_ARRAY: 8246 if (func_id != BPF_FUNC_tail_call) 8247 goto error; 8248 break; 8249 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8250 if (func_id != BPF_FUNC_perf_event_read && 8251 func_id != BPF_FUNC_perf_event_output && 8252 func_id != BPF_FUNC_skb_output && 8253 func_id != BPF_FUNC_perf_event_read_value && 8254 func_id != BPF_FUNC_xdp_output) 8255 goto error; 8256 break; 8257 case BPF_MAP_TYPE_RINGBUF: 8258 if (func_id != BPF_FUNC_ringbuf_output && 8259 func_id != BPF_FUNC_ringbuf_reserve && 8260 func_id != BPF_FUNC_ringbuf_query && 8261 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8262 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8263 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8264 goto error; 8265 break; 8266 case BPF_MAP_TYPE_USER_RINGBUF: 8267 if (func_id != BPF_FUNC_user_ringbuf_drain) 8268 goto error; 8269 break; 8270 case BPF_MAP_TYPE_STACK_TRACE: 8271 if (func_id != BPF_FUNC_get_stackid) 8272 goto error; 8273 break; 8274 case BPF_MAP_TYPE_CGROUP_ARRAY: 8275 if (func_id != BPF_FUNC_skb_under_cgroup && 8276 func_id != BPF_FUNC_current_task_under_cgroup) 8277 goto error; 8278 break; 8279 case BPF_MAP_TYPE_CGROUP_STORAGE: 8280 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8281 if (func_id != BPF_FUNC_get_local_storage) 8282 goto error; 8283 break; 8284 case BPF_MAP_TYPE_DEVMAP: 8285 case BPF_MAP_TYPE_DEVMAP_HASH: 8286 if (func_id != BPF_FUNC_redirect_map && 8287 func_id != BPF_FUNC_map_lookup_elem) 8288 goto error; 8289 break; 8290 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8291 * appear. 8292 */ 8293 case BPF_MAP_TYPE_CPUMAP: 8294 if (func_id != BPF_FUNC_redirect_map) 8295 goto error; 8296 break; 8297 case BPF_MAP_TYPE_XSKMAP: 8298 if (func_id != BPF_FUNC_redirect_map && 8299 func_id != BPF_FUNC_map_lookup_elem) 8300 goto error; 8301 break; 8302 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8303 case BPF_MAP_TYPE_HASH_OF_MAPS: 8304 if (func_id != BPF_FUNC_map_lookup_elem) 8305 goto error; 8306 break; 8307 case BPF_MAP_TYPE_SOCKMAP: 8308 if (func_id != BPF_FUNC_sk_redirect_map && 8309 func_id != BPF_FUNC_sock_map_update && 8310 func_id != BPF_FUNC_map_delete_elem && 8311 func_id != BPF_FUNC_msg_redirect_map && 8312 func_id != BPF_FUNC_sk_select_reuseport && 8313 func_id != BPF_FUNC_map_lookup_elem && 8314 !may_update_sockmap(env, func_id)) 8315 goto error; 8316 break; 8317 case BPF_MAP_TYPE_SOCKHASH: 8318 if (func_id != BPF_FUNC_sk_redirect_hash && 8319 func_id != BPF_FUNC_sock_hash_update && 8320 func_id != BPF_FUNC_map_delete_elem && 8321 func_id != BPF_FUNC_msg_redirect_hash && 8322 func_id != BPF_FUNC_sk_select_reuseport && 8323 func_id != BPF_FUNC_map_lookup_elem && 8324 !may_update_sockmap(env, func_id)) 8325 goto error; 8326 break; 8327 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8328 if (func_id != BPF_FUNC_sk_select_reuseport) 8329 goto error; 8330 break; 8331 case BPF_MAP_TYPE_QUEUE: 8332 case BPF_MAP_TYPE_STACK: 8333 if (func_id != BPF_FUNC_map_peek_elem && 8334 func_id != BPF_FUNC_map_pop_elem && 8335 func_id != BPF_FUNC_map_push_elem) 8336 goto error; 8337 break; 8338 case BPF_MAP_TYPE_SK_STORAGE: 8339 if (func_id != BPF_FUNC_sk_storage_get && 8340 func_id != BPF_FUNC_sk_storage_delete && 8341 func_id != BPF_FUNC_kptr_xchg) 8342 goto error; 8343 break; 8344 case BPF_MAP_TYPE_INODE_STORAGE: 8345 if (func_id != BPF_FUNC_inode_storage_get && 8346 func_id != BPF_FUNC_inode_storage_delete && 8347 func_id != BPF_FUNC_kptr_xchg) 8348 goto error; 8349 break; 8350 case BPF_MAP_TYPE_TASK_STORAGE: 8351 if (func_id != BPF_FUNC_task_storage_get && 8352 func_id != BPF_FUNC_task_storage_delete && 8353 func_id != BPF_FUNC_kptr_xchg) 8354 goto error; 8355 break; 8356 case BPF_MAP_TYPE_CGRP_STORAGE: 8357 if (func_id != BPF_FUNC_cgrp_storage_get && 8358 func_id != BPF_FUNC_cgrp_storage_delete && 8359 func_id != BPF_FUNC_kptr_xchg) 8360 goto error; 8361 break; 8362 case BPF_MAP_TYPE_BLOOM_FILTER: 8363 if (func_id != BPF_FUNC_map_peek_elem && 8364 func_id != BPF_FUNC_map_push_elem) 8365 goto error; 8366 break; 8367 default: 8368 break; 8369 } 8370 8371 /* ... and second from the function itself. */ 8372 switch (func_id) { 8373 case BPF_FUNC_tail_call: 8374 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8375 goto error; 8376 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8377 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8378 return -EINVAL; 8379 } 8380 break; 8381 case BPF_FUNC_perf_event_read: 8382 case BPF_FUNC_perf_event_output: 8383 case BPF_FUNC_perf_event_read_value: 8384 case BPF_FUNC_skb_output: 8385 case BPF_FUNC_xdp_output: 8386 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8387 goto error; 8388 break; 8389 case BPF_FUNC_ringbuf_output: 8390 case BPF_FUNC_ringbuf_reserve: 8391 case BPF_FUNC_ringbuf_query: 8392 case BPF_FUNC_ringbuf_reserve_dynptr: 8393 case BPF_FUNC_ringbuf_submit_dynptr: 8394 case BPF_FUNC_ringbuf_discard_dynptr: 8395 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8396 goto error; 8397 break; 8398 case BPF_FUNC_user_ringbuf_drain: 8399 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8400 goto error; 8401 break; 8402 case BPF_FUNC_get_stackid: 8403 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8404 goto error; 8405 break; 8406 case BPF_FUNC_current_task_under_cgroup: 8407 case BPF_FUNC_skb_under_cgroup: 8408 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8409 goto error; 8410 break; 8411 case BPF_FUNC_redirect_map: 8412 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8413 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8414 map->map_type != BPF_MAP_TYPE_CPUMAP && 8415 map->map_type != BPF_MAP_TYPE_XSKMAP) 8416 goto error; 8417 break; 8418 case BPF_FUNC_sk_redirect_map: 8419 case BPF_FUNC_msg_redirect_map: 8420 case BPF_FUNC_sock_map_update: 8421 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8422 goto error; 8423 break; 8424 case BPF_FUNC_sk_redirect_hash: 8425 case BPF_FUNC_msg_redirect_hash: 8426 case BPF_FUNC_sock_hash_update: 8427 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8428 goto error; 8429 break; 8430 case BPF_FUNC_get_local_storage: 8431 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8432 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8433 goto error; 8434 break; 8435 case BPF_FUNC_sk_select_reuseport: 8436 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8437 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8438 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8439 goto error; 8440 break; 8441 case BPF_FUNC_map_pop_elem: 8442 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8443 map->map_type != BPF_MAP_TYPE_STACK) 8444 goto error; 8445 break; 8446 case BPF_FUNC_map_peek_elem: 8447 case BPF_FUNC_map_push_elem: 8448 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8449 map->map_type != BPF_MAP_TYPE_STACK && 8450 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8451 goto error; 8452 break; 8453 case BPF_FUNC_map_lookup_percpu_elem: 8454 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8455 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8456 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8457 goto error; 8458 break; 8459 case BPF_FUNC_sk_storage_get: 8460 case BPF_FUNC_sk_storage_delete: 8461 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8462 goto error; 8463 break; 8464 case BPF_FUNC_inode_storage_get: 8465 case BPF_FUNC_inode_storage_delete: 8466 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8467 goto error; 8468 break; 8469 case BPF_FUNC_task_storage_get: 8470 case BPF_FUNC_task_storage_delete: 8471 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8472 goto error; 8473 break; 8474 case BPF_FUNC_cgrp_storage_get: 8475 case BPF_FUNC_cgrp_storage_delete: 8476 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8477 goto error; 8478 break; 8479 default: 8480 break; 8481 } 8482 8483 return 0; 8484 error: 8485 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8486 map->map_type, func_id_name(func_id), func_id); 8487 return -EINVAL; 8488 } 8489 8490 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8491 { 8492 int count = 0; 8493 8494 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8495 count++; 8496 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8497 count++; 8498 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8499 count++; 8500 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8501 count++; 8502 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8503 count++; 8504 8505 /* We only support one arg being in raw mode at the moment, 8506 * which is sufficient for the helper functions we have 8507 * right now. 8508 */ 8509 return count <= 1; 8510 } 8511 8512 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8513 { 8514 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8515 bool has_size = fn->arg_size[arg] != 0; 8516 bool is_next_size = false; 8517 8518 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8519 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8520 8521 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8522 return is_next_size; 8523 8524 return has_size == is_next_size || is_next_size == is_fixed; 8525 } 8526 8527 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8528 { 8529 /* bpf_xxx(..., buf, len) call will access 'len' 8530 * bytes from memory 'buf'. Both arg types need 8531 * to be paired, so make sure there's no buggy 8532 * helper function specification. 8533 */ 8534 if (arg_type_is_mem_size(fn->arg1_type) || 8535 check_args_pair_invalid(fn, 0) || 8536 check_args_pair_invalid(fn, 1) || 8537 check_args_pair_invalid(fn, 2) || 8538 check_args_pair_invalid(fn, 3) || 8539 check_args_pair_invalid(fn, 4)) 8540 return false; 8541 8542 return true; 8543 } 8544 8545 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8546 { 8547 int i; 8548 8549 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8550 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8551 return !!fn->arg_btf_id[i]; 8552 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8553 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8554 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8555 /* arg_btf_id and arg_size are in a union. */ 8556 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8557 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8558 return false; 8559 } 8560 8561 return true; 8562 } 8563 8564 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8565 { 8566 return check_raw_mode_ok(fn) && 8567 check_arg_pair_ok(fn) && 8568 check_btf_id_ok(fn) ? 0 : -EINVAL; 8569 } 8570 8571 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8572 * are now invalid, so turn them into unknown SCALAR_VALUE. 8573 * 8574 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8575 * since these slices point to packet data. 8576 */ 8577 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8578 { 8579 struct bpf_func_state *state; 8580 struct bpf_reg_state *reg; 8581 8582 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8583 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8584 mark_reg_invalid(env, reg); 8585 })); 8586 } 8587 8588 enum { 8589 AT_PKT_END = -1, 8590 BEYOND_PKT_END = -2, 8591 }; 8592 8593 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8594 { 8595 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8596 struct bpf_reg_state *reg = &state->regs[regn]; 8597 8598 if (reg->type != PTR_TO_PACKET) 8599 /* PTR_TO_PACKET_META is not supported yet */ 8600 return; 8601 8602 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8603 * How far beyond pkt_end it goes is unknown. 8604 * if (!range_open) it's the case of pkt >= pkt_end 8605 * if (range_open) it's the case of pkt > pkt_end 8606 * hence this pointer is at least 1 byte bigger than pkt_end 8607 */ 8608 if (range_open) 8609 reg->range = BEYOND_PKT_END; 8610 else 8611 reg->range = AT_PKT_END; 8612 } 8613 8614 /* The pointer with the specified id has released its reference to kernel 8615 * resources. Identify all copies of the same pointer and clear the reference. 8616 */ 8617 static int release_reference(struct bpf_verifier_env *env, 8618 int ref_obj_id) 8619 { 8620 struct bpf_func_state *state; 8621 struct bpf_reg_state *reg; 8622 int err; 8623 8624 err = release_reference_state(cur_func(env), ref_obj_id); 8625 if (err) 8626 return err; 8627 8628 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8629 if (reg->ref_obj_id == ref_obj_id) 8630 mark_reg_invalid(env, reg); 8631 })); 8632 8633 return 0; 8634 } 8635 8636 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8637 { 8638 struct bpf_func_state *unused; 8639 struct bpf_reg_state *reg; 8640 8641 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8642 if (type_is_non_owning_ref(reg->type)) 8643 mark_reg_invalid(env, reg); 8644 })); 8645 } 8646 8647 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8648 struct bpf_reg_state *regs) 8649 { 8650 int i; 8651 8652 /* after the call registers r0 - r5 were scratched */ 8653 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8654 mark_reg_not_init(env, regs, caller_saved[i]); 8655 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8656 } 8657 } 8658 8659 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8660 struct bpf_func_state *caller, 8661 struct bpf_func_state *callee, 8662 int insn_idx); 8663 8664 static int set_callee_state(struct bpf_verifier_env *env, 8665 struct bpf_func_state *caller, 8666 struct bpf_func_state *callee, int insn_idx); 8667 8668 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8669 int *insn_idx, int subprog, 8670 set_callee_state_fn set_callee_state_cb) 8671 { 8672 struct bpf_verifier_state *state = env->cur_state; 8673 struct bpf_func_state *caller, *callee; 8674 int err; 8675 8676 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8677 verbose(env, "the call stack of %d frames is too deep\n", 8678 state->curframe + 2); 8679 return -E2BIG; 8680 } 8681 8682 caller = state->frame[state->curframe]; 8683 if (state->frame[state->curframe + 1]) { 8684 verbose(env, "verifier bug. Frame %d already allocated\n", 8685 state->curframe + 1); 8686 return -EFAULT; 8687 } 8688 8689 err = btf_check_subprog_call(env, subprog, caller->regs); 8690 if (err == -EFAULT) 8691 return err; 8692 if (subprog_is_global(env, subprog)) { 8693 if (err) { 8694 verbose(env, "Caller passes invalid args into func#%d\n", 8695 subprog); 8696 return err; 8697 } else { 8698 if (env->log.level & BPF_LOG_LEVEL) 8699 verbose(env, 8700 "Func#%d is global and valid. Skipping.\n", 8701 subprog); 8702 clear_caller_saved_regs(env, caller->regs); 8703 8704 /* All global functions return a 64-bit SCALAR_VALUE */ 8705 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8706 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8707 8708 /* continue with next insn after call */ 8709 return 0; 8710 } 8711 } 8712 8713 /* set_callee_state is used for direct subprog calls, but we are 8714 * interested in validating only BPF helpers that can call subprogs as 8715 * callbacks 8716 */ 8717 if (set_callee_state_cb != set_callee_state) { 8718 if (bpf_pseudo_kfunc_call(insn) && 8719 !is_callback_calling_kfunc(insn->imm)) { 8720 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8721 func_id_name(insn->imm), insn->imm); 8722 return -EFAULT; 8723 } else if (!bpf_pseudo_kfunc_call(insn) && 8724 !is_callback_calling_function(insn->imm)) { /* helper */ 8725 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8726 func_id_name(insn->imm), insn->imm); 8727 return -EFAULT; 8728 } 8729 } 8730 8731 if (insn->code == (BPF_JMP | BPF_CALL) && 8732 insn->src_reg == 0 && 8733 insn->imm == BPF_FUNC_timer_set_callback) { 8734 struct bpf_verifier_state *async_cb; 8735 8736 /* there is no real recursion here. timer callbacks are async */ 8737 env->subprog_info[subprog].is_async_cb = true; 8738 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8739 *insn_idx, subprog); 8740 if (!async_cb) 8741 return -EFAULT; 8742 callee = async_cb->frame[0]; 8743 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8744 8745 /* Convert bpf_timer_set_callback() args into timer callback args */ 8746 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8747 if (err) 8748 return err; 8749 8750 clear_caller_saved_regs(env, caller->regs); 8751 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8752 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8753 /* continue with next insn after call */ 8754 return 0; 8755 } 8756 8757 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8758 if (!callee) 8759 return -ENOMEM; 8760 state->frame[state->curframe + 1] = callee; 8761 8762 /* callee cannot access r0, r6 - r9 for reading and has to write 8763 * into its own stack before reading from it. 8764 * callee can read/write into caller's stack 8765 */ 8766 init_func_state(env, callee, 8767 /* remember the callsite, it will be used by bpf_exit */ 8768 *insn_idx /* callsite */, 8769 state->curframe + 1 /* frameno within this callchain */, 8770 subprog /* subprog number within this prog */); 8771 8772 /* Transfer references to the callee */ 8773 err = copy_reference_state(callee, caller); 8774 if (err) 8775 goto err_out; 8776 8777 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8778 if (err) 8779 goto err_out; 8780 8781 clear_caller_saved_regs(env, caller->regs); 8782 8783 /* only increment it after check_reg_arg() finished */ 8784 state->curframe++; 8785 8786 /* and go analyze first insn of the callee */ 8787 *insn_idx = env->subprog_info[subprog].start - 1; 8788 8789 if (env->log.level & BPF_LOG_LEVEL) { 8790 verbose(env, "caller:\n"); 8791 print_verifier_state(env, caller, true); 8792 verbose(env, "callee:\n"); 8793 print_verifier_state(env, callee, true); 8794 } 8795 return 0; 8796 8797 err_out: 8798 free_func_state(callee); 8799 state->frame[state->curframe + 1] = NULL; 8800 return err; 8801 } 8802 8803 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8804 struct bpf_func_state *caller, 8805 struct bpf_func_state *callee) 8806 { 8807 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8808 * void *callback_ctx, u64 flags); 8809 * callback_fn(struct bpf_map *map, void *key, void *value, 8810 * void *callback_ctx); 8811 */ 8812 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8813 8814 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8815 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8816 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8817 8818 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8819 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8820 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8821 8822 /* pointer to stack or null */ 8823 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 8824 8825 /* unused */ 8826 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8827 return 0; 8828 } 8829 8830 static int set_callee_state(struct bpf_verifier_env *env, 8831 struct bpf_func_state *caller, 8832 struct bpf_func_state *callee, int insn_idx) 8833 { 8834 int i; 8835 8836 /* copy r1 - r5 args that callee can access. The copy includes parent 8837 * pointers, which connects us up to the liveness chain 8838 */ 8839 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 8840 callee->regs[i] = caller->regs[i]; 8841 return 0; 8842 } 8843 8844 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8845 int *insn_idx) 8846 { 8847 int subprog, target_insn; 8848 8849 target_insn = *insn_idx + insn->imm + 1; 8850 subprog = find_subprog(env, target_insn); 8851 if (subprog < 0) { 8852 verbose(env, "verifier bug. No program starts at insn %d\n", 8853 target_insn); 8854 return -EFAULT; 8855 } 8856 8857 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 8858 } 8859 8860 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 8861 struct bpf_func_state *caller, 8862 struct bpf_func_state *callee, 8863 int insn_idx) 8864 { 8865 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 8866 struct bpf_map *map; 8867 int err; 8868 8869 if (bpf_map_ptr_poisoned(insn_aux)) { 8870 verbose(env, "tail_call abusing map_ptr\n"); 8871 return -EINVAL; 8872 } 8873 8874 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 8875 if (!map->ops->map_set_for_each_callback_args || 8876 !map->ops->map_for_each_callback) { 8877 verbose(env, "callback function not allowed for map\n"); 8878 return -ENOTSUPP; 8879 } 8880 8881 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 8882 if (err) 8883 return err; 8884 8885 callee->in_callback_fn = true; 8886 callee->callback_ret_range = tnum_range(0, 1); 8887 return 0; 8888 } 8889 8890 static int set_loop_callback_state(struct bpf_verifier_env *env, 8891 struct bpf_func_state *caller, 8892 struct bpf_func_state *callee, 8893 int insn_idx) 8894 { 8895 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 8896 * u64 flags); 8897 * callback_fn(u32 index, void *callback_ctx); 8898 */ 8899 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 8900 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8901 8902 /* unused */ 8903 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8904 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8905 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8906 8907 callee->in_callback_fn = true; 8908 callee->callback_ret_range = tnum_range(0, 1); 8909 return 0; 8910 } 8911 8912 static int set_timer_callback_state(struct bpf_verifier_env *env, 8913 struct bpf_func_state *caller, 8914 struct bpf_func_state *callee, 8915 int insn_idx) 8916 { 8917 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 8918 8919 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 8920 * callback_fn(struct bpf_map *map, void *key, void *value); 8921 */ 8922 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 8923 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 8924 callee->regs[BPF_REG_1].map_ptr = map_ptr; 8925 8926 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8927 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8928 callee->regs[BPF_REG_2].map_ptr = map_ptr; 8929 8930 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8931 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8932 callee->regs[BPF_REG_3].map_ptr = map_ptr; 8933 8934 /* unused */ 8935 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8936 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8937 callee->in_async_callback_fn = true; 8938 callee->callback_ret_range = tnum_range(0, 1); 8939 return 0; 8940 } 8941 8942 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 8943 struct bpf_func_state *caller, 8944 struct bpf_func_state *callee, 8945 int insn_idx) 8946 { 8947 /* bpf_find_vma(struct task_struct *task, u64 addr, 8948 * void *callback_fn, void *callback_ctx, u64 flags) 8949 * (callback_fn)(struct task_struct *task, 8950 * struct vm_area_struct *vma, void *callback_ctx); 8951 */ 8952 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8953 8954 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 8955 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8956 callee->regs[BPF_REG_2].btf = btf_vmlinux; 8957 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 8958 8959 /* pointer to stack or null */ 8960 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 8961 8962 /* unused */ 8963 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8964 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8965 callee->in_callback_fn = true; 8966 callee->callback_ret_range = tnum_range(0, 1); 8967 return 0; 8968 } 8969 8970 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 8971 struct bpf_func_state *caller, 8972 struct bpf_func_state *callee, 8973 int insn_idx) 8974 { 8975 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 8976 * callback_ctx, u64 flags); 8977 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 8978 */ 8979 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 8980 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 8981 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8982 8983 /* unused */ 8984 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8985 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8986 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8987 8988 callee->in_callback_fn = true; 8989 callee->callback_ret_range = tnum_range(0, 1); 8990 return 0; 8991 } 8992 8993 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 8994 struct bpf_func_state *caller, 8995 struct bpf_func_state *callee, 8996 int insn_idx) 8997 { 8998 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 8999 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9000 * 9001 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9002 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9003 * by this point, so look at 'root' 9004 */ 9005 struct btf_field *field; 9006 9007 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9008 BPF_RB_ROOT); 9009 if (!field || !field->graph_root.value_btf_id) 9010 return -EFAULT; 9011 9012 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9013 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9014 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9015 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9016 9017 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9018 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9019 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9020 callee->in_callback_fn = true; 9021 callee->callback_ret_range = tnum_range(0, 1); 9022 return 0; 9023 } 9024 9025 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9026 9027 /* Are we currently verifying the callback for a rbtree helper that must 9028 * be called with lock held? If so, no need to complain about unreleased 9029 * lock 9030 */ 9031 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9032 { 9033 struct bpf_verifier_state *state = env->cur_state; 9034 struct bpf_insn *insn = env->prog->insnsi; 9035 struct bpf_func_state *callee; 9036 int kfunc_btf_id; 9037 9038 if (!state->curframe) 9039 return false; 9040 9041 callee = state->frame[state->curframe]; 9042 9043 if (!callee->in_callback_fn) 9044 return false; 9045 9046 kfunc_btf_id = insn[callee->callsite].imm; 9047 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9048 } 9049 9050 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9051 { 9052 struct bpf_verifier_state *state = env->cur_state; 9053 struct bpf_func_state *caller, *callee; 9054 struct bpf_reg_state *r0; 9055 int err; 9056 9057 callee = state->frame[state->curframe]; 9058 r0 = &callee->regs[BPF_REG_0]; 9059 if (r0->type == PTR_TO_STACK) { 9060 /* technically it's ok to return caller's stack pointer 9061 * (or caller's caller's pointer) back to the caller, 9062 * since these pointers are valid. Only current stack 9063 * pointer will be invalid as soon as function exits, 9064 * but let's be conservative 9065 */ 9066 verbose(env, "cannot return stack pointer to the caller\n"); 9067 return -EINVAL; 9068 } 9069 9070 caller = state->frame[state->curframe - 1]; 9071 if (callee->in_callback_fn) { 9072 /* enforce R0 return value range [0, 1]. */ 9073 struct tnum range = callee->callback_ret_range; 9074 9075 if (r0->type != SCALAR_VALUE) { 9076 verbose(env, "R0 not a scalar value\n"); 9077 return -EACCES; 9078 } 9079 if (!tnum_in(range, r0->var_off)) { 9080 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9081 return -EINVAL; 9082 } 9083 } else { 9084 /* return to the caller whatever r0 had in the callee */ 9085 caller->regs[BPF_REG_0] = *r0; 9086 } 9087 9088 /* callback_fn frame should have released its own additions to parent's 9089 * reference state at this point, or check_reference_leak would 9090 * complain, hence it must be the same as the caller. There is no need 9091 * to copy it back. 9092 */ 9093 if (!callee->in_callback_fn) { 9094 /* Transfer references to the caller */ 9095 err = copy_reference_state(caller, callee); 9096 if (err) 9097 return err; 9098 } 9099 9100 *insn_idx = callee->callsite + 1; 9101 if (env->log.level & BPF_LOG_LEVEL) { 9102 verbose(env, "returning from callee:\n"); 9103 print_verifier_state(env, callee, true); 9104 verbose(env, "to caller at %d:\n", *insn_idx); 9105 print_verifier_state(env, caller, true); 9106 } 9107 /* clear everything in the callee */ 9108 free_func_state(callee); 9109 state->frame[state->curframe--] = NULL; 9110 return 0; 9111 } 9112 9113 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9114 int func_id, 9115 struct bpf_call_arg_meta *meta) 9116 { 9117 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9118 9119 if (ret_type != RET_INTEGER || 9120 (func_id != BPF_FUNC_get_stack && 9121 func_id != BPF_FUNC_get_task_stack && 9122 func_id != BPF_FUNC_probe_read_str && 9123 func_id != BPF_FUNC_probe_read_kernel_str && 9124 func_id != BPF_FUNC_probe_read_user_str)) 9125 return; 9126 9127 ret_reg->smax_value = meta->msize_max_value; 9128 ret_reg->s32_max_value = meta->msize_max_value; 9129 ret_reg->smin_value = -MAX_ERRNO; 9130 ret_reg->s32_min_value = -MAX_ERRNO; 9131 reg_bounds_sync(ret_reg); 9132 } 9133 9134 static int 9135 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9136 int func_id, int insn_idx) 9137 { 9138 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9139 struct bpf_map *map = meta->map_ptr; 9140 9141 if (func_id != BPF_FUNC_tail_call && 9142 func_id != BPF_FUNC_map_lookup_elem && 9143 func_id != BPF_FUNC_map_update_elem && 9144 func_id != BPF_FUNC_map_delete_elem && 9145 func_id != BPF_FUNC_map_push_elem && 9146 func_id != BPF_FUNC_map_pop_elem && 9147 func_id != BPF_FUNC_map_peek_elem && 9148 func_id != BPF_FUNC_for_each_map_elem && 9149 func_id != BPF_FUNC_redirect_map && 9150 func_id != BPF_FUNC_map_lookup_percpu_elem) 9151 return 0; 9152 9153 if (map == NULL) { 9154 verbose(env, "kernel subsystem misconfigured verifier\n"); 9155 return -EINVAL; 9156 } 9157 9158 /* In case of read-only, some additional restrictions 9159 * need to be applied in order to prevent altering the 9160 * state of the map from program side. 9161 */ 9162 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9163 (func_id == BPF_FUNC_map_delete_elem || 9164 func_id == BPF_FUNC_map_update_elem || 9165 func_id == BPF_FUNC_map_push_elem || 9166 func_id == BPF_FUNC_map_pop_elem)) { 9167 verbose(env, "write into map forbidden\n"); 9168 return -EACCES; 9169 } 9170 9171 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9172 bpf_map_ptr_store(aux, meta->map_ptr, 9173 !meta->map_ptr->bypass_spec_v1); 9174 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9175 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9176 !meta->map_ptr->bypass_spec_v1); 9177 return 0; 9178 } 9179 9180 static int 9181 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9182 int func_id, int insn_idx) 9183 { 9184 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9185 struct bpf_reg_state *regs = cur_regs(env), *reg; 9186 struct bpf_map *map = meta->map_ptr; 9187 u64 val, max; 9188 int err; 9189 9190 if (func_id != BPF_FUNC_tail_call) 9191 return 0; 9192 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9193 verbose(env, "kernel subsystem misconfigured verifier\n"); 9194 return -EINVAL; 9195 } 9196 9197 reg = ®s[BPF_REG_3]; 9198 val = reg->var_off.value; 9199 max = map->max_entries; 9200 9201 if (!(register_is_const(reg) && val < max)) { 9202 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9203 return 0; 9204 } 9205 9206 err = mark_chain_precision(env, BPF_REG_3); 9207 if (err) 9208 return err; 9209 if (bpf_map_key_unseen(aux)) 9210 bpf_map_key_store(aux, val); 9211 else if (!bpf_map_key_poisoned(aux) && 9212 bpf_map_key_immediate(aux) != val) 9213 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9214 return 0; 9215 } 9216 9217 static int check_reference_leak(struct bpf_verifier_env *env) 9218 { 9219 struct bpf_func_state *state = cur_func(env); 9220 bool refs_lingering = false; 9221 int i; 9222 9223 if (state->frameno && !state->in_callback_fn) 9224 return 0; 9225 9226 for (i = 0; i < state->acquired_refs; i++) { 9227 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9228 continue; 9229 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9230 state->refs[i].id, state->refs[i].insn_idx); 9231 refs_lingering = true; 9232 } 9233 return refs_lingering ? -EINVAL : 0; 9234 } 9235 9236 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9237 struct bpf_reg_state *regs) 9238 { 9239 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9240 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9241 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9242 struct bpf_bprintf_data data = {}; 9243 int err, fmt_map_off, num_args; 9244 u64 fmt_addr; 9245 char *fmt; 9246 9247 /* data must be an array of u64 */ 9248 if (data_len_reg->var_off.value % 8) 9249 return -EINVAL; 9250 num_args = data_len_reg->var_off.value / 8; 9251 9252 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9253 * and map_direct_value_addr is set. 9254 */ 9255 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9256 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9257 fmt_map_off); 9258 if (err) { 9259 verbose(env, "verifier bug\n"); 9260 return -EFAULT; 9261 } 9262 fmt = (char *)(long)fmt_addr + fmt_map_off; 9263 9264 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9265 * can focus on validating the format specifiers. 9266 */ 9267 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9268 if (err < 0) 9269 verbose(env, "Invalid format string\n"); 9270 9271 return err; 9272 } 9273 9274 static int check_get_func_ip(struct bpf_verifier_env *env) 9275 { 9276 enum bpf_prog_type type = resolve_prog_type(env->prog); 9277 int func_id = BPF_FUNC_get_func_ip; 9278 9279 if (type == BPF_PROG_TYPE_TRACING) { 9280 if (!bpf_prog_has_trampoline(env->prog)) { 9281 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9282 func_id_name(func_id), func_id); 9283 return -ENOTSUPP; 9284 } 9285 return 0; 9286 } else if (type == BPF_PROG_TYPE_KPROBE) { 9287 return 0; 9288 } 9289 9290 verbose(env, "func %s#%d not supported for program type %d\n", 9291 func_id_name(func_id), func_id, type); 9292 return -ENOTSUPP; 9293 } 9294 9295 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9296 { 9297 return &env->insn_aux_data[env->insn_idx]; 9298 } 9299 9300 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9301 { 9302 struct bpf_reg_state *regs = cur_regs(env); 9303 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9304 bool reg_is_null = register_is_null(reg); 9305 9306 if (reg_is_null) 9307 mark_chain_precision(env, BPF_REG_4); 9308 9309 return reg_is_null; 9310 } 9311 9312 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9313 { 9314 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9315 9316 if (!state->initialized) { 9317 state->initialized = 1; 9318 state->fit_for_inline = loop_flag_is_zero(env); 9319 state->callback_subprogno = subprogno; 9320 return; 9321 } 9322 9323 if (!state->fit_for_inline) 9324 return; 9325 9326 state->fit_for_inline = (loop_flag_is_zero(env) && 9327 state->callback_subprogno == subprogno); 9328 } 9329 9330 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9331 int *insn_idx_p) 9332 { 9333 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9334 const struct bpf_func_proto *fn = NULL; 9335 enum bpf_return_type ret_type; 9336 enum bpf_type_flag ret_flag; 9337 struct bpf_reg_state *regs; 9338 struct bpf_call_arg_meta meta; 9339 int insn_idx = *insn_idx_p; 9340 bool changes_data; 9341 int i, err, func_id; 9342 9343 /* find function prototype */ 9344 func_id = insn->imm; 9345 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9346 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9347 func_id); 9348 return -EINVAL; 9349 } 9350 9351 if (env->ops->get_func_proto) 9352 fn = env->ops->get_func_proto(func_id, env->prog); 9353 if (!fn) { 9354 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9355 func_id); 9356 return -EINVAL; 9357 } 9358 9359 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9360 if (!env->prog->gpl_compatible && fn->gpl_only) { 9361 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9362 return -EINVAL; 9363 } 9364 9365 if (fn->allowed && !fn->allowed(env->prog)) { 9366 verbose(env, "helper call is not allowed in probe\n"); 9367 return -EINVAL; 9368 } 9369 9370 if (!env->prog->aux->sleepable && fn->might_sleep) { 9371 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9372 return -EINVAL; 9373 } 9374 9375 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9376 changes_data = bpf_helper_changes_pkt_data(fn->func); 9377 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9378 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9379 func_id_name(func_id), func_id); 9380 return -EINVAL; 9381 } 9382 9383 memset(&meta, 0, sizeof(meta)); 9384 meta.pkt_access = fn->pkt_access; 9385 9386 err = check_func_proto(fn, func_id); 9387 if (err) { 9388 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9389 func_id_name(func_id), func_id); 9390 return err; 9391 } 9392 9393 if (env->cur_state->active_rcu_lock) { 9394 if (fn->might_sleep) { 9395 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9396 func_id_name(func_id), func_id); 9397 return -EINVAL; 9398 } 9399 9400 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9401 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9402 } 9403 9404 meta.func_id = func_id; 9405 /* check args */ 9406 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9407 err = check_func_arg(env, i, &meta, fn, insn_idx); 9408 if (err) 9409 return err; 9410 } 9411 9412 err = record_func_map(env, &meta, func_id, insn_idx); 9413 if (err) 9414 return err; 9415 9416 err = record_func_key(env, &meta, func_id, insn_idx); 9417 if (err) 9418 return err; 9419 9420 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9421 * is inferred from register state. 9422 */ 9423 for (i = 0; i < meta.access_size; i++) { 9424 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9425 BPF_WRITE, -1, false); 9426 if (err) 9427 return err; 9428 } 9429 9430 regs = cur_regs(env); 9431 9432 if (meta.release_regno) { 9433 err = -EINVAL; 9434 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9435 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9436 * is safe to do directly. 9437 */ 9438 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9439 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9440 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9441 return -EFAULT; 9442 } 9443 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9444 } else if (meta.ref_obj_id) { 9445 err = release_reference(env, meta.ref_obj_id); 9446 } else if (register_is_null(®s[meta.release_regno])) { 9447 /* meta.ref_obj_id can only be 0 if register that is meant to be 9448 * released is NULL, which must be > R0. 9449 */ 9450 err = 0; 9451 } 9452 if (err) { 9453 verbose(env, "func %s#%d reference has not been acquired before\n", 9454 func_id_name(func_id), func_id); 9455 return err; 9456 } 9457 } 9458 9459 switch (func_id) { 9460 case BPF_FUNC_tail_call: 9461 err = check_reference_leak(env); 9462 if (err) { 9463 verbose(env, "tail_call would lead to reference leak\n"); 9464 return err; 9465 } 9466 break; 9467 case BPF_FUNC_get_local_storage: 9468 /* check that flags argument in get_local_storage(map, flags) is 0, 9469 * this is required because get_local_storage() can't return an error. 9470 */ 9471 if (!register_is_null(®s[BPF_REG_2])) { 9472 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9473 return -EINVAL; 9474 } 9475 break; 9476 case BPF_FUNC_for_each_map_elem: 9477 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9478 set_map_elem_callback_state); 9479 break; 9480 case BPF_FUNC_timer_set_callback: 9481 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9482 set_timer_callback_state); 9483 break; 9484 case BPF_FUNC_find_vma: 9485 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9486 set_find_vma_callback_state); 9487 break; 9488 case BPF_FUNC_snprintf: 9489 err = check_bpf_snprintf_call(env, regs); 9490 break; 9491 case BPF_FUNC_loop: 9492 update_loop_inline_state(env, meta.subprogno); 9493 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9494 set_loop_callback_state); 9495 break; 9496 case BPF_FUNC_dynptr_from_mem: 9497 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9498 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9499 reg_type_str(env, regs[BPF_REG_1].type)); 9500 return -EACCES; 9501 } 9502 break; 9503 case BPF_FUNC_set_retval: 9504 if (prog_type == BPF_PROG_TYPE_LSM && 9505 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9506 if (!env->prog->aux->attach_func_proto->type) { 9507 /* Make sure programs that attach to void 9508 * hooks don't try to modify return value. 9509 */ 9510 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9511 return -EINVAL; 9512 } 9513 } 9514 break; 9515 case BPF_FUNC_dynptr_data: 9516 { 9517 struct bpf_reg_state *reg; 9518 int id, ref_obj_id; 9519 9520 reg = get_dynptr_arg_reg(env, fn, regs); 9521 if (!reg) 9522 return -EFAULT; 9523 9524 9525 if (meta.dynptr_id) { 9526 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9527 return -EFAULT; 9528 } 9529 if (meta.ref_obj_id) { 9530 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9531 return -EFAULT; 9532 } 9533 9534 id = dynptr_id(env, reg); 9535 if (id < 0) { 9536 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9537 return id; 9538 } 9539 9540 ref_obj_id = dynptr_ref_obj_id(env, reg); 9541 if (ref_obj_id < 0) { 9542 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9543 return ref_obj_id; 9544 } 9545 9546 meta.dynptr_id = id; 9547 meta.ref_obj_id = ref_obj_id; 9548 9549 break; 9550 } 9551 case BPF_FUNC_dynptr_write: 9552 { 9553 enum bpf_dynptr_type dynptr_type; 9554 struct bpf_reg_state *reg; 9555 9556 reg = get_dynptr_arg_reg(env, fn, regs); 9557 if (!reg) 9558 return -EFAULT; 9559 9560 dynptr_type = dynptr_get_type(env, reg); 9561 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9562 return -EFAULT; 9563 9564 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9565 /* this will trigger clear_all_pkt_pointers(), which will 9566 * invalidate all dynptr slices associated with the skb 9567 */ 9568 changes_data = true; 9569 9570 break; 9571 } 9572 case BPF_FUNC_user_ringbuf_drain: 9573 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9574 set_user_ringbuf_callback_state); 9575 break; 9576 } 9577 9578 if (err) 9579 return err; 9580 9581 /* reset caller saved regs */ 9582 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9583 mark_reg_not_init(env, regs, caller_saved[i]); 9584 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9585 } 9586 9587 /* helper call returns 64-bit value. */ 9588 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9589 9590 /* update return register (already marked as written above) */ 9591 ret_type = fn->ret_type; 9592 ret_flag = type_flag(ret_type); 9593 9594 switch (base_type(ret_type)) { 9595 case RET_INTEGER: 9596 /* sets type to SCALAR_VALUE */ 9597 mark_reg_unknown(env, regs, BPF_REG_0); 9598 break; 9599 case RET_VOID: 9600 regs[BPF_REG_0].type = NOT_INIT; 9601 break; 9602 case RET_PTR_TO_MAP_VALUE: 9603 /* There is no offset yet applied, variable or fixed */ 9604 mark_reg_known_zero(env, regs, BPF_REG_0); 9605 /* remember map_ptr, so that check_map_access() 9606 * can check 'value_size' boundary of memory access 9607 * to map element returned from bpf_map_lookup_elem() 9608 */ 9609 if (meta.map_ptr == NULL) { 9610 verbose(env, 9611 "kernel subsystem misconfigured verifier\n"); 9612 return -EINVAL; 9613 } 9614 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9615 regs[BPF_REG_0].map_uid = meta.map_uid; 9616 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9617 if (!type_may_be_null(ret_type) && 9618 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9619 regs[BPF_REG_0].id = ++env->id_gen; 9620 } 9621 break; 9622 case RET_PTR_TO_SOCKET: 9623 mark_reg_known_zero(env, regs, BPF_REG_0); 9624 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9625 break; 9626 case RET_PTR_TO_SOCK_COMMON: 9627 mark_reg_known_zero(env, regs, BPF_REG_0); 9628 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9629 break; 9630 case RET_PTR_TO_TCP_SOCK: 9631 mark_reg_known_zero(env, regs, BPF_REG_0); 9632 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9633 break; 9634 case RET_PTR_TO_MEM: 9635 mark_reg_known_zero(env, regs, BPF_REG_0); 9636 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9637 regs[BPF_REG_0].mem_size = meta.mem_size; 9638 break; 9639 case RET_PTR_TO_MEM_OR_BTF_ID: 9640 { 9641 const struct btf_type *t; 9642 9643 mark_reg_known_zero(env, regs, BPF_REG_0); 9644 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9645 if (!btf_type_is_struct(t)) { 9646 u32 tsize; 9647 const struct btf_type *ret; 9648 const char *tname; 9649 9650 /* resolve the type size of ksym. */ 9651 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9652 if (IS_ERR(ret)) { 9653 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9654 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9655 tname, PTR_ERR(ret)); 9656 return -EINVAL; 9657 } 9658 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9659 regs[BPF_REG_0].mem_size = tsize; 9660 } else { 9661 /* MEM_RDONLY may be carried from ret_flag, but it 9662 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9663 * it will confuse the check of PTR_TO_BTF_ID in 9664 * check_mem_access(). 