xref: /openbmc/linux/kernel/bpf/verifier.c (revision 20a2742e)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 #include "disasm.h"
25 
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 	[_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34 
35 /* bpf_check() is a static code analyzer that walks eBPF program
36  * instruction by instruction and updates register/stack state.
37  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38  *
39  * The first pass is depth-first-search to check that the program is a DAG.
40  * It rejects the following programs:
41  * - larger than BPF_MAXINSNS insns
42  * - if loop is present (detected via back-edge)
43  * - unreachable insns exist (shouldn't be a forest. program = one function)
44  * - out of bounds or malformed jumps
45  * The second pass is all possible path descent from the 1st insn.
46  * Since it's analyzing all pathes through the program, the length of the
47  * analysis is limited to 64k insn, which may be hit even if total number of
48  * insn is less then 4K, but there are too many branches that change stack/regs.
49  * Number of 'branches to be analyzed' is limited to 1k
50  *
51  * On entry to each instruction, each register has a type, and the instruction
52  * changes the types of the registers depending on instruction semantics.
53  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54  * copied to R1.
55  *
56  * All registers are 64-bit.
57  * R0 - return register
58  * R1-R5 argument passing registers
59  * R6-R9 callee saved registers
60  * R10 - frame pointer read-only
61  *
62  * At the start of BPF program the register R1 contains a pointer to bpf_context
63  * and has type PTR_TO_CTX.
64  *
65  * Verifier tracks arithmetic operations on pointers in case:
66  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68  * 1st insn copies R10 (which has FRAME_PTR) type into R1
69  * and 2nd arithmetic instruction is pattern matched to recognize
70  * that it wants to construct a pointer to some element within stack.
71  * So after 2nd insn, the register R1 has type PTR_TO_STACK
72  * (and -20 constant is saved for further stack bounds checking).
73  * Meaning that this reg is a pointer to stack plus known immediate constant.
74  *
75  * Most of the time the registers have SCALAR_VALUE type, which
76  * means the register has some value, but it's not a valid pointer.
77  * (like pointer plus pointer becomes SCALAR_VALUE type)
78  *
79  * When verifier sees load or store instructions the type of base register
80  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81  * types recognized by check_mem_access() function.
82  *
83  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84  * and the range of [ptr, ptr + map's value_size) is accessible.
85  *
86  * registers used to pass values to function calls are checked against
87  * function argument constraints.
88  *
89  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90  * It means that the register type passed to this function must be
91  * PTR_TO_STACK and it will be used inside the function as
92  * 'pointer to map element key'
93  *
94  * For example the argument constraints for bpf_map_lookup_elem():
95  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96  *   .arg1_type = ARG_CONST_MAP_PTR,
97  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
98  *
99  * ret_type says that this function returns 'pointer to map elem value or null'
100  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101  * 2nd argument should be a pointer to stack, which will be used inside
102  * the helper function as a pointer to map element key.
103  *
104  * On the kernel side the helper function looks like:
105  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106  * {
107  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108  *    void *key = (void *) (unsigned long) r2;
109  *    void *value;
110  *
111  *    here kernel can access 'key' and 'map' pointers safely, knowing that
112  *    [key, key + map->key_size) bytes are valid and were initialized on
113  *    the stack of eBPF program.
114  * }
115  *
116  * Corresponding eBPF program may look like:
117  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
118  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
120  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121  * here verifier looks at prototype of map_lookup_elem() and sees:
122  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124  *
125  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127  * and were initialized prior to this call.
128  * If it's ok, then verifier allows this BPF_CALL insn and looks at
129  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131  * returns ether pointer to map value or NULL.
132  *
133  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134  * insn, the register holding that pointer in the true branch changes state to
135  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136  * branch. See check_cond_jmp_op().
137  *
138  * After the call R0 is set to return type of the function and registers R1-R5
139  * are set to NOT_INIT to indicate that they are no longer readable.
140  */
141 
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 	/* verifer state is 'st'
145 	 * before processing instruction 'insn_idx'
146 	 * and after processing instruction 'prev_insn_idx'
147 	 */
148 	struct bpf_verifier_state st;
149 	int insn_idx;
150 	int prev_insn_idx;
151 	struct bpf_verifier_stack_elem *next;
152 };
153 
154 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 #define BPF_COMPLEXITY_LIMIT_STACK	1024
156 
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158 
159 struct bpf_call_arg_meta {
160 	struct bpf_map *map_ptr;
161 	bool raw_mode;
162 	bool pkt_access;
163 	int regno;
164 	int access_size;
165 };
166 
167 static DEFINE_MUTEX(bpf_verifier_lock);
168 
169 /* log_level controls verbosity level of eBPF verifier.
170  * verbose() is used to dump the verification trace to the log, so the user
171  * can figure out what's wrong with the program
172  */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 				   const char *fmt, ...)
