1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct btf_field *kptr_field; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool type_is_ptr_alloc_obj(u32 type) 455 { 456 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 457 } 458 459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 460 { 461 struct btf_record *rec = NULL; 462 struct btf_struct_meta *meta; 463 464 if (reg->type == PTR_TO_MAP_VALUE) { 465 rec = reg->map_ptr->record; 466 } else if (type_is_ptr_alloc_obj(reg->type)) { 467 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 468 if (meta) 469 rec = meta->record; 470 } 471 return rec; 472 } 473 474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 475 { 476 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 477 } 478 479 static bool type_is_rdonly_mem(u32 type) 480 { 481 return type & MEM_RDONLY; 482 } 483 484 static bool type_may_be_null(u32 type) 485 { 486 return type & PTR_MAYBE_NULL; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 522 { 523 return func_id == BPF_FUNC_dynptr_data; 524 } 525 526 static bool is_callback_calling_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_for_each_map_elem || 529 func_id == BPF_FUNC_timer_set_callback || 530 func_id == BPF_FUNC_find_vma || 531 func_id == BPF_FUNC_loop || 532 func_id == BPF_FUNC_user_ringbuf_drain; 533 } 534 535 static bool is_storage_get_function(enum bpf_func_id func_id) 536 { 537 return func_id == BPF_FUNC_sk_storage_get || 538 func_id == BPF_FUNC_inode_storage_get || 539 func_id == BPF_FUNC_task_storage_get || 540 func_id == BPF_FUNC_cgrp_storage_get; 541 } 542 543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 544 const struct bpf_map *map) 545 { 546 int ref_obj_uses = 0; 547 548 if (is_ptr_cast_function(func_id)) 549 ref_obj_uses++; 550 if (is_acquire_function(func_id, map)) 551 ref_obj_uses++; 552 if (is_dynptr_ref_function(func_id)) 553 ref_obj_uses++; 554 555 return ref_obj_uses > 1; 556 } 557 558 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 559 { 560 return BPF_CLASS(insn->code) == BPF_STX && 561 BPF_MODE(insn->code) == BPF_ATOMIC && 562 insn->imm == BPF_CMPXCHG; 563 } 564 565 /* string representation of 'enum bpf_reg_type' 566 * 567 * Note that reg_type_str() can not appear more than once in a single verbose() 568 * statement. 569 */ 570 static const char *reg_type_str(struct bpf_verifier_env *env, 571 enum bpf_reg_type type) 572 { 573 char postfix[16] = {0}, prefix[64] = {0}; 574 static const char * const str[] = { 575 [NOT_INIT] = "?", 576 [SCALAR_VALUE] = "scalar", 577 [PTR_TO_CTX] = "ctx", 578 [CONST_PTR_TO_MAP] = "map_ptr", 579 [PTR_TO_MAP_VALUE] = "map_value", 580 [PTR_TO_STACK] = "fp", 581 [PTR_TO_PACKET] = "pkt", 582 [PTR_TO_PACKET_META] = "pkt_meta", 583 [PTR_TO_PACKET_END] = "pkt_end", 584 [PTR_TO_FLOW_KEYS] = "flow_keys", 585 [PTR_TO_SOCKET] = "sock", 586 [PTR_TO_SOCK_COMMON] = "sock_common", 587 [PTR_TO_TCP_SOCK] = "tcp_sock", 588 [PTR_TO_TP_BUFFER] = "tp_buffer", 589 [PTR_TO_XDP_SOCK] = "xdp_sock", 590 [PTR_TO_BTF_ID] = "ptr_", 591 [PTR_TO_MEM] = "mem", 592 [PTR_TO_BUF] = "buf", 593 [PTR_TO_FUNC] = "func", 594 [PTR_TO_MAP_KEY] = "map_key", 595 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 596 }; 597 598 if (type & PTR_MAYBE_NULL) { 599 if (base_type(type) == PTR_TO_BTF_ID) 600 strncpy(postfix, "or_null_", 16); 601 else 602 strncpy(postfix, "_or_null", 16); 603 } 604 605 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 606 type & MEM_RDONLY ? "rdonly_" : "", 607 type & MEM_RINGBUF ? "ringbuf_" : "", 608 type & MEM_USER ? "user_" : "", 609 type & MEM_PERCPU ? "percpu_" : "", 610 type & MEM_RCU ? "rcu_" : "", 611 type & PTR_UNTRUSTED ? "untrusted_" : "", 612 type & PTR_TRUSTED ? "trusted_" : "" 613 ); 614 615 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 616 prefix, str[base_type(type)], postfix); 617 return env->type_str_buf; 618 } 619 620 static char slot_type_char[] = { 621 [STACK_INVALID] = '?', 622 [STACK_SPILL] = 'r', 623 [STACK_MISC] = 'm', 624 [STACK_ZERO] = '0', 625 [STACK_DYNPTR] = 'd', 626 }; 627 628 static void print_liveness(struct bpf_verifier_env *env, 629 enum bpf_reg_liveness live) 630 { 631 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 632 verbose(env, "_"); 633 if (live & REG_LIVE_READ) 634 verbose(env, "r"); 635 if (live & REG_LIVE_WRITTEN) 636 verbose(env, "w"); 637 if (live & REG_LIVE_DONE) 638 verbose(env, "D"); 639 } 640 641 static int get_spi(s32 off) 642 { 643 return (-off - 1) / BPF_REG_SIZE; 644 } 645 646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 647 { 648 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 649 650 /* We need to check that slots between [spi - nr_slots + 1, spi] are 651 * within [0, allocated_stack). 652 * 653 * Please note that the spi grows downwards. For example, a dynptr 654 * takes the size of two stack slots; the first slot will be at 655 * spi and the second slot will be at spi - 1. 656 */ 657 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 658 } 659 660 static struct bpf_func_state *func(struct bpf_verifier_env *env, 661 const struct bpf_reg_state *reg) 662 { 663 struct bpf_verifier_state *cur = env->cur_state; 664 665 return cur->frame[reg->frameno]; 666 } 667 668 static const char *kernel_type_name(const struct btf* btf, u32 id) 669 { 670 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 671 } 672 673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 674 { 675 env->scratched_regs |= 1U << regno; 676 } 677 678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 679 { 680 env->scratched_stack_slots |= 1ULL << spi; 681 } 682 683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 684 { 685 return (env->scratched_regs >> regno) & 1; 686 } 687 688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 689 { 690 return (env->scratched_stack_slots >> regno) & 1; 691 } 692 693 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 694 { 695 return env->scratched_regs || env->scratched_stack_slots; 696 } 697 698 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 699 { 700 env->scratched_regs = 0U; 701 env->scratched_stack_slots = 0ULL; 702 } 703 704 /* Used for printing the entire verifier state. */ 705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 706 { 707 env->scratched_regs = ~0U; 708 env->scratched_stack_slots = ~0ULL; 709 } 710 711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 712 { 713 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 714 case DYNPTR_TYPE_LOCAL: 715 return BPF_DYNPTR_TYPE_LOCAL; 716 case DYNPTR_TYPE_RINGBUF: 717 return BPF_DYNPTR_TYPE_RINGBUF; 718 default: 719 return BPF_DYNPTR_TYPE_INVALID; 720 } 721 } 722 723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 724 { 725 return type == BPF_DYNPTR_TYPE_RINGBUF; 726 } 727 728 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 729 enum bpf_dynptr_type type, 730 bool first_slot); 731 732 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 733 struct bpf_reg_state *reg); 734 735 static void mark_dynptr_stack_regs(struct bpf_reg_state *sreg1, 736 struct bpf_reg_state *sreg2, 737 enum bpf_dynptr_type type) 738 { 739 __mark_dynptr_reg(sreg1, type, true); 740 __mark_dynptr_reg(sreg2, type, false); 741 } 742 743 static void mark_dynptr_cb_reg(struct bpf_reg_state *reg, 744 enum bpf_dynptr_type type) 745 { 746 __mark_dynptr_reg(reg, type, true); 747 } 748 749 750 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 751 enum bpf_arg_type arg_type, int insn_idx) 752 { 753 struct bpf_func_state *state = func(env, reg); 754 enum bpf_dynptr_type type; 755 int spi, i, id; 756 757 spi = get_spi(reg->off); 758 759 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 760 return -EINVAL; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_DYNPTR; 764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 765 } 766 767 type = arg_to_dynptr_type(arg_type); 768 if (type == BPF_DYNPTR_TYPE_INVALID) 769 return -EINVAL; 770 771 mark_dynptr_stack_regs(&state->stack[spi].spilled_ptr, 772 &state->stack[spi - 1].spilled_ptr, type); 773 774 if (dynptr_type_refcounted(type)) { 775 /* The id is used to track proper releasing */ 776 id = acquire_reference_state(env, insn_idx); 777 if (id < 0) 778 return id; 779 780 state->stack[spi].spilled_ptr.ref_obj_id = id; 781 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 782 } 783 784 return 0; 785 } 786 787 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 788 { 789 struct bpf_func_state *state = func(env, reg); 790 int spi, i; 791 792 spi = get_spi(reg->off); 793 794 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 795 return -EINVAL; 796 797 for (i = 0; i < BPF_REG_SIZE; i++) { 798 state->stack[spi].slot_type[i] = STACK_INVALID; 799 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 800 } 801 802 /* Invalidate any slices associated with this dynptr */ 803 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 804 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 805 806 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 807 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 808 return 0; 809 } 810 811 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 812 { 813 struct bpf_func_state *state = func(env, reg); 814 int spi, i; 815 816 if (reg->type == CONST_PTR_TO_DYNPTR) 817 return false; 818 819 spi = get_spi(reg->off); 820 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 821 return true; 822 823 for (i = 0; i < BPF_REG_SIZE; i++) { 824 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 825 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 826 return false; 827 } 828 829 return true; 830 } 831 832 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 833 { 834 struct bpf_func_state *state = func(env, reg); 835 int spi; 836 int i; 837 838 /* This already represents first slot of initialized bpf_dynptr */ 839 if (reg->type == CONST_PTR_TO_DYNPTR) 840 return true; 841 842 spi = get_spi(reg->off); 843 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 844 !state->stack[spi].spilled_ptr.dynptr.first_slot) 845 return false; 846 847 for (i = 0; i < BPF_REG_SIZE; i++) { 848 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 849 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 850 return false; 851 } 852 853 return true; 854 } 855 856 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 857 enum bpf_arg_type arg_type) 858 { 859 struct bpf_func_state *state = func(env, reg); 860 enum bpf_dynptr_type dynptr_type; 861 int spi; 862 863 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 864 if (arg_type == ARG_PTR_TO_DYNPTR) 865 return true; 866 867 dynptr_type = arg_to_dynptr_type(arg_type); 868 if (reg->type == CONST_PTR_TO_DYNPTR) { 869 return reg->dynptr.type == dynptr_type; 870 } else { 871 spi = get_spi(reg->off); 872 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 873 } 874 } 875 876 /* The reg state of a pointer or a bounded scalar was saved when 877 * it was spilled to the stack. 878 */ 879 static bool is_spilled_reg(const struct bpf_stack_state *stack) 880 { 881 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 882 } 883 884 static void scrub_spilled_slot(u8 *stype) 885 { 886 if (*stype != STACK_INVALID) 887 *stype = STACK_MISC; 888 } 889 890 static void print_verifier_state(struct bpf_verifier_env *env, 891 const struct bpf_func_state *state, 892 bool print_all) 893 { 894 const struct bpf_reg_state *reg; 895 enum bpf_reg_type t; 896 int i; 897 898 if (state->frameno) 899 verbose(env, " frame%d:", state->frameno); 900 for (i = 0; i < MAX_BPF_REG; i++) { 901 reg = &state->regs[i]; 902 t = reg->type; 903 if (t == NOT_INIT) 904 continue; 905 if (!print_all && !reg_scratched(env, i)) 906 continue; 907 verbose(env, " R%d", i); 908 print_liveness(env, reg->live); 909 verbose(env, "="); 910 if (t == SCALAR_VALUE && reg->precise) 911 verbose(env, "P"); 912 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 913 tnum_is_const(reg->var_off)) { 914 /* reg->off should be 0 for SCALAR_VALUE */ 915 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 916 verbose(env, "%lld", reg->var_off.value + reg->off); 917 } else { 918 const char *sep = ""; 919 920 verbose(env, "%s", reg_type_str(env, t)); 921 if (base_type(t) == PTR_TO_BTF_ID) 922 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 923 verbose(env, "("); 924 /* 925 * _a stands for append, was shortened to avoid multiline statements below. 926 * This macro is used to output a comma separated list of attributes. 927 */ 928 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 929 930 if (reg->id) 931 verbose_a("id=%d", reg->id); 932 if (reg->ref_obj_id) 933 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 934 if (t != SCALAR_VALUE) 935 verbose_a("off=%d", reg->off); 936 if (type_is_pkt_pointer(t)) 937 verbose_a("r=%d", reg->range); 938 else if (base_type(t) == CONST_PTR_TO_MAP || 939 base_type(t) == PTR_TO_MAP_KEY || 940 base_type(t) == PTR_TO_MAP_VALUE) 941 verbose_a("ks=%d,vs=%d", 942 reg->map_ptr->key_size, 943 reg->map_ptr->value_size); 944 if (tnum_is_const(reg->var_off)) { 945 /* Typically an immediate SCALAR_VALUE, but 946 * could be a pointer whose offset is too big 947 * for reg->off 948 */ 949 verbose_a("imm=%llx", reg->var_off.value); 950 } else { 951 if (reg->smin_value != reg->umin_value && 952 reg->smin_value != S64_MIN) 953 verbose_a("smin=%lld", (long long)reg->smin_value); 954 if (reg->smax_value != reg->umax_value && 955 reg->smax_value != S64_MAX) 956 verbose_a("smax=%lld", (long long)reg->smax_value); 957 if (reg->umin_value != 0) 958 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 959 if (reg->umax_value != U64_MAX) 960 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 961 if (!tnum_is_unknown(reg->var_off)) { 962 char tn_buf[48]; 963 964 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 965 verbose_a("var_off=%s", tn_buf); 966 } 967 if (reg->s32_min_value != reg->smin_value && 968 reg->s32_min_value != S32_MIN) 969 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 970 if (reg->s32_max_value != reg->smax_value && 971 reg->s32_max_value != S32_MAX) 972 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 973 if (reg->u32_min_value != reg->umin_value && 974 reg->u32_min_value != U32_MIN) 975 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 976 if (reg->u32_max_value != reg->umax_value && 977 reg->u32_max_value != U32_MAX) 978 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 979 } 980 #undef verbose_a 981 982 verbose(env, ")"); 983 } 984 } 985 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 986 char types_buf[BPF_REG_SIZE + 1]; 987 bool valid = false; 988 int j; 989 990 for (j = 0; j < BPF_REG_SIZE; j++) { 991 if (state->stack[i].slot_type[j] != STACK_INVALID) 992 valid = true; 993 types_buf[j] = slot_type_char[ 994 state->stack[i].slot_type[j]]; 995 } 996 types_buf[BPF_REG_SIZE] = 0; 997 if (!valid) 998 continue; 999 if (!print_all && !stack_slot_scratched(env, i)) 1000 continue; 1001 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1002 print_liveness(env, state->stack[i].spilled_ptr.live); 1003 if (is_spilled_reg(&state->stack[i])) { 1004 reg = &state->stack[i].spilled_ptr; 1005 t = reg->type; 1006 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1007 if (t == SCALAR_VALUE && reg->precise) 1008 verbose(env, "P"); 1009 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1010 verbose(env, "%lld", reg->var_off.value + reg->off); 1011 } else { 1012 verbose(env, "=%s", types_buf); 1013 } 1014 } 1015 if (state->acquired_refs && state->refs[0].id) { 1016 verbose(env, " refs=%d", state->refs[0].id); 1017 for (i = 1; i < state->acquired_refs; i++) 1018 if (state->refs[i].id) 1019 verbose(env, ",%d", state->refs[i].id); 1020 } 1021 if (state->in_callback_fn) 1022 verbose(env, " cb"); 1023 if (state->in_async_callback_fn) 1024 verbose(env, " async_cb"); 1025 verbose(env, "\n"); 1026 mark_verifier_state_clean(env); 1027 } 1028 1029 static inline u32 vlog_alignment(u32 pos) 1030 { 1031 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1032 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1033 } 1034 1035 static void print_insn_state(struct bpf_verifier_env *env, 1036 const struct bpf_func_state *state) 1037 { 1038 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1039 /* remove new line character */ 1040 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1041 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1042 } else { 1043 verbose(env, "%d:", env->insn_idx); 1044 } 1045 print_verifier_state(env, state, false); 1046 } 1047 1048 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1049 * small to hold src. This is different from krealloc since we don't want to preserve 1050 * the contents of dst. 1051 * 1052 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1053 * not be allocated. 1054 */ 1055 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1056 { 1057 size_t bytes; 1058 1059 if (ZERO_OR_NULL_PTR(src)) 1060 goto out; 1061 1062 if (unlikely(check_mul_overflow(n, size, &bytes))) 1063 return NULL; 1064 1065 if (ksize(dst) < ksize(src)) { 1066 kfree(dst); 1067 dst = kmalloc_track_caller(kmalloc_size_roundup(bytes), flags); 1068 if (!dst) 1069 return NULL; 1070 } 1071 1072 memcpy(dst, src, bytes); 1073 out: 1074 return dst ? dst : ZERO_SIZE_PTR; 1075 } 1076 1077 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1078 * small to hold new_n items. new items are zeroed out if the array grows. 1079 * 1080 * Contrary to krealloc_array, does not free arr if new_n is zero. 1081 */ 1082 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1083 { 1084 size_t alloc_size; 1085 void *new_arr; 1086 1087 if (!new_n || old_n == new_n) 1088 goto out; 1089 1090 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1091 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1092 if (!new_arr) { 1093 kfree(arr); 1094 return NULL; 1095 } 1096 arr = new_arr; 1097 1098 if (new_n > old_n) 1099 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1100 1101 out: 1102 return arr ? arr : ZERO_SIZE_PTR; 1103 } 1104 1105 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1106 { 1107 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1108 sizeof(struct bpf_reference_state), GFP_KERNEL); 1109 if (!dst->refs) 1110 return -ENOMEM; 1111 1112 dst->acquired_refs = src->acquired_refs; 1113 return 0; 1114 } 1115 1116 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1117 { 1118 size_t n = src->allocated_stack / BPF_REG_SIZE; 1119 1120 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1121 GFP_KERNEL); 1122 if (!dst->stack) 1123 return -ENOMEM; 1124 1125 dst->allocated_stack = src->allocated_stack; 1126 return 0; 1127 } 1128 1129 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1130 { 1131 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1132 sizeof(struct bpf_reference_state)); 1133 if (!state->refs) 1134 return -ENOMEM; 1135 1136 state->acquired_refs = n; 1137 return 0; 1138 } 1139 1140 static int grow_stack_state(struct bpf_func_state *state, int size) 1141 { 1142 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1143 1144 if (old_n >= n) 1145 return 0; 1146 1147 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1148 if (!state->stack) 1149 return -ENOMEM; 1150 1151 state->allocated_stack = size; 1152 return 0; 1153 } 1154 1155 /* Acquire a pointer id from the env and update the state->refs to include 1156 * this new pointer reference. 1157 * On success, returns a valid pointer id to associate with the register 1158 * On failure, returns a negative errno. 1159 */ 1160 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1161 { 1162 struct bpf_func_state *state = cur_func(env); 1163 int new_ofs = state->acquired_refs; 1164 int id, err; 1165 1166 err = resize_reference_state(state, state->acquired_refs + 1); 1167 if (err) 1168 return err; 1169 id = ++env->id_gen; 1170 state->refs[new_ofs].id = id; 1171 state->refs[new_ofs].insn_idx = insn_idx; 1172 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1173 1174 return id; 1175 } 1176 1177 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1178 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1179 { 1180 int i, last_idx; 1181 1182 last_idx = state->acquired_refs - 1; 1183 for (i = 0; i < state->acquired_refs; i++) { 1184 if (state->refs[i].id == ptr_id) { 1185 /* Cannot release caller references in callbacks */ 1186 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1187 return -EINVAL; 1188 if (last_idx && i != last_idx) 1189 memcpy(&state->refs[i], &state->refs[last_idx], 1190 sizeof(*state->refs)); 1191 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1192 state->acquired_refs--; 1193 return 0; 1194 } 1195 } 1196 return -EINVAL; 1197 } 1198 1199 static void free_func_state(struct bpf_func_state *state) 1200 { 1201 if (!state) 1202 return; 1203 kfree(state->refs); 1204 kfree(state->stack); 1205 kfree(state); 1206 } 1207 1208 static void clear_jmp_history(struct bpf_verifier_state *state) 1209 { 1210 kfree(state->jmp_history); 1211 state->jmp_history = NULL; 1212 state->jmp_history_cnt = 0; 1213 } 1214 1215 static void free_verifier_state(struct bpf_verifier_state *state, 1216 bool free_self) 1217 { 1218 int i; 1219 1220 for (i = 0; i <= state->curframe; i++) { 1221 free_func_state(state->frame[i]); 1222 state->frame[i] = NULL; 1223 } 1224 clear_jmp_history(state); 1225 if (free_self) 1226 kfree(state); 1227 } 1228 1229 /* copy verifier state from src to dst growing dst stack space 1230 * when necessary to accommodate larger src stack 1231 */ 1232 static int copy_func_state(struct bpf_func_state *dst, 1233 const struct bpf_func_state *src) 1234 { 1235 int err; 1236 1237 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1238 err = copy_reference_state(dst, src); 1239 if (err) 1240 return err; 1241 return copy_stack_state(dst, src); 1242 } 1243 1244 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1245 const struct bpf_verifier_state *src) 1246 { 1247 struct bpf_func_state *dst; 1248 int i, err; 1249 1250 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1251 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1252 GFP_USER); 1253 if (!dst_state->jmp_history) 1254 return -ENOMEM; 1255 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1256 1257 /* if dst has more stack frames then src frame, free them */ 1258 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1259 free_func_state(dst_state->frame[i]); 1260 dst_state->frame[i] = NULL; 1261 } 1262 dst_state->speculative = src->speculative; 1263 dst_state->active_rcu_lock = src->active_rcu_lock; 1264 dst_state->curframe = src->curframe; 1265 dst_state->active_lock.ptr = src->active_lock.ptr; 1266 dst_state->active_lock.id = src->active_lock.id; 1267 dst_state->branches = src->branches; 1268 dst_state->parent = src->parent; 1269 dst_state->first_insn_idx = src->first_insn_idx; 1270 dst_state->last_insn_idx = src->last_insn_idx; 1271 for (i = 0; i <= src->curframe; i++) { 1272 dst = dst_state->frame[i]; 1273 if (!dst) { 1274 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1275 if (!dst) 1276 return -ENOMEM; 1277 dst_state->frame[i] = dst; 1278 } 1279 err = copy_func_state(dst, src->frame[i]); 1280 if (err) 1281 return err; 1282 } 1283 return 0; 1284 } 1285 1286 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1287 { 1288 while (st) { 1289 u32 br = --st->branches; 1290 1291 /* WARN_ON(br > 1) technically makes sense here, 1292 * but see comment in push_stack(), hence: 1293 */ 1294 WARN_ONCE((int)br < 0, 1295 "BUG update_branch_counts:branches_to_explore=%d\n", 1296 br); 1297 if (br) 1298 break; 1299 st = st->parent; 1300 } 1301 } 1302 1303 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1304 int *insn_idx, bool pop_log) 1305 { 1306 struct bpf_verifier_state *cur = env->cur_state; 1307 struct bpf_verifier_stack_elem *elem, *head = env->head; 1308 int err; 1309 1310 if (env->head == NULL) 1311 return -ENOENT; 1312 1313 if (cur) { 1314 err = copy_verifier_state(cur, &head->st); 1315 if (err) 1316 return err; 1317 } 1318 if (pop_log) 1319 bpf_vlog_reset(&env->log, head->log_pos); 1320 if (insn_idx) 1321 *insn_idx = head->insn_idx; 1322 if (prev_insn_idx) 1323 *prev_insn_idx = head->prev_insn_idx; 1324 elem = head->next; 1325 free_verifier_state(&head->st, false); 1326 kfree(head); 1327 env->head = elem; 1328 env->stack_size--; 1329 return 0; 1330 } 1331 1332 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1333 int insn_idx, int prev_insn_idx, 1334 bool speculative) 1335 { 1336 struct bpf_verifier_state *cur = env->cur_state; 1337 struct bpf_verifier_stack_elem *elem; 1338 int err; 1339 1340 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1341 if (!elem) 1342 goto err; 1343 1344 elem->insn_idx = insn_idx; 1345 elem->prev_insn_idx = prev_insn_idx; 1346 elem->next = env->head; 1347 elem->log_pos = env->log.len_used; 1348 env->head = elem; 1349 env->stack_size++; 1350 err = copy_verifier_state(&elem->st, cur); 1351 if (err) 1352 goto err; 1353 elem->st.speculative |= speculative; 1354 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1355 verbose(env, "The sequence of %d jumps is too complex.\n", 1356 env->stack_size); 1357 goto err; 1358 } 1359 if (elem->st.parent) { 1360 ++elem->st.parent->branches; 1361 /* WARN_ON(branches > 2) technically makes sense here, 1362 * but 1363 * 1. speculative states will bump 'branches' for non-branch 1364 * instructions 1365 * 2. is_state_visited() heuristics may decide not to create 1366 * a new state for a sequence of branches and all such current 1367 * and cloned states will be pointing to a single parent state 1368 * which might have large 'branches' count. 1369 */ 1370 } 1371 return &elem->st; 1372 err: 1373 free_verifier_state(env->cur_state, true); 1374 env->cur_state = NULL; 1375 /* pop all elements and return */ 1376 while (!pop_stack(env, NULL, NULL, false)); 1377 return NULL; 1378 } 1379 1380 #define CALLER_SAVED_REGS 6 1381 static const int caller_saved[CALLER_SAVED_REGS] = { 1382 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1383 }; 1384 1385 /* This helper doesn't clear reg->id */ 1386 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1387 { 1388 reg->var_off = tnum_const(imm); 1389 reg->smin_value = (s64)imm; 1390 reg->smax_value = (s64)imm; 1391 reg->umin_value = imm; 1392 reg->umax_value = imm; 1393 1394 reg->s32_min_value = (s32)imm; 1395 reg->s32_max_value = (s32)imm; 1396 reg->u32_min_value = (u32)imm; 1397 reg->u32_max_value = (u32)imm; 1398 } 1399 1400 /* Mark the unknown part of a register (variable offset or scalar value) as 1401 * known to have the value @imm. 1402 */ 1403 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1404 { 1405 /* Clear id, off, and union(map_ptr, range) */ 1406 memset(((u8 *)reg) + sizeof(reg->type), 0, 1407 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1408 ___mark_reg_known(reg, imm); 1409 } 1410 1411 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1412 { 1413 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1414 reg->s32_min_value = (s32)imm; 1415 reg->s32_max_value = (s32)imm; 1416 reg->u32_min_value = (u32)imm; 1417 reg->u32_max_value = (u32)imm; 1418 } 1419 1420 /* Mark the 'variable offset' part of a register as zero. This should be 1421 * used only on registers holding a pointer type. 1422 */ 1423 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1424 { 1425 __mark_reg_known(reg, 0); 1426 } 1427 1428 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1429 { 1430 __mark_reg_known(reg, 0); 1431 reg->type = SCALAR_VALUE; 1432 } 1433 1434 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1435 struct bpf_reg_state *regs, u32 regno) 1436 { 1437 if (WARN_ON(regno >= MAX_BPF_REG)) { 1438 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1439 /* Something bad happened, let's kill all regs */ 1440 for (regno = 0; regno < MAX_BPF_REG; regno++) 1441 __mark_reg_not_init(env, regs + regno); 1442 return; 1443 } 1444 __mark_reg_known_zero(regs + regno); 1445 } 1446 1447 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1448 bool first_slot) 1449 { 1450 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1451 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1452 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1453 */ 1454 __mark_reg_known_zero(reg); 1455 reg->type = CONST_PTR_TO_DYNPTR; 1456 reg->dynptr.type = type; 1457 reg->dynptr.first_slot = first_slot; 1458 } 1459 1460 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1461 { 1462 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1463 const struct bpf_map *map = reg->map_ptr; 1464 1465 if (map->inner_map_meta) { 1466 reg->type = CONST_PTR_TO_MAP; 1467 reg->map_ptr = map->inner_map_meta; 1468 /* transfer reg's id which is unique for every map_lookup_elem 1469 * as UID of the inner map. 1470 */ 1471 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1472 reg->map_uid = reg->id; 1473 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1474 reg->type = PTR_TO_XDP_SOCK; 1475 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1476 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1477 reg->type = PTR_TO_SOCKET; 1478 } else { 1479 reg->type = PTR_TO_MAP_VALUE; 1480 } 1481 return; 1482 } 1483 1484 reg->type &= ~PTR_MAYBE_NULL; 1485 } 1486 1487 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1488 { 1489 return type_is_pkt_pointer(reg->type); 1490 } 1491 1492 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1493 { 1494 return reg_is_pkt_pointer(reg) || 1495 reg->type == PTR_TO_PACKET_END; 1496 } 1497 1498 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1499 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1500 enum bpf_reg_type which) 1501 { 1502 /* The register can already have a range from prior markings. 1503 * This is fine as long as it hasn't been advanced from its 1504 * origin. 1505 */ 1506 return reg->type == which && 1507 reg->id == 0 && 1508 reg->off == 0 && 1509 tnum_equals_const(reg->var_off, 0); 1510 } 1511 1512 /* Reset the min/max bounds of a register */ 1513 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1514 { 1515 reg->smin_value = S64_MIN; 1516 reg->smax_value = S64_MAX; 1517 reg->umin_value = 0; 1518 reg->umax_value = U64_MAX; 1519 1520 reg->s32_min_value = S32_MIN; 1521 reg->s32_max_value = S32_MAX; 1522 reg->u32_min_value = 0; 1523 reg->u32_max_value = U32_MAX; 1524 } 1525 1526 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1527 { 1528 reg->smin_value = S64_MIN; 1529 reg->smax_value = S64_MAX; 1530 reg->umin_value = 0; 1531 reg->umax_value = U64_MAX; 1532 } 1533 1534 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1535 { 1536 reg->s32_min_value = S32_MIN; 1537 reg->s32_max_value = S32_MAX; 1538 reg->u32_min_value = 0; 1539 reg->u32_max_value = U32_MAX; 1540 } 1541 1542 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1543 { 1544 struct tnum var32_off = tnum_subreg(reg->var_off); 1545 1546 /* min signed is max(sign bit) | min(other bits) */ 1547 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1548 var32_off.value | (var32_off.mask & S32_MIN)); 1549 /* max signed is min(sign bit) | max(other bits) */ 1550 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1551 var32_off.value | (var32_off.mask & S32_MAX)); 1552 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1553 reg->u32_max_value = min(reg->u32_max_value, 1554 (u32)(var32_off.value | var32_off.mask)); 1555 } 1556 1557 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1558 { 1559 /* min signed is max(sign bit) | min(other bits) */ 1560 reg->smin_value = max_t(s64, reg->smin_value, 1561 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1562 /* max signed is min(sign bit) | max(other bits) */ 1563 reg->smax_value = min_t(s64, reg->smax_value, 1564 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1565 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1566 reg->umax_value = min(reg->umax_value, 1567 reg->var_off.value | reg->var_off.mask); 1568 } 1569 1570 static void __update_reg_bounds(struct bpf_reg_state *reg) 1571 { 1572 __update_reg32_bounds(reg); 1573 __update_reg64_bounds(reg); 1574 } 1575 1576 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1577 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1578 { 1579 /* Learn sign from signed bounds. 1580 * If we cannot cross the sign boundary, then signed and unsigned bounds 1581 * are the same, so combine. This works even in the negative case, e.g. 1582 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1583 */ 1584 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1585 reg->s32_min_value = reg->u32_min_value = 1586 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1587 reg->s32_max_value = reg->u32_max_value = 1588 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1589 return; 1590 } 1591 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1592 * boundary, so we must be careful. 1593 */ 1594 if ((s32)reg->u32_max_value >= 0) { 1595 /* Positive. We can't learn anything from the smin, but smax 1596 * is positive, hence safe. 1597 */ 1598 reg->s32_min_value = reg->u32_min_value; 1599 reg->s32_max_value = reg->u32_max_value = 1600 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1601 } else if ((s32)reg->u32_min_value < 0) { 1602 /* Negative. We can't learn anything from the smax, but smin 1603 * is negative, hence safe. 1604 */ 1605 reg->s32_min_value = reg->u32_min_value = 1606 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1607 reg->s32_max_value = reg->u32_max_value; 1608 } 1609 } 1610 1611 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1612 { 1613 /* Learn sign from signed bounds. 1614 * If we cannot cross the sign boundary, then signed and unsigned bounds 1615 * are the same, so combine. This works even in the negative case, e.g. 1616 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1617 */ 1618 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1619 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1620 reg->umin_value); 1621 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1622 reg->umax_value); 1623 return; 1624 } 1625 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1626 * boundary, so we must be careful. 1627 */ 1628 if ((s64)reg->umax_value >= 0) { 1629 /* Positive. We can't learn anything from the smin, but smax 1630 * is positive, hence safe. 1631 */ 1632 reg->smin_value = reg->umin_value; 1633 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1634 reg->umax_value); 1635 } else if ((s64)reg->umin_value < 0) { 1636 /* Negative. We can't learn anything from the smax, but smin 1637 * is negative, hence safe. 1638 */ 1639 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1640 reg->umin_value); 1641 reg->smax_value = reg->umax_value; 1642 } 1643 } 1644 1645 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1646 { 1647 __reg32_deduce_bounds(reg); 1648 __reg64_deduce_bounds(reg); 1649 } 1650 1651 /* Attempts to improve var_off based on unsigned min/max information */ 1652 static void __reg_bound_offset(struct bpf_reg_state *reg) 1653 { 1654 struct tnum var64_off = tnum_intersect(reg->var_off, 1655 tnum_range(reg->umin_value, 1656 reg->umax_value)); 1657 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1658 tnum_range(reg->u32_min_value, 1659 reg->u32_max_value)); 1660 1661 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1662 } 1663 1664 static void reg_bounds_sync(struct bpf_reg_state *reg) 1665 { 1666 /* We might have learned new bounds from the var_off. */ 1667 __update_reg_bounds(reg); 1668 /* We might have learned something about the sign bit. */ 1669 __reg_deduce_bounds(reg); 1670 /* We might have learned some bits from the bounds. */ 1671 __reg_bound_offset(reg); 1672 /* Intersecting with the old var_off might have improved our bounds 1673 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1674 * then new var_off is (0; 0x7f...fc) which improves our umax. 1675 */ 1676 __update_reg_bounds(reg); 1677 } 1678 1679 static bool __reg32_bound_s64(s32 a) 1680 { 1681 return a >= 0 && a <= S32_MAX; 1682 } 1683 1684 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1685 { 1686 reg->umin_value = reg->u32_min_value; 1687 reg->umax_value = reg->u32_max_value; 1688 1689 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1690 * be positive otherwise set to worse case bounds and refine later 1691 * from tnum. 1692 */ 1693 if (__reg32_bound_s64(reg->s32_min_value) && 1694 __reg32_bound_s64(reg->s32_max_value)) { 1695 reg->smin_value = reg->s32_min_value; 1696 reg->smax_value = reg->s32_max_value; 1697 } else { 1698 reg->smin_value = 0; 1699 reg->smax_value = U32_MAX; 1700 } 1701 } 1702 1703 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1704 { 1705 /* special case when 64-bit register has upper 32-bit register 1706 * zeroed. Typically happens after zext or <<32, >>32 sequence 1707 * allowing us to use 32-bit bounds directly, 1708 */ 1709 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1710 __reg_assign_32_into_64(reg); 1711 } else { 1712 /* Otherwise the best we can do is push lower 32bit known and 1713 * unknown bits into register (var_off set from jmp logic) 1714 * then learn as much as possible from the 64-bit tnum 1715 * known and unknown bits. The previous smin/smax bounds are 1716 * invalid here because of jmp32 compare so mark them unknown 1717 * so they do not impact tnum bounds calculation. 1718 */ 1719 __mark_reg64_unbounded(reg); 1720 } 1721 reg_bounds_sync(reg); 1722 } 1723 1724 static bool __reg64_bound_s32(s64 a) 1725 { 1726 return a >= S32_MIN && a <= S32_MAX; 1727 } 1728 1729 static bool __reg64_bound_u32(u64 a) 1730 { 1731 return a >= U32_MIN && a <= U32_MAX; 1732 } 1733 1734 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1735 { 1736 __mark_reg32_unbounded(reg); 1737 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1738 reg->s32_min_value = (s32)reg->smin_value; 1739 reg->s32_max_value = (s32)reg->smax_value; 1740 } 1741 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1742 reg->u32_min_value = (u32)reg->umin_value; 1743 reg->u32_max_value = (u32)reg->umax_value; 1744 } 1745 reg_bounds_sync(reg); 1746 } 1747 1748 /* Mark a register as having a completely unknown (scalar) value. */ 1749 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1750 struct bpf_reg_state *reg) 1751 { 1752 /* 1753 * Clear type, id, off, and union(map_ptr, range) and 1754 * padding between 'type' and union 1755 */ 1756 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1757 reg->type = SCALAR_VALUE; 1758 reg->var_off = tnum_unknown; 1759 reg->frameno = 0; 1760 reg->precise = !env->bpf_capable; 1761 __mark_reg_unbounded(reg); 1762 } 1763 1764 static void mark_reg_unknown(struct bpf_verifier_env *env, 1765 struct bpf_reg_state *regs, u32 regno) 1766 { 1767 if (WARN_ON(regno >= MAX_BPF_REG)) { 1768 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1769 /* Something bad happened, let's kill all regs except FP */ 1770 for (regno = 0; regno < BPF_REG_FP; regno++) 1771 __mark_reg_not_init(env, regs + regno); 1772 return; 1773 } 1774 __mark_reg_unknown(env, regs + regno); 1775 } 1776 1777 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1778 struct bpf_reg_state *reg) 1779 { 1780 __mark_reg_unknown(env, reg); 1781 reg->type = NOT_INIT; 1782 } 1783 1784 static void mark_reg_not_init(struct bpf_verifier_env *env, 1785 struct bpf_reg_state *regs, u32 regno) 1786 { 1787 if (WARN_ON(regno >= MAX_BPF_REG)) { 1788 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1789 /* Something bad happened, let's kill all regs except FP */ 1790 for (regno = 0; regno < BPF_REG_FP; regno++) 1791 __mark_reg_not_init(env, regs + regno); 1792 return; 1793 } 1794 __mark_reg_not_init(env, regs + regno); 1795 } 1796 1797 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1798 struct bpf_reg_state *regs, u32 regno, 1799 enum bpf_reg_type reg_type, 1800 struct btf *btf, u32 btf_id, 1801 enum bpf_type_flag flag) 1802 { 1803 if (reg_type == SCALAR_VALUE) { 1804 mark_reg_unknown(env, regs, regno); 1805 return; 1806 } 1807 mark_reg_known_zero(env, regs, regno); 1808 regs[regno].type = PTR_TO_BTF_ID | flag; 1809 regs[regno].btf = btf; 1810 regs[regno].btf_id = btf_id; 1811 } 1812 1813 #define DEF_NOT_SUBREG (0) 1814 static void init_reg_state(struct bpf_verifier_env *env, 1815 struct bpf_func_state *state) 1816 { 1817 struct bpf_reg_state *regs = state->regs; 1818 int i; 1819 1820 for (i = 0; i < MAX_BPF_REG; i++) { 1821 mark_reg_not_init(env, regs, i); 1822 regs[i].live = REG_LIVE_NONE; 1823 regs[i].parent = NULL; 1824 regs[i].subreg_def = DEF_NOT_SUBREG; 1825 } 1826 1827 /* frame pointer */ 1828 regs[BPF_REG_FP].type = PTR_TO_STACK; 1829 mark_reg_known_zero(env, regs, BPF_REG_FP); 1830 regs[BPF_REG_FP].frameno = state->frameno; 1831 } 1832 1833 #define BPF_MAIN_FUNC (-1) 1834 static void init_func_state(struct bpf_verifier_env *env, 1835 struct bpf_func_state *state, 1836 int callsite, int frameno, int subprogno) 1837 { 1838 state->callsite = callsite; 1839 state->frameno = frameno; 1840 state->subprogno = subprogno; 1841 state->callback_ret_range = tnum_range(0, 0); 1842 init_reg_state(env, state); 1843 mark_verifier_state_scratched(env); 1844 } 1845 1846 /* Similar to push_stack(), but for async callbacks */ 1847 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1848 int insn_idx, int prev_insn_idx, 1849 int subprog) 1850 { 1851 struct bpf_verifier_stack_elem *elem; 1852 struct bpf_func_state *frame; 1853 1854 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1855 if (!elem) 1856 goto err; 1857 1858 elem->insn_idx = insn_idx; 1859 elem->prev_insn_idx = prev_insn_idx; 1860 elem->next = env->head; 1861 elem->log_pos = env->log.len_used; 1862 env->head = elem; 1863 env->stack_size++; 1864 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1865 verbose(env, 1866 "The sequence of %d jumps is too complex for async cb.\n", 1867 env->stack_size); 1868 goto err; 1869 } 1870 /* Unlike push_stack() do not copy_verifier_state(). 1871 * The caller state doesn't matter. 1872 * This is async callback. It starts in a fresh stack. 1873 * Initialize it similar to do_check_common(). 1874 */ 1875 elem->st.branches = 1; 1876 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1877 if (!frame) 1878 goto err; 1879 init_func_state(env, frame, 1880 BPF_MAIN_FUNC /* callsite */, 1881 0 /* frameno within this callchain */, 1882 subprog /* subprog number within this prog */); 1883 elem->st.frame[0] = frame; 1884 return &elem->st; 1885 err: 1886 free_verifier_state(env->cur_state, true); 1887 env->cur_state = NULL; 1888 /* pop all elements and return */ 1889 while (!pop_stack(env, NULL, NULL, false)); 1890 return NULL; 1891 } 1892 1893 1894 enum reg_arg_type { 1895 SRC_OP, /* register is used as source operand */ 1896 DST_OP, /* register is used as destination operand */ 1897 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1898 }; 1899 1900 static int cmp_subprogs(const void *a, const void *b) 1901 { 1902 return ((struct bpf_subprog_info *)a)->start - 1903 ((struct bpf_subprog_info *)b)->start; 1904 } 1905 1906 static int find_subprog(struct bpf_verifier_env *env, int off) 1907 { 1908 struct bpf_subprog_info *p; 1909 1910 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1911 sizeof(env->subprog_info[0]), cmp_subprogs); 1912 if (!p) 1913 return -ENOENT; 1914 return p - env->subprog_info; 1915 1916 } 1917 1918 static int add_subprog(struct bpf_verifier_env *env, int off) 1919 { 1920 int insn_cnt = env->prog->len; 1921 int ret; 1922 1923 if (off >= insn_cnt || off < 0) { 1924 verbose(env, "call to invalid destination\n"); 1925 return -EINVAL; 1926 } 1927 ret = find_subprog(env, off); 1928 if (ret >= 0) 1929 return ret; 1930 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1931 verbose(env, "too many subprograms\n"); 1932 return -E2BIG; 1933 } 1934 /* determine subprog starts. The end is one before the next starts */ 1935 env->subprog_info[env->subprog_cnt++].start = off; 1936 sort(env->subprog_info, env->subprog_cnt, 1937 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1938 return env->subprog_cnt - 1; 1939 } 1940 1941 #define MAX_KFUNC_DESCS 256 1942 #define MAX_KFUNC_BTFS 256 1943 1944 struct bpf_kfunc_desc { 1945 struct btf_func_model func_model; 1946 u32 func_id; 1947 s32 imm; 1948 u16 offset; 1949 }; 1950 1951 struct bpf_kfunc_btf { 1952 struct btf *btf; 1953 struct module *module; 1954 u16 offset; 1955 }; 1956 1957 struct bpf_kfunc_desc_tab { 1958 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1959 u32 nr_descs; 1960 }; 1961 1962 struct bpf_kfunc_btf_tab { 1963 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1964 u32 nr_descs; 1965 }; 1966 1967 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1968 { 1969 const struct bpf_kfunc_desc *d0 = a; 1970 const struct bpf_kfunc_desc *d1 = b; 1971 1972 /* func_id is not greater than BTF_MAX_TYPE */ 1973 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1974 } 1975 1976 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1977 { 1978 const struct bpf_kfunc_btf *d0 = a; 1979 const struct bpf_kfunc_btf *d1 = b; 1980 1981 return d0->offset - d1->offset; 1982 } 1983 1984 static const struct bpf_kfunc_desc * 1985 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1986 { 1987 struct bpf_kfunc_desc desc = { 1988 .func_id = func_id, 1989 .offset = offset, 1990 }; 1991 struct bpf_kfunc_desc_tab *tab; 1992 1993 tab = prog->aux->kfunc_tab; 1994 return bsearch(&desc, tab->descs, tab->nr_descs, 1995 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1996 } 1997 1998 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1999 s16 offset) 2000 { 2001 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2002 struct bpf_kfunc_btf_tab *tab; 2003 struct bpf_kfunc_btf *b; 2004 struct module *mod; 2005 struct btf *btf; 2006 int btf_fd; 2007 2008 tab = env->prog->aux->kfunc_btf_tab; 2009 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2010 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2011 if (!b) { 2012 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2013 verbose(env, "too many different module BTFs\n"); 2014 return ERR_PTR(-E2BIG); 2015 } 2016 2017 if (bpfptr_is_null(env->fd_array)) { 2018 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2019 return ERR_PTR(-EPROTO); 2020 } 2021 2022 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2023 offset * sizeof(btf_fd), 2024 sizeof(btf_fd))) 2025 return ERR_PTR(-EFAULT); 2026 2027 btf = btf_get_by_fd(btf_fd); 2028 if (IS_ERR(btf)) { 2029 verbose(env, "invalid module BTF fd specified\n"); 2030 return btf; 2031 } 2032 2033 if (!btf_is_module(btf)) { 2034 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2035 btf_put(btf); 2036 return ERR_PTR(-EINVAL); 2037 } 2038 2039 mod = btf_try_get_module(btf); 2040 if (!mod) { 2041 btf_put(btf); 2042 return ERR_PTR(-ENXIO); 2043 } 2044 2045 b = &tab->descs[tab->nr_descs++]; 2046 b->btf = btf; 2047 b->module = mod; 2048 b->offset = offset; 2049 2050 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2051 kfunc_btf_cmp_by_off, NULL); 2052 } 2053 return b->btf; 2054 } 2055 2056 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2057 { 2058 if (!tab) 2059 return; 2060 2061 while (tab->nr_descs--) { 2062 module_put(tab->descs[tab->nr_descs].module); 2063 btf_put(tab->descs[tab->nr_descs].btf); 2064 } 2065 kfree(tab); 2066 } 2067 2068 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2069 { 2070 if (offset) { 2071 if (offset < 0) { 2072 /* In the future, this can be allowed to increase limit 2073 * of fd index into fd_array, interpreted as u16. 2074 */ 2075 verbose(env, "negative offset disallowed for kernel module function call\n"); 2076 return ERR_PTR(-EINVAL); 2077 } 2078 2079 return __find_kfunc_desc_btf(env, offset); 2080 } 2081 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2082 } 2083 2084 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2085 { 2086 const struct btf_type *func, *func_proto; 2087 struct bpf_kfunc_btf_tab *btf_tab; 2088 struct bpf_kfunc_desc_tab *tab; 2089 struct bpf_prog_aux *prog_aux; 2090 struct bpf_kfunc_desc *desc; 2091 const char *func_name; 2092 struct btf *desc_btf; 2093 unsigned long call_imm; 2094 unsigned long addr; 2095 int err; 2096 2097 prog_aux = env->prog->aux; 2098 tab = prog_aux->kfunc_tab; 2099 btf_tab = prog_aux->kfunc_btf_tab; 2100 if (!tab) { 2101 if (!btf_vmlinux) { 2102 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2103 return -ENOTSUPP; 2104 } 2105 2106 if (!env->prog->jit_requested) { 2107 verbose(env, "JIT is required for calling kernel function\n"); 2108 return -ENOTSUPP; 2109 } 2110 2111 if (!bpf_jit_supports_kfunc_call()) { 2112 verbose(env, "JIT does not support calling kernel function\n"); 2113 return -ENOTSUPP; 2114 } 2115 2116 if (!env->prog->gpl_compatible) { 2117 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2118 return -EINVAL; 2119 } 2120 2121 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2122 if (!tab) 2123 return -ENOMEM; 2124 prog_aux->kfunc_tab = tab; 2125 } 2126 2127 /* func_id == 0 is always invalid, but instead of returning an error, be 2128 * conservative and wait until the code elimination pass before returning 2129 * error, so that invalid calls that get pruned out can be in BPF programs 2130 * loaded from userspace. It is also required that offset be untouched 2131 * for such calls. 2132 */ 2133 if (!func_id && !offset) 2134 return 0; 2135 2136 if (!btf_tab && offset) { 2137 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2138 if (!btf_tab) 2139 return -ENOMEM; 2140 prog_aux->kfunc_btf_tab = btf_tab; 2141 } 2142 2143 desc_btf = find_kfunc_desc_btf(env, offset); 2144 if (IS_ERR(desc_btf)) { 2145 verbose(env, "failed to find BTF for kernel function\n"); 2146 return PTR_ERR(desc_btf); 2147 } 2148 2149 if (find_kfunc_desc(env->prog, func_id, offset)) 2150 return 0; 2151 2152 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2153 verbose(env, "too many different kernel function calls\n"); 2154 return -E2BIG; 2155 } 2156 2157 func = btf_type_by_id(desc_btf, func_id); 2158 if (!func || !btf_type_is_func(func)) { 2159 verbose(env, "kernel btf_id %u is not a function\n", 2160 func_id); 2161 return -EINVAL; 2162 } 2163 func_proto = btf_type_by_id(desc_btf, func->type); 2164 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2165 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2166 func_id); 2167 return -EINVAL; 2168 } 2169 2170 func_name = btf_name_by_offset(desc_btf, func->name_off); 2171 addr = kallsyms_lookup_name(func_name); 2172 if (!addr) { 2173 verbose(env, "cannot find address for kernel function %s\n", 2174 func_name); 2175 return -EINVAL; 2176 } 2177 2178 call_imm = BPF_CALL_IMM(addr); 2179 /* Check whether or not the relative offset overflows desc->imm */ 2180 if ((unsigned long)(s32)call_imm != call_imm) { 2181 verbose(env, "address of kernel function %s is out of range\n", 2182 func_name); 2183 return -EINVAL; 2184 } 2185 2186 desc = &tab->descs[tab->nr_descs++]; 2187 desc->func_id = func_id; 2188 desc->imm = call_imm; 2189 desc->offset = offset; 2190 err = btf_distill_func_proto(&env->log, desc_btf, 2191 func_proto, func_name, 2192 &desc->func_model); 2193 if (!err) 2194 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2195 kfunc_desc_cmp_by_id_off, NULL); 2196 return err; 2197 } 2198 2199 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2200 { 2201 const struct bpf_kfunc_desc *d0 = a; 2202 const struct bpf_kfunc_desc *d1 = b; 2203 2204 if (d0->imm > d1->imm) 2205 return 1; 2206 else if (d0->imm < d1->imm) 2207 return -1; 2208 return 0; 2209 } 2210 2211 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2212 { 2213 struct bpf_kfunc_desc_tab *tab; 2214 2215 tab = prog->aux->kfunc_tab; 2216 if (!tab) 2217 return; 2218 2219 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2220 kfunc_desc_cmp_by_imm, NULL); 2221 } 2222 2223 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2224 { 2225 return !!prog->aux->kfunc_tab; 2226 } 2227 2228 const struct btf_func_model * 2229 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2230 const struct bpf_insn *insn) 2231 { 2232 const struct bpf_kfunc_desc desc = { 2233 .imm = insn->imm, 2234 }; 2235 const struct bpf_kfunc_desc *res; 2236 struct bpf_kfunc_desc_tab *tab; 2237 2238 tab = prog->aux->kfunc_tab; 2239 res = bsearch(&desc, tab->descs, tab->nr_descs, 2240 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2241 2242 return res ? &res->func_model : NULL; 2243 } 2244 2245 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2246 { 2247 struct bpf_subprog_info *subprog = env->subprog_info; 2248 struct bpf_insn *insn = env->prog->insnsi; 2249 int i, ret, insn_cnt = env->prog->len; 2250 2251 /* Add entry function. */ 2252 ret = add_subprog(env, 0); 2253 if (ret) 2254 return ret; 2255 2256 for (i = 0; i < insn_cnt; i++, insn++) { 2257 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2258 !bpf_pseudo_kfunc_call(insn)) 2259 continue; 2260 2261 if (!env->bpf_capable) { 2262 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2263 return -EPERM; 2264 } 2265 2266 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2267 ret = add_subprog(env, i + insn->imm + 1); 2268 else 2269 ret = add_kfunc_call(env, insn->imm, insn->off); 2270 2271 if (ret < 0) 2272 return ret; 2273 } 2274 2275 /* Add a fake 'exit' subprog which could simplify subprog iteration 2276 * logic. 'subprog_cnt' should not be increased. 2277 */ 2278 subprog[env->subprog_cnt].start = insn_cnt; 2279 2280 if (env->log.level & BPF_LOG_LEVEL2) 2281 for (i = 0; i < env->subprog_cnt; i++) 2282 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2283 2284 return 0; 2285 } 2286 2287 static int check_subprogs(struct bpf_verifier_env *env) 2288 { 2289 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2290 struct bpf_subprog_info *subprog = env->subprog_info; 2291 struct bpf_insn *insn = env->prog->insnsi; 2292 int insn_cnt = env->prog->len; 2293 2294 /* now check that all jumps are within the same subprog */ 2295 subprog_start = subprog[cur_subprog].start; 2296 subprog_end = subprog[cur_subprog + 1].start; 2297 for (i = 0; i < insn_cnt; i++) { 2298 u8 code = insn[i].code; 2299 2300 if (code == (BPF_JMP | BPF_CALL) && 2301 insn[i].imm == BPF_FUNC_tail_call && 2302 insn[i].src_reg != BPF_PSEUDO_CALL) 2303 subprog[cur_subprog].has_tail_call = true; 2304 if (BPF_CLASS(code) == BPF_LD && 2305 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2306 subprog[cur_subprog].has_ld_abs = true; 2307 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2308 goto next; 2309 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2310 goto next; 2311 off = i + insn[i].off + 1; 2312 if (off < subprog_start || off >= subprog_end) { 2313 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2314 return -EINVAL; 2315 } 2316 next: 2317 if (i == subprog_end - 1) { 2318 /* to avoid fall-through from one subprog into another 2319 * the last insn of the subprog should be either exit 2320 * or unconditional jump back 2321 */ 2322 if (code != (BPF_JMP | BPF_EXIT) && 2323 code != (BPF_JMP | BPF_JA)) { 2324 verbose(env, "last insn is not an exit or jmp\n"); 2325 return -EINVAL; 2326 } 2327 subprog_start = subprog_end; 2328 cur_subprog++; 2329 if (cur_subprog < env->subprog_cnt) 2330 subprog_end = subprog[cur_subprog + 1].start; 2331 } 2332 } 2333 return 0; 2334 } 2335 2336 /* Parentage chain of this register (or stack slot) should take care of all 2337 * issues like callee-saved registers, stack slot allocation time, etc. 2338 */ 2339 static int mark_reg_read(struct bpf_verifier_env *env, 2340 const struct bpf_reg_state *state, 2341 struct bpf_reg_state *parent, u8 flag) 2342 { 2343 bool writes = parent == state->parent; /* Observe write marks */ 2344 int cnt = 0; 2345 2346 while (parent) { 2347 /* if read wasn't screened by an earlier write ... */ 2348 if (writes && state->live & REG_LIVE_WRITTEN) 2349 break; 2350 if (parent->live & REG_LIVE_DONE) { 2351 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2352 reg_type_str(env, parent->type), 2353 parent->var_off.value, parent->off); 2354 return -EFAULT; 2355 } 2356 /* The first condition is more likely to be true than the 2357 * second, checked it first. 2358 */ 2359 if ((parent->live & REG_LIVE_READ) == flag || 2360 parent->live & REG_LIVE_READ64) 2361 /* The parentage chain never changes and 2362 * this parent was already marked as LIVE_READ. 2363 * There is no need to keep walking the chain again and 2364 * keep re-marking all parents as LIVE_READ. 2365 * This case happens when the same register is read 2366 * multiple times without writes into it in-between. 2367 * Also, if parent has the stronger REG_LIVE_READ64 set, 2368 * then no need to set the weak REG_LIVE_READ32. 2369 */ 2370 break; 2371 /* ... then we depend on parent's value */ 2372 parent->live |= flag; 2373 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2374 if (flag == REG_LIVE_READ64) 2375 parent->live &= ~REG_LIVE_READ32; 2376 state = parent; 2377 parent = state->parent; 2378 writes = true; 2379 cnt++; 2380 } 2381 2382 if (env->longest_mark_read_walk < cnt) 2383 env->longest_mark_read_walk = cnt; 2384 return 0; 2385 } 2386 2387 /* This function is supposed to be used by the following 32-bit optimization 2388 * code only. It returns TRUE if the source or destination register operates 2389 * on 64-bit, otherwise return FALSE. 2390 */ 2391 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2392 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2393 { 2394 u8 code, class, op; 2395 2396 code = insn->code; 2397 class = BPF_CLASS(code); 2398 op = BPF_OP(code); 2399 if (class == BPF_JMP) { 2400 /* BPF_EXIT for "main" will reach here. Return TRUE 2401 * conservatively. 2402 */ 2403 if (op == BPF_EXIT) 2404 return true; 2405 if (op == BPF_CALL) { 2406 /* BPF to BPF call will reach here because of marking 2407 * caller saved clobber with DST_OP_NO_MARK for which we 2408 * don't care the register def because they are anyway 2409 * marked as NOT_INIT already. 2410 */ 2411 if (insn->src_reg == BPF_PSEUDO_CALL) 2412 return false; 2413 /* Helper call will reach here because of arg type 2414 * check, conservatively return TRUE. 2415 */ 2416 if (t == SRC_OP) 2417 return true; 2418 2419 return false; 2420 } 2421 } 2422 2423 if (class == BPF_ALU64 || class == BPF_JMP || 2424 /* BPF_END always use BPF_ALU class. */ 2425 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2426 return true; 2427 2428 if (class == BPF_ALU || class == BPF_JMP32) 2429 return false; 2430 2431 if (class == BPF_LDX) { 2432 if (t != SRC_OP) 2433 return BPF_SIZE(code) == BPF_DW; 2434 /* LDX source must be ptr. */ 2435 return true; 2436 } 2437 2438 if (class == BPF_STX) { 2439 /* BPF_STX (including atomic variants) has multiple source 2440 * operands, one of which is a ptr. Check whether the caller is 2441 * asking about it. 2442 */ 2443 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2444 return true; 2445 return BPF_SIZE(code) == BPF_DW; 2446 } 2447 2448 if (class == BPF_LD) { 2449 u8 mode = BPF_MODE(code); 2450 2451 /* LD_IMM64 */ 2452 if (mode == BPF_IMM) 2453 return true; 2454 2455 /* Both LD_IND and LD_ABS return 32-bit data. */ 2456 if (t != SRC_OP) 2457 return false; 2458 2459 /* Implicit ctx ptr. */ 2460 if (regno == BPF_REG_6) 2461 return true; 2462 2463 /* Explicit source could be any width. */ 2464 return true; 2465 } 2466 2467 if (class == BPF_ST) 2468 /* The only source register for BPF_ST is a ptr. */ 2469 return true; 2470 2471 /* Conservatively return true at default. */ 2472 return true; 2473 } 2474 2475 /* Return the regno defined by the insn, or -1. */ 2476 static int insn_def_regno(const struct bpf_insn *insn) 2477 { 2478 switch (BPF_CLASS(insn->code)) { 2479 case BPF_JMP: 2480 case BPF_JMP32: 2481 case BPF_ST: 2482 return -1; 2483 case BPF_STX: 2484 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2485 (insn->imm & BPF_FETCH)) { 2486 if (insn->imm == BPF_CMPXCHG) 2487 return BPF_REG_0; 2488 else 2489 return insn->src_reg; 2490 } else { 2491 return -1; 2492 } 2493 default: 2494 return insn->dst_reg; 2495 } 2496 } 2497 2498 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2499 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2500 { 2501 int dst_reg = insn_def_regno(insn); 2502 2503 if (dst_reg == -1) 2504 return false; 2505 2506 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2507 } 2508 2509 static void mark_insn_zext(struct bpf_verifier_env *env, 2510 struct bpf_reg_state *reg) 2511 { 2512 s32 def_idx = reg->subreg_def; 2513 2514 if (def_idx == DEF_NOT_SUBREG) 2515 return; 2516 2517 env->insn_aux_data[def_idx - 1].zext_dst = true; 2518 /* The dst will be zero extended, so won't be sub-register anymore. */ 2519 reg->subreg_def = DEF_NOT_SUBREG; 2520 } 2521 2522 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2523 enum reg_arg_type t) 2524 { 2525 struct bpf_verifier_state *vstate = env->cur_state; 2526 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2527 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2528 struct bpf_reg_state *reg, *regs = state->regs; 2529 bool rw64; 2530 2531 if (regno >= MAX_BPF_REG) { 2532 verbose(env, "R%d is invalid\n", regno); 2533 return -EINVAL; 2534 } 2535 2536 mark_reg_scratched(env, regno); 2537 2538 reg = ®s[regno]; 2539 rw64 = is_reg64(env, insn, regno, reg, t); 2540 if (t == SRC_OP) { 2541 /* check whether register used as source operand can be read */ 2542 if (reg->type == NOT_INIT) { 2543 verbose(env, "R%d !read_ok\n", regno); 2544 return -EACCES; 2545 } 2546 /* We don't need to worry about FP liveness because it's read-only */ 2547 if (regno == BPF_REG_FP) 2548 return 0; 2549 2550 if (rw64) 2551 mark_insn_zext(env, reg); 2552 2553 return mark_reg_read(env, reg, reg->parent, 2554 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2555 } else { 2556 /* check whether register used as dest operand can be written to */ 2557 if (regno == BPF_REG_FP) { 2558 verbose(env, "frame pointer is read only\n"); 2559 return -EACCES; 2560 } 2561 reg->live |= REG_LIVE_WRITTEN; 2562 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2563 if (t == DST_OP) 2564 mark_reg_unknown(env, regs, regno); 2565 } 2566 return 0; 2567 } 2568 2569 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2570 { 2571 env->insn_aux_data[idx].jmp_point = true; 2572 } 2573 2574 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2575 { 2576 return env->insn_aux_data[insn_idx].jmp_point; 2577 } 2578 2579 /* for any branch, call, exit record the history of jmps in the given state */ 2580 static int push_jmp_history(struct bpf_verifier_env *env, 2581 struct bpf_verifier_state *cur) 2582 { 2583 u32 cnt = cur->jmp_history_cnt; 2584 struct bpf_idx_pair *p; 2585 size_t alloc_size; 2586 2587 if (!is_jmp_point(env, env->insn_idx)) 2588 return 0; 2589 2590 cnt++; 2591 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2592 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2593 if (!p) 2594 return -ENOMEM; 2595 p[cnt - 1].idx = env->insn_idx; 2596 p[cnt - 1].prev_idx = env->prev_insn_idx; 2597 cur->jmp_history = p; 2598 cur->jmp_history_cnt = cnt; 2599 return 0; 2600 } 2601 2602 /* Backtrack one insn at a time. If idx is not at the top of recorded 2603 * history then previous instruction came from straight line execution. 2604 */ 2605 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2606 u32 *history) 2607 { 2608 u32 cnt = *history; 2609 2610 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2611 i = st->jmp_history[cnt - 1].prev_idx; 2612 (*history)--; 2613 } else { 2614 i--; 2615 } 2616 return i; 2617 } 2618 2619 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2620 { 2621 const struct btf_type *func; 2622 struct btf *desc_btf; 2623 2624 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2625 return NULL; 2626 2627 desc_btf = find_kfunc_desc_btf(data, insn->off); 2628 if (IS_ERR(desc_btf)) 2629 return "<error>"; 2630 2631 func = btf_type_by_id(desc_btf, insn->imm); 2632 return btf_name_by_offset(desc_btf, func->name_off); 2633 } 2634 2635 /* For given verifier state backtrack_insn() is called from the last insn to 2636 * the first insn. Its purpose is to compute a bitmask of registers and 2637 * stack slots that needs precision in the parent verifier state. 2638 */ 2639 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2640 u32 *reg_mask, u64 *stack_mask) 2641 { 2642 const struct bpf_insn_cbs cbs = { 2643 .cb_call = disasm_kfunc_name, 2644 .cb_print = verbose, 2645 .private_data = env, 2646 }; 2647 struct bpf_insn *insn = env->prog->insnsi + idx; 2648 u8 class = BPF_CLASS(insn->code); 2649 u8 opcode = BPF_OP(insn->code); 2650 u8 mode = BPF_MODE(insn->code); 2651 u32 dreg = 1u << insn->dst_reg; 2652 u32 sreg = 1u << insn->src_reg; 2653 u32 spi; 2654 2655 if (insn->code == 0) 2656 return 0; 2657 if (env->log.level & BPF_LOG_LEVEL2) { 2658 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2659 verbose(env, "%d: ", idx); 2660 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2661 } 2662 2663 if (class == BPF_ALU || class == BPF_ALU64) { 2664 if (!(*reg_mask & dreg)) 2665 return 0; 2666 if (opcode == BPF_MOV) { 2667 if (BPF_SRC(insn->code) == BPF_X) { 2668 /* dreg = sreg 2669 * dreg needs precision after this insn 2670 * sreg needs precision before this insn 2671 */ 2672 *reg_mask &= ~dreg; 2673 *reg_mask |= sreg; 2674 } else { 2675 /* dreg = K 2676 * dreg needs precision after this insn. 2677 * Corresponding register is already marked 2678 * as precise=true in this verifier state. 2679 * No further markings in parent are necessary 2680 */ 2681 *reg_mask &= ~dreg; 2682 } 2683 } else { 2684 if (BPF_SRC(insn->code) == BPF_X) { 2685 /* dreg += sreg 2686 * both dreg and sreg need precision 2687 * before this insn 2688 */ 2689 *reg_mask |= sreg; 2690 } /* else dreg += K 2691 * dreg still needs precision before this insn 2692 */ 2693 } 2694 } else if (class == BPF_LDX) { 2695 if (!(*reg_mask & dreg)) 2696 return 0; 2697 *reg_mask &= ~dreg; 2698 2699 /* scalars can only be spilled into stack w/o losing precision. 2700 * Load from any other memory can be zero extended. 2701 * The desire to keep that precision is already indicated 2702 * by 'precise' mark in corresponding register of this state. 