9665 */ 9666 ret_flag &= ~MEM_RDONLY; 9667 9668 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9669 regs[BPF_REG_0].btf = meta.ret_btf; 9670 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9671 } 9672 break; 9673 } 9674 case RET_PTR_TO_BTF_ID: 9675 { 9676 struct btf *ret_btf; 9677 int ret_btf_id; 9678 9679 mark_reg_known_zero(env, regs, BPF_REG_0); 9680 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9681 if (func_id == BPF_FUNC_kptr_xchg) { 9682 ret_btf = meta.kptr_field->kptr.btf; 9683 ret_btf_id = meta.kptr_field->kptr.btf_id; 9684 if (!btf_is_kernel(ret_btf)) 9685 regs[BPF_REG_0].type |= MEM_ALLOC; 9686 } else { 9687 if (fn->ret_btf_id == BPF_PTR_POISON) { 9688 verbose(env, "verifier internal error:"); 9689 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9690 func_id_name(func_id)); 9691 return -EINVAL; 9692 } 9693 ret_btf = btf_vmlinux; 9694 ret_btf_id = *fn->ret_btf_id; 9695 } 9696 if (ret_btf_id == 0) { 9697 verbose(env, "invalid return type %u of func %s#%d\n", 9698 base_type(ret_type), func_id_name(func_id), 9699 func_id); 9700 return -EINVAL; 9701 } 9702 regs[BPF_REG_0].btf = ret_btf; 9703 regs[BPF_REG_0].btf_id = ret_btf_id; 9704 break; 9705 } 9706 default: 9707 verbose(env, "unknown return type %u of func %s#%d\n", 9708 base_type(ret_type), func_id_name(func_id), func_id); 9709 return -EINVAL; 9710 } 9711 9712 if (type_may_be_null(regs[BPF_REG_0].type)) 9713 regs[BPF_REG_0].id = ++env->id_gen; 9714 9715 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9716 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9717 func_id_name(func_id), func_id); 9718 return -EFAULT; 9719 } 9720 9721 if (is_dynptr_ref_function(func_id)) 9722 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9723 9724 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9725 /* For release_reference() */ 9726 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9727 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9728 int id = acquire_reference_state(env, insn_idx); 9729 9730 if (id < 0) 9731 return id; 9732 /* For mark_ptr_or_null_reg() */ 9733 regs[BPF_REG_0].id = id; 9734 /* For release_reference() */ 9735 regs[BPF_REG_0].ref_obj_id = id; 9736 } 9737 9738 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9739 9740 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9741 if (err) 9742 return err; 9743 9744 if ((func_id == BPF_FUNC_get_stack || 9745 func_id == BPF_FUNC_get_task_stack) && 9746 !env->prog->has_callchain_buf) { 9747 const char *err_str; 9748 9749 #ifdef CONFIG_PERF_EVENTS 9750 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9751 err_str = "cannot get callchain buffer for func %s#%d\n"; 9752 #else 9753 err = -ENOTSUPP; 9754 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9755 #endif 9756 if (err) { 9757 verbose(env, err_str, func_id_name(func_id), func_id); 9758 return err; 9759 } 9760 9761 env->prog->has_callchain_buf = true; 9762 } 9763 9764 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9765 env->prog->call_get_stack = true; 9766 9767 if (func_id == BPF_FUNC_get_func_ip) { 9768 if (check_get_func_ip(env)) 9769 return -ENOTSUPP; 9770 env->prog->call_get_func_ip = true; 9771 } 9772 9773 if (changes_data) 9774 clear_all_pkt_pointers(env); 9775 return 0; 9776 } 9777 9778 /* mark_btf_func_reg_size() is used when the reg size is determined by 9779 * the BTF func_proto's return value size and argument. 9780 */ 9781 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9782 size_t reg_size) 9783 { 9784 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9785 9786 if (regno == BPF_REG_0) { 9787 /* Function return value */ 9788 reg->live |= REG_LIVE_WRITTEN; 9789 reg->subreg_def = reg_size == sizeof(u64) ? 9790 DEF_NOT_SUBREG : env->insn_idx + 1; 9791 } else { 9792 /* Function argument */ 9793 if (reg_size == sizeof(u64)) { 9794 mark_insn_zext(env, reg); 9795 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9796 } else { 9797 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9798 } 9799 } 9800 } 9801 9802 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 9803 { 9804 return meta->kfunc_flags & KF_ACQUIRE; 9805 } 9806 9807 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 9808 { 9809 return meta->kfunc_flags & KF_RELEASE; 9810 } 9811 9812 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 9813 { 9814 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 9815 } 9816 9817 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 9818 { 9819 return meta->kfunc_flags & KF_SLEEPABLE; 9820 } 9821 9822 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 9823 { 9824 return meta->kfunc_flags & KF_DESTRUCTIVE; 9825 } 9826 9827 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 9828 { 9829 return meta->kfunc_flags & KF_RCU; 9830 } 9831 9832 static bool __kfunc_param_match_suffix(const struct btf *btf, 9833 const struct btf_param *arg, 9834 const char *suffix) 9835 { 9836 int suffix_len = strlen(suffix), len; 9837 const char *param_name; 9838 9839 /* In the future, this can be ported to use BTF tagging */ 9840 param_name = btf_name_by_offset(btf, arg->name_off); 9841 if (str_is_empty(param_name)) 9842 return false; 9843 len = strlen(param_name); 9844 if (len < suffix_len) 9845 return false; 9846 param_name += len - suffix_len; 9847 return !strncmp(param_name, suffix, suffix_len); 9848 } 9849 9850 static bool is_kfunc_arg_mem_size(const struct btf *btf, 9851 const struct btf_param *arg, 9852 const struct bpf_reg_state *reg) 9853 { 9854 const struct btf_type *t; 9855 9856 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9857 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9858 return false; 9859 9860 return __kfunc_param_match_suffix(btf, arg, "__sz"); 9861 } 9862 9863 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 9864 const struct btf_param *arg, 9865 const struct bpf_reg_state *reg) 9866 { 9867 const struct btf_type *t; 9868 9869 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9870 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9871 return false; 9872 9873 return __kfunc_param_match_suffix(btf, arg, "__szk"); 9874 } 9875 9876 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 9877 { 9878 return __kfunc_param_match_suffix(btf, arg, "__opt"); 9879 } 9880 9881 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 9882 { 9883 return __kfunc_param_match_suffix(btf, arg, "__k"); 9884 } 9885 9886 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 9887 { 9888 return __kfunc_param_match_suffix(btf, arg, "__ign"); 9889 } 9890 9891 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 9892 { 9893 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 9894 } 9895 9896 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 9897 { 9898 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 9899 } 9900 9901 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 9902 { 9903 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 9904 } 9905 9906 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 9907 const struct btf_param *arg, 9908 const char *name) 9909 { 9910 int len, target_len = strlen(name); 9911 const char *param_name; 9912 9913 param_name = btf_name_by_offset(btf, arg->name_off); 9914 if (str_is_empty(param_name)) 9915 return false; 9916 len = strlen(param_name); 9917 if (len != target_len) 9918 return false; 9919 if (strcmp(param_name, name)) 9920 return false; 9921 9922 return true; 9923 } 9924 9925 enum { 9926 KF_ARG_DYNPTR_ID, 9927 KF_ARG_LIST_HEAD_ID, 9928 KF_ARG_LIST_NODE_ID, 9929 KF_ARG_RB_ROOT_ID, 9930 KF_ARG_RB_NODE_ID, 9931 }; 9932 9933 BTF_ID_LIST(kf_arg_btf_ids) 9934 BTF_ID(struct, bpf_dynptr_kern) 9935 BTF_ID(struct, bpf_list_head) 9936 BTF_ID(struct, bpf_list_node) 9937 BTF_ID(struct, bpf_rb_root) 9938 BTF_ID(struct, bpf_rb_node) 9939 9940 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 9941 const struct btf_param *arg, int type) 9942 { 9943 const struct btf_type *t; 9944 u32 res_id; 9945 9946 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9947 if (!t) 9948 return false; 9949 if (!btf_type_is_ptr(t)) 9950 return false; 9951 t = btf_type_skip_modifiers(btf, t->type, &res_id); 9952 if (!t) 9953 return false; 9954 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 9955 } 9956 9957 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 9958 { 9959 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 9960 } 9961 9962 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 9963 { 9964 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 9965 } 9966 9967 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 9968 { 9969 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 9970 } 9971 9972 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 9973 { 9974 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 9975 } 9976 9977 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 9978 { 9979 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 9980 } 9981 9982 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 9983 const struct btf_param *arg) 9984 { 9985 const struct btf_type *t; 9986 9987 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 9988 if (!t) 9989 return false; 9990 9991 return true; 9992 } 9993 9994 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 9995 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 9996 const struct btf *btf, 9997 const struct btf_type *t, int rec) 9998 { 9999 const struct btf_type *member_type; 10000 const struct btf_member *member; 10001 u32 i; 10002 10003 if (!btf_type_is_struct(t)) 10004 return false; 10005 10006 for_each_member(i, t, member) { 10007 const struct btf_array *array; 10008 10009 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10010 if (btf_type_is_struct(member_type)) { 10011 if (rec >= 3) { 10012 verbose(env, "max struct nesting depth exceeded\n"); 10013 return false; 10014 } 10015 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10016 return false; 10017 continue; 10018 } 10019 if (btf_type_is_array(member_type)) { 10020 array = btf_array(member_type); 10021 if (!array->nelems) 10022 return false; 10023 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10024 if (!btf_type_is_scalar(member_type)) 10025 return false; 10026 continue; 10027 } 10028 if (!btf_type_is_scalar(member_type)) 10029 return false; 10030 } 10031 return true; 10032 } 10033 10034 10035 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 10036 #ifdef CONFIG_NET 10037 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 10038 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 10039 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 10040 #endif 10041 }; 10042 10043 enum kfunc_ptr_arg_type { 10044 KF_ARG_PTR_TO_CTX, 10045 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10046 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10047 KF_ARG_PTR_TO_DYNPTR, 10048 KF_ARG_PTR_TO_ITER, 10049 KF_ARG_PTR_TO_LIST_HEAD, 10050 KF_ARG_PTR_TO_LIST_NODE, 10051 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10052 KF_ARG_PTR_TO_MEM, 10053 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10054 KF_ARG_PTR_TO_CALLBACK, 10055 KF_ARG_PTR_TO_RB_ROOT, 10056 KF_ARG_PTR_TO_RB_NODE, 10057 }; 10058 10059 enum special_kfunc_type { 10060 KF_bpf_obj_new_impl, 10061 KF_bpf_obj_drop_impl, 10062 KF_bpf_refcount_acquire_impl, 10063 KF_bpf_list_push_front_impl, 10064 KF_bpf_list_push_back_impl, 10065 KF_bpf_list_pop_front, 10066 KF_bpf_list_pop_back, 10067 KF_bpf_cast_to_kern_ctx, 10068 KF_bpf_rdonly_cast, 10069 KF_bpf_rcu_read_lock, 10070 KF_bpf_rcu_read_unlock, 10071 KF_bpf_rbtree_remove, 10072 KF_bpf_rbtree_add_impl, 10073 KF_bpf_rbtree_first, 10074 KF_bpf_dynptr_from_skb, 10075 KF_bpf_dynptr_from_xdp, 10076 KF_bpf_dynptr_slice, 10077 KF_bpf_dynptr_slice_rdwr, 10078 KF_bpf_dynptr_clone, 10079 }; 10080 10081 BTF_SET_START(special_kfunc_set) 10082 BTF_ID(func, bpf_obj_new_impl) 10083 BTF_ID(func, bpf_obj_drop_impl) 10084 BTF_ID(func, bpf_refcount_acquire_impl) 10085 BTF_ID(func, bpf_list_push_front_impl) 10086 BTF_ID(func, bpf_list_push_back_impl) 10087 BTF_ID(func, bpf_list_pop_front) 10088 BTF_ID(func, bpf_list_pop_back) 10089 BTF_ID(func, bpf_cast_to_kern_ctx) 10090 BTF_ID(func, bpf_rdonly_cast) 10091 BTF_ID(func, bpf_rbtree_remove) 10092 BTF_ID(func, bpf_rbtree_add_impl) 10093 BTF_ID(func, bpf_rbtree_first) 10094 BTF_ID(func, bpf_dynptr_from_skb) 10095 BTF_ID(func, bpf_dynptr_from_xdp) 10096 BTF_ID(func, bpf_dynptr_slice) 10097 BTF_ID(func, bpf_dynptr_slice_rdwr) 10098 BTF_ID(func, bpf_dynptr_clone) 10099 BTF_SET_END(special_kfunc_set) 10100 10101 BTF_ID_LIST(special_kfunc_list) 10102 BTF_ID(func, bpf_obj_new_impl) 10103 BTF_ID(func, bpf_obj_drop_impl) 10104 BTF_ID(func, bpf_refcount_acquire_impl) 10105 BTF_ID(func, bpf_list_push_front_impl) 10106 BTF_ID(func, bpf_list_push_back_impl) 10107 BTF_ID(func, bpf_list_pop_front) 10108 BTF_ID(func, bpf_list_pop_back) 10109 BTF_ID(func, bpf_cast_to_kern_ctx) 10110 BTF_ID(func, bpf_rdonly_cast) 10111 BTF_ID(func, bpf_rcu_read_lock) 10112 BTF_ID(func, bpf_rcu_read_unlock) 10113 BTF_ID(func, bpf_rbtree_remove) 10114 BTF_ID(func, bpf_rbtree_add_impl) 10115 BTF_ID(func, bpf_rbtree_first) 10116 BTF_ID(func, bpf_dynptr_from_skb) 10117 BTF_ID(func, bpf_dynptr_from_xdp) 10118 BTF_ID(func, bpf_dynptr_slice) 10119 BTF_ID(func, bpf_dynptr_slice_rdwr) 10120 BTF_ID(func, bpf_dynptr_clone) 10121 10122 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10123 { 10124 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10125 meta->arg_owning_ref) { 10126 return false; 10127 } 10128 10129 return meta->kfunc_flags & KF_RET_NULL; 10130 } 10131 10132 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10133 { 10134 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10135 } 10136 10137 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10138 { 10139 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10140 } 10141 10142 static enum kfunc_ptr_arg_type 10143 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10144 struct bpf_kfunc_call_arg_meta *meta, 10145 const struct btf_type *t, const struct btf_type *ref_t, 10146 const char *ref_tname, const struct btf_param *args, 10147 int argno, int nargs) 10148 { 10149 u32 regno = argno + 1; 10150 struct bpf_reg_state *regs = cur_regs(env); 10151 struct bpf_reg_state *reg = ®s[regno]; 10152 bool arg_mem_size = false; 10153 10154 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10155 return KF_ARG_PTR_TO_CTX; 10156 10157 /* In this function, we verify the kfunc's BTF as per the argument type, 10158 * leaving the rest of the verification with respect to the register 10159 * type to our caller. When a set of conditions hold in the BTF type of 10160 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10161 */ 10162 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10163 return KF_ARG_PTR_TO_CTX; 10164 10165 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10166 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10167 10168 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10169 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10170 10171 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10172 return KF_ARG_PTR_TO_DYNPTR; 10173 10174 if (is_kfunc_arg_iter(meta, argno)) 10175 return KF_ARG_PTR_TO_ITER; 10176 10177 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10178 return KF_ARG_PTR_TO_LIST_HEAD; 10179 10180 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10181 return KF_ARG_PTR_TO_LIST_NODE; 10182 10183 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10184 return KF_ARG_PTR_TO_RB_ROOT; 10185 10186 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10187 return KF_ARG_PTR_TO_RB_NODE; 10188 10189 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10190 if (!btf_type_is_struct(ref_t)) { 10191 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10192 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10193 return -EINVAL; 10194 } 10195 return KF_ARG_PTR_TO_BTF_ID; 10196 } 10197 10198 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10199 return KF_ARG_PTR_TO_CALLBACK; 10200 10201 10202 if (argno + 1 < nargs && 10203 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10204 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10205 arg_mem_size = true; 10206 10207 /* This is the catch all argument type of register types supported by 10208 * check_helper_mem_access. However, we only allow when argument type is 10209 * pointer to scalar, or struct composed (recursively) of scalars. When 10210 * arg_mem_size is true, the pointer can be void *. 10211 */ 10212 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10213 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10214 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10215 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10216 return -EINVAL; 10217 } 10218 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10219 } 10220 10221 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10222 struct bpf_reg_state *reg, 10223 const struct btf_type *ref_t, 10224 const char *ref_tname, u32 ref_id, 10225 struct bpf_kfunc_call_arg_meta *meta, 10226 int argno) 10227 { 10228 const struct btf_type *reg_ref_t; 10229 bool strict_type_match = false; 10230 const struct btf *reg_btf; 10231 const char *reg_ref_tname; 10232 u32 reg_ref_id; 10233 10234 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10235 reg_btf = reg->btf; 10236 reg_ref_id = reg->btf_id; 10237 } else { 10238 reg_btf = btf_vmlinux; 10239 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10240 } 10241 10242 /* Enforce strict type matching for calls to kfuncs that are acquiring 10243 * or releasing a reference, or are no-cast aliases. We do _not_ 10244 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10245 * as we want to enable BPF programs to pass types that are bitwise 10246 * equivalent without forcing them to explicitly cast with something 10247 * like bpf_cast_to_kern_ctx(). 10248 * 10249 * For example, say we had a type like the following: 10250 * 10251 * struct bpf_cpumask { 10252 * cpumask_t cpumask; 10253 * refcount_t usage; 10254 * }; 10255 * 10256 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10257 * to a struct cpumask, so it would be safe to pass a struct 10258 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10259 * 10260 * The philosophy here is similar to how we allow scalars of different 10261 * types to be passed to kfuncs as long as the size is the same. The 10262 * only difference here is that we're simply allowing 10263 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10264 * resolve types. 10265 */ 10266 if (is_kfunc_acquire(meta) || 10267 (is_kfunc_release(meta) && reg->ref_obj_id) || 10268 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10269 strict_type_match = true; 10270 10271 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10272 10273 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10274 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10275 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10276 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10277 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10278 btf_type_str(reg_ref_t), reg_ref_tname); 10279 return -EINVAL; 10280 } 10281 return 0; 10282 } 10283 10284 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10285 { 10286 struct bpf_verifier_state *state = env->cur_state; 10287 10288 if (!state->active_lock.ptr) { 10289 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10290 return -EFAULT; 10291 } 10292 10293 if (type_flag(reg->type) & NON_OWN_REF) { 10294 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10295 return -EFAULT; 10296 } 10297 10298 reg->type |= NON_OWN_REF; 10299 return 0; 10300 } 10301 10302 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10303 { 10304 struct bpf_func_state *state, *unused; 10305 struct bpf_reg_state *reg; 10306 int i; 10307 10308 state = cur_func(env); 10309 10310 if (!ref_obj_id) { 10311 verbose(env, "verifier internal error: ref_obj_id is zero for " 10312 "owning -> non-owning conversion\n"); 10313 return -EFAULT; 10314 } 10315 10316 for (i = 0; i < state->acquired_refs; i++) { 10317 if (state->refs[i].id != ref_obj_id) 10318 continue; 10319 10320 /* Clear ref_obj_id here so release_reference doesn't clobber 10321 * the whole reg 10322 */ 10323 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10324 if (reg->ref_obj_id == ref_obj_id) { 10325 reg->ref_obj_id = 0; 10326 ref_set_non_owning(env, reg); 10327 } 10328 })); 10329 return 0; 10330 } 10331 10332 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10333 return -EFAULT; 10334 } 10335 10336 /* Implementation details: 10337 * 10338 * Each register points to some region of memory, which we define as an 10339 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10340 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10341 * allocation. The lock and the data it protects are colocated in the same 10342 * memory region. 10343 * 10344 * Hence, everytime a register holds a pointer value pointing to such 10345 * allocation, the verifier preserves a unique reg->id for it. 10346 * 10347 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10348 * bpf_spin_lock is called. 10349 * 10350 * To enable this, lock state in the verifier captures two values: 10351 * active_lock.ptr = Register's type specific pointer 10352 * active_lock.id = A unique ID for each register pointer value 10353 * 10354 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10355 * supported register types. 10356 * 10357 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10358 * allocated objects is the reg->btf pointer. 10359 * 10360 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10361 * can establish the provenance of the map value statically for each distinct 10362 * lookup into such maps. They always contain a single map value hence unique 10363 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10364 * 10365 * So, in case of global variables, they use array maps with max_entries = 1, 10366 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10367 * into the same map value as max_entries is 1, as described above). 10368 * 10369 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10370 * outer map pointer (in verifier context), but each lookup into an inner map 10371 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10372 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10373 * will get different reg->id assigned to each lookup, hence different 10374 * active_lock.id. 10375 * 10376 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10377 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10378 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10379 */ 10380 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10381 { 10382 void *ptr; 10383 u32 id; 10384 10385 switch ((int)reg->type) { 10386 case PTR_TO_MAP_VALUE: 10387 ptr = reg->map_ptr; 10388 break; 10389 case PTR_TO_BTF_ID | MEM_ALLOC: 10390 ptr = reg->btf; 10391 break; 10392 default: 10393 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10394 return -EFAULT; 10395 } 10396 id = reg->id; 10397 10398 if (!env->cur_state->active_lock.ptr) 10399 return -EINVAL; 10400 if (env->cur_state->active_lock.ptr != ptr || 10401 env->cur_state->active_lock.id != id) { 10402 verbose(env, "held lock and object are not in the same allocation\n"); 10403 return -EINVAL; 10404 } 10405 return 0; 10406 } 10407 10408 static bool is_bpf_list_api_kfunc(u32 btf_id) 10409 { 10410 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10411 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10412 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10413 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10414 } 10415 10416 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10417 { 10418 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10419 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10420 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10421 } 10422 10423 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10424 { 10425 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10426 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10427 } 10428 10429 static bool is_callback_calling_kfunc(u32 btf_id) 10430 { 10431 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10432 } 10433 10434 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10435 { 10436 return is_bpf_rbtree_api_kfunc(btf_id); 10437 } 10438 10439 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10440 enum btf_field_type head_field_type, 10441 u32 kfunc_btf_id) 10442 { 10443 bool ret; 10444 10445 switch (head_field_type) { 10446 case BPF_LIST_HEAD: 10447 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10448 break; 10449 case BPF_RB_ROOT: 10450 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10451 break; 10452 default: 10453 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10454 btf_field_type_name(head_field_type)); 10455 return false; 10456 } 10457 10458 if (!ret) 10459 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10460 btf_field_type_name(head_field_type)); 10461 return ret; 10462 } 10463 10464 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10465 enum btf_field_type node_field_type, 10466 u32 kfunc_btf_id) 10467 { 10468 bool ret; 10469 10470 switch (node_field_type) { 10471 case BPF_LIST_NODE: 10472 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10473 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10474 break; 10475 case BPF_RB_NODE: 10476 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10477 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10478 break; 10479 default: 10480 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10481 btf_field_type_name(node_field_type)); 10482 return false; 10483 } 10484 10485 if (!ret) 10486 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10487 btf_field_type_name(node_field_type)); 10488 return ret; 10489 } 10490 10491 static int 10492 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10493 struct bpf_reg_state *reg, u32 regno, 10494 struct bpf_kfunc_call_arg_meta *meta, 10495 enum btf_field_type head_field_type, 10496 struct btf_field **head_field) 10497 { 10498 const char *head_type_name; 10499 struct btf_field *field; 10500 struct btf_record *rec; 10501 u32 head_off; 10502 10503 if (meta->btf != btf_vmlinux) { 10504 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10505 return -EFAULT; 10506 } 10507 10508 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10509 return -EFAULT; 10510 10511 head_type_name = btf_field_type_name(head_field_type); 10512 if (!tnum_is_const(reg->var_off)) { 10513 verbose(env, 10514 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10515 regno, head_type_name); 10516 return -EINVAL; 10517 } 10518 10519 rec = reg_btf_record(reg); 10520 head_off = reg->off + reg->var_off.value; 10521 field = btf_record_find(rec, head_off, head_field_type); 10522 if (!field) { 10523 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10524 return -EINVAL; 10525 } 10526 10527 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10528 if (check_reg_allocation_locked(env, reg)) { 10529 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10530 rec->spin_lock_off, head_type_name); 10531 return -EINVAL; 10532 } 10533 10534 if (*head_field) { 10535 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10536 return -EFAULT; 10537 } 10538 *head_field = field; 10539 return 0; 10540 } 10541 10542 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10543 struct bpf_reg_state *reg, u32 regno, 10544 struct bpf_kfunc_call_arg_meta *meta) 10545 { 10546 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10547 &meta->arg_list_head.field); 10548 } 10549 10550 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10551 struct bpf_reg_state *reg, u32 regno, 10552 struct bpf_kfunc_call_arg_meta *meta) 10553 { 10554 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10555 &meta->arg_rbtree_root.field); 10556 } 10557 10558 static int 10559 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10560 struct bpf_reg_state *reg, u32 regno, 10561 struct bpf_kfunc_call_arg_meta *meta, 10562 enum btf_field_type head_field_type, 10563 enum btf_field_type node_field_type, 10564 struct btf_field **node_field) 10565 { 10566 const char *node_type_name; 10567 const struct btf_type *et, *t; 10568 struct btf_field *field; 10569 u32 node_off; 10570 10571 if (meta->btf != btf_vmlinux) { 10572 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10573 return -EFAULT; 10574 } 10575 10576 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10577 return -EFAULT; 10578 10579 node_type_name = btf_field_type_name(node_field_type); 10580 if (!tnum_is_const(reg->var_off)) { 10581 verbose(env, 10582 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10583 regno, node_type_name); 10584 return -EINVAL; 10585 } 10586 10587 node_off = reg->off + reg->var_off.value; 10588 field = reg_find_field_offset(reg, node_off, node_field_type); 10589 if (!field || field->offset != node_off) { 10590 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10591 return -EINVAL; 10592 } 10593 10594 field = *node_field; 10595 10596 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10597 t = btf_type_by_id(reg->btf, reg->btf_id); 10598 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10599 field->graph_root.value_btf_id, true)) { 10600 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10601 "in struct %s, but arg is at offset=%d in struct %s\n", 10602 btf_field_type_name(head_field_type), 10603 btf_field_type_name(node_field_type), 10604 field->graph_root.node_offset, 10605 btf_name_by_offset(field->graph_root.btf, et->name_off), 10606 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10607 return -EINVAL; 10608 } 10609 meta->arg_btf = reg->btf; 10610 meta->arg_btf_id = reg->btf_id; 10611 10612 if (node_off != field->graph_root.node_offset) { 10613 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10614 node_off, btf_field_type_name(node_field_type), 10615 field->graph_root.node_offset, 10616 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10617 return -EINVAL; 10618 } 10619 10620 return 0; 10621 } 10622 10623 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10624 struct bpf_reg_state *reg, u32 regno, 10625 struct bpf_kfunc_call_arg_meta *meta) 10626 { 10627 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10628 BPF_LIST_HEAD, BPF_LIST_NODE, 10629 &meta->arg_list_head.field); 10630 } 10631 10632 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10633 struct bpf_reg_state *reg, u32 regno, 10634 struct bpf_kfunc_call_arg_meta *meta) 10635 { 10636 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10637 BPF_RB_ROOT, BPF_RB_NODE, 10638 &meta->arg_rbtree_root.field); 10639 } 10640 10641 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10642 int insn_idx) 10643 { 10644 const char *func_name = meta->func_name, *ref_tname; 10645 const struct btf *btf = meta->btf; 10646 const struct btf_param *args; 10647 struct btf_record *rec; 10648 u32 i, nargs; 10649 int ret; 10650 10651 args = (const struct btf_param *)(meta->func_proto + 1); 10652 nargs = btf_type_vlen(meta->func_proto); 10653 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10654 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10655 MAX_BPF_FUNC_REG_ARGS); 10656 return -EINVAL; 10657 } 10658 10659 /* Check that BTF function arguments match actual types that the 10660 * verifier sees. 10661 */ 10662 for (i = 0; i < nargs; i++) { 10663 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10664 const struct btf_type *t, *ref_t, *resolve_ret; 10665 enum bpf_arg_type arg_type = ARG_DONTCARE; 10666 u32 regno = i + 1, ref_id, type_size; 10667 bool is_ret_buf_sz = false; 10668 int kf_arg_type; 10669 10670 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10671 10672 if (is_kfunc_arg_ignore(btf, &args[i])) 10673 continue; 10674 10675 if (btf_type_is_scalar(t)) { 10676 if (reg->type != SCALAR_VALUE) { 10677 verbose(env, "R%d is not a scalar\n", regno); 10678 return -EINVAL; 10679 } 10680 10681 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10682 if (meta->arg_constant.found) { 10683 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10684 return -EFAULT; 10685 } 10686 if (!tnum_is_const(reg->var_off)) { 10687 verbose(env, "R%d must be a known constant\n", regno); 10688 return -EINVAL; 10689 } 10690 ret = mark_chain_precision(env, regno); 10691 if (ret < 0) 10692 return ret; 10693 meta->arg_constant.found = true; 10694 meta->arg_constant.value = reg->var_off.value; 10695 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10696 meta->r0_rdonly = true; 10697 is_ret_buf_sz = true; 10698 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10699 is_ret_buf_sz = true; 10700 } 10701 10702 if (is_ret_buf_sz) { 10703 if (meta->r0_size) { 10704 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10705 return -EINVAL; 10706 } 10707 10708 if (!tnum_is_const(reg->var_off)) { 10709 verbose(env, "R%d is not a const\n", regno); 10710 return -EINVAL; 10711 } 10712 10713 meta->r0_size = reg->var_off.value; 10714 ret = mark_chain_precision(env, regno); 10715 if (ret) 10716 return ret; 10717 } 10718 continue; 10719 } 10720 10721 if (!btf_type_is_ptr(t)) { 10722 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10723 return -EINVAL; 10724 } 10725 10726 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10727 (register_is_null(reg) || type_may_be_null(reg->type))) { 10728 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10729 return -EACCES; 10730 } 10731 10732 if (reg->ref_obj_id) { 10733 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10734 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10735 regno, reg->ref_obj_id, 10736 meta->ref_obj_id); 10737 return -EFAULT; 10738 } 10739 meta->ref_obj_id = reg->ref_obj_id; 10740 if (is_kfunc_release(meta)) 10741 meta->release_regno = regno; 10742 } 10743 10744 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10745 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10746 10747 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10748 if (kf_arg_type < 0) 10749 return kf_arg_type; 10750 10751 switch (kf_arg_type) { 10752 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10753 case KF_ARG_PTR_TO_BTF_ID: 10754 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10755 break; 10756 10757 if (!is_trusted_reg(reg)) { 10758 if (!is_kfunc_rcu(meta)) { 10759 verbose(env, "R%d must be referenced or trusted\n", regno); 10760 return -EINVAL; 10761 } 10762 if (!is_rcu_reg(reg)) { 10763 verbose(env, "R%d must be a rcu pointer\n", regno); 10764 return -EINVAL; 10765 } 10766 } 10767 10768 fallthrough; 10769 case KF_ARG_PTR_TO_CTX: 10770 /* Trusted arguments have the same offset checks as release arguments */ 10771 arg_type |= OBJ_RELEASE; 10772 break; 10773 case KF_ARG_PTR_TO_DYNPTR: 10774 case KF_ARG_PTR_TO_ITER: 10775 case KF_ARG_PTR_TO_LIST_HEAD: 10776 case KF_ARG_PTR_TO_LIST_NODE: 10777 case KF_ARG_PTR_TO_RB_ROOT: 10778 case KF_ARG_PTR_TO_RB_NODE: 10779 case KF_ARG_PTR_TO_MEM: 10780 case KF_ARG_PTR_TO_MEM_SIZE: 10781 case KF_ARG_PTR_TO_CALLBACK: 10782 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10783 /* Trusted by default */ 10784 break; 10785 default: 10786 WARN_ON_ONCE(1); 10787 return -EFAULT; 10788 } 10789 10790 if (is_kfunc_release(meta) && reg->ref_obj_id) 10791 arg_type |= OBJ_RELEASE; 10792 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10793 if (ret < 0) 10794 return ret; 10795 10796 switch (kf_arg_type) { 10797 case KF_ARG_PTR_TO_CTX: 10798 if (reg->type != PTR_TO_CTX) { 10799 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10800 return -EINVAL; 10801 } 10802 10803 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10804 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10805 if (ret < 0) 10806 return -EINVAL; 10807 meta->ret_btf_id = ret; 10808 } 10809 break; 10810 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10811 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10812 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10813 return -EINVAL; 10814 } 10815 if (!reg->ref_obj_id) { 10816 verbose(env, "allocated object must be referenced\n"); 10817 return -EINVAL; 10818 } 10819 if (meta->btf == btf_vmlinux && 10820 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 10821 meta->arg_btf = reg->btf; 10822 meta->arg_btf_id = reg->btf_id; 10823 } 10824 break; 10825 case KF_ARG_PTR_TO_DYNPTR: 10826 { 10827 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 10828 int clone_ref_obj_id = 0; 10829 10830 if (reg->type != PTR_TO_STACK && 10831 reg->type != CONST_PTR_TO_DYNPTR) { 10832 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 10833 return -EINVAL; 10834 } 10835 10836 if (reg->type == CONST_PTR_TO_DYNPTR) 10837 dynptr_arg_type |= MEM_RDONLY; 10838 10839 if (is_kfunc_arg_uninit(btf, &args[i])) 10840 dynptr_arg_type |= MEM_UNINIT; 10841 10842 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 10843 dynptr_arg_type |= DYNPTR_TYPE_SKB; 10844 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 10845 dynptr_arg_type |= DYNPTR_TYPE_XDP; 10846 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 10847 (dynptr_arg_type & MEM_UNINIT)) { 10848 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 10849 10850 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 10851 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 10852 return -EFAULT; 10853 } 10854 10855 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 10856 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 10857 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 10858 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 10859 return -EFAULT; 10860 } 10861 } 10862 10863 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 10864 if (ret < 0) 10865 return ret; 10866 10867 if (!(dynptr_arg_type & MEM_UNINIT)) { 10868 int id = dynptr_id(env, reg); 10869 10870 if (id < 0) { 10871 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10872 return id; 10873 } 10874 meta->initialized_dynptr.id = id; 10875 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 10876 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 10877 } 10878 10879 break; 10880 } 10881 case KF_ARG_PTR_TO_ITER: 10882 ret = process_iter_arg(env, regno, insn_idx, meta); 10883 if (ret < 0) 10884 return ret; 10885 break; 10886 case KF_ARG_PTR_TO_LIST_HEAD: 10887 if (reg->type != PTR_TO_MAP_VALUE && 10888 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10889 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10890 return -EINVAL; 10891 } 10892 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10893 verbose(env, "allocated object must be referenced\n"); 10894 return -EINVAL; 10895 } 10896 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 10897 if (ret < 0) 10898 return ret; 10899 break; 10900 case KF_ARG_PTR_TO_RB_ROOT: 10901 if (reg->type != PTR_TO_MAP_VALUE && 10902 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10903 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10904 return -EINVAL; 10905 } 10906 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10907 verbose(env, "allocated object must be referenced\n"); 10908 return -EINVAL; 10909 } 10910 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 10911 if (ret < 0) 10912 return ret; 10913 break; 10914 case KF_ARG_PTR_TO_LIST_NODE: 10915 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10916 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10917 return -EINVAL; 10918 } 10919 if (!reg->ref_obj_id) { 10920 verbose(env, "allocated object must be referenced\n"); 10921 return -EINVAL; 10922 } 10923 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 10924 if (ret < 0) 10925 return ret; 10926 break; 10927 case KF_ARG_PTR_TO_RB_NODE: 10928 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 10929 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 10930 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 10931 return -EINVAL; 10932 } 10933 if (in_rbtree_lock_required_cb(env)) { 10934 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 10935 return -EINVAL; 10936 } 10937 } else { 10938 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10939 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10940 return -EINVAL; 10941 } 10942 if (!reg->ref_obj_id) { 10943 verbose(env, "allocated object must be referenced\n"); 10944 return -EINVAL; 10945 } 10946 } 10947 10948 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 10949 if (ret < 0) 10950 return ret; 10951 break; 10952 case KF_ARG_PTR_TO_BTF_ID: 10953 /* Only base_type is checked, further checks are done here */ 10954 if ((base_type(reg->type) != PTR_TO_BTF_ID || 10955 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 10956 !reg2btf_ids[base_type(reg->type)]) { 10957 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 10958 verbose(env, "expected %s or socket\n", 10959 reg_type_str(env, base_type(reg->type) | 10960 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 10961 return -EINVAL; 10962 } 10963 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 10964 if (ret < 0) 10965 return ret; 10966 break; 10967 case KF_ARG_PTR_TO_MEM: 10968 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 10969 if (IS_ERR(resolve_ret)) { 10970 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 10971 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 10972 return -EINVAL; 10973 } 10974 ret = check_mem_reg(env, reg, regno, type_size); 10975 if (ret < 0) 10976 return ret; 10977 break; 10978 case KF_ARG_PTR_TO_MEM_SIZE: 10979 { 10980 struct bpf_reg_state *buff_reg = ®s[regno]; 10981 const struct btf_param *buff_arg = &args[i]; 10982 struct bpf_reg_state *size_reg = ®s[regno + 1]; 10983 const struct btf_param *size_arg = &args[i + 1]; 10984 10985 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 10986 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 10987 if (ret < 0) { 10988 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 10989 return ret; 10990 } 10991 } 10992 10993 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 10994 if (meta->arg_constant.found) { 10995 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10996 return -EFAULT; 10997 } 10998 if (!tnum_is_const(size_reg->var_off)) { 10999 verbose(env, "R%d must be a known constant\n", regno + 1); 11000 return -EINVAL; 11001 } 11002 meta->arg_constant.found = true; 11003 meta->arg_constant.value = size_reg->var_off.value; 11004 } 11005 11006 /* Skip next '__sz' or '__szk' argument */ 11007 i++; 11008 break; 11009 } 11010 case KF_ARG_PTR_TO_CALLBACK: 11011 meta->subprogno = reg->subprogno; 11012 break; 11013 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11014 if (!type_is_ptr_alloc_obj(reg->type)) { 11015 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11016 return -EINVAL; 11017 } 11018 if (!type_is_non_owning_ref(reg->type)) 11019 meta->arg_owning_ref = true; 11020 11021 rec = reg_btf_record(reg); 11022 if (!rec) { 11023 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11024 return -EFAULT; 11025 } 11026 11027 if (rec->refcount_off < 0) { 11028 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11029 return -EINVAL; 11030 } 11031 if (rec->refcount_off >= 0) { 11032 verbose(env, "bpf_refcount_acquire calls are disabled for now\n"); 11033 return -EINVAL; 11034 } 11035 meta->arg_btf = reg->btf; 11036 meta->arg_btf_id = reg->btf_id; 11037 break; 11038 } 11039 } 11040 11041 if (is_kfunc_release(meta) && !meta->release_regno) { 11042 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11043 func_name); 11044 return -EINVAL; 11045 } 11046 11047 return 0; 11048 } 11049 11050 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11051 struct bpf_insn *insn, 11052 struct bpf_kfunc_call_arg_meta *meta, 11053 const char **kfunc_name) 11054 { 11055 const struct btf_type *func, *func_proto; 11056 u32 func_id, *kfunc_flags; 11057 const char *func_name; 11058 struct btf *desc_btf; 11059 11060 if (kfunc_name) 11061 *kfunc_name = NULL; 11062 11063 if (!insn->imm) 11064 return -EINVAL; 11065 11066 desc_btf = find_kfunc_desc_btf(env, insn->off); 11067 if (IS_ERR(desc_btf)) 11068 return PTR_ERR(desc_btf); 11069 11070 func_id = insn->imm; 11071 func = btf_type_by_id(desc_btf, func_id); 11072 func_name = btf_name_by_offset(desc_btf, func->name_off); 11073 if (kfunc_name) 11074 *kfunc_name = func_name; 11075 func_proto = btf_type_by_id(desc_btf, func->type); 11076 11077 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11078 if (!kfunc_flags) { 11079 return -EACCES; 11080 } 11081 11082 memset(meta, 0, sizeof(*meta)); 11083 meta->btf = desc_btf; 11084 meta->func_id = func_id; 11085 meta->kfunc_flags = *kfunc_flags; 11086 meta->func_proto = func_proto; 11087 meta->func_name = func_name; 11088 11089 return 0; 11090 } 11091 11092 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11093 int *insn_idx_p) 11094 { 11095 const struct btf_type *t, *ptr_type; 11096 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11097 struct bpf_reg_state *regs = cur_regs(env); 11098 const char *func_name, *ptr_type_name; 11099 bool sleepable, rcu_lock, rcu_unlock; 11100 struct bpf_kfunc_call_arg_meta meta; 11101 struct bpf_insn_aux_data *insn_aux; 11102 int err, insn_idx = *insn_idx_p; 11103 const struct btf_param *args; 11104 const struct btf_type *ret_t; 11105 struct btf *desc_btf; 11106 11107 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11108 if (!insn->imm) 11109 return 0; 11110 11111 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11112 if (err == -EACCES && func_name) 11113 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11114 if (err) 11115 return err; 11116 desc_btf = meta.btf; 11117 insn_aux = &env->insn_aux_data[insn_idx]; 11118 11119 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11120 11121 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11122 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11123 return -EACCES; 11124 } 11125 11126 sleepable = is_kfunc_sleepable(&meta); 11127 if (sleepable && !env->prog->aux->sleepable) { 11128 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11129 return -EACCES; 11130 } 11131 11132 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11133 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11134 11135 if (env->cur_state->active_rcu_lock) { 11136 struct bpf_func_state *state; 11137 struct bpf_reg_state *reg; 11138 11139 if (rcu_lock) { 11140 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11141 return -EINVAL; 11142 } else if (rcu_unlock) { 11143 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11144 