175 {
176 	struct bpf_verifer_log *log = &env->log;
177 	unsigned int n;
178 	va_list args;
179 
180 	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 		return;
182 
183 	va_start(args, fmt);
184 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 	va_end(args);
186 
187 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 		  "verifier log line truncated - local buffer too short\n");
189 
190 	n = min(log->len_total - log->len_used - 1, n);
191 	log->kbuf[n] = '\0';
192 
193 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 		log->len_used += n;
195 	else
196 		log->ubuf = NULL;
197 }
198 
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 	return type == PTR_TO_PACKET ||
202 	       type == PTR_TO_PACKET_META;
203 }
204 
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 	[NOT_INIT]		= "?",
208 	[SCALAR_VALUE]		= "inv",
209 	[PTR_TO_CTX]		= "ctx",
210 	[CONST_PTR_TO_MAP]	= "map_ptr",
211 	[PTR_TO_MAP_VALUE]	= "map_value",
212 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 	[PTR_TO_STACK]		= "fp",
214 	[PTR_TO_PACKET]		= "pkt",
215 	[PTR_TO_PACKET_META]	= "pkt_meta",
216 	[PTR_TO_PACKET_END]	= "pkt_end",
217 };
218 
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 				 struct bpf_verifier_state *state)
221 {
222 	struct bpf_reg_state *reg;
223 	enum bpf_reg_type t;
224 	int i;
225 
226 	for (i = 0; i < MAX_BPF_REG; i++) {
227 		reg = &state->regs[i];
228 		t = reg->type;
229 		if (t == NOT_INIT)
230 			continue;
231 		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 		    tnum_is_const(reg->var_off)) {
234 			/* reg->off should be 0 for SCALAR_VALUE */
235 			verbose(env, "%lld", reg->var_off.value + reg->off);
236 		} else {
237 			verbose(env, "(id=%d", reg->id);
238 			if (t != SCALAR_VALUE)
239 				verbose(env, ",off=%d", reg->off);
240 			if (type_is_pkt_pointer(t))
241 				verbose(env, ",r=%d", reg->range);
242 			else if (t == CONST_PTR_TO_MAP ||
243 				 t == PTR_TO_MAP_VALUE ||
244 				 t == PTR_TO_MAP_VALUE_OR_NULL)
245 				verbose(env, ",ks=%d,vs=%d",
246 					reg->map_ptr->key_size,
247 					reg->map_ptr->value_size);
248 			if (tnum_is_const(reg->var_off)) {
249 				/* Typically an immediate SCALAR_VALUE, but
250 				 * could be a pointer whose offset is too big
251 				 * for reg->off
252 				 */
253 				verbose(env, ",imm=%llx", reg->var_off.value);
254 			} else {
255 				if (reg->smin_value != reg->umin_value &&
256 				    reg->smin_value != S64_MIN)
257 					verbose(env, ",smin_value=%lld",
258 						(long long)reg->smin_value);
259 				if (reg->smax_value != reg->umax_value &&
260 				    reg->smax_value != S64_MAX)
261 					verbose(env, ",smax_value=%lld",
262 						(long long)reg->smax_value);
263 				if (reg->umin_value != 0)
264 					verbose(env, ",umin_value=%llu",
265 						(unsigned long long)reg->umin_value);
266 				if (reg->umax_value != U64_MAX)
267 					verbose(env, ",umax_value=%llu",
268 						(unsigned long long)reg->umax_value);
269 				if (!tnum_is_unknown(reg->var_off)) {
270 					char tn_buf[48];
271 
272 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 					verbose(env, ",var_off=%s", tn_buf);
274 				}
275 			}
276 			verbose(env, ")");
277 		}
278 	}
279 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 		if (state->stack[i].slot_type[0] == STACK_SPILL)
281 			verbose(env, " fp%d=%s",
282 				-MAX_BPF_STACK + i * BPF_REG_SIZE,
283 				reg_type_str[state->stack[i].spilled_ptr.type]);
284 	}
285 	verbose(env, "\n");
286 }
287 
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 			    const struct bpf_verifier_state *src)
290 {
291 	if (!src->stack)
292 		return 0;
293 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 		/* internal bug, make state invalid to reject the program */
295 		memset(dst, 0, sizeof(*dst));
296 		return -EFAULT;
297 	}
298 	memcpy(dst->stack, src->stack,
299 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 	return 0;
301 }
302 
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304  * make it consume minimal amount of memory. check_stack_write() access from
305  * the program calls into realloc_verifier_state() to grow the stack size.
306  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307  * which this function copies over. It points to previous bpf_verifier_state
308  * which is never reallocated
309  */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 				  bool copy_old)
312 {
313 	u32 old_size = state->allocated_stack;
314 	struct bpf_stack_state *new_stack;
315 	int slot = size / BPF_REG_SIZE;
316 
317 	if (size <= old_size || !size) {
318 		if (copy_old)
319 			return 0;
320 		state->allocated_stack = slot * BPF_REG_SIZE;
321 		if (!size && old_size) {
322 			kfree(state->stack);
323 			state->stack = NULL;
324 		}
325 		return 0;
326 	}
327 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 				  GFP_KERNEL);
329 	if (!new_stack)
330 		return -ENOMEM;
331 	if (copy_old) {
332 		if (state->stack)
333 			memcpy(new_stack, state->stack,
334 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 	}
338 	state->allocated_stack = slot * BPF_REG_SIZE;
339 	kfree(state->stack);
340 	state->stack = new_stack;
341 	return 0;
342 }
343 
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 				bool free_self)
346 {
347 	kfree(state->stack);
348 	if (free_self)
349 		kfree(state);
350 }
351 
352 /* copy verifier state from src to dst growing dst stack space
353  * when necessary to accommodate larger src stack
354  */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 			       const struct bpf_verifier_state *src)
357 {
358 	int err;
359 
360 	err = realloc_verifier_state(dst, src->allocated_stack, false);
361 	if (err)
362 		return err;
363 	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 	return copy_stack_state(dst, src);
365 }
366 
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 		     int *insn_idx)
369 {
370 	struct bpf_verifier_state *cur = env->cur_state;
371 	struct bpf_verifier_stack_elem *elem, *head = env->head;
372 	int err;
373 
374 	if (env->head == NULL)
375 		return -ENOENT;
376 
377 	if (cur) {
378 		err = copy_verifier_state(cur, &head->st);
379 		if (err)
380 			return err;
381 	}
382 	if (insn_idx)
383 		*insn_idx = head->insn_idx;
384 	if (prev_insn_idx)
385 		*prev_insn_idx = head->prev_insn_idx;
386 	elem = head->next;
387 	free_verifier_state(&head->st, false);
388 	kfree(head);
389 	env->head = elem;
390 	env->stack_size--;
391 	return 0;
392 }
393 
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 					     int insn_idx, int prev_insn_idx)
396 {
397 	struct bpf_verifier_state *cur = env->cur_state;
398 	struct bpf_verifier_stack_elem *elem;
399 	int err;
400 
401 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 	if (!elem)
403 		goto err;
404 
405 	elem->insn_idx = insn_idx;
406 	elem->prev_insn_idx = prev_insn_idx;
407 	elem->next = env->head;
408 	env->head = elem;
409 	env->stack_size++;
410 	err = copy_verifier_state(&elem->st, cur);
411 	if (err)
412 		goto err;
413 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 		verbose(env, "BPF program is too complex\n");
415 		goto err;
416 	}
417 	return &elem->st;
418 err:
419 	/* pop all elements and return */
420 	while (!pop_stack(env, NULL, NULL));
421 	return NULL;
422 }
423 
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428 
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430 
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432  * known to have the value @imm.