2703 * No further tracking necessary. 2704 */ 2705 if (insn->src_reg != BPF_REG_FP) 2706 return 0; 2707 2708 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2709 * that [fp - off] slot contains scalar that needs to be 2710 * tracked with precision 2711 */ 2712 spi = (-insn->off - 1) / BPF_REG_SIZE; 2713 if (spi >= 64) { 2714 verbose(env, "BUG spi %d\n", spi); 2715 WARN_ONCE(1, "verifier backtracking bug"); 2716 return -EFAULT; 2717 } 2718 *stack_mask |= 1ull << spi; 2719 } else if (class == BPF_STX || class == BPF_ST) { 2720 if (*reg_mask & dreg) 2721 /* stx & st shouldn't be using _scalar_ dst_reg 2722 * to access memory. It means backtracking 2723 * encountered a case of pointer subtraction. 2724 */ 2725 return -ENOTSUPP; 2726 /* scalars can only be spilled into stack */ 2727 if (insn->dst_reg != BPF_REG_FP) 2728 return 0; 2729 spi = (-insn->off - 1) / BPF_REG_SIZE; 2730 if (spi >= 64) { 2731 verbose(env, "BUG spi %d\n", spi); 2732 WARN_ONCE(1, "verifier backtracking bug"); 2733 return -EFAULT; 2734 } 2735 if (!(*stack_mask & (1ull << spi))) 2736 return 0; 2737 *stack_mask &= ~(1ull << spi); 2738 if (class == BPF_STX) 2739 *reg_mask |= sreg; 2740 } else if (class == BPF_JMP || class == BPF_JMP32) { 2741 if (opcode == BPF_CALL) { 2742 if (insn->src_reg == BPF_PSEUDO_CALL) 2743 return -ENOTSUPP; 2744 /* BPF helpers that invoke callback subprogs are 2745 * equivalent to BPF_PSEUDO_CALL above 2746 */ 2747 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2748 return -ENOTSUPP; 2749 /* regular helper call sets R0 */ 2750 *reg_mask &= ~1; 2751 if (*reg_mask & 0x3f) { 2752 /* if backtracing was looking for registers R1-R5 2753 * they should have been found already. 2754 */ 2755 verbose(env, "BUG regs %x\n", *reg_mask); 2756 WARN_ONCE(1, "verifier backtracking bug"); 2757 return -EFAULT; 2758 } 2759 } else if (opcode == BPF_EXIT) { 2760 return -ENOTSUPP; 2761 } 2762 } else if (class == BPF_LD) { 2763 if (!(*reg_mask & dreg)) 2764 return 0; 2765 *reg_mask &= ~dreg; 2766 /* It's ld_imm64 or ld_abs or ld_ind. 2767 * For ld_imm64 no further tracking of precision 2768 * into parent is necessary 2769 */ 2770 if (mode == BPF_IND || mode == BPF_ABS) 2771 /* to be analyzed */ 2772 return -ENOTSUPP; 2773 } 2774 return 0; 2775 } 2776 2777 /* the scalar precision tracking algorithm: 2778 * . at the start all registers have precise=false. 2779 * . scalar ranges are tracked as normal through alu and jmp insns. 2780 * . once precise value of the scalar register is used in: 2781 * . ptr + scalar alu 2782 * . if (scalar cond K|scalar) 2783 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2784 * backtrack through the verifier states and mark all registers and 2785 * stack slots with spilled constants that these scalar regisers 2786 * should be precise. 2787 * . during state pruning two registers (or spilled stack slots) 2788 * are equivalent if both are not precise. 2789 * 2790 * Note the verifier cannot simply walk register parentage chain, 2791 * since many different registers and stack slots could have been 2792 * used to compute single precise scalar. 2793 * 2794 * The approach of starting with precise=true for all registers and then 2795 * backtrack to mark a register as not precise when the verifier detects 2796 * that program doesn't care about specific value (e.g., when helper 2797 * takes register as ARG_ANYTHING parameter) is not safe. 2798 * 2799 * It's ok to walk single parentage chain of the verifier states. 2800 * It's possible that this backtracking will go all the way till 1st insn. 2801 * All other branches will be explored for needing precision later. 2802 * 2803 * The backtracking needs to deal with cases like: 2804 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2805 * r9 -= r8 2806 * r5 = r9 2807 * if r5 > 0x79f goto pc+7 2808 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2809 * r5 += 1 2810 * ... 2811 * call bpf_perf_event_output#25 2812 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2813 * 2814 * and this case: 2815 * r6 = 1 2816 * call foo // uses callee's r6 inside to compute r0 2817 * r0 += r6 2818 * if r0 == 0 goto 2819 * 2820 * to track above reg_mask/stack_mask needs to be independent for each frame. 2821 * 2822 * Also if parent's curframe > frame where backtracking started, 2823 * the verifier need to mark registers in both frames, otherwise callees 2824 * may incorrectly prune callers. This is similar to 2825 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2826 * 2827 * For now backtracking falls back into conservative marking. 2828 */ 2829 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2830 struct bpf_verifier_state *st) 2831 { 2832 struct bpf_func_state *func; 2833 struct bpf_reg_state *reg; 2834 int i, j; 2835 2836 /* big hammer: mark all scalars precise in this path. 2837 * pop_stack may still get !precise scalars. 2838 * We also skip current state and go straight to first parent state, 2839 * because precision markings in current non-checkpointed state are 2840 * not needed. See why in the comment in __mark_chain_precision below. 2841 */ 2842 for (st = st->parent; st; st = st->parent) { 2843 for (i = 0; i <= st->curframe; i++) { 2844 func = st->frame[i]; 2845 for (j = 0; j < BPF_REG_FP; j++) { 2846 reg = &func->regs[j]; 2847 if (reg->type != SCALAR_VALUE) 2848 continue; 2849 reg->precise = true; 2850 } 2851 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2852 if (!is_spilled_reg(&func->stack[j])) 2853 continue; 2854 reg = &func->stack[j].spilled_ptr; 2855 if (reg->type != SCALAR_VALUE) 2856 continue; 2857 reg->precise = true; 2858 } 2859 } 2860 } 2861 } 2862 2863 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2864 { 2865 struct bpf_func_state *func; 2866 struct bpf_reg_state *reg; 2867 int i, j; 2868 2869 for (i = 0; i <= st->curframe; i++) { 2870 func = st->frame[i]; 2871 for (j = 0; j < BPF_REG_FP; j++) { 2872 reg = &func->regs[j]; 2873 if (reg->type != SCALAR_VALUE) 2874 continue; 2875 reg->precise = false; 2876 } 2877 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2878 if (!is_spilled_reg(&func->stack[j])) 2879 continue; 2880 reg = &func->stack[j].spilled_ptr; 2881 if (reg->type != SCALAR_VALUE) 2882 continue; 2883 reg->precise = false; 2884 } 2885 } 2886 } 2887 2888 /* 2889 * __mark_chain_precision() backtracks BPF program instruction sequence and 2890 * chain of verifier states making sure that register *regno* (if regno >= 0) 2891 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 2892 * SCALARS, as well as any other registers and slots that contribute to 2893 * a tracked state of given registers/stack slots, depending on specific BPF 2894 * assembly instructions (see backtrack_insns() for exact instruction handling 2895 * logic). This backtracking relies on recorded jmp_history and is able to 2896 * traverse entire chain of parent states. This process ends only when all the 2897 * necessary registers/slots and their transitive dependencies are marked as 2898 * precise. 2899 * 2900 * One important and subtle aspect is that precise marks *do not matter* in 2901 * the currently verified state (current state). It is important to understand 2902 * why this is the case. 2903 * 2904 * First, note that current state is the state that is not yet "checkpointed", 2905 * i.e., it is not yet put into env->explored_states, and it has no children 2906 * states as well. It's ephemeral, and can end up either a) being discarded if 2907 * compatible explored state is found at some point or BPF_EXIT instruction is 2908 * reached or b) checkpointed and put into env->explored_states, branching out 2909 * into one or more children states. 2910 * 2911 * In the former case, precise markings in current state are completely 2912 * ignored by state comparison code (see regsafe() for details). Only 2913 * checkpointed ("old") state precise markings are important, and if old 2914 * state's register/slot is precise, regsafe() assumes current state's 2915 * register/slot as precise and checks value ranges exactly and precisely. If 2916 * states turn out to be compatible, current state's necessary precise 2917 * markings and any required parent states' precise markings are enforced 2918 * after the fact with propagate_precision() logic, after the fact. But it's 2919 * important to realize that in this case, even after marking current state 2920 * registers/slots as precise, we immediately discard current state. So what 2921 * actually matters is any of the precise markings propagated into current 2922 * state's parent states, which are always checkpointed (due to b) case above). 2923 * As such, for scenario a) it doesn't matter if current state has precise 2924 * markings set or not. 2925 * 2926 * Now, for the scenario b), checkpointing and forking into child(ren) 2927 * state(s). Note that before current state gets to checkpointing step, any 2928 * processed instruction always assumes precise SCALAR register/slot 2929 * knowledge: if precise value or range is useful to prune jump branch, BPF 2930 * verifier takes this opportunity enthusiastically. Similarly, when 2931 * register's value is used to calculate offset or memory address, exact 2932 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 2933 * what we mentioned above about state comparison ignoring precise markings 2934 * during state comparison, BPF verifier ignores and also assumes precise 2935 * markings *at will* during instruction verification process. But as verifier 2936 * assumes precision, it also propagates any precision dependencies across 2937 * parent states, which are not yet finalized, so can be further restricted 2938 * based on new knowledge gained from restrictions enforced by their children 2939 * states. This is so that once those parent states are finalized, i.e., when 2940 * they have no more active children state, state comparison logic in 2941 * is_state_visited() would enforce strict and precise SCALAR ranges, if 2942 * required for correctness. 2943 * 2944 * To build a bit more intuition, note also that once a state is checkpointed, 2945 * the path we took to get to that state is not important. This is crucial 2946 * property for state pruning. When state is checkpointed and finalized at 2947 * some instruction index, it can be correctly and safely used to "short 2948 * circuit" any *compatible* state that reaches exactly the same instruction 2949 * index. I.e., if we jumped to that instruction from a completely different 2950 * code path than original finalized state was derived from, it doesn't 2951 * matter, current state can be discarded because from that instruction 2952 * forward having a compatible state will ensure we will safely reach the 2953 * exit. States describe preconditions for further exploration, but completely 2954 * forget the history of how we got here. 2955 * 2956 * This also means that even if we needed precise SCALAR range to get to 2957 * finalized state, but from that point forward *that same* SCALAR register is 2958 * never used in a precise context (i.e., it's precise value is not needed for 2959 * correctness), it's correct and safe to mark such register as "imprecise" 2960 * (i.e., precise marking set to false). This is what we rely on when we do 2961 * not set precise marking in current state. If no child state requires 2962 * precision for any given SCALAR register, it's safe to dictate that it can 2963 * be imprecise. If any child state does require this register to be precise, 2964 * we'll mark it precise later retroactively during precise markings 2965 * propagation from child state to parent states. 2966 * 2967 * Skipping precise marking setting in current state is a mild version of 2968 * relying on the above observation. But we can utilize this property even 2969 * more aggressively by proactively forgetting any precise marking in the 2970 * current state (which we inherited from the parent state), right before we 2971 * checkpoint it and branch off into new child state. This is done by 2972 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 2973 * finalized states which help in short circuiting more future states. 2974 */ 2975 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 2976 int spi) 2977 { 2978 struct bpf_verifier_state *st = env->cur_state; 2979 int first_idx = st->first_insn_idx; 2980 int last_idx = env->insn_idx; 2981 struct bpf_func_state *func; 2982 struct bpf_reg_state *reg; 2983 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2984 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2985 bool skip_first = true; 2986 bool new_marks = false; 2987 int i, err; 2988 2989 if (!env->bpf_capable) 2990 return 0; 2991 2992 /* Do sanity checks against current state of register and/or stack 2993 * slot, but don't set precise flag in current state, as precision 2994 * tracking in the current state is unnecessary. 2995 */ 2996 func = st->frame[frame]; 2997 if (regno >= 0) { 2998 reg = &func->regs[regno]; 2999 if (reg->type != SCALAR_VALUE) { 3000 WARN_ONCE(1, "backtracing misuse"); 3001 return -EFAULT; 3002 } 3003 new_marks = true; 3004 } 3005 3006 while (spi >= 0) { 3007 if (!is_spilled_reg(&func->stack[spi])) { 3008 stack_mask = 0; 3009 break; 3010 } 3011 reg = &func->stack[spi].spilled_ptr; 3012 if (reg->type != SCALAR_VALUE) { 3013 stack_mask = 0; 3014 break; 3015 } 3016 new_marks = true; 3017 break; 3018 } 3019 3020 if (!new_marks) 3021 return 0; 3022 if (!reg_mask && !stack_mask) 3023 return 0; 3024 3025 for (;;) { 3026 DECLARE_BITMAP(mask, 64); 3027 u32 history = st->jmp_history_cnt; 3028 3029 if (env->log.level & BPF_LOG_LEVEL2) 3030 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3031 3032 if (last_idx < 0) { 3033 /* we are at the entry into subprog, which 3034 * is expected for global funcs, but only if 3035 * requested precise registers are R1-R5 3036 * (which are global func's input arguments) 3037 */ 3038 if (st->curframe == 0 && 3039 st->frame[0]->subprogno > 0 && 3040 st->frame[0]->callsite == BPF_MAIN_FUNC && 3041 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3042 bitmap_from_u64(mask, reg_mask); 3043 for_each_set_bit(i, mask, 32) { 3044 reg = &st->frame[0]->regs[i]; 3045 if (reg->type != SCALAR_VALUE) { 3046 reg_mask &= ~(1u << i); 3047 continue; 3048 } 3049 reg->precise = true; 3050 } 3051 return 0; 3052 } 3053 3054 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3055 st->frame[0]->subprogno, reg_mask, stack_mask); 3056 WARN_ONCE(1, "verifier backtracking bug"); 3057 return -EFAULT; 3058 } 3059 3060 for (i = last_idx;;) { 3061 if (skip_first) { 3062 err = 0; 3063 skip_first = false; 3064 } else { 3065 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3066 } 3067 if (err == -ENOTSUPP) { 3068 mark_all_scalars_precise(env, st); 3069 return 0; 3070 } else if (err) { 3071 return err; 3072 } 3073 if (!reg_mask && !stack_mask) 3074 /* Found assignment(s) into tracked register in this state. 3075 * Since this state is already marked, just return. 3076 * Nothing to be tracked further in the parent state. 3077 */ 3078 return 0; 3079 if (i == first_idx) 3080 break; 3081 i = get_prev_insn_idx(st, i, &history); 3082 if (i >= env->prog->len) { 3083 /* This can happen if backtracking reached insn 0 3084 * and there are still reg_mask or stack_mask 3085 * to backtrack. 3086 * It means the backtracking missed the spot where 3087 * particular register was initialized with a constant. 3088 */ 3089 verbose(env, "BUG backtracking idx %d\n", i); 3090 WARN_ONCE(1, "verifier backtracking bug"); 3091 return -EFAULT; 3092 } 3093 } 3094 st = st->parent; 3095 if (!st) 3096 break; 3097 3098 new_marks = false; 3099 func = st->frame[frame]; 3100 bitmap_from_u64(mask, reg_mask); 3101 for_each_set_bit(i, mask, 32) { 3102 reg = &func->regs[i]; 3103 if (reg->type != SCALAR_VALUE) { 3104 reg_mask &= ~(1u << i); 3105 continue; 3106 } 3107 if (!reg->precise) 3108 new_marks = true; 3109 reg->precise = true; 3110 } 3111 3112 bitmap_from_u64(mask, stack_mask); 3113 for_each_set_bit(i, mask, 64) { 3114 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3115 /* the sequence of instructions: 3116 * 2: (bf) r3 = r10 3117 * 3: (7b) *(u64 *)(r3 -8) = r0 3118 * 4: (79) r4 = *(u64 *)(r10 -8) 3119 * doesn't contain jmps. It's backtracked 3120 * as a single block. 3121 * During backtracking insn 3 is not recognized as 3122 * stack access, so at the end of backtracking 3123 * stack slot fp-8 is still marked in stack_mask. 3124 * However the parent state may not have accessed 3125 * fp-8 and it's "unallocated" stack space. 3126 * In such case fallback to conservative. 3127 */ 3128 mark_all_scalars_precise(env, st); 3129 return 0; 3130 } 3131 3132 if (!is_spilled_reg(&func->stack[i])) { 3133 stack_mask &= ~(1ull << i); 3134 continue; 3135 } 3136 reg = &func->stack[i].spilled_ptr; 3137 if (reg->type != SCALAR_VALUE) { 3138 stack_mask &= ~(1ull << i); 3139 continue; 3140 } 3141 if (!reg->precise) 3142 new_marks = true; 3143 reg->precise = true; 3144 } 3145 if (env->log.level & BPF_LOG_LEVEL2) { 3146 verbose(env, "parent %s regs=%x stack=%llx marks:", 3147 new_marks ? "didn't have" : "already had", 3148 reg_mask, stack_mask); 3149 print_verifier_state(env, func, true); 3150 } 3151 3152 if (!reg_mask && !stack_mask) 3153 break; 3154 if (!new_marks) 3155 break; 3156 3157 last_idx = st->last_insn_idx; 3158 first_idx = st->first_insn_idx; 3159 } 3160 return 0; 3161 } 3162 3163 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3164 { 3165 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3166 } 3167 3168 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3169 { 3170 return __mark_chain_precision(env, frame, regno, -1); 3171 } 3172 3173 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3174 { 3175 return __mark_chain_precision(env, frame, -1, spi); 3176 } 3177 3178 static bool is_spillable_regtype(enum bpf_reg_type type) 3179 { 3180 switch (base_type(type)) { 3181 case PTR_TO_MAP_VALUE: 3182 case PTR_TO_STACK: 3183 case PTR_TO_CTX: 3184 case PTR_TO_PACKET: 3185 case PTR_TO_PACKET_META: 3186 case PTR_TO_PACKET_END: 3187 case PTR_TO_FLOW_KEYS: 3188 case CONST_PTR_TO_MAP: 3189 case PTR_TO_SOCKET: 3190 case PTR_TO_SOCK_COMMON: 3191 case PTR_TO_TCP_SOCK: 3192 case PTR_TO_XDP_SOCK: 3193 case PTR_TO_BTF_ID: 3194 case PTR_TO_BUF: 3195 case PTR_TO_MEM: 3196 case PTR_TO_FUNC: 3197 case PTR_TO_MAP_KEY: 3198 return true; 3199 default: 3200 return false; 3201 } 3202 } 3203 3204 /* Does this register contain a constant zero? */ 3205 static bool register_is_null(struct bpf_reg_state *reg) 3206 { 3207 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3208 } 3209 3210 static bool register_is_const(struct bpf_reg_state *reg) 3211 { 3212 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3213 } 3214 3215 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3216 { 3217 return tnum_is_unknown(reg->var_off) && 3218 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3219 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3220 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3221 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3222 } 3223 3224 static bool register_is_bounded(struct bpf_reg_state *reg) 3225 { 3226 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3227 } 3228 3229 static bool __is_pointer_value(bool allow_ptr_leaks, 3230 const struct bpf_reg_state *reg) 3231 { 3232 if (allow_ptr_leaks) 3233 return false; 3234 3235 return reg->type != SCALAR_VALUE; 3236 } 3237 3238 static void save_register_state(struct bpf_func_state *state, 3239 int spi, struct bpf_reg_state *reg, 3240 int size) 3241 { 3242 int i; 3243 3244 state->stack[spi].spilled_ptr = *reg; 3245 if (size == BPF_REG_SIZE) 3246 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3247 3248 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3249 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3250 3251 /* size < 8 bytes spill */ 3252 for (; i; i--) 3253 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3254 } 3255 3256 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3257 * stack boundary and alignment are checked in check_mem_access() 3258 */ 3259 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3260 /* stack frame we're writing to */ 3261 struct bpf_func_state *state, 3262 int off, int size, int value_regno, 3263 int insn_idx) 3264 { 3265 struct bpf_func_state *cur; /* state of the current function */ 3266 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3267 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3268 struct bpf_reg_state *reg = NULL; 3269 3270 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3271 if (err) 3272 return err; 3273 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3274 * so it's aligned access and [off, off + size) are within stack limits 3275 */ 3276 if (!env->allow_ptr_leaks && 3277 state->stack[spi].slot_type[0] == STACK_SPILL && 3278 size != BPF_REG_SIZE) { 3279 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3280 return -EACCES; 3281 } 3282 3283 cur = env->cur_state->frame[env->cur_state->curframe]; 3284 if (value_regno >= 0) 3285 reg = &cur->regs[value_regno]; 3286 if (!env->bypass_spec_v4) { 3287 bool sanitize = reg && is_spillable_regtype(reg->type); 3288 3289 for (i = 0; i < size; i++) { 3290 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3291 sanitize = true; 3292 break; 3293 } 3294 } 3295 3296 if (sanitize) 3297 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3298 } 3299 3300 mark_stack_slot_scratched(env, spi); 3301 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3302 !register_is_null(reg) && env->bpf_capable) { 3303 if (dst_reg != BPF_REG_FP) { 3304 /* The backtracking logic can only recognize explicit 3305 * stack slot address like [fp - 8]. Other spill of 3306 * scalar via different register has to be conservative. 3307 * Backtrack from here and mark all registers as precise 3308 * that contributed into 'reg' being a constant. 3309 */ 3310 err = mark_chain_precision(env, value_regno); 3311 if (err) 3312 return err; 3313 } 3314 save_register_state(state, spi, reg, size); 3315 } else if (reg && is_spillable_regtype(reg->type)) { 3316 /* register containing pointer is being spilled into stack */ 3317 if (size != BPF_REG_SIZE) { 3318 verbose_linfo(env, insn_idx, "; "); 3319 verbose(env, "invalid size of register spill\n"); 3320 return -EACCES; 3321 } 3322 if (state != cur && reg->type == PTR_TO_STACK) { 3323 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3324 return -EINVAL; 3325 } 3326 save_register_state(state, spi, reg, size); 3327 } else { 3328 u8 type = STACK_MISC; 3329 3330 /* regular write of data into stack destroys any spilled ptr */ 3331 state->stack[spi].spilled_ptr.type = NOT_INIT; 3332 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3333 if (is_spilled_reg(&state->stack[spi])) 3334 for (i = 0; i < BPF_REG_SIZE; i++) 3335 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3336 3337 /* only mark the slot as written if all 8 bytes were written 3338 * otherwise read propagation may incorrectly stop too soon 3339 * when stack slots are partially written. 3340 * This heuristic means that read propagation will be 3341 * conservative, since it will add reg_live_read marks 3342 * to stack slots all the way to first state when programs 3343 * writes+reads less than 8 bytes 3344 */ 3345 if (size == BPF_REG_SIZE) 3346 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3347 3348 /* when we zero initialize stack slots mark them as such */ 3349 if (reg && register_is_null(reg)) { 3350 /* backtracking doesn't work for STACK_ZERO yet. */ 3351 err = mark_chain_precision(env, value_regno); 3352 if (err) 3353 return err; 3354 type = STACK_ZERO; 3355 } 3356 3357 /* Mark slots affected by this stack write. */ 3358 for (i = 0; i < size; i++) 3359 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3360 type; 3361 } 3362 return 0; 3363 } 3364 3365 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3366 * known to contain a variable offset. 3367 * This function checks whether the write is permitted and conservatively 3368 * tracks the effects of the write, considering that each stack slot in the 3369 * dynamic range is potentially written to. 3370 * 3371 * 'off' includes 'regno->off'. 3372 * 'value_regno' can be -1, meaning that an unknown value is being written to 3373 * the stack. 3374 * 3375 * Spilled pointers in range are not marked as written because we don't know 3376 * what's going to be actually written. This means that read propagation for 3377 * future reads cannot be terminated by this write. 3378 * 3379 * For privileged programs, uninitialized stack slots are considered 3380 * initialized by this write (even though we don't know exactly what offsets 3381 * are going to be written to). The idea is that we don't want the verifier to 3382 * reject future reads that access slots written to through variable offsets. 3383 */ 3384 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3385 /* func where register points to */ 3386 struct bpf_func_state *state, 3387 int ptr_regno, int off, int size, 3388 int value_regno, int insn_idx) 3389 { 3390 struct bpf_func_state *cur; /* state of the current function */ 3391 int min_off, max_off; 3392 int i, err; 3393 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3394 bool writing_zero = false; 3395 /* set if the fact that we're writing a zero is used to let any 3396 * stack slots remain STACK_ZERO 3397 */ 3398 bool zero_used = false; 3399 3400 cur = env->cur_state->frame[env->cur_state->curframe]; 3401 ptr_reg = &cur->regs[ptr_regno]; 3402 min_off = ptr_reg->smin_value + off; 3403 max_off = ptr_reg->smax_value + off + size; 3404 if (value_regno >= 0) 3405 value_reg = &cur->regs[value_regno]; 3406 if (value_reg && register_is_null(value_reg)) 3407 writing_zero = true; 3408 3409 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3410 if (err) 3411 return err; 3412 3413 3414 /* Variable offset writes destroy any spilled pointers in range. */ 3415 for (i = min_off; i < max_off; i++) { 3416 u8 new_type, *stype; 3417 int slot, spi; 3418 3419 slot = -i - 1; 3420 spi = slot / BPF_REG_SIZE; 3421 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3422 mark_stack_slot_scratched(env, spi); 3423 3424 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3425 /* Reject the write if range we may write to has not 3426 * been initialized beforehand. If we didn't reject 3427 * here, the ptr status would be erased below (even 3428 * though not all slots are actually overwritten), 3429 * possibly opening the door to leaks. 3430 * 3431 * We do however catch STACK_INVALID case below, and 3432 * only allow reading possibly uninitialized memory 3433 * later for CAP_PERFMON, as the write may not happen to 3434 * that slot. 3435 */ 3436 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3437 insn_idx, i); 3438 return -EINVAL; 3439 } 3440 3441 /* Erase all spilled pointers. */ 3442 state->stack[spi].spilled_ptr.type = NOT_INIT; 3443 3444 /* Update the slot type. */ 3445 new_type = STACK_MISC; 3446 if (writing_zero && *stype == STACK_ZERO) { 3447 new_type = STACK_ZERO; 3448 zero_used = true; 3449 } 3450 /* If the slot is STACK_INVALID, we check whether it's OK to 3451 * pretend that it will be initialized by this write. The slot 3452 * might not actually be written to, and so if we mark it as 3453 * initialized future reads might leak uninitialized memory. 3454 * For privileged programs, we will accept such reads to slots 3455 * that may or may not be written because, if we're reject 3456 * them, the error would be too confusing. 3457 */ 3458 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3459 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3460 insn_idx, i); 3461 return -EINVAL; 3462 } 3463 *stype = new_type; 3464 } 3465 if (zero_used) { 3466 /* backtracking doesn't work for STACK_ZERO yet. */ 3467 err = mark_chain_precision(env, value_regno); 3468 if (err) 3469 return err; 3470 } 3471 return 0; 3472 } 3473 3474 /* When register 'dst_regno' is assigned some values from stack[min_off, 3475 * max_off), we set the register's type according to the types of the 3476 * respective stack slots. If all the stack values are known to be zeros, then 3477 * so is the destination reg. Otherwise, the register is considered to be 3478 * SCALAR. This function does not deal with register filling; the caller must 3479 * ensure that all spilled registers in the stack range have been marked as 3480 * read. 3481 */ 3482 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3483 /* func where src register points to */ 3484 struct bpf_func_state *ptr_state, 3485 int min_off, int max_off, int dst_regno) 3486 { 3487 struct bpf_verifier_state *vstate = env->cur_state; 3488 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3489 int i, slot, spi; 3490 u8 *stype; 3491 int zeros = 0; 3492 3493 for (i = min_off; i < max_off; i++) { 3494 slot = -i - 1; 3495 spi = slot / BPF_REG_SIZE; 3496 stype = ptr_state->stack[spi].slot_type; 3497 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3498 break; 3499 zeros++; 3500 } 3501 if (zeros == max_off - min_off) { 3502 /* any access_size read into register is zero extended, 3503 * so the whole register == const_zero 3504 */ 3505 __mark_reg_const_zero(&state->regs[dst_regno]); 3506 /* backtracking doesn't support STACK_ZERO yet, 3507 * so mark it precise here, so that later 3508 * backtracking can stop here. 3509 * Backtracking may not need this if this register 3510 * doesn't participate in pointer adjustment. 3511 * Forward propagation of precise flag is not 3512 * necessary either. This mark is only to stop 3513 * backtracking. Any register that contributed 3514 * to const 0 was marked precise before spill. 3515 */ 3516 state->regs[dst_regno].precise = true; 3517 } else { 3518 /* have read misc data from the stack */ 3519 mark_reg_unknown(env, state->regs, dst_regno); 3520 } 3521 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3522 } 3523 3524 /* Read the stack at 'off' and put the results into the register indicated by 3525 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3526 * spilled reg. 3527 * 3528 * 'dst_regno' can be -1, meaning that the read value is not going to a 3529 * register. 3530 * 3531 * The access is assumed to be within the current stack bounds. 3532 */ 3533 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3534 /* func where src register points to */ 3535 struct bpf_func_state *reg_state, 3536 int off, int size, int dst_regno) 3537 { 3538 struct bpf_verifier_state *vstate = env->cur_state; 3539 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3540 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3541 struct bpf_reg_state *reg; 3542 u8 *stype, type; 3543 3544 stype = reg_state->stack[spi].slot_type; 3545 reg = ®_state->stack[spi].spilled_ptr; 3546 3547 if (is_spilled_reg(®_state->stack[spi])) { 3548 u8 spill_size = 1; 3549 3550 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3551 spill_size++; 3552 3553 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3554 if (reg->type != SCALAR_VALUE) { 3555 verbose_linfo(env, env->insn_idx, "; "); 3556 verbose(env, "invalid size of register fill\n"); 3557 return -EACCES; 3558 } 3559 3560 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3561 if (dst_regno < 0) 3562 return 0; 3563 3564 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3565 /* The earlier check_reg_arg() has decided the 3566 * subreg_def for this insn. Save it first. 3567 */ 3568 s32 subreg_def = state->regs[dst_regno].subreg_def; 3569 3570 state->regs[dst_regno] = *reg; 3571 state->regs[dst_regno].subreg_def = subreg_def; 3572 } else { 3573 for (i = 0; i < size; i++) { 3574 type = stype[(slot - i) % BPF_REG_SIZE]; 3575 if (type == STACK_SPILL) 3576 continue; 3577 if (type == STACK_MISC) 3578 continue; 3579 verbose(env, "invalid read from stack off %d+%d size %d\n", 3580 off, i, size); 3581 return -EACCES; 3582 } 3583 mark_reg_unknown(env, state->regs, dst_regno); 3584 } 3585 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3586 return 0; 3587 } 3588 3589 if (dst_regno >= 0) { 3590 /* restore register state from stack */ 3591 state->regs[dst_regno] = *reg; 3592 /* mark reg as written since spilled pointer state likely 3593 * has its liveness marks cleared by is_state_visited() 3594 * which resets stack/reg liveness for state transitions 3595 */ 3596 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3597 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3598 /* If dst_regno==-1, the caller is asking us whether 3599 * it is acceptable to use this value as a SCALAR_VALUE 3600 * (e.g. for XADD). 3601 * We must not allow unprivileged callers to do that 3602 * with spilled pointers. 3603 */ 3604 verbose(env, "leaking pointer from stack off %d\n", 3605 off); 3606 return -EACCES; 3607 } 3608 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3609 } else { 3610 for (i = 0; i < size; i++) { 3611 type = stype[(slot - i) % BPF_REG_SIZE]; 3612 if (type == STACK_MISC) 3613 continue; 3614 if (type == STACK_ZERO) 3615 continue; 3616 verbose(env, "invalid read from stack off %d+%d size %d\n", 3617 off, i, size); 3618 return -EACCES; 3619 } 3620 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3621 if (dst_regno >= 0) 3622 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3623 } 3624 return 0; 3625 } 3626 3627 enum bpf_access_src { 3628 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3629 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3630 }; 3631 3632 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3633 int regno, int off, int access_size, 3634 bool zero_size_allowed, 3635 enum bpf_access_src type, 3636 struct bpf_call_arg_meta *meta); 3637 3638 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3639 { 3640 return cur_regs(env) + regno; 3641 } 3642 3643 /* Read the stack at 'ptr_regno + off' and put the result into the register 3644 * 'dst_regno'. 3645 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3646 * but not its variable offset. 3647 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3648 * 3649 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3650 * filling registers (i.e. reads of spilled register cannot be detected when 3651 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3652 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3653 * offset; for a fixed offset check_stack_read_fixed_off should be used 3654 * instead. 3655 */ 3656 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3657 int ptr_regno, int off, int size, int dst_regno) 3658 { 3659 /* The state of the source register. */ 3660 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3661 struct bpf_func_state *ptr_state = func(env, reg); 3662 int err; 3663 int min_off, max_off; 3664 3665 /* Note that we pass a NULL meta, so raw access will not be permitted. 3666 */ 3667 err = check_stack_range_initialized(env, ptr_regno, off, size, 3668 false, ACCESS_DIRECT, NULL); 3669 if (err) 3670 return err; 3671 3672 min_off = reg->smin_value + off; 3673 max_off = reg->smax_value + off; 3674 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3675 return 0; 3676 } 3677 3678 /* check_stack_read dispatches to check_stack_read_fixed_off or 3679 * check_stack_read_var_off. 3680 * 3681 * The caller must ensure that the offset falls within the allocated stack 3682 * bounds. 3683 * 3684 * 'dst_regno' is a register which will receive the value from the stack. It 3685 * can be -1, meaning that the read value is not going to a register. 3686 */ 3687 static int check_stack_read(struct bpf_verifier_env *env, 3688 int ptr_regno, int off, int size, 3689 int dst_regno) 3690 { 3691 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3692 struct bpf_func_state *state = func(env, reg); 3693 int err; 3694 /* Some accesses are only permitted with a static offset. */ 3695 bool var_off = !tnum_is_const(reg->var_off); 3696 3697 /* The offset is required to be static when reads don't go to a 3698 * register, in order to not leak pointers (see 3699 * check_stack_read_fixed_off). 3700 */ 3701 if (dst_regno < 0 && var_off) { 3702 char tn_buf[48]; 3703 3704 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3705 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3706 tn_buf, off, size); 3707 return -EACCES; 3708 } 3709 /* Variable offset is prohibited for unprivileged mode for simplicity 3710 * since it requires corresponding support in Spectre masking for stack 3711 * ALU. See also retrieve_ptr_limit(). 3712 */ 3713 if (!env->bypass_spec_v1 && var_off) { 3714 char tn_buf[48]; 3715 3716 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3717 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3718 ptr_regno, tn_buf); 3719 return -EACCES; 3720 } 3721 3722 if (!var_off) { 3723 off += reg->var_off.value; 3724 err = check_stack_read_fixed_off(env, state, off, size, 3725 dst_regno); 3726 } else { 3727 /* Variable offset stack reads need more conservative handling 3728 * than fixed offset ones. Note that dst_regno >= 0 on this 3729 * branch. 3730 */ 3731 err = check_stack_read_var_off(env, ptr_regno, off, size, 3732 dst_regno); 3733 } 3734 return err; 3735 } 3736 3737 3738 /* check_stack_write dispatches to check_stack_write_fixed_off or 3739 * check_stack_write_var_off. 3740 * 3741 * 'ptr_regno' is the register used as a pointer into the stack. 3742 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3743 * 'value_regno' is the register whose value we're writing to the stack. It can 3744 * be -1, meaning that we're not writing from a register. 3745 * 3746 * The caller must ensure that the offset falls within the maximum stack size. 3747 */ 3748 static int check_stack_write(struct bpf_verifier_env *env, 3749 int ptr_regno, int off, int size, 3750 int value_regno, int insn_idx) 3751 { 3752 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3753 struct bpf_func_state *state = func(env, reg); 3754 int err; 3755 3756 if (tnum_is_const(reg->var_off)) { 3757 off += reg->var_off.value; 3758 err = check_stack_write_fixed_off(env, state, off, size, 3759 value_regno, insn_idx); 3760 } else { 3761 /* Variable offset stack reads need more conservative handling 3762 * than fixed offset ones. 3763 */ 3764 err = check_stack_write_var_off(env, state, 3765 ptr_regno, off, size, 3766 value_regno, insn_idx); 3767 } 3768 return err; 3769 } 3770 3771 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3772 int off, int size, enum bpf_access_type type) 3773 { 3774 struct bpf_reg_state *regs = cur_regs(env); 3775 struct bpf_map *map = regs[regno].map_ptr; 3776 u32 cap = bpf_map_flags_to_cap(map); 3777 3778 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3779 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3780 map->value_size, off, size); 3781 return -EACCES; 3782 } 3783 3784 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3785 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3786 map->value_size, off, size); 3787 return -EACCES; 3788 } 3789 3790 return 0; 3791 } 3792 3793 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3794 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3795 int off, int size, u32 mem_size, 3796 bool zero_size_allowed) 3797 { 3798 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3799 struct bpf_reg_state *reg; 3800 3801 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3802 return 0; 3803 3804 reg = &cur_regs(env)[regno]; 3805 switch (reg->type) { 3806 case PTR_TO_MAP_KEY: 3807 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3808 mem_size, off, size); 3809 break; 3810 case PTR_TO_MAP_VALUE: 3811 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3812 mem_size, off, size); 3813 break; 3814 case PTR_TO_PACKET: 3815 case PTR_TO_PACKET_META: 3816 case PTR_TO_PACKET_END: 3817 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3818 off, size, regno, reg->id, off, mem_size); 3819 break; 3820 case PTR_TO_MEM: 3821 default: 3822 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3823 mem_size, off, size); 3824 } 3825 3826 return -EACCES; 3827 } 3828 3829 /* check read/write into a memory region with possible variable offset */ 3830 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3831 int off, int size, u32 mem_size, 3832 bool zero_size_allowed) 3833 { 3834 struct bpf_verifier_state *vstate = env->cur_state; 3835 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3836 struct bpf_reg_state *reg = &state->regs[regno]; 3837 int err; 3838 3839 /* We may have adjusted the register pointing to memory region, so we 3840 * need to try adding each of min_value and max_value to off 3841 * to make sure our theoretical access will be safe. 3842 * 3843 * The minimum value is only important with signed 3844 * comparisons where we can't assume the floor of a 3845 * value is 0. If we are using signed variables for our 3846 * index'es we need to make sure that whatever we use 3847 * will have a set floor within our range. 3848 */ 3849 if (reg->smin_value < 0 && 3850 (reg->smin_value == S64_MIN || 3851 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3852 reg->smin_value + off < 0)) { 3853 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3854 regno); 3855 return -EACCES; 3856 } 3857 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3858 mem_size, zero_size_allowed); 3859 if (err) { 3860 verbose(env, "R%d min value is outside of the allowed memory range\n", 3861 regno); 3862 return err; 3863 } 3864 3865 /* If we haven't set a max value then we need to bail since we can't be 3866 * sure we won't do bad things. 3867 * If reg->umax_value + off could overflow, treat that as unbounded too. 3868 */ 3869 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3870 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3871 regno); 3872 return -EACCES; 3873 } 3874 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3875 mem_size, zero_size_allowed); 3876 if (err) { 3877 verbose(env, "R%d max value is outside of the allowed memory range\n", 3878 regno); 3879 return err; 3880 } 3881 3882 return 0; 3883 } 3884 3885 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3886 const struct bpf_reg_state *reg, int regno, 3887 bool fixed_off_ok) 3888 { 3889 /* Access to this pointer-typed register or passing it to a helper 3890 * is only allowed in its original, unmodified form. 3891 */ 3892 3893 if (reg->off < 0) { 3894 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3895 reg_type_str(env, reg->type), regno, reg->off); 3896 return -EACCES; 3897 } 3898 3899 if (!fixed_off_ok && reg->off) { 3900 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3901 reg_type_str(env, reg->type), regno, reg->off); 3902 return -EACCES; 3903 } 3904 3905 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3906 char tn_buf[48]; 3907 3908 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3909 verbose(env, "variable %s access var_off=%s disallowed\n", 3910 reg_type_str(env, reg->type), tn_buf); 3911 return -EACCES; 3912 } 3913 3914 return 0; 3915 } 3916 3917 int check_ptr_off_reg(struct bpf_verifier_env *env, 3918 const struct bpf_reg_state *reg, int regno) 3919 { 3920 return __check_ptr_off_reg(env, reg, regno, false); 3921 } 3922 3923 static int map_kptr_match_type(struct bpf_verifier_env *env, 3924 struct btf_field *kptr_field, 3925 struct bpf_reg_state *reg, u32 regno) 3926 { 3927 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 3928 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 3929 const char *reg_name = ""; 3930 3931 /* Only unreferenced case accepts untrusted pointers */ 3932 if (kptr_field->type == BPF_KPTR_UNREF) 3933 perm_flags |= PTR_UNTRUSTED; 3934 3935 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3936 goto bad_type; 3937 3938 if (!btf_is_kernel(reg->btf)) { 3939 verbose(env, "R%d must point to kernel BTF\n", regno); 3940 return -EINVAL; 3941 } 3942 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3943 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3944 3945 /* For ref_ptr case, release function check should ensure we get one 3946 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3947 * normal store of unreferenced kptr, we must ensure var_off is zero. 3948 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3949 * reg->off and reg->ref_obj_id are not needed here. 3950 */ 3951 if (__check_ptr_off_reg(env, reg, regno, true)) 3952 return -EACCES; 3953 3954 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3955 * we also need to take into account the reg->off. 3956 * 3957 * We want to support cases like: 3958 * 3959 * struct foo { 3960 * struct bar br; 3961 * struct baz bz; 3962 * }; 3963 * 3964 * struct foo *v; 3965 * v = func(); // PTR_TO_BTF_ID 3966 * val->foo = v; // reg->off is zero, btf and btf_id match type 3967 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3968 * // first member type of struct after comparison fails 3969 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3970 * // to match type 3971 * 3972 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3973 * is zero. We must also ensure that btf_struct_ids_match does not walk 3974 * the struct to match type against first member of struct, i.e. reject 3975 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3976 * strict mode to true for type match. 3977 */ 3978 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3979 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 3980 kptr_field->type == BPF_KPTR_REF)) 3981 goto bad_type; 3982 return 0; 3983 bad_type: 3984 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3985 reg_type_str(env, reg->type), reg_name); 3986 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3987 if (kptr_field->type == BPF_KPTR_UNREF) 3988 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3989 targ_name); 3990 else 3991 verbose(env, "\n"); 3992 return -EINVAL; 3993 } 3994 3995 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3996 int value_regno, int insn_idx, 3997 struct btf_field *kptr_field) 3998 { 3999 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4000 int class = BPF_CLASS(insn->code); 4001 struct bpf_reg_state *val_reg; 4002 4003 /* Things we already checked for in check_map_access and caller: 4004 * - Reject cases where variable offset may touch kptr 4005 * - size of access (must be BPF_DW) 4006 * - tnum_is_const(reg->var_off) 4007 * - kptr_field->offset == off + reg->var_off.value 4008 */ 4009 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4010 if (BPF_MODE(insn->code) != BPF_MEM) { 4011 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4012 return -EACCES; 4013 } 4014 4015 /* We only allow loading referenced kptr, since it will be marked as 4016 * untrusted, similar to unreferenced kptr. 4017 */ 4018 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4019 verbose(env, "store to referenced kptr disallowed\n"); 4020 return -EACCES; 4021 } 4022 4023 if (class == BPF_LDX) { 4024 val_reg = reg_state(env, value_regno); 4025 /* We can simply mark the value_regno receiving the pointer 4026 * value from map as PTR_TO_BTF_ID, with the correct type. 4027 */ 4028 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4029 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 4030 /* For mark_ptr_or_null_reg */ 4031 val_reg->id = ++env->id_gen; 4032 } else if (class == BPF_STX) { 4033 val_reg = reg_state(env, value_regno); 4034 if (!register_is_null(val_reg) && 4035 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4036 return -EACCES; 4037 } else if (class == BPF_ST) { 4038 if (insn->imm) { 4039 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4040 kptr_field->offset); 4041 return -EACCES; 4042 } 4043 } else { 4044 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4045 return -EACCES; 4046 } 4047 return 0; 4048 } 4049 4050 /* check read/write into a map element with possible variable offset */ 4051 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4052 int off, int size, bool zero_size_allowed, 4053 enum bpf_access_src src) 4054 { 4055 struct bpf_verifier_state *vstate = env->cur_state; 4056 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4057 struct bpf_reg_state *reg = &state->regs[regno]; 4058 struct bpf_map *map = reg->map_ptr; 4059 struct btf_record *rec; 4060 int err, i; 4061 4062 err = check_mem_region_access(env, regno, off, size, map->value_size, 4063 zero_size_allowed); 4064 if (err) 4065 return err; 4066 4067 if (IS_ERR_OR_NULL(map->record)) 4068 return 0; 4069 rec = map->record; 4070 for (i = 0; i < rec->cnt; i++) { 4071 struct btf_field *field = &rec->fields[i]; 4072 u32 p = field->offset; 4073 4074 /* If any part of a field can be touched by load/store, reject 4075 * this program. To check that [x1, x2) overlaps with [y1, y2), 4076 * it is sufficient to check x1 < y2 && y1 < x2. 4077 */ 4078 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4079 p < reg->umax_value + off + size) { 4080 switch (field->type) { 4081 case BPF_KPTR_UNREF: 4082 case BPF_KPTR_REF: 4083 if (src != ACCESS_DIRECT) { 4084 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4085 return -EACCES; 4086 } 4087 if (!tnum_is_const(reg->var_off)) { 4088 verbose(env, "kptr access cannot have variable offset\n"); 4089 return -EACCES; 4090 } 4091 if (p != off + reg->var_off.value) { 4092 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4093 p, off + reg->var_off.value); 4094 return -EACCES; 4095 } 4096 if (size != bpf_size_to_bytes(BPF_DW)) { 4097 verbose(env, "kptr access size must be BPF_DW\n"); 4098 return -EACCES; 4099 } 4100 break; 4101 default: 4102 verbose(env, "%s cannot be accessed directly by load/store\n", 4103 btf_field_type_name(field->type)); 4104 return -EACCES; 4105 } 4106 } 4107 } 4108 return 0; 4109 } 4110 4111 #define MAX_PACKET_OFF 0xffff 4112 4113 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4114 const struct bpf_call_arg_meta *meta, 4115 enum bpf_access_type t) 4116 { 4117 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4118 4119 switch (prog_type) { 4120 /* Program types only with direct read access go here! */ 4121 case BPF_PROG_TYPE_LWT_IN: 4122 case BPF_PROG_TYPE_LWT_OUT: 4123 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4124 case BPF_PROG_TYPE_SK_REUSEPORT: 4125 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4126 case BPF_PROG_TYPE_CGROUP_SKB: 4127 if (t == BPF_WRITE) 4128 return false; 4129 fallthrough; 4130 4131 /* Program types with direct read + write access go here! */ 4132 case BPF_PROG_TYPE_SCHED_CLS: 4133 case BPF_PROG_TYPE_SCHED_ACT: 4134 case BPF_PROG_TYPE_XDP: 4135 case BPF_PROG_TYPE_LWT_XMIT: 4136 case BPF_PROG_TYPE_SK_SKB: 4137 case BPF_PROG_TYPE_SK_MSG: 4138 if (meta) 4139 return meta->pkt_access; 4140 4141 env->seen_direct_write = true; 4142 return true; 4143 4144 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4145 if (t == BPF_WRITE) 4146 env->seen_direct_write = true; 4147 4148 return true; 4149 4150 default: 4151 return false; 4152 } 4153 } 4154 4155 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4156 int size, bool zero_size_allowed) 4157 { 4158 struct bpf_reg_state *regs = cur_regs(env); 4159 struct bpf_reg_state *reg = ®s[regno]; 4160 int err; 4161 4162 /* We may have added a variable offset to the packet pointer; but any 4163 * reg->range we have comes after that. We are only checking the fixed 4164 * offset. 4165 */ 4166 4167 /* We don't allow negative numbers, because we aren't tracking enough 4168 * detail to prove they're safe. 4169 */ 4170 if (reg->smin_value < 0) { 4171 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4172 regno); 4173 return -EACCES; 4174 } 4175 4176 err = reg->range < 0 ? -EINVAL : 4177 __check_mem_access(env, regno, off, size, reg->range, 4178 zero_size_allowed); 4179 if (err) { 4180 verbose(env, "R%d offset is outside of the packet\n", regno); 4181 return err; 4182 } 4183 4184 /* __check_mem_access has made sure "off + size - 1" is within u16. 4185 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4186 * otherwise find_good_pkt_pointers would have refused to set range info 4187 * that __check_mem_access would have rejected this pkt access. 4188 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4189 */ 4190 env->prog->aux->max_pkt_offset = 4191 max_t(u32, env->prog->aux->max_pkt_offset, 4192 off + reg->umax_value + size - 1); 4193 4194 return err; 4195 } 4196 4197 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4198 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4199 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4200 struct btf **btf, u32 *btf_id) 4201 { 4202 struct bpf_insn_access_aux info = { 4203 .reg_type = *reg_type, 4204 .log = &env->log, 4205 }; 4206 4207 if (env->ops->is_valid_access && 4208 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4209 /* A non zero info.ctx_field_size indicates that this field is a 4210 * candidate for later verifier transformation to load the whole 4211 * field and then apply a mask when accessed with a narrower 4212 * access than actual ctx access size. A zero info.ctx_field_size 4213 * will only allow for whole field access and rejects any other 4214 * type of narrower access. 4215 */ 4216 *reg_type = info.reg_type; 4217 4218 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4219 *btf = info.btf; 4220 *btf_id = info.btf_id; 4221 } else { 4222 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4223 } 4224 /* remember the offset of last byte accessed in ctx */ 4225 if (env->prog->aux->max_ctx_offset < off + size) 4226 env->prog->aux->max_ctx_offset = off + size; 4227 return 0; 4228 } 4229 4230 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4231 return -EACCES; 4232 } 4233 4234 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4235 int size) 4236 { 4237 if (size < 0 || off < 0 || 4238 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4239 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4240 off, size); 4241 return -EACCES; 4242 } 4243 return 0; 4244 } 4245 4246 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4247 u32 regno, int off, int size, 4248 enum bpf_access_type t) 4249 { 4250 struct bpf_reg_state *regs = cur_regs(env); 4251 struct bpf_reg_state *reg = ®s[regno]; 4252 struct bpf_insn_access_aux info = {}; 4253 bool valid; 4254 4255 if (reg->smin_value < 0) { 4256 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4257 regno); 4258 return -EACCES; 4259 } 4260 4261 switch (reg->type) { 4262 case PTR_TO_SOCK_COMMON: 4263 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4264 break; 4265 case PTR_TO_SOCKET: 4266 valid = bpf_sock_is_valid_access(off, size, t, &info); 4267 break; 4268 case PTR_TO_TCP_SOCK: 4269 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4270 break; 4271 case PTR_TO_XDP_SOCK: 4272 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4273 break; 4274 default: 4275 valid = false; 4276 } 4277 4278 4279 if (valid) { 4280 env->insn_aux_data[insn_idx].ctx_field_size = 4281 info.ctx_field_size; 4282 return 0; 4283 } 4284 4285 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4286 regno, reg_type_str(env, reg->type), off, size); 4287 4288 return -EACCES; 4289 } 4290 4291 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4292 { 4293 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4294 } 4295 4296 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4297 { 4298 const struct bpf_reg_state *reg = reg_state(env, regno); 4299 4300 return reg->type == PTR_TO_CTX; 4301 } 4302 4303 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4304 { 4305 const struct bpf_reg_state *reg = reg_state(env, regno); 4306 4307 return type_is_sk_pointer(reg->type); 4308 } 4309 4310 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4311 { 4312 const struct bpf_reg_state *reg = reg_state(env, regno); 4313 4314 return type_is_pkt_pointer(reg->type); 4315 } 4316 4317 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4318 { 4319 const struct bpf_reg_state *reg = reg_state(env, regno); 4320 4321 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4322 return reg->type == PTR_TO_FLOW_KEYS; 4323 } 4324 4325 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4326 { 4327 /* A referenced register is always trusted. */ 4328 if (reg->ref_obj_id) 4329 return true; 4330 4331 /* If a register is not referenced, it is trusted if it has the 4332 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4333 * other type modifiers may be safe, but we elect to take an opt-in 4334 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4335 * not. 4336 * 4337 * Eventually, we should make PTR_TRUSTED the single source of truth 4338 * for whether a register is trusted. 4339 */ 4340 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4341 !bpf_type_has_unsafe_modifiers(reg->type); 4342 } 4343 4344 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4345 { 4346 return reg->type & MEM_RCU; 4347 } 4348 4349 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4350 const struct bpf_reg_state *reg, 4351 int off, int size, bool strict) 4352 { 4353 struct tnum reg_off; 4354 int ip_align; 4355 4356 /* Byte size accesses are always allowed. */ 4357 if (!strict || size == 1) 4358 return 0; 4359 4360 /* For platforms that do not have a Kconfig enabling 4361 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4362 * NET_IP_ALIGN is universally set to '2'. And on platforms 4363 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4364 * to this code only in strict mode where we want to emulate 4365 * the NET_IP_ALIGN==2 checking. Therefore use an 4366 * unconditional IP align value of '2'. 4367 */ 4368 ip_align = 2; 4369 4370 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4371 if (!tnum_is_aligned(reg_off, size)) { 4372 char tn_buf[48]; 4373 4374 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4375 verbose(env, 4376 "misaligned packet access off %d+%s+%d+%d size %d\n", 4377 ip_align, tn_buf, reg->off, off, size); 4378 return -EACCES; 4379 } 4380 4381 return 0; 4382 } 4383 4384 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4385 const struct bpf_reg_state *reg, 4386 const char *pointer_desc, 4387 int off, int size, bool strict) 4388 { 4389 struct tnum reg_off; 4390 4391 /* Byte size accesses are always allowed. */ 4392 if (!strict || size == 1) 4393 return 0; 4394 4395 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4396 if (!tnum_is_aligned(reg_off, size)) { 4397 char tn_buf[48]; 4398 4399 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4400 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4401 pointer_desc, tn_buf, reg->off, off, size); 4402 return -EACCES; 4403 } 4404 4405 return 0; 4406 } 4407 4408 static int check_ptr_alignment(struct bpf_verifier_env *env, 4409 const struct bpf_reg_state *reg, int off, 4410 int size, bool strict_alignment_once) 4411 { 4412 bool strict = env->strict_alignment || strict_alignment_once; 4413 const char *pointer_desc = ""; 4414 4415 switch (reg->type) { 4416 case PTR_TO_PACKET: 4417 case PTR_TO_PACKET_META: 4418 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4419 * right in front, treat it the very same way. 4420 */ 4421 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4422 case PTR_TO_FLOW_KEYS: 4423 pointer_desc = "flow keys "; 4424 break; 4425 case PTR_TO_MAP_KEY: 4426 pointer_desc = "key "; 4427 break; 4428 case PTR_TO_MAP_VALUE: 4429 pointer_desc = "value "; 4430 break; 4431 case PTR_TO_CTX: 4432 pointer_desc = "context "; 4433 break; 4434 case PTR_TO_STACK: 4435 pointer_desc = "stack "; 4436 /* The stack spill tracking logic in check_stack_write_fixed_off() 4437 * and check_stack_read_fixed_off() relies on stack accesses being 4438 * aligned. 4439 */ 4440 strict = true; 4441 break; 4442 case PTR_TO_SOCKET: 4443 pointer_desc = "sock "; 4444 break; 4445 case PTR_TO_SOCK_COMMON: 4446 pointer_desc = "sock_common "; 4447 break; 4448 case PTR_TO_TCP_SOCK: 4449 pointer_desc = "tcp_sock "; 4450 break; 4451 case PTR_TO_XDP_SOCK: 4452 pointer_desc = "xdp_sock "; 4453 break; 4454 default: 4455 break; 4456 } 4457 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4458 strict); 4459 } 4460 4461 static int update_stack_depth(struct bpf_verifier_env *env, 4462 const struct bpf_func_state *func, 4463 int off) 4464 { 4465 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4466 4467 if (stack >= -off) 4468 return 0; 4469 4470 /* update known max for given subprogram */ 4471 env->subprog_info[func->subprogno].stack_depth = -off; 4472 return 0; 4473 } 4474 4475 /* starting from main bpf function walk all instructions of the function 4476 * and recursively walk all callees that given function can call. 4477 * Ignore jump and exit insns. 4478 * Since recursion is prevented by check_cfg() this algorithm 4479 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4480 */ 4481 static int check_max_stack_depth(struct bpf_verifier_env *env) 4482 { 4483 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4484 struct bpf_subprog_info *subprog = env->subprog_info; 4485 struct bpf_insn *insn = env->prog->insnsi; 4486 bool tail_call_reachable = false; 4487 int ret_insn[MAX_CALL_FRAMES]; 4488 int ret_prog[MAX_CALL_FRAMES]; 4489 int j; 4490 4491 process_func: 4492 /* protect against potential stack overflow that might happen when 4493 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4494 * depth for such case down to 256 so that the worst case scenario 4495 * would result in 8k stack size (32 which is tailcall limit * 256 = 4496 * 8k). 4497 * 4498 * To get the idea what might happen, see an example: 4499 * func1 -> sub rsp, 128 4500 * subfunc1 -> sub rsp, 256 4501 * tailcall1 -> add rsp, 256 4502 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4503 * subfunc2 -> sub rsp, 64 4504 * subfunc22 -> sub rsp, 128 4505 * tailcall2 -> add rsp, 128 4506 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4507 * 4508 * tailcall will unwind the current stack frame but it will not get rid 4509 * of caller's stack as shown on the example above. 4510 */ 4511 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4512 verbose(env, 4513 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4514 depth); 4515 return -EACCES; 4516 } 4517 /* round up to 32-bytes, since this is granularity 4518 * of interpreter stack size 4519 */ 4520 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4521 if (depth > MAX_BPF_STACK) { 4522 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4523 frame + 1, depth); 4524 return -EACCES; 4525 } 4526 continue_func: 4527 subprog_end = subprog[idx + 1].start; 4528 for (; i < subprog_end; i++) { 4529 int next_insn; 4530 4531 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4532 continue; 4533 /* remember insn and function to return to */ 4534 ret_insn[frame] = i + 1; 4535 ret_prog[frame] = idx; 4536 4537 /* find the callee */ 4538 next_insn = i + insn[i].imm + 1; 4539 idx = find_subprog(env, next_insn); 4540 if (idx < 0) { 4541 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4542 next_insn); 4543 return -EFAULT; 4544 } 4545 if (subprog[idx].is_async_cb) { 4546 if (subprog[idx].has_tail_call) { 4547 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4548 return -EFAULT; 4549 } 4550 /* async callbacks don't increase bpf prog stack size */ 4551 continue; 4552 } 4553 i = next_insn; 4554 4555 if (subprog[idx].has_tail_call) 4556 tail_call_reachable = true; 4557 4558 frame++; 4559 if (frame >= MAX_CALL_FRAMES) { 4560 verbose(env, "the call stack of %d frames is too deep !\n", 4561 frame); 4562 return -E2BIG; 4563 } 4564 goto process_func; 4565 } 4566 /* if tail call got detected across bpf2bpf calls then mark each of the 4567 * currently present subprog frames as tail call reachable subprogs; 4568 * this info will be utilized by JIT so that we will be preserving the 4569 * tail call counter throughout bpf2bpf calls combined with tailcalls 4570 */ 4571 if (tail_call_reachable) 4572 for (j = 0; j < frame; j++) 4573 subprog[ret_prog[j]].tail_call_reachable = true; 4574 if (subprog[0].tail_call_reachable) 4575 env->prog->aux->tail_call_reachable = true; 4576 4577 /* end of for() loop means the last insn of the 'subprog' 4578 * was reached. Doesn't matter whether it was JA or EXIT 4579 */ 4580 if (frame == 0) 4581 return 0; 4582 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4583 frame--; 4584 i = ret_insn[frame]; 4585 idx = ret_prog[frame]; 4586 goto continue_func; 4587 } 4588 4589 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4590 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4591 const struct bpf_insn *insn, int idx) 4592 { 4593 int start = idx + insn->imm + 1, subprog; 4594 4595 subprog = find_subprog(env, start); 4596 if (subprog < 0) { 4597 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4598 start); 4599 return -EFAULT; 4600 } 4601 return env->subprog_info[subprog].stack_depth; 4602 } 4603 #endif 4604 4605 static int __check_buffer_access(struct bpf_verifier_env *env, 4606 const char *buf_info, 4607 const struct bpf_reg_state *reg, 4608 int regno, int off, int size) 4609 { 4610 if (off < 0) { 4611 verbose(env, 4612 "R%d invalid %s buffer access: off=%d, size=%d\n", 4613 regno, buf_info, off, size); 4614 return -EACCES; 4615 } 4616 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4617 char tn_buf[48]; 4618 4619 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4620 verbose(env, 4621 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4622 regno, off, tn_buf); 4623 return -EACCES; 4624 } 4625 4626 return 0; 4627 } 4628 4629 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4630 const struct bpf_reg_state *reg, 4631 int regno, int off, int size) 4632 { 4633 int err; 4634 4635 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4636 if (err) 4637 return err; 4638 4639 if (off + size > env->prog->aux->max_tp_access) 4640 env->prog->aux->max_tp_access = off + size; 4641 4642 return 0; 4643 } 4644 4645 static int check_buffer_access(struct bpf_verifier_env *env, 4646 const struct bpf_reg_state *reg, 4647 int regno, int off, int size, 4648 bool zero_size_allowed, 4649 u32 *max_access) 4650 { 4651 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4652 int err; 4653 4654 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4655 if (err) 4656 return err; 4657 4658 if (off + size > *max_access) 4659 *max_access = off + size; 4660 4661 return 0; 4662 } 4663 4664 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4665 static void zext_32_to_64(struct bpf_reg_state *reg) 4666 { 4667 reg->var_off = tnum_subreg(reg->var_off); 4668 __reg_assign_32_into_64(reg); 4669 } 4670 4671 /* truncate register to smaller size (in bytes) 4672 * must be called with size < BPF_REG_SIZE 4673 */ 4674 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4675 { 4676 u64 mask; 4677 4678 /* clear high bits in bit representation */ 4679 reg->var_off = tnum_cast(reg->var_off, size); 4680 4681 /* fix arithmetic bounds */ 4682 mask = ((u64)1 << (size * 8)) - 1; 4683 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4684 reg->umin_value &= mask; 4685 reg->umax_value &= mask; 4686 } else { 4687 reg->umin_value = 0; 4688 reg->umax_value = mask; 4689 } 4690 reg->smin_value = reg->umin_value; 4691 reg->smax_value = reg->umax_value; 4692 4693 /* If size is smaller than 32bit register the 32bit register 4694 * values are also truncated so we push 64-bit bounds into 4695 * 32-bit bounds. Above were truncated < 32-bits already. 