if (reg->type & MEM_RCU) { 11145 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11146 reg->type |= PTR_UNTRUSTED; 11147 } 11148 })); 11149 env->cur_state->active_rcu_lock = false; 11150 } else if (sleepable) { 11151 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11152 return -EACCES; 11153 } 11154 } else if (rcu_lock) { 11155 env->cur_state->active_rcu_lock = true; 11156 } else if (rcu_unlock) { 11157 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11158 return -EINVAL; 11159 } 11160 11161 /* Check the arguments */ 11162 err = check_kfunc_args(env, &meta, insn_idx); 11163 if (err < 0) 11164 return err; 11165 /* In case of release function, we get register number of refcounted 11166 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11167 */ 11168 if (meta.release_regno) { 11169 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11170 if (err) { 11171 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11172 func_name, meta.func_id); 11173 return err; 11174 } 11175 } 11176 11177 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11178 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11179 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11180 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11181 insn_aux->insert_off = regs[BPF_REG_2].off; 11182 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11183 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11184 if (err) { 11185 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11186 func_name, meta.func_id); 11187 return err; 11188 } 11189 11190 err = release_reference(env, release_ref_obj_id); 11191 if (err) { 11192 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11193 func_name, meta.func_id); 11194 return err; 11195 } 11196 } 11197 11198 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11199 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11200 set_rbtree_add_callback_state); 11201 if (err) { 11202 verbose(env, "kfunc %s#%d failed callback verification\n", 11203 func_name, meta.func_id); 11204 return err; 11205 } 11206 } 11207 11208 for (i = 0; i < CALLER_SAVED_REGS; i++) 11209 mark_reg_not_init(env, regs, caller_saved[i]); 11210 11211 /* Check return type */ 11212 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11213 11214 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11215 /* Only exception is bpf_obj_new_impl */ 11216 if (meta.btf != btf_vmlinux || 11217 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11218 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11219 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11220 return -EINVAL; 11221 } 11222 } 11223 11224 if (btf_type_is_scalar(t)) { 11225 mark_reg_unknown(env, regs, BPF_REG_0); 11226 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11227 } else if (btf_type_is_ptr(t)) { 11228 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11229 11230 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11231 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11232 struct btf *ret_btf; 11233 u32 ret_btf_id; 11234 11235 if (unlikely(!bpf_global_ma_set)) 11236 return -ENOMEM; 11237 11238 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11239 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11240 return -EINVAL; 11241 } 11242 11243 ret_btf = env->prog->aux->btf; 11244 ret_btf_id = meta.arg_constant.value; 11245 11246 /* This may be NULL due to user not supplying a BTF */ 11247 if (!ret_btf) { 11248 verbose(env, "bpf_obj_new requires prog BTF\n"); 11249 return -EINVAL; 11250 } 11251 11252 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11253 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11254 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11255 return -EINVAL; 11256 } 11257 11258 mark_reg_known_zero(env, regs, BPF_REG_0); 11259 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11260 regs[BPF_REG_0].btf = ret_btf; 11261 regs[BPF_REG_0].btf_id = ret_btf_id; 11262 11263 insn_aux->obj_new_size = ret_t->size; 11264 insn_aux->kptr_struct_meta = 11265 btf_find_struct_meta(ret_btf, ret_btf_id); 11266 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11267 mark_reg_known_zero(env, regs, BPF_REG_0); 11268 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11269 regs[BPF_REG_0].btf = meta.arg_btf; 11270 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11271 11272 insn_aux->kptr_struct_meta = 11273 btf_find_struct_meta(meta.arg_btf, 11274 meta.arg_btf_id); 11275 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11276 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11277 struct btf_field *field = meta.arg_list_head.field; 11278 11279 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11280 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11281 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11282 struct btf_field *field = meta.arg_rbtree_root.field; 11283 11284 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11285 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11286 mark_reg_known_zero(env, regs, BPF_REG_0); 11287 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11288 regs[BPF_REG_0].btf = desc_btf; 11289 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11290 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11291 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11292 if (!ret_t || !btf_type_is_struct(ret_t)) { 11293 verbose(env, 11294 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11295 return -EINVAL; 11296 } 11297 11298 mark_reg_known_zero(env, regs, BPF_REG_0); 11299 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11300 regs[BPF_REG_0].btf = desc_btf; 11301 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11302 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11303 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11304 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11305 11306 mark_reg_known_zero(env, regs, BPF_REG_0); 11307 11308 if (!meta.arg_constant.found) { 11309 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11310 return -EFAULT; 11311 } 11312 11313 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11314 11315 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11316 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11317 11318 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11319 regs[BPF_REG_0].type |= MEM_RDONLY; 11320 } else { 11321 /* this will set env->seen_direct_write to true */ 11322 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11323 verbose(env, "the prog does not allow writes to packet data\n"); 11324 return -EINVAL; 11325 } 11326 } 11327 11328 if (!meta.initialized_dynptr.id) { 11329 verbose(env, "verifier internal error: no dynptr id\n"); 11330 return -EFAULT; 11331 } 11332 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11333 11334 /* we don't need to set BPF_REG_0's ref obj id 11335 * because packet slices are not refcounted (see 11336 * dynptr_type_refcounted) 11337 */ 11338 } else { 11339 verbose(env, "kernel function %s unhandled dynamic return type\n", 11340 meta.func_name); 11341 return -EFAULT; 11342 } 11343 } else if (!__btf_type_is_struct(ptr_type)) { 11344 if (!meta.r0_size) { 11345 __u32 sz; 11346 11347 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11348 meta.r0_size = sz; 11349 meta.r0_rdonly = true; 11350 } 11351 } 11352 if (!meta.r0_size) { 11353 ptr_type_name = btf_name_by_offset(desc_btf, 11354 ptr_type->name_off); 11355 verbose(env, 11356 "kernel function %s returns pointer type %s %s is not supported\n", 11357 func_name, 11358 btf_type_str(ptr_type), 11359 ptr_type_name); 11360 return -EINVAL; 11361 } 11362 11363 mark_reg_known_zero(env, regs, BPF_REG_0); 11364 regs[BPF_REG_0].type = PTR_TO_MEM; 11365 regs[BPF_REG_0].mem_size = meta.r0_size; 11366 11367 if (meta.r0_rdonly) 11368 regs[BPF_REG_0].type |= MEM_RDONLY; 11369 11370 /* Ensures we don't access the memory after a release_reference() */ 11371 if (meta.ref_obj_id) 11372 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11373 } else { 11374 mark_reg_known_zero(env, regs, BPF_REG_0); 11375 regs[BPF_REG_0].btf = desc_btf; 11376 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11377 regs[BPF_REG_0].btf_id = ptr_type_id; 11378 } 11379 11380 if (is_kfunc_ret_null(&meta)) { 11381 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11382 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11383 regs[BPF_REG_0].id = ++env->id_gen; 11384 } 11385 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11386 if (is_kfunc_acquire(&meta)) { 11387 int id = acquire_reference_state(env, insn_idx); 11388 11389 if (id < 0) 11390 return id; 11391 if (is_kfunc_ret_null(&meta)) 11392 regs[BPF_REG_0].id = id; 11393 regs[BPF_REG_0].ref_obj_id = id; 11394 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11395 ref_set_non_owning(env, ®s[BPF_REG_0]); 11396 } 11397 11398 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11399 regs[BPF_REG_0].id = ++env->id_gen; 11400 } else if (btf_type_is_void(t)) { 11401 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11402 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11403 insn_aux->kptr_struct_meta = 11404 btf_find_struct_meta(meta.arg_btf, 11405 meta.arg_btf_id); 11406 } 11407 } 11408 } 11409 11410 nargs = btf_type_vlen(meta.func_proto); 11411 args = (const struct btf_param *)(meta.func_proto + 1); 11412 for (i = 0; i < nargs; i++) { 11413 u32 regno = i + 1; 11414 11415 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11416 if (btf_type_is_ptr(t)) 11417 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11418 else 11419 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11420 mark_btf_func_reg_size(env, regno, t->size); 11421 } 11422 11423 if (is_iter_next_kfunc(&meta)) { 11424 err = process_iter_next_call(env, insn_idx, &meta); 11425 if (err) 11426 return err; 11427 } 11428 11429 return 0; 11430 } 11431 11432 static bool signed_add_overflows(s64 a, s64 b) 11433 { 11434 /* Do the add in u64, where overflow is well-defined */ 11435 s64 res = (s64)((u64)a + (u64)b); 11436 11437 if (b < 0) 11438 return res > a; 11439 return res < a; 11440 } 11441 11442 static bool signed_add32_overflows(s32 a, s32 b) 11443 { 11444 /* Do the add in u32, where overflow is well-defined */ 11445 s32 res = (s32)((u32)a + (u32)b); 11446 11447 if (b < 0) 11448 return res > a; 11449 return res < a; 11450 } 11451 11452 static bool signed_sub_overflows(s64 a, s64 b) 11453 { 11454 /* Do the sub in u64, where overflow is well-defined */ 11455 s64 res = (s64)((u64)a - (u64)b); 11456 11457 if (b < 0) 11458 return res < a; 11459 return res > a; 11460 } 11461 11462 static bool signed_sub32_overflows(s32 a, s32 b) 11463 { 11464 /* Do the sub in u32, where overflow is well-defined */ 11465 s32 res = (s32)((u32)a - (u32)b); 11466 11467 if (b < 0) 11468 return res < a; 11469 return res > a; 11470 } 11471 11472 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11473 const struct bpf_reg_state *reg, 11474 enum bpf_reg_type type) 11475 { 11476 bool known = tnum_is_const(reg->var_off); 11477 s64 val = reg->var_off.value; 11478 s64 smin = reg->smin_value; 11479 11480 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11481 verbose(env, "math between %s pointer and %lld is not allowed\n", 11482 reg_type_str(env, type), val); 11483 return false; 11484 } 11485 11486 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11487 verbose(env, "%s pointer offset %d is not allowed\n", 11488 reg_type_str(env, type), reg->off); 11489 return false; 11490 } 11491 11492 if (smin == S64_MIN) { 11493 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11494 reg_type_str(env, type)); 11495 return false; 11496 } 11497 11498 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11499 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11500 smin, reg_type_str(env, type)); 11501 return false; 11502 } 11503 11504 return true; 11505 } 11506 11507 enum { 11508 REASON_BOUNDS = -1, 11509 REASON_TYPE = -2, 11510 REASON_PATHS = -3, 11511 REASON_LIMIT = -4, 11512 REASON_STACK = -5, 11513 }; 11514 11515 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11516 u32 *alu_limit, bool mask_to_left) 11517 { 11518 u32 max = 0, ptr_limit = 0; 11519 11520 switch (ptr_reg->type) { 11521 case PTR_TO_STACK: 11522 /* Offset 0 is out-of-bounds, but acceptable start for the 11523 * left direction, see BPF_REG_FP. Also, unknown scalar 11524 * offset where we would need to deal with min/max bounds is 11525 * currently prohibited for unprivileged. 11526 */ 11527 max = MAX_BPF_STACK + mask_to_left; 11528 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11529 break; 11530 case PTR_TO_MAP_VALUE: 11531 max = ptr_reg->map_ptr->value_size; 11532 ptr_limit = (mask_to_left ? 11533 ptr_reg->smin_value : 11534 ptr_reg->umax_value) + ptr_reg->off; 11535 break; 11536 default: 11537 return REASON_TYPE; 11538 } 11539 11540 if (ptr_limit >= max) 11541 return REASON_LIMIT; 11542 *alu_limit = ptr_limit; 11543 return 0; 11544 } 11545 11546 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11547 const struct bpf_insn *insn) 11548 { 11549 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11550 } 11551 11552 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11553 u32 alu_state, u32 alu_limit) 11554 { 11555 /* If we arrived here from different branches with different 11556 * state or limits to sanitize, then this won't work. 11557 */ 11558 if (aux->alu_state && 11559 (aux->alu_state != alu_state || 11560 aux->alu_limit != alu_limit)) 11561 return REASON_PATHS; 11562 11563 /* Corresponding fixup done in do_misc_fixups(). */ 11564 aux->alu_state = alu_state; 11565 aux->alu_limit = alu_limit; 11566 return 0; 11567 } 11568 11569 static int sanitize_val_alu(struct bpf_verifier_env *env, 11570 struct bpf_insn *insn) 11571 { 11572 struct bpf_insn_aux_data *aux = cur_aux(env); 11573 11574 if (can_skip_alu_sanitation(env, insn)) 11575 return 0; 11576 11577 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11578 } 11579 11580 static bool sanitize_needed(u8 opcode) 11581 { 11582 return opcode == BPF_ADD || opcode == BPF_SUB; 11583 } 11584 11585 struct bpf_sanitize_info { 11586 struct bpf_insn_aux_data aux; 11587 bool mask_to_left; 11588 }; 11589 11590 static struct bpf_verifier_state * 11591 sanitize_speculative_path(struct bpf_verifier_env *env, 11592 const struct bpf_insn *insn, 11593 u32 next_idx, u32 curr_idx) 11594 { 11595 struct bpf_verifier_state *branch; 11596 struct bpf_reg_state *regs; 11597 11598 branch = push_stack(env, next_idx, curr_idx, true); 11599 if (branch && insn) { 11600 regs = branch->frame[branch->curframe]->regs; 11601 if (BPF_SRC(insn->code) == BPF_K) { 11602 mark_reg_unknown(env, regs, insn->dst_reg); 11603 } else if (BPF_SRC(insn->code) == BPF_X) { 11604 mark_reg_unknown(env, regs, insn->dst_reg); 11605 mark_reg_unknown(env, regs, insn->src_reg); 11606 } 11607 } 11608 return branch; 11609 } 11610 11611 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11612 struct bpf_insn *insn, 11613 const struct bpf_reg_state *ptr_reg, 11614 const struct bpf_reg_state *off_reg, 11615 struct bpf_reg_state *dst_reg, 11616 struct bpf_sanitize_info *info, 11617 const bool commit_window) 11618 { 11619 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11620 struct bpf_verifier_state *vstate = env->cur_state; 11621 bool off_is_imm = tnum_is_const(off_reg->var_off); 11622 bool off_is_neg = off_reg->smin_value < 0; 11623 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11624 u8 opcode = BPF_OP(insn->code); 11625 u32 alu_state, alu_limit; 11626 struct bpf_reg_state tmp; 11627 bool ret; 11628 int err; 11629 11630 if (can_skip_alu_sanitation(env, insn)) 11631 return 0; 11632 11633 /* We already marked aux for masking from non-speculative 11634 * paths, thus we got here in the first place. We only care 11635 * to explore bad access from here. 11636 */ 11637 if (vstate->speculative) 11638 goto do_sim; 11639 11640 if (!commit_window) { 11641 if (!tnum_is_const(off_reg->var_off) && 11642 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11643 return REASON_BOUNDS; 11644 11645 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11646 (opcode == BPF_SUB && !off_is_neg); 11647 } 11648 11649 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11650 if (err < 0) 11651 return err; 11652 11653 if (commit_window) { 11654 /* In commit phase we narrow the masking window based on 11655 * the observed pointer move after the simulated operation. 11656 */ 11657 alu_state = info->aux.alu_state; 11658 alu_limit = abs(info->aux.alu_limit - alu_limit); 11659 } else { 11660 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11661 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11662 alu_state |= ptr_is_dst_reg ? 11663 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11664 11665 /* Limit pruning on unknown scalars to enable deep search for 11666 * potential masking differences from other program paths. 11667 */ 11668 if (!off_is_imm) 11669 env->explore_alu_limits = true; 11670 } 11671 11672 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11673 if (err < 0) 11674 return err; 11675 do_sim: 11676 /* If we're in commit phase, we're done here given we already 11677 * pushed the truncated dst_reg into the speculative verification 11678 * stack. 11679 * 11680 * Also, when register is a known constant, we rewrite register-based 11681 * operation to immediate-based, and thus do not need masking (and as 11682 * a consequence, do not need to simulate the zero-truncation either). 11683 */ 11684 if (commit_window || off_is_imm) 11685 return 0; 11686 11687 /* Simulate and find potential out-of-bounds access under 11688 * speculative execution from truncation as a result of 11689 * masking when off was not within expected range. If off 11690 * sits in dst, then we temporarily need to move ptr there 11691 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11692 * for cases where we use K-based arithmetic in one direction 11693 * and truncated reg-based in the other in order to explore 11694 * bad access. 11695 */ 11696 if (!ptr_is_dst_reg) { 11697 tmp = *dst_reg; 11698 copy_register_state(dst_reg, ptr_reg); 11699 } 11700 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11701 env->insn_idx); 11702 if (!ptr_is_dst_reg && ret) 11703 *dst_reg = tmp; 11704 return !ret ? REASON_STACK : 0; 11705 } 11706 11707 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11708 { 11709 struct bpf_verifier_state *vstate = env->cur_state; 11710 11711 /* If we simulate paths under speculation, we don't update the 11712 * insn as 'seen' such that when we verify unreachable paths in 11713 * the non-speculative domain, sanitize_dead_code() can still 11714 * rewrite/sanitize them. 11715 */ 11716 if (!vstate->speculative) 11717 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11718 } 11719 11720 static int sanitize_err(struct bpf_verifier_env *env, 11721 const struct bpf_insn *insn, int reason, 11722 const struct bpf_reg_state *off_reg, 11723 const struct bpf_reg_state *dst_reg) 11724 { 11725 static const char *err = "pointer arithmetic with it prohibited for !root"; 11726 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11727 u32 dst = insn->dst_reg, src = insn->src_reg; 11728 11729 switch (reason) { 11730 case REASON_BOUNDS: 11731 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11732 off_reg == dst_reg ? dst : src, err); 11733 break; 11734 case REASON_TYPE: 11735 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11736 off_reg == dst_reg ? src : dst, err); 11737 break; 11738 case REASON_PATHS: 11739 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11740 dst, op, err); 11741 break; 11742 case REASON_LIMIT: 11743 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11744 dst, op, err); 11745 break; 11746 case REASON_STACK: 11747 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11748 dst, err); 11749 break; 11750 default: 11751 verbose(env, "verifier internal error: unknown reason (%d)\n", 11752 reason); 11753 break; 11754 } 11755 11756 return -EACCES; 11757 } 11758 11759 /* check that stack access falls within stack limits and that 'reg' doesn't 11760 * have a variable offset. 11761 * 11762 * Variable offset is prohibited for unprivileged mode for simplicity since it 11763 * requires corresponding support in Spectre masking for stack ALU. See also 11764 * retrieve_ptr_limit(). 11765 * 11766 * 11767 * 'off' includes 'reg->off'. 11768 */ 11769 static int check_stack_access_for_ptr_arithmetic( 11770 struct bpf_verifier_env *env, 11771 int regno, 11772 const struct bpf_reg_state *reg, 11773 int off) 11774 { 11775 if (!tnum_is_const(reg->var_off)) { 11776 char tn_buf[48]; 11777 11778 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11779 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11780 regno, tn_buf, off); 11781 return -EACCES; 11782 } 11783 11784 if (off >= 0 || off < -MAX_BPF_STACK) { 11785 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11786 "prohibited for !root; off=%d\n", regno, off); 11787 return -EACCES; 11788 } 11789 11790 return 0; 11791 } 11792 11793 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11794 const struct bpf_insn *insn, 11795 const struct bpf_reg_state *dst_reg) 11796 { 11797 u32 dst = insn->dst_reg; 11798 11799 /* For unprivileged we require that resulting offset must be in bounds 11800 * in order to be able to sanitize access later on. 11801 */ 11802 if (env->bypass_spec_v1) 11803 return 0; 11804 11805 switch (dst_reg->type) { 11806 case PTR_TO_STACK: 11807 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 11808 dst_reg->off + dst_reg->var_off.value)) 11809 return -EACCES; 11810 break; 11811 case PTR_TO_MAP_VALUE: 11812 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 11813 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 11814 "prohibited for !root\n", dst); 11815 return -EACCES; 11816 } 11817 break; 11818 default: 11819 break; 11820 } 11821 11822 return 0; 11823 } 11824 11825 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 11826 * Caller should also handle BPF_MOV case separately. 11827 * If we return -EACCES, caller may want to try again treating pointer as a 11828 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 11829 */ 11830 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 11831 struct bpf_insn *insn, 11832 const struct bpf_reg_state *ptr_reg, 11833 const struct bpf_reg_state *off_reg) 11834 { 11835 struct bpf_verifier_state *vstate = env->cur_state; 11836 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11837 struct bpf_reg_state *regs = state->regs, *dst_reg; 11838 bool known = tnum_is_const(off_reg->var_off); 11839 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 11840 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 11841 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 11842 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 11843 struct bpf_sanitize_info info = {}; 11844 u8 opcode = BPF_OP(insn->code); 11845 u32 dst = insn->dst_reg; 11846 int ret; 11847 11848 dst_reg = ®s[dst]; 11849 11850 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 11851 smin_val > smax_val || umin_val > umax_val) { 11852 /* Taint dst register if offset had invalid bounds derived from 11853 * e.g. dead branches. 11854 */ 11855 __mark_reg_unknown(env, dst_reg); 11856 return 0; 11857 } 11858 11859 if (BPF_CLASS(insn->code) != BPF_ALU64) { 11860 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 11861 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11862 __mark_reg_unknown(env, dst_reg); 11863 return 0; 11864 } 11865 11866 verbose(env, 11867 "R%d 32-bit pointer arithmetic prohibited\n", 11868 dst); 11869 return -EACCES; 11870 } 11871 11872 if (ptr_reg->type & PTR_MAYBE_NULL) { 11873 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 11874 dst, reg_type_str(env, ptr_reg->type)); 11875 return -EACCES; 11876 } 11877 11878 switch (base_type(ptr_reg->type)) { 11879 case CONST_PTR_TO_MAP: 11880 /* smin_val represents the known value */ 11881 if (known && smin_val == 0 && opcode == BPF_ADD) 11882 break; 11883 fallthrough; 11884 case PTR_TO_PACKET_END: 11885 case PTR_TO_SOCKET: 11886 case PTR_TO_SOCK_COMMON: 11887 case PTR_TO_TCP_SOCK: 11888 case PTR_TO_XDP_SOCK: 11889 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 11890 dst, reg_type_str(env, ptr_reg->type)); 11891 return -EACCES; 11892 default: 11893 break; 11894 } 11895 11896 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 11897 * The id may be overwritten later if we create a new variable offset. 11898 */ 11899 dst_reg->type = ptr_reg->type; 11900 dst_reg->id = ptr_reg->id; 11901 11902 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 11903 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 11904 return -EINVAL; 11905 11906 /* pointer types do not carry 32-bit bounds at the moment. */ 11907 __mark_reg32_unbounded(dst_reg); 11908 11909 if (sanitize_needed(opcode)) { 11910 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 11911 &info, false); 11912 if (ret < 0) 11913 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11914 } 11915 11916 switch (opcode) { 11917 case BPF_ADD: 11918 /* We can take a fixed offset as long as it doesn't overflow 11919 * the s32 'off' field 11920 */ 11921 if (known && (ptr_reg->off + smin_val == 11922 (s64)(s32)(ptr_reg->off + smin_val))) { 11923 /* pointer += K. Accumulate it into fixed offset */ 11924 dst_reg->smin_value = smin_ptr; 11925 dst_reg->smax_value = smax_ptr; 11926 dst_reg->umin_value = umin_ptr; 11927 dst_reg->umax_value = umax_ptr; 11928 dst_reg->var_off = ptr_reg->var_off; 11929 dst_reg->off = ptr_reg->off + smin_val; 11930 dst_reg->raw = ptr_reg->raw; 11931 break; 11932 } 11933 /* A new variable offset is created. Note that off_reg->off 11934 * == 0, since it's a scalar. 11935 * dst_reg gets the pointer type and since some positive 11936 * integer value was added to the pointer, give it a new 'id' 11937 * if it's a PTR_TO_PACKET. 11938 * this creates a new 'base' pointer, off_reg (variable) gets 11939 * added into the variable offset, and we copy the fixed offset 11940 * from ptr_reg. 11941 */ 11942 if (signed_add_overflows(smin_ptr, smin_val) || 11943 signed_add_overflows(smax_ptr, smax_val)) { 11944 dst_reg->smin_value = S64_MIN; 11945 dst_reg->smax_value = S64_MAX; 11946 } else { 11947 dst_reg->smin_value = smin_ptr + smin_val; 11948 dst_reg->smax_value = smax_ptr + smax_val; 11949 } 11950 if (umin_ptr + umin_val < umin_ptr || 11951 umax_ptr + umax_val < umax_ptr) { 11952 dst_reg->umin_value = 0; 11953 dst_reg->umax_value = U64_MAX; 11954 } else { 11955 dst_reg->umin_value = umin_ptr + umin_val; 11956 dst_reg->umax_value = umax_ptr + umax_val; 11957 } 11958 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 11959 dst_reg->off = ptr_reg->off; 11960 dst_reg->raw = ptr_reg->raw; 11961 if (reg_is_pkt_pointer(ptr_reg)) { 11962 dst_reg->id = ++env->id_gen; 11963 /* something was added to pkt_ptr, set range to zero */ 11964 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11965 } 11966 break; 11967 case BPF_SUB: 11968 if (dst_reg == off_reg) { 11969 /* scalar -= pointer. Creates an unknown scalar */ 11970 verbose(env, "R%d tried to subtract pointer from scalar\n", 11971 dst); 11972 return -EACCES; 11973 } 11974 /* We don't allow subtraction from FP, because (according to 11975 * test_verifier.c test "invalid fp arithmetic", JITs might not 11976 * be able to deal with it. 11977 */ 11978 if (ptr_reg->type == PTR_TO_STACK) { 11979 verbose(env, "R%d subtraction from stack pointer prohibited\n", 11980 dst); 11981 return -EACCES; 11982 } 11983 if (known && (ptr_reg->off - smin_val == 11984 (s64)(s32)(ptr_reg->off - smin_val))) { 11985 /* pointer -= K. Subtract it from fixed offset */ 11986 dst_reg->smin_value = smin_ptr; 11987 dst_reg->smax_value = smax_ptr; 11988 dst_reg->umin_value = umin_ptr; 11989 dst_reg->umax_value = umax_ptr; 11990 dst_reg->var_off = ptr_reg->var_off; 11991 dst_reg->id = ptr_reg->id; 11992 dst_reg->off = ptr_reg->off - smin_val; 11993 dst_reg->raw = ptr_reg->raw; 11994 break; 11995 } 11996 /* A new variable offset is created. If the subtrahend is known 11997 * nonnegative, then any reg->range we had before is still good. 11998 */ 11999 if (signed_sub_overflows(smin_ptr, smax_val) || 12000 signed_sub_overflows(smax_ptr, smin_val)) { 12001 /* Overflow possible, we know nothing */ 12002 dst_reg->smin_value = S64_MIN; 12003 dst_reg->smax_value = S64_MAX; 12004 } else { 12005 dst_reg->smin_value = smin_ptr - smax_val; 12006 dst_reg->smax_value = smax_ptr - smin_val; 12007 } 12008 if (umin_ptr < umax_val) { 12009 /* Overflow possible, we know nothing */ 12010 dst_reg->umin_value = 0; 12011 dst_reg->umax_value = U64_MAX; 12012 } else { 12013 /* Cannot overflow (as long as bounds are consistent) */ 12014 dst_reg->umin_value = umin_ptr - umax_val; 12015 dst_reg->umax_value = umax_ptr - umin_val; 12016 } 12017 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12018 dst_reg->off = ptr_reg->off; 12019 dst_reg->raw = ptr_reg->raw; 12020 if (reg_is_pkt_pointer(ptr_reg)) { 12021 dst_reg->id = ++env->id_gen; 12022 /* something was added to pkt_ptr, set range to zero */ 12023 if (smin_val < 0) 12024 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12025 } 12026 break; 12027 case BPF_AND: 12028 case BPF_OR: 12029 case BPF_XOR: 12030 /* bitwise ops on pointers are troublesome, prohibit. */ 12031 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12032 dst, bpf_alu_string[opcode >> 4]); 12033 return -EACCES; 12034 default: 12035 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12036 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12037 dst, bpf_alu_string[opcode >> 4]); 12038 return -EACCES; 12039 } 12040 12041 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12042 return -EINVAL; 12043 reg_bounds_sync(dst_reg); 12044 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12045 return -EACCES; 12046 if (sanitize_needed(opcode)) { 12047 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12048 &info, true); 12049 if (ret < 0) 12050 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12051 } 12052 12053 return 0; 12054 } 12055 12056 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12057 struct bpf_reg_state *src_reg) 12058 { 12059 s32 smin_val = src_reg->s32_min_value; 12060 s32 smax_val = src_reg->s32_max_value; 12061 u32 umin_val = src_reg->u32_min_value; 12062 u32 umax_val = src_reg->u32_max_value; 12063 12064 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12065 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12066 dst_reg->s32_min_value = S32_MIN; 12067 dst_reg->s32_max_value = S32_MAX; 12068 } else { 12069 dst_reg->s32_min_value += smin_val; 12070 dst_reg->s32_max_value += smax_val; 12071 } 12072 if (dst_reg->u32_min_value + umin_val < umin_val || 12073 dst_reg->u32_max_value + umax_val < umax_val) { 12074 dst_reg->u32_min_value = 0; 12075 dst_reg->u32_max_value = U32_MAX; 12076 } else { 12077 dst_reg->u32_min_value += umin_val; 12078 dst_reg->u32_max_value += umax_val; 12079 } 12080 } 12081 12082 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12083 struct bpf_reg_state *src_reg) 12084 { 12085 s64 smin_val = src_reg->smin_value; 12086 s64 smax_val = src_reg->smax_value; 12087 u64 umin_val = src_reg->umin_value; 12088 u64 umax_val = src_reg->umax_value; 12089 12090 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12091 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12092 dst_reg->smin_value = S64_MIN; 12093 dst_reg->smax_value = S64_MAX; 12094 } else { 12095 dst_reg->smin_value += smin_val; 12096 dst_reg->smax_value += smax_val; 12097 } 12098 if (dst_reg->umin_value + umin_val < umin_val || 12099 dst_reg->umax_value + umax_val < umax_val) { 12100 dst_reg->umin_value = 0; 12101 dst_reg->umax_value = U64_MAX; 12102 } else { 12103 dst_reg->umin_value += umin_val; 12104 dst_reg->umax_value += umax_val; 12105 } 12106 } 12107 12108 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12109 struct bpf_reg_state *src_reg) 12110 { 12111 s32 smin_val = src_reg->s32_min_value; 12112 s32 smax_val = src_reg->s32_max_value; 12113 u32 umin_val = src_reg->u32_min_value; 12114 u32 umax_val = src_reg->u32_max_value; 12115 12116 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12117 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12118 /* Overflow possible, we know nothing */ 12119 dst_reg->s32_min_value = S32_MIN; 12120 dst_reg->s32_max_value = S32_MAX; 12121 } else { 12122 dst_reg->s32_min_value -= smax_val; 12123 dst_reg->s32_max_value -= smin_val; 12124 } 12125 if (dst_reg->u32_min_value < umax_val) { 12126 /* Overflow possible, we know nothing */ 12127 dst_reg->u32_min_value = 0; 12128 dst_reg->u32_max_value = U32_MAX; 12129 } else { 12130 /* Cannot overflow (as long as bounds are consistent) */ 12131 dst_reg->u32_min_value -= umax_val; 12132 dst_reg->u32_max_value -= umin_val; 12133 } 12134 } 12135 12136 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12137 struct bpf_reg_state *src_reg) 12138 { 12139 s64 smin_val = src_reg->smin_value; 12140 s64 smax_val = src_reg->smax_value; 12141 u64 umin_val = src_reg->umin_value; 12142 u64 umax_val = src_reg->umax_value; 12143 12144 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12145 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12146 /* Overflow possible, we know nothing */ 12147 dst_reg->smin_value = S64_MIN; 12148 dst_reg->smax_value = S64_MAX; 12149 } else { 12150 dst_reg->smin_value -= smax_val; 12151 dst_reg->smax_value -= smin_val; 12152 } 12153 if (dst_reg->umin_value < umax_val) { 12154 /* Overflow possible, we know nothing */ 12155 dst_reg->umin_value = 0; 12156 dst_reg->umax_value = U64_MAX; 12157 } else { 12158 /* Cannot overflow (as long as bounds are consistent) */ 12159 dst_reg->umin_value -= umax_val; 12160 dst_reg->umax_value -= umin_val; 12161 } 12162 } 12163 12164 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12165 struct bpf_reg_state *src_reg) 12166 { 12167 s32 smin_val = src_reg->s32_min_value; 12168 u32 umin_val = src_reg->u32_min_value; 12169 u32 umax_val = src_reg->u32_max_value; 12170 12171 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12172 /* Ain't nobody got time to multiply that sign */ 12173 __mark_reg32_unbounded(dst_reg); 12174 return; 12175 } 12176 /* Both values are positive, so we can work with unsigned and 12177 * copy the result to signed (unless it exceeds S32_MAX). 12178 */ 12179 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12180 /* Potential overflow, we know nothing */ 12181 __mark_reg32_unbounded(dst_reg); 12182 return; 12183 } 12184 dst_reg->u32_min_value *= umin_val; 12185 dst_reg->u32_max_value *= umax_val; 12186 if (dst_reg->u32_max_value > S32_MAX) { 12187 /* Overflow possible, we know nothing */ 12188 dst_reg->s32_min_value = S32_MIN; 12189 dst_reg->s32_max_value = S32_MAX; 12190 } else { 12191 dst_reg->s32_min_value = dst_reg->u32_min_value; 12192 dst_reg->s32_max_value = dst_reg->u32_max_value; 12193 } 12194 } 12195 12196 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12197 struct bpf_reg_state *src_reg) 12198 { 12199 s64 smin_val = src_reg->smin_value; 12200 u64 umin_val = src_reg->umin_value; 12201 u64 umax_val = src_reg->umax_value; 12202 12203 if (smin_val < 0 || dst_reg->smin_value < 0) { 12204 /* Ain't nobody got time to multiply that sign */ 12205 __mark_reg64_unbounded(dst_reg); 12206 return; 12207 } 12208 /* Both values are positive, so we can work with unsigned and 12209 * copy the result to signed (unless it exceeds S64_MAX). 12210 */ 12211 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12212 /* Potential overflow, we know nothing */ 12213 __mark_reg64_unbounded(dst_reg); 12214 return; 12215 } 12216 dst_reg->umin_value *= umin_val; 12217 dst_reg->umax_value *= umax_val; 12218 if (dst_reg->umax_value > S64_MAX) { 12219 /* Overflow possible, we know nothing */ 12220 dst_reg->smin_value = S64_MIN; 12221 dst_reg->smax_value = S64_MAX; 12222 } else { 12223 dst_reg->smin_value = dst_reg->umin_value; 12224 dst_reg->smax_value = dst_reg->umax_value; 12225 } 12226 } 12227 12228 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12229 struct bpf_reg_state *src_reg) 12230 { 12231 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12232 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12233 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12234 s32 smin_val = src_reg->s32_min_value; 12235 u32 umax_val = src_reg->u32_max_value; 12236 12237 if (src_known && dst_known) { 12238 __mark_reg32_known(dst_reg, var32_off.value); 12239 return; 12240 } 12241 12242 /* We get our minimum from the var_off, since that's inherently 12243 * bitwise. Our maximum is the minimum of the operands' maxima. 12244 */ 12245 dst_reg->u32_min_value = var32_off.value; 12246 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12247 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12248 /* Lose signed bounds when ANDing negative numbers, 12249 * ain't nobody got time for that. 12250 */ 12251 dst_reg->s32_min_value = S32_MIN; 12252 dst_reg->s32_max_value = S32_MAX; 12253 } else { 12254 /* ANDing two positives gives a positive, so safe to 12255 * cast result into s64. 12256 */ 12257 dst_reg->s32_min_value = dst_reg->u32_min_value; 12258 dst_reg->s32_max_value = dst_reg->u32_max_value; 12259 } 12260 } 12261 12262 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12263 struct bpf_reg_state *src_reg) 12264 { 12265 bool src_known = tnum_is_const(src_reg->var_off); 12266 bool dst_known = tnum_is_const(dst_reg->var_off); 12267 s64 smin_val = src_reg->smin_value; 12268 u64 umax_val = src_reg->umax_value; 12269 12270 if (src_known && dst_known) { 12271 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12272 return; 12273 } 12274 12275 /* We get our minimum from the var_off, since that's inherently 12276 * bitwise. Our maximum is the minimum of the operands' maxima. 12277 */ 12278 dst_reg->umin_value = dst_reg->var_off.value; 12279 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12280 if (dst_reg->smin_value < 0 || smin_val < 0) { 12281 /* Lose signed bounds when ANDing negative numbers, 12282 * ain't nobody got time for that. 12283 */ 12284 dst_reg->smin_value = S64_MIN; 12285 dst_reg->smax_value = S64_MAX; 12286 } else { 12287 /* ANDing two positives gives a positive, so safe to 12288 * cast result into s64. 12289 */ 12290 dst_reg->smin_value = dst_reg->umin_value; 12291 dst_reg->smax_value = dst_reg->umax_value; 12292 } 12293 /* We may learn something more from the var_off */ 12294 __update_reg_bounds(dst_reg); 12295 } 12296 12297 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12298 struct bpf_reg_state *src_reg) 12299 { 12300 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12301 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12302 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12303 s32 smin_val = src_reg->s32_min_value; 12304 u32 umin_val = src_reg->u32_min_value; 12305 12306 if (src_known && dst_known) { 12307 __mark_reg32_known(dst_reg, var32_off.value); 12308 return; 12309 } 12310 12311 /* We get our maximum from the var_off, and our minimum is the 12312 * maximum of the operands' minima 12313 */ 12314 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12315 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12316 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12317 /* Lose signed bounds when ORing negative numbers, 12318 * ain't nobody got time for that. 12319 */ 12320 dst_reg->s32_min_value = S32_MIN; 12321 dst_reg->s32_max_value = S32_MAX; 12322 } else { 12323 /* ORing two positives gives a positive, so safe to 12324 * cast result into s64. 12325 */ 12326 dst_reg->s32_min_value = dst_reg->u32_min_value; 12327 dst_reg->s32_max_value = dst_reg->u32_max_value; 12328 } 12329 } 12330 12331 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12332 struct bpf_reg_state *src_reg) 12333 { 12334 bool src_known = tnum_is_const(src_reg->var_off); 12335 bool dst_known = tnum_is_const(dst_reg->var_off); 12336 s64 smin_val = src_reg->smin_value; 12337 u64 umin_val = src_reg->umin_value; 12338 12339 if (src_known && dst_known) { 12340 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12341 return; 12342 } 12343 12344 /* We get our maximum from the var_off, and our minimum is the 12345 * maximum of the operands' minima 12346 */ 12347 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12348 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12349 if (dst_reg->smin_value < 0 || smin_val < 0) { 12350 /* Lose signed bounds when ORing negative numbers, 12351 * ain't nobody got time for that. 12352 */ 12353 dst_reg->smin_value = S64_MIN; 12354 dst_reg->smax_value = S64_MAX; 12355 } else { 12356 /* ORing two positives gives a positive, so safe to 12357 * cast result into s64. 12358 */ 12359 dst_reg->smin_value = dst_reg->umin_value; 12360 dst_reg->smax_value = dst_reg->umax_value; 12361 } 12362 /* We may learn something more from the var_off */ 12363 __update_reg_bounds(dst_reg); 12364 } 12365 12366 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12367 struct bpf_reg_state *src_reg) 12368 { 12369 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12370 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12371 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12372 s32 smin_val = src_reg->s32_min_value; 12373 12374 if (src_known && dst_known) { 12375 __mark_reg32_known(dst_reg, var32_off.value); 12376 return; 12377 } 12378 12379 /* We get both minimum and maximum from the var32_off. */ 12380 dst_reg->u32_min_value = var32_off.value; 12381 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12382 12383 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12384 /* XORing two positive sign numbers gives a positive, 12385 * so safe to cast u32 result into s32. 12386 */ 12387 dst_reg->s32_min_value = dst_reg->u32_min_value; 12388 dst_reg->s32_max_value = dst_reg->u32_max_value; 12389 } else { 12390 dst_reg->s32_min_value = S32_MIN; 12391 dst_reg->s32_max_value = S32_MAX; 12392 } 12393 } 12394 12395 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12396 struct bpf_reg_state *src_reg) 12397 { 12398 bool src_known = tnum_is_const(src_reg->var_off); 12399 bool dst_known = tnum_is_const(dst_reg->var_off); 12400 s64 smin_val = src_reg->smin_value; 12401 12402 if (src_known && dst_known) { 12403 /* dst_reg->var_off.value has been updated earlier */ 12404 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12405 return; 12406 } 12407 12408 /* We get both minimum and maximum from the var_off. */ 12409 dst_reg->umin_value = dst_reg->var_off.value; 12410 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12411 12412 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12413 /* XORing two positive sign numbers gives a positive, 12414 * so safe to cast u64 result into s64. 12415 */ 12416 dst_reg->smin_value = dst_reg->umin_value; 12417 dst_reg->smax_value = dst_reg->umax_value; 12418 } else { 12419 dst_reg->smin_value = S64_MIN; 12420 dst_reg->smax_value = S64_MAX; 12421 } 12422 12423 __update_reg_bounds(dst_reg); 12424 } 12425 12426 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12427 u64 umin_val, u64 umax_val) 12428 { 12429 /* We lose all sign bit information (except what we can pick 12430 * up from var_off) 12431 */ 12432 dst_reg->s32_min_value = S32_MIN; 12433 dst_reg->s32_max_value = S32_MAX; 12434 /* If we might shift our top bit out, then we know nothing */ 12435 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12436 dst_reg->u32_min_value = 0; 12437 dst_reg->u32_max_value = U32_MAX; 12438 } else { 12439 dst_reg->u32_min_value <<= umin_val; 12440 dst_reg->u32_max_value <<= umax_val; 12441 } 12442 } 12443 12444 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12445 struct bpf_reg_state *src_reg) 12446 { 12447 u32 umax_val = src_reg->u32_max_value; 12448 u32 umin_val = src_reg->u32_min_value; 12449 /* u32 alu operation will zext upper bits */ 12450 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12451 12452 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12453 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12454 /* Not required but being careful mark reg64 bounds as unknown so 12455 * that we are forced to pick them up from tnum and zext later and 12456 * if some path skips this step we are still safe. 12457 */ 12458 __mark_reg64_unbounded(dst_reg); 12459 __update_reg32_bounds(dst_reg); 12460 } 12461 12462 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12463 u64 umin_val, u64 umax_val) 12464 { 12465 /* Special case <<32 because it is a common compiler pattern to sign 12466 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12467 * positive we know this shift will also be positive so we can track 12468 * bounds correctly. Otherwise we lose all sign bit information except 12469 * what we can pick up from var_off. Perhaps we can generalize this 12470 * later to shifts of any length. 