433  */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 	reg->id = 0;
437 	reg->var_off = tnum_const(imm);
438 	reg->smin_value = (s64)imm;
439 	reg->smax_value = (s64)imm;
440 	reg->umin_value = imm;
441 	reg->umax_value = imm;
442 }
443 
444 /* Mark the 'variable offset' part of a register as zero.  This should be
445  * used only on registers holding a pointer type.
446  */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 	__mark_reg_known(reg, 0);
450 }
451 
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 				struct bpf_reg_state *regs, u32 regno)
454 {
455 	if (WARN_ON(regno >= MAX_BPF_REG)) {
456 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 		/* Something bad happened, let's kill all regs */
458 		for (regno = 0; regno < MAX_BPF_REG; regno++)
459 			__mark_reg_not_init(regs + regno);
460 		return;
461 	}
462 	__mark_reg_known_zero(regs + regno);
463 }
464 
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 	return type_is_pkt_pointer(reg->type);
468 }
469 
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 	return reg_is_pkt_pointer(reg) ||
473 	       reg->type == PTR_TO_PACKET_END;
474 }
475 
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 				    enum bpf_reg_type which)
479 {
480 	/* The register can already have a range from prior markings.
481 	 * This is fine as long as it hasn't been advanced from its
482 	 * origin.
483 	 */
484 	return reg->type == which &&
485 	       reg->id == 0 &&
486 	       reg->off == 0 &&
487 	       tnum_equals_const(reg->var_off, 0);
488 }
489 
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 	/* min signed is max(sign bit) | min(other bits) */
494 	reg->smin_value = max_t(s64, reg->smin_value,
495 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 	/* max signed is min(sign bit) | max(other bits) */
497 	reg->smax_value = min_t(s64, reg->smax_value,
498 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 	reg->umax_value = min(reg->umax_value,
501 			      reg->var_off.value | reg->var_off.mask);
502 }
503 
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 	/* Learn sign from signed bounds.
508 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 	 * are the same, so combine.  This works even in the negative case, e.g.
510 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 	 */
512 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 							  reg->umin_value);
515 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 							  reg->umax_value);
517 		return;
518 	}
519 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
520 	 * boundary, so we must be careful.
521 	 */
522 	if ((s64)reg->umax_value >= 0) {
523 		/* Positive.  We can't learn anything from the smin, but smax
524 		 * is positive, hence safe.
525 		 */
526 		reg->smin_value = reg->umin_value;
527 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 							  reg->umax_value);
529 	} else if ((s64)reg->umin_value < 0) {
530 		/* Negative.  We can't learn anything from the smax, but smin
531 		 * is negative, hence safe.
532 		 */
533 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 							  reg->umin_value);
535 		reg->smax_value = reg->umax_value;
536 	}
537 }
538 
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 	reg->var_off = tnum_intersect(reg->var_off,
543 				      tnum_range(reg->umin_value,
544 						 reg->umax_value));
545 }
546 
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 	reg->smin_value = S64_MIN;
551 	reg->smax_value = S64_MAX;
552 	reg->umin_value = 0;
553 	reg->umax_value = U64_MAX;
554 }
555 
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 	reg->type = SCALAR_VALUE;
560 	reg->id = 0;
561 	reg->off = 0;
562 	reg->var_off = tnum_unknown;
563 	__mark_reg_unbounded(reg);
564 }
565 
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 			     struct bpf_reg_state *regs, u32 regno)
568 {
569 	if (WARN_ON(regno >= MAX_BPF_REG)) {
570 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 		/* Something bad happened, let's kill all regs */
572 		for (regno = 0; regno < MAX_BPF_REG; regno++)
573 			__mark_reg_not_init(regs + regno);
574 		return;
575 	}
576 	__mark_reg_unknown(regs + regno);
577 }
578 
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 	__mark_reg_unknown(reg);
582 	reg->type = NOT_INIT;
583 }
584 
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 			      struct bpf_reg_state *regs, u32 regno)
587 {
588 	if (WARN_ON(regno >= MAX_BPF_REG)) {
589 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 		/* Something bad happened, let's kill all regs */
591 		for (regno = 0; regno < MAX_BPF_REG; regno++)
592 			__mark_reg_not_init(regs + regno);
593 		return;
594 	}
595 	__mark_reg_not_init(regs + regno);
596 }
597 
598 static void init_reg_state(struct bpf_verifier_env *env,
599 			   struct bpf_reg_state *regs)
600 {
601 	int i;
602 
603 	for (i = 0; i < MAX_BPF_REG; i++) {
604 		mark_reg_not_init(env, regs, i);
605 		regs[i].live = REG_LIVE_NONE;
606 	}
607 
608 	/* frame pointer */
609 	regs[BPF_REG_FP].type = PTR_TO_STACK;
610 	mark_reg_known_zero(env, regs, BPF_REG_FP);
611 
612 	/* 1st arg to a function */
613 	regs[BPF_REG_1].type = PTR_TO_CTX;
614 	mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616 
617 enum reg_arg_type {
618 	SRC_OP,		/* register is used as source operand */
619 	DST_OP,		/* register is used as destination operand */
620 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
621 };
622 
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 	struct bpf_verifier_state *parent = state->parent;
626 
627 	if (regno == BPF_REG_FP)
628 		/* We don't need to worry about FP liveness because it's read-only */
629 		return;
630 
631 	while (parent) {
632 		/* if read wasn't screened by an earlier write ... */