4696 */ 4697 if (size >= 4) 4698 return; 4699 __reg_combine_64_into_32(reg); 4700 } 4701 4702 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4703 { 4704 /* A map is considered read-only if the following condition are true: 4705 * 4706 * 1) BPF program side cannot change any of the map content. The 4707 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4708 * and was set at map creation time. 4709 * 2) The map value(s) have been initialized from user space by a 4710 * loader and then "frozen", such that no new map update/delete 4711 * operations from syscall side are possible for the rest of 4712 * the map's lifetime from that point onwards. 4713 * 3) Any parallel/pending map update/delete operations from syscall 4714 * side have been completed. Only after that point, it's safe to 4715 * assume that map value(s) are immutable. 4716 */ 4717 return (map->map_flags & BPF_F_RDONLY_PROG) && 4718 READ_ONCE(map->frozen) && 4719 !bpf_map_write_active(map); 4720 } 4721 4722 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4723 { 4724 void *ptr; 4725 u64 addr; 4726 int err; 4727 4728 err = map->ops->map_direct_value_addr(map, &addr, off); 4729 if (err) 4730 return err; 4731 ptr = (void *)(long)addr + off; 4732 4733 switch (size) { 4734 case sizeof(u8): 4735 *val = (u64)*(u8 *)ptr; 4736 break; 4737 case sizeof(u16): 4738 *val = (u64)*(u16 *)ptr; 4739 break; 4740 case sizeof(u32): 4741 *val = (u64)*(u32 *)ptr; 4742 break; 4743 case sizeof(u64): 4744 *val = *(u64 *)ptr; 4745 break; 4746 default: 4747 return -EINVAL; 4748 } 4749 return 0; 4750 } 4751 4752 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4753 struct bpf_reg_state *regs, 4754 int regno, int off, int size, 4755 enum bpf_access_type atype, 4756 int value_regno) 4757 { 4758 struct bpf_reg_state *reg = regs + regno; 4759 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4760 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4761 enum bpf_type_flag flag = 0; 4762 u32 btf_id; 4763 int ret; 4764 4765 if (!env->allow_ptr_leaks) { 4766 verbose(env, 4767 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4768 tname); 4769 return -EPERM; 4770 } 4771 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 4772 verbose(env, 4773 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 4774 tname); 4775 return -EINVAL; 4776 } 4777 if (off < 0) { 4778 verbose(env, 4779 "R%d is ptr_%s invalid negative access: off=%d\n", 4780 regno, tname, off); 4781 return -EACCES; 4782 } 4783 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4784 char tn_buf[48]; 4785 4786 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4787 verbose(env, 4788 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4789 regno, tname, off, tn_buf); 4790 return -EACCES; 4791 } 4792 4793 if (reg->type & MEM_USER) { 4794 verbose(env, 4795 "R%d is ptr_%s access user memory: off=%d\n", 4796 regno, tname, off); 4797 return -EACCES; 4798 } 4799 4800 if (reg->type & MEM_PERCPU) { 4801 verbose(env, 4802 "R%d is ptr_%s access percpu memory: off=%d\n", 4803 regno, tname, off); 4804 return -EACCES; 4805 } 4806 4807 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 4808 if (!btf_is_kernel(reg->btf)) { 4809 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 4810 return -EFAULT; 4811 } 4812 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4813 } else { 4814 /* Writes are permitted with default btf_struct_access for 4815 * program allocated objects (which always have ref_obj_id > 0), 4816 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 4817 */ 4818 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 4819 verbose(env, "only read is supported\n"); 4820 return -EACCES; 4821 } 4822 4823 if (type_is_alloc(reg->type) && !reg->ref_obj_id) { 4824 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 4825 return -EFAULT; 4826 } 4827 4828 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4829 } 4830 4831 if (ret < 0) 4832 return ret; 4833 4834 /* If this is an untrusted pointer, all pointers formed by walking it 4835 * also inherit the untrusted flag. 4836 */ 4837 if (type_flag(reg->type) & PTR_UNTRUSTED) 4838 flag |= PTR_UNTRUSTED; 4839 4840 /* By default any pointer obtained from walking a trusted pointer is 4841 * no longer trusted except the rcu case below. 4842 */ 4843 flag &= ~PTR_TRUSTED; 4844 4845 if (flag & MEM_RCU) { 4846 /* Mark value register as MEM_RCU only if it is protected by 4847 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU 4848 * itself can already indicate trustedness inside the rcu 4849 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since 4850 * it could be null in some cases. 4851 */ 4852 if (!env->cur_state->active_rcu_lock || 4853 !(is_trusted_reg(reg) || is_rcu_reg(reg))) 4854 flag &= ~MEM_RCU; 4855 else 4856 flag |= PTR_MAYBE_NULL; 4857 } else if (reg->type & MEM_RCU) { 4858 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged 4859 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively. 4860 */ 4861 flag |= PTR_UNTRUSTED; 4862 } 4863 4864 if (atype == BPF_READ && value_regno >= 0) 4865 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4866 4867 return 0; 4868 } 4869 4870 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4871 struct bpf_reg_state *regs, 4872 int regno, int off, int size, 4873 enum bpf_access_type atype, 4874 int value_regno) 4875 { 4876 struct bpf_reg_state *reg = regs + regno; 4877 struct bpf_map *map = reg->map_ptr; 4878 struct bpf_reg_state map_reg; 4879 enum bpf_type_flag flag = 0; 4880 const struct btf_type *t; 4881 const char *tname; 4882 u32 btf_id; 4883 int ret; 4884 4885 if (!btf_vmlinux) { 4886 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4887 return -ENOTSUPP; 4888 } 4889 4890 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4891 verbose(env, "map_ptr access not supported for map type %d\n", 4892 map->map_type); 4893 return -ENOTSUPP; 4894 } 4895 4896 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4897 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4898 4899 if (!env->allow_ptr_leaks) { 4900 verbose(env, 4901 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4902 tname); 4903 return -EPERM; 4904 } 4905 4906 if (off < 0) { 4907 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4908 regno, tname, off); 4909 return -EACCES; 4910 } 4911 4912 if (atype != BPF_READ) { 4913 verbose(env, "only read from %s is supported\n", tname); 4914 return -EACCES; 4915 } 4916 4917 /* Simulate access to a PTR_TO_BTF_ID */ 4918 memset(&map_reg, 0, sizeof(map_reg)); 4919 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 4920 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 4921 if (ret < 0) 4922 return ret; 4923 4924 if (value_regno >= 0) 4925 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4926 4927 return 0; 4928 } 4929 4930 /* Check that the stack access at the given offset is within bounds. The 4931 * maximum valid offset is -1. 4932 * 4933 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4934 * -state->allocated_stack for reads. 4935 */ 4936 static int check_stack_slot_within_bounds(int off, 4937 struct bpf_func_state *state, 4938 enum bpf_access_type t) 4939 { 4940 int min_valid_off; 4941 4942 if (t == BPF_WRITE) 4943 min_valid_off = -MAX_BPF_STACK; 4944 else 4945 min_valid_off = -state->allocated_stack; 4946 4947 if (off < min_valid_off || off > -1) 4948 return -EACCES; 4949 return 0; 4950 } 4951 4952 /* Check that the stack access at 'regno + off' falls within the maximum stack 4953 * bounds. 4954 * 4955 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4956 */ 4957 static int check_stack_access_within_bounds( 4958 struct bpf_verifier_env *env, 4959 int regno, int off, int access_size, 4960 enum bpf_access_src src, enum bpf_access_type type) 4961 { 4962 struct bpf_reg_state *regs = cur_regs(env); 4963 struct bpf_reg_state *reg = regs + regno; 4964 struct bpf_func_state *state = func(env, reg); 4965 int min_off, max_off; 4966 int err; 4967 char *err_extra; 4968 4969 if (src == ACCESS_HELPER) 4970 /* We don't know if helpers are reading or writing (or both). */ 4971 err_extra = " indirect access to"; 4972 else if (type == BPF_READ) 4973 err_extra = " read from"; 4974 else 4975 err_extra = " write to"; 4976 4977 if (tnum_is_const(reg->var_off)) { 4978 min_off = reg->var_off.value + off; 4979 if (access_size > 0) 4980 max_off = min_off + access_size - 1; 4981 else 4982 max_off = min_off; 4983 } else { 4984 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4985 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4986 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4987 err_extra, regno); 4988 return -EACCES; 4989 } 4990 min_off = reg->smin_value + off; 4991 if (access_size > 0) 4992 max_off = reg->smax_value + off + access_size - 1; 4993 else 4994 max_off = min_off; 4995 } 4996 4997 err = check_stack_slot_within_bounds(min_off, state, type); 4998 if (!err) 4999 err = check_stack_slot_within_bounds(max_off, state, type); 5000 5001 if (err) { 5002 if (tnum_is_const(reg->var_off)) { 5003 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5004 err_extra, regno, off, access_size); 5005 } else { 5006 char tn_buf[48]; 5007 5008 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5009 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5010 err_extra, regno, tn_buf, access_size); 5011 } 5012 } 5013 return err; 5014 } 5015 5016 /* check whether memory at (regno + off) is accessible for t = (read | write) 5017 * if t==write, value_regno is a register which value is stored into memory 5018 * if t==read, value_regno is a register which will receive the value from memory 5019 * if t==write && value_regno==-1, some unknown value is stored into memory 5020 * if t==read && value_regno==-1, don't care what we read from memory 5021 */ 5022 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5023 int off, int bpf_size, enum bpf_access_type t, 5024 int value_regno, bool strict_alignment_once) 5025 { 5026 struct bpf_reg_state *regs = cur_regs(env); 5027 struct bpf_reg_state *reg = regs + regno; 5028 struct bpf_func_state *state; 5029 int size, err = 0; 5030 5031 size = bpf_size_to_bytes(bpf_size); 5032 if (size < 0) 5033 return size; 5034 5035 /* alignment checks will add in reg->off themselves */ 5036 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5037 if (err) 5038 return err; 5039 5040 /* for access checks, reg->off is just part of off */ 5041 off += reg->off; 5042 5043 if (reg->type == PTR_TO_MAP_KEY) { 5044 if (t == BPF_WRITE) { 5045 verbose(env, "write to change key R%d not allowed\n", regno); 5046 return -EACCES; 5047 } 5048 5049 err = check_mem_region_access(env, regno, off, size, 5050 reg->map_ptr->key_size, false); 5051 if (err) 5052 return err; 5053 if (value_regno >= 0) 5054 mark_reg_unknown(env, regs, value_regno); 5055 } else if (reg->type == PTR_TO_MAP_VALUE) { 5056 struct btf_field *kptr_field = NULL; 5057 5058 if (t == BPF_WRITE && value_regno >= 0 && 5059 is_pointer_value(env, value_regno)) { 5060 verbose(env, "R%d leaks addr into map\n", value_regno); 5061 return -EACCES; 5062 } 5063 err = check_map_access_type(env, regno, off, size, t); 5064 if (err) 5065 return err; 5066 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5067 if (err) 5068 return err; 5069 if (tnum_is_const(reg->var_off)) 5070 kptr_field = btf_record_find(reg->map_ptr->record, 5071 off + reg->var_off.value, BPF_KPTR); 5072 if (kptr_field) { 5073 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5074 } else if (t == BPF_READ && value_regno >= 0) { 5075 struct bpf_map *map = reg->map_ptr; 5076 5077 /* if map is read-only, track its contents as scalars */ 5078 if (tnum_is_const(reg->var_off) && 5079 bpf_map_is_rdonly(map) && 5080 map->ops->map_direct_value_addr) { 5081 int map_off = off + reg->var_off.value; 5082 u64 val = 0; 5083 5084 err = bpf_map_direct_read(map, map_off, size, 5085 &val); 5086 if (err) 5087 return err; 5088 5089 regs[value_regno].type = SCALAR_VALUE; 5090 __mark_reg_known(®s[value_regno], val); 5091 } else { 5092 mark_reg_unknown(env, regs, value_regno); 5093 } 5094 } 5095 } else if (base_type(reg->type) == PTR_TO_MEM) { 5096 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5097 5098 if (type_may_be_null(reg->type)) { 5099 verbose(env, "R%d invalid mem access '%s'\n", regno, 5100 reg_type_str(env, reg->type)); 5101 return -EACCES; 5102 } 5103 5104 if (t == BPF_WRITE && rdonly_mem) { 5105 verbose(env, "R%d cannot write into %s\n", 5106 regno, reg_type_str(env, reg->type)); 5107 return -EACCES; 5108 } 5109 5110 if (t == BPF_WRITE && value_regno >= 0 && 5111 is_pointer_value(env, value_regno)) { 5112 verbose(env, "R%d leaks addr into mem\n", value_regno); 5113 return -EACCES; 5114 } 5115 5116 err = check_mem_region_access(env, regno, off, size, 5117 reg->mem_size, false); 5118 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5119 mark_reg_unknown(env, regs, value_regno); 5120 } else if (reg->type == PTR_TO_CTX) { 5121 enum bpf_reg_type reg_type = SCALAR_VALUE; 5122 struct btf *btf = NULL; 5123 u32 btf_id = 0; 5124 5125 if (t == BPF_WRITE && value_regno >= 0 && 5126 is_pointer_value(env, value_regno)) { 5127 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5128 return -EACCES; 5129 } 5130 5131 err = check_ptr_off_reg(env, reg, regno); 5132 if (err < 0) 5133 return err; 5134 5135 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5136 &btf_id); 5137 if (err) 5138 verbose_linfo(env, insn_idx, "; "); 5139 if (!err && t == BPF_READ && value_regno >= 0) { 5140 /* ctx access returns either a scalar, or a 5141 * PTR_TO_PACKET[_META,_END]. In the latter 5142 * case, we know the offset is zero. 5143 */ 5144 if (reg_type == SCALAR_VALUE) { 5145 mark_reg_unknown(env, regs, value_regno); 5146 } else { 5147 mark_reg_known_zero(env, regs, 5148 value_regno); 5149 if (type_may_be_null(reg_type)) 5150 regs[value_regno].id = ++env->id_gen; 5151 /* A load of ctx field could have different 5152 * actual load size with the one encoded in the 5153 * insn. When the dst is PTR, it is for sure not 5154 * a sub-register. 5155 */ 5156 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5157 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5158 regs[value_regno].btf = btf; 5159 regs[value_regno].btf_id = btf_id; 5160 } 5161 } 5162 regs[value_regno].type = reg_type; 5163 } 5164 5165 } else if (reg->type == PTR_TO_STACK) { 5166 /* Basic bounds checks. */ 5167 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5168 if (err) 5169 return err; 5170 5171 state = func(env, reg); 5172 err = update_stack_depth(env, state, off); 5173 if (err) 5174 return err; 5175 5176 if (t == BPF_READ) 5177 err = check_stack_read(env, regno, off, size, 5178 value_regno); 5179 else 5180 err = check_stack_write(env, regno, off, size, 5181 value_regno, insn_idx); 5182 } else if (reg_is_pkt_pointer(reg)) { 5183 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5184 verbose(env, "cannot write into packet\n"); 5185 return -EACCES; 5186 } 5187 if (t == BPF_WRITE && value_regno >= 0 && 5188 is_pointer_value(env, value_regno)) { 5189 verbose(env, "R%d leaks addr into packet\n", 5190 value_regno); 5191 return -EACCES; 5192 } 5193 err = check_packet_access(env, regno, off, size, false); 5194 if (!err && t == BPF_READ && value_regno >= 0) 5195 mark_reg_unknown(env, regs, value_regno); 5196 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5197 if (t == BPF_WRITE && value_regno >= 0 && 5198 is_pointer_value(env, value_regno)) { 5199 verbose(env, "R%d leaks addr into flow keys\n", 5200 value_regno); 5201 return -EACCES; 5202 } 5203 5204 err = check_flow_keys_access(env, off, size); 5205 if (!err && t == BPF_READ && value_regno >= 0) 5206 mark_reg_unknown(env, regs, value_regno); 5207 } else if (type_is_sk_pointer(reg->type)) { 5208 if (t == BPF_WRITE) { 5209 verbose(env, "R%d cannot write into %s\n", 5210 regno, reg_type_str(env, reg->type)); 5211 return -EACCES; 5212 } 5213 err = check_sock_access(env, insn_idx, regno, off, size, t); 5214 if (!err && value_regno >= 0) 5215 mark_reg_unknown(env, regs, value_regno); 5216 } else if (reg->type == PTR_TO_TP_BUFFER) { 5217 err = check_tp_buffer_access(env, reg, regno, off, size); 5218 if (!err && t == BPF_READ && value_regno >= 0) 5219 mark_reg_unknown(env, regs, value_regno); 5220 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5221 !type_may_be_null(reg->type)) { 5222 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5223 value_regno); 5224 } else if (reg->type == CONST_PTR_TO_MAP) { 5225 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5226 value_regno); 5227 } else if (base_type(reg->type) == PTR_TO_BUF) { 5228 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5229 u32 *max_access; 5230 5231 if (rdonly_mem) { 5232 if (t == BPF_WRITE) { 5233 verbose(env, "R%d cannot write into %s\n", 5234 regno, reg_type_str(env, reg->type)); 5235 return -EACCES; 5236 } 5237 max_access = &env->prog->aux->max_rdonly_access; 5238 } else { 5239 max_access = &env->prog->aux->max_rdwr_access; 5240 } 5241 5242 err = check_buffer_access(env, reg, regno, off, size, false, 5243 max_access); 5244 5245 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5246 mark_reg_unknown(env, regs, value_regno); 5247 } else { 5248 verbose(env, "R%d invalid mem access '%s'\n", regno, 5249 reg_type_str(env, reg->type)); 5250 return -EACCES; 5251 } 5252 5253 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5254 regs[value_regno].type == SCALAR_VALUE) { 5255 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5256 coerce_reg_to_size(®s[value_regno], size); 5257 } 5258 return err; 5259 } 5260 5261 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5262 { 5263 int load_reg; 5264 int err; 5265 5266 switch (insn->imm) { 5267 case BPF_ADD: 5268 case BPF_ADD | BPF_FETCH: 5269 case BPF_AND: 5270 case BPF_AND | BPF_FETCH: 5271 case BPF_OR: 5272 case BPF_OR | BPF_FETCH: 5273 case BPF_XOR: 5274 case BPF_XOR | BPF_FETCH: 5275 case BPF_XCHG: 5276 case BPF_CMPXCHG: 5277 break; 5278 default: 5279 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5280 return -EINVAL; 5281 } 5282 5283 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5284 verbose(env, "invalid atomic operand size\n"); 5285 return -EINVAL; 5286 } 5287 5288 /* check src1 operand */ 5289 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5290 if (err) 5291 return err; 5292 5293 /* check src2 operand */ 5294 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5295 if (err) 5296 return err; 5297 5298 if (insn->imm == BPF_CMPXCHG) { 5299 /* Check comparison of R0 with memory location */ 5300 const u32 aux_reg = BPF_REG_0; 5301 5302 err = check_reg_arg(env, aux_reg, SRC_OP); 5303 if (err) 5304 return err; 5305 5306 if (is_pointer_value(env, aux_reg)) { 5307 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5308 return -EACCES; 5309 } 5310 } 5311 5312 if (is_pointer_value(env, insn->src_reg)) { 5313 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5314 return -EACCES; 5315 } 5316 5317 if (is_ctx_reg(env, insn->dst_reg) || 5318 is_pkt_reg(env, insn->dst_reg) || 5319 is_flow_key_reg(env, insn->dst_reg) || 5320 is_sk_reg(env, insn->dst_reg)) { 5321 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5322 insn->dst_reg, 5323 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5324 return -EACCES; 5325 } 5326 5327 if (insn->imm & BPF_FETCH) { 5328 if (insn->imm == BPF_CMPXCHG) 5329 load_reg = BPF_REG_0; 5330 else 5331 load_reg = insn->src_reg; 5332 5333 /* check and record load of old value */ 5334 err = check_reg_arg(env, load_reg, DST_OP); 5335 if (err) 5336 return err; 5337 } else { 5338 /* This instruction accesses a memory location but doesn't 5339 * actually load it into a register. 5340 */ 5341 load_reg = -1; 5342 } 5343 5344 /* Check whether we can read the memory, with second call for fetch 5345 * case to simulate the register fill. 5346 */ 5347 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5348 BPF_SIZE(insn->code), BPF_READ, -1, true); 5349 if (!err && load_reg >= 0) 5350 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5351 BPF_SIZE(insn->code), BPF_READ, load_reg, 5352 true); 5353 if (err) 5354 return err; 5355 5356 /* Check whether we can write into the same memory. */ 5357 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5358 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5359 if (err) 5360 return err; 5361 5362 return 0; 5363 } 5364 5365 /* When register 'regno' is used to read the stack (either directly or through 5366 * a helper function) make sure that it's within stack boundary and, depending 5367 * on the access type, that all elements of the stack are initialized. 5368 * 5369 * 'off' includes 'regno->off', but not its dynamic part (if any). 5370 * 5371 * All registers that have been spilled on the stack in the slots within the 5372 * read offsets are marked as read. 5373 */ 5374 static int check_stack_range_initialized( 5375 struct bpf_verifier_env *env, int regno, int off, 5376 int access_size, bool zero_size_allowed, 5377 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5378 { 5379 struct bpf_reg_state *reg = reg_state(env, regno); 5380 struct bpf_func_state *state = func(env, reg); 5381 int err, min_off, max_off, i, j, slot, spi; 5382 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5383 enum bpf_access_type bounds_check_type; 5384 /* Some accesses can write anything into the stack, others are 5385 * read-only. 5386 */ 5387 bool clobber = false; 5388 5389 if (access_size == 0 && !zero_size_allowed) { 5390 verbose(env, "invalid zero-sized read\n"); 5391 return -EACCES; 5392 } 5393 5394 if (type == ACCESS_HELPER) { 5395 /* The bounds checks for writes are more permissive than for 5396 * reads. However, if raw_mode is not set, we'll do extra 5397 * checks below. 5398 */ 5399 bounds_check_type = BPF_WRITE; 5400 clobber = true; 5401 } else { 5402 bounds_check_type = BPF_READ; 5403 } 5404 err = check_stack_access_within_bounds(env, regno, off, access_size, 5405 type, bounds_check_type); 5406 if (err) 5407 return err; 5408 5409 5410 if (tnum_is_const(reg->var_off)) { 5411 min_off = max_off = reg->var_off.value + off; 5412 } else { 5413 /* Variable offset is prohibited for unprivileged mode for 5414 * simplicity since it requires corresponding support in 5415 * Spectre masking for stack ALU. 5416 * See also retrieve_ptr_limit(). 5417 */ 5418 if (!env->bypass_spec_v1) { 5419 char tn_buf[48]; 5420 5421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5422 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5423 regno, err_extra, tn_buf); 5424 return -EACCES; 5425 } 5426 /* Only initialized buffer on stack is allowed to be accessed 5427 * with variable offset. With uninitialized buffer it's hard to 5428 * guarantee that whole memory is marked as initialized on 5429 * helper return since specific bounds are unknown what may 5430 * cause uninitialized stack leaking. 5431 */ 5432 if (meta && meta->raw_mode) 5433 meta = NULL; 5434 5435 min_off = reg->smin_value + off; 5436 max_off = reg->smax_value + off; 5437 } 5438 5439 if (meta && meta->raw_mode) { 5440 meta->access_size = access_size; 5441 meta->regno = regno; 5442 return 0; 5443 } 5444 5445 for (i = min_off; i < max_off + access_size; i++) { 5446 u8 *stype; 5447 5448 slot = -i - 1; 5449 spi = slot / BPF_REG_SIZE; 5450 if (state->allocated_stack <= slot) 5451 goto err; 5452 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5453 if (*stype == STACK_MISC) 5454 goto mark; 5455 if (*stype == STACK_ZERO) { 5456 if (clobber) { 5457 /* helper can write anything into the stack */ 5458 *stype = STACK_MISC; 5459 } 5460 goto mark; 5461 } 5462 5463 if (is_spilled_reg(&state->stack[spi]) && 5464 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5465 env->allow_ptr_leaks)) { 5466 if (clobber) { 5467 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5468 for (j = 0; j < BPF_REG_SIZE; j++) 5469 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5470 } 5471 goto mark; 5472 } 5473 5474 err: 5475 if (tnum_is_const(reg->var_off)) { 5476 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5477 err_extra, regno, min_off, i - min_off, access_size); 5478 } else { 5479 char tn_buf[48]; 5480 5481 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5482 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5483 err_extra, regno, tn_buf, i - min_off, access_size); 5484 } 5485 return -EACCES; 5486 mark: 5487 /* reading any byte out of 8-byte 'spill_slot' will cause 5488 * the whole slot to be marked as 'read' 5489 */ 5490 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5491 state->stack[spi].spilled_ptr.parent, 5492 REG_LIVE_READ64); 5493 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5494 * be sure that whether stack slot is written to or not. Hence, 5495 * we must still conservatively propagate reads upwards even if 5496 * helper may write to the entire memory range. 5497 */ 5498 } 5499 return update_stack_depth(env, state, min_off); 5500 } 5501 5502 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5503 int access_size, bool zero_size_allowed, 5504 struct bpf_call_arg_meta *meta) 5505 { 5506 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5507 u32 *max_access; 5508 5509 switch (base_type(reg->type)) { 5510 case PTR_TO_PACKET: 5511 case PTR_TO_PACKET_META: 5512 return check_packet_access(env, regno, reg->off, access_size, 5513 zero_size_allowed); 5514 case PTR_TO_MAP_KEY: 5515 if (meta && meta->raw_mode) { 5516 verbose(env, "R%d cannot write into %s\n", regno, 5517 reg_type_str(env, reg->type)); 5518 return -EACCES; 5519 } 5520 return check_mem_region_access(env, regno, reg->off, access_size, 5521 reg->map_ptr->key_size, false); 5522 case PTR_TO_MAP_VALUE: 5523 if (check_map_access_type(env, regno, reg->off, access_size, 5524 meta && meta->raw_mode ? BPF_WRITE : 5525 BPF_READ)) 5526 return -EACCES; 5527 return check_map_access(env, regno, reg->off, access_size, 5528 zero_size_allowed, ACCESS_HELPER); 5529 case PTR_TO_MEM: 5530 if (type_is_rdonly_mem(reg->type)) { 5531 if (meta && meta->raw_mode) { 5532 verbose(env, "R%d cannot write into %s\n", regno, 5533 reg_type_str(env, reg->type)); 5534 return -EACCES; 5535 } 5536 } 5537 return check_mem_region_access(env, regno, reg->off, 5538 access_size, reg->mem_size, 5539 zero_size_allowed); 5540 case PTR_TO_BUF: 5541 if (type_is_rdonly_mem(reg->type)) { 5542 if (meta && meta->raw_mode) { 5543 verbose(env, "R%d cannot write into %s\n", regno, 5544 reg_type_str(env, reg->type)); 5545 return -EACCES; 5546 } 5547 5548 max_access = &env->prog->aux->max_rdonly_access; 5549 } else { 5550 max_access = &env->prog->aux->max_rdwr_access; 5551 } 5552 return check_buffer_access(env, reg, regno, reg->off, 5553 access_size, zero_size_allowed, 5554 max_access); 5555 case PTR_TO_STACK: 5556 return check_stack_range_initialized( 5557 env, 5558 regno, reg->off, access_size, 5559 zero_size_allowed, ACCESS_HELPER, meta); 5560 case PTR_TO_CTX: 5561 /* in case the function doesn't know how to access the context, 5562 * (because we are in a program of type SYSCALL for example), we 5563 * can not statically check its size. 5564 * Dynamically check it now. 5565 */ 5566 if (!env->ops->convert_ctx_access) { 5567 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5568 int offset = access_size - 1; 5569 5570 /* Allow zero-byte read from PTR_TO_CTX */ 5571 if (access_size == 0) 5572 return zero_size_allowed ? 0 : -EACCES; 5573 5574 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5575 atype, -1, false); 5576 } 5577 5578 fallthrough; 5579 default: /* scalar_value or invalid ptr */ 5580 /* Allow zero-byte read from NULL, regardless of pointer type */ 5581 if (zero_size_allowed && access_size == 0 && 5582 register_is_null(reg)) 5583 return 0; 5584 5585 verbose(env, "R%d type=%s ", regno, 5586 reg_type_str(env, reg->type)); 5587 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5588 return -EACCES; 5589 } 5590 } 5591 5592 static int check_mem_size_reg(struct bpf_verifier_env *env, 5593 struct bpf_reg_state *reg, u32 regno, 5594 bool zero_size_allowed, 5595 struct bpf_call_arg_meta *meta) 5596 { 5597 int err; 5598 5599 /* This is used to refine r0 return value bounds for helpers 5600 * that enforce this value as an upper bound on return values. 5601 * See do_refine_retval_range() for helpers that can refine 5602 * the return value. C type of helper is u32 so we pull register 5603 * bound from umax_value however, if negative verifier errors 5604 * out. Only upper bounds can be learned because retval is an 5605 * int type and negative retvals are allowed. 5606 */ 5607 meta->msize_max_value = reg->umax_value; 5608 5609 /* The register is SCALAR_VALUE; the access check 5610 * happens using its boundaries. 5611 */ 5612 if (!tnum_is_const(reg->var_off)) 5613 /* For unprivileged variable accesses, disable raw 5614 * mode so that the program is required to 5615 * initialize all the memory that the helper could 5616 * just partially fill up. 5617 */ 5618 meta = NULL; 5619 5620 if (reg->smin_value < 0) { 5621 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5622 regno); 5623 return -EACCES; 5624 } 5625 5626 if (reg->umin_value == 0) { 5627 err = check_helper_mem_access(env, regno - 1, 0, 5628 zero_size_allowed, 5629 meta); 5630 if (err) 5631 return err; 5632 } 5633 5634 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5635 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5636 regno); 5637 return -EACCES; 5638 } 5639 err = check_helper_mem_access(env, regno - 1, 5640 reg->umax_value, 5641 zero_size_allowed, meta); 5642 if (!err) 5643 err = mark_chain_precision(env, regno); 5644 return err; 5645 } 5646 5647 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5648 u32 regno, u32 mem_size) 5649 { 5650 bool may_be_null = type_may_be_null(reg->type); 5651 struct bpf_reg_state saved_reg; 5652 struct bpf_call_arg_meta meta; 5653 int err; 5654 5655 if (register_is_null(reg)) 5656 return 0; 5657 5658 memset(&meta, 0, sizeof(meta)); 5659 /* Assuming that the register contains a value check if the memory 5660 * access is safe. Temporarily save and restore the register's state as 5661 * the conversion shouldn't be visible to a caller. 5662 */ 5663 if (may_be_null) { 5664 saved_reg = *reg; 5665 mark_ptr_not_null_reg(reg); 5666 } 5667 5668 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5669 /* Check access for BPF_WRITE */ 5670 meta.raw_mode = true; 5671 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5672 5673 if (may_be_null) 5674 *reg = saved_reg; 5675 5676 return err; 5677 } 5678 5679 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5680 u32 regno) 5681 { 5682 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5683 bool may_be_null = type_may_be_null(mem_reg->type); 5684 struct bpf_reg_state saved_reg; 5685 struct bpf_call_arg_meta meta; 5686 int err; 5687 5688 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5689 5690 memset(&meta, 0, sizeof(meta)); 5691 5692 if (may_be_null) { 5693 saved_reg = *mem_reg; 5694 mark_ptr_not_null_reg(mem_reg); 5695 } 5696 5697 err = check_mem_size_reg(env, reg, regno, true, &meta); 5698 /* Check access for BPF_WRITE */ 5699 meta.raw_mode = true; 5700 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5701 5702 if (may_be_null) 5703 *mem_reg = saved_reg; 5704 return err; 5705 } 5706 5707 /* Implementation details: 5708 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 5709 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 5710 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5711 * Two separate bpf_obj_new will also have different reg->id. 5712 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 5713 * clears reg->id after value_or_null->value transition, since the verifier only 5714 * cares about the range of access to valid map value pointer and doesn't care 5715 * about actual address of the map element. 5716 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5717 * reg->id > 0 after value_or_null->value transition. By doing so 5718 * two bpf_map_lookups will be considered two different pointers that 5719 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 5720 * returned from bpf_obj_new. 5721 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5722 * dead-locks. 5723 * Since only one bpf_spin_lock is allowed the checks are simpler than 5724 * reg_is_refcounted() logic. The verifier needs to remember only 5725 * one spin_lock instead of array of acquired_refs. 5726 * cur_state->active_lock remembers which map value element or allocated 5727 * object got locked and clears it after bpf_spin_unlock. 5728 */ 5729 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5730 bool is_lock) 5731 { 5732 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5733 struct bpf_verifier_state *cur = env->cur_state; 5734 bool is_const = tnum_is_const(reg->var_off); 5735 u64 val = reg->var_off.value; 5736 struct bpf_map *map = NULL; 5737 struct btf *btf = NULL; 5738 struct btf_record *rec; 5739 5740 if (!is_const) { 5741 verbose(env, 5742 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5743 regno); 5744 return -EINVAL; 5745 } 5746 if (reg->type == PTR_TO_MAP_VALUE) { 5747 map = reg->map_ptr; 5748 if (!map->btf) { 5749 verbose(env, 5750 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5751 map->name); 5752 return -EINVAL; 5753 } 5754 } else { 5755 btf = reg->btf; 5756 } 5757 5758 rec = reg_btf_record(reg); 5759 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 5760 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 5761 map ? map->name : "kptr"); 5762 return -EINVAL; 5763 } 5764 if (rec->spin_lock_off != val + reg->off) { 5765 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 5766 val + reg->off, rec->spin_lock_off); 5767 return -EINVAL; 5768 } 5769 if (is_lock) { 5770 if (cur->active_lock.ptr) { 5771 verbose(env, 5772 "Locking two bpf_spin_locks are not allowed\n"); 5773 return -EINVAL; 5774 } 5775 if (map) 5776 cur->active_lock.ptr = map; 5777 else 5778 cur->active_lock.ptr = btf; 5779 cur->active_lock.id = reg->id; 5780 } else { 5781 struct bpf_func_state *fstate = cur_func(env); 5782 void *ptr; 5783 int i; 5784 5785 if (map) 5786 ptr = map; 5787 else 5788 ptr = btf; 5789 5790 if (!cur->active_lock.ptr) { 5791 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5792 return -EINVAL; 5793 } 5794 if (cur->active_lock.ptr != ptr || 5795 cur->active_lock.id != reg->id) { 5796 verbose(env, "bpf_spin_unlock of different lock\n"); 5797 return -EINVAL; 5798 } 5799 cur->active_lock.ptr = NULL; 5800 cur->active_lock.id = 0; 5801 5802 for (i = fstate->acquired_refs - 1; i >= 0; i--) { 5803 int err; 5804 5805 /* Complain on error because this reference state cannot 5806 * be freed before this point, as bpf_spin_lock critical 5807 * section does not allow functions that release the 5808 * allocated object immediately. 5809 */ 5810 if (!fstate->refs[i].release_on_unlock) 5811 continue; 5812 err = release_reference(env, fstate->refs[i].id); 5813 if (err) { 5814 verbose(env, "failed to release release_on_unlock reference"); 5815 return err; 5816 } 5817 } 5818 } 5819 return 0; 5820 } 5821 5822 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5823 struct bpf_call_arg_meta *meta) 5824 { 5825 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5826 bool is_const = tnum_is_const(reg->var_off); 5827 struct bpf_map *map = reg->map_ptr; 5828 u64 val = reg->var_off.value; 5829 5830 if (!is_const) { 5831 verbose(env, 5832 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5833 regno); 5834 return -EINVAL; 5835 } 5836 if (!map->btf) { 5837 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5838 map->name); 5839 return -EINVAL; 5840 } 5841 if (!btf_record_has_field(map->record, BPF_TIMER)) { 5842 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 5843 return -EINVAL; 5844 } 5845 if (map->record->timer_off != val + reg->off) { 5846 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5847 val + reg->off, map->record->timer_off); 5848 return -EINVAL; 5849 } 5850 if (meta->map_ptr) { 5851 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5852 return -EFAULT; 5853 } 5854 meta->map_uid = reg->map_uid; 5855 meta->map_ptr = map; 5856 return 0; 5857 } 5858 5859 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5860 struct bpf_call_arg_meta *meta) 5861 { 5862 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5863 struct bpf_map *map_ptr = reg->map_ptr; 5864 struct btf_field *kptr_field; 5865 u32 kptr_off; 5866 5867 if (!tnum_is_const(reg->var_off)) { 5868 verbose(env, 5869 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5870 regno); 5871 return -EINVAL; 5872 } 5873 if (!map_ptr->btf) { 5874 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5875 map_ptr->name); 5876 return -EINVAL; 5877 } 5878 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 5879 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5880 return -EINVAL; 5881 } 5882 5883 meta->map_ptr = map_ptr; 5884 kptr_off = reg->off + reg->var_off.value; 5885 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 5886 if (!kptr_field) { 5887 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5888 return -EACCES; 5889 } 5890 if (kptr_field->type != BPF_KPTR_REF) { 5891 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5892 return -EACCES; 5893 } 5894 meta->kptr_field = kptr_field; 5895 return 0; 5896 } 5897 5898 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 5899 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 5900 * 5901 * In both cases we deal with the first 8 bytes, but need to mark the next 8 5902 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 5903 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 5904 * 5905 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 5906 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 5907 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 5908 * mutate the view of the dynptr and also possibly destroy it. In the latter 5909 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 5910 * memory that dynptr points to. 5911 * 5912 * The verifier will keep track both levels of mutation (bpf_dynptr's in 5913 * reg->type and the memory's in reg->dynptr.type), but there is no support for 5914 * readonly dynptr view yet, hence only the first case is tracked and checked. 5915 * 5916 * This is consistent with how C applies the const modifier to a struct object, 5917 * where the pointer itself inside bpf_dynptr becomes const but not what it 5918 * points to. 5919 * 5920 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 5921 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 5922 */ 5923 int process_dynptr_func(struct bpf_verifier_env *env, int regno, 5924 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) 5925 { 5926 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5927 5928 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 5929 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 5930 */ 5931 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 5932 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 5933 return -EFAULT; 5934 } 5935 /* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 5936 * check_func_arg_reg_off's logic. We only need to check offset 5937 * alignment for PTR_TO_STACK. 5938 */ 5939 if (reg->type == PTR_TO_STACK && (reg->off % BPF_REG_SIZE)) { 5940 verbose(env, "cannot pass in dynptr at an offset=%d\n", reg->off); 5941 return -EINVAL; 5942 } 5943 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 5944 * constructing a mutable bpf_dynptr object. 5945 * 5946 * Currently, this is only possible with PTR_TO_STACK 5947 * pointing to a region of at least 16 bytes which doesn't 5948 * contain an existing bpf_dynptr. 5949 * 5950 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 5951 * mutated or destroyed. However, the memory it points to 5952 * may be mutated. 5953 * 5954 * None - Points to a initialized dynptr that can be mutated and 5955 * destroyed, including mutation of the memory it points 5956 * to. 5957 */ 5958 if (arg_type & MEM_UNINIT) { 5959 if (!is_dynptr_reg_valid_uninit(env, reg)) { 5960 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 5961 return -EINVAL; 5962 } 5963 5964 /* We only support one dynptr being uninitialized at the moment, 5965 * which is sufficient for the helper functions we have right now. 5966 */ 5967 if (meta->uninit_dynptr_regno) { 5968 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 5969 return -EFAULT; 5970 } 5971 5972 meta->uninit_dynptr_regno = regno; 5973 } else /* MEM_RDONLY and None case from above */ { 5974 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 5975 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 5976 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 5977 return -EINVAL; 5978 } 5979 5980 if (!is_dynptr_reg_valid_init(env, reg)) { 5981 verbose(env, 5982 "Expected an initialized dynptr as arg #%d\n", 5983 regno); 5984 return -EINVAL; 5985 } 5986 5987 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 5988 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 5989 const char *err_extra = ""; 5990 5991 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 5992 case DYNPTR_TYPE_LOCAL: 5993 err_extra = "local"; 5994 break; 5995 case DYNPTR_TYPE_RINGBUF: 5996 err_extra = "ringbuf"; 5997 break; 5998 default: 5999 err_extra = "<unknown>"; 6000 break; 6001 } 6002 verbose(env, 6003 "Expected a dynptr of type %s as arg #%d\n", 6004 err_extra, regno); 6005 return -EINVAL; 6006 } 6007 } 6008 return 0; 6009 } 6010 6011 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6012 { 6013 return type == ARG_CONST_SIZE || 6014 type == ARG_CONST_SIZE_OR_ZERO; 6015 } 6016 6017 static bool arg_type_is_release(enum bpf_arg_type type) 6018 { 6019 return type & OBJ_RELEASE; 6020 } 6021 6022 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6023 { 6024 return base_type(type) == ARG_PTR_TO_DYNPTR; 6025 } 6026 6027 static int int_ptr_type_to_size(enum bpf_arg_type type) 6028 { 6029 if (type == ARG_PTR_TO_INT) 6030 return sizeof(u32); 6031 else if (type == ARG_PTR_TO_LONG) 6032 return sizeof(u64); 6033 6034 return -EINVAL; 6035 } 6036 6037 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6038 const struct bpf_call_arg_meta *meta, 6039 enum bpf_arg_type *arg_type) 6040 { 6041 if (!meta->map_ptr) { 6042 /* kernel subsystem misconfigured verifier */ 6043 verbose(env, "invalid map_ptr to access map->type\n"); 6044 return -EACCES; 6045 } 6046 6047 switch (meta->map_ptr->map_type) { 6048 case BPF_MAP_TYPE_SOCKMAP: 6049 case BPF_MAP_TYPE_SOCKHASH: 6050 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6051 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6052 } else { 6053 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6054 return -EINVAL; 6055 } 6056 break; 6057 case BPF_MAP_TYPE_BLOOM_FILTER: 6058 if (meta->func_id == BPF_FUNC_map_peek_elem) 6059 *arg_type = ARG_PTR_TO_MAP_VALUE; 6060 break; 6061 default: 6062 break; 6063 } 6064 return 0; 6065 } 6066 6067 struct bpf_reg_types { 6068 const enum bpf_reg_type types[10]; 6069 u32 *btf_id; 6070 }; 6071 6072 static const struct bpf_reg_types sock_types = { 6073 .types = { 6074 PTR_TO_SOCK_COMMON, 6075 PTR_TO_SOCKET, 6076 PTR_TO_TCP_SOCK, 6077 PTR_TO_XDP_SOCK, 6078 }, 6079 }; 6080 6081 #ifdef CONFIG_NET 6082 static const struct bpf_reg_types btf_id_sock_common_types = { 6083 .types = { 6084 PTR_TO_SOCK_COMMON, 6085 PTR_TO_SOCKET, 6086 PTR_TO_TCP_SOCK, 6087 PTR_TO_XDP_SOCK, 6088 PTR_TO_BTF_ID, 6089 PTR_TO_BTF_ID | PTR_TRUSTED, 6090 }, 6091 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6092 }; 6093 #endif 6094 6095 static const struct bpf_reg_types mem_types = { 6096 .types = { 6097 PTR_TO_STACK, 6098 PTR_TO_PACKET, 6099 PTR_TO_PACKET_META, 6100 PTR_TO_MAP_KEY, 6101 PTR_TO_MAP_VALUE, 6102 PTR_TO_MEM, 6103 PTR_TO_MEM | MEM_RINGBUF, 6104 PTR_TO_BUF, 6105 }, 6106 }; 6107 6108 static const struct bpf_reg_types int_ptr_types = { 6109 .types = { 6110 PTR_TO_STACK, 6111 PTR_TO_PACKET, 6112 PTR_TO_PACKET_META, 6113 PTR_TO_MAP_KEY, 6114 PTR_TO_MAP_VALUE, 6115 }, 6116 }; 6117 6118 static const struct bpf_reg_types spin_lock_types = { 6119 .types = { 6120 PTR_TO_MAP_VALUE, 6121 PTR_TO_BTF_ID | MEM_ALLOC, 6122 } 6123 }; 6124 6125 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6126 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6127 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6128 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6129 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6130 static const struct bpf_reg_types btf_ptr_types = { 6131 .types = { 6132 PTR_TO_BTF_ID, 6133 PTR_TO_BTF_ID | PTR_TRUSTED, 6134 PTR_TO_BTF_ID | MEM_RCU, 6135 }, 6136 }; 6137 static const struct bpf_reg_types percpu_btf_ptr_types = { 6138 .types = { 6139 PTR_TO_BTF_ID | MEM_PERCPU, 6140 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6141 } 6142 }; 6143 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6144 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6145 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6146 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6147 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6148 static const struct bpf_reg_types dynptr_types = { 6149 .types = { 6150 PTR_TO_STACK, 6151 CONST_PTR_TO_DYNPTR, 6152 } 6153 }; 6154 6155 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6156 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6157 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6158 [ARG_CONST_SIZE] = &scalar_types, 6159 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6160 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6161 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6162 [ARG_PTR_TO_CTX] = &context_types, 6163 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6164 #ifdef CONFIG_NET 6165 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6166 #endif 6167 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6168 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6169 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6170 [ARG_PTR_TO_MEM] = &mem_types, 6171 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6172 [ARG_PTR_TO_INT] = &int_ptr_types, 6173 [ARG_PTR_TO_LONG] = &int_ptr_types, 6174 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6175 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6176 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6177 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6178 [ARG_PTR_TO_TIMER] = &timer_types, 6179 [ARG_PTR_TO_KPTR] = &kptr_types, 6180 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6181 }; 6182 6183 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6184 enum bpf_arg_type arg_type, 6185 const u32 *arg_btf_id, 6186 struct bpf_call_arg_meta *meta) 6187 { 6188 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6189 enum bpf_reg_type expected, type = reg->type; 6190 const struct bpf_reg_types *compatible; 6191 int i, j; 6192 6193 compatible = compatible_reg_types[base_type(arg_type)]; 6194 if (!compatible) { 6195 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6196 return -EFAULT; 6197 } 6198 6199 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6200 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6201 * 6202 * Same for MAYBE_NULL: 6203 * 6204 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6205 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6206 * 6207 * Therefore we fold these flags depending on the arg_type before comparison. 6208 */ 6209 if (arg_type & MEM_RDONLY) 6210 type &= ~MEM_RDONLY; 6211 if (arg_type & PTR_MAYBE_NULL) 6212 type &= ~PTR_MAYBE_NULL; 6213 6214 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6215 expected = compatible->types[i]; 6216 if (expected == NOT_INIT) 6217 break; 6218 6219 if (type == expected) 6220 goto found; 6221 } 6222 6223 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6224 for (j = 0; j + 1 < i; j++) 6225 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6226 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6227 return -EACCES; 6228 6229 found: 6230 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 6231 /* For bpf_sk_release, it needs to match against first member 6232 * 'struct sock_common', hence make an exception for it. This 6233 * allows bpf_sk_release to work for multiple socket types. 6234 */ 6235 bool strict_type_match = arg_type_is_release(arg_type) && 6236 meta->func_id != BPF_FUNC_sk_release; 6237 6238 if (!arg_btf_id) { 6239 if (!compatible->btf_id) { 6240 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6241 return -EFAULT; 6242 } 6243 arg_btf_id = compatible->btf_id; 6244 } 6245 6246 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6247 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6248 return -EACCES; 6249 } else { 6250 if (arg_btf_id == BPF_PTR_POISON) { 6251 verbose(env, "verifier internal error:"); 6252 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6253 regno); 6254 return -EACCES; 6255 } 6256 6257 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6258 btf_vmlinux, *arg_btf_id, 6259 strict_type_match)) { 6260 verbose(env, "R%d is of type %s but %s is expected\n", 6261 regno, kernel_type_name(reg->btf, reg->btf_id), 6262 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6263 return -EACCES; 6264 } 6265 } 6266 } else if (type_is_alloc(reg->type)) { 6267 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6268 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6269 return -EFAULT; 6270 } 6271 } 6272 6273 return 0; 6274 } 6275 6276 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6277 const struct bpf_reg_state *reg, int regno, 6278 enum bpf_arg_type arg_type) 6279 { 6280 u32 type = reg->type; 6281 6282 /* When referenced register is passed to release function, its fixed 6283 * offset must be 0. 6284 * 6285 * We will check arg_type_is_release reg has ref_obj_id when storing 6286 * meta->release_regno. 6287 */ 6288 if (arg_type_is_release(arg_type)) { 6289 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6290 * may not directly point to the object being released, but to 6291 * dynptr pointing to such object, which might be at some offset 6292 * on the stack. In that case, we simply to fallback to the 6293 * default handling. 6294 */ 6295 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6296 return 0; 6297 /* Doing check_ptr_off_reg check for the offset will catch this 6298 * because fixed_off_ok is false, but checking here allows us 6299 * to give the user a better error message. 6300 */ 6301 if (reg->off) { 6302 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6303 regno); 6304 return -EINVAL; 6305 } 6306 return __check_ptr_off_reg(env, reg, regno, false); 6307 } 6308 6309 switch (type) { 6310 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6311 case PTR_TO_STACK: 6312 case PTR_TO_PACKET: 6313 case PTR_TO_PACKET_META: 6314 case PTR_TO_MAP_KEY: 6315 case PTR_TO_MAP_VALUE: 6316 case PTR_TO_MEM: 6317 case PTR_TO_MEM | MEM_RDONLY: 6318 case PTR_TO_MEM | MEM_RINGBUF: 6319 case PTR_TO_BUF: 6320 case PTR_TO_BUF | MEM_RDONLY: 6321 case SCALAR_VALUE: 6322 return 0; 6323 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6324 * fixed offset. 6325 */ 6326 case PTR_TO_BTF_ID: 6327 case PTR_TO_BTF_ID | MEM_ALLOC: 6328 case PTR_TO_BTF_ID | PTR_TRUSTED: 6329 case PTR_TO_BTF_ID | MEM_RCU: 6330 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6331 /* When referenced PTR_TO_BTF_ID is passed to release function, 6332 * its fixed offset must be 0. In the other cases, fixed offset 6333 * can be non-zero. This was already checked above. So pass 6334 * fixed_off_ok as true to allow fixed offset for all other 6335 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6336 * still need to do checks instead of returning. 6337 */ 6338 return __check_ptr_off_reg(env, reg, regno, true); 6339 default: 6340 return __check_ptr_off_reg(env, reg, regno, false); 6341 } 6342 } 6343 6344 static u32 dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6345 { 6346 struct bpf_func_state *state = func(env, reg); 6347 int spi; 6348 6349 if (reg->type == CONST_PTR_TO_DYNPTR) 6350 return reg->ref_obj_id; 6351 6352 spi = get_spi(reg->off); 6353 return state->stack[spi].spilled_ptr.ref_obj_id; 6354 } 6355 6356 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6357 struct bpf_call_arg_meta *meta, 6358 const struct bpf_func_proto *fn) 6359 { 6360 u32 regno = BPF_REG_1 + arg; 6361 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6362 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6363 enum bpf_reg_type type = reg->type; 6364 u32 *arg_btf_id = NULL; 6365 int err = 0; 6366 6367 if (arg_type == ARG_DONTCARE) 6368 return 0; 6369 6370 err = check_reg_arg(env, regno, SRC_OP); 6371 if (err) 6372 return err; 6373 6374 if (arg_type == ARG_ANYTHING) { 6375 if (is_pointer_value(env, regno)) { 6376 verbose(env, "R%d leaks addr into helper function\n", 6377 regno); 6378 return -EACCES; 6379 } 6380 return 0; 6381 } 6382 6383 if (type_is_pkt_pointer(type) && 6384 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6385 verbose(env, "helper access to the packet is not allowed\n"); 6386 return -EACCES; 6387 } 6388 6389 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6390 err = resolve_map_arg_type(env, meta, &arg_type); 6391 if (err) 6392 return err; 6393 } 6394 6395 if (register_is_null(reg) && type_may_be_null(arg_type)) 6396 /* A NULL register has a SCALAR_VALUE type, so skip 6397 * type checking. 6398 */ 6399 goto skip_type_check; 6400 6401 /* arg_btf_id and arg_size are in a union. */ 6402 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6403 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6404 arg_btf_id = fn->arg_btf_id[arg]; 6405 6406 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6407 if (err) 6408 return err; 6409 6410 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6411 if (err) 6412 return err; 6413 6414 skip_type_check: 6415 if (arg_type_is_release(arg_type)) { 6416 if (arg_type_is_dynptr(arg_type)) { 6417 struct bpf_func_state *state = func(env, reg); 6418 int spi; 6419 6420 /* Only dynptr created on stack can be released, thus 6421 * the get_spi and stack state checks for spilled_ptr 6422 * should only be done before process_dynptr_func for 6423 * PTR_TO_STACK. 6424 */ 6425 if (reg->type == PTR_TO_STACK) { 6426 spi = get_spi(reg->off); 6427 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 6428 !state->stack[spi].spilled_ptr.ref_obj_id) { 6429 verbose(env, "arg %d is an unacquired reference\n", regno); 6430 return -EINVAL; 6431 } 6432 } else { 6433 verbose(env, "cannot release unowned const bpf_dynptr\n"); 6434 return -EINVAL; 6435 } 6436 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6437 verbose(env, "R%d must be referenced when passed to release function\n", 6438 regno); 6439 return -EINVAL; 6440 } 6441 if (meta->release_regno) { 6442 verbose(env, "verifier internal error: more than one release argument\n"); 6443 return -EFAULT; 6444 } 6445 meta->release_regno = regno; 6446 } 6447 6448 if (reg->ref_obj_id) { 6449 if (meta->ref_obj_id) { 6450 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6451 regno, reg->ref_obj_id, 6452 meta->ref_obj_id); 6453 return -EFAULT; 6454 } 6455 meta->ref_obj_id = reg->ref_obj_id; 6456 } 6457 6458 switch (base_type(arg_type)) { 6459 case ARG_CONST_MAP_PTR: 6460 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6461 if (meta->map_ptr) { 6462 /* Use map_uid (which is unique id of inner map) to reject: 6463 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6464 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6465 * if (inner_map1 && inner_map2) { 6466 * timer = bpf_map_lookup_elem(inner_map1); 6467 * if (timer) 6468 * // mismatch would have been allowed 6469 * bpf_timer_init(timer, inner_map2); 6470 * } 6471 * 6472 * Comparing map_ptr is enough to distinguish normal and outer maps. 6473 */ 6474 if (meta->map_ptr != reg->map_ptr || 6475 meta->map_uid != reg->map_uid) { 6476 verbose(env, 6477 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6478 meta->map_uid, reg->map_uid); 6479 return -EINVAL; 6480 } 6481 } 6482 meta->map_ptr = reg->map_ptr; 6483 meta->map_uid = reg->map_uid; 6484 break; 6485 case ARG_PTR_TO_MAP_KEY: 6486 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6487 * check that [key, key + map->key_size) are within 6488 * stack limits and initialized 6489 */ 6490 if (!meta->map_ptr) { 6491 /* in function declaration map_ptr must come before 6492 * map_key, so that it's verified and known before 6493 * we have to check map_key here. Otherwise it means 6494 * that kernel subsystem misconfigured verifier 6495 */ 6496 verbose(env, "invalid map_ptr to access map->key\n"); 6497 return -EACCES; 6498 } 6499 err = check_helper_mem_access(env, regno, 6500 meta->map_ptr->key_size, false, 6501 NULL); 6502 break; 6503 case ARG_PTR_TO_MAP_VALUE: 6504 if (type_may_be_null(arg_type) && register_is_null(reg)) 6505 return 0; 6506 6507 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6508 * check [value, value + map->value_size) validity 6509 */ 6510 if (!meta->map_ptr) { 6511 /* kernel subsystem misconfigured verifier */ 6512 verbose(env, "invalid map_ptr to access map->value\n"); 6513 return -EACCES; 6514 } 6515 meta->raw_mode = arg_type & MEM_UNINIT; 6516 err = check_helper_mem_access(env, regno, 6517 meta->map_ptr->value_size, false, 6518 meta); 6519 break; 6520 case ARG_PTR_TO_PERCPU_BTF_ID: 6521 if (!reg->btf_id) { 6522 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6523 return -EACCES; 6524 } 6525 meta->ret_btf = reg->btf; 6526 meta->ret_btf_id = reg->btf_id; 6527 break; 6528 case ARG_PTR_TO_SPIN_LOCK: 6529 if (meta->func_id == BPF_FUNC_spin_lock) { 6530 err = process_spin_lock(env, regno, true); 6531 if (err) 6532 return err; 6533 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6534 err = process_spin_lock(env, regno, false); 6535 if (err) 6536 return err; 6537 } else { 6538 verbose(env, "verifier internal error\n"); 6539 return -EFAULT; 6540 } 6541 break; 6542 case ARG_PTR_TO_TIMER: 6543 err = process_timer_func(env, regno, meta); 6544 if (err) 6545 return err; 6546 break; 6547 case ARG_PTR_TO_FUNC: 6548 meta->subprogno = reg->subprogno; 6549 break; 6550 case ARG_PTR_TO_MEM: 6551 /* The access to this pointer is only checked when we hit the 6552 * next is_mem_size argument below. 6553 */ 6554 meta->raw_mode = arg_type & MEM_UNINIT; 6555 if (arg_type & MEM_FIXED_SIZE) { 6556 err = check_helper_mem_access(env, regno, 6557 fn->arg_size[arg], false, 6558 meta); 6559 } 6560 break; 6561 case ARG_CONST_SIZE: 6562 err = check_mem_size_reg(env, reg, regno, false, meta); 6563 break; 6564 case ARG_CONST_SIZE_OR_ZERO: 6565 err = check_mem_size_reg(env, reg, regno, true, meta); 6566 break; 6567 case ARG_PTR_TO_DYNPTR: 6568 err = process_dynptr_func(env, regno, arg_type, meta); 6569 if (err) 6570 return err; 6571 break; 6572 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6573 if (!tnum_is_const(reg->var_off)) { 6574 verbose(env, "R%d is not a known constant'\n", 6575 regno); 6576 return -EACCES; 6577 } 6578 meta->mem_size = reg->var_off.value; 6579 err = mark_chain_precision(env, regno); 6580 if (err) 6581 return err; 6582 break; 6583 case ARG_PTR_TO_INT: 6584 case ARG_PTR_TO_LONG: 6585 { 6586 int size = int_ptr_type_to_size(arg_type); 6587 6588 err = check_helper_mem_access(env, regno, size, false, meta); 6589 if (err) 6590 return err; 6591 err = check_ptr_alignment(env, reg, 0, size, true); 6592 break; 6593 } 6594 case ARG_PTR_TO_CONST_STR: 6595 { 6596 struct bpf_map *map = reg->map_ptr; 6597 int map_off; 6598 u64 map_addr; 6599 char *str_ptr; 6600 6601 if (!bpf_map_is_rdonly(map)) { 6602 verbose(env, "R%d does not point to a readonly map'\n", regno); 6603 return -EACCES; 6604 } 6605 6606 if (!tnum_is_const(reg->var_off)) { 6607 verbose(env, "R%d is not a constant address'\n", regno); 6608 return -EACCES; 6609 } 6610 6611 if (!map->ops->map_direct_value_addr) { 6612 verbose(env, "no direct value access support for this map type\n"); 6613 return -EACCES; 6614 } 6615 6616 err = check_map_access(env, regno, reg->off, 6617 map->value_size - reg->off, false, 6618 ACCESS_HELPER); 6619 if (err) 6620 return err; 6621 6622 map_off = reg->off + reg->var_off.value; 6623 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6624 if (err) { 6625 verbose(env, "direct value access on string failed\n"); 6626 return err; 6627 } 6628 6629 str_ptr = (char *)(long)(map_addr); 6630 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6631 verbose(env, "string is not zero-terminated\n"); 6632 return -EINVAL; 6633 } 6634 break; 6635 } 6636 case ARG_PTR_TO_KPTR: 6637 err = process_kptr_func(env, regno, meta); 6638 if (err) 6639 return err; 6640 break; 6641 } 6642 6643 return err; 6644 } 6645 6646 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6647 { 6648 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6649 enum bpf_prog_type type = resolve_prog_type(env->prog); 6650 6651 if (func_id != BPF_FUNC_map_update_elem) 6652 return false; 6653 6654 /* It's not possible to get access to a locked struct sock in these 6655 * contexts, so updating is safe. 6656 */ 6657 switch (type) { 6658 case BPF_PROG_TYPE_TRACING: 6659 if (eatype == BPF_TRACE_ITER) 6660 return true; 6661 break; 6662 case BPF_PROG_TYPE_SOCKET_FILTER: 6663 case BPF_PROG_TYPE_SCHED_CLS: 6664 case BPF_PROG_TYPE_SCHED_ACT: 6665 case BPF_PROG_TYPE_XDP: 6666 case BPF_PROG_TYPE_SK_REUSEPORT: 6667 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6668 case BPF_PROG_TYPE_SK_LOOKUP: 6669 return true; 6670 default: 6671 break; 6672 } 6673 6674 verbose(env, "cannot update sockmap in this context\n"); 6675 return false; 6676 } 6677 6678 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6679 { 6680 return env->prog->jit_requested && 6681 bpf_jit_supports_subprog_tailcalls(); 6682 } 6683 6684 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6685 struct bpf_map *map, int func_id) 6686 { 6687 if (!map) 6688 return 0; 6689 6690 /* We need a two way check, first is from map perspective ... */ 6691 switch (map->map_type) { 6692 case BPF_MAP_TYPE_PROG_ARRAY: 6693 if (func_id != BPF_FUNC_tail_call) 6694 goto error; 6695 break; 6696 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6697 if (func_id != BPF_FUNC_perf_event_read && 6698 func_id != BPF_FUNC_perf_event_output && 6699 func_id != BPF_FUNC_skb_output && 6700 func_id != BPF_FUNC_perf_event_read_value && 6701 func_id != BPF_FUNC_xdp_output) 6702 goto error; 6703 break; 6704 case BPF_MAP_TYPE_RINGBUF: 6705 if (func_id != BPF_FUNC_ringbuf_output && 6706 func_id != BPF_FUNC_ringbuf_reserve && 6707 func_id != BPF_FUNC_ringbuf_query && 6708 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6709 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6710 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6711 goto error; 6712 break; 6713 case BPF_MAP_TYPE_USER_RINGBUF: 6714 if (func_id != BPF_FUNC_user_ringbuf_drain) 6715 goto error; 6716 break; 6717 case BPF_MAP_TYPE_STACK_TRACE: 6718 if (func_id != BPF_FUNC_get_stackid) 6719 goto error; 6720 break; 6721 case BPF_MAP_TYPE_CGROUP_ARRAY: 6722 if (func_id != BPF_FUNC_skb_under_cgroup && 6723 func_id != BPF_FUNC_current_task_under_cgroup) 6724 goto error; 6725 break; 6726 case BPF_MAP_TYPE_CGROUP_STORAGE: 6727 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6728 if (func_id != BPF_FUNC_get_local_storage) 6729 goto error; 6730 break; 6731 case BPF_MAP_TYPE_DEVMAP: 6732 case BPF_MAP_TYPE_DEVMAP_HASH: 6733 if (func_id != BPF_FUNC_redirect_map && 6734 func_id != BPF_FUNC_map_lookup_elem) 6735 goto error; 6736 break; 6737 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6738 * appear. 