12471 */ 12472 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12473 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12474 else 12475 dst_reg->smax_value = S64_MAX; 12476 12477 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12478 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12479 else 12480 dst_reg->smin_value = S64_MIN; 12481 12482 /* If we might shift our top bit out, then we know nothing */ 12483 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12484 dst_reg->umin_value = 0; 12485 dst_reg->umax_value = U64_MAX; 12486 } else { 12487 dst_reg->umin_value <<= umin_val; 12488 dst_reg->umax_value <<= umax_val; 12489 } 12490 } 12491 12492 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12493 struct bpf_reg_state *src_reg) 12494 { 12495 u64 umax_val = src_reg->umax_value; 12496 u64 umin_val = src_reg->umin_value; 12497 12498 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12499 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12500 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12501 12502 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12503 /* We may learn something more from the var_off */ 12504 __update_reg_bounds(dst_reg); 12505 } 12506 12507 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12508 struct bpf_reg_state *src_reg) 12509 { 12510 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12511 u32 umax_val = src_reg->u32_max_value; 12512 u32 umin_val = src_reg->u32_min_value; 12513 12514 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12515 * be negative, then either: 12516 * 1) src_reg might be zero, so the sign bit of the result is 12517 * unknown, so we lose our signed bounds 12518 * 2) it's known negative, thus the unsigned bounds capture the 12519 * signed bounds 12520 * 3) the signed bounds cross zero, so they tell us nothing 12521 * about the result 12522 * If the value in dst_reg is known nonnegative, then again the 12523 * unsigned bounds capture the signed bounds. 12524 * Thus, in all cases it suffices to blow away our signed bounds 12525 * and rely on inferring new ones from the unsigned bounds and 12526 * var_off of the result. 12527 */ 12528 dst_reg->s32_min_value = S32_MIN; 12529 dst_reg->s32_max_value = S32_MAX; 12530 12531 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12532 dst_reg->u32_min_value >>= umax_val; 12533 dst_reg->u32_max_value >>= umin_val; 12534 12535 __mark_reg64_unbounded(dst_reg); 12536 __update_reg32_bounds(dst_reg); 12537 } 12538 12539 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12540 struct bpf_reg_state *src_reg) 12541 { 12542 u64 umax_val = src_reg->umax_value; 12543 u64 umin_val = src_reg->umin_value; 12544 12545 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12546 * be negative, then either: 12547 * 1) src_reg might be zero, so the sign bit of the result is 12548 * unknown, so we lose our signed bounds 12549 * 2) it's known negative, thus the unsigned bounds capture the 12550 * signed bounds 12551 * 3) the signed bounds cross zero, so they tell us nothing 12552 * about the result 12553 * If the value in dst_reg is known nonnegative, then again the 12554 * unsigned bounds capture the signed bounds. 12555 * Thus, in all cases it suffices to blow away our signed bounds 12556 * and rely on inferring new ones from the unsigned bounds and 12557 * var_off of the result. 12558 */ 12559 dst_reg->smin_value = S64_MIN; 12560 dst_reg->smax_value = S64_MAX; 12561 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12562 dst_reg->umin_value >>= umax_val; 12563 dst_reg->umax_value >>= umin_val; 12564 12565 /* Its not easy to operate on alu32 bounds here because it depends 12566 * on bits being shifted in. Take easy way out and mark unbounded 12567 * so we can recalculate later from tnum. 12568 */ 12569 __mark_reg32_unbounded(dst_reg); 12570 __update_reg_bounds(dst_reg); 12571 } 12572 12573 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12574 struct bpf_reg_state *src_reg) 12575 { 12576 u64 umin_val = src_reg->u32_min_value; 12577 12578 /* Upon reaching here, src_known is true and 12579 * umax_val is equal to umin_val. 12580 */ 12581 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12582 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12583 12584 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12585 12586 /* blow away the dst_reg umin_value/umax_value and rely on 12587 * dst_reg var_off to refine the result. 12588 */ 12589 dst_reg->u32_min_value = 0; 12590 dst_reg->u32_max_value = U32_MAX; 12591 12592 __mark_reg64_unbounded(dst_reg); 12593 __update_reg32_bounds(dst_reg); 12594 } 12595 12596 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12597 struct bpf_reg_state *src_reg) 12598 { 12599 u64 umin_val = src_reg->umin_value; 12600 12601 /* Upon reaching here, src_known is true and umax_val is equal 12602 * to umin_val. 12603 */ 12604 dst_reg->smin_value >>= umin_val; 12605 dst_reg->smax_value >>= umin_val; 12606 12607 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12608 12609 /* blow away the dst_reg umin_value/umax_value and rely on 12610 * dst_reg var_off to refine the result. 12611 */ 12612 dst_reg->umin_value = 0; 12613 dst_reg->umax_value = U64_MAX; 12614 12615 /* Its not easy to operate on alu32 bounds here because it depends 12616 * on bits being shifted in from upper 32-bits. Take easy way out 12617 * and mark unbounded so we can recalculate later from tnum. 12618 */ 12619 __mark_reg32_unbounded(dst_reg); 12620 __update_reg_bounds(dst_reg); 12621 } 12622 12623 /* WARNING: This function does calculations on 64-bit values, but the actual 12624 * execution may occur on 32-bit values. Therefore, things like bitshifts 12625 * need extra checks in the 32-bit case. 12626 */ 12627 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12628 struct bpf_insn *insn, 12629 struct bpf_reg_state *dst_reg, 12630 struct bpf_reg_state src_reg) 12631 { 12632 struct bpf_reg_state *regs = cur_regs(env); 12633 u8 opcode = BPF_OP(insn->code); 12634 bool src_known; 12635 s64 smin_val, smax_val; 12636 u64 umin_val, umax_val; 12637 s32 s32_min_val, s32_max_val; 12638 u32 u32_min_val, u32_max_val; 12639 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12640 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12641 int ret; 12642 12643 smin_val = src_reg.smin_value; 12644 smax_val = src_reg.smax_value; 12645 umin_val = src_reg.umin_value; 12646 umax_val = src_reg.umax_value; 12647 12648 s32_min_val = src_reg.s32_min_value; 12649 s32_max_val = src_reg.s32_max_value; 12650 u32_min_val = src_reg.u32_min_value; 12651 u32_max_val = src_reg.u32_max_value; 12652 12653 if (alu32) { 12654 src_known = tnum_subreg_is_const(src_reg.var_off); 12655 if ((src_known && 12656 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12657 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12658 /* Taint dst register if offset had invalid bounds 12659 * derived from e.g. dead branches. 12660 */ 12661 __mark_reg_unknown(env, dst_reg); 12662 return 0; 12663 } 12664 } else { 12665 src_known = tnum_is_const(src_reg.var_off); 12666 if ((src_known && 12667 (smin_val != smax_val || umin_val != umax_val)) || 12668 smin_val > smax_val || umin_val > umax_val) { 12669 /* Taint dst register if offset had invalid bounds 12670 * derived from e.g. dead branches. 12671 */ 12672 __mark_reg_unknown(env, dst_reg); 12673 return 0; 12674 } 12675 } 12676 12677 if (!src_known && 12678 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12679 __mark_reg_unknown(env, dst_reg); 12680 return 0; 12681 } 12682 12683 if (sanitize_needed(opcode)) { 12684 ret = sanitize_val_alu(env, insn); 12685 if (ret < 0) 12686 return sanitize_err(env, insn, ret, NULL, NULL); 12687 } 12688 12689 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12690 * There are two classes of instructions: The first class we track both 12691 * alu32 and alu64 sign/unsigned bounds independently this provides the 12692 * greatest amount of precision when alu operations are mixed with jmp32 12693 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12694 * and BPF_OR. This is possible because these ops have fairly easy to 12695 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12696 * See alu32 verifier tests for examples. The second class of 12697 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12698 * with regards to tracking sign/unsigned bounds because the bits may 12699 * cross subreg boundaries in the alu64 case. When this happens we mark 12700 * the reg unbounded in the subreg bound space and use the resulting 12701 * tnum to calculate an approximation of the sign/unsigned bounds. 12702 */ 12703 switch (opcode) { 12704 case BPF_ADD: 12705 scalar32_min_max_add(dst_reg, &src_reg); 12706 scalar_min_max_add(dst_reg, &src_reg); 12707 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12708 break; 12709 case BPF_SUB: 12710 scalar32_min_max_sub(dst_reg, &src_reg); 12711 scalar_min_max_sub(dst_reg, &src_reg); 12712 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12713 break; 12714 case BPF_MUL: 12715 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12716 scalar32_min_max_mul(dst_reg, &src_reg); 12717 scalar_min_max_mul(dst_reg, &src_reg); 12718 break; 12719 case BPF_AND: 12720 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12721 scalar32_min_max_and(dst_reg, &src_reg); 12722 scalar_min_max_and(dst_reg, &src_reg); 12723 break; 12724 case BPF_OR: 12725 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12726 scalar32_min_max_or(dst_reg, &src_reg); 12727 scalar_min_max_or(dst_reg, &src_reg); 12728 break; 12729 case BPF_XOR: 12730 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12731 scalar32_min_max_xor(dst_reg, &src_reg); 12732 scalar_min_max_xor(dst_reg, &src_reg); 12733 break; 12734 case BPF_LSH: 12735 if (umax_val >= insn_bitness) { 12736 /* Shifts greater than 31 or 63 are undefined. 12737 * This includes shifts by a negative number. 12738 */ 12739 mark_reg_unknown(env, regs, insn->dst_reg); 12740 break; 12741 } 12742 if (alu32) 12743 scalar32_min_max_lsh(dst_reg, &src_reg); 12744 else 12745 scalar_min_max_lsh(dst_reg, &src_reg); 12746 break; 12747 case BPF_RSH: 12748 if (umax_val >= insn_bitness) { 12749 /* Shifts greater than 31 or 63 are undefined. 12750 * This includes shifts by a negative number. 12751 */ 12752 mark_reg_unknown(env, regs, insn->dst_reg); 12753 break; 12754 } 12755 if (alu32) 12756 scalar32_min_max_rsh(dst_reg, &src_reg); 12757 else 12758 scalar_min_max_rsh(dst_reg, &src_reg); 12759 break; 12760 case BPF_ARSH: 12761 if (umax_val >= insn_bitness) { 12762 /* Shifts greater than 31 or 63 are undefined. 12763 * This includes shifts by a negative number. 12764 */ 12765 mark_reg_unknown(env, regs, insn->dst_reg); 12766 break; 12767 } 12768 if (alu32) 12769 scalar32_min_max_arsh(dst_reg, &src_reg); 12770 else 12771 scalar_min_max_arsh(dst_reg, &src_reg); 12772 break; 12773 default: 12774 mark_reg_unknown(env, regs, insn->dst_reg); 12775 break; 12776 } 12777 12778 /* ALU32 ops are zero extended into 64bit register */ 12779 if (alu32) 12780 zext_32_to_64(dst_reg); 12781 reg_bounds_sync(dst_reg); 12782 return 0; 12783 } 12784 12785 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12786 * and var_off. 12787 */ 12788 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12789 struct bpf_insn *insn) 12790 { 12791 struct bpf_verifier_state *vstate = env->cur_state; 12792 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12793 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12794 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12795 u8 opcode = BPF_OP(insn->code); 12796 int err; 12797 12798 dst_reg = ®s[insn->dst_reg]; 12799 src_reg = NULL; 12800 if (dst_reg->type != SCALAR_VALUE) 12801 ptr_reg = dst_reg; 12802 else 12803 /* Make sure ID is cleared otherwise dst_reg min/max could be 12804 * incorrectly propagated into other registers by find_equal_scalars() 12805 */ 12806 dst_reg->id = 0; 12807 if (BPF_SRC(insn->code) == BPF_X) { 12808 src_reg = ®s[insn->src_reg]; 12809 if (src_reg->type != SCALAR_VALUE) { 12810 if (dst_reg->type != SCALAR_VALUE) { 12811 /* Combining two pointers by any ALU op yields 12812 * an arbitrary scalar. Disallow all math except 12813 * pointer subtraction 12814 */ 12815 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12816 mark_reg_unknown(env, regs, insn->dst_reg); 12817 return 0; 12818 } 12819 verbose(env, "R%d pointer %s pointer prohibited\n", 12820 insn->dst_reg, 12821 bpf_alu_string[opcode >> 4]); 12822 return -EACCES; 12823 } else { 12824 /* scalar += pointer 12825 * This is legal, but we have to reverse our 12826 * src/dest handling in computing the range 12827 */ 12828 err = mark_chain_precision(env, insn->dst_reg); 12829 if (err) 12830 return err; 12831 return adjust_ptr_min_max_vals(env, insn, 12832 src_reg, dst_reg); 12833 } 12834 } else if (ptr_reg) { 12835 /* pointer += scalar */ 12836 err = mark_chain_precision(env, insn->src_reg); 12837 if (err) 12838 return err; 12839 return adjust_ptr_min_max_vals(env, insn, 12840 dst_reg, src_reg); 12841 } else if (dst_reg->precise) { 12842 /* if dst_reg is precise, src_reg should be precise as well */ 12843 err = mark_chain_precision(env, insn->src_reg); 12844 if (err) 12845 return err; 12846 } 12847 } else { 12848 /* Pretend the src is a reg with a known value, since we only 12849 * need to be able to read from this state. 12850 */ 12851 off_reg.type = SCALAR_VALUE; 12852 __mark_reg_known(&off_reg, insn->imm); 12853 src_reg = &off_reg; 12854 if (ptr_reg) /* pointer += K */ 12855 return adjust_ptr_min_max_vals(env, insn, 12856 ptr_reg, src_reg); 12857 } 12858 12859 /* Got here implies adding two SCALAR_VALUEs */ 12860 if (WARN_ON_ONCE(ptr_reg)) { 12861 print_verifier_state(env, state, true); 12862 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 12863 return -EINVAL; 12864 } 12865 if (WARN_ON(!src_reg)) { 12866 print_verifier_state(env, state, true); 12867 verbose(env, "verifier internal error: no src_reg\n"); 12868 return -EINVAL; 12869 } 12870 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 12871 } 12872 12873 /* check validity of 32-bit and 64-bit arithmetic operations */ 12874 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 12875 { 12876 struct bpf_reg_state *regs = cur_regs(env); 12877 u8 opcode = BPF_OP(insn->code); 12878 int err; 12879 12880 if (opcode == BPF_END || opcode == BPF_NEG) { 12881 if (opcode == BPF_NEG) { 12882 if (BPF_SRC(insn->code) != BPF_K || 12883 insn->src_reg != BPF_REG_0 || 12884 insn->off != 0 || insn->imm != 0) { 12885 verbose(env, "BPF_NEG uses reserved fields\n"); 12886 return -EINVAL; 12887 } 12888 } else { 12889 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 12890 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 12891 BPF_CLASS(insn->code) == BPF_ALU64) { 12892 verbose(env, "BPF_END uses reserved fields\n"); 12893 return -EINVAL; 12894 } 12895 } 12896 12897 /* check src operand */ 12898 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12899 if (err) 12900 return err; 12901 12902 if (is_pointer_value(env, insn->dst_reg)) { 12903 verbose(env, "R%d pointer arithmetic prohibited\n", 12904 insn->dst_reg); 12905 return -EACCES; 12906 } 12907 12908 /* check dest operand */ 12909 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12910 if (err) 12911 return err; 12912 12913 } else if (opcode == BPF_MOV) { 12914 12915 if (BPF_SRC(insn->code) == BPF_X) { 12916 if (insn->imm != 0 || insn->off != 0) { 12917 verbose(env, "BPF_MOV uses reserved fields\n"); 12918 return -EINVAL; 12919 } 12920 12921 /* check src operand */ 12922 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12923 if (err) 12924 return err; 12925 } else { 12926 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12927 verbose(env, "BPF_MOV uses reserved fields\n"); 12928 return -EINVAL; 12929 } 12930 } 12931 12932 /* check dest operand, mark as required later */ 12933 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12934 if (err) 12935 return err; 12936 12937 if (BPF_SRC(insn->code) == BPF_X) { 12938 struct bpf_reg_state *src_reg = regs + insn->src_reg; 12939 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 12940 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 12941 !tnum_is_const(src_reg->var_off); 12942 12943 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12944 /* case: R1 = R2 12945 * copy register state to dest reg 12946 */ 12947 if (need_id) 12948 /* Assign src and dst registers the same ID 12949 * that will be used by find_equal_scalars() 12950 * to propagate min/max range. 12951 */ 12952 src_reg->id = ++env->id_gen; 12953 copy_register_state(dst_reg, src_reg); 12954 dst_reg->live |= REG_LIVE_WRITTEN; 12955 dst_reg->subreg_def = DEF_NOT_SUBREG; 12956 } else { 12957 /* R1 = (u32) R2 */ 12958 if (is_pointer_value(env, insn->src_reg)) { 12959 verbose(env, 12960 "R%d partial copy of pointer\n", 12961 insn->src_reg); 12962 return -EACCES; 12963 } else if (src_reg->type == SCALAR_VALUE) { 12964 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 12965 12966 if (is_src_reg_u32 && need_id) 12967 src_reg->id = ++env->id_gen; 12968 copy_register_state(dst_reg, src_reg); 12969 /* Make sure ID is cleared if src_reg is not in u32 range otherwise 12970 * dst_reg min/max could be incorrectly 12971 * propagated into src_reg by find_equal_scalars() 12972 */ 12973 if (!is_src_reg_u32) 12974 dst_reg->id = 0; 12975 dst_reg->live |= REG_LIVE_WRITTEN; 12976 dst_reg->subreg_def = env->insn_idx + 1; 12977 } else { 12978 mark_reg_unknown(env, regs, 12979 insn->dst_reg); 12980 } 12981 zext_32_to_64(dst_reg); 12982 reg_bounds_sync(dst_reg); 12983 } 12984 } else { 12985 /* case: R = imm 12986 * remember the value we stored into this reg 12987 */ 12988 /* clear any state __mark_reg_known doesn't set */ 12989 mark_reg_unknown(env, regs, insn->dst_reg); 12990 regs[insn->dst_reg].type = SCALAR_VALUE; 12991 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12992 __mark_reg_known(regs + insn->dst_reg, 12993 insn->imm); 12994 } else { 12995 __mark_reg_known(regs + insn->dst_reg, 12996 (u32)insn->imm); 12997 } 12998 } 12999 13000 } else if (opcode > BPF_END) { 13001 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13002 return -EINVAL; 13003 13004 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13005 13006 if (BPF_SRC(insn->code) == BPF_X) { 13007 if (insn->imm != 0 || insn->off != 0) { 13008 verbose(env, "BPF_ALU uses reserved fields\n"); 13009 return -EINVAL; 13010 } 13011 /* check src1 operand */ 13012 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13013 if (err) 13014 return err; 13015 } else { 13016 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13017 verbose(env, "BPF_ALU uses reserved fields\n"); 13018 return -EINVAL; 13019 } 13020 } 13021 13022 /* check src2 operand */ 13023 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13024 if (err) 13025 return err; 13026 13027 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13028 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13029 verbose(env, "div by zero\n"); 13030 return -EINVAL; 13031 } 13032 13033 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13034 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13035 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13036 13037 if (insn->imm < 0 || insn->imm >= size) { 13038 verbose(env, "invalid shift %d\n", insn->imm); 13039 return -EINVAL; 13040 } 13041 } 13042 13043 /* check dest operand */ 13044 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13045 if (err) 13046 return err; 13047 13048 return adjust_reg_min_max_vals(env, insn); 13049 } 13050 13051 return 0; 13052 } 13053 13054 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13055 struct bpf_reg_state *dst_reg, 13056 enum bpf_reg_type type, 13057 bool range_right_open) 13058 { 13059 struct bpf_func_state *state; 13060 struct bpf_reg_state *reg; 13061 int new_range; 13062 13063 if (dst_reg->off < 0 || 13064 (dst_reg->off == 0 && range_right_open)) 13065 /* This doesn't give us any range */ 13066 return; 13067 13068 if (dst_reg->umax_value > MAX_PACKET_OFF || 13069 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13070 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13071 * than pkt_end, but that's because it's also less than pkt. 13072 */ 13073 return; 13074 13075 new_range = dst_reg->off; 13076 if (range_right_open) 13077 new_range++; 13078 13079 /* Examples for register markings: 13080 * 13081 * pkt_data in dst register: 13082 * 13083 * r2 = r3; 13084 * r2 += 8; 13085 * if (r2 > pkt_end) goto <handle exception> 13086 * <access okay> 13087 * 13088 * r2 = r3; 13089 * r2 += 8; 13090 * if (r2 < pkt_end) goto <access okay> 13091 * <handle exception> 13092 * 13093 * Where: 13094 * r2 == dst_reg, pkt_end == src_reg 13095 * r2=pkt(id=n,off=8,r=0) 13096 * r3=pkt(id=n,off=0,r=0) 13097 * 13098 * pkt_data in src register: 13099 * 13100 * r2 = r3; 13101 * r2 += 8; 13102 * if (pkt_end >= r2) goto <access okay> 13103 * <handle exception> 13104 * 13105 * r2 = r3; 13106 * r2 += 8; 13107 * if (pkt_end <= r2) goto <handle exception> 13108 * <access okay> 13109 * 13110 * Where: 13111 * pkt_end == dst_reg, r2 == src_reg 13112 * r2=pkt(id=n,off=8,r=0) 13113 * r3=pkt(id=n,off=0,r=0) 13114 * 13115 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13116 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13117 * and [r3, r3 + 8-1) respectively is safe to access depending on 13118 * the check. 13119 */ 13120 13121 /* If our ids match, then we must have the same max_value. And we 13122 * don't care about the other reg's fixed offset, since if it's too big 13123 * the range won't allow anything. 13124 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13125 */ 13126 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13127 if (reg->type == type && reg->id == dst_reg->id) 13128 /* keep the maximum range already checked */ 13129 reg->range = max(reg->range, new_range); 13130 })); 13131 } 13132 13133 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13134 { 13135 struct tnum subreg = tnum_subreg(reg->var_off); 13136 s32 sval = (s32)val; 13137 13138 switch (opcode) { 13139 case BPF_JEQ: 13140 if (tnum_is_const(subreg)) 13141 return !!tnum_equals_const(subreg, val); 13142 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13143 return 0; 13144 break; 13145 case BPF_JNE: 13146 if (tnum_is_const(subreg)) 13147 return !tnum_equals_const(subreg, val); 13148 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13149 return 1; 13150 break; 13151 case BPF_JSET: 13152 if ((~subreg.mask & subreg.value) & val) 13153 return 1; 13154 if (!((subreg.mask | subreg.value) & val)) 13155 return 0; 13156 break; 13157 case BPF_JGT: 13158 if (reg->u32_min_value > val) 13159 return 1; 13160 else if (reg->u32_max_value <= val) 13161 return 0; 13162 break; 13163 case BPF_JSGT: 13164 if (reg->s32_min_value > sval) 13165 return 1; 13166 else if (reg->s32_max_value <= sval) 13167 return 0; 13168 break; 13169 case BPF_JLT: 13170 if (reg->u32_max_value < val) 13171 return 1; 13172 else if (reg->u32_min_value >= val) 13173 return 0; 13174 break; 13175 case BPF_JSLT: 13176 if (reg->s32_max_value < sval) 13177 return 1; 13178 else if (reg->s32_min_value >= sval) 13179 return 0; 13180 break; 13181 case BPF_JGE: 13182 if (reg->u32_min_value >= val) 13183 return 1; 13184 else if (reg->u32_max_value < val) 13185 return 0; 13186 break; 13187 case BPF_JSGE: 13188 if (reg->s32_min_value >= sval) 13189 return 1; 13190 else if (reg->s32_max_value < sval) 13191 return 0; 13192 break; 13193 case BPF_JLE: 13194 if (reg->u32_max_value <= val) 13195 return 1; 13196 else if (reg->u32_min_value > val) 13197 return 0; 13198 break; 13199 case BPF_JSLE: 13200 if (reg->s32_max_value <= sval) 13201 return 1; 13202 else if (reg->s32_min_value > sval) 13203 return 0; 13204 break; 13205 } 13206 13207 return -1; 13208 } 13209 13210 13211 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13212 { 13213 s64 sval = (s64)val; 13214 13215 switch (opcode) { 13216 case BPF_JEQ: 13217 if (tnum_is_const(reg->var_off)) 13218 return !!tnum_equals_const(reg->var_off, val); 13219 else if (val < reg->umin_value || val > reg->umax_value) 13220 return 0; 13221 break; 13222 case BPF_JNE: 13223 if (tnum_is_const(reg->var_off)) 13224 return !tnum_equals_const(reg->var_off, val); 13225 else if (val < reg->umin_value || val > reg->umax_value) 13226 return 1; 13227 break; 13228 case BPF_JSET: 13229 if ((~reg->var_off.mask & reg->var_off.value) & val) 13230 return 1; 13231 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13232 return 0; 13233 break; 13234 case BPF_JGT: 13235 if (reg->umin_value > val) 13236 return 1; 13237 else if (reg->umax_value <= val) 13238 return 0; 13239 break; 13240 case BPF_JSGT: 13241 if (reg->smin_value > sval) 13242 return 1; 13243 else if (reg->smax_value <= sval) 13244 return 0; 13245 break; 13246 case BPF_JLT: 13247 if (reg->umax_value < val) 13248 return 1; 13249 else if (reg->umin_value >= val) 13250 return 0; 13251 break; 13252 case BPF_JSLT: 13253 if (reg->smax_value < sval) 13254 return 1; 13255 else if (reg->smin_value >= sval) 13256 return 0; 13257 break; 13258 case BPF_JGE: 13259 if (reg->umin_value >= val) 13260 return 1; 13261 else if (reg->umax_value < val) 13262 return 0; 13263 break; 13264 case BPF_JSGE: 13265 if (reg->smin_value >= sval) 13266 return 1; 13267 else if (reg->smax_value < sval) 13268 return 0; 13269 break; 13270 case BPF_JLE: 13271 if (reg->umax_value <= val) 13272 return 1; 13273 else if (reg->umin_value > val) 13274 return 0; 13275 break; 13276 case BPF_JSLE: 13277 if (reg->smax_value <= sval) 13278 return 1; 13279 else if (reg->smin_value > sval) 13280 return 0; 13281 break; 13282 } 13283 13284 return -1; 13285 } 13286 13287 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13288 * and return: 13289 * 1 - branch will be taken and "goto target" will be executed 13290 * 0 - branch will not be taken and fall-through to next insn 13291 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13292 * range [0,10] 13293 */ 13294 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13295 bool is_jmp32) 13296 { 13297 if (__is_pointer_value(false, reg)) { 13298 if (!reg_not_null(reg)) 13299 return -1; 13300 13301 /* If pointer is valid tests against zero will fail so we can 13302 * use this to direct branch taken. 13303 */ 13304 if (val != 0) 13305 return -1; 13306 13307 switch (opcode) { 13308 case BPF_JEQ: 13309 return 0; 13310 case BPF_JNE: 13311 return 1; 13312 default: 13313 return -1; 13314 } 13315 } 13316 13317 if (is_jmp32) 13318 return is_branch32_taken(reg, val, opcode); 13319 return is_branch64_taken(reg, val, opcode); 13320 } 13321 13322 static int flip_opcode(u32 opcode) 13323 { 13324 /* How can we transform "a <op> b" into "b <op> a"? */ 13325 static const u8 opcode_flip[16] = { 13326 /* these stay the same */ 13327 [BPF_JEQ >> 4] = BPF_JEQ, 13328 [BPF_JNE >> 4] = BPF_JNE, 13329 [BPF_JSET >> 4] = BPF_JSET, 13330 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13331 [BPF_JGE >> 4] = BPF_JLE, 13332 [BPF_JGT >> 4] = BPF_JLT, 13333 [BPF_JLE >> 4] = BPF_JGE, 13334 [BPF_JLT >> 4] = BPF_JGT, 13335 [BPF_JSGE >> 4] = BPF_JSLE, 13336 [BPF_JSGT >> 4] = BPF_JSLT, 13337 [BPF_JSLE >> 4] = BPF_JSGE, 13338 [BPF_JSLT >> 4] = BPF_JSGT 13339 }; 13340 return opcode_flip[opcode >> 4]; 13341 } 13342 13343 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13344 struct bpf_reg_state *src_reg, 13345 u8 opcode) 13346 { 13347 struct bpf_reg_state *pkt; 13348 13349 if (src_reg->type == PTR_TO_PACKET_END) { 13350 pkt = dst_reg; 13351 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13352 pkt = src_reg; 13353 opcode = flip_opcode(opcode); 13354 } else { 13355 return -1; 13356 } 13357 13358 if (pkt->range >= 0) 13359 return -1; 13360 13361 switch (opcode) { 13362 case BPF_JLE: 13363 /* pkt <= pkt_end */ 13364 fallthrough; 13365 case BPF_JGT: 13366 /* pkt > pkt_end */ 13367 if (pkt->range == BEYOND_PKT_END) 13368 /* pkt has at last one extra byte beyond pkt_end */ 13369 return opcode == BPF_JGT; 13370 break; 13371 case BPF_JLT: 13372 /* pkt < pkt_end */ 13373 fallthrough; 13374 case BPF_JGE: 13375 /* pkt >= pkt_end */ 13376 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13377 return opcode == BPF_JGE; 13378 break; 13379 } 13380 return -1; 13381 } 13382 13383 /* Adjusts the register min/max values in the case that the dst_reg is the 13384 * variable register that we are working on, and src_reg is a constant or we're 13385 * simply doing a BPF_K check. 13386 * In JEQ/JNE cases we also adjust the var_off values. 13387 */ 13388 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13389 struct bpf_reg_state *false_reg, 13390 u64 val, u32 val32, 13391 u8 opcode, bool is_jmp32) 13392 { 13393 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13394 struct tnum false_64off = false_reg->var_off; 13395 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13396 struct tnum true_64off = true_reg->var_off; 13397 s64 sval = (s64)val; 13398 s32 sval32 = (s32)val32; 13399 13400 /* If the dst_reg is a pointer, we can't learn anything about its 13401 * variable offset from the compare (unless src_reg were a pointer into 13402 * the same object, but we don't bother with that. 13403 * Since false_reg and true_reg have the same type by construction, we 13404 * only need to check one of them for pointerness. 13405 */ 13406 if (__is_pointer_value(false, false_reg)) 13407 return; 13408 13409 switch (opcode) { 13410 /* JEQ/JNE comparison doesn't change the register equivalence. 13411 * 13412 * r1 = r2; 13413 * if (r1 == 42) goto label; 13414 * ... 13415 * label: // here both r1 and r2 are known to be 42. 13416 * 13417 * Hence when marking register as known preserve it's ID. 13418 */ 13419 case BPF_JEQ: 13420 if (is_jmp32) { 13421 __mark_reg32_known(true_reg, val32); 13422 true_32off = tnum_subreg(true_reg->var_off); 13423 } else { 13424 ___mark_reg_known(true_reg, val); 13425 true_64off = true_reg->var_off; 13426 } 13427 break; 13428 case BPF_JNE: 13429 if (is_jmp32) { 13430 __mark_reg32_known(false_reg, val32); 13431 false_32off = tnum_subreg(false_reg->var_off); 13432 } else { 13433 ___mark_reg_known(false_reg, val); 13434 false_64off = false_reg->var_off; 13435 } 13436 break; 13437 case BPF_JSET: 13438 if (is_jmp32) { 13439 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13440 if (is_power_of_2(val32)) 13441 true_32off = tnum_or(true_32off, 13442 tnum_const(val32)); 13443 } else { 13444 false_64off = tnum_and(false_64off, tnum_const(~val)); 13445 if (is_power_of_2(val)) 13446 true_64off = tnum_or(true_64off, 13447 tnum_const(val)); 13448 } 13449 break; 13450 case BPF_JGE: 13451 case BPF_JGT: 13452 { 13453 if (is_jmp32) { 13454 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13455 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13456 13457 false_reg->u32_max_value = min(false_reg->u32_max_value, 13458 false_umax); 13459 true_reg->u32_min_value = max(true_reg->u32_min_value, 13460 true_umin); 13461 } else { 13462 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13463 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13464 13465 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13466 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13467 } 13468 break; 13469 } 13470 case BPF_JSGE: 13471 case BPF_JSGT: 13472 { 13473 if (is_jmp32) { 13474 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13475 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13476 13477 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13478 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13479 } else { 13480 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13481 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13482 13483 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13484 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13485 } 13486 break; 13487 } 13488 case BPF_JLE: 13489 case BPF_JLT: 13490 { 13491 if (is_jmp32) { 13492 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13493 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13494 13495 false_reg->u32_min_value = max(false_reg->u32_min_value, 13496 false_umin); 13497 true_reg->u32_max_value = min(true_reg->u32_max_value, 13498 true_umax); 13499 } else { 13500 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13501 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13502 13503 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13504 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13505 } 13506 break; 13507 } 13508 case BPF_JSLE: 13509 case BPF_JSLT: 13510 { 13511 if (is_jmp32) { 13512 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13513 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13514 13515 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13516 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13517 } else { 13518 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13519 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13520 13521 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13522 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13523 } 13524 break; 13525 } 13526 default: 13527 return; 13528 } 13529 13530 if (is_jmp32) { 13531 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13532 tnum_subreg(false_32off)); 13533 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13534 tnum_subreg(true_32off)); 13535 __reg_combine_32_into_64(false_reg); 13536 __reg_combine_32_into_64(true_reg); 13537 } else { 13538 false_reg->var_off = false_64off; 13539 true_reg->var_off = true_64off; 13540 __reg_combine_64_into_32(false_reg); 13541 __reg_combine_64_into_32(true_reg); 13542 } 13543 } 13544 13545 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13546 * the variable reg. 13547 */ 13548 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13549 struct bpf_reg_state *false_reg, 13550 u64 val, u32 val32, 13551 u8 opcode, bool is_jmp32) 13552 { 13553 opcode = flip_opcode(opcode); 13554 /* This uses zero as "not present in table"; luckily the zero opcode, 13555 * BPF_JA, can't get here. 13556 */ 13557 if (opcode) 13558 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13559 } 13560 13561 /* Regs are known to be equal, so intersect their min/max/var_off */ 13562 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13563 struct bpf_reg_state *dst_reg) 13564 { 13565 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13566 dst_reg->umin_value); 13567 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13568 dst_reg->umax_value); 13569 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13570 dst_reg->smin_value); 13571 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13572 dst_reg->smax_value); 13573 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13574 dst_reg->var_off); 13575 reg_bounds_sync(src_reg); 13576 reg_bounds_sync(dst_reg); 13577 } 13578 13579 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13580 struct bpf_reg_state *true_dst, 13581 struct bpf_reg_state *false_src, 13582 struct bpf_reg_state *false_dst, 13583 u8 opcode) 13584 { 13585 switch (opcode) { 13586 case BPF_JEQ: 13587 __reg_combine_min_max(true_src, true_dst); 13588 break; 13589 case BPF_JNE: 13590 __reg_combine_min_max(false_src, false_dst); 13591 break; 13592 } 13593 } 13594 13595 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13596 struct bpf_reg_state *reg, u32 id, 13597 bool is_null) 13598 { 13599 if (type_may_be_null(reg->type) && reg->id == id && 13600 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13601 /* Old offset (both fixed and variable parts) should have been 13602 * known-zero, because we don't allow pointer arithmetic on 13603 * pointers that might be NULL. If we see this happening, don't 13604 * convert the register. 13605 * 13606 * But in some cases, some helpers that return local kptrs 13607 * advance offset for the returned pointer. In those cases, it 13608 * is fine to expect to see reg->off. 13609 */ 13610 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13611 return; 13612 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13613 WARN_ON_ONCE(reg->off)) 13614 return; 13615 13616 if (is_null) { 13617 reg->type = SCALAR_VALUE; 13618 /* We don't need id and ref_obj_id from this point 13619 * onwards anymore, thus we should better reset it, 13620 * so that state pruning has chances to take effect. 13621 */ 13622 reg->id = 0; 13623 reg->ref_obj_id = 0; 13624 13625 return; 13626 } 13627 13628 mark_ptr_not_null_reg(reg); 13629 13630 if (!reg_may_point_to_spin_lock(reg)) { 13631 /* For not-NULL ptr, reg->ref_obj_id will be reset 13632 * in release_reference(). 13633 * 13634 * reg->id is still used by spin_lock ptr. Other 13635 * than spin_lock ptr type, reg->id can be reset. 13636 */ 13637 reg->id = 0; 13638 } 13639 } 13640 } 13641 13642 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13643 * be folded together at some point. 13644 */ 13645 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13646 bool is_null) 13647 { 13648 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13649 struct bpf_reg_state *regs = state->regs, *reg; 13650 u32 ref_obj_id = regs[regno].ref_obj_id; 13651 u32 id = regs[regno].id; 13652 13653 if (ref_obj_id && ref_obj_id == id && is_null) 13654 /* regs[regno] is in the " == NULL" branch. 13655 * No one could have freed the reference state before 13656 * doing the NULL check. 13657 */ 13658 WARN_ON_ONCE(release_reference_state(state, id)); 13659 13660 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13661 mark_ptr_or_null_reg(state, reg, id, is_null); 13662 })); 13663 } 13664 13665 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13666 struct bpf_reg_state *dst_reg, 13667 struct bpf_reg_state *src_reg, 13668 struct bpf_verifier_state *this_branch, 13669 struct bpf_verifier_state *other_branch) 13670 { 13671 if (BPF_SRC(insn->code) != BPF_X) 13672 return false; 13673 13674 /* Pointers are always 64-bit. */ 13675 if (BPF_CLASS(insn->code) == BPF_JMP32) 13676 return false; 13677 13678 switch (BPF_OP(insn->code)) { 13679 case BPF_JGT: 13680 if ((dst_reg->type == PTR_TO_PACKET && 13681 src_reg->type == PTR_TO_PACKET_END) || 13682 (dst_reg->type == PTR_TO_PACKET_META && 13683 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13684 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13685 find_good_pkt_pointers(this_branch, dst_reg, 13686 dst_reg->type, false); 13687 mark_pkt_end(other_branch, insn->dst_reg, true); 13688 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13689 src_reg->type == PTR_TO_PACKET) || 13690 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13691 src_reg->type == PTR_TO_PACKET_META)) { 13692 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13693 find_good_pkt_pointers(other_branch, src_reg, 13694 src_reg->type, true); 13695 mark_pkt_end(this_branch, insn->src_reg, false); 13696 } else { 13697 return false; 13698 } 13699 break; 13700 case BPF_JLT: 13701 if ((dst_reg->type == PTR_TO_PACKET && 13702 src_reg->type == PTR_TO_PACKET_END) || 13703 (dst_reg->type == PTR_TO_PACKET_META && 13704 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13705 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13706 find_good_pkt_pointers(other_branch, dst_reg, 13707 dst_reg->type, true); 13708 mark_pkt_end(this_branch, insn->dst_reg, false); 13709 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13710 src_reg->type == PTR_TO_PACKET) || 13711 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13712 src_reg->type == PTR_TO_PACKET_META)) { 13713 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13714 find_good_pkt_pointers(this_branch, src_reg, 13715 src_reg->type, false); 13716 mark_pkt_end(other_branch, insn->src_reg, true); 13717 } else { 13718 return false; 13719 } 13720 break; 13721 case BPF_JGE: 13722 if ((dst_reg->type == PTR_TO_PACKET && 13723 src_reg->type == PTR_TO_PACKET_END) || 13724 (dst_reg->type == PTR_TO_PACKET_META && 13725 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13726 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13727 find_good_pkt_pointers(this_branch, dst_reg, 13728 dst_reg->type, true); 13729 mark_pkt_end(other_branch, insn->dst_reg, false); 13730 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13731 src_reg->type == PTR_TO_PACKET) || 13732 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13733 src_reg->type == PTR_TO_PACKET_META)) { 13734 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13735 find_good_pkt_pointers(other_branch, src_reg, 13736 src_reg->type, false); 13737 mark_pkt_end(this_branch, insn->src_reg, true); 13738 } else { 13739 return false; 13740 } 13741 break; 13742 case BPF_JLE: 13743 if ((dst_reg->type == PTR_TO_PACKET && 13744 src_reg->type == PTR_TO_PACKET_END) || 13745 (dst_reg->type == PTR_TO_PACKET_META && 13746 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13747 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13748 find_good_pkt_pointers(other_branch, dst_reg, 13749 dst_reg->type, false); 13750 mark_pkt_end(this_branch, insn->dst_reg, true); 13751 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13752 src_reg->type == PTR_TO_PACKET) || 13753 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13754 src_reg->type == PTR_TO_PACKET_META)) { 13755 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 13756 find_good_pkt_pointers(this_branch, src_reg, 13757 src_reg->type, true); 13758 mark_pkt_end(other_branch, insn->src_reg, false); 13759 } else { 13760 return false; 13761 } 13762 break; 13763 default: 13764 return false; 13765 } 13766 13767 return true; 13768 } 13769 13770 static void find_equal_scalars(struct bpf_verifier_state *vstate, 13771 struct bpf_reg_state *known_reg) 13772 { 13773 struct bpf_func_state *state; 13774 struct bpf_reg_state *reg; 13775 13776 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13777 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 13778 copy_register_state(reg, known_reg); 13779 })); 13780 } 13781 13782 static int check_cond_jmp_op(struct bpf_verifier_env *env, 13783 struct bpf_insn *insn, int *insn_idx) 13784 { 13785 struct bpf_verifier_state *this_branch = env->cur_state; 13786 struct bpf_verifier_state *other_branch; 13787 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 13788 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 13789 struct bpf_reg_state *eq_branch_regs; 13790 u8 opcode = BPF_OP(insn->code); 13791 bool is_jmp32; 13792 int pred = -1; 13793 int err; 13794 13795 /* Only conditional jumps are expected to reach here. */ 13796 if (opcode == BPF_JA || opcode > BPF_JSLE) { 13797 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 13798 return -EINVAL; 13799 } 13800 13801 if (BPF_SRC(insn->code) == BPF_X) { 13802 if (insn->imm != 0) { 13803 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13804 return -EINVAL; 13805 } 13806 13807 /* check src1 operand */ 13808 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13809 if (err) 13810 return err; 13811 13812 if (is_pointer_value(env, insn->src_reg)) { 13813 verbose(env, "R%d pointer comparison prohibited\n", 13814 insn->src_reg); 13815 return -EACCES; 13816 } 13817 src_reg = ®s[insn->src_reg]; 13818 } else { 13819 if (insn->src_reg != BPF_REG_0) { 13820 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13821 return -EINVAL; 13822 } 13823 } 13824 13825 /* check src2 operand */ 13826 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13827 if (err) 13828 return err; 13829 13830 dst_reg = ®s[insn->dst_reg]; 13831 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 13832 13833 if (BPF_SRC(insn->code) == BPF_K) { 13834 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 13835 } else if (src_reg->type == SCALAR_VALUE && 13836 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 13837 pred = is_branch_taken(dst_reg, 13838 tnum_subreg(src_reg->var_off).value, 13839 opcode, 13840 is_jmp32); 13841 } else if (src_reg->type == SCALAR_VALUE && 13842 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 13843 pred = is_branch_taken(dst_reg, 13844 src_reg->var_off.value, 13845 opcode, 13846 is_jmp32); 13847 } else if (dst_reg->type == SCALAR_VALUE && 13848 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 13849 pred = is_branch_taken(src_reg, 13850 tnum_subreg(dst_reg->var_off).value, 13851 flip_opcode(opcode), 13852 is_jmp32); 13853 } else if (dst_reg->type == SCALAR_VALUE && 13854 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 13855 pred = is_branch_taken(src_reg, 13856 dst_reg->var_off.value, 13857 flip_opcode(opcode), 13858 is_jmp32); 13859 } else if (reg_is_pkt_pointer_any(dst_reg) && 13860 reg_is_pkt_pointer_any(src_reg) && 13861 !is_jmp32) { 13862 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 13863 } 13864 13865 if (pred >= 0) { 13866 /* If we get here with a dst_reg pointer type it is because 13867 * above is_branch_taken() special cased the 0 comparison. 13868 */ 13869 if (!__is_pointer_value(false, dst_reg)) 13870 err = mark_chain_precision(env, insn->dst_reg); 13871 if (BPF_SRC(insn->code) == BPF_X && !err && 13872 !__is_pointer_value(false, src_reg)) 13873 err = mark_chain_precision(env, insn->src_reg); 13874 if (err) 13875 return err; 13876 } 13877 13878 if (pred == 1) { 13879 /* Only follow the goto, ignore fall-through. If needed, push 13880 * the fall-through branch for simulation under speculative 13881 * execution. 13882 */ 13883 if (!env->bypass_spec_v1 && 13884 !sanitize_speculative_path(env, insn, *insn_idx + 1, 13885 *insn_idx)) 13886 return -EFAULT; 13887 *insn_idx += insn->off; 13888 return 0; 13889 } else if (pred == 0) { 13890 /* Only follow the fall-through branch, since that's where the 13891 * program will go. If needed, push the goto branch for 13892 * simulation under speculative execution. 13893 */ 13894 if (!env->bypass_spec_v1 && 13895 !sanitize_speculative_path(env, insn, 13896 *insn_idx + insn->off + 1, 13897 *insn_idx)) 13898 return -EFAULT; 13899 return 0; 13900 } 13901 13902 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 13903 false); 13904 if (!other_branch) 13905 return -EFAULT; 13906 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 13907 13908 /* detect if we are comparing against a constant value so we can adjust 13909 * our min/max values for our dst register. 13910 * this is only legit if both are scalars (or pointers to the same 13911 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 13912 * because otherwise the different base pointers mean the offsets aren't 13913 * comparable. 