633 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 			break;
635 		/* ... then we depend on parent's value */
636 		parent->regs[regno].live |= REG_LIVE_READ;
637 		state = parent;
638 		parent = state->parent;
639 	}
640 }
641 
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 			 enum reg_arg_type t)
644 {
645 	struct bpf_reg_state *regs = env->cur_state->regs;
646 
647 	if (regno >= MAX_BPF_REG) {
648 		verbose(env, "R%d is invalid\n", regno);
649 		return -EINVAL;
650 	}
651 
652 	if (t == SRC_OP) {
653 		/* check whether register used as source operand can be read */
654 		if (regs[regno].type == NOT_INIT) {
655 			verbose(env, "R%d !read_ok\n", regno);
656 			return -EACCES;
657 		}
658 		mark_reg_read(env->cur_state, regno);
659 	} else {
660 		/* check whether register used as dest operand can be written to */
661 		if (regno == BPF_REG_FP) {
662 			verbose(env, "frame pointer is read only\n");
663 			return -EACCES;
664 		}
665 		regs[regno].live |= REG_LIVE_WRITTEN;
666 		if (t == DST_OP)
667 			mark_reg_unknown(env, regs, regno);
668 	}
669 	return 0;
670 }
671 
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 	switch (type) {
675 	case PTR_TO_MAP_VALUE:
676 	case PTR_TO_MAP_VALUE_OR_NULL:
677 	case PTR_TO_STACK:
678 	case PTR_TO_CTX:
679 	case PTR_TO_PACKET:
680 	case PTR_TO_PACKET_META:
681 	case PTR_TO_PACKET_END:
682 	case CONST_PTR_TO_MAP:
683 		return true;
684 	default:
685 		return false;
686 	}
687 }
688 
689 /* check_stack_read/write functions track spill/fill of registers,
690  * stack boundary and alignment are checked in check_mem_access()
691  */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 			     struct bpf_verifier_state *state, int off,
694 			     int size, int value_regno)
695 {
696 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697 
698 	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 				     true);
700 	if (err)
701 		return err;
702 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 	 * so it's aligned access and [off, off + size) are within stack limits
704 	 */
705 	if (!env->allow_ptr_leaks &&
706 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
707 	    size != BPF_REG_SIZE) {
708 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 		return -EACCES;
710 	}
711 
712 	if (value_regno >= 0 &&
713 	    is_spillable_regtype(state->regs[value_regno].type)) {
714 
715 		/* register containing pointer is being spilled into stack */
716 		if (size != BPF_REG_SIZE) {
717 			verbose(env, "invalid size of register spill\n");
718 			return -EACCES;
719 		}
720 
721 		/* save register state */
722 		state->stack[spi].spilled_ptr = state->regs[value_regno];
723 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724 
725 		for (i = 0; i < BPF_REG_SIZE; i++)
726 			state->stack[spi].slot_type[i] = STACK_SPILL;
727 	} else {
728 		/* regular write of data into stack */
729 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730 
731 		for (i = 0; i < size; i++)
732 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 				STACK_MISC;
734 	}
735 	return 0;
736 }
737 
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739 {
740 	struct bpf_verifier_state *parent = state->parent;
741 
742 	while (parent) {
743 		/* if read wasn't screened by an earlier write ... */
744 		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 			break;
746 		/* ... then we depend on parent's value */
747 		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 		state = parent;
749 		parent = state->parent;
750 	}
751 }
752 
753 static int check_stack_read(struct bpf_verifier_env *env,
754 			    struct bpf_verifier_state *state, int off, int size,
755 			    int value_regno)
756 {
757 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 	u8 *stype;
759 
760 	if (state->allocated_stack <= slot) {
761 		verbose(env, "invalid read from stack off %d+0 size %d\n",
762 			off, size);
763 		return -EACCES;
764 	}
765 	stype = state->stack[spi].slot_type;
766 
767 	if (stype[0] == STACK_SPILL) {
768 		if (size != BPF_REG_SIZE) {
769 			verbose(env, "invalid size of register spill\n");
770 			return -EACCES;
771 		}
772 		for (i = 1; i < BPF_REG_SIZE; i++) {
773 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 				verbose(env, "corrupted spill memory\n");
775 				return -EACCES;
776 			}
777 		}
778 
779 		if (value_regno >= 0) {
780 			/* restore register state from stack */
781 			state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 			mark_stack_slot_read(state, spi);
783 		}
784 		return 0;
785 	} else {
786 		for (i = 0; i < size; i++) {
787 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 				verbose(env, "invalid read from stack off %d+%d size %d\n",
789 					off, i, size);
790 				return -EACCES;
791 			}
792 		}
793 		if (value_regno >= 0)
794 			/* have read misc data from the stack */
795 			mark_reg_unknown(env, state->regs, value_regno);
796 		return 0;
797 	}
798 }
799 
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 			      int size, bool zero_size_allowed)
803 {
804 	struct bpf_reg_state *regs = cur_regs(env);
805 	struct bpf_map *map = regs[regno].map_ptr;
806 
807 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 	    off + size > map->value_size) {
809 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 			map->value_size, off, size);
811 		return -EACCES;
812 	}
813 	return 0;
814 }
815 
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 			    int off, int size, bool zero_size_allowed)
819 {
820 	struct bpf_verifier_state *state = env->cur_state;
821 	struct bpf_reg_state *reg = &state->regs[regno];
822 	int err;
823 
824 	/* We may have adjusted the register to this map value, so we
825 	 * need to try adding each of min_value and max_value to off
826 	 * to make sure our theoretical access will be safe.