6739 */ 6740 case BPF_MAP_TYPE_CPUMAP: 6741 if (func_id != BPF_FUNC_redirect_map) 6742 goto error; 6743 break; 6744 case BPF_MAP_TYPE_XSKMAP: 6745 if (func_id != BPF_FUNC_redirect_map && 6746 func_id != BPF_FUNC_map_lookup_elem) 6747 goto error; 6748 break; 6749 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6750 case BPF_MAP_TYPE_HASH_OF_MAPS: 6751 if (func_id != BPF_FUNC_map_lookup_elem) 6752 goto error; 6753 break; 6754 case BPF_MAP_TYPE_SOCKMAP: 6755 if (func_id != BPF_FUNC_sk_redirect_map && 6756 func_id != BPF_FUNC_sock_map_update && 6757 func_id != BPF_FUNC_map_delete_elem && 6758 func_id != BPF_FUNC_msg_redirect_map && 6759 func_id != BPF_FUNC_sk_select_reuseport && 6760 func_id != BPF_FUNC_map_lookup_elem && 6761 !may_update_sockmap(env, func_id)) 6762 goto error; 6763 break; 6764 case BPF_MAP_TYPE_SOCKHASH: 6765 if (func_id != BPF_FUNC_sk_redirect_hash && 6766 func_id != BPF_FUNC_sock_hash_update && 6767 func_id != BPF_FUNC_map_delete_elem && 6768 func_id != BPF_FUNC_msg_redirect_hash && 6769 func_id != BPF_FUNC_sk_select_reuseport && 6770 func_id != BPF_FUNC_map_lookup_elem && 6771 !may_update_sockmap(env, func_id)) 6772 goto error; 6773 break; 6774 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6775 if (func_id != BPF_FUNC_sk_select_reuseport) 6776 goto error; 6777 break; 6778 case BPF_MAP_TYPE_QUEUE: 6779 case BPF_MAP_TYPE_STACK: 6780 if (func_id != BPF_FUNC_map_peek_elem && 6781 func_id != BPF_FUNC_map_pop_elem && 6782 func_id != BPF_FUNC_map_push_elem) 6783 goto error; 6784 break; 6785 case BPF_MAP_TYPE_SK_STORAGE: 6786 if (func_id != BPF_FUNC_sk_storage_get && 6787 func_id != BPF_FUNC_sk_storage_delete) 6788 goto error; 6789 break; 6790 case BPF_MAP_TYPE_INODE_STORAGE: 6791 if (func_id != BPF_FUNC_inode_storage_get && 6792 func_id != BPF_FUNC_inode_storage_delete) 6793 goto error; 6794 break; 6795 case BPF_MAP_TYPE_TASK_STORAGE: 6796 if (func_id != BPF_FUNC_task_storage_get && 6797 func_id != BPF_FUNC_task_storage_delete) 6798 goto error; 6799 break; 6800 case BPF_MAP_TYPE_CGRP_STORAGE: 6801 if (func_id != BPF_FUNC_cgrp_storage_get && 6802 func_id != BPF_FUNC_cgrp_storage_delete) 6803 goto error; 6804 break; 6805 case BPF_MAP_TYPE_BLOOM_FILTER: 6806 if (func_id != BPF_FUNC_map_peek_elem && 6807 func_id != BPF_FUNC_map_push_elem) 6808 goto error; 6809 break; 6810 default: 6811 break; 6812 } 6813 6814 /* ... and second from the function itself. */ 6815 switch (func_id) { 6816 case BPF_FUNC_tail_call: 6817 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6818 goto error; 6819 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6820 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6821 return -EINVAL; 6822 } 6823 break; 6824 case BPF_FUNC_perf_event_read: 6825 case BPF_FUNC_perf_event_output: 6826 case BPF_FUNC_perf_event_read_value: 6827 case BPF_FUNC_skb_output: 6828 case BPF_FUNC_xdp_output: 6829 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6830 goto error; 6831 break; 6832 case BPF_FUNC_ringbuf_output: 6833 case BPF_FUNC_ringbuf_reserve: 6834 case BPF_FUNC_ringbuf_query: 6835 case BPF_FUNC_ringbuf_reserve_dynptr: 6836 case BPF_FUNC_ringbuf_submit_dynptr: 6837 case BPF_FUNC_ringbuf_discard_dynptr: 6838 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6839 goto error; 6840 break; 6841 case BPF_FUNC_user_ringbuf_drain: 6842 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6843 goto error; 6844 break; 6845 case BPF_FUNC_get_stackid: 6846 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6847 goto error; 6848 break; 6849 case BPF_FUNC_current_task_under_cgroup: 6850 case BPF_FUNC_skb_under_cgroup: 6851 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6852 goto error; 6853 break; 6854 case BPF_FUNC_redirect_map: 6855 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6856 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6857 map->map_type != BPF_MAP_TYPE_CPUMAP && 6858 map->map_type != BPF_MAP_TYPE_XSKMAP) 6859 goto error; 6860 break; 6861 case BPF_FUNC_sk_redirect_map: 6862 case BPF_FUNC_msg_redirect_map: 6863 case BPF_FUNC_sock_map_update: 6864 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6865 goto error; 6866 break; 6867 case BPF_FUNC_sk_redirect_hash: 6868 case BPF_FUNC_msg_redirect_hash: 6869 case BPF_FUNC_sock_hash_update: 6870 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6871 goto error; 6872 break; 6873 case BPF_FUNC_get_local_storage: 6874 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6875 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6876 goto error; 6877 break; 6878 case BPF_FUNC_sk_select_reuseport: 6879 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6880 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6881 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6882 goto error; 6883 break; 6884 case BPF_FUNC_map_pop_elem: 6885 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6886 map->map_type != BPF_MAP_TYPE_STACK) 6887 goto error; 6888 break; 6889 case BPF_FUNC_map_peek_elem: 6890 case BPF_FUNC_map_push_elem: 6891 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6892 map->map_type != BPF_MAP_TYPE_STACK && 6893 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6894 goto error; 6895 break; 6896 case BPF_FUNC_map_lookup_percpu_elem: 6897 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6898 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6899 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6900 goto error; 6901 break; 6902 case BPF_FUNC_sk_storage_get: 6903 case BPF_FUNC_sk_storage_delete: 6904 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6905 goto error; 6906 break; 6907 case BPF_FUNC_inode_storage_get: 6908 case BPF_FUNC_inode_storage_delete: 6909 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6910 goto error; 6911 break; 6912 case BPF_FUNC_task_storage_get: 6913 case BPF_FUNC_task_storage_delete: 6914 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6915 goto error; 6916 break; 6917 case BPF_FUNC_cgrp_storage_get: 6918 case BPF_FUNC_cgrp_storage_delete: 6919 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 6920 goto error; 6921 break; 6922 default: 6923 break; 6924 } 6925 6926 return 0; 6927 error: 6928 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6929 map->map_type, func_id_name(func_id), func_id); 6930 return -EINVAL; 6931 } 6932 6933 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6934 { 6935 int count = 0; 6936 6937 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6938 count++; 6939 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6940 count++; 6941 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6942 count++; 6943 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6944 count++; 6945 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6946 count++; 6947 6948 /* We only support one arg being in raw mode at the moment, 6949 * which is sufficient for the helper functions we have 6950 * right now. 6951 */ 6952 return count <= 1; 6953 } 6954 6955 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6956 { 6957 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6958 bool has_size = fn->arg_size[arg] != 0; 6959 bool is_next_size = false; 6960 6961 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6962 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6963 6964 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6965 return is_next_size; 6966 6967 return has_size == is_next_size || is_next_size == is_fixed; 6968 } 6969 6970 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6971 { 6972 /* bpf_xxx(..., buf, len) call will access 'len' 6973 * bytes from memory 'buf'. Both arg types need 6974 * to be paired, so make sure there's no buggy 6975 * helper function specification. 6976 */ 6977 if (arg_type_is_mem_size(fn->arg1_type) || 6978 check_args_pair_invalid(fn, 0) || 6979 check_args_pair_invalid(fn, 1) || 6980 check_args_pair_invalid(fn, 2) || 6981 check_args_pair_invalid(fn, 3) || 6982 check_args_pair_invalid(fn, 4)) 6983 return false; 6984 6985 return true; 6986 } 6987 6988 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6989 { 6990 int i; 6991 6992 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6993 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 6994 return !!fn->arg_btf_id[i]; 6995 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 6996 return fn->arg_btf_id[i] == BPF_PTR_POISON; 6997 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6998 /* arg_btf_id and arg_size are in a union. */ 6999 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7000 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7001 return false; 7002 } 7003 7004 return true; 7005 } 7006 7007 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7008 { 7009 return check_raw_mode_ok(fn) && 7010 check_arg_pair_ok(fn) && 7011 check_btf_id_ok(fn) ? 0 : -EINVAL; 7012 } 7013 7014 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7015 * are now invalid, so turn them into unknown SCALAR_VALUE. 7016 */ 7017 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7018 { 7019 struct bpf_func_state *state; 7020 struct bpf_reg_state *reg; 7021 7022 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7023 if (reg_is_pkt_pointer_any(reg)) 7024 __mark_reg_unknown(env, reg); 7025 })); 7026 } 7027 7028 enum { 7029 AT_PKT_END = -1, 7030 BEYOND_PKT_END = -2, 7031 }; 7032 7033 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7034 { 7035 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7036 struct bpf_reg_state *reg = &state->regs[regn]; 7037 7038 if (reg->type != PTR_TO_PACKET) 7039 /* PTR_TO_PACKET_META is not supported yet */ 7040 return; 7041 7042 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7043 * How far beyond pkt_end it goes is unknown. 7044 * if (!range_open) it's the case of pkt >= pkt_end 7045 * if (range_open) it's the case of pkt > pkt_end 7046 * hence this pointer is at least 1 byte bigger than pkt_end 7047 */ 7048 if (range_open) 7049 reg->range = BEYOND_PKT_END; 7050 else 7051 reg->range = AT_PKT_END; 7052 } 7053 7054 /* The pointer with the specified id has released its reference to kernel 7055 * resources. Identify all copies of the same pointer and clear the reference. 7056 */ 7057 static int release_reference(struct bpf_verifier_env *env, 7058 int ref_obj_id) 7059 { 7060 struct bpf_func_state *state; 7061 struct bpf_reg_state *reg; 7062 int err; 7063 7064 err = release_reference_state(cur_func(env), ref_obj_id); 7065 if (err) 7066 return err; 7067 7068 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7069 if (reg->ref_obj_id == ref_obj_id) { 7070 if (!env->allow_ptr_leaks) 7071 __mark_reg_not_init(env, reg); 7072 else 7073 __mark_reg_unknown(env, reg); 7074 } 7075 })); 7076 7077 return 0; 7078 } 7079 7080 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7081 struct bpf_reg_state *regs) 7082 { 7083 int i; 7084 7085 /* after the call registers r0 - r5 were scratched */ 7086 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7087 mark_reg_not_init(env, regs, caller_saved[i]); 7088 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7089 } 7090 } 7091 7092 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7093 struct bpf_func_state *caller, 7094 struct bpf_func_state *callee, 7095 int insn_idx); 7096 7097 static int set_callee_state(struct bpf_verifier_env *env, 7098 struct bpf_func_state *caller, 7099 struct bpf_func_state *callee, int insn_idx); 7100 7101 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7102 int *insn_idx, int subprog, 7103 set_callee_state_fn set_callee_state_cb) 7104 { 7105 struct bpf_verifier_state *state = env->cur_state; 7106 struct bpf_func_info_aux *func_info_aux; 7107 struct bpf_func_state *caller, *callee; 7108 int err; 7109 bool is_global = false; 7110 7111 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7112 verbose(env, "the call stack of %d frames is too deep\n", 7113 state->curframe + 2); 7114 return -E2BIG; 7115 } 7116 7117 caller = state->frame[state->curframe]; 7118 if (state->frame[state->curframe + 1]) { 7119 verbose(env, "verifier bug. Frame %d already allocated\n", 7120 state->curframe + 1); 7121 return -EFAULT; 7122 } 7123 7124 func_info_aux = env->prog->aux->func_info_aux; 7125 if (func_info_aux) 7126 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7127 err = btf_check_subprog_call(env, subprog, caller->regs); 7128 if (err == -EFAULT) 7129 return err; 7130 if (is_global) { 7131 if (err) { 7132 verbose(env, "Caller passes invalid args into func#%d\n", 7133 subprog); 7134 return err; 7135 } else { 7136 if (env->log.level & BPF_LOG_LEVEL) 7137 verbose(env, 7138 "Func#%d is global and valid. Skipping.\n", 7139 subprog); 7140 clear_caller_saved_regs(env, caller->regs); 7141 7142 /* All global functions return a 64-bit SCALAR_VALUE */ 7143 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7144 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7145 7146 /* continue with next insn after call */ 7147 return 0; 7148 } 7149 } 7150 7151 /* set_callee_state is used for direct subprog calls, but we are 7152 * interested in validating only BPF helpers that can call subprogs as 7153 * callbacks 7154 */ 7155 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) { 7156 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n", 7157 func_id_name(insn->imm), insn->imm); 7158 return -EFAULT; 7159 } 7160 7161 if (insn->code == (BPF_JMP | BPF_CALL) && 7162 insn->src_reg == 0 && 7163 insn->imm == BPF_FUNC_timer_set_callback) { 7164 struct bpf_verifier_state *async_cb; 7165 7166 /* there is no real recursion here. timer callbacks are async */ 7167 env->subprog_info[subprog].is_async_cb = true; 7168 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7169 *insn_idx, subprog); 7170 if (!async_cb) 7171 return -EFAULT; 7172 callee = async_cb->frame[0]; 7173 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7174 7175 /* Convert bpf_timer_set_callback() args into timer callback args */ 7176 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7177 if (err) 7178 return err; 7179 7180 clear_caller_saved_regs(env, caller->regs); 7181 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7182 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7183 /* continue with next insn after call */ 7184 return 0; 7185 } 7186 7187 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7188 if (!callee) 7189 return -ENOMEM; 7190 state->frame[state->curframe + 1] = callee; 7191 7192 /* callee cannot access r0, r6 - r9 for reading and has to write 7193 * into its own stack before reading from it. 7194 * callee can read/write into caller's stack 7195 */ 7196 init_func_state(env, callee, 7197 /* remember the callsite, it will be used by bpf_exit */ 7198 *insn_idx /* callsite */, 7199 state->curframe + 1 /* frameno within this callchain */, 7200 subprog /* subprog number within this prog */); 7201 7202 /* Transfer references to the callee */ 7203 err = copy_reference_state(callee, caller); 7204 if (err) 7205 goto err_out; 7206 7207 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7208 if (err) 7209 goto err_out; 7210 7211 clear_caller_saved_regs(env, caller->regs); 7212 7213 /* only increment it after check_reg_arg() finished */ 7214 state->curframe++; 7215 7216 /* and go analyze first insn of the callee */ 7217 *insn_idx = env->subprog_info[subprog].start - 1; 7218 7219 if (env->log.level & BPF_LOG_LEVEL) { 7220 verbose(env, "caller:\n"); 7221 print_verifier_state(env, caller, true); 7222 verbose(env, "callee:\n"); 7223 print_verifier_state(env, callee, true); 7224 } 7225 return 0; 7226 7227 err_out: 7228 free_func_state(callee); 7229 state->frame[state->curframe + 1] = NULL; 7230 return err; 7231 } 7232 7233 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7234 struct bpf_func_state *caller, 7235 struct bpf_func_state *callee) 7236 { 7237 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7238 * void *callback_ctx, u64 flags); 7239 * callback_fn(struct bpf_map *map, void *key, void *value, 7240 * void *callback_ctx); 7241 */ 7242 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7243 7244 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7245 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7246 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7247 7248 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7249 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7250 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7251 7252 /* pointer to stack or null */ 7253 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7254 7255 /* unused */ 7256 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7257 return 0; 7258 } 7259 7260 static int set_callee_state(struct bpf_verifier_env *env, 7261 struct bpf_func_state *caller, 7262 struct bpf_func_state *callee, int insn_idx) 7263 { 7264 int i; 7265 7266 /* copy r1 - r5 args that callee can access. The copy includes parent 7267 * pointers, which connects us up to the liveness chain 7268 */ 7269 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7270 callee->regs[i] = caller->regs[i]; 7271 return 0; 7272 } 7273 7274 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7275 int *insn_idx) 7276 { 7277 int subprog, target_insn; 7278 7279 target_insn = *insn_idx + insn->imm + 1; 7280 subprog = find_subprog(env, target_insn); 7281 if (subprog < 0) { 7282 verbose(env, "verifier bug. No program starts at insn %d\n", 7283 target_insn); 7284 return -EFAULT; 7285 } 7286 7287 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7288 } 7289 7290 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7291 struct bpf_func_state *caller, 7292 struct bpf_func_state *callee, 7293 int insn_idx) 7294 { 7295 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7296 struct bpf_map *map; 7297 int err; 7298 7299 if (bpf_map_ptr_poisoned(insn_aux)) { 7300 verbose(env, "tail_call abusing map_ptr\n"); 7301 return -EINVAL; 7302 } 7303 7304 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7305 if (!map->ops->map_set_for_each_callback_args || 7306 !map->ops->map_for_each_callback) { 7307 verbose(env, "callback function not allowed for map\n"); 7308 return -ENOTSUPP; 7309 } 7310 7311 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7312 if (err) 7313 return err; 7314 7315 callee->in_callback_fn = true; 7316 callee->callback_ret_range = tnum_range(0, 1); 7317 return 0; 7318 } 7319 7320 static int set_loop_callback_state(struct bpf_verifier_env *env, 7321 struct bpf_func_state *caller, 7322 struct bpf_func_state *callee, 7323 int insn_idx) 7324 { 7325 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7326 * u64 flags); 7327 * callback_fn(u32 index, void *callback_ctx); 7328 */ 7329 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7330 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7331 7332 /* unused */ 7333 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7334 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7335 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7336 7337 callee->in_callback_fn = true; 7338 callee->callback_ret_range = tnum_range(0, 1); 7339 return 0; 7340 } 7341 7342 static int set_timer_callback_state(struct bpf_verifier_env *env, 7343 struct bpf_func_state *caller, 7344 struct bpf_func_state *callee, 7345 int insn_idx) 7346 { 7347 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7348 7349 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7350 * callback_fn(struct bpf_map *map, void *key, void *value); 7351 */ 7352 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7353 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7354 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7355 7356 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7357 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7358 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7359 7360 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7361 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7362 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7363 7364 /* unused */ 7365 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7366 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7367 callee->in_async_callback_fn = true; 7368 callee->callback_ret_range = tnum_range(0, 1); 7369 return 0; 7370 } 7371 7372 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7373 struct bpf_func_state *caller, 7374 struct bpf_func_state *callee, 7375 int insn_idx) 7376 { 7377 /* bpf_find_vma(struct task_struct *task, u64 addr, 7378 * void *callback_fn, void *callback_ctx, u64 flags) 7379 * (callback_fn)(struct task_struct *task, 7380 * struct vm_area_struct *vma, void *callback_ctx); 7381 */ 7382 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7383 7384 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7385 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7386 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7387 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7388 7389 /* pointer to stack or null */ 7390 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7391 7392 /* unused */ 7393 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7394 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7395 callee->in_callback_fn = true; 7396 callee->callback_ret_range = tnum_range(0, 1); 7397 return 0; 7398 } 7399 7400 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7401 struct bpf_func_state *caller, 7402 struct bpf_func_state *callee, 7403 int insn_idx) 7404 { 7405 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7406 * callback_ctx, u64 flags); 7407 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 7408 */ 7409 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7410 mark_dynptr_cb_reg(&callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 7411 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7412 7413 /* unused */ 7414 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7415 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7416 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7417 7418 callee->in_callback_fn = true; 7419 callee->callback_ret_range = tnum_range(0, 1); 7420 return 0; 7421 } 7422 7423 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7424 { 7425 struct bpf_verifier_state *state = env->cur_state; 7426 struct bpf_func_state *caller, *callee; 7427 struct bpf_reg_state *r0; 7428 int err; 7429 7430 callee = state->frame[state->curframe]; 7431 r0 = &callee->regs[BPF_REG_0]; 7432 if (r0->type == PTR_TO_STACK) { 7433 /* technically it's ok to return caller's stack pointer 7434 * (or caller's caller's pointer) back to the caller, 7435 * since these pointers are valid. Only current stack 7436 * pointer will be invalid as soon as function exits, 7437 * but let's be conservative 7438 */ 7439 verbose(env, "cannot return stack pointer to the caller\n"); 7440 return -EINVAL; 7441 } 7442 7443 caller = state->frame[state->curframe - 1]; 7444 if (callee->in_callback_fn) { 7445 /* enforce R0 return value range [0, 1]. */ 7446 struct tnum range = callee->callback_ret_range; 7447 7448 if (r0->type != SCALAR_VALUE) { 7449 verbose(env, "R0 not a scalar value\n"); 7450 return -EACCES; 7451 } 7452 if (!tnum_in(range, r0->var_off)) { 7453 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7454 return -EINVAL; 7455 } 7456 } else { 7457 /* return to the caller whatever r0 had in the callee */ 7458 caller->regs[BPF_REG_0] = *r0; 7459 } 7460 7461 /* callback_fn frame should have released its own additions to parent's 7462 * reference state at this point, or check_reference_leak would 7463 * complain, hence it must be the same as the caller. There is no need 7464 * to copy it back. 7465 */ 7466 if (!callee->in_callback_fn) { 7467 /* Transfer references to the caller */ 7468 err = copy_reference_state(caller, callee); 7469 if (err) 7470 return err; 7471 } 7472 7473 *insn_idx = callee->callsite + 1; 7474 if (env->log.level & BPF_LOG_LEVEL) { 7475 verbose(env, "returning from callee:\n"); 7476 print_verifier_state(env, callee, true); 7477 verbose(env, "to caller at %d:\n", *insn_idx); 7478 print_verifier_state(env, caller, true); 7479 } 7480 /* clear everything in the callee */ 7481 free_func_state(callee); 7482 state->frame[state->curframe--] = NULL; 7483 return 0; 7484 } 7485 7486 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7487 int func_id, 7488 struct bpf_call_arg_meta *meta) 7489 { 7490 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7491 7492 if (ret_type != RET_INTEGER || 7493 (func_id != BPF_FUNC_get_stack && 7494 func_id != BPF_FUNC_get_task_stack && 7495 func_id != BPF_FUNC_probe_read_str && 7496 func_id != BPF_FUNC_probe_read_kernel_str && 7497 func_id != BPF_FUNC_probe_read_user_str)) 7498 return; 7499 7500 ret_reg->smax_value = meta->msize_max_value; 7501 ret_reg->s32_max_value = meta->msize_max_value; 7502 ret_reg->smin_value = -MAX_ERRNO; 7503 ret_reg->s32_min_value = -MAX_ERRNO; 7504 reg_bounds_sync(ret_reg); 7505 } 7506 7507 static int 7508 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7509 int func_id, int insn_idx) 7510 { 7511 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7512 struct bpf_map *map = meta->map_ptr; 7513 7514 if (func_id != BPF_FUNC_tail_call && 7515 func_id != BPF_FUNC_map_lookup_elem && 7516 func_id != BPF_FUNC_map_update_elem && 7517 func_id != BPF_FUNC_map_delete_elem && 7518 func_id != BPF_FUNC_map_push_elem && 7519 func_id != BPF_FUNC_map_pop_elem && 7520 func_id != BPF_FUNC_map_peek_elem && 7521 func_id != BPF_FUNC_for_each_map_elem && 7522 func_id != BPF_FUNC_redirect_map && 7523 func_id != BPF_FUNC_map_lookup_percpu_elem) 7524 return 0; 7525 7526 if (map == NULL) { 7527 verbose(env, "kernel subsystem misconfigured verifier\n"); 7528 return -EINVAL; 7529 } 7530 7531 /* In case of read-only, some additional restrictions 7532 * need to be applied in order to prevent altering the 7533 * state of the map from program side. 7534 */ 7535 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7536 (func_id == BPF_FUNC_map_delete_elem || 7537 func_id == BPF_FUNC_map_update_elem || 7538 func_id == BPF_FUNC_map_push_elem || 7539 func_id == BPF_FUNC_map_pop_elem)) { 7540 verbose(env, "write into map forbidden\n"); 7541 return -EACCES; 7542 } 7543 7544 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7545 bpf_map_ptr_store(aux, meta->map_ptr, 7546 !meta->map_ptr->bypass_spec_v1); 7547 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7548 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7549 !meta->map_ptr->bypass_spec_v1); 7550 return 0; 7551 } 7552 7553 static int 7554 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7555 int func_id, int insn_idx) 7556 { 7557 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7558 struct bpf_reg_state *regs = cur_regs(env), *reg; 7559 struct bpf_map *map = meta->map_ptr; 7560 u64 val, max; 7561 int err; 7562 7563 if (func_id != BPF_FUNC_tail_call) 7564 return 0; 7565 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7566 verbose(env, "kernel subsystem misconfigured verifier\n"); 7567 return -EINVAL; 7568 } 7569 7570 reg = ®s[BPF_REG_3]; 7571 val = reg->var_off.value; 7572 max = map->max_entries; 7573 7574 if (!(register_is_const(reg) && val < max)) { 7575 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7576 return 0; 7577 } 7578 7579 err = mark_chain_precision(env, BPF_REG_3); 7580 if (err) 7581 return err; 7582 if (bpf_map_key_unseen(aux)) 7583 bpf_map_key_store(aux, val); 7584 else if (!bpf_map_key_poisoned(aux) && 7585 bpf_map_key_immediate(aux) != val) 7586 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7587 return 0; 7588 } 7589 7590 static int check_reference_leak(struct bpf_verifier_env *env) 7591 { 7592 struct bpf_func_state *state = cur_func(env); 7593 bool refs_lingering = false; 7594 int i; 7595 7596 if (state->frameno && !state->in_callback_fn) 7597 return 0; 7598 7599 for (i = 0; i < state->acquired_refs; i++) { 7600 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7601 continue; 7602 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7603 state->refs[i].id, state->refs[i].insn_idx); 7604 refs_lingering = true; 7605 } 7606 return refs_lingering ? -EINVAL : 0; 7607 } 7608 7609 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7610 struct bpf_reg_state *regs) 7611 { 7612 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7613 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7614 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7615 int err, fmt_map_off, num_args; 7616 u64 fmt_addr; 7617 char *fmt; 7618 7619 /* data must be an array of u64 */ 7620 if (data_len_reg->var_off.value % 8) 7621 return -EINVAL; 7622 num_args = data_len_reg->var_off.value / 8; 7623 7624 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7625 * and map_direct_value_addr is set. 7626 */ 7627 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7628 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7629 fmt_map_off); 7630 if (err) { 7631 verbose(env, "verifier bug\n"); 7632 return -EFAULT; 7633 } 7634 fmt = (char *)(long)fmt_addr + fmt_map_off; 7635 7636 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7637 * can focus on validating the format specifiers. 7638 */ 7639 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7640 if (err < 0) 7641 verbose(env, "Invalid format string\n"); 7642 7643 return err; 7644 } 7645 7646 static int check_get_func_ip(struct bpf_verifier_env *env) 7647 { 7648 enum bpf_prog_type type = resolve_prog_type(env->prog); 7649 int func_id = BPF_FUNC_get_func_ip; 7650 7651 if (type == BPF_PROG_TYPE_TRACING) { 7652 if (!bpf_prog_has_trampoline(env->prog)) { 7653 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7654 func_id_name(func_id), func_id); 7655 return -ENOTSUPP; 7656 } 7657 return 0; 7658 } else if (type == BPF_PROG_TYPE_KPROBE) { 7659 return 0; 7660 } 7661 7662 verbose(env, "func %s#%d not supported for program type %d\n", 7663 func_id_name(func_id), func_id, type); 7664 return -ENOTSUPP; 7665 } 7666 7667 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7668 { 7669 return &env->insn_aux_data[env->insn_idx]; 7670 } 7671 7672 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7673 { 7674 struct bpf_reg_state *regs = cur_regs(env); 7675 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7676 bool reg_is_null = register_is_null(reg); 7677 7678 if (reg_is_null) 7679 mark_chain_precision(env, BPF_REG_4); 7680 7681 return reg_is_null; 7682 } 7683 7684 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7685 { 7686 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7687 7688 if (!state->initialized) { 7689 state->initialized = 1; 7690 state->fit_for_inline = loop_flag_is_zero(env); 7691 state->callback_subprogno = subprogno; 7692 return; 7693 } 7694 7695 if (!state->fit_for_inline) 7696 return; 7697 7698 state->fit_for_inline = (loop_flag_is_zero(env) && 7699 state->callback_subprogno == subprogno); 7700 } 7701 7702 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7703 int *insn_idx_p) 7704 { 7705 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7706 const struct bpf_func_proto *fn = NULL; 7707 enum bpf_return_type ret_type; 7708 enum bpf_type_flag ret_flag; 7709 struct bpf_reg_state *regs; 7710 struct bpf_call_arg_meta meta; 7711 int insn_idx = *insn_idx_p; 7712 bool changes_data; 7713 int i, err, func_id; 7714 7715 /* find function prototype */ 7716 func_id = insn->imm; 7717 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7718 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7719 func_id); 7720 return -EINVAL; 7721 } 7722 7723 if (env->ops->get_func_proto) 7724 fn = env->ops->get_func_proto(func_id, env->prog); 7725 if (!fn) { 7726 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7727 func_id); 7728 return -EINVAL; 7729 } 7730 7731 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7732 if (!env->prog->gpl_compatible && fn->gpl_only) { 7733 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7734 return -EINVAL; 7735 } 7736 7737 if (fn->allowed && !fn->allowed(env->prog)) { 7738 verbose(env, "helper call is not allowed in probe\n"); 7739 return -EINVAL; 7740 } 7741 7742 if (!env->prog->aux->sleepable && fn->might_sleep) { 7743 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 7744 return -EINVAL; 7745 } 7746 7747 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7748 changes_data = bpf_helper_changes_pkt_data(fn->func); 7749 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7750 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7751 func_id_name(func_id), func_id); 7752 return -EINVAL; 7753 } 7754 7755 memset(&meta, 0, sizeof(meta)); 7756 meta.pkt_access = fn->pkt_access; 7757 7758 err = check_func_proto(fn, func_id); 7759 if (err) { 7760 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7761 func_id_name(func_id), func_id); 7762 return err; 7763 } 7764 7765 if (env->cur_state->active_rcu_lock) { 7766 if (fn->might_sleep) { 7767 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 7768 func_id_name(func_id), func_id); 7769 return -EINVAL; 7770 } 7771 7772 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 7773 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 7774 } 7775 7776 meta.func_id = func_id; 7777 /* check args */ 7778 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7779 err = check_func_arg(env, i, &meta, fn); 7780 if (err) 7781 return err; 7782 } 7783 7784 err = record_func_map(env, &meta, func_id, insn_idx); 7785 if (err) 7786 return err; 7787 7788 err = record_func_key(env, &meta, func_id, insn_idx); 7789 if (err) 7790 return err; 7791 7792 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7793 * is inferred from register state. 7794 */ 7795 for (i = 0; i < meta.access_size; i++) { 7796 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7797 BPF_WRITE, -1, false); 7798 if (err) 7799 return err; 7800 } 7801 7802 regs = cur_regs(env); 7803 7804 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7805 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr 7806 * is safe to do directly. 7807 */ 7808 if (meta.uninit_dynptr_regno) { 7809 if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) { 7810 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n"); 7811 return -EFAULT; 7812 } 7813 /* we write BPF_DW bits (8 bytes) at a time */ 7814 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7815 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7816 i, BPF_DW, BPF_WRITE, -1, false); 7817 if (err) 7818 return err; 7819 } 7820 7821 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7822 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7823 insn_idx); 7824 if (err) 7825 return err; 7826 } 7827 7828 if (meta.release_regno) { 7829 err = -EINVAL; 7830 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7831 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 7832 * is safe to do directly. 7833 */ 7834 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 7835 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 7836 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 7837 return -EFAULT; 7838 } 7839 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7840 } else if (meta.ref_obj_id) { 7841 err = release_reference(env, meta.ref_obj_id); 7842 } else if (register_is_null(®s[meta.release_regno])) { 7843 /* meta.ref_obj_id can only be 0 if register that is meant to be 7844 * released is NULL, which must be > R0. 7845 */ 7846 err = 0; 7847 } 7848 if (err) { 7849 verbose(env, "func %s#%d reference has not been acquired before\n", 7850 func_id_name(func_id), func_id); 7851 return err; 7852 } 7853 } 7854 7855 switch (func_id) { 7856 case BPF_FUNC_tail_call: 7857 err = check_reference_leak(env); 7858 if (err) { 7859 verbose(env, "tail_call would lead to reference leak\n"); 7860 return err; 7861 } 7862 break; 7863 case BPF_FUNC_get_local_storage: 7864 /* check that flags argument in get_local_storage(map, flags) is 0, 7865 * this is required because get_local_storage() can't return an error. 7866 */ 7867 if (!register_is_null(®s[BPF_REG_2])) { 7868 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7869 return -EINVAL; 7870 } 7871 break; 7872 case BPF_FUNC_for_each_map_elem: 7873 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7874 set_map_elem_callback_state); 7875 break; 7876 case BPF_FUNC_timer_set_callback: 7877 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7878 set_timer_callback_state); 7879 break; 7880 case BPF_FUNC_find_vma: 7881 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7882 set_find_vma_callback_state); 7883 break; 7884 case BPF_FUNC_snprintf: 7885 err = check_bpf_snprintf_call(env, regs); 7886 break; 7887 case BPF_FUNC_loop: 7888 update_loop_inline_state(env, meta.subprogno); 7889 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7890 set_loop_callback_state); 7891 break; 7892 case BPF_FUNC_dynptr_from_mem: 7893 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7894 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7895 reg_type_str(env, regs[BPF_REG_1].type)); 7896 return -EACCES; 7897 } 7898 break; 7899 case BPF_FUNC_set_retval: 7900 if (prog_type == BPF_PROG_TYPE_LSM && 7901 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7902 if (!env->prog->aux->attach_func_proto->type) { 7903 /* Make sure programs that attach to void 7904 * hooks don't try to modify return value. 7905 */ 7906 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7907 return -EINVAL; 7908 } 7909 } 7910 break; 7911 case BPF_FUNC_dynptr_data: 7912 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7913 if (arg_type_is_dynptr(fn->arg_type[i])) { 7914 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7915 7916 if (meta.ref_obj_id) { 7917 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7918 return -EFAULT; 7919 } 7920 7921 meta.ref_obj_id = dynptr_ref_obj_id(env, reg); 7922 break; 7923 } 7924 } 7925 if (i == MAX_BPF_FUNC_REG_ARGS) { 7926 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7927 return -EFAULT; 7928 } 7929 break; 7930 case BPF_FUNC_user_ringbuf_drain: 7931 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7932 set_user_ringbuf_callback_state); 7933 break; 7934 } 7935 7936 if (err) 7937 return err; 7938 7939 /* reset caller saved regs */ 7940 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7941 mark_reg_not_init(env, regs, caller_saved[i]); 7942 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7943 } 7944 7945 /* helper call returns 64-bit value. */ 7946 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7947 7948 /* update return register (already marked as written above) */ 7949 ret_type = fn->ret_type; 7950 ret_flag = type_flag(ret_type); 7951 7952 switch (base_type(ret_type)) { 7953 case RET_INTEGER: 7954 /* sets type to SCALAR_VALUE */ 7955 mark_reg_unknown(env, regs, BPF_REG_0); 7956 break; 7957 case RET_VOID: 7958 regs[BPF_REG_0].type = NOT_INIT; 7959 break; 7960 case RET_PTR_TO_MAP_VALUE: 7961 /* There is no offset yet applied, variable or fixed */ 7962 mark_reg_known_zero(env, regs, BPF_REG_0); 7963 /* remember map_ptr, so that check_map_access() 7964 * can check 'value_size' boundary of memory access 7965 * to map element returned from bpf_map_lookup_elem() 7966 */ 7967 if (meta.map_ptr == NULL) { 7968 verbose(env, 7969 "kernel subsystem misconfigured verifier\n"); 7970 return -EINVAL; 7971 } 7972 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7973 regs[BPF_REG_0].map_uid = meta.map_uid; 7974 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7975 if (!type_may_be_null(ret_type) && 7976 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 7977 regs[BPF_REG_0].id = ++env->id_gen; 7978 } 7979 break; 7980 case RET_PTR_TO_SOCKET: 7981 mark_reg_known_zero(env, regs, BPF_REG_0); 7982 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7983 break; 7984 case RET_PTR_TO_SOCK_COMMON: 7985 mark_reg_known_zero(env, regs, BPF_REG_0); 7986 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7987 break; 7988 case RET_PTR_TO_TCP_SOCK: 7989 mark_reg_known_zero(env, regs, BPF_REG_0); 7990 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7991 break; 7992 case RET_PTR_TO_MEM: 7993 mark_reg_known_zero(env, regs, BPF_REG_0); 7994 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7995 regs[BPF_REG_0].mem_size = meta.mem_size; 7996 break; 7997 case RET_PTR_TO_MEM_OR_BTF_ID: 7998 { 7999 const struct btf_type *t; 8000 8001 mark_reg_known_zero(env, regs, BPF_REG_0); 8002 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8003 if (!btf_type_is_struct(t)) { 8004 u32 tsize; 8005 const struct btf_type *ret; 8006 const char *tname; 8007 8008 /* resolve the type size of ksym. */ 8009 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8010 if (IS_ERR(ret)) { 8011 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8012 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8013 tname, PTR_ERR(ret)); 8014 return -EINVAL; 8015 } 8016 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8017 regs[BPF_REG_0].mem_size = tsize; 8018 } else { 8019 /* MEM_RDONLY may be carried from ret_flag, but it 8020 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8021 * it will confuse the check of PTR_TO_BTF_ID in 8022 * check_mem_access(). 8023 */ 8024 ret_flag &= ~MEM_RDONLY; 8025 8026 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8027 regs[BPF_REG_0].btf = meta.ret_btf; 8028 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8029 } 8030 break; 8031 } 8032 case RET_PTR_TO_BTF_ID: 8033 { 8034 struct btf *ret_btf; 8035 int ret_btf_id; 8036 8037 mark_reg_known_zero(env, regs, BPF_REG_0); 8038 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8039 if (func_id == BPF_FUNC_kptr_xchg) { 8040 ret_btf = meta.kptr_field->kptr.btf; 8041 ret_btf_id = meta.kptr_field->kptr.btf_id; 8042 } else { 8043 if (fn->ret_btf_id == BPF_PTR_POISON) { 8044 verbose(env, "verifier internal error:"); 8045 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8046 func_id_name(func_id)); 8047 return -EINVAL; 8048 } 8049 ret_btf = btf_vmlinux; 8050 ret_btf_id = *fn->ret_btf_id; 8051 } 8052 if (ret_btf_id == 0) { 8053 verbose(env, "invalid return type %u of func %s#%d\n", 8054 base_type(ret_type), func_id_name(func_id), 8055 func_id); 8056 return -EINVAL; 8057 } 8058 regs[BPF_REG_0].btf = ret_btf; 8059 regs[BPF_REG_0].btf_id = ret_btf_id; 8060 break; 8061 } 8062 default: 8063 verbose(env, "unknown return type %u of func %s#%d\n", 8064 base_type(ret_type), func_id_name(func_id), func_id); 8065 return -EINVAL; 8066 } 8067 8068 if (type_may_be_null(regs[BPF_REG_0].type)) 8069 regs[BPF_REG_0].id = ++env->id_gen; 8070 8071 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8072 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8073 func_id_name(func_id), func_id); 8074 return -EFAULT; 8075 } 8076 8077 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8078 /* For release_reference() */ 8079 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8080 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8081 int id = acquire_reference_state(env, insn_idx); 8082 8083 if (id < 0) 8084 return id; 8085 /* For mark_ptr_or_null_reg() */ 8086 regs[BPF_REG_0].id = id; 8087 /* For release_reference() */ 8088 regs[BPF_REG_0].ref_obj_id = id; 8089 } 8090 8091 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8092 8093 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8094 if (err) 8095 return err; 8096 8097 if ((func_id == BPF_FUNC_get_stack || 8098 func_id == BPF_FUNC_get_task_stack) && 8099 !env->prog->has_callchain_buf) { 8100 const char *err_str; 8101 8102 #ifdef CONFIG_PERF_EVENTS 8103 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8104 err_str = "cannot get callchain buffer for func %s#%d\n"; 8105 #else 8106 err = -ENOTSUPP; 8107 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8108 #endif 8109 if (err) { 8110 verbose(env, err_str, func_id_name(func_id), func_id); 8111 return err; 8112 } 8113 8114 env->prog->has_callchain_buf = true; 8115 } 8116 8117 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8118 env->prog->call_get_stack = true; 8119 8120 if (func_id == BPF_FUNC_get_func_ip) { 8121 if (check_get_func_ip(env)) 8122 return -ENOTSUPP; 8123 env->prog->call_get_func_ip = true; 8124 } 8125 8126 if (changes_data) 8127 clear_all_pkt_pointers(env); 8128 return 0; 8129 } 8130 8131 /* mark_btf_func_reg_size() is used when the reg size is determined by 8132 * the BTF func_proto's return value size and argument. 8133 */ 8134 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8135 size_t reg_size) 8136 { 8137 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8138 8139 if (regno == BPF_REG_0) { 8140 /* Function return value */ 8141 reg->live |= REG_LIVE_WRITTEN; 8142 reg->subreg_def = reg_size == sizeof(u64) ? 8143 DEF_NOT_SUBREG : env->insn_idx + 1; 8144 } else { 8145 /* Function argument */ 8146 if (reg_size == sizeof(u64)) { 8147 mark_insn_zext(env, reg); 8148 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8149 } else { 8150 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8151 } 8152 } 8153 } 8154 8155 struct bpf_kfunc_call_arg_meta { 8156 /* In parameters */ 8157 struct btf *btf; 8158 u32 func_id; 8159 u32 kfunc_flags; 8160 const struct btf_type *func_proto; 8161 const char *func_name; 8162 /* Out parameters */ 8163 u32 ref_obj_id; 8164 u8 release_regno; 8165 bool r0_rdonly; 8166 u32 ret_btf_id; 8167 u64 r0_size; 8168 struct { 8169 u64 value; 8170 bool found; 8171 } arg_constant; 8172 struct { 8173 struct btf *btf; 8174 u32 btf_id; 8175 } arg_obj_drop; 8176 struct { 8177 struct btf_field *field; 8178 } arg_list_head; 8179 }; 8180 8181 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8182 { 8183 return meta->kfunc_flags & KF_ACQUIRE; 8184 } 8185 8186 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8187 { 8188 return meta->kfunc_flags & KF_RET_NULL; 8189 } 8190 8191 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8192 { 8193 return meta->kfunc_flags & KF_RELEASE; 8194 } 8195 8196 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8197 { 8198 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8199 } 8200 8201 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8202 { 8203 return meta->kfunc_flags & KF_SLEEPABLE; 8204 } 8205 8206 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8207 { 8208 return meta->kfunc_flags & KF_DESTRUCTIVE; 8209 } 8210 8211 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8212 { 8213 return meta->kfunc_flags & KF_RCU; 8214 } 8215 8216 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8217 { 8218 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8219 } 8220 8221 static bool __kfunc_param_match_suffix(const struct btf *btf, 8222 const struct btf_param *arg, 8223 const char *suffix) 8224 { 8225 int suffix_len = strlen(suffix), len; 8226 const char *param_name; 8227 8228 /* In the future, this can be ported to use BTF tagging */ 8229 param_name = btf_name_by_offset(btf, arg->name_off); 8230 if (str_is_empty(param_name)) 8231 return false; 8232 len = strlen(param_name); 8233 if (len < suffix_len) 8234 return false; 8235 param_name += len - suffix_len; 8236 return !strncmp(param_name, suffix, suffix_len); 8237 } 8238 8239 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8240 const struct btf_param *arg, 8241 const struct bpf_reg_state *reg) 8242 { 8243 const struct btf_type *t; 8244 8245 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8246 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8247 return false; 8248 8249 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8250 } 8251 8252 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8253 { 8254 return __kfunc_param_match_suffix(btf, arg, "__k"); 8255 } 8256 8257 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8258 { 8259 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8260 } 8261 8262 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8263 { 8264 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8265 } 8266 8267 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8268 const struct btf_param *arg, 8269 const char *name) 8270 { 8271 int len, target_len = strlen(name); 8272 const char *param_name; 8273 8274 param_name = btf_name_by_offset(btf, arg->name_off); 8275 if (str_is_empty(param_name)) 8276 return false; 8277 len = strlen(param_name); 8278 if (len != target_len) 8279 return false; 8280 if (strcmp(param_name, name)) 8281 return false; 8282 8283 return true; 8284 } 8285 8286 enum { 8287 KF_ARG_DYNPTR_ID, 8288 KF_ARG_LIST_HEAD_ID, 8289 KF_ARG_LIST_NODE_ID, 8290 }; 8291 8292 BTF_ID_LIST(kf_arg_btf_ids) 8293 BTF_ID(struct, bpf_dynptr_kern) 8294 BTF_ID(struct, bpf_list_head) 8295 BTF_ID(struct, bpf_list_node) 8296 8297 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8298 const struct btf_param *arg, int type) 8299 { 8300 const struct btf_type *t; 8301 u32 res_id; 8302 8303 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8304 if (!t) 8305 return false; 8306 if (!btf_type_is_ptr(t)) 8307 return false; 8308 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8309 if (!t) 8310 return false; 8311 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8312 } 8313 8314 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8315 { 8316 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8317 } 8318 8319 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8320 { 8321 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8322 } 8323 8324 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8325 { 8326 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8327 } 8328 8329 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8330 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8331 const struct btf *btf, 8332 const struct btf_type *t, int rec) 8333 { 8334 const struct btf_type *member_type; 8335 const struct btf_member *member; 8336 u32 i; 8337 8338 if (!btf_type_is_struct(t)) 8339 return false; 8340 8341 for_each_member(i, t, member) { 8342 const struct btf_array *array; 8343 8344 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8345 if (btf_type_is_struct(member_type)) { 8346 if (rec >= 3) { 8347 verbose(env, "max struct nesting depth exceeded\n"); 8348 return false; 8349 } 8350 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8351 return false; 8352 continue; 8353 } 8354 if (btf_type_is_array(member_type)) { 8355 array = btf_array(member_type); 8356 if (!array->nelems) 8357 return false; 8358 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8359 if (!btf_type_is_scalar(member_type)) 8360 return false; 8361 continue; 8362 } 8363 if (!btf_type_is_scalar(member_type)) 8364 return false; 8365 } 8366 return true; 8367 } 8368 8369 8370 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8371 #ifdef CONFIG_NET 8372 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8373 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8374 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8375 #endif 8376 }; 8377 8378 enum kfunc_ptr_arg_type { 8379 KF_ARG_PTR_TO_CTX, 8380 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8381 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8382 KF_ARG_PTR_TO_DYNPTR, 8383 KF_ARG_PTR_TO_LIST_HEAD, 8384 KF_ARG_PTR_TO_LIST_NODE, 8385 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8386 KF_ARG_PTR_TO_MEM, 8387 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8388 }; 8389 8390 enum special_kfunc_type { 8391 KF_bpf_obj_new_impl, 8392 KF_bpf_obj_drop_impl, 8393 KF_bpf_list_push_front, 8394 KF_bpf_list_push_back, 8395 KF_bpf_list_pop_front, 8396 KF_bpf_list_pop_back, 8397 KF_bpf_cast_to_kern_ctx, 8398 KF_bpf_rdonly_cast, 8399 KF_bpf_rcu_read_lock, 8400 KF_bpf_rcu_read_unlock, 8401 }; 8402 8403 BTF_SET_START(special_kfunc_set) 8404 BTF_ID(func, bpf_obj_new_impl) 8405 BTF_ID(func, bpf_obj_drop_impl) 8406 BTF_ID(func, bpf_list_push_front) 8407 BTF_ID(func, bpf_list_push_back) 8408 BTF_ID(func, bpf_list_pop_front) 8409 BTF_ID(func, bpf_list_pop_back) 8410 BTF_ID(func, bpf_cast_to_kern_ctx) 8411 BTF_ID(func, bpf_rdonly_cast) 8412 BTF_SET_END(special_kfunc_set) 8413 8414 BTF_ID_LIST(special_kfunc_list) 8415 BTF_ID(func, bpf_obj_new_impl) 8416 BTF_ID(func, bpf_obj_drop_impl) 8417 BTF_ID(func, bpf_list_push_front) 8418 BTF_ID(func, bpf_list_push_back) 8419 BTF_ID(func, bpf_list_pop_front) 8420 BTF_ID(func, bpf_list_pop_back) 8421 BTF_ID(func, bpf_cast_to_kern_ctx) 8422 BTF_ID(func, bpf_rdonly_cast) 8423 BTF_ID(func, bpf_rcu_read_lock) 8424 BTF_ID(func, bpf_rcu_read_unlock) 8425 8426 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 8427 { 8428 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 8429 } 8430 8431 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 8432 { 8433 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 8434 } 8435 8436 static enum kfunc_ptr_arg_type 8437 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8438 struct bpf_kfunc_call_arg_meta *meta, 8439 const struct btf_type *t, const struct btf_type *ref_t, 8440 const char *ref_tname, const struct btf_param *args, 8441 int argno, int nargs) 8442 { 8443 u32 regno = argno + 1; 8444 struct bpf_reg_state *regs = cur_regs(env); 8445 struct bpf_reg_state *reg = ®s[regno]; 8446 bool arg_mem_size = false; 8447 8448 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 8449 return KF_ARG_PTR_TO_CTX; 8450 8451 /* In this function, we verify the kfunc's BTF as per the argument type, 8452 * leaving the rest of the verification with respect to the register 8453 * type to our caller. When a set of conditions hold in the BTF type of 8454 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8455 */ 8456 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8457 return KF_ARG_PTR_TO_CTX; 8458 8459 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8460 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8461 8462 if (is_kfunc_arg_kptr_get(meta, argno)) { 8463 if (!btf_type_is_ptr(ref_t)) { 8464 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8465 return -EINVAL; 8466 } 8467 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8468 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8469 if (!btf_type_is_struct(ref_t)) { 8470 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8471 meta->func_name, btf_type_str(ref_t), ref_tname); 8472 return -EINVAL; 8473 } 8474 return KF_ARG_PTR_TO_KPTR; 8475 } 8476 8477 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8478 return KF_ARG_PTR_TO_DYNPTR; 8479 8480 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8481 return KF_ARG_PTR_TO_LIST_HEAD; 8482 8483 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8484 return KF_ARG_PTR_TO_LIST_NODE; 8485 8486 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8487 if (!btf_type_is_struct(ref_t)) { 8488 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8489 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8490 return -EINVAL; 8491 } 8492 return KF_ARG_PTR_TO_BTF_ID; 8493 } 8494 8495 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8496 arg_mem_size = true; 8497 8498 /* This is the catch all argument type of register types supported by 8499 * check_helper_mem_access. However, we only allow when argument type is 8500 * pointer to scalar, or struct composed (recursively) of scalars. When 8501 * arg_mem_size is true, the pointer can be void *. 8502 */ 8503 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 8504 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 8505 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 8506 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 8507 return -EINVAL; 8508 } 8509 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 8510 } 8511 8512 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 8513 struct bpf_reg_state *reg, 8514 const struct btf_type *ref_t, 8515 const char *ref_tname, u32 ref_id, 8516 struct bpf_kfunc_call_arg_meta *meta, 8517 int argno) 8518 { 8519 const struct btf_type *reg_ref_t; 8520 bool strict_type_match = false; 8521 const struct btf *reg_btf; 8522 const char *reg_ref_tname; 8523 u32 reg_ref_id; 8524 8525 if (base_type(reg->type) == PTR_TO_BTF_ID) { 8526 reg_btf = reg->btf; 8527 reg_ref_id = reg->btf_id; 8528 } else { 8529 reg_btf = btf_vmlinux; 8530 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 8531 } 8532 8533 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id)) 8534 strict_type_match = true; 8535 8536 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 8537 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 8538 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 8539 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 8540 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 8541 btf_type_str(reg_ref_t), reg_ref_tname); 8542 return -EINVAL; 8543 } 8544 return 0; 8545 } 8546 8547 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 8548 struct bpf_reg_state *reg, 8549 const struct btf_type *ref_t, 8550 const char *ref_tname, 8551 struct bpf_kfunc_call_arg_meta *meta, 8552 int argno) 8553 { 8554 struct btf_field *kptr_field; 8555 8556 /* check_func_arg_reg_off allows var_off for 8557 * PTR_TO_MAP_VALUE, but we need fixed offset to find 8558 * off_desc. 8559 */ 8560 if (!tnum_is_const(reg->var_off)) { 8561 verbose(env, "arg#0 must have constant offset\n"); 8562 return -EINVAL; 8563 } 8564 8565 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 8566 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 8567 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 8568 reg->off + reg->var_off.value); 8569 return -EINVAL; 8570 } 8571 8572 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 8573 kptr_field->kptr.btf_id, true)) { 8574 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 8575 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8576 return -EINVAL; 8577 } 8578 return 0; 8579 } 8580 8581 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id) 8582 { 8583 struct bpf_func_state *state = cur_func(env); 8584 struct bpf_reg_state *reg; 8585 int i; 8586 8587 /* bpf_spin_lock only allows calling list_push and list_pop, no BPF 8588 * subprogs, no global functions. This means that the references would 8589 * not be released inside the critical section but they may be added to 8590 * the reference state, and the acquired_refs are never copied out for a 8591 * different frame as BPF to BPF calls don't work in bpf_spin_lock 8592 * critical sections. 8593 */ 8594 if (!ref_obj_id) { 8595 verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n"); 8596 return -EFAULT; 8597 } 8598 for (i = 0; i < state->acquired_refs; i++) { 8599 if (state->refs[i].id == ref_obj_id) { 8600 if (state->refs[i].release_on_unlock) { 8601 verbose(env, "verifier internal error: expected false release_on_unlock"); 8602 return -EFAULT; 8603 } 8604 state->refs[i].release_on_unlock = true; 8605 /* Now mark everyone sharing same ref_obj_id as untrusted */ 8606 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8607 if (reg->ref_obj_id == ref_obj_id) 8608 reg->type |= PTR_UNTRUSTED; 8609 })); 8610 return 0; 8611 } 8612 } 8613 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 8614 return -EFAULT; 8615 } 8616 8617 /* Implementation details: 8618 * 8619 * Each register points to some region of memory, which we define as an 8620 * allocation. Each allocation may embed a bpf_spin_lock which protects any 8621 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 8622 * allocation. The lock and the data it protects are colocated in the same 8623 * memory region. 8624 * 8625 * Hence, everytime a register holds a pointer value pointing to such 8626 * allocation, the verifier preserves a unique reg->id for it. 8627 * 8628 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 8629 * bpf_spin_lock is called. 8630 * 8631 * To enable this, lock state in the verifier captures two values: 8632 * active_lock.ptr = Register's type specific pointer 8633 * active_lock.id = A unique ID for each register pointer value 8634 * 8635 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 8636 * supported register types. 8637 * 8638 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 8639 * allocated objects is the reg->btf pointer. 8640 * 8641 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 8642 * can establish the provenance of the map value statically for each distinct 8643 * lookup into such maps. They always contain a single map value hence unique 8644 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 8645 * 8646 * So, in case of global variables, they use array maps with max_entries = 1, 8647 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 8648 * into the same map value as max_entries is 1, as described above). 