13914 */ 13915 if (BPF_SRC(insn->code) == BPF_X) { 13916 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 13917 13918 if (dst_reg->type == SCALAR_VALUE && 13919 src_reg->type == SCALAR_VALUE) { 13920 if (tnum_is_const(src_reg->var_off) || 13921 (is_jmp32 && 13922 tnum_is_const(tnum_subreg(src_reg->var_off)))) 13923 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13924 dst_reg, 13925 src_reg->var_off.value, 13926 tnum_subreg(src_reg->var_off).value, 13927 opcode, is_jmp32); 13928 else if (tnum_is_const(dst_reg->var_off) || 13929 (is_jmp32 && 13930 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 13931 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 13932 src_reg, 13933 dst_reg->var_off.value, 13934 tnum_subreg(dst_reg->var_off).value, 13935 opcode, is_jmp32); 13936 else if (!is_jmp32 && 13937 (opcode == BPF_JEQ || opcode == BPF_JNE)) 13938 /* Comparing for equality, we can combine knowledge */ 13939 reg_combine_min_max(&other_branch_regs[insn->src_reg], 13940 &other_branch_regs[insn->dst_reg], 13941 src_reg, dst_reg, opcode); 13942 if (src_reg->id && 13943 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 13944 find_equal_scalars(this_branch, src_reg); 13945 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 13946 } 13947 13948 } 13949 } else if (dst_reg->type == SCALAR_VALUE) { 13950 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13951 dst_reg, insn->imm, (u32)insn->imm, 13952 opcode, is_jmp32); 13953 } 13954 13955 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 13956 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 13957 find_equal_scalars(this_branch, dst_reg); 13958 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 13959 } 13960 13961 /* if one pointer register is compared to another pointer 13962 * register check if PTR_MAYBE_NULL could be lifted. 13963 * E.g. register A - maybe null 13964 * register B - not null 13965 * for JNE A, B, ... - A is not null in the false branch; 13966 * for JEQ A, B, ... - A is not null in the true branch. 13967 * 13968 * Since PTR_TO_BTF_ID points to a kernel struct that does 13969 * not need to be null checked by the BPF program, i.e., 13970 * could be null even without PTR_MAYBE_NULL marking, so 13971 * only propagate nullness when neither reg is that type. 13972 */ 13973 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 13974 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 13975 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 13976 base_type(src_reg->type) != PTR_TO_BTF_ID && 13977 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 13978 eq_branch_regs = NULL; 13979 switch (opcode) { 13980 case BPF_JEQ: 13981 eq_branch_regs = other_branch_regs; 13982 break; 13983 case BPF_JNE: 13984 eq_branch_regs = regs; 13985 break; 13986 default: 13987 /* do nothing */ 13988 break; 13989 } 13990 if (eq_branch_regs) { 13991 if (type_may_be_null(src_reg->type)) 13992 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 13993 else 13994 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 13995 } 13996 } 13997 13998 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 13999 * NOTE: these optimizations below are related with pointer comparison 14000 * which will never be JMP32. 14001 */ 14002 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14003 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14004 type_may_be_null(dst_reg->type)) { 14005 /* Mark all identical registers in each branch as either 14006 * safe or unknown depending R == 0 or R != 0 conditional. 14007 */ 14008 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14009 opcode == BPF_JNE); 14010 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14011 opcode == BPF_JEQ); 14012 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14013 this_branch, other_branch) && 14014 is_pointer_value(env, insn->dst_reg)) { 14015 verbose(env, "R%d pointer comparison prohibited\n", 14016 insn->dst_reg); 14017 return -EACCES; 14018 } 14019 if (env->log.level & BPF_LOG_LEVEL) 14020 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14021 return 0; 14022 } 14023 14024 /* verify BPF_LD_IMM64 instruction */ 14025 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14026 { 14027 struct bpf_insn_aux_data *aux = cur_aux(env); 14028 struct bpf_reg_state *regs = cur_regs(env); 14029 struct bpf_reg_state *dst_reg; 14030 struct bpf_map *map; 14031 int err; 14032 14033 if (BPF_SIZE(insn->code) != BPF_DW) { 14034 verbose(env, "invalid BPF_LD_IMM insn\n"); 14035 return -EINVAL; 14036 } 14037 if (insn->off != 0) { 14038 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14039 return -EINVAL; 14040 } 14041 14042 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14043 if (err) 14044 return err; 14045 14046 dst_reg = ®s[insn->dst_reg]; 14047 if (insn->src_reg == 0) { 14048 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14049 14050 dst_reg->type = SCALAR_VALUE; 14051 __mark_reg_known(®s[insn->dst_reg], imm); 14052 return 0; 14053 } 14054 14055 /* All special src_reg cases are listed below. From this point onwards 14056 * we either succeed and assign a corresponding dst_reg->type after 14057 * zeroing the offset, or fail and reject the program. 14058 */ 14059 mark_reg_known_zero(env, regs, insn->dst_reg); 14060 14061 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14062 dst_reg->type = aux->btf_var.reg_type; 14063 switch (base_type(dst_reg->type)) { 14064 case PTR_TO_MEM: 14065 dst_reg->mem_size = aux->btf_var.mem_size; 14066 break; 14067 case PTR_TO_BTF_ID: 14068 dst_reg->btf = aux->btf_var.btf; 14069 dst_reg->btf_id = aux->btf_var.btf_id; 14070 break; 14071 default: 14072 verbose(env, "bpf verifier is misconfigured\n"); 14073 return -EFAULT; 14074 } 14075 return 0; 14076 } 14077 14078 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14079 struct bpf_prog_aux *aux = env->prog->aux; 14080 u32 subprogno = find_subprog(env, 14081 env->insn_idx + insn->imm + 1); 14082 14083 if (!aux->func_info) { 14084 verbose(env, "missing btf func_info\n"); 14085 return -EINVAL; 14086 } 14087 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14088 verbose(env, "callback function not static\n"); 14089 return -EINVAL; 14090 } 14091 14092 dst_reg->type = PTR_TO_FUNC; 14093 dst_reg->subprogno = subprogno; 14094 return 0; 14095 } 14096 14097 map = env->used_maps[aux->map_index]; 14098 dst_reg->map_ptr = map; 14099 14100 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14101 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14102 dst_reg->type = PTR_TO_MAP_VALUE; 14103 dst_reg->off = aux->map_off; 14104 WARN_ON_ONCE(map->max_entries != 1); 14105 /* We want reg->id to be same (0) as map_value is not distinct */ 14106 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14107 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14108 dst_reg->type = CONST_PTR_TO_MAP; 14109 } else { 14110 verbose(env, "bpf verifier is misconfigured\n"); 14111 return -EINVAL; 14112 } 14113 14114 return 0; 14115 } 14116 14117 static bool may_access_skb(enum bpf_prog_type type) 14118 { 14119 switch (type) { 14120 case BPF_PROG_TYPE_SOCKET_FILTER: 14121 case BPF_PROG_TYPE_SCHED_CLS: 14122 case BPF_PROG_TYPE_SCHED_ACT: 14123 return true; 14124 default: 14125 return false; 14126 } 14127 } 14128 14129 /* verify safety of LD_ABS|LD_IND instructions: 14130 * - they can only appear in the programs where ctx == skb 14131 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14132 * preserve R6-R9, and store return value into R0 14133 * 14134 * Implicit input: 14135 * ctx == skb == R6 == CTX 14136 * 14137 * Explicit input: 14138 * SRC == any register 14139 * IMM == 32-bit immediate 14140 * 14141 * Output: 14142 * R0 - 8/16/32-bit skb data converted to cpu endianness 14143 */ 14144 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14145 { 14146 struct bpf_reg_state *regs = cur_regs(env); 14147 static const int ctx_reg = BPF_REG_6; 14148 u8 mode = BPF_MODE(insn->code); 14149 int i, err; 14150 14151 if (!may_access_skb(resolve_prog_type(env->prog))) { 14152 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14153 return -EINVAL; 14154 } 14155 14156 if (!env->ops->gen_ld_abs) { 14157 verbose(env, "bpf verifier is misconfigured\n"); 14158 return -EINVAL; 14159 } 14160 14161 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14162 BPF_SIZE(insn->code) == BPF_DW || 14163 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14164 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14165 return -EINVAL; 14166 } 14167 14168 /* check whether implicit source operand (register R6) is readable */ 14169 err = check_reg_arg(env, ctx_reg, SRC_OP); 14170 if (err) 14171 return err; 14172 14173 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14174 * gen_ld_abs() may terminate the program at runtime, leading to 14175 * reference leak. 14176 */ 14177 err = check_reference_leak(env); 14178 if (err) { 14179 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14180 return err; 14181 } 14182 14183 if (env->cur_state->active_lock.ptr) { 14184 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14185 return -EINVAL; 14186 } 14187 14188 if (env->cur_state->active_rcu_lock) { 14189 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14190 return -EINVAL; 14191 } 14192 14193 if (regs[ctx_reg].type != PTR_TO_CTX) { 14194 verbose(env, 14195 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14196 return -EINVAL; 14197 } 14198 14199 if (mode == BPF_IND) { 14200 /* check explicit source operand */ 14201 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14202 if (err) 14203 return err; 14204 } 14205 14206 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14207 if (err < 0) 14208 return err; 14209 14210 /* reset caller saved regs to unreadable */ 14211 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14212 mark_reg_not_init(env, regs, caller_saved[i]); 14213 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14214 } 14215 14216 /* mark destination R0 register as readable, since it contains 14217 * the value fetched from the packet. 14218 * Already marked as written above. 14219 */ 14220 mark_reg_unknown(env, regs, BPF_REG_0); 14221 /* ld_abs load up to 32-bit skb data. */ 14222 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14223 return 0; 14224 } 14225 14226 static int check_return_code(struct bpf_verifier_env *env) 14227 { 14228 struct tnum enforce_attach_type_range = tnum_unknown; 14229 const struct bpf_prog *prog = env->prog; 14230 struct bpf_reg_state *reg; 14231 struct tnum range = tnum_range(0, 1); 14232 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14233 int err; 14234 struct bpf_func_state *frame = env->cur_state->frame[0]; 14235 const bool is_subprog = frame->subprogno; 14236 14237 /* LSM and struct_ops func-ptr's return type could be "void" */ 14238 if (!is_subprog) { 14239 switch (prog_type) { 14240 case BPF_PROG_TYPE_LSM: 14241 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14242 /* See below, can be 0 or 0-1 depending on hook. */ 14243 break; 14244 fallthrough; 14245 case BPF_PROG_TYPE_STRUCT_OPS: 14246 if (!prog->aux->attach_func_proto->type) 14247 return 0; 14248 break; 14249 default: 14250 break; 14251 } 14252 } 14253 14254 /* eBPF calling convention is such that R0 is used 14255 * to return the value from eBPF program. 14256 * Make sure that it's readable at this time 14257 * of bpf_exit, which means that program wrote 14258 * something into it earlier 14259 */ 14260 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14261 if (err) 14262 return err; 14263 14264 if (is_pointer_value(env, BPF_REG_0)) { 14265 verbose(env, "R0 leaks addr as return value\n"); 14266 return -EACCES; 14267 } 14268 14269 reg = cur_regs(env) + BPF_REG_0; 14270 14271 if (frame->in_async_callback_fn) { 14272 /* enforce return zero from async callbacks like timer */ 14273 if (reg->type != SCALAR_VALUE) { 14274 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14275 reg_type_str(env, reg->type)); 14276 return -EINVAL; 14277 } 14278 14279 if (!tnum_in(tnum_const(0), reg->var_off)) { 14280 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 14281 return -EINVAL; 14282 } 14283 return 0; 14284 } 14285 14286 if (is_subprog) { 14287 if (reg->type != SCALAR_VALUE) { 14288 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14289 reg_type_str(env, reg->type)); 14290 return -EINVAL; 14291 } 14292 return 0; 14293 } 14294 14295 switch (prog_type) { 14296 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14297 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14298 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14299 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14300 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14301 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14302 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14303 range = tnum_range(1, 1); 14304 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14305 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14306 range = tnum_range(0, 3); 14307 break; 14308 case BPF_PROG_TYPE_CGROUP_SKB: 14309 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14310 range = tnum_range(0, 3); 14311 enforce_attach_type_range = tnum_range(2, 3); 14312 } 14313 break; 14314 case BPF_PROG_TYPE_CGROUP_SOCK: 14315 case BPF_PROG_TYPE_SOCK_OPS: 14316 case BPF_PROG_TYPE_CGROUP_DEVICE: 14317 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14318 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14319 break; 14320 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14321 if (!env->prog->aux->attach_btf_id) 14322 return 0; 14323 range = tnum_const(0); 14324 break; 14325 case BPF_PROG_TYPE_TRACING: 14326 switch (env->prog->expected_attach_type) { 14327 case BPF_TRACE_FENTRY: 14328 case BPF_TRACE_FEXIT: 14329 range = tnum_const(0); 14330 break; 14331 case BPF_TRACE_RAW_TP: 14332 case BPF_MODIFY_RETURN: 14333 return 0; 14334 case BPF_TRACE_ITER: 14335 break; 14336 default: 14337 return -ENOTSUPP; 14338 } 14339 break; 14340 case BPF_PROG_TYPE_SK_LOOKUP: 14341 range = tnum_range(SK_DROP, SK_PASS); 14342 break; 14343 14344 case BPF_PROG_TYPE_LSM: 14345 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14346 /* Regular BPF_PROG_TYPE_LSM programs can return 14347 * any value. 14348 */ 14349 return 0; 14350 } 14351 if (!env->prog->aux->attach_func_proto->type) { 14352 /* Make sure programs that attach to void 14353 * hooks don't try to modify return value. 14354 */ 14355 range = tnum_range(1, 1); 14356 } 14357 break; 14358 14359 case BPF_PROG_TYPE_NETFILTER: 14360 range = tnum_range(NF_DROP, NF_ACCEPT); 14361 break; 14362 case BPF_PROG_TYPE_EXT: 14363 /* freplace program can return anything as its return value 14364 * depends on the to-be-replaced kernel func or bpf program. 14365 */ 14366 default: 14367 return 0; 14368 } 14369 14370 if (reg->type != SCALAR_VALUE) { 14371 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14372 reg_type_str(env, reg->type)); 14373 return -EINVAL; 14374 } 14375 14376 if (!tnum_in(range, reg->var_off)) { 14377 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14378 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14379 prog_type == BPF_PROG_TYPE_LSM && 14380 !prog->aux->attach_func_proto->type) 14381 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14382 return -EINVAL; 14383 } 14384 14385 if (!tnum_is_unknown(enforce_attach_type_range) && 14386 tnum_in(enforce_attach_type_range, reg->var_off)) 14387 env->prog->enforce_expected_attach_type = 1; 14388 return 0; 14389 } 14390 14391 /* non-recursive DFS pseudo code 14392 * 1 procedure DFS-iterative(G,v): 14393 * 2 label v as discovered 14394 * 3 let S be a stack 14395 * 4 S.push(v) 14396 * 5 while S is not empty 14397 * 6 t <- S.peek() 14398 * 7 if t is what we're looking for: 14399 * 8 return t 14400 * 9 for all edges e in G.adjacentEdges(t) do 14401 * 10 if edge e is already labelled 14402 * 11 continue with the next edge 14403 * 12 w <- G.adjacentVertex(t,e) 14404 * 13 if vertex w is not discovered and not explored 14405 * 14 label e as tree-edge 14406 * 15 label w as discovered 14407 * 16 S.push(w) 14408 * 17 continue at 5 14409 * 18 else if vertex w is discovered 14410 * 19 label e as back-edge 14411 * 20 else 14412 * 21 // vertex w is explored 14413 * 22 label e as forward- or cross-edge 14414 * 23 label t as explored 14415 * 24 S.pop() 14416 * 14417 * convention: 14418 * 0x10 - discovered 14419 * 0x11 - discovered and fall-through edge labelled 14420 * 0x12 - discovered and fall-through and branch edges labelled 14421 * 0x20 - explored 14422 */ 14423 14424 enum { 14425 DISCOVERED = 0x10, 14426 EXPLORED = 0x20, 14427 FALLTHROUGH = 1, 14428 BRANCH = 2, 14429 }; 14430 14431 static u32 state_htab_size(struct bpf_verifier_env *env) 14432 { 14433 return env->prog->len; 14434 } 14435 14436 static struct bpf_verifier_state_list **explored_state( 14437 struct bpf_verifier_env *env, 14438 int idx) 14439 { 14440 struct bpf_verifier_state *cur = env->cur_state; 14441 struct bpf_func_state *state = cur->frame[cur->curframe]; 14442 14443 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14444 } 14445 14446 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14447 { 14448 env->insn_aux_data[idx].prune_point = true; 14449 } 14450 14451 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14452 { 14453 return env->insn_aux_data[insn_idx].prune_point; 14454 } 14455 14456 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14457 { 14458 env->insn_aux_data[idx].force_checkpoint = true; 14459 } 14460 14461 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14462 { 14463 return env->insn_aux_data[insn_idx].force_checkpoint; 14464 } 14465 14466 14467 enum { 14468 DONE_EXPLORING = 0, 14469 KEEP_EXPLORING = 1, 14470 }; 14471 14472 /* t, w, e - match pseudo-code above: 14473 * t - index of current instruction 14474 * w - next instruction 14475 * e - edge 14476 */ 14477 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14478 bool loop_ok) 14479 { 14480 int *insn_stack = env->cfg.insn_stack; 14481 int *insn_state = env->cfg.insn_state; 14482 14483 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14484 return DONE_EXPLORING; 14485 14486 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14487 return DONE_EXPLORING; 14488 14489 if (w < 0 || w >= env->prog->len) { 14490 verbose_linfo(env, t, "%d: ", t); 14491 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14492 return -EINVAL; 14493 } 14494 14495 if (e == BRANCH) { 14496 /* mark branch target for state pruning */ 14497 mark_prune_point(env, w); 14498 mark_jmp_point(env, w); 14499 } 14500 14501 if (insn_state[w] == 0) { 14502 /* tree-edge */ 14503 insn_state[t] = DISCOVERED | e; 14504 insn_state[w] = DISCOVERED; 14505 if (env->cfg.cur_stack >= env->prog->len) 14506 return -E2BIG; 14507 insn_stack[env->cfg.cur_stack++] = w; 14508 return KEEP_EXPLORING; 14509 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14510 if (loop_ok && env->bpf_capable) 14511 return DONE_EXPLORING; 14512 verbose_linfo(env, t, "%d: ", t); 14513 verbose_linfo(env, w, "%d: ", w); 14514 verbose(env, "back-edge from insn %d to %d\n", t, w); 14515 return -EINVAL; 14516 } else if (insn_state[w] == EXPLORED) { 14517 /* forward- or cross-edge */ 14518 insn_state[t] = DISCOVERED | e; 14519 } else { 14520 verbose(env, "insn state internal bug\n"); 14521 return -EFAULT; 14522 } 14523 return DONE_EXPLORING; 14524 } 14525 14526 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14527 struct bpf_verifier_env *env, 14528 bool visit_callee) 14529 { 14530 int ret; 14531 14532 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14533 if (ret) 14534 return ret; 14535 14536 mark_prune_point(env, t + 1); 14537 /* when we exit from subprog, we need to record non-linear history */ 14538 mark_jmp_point(env, t + 1); 14539 14540 if (visit_callee) { 14541 mark_prune_point(env, t); 14542 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14543 /* It's ok to allow recursion from CFG point of 14544 * view. __check_func_call() will do the actual 14545 * check. 14546 */ 14547 bpf_pseudo_func(insns + t)); 14548 } 14549 return ret; 14550 } 14551 14552 /* Visits the instruction at index t and returns one of the following: 14553 * < 0 - an error occurred 14554 * DONE_EXPLORING - the instruction was fully explored 14555 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14556 */ 14557 static int visit_insn(int t, struct bpf_verifier_env *env) 14558 { 14559 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14560 int ret; 14561 14562 if (bpf_pseudo_func(insn)) 14563 return visit_func_call_insn(t, insns, env, true); 14564 14565 /* All non-branch instructions have a single fall-through edge. */ 14566 if (BPF_CLASS(insn->code) != BPF_JMP && 14567 BPF_CLASS(insn->code) != BPF_JMP32) 14568 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14569 14570 switch (BPF_OP(insn->code)) { 14571 case BPF_EXIT: 14572 return DONE_EXPLORING; 14573 14574 case BPF_CALL: 14575 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14576 /* Mark this call insn as a prune point to trigger 14577 * is_state_visited() check before call itself is 14578 * processed by __check_func_call(). Otherwise new 14579 * async state will be pushed for further exploration. 14580 */ 14581 mark_prune_point(env, t); 14582 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14583 struct bpf_kfunc_call_arg_meta meta; 14584 14585 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14586 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14587 mark_prune_point(env, t); 14588 /* Checking and saving state checkpoints at iter_next() call 14589 * is crucial for fast convergence of open-coded iterator loop 14590 * logic, so we need to force it. If we don't do that, 14591 * is_state_visited() might skip saving a checkpoint, causing 14592 * unnecessarily long sequence of not checkpointed 14593 * instructions and jumps, leading to exhaustion of jump 14594 * history buffer, and potentially other undesired outcomes. 14595 * It is expected that with correct open-coded iterators 14596 * convergence will happen quickly, so we don't run a risk of 14597 * exhausting memory. 14598 */ 14599 mark_force_checkpoint(env, t); 14600 } 14601 } 14602 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14603 14604 case BPF_JA: 14605 if (BPF_SRC(insn->code) != BPF_K) 14606 return -EINVAL; 14607 14608 /* unconditional jump with single edge */ 14609 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env, 14610 true); 14611 if (ret) 14612 return ret; 14613 14614 mark_prune_point(env, t + insn->off + 1); 14615 mark_jmp_point(env, t + insn->off + 1); 14616 14617 return ret; 14618 14619 default: 14620 /* conditional jump with two edges */ 14621 mark_prune_point(env, t); 14622 14623 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14624 if (ret) 14625 return ret; 14626 14627 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14628 } 14629 } 14630 14631 /* non-recursive depth-first-search to detect loops in BPF program 14632 * loop == back-edge in directed graph 14633 */ 14634 static int check_cfg(struct bpf_verifier_env *env) 14635 { 14636 int insn_cnt = env->prog->len; 14637 int *insn_stack, *insn_state; 14638 int ret = 0; 14639 int i; 14640 14641 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14642 if (!insn_state) 14643 return -ENOMEM; 14644 14645 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14646 if (!insn_stack) { 14647 kvfree(insn_state); 14648 return -ENOMEM; 14649 } 14650 14651 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14652 insn_stack[0] = 0; /* 0 is the first instruction */ 14653 env->cfg.cur_stack = 1; 14654 14655 while (env->cfg.cur_stack > 0) { 14656 int t = insn_stack[env->cfg.cur_stack - 1]; 14657 14658 ret = visit_insn(t, env); 14659 switch (ret) { 14660 case DONE_EXPLORING: 14661 insn_state[t] = EXPLORED; 14662 env->cfg.cur_stack--; 14663 break; 14664 case KEEP_EXPLORING: 14665 break; 14666 default: 14667 if (ret > 0) { 14668 verbose(env, "visit_insn internal bug\n"); 14669 ret = -EFAULT; 14670 } 14671 goto err_free; 14672 } 14673 } 14674 14675 if (env->cfg.cur_stack < 0) { 14676 verbose(env, "pop stack internal bug\n"); 14677 ret = -EFAULT; 14678 goto err_free; 14679 } 14680 14681 for (i = 0; i < insn_cnt; i++) { 14682 if (insn_state[i] != EXPLORED) { 14683 verbose(env, "unreachable insn %d\n", i); 14684 ret = -EINVAL; 14685 goto err_free; 14686 } 14687 } 14688 ret = 0; /* cfg looks good */ 14689 14690 err_free: 14691 kvfree(insn_state); 14692 kvfree(insn_stack); 14693 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14694 return ret; 14695 } 14696 14697 static int check_abnormal_return(struct bpf_verifier_env *env) 14698 { 14699 int i; 14700 14701 for (i = 1; i < env->subprog_cnt; i++) { 14702 if (env->subprog_info[i].has_ld_abs) { 14703 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14704 return -EINVAL; 14705 } 14706 if (env->subprog_info[i].has_tail_call) { 14707 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14708 return -EINVAL; 14709 } 14710 } 14711 return 0; 14712 } 14713 14714 /* The minimum supported BTF func info size */ 14715 #define MIN_BPF_FUNCINFO_SIZE 8 14716 #define MAX_FUNCINFO_REC_SIZE 252 14717 14718 static int check_btf_func(struct bpf_verifier_env *env, 14719 const union bpf_attr *attr, 14720 bpfptr_t uattr) 14721 { 14722 const struct btf_type *type, *func_proto, *ret_type; 14723 u32 i, nfuncs, urec_size, min_size; 14724 u32 krec_size = sizeof(struct bpf_func_info); 14725 struct bpf_func_info *krecord; 14726 struct bpf_func_info_aux *info_aux = NULL; 14727 struct bpf_prog *prog; 14728 const struct btf *btf; 14729 bpfptr_t urecord; 14730 u32 prev_offset = 0; 14731 bool scalar_return; 14732 int ret = -ENOMEM; 14733 14734 nfuncs = attr->func_info_cnt; 14735 if (!nfuncs) { 14736 if (check_abnormal_return(env)) 14737 return -EINVAL; 14738 return 0; 14739 } 14740 14741 if (nfuncs != env->subprog_cnt) { 14742 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14743 return -EINVAL; 14744 } 14745 14746 urec_size = attr->func_info_rec_size; 14747 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 14748 urec_size > MAX_FUNCINFO_REC_SIZE || 14749 urec_size % sizeof(u32)) { 14750 verbose(env, "invalid func info rec size %u\n", urec_size); 14751 return -EINVAL; 14752 } 14753 14754 prog = env->prog; 14755 btf = prog->aux->btf; 14756 14757 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 14758 min_size = min_t(u32, krec_size, urec_size); 14759 14760 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 14761 if (!krecord) 14762 return -ENOMEM; 14763 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 14764 if (!info_aux) 14765 goto err_free; 14766 14767 for (i = 0; i < nfuncs; i++) { 14768 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 14769 if (ret) { 14770 if (ret == -E2BIG) { 14771 verbose(env, "nonzero tailing record in func info"); 14772 /* set the size kernel expects so loader can zero 14773 * out the rest of the record. 14774 */ 14775 if (copy_to_bpfptr_offset(uattr, 14776 offsetof(union bpf_attr, func_info_rec_size), 14777 &min_size, sizeof(min_size))) 14778 ret = -EFAULT; 14779 } 14780 goto err_free; 14781 } 14782 14783 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 14784 ret = -EFAULT; 14785 goto err_free; 14786 } 14787 14788 /* check insn_off */ 14789 ret = -EINVAL; 14790 if (i == 0) { 14791 if (krecord[i].insn_off) { 14792 verbose(env, 14793 "nonzero insn_off %u for the first func info record", 14794 krecord[i].insn_off); 14795 goto err_free; 14796 } 14797 } else if (krecord[i].insn_off <= prev_offset) { 14798 verbose(env, 14799 "same or smaller insn offset (%u) than previous func info record (%u)", 14800 krecord[i].insn_off, prev_offset); 14801 goto err_free; 14802 } 14803 14804 if (env->subprog_info[i].start != krecord[i].insn_off) { 14805 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 14806 goto err_free; 14807 } 14808 14809 /* check type_id */ 14810 type = btf_type_by_id(btf, krecord[i].type_id); 14811 if (!type || !btf_type_is_func(type)) { 14812 verbose(env, "invalid type id %d in func info", 14813 krecord[i].type_id); 14814 goto err_free; 14815 } 14816 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 14817 14818 func_proto = btf_type_by_id(btf, type->type); 14819 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 14820 /* btf_func_check() already verified it during BTF load */ 14821 goto err_free; 14822 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 14823 scalar_return = 14824 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 14825 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 14826 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 14827 goto err_free; 14828 } 14829 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 14830 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 14831 goto err_free; 14832 } 14833 14834 prev_offset = krecord[i].insn_off; 14835 bpfptr_add(&urecord, urec_size); 14836 } 14837 14838 prog->aux->func_info = krecord; 14839 prog->aux->func_info_cnt = nfuncs; 14840 prog->aux->func_info_aux = info_aux; 14841 return 0; 14842 14843 err_free: 14844 kvfree(krecord); 14845 kfree(info_aux); 14846 return ret; 14847 } 14848 14849 static void adjust_btf_func(struct bpf_verifier_env *env) 14850 { 14851 struct bpf_prog_aux *aux = env->prog->aux; 14852 int i; 14853 14854 if (!aux->func_info) 14855 return; 14856 14857 for (i = 0; i < env->subprog_cnt; i++) 14858 aux->func_info[i].insn_off = env->subprog_info[i].start; 14859 } 14860 14861 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 14862 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 14863 14864 static int check_btf_line(struct bpf_verifier_env *env, 14865 const union bpf_attr *attr, 14866 bpfptr_t uattr) 14867 { 14868 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 14869 struct bpf_subprog_info *sub; 14870 struct bpf_line_info *linfo; 14871 struct bpf_prog *prog; 14872 const struct btf *btf; 14873 bpfptr_t ulinfo; 14874 int err; 14875 14876 nr_linfo = attr->line_info_cnt; 14877 if (!nr_linfo) 14878 return 0; 14879 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 14880 return -EINVAL; 14881 14882 rec_size = attr->line_info_rec_size; 14883 if (rec_size < MIN_BPF_LINEINFO_SIZE || 14884 rec_size > MAX_LINEINFO_REC_SIZE || 14885 rec_size & (sizeof(u32) - 1)) 14886 return -EINVAL; 14887 14888 /* Need to zero it in case the userspace may 14889 * pass in a smaller bpf_line_info object. 14890 */ 14891 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 14892 GFP_KERNEL | __GFP_NOWARN); 14893 if (!linfo) 14894 return -ENOMEM; 14895 14896 prog = env->prog; 14897 btf = prog->aux->btf; 14898 14899 s = 0; 14900 sub = env->subprog_info; 14901 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 14902 expected_size = sizeof(struct bpf_line_info); 14903 ncopy = min_t(u32, expected_size, rec_size); 14904 for (i = 0; i < nr_linfo; i++) { 14905 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 14906 if (err) { 14907 if (err == -E2BIG) { 14908 verbose(env, "nonzero tailing record in line_info"); 14909 if (copy_to_bpfptr_offset(uattr, 14910 offsetof(union bpf_attr, line_info_rec_size), 14911 &expected_size, sizeof(expected_size))) 14912 err = -EFAULT; 14913 } 14914 goto err_free; 14915 } 14916 14917 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 14918 err = -EFAULT; 14919 goto err_free; 14920 } 14921 14922 /* 14923 * Check insn_off to ensure 14924 * 1) strictly increasing AND 14925 * 2) bounded by prog->len 14926 * 14927 * The linfo[0].insn_off == 0 check logically falls into 14928 * the later "missing bpf_line_info for func..." case 14929 * because the first linfo[0].insn_off must be the 14930 * first sub also and the first sub must have 14931 * subprog_info[0].start == 0. 14932 */ 14933 if ((i && linfo[i].insn_off <= prev_offset) || 14934 linfo[i].insn_off >= prog->len) { 14935 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 14936 i, linfo[i].insn_off, prev_offset, 14937 prog->len); 14938 err = -EINVAL; 14939 goto err_free; 14940 } 14941 14942 if (!prog->insnsi[linfo[i].insn_off].code) { 14943 verbose(env, 14944 "Invalid insn code at line_info[%u].insn_off\n", 14945 i); 14946 err = -EINVAL; 14947 goto err_free; 14948 } 14949 14950 if (!btf_name_by_offset(btf, linfo[i].line_off) || 14951 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 14952 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 14953 err = -EINVAL; 14954 goto err_free; 14955 } 14956 14957 if (s != env->subprog_cnt) { 14958 if (linfo[i].insn_off == sub[s].start) { 14959 sub[s].linfo_idx = i; 14960 s++; 14961 } else if (sub[s].start < linfo[i].insn_off) { 14962 verbose(env, "missing bpf_line_info for func#%u\n", s); 14963 err = -EINVAL; 14964 goto err_free; 14965 } 14966 } 14967 14968 prev_offset = linfo[i].insn_off; 14969 bpfptr_add(&ulinfo, rec_size); 14970 } 14971 14972 if (s != env->subprog_cnt) { 14973 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 14974 env->subprog_cnt - s, s); 14975 err = -EINVAL; 14976 goto err_free; 14977 } 14978 14979 prog->aux->linfo = linfo; 14980 prog->aux->nr_linfo = nr_linfo; 14981 14982 return 0; 14983 14984 err_free: 14985 kvfree(linfo); 14986 return err; 14987 } 14988 14989 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 14990 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 14991 14992 static int check_core_relo(struct bpf_verifier_env *env, 14993 const union bpf_attr *attr, 14994 bpfptr_t uattr) 14995 { 14996 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 14997 struct bpf_core_relo core_relo = {}; 14998 struct bpf_prog *prog = env->prog; 14999 const struct btf *btf = prog->aux->btf; 15000 struct bpf_core_ctx ctx = { 15001 .log = &env->log, 15002 .btf = btf, 15003 }; 15004 bpfptr_t u_core_relo; 15005 int err; 15006 15007 nr_core_relo = attr->core_relo_cnt; 15008 if (!nr_core_relo) 15009 return 0; 15010 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15011 return -EINVAL; 15012 15013 rec_size = attr->core_relo_rec_size; 15014 if (rec_size < MIN_CORE_RELO_SIZE || 15015 rec_size > MAX_CORE_RELO_SIZE || 15016 rec_size % sizeof(u32)) 15017 return -EINVAL; 15018 15019 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15020 expected_size = sizeof(struct bpf_core_relo); 15021 ncopy = min_t(u32, expected_size, rec_size); 15022 15023 /* Unlike func_info and line_info, copy and apply each CO-RE 15024 * relocation record one at a time. 15025 */ 15026 for (i = 0; i < nr_core_relo; i++) { 15027 /* future proofing when sizeof(bpf_core_relo) changes */ 15028 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15029 if (err) { 15030 if (err == -E2BIG) { 15031 verbose(env, "nonzero tailing record in core_relo"); 15032 if (copy_to_bpfptr_offset(uattr, 15033 offsetof(union bpf_attr, core_relo_rec_size), 15034 &expected_size, sizeof(expected_size))) 15035 err = -EFAULT; 15036 } 15037 break; 15038 } 15039 15040 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15041 err = -EFAULT; 15042 break; 15043 } 15044 15045 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15046 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15047 i, core_relo.insn_off, prog->len); 15048 err = -EINVAL; 15049 break; 15050 } 15051 15052 err = bpf_core_apply(&ctx, &core_relo, i, 15053 &prog->insnsi[core_relo.insn_off / 8]); 15054 if (err) 15055 break; 15056 bpfptr_add(&u_core_relo, rec_size); 15057 } 15058 return err; 15059 } 15060 15061 static int check_btf_info(struct bpf_verifier_env *env, 15062 const union bpf_attr *attr, 15063 bpfptr_t uattr) 15064 { 15065 struct btf *btf; 15066 int err; 15067 15068 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15069 if (check_abnormal_return(env)) 15070 return -EINVAL; 15071 return 0; 15072 } 15073 15074 btf = btf_get_by_fd(attr->prog_btf_fd); 15075 if (IS_ERR(btf)) 15076 return PTR_ERR(btf); 15077 if (btf_is_kernel(btf)) { 15078 btf_put(btf); 15079 return -EACCES; 15080 } 15081 env->prog->aux->btf = btf; 15082 15083 err = check_btf_func(env, attr, uattr); 15084 if (err) 15085 return err; 15086 15087 err = check_btf_line(env, attr, uattr); 15088 if (err) 15089 return err; 15090 15091 err = check_core_relo(env, attr, uattr); 15092 if (err) 15093 return err; 15094 15095 return 0; 15096 } 15097 15098 /* check %cur's range satisfies %old's */ 15099 static bool range_within(struct bpf_reg_state *old, 15100 struct bpf_reg_state *cur) 15101 { 15102 return old->umin_value <= cur->umin_value && 15103 old->umax_value >= cur->umax_value && 15104 old->smin_value <= cur->smin_value && 15105 old->smax_value >= cur->smax_value && 15106 old->u32_min_value <= cur->u32_min_value && 15107 old->u32_max_value >= cur->u32_max_value && 15108 old->s32_min_value <= cur->s32_min_value && 15109 old->s32_max_value >= cur->s32_max_value; 15110 } 15111 15112 /* If in the old state two registers had the same id, then they need to have 15113 * the same id in the new state as well. But that id could be different from 15114 * the old state, so we need to track the mapping from old to new ids. 15115 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15116 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15117 * regs with a different old id could still have new id 9, we don't care about 15118 * that. 15119 * So we look through our idmap to see if this old id has been seen before. If 15120 * so, we require the new id to match; otherwise, we add the id pair to the map. 15121 */ 15122 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15123 { 15124 struct bpf_id_pair *map = idmap->map; 15125 unsigned int i; 15126 15127 /* either both IDs should be set or both should be zero */ 15128 if (!!old_id != !!cur_id) 15129 return false; 15130 15131 if (old_id == 0) /* cur_id == 0 as well */ 15132 return true; 15133 15134 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15135 if (!map[i].old) { 15136 /* Reached an empty slot; haven't seen this id before */ 15137 map[i].old = old_id; 15138 map[i].cur = cur_id; 15139 return true; 15140 } 15141 if (map[i].old == old_id) 15142 return map[i].cur == cur_id; 15143 if (map[i].cur == cur_id) 15144 return false; 15145 } 15146 /* We ran out of idmap slots, which should be impossible */ 15147 WARN_ON_ONCE(1); 15148 return false; 15149 } 15150 15151 /* Similar to check_ids(), but allocate a unique temporary ID 15152 * for 'old_id' or 'cur_id' of zero. 15153 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15154 */ 15155 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15156 { 15157 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15158 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15159 15160 return check_ids(old_id, cur_id, idmap); 15161 } 15162 15163 static void clean_func_state(struct bpf_verifier_env *env, 15164 struct bpf_func_state *st) 15165 { 15166 enum bpf_reg_liveness live; 15167 int i, j; 15168 15169 for (i = 0; i < BPF_REG_FP; i++) { 15170 live = st->regs[i].live; 15171 /* liveness must not touch this register anymore */ 15172 st->regs[i].live |= REG_LIVE_DONE; 15173 if (!(live & REG_LIVE_READ)) 15174 /* since the register is unused, clear its state 15175 * to make further comparison simpler 15176 */ 15177 __mark_reg_not_init(env, &st->regs[i]); 15178 } 15179 15180 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15181 live = st->stack[i].spilled_ptr.live; 15182 /* liveness must not touch this stack slot anymore */ 15183 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15184 if (!(live & REG_LIVE_READ)) { 15185 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15186 for (j = 0; j < BPF_REG_SIZE; j++) 15187 st->stack[i].slot_type[j] = STACK_INVALID; 15188 } 15189 } 15190 } 15191 15192 static void clean_verifier_state(struct bpf_verifier_env *env, 15193 struct bpf_verifier_state *st) 15194 { 15195 int i; 15196 15197 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15198 /* all regs in this state in all frames were already marked */ 15199 return; 15200 15201 for (i = 0; i <= st->curframe; i++) 15202 clean_func_state(env, st->frame[i]); 15203 } 15204 15205 /* the parentage chains form a tree. 15206 * the verifier states are added to state lists at given insn and 15207 * pushed into state stack for future exploration. 15208 * when the verifier reaches bpf_exit insn some of the verifer states 15209 * stored in the state lists have their final liveness state already, 15210 * but a lot of states will get revised from liveness point of view when 15211 * the verifier explores other branches. 15212 * Example: 15213 * 1: r0 = 1 15214 * 2: if r1 == 100 goto pc+1 15215 * 3: r0 = 2 15216 * 4: exit 15217 * when the verifier reaches exit insn the register r0 in the state list of 15218 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15219 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15220 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15221 * 15222 * Since the verifier pushes the branch states as it sees them while exploring 15223 * the program the condition of walking the branch instruction for the second 15224 * time means that all states below this branch were already explored and 15225 * their final liveness marks are already propagated. 15226 * Hence when the verifier completes the search of state list in is_state_visited() 15227 * we can call this clean_live_states() function to mark all liveness states 15228 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15229 * will not be used. 15230 * This function also clears the registers and stack for states that !READ 15231 * to simplify state merging. 15232 * 15233 * Important note here that walking the same branch instruction in the callee 15234 * doesn't meant that the states are DONE. The verifier has to compare 15235 * the callsites 15236 */ 15237 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15238 struct bpf_verifier_state *cur) 15239 { 15240 struct bpf_verifier_state_list *sl; 15241 int i; 15242 15243 sl = *explored_state(env, insn); 15244 while (sl) { 15245 if (sl->state.branches) 15246 goto next; 15247 if (sl->state.insn_idx != insn || 15248 sl->state.curframe != cur->curframe) 15249 goto next; 15250 for (i = 0; i <= cur->curframe; i++) 15251 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15252 goto next; 15253 clean_verifier_state(env, &sl->state); 15254 next: 15255 sl = sl->next; 15256 } 15257 } 15258 15259 static bool regs_exact(const struct bpf_reg_state *rold, 15260 const struct bpf_reg_state *rcur, 15261 struct bpf_idmap *idmap) 15262 { 15263 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15264 check_ids(rold->id, rcur->id, idmap) && 15265 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15266 } 15267 15268 /* Returns true if (rold safe implies rcur safe) */ 15269 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15270 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15271 { 15272 if (!(rold->live & REG_LIVE_READ)) 15273 /* explored state didn't use this */ 15274 return true; 15275 if (rold->type == NOT_INIT) 15276 /* explored state can't have used this */ 15277 return true; 15278 if (rcur->type == NOT_INIT) 15279 return false; 15280 15281 /* Enforce that register types have to match exactly, including their 15282 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15283 * rule. 15284 * 15285 * One can make a point that using a pointer register as unbounded 15286 * SCALAR would be technically acceptable, but this could lead to 15287 * pointer leaks because scalars are allowed to leak while pointers 15288 * are not. We could make this safe in special cases if root is 15289 * calling us, but it's probably not worth the hassle. 15290 * 15291 * Also, register types that are *not* MAYBE_NULL could technically be 15292 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15293 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15294 * to the same map). 15295 * However, if the old MAYBE_NULL register then got NULL checked, 15296 * doing so could have affected others with the same id, and we can't 15297 * check for that because we lost the id when we converted to 15298 * a non-MAYBE_NULL variant. 15299 * So, as a general rule we don't allow mixing MAYBE_NULL and 15300 * non-MAYBE_NULL registers as well. 15301 */ 15302 if (rold->type != rcur->type) 15303 return false; 15304 15305 switch (base_type(rold->type)) { 15306 case SCALAR_VALUE: 15307 if (env->explore_alu_limits) { 15308 /* explore_alu_limits disables tnum_in() and range_within() 15309 * logic and requires everything to be strict 15310 */ 15311 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15312 check_scalar_ids(rold->id, rcur->id, idmap); 15313 } 15314 if (!rold->precise) 15315 return true; 15316 /* Why check_ids() for scalar registers? 15317 * 15318 * Consider the following BPF code: 15319 * 1: r6 = ... unbound scalar, ID=a ... 15320 * 2: r7 = ... unbound scalar, ID=b ... 15321 * 3: if (r6 > r7) goto +1 15322 * 4: r6 = r7 15323 * 5: if (r6 > X) goto ... 15324 * 6: ... memory operation using r7 ... 15325 * 15326 * First verification path is [1-6]: 15327 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15328 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15329 * r7 <= X, because r6 and r7 share same id. 15330 * Next verification path is [1-4, 6]. 15331 * 15332 * Instruction (6) would be reached in two states: 15333 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15334 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15335 * 15336 * Use check_ids() to distinguish these states. 15337 * --- 15338 * Also verify that new value satisfies old value range knowledge. 15339 */ 15340 return range_within(rold, rcur) && 15341 tnum_in(rold->var_off, rcur->var_off) && 15342 check_scalar_ids(rold->id, rcur->id, idmap); 15343 case PTR_TO_MAP_KEY: 15344 case PTR_TO_MAP_VALUE: 15345 case PTR_TO_MEM: 15346 case PTR_TO_BUF: 15347 case PTR_TO_TP_BUFFER: 15348 /* If the new min/max/var_off satisfy the old ones and 15349 * everything else matches, we are OK. 15350 */ 15351 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15352 range_within(rold, rcur) && 15353 tnum_in(rold->var_off, rcur->var_off) && 15354 check_ids(rold->id, rcur->id, idmap) && 15355 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15356 case PTR_TO_PACKET_META: 15357 case PTR_TO_PACKET: 15358 /* We must have at least as much range as the old ptr 15359 * did, so that any accesses which were safe before are 15360 * still safe. This is true even if old range < old off, 15361 * since someone could have accessed through (ptr - k), or 15362 * even done ptr -= k in a register, to get a safe access. 