827 	 */
828 	if (env->log.level)
829 		print_verifier_state(env, state);
830 	/* The minimum value is only important with signed
831 	 * comparisons where we can't assume the floor of a
832 	 * value is 0.  If we are using signed variables for our
833 	 * index'es we need to make sure that whatever we use
834 	 * will have a set floor within our range.
835 	 */
836 	if (reg->smin_value < 0) {
837 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 			regno);
839 		return -EACCES;
840 	}
841 	err = __check_map_access(env, regno, reg->smin_value + off, size,
842 				 zero_size_allowed);
843 	if (err) {
844 		verbose(env, "R%d min value is outside of the array range\n",
845 			regno);
846 		return err;
847 	}
848 
849 	/* If we haven't set a max value then we need to bail since we can't be
850 	 * sure we won't do bad things.
851 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
852 	 */
853 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 			regno);
856 		return -EACCES;
857 	}
858 	err = __check_map_access(env, regno, reg->umax_value + off, size,
859 				 zero_size_allowed);
860 	if (err)
861 		verbose(env, "R%d max value is outside of the array range\n",
862 			regno);
863 	return err;
864 }
865 
866 #define MAX_PACKET_OFF 0xffff
867 
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 				       const struct bpf_call_arg_meta *meta,
870 				       enum bpf_access_type t)
871 {
872 	switch (env->prog->type) {
873 	case BPF_PROG_TYPE_LWT_IN:
874 	case BPF_PROG_TYPE_LWT_OUT:
875 		/* dst_input() and dst_output() can't write for now */
876 		if (t == BPF_WRITE)
877 			return false;
878 		/* fallthrough */
879 	case BPF_PROG_TYPE_SCHED_CLS:
880 	case BPF_PROG_TYPE_SCHED_ACT:
881 	case BPF_PROG_TYPE_XDP:
882 	case BPF_PROG_TYPE_LWT_XMIT:
883 	case BPF_PROG_TYPE_SK_SKB:
884 		if (meta)
885 			return meta->pkt_access;
886 
887 		env->seen_direct_write = true;
888 		return true;
889 	default:
890 		return false;
891 	}
892 }
893 
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 				 int off, int size, bool zero_size_allowed)
896 {
897 	struct bpf_reg_state *regs = cur_regs(env);
898 	struct bpf_reg_state *reg = &regs[regno];
899 
900 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 	    (u64)off + size > reg->range) {
902 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 			off, size, regno, reg->id, reg->off, reg->range);
904 		return -EACCES;
905 	}
906 	return 0;
907 }
908 
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 			       int size, bool zero_size_allowed)
911 {
912 	struct bpf_reg_state *regs = cur_regs(env);
913 	struct bpf_reg_state *reg = &regs[regno];
914 	int err;
915 
916 	/* We may have added a variable offset to the packet pointer; but any
917 	 * reg->range we have comes after that.  We are only checking the fixed
918 	 * offset.
919 	 */
920 
921 	/* We don't allow negative numbers, because we aren't tracking enough
922 	 * detail to prove they're safe.
923 	 */
924 	if (reg->smin_value < 0) {
925 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 			regno);
927 		return -EACCES;
928 	}
929 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930 	if (err) {
931 		verbose(env, "R%d offset is outside of the packet\n", regno);
932 		return err;
933 	}
934 	return err;
935 }
936 
937 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
940 {
941 	struct bpf_insn_access_aux info = {
942 		.reg_type = *reg_type,
943 	};
944 
945 	if (env->ops->is_valid_access &&
946 	    env->ops->is_valid_access(off, size, t, &info)) {
947 		/* A non zero info.ctx_field_size indicates that this field is a
948 		 * candidate for later verifier transformation to load the whole
949 		 * field and then apply a mask when accessed with a narrower
950 		 * access than actual ctx access size. A zero info.ctx_field_size
951 		 * will only allow for whole field access and rejects any other
952 		 * type of narrower access.
953 		 */
954 		*reg_type = info.reg_type;
955 
956 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 		/* remember the offset of last byte accessed in ctx */
958 		if (env->prog->aux->max_ctx_offset < off + size)
959 			env->prog->aux->max_ctx_offset = off + size;
960 		return 0;
961 	}
962 
963 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 	return -EACCES;
965 }
966 
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 			       const struct bpf_reg_state *reg)
969 {
970 	if (allow_ptr_leaks)
971 		return false;
972 
973 	return reg->type != SCALAR_VALUE;
974 }
975 
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977 {
978 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 }
980 
981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 				   const struct bpf_reg_state *reg,
983 				   int off, int size, bool strict)
984 {
985 	struct tnum reg_off;
986 	int ip_align;
987 
988 	/* Byte size accesses are always allowed. */
989 	if (!strict || size == 1)
990 		return 0;
991 
992 	/* For platforms that do not have a Kconfig enabling
993 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
995 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 	 * to this code only in strict mode where we want to emulate
997 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
998 	 * unconditional IP align value of '2'.
999 	 */
1000 	ip_align = 2;
1001 
1002 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 	if (!tnum_is_aligned(reg_off, size)) {
1004 		char tn_buf[48];
1005 
1006 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1007 		verbose(env,
1008 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1009 			ip_align, tn_buf, reg->off, off, size);
1010 		return -EACCES;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 				       const struct bpf_reg_state *reg,
1018 				       const char *pointer_desc,
1019 				       int off, int size, bool strict)
1020 {
1021 	struct tnum reg_off;
1022 
1023 	/* Byte size accesses are always allowed. */
1024 	if (!strict || size == 1)
1025 		return 0;
1026 
1027 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 	if (!tnum_is_aligned(reg_off, size)) {
1029 		char tn_buf[48];
1030 
1031 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033 			pointer_desc, tn_buf, reg->off, off, size);
1034 		return -EACCES;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 			       const struct bpf_reg_state *reg,
1042 			       int off, int size)
1043 {
1044 	bool strict = env->strict_alignment;
1045 	const char *pointer_desc = "";
1046 
1047 	switch (reg->type) {
1048 	case PTR_TO_PACKET:
1049 	case PTR_TO_PACKET_META:
1050 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 		 * right in front, treat it the very same way.