8649 * 8650 * In case of inner map lookups, the inner map pointer has same map_ptr as the 8651 * outer map pointer (in verifier context), but each lookup into an inner map 8652 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 8653 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 8654 * will get different reg->id assigned to each lookup, hence different 8655 * active_lock.id. 8656 * 8657 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 8658 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 8659 * returned from bpf_obj_new. Each allocation receives a new reg->id. 8660 */ 8661 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8662 { 8663 void *ptr; 8664 u32 id; 8665 8666 switch ((int)reg->type) { 8667 case PTR_TO_MAP_VALUE: 8668 ptr = reg->map_ptr; 8669 break; 8670 case PTR_TO_BTF_ID | MEM_ALLOC: 8671 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 8672 ptr = reg->btf; 8673 break; 8674 default: 8675 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 8676 return -EFAULT; 8677 } 8678 id = reg->id; 8679 8680 if (!env->cur_state->active_lock.ptr) 8681 return -EINVAL; 8682 if (env->cur_state->active_lock.ptr != ptr || 8683 env->cur_state->active_lock.id != id) { 8684 verbose(env, "held lock and object are not in the same allocation\n"); 8685 return -EINVAL; 8686 } 8687 return 0; 8688 } 8689 8690 static bool is_bpf_list_api_kfunc(u32 btf_id) 8691 { 8692 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 8693 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 8694 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 8695 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 8696 } 8697 8698 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 8699 struct bpf_reg_state *reg, u32 regno, 8700 struct bpf_kfunc_call_arg_meta *meta) 8701 { 8702 struct btf_field *field; 8703 struct btf_record *rec; 8704 u32 list_head_off; 8705 8706 if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) { 8707 verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n"); 8708 return -EFAULT; 8709 } 8710 8711 if (!tnum_is_const(reg->var_off)) { 8712 verbose(env, 8713 "R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n", 8714 regno); 8715 return -EINVAL; 8716 } 8717 8718 rec = reg_btf_record(reg); 8719 list_head_off = reg->off + reg->var_off.value; 8720 field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD); 8721 if (!field) { 8722 verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off); 8723 return -EINVAL; 8724 } 8725 8726 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 8727 if (check_reg_allocation_locked(env, reg)) { 8728 verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n", 8729 rec->spin_lock_off); 8730 return -EINVAL; 8731 } 8732 8733 if (meta->arg_list_head.field) { 8734 verbose(env, "verifier internal error: repeating bpf_list_head arg\n"); 8735 return -EFAULT; 8736 } 8737 meta->arg_list_head.field = field; 8738 return 0; 8739 } 8740 8741 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 8742 struct bpf_reg_state *reg, u32 regno, 8743 struct bpf_kfunc_call_arg_meta *meta) 8744 { 8745 const struct btf_type *et, *t; 8746 struct btf_field *field; 8747 struct btf_record *rec; 8748 u32 list_node_off; 8749 8750 if (meta->btf != btf_vmlinux || 8751 (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] && 8752 meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) { 8753 verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n"); 8754 return -EFAULT; 8755 } 8756 8757 if (!tnum_is_const(reg->var_off)) { 8758 verbose(env, 8759 "R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n", 8760 regno); 8761 return -EINVAL; 8762 } 8763 8764 rec = reg_btf_record(reg); 8765 list_node_off = reg->off + reg->var_off.value; 8766 field = btf_record_find(rec, list_node_off, BPF_LIST_NODE); 8767 if (!field || field->offset != list_node_off) { 8768 verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off); 8769 return -EINVAL; 8770 } 8771 8772 field = meta->arg_list_head.field; 8773 8774 et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id); 8775 t = btf_type_by_id(reg->btf, reg->btf_id); 8776 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf, 8777 field->list_head.value_btf_id, true)) { 8778 verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d " 8779 "in struct %s, but arg is at offset=%d in struct %s\n", 8780 field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off), 8781 list_node_off, btf_name_by_offset(reg->btf, t->name_off)); 8782 return -EINVAL; 8783 } 8784 8785 if (list_node_off != field->list_head.node_offset) { 8786 verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n", 8787 list_node_off, field->list_head.node_offset, 8788 btf_name_by_offset(field->list_head.btf, et->name_off)); 8789 return -EINVAL; 8790 } 8791 /* Set arg#1 for expiration after unlock */ 8792 return ref_set_release_on_unlock(env, reg->ref_obj_id); 8793 } 8794 8795 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 8796 { 8797 const char *func_name = meta->func_name, *ref_tname; 8798 const struct btf *btf = meta->btf; 8799 const struct btf_param *args; 8800 u32 i, nargs; 8801 int ret; 8802 8803 args = (const struct btf_param *)(meta->func_proto + 1); 8804 nargs = btf_type_vlen(meta->func_proto); 8805 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 8806 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 8807 MAX_BPF_FUNC_REG_ARGS); 8808 return -EINVAL; 8809 } 8810 8811 /* Check that BTF function arguments match actual types that the 8812 * verifier sees. 8813 */ 8814 for (i = 0; i < nargs; i++) { 8815 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 8816 const struct btf_type *t, *ref_t, *resolve_ret; 8817 enum bpf_arg_type arg_type = ARG_DONTCARE; 8818 u32 regno = i + 1, ref_id, type_size; 8819 bool is_ret_buf_sz = false; 8820 int kf_arg_type; 8821 8822 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 8823 8824 if (is_kfunc_arg_ignore(btf, &args[i])) 8825 continue; 8826 8827 if (btf_type_is_scalar(t)) { 8828 if (reg->type != SCALAR_VALUE) { 8829 verbose(env, "R%d is not a scalar\n", regno); 8830 return -EINVAL; 8831 } 8832 8833 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 8834 if (meta->arg_constant.found) { 8835 verbose(env, "verifier internal error: only one constant argument permitted\n"); 8836 return -EFAULT; 8837 } 8838 if (!tnum_is_const(reg->var_off)) { 8839 verbose(env, "R%d must be a known constant\n", regno); 8840 return -EINVAL; 8841 } 8842 ret = mark_chain_precision(env, regno); 8843 if (ret < 0) 8844 return ret; 8845 meta->arg_constant.found = true; 8846 meta->arg_constant.value = reg->var_off.value; 8847 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 8848 meta->r0_rdonly = true; 8849 is_ret_buf_sz = true; 8850 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 8851 is_ret_buf_sz = true; 8852 } 8853 8854 if (is_ret_buf_sz) { 8855 if (meta->r0_size) { 8856 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 8857 return -EINVAL; 8858 } 8859 8860 if (!tnum_is_const(reg->var_off)) { 8861 verbose(env, "R%d is not a const\n", regno); 8862 return -EINVAL; 8863 } 8864 8865 meta->r0_size = reg->var_off.value; 8866 ret = mark_chain_precision(env, regno); 8867 if (ret) 8868 return ret; 8869 } 8870 continue; 8871 } 8872 8873 if (!btf_type_is_ptr(t)) { 8874 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 8875 return -EINVAL; 8876 } 8877 8878 if (reg->ref_obj_id) { 8879 if (is_kfunc_release(meta) && meta->ref_obj_id) { 8880 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8881 regno, reg->ref_obj_id, 8882 meta->ref_obj_id); 8883 return -EFAULT; 8884 } 8885 meta->ref_obj_id = reg->ref_obj_id; 8886 if (is_kfunc_release(meta)) 8887 meta->release_regno = regno; 8888 } 8889 8890 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 8891 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 8892 8893 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 8894 if (kf_arg_type < 0) 8895 return kf_arg_type; 8896 8897 switch (kf_arg_type) { 8898 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8899 case KF_ARG_PTR_TO_BTF_ID: 8900 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 8901 break; 8902 8903 if (!is_trusted_reg(reg)) { 8904 if (!is_kfunc_rcu(meta)) { 8905 verbose(env, "R%d must be referenced or trusted\n", regno); 8906 return -EINVAL; 8907 } 8908 if (!is_rcu_reg(reg)) { 8909 verbose(env, "R%d must be a rcu pointer\n", regno); 8910 return -EINVAL; 8911 } 8912 } 8913 8914 fallthrough; 8915 case KF_ARG_PTR_TO_CTX: 8916 /* Trusted arguments have the same offset checks as release arguments */ 8917 arg_type |= OBJ_RELEASE; 8918 break; 8919 case KF_ARG_PTR_TO_KPTR: 8920 case KF_ARG_PTR_TO_DYNPTR: 8921 case KF_ARG_PTR_TO_LIST_HEAD: 8922 case KF_ARG_PTR_TO_LIST_NODE: 8923 case KF_ARG_PTR_TO_MEM: 8924 case KF_ARG_PTR_TO_MEM_SIZE: 8925 /* Trusted by default */ 8926 break; 8927 default: 8928 WARN_ON_ONCE(1); 8929 return -EFAULT; 8930 } 8931 8932 if (is_kfunc_release(meta) && reg->ref_obj_id) 8933 arg_type |= OBJ_RELEASE; 8934 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 8935 if (ret < 0) 8936 return ret; 8937 8938 switch (kf_arg_type) { 8939 case KF_ARG_PTR_TO_CTX: 8940 if (reg->type != PTR_TO_CTX) { 8941 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 8942 return -EINVAL; 8943 } 8944 8945 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 8946 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 8947 if (ret < 0) 8948 return -EINVAL; 8949 meta->ret_btf_id = ret; 8950 } 8951 break; 8952 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8953 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8954 verbose(env, "arg#%d expected pointer to allocated object\n", i); 8955 return -EINVAL; 8956 } 8957 if (!reg->ref_obj_id) { 8958 verbose(env, "allocated object must be referenced\n"); 8959 return -EINVAL; 8960 } 8961 if (meta->btf == btf_vmlinux && 8962 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 8963 meta->arg_obj_drop.btf = reg->btf; 8964 meta->arg_obj_drop.btf_id = reg->btf_id; 8965 } 8966 break; 8967 case KF_ARG_PTR_TO_KPTR: 8968 if (reg->type != PTR_TO_MAP_VALUE) { 8969 verbose(env, "arg#0 expected pointer to map value\n"); 8970 return -EINVAL; 8971 } 8972 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 8973 if (ret < 0) 8974 return ret; 8975 break; 8976 case KF_ARG_PTR_TO_DYNPTR: 8977 if (reg->type != PTR_TO_STACK && 8978 reg->type != CONST_PTR_TO_DYNPTR) { 8979 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 8980 return -EINVAL; 8981 } 8982 8983 ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL); 8984 if (ret < 0) 8985 return ret; 8986 break; 8987 case KF_ARG_PTR_TO_LIST_HEAD: 8988 if (reg->type != PTR_TO_MAP_VALUE && 8989 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8990 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 8991 return -EINVAL; 8992 } 8993 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 8994 verbose(env, "allocated object must be referenced\n"); 8995 return -EINVAL; 8996 } 8997 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 8998 if (ret < 0) 8999 return ret; 9000 break; 9001 case KF_ARG_PTR_TO_LIST_NODE: 9002 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9003 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9004 return -EINVAL; 9005 } 9006 if (!reg->ref_obj_id) { 9007 verbose(env, "allocated object must be referenced\n"); 9008 return -EINVAL; 9009 } 9010 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9011 if (ret < 0) 9012 return ret; 9013 break; 9014 case KF_ARG_PTR_TO_BTF_ID: 9015 /* Only base_type is checked, further checks are done here */ 9016 if ((base_type(reg->type) != PTR_TO_BTF_ID || 9017 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 9018 !reg2btf_ids[base_type(reg->type)]) { 9019 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 9020 verbose(env, "expected %s or socket\n", 9021 reg_type_str(env, base_type(reg->type) | 9022 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 9023 return -EINVAL; 9024 } 9025 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 9026 if (ret < 0) 9027 return ret; 9028 break; 9029 case KF_ARG_PTR_TO_MEM: 9030 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 9031 if (IS_ERR(resolve_ret)) { 9032 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 9033 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 9034 return -EINVAL; 9035 } 9036 ret = check_mem_reg(env, reg, regno, type_size); 9037 if (ret < 0) 9038 return ret; 9039 break; 9040 case KF_ARG_PTR_TO_MEM_SIZE: 9041 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 9042 if (ret < 0) { 9043 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 9044 return ret; 9045 } 9046 /* Skip next '__sz' argument */ 9047 i++; 9048 break; 9049 } 9050 } 9051 9052 if (is_kfunc_release(meta) && !meta->release_regno) { 9053 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 9054 func_name); 9055 return -EINVAL; 9056 } 9057 9058 return 0; 9059 } 9060 9061 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9062 int *insn_idx_p) 9063 { 9064 const struct btf_type *t, *func, *func_proto, *ptr_type; 9065 struct bpf_reg_state *regs = cur_regs(env); 9066 const char *func_name, *ptr_type_name; 9067 bool sleepable, rcu_lock, rcu_unlock; 9068 struct bpf_kfunc_call_arg_meta meta; 9069 u32 i, nargs, func_id, ptr_type_id; 9070 int err, insn_idx = *insn_idx_p; 9071 const struct btf_param *args; 9072 const struct btf_type *ret_t; 9073 struct btf *desc_btf; 9074 u32 *kfunc_flags; 9075 9076 /* skip for now, but return error when we find this in fixup_kfunc_call */ 9077 if (!insn->imm) 9078 return 0; 9079 9080 desc_btf = find_kfunc_desc_btf(env, insn->off); 9081 if (IS_ERR(desc_btf)) 9082 return PTR_ERR(desc_btf); 9083 9084 func_id = insn->imm; 9085 func = btf_type_by_id(desc_btf, func_id); 9086 func_name = btf_name_by_offset(desc_btf, func->name_off); 9087 func_proto = btf_type_by_id(desc_btf, func->type); 9088 9089 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 9090 if (!kfunc_flags) { 9091 verbose(env, "calling kernel function %s is not allowed\n", 9092 func_name); 9093 return -EACCES; 9094 } 9095 9096 /* Prepare kfunc call metadata */ 9097 memset(&meta, 0, sizeof(meta)); 9098 meta.btf = desc_btf; 9099 meta.func_id = func_id; 9100 meta.kfunc_flags = *kfunc_flags; 9101 meta.func_proto = func_proto; 9102 meta.func_name = func_name; 9103 9104 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 9105 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 9106 return -EACCES; 9107 } 9108 9109 sleepable = is_kfunc_sleepable(&meta); 9110 if (sleepable && !env->prog->aux->sleepable) { 9111 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 9112 return -EACCES; 9113 } 9114 9115 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 9116 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 9117 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) { 9118 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name); 9119 return -EACCES; 9120 } 9121 9122 if (env->cur_state->active_rcu_lock) { 9123 struct bpf_func_state *state; 9124 struct bpf_reg_state *reg; 9125 9126 if (rcu_lock) { 9127 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 9128 return -EINVAL; 9129 } else if (rcu_unlock) { 9130 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9131 if (reg->type & MEM_RCU) { 9132 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 9133 reg->type |= PTR_UNTRUSTED; 9134 } 9135 })); 9136 env->cur_state->active_rcu_lock = false; 9137 } else if (sleepable) { 9138 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 9139 return -EACCES; 9140 } 9141 } else if (rcu_lock) { 9142 env->cur_state->active_rcu_lock = true; 9143 } else if (rcu_unlock) { 9144 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 9145 return -EINVAL; 9146 } 9147 9148 /* Check the arguments */ 9149 err = check_kfunc_args(env, &meta); 9150 if (err < 0) 9151 return err; 9152 /* In case of release function, we get register number of refcounted 9153 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 9154 */ 9155 if (meta.release_regno) { 9156 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 9157 if (err) { 9158 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9159 func_name, func_id); 9160 return err; 9161 } 9162 } 9163 9164 for (i = 0; i < CALLER_SAVED_REGS; i++) 9165 mark_reg_not_init(env, regs, caller_saved[i]); 9166 9167 /* Check return type */ 9168 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 9169 9170 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 9171 /* Only exception is bpf_obj_new_impl */ 9172 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 9173 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 9174 return -EINVAL; 9175 } 9176 } 9177 9178 if (btf_type_is_scalar(t)) { 9179 mark_reg_unknown(env, regs, BPF_REG_0); 9180 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 9181 } else if (btf_type_is_ptr(t)) { 9182 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 9183 9184 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 9185 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 9186 struct btf *ret_btf; 9187 u32 ret_btf_id; 9188 9189 if (unlikely(!bpf_global_ma_set)) 9190 return -ENOMEM; 9191 9192 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 9193 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 9194 return -EINVAL; 9195 } 9196 9197 ret_btf = env->prog->aux->btf; 9198 ret_btf_id = meta.arg_constant.value; 9199 9200 /* This may be NULL due to user not supplying a BTF */ 9201 if (!ret_btf) { 9202 verbose(env, "bpf_obj_new requires prog BTF\n"); 9203 return -EINVAL; 9204 } 9205 9206 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 9207 if (!ret_t || !__btf_type_is_struct(ret_t)) { 9208 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 9209 return -EINVAL; 9210 } 9211 9212 mark_reg_known_zero(env, regs, BPF_REG_0); 9213 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9214 regs[BPF_REG_0].btf = ret_btf; 9215 regs[BPF_REG_0].btf_id = ret_btf_id; 9216 9217 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 9218 env->insn_aux_data[insn_idx].kptr_struct_meta = 9219 btf_find_struct_meta(ret_btf, ret_btf_id); 9220 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9221 env->insn_aux_data[insn_idx].kptr_struct_meta = 9222 btf_find_struct_meta(meta.arg_obj_drop.btf, 9223 meta.arg_obj_drop.btf_id); 9224 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 9225 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 9226 struct btf_field *field = meta.arg_list_head.field; 9227 9228 mark_reg_known_zero(env, regs, BPF_REG_0); 9229 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9230 regs[BPF_REG_0].btf = field->list_head.btf; 9231 regs[BPF_REG_0].btf_id = field->list_head.value_btf_id; 9232 regs[BPF_REG_0].off = field->list_head.node_offset; 9233 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9234 mark_reg_known_zero(env, regs, BPF_REG_0); 9235 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 9236 regs[BPF_REG_0].btf = desc_btf; 9237 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9238 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 9239 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 9240 if (!ret_t || !btf_type_is_struct(ret_t)) { 9241 verbose(env, 9242 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 9243 return -EINVAL; 9244 } 9245 9246 mark_reg_known_zero(env, regs, BPF_REG_0); 9247 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 9248 regs[BPF_REG_0].btf = desc_btf; 9249 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 9250 } else { 9251 verbose(env, "kernel function %s unhandled dynamic return type\n", 9252 meta.func_name); 9253 return -EFAULT; 9254 } 9255 } else if (!__btf_type_is_struct(ptr_type)) { 9256 if (!meta.r0_size) { 9257 ptr_type_name = btf_name_by_offset(desc_btf, 9258 ptr_type->name_off); 9259 verbose(env, 9260 "kernel function %s returns pointer type %s %s is not supported\n", 9261 func_name, 9262 btf_type_str(ptr_type), 9263 ptr_type_name); 9264 return -EINVAL; 9265 } 9266 9267 mark_reg_known_zero(env, regs, BPF_REG_0); 9268 regs[BPF_REG_0].type = PTR_TO_MEM; 9269 regs[BPF_REG_0].mem_size = meta.r0_size; 9270 9271 if (meta.r0_rdonly) 9272 regs[BPF_REG_0].type |= MEM_RDONLY; 9273 9274 /* Ensures we don't access the memory after a release_reference() */ 9275 if (meta.ref_obj_id) 9276 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9277 } else { 9278 mark_reg_known_zero(env, regs, BPF_REG_0); 9279 regs[BPF_REG_0].btf = desc_btf; 9280 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 9281 regs[BPF_REG_0].btf_id = ptr_type_id; 9282 } 9283 9284 if (is_kfunc_ret_null(&meta)) { 9285 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 9286 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 9287 regs[BPF_REG_0].id = ++env->id_gen; 9288 } 9289 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 9290 if (is_kfunc_acquire(&meta)) { 9291 int id = acquire_reference_state(env, insn_idx); 9292 9293 if (id < 0) 9294 return id; 9295 if (is_kfunc_ret_null(&meta)) 9296 regs[BPF_REG_0].id = id; 9297 regs[BPF_REG_0].ref_obj_id = id; 9298 } 9299 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 9300 regs[BPF_REG_0].id = ++env->id_gen; 9301 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 9302 9303 nargs = btf_type_vlen(func_proto); 9304 args = (const struct btf_param *)(func_proto + 1); 9305 for (i = 0; i < nargs; i++) { 9306 u32 regno = i + 1; 9307 9308 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 9309 if (btf_type_is_ptr(t)) 9310 mark_btf_func_reg_size(env, regno, sizeof(void *)); 9311 else 9312 /* scalar. ensured by btf_check_kfunc_arg_match() */ 9313 mark_btf_func_reg_size(env, regno, t->size); 9314 } 9315 9316 return 0; 9317 } 9318 9319 static bool signed_add_overflows(s64 a, s64 b) 9320 { 9321 /* Do the add in u64, where overflow is well-defined */ 9322 s64 res = (s64)((u64)a + (u64)b); 9323 9324 if (b < 0) 9325 return res > a; 9326 return res < a; 9327 } 9328 9329 static bool signed_add32_overflows(s32 a, s32 b) 9330 { 9331 /* Do the add in u32, where overflow is well-defined */ 9332 s32 res = (s32)((u32)a + (u32)b); 9333 9334 if (b < 0) 9335 return res > a; 9336 return res < a; 9337 } 9338 9339 static bool signed_sub_overflows(s64 a, s64 b) 9340 { 9341 /* Do the sub in u64, where overflow is well-defined */ 9342 s64 res = (s64)((u64)a - (u64)b); 9343 9344 if (b < 0) 9345 return res < a; 9346 return res > a; 9347 } 9348 9349 static bool signed_sub32_overflows(s32 a, s32 b) 9350 { 9351 /* Do the sub in u32, where overflow is well-defined */ 9352 s32 res = (s32)((u32)a - (u32)b); 9353 9354 if (b < 0) 9355 return res < a; 9356 return res > a; 9357 } 9358 9359 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 9360 const struct bpf_reg_state *reg, 9361 enum bpf_reg_type type) 9362 { 9363 bool known = tnum_is_const(reg->var_off); 9364 s64 val = reg->var_off.value; 9365 s64 smin = reg->smin_value; 9366 9367 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 9368 verbose(env, "math between %s pointer and %lld is not allowed\n", 9369 reg_type_str(env, type), val); 9370 return false; 9371 } 9372 9373 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 9374 verbose(env, "%s pointer offset %d is not allowed\n", 9375 reg_type_str(env, type), reg->off); 9376 return false; 9377 } 9378 9379 if (smin == S64_MIN) { 9380 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 9381 reg_type_str(env, type)); 9382 return false; 9383 } 9384 9385 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 9386 verbose(env, "value %lld makes %s pointer be out of bounds\n", 9387 smin, reg_type_str(env, type)); 9388 return false; 9389 } 9390 9391 return true; 9392 } 9393 9394 enum { 9395 REASON_BOUNDS = -1, 9396 REASON_TYPE = -2, 9397 REASON_PATHS = -3, 9398 REASON_LIMIT = -4, 9399 REASON_STACK = -5, 9400 }; 9401 9402 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 9403 u32 *alu_limit, bool mask_to_left) 9404 { 9405 u32 max = 0, ptr_limit = 0; 9406 9407 switch (ptr_reg->type) { 9408 case PTR_TO_STACK: 9409 /* Offset 0 is out-of-bounds, but acceptable start for the 9410 * left direction, see BPF_REG_FP. Also, unknown scalar 9411 * offset where we would need to deal with min/max bounds is 9412 * currently prohibited for unprivileged. 9413 */ 9414 max = MAX_BPF_STACK + mask_to_left; 9415 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 9416 break; 9417 case PTR_TO_MAP_VALUE: 9418 max = ptr_reg->map_ptr->value_size; 9419 ptr_limit = (mask_to_left ? 9420 ptr_reg->smin_value : 9421 ptr_reg->umax_value) + ptr_reg->off; 9422 break; 9423 default: 9424 return REASON_TYPE; 9425 } 9426 9427 if (ptr_limit >= max) 9428 return REASON_LIMIT; 9429 *alu_limit = ptr_limit; 9430 return 0; 9431 } 9432 9433 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 9434 const struct bpf_insn *insn) 9435 { 9436 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 9437 } 9438 9439 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 9440 u32 alu_state, u32 alu_limit) 9441 { 9442 /* If we arrived here from different branches with different 9443 * state or limits to sanitize, then this won't work. 9444 */ 9445 if (aux->alu_state && 9446 (aux->alu_state != alu_state || 9447 aux->alu_limit != alu_limit)) 9448 return REASON_PATHS; 9449 9450 /* Corresponding fixup done in do_misc_fixups(). */ 9451 aux->alu_state = alu_state; 9452 aux->alu_limit = alu_limit; 9453 return 0; 9454 } 9455 9456 static int sanitize_val_alu(struct bpf_verifier_env *env, 9457 struct bpf_insn *insn) 9458 { 9459 struct bpf_insn_aux_data *aux = cur_aux(env); 9460 9461 if (can_skip_alu_sanitation(env, insn)) 9462 return 0; 9463 9464 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 9465 } 9466 9467 static bool sanitize_needed(u8 opcode) 9468 { 9469 return opcode == BPF_ADD || opcode == BPF_SUB; 9470 } 9471 9472 struct bpf_sanitize_info { 9473 struct bpf_insn_aux_data aux; 9474 bool mask_to_left; 9475 }; 9476 9477 static struct bpf_verifier_state * 9478 sanitize_speculative_path(struct bpf_verifier_env *env, 9479 const struct bpf_insn *insn, 9480 u32 next_idx, u32 curr_idx) 9481 { 9482 struct bpf_verifier_state *branch; 9483 struct bpf_reg_state *regs; 9484 9485 branch = push_stack(env, next_idx, curr_idx, true); 9486 if (branch && insn) { 9487 regs = branch->frame[branch->curframe]->regs; 9488 if (BPF_SRC(insn->code) == BPF_K) { 9489 mark_reg_unknown(env, regs, insn->dst_reg); 9490 } else if (BPF_SRC(insn->code) == BPF_X) { 9491 mark_reg_unknown(env, regs, insn->dst_reg); 9492 mark_reg_unknown(env, regs, insn->src_reg); 9493 } 9494 } 9495 return branch; 9496 } 9497 9498 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 9499 struct bpf_insn *insn, 9500 const struct bpf_reg_state *ptr_reg, 9501 const struct bpf_reg_state *off_reg, 9502 struct bpf_reg_state *dst_reg, 9503 struct bpf_sanitize_info *info, 9504 const bool commit_window) 9505 { 9506 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 9507 struct bpf_verifier_state *vstate = env->cur_state; 9508 bool off_is_imm = tnum_is_const(off_reg->var_off); 9509 bool off_is_neg = off_reg->smin_value < 0; 9510 bool ptr_is_dst_reg = ptr_reg == dst_reg; 9511 u8 opcode = BPF_OP(insn->code); 9512 u32 alu_state, alu_limit; 9513 struct bpf_reg_state tmp; 9514 bool ret; 9515 int err; 9516 9517 if (can_skip_alu_sanitation(env, insn)) 9518 return 0; 9519 9520 /* We already marked aux for masking from non-speculative 9521 * paths, thus we got here in the first place. We only care 9522 * to explore bad access from here. 9523 */ 9524 if (vstate->speculative) 9525 goto do_sim; 9526 9527 if (!commit_window) { 9528 if (!tnum_is_const(off_reg->var_off) && 9529 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 9530 return REASON_BOUNDS; 9531 9532 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 9533 (opcode == BPF_SUB && !off_is_neg); 9534 } 9535 9536 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 9537 if (err < 0) 9538 return err; 9539 9540 if (commit_window) { 9541 /* In commit phase we narrow the masking window based on 9542 * the observed pointer move after the simulated operation. 9543 */ 9544 alu_state = info->aux.alu_state; 9545 alu_limit = abs(info->aux.alu_limit - alu_limit); 9546 } else { 9547 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 9548 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 9549 alu_state |= ptr_is_dst_reg ? 9550 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 9551 9552 /* Limit pruning on unknown scalars to enable deep search for 9553 * potential masking differences from other program paths. 9554 */ 9555 if (!off_is_imm) 9556 env->explore_alu_limits = true; 9557 } 9558 9559 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 9560 if (err < 0) 9561 return err; 9562 do_sim: 9563 /* If we're in commit phase, we're done here given we already 9564 * pushed the truncated dst_reg into the speculative verification 9565 * stack. 9566 * 9567 * Also, when register is a known constant, we rewrite register-based 9568 * operation to immediate-based, and thus do not need masking (and as 9569 * a consequence, do not need to simulate the zero-truncation either). 9570 */ 9571 if (commit_window || off_is_imm) 9572 return 0; 9573 9574 /* Simulate and find potential out-of-bounds access under 9575 * speculative execution from truncation as a result of 9576 * masking when off was not within expected range. If off 9577 * sits in dst, then we temporarily need to move ptr there 9578 * to simulate dst (== 0) +/-= ptr. Needed, for example, 9579 * for cases where we use K-based arithmetic in one direction 9580 * and truncated reg-based in the other in order to explore 9581 * bad access. 9582 */ 9583 if (!ptr_is_dst_reg) { 9584 tmp = *dst_reg; 9585 *dst_reg = *ptr_reg; 9586 } 9587 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 9588 env->insn_idx); 9589 if (!ptr_is_dst_reg && ret) 9590 *dst_reg = tmp; 9591 return !ret ? REASON_STACK : 0; 9592 } 9593 9594 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 9595 { 9596 struct bpf_verifier_state *vstate = env->cur_state; 9597 9598 /* If we simulate paths under speculation, we don't update the 9599 * insn as 'seen' such that when we verify unreachable paths in 9600 * the non-speculative domain, sanitize_dead_code() can still 9601 * rewrite/sanitize them. 9602 */ 9603 if (!vstate->speculative) 9604 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9605 } 9606 9607 static int sanitize_err(struct bpf_verifier_env *env, 9608 const struct bpf_insn *insn, int reason, 9609 const struct bpf_reg_state *off_reg, 9610 const struct bpf_reg_state *dst_reg) 9611 { 9612 static const char *err = "pointer arithmetic with it prohibited for !root"; 9613 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 9614 u32 dst = insn->dst_reg, src = insn->src_reg; 9615 9616 switch (reason) { 9617 case REASON_BOUNDS: 9618 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 9619 off_reg == dst_reg ? dst : src, err); 9620 break; 9621 case REASON_TYPE: 9622 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 9623 off_reg == dst_reg ? src : dst, err); 9624 break; 9625 case REASON_PATHS: 9626 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 9627 dst, op, err); 9628 break; 9629 case REASON_LIMIT: 9630 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 9631 dst, op, err); 9632 break; 9633 case REASON_STACK: 9634 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 9635 dst, err); 9636 break; 9637 default: 9638 verbose(env, "verifier internal error: unknown reason (%d)\n", 9639 reason); 9640 break; 9641 } 9642 9643 return -EACCES; 9644 } 9645 9646 /* check that stack access falls within stack limits and that 'reg' doesn't 9647 * have a variable offset. 9648 * 9649 * Variable offset is prohibited for unprivileged mode for simplicity since it 9650 * requires corresponding support in Spectre masking for stack ALU. See also 9651 * retrieve_ptr_limit(). 9652 * 9653 * 9654 * 'off' includes 'reg->off'. 9655 */ 9656 static int check_stack_access_for_ptr_arithmetic( 9657 struct bpf_verifier_env *env, 9658 int regno, 9659 const struct bpf_reg_state *reg, 9660 int off) 9661 { 9662 if (!tnum_is_const(reg->var_off)) { 9663 char tn_buf[48]; 9664 9665 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 9666 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 9667 regno, tn_buf, off); 9668 return -EACCES; 9669 } 9670 9671 if (off >= 0 || off < -MAX_BPF_STACK) { 9672 verbose(env, "R%d stack pointer arithmetic goes out of range, " 9673 "prohibited for !root; off=%d\n", regno, off); 9674 return -EACCES; 9675 } 9676 9677 return 0; 9678 } 9679 9680 static int sanitize_check_bounds(struct bpf_verifier_env *env, 9681 const struct bpf_insn *insn, 9682 const struct bpf_reg_state *dst_reg) 9683 { 9684 u32 dst = insn->dst_reg; 9685 9686 /* For unprivileged we require that resulting offset must be in bounds 9687 * in order to be able to sanitize access later on. 9688 */ 9689 if (env->bypass_spec_v1) 9690 return 0; 9691 9692 switch (dst_reg->type) { 9693 case PTR_TO_STACK: 9694 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 9695 dst_reg->off + dst_reg->var_off.value)) 9696 return -EACCES; 9697 break; 9698 case PTR_TO_MAP_VALUE: 9699 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 9700 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 9701 "prohibited for !root\n", dst); 9702 return -EACCES; 9703 } 9704 break; 9705 default: 9706 break; 9707 } 9708 9709 return 0; 9710 } 9711 9712 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 9713 * Caller should also handle BPF_MOV case separately. 9714 * If we return -EACCES, caller may want to try again treating pointer as a 9715 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 9716 */ 9717 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 9718 struct bpf_insn *insn, 9719 const struct bpf_reg_state *ptr_reg, 9720 const struct bpf_reg_state *off_reg) 9721 { 9722 struct bpf_verifier_state *vstate = env->cur_state; 9723 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9724 struct bpf_reg_state *regs = state->regs, *dst_reg; 9725 bool known = tnum_is_const(off_reg->var_off); 9726 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 9727 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 9728 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 9729 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 9730 struct bpf_sanitize_info info = {}; 9731 u8 opcode = BPF_OP(insn->code); 9732 u32 dst = insn->dst_reg; 9733 int ret; 9734 9735 dst_reg = ®s[dst]; 9736 9737 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 9738 smin_val > smax_val || umin_val > umax_val) { 9739 /* Taint dst register if offset had invalid bounds derived from 9740 * e.g. dead branches. 9741 */ 9742 __mark_reg_unknown(env, dst_reg); 9743 return 0; 9744 } 9745 9746 if (BPF_CLASS(insn->code) != BPF_ALU64) { 9747 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 9748 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9749 __mark_reg_unknown(env, dst_reg); 9750 return 0; 9751 } 9752 9753 verbose(env, 9754 "R%d 32-bit pointer arithmetic prohibited\n", 9755 dst); 9756 return -EACCES; 9757 } 9758 9759 if (ptr_reg->type & PTR_MAYBE_NULL) { 9760 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 9761 dst, reg_type_str(env, ptr_reg->type)); 9762 return -EACCES; 9763 } 9764 9765 switch (base_type(ptr_reg->type)) { 9766 case CONST_PTR_TO_MAP: 9767 /* smin_val represents the known value */ 9768 if (known && smin_val == 0 && opcode == BPF_ADD) 9769 break; 9770 fallthrough; 9771 case PTR_TO_PACKET_END: 9772 case PTR_TO_SOCKET: 9773 case PTR_TO_SOCK_COMMON: 9774 case PTR_TO_TCP_SOCK: 9775 case PTR_TO_XDP_SOCK: 9776 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 9777 dst, reg_type_str(env, ptr_reg->type)); 9778 return -EACCES; 9779 default: 9780 break; 9781 } 9782 9783 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 9784 * The id may be overwritten later if we create a new variable offset. 9785 */ 9786 dst_reg->type = ptr_reg->type; 9787 dst_reg->id = ptr_reg->id; 9788 9789 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 9790 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 9791 return -EINVAL; 9792 9793 /* pointer types do not carry 32-bit bounds at the moment. */ 9794 __mark_reg32_unbounded(dst_reg); 9795 9796 if (sanitize_needed(opcode)) { 9797 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 9798 &info, false); 9799 if (ret < 0) 9800 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9801 } 9802 9803 switch (opcode) { 9804 case BPF_ADD: 9805 /* We can take a fixed offset as long as it doesn't overflow 9806 * the s32 'off' field 9807 */ 9808 if (known && (ptr_reg->off + smin_val == 9809 (s64)(s32)(ptr_reg->off + smin_val))) { 9810 /* pointer += K. Accumulate it into fixed offset */ 9811 dst_reg->smin_value = smin_ptr; 9812 dst_reg->smax_value = smax_ptr; 9813 dst_reg->umin_value = umin_ptr; 9814 dst_reg->umax_value = umax_ptr; 9815 dst_reg->var_off = ptr_reg->var_off; 9816 dst_reg->off = ptr_reg->off + smin_val; 9817 dst_reg->raw = ptr_reg->raw; 9818 break; 9819 } 9820 /* A new variable offset is created. Note that off_reg->off 9821 * == 0, since it's a scalar. 9822 * dst_reg gets the pointer type and since some positive 9823 * integer value was added to the pointer, give it a new 'id' 9824 * if it's a PTR_TO_PACKET. 9825 * this creates a new 'base' pointer, off_reg (variable) gets 9826 * added into the variable offset, and we copy the fixed offset 9827 * from ptr_reg. 9828 */ 9829 if (signed_add_overflows(smin_ptr, smin_val) || 9830 signed_add_overflows(smax_ptr, smax_val)) { 9831 dst_reg->smin_value = S64_MIN; 9832 dst_reg->smax_value = S64_MAX; 9833 } else { 9834 dst_reg->smin_value = smin_ptr + smin_val; 9835 dst_reg->smax_value = smax_ptr + smax_val; 9836 } 9837 if (umin_ptr + umin_val < umin_ptr || 9838 umax_ptr + umax_val < umax_ptr) { 9839 dst_reg->umin_value = 0; 9840 dst_reg->umax_value = U64_MAX; 9841 } else { 9842 dst_reg->umin_value = umin_ptr + umin_val; 9843 dst_reg->umax_value = umax_ptr + umax_val; 9844 } 9845 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 9846 dst_reg->off = ptr_reg->off; 9847 dst_reg->raw = ptr_reg->raw; 9848 if (reg_is_pkt_pointer(ptr_reg)) { 9849 dst_reg->id = ++env->id_gen; 9850 /* something was added to pkt_ptr, set range to zero */ 9851 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9852 } 9853 break; 9854 case BPF_SUB: 9855 if (dst_reg == off_reg) { 9856 /* scalar -= pointer. Creates an unknown scalar */ 9857 verbose(env, "R%d tried to subtract pointer from scalar\n", 9858 dst); 9859 return -EACCES; 9860 } 9861 /* We don't allow subtraction from FP, because (according to 9862 * test_verifier.c test "invalid fp arithmetic", JITs might not 9863 * be able to deal with it. 9864 */ 9865 if (ptr_reg->type == PTR_TO_STACK) { 9866 verbose(env, "R%d subtraction from stack pointer prohibited\n", 9867 dst); 9868 return -EACCES; 9869 } 9870 if (known && (ptr_reg->off - smin_val == 9871 (s64)(s32)(ptr_reg->off - smin_val))) { 9872 /* pointer -= K. Subtract it from fixed offset */ 9873 dst_reg->smin_value = smin_ptr; 9874 dst_reg->smax_value = smax_ptr; 9875 dst_reg->umin_value = umin_ptr; 9876 dst_reg->umax_value = umax_ptr; 9877 dst_reg->var_off = ptr_reg->var_off; 9878 dst_reg->id = ptr_reg->id; 9879 dst_reg->off = ptr_reg->off - smin_val; 9880 dst_reg->raw = ptr_reg->raw; 9881 break; 9882 } 9883 /* A new variable offset is created. If the subtrahend is known 9884 * nonnegative, then any reg->range we had before is still good. 9885 */ 9886 if (signed_sub_overflows(smin_ptr, smax_val) || 9887 signed_sub_overflows(smax_ptr, smin_val)) { 9888 /* Overflow possible, we know nothing */ 9889 dst_reg->smin_value = S64_MIN; 9890 dst_reg->smax_value = S64_MAX; 9891 } else { 9892 dst_reg->smin_value = smin_ptr - smax_val; 9893 dst_reg->smax_value = smax_ptr - smin_val; 9894 } 9895 if (umin_ptr < umax_val) { 9896 /* Overflow possible, we know nothing */ 9897 dst_reg->umin_value = 0; 9898 dst_reg->umax_value = U64_MAX; 9899 } else { 9900 /* Cannot overflow (as long as bounds are consistent) */ 9901 dst_reg->umin_value = umin_ptr - umax_val; 9902 dst_reg->umax_value = umax_ptr - umin_val; 9903 } 9904 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 9905 dst_reg->off = ptr_reg->off; 9906 dst_reg->raw = ptr_reg->raw; 9907 if (reg_is_pkt_pointer(ptr_reg)) { 9908 dst_reg->id = ++env->id_gen; 9909 /* something was added to pkt_ptr, set range to zero */ 9910 if (smin_val < 0) 9911 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9912 } 9913 break; 9914 case BPF_AND: 9915 case BPF_OR: 9916 case BPF_XOR: 9917 /* bitwise ops on pointers are troublesome, prohibit. */ 9918 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 9919 dst, bpf_alu_string[opcode >> 4]); 9920 return -EACCES; 9921 default: 9922 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 9923 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 9924 dst, bpf_alu_string[opcode >> 4]); 9925 return -EACCES; 9926 } 9927 9928 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 9929 return -EINVAL; 9930 reg_bounds_sync(dst_reg); 9931 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 9932 return -EACCES; 9933 if (sanitize_needed(opcode)) { 9934 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 9935 &info, true); 9936 if (ret < 0) 9937 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9938 } 9939 9940 return 0; 9941 } 9942 9943 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 9944 struct bpf_reg_state *src_reg) 9945 { 9946 s32 smin_val = src_reg->s32_min_value; 9947 s32 smax_val = src_reg->s32_max_value; 9948 u32 umin_val = src_reg->u32_min_value; 9949 u32 umax_val = src_reg->u32_max_value; 9950 9951 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 9952 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 9953 dst_reg->s32_min_value = S32_MIN; 9954 dst_reg->s32_max_value = S32_MAX; 9955 } else { 9956 dst_reg->s32_min_value += smin_val; 9957 dst_reg->s32_max_value += smax_val; 9958 } 9959 if (dst_reg->u32_min_value + umin_val < umin_val || 9960 dst_reg->u32_max_value + umax_val < umax_val) { 9961 dst_reg->u32_min_value = 0; 9962 dst_reg->u32_max_value = U32_MAX; 9963 } else { 9964 dst_reg->u32_min_value += umin_val; 9965 dst_reg->u32_max_value += umax_val; 9966 } 9967 } 9968 9969 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 9970 struct bpf_reg_state *src_reg) 9971 { 9972 s64 smin_val = src_reg->smin_value; 9973 s64 smax_val = src_reg->smax_value; 9974 u64 umin_val = src_reg->umin_value; 9975 u64 umax_val = src_reg->umax_value; 9976 9977 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 9978 signed_add_overflows(dst_reg->smax_value, smax_val)) { 9979 dst_reg->smin_value = S64_MIN; 9980 dst_reg->smax_value = S64_MAX; 9981 } else { 9982 dst_reg->smin_value += smin_val; 9983 dst_reg->smax_value += smax_val; 9984 } 9985 if (dst_reg->umin_value + umin_val < umin_val || 9986 dst_reg->umax_value + umax_val < umax_val) { 9987 dst_reg->umin_value = 0; 9988 dst_reg->umax_value = U64_MAX; 9989 } else { 9990 dst_reg->umin_value += umin_val; 9991 dst_reg->umax_value += umax_val; 9992 } 9993 } 9994 9995 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 9996 struct bpf_reg_state *src_reg) 9997 { 9998 s32 smin_val = src_reg->s32_min_value; 9999 s32 smax_val = src_reg->s32_max_value; 10000 u32 umin_val = src_reg->u32_min_value; 10001 u32 umax_val = src_reg->u32_max_value; 10002 10003 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 10004 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 10005 /* Overflow possible, we know nothing */ 10006 dst_reg->s32_min_value = S32_MIN; 10007 dst_reg->s32_max_value = S32_MAX; 10008 } else { 10009 dst_reg->s32_min_value -= smax_val; 10010 dst_reg->s32_max_value -= smin_val; 10011 } 10012 if (dst_reg->u32_min_value < umax_val) { 10013 /* Overflow possible, we know nothing */ 10014 dst_reg->u32_min_value = 0; 10015 dst_reg->u32_max_value = U32_MAX; 10016 } else { 10017 /* Cannot overflow (as long as bounds are consistent) */ 10018 dst_reg->u32_min_value -= umax_val; 10019 dst_reg->u32_max_value -= umin_val; 10020 } 10021 } 10022 10023 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 10024 struct bpf_reg_state *src_reg) 10025 { 10026 s64 smin_val = src_reg->smin_value; 10027 s64 smax_val = src_reg->smax_value; 10028 u64 umin_val = src_reg->umin_value; 10029 u64 umax_val = src_reg->umax_value; 10030 10031 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 10032 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 10033 /* Overflow possible, we know nothing */ 10034 dst_reg->smin_value = S64_MIN; 10035 dst_reg->smax_value = S64_MAX; 10036 } else { 10037 dst_reg->smin_value -= smax_val; 10038 dst_reg->smax_value -= smin_val; 10039 } 10040 if (dst_reg->umin_value < umax_val) { 10041 /* Overflow possible, we know nothing */ 10042 dst_reg->umin_value = 0; 10043 dst_reg->umax_value = U64_MAX; 10044 } else { 10045 /* Cannot overflow (as long as bounds are consistent) */ 10046 dst_reg->umin_value -= umax_val; 10047 dst_reg->umax_value -= umin_val; 10048 } 10049 } 10050 10051 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 10052 struct bpf_reg_state *src_reg) 10053 { 10054 s32 smin_val = src_reg->s32_min_value; 10055 u32 umin_val = src_reg->u32_min_value; 10056 u32 umax_val = src_reg->u32_max_value; 10057 10058 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 10059 /* Ain't nobody got time to multiply that sign */ 10060 __mark_reg32_unbounded(dst_reg); 10061 return; 10062 } 10063 /* Both values are positive, so we can work with unsigned and 10064 * copy the result to signed (unless it exceeds S32_MAX). 10065 */ 10066 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 10067 /* Potential overflow, we know nothing */ 10068 __mark_reg32_unbounded(dst_reg); 10069 return; 10070 } 10071 dst_reg->u32_min_value *= umin_val; 10072 dst_reg->u32_max_value *= umax_val; 10073 if (dst_reg->u32_max_value > S32_MAX) { 10074 /* Overflow possible, we know nothing */ 10075 dst_reg->s32_min_value = S32_MIN; 10076 dst_reg->s32_max_value = S32_MAX; 10077 } else { 10078 dst_reg->s32_min_value = dst_reg->u32_min_value; 10079 dst_reg->s32_max_value = dst_reg->u32_max_value; 10080 } 10081 } 10082 10083 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 10084 struct bpf_reg_state *src_reg) 10085 { 10086 s64 smin_val = src_reg->smin_value; 10087 u64 umin_val = src_reg->umin_value; 10088 u64 umax_val = src_reg->umax_value; 10089 10090 if (smin_val < 0 || dst_reg->smin_value < 0) { 10091 /* Ain't nobody got time to multiply that sign */ 10092 __mark_reg64_unbounded(dst_reg); 10093 return; 10094 } 10095 /* Both values are positive, so we can work with unsigned and 10096 * copy the result to signed (unless it exceeds S64_MAX). 10097 */ 10098 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 10099 /* Potential overflow, we know nothing */ 10100 __mark_reg64_unbounded(dst_reg); 10101 return; 10102 } 10103 dst_reg->umin_value *= umin_val; 10104 dst_reg->umax_value *= umax_val; 10105 if (dst_reg->umax_value > S64_MAX) { 10106 /* Overflow possible, we know nothing */ 10107 dst_reg->smin_value = S64_MIN; 10108 dst_reg->smax_value = S64_MAX; 10109 } else { 10110 dst_reg->smin_value = dst_reg->umin_value; 10111 dst_reg->smax_value = dst_reg->umax_value; 10112 } 10113 } 10114 10115 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 10116 struct bpf_reg_state *src_reg) 10117 { 10118 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10119 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10120 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10121 s32 smin_val = src_reg->s32_min_value; 10122 u32 umax_val = src_reg->u32_max_value; 10123 10124 if (src_known && dst_known) { 10125 __mark_reg32_known(dst_reg, var32_off.value); 10126 return; 10127 } 10128 10129 /* We get our minimum from the var_off, since that's inherently 10130 * bitwise. Our maximum is the minimum of the operands' maxima. 10131 */ 10132 dst_reg->u32_min_value = var32_off.value; 10133 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 10134 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10135 /* Lose signed bounds when ANDing negative numbers, 10136 * ain't nobody got time for that. 10137 */ 10138 dst_reg->s32_min_value = S32_MIN; 10139 dst_reg->s32_max_value = S32_MAX; 10140 } else { 10141 /* ANDing two positives gives a positive, so safe to 10142 * cast result into s64. 10143 */ 10144 dst_reg->s32_min_value = dst_reg->u32_min_value; 10145 dst_reg->s32_max_value = dst_reg->u32_max_value; 10146 } 10147 } 10148 10149 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 10150 struct bpf_reg_state *src_reg) 10151 { 10152 bool src_known = tnum_is_const(src_reg->var_off); 10153 bool dst_known = tnum_is_const(dst_reg->var_off); 10154 s64 smin_val = src_reg->smin_value; 10155 u64 umax_val = src_reg->umax_value; 10156 10157 if (src_known && dst_known) { 10158 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10159 return; 10160 } 10161 10162 /* We get our minimum from the var_off, since that's inherently 10163 * bitwise. Our maximum is the minimum of the operands' maxima. 10164 */ 10165 dst_reg->umin_value = dst_reg->var_off.value; 10166 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 10167 if (dst_reg->smin_value < 0 || smin_val < 0) { 10168 /* Lose signed bounds when ANDing negative numbers, 10169 * ain't nobody got time for that. 10170 */ 10171 dst_reg->smin_value = S64_MIN; 10172 dst_reg->smax_value = S64_MAX; 10173 } else { 10174 /* ANDing two positives gives a positive, so safe to 10175 * cast result into s64. 10176 */ 10177 dst_reg->smin_value = dst_reg->umin_value; 10178 dst_reg->smax_value = dst_reg->umax_value; 10179 } 10180 /* We may learn something more from the var_off */ 10181 __update_reg_bounds(dst_reg); 10182 } 10183 10184 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 10185 struct bpf_reg_state *src_reg) 10186 { 10187 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10188 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10189 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10190 s32 smin_val = src_reg->s32_min_value; 10191 u32 umin_val = src_reg->u32_min_value; 10192 10193 if (src_known && dst_known) { 10194 __mark_reg32_known(dst_reg, var32_off.value); 10195 return; 10196 } 10197 10198 /* We get our maximum from the var_off, and our minimum is the 10199 * maximum of the operands' minima 10200 */ 10201 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 10202 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10203 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10204 /* Lose signed bounds when ORing negative numbers, 10205 * ain't nobody got time for that. 10206 */ 10207 dst_reg->s32_min_value = S32_MIN; 10208 dst_reg->s32_max_value = S32_MAX; 10209 } else { 10210 /* ORing two positives gives a positive, so safe to 10211 * cast result into s64. 10212 */ 10213 dst_reg->s32_min_value = dst_reg->u32_min_value; 10214 dst_reg->s32_max_value = dst_reg->u32_max_value; 10215 } 10216 } 10217 10218 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 10219 struct bpf_reg_state *src_reg) 10220 { 10221 bool src_known = tnum_is_const(src_reg->var_off); 10222 bool dst_known = tnum_is_const(dst_reg->var_off); 10223 s64 smin_val = src_reg->smin_value; 10224 u64 umin_val = src_reg->umin_value; 10225 10226 if (src_known && dst_known) { 10227 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10228 return; 10229 } 10230 10231 /* We get our maximum from the var_off, and our minimum is the 10232 * maximum of the operands' minima 10233 */ 10234 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 10235 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10236 if (dst_reg->smin_value < 0 || smin_val < 0) { 10237 /* Lose signed bounds when ORing negative numbers, 10238 * ain't nobody got time for that. 10239 */ 10240 dst_reg->smin_value = S64_MIN; 10241 dst_reg->smax_value = S64_MAX; 10242 } else { 10243 /* ORing two positives gives a positive, so safe to 10244 * cast result into s64. 10245 */ 10246 dst_reg->smin_value = dst_reg->umin_value; 10247 dst_reg->smax_value = dst_reg->umax_value; 10248 } 10249 /* We may learn something more from the var_off */ 10250 __update_reg_bounds(dst_reg); 10251 } 10252 10253 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 10254 struct bpf_reg_state *src_reg) 10255 { 10256 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10257 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10258 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10259 s32 smin_val = src_reg->s32_min_value; 10260 10261 if (src_known && dst_known) { 10262 __mark_reg32_known(dst_reg, var32_off.value); 10263 return; 10264 } 10265 10266 /* We get both minimum and maximum from the var32_off. */ 10267 dst_reg->u32_min_value = var32_off.value; 10268 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10269 10270 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 10271 /* XORing two positive sign numbers gives a positive, 10272 * so safe to cast u32 result into s32. 10273 */ 10274 dst_reg->s32_min_value = dst_reg->u32_min_value; 10275 dst_reg->s32_max_value = dst_reg->u32_max_value; 10276 } else { 10277 dst_reg->s32_min_value = S32_MIN; 10278 dst_reg->s32_max_value = S32_MAX; 10279 } 10280 } 10281 10282 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 10283 struct bpf_reg_state *src_reg) 10284 { 10285 bool src_known = tnum_is_const(src_reg->var_off); 10286 bool dst_known = tnum_is_const(dst_reg->var_off); 10287 s64 smin_val = src_reg->smin_value; 10288 10289 if (src_known && dst_known) { 10290 /* dst_reg->var_off.value has been updated earlier */ 10291 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10292 return; 10293 } 10294 10295 /* We get both minimum and maximum from the var_off. */ 10296 dst_reg->umin_value = dst_reg->var_off.value; 10297 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10298 10299 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 10300 /* XORing two positive sign numbers gives a positive, 10301 * so safe to cast u64 result into s64. 10302 */ 10303 dst_reg->smin_value = dst_reg->umin_value; 10304 dst_reg->smax_value = dst_reg->umax_value; 10305 } else { 10306 dst_reg->smin_value = S64_MIN; 10307 dst_reg->smax_value = S64_MAX; 10308 } 10309 10310 __update_reg_bounds(dst_reg); 10311 } 10312 10313 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10314 u64 umin_val, u64 umax_val) 10315 { 10316 /* We lose all sign bit information (except what we can pick 10317 * up from var_off) 10318 */ 10319 dst_reg->s32_min_value = S32_MIN; 10320 dst_reg->s32_max_value = S32_MAX; 10321 /* If we might shift our top bit out, then we know nothing */ 10322 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 10323 dst_reg->u32_min_value = 0; 10324 dst_reg->u32_max_value = U32_MAX; 10325 } else { 10326 dst_reg->u32_min_value <<= umin_val; 10327 dst_reg->u32_max_value <<= umax_val; 10328 } 10329 } 10330 10331 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10332 struct bpf_reg_state *src_reg) 10333 { 10334 u32 umax_val = src_reg->u32_max_value; 10335 u32 umin_val = src_reg->u32_min_value; 10336 /* u32 alu operation will zext upper bits */ 10337 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10338 10339 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10340 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 10341 /* Not required but being careful mark reg64 bounds as unknown so 10342 * that we are forced to pick them up from tnum and zext later and 10343 * if some path skips this step we are still safe. 10344 */ 10345 __mark_reg64_unbounded(dst_reg); 10346 __update_reg32_bounds(dst_reg); 10347 } 10348 10349 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 10350 u64 umin_val, u64 umax_val) 10351 { 10352 /* Special case <<32 because it is a common compiler pattern to sign 10353 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 10354 * positive we know this shift will also be positive so we can track 10355 * bounds correctly. Otherwise we lose all sign bit information except 10356 * what we can pick up from var_off. Perhaps we can generalize this 10357 * later to shifts of any length. 10358 */ 10359 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 10360 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 10361 else 10362 dst_reg->smax_value = S64_MAX; 10363 10364 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 10365 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 10366 else 10367 dst_reg->smin_value = S64_MIN; 10368 10369 /* If we might shift our top bit out, then we know nothing */ 10370 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 10371 dst_reg->umin_value = 0; 10372 dst_reg->umax_value = U64_MAX; 10373 } else { 10374 dst_reg->umin_value <<= umin_val; 10375 dst_reg->umax_value <<= umax_val; 10376 } 10377 } 10378 10379 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 10380 struct bpf_reg_state *src_reg) 10381 { 10382 u64 umax_val = src_reg->umax_value; 10383 u64 umin_val = src_reg->umin_value; 10384 10385 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 10386 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 10387 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10388 10389 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 10390 /* We may learn something more from the var_off */ 10391 __update_reg_bounds(dst_reg); 10392 } 10393 10394 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 10395 struct bpf_reg_state *src_reg) 10396 { 10397 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10398 u32 umax_val = src_reg->u32_max_value; 10399 u32 umin_val = src_reg->u32_min_value; 10400 10401 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10402 * be negative, then either: 10403 * 1) src_reg might be zero, so the sign bit of the result is 10404 * unknown, so we lose our signed bounds 10405 * 2) it's known negative, thus the unsigned bounds capture the 10406 * signed bounds 10407 * 3) the signed bounds cross zero, so they tell us nothing 10408 * about the result 10409 * If the value in dst_reg is known nonnegative, then again the 10410 * unsigned bounds capture the signed bounds. 10411 * Thus, in all cases it suffices to blow away our signed bounds 10412 * and rely on inferring new ones from the unsigned bounds and 10413 * var_off of the result. 10414 */ 10415 dst_reg->s32_min_value = S32_MIN; 10416 dst_reg->s32_max_value = S32_MAX; 10417 10418 dst_reg->var_off = tnum_rshift(subreg, umin_val); 10419 dst_reg->u32_min_value >>= umax_val; 10420 dst_reg->u32_max_value >>= umin_val; 10421 10422 __mark_reg64_unbounded(dst_reg); 10423 __update_reg32_bounds(dst_reg); 10424 } 10425 10426 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 10427 struct bpf_reg_state *src_reg) 10428 { 10429 u64 umax_val = src_reg->umax_value; 10430 u64 umin_val = src_reg->umin_value; 10431 10432 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10433 * be negative, then either: 10434 * 1) src_reg might be zero, so the sign bit of the result is 10435 * unknown, so we lose our signed bounds 10436 * 2) it's known negative, thus the unsigned bounds capture the 10437 * signed bounds 10438 * 3) the signed bounds cross zero, so they tell us nothing 10439 * about the result 10440 * If the value in dst_reg is known nonnegative, then again the 10441 * unsigned bounds capture the signed bounds. 10442 * Thus, in all cases it suffices to blow away our signed bounds 10443 * and rely on inferring new ones from the unsigned bounds and 10444 * var_off of the result. 10445 */ 10446 dst_reg->smin_value = S64_MIN; 10447 dst_reg->smax_value = S64_MAX; 10448 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 10449 dst_reg->umin_value >>= umax_val; 10450 dst_reg->umax_value >>= umin_val; 10451 10452 /* Its not easy to operate on alu32 bounds here because it depends 10453 * on bits being shifted in. Take easy way out and mark unbounded 10454 * so we can recalculate later from tnum. 10455 */ 10456 __mark_reg32_unbounded(dst_reg); 10457 __update_reg_bounds(dst_reg); 10458 } 10459 10460 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 10461 struct bpf_reg_state *src_reg) 10462 { 10463 u64 umin_val = src_reg->u32_min_value; 10464 10465 /* Upon reaching here, src_known is true and 10466 * umax_val is equal to umin_val. 10467 */ 10468 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 10469 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 10470 10471 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 10472 10473 /* blow away the dst_reg umin_value/umax_value and rely on 10474 * dst_reg var_off to refine the result. 10475 */ 10476 dst_reg->u32_min_value = 0; 10477 dst_reg->u32_max_value = U32_MAX; 10478 10479 __mark_reg64_unbounded(dst_reg); 10480 __update_reg32_bounds(dst_reg); 10481 } 10482 10483 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 10484 struct bpf_reg_state *src_reg) 10485 { 10486 u64 umin_val = src_reg->umin_value; 10487 10488 /* Upon reaching here, src_known is true and umax_val is equal 10489 * to umin_val. 10490 */ 10491 dst_reg->smin_value >>= umin_val; 10492 dst_reg->smax_value >>= umin_val; 10493 10494 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 10495 10496 /* blow away the dst_reg umin_value/umax_value and rely on 10497 * dst_reg var_off to refine the result. 10498 */ 10499 dst_reg->umin_value = 0; 10500 dst_reg->umax_value = U64_MAX; 10501 10502 /* Its not easy to operate on alu32 bounds here because it depends 10503 * on bits being shifted in from upper 32-bits. Take easy way out 10504 * and mark unbounded so we can recalculate later from tnum. 10505 */ 10506 __mark_reg32_unbounded(dst_reg); 10507 __update_reg_bounds(dst_reg); 10508 } 10509 10510 /* WARNING: This function does calculations on 64-bit values, but the actual 10511 * execution may occur on 32-bit values. Therefore, things like bitshifts 10512 * need extra checks in the 32-bit case. 10513 */ 10514 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 10515 struct bpf_insn *insn, 10516 struct bpf_reg_state *dst_reg, 10517 struct bpf_reg_state src_reg) 10518 { 10519 struct bpf_reg_state *regs = cur_regs(env); 10520 u8 opcode = BPF_OP(insn->code); 10521 bool src_known; 10522 s64 smin_val, smax_val; 10523 u64 umin_val, umax_val; 10524 s32 s32_min_val, s32_max_val; 10525 u32 u32_min_val, u32_max_val; 10526 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 10527 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 10528 int ret; 10529 10530 smin_val = src_reg.smin_value; 10531 smax_val = src_reg.smax_value; 10532 umin_val = src_reg.umin_value; 10533 umax_val = src_reg.umax_value; 10534 10535 s32_min_val = src_reg.s32_min_value; 10536 s32_max_val = src_reg.s32_max_value; 10537 u32_min_val = src_reg.u32_min_value; 10538 u32_max_val = src_reg.u32_max_value; 10539 10540 if (alu32) { 10541 src_known = tnum_subreg_is_const(src_reg.var_off); 10542 if ((src_known && 10543 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 10544 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 10545 /* Taint dst register if offset had invalid bounds 10546 * derived from e.g. dead branches. 10547 */ 10548 __mark_reg_unknown(env, dst_reg); 10549 return 0; 10550 } 10551 } else { 10552 src_known = tnum_is_const(src_reg.var_off); 10553 if ((src_known && 10554 (smin_val != smax_val || umin_val != umax_val)) || 10555 smin_val > smax_val || umin_val > umax_val) { 10556 /* Taint dst register if offset had invalid bounds 10557 * derived from e.g. dead branches. 10558 */ 10559 __mark_reg_unknown(env, dst_reg); 10560 return 0; 10561 } 10562 } 10563 10564 if (!src_known && 10565 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 10566 __mark_reg_unknown(env, dst_reg); 10567 return 0; 10568 } 10569 10570 if (sanitize_needed(opcode)) { 10571 ret = sanitize_val_alu(env, insn); 10572 if (ret < 0) 10573 return sanitize_err(env, insn, ret, NULL, NULL); 10574 } 10575 10576 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 10577 * There are two classes of instructions: The first class we track both 10578 * alu32 and alu64 sign/unsigned bounds independently this provides the 10579 * greatest amount of precision when alu operations are mixed with jmp32 10580 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 10581 * and BPF_OR. This is possible because these ops have fairly easy to 10582 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 10583 * See alu32 verifier tests for examples. The second class of 10584 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 10585 * with regards to tracking sign/unsigned bounds because the bits may 10586 * cross subreg boundaries in the alu64 case. When this happens we mark 10587 * the reg unbounded in the subreg bound space and use the resulting 10588 * tnum to calculate an approximation of the sign/unsigned bounds. 10589 */ 10590 switch (opcode) { 10591 case BPF_ADD: 10592 scalar32_min_max_add(dst_reg, &src_reg); 10593 scalar_min_max_add(dst_reg, &src_reg); 10594 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 10595 break; 10596 case BPF_SUB: 10597 scalar32_min_max_sub(dst_reg, &src_reg); 10598 scalar_min_max_sub(dst_reg, &src_reg); 10599 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 10600 break; 10601 case BPF_MUL: 10602 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 10603 scalar32_min_max_mul(dst_reg, &src_reg); 10604 scalar_min_max_mul(dst_reg, &src_reg); 10605 break; 10606 case BPF_AND: 10607 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 10608 scalar32_min_max_and(dst_reg, &src_reg); 10609 scalar_min_max_and(dst_reg, &src_reg); 10610 break; 10611 case BPF_OR: 10612 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 10613 scalar32_min_max_or(dst_reg, &src_reg); 10614 scalar_min_max_or(dst_reg, &src_reg); 10615 break; 10616 case BPF_XOR: 10617 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 10618 scalar32_min_max_xor(dst_reg, &src_reg); 10619 scalar_min_max_xor(dst_reg, &src_reg); 10620 break; 10621 case BPF_LSH: 10622 if (umax_val >= insn_bitness) { 10623 /* Shifts greater than 31 or 63 are undefined. 10624 * This includes shifts by a negative number. 10625 */ 10626 mark_reg_unknown(env, regs, insn->dst_reg); 10627 break; 10628 } 10629 if (alu32) 10630 scalar32_min_max_lsh(dst_reg, &src_reg); 10631 else 10632 scalar_min_max_lsh(dst_reg, &src_reg); 10633 break; 10634 case BPF_RSH: 10635 if (umax_val >= insn_bitness) { 10636 /* Shifts greater than 31 or 63 are undefined. 10637 * This includes shifts by a negative number. 10638 */ 10639 mark_reg_unknown(env, regs, insn->dst_reg); 10640 break; 10641 } 10642 if (alu32) 10643 scalar32_min_max_rsh(dst_reg, &src_reg); 10644 else 10645 scalar_min_max_rsh(dst_reg, &src_reg); 10646 break; 10647 case BPF_ARSH: 10648 if (umax_val >= insn_bitness) { 10649 /* Shifts greater than 31 or 63 are undefined. 10650 * This includes shifts by a negative number. 10651 */ 10652 mark_reg_unknown(env, regs, insn->dst_reg); 10653 break; 10654 } 10655 if (alu32) 10656 scalar32_min_max_arsh(dst_reg, &src_reg); 10657 else 10658 scalar_min_max_arsh(dst_reg, &src_reg); 10659 break; 10660 default: 10661 mark_reg_unknown(env, regs, insn->dst_reg); 10662 break; 10663 } 10664 10665 /* ALU32 ops are zero extended into 64bit register */ 10666 if (alu32) 10667 zext_32_to_64(dst_reg); 10668 reg_bounds_sync(dst_reg); 10669 return 0; 10670 } 10671 10672 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 10673 * and var_off. 10674 */ 10675 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 10676 struct bpf_insn *insn) 10677 { 10678 struct bpf_verifier_state *vstate = env->cur_state; 10679 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10680 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 10681 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 10682 u8 opcode = BPF_OP(insn->code); 10683 int err; 10684 10685 dst_reg = ®s[insn->dst_reg]; 10686 src_reg = NULL; 10687 if (dst_reg->type != SCALAR_VALUE) 10688 ptr_reg = dst_reg; 10689 else 10690 /* Make sure ID is cleared otherwise dst_reg min/max could be 10691 * incorrectly propagated into other registers by find_equal_scalars() 10692 */ 10693 dst_reg->id = 0; 10694 if (BPF_SRC(insn->code) == BPF_X) { 10695 src_reg = ®s[insn->src_reg]; 10696 if (src_reg->type != SCALAR_VALUE) { 10697 if (dst_reg->type != SCALAR_VALUE) { 10698 /* Combining two pointers by any ALU op yields 10699 * an arbitrary scalar. Disallow all math except 10700 * pointer subtraction 10701 */ 10702 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10703 mark_reg_unknown(env, regs, insn->dst_reg); 10704 return 0; 10705 } 10706 verbose(env, "R%d pointer %s pointer prohibited\n", 10707 insn->dst_reg, 10708 bpf_alu_string[opcode >> 4]); 10709 return -EACCES; 10710 } else { 10711 /* scalar += pointer 10712 * This is legal, but we have to reverse our 10713 * src/dest handling in computing the range 10714 */ 10715 err = mark_chain_precision(env, insn->dst_reg); 10716 if (err) 10717 return err; 10718 return adjust_ptr_min_max_vals(env, insn, 10719 src_reg, dst_reg); 10720 } 10721 } else if (ptr_reg) { 10722 /* pointer += scalar */ 10723 err = mark_chain_precision(env, insn->src_reg); 10724 if (err) 10725 return err; 10726 return adjust_ptr_min_max_vals(env, insn, 10727 dst_reg, src_reg); 10728 } else if (dst_reg->precise) { 10729 /* if dst_reg is precise, src_reg should be precise as well */ 10730 err = mark_chain_precision(env, insn->src_reg); 10731 if (err) 10732 return err; 10733 } 10734 } else { 10735 /* Pretend the src is a reg with a known value, since we only 10736 * need to be able to read from this state. 10737 */ 10738 off_reg.type = SCALAR_VALUE; 10739 __mark_reg_known(&off_reg, insn->imm); 10740 src_reg = &off_reg; 10741 if (ptr_reg) /* pointer += K */ 10742 return adjust_ptr_min_max_vals(env, insn, 10743 ptr_reg, src_reg); 10744 } 10745 10746 /* Got here implies adding two SCALAR_VALUEs */ 10747 if (WARN_ON_ONCE(ptr_reg)) { 10748 print_verifier_state(env, state, true); 10749 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 10750 return -EINVAL; 10751 } 10752 if (WARN_ON(!src_reg)) { 10753 print_verifier_state(env, state, true); 10754 verbose(env, "verifier internal error: no src_reg\n"); 10755 return -EINVAL; 10756 } 10757 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 10758 } 10759 10760 /* check validity of 32-bit and 64-bit arithmetic operations */ 10761 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 10762 { 10763 struct bpf_reg_state *regs = cur_regs(env); 10764 u8 opcode = BPF_OP(insn->code); 10765 int err; 10766 10767 if (opcode == BPF_END || opcode == BPF_NEG) { 10768 if (opcode == BPF_NEG) { 10769 if (BPF_SRC(insn->code) != BPF_K || 10770 insn->src_reg != BPF_REG_0 || 10771 insn->off != 0 || insn->imm != 0) { 10772 verbose(env, "BPF_NEG uses reserved fields\n"); 10773 return -EINVAL; 10774 } 10775 } else { 10776 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 10777 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 10778 BPF_CLASS(insn->code) == BPF_ALU64) { 10779 verbose(env, "BPF_END uses reserved fields\n"); 10780 return -EINVAL; 10781 } 10782 } 10783 10784 /* check src operand */ 10785 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10786 if (err) 10787 return err; 10788 10789 if (is_pointer_value(env, insn->dst_reg)) { 10790 verbose(env, "R%d pointer arithmetic prohibited\n", 10791 insn->dst_reg); 10792 return -EACCES; 10793 } 10794 10795 /* check dest operand */ 10796 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10797 if (err) 10798 return err; 10799 10800 } else if (opcode == BPF_MOV) { 10801 10802 if (BPF_SRC(insn->code) == BPF_X) { 10803 if (insn->imm != 0 || insn->off != 0) { 10804 verbose(env, "BPF_MOV uses reserved fields\n"); 10805 return -EINVAL; 10806 } 10807 10808 /* check src operand */ 10809 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10810 if (err) 10811 return err; 10812 } else { 10813 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10814 verbose(env, "BPF_MOV uses reserved fields\n"); 10815 return -EINVAL; 10816 } 10817 } 10818 10819 /* check dest operand, mark as required later */ 10820 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10821 if (err) 10822 return err; 10823 10824 if (BPF_SRC(insn->code) == BPF_X) { 10825 struct bpf_reg_state *src_reg = regs + insn->src_reg; 10826 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 10827 10828 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10829 /* case: R1 = R2 10830 * copy register state to dest reg 10831 */ 10832 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 10833 /* Assign src and dst registers the same ID 10834 * that will be used by find_equal_scalars() 10835 * to propagate min/max range. 