15363 */ 15364 if (rold->range > rcur->range) 15365 return false; 15366 /* If the offsets don't match, we can't trust our alignment; 15367 * nor can we be sure that we won't fall out of range. 15368 */ 15369 if (rold->off != rcur->off) 15370 return false; 15371 /* id relations must be preserved */ 15372 if (!check_ids(rold->id, rcur->id, idmap)) 15373 return false; 15374 /* new val must satisfy old val knowledge */ 15375 return range_within(rold, rcur) && 15376 tnum_in(rold->var_off, rcur->var_off); 15377 case PTR_TO_STACK: 15378 /* two stack pointers are equal only if they're pointing to 15379 * the same stack frame, since fp-8 in foo != fp-8 in bar 15380 */ 15381 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15382 default: 15383 return regs_exact(rold, rcur, idmap); 15384 } 15385 } 15386 15387 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15388 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15389 { 15390 int i, spi; 15391 15392 /* walk slots of the explored stack and ignore any additional 15393 * slots in the current stack, since explored(safe) state 15394 * didn't use them 15395 */ 15396 for (i = 0; i < old->allocated_stack; i++) { 15397 struct bpf_reg_state *old_reg, *cur_reg; 15398 15399 spi = i / BPF_REG_SIZE; 15400 15401 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15402 i += BPF_REG_SIZE - 1; 15403 /* explored state didn't use this */ 15404 continue; 15405 } 15406 15407 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15408 continue; 15409 15410 if (env->allow_uninit_stack && 15411 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15412 continue; 15413 15414 /* explored stack has more populated slots than current stack 15415 * and these slots were used 15416 */ 15417 if (i >= cur->allocated_stack) 15418 return false; 15419 15420 /* if old state was safe with misc data in the stack 15421 * it will be safe with zero-initialized stack. 15422 * The opposite is not true 15423 */ 15424 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15425 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15426 continue; 15427 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15428 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15429 /* Ex: old explored (safe) state has STACK_SPILL in 15430 * this stack slot, but current has STACK_MISC -> 15431 * this verifier states are not equivalent, 15432 * return false to continue verification of this path 15433 */ 15434 return false; 15435 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15436 continue; 15437 /* Both old and cur are having same slot_type */ 15438 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15439 case STACK_SPILL: 15440 /* when explored and current stack slot are both storing 15441 * spilled registers, check that stored pointers types 15442 * are the same as well. 15443 * Ex: explored safe path could have stored 15444 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15445 * but current path has stored: 15446 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15447 * such verifier states are not equivalent. 15448 * return false to continue verification of this path 15449 */ 15450 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15451 &cur->stack[spi].spilled_ptr, idmap)) 15452 return false; 15453 break; 15454 case STACK_DYNPTR: 15455 old_reg = &old->stack[spi].spilled_ptr; 15456 cur_reg = &cur->stack[spi].spilled_ptr; 15457 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15458 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15459 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15460 return false; 15461 break; 15462 case STACK_ITER: 15463 old_reg = &old->stack[spi].spilled_ptr; 15464 cur_reg = &cur->stack[spi].spilled_ptr; 15465 /* iter.depth is not compared between states as it 15466 * doesn't matter for correctness and would otherwise 15467 * prevent convergence; we maintain it only to prevent 15468 * infinite loop check triggering, see 15469 * iter_active_depths_differ() 15470 */ 15471 if (old_reg->iter.btf != cur_reg->iter.btf || 15472 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15473 old_reg->iter.state != cur_reg->iter.state || 15474 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15475 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15476 return false; 15477 break; 15478 case STACK_MISC: 15479 case STACK_ZERO: 15480 case STACK_INVALID: 15481 continue; 15482 /* Ensure that new unhandled slot types return false by default */ 15483 default: 15484 return false; 15485 } 15486 } 15487 return true; 15488 } 15489 15490 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15491 struct bpf_idmap *idmap) 15492 { 15493 int i; 15494 15495 if (old->acquired_refs != cur->acquired_refs) 15496 return false; 15497 15498 for (i = 0; i < old->acquired_refs; i++) { 15499 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15500 return false; 15501 } 15502 15503 return true; 15504 } 15505 15506 /* compare two verifier states 15507 * 15508 * all states stored in state_list are known to be valid, since 15509 * verifier reached 'bpf_exit' instruction through them 15510 * 15511 * this function is called when verifier exploring different branches of 15512 * execution popped from the state stack. If it sees an old state that has 15513 * more strict register state and more strict stack state then this execution 15514 * branch doesn't need to be explored further, since verifier already 15515 * concluded that more strict state leads to valid finish. 15516 * 15517 * Therefore two states are equivalent if register state is more conservative 15518 * and explored stack state is more conservative than the current one. 15519 * Example: 15520 * explored current 15521 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15522 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15523 * 15524 * In other words if current stack state (one being explored) has more 15525 * valid slots than old one that already passed validation, it means 15526 * the verifier can stop exploring and conclude that current state is valid too 15527 * 15528 * Similarly with registers. If explored state has register type as invalid 15529 * whereas register type in current state is meaningful, it means that 15530 * the current state will reach 'bpf_exit' instruction safely 15531 */ 15532 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15533 struct bpf_func_state *cur) 15534 { 15535 int i; 15536 15537 for (i = 0; i < MAX_BPF_REG; i++) 15538 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15539 &env->idmap_scratch)) 15540 return false; 15541 15542 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15543 return false; 15544 15545 if (!refsafe(old, cur, &env->idmap_scratch)) 15546 return false; 15547 15548 return true; 15549 } 15550 15551 static bool states_equal(struct bpf_verifier_env *env, 15552 struct bpf_verifier_state *old, 15553 struct bpf_verifier_state *cur) 15554 { 15555 int i; 15556 15557 if (old->curframe != cur->curframe) 15558 return false; 15559 15560 env->idmap_scratch.tmp_id_gen = env->id_gen; 15561 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15562 15563 /* Verification state from speculative execution simulation 15564 * must never prune a non-speculative execution one. 15565 */ 15566 if (old->speculative && !cur->speculative) 15567 return false; 15568 15569 if (old->active_lock.ptr != cur->active_lock.ptr) 15570 return false; 15571 15572 /* Old and cur active_lock's have to be either both present 15573 * or both absent. 15574 */ 15575 if (!!old->active_lock.id != !!cur->active_lock.id) 15576 return false; 15577 15578 if (old->active_lock.id && 15579 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15580 return false; 15581 15582 if (old->active_rcu_lock != cur->active_rcu_lock) 15583 return false; 15584 15585 /* for states to be equal callsites have to be the same 15586 * and all frame states need to be equivalent 15587 */ 15588 for (i = 0; i <= old->curframe; i++) { 15589 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15590 return false; 15591 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15592 return false; 15593 } 15594 return true; 15595 } 15596 15597 /* Return 0 if no propagation happened. Return negative error code if error 15598 * happened. Otherwise, return the propagated bit. 15599 */ 15600 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15601 struct bpf_reg_state *reg, 15602 struct bpf_reg_state *parent_reg) 15603 { 15604 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15605 u8 flag = reg->live & REG_LIVE_READ; 15606 int err; 15607 15608 /* When comes here, read flags of PARENT_REG or REG could be any of 15609 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15610 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15611 */ 15612 if (parent_flag == REG_LIVE_READ64 || 15613 /* Or if there is no read flag from REG. */ 15614 !flag || 15615 /* Or if the read flag from REG is the same as PARENT_REG. */ 15616 parent_flag == flag) 15617 return 0; 15618 15619 err = mark_reg_read(env, reg, parent_reg, flag); 15620 if (err) 15621 return err; 15622 15623 return flag; 15624 } 15625 15626 /* A write screens off any subsequent reads; but write marks come from the 15627 * straight-line code between a state and its parent. When we arrive at an 15628 * equivalent state (jump target or such) we didn't arrive by the straight-line 15629 * code, so read marks in the state must propagate to the parent regardless 15630 * of the state's write marks. That's what 'parent == state->parent' comparison 15631 * in mark_reg_read() is for. 15632 */ 15633 static int propagate_liveness(struct bpf_verifier_env *env, 15634 const struct bpf_verifier_state *vstate, 15635 struct bpf_verifier_state *vparent) 15636 { 15637 struct bpf_reg_state *state_reg, *parent_reg; 15638 struct bpf_func_state *state, *parent; 15639 int i, frame, err = 0; 15640 15641 if (vparent->curframe != vstate->curframe) { 15642 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15643 vparent->curframe, vstate->curframe); 15644 return -EFAULT; 15645 } 15646 /* Propagate read liveness of registers... */ 15647 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15648 for (frame = 0; frame <= vstate->curframe; frame++) { 15649 parent = vparent->frame[frame]; 15650 state = vstate->frame[frame]; 15651 parent_reg = parent->regs; 15652 state_reg = state->regs; 15653 /* We don't need to worry about FP liveness, it's read-only */ 15654 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15655 err = propagate_liveness_reg(env, &state_reg[i], 15656 &parent_reg[i]); 15657 if (err < 0) 15658 return err; 15659 if (err == REG_LIVE_READ64) 15660 mark_insn_zext(env, &parent_reg[i]); 15661 } 15662 15663 /* Propagate stack slots. */ 15664 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15665 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15666 parent_reg = &parent->stack[i].spilled_ptr; 15667 state_reg = &state->stack[i].spilled_ptr; 15668 err = propagate_liveness_reg(env, state_reg, 15669 parent_reg); 15670 if (err < 0) 15671 return err; 15672 } 15673 } 15674 return 0; 15675 } 15676 15677 /* find precise scalars in the previous equivalent state and 15678 * propagate them into the current state 15679 */ 15680 static int propagate_precision(struct bpf_verifier_env *env, 15681 const struct bpf_verifier_state *old) 15682 { 15683 struct bpf_reg_state *state_reg; 15684 struct bpf_func_state *state; 15685 int i, err = 0, fr; 15686 bool first; 15687 15688 for (fr = old->curframe; fr >= 0; fr--) { 15689 state = old->frame[fr]; 15690 state_reg = state->regs; 15691 first = true; 15692 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15693 if (state_reg->type != SCALAR_VALUE || 15694 !state_reg->precise || 15695 !(state_reg->live & REG_LIVE_READ)) 15696 continue; 15697 if (env->log.level & BPF_LOG_LEVEL2) { 15698 if (first) 15699 verbose(env, "frame %d: propagating r%d", fr, i); 15700 else 15701 verbose(env, ",r%d", i); 15702 } 15703 bt_set_frame_reg(&env->bt, fr, i); 15704 first = false; 15705 } 15706 15707 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15708 if (!is_spilled_reg(&state->stack[i])) 15709 continue; 15710 state_reg = &state->stack[i].spilled_ptr; 15711 if (state_reg->type != SCALAR_VALUE || 15712 !state_reg->precise || 15713 !(state_reg->live & REG_LIVE_READ)) 15714 continue; 15715 if (env->log.level & BPF_LOG_LEVEL2) { 15716 if (first) 15717 verbose(env, "frame %d: propagating fp%d", 15718 fr, (-i - 1) * BPF_REG_SIZE); 15719 else 15720 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15721 } 15722 bt_set_frame_slot(&env->bt, fr, i); 15723 first = false; 15724 } 15725 if (!first) 15726 verbose(env, "\n"); 15727 } 15728 15729 err = mark_chain_precision_batch(env); 15730 if (err < 0) 15731 return err; 15732 15733 return 0; 15734 } 15735 15736 static bool states_maybe_looping(struct bpf_verifier_state *old, 15737 struct bpf_verifier_state *cur) 15738 { 15739 struct bpf_func_state *fold, *fcur; 15740 int i, fr = cur->curframe; 15741 15742 if (old->curframe != fr) 15743 return false; 15744 15745 fold = old->frame[fr]; 15746 fcur = cur->frame[fr]; 15747 for (i = 0; i < MAX_BPF_REG; i++) 15748 if (memcmp(&fold->regs[i], &fcur->regs[i], 15749 offsetof(struct bpf_reg_state, parent))) 15750 return false; 15751 return true; 15752 } 15753 15754 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 15755 { 15756 return env->insn_aux_data[insn_idx].is_iter_next; 15757 } 15758 15759 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 15760 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 15761 * states to match, which otherwise would look like an infinite loop. So while 15762 * iter_next() calls are taken care of, we still need to be careful and 15763 * prevent erroneous and too eager declaration of "ininite loop", when 15764 * iterators are involved. 15765 * 15766 * Here's a situation in pseudo-BPF assembly form: 15767 * 15768 * 0: again: ; set up iter_next() call args 15769 * 1: r1 = &it ; <CHECKPOINT HERE> 15770 * 2: call bpf_iter_num_next ; this is iter_next() call 15771 * 3: if r0 == 0 goto done 15772 * 4: ... something useful here ... 15773 * 5: goto again ; another iteration 15774 * 6: done: 15775 * 7: r1 = &it 15776 * 8: call bpf_iter_num_destroy ; clean up iter state 15777 * 9: exit 15778 * 15779 * This is a typical loop. Let's assume that we have a prune point at 1:, 15780 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 15781 * again`, assuming other heuristics don't get in a way). 15782 * 15783 * When we first time come to 1:, let's say we have some state X. We proceed 15784 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 15785 * Now we come back to validate that forked ACTIVE state. We proceed through 15786 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 15787 * are converging. But the problem is that we don't know that yet, as this 15788 * convergence has to happen at iter_next() call site only. So if nothing is 15789 * done, at 1: verifier will use bounded loop logic and declare infinite 15790 * looping (and would be *technically* correct, if not for iterator's 15791 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 15792 * don't want that. So what we do in process_iter_next_call() when we go on 15793 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 15794 * a different iteration. So when we suspect an infinite loop, we additionally 15795 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 15796 * pretend we are not looping and wait for next iter_next() call. 15797 * 15798 * This only applies to ACTIVE state. In DRAINED state we don't expect to 15799 * loop, because that would actually mean infinite loop, as DRAINED state is 15800 * "sticky", and so we'll keep returning into the same instruction with the 15801 * same state (at least in one of possible code paths). 15802 * 15803 * This approach allows to keep infinite loop heuristic even in the face of 15804 * active iterator. E.g., C snippet below is and will be detected as 15805 * inifintely looping: 15806 * 15807 * struct bpf_iter_num it; 15808 * int *p, x; 15809 * 15810 * bpf_iter_num_new(&it, 0, 10); 15811 * while ((p = bpf_iter_num_next(&t))) { 15812 * x = p; 15813 * while (x--) {} // <<-- infinite loop here 15814 * } 15815 * 15816 */ 15817 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 15818 { 15819 struct bpf_reg_state *slot, *cur_slot; 15820 struct bpf_func_state *state; 15821 int i, fr; 15822 15823 for (fr = old->curframe; fr >= 0; fr--) { 15824 state = old->frame[fr]; 15825 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15826 if (state->stack[i].slot_type[0] != STACK_ITER) 15827 continue; 15828 15829 slot = &state->stack[i].spilled_ptr; 15830 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 15831 continue; 15832 15833 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 15834 if (cur_slot->iter.depth != slot->iter.depth) 15835 return true; 15836 } 15837 } 15838 return false; 15839 } 15840 15841 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 15842 { 15843 struct bpf_verifier_state_list *new_sl; 15844 struct bpf_verifier_state_list *sl, **pprev; 15845 struct bpf_verifier_state *cur = env->cur_state, *new; 15846 int i, j, err, states_cnt = 0; 15847 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 15848 bool add_new_state = force_new_state; 15849 15850 /* bpf progs typically have pruning point every 4 instructions 15851 * http://vger.kernel.org/bpfconf2019.html#session-1 15852 * Do not add new state for future pruning if the verifier hasn't seen 15853 * at least 2 jumps and at least 8 instructions. 15854 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 15855 * In tests that amounts to up to 50% reduction into total verifier 15856 * memory consumption and 20% verifier time speedup. 15857 */ 15858 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 15859 env->insn_processed - env->prev_insn_processed >= 8) 15860 add_new_state = true; 15861 15862 pprev = explored_state(env, insn_idx); 15863 sl = *pprev; 15864 15865 clean_live_states(env, insn_idx, cur); 15866 15867 while (sl) { 15868 states_cnt++; 15869 if (sl->state.insn_idx != insn_idx) 15870 goto next; 15871 15872 if (sl->state.branches) { 15873 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 15874 15875 if (frame->in_async_callback_fn && 15876 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 15877 /* Different async_entry_cnt means that the verifier is 15878 * processing another entry into async callback. 15879 * Seeing the same state is not an indication of infinite 15880 * loop or infinite recursion. 15881 * But finding the same state doesn't mean that it's safe 15882 * to stop processing the current state. The previous state 15883 * hasn't yet reached bpf_exit, since state.branches > 0. 15884 * Checking in_async_callback_fn alone is not enough either. 15885 * Since the verifier still needs to catch infinite loops 15886 * inside async callbacks. 15887 */ 15888 goto skip_inf_loop_check; 15889 } 15890 /* BPF open-coded iterators loop detection is special. 15891 * states_maybe_looping() logic is too simplistic in detecting 15892 * states that *might* be equivalent, because it doesn't know 15893 * about ID remapping, so don't even perform it. 15894 * See process_iter_next_call() and iter_active_depths_differ() 15895 * for overview of the logic. When current and one of parent 15896 * states are detected as equivalent, it's a good thing: we prove 15897 * convergence and can stop simulating further iterations. 15898 * It's safe to assume that iterator loop will finish, taking into 15899 * account iter_next() contract of eventually returning 15900 * sticky NULL result. 15901 */ 15902 if (is_iter_next_insn(env, insn_idx)) { 15903 if (states_equal(env, &sl->state, cur)) { 15904 struct bpf_func_state *cur_frame; 15905 struct bpf_reg_state *iter_state, *iter_reg; 15906 int spi; 15907 15908 cur_frame = cur->frame[cur->curframe]; 15909 /* btf_check_iter_kfuncs() enforces that 15910 * iter state pointer is always the first arg 15911 */ 15912 iter_reg = &cur_frame->regs[BPF_REG_1]; 15913 /* current state is valid due to states_equal(), 15914 * so we can assume valid iter and reg state, 15915 * no need for extra (re-)validations 15916 */ 15917 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 15918 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 15919 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 15920 goto hit; 15921 } 15922 goto skip_inf_loop_check; 15923 } 15924 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 15925 if (states_maybe_looping(&sl->state, cur) && 15926 states_equal(env, &sl->state, cur) && 15927 !iter_active_depths_differ(&sl->state, cur)) { 15928 verbose_linfo(env, insn_idx, "; "); 15929 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 15930 return -EINVAL; 15931 } 15932 /* if the verifier is processing a loop, avoid adding new state 15933 * too often, since different loop iterations have distinct 15934 * states and may not help future pruning. 15935 * This threshold shouldn't be too low to make sure that 15936 * a loop with large bound will be rejected quickly. 15937 * The most abusive loop will be: 15938 * r1 += 1 15939 * if r1 < 1000000 goto pc-2 15940 * 1M insn_procssed limit / 100 == 10k peak states. 15941 * This threshold shouldn't be too high either, since states 15942 * at the end of the loop are likely to be useful in pruning. 15943 */ 15944 skip_inf_loop_check: 15945 if (!force_new_state && 15946 env->jmps_processed - env->prev_jmps_processed < 20 && 15947 env->insn_processed - env->prev_insn_processed < 100) 15948 add_new_state = false; 15949 goto miss; 15950 } 15951 if (states_equal(env, &sl->state, cur)) { 15952 hit: 15953 sl->hit_cnt++; 15954 /* reached equivalent register/stack state, 15955 * prune the search. 15956 * Registers read by the continuation are read by us. 15957 * If we have any write marks in env->cur_state, they 15958 * will prevent corresponding reads in the continuation 15959 * from reaching our parent (an explored_state). Our 15960 * own state will get the read marks recorded, but 15961 * they'll be immediately forgotten as we're pruning 15962 * this state and will pop a new one. 15963 */ 15964 err = propagate_liveness(env, &sl->state, cur); 15965 15966 /* if previous state reached the exit with precision and 15967 * current state is equivalent to it (except precsion marks) 15968 * the precision needs to be propagated back in 15969 * the current state. 15970 */ 15971 err = err ? : push_jmp_history(env, cur); 15972 err = err ? : propagate_precision(env, &sl->state); 15973 if (err) 15974 return err; 15975 return 1; 15976 } 15977 miss: 15978 /* when new state is not going to be added do not increase miss count. 15979 * Otherwise several loop iterations will remove the state 15980 * recorded earlier. The goal of these heuristics is to have 15981 * states from some iterations of the loop (some in the beginning 15982 * and some at the end) to help pruning. 15983 */ 15984 if (add_new_state) 15985 sl->miss_cnt++; 15986 /* heuristic to determine whether this state is beneficial 15987 * to keep checking from state equivalence point of view. 15988 * Higher numbers increase max_states_per_insn and verification time, 15989 * but do not meaningfully decrease insn_processed. 15990 */ 15991 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 15992 /* the state is unlikely to be useful. Remove it to 15993 * speed up verification 15994 */ 15995 *pprev = sl->next; 15996 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 15997 u32 br = sl->state.branches; 15998 15999 WARN_ONCE(br, 16000 "BUG live_done but branches_to_explore %d\n", 16001 br); 16002 free_verifier_state(&sl->state, false); 16003 kfree(sl); 16004 env->peak_states--; 16005 } else { 16006 /* cannot free this state, since parentage chain may 16007 * walk it later. Add it for free_list instead to 16008 * be freed at the end of verification 16009 */ 16010 sl->next = env->free_list; 16011 env->free_list = sl; 16012 } 16013 sl = *pprev; 16014 continue; 16015 } 16016 next: 16017 pprev = &sl->next; 16018 sl = *pprev; 16019 } 16020 16021 if (env->max_states_per_insn < states_cnt) 16022 env->max_states_per_insn = states_cnt; 16023 16024 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16025 return 0; 16026 16027 if (!add_new_state) 16028 return 0; 16029 16030 /* There were no equivalent states, remember the current one. 16031 * Technically the current state is not proven to be safe yet, 16032 * but it will either reach outer most bpf_exit (which means it's safe) 16033 * or it will be rejected. When there are no loops the verifier won't be 16034 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16035 * again on the way to bpf_exit. 16036 * When looping the sl->state.branches will be > 0 and this state 16037 * will not be considered for equivalence until branches == 0. 16038 */ 16039 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16040 if (!new_sl) 16041 return -ENOMEM; 16042 env->total_states++; 16043 env->peak_states++; 16044 env->prev_jmps_processed = env->jmps_processed; 16045 env->prev_insn_processed = env->insn_processed; 16046 16047 /* forget precise markings we inherited, see __mark_chain_precision */ 16048 if (env->bpf_capable) 16049 mark_all_scalars_imprecise(env, cur); 16050 16051 /* add new state to the head of linked list */ 16052 new = &new_sl->state; 16053 err = copy_verifier_state(new, cur); 16054 if (err) { 16055 free_verifier_state(new, false); 16056 kfree(new_sl); 16057 return err; 16058 } 16059 new->insn_idx = insn_idx; 16060 WARN_ONCE(new->branches != 1, 16061 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16062 16063 cur->parent = new; 16064 cur->first_insn_idx = insn_idx; 16065 clear_jmp_history(cur); 16066 new_sl->next = *explored_state(env, insn_idx); 16067 *explored_state(env, insn_idx) = new_sl; 16068 /* connect new state to parentage chain. Current frame needs all 16069 * registers connected. Only r6 - r9 of the callers are alive (pushed 16070 * to the stack implicitly by JITs) so in callers' frames connect just 16071 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16072 * the state of the call instruction (with WRITTEN set), and r0 comes 16073 * from callee with its full parentage chain, anyway. 16074 */ 16075 /* clear write marks in current state: the writes we did are not writes 16076 * our child did, so they don't screen off its reads from us. 16077 * (There are no read marks in current state, because reads always mark 16078 * their parent and current state never has children yet. Only 16079 * explored_states can get read marks.) 16080 */ 16081 for (j = 0; j <= cur->curframe; j++) { 16082 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16083 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16084 for (i = 0; i < BPF_REG_FP; i++) 16085 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16086 } 16087 16088 /* all stack frames are accessible from callee, clear them all */ 16089 for (j = 0; j <= cur->curframe; j++) { 16090 struct bpf_func_state *frame = cur->frame[j]; 16091 struct bpf_func_state *newframe = new->frame[j]; 16092 16093 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16094 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16095 frame->stack[i].spilled_ptr.parent = 16096 &newframe->stack[i].spilled_ptr; 16097 } 16098 } 16099 return 0; 16100 } 16101 16102 /* Return true if it's OK to have the same insn return a different type. */ 16103 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16104 { 16105 switch (base_type(type)) { 16106 case PTR_TO_CTX: 16107 case PTR_TO_SOCKET: 16108 case PTR_TO_SOCK_COMMON: 16109 case PTR_TO_TCP_SOCK: 16110 case PTR_TO_XDP_SOCK: 16111 case PTR_TO_BTF_ID: 16112 return false; 16113 default: 16114 return true; 16115 } 16116 } 16117 16118 /* If an instruction was previously used with particular pointer types, then we 16119 * need to be careful to avoid cases such as the below, where it may be ok 16120 * for one branch accessing the pointer, but not ok for the other branch: 16121 * 16122 * R1 = sock_ptr 16123 * goto X; 16124 * ... 16125 * R1 = some_other_valid_ptr; 16126 * goto X; 16127 * ... 16128 * R2 = *(u32 *)(R1 + 0); 16129 */ 16130 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16131 { 16132 return src != prev && (!reg_type_mismatch_ok(src) || 16133 !reg_type_mismatch_ok(prev)); 16134 } 16135 16136 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16137 bool allow_trust_missmatch) 16138 { 16139 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16140 16141 if (*prev_type == NOT_INIT) { 16142 /* Saw a valid insn 16143 * dst_reg = *(u32 *)(src_reg + off) 16144 * save type to validate intersecting paths 16145 */ 16146 *prev_type = type; 16147 } else if (reg_type_mismatch(type, *prev_type)) { 16148 /* Abuser program is trying to use the same insn 16149 * dst_reg = *(u32*) (src_reg + off) 16150 * with different pointer types: 16151 * src_reg == ctx in one branch and 16152 * src_reg == stack|map in some other branch. 16153 * Reject it. 16154 */ 16155 if (allow_trust_missmatch && 16156 base_type(type) == PTR_TO_BTF_ID && 16157 base_type(*prev_type) == PTR_TO_BTF_ID) { 16158 /* 16159 * Have to support a use case when one path through 16160 * the program yields TRUSTED pointer while another 16161 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16162 * BPF_PROBE_MEM. 16163 */ 16164 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16165 } else { 16166 verbose(env, "same insn cannot be used with different pointers\n"); 16167 return -EINVAL; 16168 } 16169 } 16170 16171 return 0; 16172 } 16173 16174 static int do_check(struct bpf_verifier_env *env) 16175 { 16176 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16177 struct bpf_verifier_state *state = env->cur_state; 16178 struct bpf_insn *insns = env->prog->insnsi; 16179 struct bpf_reg_state *regs; 16180 int insn_cnt = env->prog->len; 16181 bool do_print_state = false; 16182 int prev_insn_idx = -1; 16183 16184 for (;;) { 16185 struct bpf_insn *insn; 16186 u8 class; 16187 int err; 16188 16189 env->prev_insn_idx = prev_insn_idx; 16190 if (env->insn_idx >= insn_cnt) { 16191 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16192 env->insn_idx, insn_cnt); 16193 return -EFAULT; 16194 } 16195 16196 insn = &insns[env->insn_idx]; 16197 class = BPF_CLASS(insn->code); 16198 16199 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16200 verbose(env, 16201 "BPF program is too large. Processed %d insn\n", 16202 env->insn_processed); 16203 return -E2BIG; 16204 } 16205 16206 state->last_insn_idx = env->prev_insn_idx; 16207 16208 if (is_prune_point(env, env->insn_idx)) { 16209 err = is_state_visited(env, env->insn_idx); 16210 if (err < 0) 16211 return err; 16212 if (err == 1) { 16213 /* found equivalent state, can prune the search */ 16214 if (env->log.level & BPF_LOG_LEVEL) { 16215 if (do_print_state) 16216 verbose(env, "\nfrom %d to %d%s: safe\n", 16217 env->prev_insn_idx, env->insn_idx, 16218 env->cur_state->speculative ? 16219 " (speculative execution)" : ""); 16220 else 16221 verbose(env, "%d: safe\n", env->insn_idx); 16222 } 16223 goto process_bpf_exit; 16224 } 16225 } 16226 16227 if (is_jmp_point(env, env->insn_idx)) { 16228 err = push_jmp_history(env, state); 16229 if (err) 16230 return err; 16231 } 16232 16233 if (signal_pending(current)) 16234 return -EAGAIN; 16235 16236 if (need_resched()) 16237 cond_resched(); 16238 16239 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16240 verbose(env, "\nfrom %d to %d%s:", 16241 env->prev_insn_idx, env->insn_idx, 16242 env->cur_state->speculative ? 16243 " (speculative execution)" : ""); 16244 print_verifier_state(env, state->frame[state->curframe], true); 16245 do_print_state = false; 16246 } 16247 16248 if (env->log.level & BPF_LOG_LEVEL) { 16249 const struct bpf_insn_cbs cbs = { 16250 .cb_call = disasm_kfunc_name, 16251 .cb_print = verbose, 16252 .private_data = env, 16253 }; 16254 16255 if (verifier_state_scratched(env)) 16256 print_insn_state(env, state->frame[state->curframe]); 16257 16258 verbose_linfo(env, env->insn_idx, "; "); 16259 env->prev_log_pos = env->log.end_pos; 16260 verbose(env, "%d: ", env->insn_idx); 16261 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16262 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16263 env->prev_log_pos = env->log.end_pos; 16264 } 16265 16266 if (bpf_prog_is_offloaded(env->prog->aux)) { 16267 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16268 env->prev_insn_idx); 16269 if (err) 16270 return err; 16271 } 16272 16273 regs = cur_regs(env); 16274 sanitize_mark_insn_seen(env); 16275 prev_insn_idx = env->insn_idx; 16276 16277 if (class == BPF_ALU || class == BPF_ALU64) { 16278 err = check_alu_op(env, insn); 16279 if (err) 16280 return err; 16281 16282 } else if (class == BPF_LDX) { 16283 enum bpf_reg_type src_reg_type; 16284 16285 /* check for reserved fields is already done */ 16286 16287 /* check src operand */ 16288 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16289 if (err) 16290 return err; 16291 16292 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16293 if (err) 16294 return err; 16295 16296 src_reg_type = regs[insn->src_reg].type; 16297 16298 /* check that memory (src_reg + off) is readable, 16299 * the state of dst_reg will be updated by this func 16300 */ 16301 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16302 insn->off, BPF_SIZE(insn->code), 16303 BPF_READ, insn->dst_reg, false); 16304 if (err) 16305 return err; 16306 16307 err = save_aux_ptr_type(env, src_reg_type, true); 16308 if (err) 16309 return err; 16310 } else if (class == BPF_STX) { 16311 enum bpf_reg_type dst_reg_type; 16312 16313 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16314 err = check_atomic(env, env->insn_idx, insn); 16315 if (err) 16316 return err; 16317 env->insn_idx++; 16318 continue; 16319 } 16320 16321 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16322 verbose(env, "BPF_STX uses reserved fields\n"); 16323 return -EINVAL; 16324 } 16325 16326 /* check src1 operand */ 16327 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16328 if (err) 16329 return err; 16330 /* check src2 operand */ 16331 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16332 if (err) 16333 return err; 16334 16335 dst_reg_type = regs[insn->dst_reg].type; 16336 16337 /* check that memory (dst_reg + off) is writeable */ 16338 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16339 insn->off, BPF_SIZE(insn->code), 16340 BPF_WRITE, insn->src_reg, false); 16341 if (err) 16342 return err; 16343 16344 err = save_aux_ptr_type(env, dst_reg_type, false); 16345 if (err) 16346 return err; 16347 } else if (class == BPF_ST) { 16348 enum bpf_reg_type dst_reg_type; 16349 16350 if (BPF_MODE(insn->code) != BPF_MEM || 16351 insn->src_reg != BPF_REG_0) { 16352 verbose(env, "BPF_ST uses reserved fields\n"); 16353 return -EINVAL; 16354 } 16355 /* check src operand */ 16356 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16357 if (err) 16358 return err; 16359 16360 dst_reg_type = regs[insn->dst_reg].type; 16361 16362 /* check that memory (dst_reg + off) is writeable */ 16363 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16364 insn->off, BPF_SIZE(insn->code), 16365 BPF_WRITE, -1, false); 16366 if (err) 16367 return err; 16368 16369 err = save_aux_ptr_type(env, dst_reg_type, false); 16370 if (err) 16371 return err; 16372 } else if (class == BPF_JMP || class == BPF_JMP32) { 16373 u8 opcode = BPF_OP(insn->code); 16374 16375 env->jmps_processed++; 16376 if (opcode == BPF_CALL) { 16377 if (BPF_SRC(insn->code) != BPF_K || 16378 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16379 && insn->off != 0) || 16380 (insn->src_reg != BPF_REG_0 && 16381 insn->src_reg != BPF_PSEUDO_CALL && 16382 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16383 insn->dst_reg != BPF_REG_0 || 16384 class == BPF_JMP32) { 16385 verbose(env, "BPF_CALL uses reserved fields\n"); 16386 return -EINVAL; 16387 } 16388 16389 if (env->cur_state->active_lock.ptr) { 16390 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16391 (insn->src_reg == BPF_PSEUDO_CALL) || 16392 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16393 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16394 verbose(env, "function calls are not allowed while holding a lock\n"); 16395 return -EINVAL; 16396 } 16397 } 16398 if (insn->src_reg == BPF_PSEUDO_CALL) 16399 err = check_func_call(env, insn, &env->insn_idx); 16400 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16401 err = check_kfunc_call(env, insn, &env->insn_idx); 16402 else 16403 err = check_helper_call(env, insn, &env->insn_idx); 16404 if (err) 16405 return err; 16406 16407 mark_reg_scratched(env, BPF_REG_0); 16408 } else if (opcode == BPF_JA) { 16409 if (BPF_SRC(insn->code) != BPF_K || 16410 insn->imm != 0 || 16411 insn->src_reg != BPF_REG_0 || 16412 insn->dst_reg != BPF_REG_0 || 16413 class == BPF_JMP32) { 16414 verbose(env, "BPF_JA uses reserved fields\n"); 16415 return -EINVAL; 16416 } 16417 16418 env->insn_idx += insn->off + 1; 16419 continue; 16420 16421 } else if (opcode == BPF_EXIT) { 16422 if (BPF_SRC(insn->code) != BPF_K || 16423 insn->imm != 0 || 16424 insn->src_reg != BPF_REG_0 || 16425 insn->dst_reg != BPF_REG_0 || 16426 class == BPF_JMP32) { 16427 verbose(env, "BPF_EXIT uses reserved fields\n"); 16428 return -EINVAL; 16429 } 16430 16431 if (env->cur_state->active_lock.ptr && 16432 !in_rbtree_lock_required_cb(env)) { 16433 verbose(env, "bpf_spin_unlock is missing\n"); 16434 return -EINVAL; 16435 } 16436 16437 if (env->cur_state->active_rcu_lock) { 16438 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16439 return -EINVAL; 16440 } 16441 16442 /* We must do check_reference_leak here before 16443 * prepare_func_exit to handle the case when 16444 * state->curframe > 0, it may be a callback 16445 * function, for which reference_state must 16446 * match caller reference state when it exits. 16447 */ 16448 err = check_reference_leak(env); 16449 if (err) 16450 return err; 16451 16452 if (state->curframe) { 16453 /* exit from nested function */ 16454 err = prepare_func_exit(env, &env->insn_idx); 16455 if (err) 16456 return err; 16457 do_print_state = true; 16458 continue; 16459 } 16460 16461 err = check_return_code(env); 16462 if (err) 16463 return err; 16464 process_bpf_exit: 16465 mark_verifier_state_scratched(env); 16466 update_branch_counts(env, env->cur_state); 16467 err = pop_stack(env, &prev_insn_idx, 16468 &env->insn_idx, pop_log); 16469 if (err < 0) { 16470 if (err != -ENOENT) 16471 return err; 16472 break; 16473 } else { 16474 do_print_state = true; 16475 continue; 16476 } 16477 } else { 16478 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16479 if (err) 16480 return err; 16481 } 16482 } else if (class == BPF_LD) { 16483 u8 mode = BPF_MODE(insn->code); 16484 16485 if (mode == BPF_ABS || mode == BPF_IND) { 16486 err = check_ld_abs(env, insn); 16487 if (err) 16488 return err; 16489 16490 } else if (mode == BPF_IMM) { 16491 err = check_ld_imm(env, insn); 16492 if (err) 16493 return err; 16494 16495 env->insn_idx++; 16496 sanitize_mark_insn_seen(env); 16497 } else { 16498 verbose(env, "invalid BPF_LD mode\n"); 16499 return -EINVAL; 16500 } 16501 } else { 16502 verbose(env, "unknown insn class %d\n", class); 16503 return -EINVAL; 16504 } 16505 16506 env->insn_idx++; 16507 } 16508 16509 return 0; 16510 } 16511 16512 static int find_btf_percpu_datasec(struct btf *btf) 16513 { 16514 const struct btf_type *t; 16515 const char *tname; 16516 int i, n; 16517 16518 /* 16519 * Both vmlinux and module each have their own ".data..percpu" 16520 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16521 * types to look at only module's own BTF types. 16522 */ 16523 n = btf_nr_types(btf); 16524 if (btf_is_module(btf)) 16525 i = btf_nr_types(btf_vmlinux); 16526 else 16527 i = 1; 16528 16529 for(; i < n; i++) { 16530 t = btf_type_by_id(btf, i); 16531 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16532 continue; 16533 16534 tname = btf_name_by_offset(btf, t->name_off); 16535 if (!strcmp(tname, ".data..percpu")) 16536 return i; 16537 } 16538 16539 return -ENOENT; 16540 } 16541 16542 /* replace pseudo btf_id with kernel symbol address */ 16543 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16544 struct bpf_insn *insn, 16545 struct bpf_insn_aux_data *aux) 16546 { 16547 const struct btf_var_secinfo *vsi; 16548 const struct btf_type *datasec; 16549 struct btf_mod_pair *btf_mod; 16550 const struct btf_type *t; 16551 const char *sym_name; 16552 bool percpu = false; 16553 u32 type, id = insn->imm; 16554 struct btf *btf; 16555 s32 datasec_id; 16556 u64 addr; 16557 int i, btf_fd, err; 16558 16559 btf_fd = insn[1].imm; 16560 if (btf_fd) { 16561 btf = btf_get_by_fd(btf_fd); 16562 if (IS_ERR(btf)) { 16563 verbose(env, "invalid module BTF object FD specified.\n"); 16564 return -EINVAL; 16565 } 16566 } else { 16567 if (!btf_vmlinux) { 16568 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16569 return -EINVAL; 16570 } 16571 btf = btf_vmlinux; 16572 btf_get(btf); 16573 } 16574 16575 t = btf_type_by_id(btf, id); 16576 if (!t) { 16577 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16578 err = -ENOENT; 16579 goto err_put; 16580 } 16581 16582 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16583 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16584 err = -EINVAL; 16585 goto err_put; 16586 } 16587 16588 sym_name = btf_name_by_offset(btf, t->name_off); 16589 addr = kallsyms_lookup_name(sym_name); 16590 if (!addr) { 16591 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16592 sym_name); 16593 err = -ENOENT; 16594 goto err_put; 16595 } 16596 insn[0].imm = (u32)addr; 16597 insn[1].imm = addr >> 32; 16598 16599 if (btf_type_is_func(t)) { 16600 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16601 aux->btf_var.mem_size = 0; 16602 goto check_btf; 16603 } 16604 16605 datasec_id = find_btf_percpu_datasec(btf); 16606 if (datasec_id > 0) { 16607 datasec = btf_type_by_id(btf, datasec_id); 16608 for_each_vsi(i, datasec, vsi) { 16609 if (vsi->type == id) { 16610 percpu = true; 16611 break; 16612 } 16613 } 16614 } 16615 16616 type = t->type; 16617 t = btf_type_skip_modifiers(btf, type, NULL); 16618 if (percpu) { 16619 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16620 aux->btf_var.btf = btf; 16621 aux->btf_var.btf_id = type; 16622 } else if (!btf_type_is_struct(t)) { 16623 const struct btf_type *ret; 16624 const char *tname; 16625 u32 tsize; 16626 16627 /* resolve the type size of ksym. */ 16628 ret = btf_resolve_size(btf, t, &tsize); 16629 if (IS_ERR(ret)) { 16630 tname = btf_name_by_offset(btf, t->name_off); 16631 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16632 tname, PTR_ERR(ret)); 16633 err = -EINVAL; 16634 goto err_put; 16635 } 16636 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16637 aux->btf_var.mem_size = tsize; 16638 } else { 16639 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16640 aux->btf_var.btf = btf; 16641 aux->btf_var.btf_id = type; 16642 } 16643 check_btf: 16644 /* check whether we recorded this BTF (and maybe module) already */ 16645 for (i = 0; i < env->used_btf_cnt; i++) { 16646 if (env->used_btfs[i].btf == btf) { 16647 btf_put(btf); 16648 return 0; 16649 } 16650 } 16651 16652 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16653 err = -E2BIG; 16654 goto err_put; 16655 } 16656 16657 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16658 btf_mod->btf = btf; 16659 btf_mod->module = NULL; 16660 16661 /* if we reference variables from kernel module, bump its refcount */ 16662 if (btf_is_module(btf)) { 16663 btf_mod->module = btf_try_get_module(btf); 16664 if (!btf_mod->module) { 16665 err = -ENXIO; 16666 goto err_put; 16667 } 16668 } 16669 16670 env->used_btf_cnt++; 16671 16672 return 0; 16673 err_put: 16674 btf_put(btf); 16675 return err; 16676 } 16677 16678 static bool is_tracing_prog_type(enum bpf_prog_type type) 16679 { 16680 switch (type) { 16681 case BPF_PROG_TYPE_KPROBE: 16682 case BPF_PROG_TYPE_TRACEPOINT: 16683 case BPF_PROG_TYPE_PERF_EVENT: 16684 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16685 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16686 return true; 16687 default: 16688 return false; 16689 } 16690 } 16691 16692 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16693 struct bpf_map *map, 16694 struct bpf_prog *prog) 16695 16696 { 16697 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16698 16699 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16700 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16701 if (is_tracing_prog_type(prog_type)) { 16702 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16703 return -EINVAL; 16704 } 16705 } 16706 16707 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16708 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16709 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16710 return -EINVAL; 16711 } 16712 16713 if (is_tracing_prog_type(prog_type)) { 16714 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16715 return -EINVAL; 16716 } 16717 16718 if (prog->aux->sleepable) { 16719 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 16720 return -EINVAL; 16721 } 16722 } 16723 16724 if (btf_record_has_field(map->record, BPF_TIMER)) { 16725 if (is_tracing_prog_type(prog_type)) { 16726 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16727 return -EINVAL; 16728 } 16729 } 16730 16731 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16732 !bpf_offload_prog_map_match(prog, map)) { 16733 verbose(env, "offload device mismatch between prog and map\n"); 16734 return -EINVAL; 16735 } 16736 16737 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16738 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16739 return -EINVAL; 16740 } 16741 16742 if (prog->aux->sleepable) 16743 switch (map->map_type) { 16744 case BPF_MAP_TYPE_HASH: 16745 case BPF_MAP_TYPE_LRU_HASH: 16746 case BPF_MAP_TYPE_ARRAY: 16747 case BPF_MAP_TYPE_PERCPU_HASH: 16748 case BPF_MAP_TYPE_PERCPU_ARRAY: 16749 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 16750 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 16751 case BPF_MAP_TYPE_HASH_OF_MAPS: 16752 case BPF_MAP_TYPE_RINGBUF: 16753 case BPF_MAP_TYPE_USER_RINGBUF: 16754 case BPF_MAP_TYPE_INODE_STORAGE: 16755 case BPF_MAP_TYPE_SK_STORAGE: 16756 case BPF_MAP_TYPE_TASK_STORAGE: 16757 case BPF_MAP_TYPE_CGRP_STORAGE: 16758 break; 16759 default: 16760 verbose(env, 16761 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 16762 return -EINVAL; 16763 } 16764 16765 return 0; 16766 } 16767 16768 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 16769 { 16770 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 16771 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 16772 } 16773 16774 /* find and rewrite pseudo imm in ld_imm64 instructions: 16775 * 16776 * 1. if it accesses map FD, replace it with actual map pointer. 