1052 		 */
1053 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 	case PTR_TO_MAP_VALUE:
1055 		pointer_desc = "value ";
1056 		break;
1057 	case PTR_TO_CTX:
1058 		pointer_desc = "context ";
1059 		break;
1060 	case PTR_TO_STACK:
1061 		pointer_desc = "stack ";
1062 		break;
1063 	default:
1064 		break;
1065 	}
1066 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1067 					   strict);
1068 }
1069 
1070 /* check whether memory at (regno + off) is accessible for t = (read | write)
1071  * if t==write, value_regno is a register which value is stored into memory
1072  * if t==read, value_regno is a register which will receive the value from memory
1073  * if t==write && value_regno==-1, some unknown value is stored into memory
1074  * if t==read && value_regno==-1, don't care what we read from memory
1075  */
1076 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1077 			    int bpf_size, enum bpf_access_type t,
1078 			    int value_regno)
1079 {
1080 	struct bpf_verifier_state *state = env->cur_state;
1081 	struct bpf_reg_state *regs = cur_regs(env);
1082 	struct bpf_reg_state *reg = regs + regno;
1083 	int size, err = 0;
1084 
1085 	size = bpf_size_to_bytes(bpf_size);
1086 	if (size < 0)
1087 		return size;
1088 
1089 	/* alignment checks will add in reg->off themselves */
1090 	err = check_ptr_alignment(env, reg, off, size);
1091 	if (err)
1092 		return err;
1093 
1094 	/* for access checks, reg->off is just part of off */
1095 	off += reg->off;
1096 
1097 	if (reg->type == PTR_TO_MAP_VALUE) {
1098 		if (t == BPF_WRITE && value_regno >= 0 &&
1099 		    is_pointer_value(env, value_regno)) {
1100 			verbose(env, "R%d leaks addr into map\n", value_regno);
1101 			return -EACCES;
1102 		}
1103 
1104 		err = check_map_access(env, regno, off, size, false);
1105 		if (!err && t == BPF_READ && value_regno >= 0)
1106 			mark_reg_unknown(env, regs, value_regno);
1107 
1108 	} else if (reg->type == PTR_TO_CTX) {
1109 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1110 
1111 		if (t == BPF_WRITE && value_regno >= 0 &&
1112 		    is_pointer_value(env, value_regno)) {
1113 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1114 			return -EACCES;
1115 		}
1116 		/* ctx accesses must be at a fixed offset, so that we can
1117 		 * determine what type of data were returned.
1118 		 */
1119 		if (reg->off) {
1120 			verbose(env,
1121 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1122 				regno, reg->off, off - reg->off);
1123 			return -EACCES;
1124 		}
1125 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1126 			char tn_buf[48];
1127 
1128 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1129 			verbose(env,
1130 				"variable ctx access var_off=%s off=%d size=%d",
1131 				tn_buf, off, size);
1132 			return -EACCES;
1133 		}
1134 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1135 		if (!err && t == BPF_READ && value_regno >= 0) {
1136 			/* ctx access returns either a scalar, or a
1137 			 * PTR_TO_PACKET[_META,_END]. In the latter
1138 			 * case, we know the offset is zero.
1139 			 */
1140 			if (reg_type == SCALAR_VALUE)
1141 				mark_reg_unknown(env, regs, value_regno);
1142 			else
1143 				mark_reg_known_zero(env, regs,
1144 						    value_regno);
1145 			regs[value_regno].id = 0;
1146 			regs[value_regno].off = 0;
1147 			regs[value_regno].range = 0;
1148 			regs[value_regno].type = reg_type;
1149 		}
1150 
1151 	} else if (reg->type == PTR_TO_STACK) {
1152 		/* stack accesses must be at a fixed offset, so that we can
1153 		 * determine what type of data were returned.
1154 		 * See check_stack_read().