10836 */ 10837 src_reg->id = ++env->id_gen; 10838 *dst_reg = *src_reg; 10839 dst_reg->live |= REG_LIVE_WRITTEN; 10840 dst_reg->subreg_def = DEF_NOT_SUBREG; 10841 } else { 10842 /* R1 = (u32) R2 */ 10843 if (is_pointer_value(env, insn->src_reg)) { 10844 verbose(env, 10845 "R%d partial copy of pointer\n", 10846 insn->src_reg); 10847 return -EACCES; 10848 } else if (src_reg->type == SCALAR_VALUE) { 10849 *dst_reg = *src_reg; 10850 /* Make sure ID is cleared otherwise 10851 * dst_reg min/max could be incorrectly 10852 * propagated into src_reg by find_equal_scalars() 10853 */ 10854 dst_reg->id = 0; 10855 dst_reg->live |= REG_LIVE_WRITTEN; 10856 dst_reg->subreg_def = env->insn_idx + 1; 10857 } else { 10858 mark_reg_unknown(env, regs, 10859 insn->dst_reg); 10860 } 10861 zext_32_to_64(dst_reg); 10862 reg_bounds_sync(dst_reg); 10863 } 10864 } else { 10865 /* case: R = imm 10866 * remember the value we stored into this reg 10867 */ 10868 /* clear any state __mark_reg_known doesn't set */ 10869 mark_reg_unknown(env, regs, insn->dst_reg); 10870 regs[insn->dst_reg].type = SCALAR_VALUE; 10871 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10872 __mark_reg_known(regs + insn->dst_reg, 10873 insn->imm); 10874 } else { 10875 __mark_reg_known(regs + insn->dst_reg, 10876 (u32)insn->imm); 10877 } 10878 } 10879 10880 } else if (opcode > BPF_END) { 10881 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 10882 return -EINVAL; 10883 10884 } else { /* all other ALU ops: and, sub, xor, add, ... */ 10885 10886 if (BPF_SRC(insn->code) == BPF_X) { 10887 if (insn->imm != 0 || insn->off != 0) { 10888 verbose(env, "BPF_ALU uses reserved fields\n"); 10889 return -EINVAL; 10890 } 10891 /* check src1 operand */ 10892 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10893 if (err) 10894 return err; 10895 } else { 10896 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10897 verbose(env, "BPF_ALU uses reserved fields\n"); 10898 return -EINVAL; 10899 } 10900 } 10901 10902 /* check src2 operand */ 10903 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10904 if (err) 10905 return err; 10906 10907 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 10908 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 10909 verbose(env, "div by zero\n"); 10910 return -EINVAL; 10911 } 10912 10913 if ((opcode == BPF_LSH || opcode == BPF_RSH || 10914 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 10915 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 10916 10917 if (insn->imm < 0 || insn->imm >= size) { 10918 verbose(env, "invalid shift %d\n", insn->imm); 10919 return -EINVAL; 10920 } 10921 } 10922 10923 /* check dest operand */ 10924 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10925 if (err) 10926 return err; 10927 10928 return adjust_reg_min_max_vals(env, insn); 10929 } 10930 10931 return 0; 10932 } 10933 10934 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 10935 struct bpf_reg_state *dst_reg, 10936 enum bpf_reg_type type, 10937 bool range_right_open) 10938 { 10939 struct bpf_func_state *state; 10940 struct bpf_reg_state *reg; 10941 int new_range; 10942 10943 if (dst_reg->off < 0 || 10944 (dst_reg->off == 0 && range_right_open)) 10945 /* This doesn't give us any range */ 10946 return; 10947 10948 if (dst_reg->umax_value > MAX_PACKET_OFF || 10949 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 10950 /* Risk of overflow. For instance, ptr + (1<<63) may be less 10951 * than pkt_end, but that's because it's also less than pkt. 10952 */ 10953 return; 10954 10955 new_range = dst_reg->off; 10956 if (range_right_open) 10957 new_range++; 10958 10959 /* Examples for register markings: 10960 * 10961 * pkt_data in dst register: 10962 * 10963 * r2 = r3; 10964 * r2 += 8; 10965 * if (r2 > pkt_end) goto <handle exception> 10966 * <access okay> 10967 * 10968 * r2 = r3; 10969 * r2 += 8; 10970 * if (r2 < pkt_end) goto <access okay> 10971 * <handle exception> 10972 * 10973 * Where: 10974 * r2 == dst_reg, pkt_end == src_reg 10975 * r2=pkt(id=n,off=8,r=0) 10976 * r3=pkt(id=n,off=0,r=0) 10977 * 10978 * pkt_data in src register: 10979 * 10980 * r2 = r3; 10981 * r2 += 8; 10982 * if (pkt_end >= r2) goto <access okay> 10983 * <handle exception> 10984 * 10985 * r2 = r3; 10986 * r2 += 8; 10987 * if (pkt_end <= r2) goto <handle exception> 10988 * <access okay> 10989 * 10990 * Where: 10991 * pkt_end == dst_reg, r2 == src_reg 10992 * r2=pkt(id=n,off=8,r=0) 10993 * r3=pkt(id=n,off=0,r=0) 10994 * 10995 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 10996 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 10997 * and [r3, r3 + 8-1) respectively is safe to access depending on 10998 * the check. 10999 */ 11000 11001 /* If our ids match, then we must have the same max_value. And we 11002 * don't care about the other reg's fixed offset, since if it's too big 11003 * the range won't allow anything. 11004 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 11005 */ 11006 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11007 if (reg->type == type && reg->id == dst_reg->id) 11008 /* keep the maximum range already checked */ 11009 reg->range = max(reg->range, new_range); 11010 })); 11011 } 11012 11013 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 11014 { 11015 struct tnum subreg = tnum_subreg(reg->var_off); 11016 s32 sval = (s32)val; 11017 11018 switch (opcode) { 11019 case BPF_JEQ: 11020 if (tnum_is_const(subreg)) 11021 return !!tnum_equals_const(subreg, val); 11022 break; 11023 case BPF_JNE: 11024 if (tnum_is_const(subreg)) 11025 return !tnum_equals_const(subreg, val); 11026 break; 11027 case BPF_JSET: 11028 if ((~subreg.mask & subreg.value) & val) 11029 return 1; 11030 if (!((subreg.mask | subreg.value) & val)) 11031 return 0; 11032 break; 11033 case BPF_JGT: 11034 if (reg->u32_min_value > val) 11035 return 1; 11036 else if (reg->u32_max_value <= val) 11037 return 0; 11038 break; 11039 case BPF_JSGT: 11040 if (reg->s32_min_value > sval) 11041 return 1; 11042 else if (reg->s32_max_value <= sval) 11043 return 0; 11044 break; 11045 case BPF_JLT: 11046 if (reg->u32_max_value < val) 11047 return 1; 11048 else if (reg->u32_min_value >= val) 11049 return 0; 11050 break; 11051 case BPF_JSLT: 11052 if (reg->s32_max_value < sval) 11053 return 1; 11054 else if (reg->s32_min_value >= sval) 11055 return 0; 11056 break; 11057 case BPF_JGE: 11058 if (reg->u32_min_value >= val) 11059 return 1; 11060 else if (reg->u32_max_value < val) 11061 return 0; 11062 break; 11063 case BPF_JSGE: 11064 if (reg->s32_min_value >= sval) 11065 return 1; 11066 else if (reg->s32_max_value < sval) 11067 return 0; 11068 break; 11069 case BPF_JLE: 11070 if (reg->u32_max_value <= val) 11071 return 1; 11072 else if (reg->u32_min_value > val) 11073 return 0; 11074 break; 11075 case BPF_JSLE: 11076 if (reg->s32_max_value <= sval) 11077 return 1; 11078 else if (reg->s32_min_value > sval) 11079 return 0; 11080 break; 11081 } 11082 11083 return -1; 11084 } 11085 11086 11087 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 11088 { 11089 s64 sval = (s64)val; 11090 11091 switch (opcode) { 11092 case BPF_JEQ: 11093 if (tnum_is_const(reg->var_off)) 11094 return !!tnum_equals_const(reg->var_off, val); 11095 break; 11096 case BPF_JNE: 11097 if (tnum_is_const(reg->var_off)) 11098 return !tnum_equals_const(reg->var_off, val); 11099 break; 11100 case BPF_JSET: 11101 if ((~reg->var_off.mask & reg->var_off.value) & val) 11102 return 1; 11103 if (!((reg->var_off.mask | reg->var_off.value) & val)) 11104 return 0; 11105 break; 11106 case BPF_JGT: 11107 if (reg->umin_value > val) 11108 return 1; 11109 else if (reg->umax_value <= val) 11110 return 0; 11111 break; 11112 case BPF_JSGT: 11113 if (reg->smin_value > sval) 11114 return 1; 11115 else if (reg->smax_value <= sval) 11116 return 0; 11117 break; 11118 case BPF_JLT: 11119 if (reg->umax_value < val) 11120 return 1; 11121 else if (reg->umin_value >= val) 11122 return 0; 11123 break; 11124 case BPF_JSLT: 11125 if (reg->smax_value < sval) 11126 return 1; 11127 else if (reg->smin_value >= sval) 11128 return 0; 11129 break; 11130 case BPF_JGE: 11131 if (reg->umin_value >= val) 11132 return 1; 11133 else if (reg->umax_value < val) 11134 return 0; 11135 break; 11136 case BPF_JSGE: 11137 if (reg->smin_value >= sval) 11138 return 1; 11139 else if (reg->smax_value < sval) 11140 return 0; 11141 break; 11142 case BPF_JLE: 11143 if (reg->umax_value <= val) 11144 return 1; 11145 else if (reg->umin_value > val) 11146 return 0; 11147 break; 11148 case BPF_JSLE: 11149 if (reg->smax_value <= sval) 11150 return 1; 11151 else if (reg->smin_value > sval) 11152 return 0; 11153 break; 11154 } 11155 11156 return -1; 11157 } 11158 11159 /* compute branch direction of the expression "if (reg opcode val) goto target;" 11160 * and return: 11161 * 1 - branch will be taken and "goto target" will be executed 11162 * 0 - branch will not be taken and fall-through to next insn 11163 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 11164 * range [0,10] 11165 */ 11166 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 11167 bool is_jmp32) 11168 { 11169 if (__is_pointer_value(false, reg)) { 11170 if (!reg_type_not_null(reg->type)) 11171 return -1; 11172 11173 /* If pointer is valid tests against zero will fail so we can 11174 * use this to direct branch taken. 11175 */ 11176 if (val != 0) 11177 return -1; 11178 11179 switch (opcode) { 11180 case BPF_JEQ: 11181 return 0; 11182 case BPF_JNE: 11183 return 1; 11184 default: 11185 return -1; 11186 } 11187 } 11188 11189 if (is_jmp32) 11190 return is_branch32_taken(reg, val, opcode); 11191 return is_branch64_taken(reg, val, opcode); 11192 } 11193 11194 static int flip_opcode(u32 opcode) 11195 { 11196 /* How can we transform "a <op> b" into "b <op> a"? */ 11197 static const u8 opcode_flip[16] = { 11198 /* these stay the same */ 11199 [BPF_JEQ >> 4] = BPF_JEQ, 11200 [BPF_JNE >> 4] = BPF_JNE, 11201 [BPF_JSET >> 4] = BPF_JSET, 11202 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 11203 [BPF_JGE >> 4] = BPF_JLE, 11204 [BPF_JGT >> 4] = BPF_JLT, 11205 [BPF_JLE >> 4] = BPF_JGE, 11206 [BPF_JLT >> 4] = BPF_JGT, 11207 [BPF_JSGE >> 4] = BPF_JSLE, 11208 [BPF_JSGT >> 4] = BPF_JSLT, 11209 [BPF_JSLE >> 4] = BPF_JSGE, 11210 [BPF_JSLT >> 4] = BPF_JSGT 11211 }; 11212 return opcode_flip[opcode >> 4]; 11213 } 11214 11215 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 11216 struct bpf_reg_state *src_reg, 11217 u8 opcode) 11218 { 11219 struct bpf_reg_state *pkt; 11220 11221 if (src_reg->type == PTR_TO_PACKET_END) { 11222 pkt = dst_reg; 11223 } else if (dst_reg->type == PTR_TO_PACKET_END) { 11224 pkt = src_reg; 11225 opcode = flip_opcode(opcode); 11226 } else { 11227 return -1; 11228 } 11229 11230 if (pkt->range >= 0) 11231 return -1; 11232 11233 switch (opcode) { 11234 case BPF_JLE: 11235 /* pkt <= pkt_end */ 11236 fallthrough; 11237 case BPF_JGT: 11238 /* pkt > pkt_end */ 11239 if (pkt->range == BEYOND_PKT_END) 11240 /* pkt has at last one extra byte beyond pkt_end */ 11241 return opcode == BPF_JGT; 11242 break; 11243 case BPF_JLT: 11244 /* pkt < pkt_end */ 11245 fallthrough; 11246 case BPF_JGE: 11247 /* pkt >= pkt_end */ 11248 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 11249 return opcode == BPF_JGE; 11250 break; 11251 } 11252 return -1; 11253 } 11254 11255 /* Adjusts the register min/max values in the case that the dst_reg is the 11256 * variable register that we are working on, and src_reg is a constant or we're 11257 * simply doing a BPF_K check. 11258 * In JEQ/JNE cases we also adjust the var_off values. 11259 */ 11260 static void reg_set_min_max(struct bpf_reg_state *true_reg, 11261 struct bpf_reg_state *false_reg, 11262 u64 val, u32 val32, 11263 u8 opcode, bool is_jmp32) 11264 { 11265 struct tnum false_32off = tnum_subreg(false_reg->var_off); 11266 struct tnum false_64off = false_reg->var_off; 11267 struct tnum true_32off = tnum_subreg(true_reg->var_off); 11268 struct tnum true_64off = true_reg->var_off; 11269 s64 sval = (s64)val; 11270 s32 sval32 = (s32)val32; 11271 11272 /* If the dst_reg is a pointer, we can't learn anything about its 11273 * variable offset from the compare (unless src_reg were a pointer into 11274 * the same object, but we don't bother with that. 11275 * Since false_reg and true_reg have the same type by construction, we 11276 * only need to check one of them for pointerness. 11277 */ 11278 if (__is_pointer_value(false, false_reg)) 11279 return; 11280 11281 switch (opcode) { 11282 /* JEQ/JNE comparison doesn't change the register equivalence. 11283 * 11284 * r1 = r2; 11285 * if (r1 == 42) goto label; 11286 * ... 11287 * label: // here both r1 and r2 are known to be 42. 11288 * 11289 * Hence when marking register as known preserve it's ID. 11290 */ 11291 case BPF_JEQ: 11292 if (is_jmp32) { 11293 __mark_reg32_known(true_reg, val32); 11294 true_32off = tnum_subreg(true_reg->var_off); 11295 } else { 11296 ___mark_reg_known(true_reg, val); 11297 true_64off = true_reg->var_off; 11298 } 11299 break; 11300 case BPF_JNE: 11301 if (is_jmp32) { 11302 __mark_reg32_known(false_reg, val32); 11303 false_32off = tnum_subreg(false_reg->var_off); 11304 } else { 11305 ___mark_reg_known(false_reg, val); 11306 false_64off = false_reg->var_off; 11307 } 11308 break; 11309 case BPF_JSET: 11310 if (is_jmp32) { 11311 false_32off = tnum_and(false_32off, tnum_const(~val32)); 11312 if (is_power_of_2(val32)) 11313 true_32off = tnum_or(true_32off, 11314 tnum_const(val32)); 11315 } else { 11316 false_64off = tnum_and(false_64off, tnum_const(~val)); 11317 if (is_power_of_2(val)) 11318 true_64off = tnum_or(true_64off, 11319 tnum_const(val)); 11320 } 11321 break; 11322 case BPF_JGE: 11323 case BPF_JGT: 11324 { 11325 if (is_jmp32) { 11326 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 11327 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 11328 11329 false_reg->u32_max_value = min(false_reg->u32_max_value, 11330 false_umax); 11331 true_reg->u32_min_value = max(true_reg->u32_min_value, 11332 true_umin); 11333 } else { 11334 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 11335 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 11336 11337 false_reg->umax_value = min(false_reg->umax_value, false_umax); 11338 true_reg->umin_value = max(true_reg->umin_value, true_umin); 11339 } 11340 break; 11341 } 11342 case BPF_JSGE: 11343 case BPF_JSGT: 11344 { 11345 if (is_jmp32) { 11346 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 11347 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 11348 11349 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 11350 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 11351 } else { 11352 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 11353 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 11354 11355 false_reg->smax_value = min(false_reg->smax_value, false_smax); 11356 true_reg->smin_value = max(true_reg->smin_value, true_smin); 11357 } 11358 break; 11359 } 11360 case BPF_JLE: 11361 case BPF_JLT: 11362 { 11363 if (is_jmp32) { 11364 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 11365 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 11366 11367 false_reg->u32_min_value = max(false_reg->u32_min_value, 11368 false_umin); 11369 true_reg->u32_max_value = min(true_reg->u32_max_value, 11370 true_umax); 11371 } else { 11372 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 11373 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 11374 11375 false_reg->umin_value = max(false_reg->umin_value, false_umin); 11376 true_reg->umax_value = min(true_reg->umax_value, true_umax); 11377 } 11378 break; 11379 } 11380 case BPF_JSLE: 11381 case BPF_JSLT: 11382 { 11383 if (is_jmp32) { 11384 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 11385 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 11386 11387 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 11388 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 11389 } else { 11390 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 11391 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 11392 11393 false_reg->smin_value = max(false_reg->smin_value, false_smin); 11394 true_reg->smax_value = min(true_reg->smax_value, true_smax); 11395 } 11396 break; 11397 } 11398 default: 11399 return; 11400 } 11401 11402 if (is_jmp32) { 11403 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 11404 tnum_subreg(false_32off)); 11405 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 11406 tnum_subreg(true_32off)); 11407 __reg_combine_32_into_64(false_reg); 11408 __reg_combine_32_into_64(true_reg); 11409 } else { 11410 false_reg->var_off = false_64off; 11411 true_reg->var_off = true_64off; 11412 __reg_combine_64_into_32(false_reg); 11413 __reg_combine_64_into_32(true_reg); 11414 } 11415 } 11416 11417 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 11418 * the variable reg. 11419 */ 11420 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 11421 struct bpf_reg_state *false_reg, 11422 u64 val, u32 val32, 11423 u8 opcode, bool is_jmp32) 11424 { 11425 opcode = flip_opcode(opcode); 11426 /* This uses zero as "not present in table"; luckily the zero opcode, 11427 * BPF_JA, can't get here. 11428 */ 11429 if (opcode) 11430 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 11431 } 11432 11433 /* Regs are known to be equal, so intersect their min/max/var_off */ 11434 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 11435 struct bpf_reg_state *dst_reg) 11436 { 11437 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 11438 dst_reg->umin_value); 11439 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 11440 dst_reg->umax_value); 11441 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 11442 dst_reg->smin_value); 11443 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 11444 dst_reg->smax_value); 11445 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 11446 dst_reg->var_off); 11447 reg_bounds_sync(src_reg); 11448 reg_bounds_sync(dst_reg); 11449 } 11450 11451 static void reg_combine_min_max(struct bpf_reg_state *true_src, 11452 struct bpf_reg_state *true_dst, 11453 struct bpf_reg_state *false_src, 11454 struct bpf_reg_state *false_dst, 11455 u8 opcode) 11456 { 11457 switch (opcode) { 11458 case BPF_JEQ: 11459 __reg_combine_min_max(true_src, true_dst); 11460 break; 11461 case BPF_JNE: 11462 __reg_combine_min_max(false_src, false_dst); 11463 break; 11464 } 11465 } 11466 11467 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 11468 struct bpf_reg_state *reg, u32 id, 11469 bool is_null) 11470 { 11471 if (type_may_be_null(reg->type) && reg->id == id && 11472 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 11473 /* Old offset (both fixed and variable parts) should have been 11474 * known-zero, because we don't allow pointer arithmetic on 11475 * pointers that might be NULL. If we see this happening, don't 11476 * convert the register. 11477 * 11478 * But in some cases, some helpers that return local kptrs 11479 * advance offset for the returned pointer. In those cases, it 11480 * is fine to expect to see reg->off. 11481 */ 11482 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 11483 return; 11484 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off)) 11485 return; 11486 if (is_null) { 11487 reg->type = SCALAR_VALUE; 11488 /* We don't need id and ref_obj_id from this point 11489 * onwards anymore, thus we should better reset it, 11490 * so that state pruning has chances to take effect. 11491 */ 11492 reg->id = 0; 11493 reg->ref_obj_id = 0; 11494 11495 return; 11496 } 11497 11498 mark_ptr_not_null_reg(reg); 11499 11500 if (!reg_may_point_to_spin_lock(reg)) { 11501 /* For not-NULL ptr, reg->ref_obj_id will be reset 11502 * in release_reference(). 11503 * 11504 * reg->id is still used by spin_lock ptr. Other 11505 * than spin_lock ptr type, reg->id can be reset. 11506 */ 11507 reg->id = 0; 11508 } 11509 } 11510 } 11511 11512 /* The logic is similar to find_good_pkt_pointers(), both could eventually 11513 * be folded together at some point. 11514 */ 11515 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 11516 bool is_null) 11517 { 11518 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11519 struct bpf_reg_state *regs = state->regs, *reg; 11520 u32 ref_obj_id = regs[regno].ref_obj_id; 11521 u32 id = regs[regno].id; 11522 11523 if (ref_obj_id && ref_obj_id == id && is_null) 11524 /* regs[regno] is in the " == NULL" branch. 11525 * No one could have freed the reference state before 11526 * doing the NULL check. 11527 */ 11528 WARN_ON_ONCE(release_reference_state(state, id)); 11529 11530 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11531 mark_ptr_or_null_reg(state, reg, id, is_null); 11532 })); 11533 } 11534 11535 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 11536 struct bpf_reg_state *dst_reg, 11537 struct bpf_reg_state *src_reg, 11538 struct bpf_verifier_state *this_branch, 11539 struct bpf_verifier_state *other_branch) 11540 { 11541 if (BPF_SRC(insn->code) != BPF_X) 11542 return false; 11543 11544 /* Pointers are always 64-bit. */ 11545 if (BPF_CLASS(insn->code) == BPF_JMP32) 11546 return false; 11547 11548 switch (BPF_OP(insn->code)) { 11549 case BPF_JGT: 11550 if ((dst_reg->type == PTR_TO_PACKET && 11551 src_reg->type == PTR_TO_PACKET_END) || 11552 (dst_reg->type == PTR_TO_PACKET_META && 11553 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11554 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 11555 find_good_pkt_pointers(this_branch, dst_reg, 11556 dst_reg->type, false); 11557 mark_pkt_end(other_branch, insn->dst_reg, true); 11558 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11559 src_reg->type == PTR_TO_PACKET) || 11560 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11561 src_reg->type == PTR_TO_PACKET_META)) { 11562 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 11563 find_good_pkt_pointers(other_branch, src_reg, 11564 src_reg->type, true); 11565 mark_pkt_end(this_branch, insn->src_reg, false); 11566 } else { 11567 return false; 11568 } 11569 break; 11570 case BPF_JLT: 11571 if ((dst_reg->type == PTR_TO_PACKET && 11572 src_reg->type == PTR_TO_PACKET_END) || 11573 (dst_reg->type == PTR_TO_PACKET_META && 11574 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11575 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 11576 find_good_pkt_pointers(other_branch, dst_reg, 11577 dst_reg->type, true); 11578 mark_pkt_end(this_branch, insn->dst_reg, false); 11579 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11580 src_reg->type == PTR_TO_PACKET) || 11581 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11582 src_reg->type == PTR_TO_PACKET_META)) { 11583 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 11584 find_good_pkt_pointers(this_branch, src_reg, 11585 src_reg->type, false); 11586 mark_pkt_end(other_branch, insn->src_reg, true); 11587 } else { 11588 return false; 11589 } 11590 break; 11591 case BPF_JGE: 11592 if ((dst_reg->type == PTR_TO_PACKET && 11593 src_reg->type == PTR_TO_PACKET_END) || 11594 (dst_reg->type == PTR_TO_PACKET_META && 11595 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11596 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 11597 find_good_pkt_pointers(this_branch, dst_reg, 11598 dst_reg->type, true); 11599 mark_pkt_end(other_branch, insn->dst_reg, false); 11600 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11601 src_reg->type == PTR_TO_PACKET) || 11602 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11603 src_reg->type == PTR_TO_PACKET_META)) { 11604 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 11605 find_good_pkt_pointers(other_branch, src_reg, 11606 src_reg->type, false); 11607 mark_pkt_end(this_branch, insn->src_reg, true); 11608 } else { 11609 return false; 11610 } 11611 break; 11612 case BPF_JLE: 11613 if ((dst_reg->type == PTR_TO_PACKET && 11614 src_reg->type == PTR_TO_PACKET_END) || 11615 (dst_reg->type == PTR_TO_PACKET_META && 11616 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11617 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 11618 find_good_pkt_pointers(other_branch, dst_reg, 11619 dst_reg->type, false); 11620 mark_pkt_end(this_branch, insn->dst_reg, true); 11621 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11622 src_reg->type == PTR_TO_PACKET) || 11623 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11624 src_reg->type == PTR_TO_PACKET_META)) { 11625 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 11626 find_good_pkt_pointers(this_branch, src_reg, 11627 src_reg->type, true); 11628 mark_pkt_end(other_branch, insn->src_reg, false); 11629 } else { 11630 return false; 11631 } 11632 break; 11633 default: 11634 return false; 11635 } 11636 11637 return true; 11638 } 11639 11640 static void find_equal_scalars(struct bpf_verifier_state *vstate, 11641 struct bpf_reg_state *known_reg) 11642 { 11643 struct bpf_func_state *state; 11644 struct bpf_reg_state *reg; 11645 11646 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11647 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 11648 *reg = *known_reg; 11649 })); 11650 } 11651 11652 static int check_cond_jmp_op(struct bpf_verifier_env *env, 11653 struct bpf_insn *insn, int *insn_idx) 11654 { 11655 struct bpf_verifier_state *this_branch = env->cur_state; 11656 struct bpf_verifier_state *other_branch; 11657 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 11658 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 11659 struct bpf_reg_state *eq_branch_regs; 11660 u8 opcode = BPF_OP(insn->code); 11661 bool is_jmp32; 11662 int pred = -1; 11663 int err; 11664 11665 /* Only conditional jumps are expected to reach here. */ 11666 if (opcode == BPF_JA || opcode > BPF_JSLE) { 11667 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 11668 return -EINVAL; 11669 } 11670 11671 if (BPF_SRC(insn->code) == BPF_X) { 11672 if (insn->imm != 0) { 11673 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11674 return -EINVAL; 11675 } 11676 11677 /* check src1 operand */ 11678 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11679 if (err) 11680 return err; 11681 11682 if (is_pointer_value(env, insn->src_reg)) { 11683 verbose(env, "R%d pointer comparison prohibited\n", 11684 insn->src_reg); 11685 return -EACCES; 11686 } 11687 src_reg = ®s[insn->src_reg]; 11688 } else { 11689 if (insn->src_reg != BPF_REG_0) { 11690 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11691 return -EINVAL; 11692 } 11693 } 11694 11695 /* check src2 operand */ 11696 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11697 if (err) 11698 return err; 11699 11700 dst_reg = ®s[insn->dst_reg]; 11701 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 11702 11703 if (BPF_SRC(insn->code) == BPF_K) { 11704 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 11705 } else if (src_reg->type == SCALAR_VALUE && 11706 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 11707 pred = is_branch_taken(dst_reg, 11708 tnum_subreg(src_reg->var_off).value, 11709 opcode, 11710 is_jmp32); 11711 } else if (src_reg->type == SCALAR_VALUE && 11712 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 11713 pred = is_branch_taken(dst_reg, 11714 src_reg->var_off.value, 11715 opcode, 11716 is_jmp32); 11717 } else if (reg_is_pkt_pointer_any(dst_reg) && 11718 reg_is_pkt_pointer_any(src_reg) && 11719 !is_jmp32) { 11720 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 11721 } 11722 11723 if (pred >= 0) { 11724 /* If we get here with a dst_reg pointer type it is because 11725 * above is_branch_taken() special cased the 0 comparison. 11726 */ 11727 if (!__is_pointer_value(false, dst_reg)) 11728 err = mark_chain_precision(env, insn->dst_reg); 11729 if (BPF_SRC(insn->code) == BPF_X && !err && 11730 !__is_pointer_value(false, src_reg)) 11731 err = mark_chain_precision(env, insn->src_reg); 11732 if (err) 11733 return err; 11734 } 11735 11736 if (pred == 1) { 11737 /* Only follow the goto, ignore fall-through. If needed, push 11738 * the fall-through branch for simulation under speculative 11739 * execution. 11740 */ 11741 if (!env->bypass_spec_v1 && 11742 !sanitize_speculative_path(env, insn, *insn_idx + 1, 11743 *insn_idx)) 11744 return -EFAULT; 11745 *insn_idx += insn->off; 11746 return 0; 11747 } else if (pred == 0) { 11748 /* Only follow the fall-through branch, since that's where the 11749 * program will go. If needed, push the goto branch for 11750 * simulation under speculative execution. 11751 */ 11752 if (!env->bypass_spec_v1 && 11753 !sanitize_speculative_path(env, insn, 11754 *insn_idx + insn->off + 1, 11755 *insn_idx)) 11756 return -EFAULT; 11757 return 0; 11758 } 11759 11760 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 11761 false); 11762 if (!other_branch) 11763 return -EFAULT; 11764 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 11765 11766 /* detect if we are comparing against a constant value so we can adjust 11767 * our min/max values for our dst register. 11768 * this is only legit if both are scalars (or pointers to the same 11769 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 11770 * because otherwise the different base pointers mean the offsets aren't 11771 * comparable. 11772 */ 11773 if (BPF_SRC(insn->code) == BPF_X) { 11774 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 11775 11776 if (dst_reg->type == SCALAR_VALUE && 11777 src_reg->type == SCALAR_VALUE) { 11778 if (tnum_is_const(src_reg->var_off) || 11779 (is_jmp32 && 11780 tnum_is_const(tnum_subreg(src_reg->var_off)))) 11781 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11782 dst_reg, 11783 src_reg->var_off.value, 11784 tnum_subreg(src_reg->var_off).value, 11785 opcode, is_jmp32); 11786 else if (tnum_is_const(dst_reg->var_off) || 11787 (is_jmp32 && 11788 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 11789 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 11790 src_reg, 11791 dst_reg->var_off.value, 11792 tnum_subreg(dst_reg->var_off).value, 11793 opcode, is_jmp32); 11794 else if (!is_jmp32 && 11795 (opcode == BPF_JEQ || opcode == BPF_JNE)) 11796 /* Comparing for equality, we can combine knowledge */ 11797 reg_combine_min_max(&other_branch_regs[insn->src_reg], 11798 &other_branch_regs[insn->dst_reg], 11799 src_reg, dst_reg, opcode); 11800 if (src_reg->id && 11801 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 11802 find_equal_scalars(this_branch, src_reg); 11803 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 11804 } 11805 11806 } 11807 } else if (dst_reg->type == SCALAR_VALUE) { 11808 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11809 dst_reg, insn->imm, (u32)insn->imm, 11810 opcode, is_jmp32); 11811 } 11812 11813 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 11814 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 11815 find_equal_scalars(this_branch, dst_reg); 11816 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 11817 } 11818 11819 /* if one pointer register is compared to another pointer 11820 * register check if PTR_MAYBE_NULL could be lifted. 11821 * E.g. register A - maybe null 11822 * register B - not null 11823 * for JNE A, B, ... - A is not null in the false branch; 11824 * for JEQ A, B, ... - A is not null in the true branch. 11825 */ 11826 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 11827 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 11828 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) { 11829 eq_branch_regs = NULL; 11830 switch (opcode) { 11831 case BPF_JEQ: 11832 eq_branch_regs = other_branch_regs; 11833 break; 11834 case BPF_JNE: 11835 eq_branch_regs = regs; 11836 break; 11837 default: 11838 /* do nothing */ 11839 break; 11840 } 11841 if (eq_branch_regs) { 11842 if (type_may_be_null(src_reg->type)) 11843 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 11844 else 11845 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 11846 } 11847 } 11848 11849 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 11850 * NOTE: these optimizations below are related with pointer comparison 11851 * which will never be JMP32. 11852 */ 11853 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 11854 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 11855 type_may_be_null(dst_reg->type)) { 11856 /* Mark all identical registers in each branch as either 11857 * safe or unknown depending R == 0 or R != 0 conditional. 11858 */ 11859 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 11860 opcode == BPF_JNE); 11861 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 11862 opcode == BPF_JEQ); 11863 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 11864 this_branch, other_branch) && 11865 is_pointer_value(env, insn->dst_reg)) { 11866 verbose(env, "R%d pointer comparison prohibited\n", 11867 insn->dst_reg); 11868 return -EACCES; 11869 } 11870 if (env->log.level & BPF_LOG_LEVEL) 11871 print_insn_state(env, this_branch->frame[this_branch->curframe]); 11872 return 0; 11873 } 11874 11875 /* verify BPF_LD_IMM64 instruction */ 11876 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 11877 { 11878 struct bpf_insn_aux_data *aux = cur_aux(env); 11879 struct bpf_reg_state *regs = cur_regs(env); 11880 struct bpf_reg_state *dst_reg; 11881 struct bpf_map *map; 11882 int err; 11883 11884 if (BPF_SIZE(insn->code) != BPF_DW) { 11885 verbose(env, "invalid BPF_LD_IMM insn\n"); 11886 return -EINVAL; 11887 } 11888 if (insn->off != 0) { 11889 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 11890 return -EINVAL; 11891 } 11892 11893 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11894 if (err) 11895 return err; 11896 11897 dst_reg = ®s[insn->dst_reg]; 11898 if (insn->src_reg == 0) { 11899 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 11900 11901 dst_reg->type = SCALAR_VALUE; 11902 __mark_reg_known(®s[insn->dst_reg], imm); 11903 return 0; 11904 } 11905 11906 /* All special src_reg cases are listed below. From this point onwards 11907 * we either succeed and assign a corresponding dst_reg->type after 11908 * zeroing the offset, or fail and reject the program. 11909 */ 11910 mark_reg_known_zero(env, regs, insn->dst_reg); 11911 11912 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 11913 dst_reg->type = aux->btf_var.reg_type; 11914 switch (base_type(dst_reg->type)) { 11915 case PTR_TO_MEM: 11916 dst_reg->mem_size = aux->btf_var.mem_size; 11917 break; 11918 case PTR_TO_BTF_ID: 11919 dst_reg->btf = aux->btf_var.btf; 11920 dst_reg->btf_id = aux->btf_var.btf_id; 11921 break; 11922 default: 11923 verbose(env, "bpf verifier is misconfigured\n"); 11924 return -EFAULT; 11925 } 11926 return 0; 11927 } 11928 11929 if (insn->src_reg == BPF_PSEUDO_FUNC) { 11930 struct bpf_prog_aux *aux = env->prog->aux; 11931 u32 subprogno = find_subprog(env, 11932 env->insn_idx + insn->imm + 1); 11933 11934 if (!aux->func_info) { 11935 verbose(env, "missing btf func_info\n"); 11936 return -EINVAL; 11937 } 11938 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 11939 verbose(env, "callback function not static\n"); 11940 return -EINVAL; 11941 } 11942 11943 dst_reg->type = PTR_TO_FUNC; 11944 dst_reg->subprogno = subprogno; 11945 return 0; 11946 } 11947 11948 map = env->used_maps[aux->map_index]; 11949 dst_reg->map_ptr = map; 11950 11951 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 11952 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 11953 dst_reg->type = PTR_TO_MAP_VALUE; 11954 dst_reg->off = aux->map_off; 11955 WARN_ON_ONCE(map->max_entries != 1); 11956 /* We want reg->id to be same (0) as map_value is not distinct */ 11957 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 11958 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 11959 dst_reg->type = CONST_PTR_TO_MAP; 11960 } else { 11961 verbose(env, "bpf verifier is misconfigured\n"); 11962 return -EINVAL; 11963 } 11964 11965 return 0; 11966 } 11967 11968 static bool may_access_skb(enum bpf_prog_type type) 11969 { 11970 switch (type) { 11971 case BPF_PROG_TYPE_SOCKET_FILTER: 11972 case BPF_PROG_TYPE_SCHED_CLS: 11973 case BPF_PROG_TYPE_SCHED_ACT: 11974 return true; 11975 default: 11976 return false; 11977 } 11978 } 11979 11980 /* verify safety of LD_ABS|LD_IND instructions: 11981 * - they can only appear in the programs where ctx == skb 11982 * - since they are wrappers of function calls, they scratch R1-R5 registers, 11983 * preserve R6-R9, and store return value into R0 11984 * 11985 * Implicit input: 11986 * ctx == skb == R6 == CTX 11987 * 11988 * Explicit input: 11989 * SRC == any register 11990 * IMM == 32-bit immediate 11991 * 11992 * Output: 11993 * R0 - 8/16/32-bit skb data converted to cpu endianness 11994 */ 11995 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 11996 { 11997 struct bpf_reg_state *regs = cur_regs(env); 11998 static const int ctx_reg = BPF_REG_6; 11999 u8 mode = BPF_MODE(insn->code); 12000 int i, err; 12001 12002 if (!may_access_skb(resolve_prog_type(env->prog))) { 12003 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 12004 return -EINVAL; 12005 } 12006 12007 if (!env->ops->gen_ld_abs) { 12008 verbose(env, "bpf verifier is misconfigured\n"); 12009 return -EINVAL; 12010 } 12011 12012 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 12013 BPF_SIZE(insn->code) == BPF_DW || 12014 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 12015 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 12016 return -EINVAL; 12017 } 12018 12019 /* check whether implicit source operand (register R6) is readable */ 12020 err = check_reg_arg(env, ctx_reg, SRC_OP); 12021 if (err) 12022 return err; 12023 12024 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 12025 * gen_ld_abs() may terminate the program at runtime, leading to 12026 * reference leak. 12027 */ 12028 err = check_reference_leak(env); 12029 if (err) { 12030 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 12031 return err; 12032 } 12033 12034 if (env->cur_state->active_lock.ptr) { 12035 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 12036 return -EINVAL; 12037 } 12038 12039 if (env->cur_state->active_rcu_lock) { 12040 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 12041 return -EINVAL; 12042 } 12043 12044 if (regs[ctx_reg].type != PTR_TO_CTX) { 12045 verbose(env, 12046 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 12047 return -EINVAL; 12048 } 12049 12050 if (mode == BPF_IND) { 12051 /* check explicit source operand */ 12052 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12053 if (err) 12054 return err; 12055 } 12056 12057 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 12058 if (err < 0) 12059 return err; 12060 12061 /* reset caller saved regs to unreadable */ 12062 for (i = 0; i < CALLER_SAVED_REGS; i++) { 12063 mark_reg_not_init(env, regs, caller_saved[i]); 12064 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 12065 } 12066 12067 /* mark destination R0 register as readable, since it contains 12068 * the value fetched from the packet. 12069 * Already marked as written above. 12070 */ 12071 mark_reg_unknown(env, regs, BPF_REG_0); 12072 /* ld_abs load up to 32-bit skb data. */ 12073 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 12074 return 0; 12075 } 12076 12077 static int check_return_code(struct bpf_verifier_env *env) 12078 { 12079 struct tnum enforce_attach_type_range = tnum_unknown; 12080 const struct bpf_prog *prog = env->prog; 12081 struct bpf_reg_state *reg; 12082 struct tnum range = tnum_range(0, 1); 12083 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12084 int err; 12085 struct bpf_func_state *frame = env->cur_state->frame[0]; 12086 const bool is_subprog = frame->subprogno; 12087 12088 /* LSM and struct_ops func-ptr's return type could be "void" */ 12089 if (!is_subprog) { 12090 switch (prog_type) { 12091 case BPF_PROG_TYPE_LSM: 12092 if (prog->expected_attach_type == BPF_LSM_CGROUP) 12093 /* See below, can be 0 or 0-1 depending on hook. */ 12094 break; 12095 fallthrough; 12096 case BPF_PROG_TYPE_STRUCT_OPS: 12097 if (!prog->aux->attach_func_proto->type) 12098 return 0; 12099 break; 12100 default: 12101 break; 12102 } 12103 } 12104 12105 /* eBPF calling convention is such that R0 is used 12106 * to return the value from eBPF program. 12107 * Make sure that it's readable at this time 12108 * of bpf_exit, which means that program wrote 12109 * something into it earlier 12110 */ 12111 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 12112 if (err) 12113 return err; 12114 12115 if (is_pointer_value(env, BPF_REG_0)) { 12116 verbose(env, "R0 leaks addr as return value\n"); 12117 return -EACCES; 12118 } 12119 12120 reg = cur_regs(env) + BPF_REG_0; 12121 12122 if (frame->in_async_callback_fn) { 12123 /* enforce return zero from async callbacks like timer */ 12124 if (reg->type != SCALAR_VALUE) { 12125 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 12126 reg_type_str(env, reg->type)); 12127 return -EINVAL; 12128 } 12129 12130 if (!tnum_in(tnum_const(0), reg->var_off)) { 12131 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 12132 return -EINVAL; 12133 } 12134 return 0; 12135 } 12136 12137 if (is_subprog) { 12138 if (reg->type != SCALAR_VALUE) { 12139 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 12140 reg_type_str(env, reg->type)); 12141 return -EINVAL; 12142 } 12143 return 0; 12144 } 12145 12146 switch (prog_type) { 12147 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 12148 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 12149 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 12150 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 12151 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 12152 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 12153 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 12154 range = tnum_range(1, 1); 12155 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 12156 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 12157 range = tnum_range(0, 3); 12158 break; 12159 case BPF_PROG_TYPE_CGROUP_SKB: 12160 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 12161 range = tnum_range(0, 3); 12162 enforce_attach_type_range = tnum_range(2, 3); 12163 } 12164 break; 12165 case BPF_PROG_TYPE_CGROUP_SOCK: 12166 case BPF_PROG_TYPE_SOCK_OPS: 12167 case BPF_PROG_TYPE_CGROUP_DEVICE: 12168 case BPF_PROG_TYPE_CGROUP_SYSCTL: 12169 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 12170 break; 12171 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12172 if (!env->prog->aux->attach_btf_id) 12173 return 0; 12174 range = tnum_const(0); 12175 break; 12176 case BPF_PROG_TYPE_TRACING: 12177 switch (env->prog->expected_attach_type) { 12178 case BPF_TRACE_FENTRY: 12179 case BPF_TRACE_FEXIT: 12180 range = tnum_const(0); 12181 break; 12182 case BPF_TRACE_RAW_TP: 12183 case BPF_MODIFY_RETURN: 12184 return 0; 12185 case BPF_TRACE_ITER: 12186 break; 12187 default: 12188 return -ENOTSUPP; 12189 } 12190 break; 12191 case BPF_PROG_TYPE_SK_LOOKUP: 12192 range = tnum_range(SK_DROP, SK_PASS); 12193 break; 12194 12195 case BPF_PROG_TYPE_LSM: 12196 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 12197 /* Regular BPF_PROG_TYPE_LSM programs can return 12198 * any value. 12199 */ 12200 return 0; 12201 } 12202 if (!env->prog->aux->attach_func_proto->type) { 12203 /* Make sure programs that attach to void 12204 * hooks don't try to modify return value. 12205 */ 12206 range = tnum_range(1, 1); 12207 } 12208 break; 12209 12210 case BPF_PROG_TYPE_EXT: 12211 /* freplace program can return anything as its return value 12212 * depends on the to-be-replaced kernel func or bpf program. 12213 */ 12214 default: 12215 return 0; 12216 } 12217 12218 if (reg->type != SCALAR_VALUE) { 12219 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 12220 reg_type_str(env, reg->type)); 12221 return -EINVAL; 12222 } 12223 12224 if (!tnum_in(range, reg->var_off)) { 12225 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 12226 if (prog->expected_attach_type == BPF_LSM_CGROUP && 12227 prog_type == BPF_PROG_TYPE_LSM && 12228 !prog->aux->attach_func_proto->type) 12229 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 12230 return -EINVAL; 12231 } 12232 12233 if (!tnum_is_unknown(enforce_attach_type_range) && 12234 tnum_in(enforce_attach_type_range, reg->var_off)) 12235 env->prog->enforce_expected_attach_type = 1; 12236 return 0; 12237 } 12238 12239 /* non-recursive DFS pseudo code 12240 * 1 procedure DFS-iterative(G,v): 12241 * 2 label v as discovered 12242 * 3 let S be a stack 12243 * 4 S.push(v) 12244 * 5 while S is not empty 12245 * 6 t <- S.peek() 12246 * 7 if t is what we're looking for: 12247 * 8 return t 12248 * 9 for all edges e in G.adjacentEdges(t) do 12249 * 10 if edge e is already labelled 12250 * 11 continue with the next edge 12251 * 12 w <- G.adjacentVertex(t,e) 12252 * 13 if vertex w is not discovered and not explored 12253 * 14 label e as tree-edge 12254 * 15 label w as discovered 12255 * 16 S.push(w) 12256 * 17 continue at 5 12257 * 18 else if vertex w is discovered 12258 * 19 label e as back-edge 12259 * 20 else 12260 * 21 // vertex w is explored 12261 * 22 label e as forward- or cross-edge 12262 * 23 label t as explored 12263 * 24 S.pop() 12264 * 12265 * convention: 12266 * 0x10 - discovered 12267 * 0x11 - discovered and fall-through edge labelled 12268 * 0x12 - discovered and fall-through and branch edges labelled 12269 * 0x20 - explored 12270 */ 12271 12272 enum { 12273 DISCOVERED = 0x10, 12274 EXPLORED = 0x20, 12275 FALLTHROUGH = 1, 12276 BRANCH = 2, 12277 }; 12278 12279 static u32 state_htab_size(struct bpf_verifier_env *env) 12280 { 12281 return env->prog->len; 12282 } 12283 12284 static struct bpf_verifier_state_list **explored_state( 12285 struct bpf_verifier_env *env, 12286 int idx) 12287 { 12288 struct bpf_verifier_state *cur = env->cur_state; 12289 struct bpf_func_state *state = cur->frame[cur->curframe]; 12290 12291 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 12292 } 12293 12294 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 12295 { 12296 env->insn_aux_data[idx].prune_point = true; 12297 } 12298 12299 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 12300 { 12301 return env->insn_aux_data[insn_idx].prune_point; 12302 } 12303 12304 enum { 12305 DONE_EXPLORING = 0, 12306 KEEP_EXPLORING = 1, 12307 }; 12308 12309 /* t, w, e - match pseudo-code above: 12310 * t - index of current instruction 12311 * w - next instruction 12312 * e - edge 12313 */ 12314 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 12315 bool loop_ok) 12316 { 12317 int *insn_stack = env->cfg.insn_stack; 12318 int *insn_state = env->cfg.insn_state; 12319 12320 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 12321 return DONE_EXPLORING; 12322 12323 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 12324 return DONE_EXPLORING; 12325 12326 if (w < 0 || w >= env->prog->len) { 12327 verbose_linfo(env, t, "%d: ", t); 12328 verbose(env, "jump out of range from insn %d to %d\n", t, w); 12329 return -EINVAL; 12330 } 12331 12332 if (e == BRANCH) { 12333 /* mark branch target for state pruning */ 12334 mark_prune_point(env, w); 12335 mark_jmp_point(env, w); 12336 } 12337 12338 if (insn_state[w] == 0) { 12339 /* tree-edge */ 12340 insn_state[t] = DISCOVERED | e; 12341 insn_state[w] = DISCOVERED; 12342 if (env->cfg.cur_stack >= env->prog->len) 12343 return -E2BIG; 12344 insn_stack[env->cfg.cur_stack++] = w; 12345 return KEEP_EXPLORING; 12346 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 12347 if (loop_ok && env->bpf_capable) 12348 return DONE_EXPLORING; 12349 verbose_linfo(env, t, "%d: ", t); 12350 verbose_linfo(env, w, "%d: ", w); 12351 verbose(env, "back-edge from insn %d to %d\n", t, w); 12352 return -EINVAL; 12353 } else if (insn_state[w] == EXPLORED) { 12354 /* forward- or cross-edge */ 12355 insn_state[t] = DISCOVERED | e; 12356 } else { 12357 verbose(env, "insn state internal bug\n"); 12358 return -EFAULT; 12359 } 12360 return DONE_EXPLORING; 12361 } 12362 12363 static int visit_func_call_insn(int t, struct bpf_insn *insns, 12364 struct bpf_verifier_env *env, 12365 bool visit_callee) 12366 { 12367 int ret; 12368 12369 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 12370 if (ret) 12371 return ret; 12372 12373 mark_prune_point(env, t + 1); 12374 /* when we exit from subprog, we need to record non-linear history */ 12375 mark_jmp_point(env, t + 1); 12376 12377 if (visit_callee) { 12378 mark_prune_point(env, t); 12379 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 12380 /* It's ok to allow recursion from CFG point of 12381 * view. __check_func_call() will do the actual 12382 * check. 12383 */ 12384 bpf_pseudo_func(insns + t)); 12385 } 12386 return ret; 12387 } 12388 12389 /* Visits the instruction at index t and returns one of the following: 12390 * < 0 - an error occurred 12391 * DONE_EXPLORING - the instruction was fully explored 12392 * KEEP_EXPLORING - there is still work to be done before it is fully explored 12393 */ 12394 static int visit_insn(int t, struct bpf_verifier_env *env) 12395 { 12396 struct bpf_insn *insns = env->prog->insnsi; 12397 int ret; 12398 12399 if (bpf_pseudo_func(insns + t)) 12400 return visit_func_call_insn(t, insns, env, true); 12401 12402 /* All non-branch instructions have a single fall-through edge. */ 12403 if (BPF_CLASS(insns[t].code) != BPF_JMP && 12404 BPF_CLASS(insns[t].code) != BPF_JMP32) 12405 return push_insn(t, t + 1, FALLTHROUGH, env, false); 12406 12407 switch (BPF_OP(insns[t].code)) { 12408 case BPF_EXIT: 12409 return DONE_EXPLORING; 12410 12411 case BPF_CALL: 12412 if (insns[t].imm == BPF_FUNC_timer_set_callback) 12413 /* Mark this call insn as a prune point to trigger 12414 * is_state_visited() check before call itself is 12415 * processed by __check_func_call(). Otherwise new 12416 * async state will be pushed for further exploration. 12417 */ 12418 mark_prune_point(env, t); 12419 return visit_func_call_insn(t, insns, env, 12420 insns[t].src_reg == BPF_PSEUDO_CALL); 12421 12422 case BPF_JA: 12423 if (BPF_SRC(insns[t].code) != BPF_K) 12424 return -EINVAL; 12425 12426 /* unconditional jump with single edge */ 12427 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 12428 true); 12429 if (ret) 12430 return ret; 12431 12432 mark_prune_point(env, t + insns[t].off + 1); 12433 mark_jmp_point(env, t + insns[t].off + 1); 12434 12435 return ret; 12436 12437 default: 12438 /* conditional jump with two edges */ 12439 mark_prune_point(env, t); 12440 12441 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 12442 if (ret) 12443 return ret; 12444 12445 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 12446 } 12447 } 12448 12449 /* non-recursive depth-first-search to detect loops in BPF program 12450 * loop == back-edge in directed graph 12451 */ 12452 static int check_cfg(struct bpf_verifier_env *env) 12453 { 12454 int insn_cnt = env->prog->len; 12455 int *insn_stack, *insn_state; 12456 int ret = 0; 12457 int i; 12458 12459 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12460 if (!insn_state) 12461 return -ENOMEM; 12462 12463 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12464 if (!insn_stack) { 12465 kvfree(insn_state); 12466 return -ENOMEM; 12467 } 12468 12469 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 12470 insn_stack[0] = 0; /* 0 is the first instruction */ 12471 env->cfg.cur_stack = 1; 12472 12473 while (env->cfg.cur_stack > 0) { 12474 int t = insn_stack[env->cfg.cur_stack - 1]; 12475 12476 ret = visit_insn(t, env); 12477 switch (ret) { 12478 case DONE_EXPLORING: 12479 insn_state[t] = EXPLORED; 12480 env->cfg.cur_stack--; 12481 break; 12482 case KEEP_EXPLORING: 12483 break; 12484 default: 12485 if (ret > 0) { 12486 verbose(env, "visit_insn internal bug\n"); 12487 ret = -EFAULT; 12488 } 12489 goto err_free; 12490 } 12491 } 12492 12493 if (env->cfg.cur_stack < 0) { 12494 verbose(env, "pop stack internal bug\n"); 12495 ret = -EFAULT; 12496 goto err_free; 12497 } 12498 12499 for (i = 0; i < insn_cnt; i++) { 12500 if (insn_state[i] != EXPLORED) { 12501 verbose(env, "unreachable insn %d\n", i); 12502 ret = -EINVAL; 12503 goto err_free; 12504 } 12505 } 12506 ret = 0; /* cfg looks good */ 12507 12508 err_free: 12509 kvfree(insn_state); 12510 kvfree(insn_stack); 12511 env->cfg.insn_state = env->cfg.insn_stack = NULL; 12512 return ret; 12513 } 12514 12515 static int check_abnormal_return(struct bpf_verifier_env *env) 12516 { 12517 int i; 12518 12519 for (i = 1; i < env->subprog_cnt; i++) { 12520 if (env->subprog_info[i].has_ld_abs) { 12521 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 12522 return -EINVAL; 12523 } 12524 if (env->subprog_info[i].has_tail_call) { 12525 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 12526 return -EINVAL; 12527 } 12528 } 12529 return 0; 12530 } 12531 12532 /* The minimum supported BTF func info size */ 12533 #define MIN_BPF_FUNCINFO_SIZE 8 12534 #define MAX_FUNCINFO_REC_SIZE 252 12535 12536 static int check_btf_func(struct bpf_verifier_env *env, 12537 const union bpf_attr *attr, 12538 bpfptr_t uattr) 12539 { 12540 const struct btf_type *type, *func_proto, *ret_type; 12541 u32 i, nfuncs, urec_size, min_size; 12542 u32 krec_size = sizeof(struct bpf_func_info); 12543 struct bpf_func_info *krecord; 12544 struct bpf_func_info_aux *info_aux = NULL; 12545 struct bpf_prog *prog; 12546 const struct btf *btf; 12547 bpfptr_t urecord; 12548 u32 prev_offset = 0; 12549 bool scalar_return; 12550 int ret = -ENOMEM; 12551 12552 nfuncs = attr->func_info_cnt; 12553 if (!nfuncs) { 12554 if (check_abnormal_return(env)) 12555 return -EINVAL; 12556 return 0; 12557 } 12558 12559 if (nfuncs != env->subprog_cnt) { 12560 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 12561 return -EINVAL; 12562 } 12563 12564 urec_size = attr->func_info_rec_size; 12565 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 12566 urec_size > MAX_FUNCINFO_REC_SIZE || 12567 urec_size % sizeof(u32)) { 12568 verbose(env, "invalid func info rec size %u\n", urec_size); 12569 return -EINVAL; 12570 } 12571 12572 prog = env->prog; 12573 btf = prog->aux->btf; 12574 12575 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 12576 min_size = min_t(u32, krec_size, urec_size); 12577 12578 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 12579 if (!krecord) 12580 return -ENOMEM; 12581 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 12582 if (!info_aux) 12583 goto err_free; 12584 12585 for (i = 0; i < nfuncs; i++) { 12586 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 12587 if (ret) { 12588 if (ret == -E2BIG) { 12589 verbose(env, "nonzero tailing record in func info"); 12590 /* set the size kernel expects so loader can zero 12591 * out the rest of the record. 12592 */ 12593 if (copy_to_bpfptr_offset(uattr, 12594 offsetof(union bpf_attr, func_info_rec_size), 12595 &min_size, sizeof(min_size))) 12596 ret = -EFAULT; 12597 } 12598 goto err_free; 12599 } 12600 12601 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 12602 ret = -EFAULT; 12603 goto err_free; 12604 } 12605 12606 /* check insn_off */ 12607 ret = -EINVAL; 12608 if (i == 0) { 12609 if (krecord[i].insn_off) { 12610 verbose(env, 12611 "nonzero insn_off %u for the first func info record", 12612 krecord[i].insn_off); 12613 goto err_free; 12614 } 12615 } else if (krecord[i].insn_off <= prev_offset) { 12616 verbose(env, 12617 "same or smaller insn offset (%u) than previous func info record (%u)", 12618 krecord[i].insn_off, prev_offset); 12619 goto err_free; 12620 } 12621 12622 if (env->subprog_info[i].start != krecord[i].insn_off) { 12623 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 12624 goto err_free; 12625 } 12626 12627 /* check type_id */ 12628 type = btf_type_by_id(btf, krecord[i].type_id); 12629 if (!type || !btf_type_is_func(type)) { 12630 verbose(env, "invalid type id %d in func info", 12631 krecord[i].type_id); 12632 goto err_free; 12633 } 12634 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 12635 12636 func_proto = btf_type_by_id(btf, type->type); 12637 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 12638 /* btf_func_check() already verified it during BTF load */ 12639 goto err_free; 12640 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 12641 scalar_return = 12642 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 12643 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 12644 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 12645 goto err_free; 12646 } 12647 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 12648 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 12649 goto err_free; 12650 } 12651 12652 prev_offset = krecord[i].insn_off; 12653 bpfptr_add(&urecord, urec_size); 12654 } 12655 12656 prog->aux->func_info = krecord; 12657 prog->aux->func_info_cnt = nfuncs; 12658 prog->aux->func_info_aux = info_aux; 12659 return 0; 12660 12661 err_free: 12662 kvfree(krecord); 12663 kfree(info_aux); 12664 return ret; 12665 } 12666 12667 static void adjust_btf_func(struct bpf_verifier_env *env) 12668 { 12669 struct bpf_prog_aux *aux = env->prog->aux; 12670 int i; 12671 12672 if (!aux->func_info) 12673 return; 12674 12675 for (i = 0; i < env->subprog_cnt; i++) 12676 aux->func_info[i].insn_off = env->subprog_info[i].start; 12677 } 12678 12679 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 12680 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 12681 12682 static int check_btf_line(struct bpf_verifier_env *env, 12683 const union bpf_attr *attr, 12684 bpfptr_t uattr) 12685 { 12686 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 12687 struct bpf_subprog_info *sub; 12688 struct bpf_line_info *linfo; 12689 struct bpf_prog *prog; 12690 const struct btf *btf; 12691 bpfptr_t ulinfo; 12692 int err; 12693 12694 nr_linfo = attr->line_info_cnt; 12695 if (!nr_linfo) 12696 return 0; 12697 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 12698 return -EINVAL; 12699 12700 rec_size = attr->line_info_rec_size; 12701 if (rec_size < MIN_BPF_LINEINFO_SIZE || 12702 rec_size > MAX_LINEINFO_REC_SIZE || 12703 rec_size & (sizeof(u32) - 1)) 12704 return -EINVAL; 12705 12706 /* Need to zero it in case the userspace may 12707 * pass in a smaller bpf_line_info object. 12708 */ 12709 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 12710 GFP_KERNEL | __GFP_NOWARN); 12711 if (!linfo) 12712 return -ENOMEM; 12713 12714 prog = env->prog; 12715 btf = prog->aux->btf; 12716 12717 s = 0; 12718 sub = env->subprog_info; 12719 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 12720 expected_size = sizeof(struct bpf_line_info); 12721 ncopy = min_t(u32, expected_size, rec_size); 12722 for (i = 0; i < nr_linfo; i++) { 12723 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 12724 if (err) { 12725 if (err == -E2BIG) { 12726 verbose(env, "nonzero tailing record in line_info"); 12727 if (copy_to_bpfptr_offset(uattr, 12728 offsetof(union bpf_attr, line_info_rec_size), 12729 &expected_size, sizeof(expected_size))) 12730 err = -EFAULT; 12731 } 12732 goto err_free; 12733 } 12734 12735 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 12736 err = -EFAULT; 12737 goto err_free; 12738 } 12739 12740 /* 12741 * Check insn_off to ensure 12742 * 1) strictly increasing AND 12743 * 2) bounded by prog->len 12744 * 12745 * The linfo[0].insn_off == 0 check logically falls into 12746 * the later "missing bpf_line_info for func..." case 12747 * because the first linfo[0].insn_off must be the 12748 * first sub also and the first sub must have 12749 * subprog_info[0].start == 0. 12750 */ 12751 if ((i && linfo[i].insn_off <= prev_offset) || 12752 linfo[i].insn_off >= prog->len) { 12753 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 12754 i, linfo[i].insn_off, prev_offset, 12755 prog->len); 12756 err = -EINVAL; 12757 goto err_free; 12758 } 12759 12760 if (!prog->insnsi[linfo[i].insn_off].code) { 12761 verbose(env, 12762 "Invalid insn code at line_info[%u].insn_off\n", 12763 i); 12764 err = -EINVAL; 12765 goto err_free; 12766 } 12767 12768 if (!btf_name_by_offset(btf, linfo[i].line_off) || 12769 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 12770 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 12771 err = -EINVAL; 12772 goto err_free; 12773 } 12774 12775 if (s != env->subprog_cnt) { 12776 if (linfo[i].insn_off == sub[s].start) { 12777 sub[s].linfo_idx = i; 12778 s++; 12779 } else if (sub[s].start < linfo[i].insn_off) { 12780 verbose(env, "missing bpf_line_info for func#%u\n", s); 12781 err = -EINVAL; 12782 goto err_free; 12783 } 12784 } 12785 12786 prev_offset = linfo[i].insn_off; 12787 bpfptr_add(&ulinfo, rec_size); 12788 } 12789 12790 if (s != env->subprog_cnt) { 12791 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 12792 env->subprog_cnt - s, s); 12793 err = -EINVAL; 12794 goto err_free; 12795 } 12796 12797 prog->aux->linfo = linfo; 12798 prog->aux->nr_linfo = nr_linfo; 12799 12800 return 0; 12801 12802 err_free: 12803 kvfree(linfo); 12804 return err; 12805 } 12806 12807 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 12808 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 12809 12810 static int check_core_relo(struct bpf_verifier_env *env, 12811 const union bpf_attr *attr, 12812 bpfptr_t uattr) 12813 { 12814 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 12815 struct bpf_core_relo core_relo = {}; 12816 struct bpf_prog *prog = env->prog; 12817 const struct btf *btf = prog->aux->btf; 12818 struct bpf_core_ctx ctx = { 12819 .log = &env->log, 12820 .btf = btf, 12821 }; 12822 bpfptr_t u_core_relo; 12823 int err; 12824 12825 nr_core_relo = attr->core_relo_cnt; 12826 if (!nr_core_relo) 12827 return 0; 12828 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 12829 return -EINVAL; 12830 12831 rec_size = attr->core_relo_rec_size; 12832 if (rec_size < MIN_CORE_RELO_SIZE || 12833 rec_size > MAX_CORE_RELO_SIZE || 12834 rec_size % sizeof(u32)) 12835 return -EINVAL; 12836 12837 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 12838 expected_size = sizeof(struct bpf_core_relo); 12839 ncopy = min_t(u32, expected_size, rec_size); 12840 12841 /* Unlike func_info and line_info, copy and apply each CO-RE 12842 * relocation record one at a time. 12843 */ 12844 for (i = 0; i < nr_core_relo; i++) { 12845 /* future proofing when sizeof(bpf_core_relo) changes */ 12846 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 12847 if (err) { 12848 if (err == -E2BIG) { 12849 verbose(env, "nonzero tailing record in core_relo"); 12850 if (copy_to_bpfptr_offset(uattr, 12851 offsetof(union bpf_attr, core_relo_rec_size), 12852 &expected_size, sizeof(expected_size))) 12853 err = -EFAULT; 12854 } 12855 break; 12856 } 12857 12858 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 12859 err = -EFAULT; 12860 break; 12861 } 12862 12863 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 12864 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 12865 i, core_relo.insn_off, prog->len); 12866 err = -EINVAL; 12867 break; 12868 } 12869 12870 err = bpf_core_apply(&ctx, &core_relo, i, 12871 &prog->insnsi[core_relo.insn_off / 8]); 12872 if (err) 12873 break; 12874 bpfptr_add(&u_core_relo, rec_size); 12875 } 12876 return err; 12877 } 12878 12879 static int check_btf_info(struct bpf_verifier_env *env, 12880 const union bpf_attr *attr, 12881 bpfptr_t uattr) 12882 { 12883 struct btf *btf; 12884 int err; 12885 12886 if (!attr->func_info_cnt && !attr->line_info_cnt) { 12887 if (check_abnormal_return(env)) 12888 return -EINVAL; 12889 return 0; 12890 } 12891 12892 btf = btf_get_by_fd(attr->prog_btf_fd); 12893 if (IS_ERR(btf)) 12894 return PTR_ERR(btf); 12895 if (btf_is_kernel(btf)) { 12896 btf_put(btf); 12897 return -EACCES; 12898 } 12899 env->prog->aux->btf = btf; 12900 12901 err = check_btf_func(env, attr, uattr); 12902 if (err) 12903 return err; 12904 12905 err = check_btf_line(env, attr, uattr); 12906 if (err) 12907 return err; 12908 12909 err = check_core_relo(env, attr, uattr); 12910 if (err) 12911 return err; 12912 12913 return 0; 12914 } 12915 12916 /* check %cur's range satisfies %old's */ 12917 static bool range_within(struct bpf_reg_state *old, 12918 struct bpf_reg_state *cur) 12919 { 12920 return old->umin_value <= cur->umin_value && 12921 old->umax_value >= cur->umax_value && 12922 old->smin_value <= cur->smin_value && 12923 old->smax_value >= cur->smax_value && 12924 old->u32_min_value <= cur->u32_min_value && 12925 old->u32_max_value >= cur->u32_max_value && 12926 old->s32_min_value <= cur->s32_min_value && 12927 old->s32_max_value >= cur->s32_max_value; 12928 } 12929 12930 /* If in the old state two registers had the same id, then they need to have 12931 * the same id in the new state as well. But that id could be different from 12932 * the old state, so we need to track the mapping from old to new ids. 12933 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 12934 * regs with old id 5 must also have new id 9 for the new state to be safe. But 12935 * regs with a different old id could still have new id 9, we don't care about 12936 * that. 12937 * So we look through our idmap to see if this old id has been seen before. If 12938 * so, we require the new id to match; otherwise, we add the id pair to the map. 12939 */ 12940 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 12941 { 12942 unsigned int i; 12943 12944 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 12945 if (!idmap[i].old) { 12946 /* Reached an empty slot; haven't seen this id before */ 12947 idmap[i].old = old_id; 12948 idmap[i].cur = cur_id; 12949 return true; 12950 } 12951 if (idmap[i].old == old_id) 12952 return idmap[i].cur == cur_id; 12953 } 12954 /* We ran out of idmap slots, which should be impossible */ 12955 WARN_ON_ONCE(1); 12956 return false; 12957 } 12958 12959 static void clean_func_state(struct bpf_verifier_env *env, 12960 struct bpf_func_state *st) 12961 { 12962 enum bpf_reg_liveness live; 12963 int i, j; 12964 12965 for (i = 0; i < BPF_REG_FP; i++) { 12966 live = st->regs[i].live; 12967 /* liveness must not touch this register anymore */ 12968 st->regs[i].live |= REG_LIVE_DONE; 12969 if (!(live & REG_LIVE_READ)) 12970 /* since the register is unused, clear its state 12971 * to make further comparison simpler 12972 */ 12973 __mark_reg_not_init(env, &st->regs[i]); 12974 } 12975 12976 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 12977 live = st->stack[i].spilled_ptr.live; 12978 /* liveness must not touch this stack slot anymore */ 12979 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 12980 if (!