16777 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 16778 * 16779 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 16780 */ 16781 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 16782 { 16783 struct bpf_insn *insn = env->prog->insnsi; 16784 int insn_cnt = env->prog->len; 16785 int i, j, err; 16786 16787 err = bpf_prog_calc_tag(env->prog); 16788 if (err) 16789 return err; 16790 16791 for (i = 0; i < insn_cnt; i++, insn++) { 16792 if (BPF_CLASS(insn->code) == BPF_LDX && 16793 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 16794 verbose(env, "BPF_LDX uses reserved fields\n"); 16795 return -EINVAL; 16796 } 16797 16798 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 16799 struct bpf_insn_aux_data *aux; 16800 struct bpf_map *map; 16801 struct fd f; 16802 u64 addr; 16803 u32 fd; 16804 16805 if (i == insn_cnt - 1 || insn[1].code != 0 || 16806 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 16807 insn[1].off != 0) { 16808 verbose(env, "invalid bpf_ld_imm64 insn\n"); 16809 return -EINVAL; 16810 } 16811 16812 if (insn[0].src_reg == 0) 16813 /* valid generic load 64-bit imm */ 16814 goto next_insn; 16815 16816 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 16817 aux = &env->insn_aux_data[i]; 16818 err = check_pseudo_btf_id(env, insn, aux); 16819 if (err) 16820 return err; 16821 goto next_insn; 16822 } 16823 16824 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 16825 aux = &env->insn_aux_data[i]; 16826 aux->ptr_type = PTR_TO_FUNC; 16827 goto next_insn; 16828 } 16829 16830 /* In final convert_pseudo_ld_imm64() step, this is 16831 * converted into regular 64-bit imm load insn. 16832 */ 16833 switch (insn[0].src_reg) { 16834 case BPF_PSEUDO_MAP_VALUE: 16835 case BPF_PSEUDO_MAP_IDX_VALUE: 16836 break; 16837 case BPF_PSEUDO_MAP_FD: 16838 case BPF_PSEUDO_MAP_IDX: 16839 if (insn[1].imm == 0) 16840 break; 16841 fallthrough; 16842 default: 16843 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 16844 return -EINVAL; 16845 } 16846 16847 switch (insn[0].src_reg) { 16848 case BPF_PSEUDO_MAP_IDX_VALUE: 16849 case BPF_PSEUDO_MAP_IDX: 16850 if (bpfptr_is_null(env->fd_array)) { 16851 verbose(env, "fd_idx without fd_array is invalid\n"); 16852 return -EPROTO; 16853 } 16854 if (copy_from_bpfptr_offset(&fd, env->fd_array, 16855 insn[0].imm * sizeof(fd), 16856 sizeof(fd))) 16857 return -EFAULT; 16858 break; 16859 default: 16860 fd = insn[0].imm; 16861 break; 16862 } 16863 16864 f = fdget(fd); 16865 map = __bpf_map_get(f); 16866 if (IS_ERR(map)) { 16867 verbose(env, "fd %d is not pointing to valid bpf_map\n", 16868 insn[0].imm); 16869 return PTR_ERR(map); 16870 } 16871 16872 err = check_map_prog_compatibility(env, map, env->prog); 16873 if (err) { 16874 fdput(f); 16875 return err; 16876 } 16877 16878 aux = &env->insn_aux_data[i]; 16879 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 16880 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 16881 addr = (unsigned long)map; 16882 } else { 16883 u32 off = insn[1].imm; 16884 16885 if (off >= BPF_MAX_VAR_OFF) { 16886 verbose(env, "direct value offset of %u is not allowed\n", off); 16887 fdput(f); 16888 return -EINVAL; 16889 } 16890 16891 if (!map->ops->map_direct_value_addr) { 16892 verbose(env, "no direct value access support for this map type\n"); 16893 fdput(f); 16894 return -EINVAL; 16895 } 16896 16897 err = map->ops->map_direct_value_addr(map, &addr, off); 16898 if (err) { 16899 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 16900 map->value_size, off); 16901 fdput(f); 16902 return err; 16903 } 16904 16905 aux->map_off = off; 16906 addr += off; 16907 } 16908 16909 insn[0].imm = (u32)addr; 16910 insn[1].imm = addr >> 32; 16911 16912 /* check whether we recorded this map already */ 16913 for (j = 0; j < env->used_map_cnt; j++) { 16914 if (env->used_maps[j] == map) { 16915 aux->map_index = j; 16916 fdput(f); 16917 goto next_insn; 16918 } 16919 } 16920 16921 if (env->used_map_cnt >= MAX_USED_MAPS) { 16922 fdput(f); 16923 return -E2BIG; 16924 } 16925 16926 /* hold the map. If the program is rejected by verifier, 16927 * the map will be released by release_maps() or it 16928 * will be used by the valid program until it's unloaded 16929 * and all maps are released in free_used_maps() 16930 */ 16931 bpf_map_inc(map); 16932 16933 aux->map_index = env->used_map_cnt; 16934 env->used_maps[env->used_map_cnt++] = map; 16935 16936 if (bpf_map_is_cgroup_storage(map) && 16937 bpf_cgroup_storage_assign(env->prog->aux, map)) { 16938 verbose(env, "only one cgroup storage of each type is allowed\n"); 16939 fdput(f); 16940 return -EBUSY; 16941 } 16942 16943 fdput(f); 16944 next_insn: 16945 insn++; 16946 i++; 16947 continue; 16948 } 16949 16950 /* Basic sanity check before we invest more work here. */ 16951 if (!bpf_opcode_in_insntable(insn->code)) { 16952 verbose(env, "unknown opcode %02x\n", insn->code); 16953 return -EINVAL; 16954 } 16955 } 16956 16957 /* now all pseudo BPF_LD_IMM64 instructions load valid 16958 * 'struct bpf_map *' into a register instead of user map_fd. 16959 * These pointers will be used later by verifier to validate map access. 16960 */ 16961 return 0; 16962 } 16963 16964 /* drop refcnt of maps used by the rejected program */ 16965 static void release_maps(struct bpf_verifier_env *env) 16966 { 16967 __bpf_free_used_maps(env->prog->aux, env->used_maps, 16968 env->used_map_cnt); 16969 } 16970 16971 /* drop refcnt of maps used by the rejected program */ 16972 static void release_btfs(struct bpf_verifier_env *env) 16973 { 16974 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 16975 env->used_btf_cnt); 16976 } 16977 16978 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 16979 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 16980 { 16981 struct bpf_insn *insn = env->prog->insnsi; 16982 int insn_cnt = env->prog->len; 16983 int i; 16984 16985 for (i = 0; i < insn_cnt; i++, insn++) { 16986 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 16987 continue; 16988 if (insn->src_reg == BPF_PSEUDO_FUNC) 16989 continue; 16990 insn->src_reg = 0; 16991 } 16992 } 16993 16994 /* single env->prog->insni[off] instruction was replaced with the range 16995 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 16996 * [0, off) and [off, end) to new locations, so the patched range stays zero 16997 */ 16998 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 16999 struct bpf_insn_aux_data *new_data, 17000 struct bpf_prog *new_prog, u32 off, u32 cnt) 17001 { 17002 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17003 struct bpf_insn *insn = new_prog->insnsi; 17004 u32 old_seen = old_data[off].seen; 17005 u32 prog_len; 17006 int i; 17007 17008 /* aux info at OFF always needs adjustment, no matter fast path 17009 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17010 * original insn at old prog. 17011 */ 17012 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17013 17014 if (cnt == 1) 17015 return; 17016 prog_len = new_prog->len; 17017 17018 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17019 memcpy(new_data + off + cnt - 1, old_data + off, 17020 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17021 for (i = off; i < off + cnt - 1; i++) { 17022 /* Expand insni[off]'s seen count to the patched range. */ 17023 new_data[i].seen = old_seen; 17024 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17025 } 17026 env->insn_aux_data = new_data; 17027 vfree(old_data); 17028 } 17029 17030 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17031 { 17032 int i; 17033 17034 if (len == 1) 17035 return; 17036 /* NOTE: fake 'exit' subprog should be updated as well. */ 17037 for (i = 0; i <= env->subprog_cnt; i++) { 17038 if (env->subprog_info[i].start <= off) 17039 continue; 17040 env->subprog_info[i].start += len - 1; 17041 } 17042 } 17043 17044 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17045 { 17046 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17047 int i, sz = prog->aux->size_poke_tab; 17048 struct bpf_jit_poke_descriptor *desc; 17049 17050 for (i = 0; i < sz; i++) { 17051 desc = &tab[i]; 17052 if (desc->insn_idx <= off) 17053 continue; 17054 desc->insn_idx += len - 1; 17055 } 17056 } 17057 17058 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17059 const struct bpf_insn *patch, u32 len) 17060 { 17061 struct bpf_prog *new_prog; 17062 struct bpf_insn_aux_data *new_data = NULL; 17063 17064 if (len > 1) { 17065 new_data = vzalloc(array_size(env->prog->len + len - 1, 17066 sizeof(struct bpf_insn_aux_data))); 17067 if (!new_data) 17068 return NULL; 17069 } 17070 17071 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17072 if (IS_ERR(new_prog)) { 17073 if (PTR_ERR(new_prog) == -ERANGE) 17074 verbose(env, 17075 "insn %d cannot be patched due to 16-bit range\n", 17076 env->insn_aux_data[off].orig_idx); 17077 vfree(new_data); 17078 return NULL; 17079 } 17080 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17081 adjust_subprog_starts(env, off, len); 17082 adjust_poke_descs(new_prog, off, len); 17083 return new_prog; 17084 } 17085 17086 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17087 u32 off, u32 cnt) 17088 { 17089 int i, j; 17090 17091 /* find first prog starting at or after off (first to remove) */ 17092 for (i = 0; i < env->subprog_cnt; i++) 17093 if (env->subprog_info[i].start >= off) 17094 break; 17095 /* find first prog starting at or after off + cnt (first to stay) */ 17096 for (j = i; j < env->subprog_cnt; j++) 17097 if (env->subprog_info[j].start >= off + cnt) 17098 break; 17099 /* if j doesn't start exactly at off + cnt, we are just removing 17100 * the front of previous prog 17101 */ 17102 if (env->subprog_info[j].start != off + cnt) 17103 j--; 17104 17105 if (j > i) { 17106 struct bpf_prog_aux *aux = env->prog->aux; 17107 int move; 17108 17109 /* move fake 'exit' subprog as well */ 17110 move = env->subprog_cnt + 1 - j; 17111 17112 memmove(env->subprog_info + i, 17113 env->subprog_info + j, 17114 sizeof(*env->subprog_info) * move); 17115 env->subprog_cnt -= j - i; 17116 17117 /* remove func_info */ 17118 if (aux->func_info) { 17119 move = aux->func_info_cnt - j; 17120 17121 memmove(aux->func_info + i, 17122 aux->func_info + j, 17123 sizeof(*aux->func_info) * move); 17124 aux->func_info_cnt -= j - i; 17125 /* func_info->insn_off is set after all code rewrites, 17126 * in adjust_btf_func() - no need to adjust 17127 */ 17128 } 17129 } else { 17130 /* convert i from "first prog to remove" to "first to adjust" */ 17131 if (env->subprog_info[i].start == off) 17132 i++; 17133 } 17134 17135 /* update fake 'exit' subprog as well */ 17136 for (; i <= env->subprog_cnt; i++) 17137 env->subprog_info[i].start -= cnt; 17138 17139 return 0; 17140 } 17141 17142 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17143 u32 cnt) 17144 { 17145 struct bpf_prog *prog = env->prog; 17146 u32 i, l_off, l_cnt, nr_linfo; 17147 struct bpf_line_info *linfo; 17148 17149 nr_linfo = prog->aux->nr_linfo; 17150 if (!nr_linfo) 17151 return 0; 17152 17153 linfo = prog->aux->linfo; 17154 17155 /* find first line info to remove, count lines to be removed */ 17156 for (i = 0; i < nr_linfo; i++) 17157 if (linfo[i].insn_off >= off) 17158 break; 17159 17160 l_off = i; 17161 l_cnt = 0; 17162 for (; i < nr_linfo; i++) 17163 if (linfo[i].insn_off < off + cnt) 17164 l_cnt++; 17165 else 17166 break; 17167 17168 /* First live insn doesn't match first live linfo, it needs to "inherit" 17169 * last removed linfo. prog is already modified, so prog->len == off 17170 * means no live instructions after (tail of the program was removed). 17171 */ 17172 if (prog->len != off && l_cnt && 17173 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17174 l_cnt--; 17175 linfo[--i].insn_off = off + cnt; 17176 } 17177 17178 /* remove the line info which refer to the removed instructions */ 17179 if (l_cnt) { 17180 memmove(linfo + l_off, linfo + i, 17181 sizeof(*linfo) * (nr_linfo - i)); 17182 17183 prog->aux->nr_linfo -= l_cnt; 17184 nr_linfo = prog->aux->nr_linfo; 17185 } 17186 17187 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17188 for (i = l_off; i < nr_linfo; i++) 17189 linfo[i].insn_off -= cnt; 17190 17191 /* fix up all subprogs (incl. 'exit') which start >= off */ 17192 for (i = 0; i <= env->subprog_cnt; i++) 17193 if (env->subprog_info[i].linfo_idx > l_off) { 17194 /* program may have started in the removed region but 17195 * may not be fully removed 17196 */ 17197 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17198 env->subprog_info[i].linfo_idx -= l_cnt; 17199 else 17200 env->subprog_info[i].linfo_idx = l_off; 17201 } 17202 17203 return 0; 17204 } 17205 17206 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17207 { 17208 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17209 unsigned int orig_prog_len = env->prog->len; 17210 int err; 17211 17212 if (bpf_prog_is_offloaded(env->prog->aux)) 17213 bpf_prog_offload_remove_insns(env, off, cnt); 17214 17215 err = bpf_remove_insns(env->prog, off, cnt); 17216 if (err) 17217 return err; 17218 17219 err = adjust_subprog_starts_after_remove(env, off, cnt); 17220 if (err) 17221 return err; 17222 17223 err = bpf_adj_linfo_after_remove(env, off, cnt); 17224 if (err) 17225 return err; 17226 17227 memmove(aux_data + off, aux_data + off + cnt, 17228 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17229 17230 return 0; 17231 } 17232 17233 /* The verifier does more data flow analysis than llvm and will not 17234 * explore branches that are dead at run time. Malicious programs can 17235 * have dead code too. Therefore replace all dead at-run-time code 17236 * with 'ja -1'. 17237 * 17238 * Just nops are not optimal, e.g. if they would sit at the end of the 17239 * program and through another bug we would manage to jump there, then 17240 * we'd execute beyond program memory otherwise. Returning exception 17241 * code also wouldn't work since we can have subprogs where the dead 17242 * code could be located. 17243 */ 17244 static void sanitize_dead_code(struct bpf_verifier_env *env) 17245 { 17246 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17247 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17248 struct bpf_insn *insn = env->prog->insnsi; 17249 const int insn_cnt = env->prog->len; 17250 int i; 17251 17252 for (i = 0; i < insn_cnt; i++) { 17253 if (aux_data[i].seen) 17254 continue; 17255 memcpy(insn + i, &trap, sizeof(trap)); 17256 aux_data[i].zext_dst = false; 17257 } 17258 } 17259 17260 static bool insn_is_cond_jump(u8 code) 17261 { 17262 u8 op; 17263 17264 if (BPF_CLASS(code) == BPF_JMP32) 17265 return true; 17266 17267 if (BPF_CLASS(code) != BPF_JMP) 17268 return false; 17269 17270 op = BPF_OP(code); 17271 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17272 } 17273 17274 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17275 { 17276 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17277 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17278 struct bpf_insn *insn = env->prog->insnsi; 17279 const int insn_cnt = env->prog->len; 17280 int i; 17281 17282 for (i = 0; i < insn_cnt; i++, insn++) { 17283 if (!insn_is_cond_jump(insn->code)) 17284 continue; 17285 17286 if (!aux_data[i + 1].seen) 17287 ja.off = insn->off; 17288 else if (!aux_data[i + 1 + insn->off].seen) 17289 ja.off = 0; 17290 else 17291 continue; 17292 17293 if (bpf_prog_is_offloaded(env->prog->aux)) 17294 bpf_prog_offload_replace_insn(env, i, &ja); 17295 17296 memcpy(insn, &ja, sizeof(ja)); 17297 } 17298 } 17299 17300 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17301 { 17302 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17303 int insn_cnt = env->prog->len; 17304 int i, err; 17305 17306 for (i = 0; i < insn_cnt; i++) { 17307 int j; 17308 17309 j = 0; 17310 while (i + j < insn_cnt && !aux_data[i + j].seen) 17311 j++; 17312 if (!j) 17313 continue; 17314 17315 err = verifier_remove_insns(env, i, j); 17316 if (err) 17317 return err; 17318 insn_cnt = env->prog->len; 17319 } 17320 17321 return 0; 17322 } 17323 17324 static int opt_remove_nops(struct bpf_verifier_env *env) 17325 { 17326 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17327 struct bpf_insn *insn = env->prog->insnsi; 17328 int insn_cnt = env->prog->len; 17329 int i, err; 17330 17331 for (i = 0; i < insn_cnt; i++) { 17332 if (memcmp(&insn[i], &ja, sizeof(ja))) 17333 continue; 17334 17335 err = verifier_remove_insns(env, i, 1); 17336 if (err) 17337 return err; 17338 insn_cnt--; 17339 i--; 17340 } 17341 17342 return 0; 17343 } 17344 17345 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17346 const union bpf_attr *attr) 17347 { 17348 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17349 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17350 int i, patch_len, delta = 0, len = env->prog->len; 17351 struct bpf_insn *insns = env->prog->insnsi; 17352 struct bpf_prog *new_prog; 17353 bool rnd_hi32; 17354 17355 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17356 zext_patch[1] = BPF_ZEXT_REG(0); 17357 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17358 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17359 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17360 for (i = 0; i < len; i++) { 17361 int adj_idx = i + delta; 17362 struct bpf_insn insn; 17363 int load_reg; 17364 17365 insn = insns[adj_idx]; 17366 load_reg = insn_def_regno(&insn); 17367 if (!aux[adj_idx].zext_dst) { 17368 u8 code, class; 17369 u32 imm_rnd; 17370 17371 if (!rnd_hi32) 17372 continue; 17373 17374 code = insn.code; 17375 class = BPF_CLASS(code); 17376 if (load_reg == -1) 17377 continue; 17378 17379 /* NOTE: arg "reg" (the fourth one) is only used for 17380 * BPF_STX + SRC_OP, so it is safe to pass NULL 17381 * here. 17382 */ 17383 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17384 if (class == BPF_LD && 17385 BPF_MODE(code) == BPF_IMM) 17386 i++; 17387 continue; 17388 } 17389 17390 /* ctx load could be transformed into wider load. */ 17391 if (class == BPF_LDX && 17392 aux[adj_idx].ptr_type == PTR_TO_CTX) 17393 continue; 17394 17395 imm_rnd = get_random_u32(); 17396 rnd_hi32_patch[0] = insn; 17397 rnd_hi32_patch[1].imm = imm_rnd; 17398 rnd_hi32_patch[3].dst_reg = load_reg; 17399 patch = rnd_hi32_patch; 17400 patch_len = 4; 17401 goto apply_patch_buffer; 17402 } 17403 17404 /* Add in an zero-extend instruction if a) the JIT has requested 17405 * it or b) it's a CMPXCHG. 17406 * 17407 * The latter is because: BPF_CMPXCHG always loads a value into 17408 * R0, therefore always zero-extends. However some archs' 17409 * equivalent instruction only does this load when the 17410 * comparison is successful. This detail of CMPXCHG is 17411 * orthogonal to the general zero-extension behaviour of the 17412 * CPU, so it's treated independently of bpf_jit_needs_zext. 17413 */ 17414 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17415 continue; 17416 17417 /* Zero-extension is done by the caller. */ 17418 if (bpf_pseudo_kfunc_call(&insn)) 17419 continue; 17420 17421 if (WARN_ON(load_reg == -1)) { 17422 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17423 return -EFAULT; 17424 } 17425 17426 zext_patch[0] = insn; 17427 zext_patch[1].dst_reg = load_reg; 17428 zext_patch[1].src_reg = load_reg; 17429 patch = zext_patch; 17430 patch_len = 2; 17431 apply_patch_buffer: 17432 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17433 if (!new_prog) 17434 return -ENOMEM; 17435 env->prog = new_prog; 17436 insns = new_prog->insnsi; 17437 aux = env->insn_aux_data; 17438 delta += patch_len - 1; 17439 } 17440 17441 return 0; 17442 } 17443 17444 /* convert load instructions that access fields of a context type into a 17445 * sequence of instructions that access fields of the underlying structure: 17446 * struct __sk_buff -> struct sk_buff 17447 * struct bpf_sock_ops -> struct sock 17448 */ 17449 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17450 { 17451 const struct bpf_verifier_ops *ops = env->ops; 17452 int i, cnt, size, ctx_field_size, delta = 0; 17453 const int insn_cnt = env->prog->len; 17454 struct bpf_insn insn_buf[16], *insn; 17455 u32 target_size, size_default, off; 17456 struct bpf_prog *new_prog; 17457 enum bpf_access_type type; 17458 bool is_narrower_load; 17459 17460 if (ops->gen_prologue || env->seen_direct_write) { 17461 if (!ops->gen_prologue) { 17462 verbose(env, "bpf verifier is misconfigured\n"); 17463 return -EINVAL; 17464 } 17465 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17466 env->prog); 17467 if (cnt >= ARRAY_SIZE(insn_buf)) { 17468 verbose(env, "bpf verifier is misconfigured\n"); 17469 return -EINVAL; 17470 } else if (cnt) { 17471 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17472 if (!new_prog) 17473 return -ENOMEM; 17474 17475 env->prog = new_prog; 17476 delta += cnt - 1; 17477 } 17478 } 17479 17480 if (bpf_prog_is_offloaded(env->prog->aux)) 17481 return 0; 17482 17483 insn = env->prog->insnsi + delta; 17484 17485 for (i = 0; i < insn_cnt; i++, insn++) { 17486 bpf_convert_ctx_access_t convert_ctx_access; 17487 17488 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17489 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17490 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17491 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 17492 type = BPF_READ; 17493 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17494 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17495 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17496 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17497 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17498 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17499 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17500 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17501 type = BPF_WRITE; 17502 } else { 17503 continue; 17504 } 17505 17506 if (type == BPF_WRITE && 17507 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17508 struct bpf_insn patch[] = { 17509 *insn, 17510 BPF_ST_NOSPEC(), 17511 }; 17512 17513 cnt = ARRAY_SIZE(patch); 17514 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17515 if (!new_prog) 17516 return -ENOMEM; 17517 17518 delta += cnt - 1; 17519 env->prog = new_prog; 17520 insn = new_prog->insnsi + i + delta; 17521 continue; 17522 } 17523 17524 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17525 case PTR_TO_CTX: 17526 if (!ops->convert_ctx_access) 17527 continue; 17528 convert_ctx_access = ops->convert_ctx_access; 17529 break; 17530 case PTR_TO_SOCKET: 17531 case PTR_TO_SOCK_COMMON: 17532 convert_ctx_access = bpf_sock_convert_ctx_access; 17533 break; 17534 case PTR_TO_TCP_SOCK: 17535 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17536 break; 17537 case PTR_TO_XDP_SOCK: 17538 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17539 break; 17540 case PTR_TO_BTF_ID: 17541 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17542 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17543 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17544 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17545 * any faults for loads into such types. BPF_WRITE is disallowed 17546 * for this case. 17547 */ 17548 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17549 if (type == BPF_READ) { 17550 insn->code = BPF_LDX | BPF_PROBE_MEM | 17551 BPF_SIZE((insn)->code); 17552 env->prog->aux->num_exentries++; 17553 } 17554 continue; 17555 default: 17556 continue; 17557 } 17558 17559 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17560 size = BPF_LDST_BYTES(insn); 17561 17562 /* If the read access is a narrower load of the field, 17563 * convert to a 4/8-byte load, to minimum program type specific 17564 * convert_ctx_access changes. If conversion is successful, 17565 * we will apply proper mask to the result. 17566 */ 17567 is_narrower_load = size < ctx_field_size; 17568 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17569 off = insn->off; 17570 if (is_narrower_load) { 17571 u8 size_code; 17572 17573 if (type == BPF_WRITE) { 17574 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17575 return -EINVAL; 17576 } 17577 17578 size_code = BPF_H; 17579 if (ctx_field_size == 4) 17580 size_code = BPF_W; 17581 else if (ctx_field_size == 8) 17582 size_code = BPF_DW; 17583 17584 insn->off = off & ~(size_default - 1); 17585 insn->code = BPF_LDX | BPF_MEM | size_code; 17586 } 17587 17588 target_size = 0; 17589 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17590 &target_size); 17591 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17592 (ctx_field_size && !target_size)) { 17593 verbose(env, "bpf verifier is misconfigured\n"); 17594 return -EINVAL; 17595 } 17596 17597 if (is_narrower_load && size < target_size) { 17598 u8 shift = bpf_ctx_narrow_access_offset( 17599 off, size, size_default) * 8; 17600 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17601 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17602 return -EINVAL; 17603 } 17604 if (ctx_field_size <= 4) { 17605 if (shift) 17606 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17607 insn->dst_reg, 17608 shift); 17609 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17610 (1 << size * 8) - 1); 17611 } else { 17612 if (shift) 17613 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17614 insn->dst_reg, 17615 shift); 17616 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17617 (1ULL << size * 8) - 1); 17618 } 17619 } 17620 17621 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17622 if (!new_prog) 17623 return -ENOMEM; 17624 17625 delta += cnt - 1; 17626 17627 /* keep walking new program and skip insns we just inserted */ 17628 env->prog = new_prog; 17629 insn = new_prog->insnsi + i + delta; 17630 } 17631 17632 return 0; 17633 } 17634 17635 static int jit_subprogs(struct bpf_verifier_env *env) 17636 { 17637 struct bpf_prog *prog = env->prog, **func, *tmp; 17638 int i, j, subprog_start, subprog_end = 0, len, subprog; 17639 struct bpf_map *map_ptr; 17640 struct bpf_insn *insn; 17641 void *old_bpf_func; 17642 int err, num_exentries; 17643 17644 if (env->subprog_cnt <= 1) 17645 return 0; 17646 17647 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17648 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17649 continue; 17650 17651 /* Upon error here we cannot fall back to interpreter but 17652 * need a hard reject of the program. Thus -EFAULT is 17653 * propagated in any case. 17654 */ 17655 subprog = find_subprog(env, i + insn->imm + 1); 17656 if (subprog < 0) { 17657 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17658 i + insn->imm + 1); 17659 return -EFAULT; 17660 } 17661 /* temporarily remember subprog id inside insn instead of 17662 * aux_data, since next loop will split up all insns into funcs 17663 */ 17664 insn->off = subprog; 17665 /* remember original imm in case JIT fails and fallback 17666 * to interpreter will be needed 17667 */ 17668 env->insn_aux_data[i].call_imm = insn->imm; 17669 /* point imm to __bpf_call_base+1 from JITs point of view */ 17670 insn->imm = 1; 17671 if (bpf_pseudo_func(insn)) 17672 /* jit (e.g. x86_64) may emit fewer instructions 17673 * if it learns a u32 imm is the same as a u64 imm. 17674 * Force a non zero here. 17675 */ 17676 insn[1].imm = 1; 17677 } 17678 17679 err = bpf_prog_alloc_jited_linfo(prog); 17680 if (err) 17681 goto out_undo_insn; 17682 17683 err = -ENOMEM; 17684 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17685 if (!func) 17686 goto out_undo_insn; 17687 17688 for (i = 0; i < env->subprog_cnt; i++) { 17689 subprog_start = subprog_end; 17690 subprog_end = env->subprog_info[i + 1].start; 17691 17692 len = subprog_end - subprog_start; 17693 /* bpf_prog_run() doesn't call subprogs directly, 17694 * hence main prog stats include the runtime of subprogs. 17695 * subprogs don't have IDs and not reachable via prog_get_next_id 17696 * func[i]->stats will never be accessed and stays NULL 17697 */ 17698 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17699 if (!func[i]) 17700 goto out_free; 17701 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17702 len * sizeof(struct bpf_insn)); 17703 func[i]->type = prog->type; 17704 func[i]->len = len; 17705 if (bpf_prog_calc_tag(func[i])) 17706 goto out_free; 17707 func[i]->is_func = 1; 17708 func[i]->aux->func_idx = i; 17709 /* Below members will be freed only at prog->aux */ 17710 func[i]->aux->btf = prog->aux->btf; 17711 func[i]->aux->func_info = prog->aux->func_info; 17712 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17713 func[i]->aux->poke_tab = prog->aux->poke_tab; 17714 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17715 17716 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17717 struct bpf_jit_poke_descriptor *poke; 17718 17719 poke = &prog->aux->poke_tab[j]; 17720 if (poke->insn_idx < subprog_end && 17721 poke->insn_idx >= subprog_start) 17722 poke->aux = func[i]->aux; 17723 } 17724 17725 func[i]->aux->name[0] = 'F'; 17726 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17727 func[i]->jit_requested = 1; 17728 func[i]->blinding_requested = prog->blinding_requested; 17729 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 17730 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 17731 func[i]->aux->linfo = prog->aux->linfo; 17732 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 17733 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 17734 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 17735 num_exentries = 0; 17736 insn = func[i]->insnsi; 17737 for (j = 0; j < func[i]->len; j++, insn++) { 17738 if (BPF_CLASS(insn->code) == BPF_LDX && 17739 BPF_MODE(insn->code) == BPF_PROBE_MEM) 17740 num_exentries++; 17741 } 17742 func[i]->aux->num_exentries = num_exentries; 17743 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 17744 func[i] = bpf_int_jit_compile(func[i]); 17745 if (!func[i]->jited) { 17746 err = -ENOTSUPP; 17747 goto out_free; 17748 } 17749 cond_resched(); 17750 } 17751 17752 /* at this point all bpf functions were successfully JITed 17753 * now populate all bpf_calls with correct addresses and 17754 * run last pass of JIT 17755 */ 17756 for (i = 0; i < env->subprog_cnt; i++) { 17757 insn = func[i]->insnsi; 17758 for (j = 0; j < func[i]->len; j++, insn++) { 17759 if (bpf_pseudo_func(insn)) { 17760 subprog = insn->off; 17761 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 17762 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 17763 continue; 17764 } 17765 if (!bpf_pseudo_call(insn)) 17766 continue; 17767 subprog = insn->off; 17768 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 17769 } 17770 17771 /* we use the aux data to keep a list of the start addresses 17772 * of the JITed images for each function in the program 17773 * 17774 * for some architectures, such as powerpc64, the imm field 17775 * might not be large enough to hold the offset of the start 17776 * address of the callee's JITed image from __bpf_call_base 17777 * 17778 * in such cases, we can lookup the start address of a callee 17779 * by using its subprog id, available from the off field of 17780 * the call instruction, as an index for this list 17781 */ 17782 func[i]->aux->func = func; 17783 func[i]->aux->func_cnt = env->subprog_cnt; 17784 } 17785 for (i = 0; i < env->subprog_cnt; i++) { 17786 old_bpf_func = func[i]->bpf_func; 17787 tmp = bpf_int_jit_compile(func[i]); 17788 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 17789 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 17790 err = -ENOTSUPP; 17791 goto out_free; 17792 } 17793 cond_resched(); 17794 } 17795 17796 /* finally lock prog and jit images for all functions and 17797 * populate kallsysm. Begin at the first subprogram, since 17798 * bpf_prog_load will add the kallsyms for the main program. 17799 */ 17800 for (i = 1; i < env->subprog_cnt; i++) { 17801 bpf_prog_lock_ro(func[i]); 17802 bpf_prog_kallsyms_add(func[i]); 17803 } 17804 17805 /* Last step: make now unused interpreter insns from main 17806 * prog consistent for later dump requests, so they can 17807 * later look the same as if they were interpreted only. 17808 */ 17809 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17810 if (bpf_pseudo_func(insn)) { 17811 insn[0].imm = env->insn_aux_data[i].call_imm; 17812 insn[1].imm = insn->off; 17813 insn->off = 0; 17814 continue; 17815 } 17816 if (!bpf_pseudo_call(insn)) 17817 continue; 17818 insn->off = env->insn_aux_data[i].call_imm; 17819 subprog = find_subprog(env, i + insn->off + 1); 17820 insn->imm = subprog; 17821 } 17822 17823 prog->jited = 1; 17824 prog->bpf_func = func[0]->bpf_func; 17825 prog->jited_len = func[0]->jited_len; 17826 prog->aux->extable = func[0]->aux->extable; 17827 prog->aux->num_exentries = func[0]->aux->num_exentries; 17828 prog->aux->func = func; 17829 prog->aux->func_cnt = env->subprog_cnt; 17830 bpf_prog_jit_attempt_done(prog); 17831 return 0; 17832 out_free: 17833 /* We failed JIT'ing, so at this point we need to unregister poke 17834 * descriptors from subprogs, so that kernel is not attempting to 17835 * patch it anymore as we're freeing the subprog JIT memory. 17836 */ 17837 for (i = 0; i < prog->aux->size_poke_tab; i++) { 17838 map_ptr = prog->aux->poke_tab[i].tail_call.map; 17839 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 17840 } 17841 /* At this point we're guaranteed that poke descriptors are not 17842 * live anymore. We can just unlink its descriptor table as it's 17843 * released with the main prog. 17844 */ 17845 for (i = 0; i < env->subprog_cnt; i++) { 17846 if (!func[i]) 17847 continue; 17848 func[i]->aux->poke_tab = NULL; 17849 bpf_jit_free(func[i]); 17850 } 17851 kfree(func); 17852 out_undo_insn: 17853 /* cleanup main prog to be interpreted */ 17854 prog->jit_requested = 0; 17855 prog->blinding_requested = 0; 17856 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17857 if (!bpf_pseudo_call(insn)) 17858 continue; 17859 insn->off = 0; 17860 insn->imm = env->insn_aux_data[i].call_imm; 17861 } 17862 bpf_prog_jit_attempt_done(prog); 17863 return err; 17864 } 17865 17866 static int fixup_call_args(struct bpf_verifier_env *env) 17867 { 17868 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17869 struct bpf_prog *prog = env->prog; 17870 struct bpf_insn *insn = prog->insnsi; 17871 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 17872 int i, depth; 17873 #endif 17874 int err = 0; 17875 17876 if (env->prog->jit_requested && 17877 !bpf_prog_is_offloaded(env->prog->aux)) { 17878 err = jit_subprogs(env); 17879 if (err == 0) 17880 return 0; 17881 if (err == -EFAULT) 17882 return err; 17883 } 17884 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17885 if (has_kfunc_call) { 17886 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 17887 return -EINVAL; 17888 } 17889 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 17890 /* When JIT fails the progs with bpf2bpf calls and tail_calls 17891 * have to be rejected, since interpreter doesn't support them yet. 17892 */ 17893 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 17894 return -EINVAL; 17895 } 17896 for (i = 0; i < prog->len; i++, insn++) { 17897 if (bpf_pseudo_func(insn)) { 17898 /* When JIT fails the progs with callback calls 17899 * have to be rejected, since interpreter doesn't support them yet. 17900 */ 17901 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 17902 return -EINVAL; 17903 } 17904 17905 if (!bpf_pseudo_call(insn)) 17906 continue; 17907 depth = get_callee_stack_depth(env, insn, i); 17908 if (depth < 0) 17909 return depth; 17910 bpf_patch_call_args(insn, depth); 17911 } 17912 err = 0; 17913 #endif 17914 return err; 17915 } 17916 17917 /* replace a generic kfunc with a specialized version if necessary */ 17918 static void specialize_kfunc(struct bpf_verifier_env *env, 17919 u32 func_id, u16 offset, unsigned long *addr) 17920 { 17921 struct bpf_prog *prog = env->prog; 17922 bool seen_direct_write; 17923 void *xdp_kfunc; 17924 bool is_rdonly; 17925 17926 if (bpf_dev_bound_kfunc_id(func_id)) { 17927 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 17928 if (xdp_kfunc) { 17929 *addr = (unsigned long)xdp_kfunc; 17930 return; 17931 } 17932 /* fallback to default kfunc when not supported by netdev */ 17933 } 17934 17935 if (offset) 17936 return; 17937 17938 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 17939 seen_direct_write = env->seen_direct_write; 17940 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 17941 17942 if (is_rdonly) 17943 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 17944 17945 /* restore env->seen_direct_write to its original value, since 17946 * may_access_direct_pkt_data mutates it 17947 */ 17948 env->seen_direct_write = seen_direct_write; 17949 } 17950 } 17951 17952 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 17953 u16 struct_meta_reg, 17954 u16 node_offset_reg, 17955 struct bpf_insn *insn, 17956 struct bpf_insn *insn_buf, 17957 int *cnt) 17958 { 17959 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 17960 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 17961 17962 insn_buf[0] = addr[0]; 17963 insn_buf[1] = addr[1]; 17964 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 17965 insn_buf[3] = *insn; 17966 *cnt = 4; 17967 } 17968 17969 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 17970 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 17971 { 17972 const struct bpf_kfunc_desc *desc; 17973 17974 if (!insn->imm) { 17975 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 17976 return -EINVAL; 17977 } 17978 17979 *cnt = 0; 17980 17981 /* insn->imm has the btf func_id. Replace it with an offset relative to 17982 * __bpf_call_base, unless the JIT needs to call functions that are 17983 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 17984 */ 17985 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 17986 if (!desc) { 17987 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 17988 insn->imm); 17989 return -EFAULT; 17990 } 17991 17992 if (!bpf_jit_supports_far_kfunc_call()) 17993 insn->imm = BPF_CALL_IMM(desc->addr); 17994 if (insn->off) 17995 return 0; 17996 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 17997 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 17998 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 17999 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18000 18001 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18002 insn_buf[1] = addr[0]; 18003 insn_buf[2] = addr[1]; 18004 insn_buf[3] = *insn; 18005 *cnt = 4; 18006 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18007 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18008 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18009 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18010 18011 insn_buf[0] = addr[0]; 18012 insn_buf[1] = addr[1]; 18013 insn_buf[2] = *insn; 18014 *cnt = 3; 18015 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18016 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18017 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18018 int struct_meta_reg = BPF_REG_3; 18019 int node_offset_reg = BPF_REG_4; 18020 18021 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18022 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18023 struct_meta_reg = BPF_REG_4; 18024 node_offset_reg = BPF_REG_5; 18025 } 18026 18027 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18028 node_offset_reg, insn, insn_buf, cnt); 18029 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18030 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18031 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18032 *cnt = 1; 18033 } 18034 return 0; 18035 } 18036 18037 /* Do various post-verification rewrites in a single program pass. 18038 * These rewrites simplify JIT and interpreter implementations. 18039 */ 18040 static int do_misc_fixups(struct bpf_verifier_env *env) 18041 { 18042 struct bpf_prog *prog = env->prog; 18043 enum bpf_attach_type eatype = prog->expected_attach_type; 18044 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18045 struct bpf_insn *insn = prog->insnsi; 18046 const struct bpf_func_proto *fn; 18047 const int insn_cnt = prog->len; 18048 const struct bpf_map_ops *ops; 18049 struct bpf_insn_aux_data *aux; 18050 struct bpf_insn insn_buf[16]; 18051 struct bpf_prog *new_prog; 18052 struct bpf_map *map_ptr; 18053 int i, ret, cnt, delta = 0; 18054 18055 for (i = 0; i < insn_cnt; i++, insn++) { 18056 /* Make divide-by-zero exceptions impossible. */ 18057 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18058 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18059 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18060 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18061 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18062 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18063 struct bpf_insn *patchlet; 18064 struct bpf_insn chk_and_div[] = { 18065 /* [R,W]x div 0 -> 0 */ 18066 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18067 BPF_JNE | BPF_K, insn->src_reg, 18068 0, 2, 0), 18069 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18070 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18071 *insn, 18072 }; 18073 struct bpf_insn chk_and_mod[] = { 18074 /* [R,W]x mod 0 -> [R,W]x */ 18075 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18076 BPF_JEQ | BPF_K, insn->src_reg, 18077 0, 1 + (is64 ? 0 : 1), 0), 18078 *insn, 18079 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18080 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18081 }; 18082 18083 patchlet = isdiv ? chk_and_div : chk_and_mod; 18084 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18085 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18086 18087 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18088 if (!new_prog) 18089 return -ENOMEM; 18090 18091 delta += cnt - 1; 18092 env->prog = prog = new_prog; 18093 insn = new_prog->insnsi + i + delta; 18094 continue; 18095 } 18096 18097 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18098 if (BPF_CLASS(insn->code) == BPF_LD && 18099 (BPF_MODE(insn->code) == BPF_ABS || 18100 BPF_MODE(insn->code) == BPF_IND)) { 18101 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18102 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18103 verbose(env, "bpf verifier is misconfigured\n"); 18104 return -EINVAL; 18105 } 18106 18107 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18108 if (!new_prog) 18109 return -ENOMEM; 18110 18111 delta += cnt - 1; 18112 env->prog = prog = new_prog; 18113 insn = new_prog->insnsi + i + delta; 18114 continue; 18115 } 18116 18117 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18118 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18119 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18120 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18121 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18122 struct bpf_insn *patch = &insn_buf[0]; 18123 bool issrc, isneg, isimm; 18124 u32 off_reg; 18125 18126 aux = &env->insn_aux_data[i + delta]; 18127 if (!aux->alu_state || 18128 aux->alu_state == BPF_ALU_NON_POINTER) 18129 continue; 18130 18131 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18132 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18133 BPF_ALU_SANITIZE_SRC; 18134 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18135 18136 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18137 if (isimm) { 18138 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18139 } else { 18140 if (isneg) 18141 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18142 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18143 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18144 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18145 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18146 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18147 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18148 } 18149 if (!issrc) 18150 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18151 insn->src_reg = BPF_REG_AX; 18152 if (isneg) 18153 insn->code = insn->code == code_add ? 