1155 		 */
1156 		if (!tnum_is_const(reg->var_off)) {
1157 			char tn_buf[48];
1158 
1159 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1160 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1161 				tn_buf, off, size);
1162 			return -EACCES;
1163 		}
1164 		off += reg->var_off.value;
1165 		if (off >= 0 || off < -MAX_BPF_STACK) {
1166 			verbose(env, "invalid stack off=%d size=%d\n", off,
1167 				size);
1168 			return -EACCES;
1169 		}
1170 
1171 		if (env->prog->aux->stack_depth < -off)
1172 			env->prog->aux->stack_depth = -off;
1173 
1174 		if (t == BPF_WRITE)
1175 			err = check_stack_write(env, state, off, size,
1176 						value_regno);
1177 		else
1178 			err = check_stack_read(env, state, off, size,
1179 					       value_regno);
1180 	} else if (reg_is_pkt_pointer(reg)) {
1181 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1182 			verbose(env, "cannot write into packet\n");
1183 			return -EACCES;
1184 		}
1185 		if (t == BPF_WRITE && value_regno >= 0 &&
1186 		    is_pointer_value(env, value_regno)) {
1187 			verbose(env, "R%d leaks addr into packet\n",
1188 				value_regno);
1189 			return -EACCES;
1190 		}
1191 		err = check_packet_access(env, regno, off, size, false);
1192 		if (!err && t == BPF_READ && value_regno >= 0)
1193 			mark_reg_unknown(env, regs, value_regno);
1194 	} else {
1195 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1196 			reg_type_str[reg->type]);
1197 		return -EACCES;
1198 	}
1199 
1200 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1201 	    regs[value_regno].type == SCALAR_VALUE) {
1202 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1203 		regs[value_regno].var_off =
1204 			tnum_cast(regs[value_regno].var_off, size);
1205 		__update_reg_bounds(&regs[value_regno]);
1206 	}
1207 	return err;
1208 }
1209 
1210 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1211 {
1212 	int err;
1213 
1214 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1215 	    insn->imm != 0) {
1216 		verbose(env, "BPF_XADD uses reserved fields\n");
1217 		return -EINVAL;
1218 	}
1219 
1220 	/* check src1 operand */
1221 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1222 	if (err)
1223 		return err;
1224 
1225 	/* check src2 operand */
1226 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1227 	if (err)
1228 		return err;
1229 
1230 	if (is_pointer_value(env, insn->src_reg)) {
1231 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1232 		return -EACCES;
1233 	}
1234 
1235 	/* check whether atomic_add can read the memory */
1236 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1237 			       BPF_SIZE(insn->code), BPF_READ, -1);
1238 	if (err)
1239 		return err;
1240 
1241 	/* check whether atomic_add can write into the same memory */
1242 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1243 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1244 }
1245 
1246 /* Does this register contain a constant zero? */
1247 static bool register_is_null(struct bpf_reg_state reg)
1248 {
1249 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1250 }
1251 
1252 /* when register 'regno' is passed into function that will read 'access_size'
1253  * bytes from that pointer, make sure that it's within stack boundary
1254  * and all elements of stack are initialized.
1255  * Unlike most pointer bounds-checking functions, this one doesn't take an
1256  * 'off' argument, so it has to add in reg->off itself.
1257  */
1258 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1259 				int access_size, bool zero_size_allowed,
1260 				struct bpf_call_arg_meta *meta)
1261 {
1262 	struct bpf_verifier_state *state = env->cur_state;
1263 	struct bpf_reg_state *regs = state->regs;
1264 	int off, i, slot, spi;
1265 
1266 	if (regs[regno].type != PTR_TO_STACK) {
1267 		/* Allow zero-byte read from NULL, regardless of pointer type */
1268 		if (zero_size_allowed && access_size == 0 &&
1269 		    register_is_null(regs[regno]))
1270 			return 0;
1271 
1272 		verbose(env, "R%d type=%s expected=%s\n", regno,
1273 			reg_type_str[regs[regno].type],
1274 			reg_type_str[PTR_TO_STACK]);
1275 		return -EACCES;
1276 	}
1277 
1278 	/* Only allow fixed-offset stack reads */
1279 	if (!tnum_is_const(regs[regno].var_off)) {
1280 		char tn_buf[48];
1281 
1282 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1283 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1284 			regno, tn_buf);
1285 	}
1286 	off = regs[regno].off + regs[regno].var_off.value;
1287 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1288 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1289 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1290 			regno, off, access_size);
1291 		return -EACCES;
1292 	}
1293 
1294 	if (env->prog->aux->stack_depth < -off)
1295 		env->prog->aux->stack_depth = -off;
1296 
1297 	if (meta && meta->raw_mode) {
1298 		meta->access_size = access_size;
1299 		meta->regno = regno;
1300 		return 0;
1301 	}
1302 
1303 	for (i = 0; i < access_size; i++) {
1304 		slot = -(off + i) - 1;
1305 		spi = slot / BPF_REG_SIZE;
1306 		if (state->allocated_stack <= slot ||
1307 		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1308 			STACK_MISC) {
1309 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1310 				off, i, access_size);
1311 			return -EACCES;
1312 		}
1313 	}
1314 	return 0;
1315 }
1316 
1317 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1318 				   int access_size, bool zero_size_allowed,
1319 				   struct bpf_call_arg_meta *meta)
1320 {
1321 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1322 
1323 	switch (reg->type) {
1324 	case PTR_TO_PACKET:
1325 	case PTR_TO_PACKET_META:
1326 		return check_packet_access(env, regno, reg->off, access_size,
1327 					   zero_size_allowed);
1328 	case PTR_TO_MAP_VALUE:
1329 		return check_map_access(env, regno, reg->off, access_size,
1330 					zero_size_allowed);
1331 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1332 		return check_stack_boundary(env, regno, access_size,
1333 					    zero_size_allowed, meta);
1334 	}
1335 }
1336 
1337 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1338 			  enum bpf_arg_type arg_type,
1339 			  struct bpf_call_arg_meta *meta)
1340 {
1341 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1342 	enum bpf_reg_type expected_type, type = reg->type;
1343 	int err = 0;
1344 
1345 	if (arg_type == ARG_DONTCARE)
1346 		return 0;
1347 
1348 	err = check_reg_arg(env, regno, SRC_OP);
1349 	if (err)
1350 		return err;
1351 
1352 	if (arg_type == ARG_ANYTHING) {
1353 		if (is_pointer_value(env, regno)) {
1354 			verbose(env, "R%d leaks addr into helper function\n",
1355 				regno);
1356 			return -EACCES;
1357 		}
1358 		return 0;
1359 	}
1360 
1361 	if (type_is_pkt_pointer(type) &&
1362 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1363 		verbose(env, "helper access to the packet is not allowed\n");
1364 		return -EACCES;
1365 	}
1366 
1367 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1368 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1369 		expected_type = PTR_TO_STACK;
1370 		if (!type_is_pkt_pointer(type) &&
1371 		    type != expected_type)
1372 			goto err_type;
1373 	} else if (arg_type == ARG_CONST_SIZE ||
1374 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1375 		expected_type = SCALAR_VALUE;
1376 		if (type != expected_type)
1377 			goto err_type;
1378 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1379 		expected_type = CONST_PTR_TO_MAP;
1380 		if (type != expected_type)
1381 			goto err_type;
1382 	} else if (arg_type == ARG_PTR_TO_CTX) {
1383 		expected_type = PTR_TO_CTX;
1384 		if (type != expected_type)
1385 			goto err_type;
1386 	} else if (arg_type == ARG_PTR_TO_MEM ||
1387 		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1388 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1389 		expected_type = PTR_TO_STACK;
1390 		/* One exception here. In case function allows for NULL to be
1391 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1392 		 * happens during stack boundary checking.