(live & REG_LIVE_READ)) { 12981 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 12982 for (j = 0; j < BPF_REG_SIZE; j++) 12983 st->stack[i].slot_type[j] = STACK_INVALID; 12984 } 12985 } 12986 } 12987 12988 static void clean_verifier_state(struct bpf_verifier_env *env, 12989 struct bpf_verifier_state *st) 12990 { 12991 int i; 12992 12993 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 12994 /* all regs in this state in all frames were already marked */ 12995 return; 12996 12997 for (i = 0; i <= st->curframe; i++) 12998 clean_func_state(env, st->frame[i]); 12999 } 13000 13001 /* the parentage chains form a tree. 13002 * the verifier states are added to state lists at given insn and 13003 * pushed into state stack for future exploration. 13004 * when the verifier reaches bpf_exit insn some of the verifer states 13005 * stored in the state lists have their final liveness state already, 13006 * but a lot of states will get revised from liveness point of view when 13007 * the verifier explores other branches. 13008 * Example: 13009 * 1: r0 = 1 13010 * 2: if r1 == 100 goto pc+1 13011 * 3: r0 = 2 13012 * 4: exit 13013 * when the verifier reaches exit insn the register r0 in the state list of 13014 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 13015 * of insn 2 and goes exploring further. At the insn 4 it will walk the 13016 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 13017 * 13018 * Since the verifier pushes the branch states as it sees them while exploring 13019 * the program the condition of walking the branch instruction for the second 13020 * time means that all states below this branch were already explored and 13021 * their final liveness marks are already propagated. 13022 * Hence when the verifier completes the search of state list in is_state_visited() 13023 * we can call this clean_live_states() function to mark all liveness states 13024 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 13025 * will not be used. 13026 * This function also clears the registers and stack for states that !READ 13027 * to simplify state merging. 13028 * 13029 * Important note here that walking the same branch instruction in the callee 13030 * doesn't meant that the states are DONE. The verifier has to compare 13031 * the callsites 13032 */ 13033 static void clean_live_states(struct bpf_verifier_env *env, int insn, 13034 struct bpf_verifier_state *cur) 13035 { 13036 struct bpf_verifier_state_list *sl; 13037 int i; 13038 13039 sl = *explored_state(env, insn); 13040 while (sl) { 13041 if (sl->state.branches) 13042 goto next; 13043 if (sl->state.insn_idx != insn || 13044 sl->state.curframe != cur->curframe) 13045 goto next; 13046 for (i = 0; i <= cur->curframe; i++) 13047 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 13048 goto next; 13049 clean_verifier_state(env, &sl->state); 13050 next: 13051 sl = sl->next; 13052 } 13053 } 13054 13055 /* Returns true if (rold safe implies rcur safe) */ 13056 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 13057 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 13058 { 13059 bool equal; 13060 13061 if (!(rold->live & REG_LIVE_READ)) 13062 /* explored state didn't use this */ 13063 return true; 13064 13065 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 13066 13067 if (rold->type == NOT_INIT) 13068 /* explored state can't have used this */ 13069 return true; 13070 if (rcur->type == NOT_INIT) 13071 return false; 13072 switch (base_type(rold->type)) { 13073 case SCALAR_VALUE: 13074 if (equal) 13075 return true; 13076 if (env->explore_alu_limits) 13077 return false; 13078 if (rcur->type == SCALAR_VALUE) { 13079 if (!rold->precise) 13080 return true; 13081 /* new val must satisfy old val knowledge */ 13082 return range_within(rold, rcur) && 13083 tnum_in(rold->var_off, rcur->var_off); 13084 } else { 13085 /* We're trying to use a pointer in place of a scalar. 13086 * Even if the scalar was unbounded, this could lead to 13087 * pointer leaks because scalars are allowed to leak 13088 * while pointers are not. We could make this safe in 13089 * special cases if root is calling us, but it's 13090 * probably not worth the hassle. 13091 */ 13092 return false; 13093 } 13094 case PTR_TO_MAP_KEY: 13095 case PTR_TO_MAP_VALUE: 13096 /* a PTR_TO_MAP_VALUE could be safe to use as a 13097 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 13098 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 13099 * checked, doing so could have affected others with the same 13100 * id, and we can't check for that because we lost the id when 13101 * we converted to a PTR_TO_MAP_VALUE. 13102 */ 13103 if (type_may_be_null(rold->type)) { 13104 if (!type_may_be_null(rcur->type)) 13105 return false; 13106 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 13107 return false; 13108 /* Check our ids match any regs they're supposed to */ 13109 return check_ids(rold->id, rcur->id, idmap); 13110 } 13111 13112 /* If the new min/max/var_off satisfy the old ones and 13113 * everything else matches, we are OK. 13114 * 'id' is not compared, since it's only used for maps with 13115 * bpf_spin_lock inside map element and in such cases if 13116 * the rest of the prog is valid for one map element then 13117 * it's valid for all map elements regardless of the key 13118 * used in bpf_map_lookup() 13119 */ 13120 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 13121 range_within(rold, rcur) && 13122 tnum_in(rold->var_off, rcur->var_off) && 13123 check_ids(rold->id, rcur->id, idmap); 13124 case PTR_TO_PACKET_META: 13125 case PTR_TO_PACKET: 13126 if (rcur->type != rold->type) 13127 return false; 13128 /* We must have at least as much range as the old ptr 13129 * did, so that any accesses which were safe before are 13130 * still safe. This is true even if old range < old off, 13131 * since someone could have accessed through (ptr - k), or 13132 * even done ptr -= k in a register, to get a safe access. 13133 */ 13134 if (rold->range > rcur->range) 13135 return false; 13136 /* If the offsets don't match, we can't trust our alignment; 13137 * nor can we be sure that we won't fall out of range. 13138 */ 13139 if (rold->off != rcur->off) 13140 return false; 13141 /* id relations must be preserved */ 13142 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 13143 return false; 13144 /* new val must satisfy old val knowledge */ 13145 return range_within(rold, rcur) && 13146 tnum_in(rold->var_off, rcur->var_off); 13147 case PTR_TO_STACK: 13148 /* two stack pointers are equal only if they're pointing to 13149 * the same stack frame, since fp-8 in foo != fp-8 in bar 13150 */ 13151 return equal && rold->frameno == rcur->frameno; 13152 default: 13153 /* Only valid matches are exact, which memcmp() */ 13154 return equal; 13155 } 13156 13157 /* Shouldn't get here; if we do, say it's not safe */ 13158 WARN_ON_ONCE(1); 13159 return false; 13160 } 13161 13162 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 13163 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 13164 { 13165 int i, spi; 13166 13167 /* walk slots of the explored stack and ignore any additional 13168 * slots in the current stack, since explored(safe) state 13169 * didn't use them 13170 */ 13171 for (i = 0; i < old->allocated_stack; i++) { 13172 spi = i / BPF_REG_SIZE; 13173 13174 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 13175 i += BPF_REG_SIZE - 1; 13176 /* explored state didn't use this */ 13177 continue; 13178 } 13179 13180 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 13181 continue; 13182 13183 /* explored stack has more populated slots than current stack 13184 * and these slots were used 13185 */ 13186 if (i >= cur->allocated_stack) 13187 return false; 13188 13189 /* if old state was safe with misc data in the stack 13190 * it will be safe with zero-initialized stack. 13191 * The opposite is not true 13192 */ 13193 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 13194 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 13195 continue; 13196 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 13197 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 13198 /* Ex: old explored (safe) state has STACK_SPILL in 13199 * this stack slot, but current has STACK_MISC -> 13200 * this verifier states are not equivalent, 13201 * return false to continue verification of this path 13202 */ 13203 return false; 13204 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 13205 continue; 13206 if (!is_spilled_reg(&old->stack[spi])) 13207 continue; 13208 if (!regsafe(env, &old->stack[spi].spilled_ptr, 13209 &cur->stack[spi].spilled_ptr, idmap)) 13210 /* when explored and current stack slot are both storing 13211 * spilled registers, check that stored pointers types 13212 * are the same as well. 13213 * Ex: explored safe path could have stored 13214 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 13215 * but current path has stored: 13216 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 13217 * such verifier states are not equivalent. 13218 * return false to continue verification of this path 13219 */ 13220 return false; 13221 } 13222 return true; 13223 } 13224 13225 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 13226 { 13227 if (old->acquired_refs != cur->acquired_refs) 13228 return false; 13229 return !memcmp(old->refs, cur->refs, 13230 sizeof(*old->refs) * old->acquired_refs); 13231 } 13232 13233 /* compare two verifier states 13234 * 13235 * all states stored in state_list are known to be valid, since 13236 * verifier reached 'bpf_exit' instruction through them 13237 * 13238 * this function is called when verifier exploring different branches of 13239 * execution popped from the state stack. If it sees an old state that has 13240 * more strict register state and more strict stack state then this execution 13241 * branch doesn't need to be explored further, since verifier already 13242 * concluded that more strict state leads to valid finish. 13243 * 13244 * Therefore two states are equivalent if register state is more conservative 13245 * and explored stack state is more conservative than the current one. 13246 * Example: 13247 * explored current 13248 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 13249 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 13250 * 13251 * In other words if current stack state (one being explored) has more 13252 * valid slots than old one that already passed validation, it means 13253 * the verifier can stop exploring and conclude that current state is valid too 13254 * 13255 * Similarly with registers. If explored state has register type as invalid 13256 * whereas register type in current state is meaningful, it means that 13257 * the current state will reach 'bpf_exit' instruction safely 13258 */ 13259 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 13260 struct bpf_func_state *cur) 13261 { 13262 int i; 13263 13264 for (i = 0; i < MAX_BPF_REG; i++) 13265 if (!regsafe(env, &old->regs[i], &cur->regs[i], 13266 env->idmap_scratch)) 13267 return false; 13268 13269 if (!stacksafe(env, old, cur, env->idmap_scratch)) 13270 return false; 13271 13272 if (!refsafe(old, cur)) 13273 return false; 13274 13275 return true; 13276 } 13277 13278 static bool states_equal(struct bpf_verifier_env *env, 13279 struct bpf_verifier_state *old, 13280 struct bpf_verifier_state *cur) 13281 { 13282 int i; 13283 13284 if (old->curframe != cur->curframe) 13285 return false; 13286 13287 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 13288 13289 /* Verification state from speculative execution simulation 13290 * must never prune a non-speculative execution one. 13291 */ 13292 if (old->speculative && !cur->speculative) 13293 return false; 13294 13295 if (old->active_lock.ptr != cur->active_lock.ptr) 13296 return false; 13297 13298 /* Old and cur active_lock's have to be either both present 13299 * or both absent. 13300 */ 13301 if (!!old->active_lock.id != !!cur->active_lock.id) 13302 return false; 13303 13304 if (old->active_lock.id && 13305 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 13306 return false; 13307 13308 if (old->active_rcu_lock != cur->active_rcu_lock) 13309 return false; 13310 13311 /* for states to be equal callsites have to be the same 13312 * and all frame states need to be equivalent 13313 */ 13314 for (i = 0; i <= old->curframe; i++) { 13315 if (old->frame[i]->callsite != cur->frame[i]->callsite) 13316 return false; 13317 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 13318 return false; 13319 } 13320 return true; 13321 } 13322 13323 /* Return 0 if no propagation happened. Return negative error code if error 13324 * happened. Otherwise, return the propagated bit. 13325 */ 13326 static int propagate_liveness_reg(struct bpf_verifier_env *env, 13327 struct bpf_reg_state *reg, 13328 struct bpf_reg_state *parent_reg) 13329 { 13330 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 13331 u8 flag = reg->live & REG_LIVE_READ; 13332 int err; 13333 13334 /* When comes here, read flags of PARENT_REG or REG could be any of 13335 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 13336 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 13337 */ 13338 if (parent_flag == REG_LIVE_READ64 || 13339 /* Or if there is no read flag from REG. */ 13340 !flag || 13341 /* Or if the read flag from REG is the same as PARENT_REG. */ 13342 parent_flag == flag) 13343 return 0; 13344 13345 err = mark_reg_read(env, reg, parent_reg, flag); 13346 if (err) 13347 return err; 13348 13349 return flag; 13350 } 13351 13352 /* A write screens off any subsequent reads; but write marks come from the 13353 * straight-line code between a state and its parent. When we arrive at an 13354 * equivalent state (jump target or such) we didn't arrive by the straight-line 13355 * code, so read marks in the state must propagate to the parent regardless 13356 * of the state's write marks. That's what 'parent == state->parent' comparison 13357 * in mark_reg_read() is for. 13358 */ 13359 static int propagate_liveness(struct bpf_verifier_env *env, 13360 const struct bpf_verifier_state *vstate, 13361 struct bpf_verifier_state *vparent) 13362 { 13363 struct bpf_reg_state *state_reg, *parent_reg; 13364 struct bpf_func_state *state, *parent; 13365 int i, frame, err = 0; 13366 13367 if (vparent->curframe != vstate->curframe) { 13368 WARN(1, "propagate_live: parent frame %d current frame %d\n", 13369 vparent->curframe, vstate->curframe); 13370 return -EFAULT; 13371 } 13372 /* Propagate read liveness of registers... */ 13373 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 13374 for (frame = 0; frame <= vstate->curframe; frame++) { 13375 parent = vparent->frame[frame]; 13376 state = vstate->frame[frame]; 13377 parent_reg = parent->regs; 13378 state_reg = state->regs; 13379 /* We don't need to worry about FP liveness, it's read-only */ 13380 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 13381 err = propagate_liveness_reg(env, &state_reg[i], 13382 &parent_reg[i]); 13383 if (err < 0) 13384 return err; 13385 if (err == REG_LIVE_READ64) 13386 mark_insn_zext(env, &parent_reg[i]); 13387 } 13388 13389 /* Propagate stack slots. */ 13390 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 13391 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 13392 parent_reg = &parent->stack[i].spilled_ptr; 13393 state_reg = &state->stack[i].spilled_ptr; 13394 err = propagate_liveness_reg(env, state_reg, 13395 parent_reg); 13396 if (err < 0) 13397 return err; 13398 } 13399 } 13400 return 0; 13401 } 13402 13403 /* find precise scalars in the previous equivalent state and 13404 * propagate them into the current state 13405 */ 13406 static int propagate_precision(struct bpf_verifier_env *env, 13407 const struct bpf_verifier_state *old) 13408 { 13409 struct bpf_reg_state *state_reg; 13410 struct bpf_func_state *state; 13411 int i, err = 0, fr; 13412 13413 for (fr = old->curframe; fr >= 0; fr--) { 13414 state = old->frame[fr]; 13415 state_reg = state->regs; 13416 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 13417 if (state_reg->type != SCALAR_VALUE || 13418 !state_reg->precise) 13419 continue; 13420 if (env->log.level & BPF_LOG_LEVEL2) 13421 verbose(env, "frame %d: propagating r%d\n", i, fr); 13422 err = mark_chain_precision_frame(env, fr, i); 13423 if (err < 0) 13424 return err; 13425 } 13426 13427 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 13428 if (!is_spilled_reg(&state->stack[i])) 13429 continue; 13430 state_reg = &state->stack[i].spilled_ptr; 13431 if (state_reg->type != SCALAR_VALUE || 13432 !state_reg->precise) 13433 continue; 13434 if (env->log.level & BPF_LOG_LEVEL2) 13435 verbose(env, "frame %d: propagating fp%d\n", 13436 (-i - 1) * BPF_REG_SIZE, fr); 13437 err = mark_chain_precision_stack_frame(env, fr, i); 13438 if (err < 0) 13439 return err; 13440 } 13441 } 13442 return 0; 13443 } 13444 13445 static bool states_maybe_looping(struct bpf_verifier_state *old, 13446 struct bpf_verifier_state *cur) 13447 { 13448 struct bpf_func_state *fold, *fcur; 13449 int i, fr = cur->curframe; 13450 13451 if (old->curframe != fr) 13452 return false; 13453 13454 fold = old->frame[fr]; 13455 fcur = cur->frame[fr]; 13456 for (i = 0; i < MAX_BPF_REG; i++) 13457 if (memcmp(&fold->regs[i], &fcur->regs[i], 13458 offsetof(struct bpf_reg_state, parent))) 13459 return false; 13460 return true; 13461 } 13462 13463 13464 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 13465 { 13466 struct bpf_verifier_state_list *new_sl; 13467 struct bpf_verifier_state_list *sl, **pprev; 13468 struct bpf_verifier_state *cur = env->cur_state, *new; 13469 int i, j, err, states_cnt = 0; 13470 bool add_new_state = env->test_state_freq ? true : false; 13471 13472 /* bpf progs typically have pruning point every 4 instructions 13473 * http://vger.kernel.org/bpfconf2019.html#session-1 13474 * Do not add new state for future pruning if the verifier hasn't seen 13475 * at least 2 jumps and at least 8 instructions. 13476 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 13477 * In tests that amounts to up to 50% reduction into total verifier 13478 * memory consumption and 20% verifier time speedup. 13479 */ 13480 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 13481 env->insn_processed - env->prev_insn_processed >= 8) 13482 add_new_state = true; 13483 13484 pprev = explored_state(env, insn_idx); 13485 sl = *pprev; 13486 13487 clean_live_states(env, insn_idx, cur); 13488 13489 while (sl) { 13490 states_cnt++; 13491 if (sl->state.insn_idx != insn_idx) 13492 goto next; 13493 13494 if (sl->state.branches) { 13495 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 13496 13497 if (frame->in_async_callback_fn && 13498 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 13499 /* Different async_entry_cnt means that the verifier is 13500 * processing another entry into async callback. 13501 * Seeing the same state is not an indication of infinite 13502 * loop or infinite recursion. 13503 * But finding the same state doesn't mean that it's safe 13504 * to stop processing the current state. The previous state 13505 * hasn't yet reached bpf_exit, since state.branches > 0. 13506 * Checking in_async_callback_fn alone is not enough either. 13507 * Since the verifier still needs to catch infinite loops 13508 * inside async callbacks. 13509 */ 13510 } else if (states_maybe_looping(&sl->state, cur) && 13511 states_equal(env, &sl->state, cur)) { 13512 verbose_linfo(env, insn_idx, "; "); 13513 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 13514 return -EINVAL; 13515 } 13516 /* if the verifier is processing a loop, avoid adding new state 13517 * too often, since different loop iterations have distinct 13518 * states and may not help future pruning. 13519 * This threshold shouldn't be too low to make sure that 13520 * a loop with large bound will be rejected quickly. 13521 * The most abusive loop will be: 13522 * r1 += 1 13523 * if r1 < 1000000 goto pc-2 13524 * 1M insn_procssed limit / 100 == 10k peak states. 13525 * This threshold shouldn't be too high either, since states 13526 * at the end of the loop are likely to be useful in pruning. 13527 */ 13528 if (env->jmps_processed - env->prev_jmps_processed < 20 && 13529 env->insn_processed - env->prev_insn_processed < 100) 13530 add_new_state = false; 13531 goto miss; 13532 } 13533 if (states_equal(env, &sl->state, cur)) { 13534 sl->hit_cnt++; 13535 /* reached equivalent register/stack state, 13536 * prune the search. 13537 * Registers read by the continuation are read by us. 13538 * If we have any write marks in env->cur_state, they 13539 * will prevent corresponding reads in the continuation 13540 * from reaching our parent (an explored_state). Our 13541 * own state will get the read marks recorded, but 13542 * they'll be immediately forgotten as we're pruning 13543 * this state and will pop a new one. 13544 */ 13545 err = propagate_liveness(env, &sl->state, cur); 13546 13547 /* if previous state reached the exit with precision and 13548 * current state is equivalent to it (except precsion marks) 13549 * the precision needs to be propagated back in 13550 * the current state. 13551 */ 13552 err = err ? : push_jmp_history(env, cur); 13553 err = err ? : propagate_precision(env, &sl->state); 13554 if (err) 13555 return err; 13556 return 1; 13557 } 13558 miss: 13559 /* when new state is not going to be added do not increase miss count. 13560 * Otherwise several loop iterations will remove the state 13561 * recorded earlier. The goal of these heuristics is to have 13562 * states from some iterations of the loop (some in the beginning 13563 * and some at the end) to help pruning. 13564 */ 13565 if (add_new_state) 13566 sl->miss_cnt++; 13567 /* heuristic to determine whether this state is beneficial 13568 * to keep checking from state equivalence point of view. 13569 * Higher numbers increase max_states_per_insn and verification time, 13570 * but do not meaningfully decrease insn_processed. 13571 */ 13572 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 13573 /* the state is unlikely to be useful. Remove it to 13574 * speed up verification 13575 */ 13576 *pprev = sl->next; 13577 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 13578 u32 br = sl->state.branches; 13579 13580 WARN_ONCE(br, 13581 "BUG live_done but branches_to_explore %d\n", 13582 br); 13583 free_verifier_state(&sl->state, false); 13584 kfree(sl); 13585 env->peak_states--; 13586 } else { 13587 /* cannot free this state, since parentage chain may 13588 * walk it later. Add it for free_list instead to 13589 * be freed at the end of verification 13590 */ 13591 sl->next = env->free_list; 13592 env->free_list = sl; 13593 } 13594 sl = *pprev; 13595 continue; 13596 } 13597 next: 13598 pprev = &sl->next; 13599 sl = *pprev; 13600 } 13601 13602 if (env->max_states_per_insn < states_cnt) 13603 env->max_states_per_insn = states_cnt; 13604 13605 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 13606 return 0; 13607 13608 if (!add_new_state) 13609 return 0; 13610 13611 /* There were no equivalent states, remember the current one. 13612 * Technically the current state is not proven to be safe yet, 13613 * but it will either reach outer most bpf_exit (which means it's safe) 13614 * or it will be rejected. When there are no loops the verifier won't be 13615 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 13616 * again on the way to bpf_exit. 13617 * When looping the sl->state.branches will be > 0 and this state 13618 * will not be considered for equivalence until branches == 0. 13619 */ 13620 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 13621 if (!new_sl) 13622 return -ENOMEM; 13623 env->total_states++; 13624 env->peak_states++; 13625 env->prev_jmps_processed = env->jmps_processed; 13626 env->prev_insn_processed = env->insn_processed; 13627 13628 /* forget precise markings we inherited, see __mark_chain_precision */ 13629 if (env->bpf_capable) 13630 mark_all_scalars_imprecise(env, cur); 13631 13632 /* add new state to the head of linked list */ 13633 new = &new_sl->state; 13634 err = copy_verifier_state(new, cur); 13635 if (err) { 13636 free_verifier_state(new, false); 13637 kfree(new_sl); 13638 return err; 13639 } 13640 new->insn_idx = insn_idx; 13641 WARN_ONCE(new->branches != 1, 13642 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 13643 13644 cur->parent = new; 13645 cur->first_insn_idx = insn_idx; 13646 clear_jmp_history(cur); 13647 new_sl->next = *explored_state(env, insn_idx); 13648 *explored_state(env, insn_idx) = new_sl; 13649 /* connect new state to parentage chain. Current frame needs all 13650 * registers connected. Only r6 - r9 of the callers are alive (pushed 13651 * to the stack implicitly by JITs) so in callers' frames connect just 13652 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 13653 * the state of the call instruction (with WRITTEN set), and r0 comes 13654 * from callee with its full parentage chain, anyway. 13655 */ 13656 /* clear write marks in current state: the writes we did are not writes 13657 * our child did, so they don't screen off its reads from us. 13658 * (There are no read marks in current state, because reads always mark 13659 * their parent and current state never has children yet. Only 13660 * explored_states can get read marks.) 13661 */ 13662 for (j = 0; j <= cur->curframe; j++) { 13663 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 13664 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 13665 for (i = 0; i < BPF_REG_FP; i++) 13666 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 13667 } 13668 13669 /* all stack frames are accessible from callee, clear them all */ 13670 for (j = 0; j <= cur->curframe; j++) { 13671 struct bpf_func_state *frame = cur->frame[j]; 13672 struct bpf_func_state *newframe = new->frame[j]; 13673 13674 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 13675 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 13676 frame->stack[i].spilled_ptr.parent = 13677 &newframe->stack[i].spilled_ptr; 13678 } 13679 } 13680 return 0; 13681 } 13682 13683 /* Return true if it's OK to have the same insn return a different type. */ 13684 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 13685 { 13686 switch (base_type(type)) { 13687 case PTR_TO_CTX: 13688 case PTR_TO_SOCKET: 13689 case PTR_TO_SOCK_COMMON: 13690 case PTR_TO_TCP_SOCK: 13691 case PTR_TO_XDP_SOCK: 13692 case PTR_TO_BTF_ID: 13693 return false; 13694 default: 13695 return true; 13696 } 13697 } 13698 13699 /* If an instruction was previously used with particular pointer types, then we 13700 * need to be careful to avoid cases such as the below, where it may be ok 13701 * for one branch accessing the pointer, but not ok for the other branch: 13702 * 13703 * R1 = sock_ptr 13704 * goto X; 13705 * ... 13706 * R1 = some_other_valid_ptr; 13707 * goto X; 13708 * ... 13709 * R2 = *(u32 *)(R1 + 0); 13710 */ 13711 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 13712 { 13713 return src != prev && (!reg_type_mismatch_ok(src) || 13714 !reg_type_mismatch_ok(prev)); 13715 } 13716 13717 static int do_check(struct bpf_verifier_env *env) 13718 { 13719 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13720 struct bpf_verifier_state *state = env->cur_state; 13721 struct bpf_insn *insns = env->prog->insnsi; 13722 struct bpf_reg_state *regs; 13723 int insn_cnt = env->prog->len; 13724 bool do_print_state = false; 13725 int prev_insn_idx = -1; 13726 13727 for (;;) { 13728 struct bpf_insn *insn; 13729 u8 class; 13730 int err; 13731 13732 env->prev_insn_idx = prev_insn_idx; 13733 if (env->insn_idx >= insn_cnt) { 13734 verbose(env, "invalid insn idx %d insn_cnt %d\n", 13735 env->insn_idx, insn_cnt); 13736 return -EFAULT; 13737 } 13738 13739 insn = &insns[env->insn_idx]; 13740 class = BPF_CLASS(insn->code); 13741 13742 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 13743 verbose(env, 13744 "BPF program is too large. Processed %d insn\n", 13745 env->insn_processed); 13746 return -E2BIG; 13747 } 13748 13749 state->last_insn_idx = env->prev_insn_idx; 13750 13751 if (is_prune_point(env, env->insn_idx)) { 13752 err = is_state_visited(env, env->insn_idx); 13753 if (err < 0) 13754 return err; 13755 if (err == 1) { 13756 /* found equivalent state, can prune the search */ 13757 if (env->log.level & BPF_LOG_LEVEL) { 13758 if (do_print_state) 13759 verbose(env, "\nfrom %d to %d%s: safe\n", 13760 env->prev_insn_idx, env->insn_idx, 13761 env->cur_state->speculative ? 13762 " (speculative execution)" : ""); 13763 else 13764 verbose(env, "%d: safe\n", env->insn_idx); 13765 } 13766 goto process_bpf_exit; 13767 } 13768 } 13769 13770 if (is_jmp_point(env, env->insn_idx)) { 13771 err = push_jmp_history(env, state); 13772 if (err) 13773 return err; 13774 } 13775 13776 if (signal_pending(current)) 13777 return -EAGAIN; 13778 13779 if (need_resched()) 13780 cond_resched(); 13781 13782 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 13783 verbose(env, "\nfrom %d to %d%s:", 13784 env->prev_insn_idx, env->insn_idx, 13785 env->cur_state->speculative ? 13786 " (speculative execution)" : ""); 13787 print_verifier_state(env, state->frame[state->curframe], true); 13788 do_print_state = false; 13789 } 13790 13791 if (env->log.level & BPF_LOG_LEVEL) { 13792 const struct bpf_insn_cbs cbs = { 13793 .cb_call = disasm_kfunc_name, 13794 .cb_print = verbose, 13795 .private_data = env, 13796 }; 13797 13798 if (verifier_state_scratched(env)) 13799 print_insn_state(env, state->frame[state->curframe]); 13800 13801 verbose_linfo(env, env->insn_idx, "; "); 13802 env->prev_log_len = env->log.len_used; 13803 verbose(env, "%d: ", env->insn_idx); 13804 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 13805 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 13806 env->prev_log_len = env->log.len_used; 13807 } 13808 13809 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13810 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 13811 env->prev_insn_idx); 13812 if (err) 13813 return err; 13814 } 13815 13816 regs = cur_regs(env); 13817 sanitize_mark_insn_seen(env); 13818 prev_insn_idx = env->insn_idx; 13819 13820 if (class == BPF_ALU || class == BPF_ALU64) { 13821 err = check_alu_op(env, insn); 13822 if (err) 13823 return err; 13824 13825 } else if (class == BPF_LDX) { 13826 enum bpf_reg_type *prev_src_type, src_reg_type; 13827 13828 /* check for reserved fields is already done */ 13829 13830 /* check src operand */ 13831 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13832 if (err) 13833 return err; 13834 13835 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13836 if (err) 13837 return err; 13838 13839 src_reg_type = regs[insn->src_reg].type; 13840 13841 /* check that memory (src_reg + off) is readable, 13842 * the state of dst_reg will be updated by this func 13843 */ 13844 err = check_mem_access(env, env->insn_idx, insn->src_reg, 13845 insn->off, BPF_SIZE(insn->code), 13846 BPF_READ, insn->dst_reg, false); 13847 if (err) 13848 return err; 13849 13850 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13851 13852 if (*prev_src_type == NOT_INIT) { 13853 /* saw a valid insn 13854 * dst_reg = *(u32 *)(src_reg + off) 13855 * save type to validate intersecting paths 13856 */ 13857 *prev_src_type = src_reg_type; 13858 13859 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 13860 /* ABuser program is trying to use the same insn 13861 * dst_reg = *(u32*) (src_reg + off) 13862 * with different pointer types: 13863 * src_reg == ctx in one branch and 13864 * src_reg == stack|map in some other branch. 13865 * Reject it. 13866 */ 13867 verbose(env, "same insn cannot be used with different pointers\n"); 13868 return -EINVAL; 13869 } 13870 13871 } else if (class == BPF_STX) { 13872 enum bpf_reg_type *prev_dst_type, dst_reg_type; 13873 13874 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 13875 err = check_atomic(env, env->insn_idx, insn); 13876 if (err) 13877 return err; 13878 env->insn_idx++; 13879 continue; 13880 } 13881 13882 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 13883 verbose(env, "BPF_STX uses reserved fields\n"); 13884 return -EINVAL; 13885 } 13886 13887 /* check src1 operand */ 13888 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13889 if (err) 13890 return err; 13891 /* check src2 operand */ 13892 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13893 if (err) 13894 return err; 13895 13896 dst_reg_type = regs[insn->dst_reg].type; 13897 13898 /* check that memory (dst_reg + off) is writeable */ 13899 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13900 insn->off, BPF_SIZE(insn->code), 13901 BPF_WRITE, insn->src_reg, false); 13902 if (err) 13903 return err; 13904 13905 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13906 13907 if (*prev_dst_type == NOT_INIT) { 13908 *prev_dst_type = dst_reg_type; 13909 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 13910 verbose(env, "same insn cannot be used with different pointers\n"); 13911 return -EINVAL; 13912 } 13913 13914 } else if (class == BPF_ST) { 13915 if (BPF_MODE(insn->code) != BPF_MEM || 13916 insn->src_reg != BPF_REG_0) { 13917 verbose(env, "BPF_ST uses reserved fields\n"); 13918 return -EINVAL; 13919 } 13920 /* check src operand */ 13921 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13922 if (err) 13923 return err; 13924 13925 if (is_ctx_reg(env, insn->dst_reg)) { 13926 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 13927 insn->dst_reg, 13928 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 13929 return -EACCES; 13930 } 13931 13932 /* check that memory (dst_reg + off) is writeable */ 13933 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13934 insn->off, BPF_SIZE(insn->code), 13935 BPF_WRITE, -1, false); 13936 if (err) 13937 return err; 13938 13939 } else if (class == BPF_JMP || class == BPF_JMP32) { 13940 u8 opcode = BPF_OP(insn->code); 13941 13942 env->jmps_processed++; 13943 if (opcode == BPF_CALL) { 13944 if (BPF_SRC(insn->code) != BPF_K || 13945 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 13946 && insn->off != 0) || 13947 (insn->src_reg != BPF_REG_0 && 13948 insn->src_reg != BPF_PSEUDO_CALL && 13949 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 13950 insn->dst_reg != BPF_REG_0 || 13951 class == BPF_JMP32) { 13952 verbose(env, "BPF_CALL uses reserved fields\n"); 13953 return -EINVAL; 13954 } 13955 13956 if (env->cur_state->active_lock.ptr) { 13957 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 13958 (insn->src_reg == BPF_PSEUDO_CALL) || 13959 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 13960 (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) { 13961 verbose(env, "function calls are not allowed while holding a lock\n"); 13962 return -EINVAL; 13963 } 13964 } 13965 if (insn->src_reg == BPF_PSEUDO_CALL) 13966 err = check_func_call(env, insn, &env->insn_idx); 13967 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 13968 err = check_kfunc_call(env, insn, &env->insn_idx); 13969 else 13970 err = check_helper_call(env, insn, &env->insn_idx); 13971 if (err) 13972 return err; 13973 } else if (opcode == BPF_JA) { 13974 if (BPF_SRC(insn->code) != BPF_K || 13975 insn->imm != 0 || 13976 insn->src_reg != BPF_REG_0 || 13977 insn->dst_reg != BPF_REG_0 || 13978 class == BPF_JMP32) { 13979 verbose(env, "BPF_JA uses reserved fields\n"); 13980 return -EINVAL; 13981 } 13982 13983 env->insn_idx += insn->off + 1; 13984 continue; 13985 13986 } else if (opcode == BPF_EXIT) { 13987 if (BPF_SRC(insn->code) != BPF_K || 13988 insn->imm != 0 || 13989 insn->src_reg != BPF_REG_0 || 13990 insn->dst_reg != BPF_REG_0 || 13991 class == BPF_JMP32) { 13992 verbose(env, "BPF_EXIT uses reserved fields\n"); 13993 return -EINVAL; 13994 } 13995 13996 if (env->cur_state->active_lock.ptr) { 13997 verbose(env, "bpf_spin_unlock is missing\n"); 13998 return -EINVAL; 13999 } 14000 14001 if (env->cur_state->active_rcu_lock) { 14002 verbose(env, "bpf_rcu_read_unlock is missing\n"); 14003 return -EINVAL; 14004 } 14005 14006 /* We must do check_reference_leak here before 14007 * prepare_func_exit to handle the case when 14008 * state->curframe > 0, it may be a callback 14009 * function, for which reference_state must 14010 * match caller reference state when it exits. 14011 */ 14012 err = check_reference_leak(env); 14013 if (err) 14014 return err; 14015 14016 if (state->curframe) { 14017 /* exit from nested function */ 14018 err = prepare_func_exit(env, &env->insn_idx); 14019 if (err) 14020 return err; 14021 do_print_state = true; 14022 continue; 14023 } 14024 14025 err = check_return_code(env); 14026 if (err) 14027 return err; 14028 process_bpf_exit: 14029 mark_verifier_state_scratched(env); 14030 update_branch_counts(env, env->cur_state); 14031 err = pop_stack(env, &prev_insn_idx, 14032 &env->insn_idx, pop_log); 14033 if (err < 0) { 14034 if (err != -ENOENT) 14035 return err; 14036 break; 14037 } else { 14038 do_print_state = true; 14039 continue; 14040 } 14041 } else { 14042 err = check_cond_jmp_op(env, insn, &env->insn_idx); 14043 if (err) 14044 return err; 14045 } 14046 } else if (class == BPF_LD) { 14047 u8 mode = BPF_MODE(insn->code); 14048 14049 if (mode == BPF_ABS || mode == BPF_IND) { 14050 err = check_ld_abs(env, insn); 14051 if (err) 14052 return err; 14053 14054 } else if (mode == BPF_IMM) { 14055 err = check_ld_imm(env, insn); 14056 if (err) 14057 return err; 14058 14059 env->insn_idx++; 14060 sanitize_mark_insn_seen(env); 14061 } else { 14062 verbose(env, "invalid BPF_LD mode\n"); 14063 return -EINVAL; 14064 } 14065 } else { 14066 verbose(env, "unknown insn class %d\n", class); 14067 return -EINVAL; 14068 } 14069 14070 env->insn_idx++; 14071 } 14072 14073 return 0; 14074 } 14075 14076 static int find_btf_percpu_datasec(struct btf *btf) 14077 { 14078 const struct btf_type *t; 14079 const char *tname; 14080 int i, n; 14081 14082 /* 14083 * Both vmlinux and module each have their own ".data..percpu" 14084 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 14085 * types to look at only module's own BTF types. 14086 */ 14087 n = btf_nr_types(btf); 14088 if (btf_is_module(btf)) 14089 i = btf_nr_types(btf_vmlinux); 14090 else 14091 i = 1; 14092 14093 for(; i < n; i++) { 14094 t = btf_type_by_id(btf, i); 14095 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 14096 continue; 14097 14098 tname = btf_name_by_offset(btf, t->name_off); 14099 if (!strcmp(tname, ".data..percpu")) 14100 return i; 14101 } 14102 14103 return -ENOENT; 14104 } 14105 14106 /* replace pseudo btf_id with kernel symbol address */ 14107 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 14108 struct bpf_insn *insn, 14109 struct bpf_insn_aux_data *aux) 14110 { 14111 const struct btf_var_secinfo *vsi; 14112 const struct btf_type *datasec; 14113 struct btf_mod_pair *btf_mod; 14114 const struct btf_type *t; 14115 const char *sym_name; 14116 bool percpu = false; 14117 u32 type, id = insn->imm; 14118 struct btf *btf; 14119 s32 datasec_id; 14120 u64 addr; 14121 int i, btf_fd, err; 14122 14123 btf_fd = insn[1].imm; 14124 if (btf_fd) { 14125 btf = btf_get_by_fd(btf_fd); 14126 if (IS_ERR(btf)) { 14127 verbose(env, "invalid module BTF object FD specified.\n"); 14128 return -EINVAL; 14129 } 14130 } else { 14131 if (!btf_vmlinux) { 14132 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 14133 return -EINVAL; 14134 } 14135 btf = btf_vmlinux; 14136 btf_get(btf); 14137 } 14138 14139 t = btf_type_by_id(btf, id); 14140 if (!t) { 14141 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 14142 err = -ENOENT; 14143 goto err_put; 14144 } 14145 14146 if (!btf_type_is_var(t)) { 14147 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 14148 err = -EINVAL; 14149 goto err_put; 14150 } 14151 14152 sym_name = btf_name_by_offset(btf, t->name_off); 14153 addr = kallsyms_lookup_name(sym_name); 14154 if (!addr) { 14155 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 14156 sym_name); 14157 err = -ENOENT; 14158 goto err_put; 14159 } 14160 14161 datasec_id = find_btf_percpu_datasec(btf); 14162 if (datasec_id > 0) { 14163 datasec = btf_type_by_id(btf, datasec_id); 14164 for_each_vsi(i, datasec, vsi) { 14165 if (vsi->type == id) { 14166 percpu = true; 14167 break; 14168 } 14169 } 14170 } 14171 14172 insn[0].imm = (u32)addr; 14173 insn[1].imm = addr >> 32; 14174 14175 type = t->type; 14176 t = btf_type_skip_modifiers(btf, type, NULL); 14177 if (percpu) { 14178 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 14179 aux->btf_var.btf = btf; 14180 aux->btf_var.btf_id = type; 14181 } else if (!btf_type_is_struct(t)) { 14182 const struct btf_type *ret; 14183 const char *tname; 14184 u32 tsize; 14185 14186 /* resolve the type size of ksym. */ 14187 ret = btf_resolve_size(btf, t, &tsize); 14188 if (IS_ERR(ret)) { 14189 tname = btf_name_by_offset(btf, t->name_off); 14190 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 14191 tname, PTR_ERR(ret)); 14192 err = -EINVAL; 14193 goto err_put; 14194 } 14195 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 14196 aux->btf_var.mem_size = tsize; 14197 } else { 14198 aux->btf_var.reg_type = PTR_TO_BTF_ID; 14199 aux->btf_var.btf = btf; 14200 aux->btf_var.btf_id = type; 14201 } 14202 14203 /* check whether we recorded this BTF (and maybe module) already */ 14204 for (i = 0; i < env->used_btf_cnt; i++) { 14205 if (env->used_btfs[i].btf == btf) { 14206 btf_put(btf); 14207 return 0; 14208 } 14209 } 14210 14211 if (env->used_btf_cnt >= MAX_USED_BTFS) { 14212 err = -E2BIG; 14213 goto err_put; 14214 } 14215 14216 btf_mod = &env->used_btfs[env->used_btf_cnt]; 14217 btf_mod->btf = btf; 14218 btf_mod->module = NULL; 14219 14220 /* if we reference variables from kernel module, bump its refcount */ 14221 if (btf_is_module(btf)) { 14222 btf_mod->module = btf_try_get_module(btf); 14223 if (!btf_mod->module) { 14224 err = -ENXIO; 14225 goto err_put; 14226 } 14227 } 14228 14229 env->used_btf_cnt++; 14230 14231 return 0; 14232 err_put: 14233 btf_put(btf); 14234 return err; 14235 } 14236 14237 static bool is_tracing_prog_type(enum bpf_prog_type type) 14238 { 14239 switch (type) { 14240 case BPF_PROG_TYPE_KPROBE: 14241 case BPF_PROG_TYPE_TRACEPOINT: 14242 case BPF_PROG_TYPE_PERF_EVENT: 14243 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14244 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 14245 return true; 14246 default: 14247 return false; 14248 } 14249 } 14250 14251 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 14252 struct bpf_map *map, 14253 struct bpf_prog *prog) 14254 14255 { 14256 enum bpf_prog_type prog_type = resolve_prog_type(prog); 14257 14258 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) { 14259 if (is_tracing_prog_type(prog_type)) { 14260 verbose(env, "tracing progs cannot use bpf_list_head yet\n"); 14261 return -EINVAL; 14262 } 14263 } 14264 14265 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 14266 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 14267 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 14268 return -EINVAL; 14269 } 14270 14271 if (is_tracing_prog_type(prog_type)) { 14272 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 14273 return -EINVAL; 14274 } 14275 14276 if (prog->aux->sleepable) { 14277 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 14278 return -EINVAL; 14279 } 14280 } 14281 14282 if (btf_record_has_field(map->record, BPF_TIMER)) { 14283 if (is_tracing_prog_type(prog_type)) { 14284 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 14285 return -EINVAL; 14286 } 14287 } 14288 14289 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 14290 !bpf_offload_prog_map_match(prog, map)) { 14291 verbose(env, "offload device mismatch between prog and map\n"); 14292 return -EINVAL; 14293 } 14294 14295 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 14296 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 14297 return -EINVAL; 14298 } 14299 14300 if (prog->aux->sleepable) 14301 switch (map->map_type) { 14302 case BPF_MAP_TYPE_HASH: 14303 case BPF_MAP_TYPE_LRU_HASH: 14304 case BPF_MAP_TYPE_ARRAY: 14305 case BPF_MAP_TYPE_PERCPU_HASH: 14306 case BPF_MAP_TYPE_PERCPU_ARRAY: 14307 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 14308 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 14309 case BPF_MAP_TYPE_HASH_OF_MAPS: 14310 case BPF_MAP_TYPE_RINGBUF: 14311 case BPF_MAP_TYPE_USER_RINGBUF: 14312 case BPF_MAP_TYPE_INODE_STORAGE: 14313 case BPF_MAP_TYPE_SK_STORAGE: 14314 case BPF_MAP_TYPE_TASK_STORAGE: 14315 case BPF_MAP_TYPE_CGRP_STORAGE: 14316 break; 14317 default: 14318 verbose(env, 14319 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 14320 return -EINVAL; 14321 } 14322 14323 return 0; 14324 } 14325 14326 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 14327 { 14328 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 14329 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 14330 } 14331 14332 /* find and rewrite pseudo imm in ld_imm64 instructions: 14333 * 14334 * 1. if it accesses map FD, replace it with actual map pointer. 14335 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 14336 * 14337 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 14338 */ 14339 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 14340 { 14341 struct bpf_insn *insn = env->prog->insnsi; 14342 int insn_cnt = env->prog->len; 14343 int i, j, err; 14344 14345 err = bpf_prog_calc_tag(env->prog); 14346 if (err) 14347 return err; 14348 14349 for (i = 0; i < insn_cnt; i++, insn++) { 14350 if (BPF_CLASS(insn->code) == BPF_LDX && 14351 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 14352 verbose(env, "BPF_LDX uses reserved fields\n"); 14353 return -EINVAL; 14354 } 14355 14356 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 14357 struct bpf_insn_aux_data *aux; 14358 struct bpf_map *map; 14359 struct fd f; 14360 u64 addr; 14361 u32 fd; 14362 14363 if (i == insn_cnt - 1 || insn[1].code != 0 || 14364 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 14365 insn[1].off != 0) { 14366 verbose(env, "invalid bpf_ld_imm64 insn\n"); 14367 return -EINVAL; 14368 } 14369 14370 if (insn[0].src_reg == 0) 14371 /* valid generic load 64-bit imm */ 14372 goto next_insn; 14373 14374 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 14375 aux = &env->insn_aux_data[i]; 14376 err = check_pseudo_btf_id(env, insn, aux); 14377 if (err) 14378 return err; 14379 goto next_insn; 14380 } 14381 14382 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 14383 aux = &env->insn_aux_data[i]; 14384 aux->ptr_type = PTR_TO_FUNC; 14385 goto next_insn; 14386 } 14387 14388 /* In final convert_pseudo_ld_imm64() step, this is 14389 * converted into regular 64-bit imm load insn. 14390 */ 14391 switch (insn[0].src_reg) { 14392 case BPF_PSEUDO_MAP_VALUE: 14393 case BPF_PSEUDO_MAP_IDX_VALUE: 14394 break; 14395 case BPF_PSEUDO_MAP_FD: 14396 case BPF_PSEUDO_MAP_IDX: 14397 if (insn[1].imm == 0) 14398 break; 14399 fallthrough; 14400 default: 14401 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 14402 return -EINVAL; 14403 } 14404 14405 switch (insn[0].src_reg) { 14406 case BPF_PSEUDO_MAP_IDX_VALUE: 14407 case BPF_PSEUDO_MAP_IDX: 14408 if (bpfptr_is_null(env->fd_array)) { 14409 verbose(env, "fd_idx without fd_array is invalid\n"); 14410 return -EPROTO; 14411 } 14412 if (copy_from_bpfptr_offset(&fd, env->fd_array, 14413 insn[0].imm * sizeof(fd), 14414 sizeof(fd))) 14415 return -EFAULT; 14416 break; 14417 default: 14418 fd = insn[0].imm; 14419 break; 14420 } 14421 14422 f = fdget(fd); 14423 map = __bpf_map_get(f); 14424 if (IS_ERR(map)) { 14425 verbose(env, "fd %d is not pointing to valid bpf_map\n", 14426 insn[0].imm); 14427 return PTR_ERR(map); 14428 } 14429 14430 err = check_map_prog_compatibility(env, map, env->prog); 14431 if (err) { 14432 fdput(f); 14433 return err; 14434 } 14435 14436 aux = &env->insn_aux_data[i]; 14437 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 14438 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 14439 addr = (unsigned long)map; 14440 } else { 14441 u32 off = insn[1].imm; 14442 14443 if (off >= BPF_MAX_VAR_OFF) { 14444 verbose(env, "direct value offset of %u is not allowed\n", off); 14445 fdput(f); 14446 return -EINVAL; 14447 } 14448 14449 if (!map->ops->map_direct_value_addr) { 14450 verbose(env, "no direct value access support for this map type\n"); 14451 fdput(f); 14452 return -EINVAL; 14453 } 14454 14455 err = map->ops->map_direct_value_addr(map, &addr, off); 14456 if (err) { 14457 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 14458 map->value_size, off); 14459 fdput(f); 14460 return err; 14461 } 14462 14463 aux->map_off = off; 14464 addr += off; 14465 } 14466 14467 insn[0].imm = (u32)addr; 14468 insn[1].imm = addr >> 32; 14469 14470 /* check whether we recorded this map already */ 14471 for (j = 0; j < env->used_map_cnt; j++) { 14472 if (env->used_maps[j] == map) { 14473 aux->map_index = j; 14474 fdput(f); 14475 goto next_insn; 14476 } 14477 } 14478 14479 if (env->used_map_cnt >= MAX_USED_MAPS) { 14480 fdput(f); 14481 return -E2BIG; 14482 } 14483 14484 /* hold the map. If the program is rejected by verifier, 14485 * the map will be released by release_maps() or it 14486 * will be used by the valid program until it's unloaded 14487 * and all maps are released in free_used_maps() 14488 */ 14489 bpf_map_inc(map); 14490 14491 aux->map_index = env->used_map_cnt; 14492 env->used_maps[env->used_map_cnt++] = map; 14493 14494 if (bpf_map_is_cgroup_storage(map) && 14495 bpf_cgroup_storage_assign(env->prog->aux, map)) { 14496 verbose(env, "only one cgroup storage of each type is allowed\n"); 14497 fdput(f); 14498 return -EBUSY; 14499 } 14500 14501 fdput(f); 14502 next_insn: 14503 insn++; 14504 i++; 14505 continue; 14506 } 14507 14508 /* Basic sanity check before we invest more work here. */ 14509 if (!bpf_opcode_in_insntable(insn->code)) { 14510 verbose(env, "unknown opcode %02x\n", insn->code); 14511 return -EINVAL; 14512 } 14513 } 14514 14515 /* now all pseudo BPF_LD_IMM64 instructions load valid 14516 * 'struct bpf_map *' into a register instead of user map_fd. 14517 * These pointers will be used later by verifier to validate map access. 14518 */ 14519 return 0; 14520 } 14521 14522 /* drop refcnt of maps used by the rejected program */ 14523 static void release_maps(struct bpf_verifier_env *env) 14524 { 14525 __bpf_free_used_maps(env->prog->aux, env->used_maps, 14526 env->used_map_cnt); 14527 } 14528 14529 /* drop refcnt of maps used by the rejected program */ 14530 static void release_btfs(struct bpf_verifier_env *env) 14531 { 14532 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 14533 env->used_btf_cnt); 14534 } 14535 14536 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 14537 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 14538 { 14539 struct bpf_insn *insn = env->prog->insnsi; 14540 int insn_cnt = env->prog->len; 14541 int i; 14542 14543 for (i = 0; i < insn_cnt; i++, insn++) { 14544 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 14545 continue; 14546 if (insn->src_reg == BPF_PSEUDO_FUNC) 14547 continue; 14548 insn->src_reg = 0; 14549 } 14550 } 14551 14552 /* single env->prog->insni[off] instruction was replaced with the range 14553 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 14554 * [0, off) and [off, end) to new locations, so the patched range stays zero 14555 */ 14556 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 14557 struct bpf_insn_aux_data *new_data, 14558 struct bpf_prog *new_prog, u32 off, u32 cnt) 14559 { 14560 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 14561 struct bpf_insn *insn = new_prog->insnsi; 14562 u32 old_seen = old_data[off].seen; 14563 u32 prog_len; 14564 int i; 14565 14566 /* aux info at OFF always needs adjustment, no matter fast path 14567 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 14568 * original insn at old prog. 14569 */ 14570 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 14571 14572 if (cnt == 1) 14573 return; 14574 prog_len = new_prog->len; 14575 14576 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 14577 memcpy(new_data + off + cnt - 1, old_data + off, 14578 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 14579 for (i = off; i < off + cnt - 1; i++) { 14580 /* Expand insni[off]'s seen count to the patched range. */ 14581 new_data[i].seen = old_seen; 14582 new_data[i].zext_dst = insn_has_def32(env, insn + i); 14583 } 14584 env->insn_aux_data = new_data; 14585 vfree(old_data); 14586 } 14587 14588 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 14589 { 14590 int i; 14591 14592 if (len == 1) 14593 return; 14594 /* NOTE: fake 'exit' subprog should be updated as well. */ 14595 for (i = 0; i <= env->subprog_cnt; i++) { 14596 if (env->subprog_info[i].start <= off) 14597 continue; 14598 env->subprog_info[i].start += len - 1; 14599 } 14600 } 14601 14602 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 14603 { 14604 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 14605 int i, sz = prog->aux->size_poke_tab; 14606 struct bpf_jit_poke_descriptor *desc; 14607 14608 for (i = 0; i < sz; i++) { 14609 desc = &tab[i]; 14610 if (desc->insn_idx <= off) 14611 continue; 14612 desc->insn_idx += len - 1; 14613 } 14614 } 14615 14616 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 14617 const struct bpf_insn *patch, u32 len) 14618 { 14619 struct bpf_prog *new_prog; 14620 struct bpf_insn_aux_data *new_data = NULL; 14621 14622 if (len > 1) { 14623 new_data = vzalloc(array_size(env->prog->len + len - 1, 14624 sizeof(struct bpf_insn_aux_data))); 14625 if (!new_data) 14626 return NULL; 14627 } 14628 14629 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 14630 if (IS_ERR(new_prog)) { 14631 if (PTR_ERR(new_prog) == -ERANGE) 14632 verbose(env, 14633 "insn %d cannot be patched due to 16-bit range\n", 14634 env->insn_aux_data[off].orig_idx); 14635 vfree(new_data); 14636 return NULL; 14637 } 14638 adjust_insn_aux_data(env, new_data, new_prog, off, len); 14639 adjust_subprog_starts(env, off, len); 14640 adjust_poke_descs(new_prog, off, len); 14641 return new_prog; 14642 } 14643 14644 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 14645 u32 off, u32 cnt) 14646 { 14647 int i, j; 14648 14649 /* find first prog starting at or after off (first to remove) */ 14650 for (i = 0; i < env->subprog_cnt; i++) 14651 if (env->subprog_info[i].start >= off) 14652 break; 14653 /* find first prog starting at or after off + cnt (first to stay) */ 14654 for (j = i; j < env->subprog_cnt; j++) 14655 if (env->subprog_info[j].start >= off + cnt) 14656 break; 14657 /* if j doesn't start exactly at off + cnt, we are just removing 14658 * the front of previous prog 14659 */ 14660 if (env->subprog_info[j].start != off + cnt) 14661 j--; 14662 14663 if (j > i) { 14664 struct bpf_prog_aux *aux = env->prog->aux; 14665 int move; 14666 14667 /* move fake 'exit' subprog as well */ 14668 move = env->subprog_cnt + 1 - j; 14669 14670 memmove(env->subprog_info + i, 14671 env->subprog_info + j, 14672 sizeof(*env->subprog_info) * move); 14673 env->subprog_cnt -= j - i; 14674 14675 /* remove func_info */ 14676 if (aux->func_info) { 14677 move = aux->func_info_cnt - j; 14678 14679 memmove(aux->func_info + i, 14680 aux->func_info + j, 14681 sizeof(*aux->func_info) * move); 14682 aux->func_info_cnt -= j - i; 14683 /* func_info->insn_off is set after all code rewrites, 14684 * in adjust_btf_func() - no need to adjust 14685 */ 14686 } 14687 } else { 14688 /* convert i from "first prog to remove" to "first to adjust" */ 14689 if (env->subprog_info[i].start == off) 14690 i++; 14691 } 14692 14693 /* update fake 'exit' subprog as well */ 14694 for (; i <= env->subprog_cnt; i++) 14695 env->subprog_info[i].start -= cnt; 14696 14697 return 0; 14698 } 14699 14700 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 14701 u32 cnt) 14702 { 14703 struct bpf_prog *prog = env->prog; 14704 u32 i, l_off, l_cnt, nr_linfo; 14705 struct bpf_line_info *linfo; 14706 14707 nr_linfo = prog->aux->nr_linfo; 14708 if (!nr_linfo) 14709 return 0; 14710 14711 linfo = prog->aux->linfo; 14712 14713 /* find first line info to remove, count lines to be removed */ 14714 for (i = 0; i < nr_linfo; i++) 14715 if (linfo[i].insn_off >= off) 14716 break; 14717 14718 l_off = i; 14719 l_cnt = 0; 14720 for (; i < nr_linfo; i++) 14721 if (linfo[i].insn_off < off + cnt) 14722 l_cnt++; 14723 else 14724 break; 14725 14726 /* First live insn doesn't match first live linfo, it needs to "inherit" 14727 * last removed linfo. prog is already modified, so prog->len == off 14728 * means no live instructions after (tail of the program was removed). 14729 */ 14730 if (prog->len != off && l_cnt && 14731 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 14732 l_cnt--; 14733 linfo[--i].insn_off = off + cnt; 14734 } 14735 14736 /* remove the line info which refer to the removed instructions */ 14737 if (l_cnt) { 14738 memmove(linfo + l_off, linfo + i, 14739 sizeof(*linfo) * (nr_linfo - i)); 14740 14741 prog->aux->nr_linfo -= l_cnt; 14742 nr_linfo = prog->aux->nr_linfo; 14743 } 14744 14745 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 14746 for (i = l_off; i < nr_linfo; i++) 14747 linfo[i].insn_off -= cnt; 14748 14749 /* fix up all subprogs (incl. 'exit') which start >= off */ 14750 for (i = 0; i <= env->subprog_cnt; i++) 14751 if (env->subprog_info[i].linfo_idx > l_off) { 14752 /* program may have started in the removed region but 14753 * may not be fully removed 14754 */ 14755 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 14756 env->subprog_info[i].linfo_idx -= l_cnt; 14757 else 14758 env->subprog_info[i].linfo_idx = l_off; 14759 } 14760 14761 return 0; 14762 } 14763 14764 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 14765 { 14766 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14767 unsigned int orig_prog_len = env->prog->len; 14768 int err; 14769 14770 if (bpf_prog_is_dev_bound(env->prog->aux)) 14771 bpf_prog_offload_remove_insns(env, off, cnt); 14772 14773 err = bpf_remove_insns(env->prog, off, cnt); 14774 if (err) 14775 return err; 14776 14777 err = adjust_subprog_starts_after_remove(env, off, cnt); 14778 if (err) 14779 return err; 14780 14781 err = bpf_adj_linfo_after_remove(env, off, cnt); 14782 if (err) 14783 return err; 14784 14785 memmove(aux_data + off, aux_data + off + cnt, 14786 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 14787 14788 return 0; 14789 } 14790 14791 /* The verifier does more data flow analysis than llvm and will not 14792 * explore branches that are dead at run time. Malicious programs can 14793 * have dead code too. Therefore replace all dead at-run-time code 14794 * with 'ja -1'. 14795 * 14796 * Just nops are not optimal, e.g. if they would sit at the end of the 14797 * program and through another bug we would manage to jump there, then 14798 * we'd execute beyond program memory otherwise. Returning exception 14799 * code also wouldn't work since we can have subprogs where the dead 14800 * code could be located. 14801 */ 14802 static void sanitize_dead_code(struct bpf_verifier_env *env) 14803 { 14804 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14805 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 14806 struct bpf_insn *insn = env->prog->insnsi; 14807 const int insn_cnt = env->prog->len; 14808 int i; 14809 14810 for (i = 0; i < insn_cnt; i++) { 14811 if (aux_data[i].seen) 14812 continue; 14813 memcpy(insn + i, &trap, sizeof(trap)); 14814 aux_data[i].zext_dst = false; 14815 } 14816 } 14817 14818 static bool insn_is_cond_jump(u8 code) 14819 { 14820 u8 op; 14821 14822 if (BPF_CLASS(code) == BPF_JMP32) 14823 return true; 14824 14825 if (BPF_CLASS(code) != BPF_JMP) 14826 return false; 14827 14828 op = BPF_OP(code); 14829 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 14830 } 14831 14832 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 14833 { 14834 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14835 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14836 struct bpf_insn *insn = env->prog->insnsi; 14837 const int insn_cnt = env->prog->len; 14838 int i; 14839 14840 for (i = 0; i < insn_cnt; i++, insn++) { 14841 if (!insn_is_cond_jump(insn->code)) 14842 continue; 14843 14844 if (!aux_data[i + 1].seen) 14845 ja.off = insn->off; 14846 else if (!aux_data[i + 1 + insn->off].seen) 14847 ja.off = 0; 14848 else 14849 continue; 14850 14851 if (bpf_prog_is_dev_bound(env->prog->aux)) 14852 bpf_prog_offload_replace_insn(env, i, &ja); 14853 14854 memcpy(insn, &ja, sizeof(ja)); 14855 } 14856 } 14857 14858 static int opt_remove_dead_code(struct bpf_verifier_env *env) 14859 { 14860 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14861 int insn_cnt = env->prog->len; 14862 int i, err; 14863 14864 for (i = 0; i < insn_cnt; i++) { 14865 int j; 14866 14867 j = 0; 14868 while (i + j < insn_cnt && !aux_data[i + j].seen) 14869 j++; 14870 if (!j) 14871 continue; 14872 14873 err = verifier_remove_insns(env, i, j); 14874 if (err) 14875 return err; 14876 insn_cnt = env->prog->len; 14877 } 14878 14879 return 0; 14880 } 14881 14882 static int opt_remove_nops(struct bpf_verifier_env *env) 14883 { 14884 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14885 struct bpf_insn *insn = env->prog->insnsi; 14886 int insn_cnt = env->prog->len; 14887 int i, err; 14888 14889 for (i = 0; i < insn_cnt; i++) { 14890 if (memcmp(&insn[i], &ja, sizeof(ja))) 14891 continue; 14892 14893 err = verifier_remove_insns(env, i, 1); 14894 if (err) 14895 return err; 14896 insn_cnt--; 14897 i--; 14898 } 14899 14900 return 0; 14901 } 14902 14903 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 14904 const union bpf_attr *attr) 14905 { 14906 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 14907 struct bpf_insn_aux_data *aux = env->insn_aux_data; 14908 int i, patch_len, delta = 0, len = env->prog->len; 14909 struct bpf_insn *insns = env->prog->insnsi; 14910 struct bpf_prog *new_prog; 14911 bool rnd_hi32; 14912 14913 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 14914 zext_patch[1] = BPF_ZEXT_REG(0); 14915 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 14916 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 14917 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 14918 for (i = 0; i < len; i++) { 14919 int adj_idx = i + delta; 14920 struct bpf_insn insn; 14921 int load_reg; 14922 14923 insn = insns[adj_idx]; 14924 load_reg = insn_def_regno(&insn); 14925 if (!aux[adj_idx].zext_dst) { 14926 u8 code, class; 14927 u32 imm_rnd; 14928 14929 if (!rnd_hi32) 14930 continue; 14931 14932 code = insn.code; 14933 class = BPF_CLASS(code); 14934 if (load_reg == -1) 14935 continue; 14936 14937 /* NOTE: arg "reg" (the fourth one) is only used for 14938 * BPF_STX + SRC_OP, so it is safe to pass NULL 14939 * here. 14940 */ 14941 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 14942 if (class == BPF_LD && 14943 BPF_MODE(code) == BPF_IMM) 14944 i++; 14945 continue; 14946 } 14947 14948 /* ctx load could be transformed into wider load. */ 14949 if (class == BPF_LDX && 14950 aux[adj_idx].ptr_type == PTR_TO_CTX) 14951 continue; 14952 14953 imm_rnd = get_random_u32(); 14954 rnd_hi32_patch[0] = insn; 14955 rnd_hi32_patch[1].imm = imm_rnd; 14956 rnd_hi32_patch[3].dst_reg = load_reg; 14957 patch = rnd_hi32_patch; 14958 patch_len = 4; 14959 goto apply_patch_buffer; 14960 } 14961 14962 /* Add in an zero-extend instruction if a) the JIT has requested 14963 * it or b) it's a CMPXCHG. 