18154 code_sub : code_add; 18155 *patch++ = *insn; 18156 if (issrc && isneg && !isimm) 18157 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18158 cnt = patch - insn_buf; 18159 18160 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18161 if (!new_prog) 18162 return -ENOMEM; 18163 18164 delta += cnt - 1; 18165 env->prog = prog = new_prog; 18166 insn = new_prog->insnsi + i + delta; 18167 continue; 18168 } 18169 18170 if (insn->code != (BPF_JMP | BPF_CALL)) 18171 continue; 18172 if (insn->src_reg == BPF_PSEUDO_CALL) 18173 continue; 18174 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18175 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18176 if (ret) 18177 return ret; 18178 if (cnt == 0) 18179 continue; 18180 18181 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18182 if (!new_prog) 18183 return -ENOMEM; 18184 18185 delta += cnt - 1; 18186 env->prog = prog = new_prog; 18187 insn = new_prog->insnsi + i + delta; 18188 continue; 18189 } 18190 18191 if (insn->imm == BPF_FUNC_get_route_realm) 18192 prog->dst_needed = 1; 18193 if (insn->imm == BPF_FUNC_get_prandom_u32) 18194 bpf_user_rnd_init_once(); 18195 if (insn->imm == BPF_FUNC_override_return) 18196 prog->kprobe_override = 1; 18197 if (insn->imm == BPF_FUNC_tail_call) { 18198 /* If we tail call into other programs, we 18199 * cannot make any assumptions since they can 18200 * be replaced dynamically during runtime in 18201 * the program array. 18202 */ 18203 prog->cb_access = 1; 18204 if (!allow_tail_call_in_subprogs(env)) 18205 prog->aux->stack_depth = MAX_BPF_STACK; 18206 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18207 18208 /* mark bpf_tail_call as different opcode to avoid 18209 * conditional branch in the interpreter for every normal 18210 * call and to prevent accidental JITing by JIT compiler 18211 * that doesn't support bpf_tail_call yet 18212 */ 18213 insn->imm = 0; 18214 insn->code = BPF_JMP | BPF_TAIL_CALL; 18215 18216 aux = &env->insn_aux_data[i + delta]; 18217 if (env->bpf_capable && !prog->blinding_requested && 18218 prog->jit_requested && 18219 !bpf_map_key_poisoned(aux) && 18220 !bpf_map_ptr_poisoned(aux) && 18221 !bpf_map_ptr_unpriv(aux)) { 18222 struct bpf_jit_poke_descriptor desc = { 18223 .reason = BPF_POKE_REASON_TAIL_CALL, 18224 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18225 .tail_call.key = bpf_map_key_immediate(aux), 18226 .insn_idx = i + delta, 18227 }; 18228 18229 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18230 if (ret < 0) { 18231 verbose(env, "adding tail call poke descriptor failed\n"); 18232 return ret; 18233 } 18234 18235 insn->imm = ret + 1; 18236 continue; 18237 } 18238 18239 if (!bpf_map_ptr_unpriv(aux)) 18240 continue; 18241 18242 /* instead of changing every JIT dealing with tail_call 18243 * emit two extra insns: 18244 * if (index >= max_entries) goto out; 18245 * index &= array->index_mask; 18246 * to avoid out-of-bounds cpu speculation 18247 */ 18248 if (bpf_map_ptr_poisoned(aux)) { 18249 verbose(env, "tail_call abusing map_ptr\n"); 18250 return -EINVAL; 18251 } 18252 18253 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18254 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18255 map_ptr->max_entries, 2); 18256 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18257 container_of(map_ptr, 18258 struct bpf_array, 18259 map)->index_mask); 18260 insn_buf[2] = *insn; 18261 cnt = 3; 18262 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18263 if (!new_prog) 18264 return -ENOMEM; 18265 18266 delta += cnt - 1; 18267 env->prog = prog = new_prog; 18268 insn = new_prog->insnsi + i + delta; 18269 continue; 18270 } 18271 18272 if (insn->imm == BPF_FUNC_timer_set_callback) { 18273 /* The verifier will process callback_fn as many times as necessary 18274 * with different maps and the register states prepared by 18275 * set_timer_callback_state will be accurate. 18276 * 18277 * The following use case is valid: 18278 * map1 is shared by prog1, prog2, prog3. 18279 * prog1 calls bpf_timer_init for some map1 elements 18280 * prog2 calls bpf_timer_set_callback for some map1 elements. 18281 * Those that were not bpf_timer_init-ed will return -EINVAL. 18282 * prog3 calls bpf_timer_start for some map1 elements. 18283 * Those that were not both bpf_timer_init-ed and 18284 * bpf_timer_set_callback-ed will return -EINVAL. 18285 */ 18286 struct bpf_insn ld_addrs[2] = { 18287 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18288 }; 18289 18290 insn_buf[0] = ld_addrs[0]; 18291 insn_buf[1] = ld_addrs[1]; 18292 insn_buf[2] = *insn; 18293 cnt = 3; 18294 18295 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18296 if (!new_prog) 18297 return -ENOMEM; 18298 18299 delta += cnt - 1; 18300 env->prog = prog = new_prog; 18301 insn = new_prog->insnsi + i + delta; 18302 goto patch_call_imm; 18303 } 18304 18305 if (is_storage_get_function(insn->imm)) { 18306 if (!env->prog->aux->sleepable || 18307 env->insn_aux_data[i + delta].storage_get_func_atomic) 18308 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18309 else 18310 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18311 insn_buf[1] = *insn; 18312 cnt = 2; 18313 18314 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18315 if (!new_prog) 18316 return -ENOMEM; 18317 18318 delta += cnt - 1; 18319 env->prog = prog = new_prog; 18320 insn = new_prog->insnsi + i + delta; 18321 goto patch_call_imm; 18322 } 18323 18324 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18325 * and other inlining handlers are currently limited to 64 bit 18326 * only. 18327 */ 18328 if (prog->jit_requested && BITS_PER_LONG == 64 && 18329 (insn->imm == BPF_FUNC_map_lookup_elem || 18330 insn->imm == BPF_FUNC_map_update_elem || 18331 insn->imm == BPF_FUNC_map_delete_elem || 18332 insn->imm == BPF_FUNC_map_push_elem || 18333 insn->imm == BPF_FUNC_map_pop_elem || 18334 insn->imm == BPF_FUNC_map_peek_elem || 18335 insn->imm == BPF_FUNC_redirect_map || 18336 insn->imm == BPF_FUNC_for_each_map_elem || 18337 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18338 aux = &env->insn_aux_data[i + delta]; 18339 if (bpf_map_ptr_poisoned(aux)) 18340 goto patch_call_imm; 18341 18342 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18343 ops = map_ptr->ops; 18344 if (insn->imm == BPF_FUNC_map_lookup_elem && 18345 ops->map_gen_lookup) { 18346 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18347 if (cnt == -EOPNOTSUPP) 18348 goto patch_map_ops_generic; 18349 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18350 verbose(env, "bpf verifier is misconfigured\n"); 18351 return -EINVAL; 18352 } 18353 18354 new_prog = bpf_patch_insn_data(env, i + delta, 18355 insn_buf, cnt); 18356 if (!new_prog) 18357 return -ENOMEM; 18358 18359 delta += cnt - 1; 18360 env->prog = prog = new_prog; 18361 insn = new_prog->insnsi + i + delta; 18362 continue; 18363 } 18364 18365 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18366 (void *(*)(struct bpf_map *map, void *key))NULL)); 18367 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18368 (long (*)(struct bpf_map *map, void *key))NULL)); 18369 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18370 (long (*)(struct bpf_map *map, void *key, void *value, 18371 u64 flags))NULL)); 18372 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18373 (long (*)(struct bpf_map *map, void *value, 18374 u64 flags))NULL)); 18375 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18376 (long (*)(struct bpf_map *map, void *value))NULL)); 18377 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18378 (long (*)(struct bpf_map *map, void *value))NULL)); 18379 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18380 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18381 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18382 (long (*)(struct bpf_map *map, 18383 bpf_callback_t callback_fn, 18384 void *callback_ctx, 18385 u64 flags))NULL)); 18386 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18387 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18388 18389 patch_map_ops_generic: 18390 switch (insn->imm) { 18391 case BPF_FUNC_map_lookup_elem: 18392 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18393 continue; 18394 case BPF_FUNC_map_update_elem: 18395 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18396 continue; 18397 case BPF_FUNC_map_delete_elem: 18398 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18399 continue; 18400 case BPF_FUNC_map_push_elem: 18401 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18402 continue; 18403 case BPF_FUNC_map_pop_elem: 18404 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18405 continue; 18406 case BPF_FUNC_map_peek_elem: 18407 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18408 continue; 18409 case BPF_FUNC_redirect_map: 18410 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18411 continue; 18412 case BPF_FUNC_for_each_map_elem: 18413 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18414 continue; 18415 case BPF_FUNC_map_lookup_percpu_elem: 18416 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18417 continue; 18418 } 18419 18420 goto patch_call_imm; 18421 } 18422 18423 /* Implement bpf_jiffies64 inline. */ 18424 if (prog->jit_requested && BITS_PER_LONG == 64 && 18425 insn->imm == BPF_FUNC_jiffies64) { 18426 struct bpf_insn ld_jiffies_addr[2] = { 18427 BPF_LD_IMM64(BPF_REG_0, 18428 (unsigned long)&jiffies), 18429 }; 18430 18431 insn_buf[0] = ld_jiffies_addr[0]; 18432 insn_buf[1] = ld_jiffies_addr[1]; 18433 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18434 BPF_REG_0, 0); 18435 cnt = 3; 18436 18437 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18438 cnt); 18439 if (!new_prog) 18440 return -ENOMEM; 18441 18442 delta += cnt - 1; 18443 env->prog = prog = new_prog; 18444 insn = new_prog->insnsi + i + delta; 18445 continue; 18446 } 18447 18448 /* Implement bpf_get_func_arg inline. */ 18449 if (prog_type == BPF_PROG_TYPE_TRACING && 18450 insn->imm == BPF_FUNC_get_func_arg) { 18451 /* Load nr_args from ctx - 8 */ 18452 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18453 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18454 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18455 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18456 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18457 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18458 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18459 insn_buf[7] = BPF_JMP_A(1); 18460 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18461 cnt = 9; 18462 18463 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18464 if (!new_prog) 18465 return -ENOMEM; 18466 18467 delta += cnt - 1; 18468 env->prog = prog = new_prog; 18469 insn = new_prog->insnsi + i + delta; 18470 continue; 18471 } 18472 18473 /* Implement bpf_get_func_ret inline. */ 18474 if (prog_type == BPF_PROG_TYPE_TRACING && 18475 insn->imm == BPF_FUNC_get_func_ret) { 18476 if (eatype == BPF_TRACE_FEXIT || 18477 eatype == BPF_MODIFY_RETURN) { 18478 /* Load nr_args from ctx - 8 */ 18479 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18480 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18481 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18482 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18483 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18484 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18485 cnt = 6; 18486 } else { 18487 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18488 cnt = 1; 18489 } 18490 18491 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18492 if (!new_prog) 18493 return -ENOMEM; 18494 18495 delta += cnt - 1; 18496 env->prog = prog = new_prog; 18497 insn = new_prog->insnsi + i + delta; 18498 continue; 18499 } 18500 18501 /* Implement get_func_arg_cnt inline. */ 18502 if (prog_type == BPF_PROG_TYPE_TRACING && 18503 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18504 /* Load nr_args from ctx - 8 */ 18505 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18506 18507 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18508 if (!new_prog) 18509 return -ENOMEM; 18510 18511 env->prog = prog = new_prog; 18512 insn = new_prog->insnsi + i + delta; 18513 continue; 18514 } 18515 18516 /* Implement bpf_get_func_ip inline. */ 18517 if (prog_type == BPF_PROG_TYPE_TRACING && 18518 insn->imm == BPF_FUNC_get_func_ip) { 18519 /* Load IP address from ctx - 16 */ 18520 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18521 18522 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18523 if (!new_prog) 18524 return -ENOMEM; 18525 18526 env->prog = prog = new_prog; 18527 insn = new_prog->insnsi + i + delta; 18528 continue; 18529 } 18530 18531 patch_call_imm: 18532 fn = env->ops->get_func_proto(insn->imm, env->prog); 18533 /* all functions that have prototype and verifier allowed 18534 * programs to call them, must be real in-kernel functions 18535 */ 18536 if (!fn->func) { 18537 verbose(env, 18538 "kernel subsystem misconfigured func %s#%d\n", 18539 func_id_name(insn->imm), insn->imm); 18540 return -EFAULT; 18541 } 18542 insn->imm = fn->func - __bpf_call_base; 18543 } 18544 18545 /* Since poke tab is now finalized, publish aux to tracker. */ 18546 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18547 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18548 if (!map_ptr->ops->map_poke_track || 18549 !map_ptr->ops->map_poke_untrack || 18550 !map_ptr->ops->map_poke_run) { 18551 verbose(env, "bpf verifier is misconfigured\n"); 18552 return -EINVAL; 18553 } 18554 18555 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18556 if (ret < 0) { 18557 verbose(env, "tracking tail call prog failed\n"); 18558 return ret; 18559 } 18560 } 18561 18562 sort_kfunc_descs_by_imm_off(env->prog); 18563 18564 return 0; 18565 } 18566 18567 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18568 int position, 18569 s32 stack_base, 18570 u32 callback_subprogno, 18571 u32 *cnt) 18572 { 18573 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18574 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18575 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18576 int reg_loop_max = BPF_REG_6; 18577 int reg_loop_cnt = BPF_REG_7; 18578 int reg_loop_ctx = BPF_REG_8; 18579 18580 struct bpf_prog *new_prog; 18581 u32 callback_start; 18582 u32 call_insn_offset; 18583 s32 callback_offset; 18584 18585 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18586 * be careful to modify this code in sync. 18587 */ 18588 struct bpf_insn insn_buf[] = { 18589 /* Return error and jump to the end of the patch if 18590 * expected number of iterations is too big. 18591 */ 18592 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18593 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18594 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18595 /* spill R6, R7, R8 to use these as loop vars */ 18596 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18597 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18598 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18599 /* initialize loop vars */ 18600 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18601 BPF_MOV32_IMM(reg_loop_cnt, 0), 18602 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18603 /* loop header, 18604 * if reg_loop_cnt >= reg_loop_max skip the loop body 18605 */ 18606 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18607 /* callback call, 18608 * correct callback offset would be set after patching 18609 */ 18610 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18611 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18612 BPF_CALL_REL(0), 18613 /* increment loop counter */ 18614 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18615 /* jump to loop header if callback returned 0 */ 18616 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18617 /* return value of bpf_loop, 18618 * set R0 to the number of iterations 18619 */ 18620 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18621 /* restore original values of R6, R7, R8 */ 18622 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18623 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18624 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18625 }; 18626 18627 *cnt = ARRAY_SIZE(insn_buf); 18628 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18629 if (!new_prog) 18630 return new_prog; 18631 18632 /* callback start is known only after patching */ 18633 callback_start = env->subprog_info[callback_subprogno].start; 18634 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18635 call_insn_offset = position + 12; 18636 callback_offset = callback_start - call_insn_offset - 1; 18637 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18638 18639 return new_prog; 18640 } 18641 18642 static bool is_bpf_loop_call(struct bpf_insn *insn) 18643 { 18644 return insn->code == (BPF_JMP | BPF_CALL) && 18645 insn->src_reg == 0 && 18646 insn->imm == BPF_FUNC_loop; 18647 } 18648 18649 /* For all sub-programs in the program (including main) check 18650 * insn_aux_data to see if there are bpf_loop calls that require 18651 * inlining. If such calls are found the calls are replaced with a 18652 * sequence of instructions produced by `inline_bpf_loop` function and 18653 * subprog stack_depth is increased by the size of 3 registers. 18654 * This stack space is used to spill values of the R6, R7, R8. These 18655 * registers are used to store the loop bound, counter and context 18656 * variables. 18657 */ 18658 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18659 { 18660 struct bpf_subprog_info *subprogs = env->subprog_info; 18661 int i, cur_subprog = 0, cnt, delta = 0; 18662 struct bpf_insn *insn = env->prog->insnsi; 18663 int insn_cnt = env->prog->len; 18664 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18665 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18666 u16 stack_depth_extra = 0; 18667 18668 for (i = 0; i < insn_cnt; i++, insn++) { 18669 struct bpf_loop_inline_state *inline_state = 18670 &env->insn_aux_data[i + delta].loop_inline_state; 18671 18672 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18673 struct bpf_prog *new_prog; 18674 18675 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18676 new_prog = inline_bpf_loop(env, 18677 i + delta, 18678 -(stack_depth + stack_depth_extra), 18679 inline_state->callback_subprogno, 18680 &cnt); 18681 if (!new_prog) 18682 return -ENOMEM; 18683 18684 delta += cnt - 1; 18685 env->prog = new_prog; 18686 insn = new_prog->insnsi + i + delta; 18687 } 18688 18689 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18690 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18691 cur_subprog++; 18692 stack_depth = subprogs[cur_subprog].stack_depth; 18693 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18694 stack_depth_extra = 0; 18695 } 18696 } 18697 18698 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18699 18700 return 0; 18701 } 18702 18703 static void free_states(struct bpf_verifier_env *env) 18704 { 18705 struct bpf_verifier_state_list *sl, *sln; 18706 int i; 18707 18708 sl = env->free_list; 18709 while (sl) { 18710 sln = sl->next; 18711 free_verifier_state(&sl->state, false); 18712 kfree(sl); 18713 sl = sln; 18714 } 18715 env->free_list = NULL; 18716 18717 if (!env->explored_states) 18718 return; 18719 18720 for (i = 0; i < state_htab_size(env); i++) { 18721 sl = env->explored_states[i]; 18722 18723 while (sl) { 18724 sln = sl->next; 18725 free_verifier_state(&sl->state, false); 18726 kfree(sl); 18727 sl = sln; 18728 } 18729 env->explored_states[i] = NULL; 18730 } 18731 } 18732 18733 static int do_check_common(struct bpf_verifier_env *env, int subprog) 18734 { 18735 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18736 struct bpf_verifier_state *state; 18737 struct bpf_reg_state *regs; 18738 int ret, i; 18739 18740 env->prev_linfo = NULL; 18741 env->pass_cnt++; 18742 18743 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 18744 if (!state) 18745 return -ENOMEM; 18746 state->curframe = 0; 18747 state->speculative = false; 18748 state->branches = 1; 18749 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 18750 if (!state->frame[0]) { 18751 kfree(state); 18752 return -ENOMEM; 18753 } 18754 env->cur_state = state; 18755 init_func_state(env, state->frame[0], 18756 BPF_MAIN_FUNC /* callsite */, 18757 0 /* frameno */, 18758 subprog); 18759 state->first_insn_idx = env->subprog_info[subprog].start; 18760 state->last_insn_idx = -1; 18761 18762 regs = state->frame[state->curframe]->regs; 18763 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 18764 ret = btf_prepare_func_args(env, subprog, regs); 18765 if (ret) 18766 goto out; 18767 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 18768 if (regs[i].type == PTR_TO_CTX) 18769 mark_reg_known_zero(env, regs, i); 18770 else if (regs[i].type == SCALAR_VALUE) 18771 mark_reg_unknown(env, regs, i); 18772 else if (base_type(regs[i].type) == PTR_TO_MEM) { 18773 const u32 mem_size = regs[i].mem_size; 18774 18775 mark_reg_known_zero(env, regs, i); 18776 regs[i].mem_size = mem_size; 18777 regs[i].id = ++env->id_gen; 18778 } 18779 } 18780 } else { 18781 /* 1st arg to a function */ 18782 regs[BPF_REG_1].type = PTR_TO_CTX; 18783 mark_reg_known_zero(env, regs, BPF_REG_1); 18784 ret = btf_check_subprog_arg_match(env, subprog, regs); 18785 if (ret == -EFAULT) 18786 /* unlikely verifier bug. abort. 18787 * ret == 0 and ret < 0 are sadly acceptable for 18788 * main() function due to backward compatibility. 18789 * Like socket filter program may be written as: 18790 * int bpf_prog(struct pt_regs *ctx) 18791 * and never dereference that ctx in the program. 18792 * 'struct pt_regs' is a type mismatch for socket 18793 * filter that should be using 'struct __sk_buff'. 18794 */ 18795 goto out; 18796 } 18797 18798 ret = do_check(env); 18799 out: 18800 /* check for NULL is necessary, since cur_state can be freed inside 18801 * do_check() under memory pressure. 18802 */ 18803 if (env->cur_state) { 18804 free_verifier_state(env->cur_state, true); 18805 env->cur_state = NULL; 18806 } 18807 while (!pop_stack(env, NULL, NULL, false)); 18808 if (!ret && pop_log) 18809 bpf_vlog_reset(&env->log, 0); 18810 free_states(env); 18811 return ret; 18812 } 18813 18814 /* Verify all global functions in a BPF program one by one based on their BTF. 18815 * All global functions must pass verification. Otherwise the whole program is rejected. 18816 * Consider: 18817 * int bar(int); 18818 * int foo(int f) 18819 * { 18820 * return bar(f); 18821 * } 18822 * int bar(int b) 18823 * { 18824 * ... 18825 * } 18826 * foo() will be verified first for R1=any_scalar_value. During verification it 18827 * will be assumed that bar() already verified successfully and call to bar() 18828 * from foo() will be checked for type match only. Later bar() will be verified 18829 * independently to check that it's safe for R1=any_scalar_value. 18830 */ 18831 static int do_check_subprogs(struct bpf_verifier_env *env) 18832 { 18833 struct bpf_prog_aux *aux = env->prog->aux; 18834 int i, ret; 18835 18836 if (!aux->func_info) 18837 return 0; 18838 18839 for (i = 1; i < env->subprog_cnt; i++) { 18840 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 18841 continue; 18842 env->insn_idx = env->subprog_info[i].start; 18843 WARN_ON_ONCE(env->insn_idx == 0); 18844 ret = do_check_common(env, i); 18845 if (ret) { 18846 return ret; 18847 } else if (env->log.level & BPF_LOG_LEVEL) { 18848 verbose(env, 18849 "Func#%d is safe for any args that match its prototype\n", 18850 i); 18851 } 18852 } 18853 return 0; 18854 } 18855 18856 static int do_check_main(struct bpf_verifier_env *env) 18857 { 18858 int ret; 18859 18860 env->insn_idx = 0; 18861 ret = do_check_common(env, 0); 18862 if (!ret) 18863 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18864 return ret; 18865 } 18866 18867 18868 static void print_verification_stats(struct bpf_verifier_env *env) 18869 { 18870 int i; 18871 18872 if (env->log.level & BPF_LOG_STATS) { 18873 verbose(env, "verification time %lld usec\n", 18874 div_u64(env->verification_time, 1000)); 18875 verbose(env, "stack depth "); 18876 for (i = 0; i < env->subprog_cnt; i++) { 18877 u32 depth = env->subprog_info[i].stack_depth; 18878 18879 verbose(env, "%d", depth); 18880 if (i + 1 < env->subprog_cnt) 18881 verbose(env, "+"); 18882 } 18883 verbose(env, "\n"); 18884 } 18885 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 18886 "total_states %d peak_states %d mark_read %d\n", 18887 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 18888 env->max_states_per_insn, env->total_states, 18889 env->peak_states, env->longest_mark_read_walk); 18890 } 18891 18892 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 18893 { 18894 const struct btf_type *t, *func_proto; 18895 const struct bpf_struct_ops *st_ops; 18896 const struct btf_member *member; 18897 struct bpf_prog *prog = env->prog; 18898 u32 btf_id, member_idx; 18899 const char *mname; 18900 18901 if (!prog->gpl_compatible) { 18902 verbose(env, "struct ops programs must have a GPL compatible license\n"); 18903 return -EINVAL; 18904 } 18905 18906 btf_id = prog->aux->attach_btf_id; 18907 st_ops = bpf_struct_ops_find(btf_id); 18908 if (!st_ops) { 18909 verbose(env, "attach_btf_id %u is not a supported struct\n", 18910 btf_id); 18911 return -ENOTSUPP; 18912 } 18913 18914 t = st_ops->type; 18915 member_idx = prog->expected_attach_type; 18916 if (member_idx >= btf_type_vlen(t)) { 18917 verbose(env, "attach to invalid member idx %u of struct %s\n", 18918 member_idx, st_ops->name); 18919 return -EINVAL; 18920 } 18921 18922 member = &btf_type_member(t)[member_idx]; 18923 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 18924 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 18925 NULL); 18926 if (!func_proto) { 18927 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 18928 mname, member_idx, st_ops->name); 18929 return -EINVAL; 18930 } 18931 18932 if (st_ops->check_member) { 18933 int err = st_ops->check_member(t, member, prog); 18934 18935 if (err) { 18936 verbose(env, "attach to unsupported member %s of struct %s\n", 18937 mname, st_ops->name); 18938 return err; 18939 } 18940 } 18941 18942 prog->aux->attach_func_proto = func_proto; 18943 prog->aux->attach_func_name = mname; 18944 env->ops = st_ops->verifier_ops; 18945 18946 return 0; 18947 } 18948 #define SECURITY_PREFIX "security_" 18949 18950 static int check_attach_modify_return(unsigned long addr, const char *func_name) 18951 { 18952 if (within_error_injection_list(addr) || 18953 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 18954 return 0; 18955 18956 return -EINVAL; 18957 } 18958 18959 /* list of non-sleepable functions that are otherwise on 18960 * ALLOW_ERROR_INJECTION list 18961 */ 18962 BTF_SET_START(btf_non_sleepable_error_inject) 18963 /* Three functions below can be called from sleepable and non-sleepable context. 18964 * Assume non-sleepable from bpf safety point of view. 18965 */ 18966 BTF_ID(func, __filemap_add_folio) 18967 BTF_ID(func, should_fail_alloc_page) 18968 BTF_ID(func, should_failslab) 18969 BTF_SET_END(btf_non_sleepable_error_inject) 18970 18971 static int check_non_sleepable_error_inject(u32 btf_id) 18972 { 18973 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 18974 } 18975 18976 int bpf_check_attach_target(struct bpf_verifier_log *log, 18977 const struct bpf_prog *prog, 18978 const struct bpf_prog *tgt_prog, 18979 u32 btf_id, 18980 struct bpf_attach_target_info *tgt_info) 18981 { 18982 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 18983 const char prefix[] = "btf_trace_"; 18984 int ret = 0, subprog = -1, i; 18985 const struct btf_type *t; 18986 bool conservative = true; 18987 const char *tname; 18988 struct btf *btf; 18989 long addr = 0; 18990 struct module *mod = NULL; 18991 18992 if (!btf_id) { 18993 bpf_log(log, "Tracing programs must provide btf_id\n"); 18994 return -EINVAL; 18995 } 18996 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 18997 if (!btf) { 18998 bpf_log(log, 18999 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19000 return -EINVAL; 19001 } 19002 t = btf_type_by_id(btf, btf_id); 19003 if (!t) { 19004 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19005 return -EINVAL; 19006 } 19007 tname = btf_name_by_offset(btf, t->name_off); 19008 if (!tname) { 19009 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19010 return -EINVAL; 19011 } 19012 if (tgt_prog) { 19013 struct bpf_prog_aux *aux = tgt_prog->aux; 19014 19015 if (bpf_prog_is_dev_bound(prog->aux) && 19016 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19017 bpf_log(log, "Target program bound device mismatch"); 19018 return -EINVAL; 19019 } 19020 19021 for (i = 0; i < aux->func_info_cnt; i++) 19022 if (aux->func_info[i].type_id == btf_id) { 19023 subprog = i; 19024 break; 19025 } 19026 if (subprog == -1) { 19027 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19028 return -EINVAL; 19029 } 19030 conservative = aux->func_info_aux[subprog].unreliable; 19031 if (prog_extension) { 19032 if (conservative) { 19033 bpf_log(log, 19034 "Cannot replace static functions\n"); 19035 return -EINVAL; 19036 } 19037 if (!prog->jit_requested) { 19038 bpf_log(log, 19039 "Extension programs should be JITed\n"); 19040 return -EINVAL; 19041 } 19042 } 19043 if (!tgt_prog->jited) { 19044 bpf_log(log, "Can attach to only JITed progs\n"); 19045 return -EINVAL; 19046 } 19047 if (tgt_prog->type == prog->type) { 19048 /* Cannot fentry/fexit another fentry/fexit program. 19049 * Cannot attach program extension to another extension. 19050 * It's ok to attach fentry/fexit to extension program. 19051 */ 19052 bpf_log(log, "Cannot recursively attach\n"); 19053 return -EINVAL; 19054 } 19055 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19056 prog_extension && 19057 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19058 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19059 /* Program extensions can extend all program types 19060 * except fentry/fexit. The reason is the following. 19061 * The fentry/fexit programs are used for performance 19062 * analysis, stats and can be attached to any program 19063 * type except themselves. When extension program is 19064 * replacing XDP function it is necessary to allow 19065 * performance analysis of all functions. Both original 19066 * XDP program and its program extension. Hence 19067 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19068 * allowed. If extending of fentry/fexit was allowed it 19069 * would be possible to create long call chain 19070 * fentry->extension->fentry->extension beyond 19071 * reasonable stack size. Hence extending fentry is not 19072 * allowed. 19073 */ 19074 bpf_log(log, "Cannot extend fentry/fexit\n"); 19075 return -EINVAL; 19076 } 19077 } else { 19078 if (prog_extension) { 19079 bpf_log(log, "Cannot replace kernel functions\n"); 19080 return -EINVAL; 19081 } 19082 } 19083 19084 switch (prog->expected_attach_type) { 19085 case BPF_TRACE_RAW_TP: 19086 if (tgt_prog) { 19087 bpf_log(log, 19088 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19089 return -EINVAL; 19090 } 19091 if (!btf_type_is_typedef(t)) { 19092 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19093 btf_id); 19094 return -EINVAL; 19095 } 19096 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19097 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19098 btf_id, tname); 19099 return -EINVAL; 19100 } 19101 tname += sizeof(prefix) - 1; 19102 t = btf_type_by_id(btf, t->type); 19103 if (!btf_type_is_ptr(t)) 19104 /* should never happen in valid vmlinux build */ 19105 return -EINVAL; 19106 t = btf_type_by_id(btf, t->type); 19107 if (!btf_type_is_func_proto(t)) 19108 /* should never happen in valid vmlinux build */ 19109 return -EINVAL; 19110 19111 break; 19112 case BPF_TRACE_ITER: 19113 if (!btf_type_is_func(t)) { 19114 bpf_log(log, "attach_btf_id %u is not a function\n", 19115 btf_id); 19116 return -EINVAL; 19117 } 19118 t = btf_type_by_id(btf, t->type); 19119 if (!btf_type_is_func_proto(t)) 19120 return -EINVAL; 19121 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19122 if (ret) 19123 return ret; 19124 break; 19125 default: 19126 if (!prog_extension) 19127 return -EINVAL; 19128 fallthrough; 19129 case BPF_MODIFY_RETURN: 19130 case BPF_LSM_MAC: 19131 case BPF_LSM_CGROUP: 19132 case BPF_TRACE_FENTRY: 19133 case BPF_TRACE_FEXIT: 19134 if (!btf_type_is_func(t)) { 19135 bpf_log(log, "attach_btf_id %u is not a function\n", 19136 btf_id); 19137 return -EINVAL; 19138 } 19139 if (prog_extension && 19140 btf_check_type_match(log, prog, btf, t)) 19141 return -EINVAL; 19142 t = btf_type_by_id(btf, t->type); 19143 if (!btf_type_is_func_proto(t)) 19144 return -EINVAL; 19145 19146 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19147 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19148 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19149 return -EINVAL; 19150 19151 if (tgt_prog && conservative) 19152 t = NULL; 19153 19154 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19155 if (ret < 0) 19156 return ret; 19157 19158 if (tgt_prog) { 19159 if (subprog == 0) 19160 addr = (long) tgt_prog->bpf_func; 19161 else 19162 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19163 } else { 19164 if (btf_is_module(btf)) { 19165 mod = btf_try_get_module(btf); 19166 if (mod) 19167 addr = find_kallsyms_symbol_value(mod, tname); 19168 else 19169 addr = 0; 19170 } else { 19171 addr = kallsyms_lookup_name(tname); 19172 } 19173 if (!addr) { 19174 module_put(mod); 19175 bpf_log(log, 19176 "The address of function %s cannot be found\n", 19177 tname); 19178 return -ENOENT; 19179 } 19180 } 19181 19182 if (prog->aux->sleepable) { 19183 ret = -EINVAL; 19184 switch (prog->type) { 19185 case BPF_PROG_TYPE_TRACING: 19186 19187 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19188 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19189 */ 19190 if (!check_non_sleepable_error_inject(btf_id) && 19191 within_error_injection_list(addr)) 19192 ret = 0; 19193 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19194 * in the fmodret id set with the KF_SLEEPABLE flag. 19195 */ 19196 else { 19197 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19198 prog); 19199 19200 if (flags && (*flags & KF_SLEEPABLE)) 19201 ret = 0; 19202 } 19203 break; 19204 case BPF_PROG_TYPE_LSM: 19205 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19206 * Only some of them are sleepable. 19207 */ 19208 if (bpf_lsm_is_sleepable_hook(btf_id)) 19209 ret = 0; 19210 break; 19211 default: 19212 break; 19213 } 19214 if (ret) { 19215 module_put(mod); 19216 bpf_log(log, "%s is not sleepable\n", tname); 19217 return ret; 19218 } 19219 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19220 if (tgt_prog) { 19221 module_put(mod); 19222 bpf_log(log, "can't modify return codes of BPF programs\n"); 19223 return -EINVAL; 19224 } 19225 ret = -EINVAL; 19226 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19227 !check_attach_modify_return(addr, tname)) 19228 ret = 0; 19229 if (ret) { 19230 module_put(mod); 19231 bpf_log(log, "%s() is not modifiable\n", tname); 19232 return ret; 19233 } 19234 } 19235 19236 break; 19237 } 19238 tgt_info->tgt_addr = addr; 19239 tgt_info->tgt_name = tname; 19240 tgt_info->tgt_type = t; 19241 tgt_info->tgt_mod = mod; 19242 return 0; 19243 } 19244 19245 BTF_SET_START(btf_id_deny) 19246 BTF_ID_UNUSED 19247 #ifdef CONFIG_SMP 19248 BTF_ID(func, migrate_disable) 19249 BTF_ID(func, migrate_enable) 19250 #endif 19251 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19252 BTF_ID(func, rcu_read_unlock_strict) 19253 #endif 19254 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19255 BTF_ID(func, preempt_count_add) 19256 BTF_ID(func, preempt_count_sub) 19257 #endif 19258 #ifdef CONFIG_PREEMPT_RCU 19259 BTF_ID(func, __rcu_read_lock) 19260 BTF_ID(func, __rcu_read_unlock) 19261 #endif 19262 BTF_SET_END(btf_id_deny) 19263 19264 static bool can_be_sleepable(struct bpf_prog *prog) 19265 { 19266 if (prog->type == BPF_PROG_TYPE_TRACING) { 19267 switch (prog->expected_attach_type) { 19268 case BPF_TRACE_FENTRY: 19269 case BPF_TRACE_FEXIT: 19270 case BPF_MODIFY_RETURN: 19271 case BPF_TRACE_ITER: 19272 return true; 19273 default: 19274 return false; 19275 } 19276 } 19277 return prog->type == BPF_PROG_TYPE_LSM || 19278 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19279 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19280 } 19281 19282 static int check_attach_btf_id(struct bpf_verifier_env *env) 19283 { 19284 struct bpf_prog *prog = env->prog; 19285 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19286 struct bpf_attach_target_info tgt_info = {}; 19287 u32 btf_id = prog->aux->attach_btf_id; 19288 struct bpf_trampoline *tr; 19289 int ret; 19290 u64 key; 19291 19292 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19293 if (prog->aux->sleepable) 19294 /* attach_btf_id checked to be zero already */ 19295 return 0; 19296 verbose(env, "Syscall programs can only be sleepable\n"); 19297 return -EINVAL; 19298 } 19299 19300 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19301 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19302 return -EINVAL; 19303 } 19304 19305 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19306 return check_struct_ops_btf_id(env); 19307 19308 if (prog->type != BPF_PROG_TYPE_TRACING && 19309 prog->type != BPF_PROG_TYPE_LSM && 19310 prog->type != BPF_PROG_TYPE_EXT) 19311 return 0; 19312 19313 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19314 if (ret) 19315 return ret; 19316 19317 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19318 /* to make freplace equivalent to their targets, they need to 19319 * inherit env->ops and expected_attach_type for the rest of the 19320 * verification 19321 */ 19322 env->ops = bpf_verifier_ops[tgt_prog->type]; 19323 prog->expected_attach_type = tgt_prog->expected_attach_type; 19324 } 19325 19326 /* store info about the attachment target that will be used later */ 19327 prog->aux->attach_func_proto = tgt_info.tgt_type; 19328 prog->aux->attach_func_name = tgt_info.tgt_name; 19329 prog->aux->mod = tgt_info.tgt_mod; 19330 19331 if (tgt_prog) { 19332 prog->aux->saved_dst_prog_type = tgt_prog->type; 19333 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19334 } 19335 19336 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19337 prog->aux->attach_btf_trace = true; 19338 return 0; 19339 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19340 if (!bpf_iter_prog_supported(prog)) 19341 return -EINVAL; 19342 return 0; 19343 } 19344 19345 if (prog->type == BPF_PROG_TYPE_LSM) { 19346 ret = bpf_lsm_verify_prog(&env->log, prog); 19347 if (ret < 0) 19348 return ret; 19349 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19350 btf_id_set_contains(&btf_id_deny, btf_id)) { 19351 return -EINVAL; 19352 } 19353 19354 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19355 tr = bpf_trampoline_get(key, &tgt_info); 19356 if (!tr) 19357 return -ENOMEM; 19358 19359 prog->aux->dst_trampoline = tr; 19360 return 0; 19361 } 19362 19363 struct btf *bpf_get_btf_vmlinux(void) 19364 { 19365 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19366 mutex_lock(&bpf_verifier_lock); 19367 if (!btf_vmlinux) 19368 btf_vmlinux = btf_parse_vmlinux(); 19369 mutex_unlock(&bpf_verifier_lock); 19370 } 19371 return btf_vmlinux; 19372 } 19373 19374 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19375 { 19376 u64 start_time = ktime_get_ns(); 19377 struct bpf_verifier_env *env; 19378 int i, len, ret = -EINVAL, err; 19379 u32 log_true_size; 19380 bool is_priv; 19381 19382 /* no program is valid */ 19383 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19384 return -EINVAL; 19385 19386 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19387 * allocate/free it every time bpf_check() is called 19388 */ 19389 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19390 if (!env) 19391 return -ENOMEM; 19392 19393 env->bt.env = env; 19394 19395 len = (*prog)->len; 19396 env->insn_aux_data = 19397 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19398 ret = -ENOMEM; 19399 if (!env->insn_aux_data) 19400 goto err_free_env; 19401 for (i = 0; i < len; i++) 19402 env->insn_aux_data[i].orig_idx = i; 19403 env->prog = *prog; 19404 env->ops = bpf_verifier_ops[env->prog->type]; 19405 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19406 is_priv = bpf_capable(); 19407 19408 bpf_get_btf_vmlinux(); 19409 19410 /* grab the mutex to protect few globals used by verifier */ 19411 if (!is_priv) 19412 mutex_lock(&bpf_verifier_lock); 19413 19414 /* user could have requested verbose verifier output 19415 * and supplied buffer to store the verification trace 19416 */ 19417 ret = bpf_vlog_init(&env->log, attr->log_level, 19418 (char __user *) (unsigned long) attr->log_buf, 19419 attr->log_size); 19420 if (ret) 19421 goto err_unlock; 19422 19423 mark_verifier_state_clean(env); 19424 19425 if (IS_ERR(btf_vmlinux)) { 19426 /* Either gcc or pahole or kernel are broken. */ 19427 verbose(env, "in-kernel BTF is malformed\n"); 19428 ret = PTR_ERR(btf_vmlinux); 19429 goto skip_full_check; 19430 } 19431 19432 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19433 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19434 env->strict_alignment = true; 19435 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19436 env->strict_alignment = false; 19437 19438 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19439 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19440 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19441 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19442 env->bpf_capable = bpf_capable(); 19443 19444 if (is_priv) 19445 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19446 19447 env->explored_states = kvcalloc(state_htab_size(env), 19448 sizeof(struct bpf_verifier_state_list *), 19449 GFP_USER); 19450 ret = -ENOMEM; 19451 if (!env->explored_states) 19452 goto skip_full_check; 19453 19454 ret = add_subprog_and_kfunc(env); 19455 if (ret < 0) 19456 goto skip_full_check; 19457 19458 ret = check_subprogs(env); 19459 if (ret < 0) 19460 goto skip_full_check; 19461 19462 ret = check_btf_info(env, attr, uattr); 19463 if (ret < 0) 19464 goto skip_full_check; 19465 19466 ret = check_attach_btf_id(env); 19467 if (ret) 19468 goto skip_full_check; 19469 19470 ret = resolve_pseudo_ldimm64(env); 19471 if (ret < 0) 19472 goto skip_full_check; 19473 19474 if (bpf_prog_is_offloaded(env->prog->aux)) { 19475 ret = bpf_prog_offload_verifier_prep(env->prog); 19476 if (ret) 19477 goto skip_full_check; 19478 } 19479 19480 ret = check_cfg(env); 19481 if (ret < 0) 19482 goto skip_full_check; 19483 19484 ret = do_check_subprogs(env); 19485 ret = ret ?: do_check_main(env); 19486 19487 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19488 ret = bpf_prog_offload_finalize(env); 19489 19490 skip_full_check: 19491 kvfree(env->explored_states); 19492 19493 if (ret == 0) 19494 ret = check_max_stack_depth(env); 19495 19496 /* instruction rewrites happen after this point */ 19497 if (ret == 0) 19498 ret = optimize_bpf_loop(env); 19499 19500 if (is_priv) { 19501 if (ret == 0) 19502 opt_hard_wire_dead_code_branches(env); 19503 if (ret == 0) 19504 ret = opt_remove_dead_code(env); 19505 if (ret == 0) 19506 ret = opt_remove_nops(env); 19507 } else { 19508 if (ret == 0) 19509 sanitize_dead_code(env); 19510 } 19511 19512 if (ret == 0) 19513 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19514 ret = convert_ctx_accesses(env); 19515 19516 if (ret == 0) 19517 ret = do_misc_fixups(env); 19518 19519 /* do 32-bit optimization after insn patching has done so those patched 19520 * insns could be handled correctly. 19521 */ 19522 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19523 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19524 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19525 : false; 19526 } 19527 19528 if (ret == 0) 19529 ret = fixup_call_args(env); 19530 19531 env->verification_time = ktime_get_ns() - start_time; 19532 print_verification_stats(env); 19533 env->prog->aux->verified_insns = env->insn_processed; 19534 19535 /* preserve original error even if log finalization is successful */ 19536 err = bpf_vlog_finalize(&env->log, &log_true_size); 19537 if (err) 19538 ret = err; 19539 19540 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19541 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19542 &log_true_size, sizeof(log_true_size))) { 19543 ret = -EFAULT; 19544 goto err_release_maps; 19545 } 19546 19547 if (ret) 19548 goto err_release_maps; 19549 19550 if (env->used_map_cnt) { 19551 /* if program passed verifier, update used_maps in bpf_prog_info */ 19552 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19553 sizeof(env->used_maps[0]), 19554 GFP_KERNEL); 19555 19556 if (!env->prog->aux->used_maps) { 19557 ret = -ENOMEM; 19558 goto err_release_maps; 19559 } 19560 19561 memcpy(env->prog->aux->used_maps, env->used_maps, 19562 sizeof(env->used_maps[0]) * env->used_map_cnt); 19563 env->prog->aux->used_map_cnt = env->used_map_cnt; 19564 } 19565 if (env->used_btf_cnt) { 19566 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19567 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19568 sizeof(env->used_btfs[0]), 19569 GFP_KERNEL); 19570 if (!env->prog->aux->used_btfs) { 19571 ret = -ENOMEM; 19572 goto err_release_maps; 19573 } 19574 19575 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19576 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19577 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19578 } 19579 if (env->used_map_cnt || env->used_btf_cnt) { 19580 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19581 * bpf_ld_imm64 instructions 19582 */ 19583 convert_pseudo_ld_imm64(env); 19584 } 19585 19586 adjust_btf_func(env); 19587 19588 err_release_maps: 19589 if (!env->prog->aux->used_maps) 19590 /* if we didn't copy map pointers into bpf_prog_info, release 19591 * them now. Otherwise free_used_maps() will release them. 19592 */ 19593 release_maps(env); 19594 if (!env->prog->aux->used_btfs) 19595 release_btfs(env); 19596 19597 /* extension progs temporarily inherit the attach_type of their targets 19598 for verification purposes, so set it back to zero before returning 19599 */ 19600 if (env->prog->type == BPF_PROG_TYPE_EXT) 19601 env->prog->expected_attach_type = 0; 19602 19603 *prog = env->prog; 19604 err_unlock: 19605 if (!is_priv) 19606 mutex_unlock(&bpf_verifier_lock); 19607 vfree(env->insn_aux_data); 19608 err_free_env: 19609 kfree(env); 19610 return ret; 19611 } 19612