14964 * 14965 * The latter is because: BPF_CMPXCHG always loads a value into 14966 * R0, therefore always zero-extends. However some archs' 14967 * equivalent instruction only does this load when the 14968 * comparison is successful. This detail of CMPXCHG is 14969 * orthogonal to the general zero-extension behaviour of the 14970 * CPU, so it's treated independently of bpf_jit_needs_zext. 14971 */ 14972 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 14973 continue; 14974 14975 /* Zero-extension is done by the caller. */ 14976 if (bpf_pseudo_kfunc_call(&insn)) 14977 continue; 14978 14979 if (WARN_ON(load_reg == -1)) { 14980 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 14981 return -EFAULT; 14982 } 14983 14984 zext_patch[0] = insn; 14985 zext_patch[1].dst_reg = load_reg; 14986 zext_patch[1].src_reg = load_reg; 14987 patch = zext_patch; 14988 patch_len = 2; 14989 apply_patch_buffer: 14990 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 14991 if (!new_prog) 14992 return -ENOMEM; 14993 env->prog = new_prog; 14994 insns = new_prog->insnsi; 14995 aux = env->insn_aux_data; 14996 delta += patch_len - 1; 14997 } 14998 14999 return 0; 15000 } 15001 15002 /* convert load instructions that access fields of a context type into a 15003 * sequence of instructions that access fields of the underlying structure: 15004 * struct __sk_buff -> struct sk_buff 15005 * struct bpf_sock_ops -> struct sock 15006 */ 15007 static int convert_ctx_accesses(struct bpf_verifier_env *env) 15008 { 15009 const struct bpf_verifier_ops *ops = env->ops; 15010 int i, cnt, size, ctx_field_size, delta = 0; 15011 const int insn_cnt = env->prog->len; 15012 struct bpf_insn insn_buf[16], *insn; 15013 u32 target_size, size_default, off; 15014 struct bpf_prog *new_prog; 15015 enum bpf_access_type type; 15016 bool is_narrower_load; 15017 15018 if (ops->gen_prologue || env->seen_direct_write) { 15019 if (!ops->gen_prologue) { 15020 verbose(env, "bpf verifier is misconfigured\n"); 15021 return -EINVAL; 15022 } 15023 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 15024 env->prog); 15025 if (cnt >= ARRAY_SIZE(insn_buf)) { 15026 verbose(env, "bpf verifier is misconfigured\n"); 15027 return -EINVAL; 15028 } else if (cnt) { 15029 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 15030 if (!new_prog) 15031 return -ENOMEM; 15032 15033 env->prog = new_prog; 15034 delta += cnt - 1; 15035 } 15036 } 15037 15038 if (bpf_prog_is_dev_bound(env->prog->aux)) 15039 return 0; 15040 15041 insn = env->prog->insnsi + delta; 15042 15043 for (i = 0; i < insn_cnt; i++, insn++) { 15044 bpf_convert_ctx_access_t convert_ctx_access; 15045 bool ctx_access; 15046 15047 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 15048 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 15049 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 15050 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 15051 type = BPF_READ; 15052 ctx_access = true; 15053 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 15054 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 15055 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 15056 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 15057 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 15058 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 15059 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 15060 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 15061 type = BPF_WRITE; 15062 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 15063 } else { 15064 continue; 15065 } 15066 15067 if (type == BPF_WRITE && 15068 env->insn_aux_data[i + delta].sanitize_stack_spill) { 15069 struct bpf_insn patch[] = { 15070 *insn, 15071 BPF_ST_NOSPEC(), 15072 }; 15073 15074 cnt = ARRAY_SIZE(patch); 15075 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 15076 if (!new_prog) 15077 return -ENOMEM; 15078 15079 delta += cnt - 1; 15080 env->prog = new_prog; 15081 insn = new_prog->insnsi + i + delta; 15082 continue; 15083 } 15084 15085 if (!ctx_access) 15086 continue; 15087 15088 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 15089 case PTR_TO_CTX: 15090 if (!ops->convert_ctx_access) 15091 continue; 15092 convert_ctx_access = ops->convert_ctx_access; 15093 break; 15094 case PTR_TO_SOCKET: 15095 case PTR_TO_SOCK_COMMON: 15096 convert_ctx_access = bpf_sock_convert_ctx_access; 15097 break; 15098 case PTR_TO_TCP_SOCK: 15099 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 15100 break; 15101 case PTR_TO_XDP_SOCK: 15102 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 15103 break; 15104 case PTR_TO_BTF_ID: 15105 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 15106 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 15107 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 15108 * be said once it is marked PTR_UNTRUSTED, hence we must handle 15109 * any faults for loads into such types. BPF_WRITE is disallowed 15110 * for this case. 15111 */ 15112 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 15113 if (type == BPF_READ) { 15114 insn->code = BPF_LDX | BPF_PROBE_MEM | 15115 BPF_SIZE((insn)->code); 15116 env->prog->aux->num_exentries++; 15117 } 15118 continue; 15119 default: 15120 continue; 15121 } 15122 15123 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 15124 size = BPF_LDST_BYTES(insn); 15125 15126 /* If the read access is a narrower load of the field, 15127 * convert to a 4/8-byte load, to minimum program type specific 15128 * convert_ctx_access changes. If conversion is successful, 15129 * we will apply proper mask to the result. 15130 */ 15131 is_narrower_load = size < ctx_field_size; 15132 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 15133 off = insn->off; 15134 if (is_narrower_load) { 15135 u8 size_code; 15136 15137 if (type == BPF_WRITE) { 15138 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 15139 return -EINVAL; 15140 } 15141 15142 size_code = BPF_H; 15143 if (ctx_field_size == 4) 15144 size_code = BPF_W; 15145 else if (ctx_field_size == 8) 15146 size_code = BPF_DW; 15147 15148 insn->off = off & ~(size_default - 1); 15149 insn->code = BPF_LDX | BPF_MEM | size_code; 15150 } 15151 15152 target_size = 0; 15153 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 15154 &target_size); 15155 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 15156 (ctx_field_size && !target_size)) { 15157 verbose(env, "bpf verifier is misconfigured\n"); 15158 return -EINVAL; 15159 } 15160 15161 if (is_narrower_load && size < target_size) { 15162 u8 shift = bpf_ctx_narrow_access_offset( 15163 off, size, size_default) * 8; 15164 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 15165 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 15166 return -EINVAL; 15167 } 15168 if (ctx_field_size <= 4) { 15169 if (shift) 15170 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 15171 insn->dst_reg, 15172 shift); 15173 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 15174 (1 << size * 8) - 1); 15175 } else { 15176 if (shift) 15177 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 15178 insn->dst_reg, 15179 shift); 15180 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 15181 (1ULL << size * 8) - 1); 15182 } 15183 } 15184 15185 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15186 if (!new_prog) 15187 return -ENOMEM; 15188 15189 delta += cnt - 1; 15190 15191 /* keep walking new program and skip insns we just inserted */ 15192 env->prog = new_prog; 15193 insn = new_prog->insnsi + i + delta; 15194 } 15195 15196 return 0; 15197 } 15198 15199 static int jit_subprogs(struct bpf_verifier_env *env) 15200 { 15201 struct bpf_prog *prog = env->prog, **func, *tmp; 15202 int i, j, subprog_start, subprog_end = 0, len, subprog; 15203 struct bpf_map *map_ptr; 15204 struct bpf_insn *insn; 15205 void *old_bpf_func; 15206 int err, num_exentries; 15207 15208 if (env->subprog_cnt <= 1) 15209 return 0; 15210 15211 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15212 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 15213 continue; 15214 15215 /* Upon error here we cannot fall back to interpreter but 15216 * need a hard reject of the program. Thus -EFAULT is 15217 * propagated in any case. 15218 */ 15219 subprog = find_subprog(env, i + insn->imm + 1); 15220 if (subprog < 0) { 15221 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 15222 i + insn->imm + 1); 15223 return -EFAULT; 15224 } 15225 /* temporarily remember subprog id inside insn instead of 15226 * aux_data, since next loop will split up all insns into funcs 15227 */ 15228 insn->off = subprog; 15229 /* remember original imm in case JIT fails and fallback 15230 * to interpreter will be needed 15231 */ 15232 env->insn_aux_data[i].call_imm = insn->imm; 15233 /* point imm to __bpf_call_base+1 from JITs point of view */ 15234 insn->imm = 1; 15235 if (bpf_pseudo_func(insn)) 15236 /* jit (e.g. x86_64) may emit fewer instructions 15237 * if it learns a u32 imm is the same as a u64 imm. 15238 * Force a non zero here. 15239 */ 15240 insn[1].imm = 1; 15241 } 15242 15243 err = bpf_prog_alloc_jited_linfo(prog); 15244 if (err) 15245 goto out_undo_insn; 15246 15247 err = -ENOMEM; 15248 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 15249 if (!func) 15250 goto out_undo_insn; 15251 15252 for (i = 0; i < env->subprog_cnt; i++) { 15253 subprog_start = subprog_end; 15254 subprog_end = env->subprog_info[i + 1].start; 15255 15256 len = subprog_end - subprog_start; 15257 /* bpf_prog_run() doesn't call subprogs directly, 15258 * hence main prog stats include the runtime of subprogs. 15259 * subprogs don't have IDs and not reachable via prog_get_next_id 15260 * func[i]->stats will never be accessed and stays NULL 15261 */ 15262 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 15263 if (!func[i]) 15264 goto out_free; 15265 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 15266 len * sizeof(struct bpf_insn)); 15267 func[i]->type = prog->type; 15268 func[i]->len = len; 15269 if (bpf_prog_calc_tag(func[i])) 15270 goto out_free; 15271 func[i]->is_func = 1; 15272 func[i]->aux->func_idx = i; 15273 /* Below members will be freed only at prog->aux */ 15274 func[i]->aux->btf = prog->aux->btf; 15275 func[i]->aux->func_info = prog->aux->func_info; 15276 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 15277 func[i]->aux->poke_tab = prog->aux->poke_tab; 15278 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 15279 15280 for (j = 0; j < prog->aux->size_poke_tab; j++) { 15281 struct bpf_jit_poke_descriptor *poke; 15282 15283 poke = &prog->aux->poke_tab[j]; 15284 if (poke->insn_idx < subprog_end && 15285 poke->insn_idx >= subprog_start) 15286 poke->aux = func[i]->aux; 15287 } 15288 15289 func[i]->aux->name[0] = 'F'; 15290 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 15291 func[i]->jit_requested = 1; 15292 func[i]->blinding_requested = prog->blinding_requested; 15293 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 15294 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 15295 func[i]->aux->linfo = prog->aux->linfo; 15296 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 15297 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 15298 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 15299 num_exentries = 0; 15300 insn = func[i]->insnsi; 15301 for (j = 0; j < func[i]->len; j++, insn++) { 15302 if (BPF_CLASS(insn->code) == BPF_LDX && 15303 BPF_MODE(insn->code) == BPF_PROBE_MEM) 15304 num_exentries++; 15305 } 15306 func[i]->aux->num_exentries = num_exentries; 15307 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 15308 func[i] = bpf_int_jit_compile(func[i]); 15309 if (!func[i]->jited) { 15310 err = -ENOTSUPP; 15311 goto out_free; 15312 } 15313 cond_resched(); 15314 } 15315 15316 /* at this point all bpf functions were successfully JITed 15317 * now populate all bpf_calls with correct addresses and 15318 * run last pass of JIT 15319 */ 15320 for (i = 0; i < env->subprog_cnt; i++) { 15321 insn = func[i]->insnsi; 15322 for (j = 0; j < func[i]->len; j++, insn++) { 15323 if (bpf_pseudo_func(insn)) { 15324 subprog = insn->off; 15325 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 15326 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 15327 continue; 15328 } 15329 if (!bpf_pseudo_call(insn)) 15330 continue; 15331 subprog = insn->off; 15332 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 15333 } 15334 15335 /* we use the aux data to keep a list of the start addresses 15336 * of the JITed images for each function in the program 15337 * 15338 * for some architectures, such as powerpc64, the imm field 15339 * might not be large enough to hold the offset of the start 15340 * address of the callee's JITed image from __bpf_call_base 15341 * 15342 * in such cases, we can lookup the start address of a callee 15343 * by using its subprog id, available from the off field of 15344 * the call instruction, as an index for this list 15345 */ 15346 func[i]->aux->func = func; 15347 func[i]->aux->func_cnt = env->subprog_cnt; 15348 } 15349 for (i = 0; i < env->subprog_cnt; i++) { 15350 old_bpf_func = func[i]->bpf_func; 15351 tmp = bpf_int_jit_compile(func[i]); 15352 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 15353 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 15354 err = -ENOTSUPP; 15355 goto out_free; 15356 } 15357 cond_resched(); 15358 } 15359 15360 /* finally lock prog and jit images for all functions and 15361 * populate kallsysm 15362 */ 15363 for (i = 0; i < env->subprog_cnt; i++) { 15364 bpf_prog_lock_ro(func[i]); 15365 bpf_prog_kallsyms_add(func[i]); 15366 } 15367 15368 /* Last step: make now unused interpreter insns from main 15369 * prog consistent for later dump requests, so they can 15370 * later look the same as if they were interpreted only. 15371 */ 15372 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15373 if (bpf_pseudo_func(insn)) { 15374 insn[0].imm = env->insn_aux_data[i].call_imm; 15375 insn[1].imm = insn->off; 15376 insn->off = 0; 15377 continue; 15378 } 15379 if (!bpf_pseudo_call(insn)) 15380 continue; 15381 insn->off = env->insn_aux_data[i].call_imm; 15382 subprog = find_subprog(env, i + insn->off + 1); 15383 insn->imm = subprog; 15384 } 15385 15386 prog->jited = 1; 15387 prog->bpf_func = func[0]->bpf_func; 15388 prog->jited_len = func[0]->jited_len; 15389 prog->aux->func = func; 15390 prog->aux->func_cnt = env->subprog_cnt; 15391 bpf_prog_jit_attempt_done(prog); 15392 return 0; 15393 out_free: 15394 /* We failed JIT'ing, so at this point we need to unregister poke 15395 * descriptors from subprogs, so that kernel is not attempting to 15396 * patch it anymore as we're freeing the subprog JIT memory. 15397 */ 15398 for (i = 0; i < prog->aux->size_poke_tab; i++) { 15399 map_ptr = prog->aux->poke_tab[i].tail_call.map; 15400 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 15401 } 15402 /* At this point we're guaranteed that poke descriptors are not 15403 * live anymore. We can just unlink its descriptor table as it's 15404 * released with the main prog. 15405 */ 15406 for (i = 0; i < env->subprog_cnt; i++) { 15407 if (!func[i]) 15408 continue; 15409 func[i]->aux->poke_tab = NULL; 15410 bpf_jit_free(func[i]); 15411 } 15412 kfree(func); 15413 out_undo_insn: 15414 /* cleanup main prog to be interpreted */ 15415 prog->jit_requested = 0; 15416 prog->blinding_requested = 0; 15417 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15418 if (!bpf_pseudo_call(insn)) 15419 continue; 15420 insn->off = 0; 15421 insn->imm = env->insn_aux_data[i].call_imm; 15422 } 15423 bpf_prog_jit_attempt_done(prog); 15424 return err; 15425 } 15426 15427 static int fixup_call_args(struct bpf_verifier_env *env) 15428 { 15429 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15430 struct bpf_prog *prog = env->prog; 15431 struct bpf_insn *insn = prog->insnsi; 15432 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 15433 int i, depth; 15434 #endif 15435 int err = 0; 15436 15437 if (env->prog->jit_requested && 15438 !bpf_prog_is_dev_bound(env->prog->aux)) { 15439 err = jit_subprogs(env); 15440 if (err == 0) 15441 return 0; 15442 if (err == -EFAULT) 15443 return err; 15444 } 15445 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15446 if (has_kfunc_call) { 15447 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 15448 return -EINVAL; 15449 } 15450 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 15451 /* When JIT fails the progs with bpf2bpf calls and tail_calls 15452 * have to be rejected, since interpreter doesn't support them yet. 15453 */ 15454 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 15455 return -EINVAL; 15456 } 15457 for (i = 0; i < prog->len; i++, insn++) { 15458 if (bpf_pseudo_func(insn)) { 15459 /* When JIT fails the progs with callback calls 15460 * have to be rejected, since interpreter doesn't support them yet. 15461 */ 15462 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 15463 return -EINVAL; 15464 } 15465 15466 if (!bpf_pseudo_call(insn)) 15467 continue; 15468 depth = get_callee_stack_depth(env, insn, i); 15469 if (depth < 0) 15470 return depth; 15471 bpf_patch_call_args(insn, depth); 15472 } 15473 err = 0; 15474 #endif 15475 return err; 15476 } 15477 15478 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 15479 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 15480 { 15481 const struct bpf_kfunc_desc *desc; 15482 15483 if (!insn->imm) { 15484 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 15485 return -EINVAL; 15486 } 15487 15488 /* insn->imm has the btf func_id. Replace it with 15489 * an address (relative to __bpf_call_base). 15490 */ 15491 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 15492 if (!desc) { 15493 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 15494 insn->imm); 15495 return -EFAULT; 15496 } 15497 15498 *cnt = 0; 15499 insn->imm = desc->imm; 15500 if (insn->off) 15501 return 0; 15502 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 15503 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15504 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15505 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 15506 15507 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 15508 insn_buf[1] = addr[0]; 15509 insn_buf[2] = addr[1]; 15510 insn_buf[3] = *insn; 15511 *cnt = 4; 15512 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 15513 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15514 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15515 15516 insn_buf[0] = addr[0]; 15517 insn_buf[1] = addr[1]; 15518 insn_buf[2] = *insn; 15519 *cnt = 3; 15520 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 15521 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 15522 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 15523 *cnt = 1; 15524 } 15525 return 0; 15526 } 15527 15528 /* Do various post-verification rewrites in a single program pass. 15529 * These rewrites simplify JIT and interpreter implementations. 15530 */ 15531 static int do_misc_fixups(struct bpf_verifier_env *env) 15532 { 15533 struct bpf_prog *prog = env->prog; 15534 enum bpf_attach_type eatype = prog->expected_attach_type; 15535 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15536 struct bpf_insn *insn = prog->insnsi; 15537 const struct bpf_func_proto *fn; 15538 const int insn_cnt = prog->len; 15539 const struct bpf_map_ops *ops; 15540 struct bpf_insn_aux_data *aux; 15541 struct bpf_insn insn_buf[16]; 15542 struct bpf_prog *new_prog; 15543 struct bpf_map *map_ptr; 15544 int i, ret, cnt, delta = 0; 15545 15546 for (i = 0; i < insn_cnt; i++, insn++) { 15547 /* Make divide-by-zero exceptions impossible. */ 15548 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 15549 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 15550 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 15551 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 15552 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 15553 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 15554 struct bpf_insn *patchlet; 15555 struct bpf_insn chk_and_div[] = { 15556 /* [R,W]x div 0 -> 0 */ 15557 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15558 BPF_JNE | BPF_K, insn->src_reg, 15559 0, 2, 0), 15560 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 15561 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15562 *insn, 15563 }; 15564 struct bpf_insn chk_and_mod[] = { 15565 /* [R,W]x mod 0 -> [R,W]x */ 15566 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15567 BPF_JEQ | BPF_K, insn->src_reg, 15568 0, 1 + (is64 ? 0 : 1), 0), 15569 *insn, 15570 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15571 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 15572 }; 15573 15574 patchlet = isdiv ? chk_and_div : chk_and_mod; 15575 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 15576 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 15577 15578 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 15579 if (!new_prog) 15580 return -ENOMEM; 15581 15582 delta += cnt - 1; 15583 env->prog = prog = new_prog; 15584 insn = new_prog->insnsi + i + delta; 15585 continue; 15586 } 15587 15588 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 15589 if (BPF_CLASS(insn->code) == BPF_LD && 15590 (BPF_MODE(insn->code) == BPF_ABS || 15591 BPF_MODE(insn->code) == BPF_IND)) { 15592 cnt = env->ops->gen_ld_abs(insn, insn_buf); 15593 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15594 verbose(env, "bpf verifier is misconfigured\n"); 15595 return -EINVAL; 15596 } 15597 15598 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15599 if (!new_prog) 15600 return -ENOMEM; 15601 15602 delta += cnt - 1; 15603 env->prog = prog = new_prog; 15604 insn = new_prog->insnsi + i + delta; 15605 continue; 15606 } 15607 15608 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 15609 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 15610 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 15611 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 15612 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 15613 struct bpf_insn *patch = &insn_buf[0]; 15614 bool issrc, isneg, isimm; 15615 u32 off_reg; 15616 15617 aux = &env->insn_aux_data[i + delta]; 15618 if (!aux->alu_state || 15619 aux->alu_state == BPF_ALU_NON_POINTER) 15620 continue; 15621 15622 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 15623 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 15624 BPF_ALU_SANITIZE_SRC; 15625 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 15626 15627 off_reg = issrc ? insn->src_reg : insn->dst_reg; 15628 if (isimm) { 15629 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15630 } else { 15631 if (isneg) 15632 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15633 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15634 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 15635 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 15636 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 15637 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 15638 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 15639 } 15640 if (!issrc) 15641 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 15642 insn->src_reg = BPF_REG_AX; 15643 if (isneg) 15644 insn->code = insn->code == code_add ? 15645 code_sub : code_add; 15646 *patch++ = *insn; 15647 if (issrc && isneg && !isimm) 15648 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15649 cnt = patch - insn_buf; 15650 15651 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15652 if (!new_prog) 15653 return -ENOMEM; 15654 15655 delta += cnt - 1; 15656 env->prog = prog = new_prog; 15657 insn = new_prog->insnsi + i + delta; 15658 continue; 15659 } 15660 15661 if (insn->code != (BPF_JMP | BPF_CALL)) 15662 continue; 15663 if (insn->src_reg == BPF_PSEUDO_CALL) 15664 continue; 15665 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15666 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 15667 if (ret) 15668 return ret; 15669 if (cnt == 0) 15670 continue; 15671 15672 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15673 if (!new_prog) 15674 return -ENOMEM; 15675 15676 delta += cnt - 1; 15677 env->prog = prog = new_prog; 15678 insn = new_prog->insnsi + i + delta; 15679 continue; 15680 } 15681 15682 if (insn->imm == BPF_FUNC_get_route_realm) 15683 prog->dst_needed = 1; 15684 if (insn->imm == BPF_FUNC_get_prandom_u32) 15685 bpf_user_rnd_init_once(); 15686 if (insn->imm == BPF_FUNC_override_return) 15687 prog->kprobe_override = 1; 15688 if (insn->imm == BPF_FUNC_tail_call) { 15689 /* If we tail call into other programs, we 15690 * cannot make any assumptions since they can 15691 * be replaced dynamically during runtime in 15692 * the program array. 15693 */ 15694 prog->cb_access = 1; 15695 if (!allow_tail_call_in_subprogs(env)) 15696 prog->aux->stack_depth = MAX_BPF_STACK; 15697 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 15698 15699 /* mark bpf_tail_call as different opcode to avoid 15700 * conditional branch in the interpreter for every normal 15701 * call and to prevent accidental JITing by JIT compiler 15702 * that doesn't support bpf_tail_call yet 15703 */ 15704 insn->imm = 0; 15705 insn->code = BPF_JMP | BPF_TAIL_CALL; 15706 15707 aux = &env->insn_aux_data[i + delta]; 15708 if (env->bpf_capable && !prog->blinding_requested && 15709 prog->jit_requested && 15710 !bpf_map_key_poisoned(aux) && 15711 !bpf_map_ptr_poisoned(aux) && 15712 !bpf_map_ptr_unpriv(aux)) { 15713 struct bpf_jit_poke_descriptor desc = { 15714 .reason = BPF_POKE_REASON_TAIL_CALL, 15715 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 15716 .tail_call.key = bpf_map_key_immediate(aux), 15717 .insn_idx = i + delta, 15718 }; 15719 15720 ret = bpf_jit_add_poke_descriptor(prog, &desc); 15721 if (ret < 0) { 15722 verbose(env, "adding tail call poke descriptor failed\n"); 15723 return ret; 15724 } 15725 15726 insn->imm = ret + 1; 15727 continue; 15728 } 15729 15730 if (!bpf_map_ptr_unpriv(aux)) 15731 continue; 15732 15733 /* instead of changing every JIT dealing with tail_call 15734 * emit two extra insns: 15735 * if (index >= max_entries) goto out; 15736 * index &= array->index_mask; 15737 * to avoid out-of-bounds cpu speculation 15738 */ 15739 if (bpf_map_ptr_poisoned(aux)) { 15740 verbose(env, "tail_call abusing map_ptr\n"); 15741 return -EINVAL; 15742 } 15743 15744 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15745 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 15746 map_ptr->max_entries, 2); 15747 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 15748 container_of(map_ptr, 15749 struct bpf_array, 15750 map)->index_mask); 15751 insn_buf[2] = *insn; 15752 cnt = 3; 15753 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15754 if (!new_prog) 15755 return -ENOMEM; 15756 15757 delta += cnt - 1; 15758 env->prog = prog = new_prog; 15759 insn = new_prog->insnsi + i + delta; 15760 continue; 15761 } 15762 15763 if (insn->imm == BPF_FUNC_timer_set_callback) { 15764 /* The verifier will process callback_fn as many times as necessary 15765 * with different maps and the register states prepared by 15766 * set_timer_callback_state will be accurate. 15767 * 15768 * The following use case is valid: 15769 * map1 is shared by prog1, prog2, prog3. 15770 * prog1 calls bpf_timer_init for some map1 elements 15771 * prog2 calls bpf_timer_set_callback for some map1 elements. 15772 * Those that were not bpf_timer_init-ed will return -EINVAL. 15773 * prog3 calls bpf_timer_start for some map1 elements. 15774 * Those that were not both bpf_timer_init-ed and 15775 * bpf_timer_set_callback-ed will return -EINVAL. 15776 */ 15777 struct bpf_insn ld_addrs[2] = { 15778 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 15779 }; 15780 15781 insn_buf[0] = ld_addrs[0]; 15782 insn_buf[1] = ld_addrs[1]; 15783 insn_buf[2] = *insn; 15784 cnt = 3; 15785 15786 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15787 if (!new_prog) 15788 return -ENOMEM; 15789 15790 delta += cnt - 1; 15791 env->prog = prog = new_prog; 15792 insn = new_prog->insnsi + i + delta; 15793 goto patch_call_imm; 15794 } 15795 15796 if (is_storage_get_function(insn->imm)) { 15797 if (!env->prog->aux->sleepable || 15798 env->insn_aux_data[i + delta].storage_get_func_atomic) 15799 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 15800 else 15801 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 15802 insn_buf[1] = *insn; 15803 cnt = 2; 15804 15805 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15806 if (!new_prog) 15807 return -ENOMEM; 15808 15809 delta += cnt - 1; 15810 env->prog = prog = new_prog; 15811 insn = new_prog->insnsi + i + delta; 15812 goto patch_call_imm; 15813 } 15814 15815 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 15816 * and other inlining handlers are currently limited to 64 bit 15817 * only. 15818 */ 15819 if (prog->jit_requested && BITS_PER_LONG == 64 && 15820 (insn->imm == BPF_FUNC_map_lookup_elem || 15821 insn->imm == BPF_FUNC_map_update_elem || 15822 insn->imm == BPF_FUNC_map_delete_elem || 15823 insn->imm == BPF_FUNC_map_push_elem || 15824 insn->imm == BPF_FUNC_map_pop_elem || 15825 insn->imm == BPF_FUNC_map_peek_elem || 15826 insn->imm == BPF_FUNC_redirect_map || 15827 insn->imm == BPF_FUNC_for_each_map_elem || 15828 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 15829 aux = &env->insn_aux_data[i + delta]; 15830 if (bpf_map_ptr_poisoned(aux)) 15831 goto patch_call_imm; 15832 15833 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15834 ops = map_ptr->ops; 15835 if (insn->imm == BPF_FUNC_map_lookup_elem && 15836 ops->map_gen_lookup) { 15837 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 15838 if (cnt == -EOPNOTSUPP) 15839 goto patch_map_ops_generic; 15840 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15841 verbose(env, "bpf verifier is misconfigured\n"); 15842 return -EINVAL; 15843 } 15844 15845 new_prog = bpf_patch_insn_data(env, i + delta, 15846 insn_buf, cnt); 15847 if (!new_prog) 15848 return -ENOMEM; 15849 15850 delta += cnt - 1; 15851 env->prog = prog = new_prog; 15852 insn = new_prog->insnsi + i + delta; 15853 continue; 15854 } 15855 15856 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 15857 (void *(*)(struct bpf_map *map, void *key))NULL)); 15858 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 15859 (int (*)(struct bpf_map *map, void *key))NULL)); 15860 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 15861 (int (*)(struct bpf_map *map, void *key, void *value, 15862 u64 flags))NULL)); 15863 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 15864 (int (*)(struct bpf_map *map, void *value, 15865 u64 flags))NULL)); 15866 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 15867 (int (*)(struct bpf_map *map, void *value))NULL)); 15868 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 15869 (int (*)(struct bpf_map *map, void *value))NULL)); 15870 BUILD_BUG_ON(!__same_type(ops->map_redirect, 15871 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 15872 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 15873 (int (*)(struct bpf_map *map, 15874 bpf_callback_t callback_fn, 15875 void *callback_ctx, 15876 u64 flags))NULL)); 15877 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 15878 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 15879 15880 patch_map_ops_generic: 15881 switch (insn->imm) { 15882 case BPF_FUNC_map_lookup_elem: 15883 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 15884 continue; 15885 case BPF_FUNC_map_update_elem: 15886 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 15887 continue; 15888 case BPF_FUNC_map_delete_elem: 15889 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 15890 continue; 15891 case BPF_FUNC_map_push_elem: 15892 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 15893 continue; 15894 case BPF_FUNC_map_pop_elem: 15895 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 15896 continue; 15897 case BPF_FUNC_map_peek_elem: 15898 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 15899 continue; 15900 case BPF_FUNC_redirect_map: 15901 insn->imm = BPF_CALL_IMM(ops->map_redirect); 15902 continue; 15903 case BPF_FUNC_for_each_map_elem: 15904 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 15905 continue; 15906 case BPF_FUNC_map_lookup_percpu_elem: 15907 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 15908 continue; 15909 } 15910 15911 goto patch_call_imm; 15912 } 15913 15914 /* Implement bpf_jiffies64 inline. */ 15915 if (prog->jit_requested && BITS_PER_LONG == 64 && 15916 insn->imm == BPF_FUNC_jiffies64) { 15917 struct bpf_insn ld_jiffies_addr[2] = { 15918 BPF_LD_IMM64(BPF_REG_0, 15919 (unsigned long)&jiffies), 15920 }; 15921 15922 insn_buf[0] = ld_jiffies_addr[0]; 15923 insn_buf[1] = ld_jiffies_addr[1]; 15924 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 15925 BPF_REG_0, 0); 15926 cnt = 3; 15927 15928 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 15929 cnt); 15930 if (!new_prog) 15931 return -ENOMEM; 15932 15933 delta += cnt - 1; 15934 env->prog = prog = new_prog; 15935 insn = new_prog->insnsi + i + delta; 15936 continue; 15937 } 15938 15939 /* Implement bpf_get_func_arg inline. */ 15940 if (prog_type == BPF_PROG_TYPE_TRACING && 15941 insn->imm == BPF_FUNC_get_func_arg) { 15942 /* Load nr_args from ctx - 8 */ 15943 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15944 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 15945 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 15946 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 15947 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 15948 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15949 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 15950 insn_buf[7] = BPF_JMP_A(1); 15951 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 15952 cnt = 9; 15953 15954 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15955 if (!new_prog) 15956 return -ENOMEM; 15957 15958 delta += cnt - 1; 15959 env->prog = prog = new_prog; 15960 insn = new_prog->insnsi + i + delta; 15961 continue; 15962 } 15963 15964 /* Implement bpf_get_func_ret inline. */ 15965 if (prog_type == BPF_PROG_TYPE_TRACING && 15966 insn->imm == BPF_FUNC_get_func_ret) { 15967 if (eatype == BPF_TRACE_FEXIT || 15968 eatype == BPF_MODIFY_RETURN) { 15969 /* Load nr_args from ctx - 8 */ 15970 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15971 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 15972 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 15973 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15974 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 15975 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 15976 cnt = 6; 15977 } else { 15978 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 15979 cnt = 1; 15980 } 15981 15982 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15983 if (!new_prog) 15984 return -ENOMEM; 15985 15986 delta += cnt - 1; 15987 env->prog = prog = new_prog; 15988 insn = new_prog->insnsi + i + delta; 15989 continue; 15990 } 15991 15992 /* Implement get_func_arg_cnt inline. */ 15993 if (prog_type == BPF_PROG_TYPE_TRACING && 15994 insn->imm == BPF_FUNC_get_func_arg_cnt) { 15995 /* Load nr_args from ctx - 8 */ 15996 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15997 15998 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 15999 if (!new_prog) 16000 return -ENOMEM; 16001 16002 env->prog = prog = new_prog; 16003 insn = new_prog->insnsi + i + delta; 16004 continue; 16005 } 16006 16007 /* Implement bpf_get_func_ip inline. */ 16008 if (prog_type == BPF_PROG_TYPE_TRACING && 16009 insn->imm == BPF_FUNC_get_func_ip) { 16010 /* Load IP address from ctx - 16 */ 16011 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 16012 16013 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16014 if (!new_prog) 16015 return -ENOMEM; 16016 16017 env->prog = prog = new_prog; 16018 insn = new_prog->insnsi + i + delta; 16019 continue; 16020 } 16021 16022 patch_call_imm: 16023 fn = env->ops->get_func_proto(insn->imm, env->prog); 16024 /* all functions that have prototype and verifier allowed 16025 * programs to call them, must be real in-kernel functions 16026 */ 16027 if (!fn->func) { 16028 verbose(env, 16029 "kernel subsystem misconfigured func %s#%d\n", 16030 func_id_name(insn->imm), insn->imm); 16031 return -EFAULT; 16032 } 16033 insn->imm = fn->func - __bpf_call_base; 16034 } 16035 16036 /* Since poke tab is now finalized, publish aux to tracker. */ 16037 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16038 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16039 if (!map_ptr->ops->map_poke_track || 16040 !map_ptr->ops->map_poke_untrack || 16041 !map_ptr->ops->map_poke_run) { 16042 verbose(env, "bpf verifier is misconfigured\n"); 16043 return -EINVAL; 16044 } 16045 16046 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 16047 if (ret < 0) { 16048 verbose(env, "tracking tail call prog failed\n"); 16049 return ret; 16050 } 16051 } 16052 16053 sort_kfunc_descs_by_imm(env->prog); 16054 16055 return 0; 16056 } 16057 16058 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 16059 int position, 16060 s32 stack_base, 16061 u32 callback_subprogno, 16062 u32 *cnt) 16063 { 16064 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 16065 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 16066 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 16067 int reg_loop_max = BPF_REG_6; 16068 int reg_loop_cnt = BPF_REG_7; 16069 int reg_loop_ctx = BPF_REG_8; 16070 16071 struct bpf_prog *new_prog; 16072 u32 callback_start; 16073 u32 call_insn_offset; 16074 s32 callback_offset; 16075 16076 /* This represents an inlined version of bpf_iter.c:bpf_loop, 16077 * be careful to modify this code in sync. 16078 */ 16079 struct bpf_insn insn_buf[] = { 16080 /* Return error and jump to the end of the patch if 16081 * expected number of iterations is too big. 16082 */ 16083 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 16084 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 16085 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 16086 /* spill R6, R7, R8 to use these as loop vars */ 16087 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 16088 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 16089 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 16090 /* initialize loop vars */ 16091 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 16092 BPF_MOV32_IMM(reg_loop_cnt, 0), 16093 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 16094 /* loop header, 16095 * if reg_loop_cnt >= reg_loop_max skip the loop body 16096 */ 16097 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 16098 /* callback call, 16099 * correct callback offset would be set after patching 16100 */ 16101 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 16102 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 16103 BPF_CALL_REL(0), 16104 /* increment loop counter */ 16105 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 16106 /* jump to loop header if callback returned 0 */ 16107 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 16108 /* return value of bpf_loop, 16109 * set R0 to the number of iterations 16110 */ 16111 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 16112 /* restore original values of R6, R7, R8 */ 16113 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 16114 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 16115 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 16116 }; 16117 16118 *cnt = ARRAY_SIZE(insn_buf); 16119 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 16120 if (!new_prog) 16121 return new_prog; 16122 16123 /* callback start is known only after patching */ 16124 callback_start = env->subprog_info[callback_subprogno].start; 16125 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 16126 call_insn_offset = position + 12; 16127 callback_offset = callback_start - call_insn_offset - 1; 16128 new_prog->insnsi[call_insn_offset].imm = callback_offset; 16129 16130 return new_prog; 16131 } 16132 16133 static bool is_bpf_loop_call(struct bpf_insn *insn) 16134 { 16135 return insn->code == (BPF_JMP | BPF_CALL) && 16136 insn->src_reg == 0 && 16137 insn->imm == BPF_FUNC_loop; 16138 } 16139 16140 /* For all sub-programs in the program (including main) check 16141 * insn_aux_data to see if there are bpf_loop calls that require 16142 * inlining. If such calls are found the calls are replaced with a 16143 * sequence of instructions produced by `inline_bpf_loop` function and 16144 * subprog stack_depth is increased by the size of 3 registers. 16145 * This stack space is used to spill values of the R6, R7, R8. These 16146 * registers are used to store the loop bound, counter and context 16147 * variables. 16148 */ 16149 static int optimize_bpf_loop(struct bpf_verifier_env *env) 16150 { 16151 struct bpf_subprog_info *subprogs = env->subprog_info; 16152 int i, cur_subprog = 0, cnt, delta = 0; 16153 struct bpf_insn *insn = env->prog->insnsi; 16154 int insn_cnt = env->prog->len; 16155 u16 stack_depth = subprogs[cur_subprog].stack_depth; 16156 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16157 u16 stack_depth_extra = 0; 16158 16159 for (i = 0; i < insn_cnt; i++, insn++) { 16160 struct bpf_loop_inline_state *inline_state = 16161 &env->insn_aux_data[i + delta].loop_inline_state; 16162 16163 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 16164 struct bpf_prog *new_prog; 16165 16166 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 16167 new_prog = inline_bpf_loop(env, 16168 i + delta, 16169 -(stack_depth + stack_depth_extra), 16170 inline_state->callback_subprogno, 16171 &cnt); 16172 if (!new_prog) 16173 return -ENOMEM; 16174 16175 delta += cnt - 1; 16176 env->prog = new_prog; 16177 insn = new_prog->insnsi + i + delta; 16178 } 16179 16180 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 16181 subprogs[cur_subprog].stack_depth += stack_depth_extra; 16182 cur_subprog++; 16183 stack_depth = subprogs[cur_subprog].stack_depth; 16184 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16185 stack_depth_extra = 0; 16186 } 16187 } 16188 16189 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16190 16191 return 0; 16192 } 16193 16194 static void free_states(struct bpf_verifier_env *env) 16195 { 16196 struct bpf_verifier_state_list *sl, *sln; 16197 int i; 16198 16199 sl = env->free_list; 16200 while (sl) { 16201 sln = sl->next; 16202 free_verifier_state(&sl->state, false); 16203 kfree(sl); 16204 sl = sln; 16205 } 16206 env->free_list = NULL; 16207 16208 if (!env->explored_states) 16209 return; 16210 16211 for (i = 0; i < state_htab_size(env); i++) { 16212 sl = env->explored_states[i]; 16213 16214 while (sl) { 16215 sln = sl->next; 16216 free_verifier_state(&sl->state, false); 16217 kfree(sl); 16218 sl = sln; 16219 } 16220 env->explored_states[i] = NULL; 16221 } 16222 } 16223 16224 static int do_check_common(struct bpf_verifier_env *env, int subprog) 16225 { 16226 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16227 struct bpf_verifier_state *state; 16228 struct bpf_reg_state *regs; 16229 int ret, i; 16230 16231 env->prev_linfo = NULL; 16232 env->pass_cnt++; 16233 16234 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 16235 if (!state) 16236 return -ENOMEM; 16237 state->curframe = 0; 16238 state->speculative = false; 16239 state->branches = 1; 16240 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 16241 if (!state->frame[0]) { 16242 kfree(state); 16243 return -ENOMEM; 16244 } 16245 env->cur_state = state; 16246 init_func_state(env, state->frame[0], 16247 BPF_MAIN_FUNC /* callsite */, 16248 0 /* frameno */, 16249 subprog); 16250 state->first_insn_idx = env->subprog_info[subprog].start; 16251 state->last_insn_idx = -1; 16252 16253 regs = state->frame[state->curframe]->regs; 16254 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 16255 ret = btf_prepare_func_args(env, subprog, regs); 16256 if (ret) 16257 goto out; 16258 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 16259 if (regs[i].type == PTR_TO_CTX) 16260 mark_reg_known_zero(env, regs, i); 16261 else if (regs[i].type == SCALAR_VALUE) 16262 mark_reg_unknown(env, regs, i); 16263 else if (base_type(regs[i].type) == PTR_TO_MEM) { 16264 const u32 mem_size = regs[i].mem_size; 16265 16266 mark_reg_known_zero(env, regs, i); 16267 regs[i].mem_size = mem_size; 16268 regs[i].id = ++env->id_gen; 16269 } 16270 } 16271 } else { 16272 /* 1st arg to a function */ 16273 regs[BPF_REG_1].type = PTR_TO_CTX; 16274 mark_reg_known_zero(env, regs, BPF_REG_1); 16275 ret = btf_check_subprog_arg_match(env, subprog, regs); 16276 if (ret == -EFAULT) 16277 /* unlikely verifier bug. abort. 16278 * ret == 0 and ret < 0 are sadly acceptable for 16279 * main() function due to backward compatibility. 16280 * Like socket filter program may be written as: 16281 * int bpf_prog(struct pt_regs *ctx) 16282 * and never dereference that ctx in the program. 16283 * 'struct pt_regs' is a type mismatch for socket 16284 * filter that should be using 'struct __sk_buff'. 16285 */ 16286 goto out; 16287 } 16288 16289 ret = do_check(env); 16290 out: 16291 /* check for NULL is necessary, since cur_state can be freed inside 16292 * do_check() under memory pressure. 16293 */ 16294 if (env->cur_state) { 16295 free_verifier_state(env->cur_state, true); 16296 env->cur_state = NULL; 16297 } 16298 while (!pop_stack(env, NULL, NULL, false)); 16299 if (!ret && pop_log) 16300 bpf_vlog_reset(&env->log, 0); 16301 free_states(env); 16302 return ret; 16303 } 16304 16305 /* Verify all global functions in a BPF program one by one based on their BTF. 16306 * All global functions must pass verification. Otherwise the whole program is rejected. 16307 * Consider: 16308 * int bar(int); 16309 * int foo(int f) 16310 * { 16311 * return bar(f); 16312 * } 16313 * int bar(int b) 16314 * { 16315 * ... 16316 * } 16317 * foo() will be verified first for R1=any_scalar_value. During verification it 16318 * will be assumed that bar() already verified successfully and call to bar() 16319 * from foo() will be checked for type match only. Later bar() will be verified 16320 * independently to check that it's safe for R1=any_scalar_value. 16321 */ 16322 static int do_check_subprogs(struct bpf_verifier_env *env) 16323 { 16324 struct bpf_prog_aux *aux = env->prog->aux; 16325 int i, ret; 16326 16327 if (!aux->func_info) 16328 return 0; 16329 16330 for (i = 1; i < env->subprog_cnt; i++) { 16331 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 16332 continue; 16333 env->insn_idx = env->subprog_info[i].start; 16334 WARN_ON_ONCE(env->insn_idx == 0); 16335 ret = do_check_common(env, i); 16336 if (ret) { 16337 return ret; 16338 } else if (env->log.level & BPF_LOG_LEVEL) { 16339 verbose(env, 16340 "Func#%d is safe for any args that match its prototype\n", 16341 i); 16342 } 16343 } 16344 return 0; 16345 } 16346 16347 static int do_check_main(struct bpf_verifier_env *env) 16348 { 16349 int ret; 16350 16351 env->insn_idx = 0; 16352 ret = do_check_common(env, 0); 16353 if (!ret) 16354 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16355 return ret; 16356 } 16357 16358 16359 static void print_verification_stats(struct bpf_verifier_env *env) 16360 { 16361 int i; 16362 16363 if (env->log.level & BPF_LOG_STATS) { 16364 verbose(env, "verification time %lld usec\n", 16365 div_u64(env->verification_time, 1000)); 16366 verbose(env, "stack depth "); 16367 for (i = 0; i < env->subprog_cnt; i++) { 16368 u32 depth = env->subprog_info[i].stack_depth; 16369 16370 verbose(env, "%d", depth); 16371 if (i + 1 < env->subprog_cnt) 16372 verbose(env, "+"); 16373 } 16374 verbose(env, "\n"); 16375 } 16376 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 16377 "total_states %d peak_states %d mark_read %d\n", 16378 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 16379 env->max_states_per_insn, env->total_states, 16380 env->peak_states, env->longest_mark_read_walk); 16381 } 16382 16383 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 16384 { 16385 const struct btf_type *t, *func_proto; 16386 const struct bpf_struct_ops *st_ops; 16387 const struct btf_member *member; 16388 struct bpf_prog *prog = env->prog; 16389 u32 btf_id, member_idx; 16390 const char *mname; 16391 16392 if (!prog->gpl_compatible) { 16393 verbose(env, "struct ops programs must have a GPL compatible license\n"); 16394 return -EINVAL; 16395 } 16396 16397 btf_id = prog->aux->attach_btf_id; 16398 st_ops = bpf_struct_ops_find(btf_id); 16399 if (!st_ops) { 16400 verbose(env, "attach_btf_id %u is not a supported struct\n", 16401 btf_id); 16402 return -ENOTSUPP; 16403 } 16404 16405 t = st_ops->type; 16406 member_idx = prog->expected_attach_type; 16407 if (member_idx >= btf_type_vlen(t)) { 16408 verbose(env, "attach to invalid member idx %u of struct %s\n", 16409 member_idx, st_ops->name); 16410 return -EINVAL; 16411 } 16412 16413 member = &btf_type_member(t)[member_idx]; 16414 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 16415 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 16416 NULL); 16417 if (!func_proto) { 16418 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 16419 mname, member_idx, st_ops->name); 16420 return -EINVAL; 16421 } 16422 16423 if (st_ops->check_member) { 16424 int err = st_ops->check_member(t, member); 16425 16426 if (err) { 16427 verbose(env, "attach to unsupported member %s of struct %s\n", 16428 mname, st_ops->name); 16429 return err; 16430 } 16431 } 16432 16433 prog->aux->attach_func_proto = func_proto; 16434 prog->aux->attach_func_name = mname; 16435 env->ops = st_ops->verifier_ops; 16436 16437 return 0; 16438 } 16439 #define SECURITY_PREFIX "security_" 16440 16441 static int check_attach_modify_return(unsigned long addr, const char *func_name) 16442 { 16443 if (within_error_injection_list(addr) || 16444 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 16445 return 0; 16446 16447 return -EINVAL; 16448 } 16449 16450 /* list of non-sleepable functions that are otherwise on 16451 * ALLOW_ERROR_INJECTION list 16452 */ 16453 BTF_SET_START(btf_non_sleepable_error_inject) 16454 /* Three functions below can be called from sleepable and non-sleepable context. 16455 * Assume non-sleepable from bpf safety point of view. 16456 */ 16457 BTF_ID(func, __filemap_add_folio) 16458 BTF_ID(func, should_fail_alloc_page) 16459 BTF_ID(func, should_failslab) 16460 BTF_SET_END(btf_non_sleepable_error_inject) 16461 16462 static int check_non_sleepable_error_inject(u32 btf_id) 16463 { 16464 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 16465 } 16466 16467 int bpf_check_attach_target(struct bpf_verifier_log *log, 16468 const struct bpf_prog *prog, 16469 const struct bpf_prog *tgt_prog, 16470 u32 btf_id, 16471 struct bpf_attach_target_info *tgt_info) 16472 { 16473 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 16474 const char prefix[] = "btf_trace_"; 16475 int ret = 0, subprog = -1, i; 16476 const struct btf_type *t; 16477 bool conservative = true; 16478 const char *tname; 16479 struct btf *btf; 16480 long addr = 0; 16481 16482 if (!btf_id) { 16483 bpf_log(log, "Tracing programs must provide btf_id\n"); 16484 return -EINVAL; 16485 } 16486 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 16487 if (!btf) { 16488 bpf_log(log, 16489 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 16490 return -EINVAL; 16491 } 16492 t = btf_type_by_id(btf, btf_id); 16493 if (!t) { 16494 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 16495 return -EINVAL; 16496 } 16497 tname = btf_name_by_offset(btf, t->name_off); 16498 if (!tname) { 16499 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 16500 return -EINVAL; 16501 } 16502 if (tgt_prog) { 16503 struct bpf_prog_aux *aux = tgt_prog->aux; 16504 16505 for (i = 0; i < aux->func_info_cnt; i++) 16506 if (aux->func_info[i].type_id == btf_id) { 16507 subprog = i; 16508 break; 16509 } 16510 if (subprog == -1) { 16511 bpf_log(log, "Subprog %s doesn't exist\n", tname); 16512 return -EINVAL; 16513 } 16514 conservative = aux->func_info_aux[subprog].unreliable; 16515 if (prog_extension) { 16516 if (conservative) { 16517 bpf_log(log, 16518 "Cannot replace static functions\n"); 16519 return -EINVAL; 16520 } 16521 if (!prog->jit_requested) { 16522 bpf_log(log, 16523 "Extension programs should be JITed\n"); 16524 return -EINVAL; 16525 } 16526 } 16527 if (!tgt_prog->jited) { 16528 bpf_log(log, "Can attach to only JITed progs\n"); 16529 return -EINVAL; 16530 } 16531 if (tgt_prog->type == prog->type) { 16532 /* Cannot fentry/fexit another fentry/fexit program. 16533 * Cannot attach program extension to another extension. 16534 * It's ok to attach fentry/fexit to extension program. 16535 */ 16536 bpf_log(log, "Cannot recursively attach\n"); 16537 return -EINVAL; 16538 } 16539 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 16540 prog_extension && 16541 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 16542 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 16543 /* Program extensions can extend all program types 16544 * except fentry/fexit. The reason is the following. 16545 * The fentry/fexit programs are used for performance 16546 * analysis, stats and can be attached to any program 16547 * type except themselves. When extension program is 16548 * replacing XDP function it is necessary to allow 16549 * performance analysis of all functions. Both original 16550 * XDP program and its program extension. Hence 16551 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 16552 * allowed. If extending of fentry/fexit was allowed it 16553 * would be possible to create long call chain 16554 * fentry->extension->fentry->extension beyond 16555 * reasonable stack size. Hence extending fentry is not 16556 * allowed. 16557 */ 16558 bpf_log(log, "Cannot extend fentry/fexit\n"); 16559 return -EINVAL; 16560 } 16561 } else { 16562 if (prog_extension) { 16563 bpf_log(log, "Cannot replace kernel functions\n"); 16564 return -EINVAL; 16565 } 16566 } 16567 16568 switch (prog->expected_attach_type) { 16569 case BPF_TRACE_RAW_TP: 16570 if (tgt_prog) { 16571 bpf_log(log, 16572 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 16573 return -EINVAL; 16574 } 16575 if (!btf_type_is_typedef(t)) { 16576 bpf_log(log, "attach_btf_id %u is not a typedef\n", 16577 btf_id); 16578 return -EINVAL; 16579 } 16580 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 16581 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 16582 btf_id, tname); 16583 return -EINVAL; 16584 } 16585 tname += sizeof(prefix) - 1; 16586 t = btf_type_by_id(btf, t->type); 16587 if (!btf_type_is_ptr(t)) 16588 /* should never happen in valid vmlinux build */ 16589 return -EINVAL; 16590 t = btf_type_by_id(btf, t->type); 16591 if (!btf_type_is_func_proto(t)) 16592 /* should never happen in valid vmlinux build */ 16593 return -EINVAL; 16594 16595 break; 16596 case BPF_TRACE_ITER: 16597 if (!btf_type_is_func(t)) { 16598 bpf_log(log, "attach_btf_id %u is not a function\n", 16599 btf_id); 16600 return -EINVAL; 16601 } 16602 t = btf_type_by_id(btf, t->type); 16603 if (!btf_type_is_func_proto(t)) 16604 return -EINVAL; 16605 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16606 if (ret) 16607 return ret; 16608 break; 16609 default: 16610 if (!prog_extension) 16611 return -EINVAL; 16612 fallthrough; 16613 case BPF_MODIFY_RETURN: 16614 case BPF_LSM_MAC: 16615 case BPF_LSM_CGROUP: 16616 case BPF_TRACE_FENTRY: 16617 case BPF_TRACE_FEXIT: 16618 if (!btf_type_is_func(t)) { 16619 bpf_log(log, "attach_btf_id %u is not a function\n", 16620 btf_id); 16621 return -EINVAL; 16622 } 16623 if (prog_extension && 16624 btf_check_type_match(log, prog, btf, t)) 16625 return -EINVAL; 16626 t = btf_type_by_id(btf, t->type); 16627 if (!btf_type_is_func_proto(t)) 16628 return -EINVAL; 16629 16630 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 16631 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 16632 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 16633 return -EINVAL; 16634 16635 if (tgt_prog && conservative) 16636 t = NULL; 16637 16638 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16639 if (ret < 0) 16640 return ret; 16641 16642 if (tgt_prog) { 16643 if (subprog == 0) 16644 addr = (long) tgt_prog->bpf_func; 16645 else 16646 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 16647 } else { 16648 addr = kallsyms_lookup_name(tname); 16649 if (!addr) { 16650 bpf_log(log, 16651 "The address of function %s cannot be found\n", 16652 tname); 16653 return -ENOENT; 16654 } 16655 } 16656 16657 if (prog->aux->sleepable) { 16658 ret = -EINVAL; 16659 switch (prog->type) { 16660 case BPF_PROG_TYPE_TRACING: 16661 16662 /* fentry/fexit/fmod_ret progs can be sleepable if they are 16663 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 16664 */ 16665 if (!check_non_sleepable_error_inject(btf_id) && 16666 within_error_injection_list(addr)) 16667 ret = 0; 16668 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 16669 * in the fmodret id set with the KF_SLEEPABLE flag. 16670 */ 16671 else { 16672 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 16673 16674 if (flags && (*flags & KF_SLEEPABLE)) 16675 ret = 0; 16676 } 16677 break; 16678 case BPF_PROG_TYPE_LSM: 16679 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 16680 * Only some of them are sleepable. 16681 */ 16682 if (bpf_lsm_is_sleepable_hook(btf_id)) 16683 ret = 0; 16684 break; 16685 default: 16686 break; 16687 } 16688 if (ret) { 16689 bpf_log(log, "%s is not sleepable\n", tname); 16690 return ret; 16691 } 16692 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 16693 if (tgt_prog) { 16694 bpf_log(log, "can't modify return codes of BPF programs\n"); 16695 return -EINVAL; 16696 } 16697 ret = -EINVAL; 16698 if (btf_kfunc_is_modify_return(btf, btf_id) || 16699 !check_attach_modify_return(addr, tname)) 16700 ret = 0; 16701 if (ret) { 16702 bpf_log(log, "%s() is not modifiable\n", tname); 16703 return ret; 16704 } 16705 } 16706 16707 break; 16708 } 16709 tgt_info->tgt_addr = addr; 16710 tgt_info->tgt_name = tname; 16711 tgt_info->tgt_type = t; 16712 return 0; 16713 } 16714 16715 BTF_SET_START(btf_id_deny) 16716 BTF_ID_UNUSED 16717 #ifdef CONFIG_SMP 16718 BTF_ID(func, migrate_disable) 16719 BTF_ID(func, migrate_enable) 16720 #endif 16721 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 16722 BTF_ID(func, rcu_read_unlock_strict) 16723 #endif 16724 BTF_SET_END(btf_id_deny) 16725 16726 static int check_attach_btf_id(struct bpf_verifier_env *env) 16727 { 16728 struct bpf_prog *prog = env->prog; 16729 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 16730 struct bpf_attach_target_info tgt_info = {}; 16731 u32 btf_id = prog->aux->attach_btf_id; 16732 struct bpf_trampoline *tr; 16733 int ret; 16734 u64 key; 16735 16736 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 16737 if (prog->aux->sleepable) 16738 /* attach_btf_id checked to be zero already */ 16739 return 0; 16740 verbose(env, "Syscall programs can only be sleepable\n"); 16741 return -EINVAL; 16742 } 16743 16744 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 16745 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 16746 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 16747 return -EINVAL; 16748 } 16749 16750 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 16751 return check_struct_ops_btf_id(env); 16752 16753 if (prog->type != BPF_PROG_TYPE_TRACING && 16754 prog->type != BPF_PROG_TYPE_LSM && 16755 prog->type != BPF_PROG_TYPE_EXT) 16756 return 0; 16757 16758 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 16759 if (ret) 16760 return ret; 16761 16762 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 16763 /* to make freplace equivalent to their targets, they need to 16764 * inherit env->ops and expected_attach_type for the rest of the 16765 * verification 16766 */ 16767 env->ops = bpf_verifier_ops[tgt_prog->type]; 16768 prog->expected_attach_type = tgt_prog->expected_attach_type; 16769 } 16770 16771 /* store info about the attachment target that will be used later */ 16772 prog->aux->attach_func_proto = tgt_info.tgt_type; 16773 prog->aux->attach_func_name = tgt_info.tgt_name; 16774 16775 if (tgt_prog) { 16776 prog->aux->saved_dst_prog_type = tgt_prog->type; 16777 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 16778 } 16779 16780 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 16781 prog->aux->attach_btf_trace = true; 16782 return 0; 16783 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 16784 if (!bpf_iter_prog_supported(prog)) 16785 return -EINVAL; 16786 return 0; 16787 } 16788 16789 if (prog->type == BPF_PROG_TYPE_LSM) { 16790 ret = bpf_lsm_verify_prog(&env->log, prog); 16791 if (ret < 0) 16792 return ret; 16793 } else if (prog->type == BPF_PROG_TYPE_TRACING && 16794 btf_id_set_contains(&btf_id_deny, btf_id)) { 16795 return -EINVAL; 16796 } 16797 16798 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 16799 tr = bpf_trampoline_get(key, &tgt_info); 16800 if (!tr) 16801 return -ENOMEM; 16802 16803 prog->aux->dst_trampoline = tr; 16804 return 0; 16805 } 16806 16807 struct btf *bpf_get_btf_vmlinux(void) 16808 { 16809 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 16810 mutex_lock(&bpf_verifier_lock); 16811 if (!btf_vmlinux) 16812 btf_vmlinux = btf_parse_vmlinux(); 16813 mutex_unlock(&bpf_verifier_lock); 16814 } 16815 return btf_vmlinux; 16816 } 16817 16818 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 16819 { 16820 u64 start_time = ktime_get_ns(); 16821 struct bpf_verifier_env *env; 16822 struct bpf_verifier_log *log; 16823 int i, len, ret = -EINVAL; 16824 bool is_priv; 16825 16826 /* no program is valid */ 16827 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 16828 return -EINVAL; 16829 16830 /* 'struct bpf_verifier_env' can be global, but since it's not small, 16831 * allocate/free it every time bpf_check() is called 16832 */ 16833 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 16834 if (!env) 16835 return -ENOMEM; 16836 log = &env->log; 16837 16838 len = (*prog)->len; 16839 env->insn_aux_data = 16840 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 16841 ret = -ENOMEM; 16842 if (!env->insn_aux_data) 16843 goto err_free_env; 16844 for (i = 0; i < len; i++) 16845 env->insn_aux_data[i].orig_idx = i; 16846 env->prog = *prog; 16847 env->ops = bpf_verifier_ops[env->prog->type]; 16848 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 16849 is_priv = bpf_capable(); 16850 16851 bpf_get_btf_vmlinux(); 16852 16853 /* grab the mutex to protect few globals used by verifier */ 16854 if (!is_priv) 16855 mutex_lock(&bpf_verifier_lock); 16856 16857 if (attr->log_level || attr->log_buf || attr->log_size) { 16858 /* user requested verbose verifier output 16859 * and supplied buffer to store the verification trace 16860 */ 16861 log->level = attr->log_level; 16862 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 16863 log->len_total = attr->log_size; 16864 16865 /* log attributes have to be sane */ 16866 if (!bpf_verifier_log_attr_valid(log)) { 16867 ret = -EINVAL; 16868 goto err_unlock; 16869 } 16870 } 16871 16872 mark_verifier_state_clean(env); 16873 16874 if (IS_ERR(btf_vmlinux)) { 16875 /* Either gcc or pahole or kernel are broken. */ 16876 verbose(env, "in-kernel BTF is malformed\n"); 16877 ret = PTR_ERR(btf_vmlinux); 16878 goto skip_full_check; 16879 } 16880 16881 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 16882 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 16883 env->strict_alignment = true; 16884 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 16885 env->strict_alignment = false; 16886 16887 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 16888 env->allow_uninit_stack = bpf_allow_uninit_stack(); 16889 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 16890 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 16891 env->bpf_capable = bpf_capable(); 16892 env->rcu_tag_supported = btf_vmlinux && 16893 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0; 16894 16895 if (is_priv) 16896 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 16897 16898 env->explored_states = kvcalloc(state_htab_size(env), 16899 sizeof(struct bpf_verifier_state_list *), 16900 GFP_USER); 16901 ret = -ENOMEM; 16902 if (!env->explored_states) 16903 goto skip_full_check; 16904 16905 ret = add_subprog_and_kfunc(env); 16906 if (ret < 0) 16907 goto skip_full_check; 16908 16909 ret = check_subprogs(env); 16910 if (ret < 0) 16911 goto skip_full_check; 16912 16913 ret = check_btf_info(env, attr, uattr); 16914 if (ret < 0) 16915 goto skip_full_check; 16916 16917 ret = check_attach_btf_id(env); 16918 if (ret) 16919 goto skip_full_check; 16920 16921 ret = resolve_pseudo_ldimm64(env); 16922 if (ret < 0) 16923 goto skip_full_check; 16924 16925 if (bpf_prog_is_dev_bound(env->prog->aux)) { 16926 ret = bpf_prog_offload_verifier_prep(env->prog); 16927 if (ret) 16928 goto skip_full_check; 16929 } 16930 16931 ret = check_cfg(env); 16932 if (ret < 0) 16933 goto skip_full_check; 16934 16935 ret = do_check_subprogs(env); 16936 ret = ret ?: do_check_main(env); 16937 16938 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 16939 ret = bpf_prog_offload_finalize(env); 16940 16941 skip_full_check: 16942 kvfree(env->explored_states); 16943 16944 if (ret == 0) 16945 ret = check_max_stack_depth(env); 16946 16947 /* instruction rewrites happen after this point */ 16948 if (ret == 0) 16949 ret = optimize_bpf_loop(env); 16950 16951 if (is_priv) { 16952 if (ret == 0) 16953 opt_hard_wire_dead_code_branches(env); 16954 if (ret == 0) 16955 ret = opt_remove_dead_code(env); 16956 if (ret == 0) 16957 ret = opt_remove_nops(env); 16958 } else { 16959 if (ret == 0) 16960 sanitize_dead_code(env); 16961 } 16962 16963 if (ret == 0) 16964 /* program is valid, convert *(u32*)(ctx + off) accesses */ 16965 ret = convert_ctx_accesses(env); 16966 16967 if (ret == 0) 16968 ret = do_misc_fixups(env); 16969 16970 /* do 32-bit optimization after insn patching has done so those patched 16971 * insns could be handled correctly. 16972 */ 16973 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 16974 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 16975 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 16976 : false; 16977 } 16978 16979 if (ret == 0) 16980 ret = fixup_call_args(env); 16981 16982 env->verification_time = ktime_get_ns() - start_time; 16983 print_verification_stats(env); 16984 env->prog->aux->verified_insns = env->insn_processed; 16985 16986 if (log->level && bpf_verifier_log_full(log)) 16987 ret = -ENOSPC; 16988 if (log->level && !log->ubuf) { 16989 ret = -EFAULT; 16990 goto err_release_maps; 16991 } 16992 16993 if (ret) 16994 goto err_release_maps; 16995 16996 if (env->used_map_cnt) { 16997 /* if program passed verifier, update used_maps in bpf_prog_info */ 16998 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 16999 sizeof(env->used_maps[0]), 17000 GFP_KERNEL); 17001 17002 if (!env->prog->aux->used_maps) { 17003 ret = -ENOMEM; 17004 goto err_release_maps; 17005 } 17006 17007 memcpy(env->prog->aux->used_maps, env->used_maps, 17008 sizeof(env->used_maps[0]) * env->used_map_cnt); 17009 env->prog->aux->used_map_cnt = env->used_map_cnt; 17010 } 17011 if (env->used_btf_cnt) { 17012 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 17013 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 17014 sizeof(env->used_btfs[0]), 17015 GFP_KERNEL); 17016 if (!env->prog->aux->used_btfs) { 17017 ret = -ENOMEM; 17018 goto err_release_maps; 17019 } 17020 17021 memcpy(env->prog->aux->used_btfs, env->used_btfs, 17022 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 17023 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 17024 } 17025 if (env->used_map_cnt || env->used_btf_cnt) { 17026 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 17027 * bpf_ld_imm64 instructions 17028 */ 17029 convert_pseudo_ld_imm64(env); 17030 } 17031 17032 adjust_btf_func(env); 17033 17034 err_release_maps: 17035 if (!env->prog->aux->used_maps) 17036 /* if we didn't copy map pointers into bpf_prog_info, release 17037 * them now. Otherwise free_used_maps() will release them. 17038 */ 17039 release_maps(env); 17040 if (!env->prog->aux->used_btfs) 17041 release_btfs(env); 17042 17043 /* extension progs temporarily inherit the attach_type of their targets 17044 for verification purposes, so set it back to zero before returning 17045 */ 17046 if (env->prog->type == BPF_PROG_TYPE_EXT) 17047 env->prog->expected_attach_type = 0; 17048 17049 *prog = env->prog; 17050 err_unlock: 17051 if (!is_priv) 17052 mutex_unlock(&bpf_verifier_lock); 17053 vfree(env->insn_aux_data); 17054 err_free_env: 17055 kfree(env); 17056 return ret; 17057 } 17058