1393 		 */
1394 		if (register_is_null(*reg) &&
1395 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1396 			/* final test in check_stack_boundary() */;
1397 		else if (!type_is_pkt_pointer(type) &&
1398 			 type != PTR_TO_MAP_VALUE &&
1399 			 type != expected_type)
1400 			goto err_type;
1401 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1402 	} else {
1403 		verbose(env, "unsupported arg_type %d\n", arg_type);
1404 		return -EFAULT;
1405 	}
1406 
1407 	if (arg_type == ARG_CONST_MAP_PTR) {
1408 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1409 		meta->map_ptr = reg->map_ptr;
1410 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1411 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1412 		 * check that [key, key + map->key_size) are within
1413 		 * stack limits and initialized
1414 		 */
1415 		if (!meta->map_ptr) {
1416 			/* in function declaration map_ptr must come before
1417 			 * map_key, so that it's verified and known before
1418 			 * we have to check map_key here. Otherwise it means
1419 			 * that kernel subsystem misconfigured verifier
1420 			 */
1421 			verbose(env, "invalid map_ptr to access map->key\n");
1422 			return -EACCES;
1423 		}
1424 		if (type_is_pkt_pointer(type))
1425 			err = check_packet_access(env, regno, reg->off,
1426 						  meta->map_ptr->key_size,
1427 						  false);
1428 		else
1429 			err = check_stack_boundary(env, regno,
1430 						   meta->map_ptr->key_size,
1431 						   false, NULL);
1432 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1433 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1434 		 * check [value, value + map->value_size) validity
1435 		 */
1436 		if (!meta->map_ptr) {
1437 			/* kernel subsystem misconfigured verifier */
1438 			verbose(env, "invalid map_ptr to access map->value\n");
1439 			return -EACCES;
1440 		}
1441 		if (type_is_pkt_pointer(type))
1442 			err = check_packet_access(env, regno, reg->off,
1443 						  meta->map_ptr->value_size,
1444 						  false);
1445 		else
1446 			err = check_stack_boundary(env, regno,
1447 						   meta->map_ptr->value_size,
1448 						   false, NULL);
1449 	} else if (arg_type == ARG_CONST_SIZE ||
1450 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1451 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1452 
1453 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1454 		 * from stack pointer 'buf'. Check it
1455 		 * note: regno == len, regno - 1 == buf
1456 		 */
1457 		if (regno == 0) {
1458 			/* kernel subsystem misconfigured verifier */
1459 			verbose(env,
1460 				"ARG_CONST_SIZE cannot be first argument\n");
1461 			return -EACCES;
1462 		}
1463 
1464 		/* The register is SCALAR_VALUE; the access check
1465 		 * happens using its boundaries.
1466 		 */
1467 
1468 		if (!tnum_is_const(reg->var_off))
1469 			/* For unprivileged variable accesses, disable raw
1470 			 * mode so that the program is required to
1471 			 * initialize all the memory that the helper could
1472 			 * just partially fill up.
1473 			 */
1474 			meta = NULL;
1475 
1476 		if (reg->smin_value < 0) {
1477 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1478 				regno);
1479 			return -EACCES;
1480 		}
1481 
1482 		if (reg->umin_value == 0) {
1483 			err = check_helper_mem_access(env, regno - 1, 0,
1484 						      zero_size_allowed,
1485 						      meta);
1486 			if (err)
1487 				return err;
1488 		}
1489 
1490 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1491 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1492 				regno);
1493 			return -EACCES;
1494 		}
1495 		err = check_helper_mem_access(env, regno - 1,
1496 					      reg->umax_value,
1497 					      zero_size_allowed, meta);
1498 	}
1499 
1500 	return err;
1501 err_type:
1502 	verbose(env, "R%d type=%s expected=%s\n", regno,
1503 		reg_type_str[type], reg_type_str[expected_type]);
1504 	return -EACCES;
1505 }
1506 
1507 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1508 					struct bpf_map *map, int func_id)
1509 {
1510 	if (!map)
1511 		return 0;
1512 
1513 	/* We need a two way check, first is from map perspective ... */
1514 	switch (map->map_type) {
1515 	case BPF_MAP_TYPE_PROG_ARRAY:
1516 		if (func_id != BPF_FUNC_tail_call)
1517 			goto error;
1518 		break;
1519 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1520 		if (func_id != BPF_FUNC_perf_event_read &&
1521 		    func_id != BPF_FUNC_perf_event_output &&
1522 		    func_id != BPF_FUNC_perf_event_read_value)
1523 			goto error;
1524 		break;
1525 	case BPF_MAP_TYPE_STACK_TRACE:
1526 		if (func_id != BPF_FUNC_get_stackid)
1527 			goto error;
1528 		break;
1529 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1530 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1531 		    func_id != BPF_FUNC_current_task_under_cgroup)
1532 			goto error;
1533 		break;
1534 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1535 	 * allow to be modified from bpf side. So do not allow lookup elements
1536 	 * for now.
1537 	 */
1538 	case BPF_MAP_TYPE_DEVMAP:
1539 		if (func_id != BPF_FUNC_redirect_map)
1540 			goto error;
1541 		break;
1542 	/* Restrict bpf side of cpumap, open when use-cases appear */
1543 	case BPF_MAP_TYPE_CPUMAP:
1544 		if (func_id != BPF_FUNC_redirect_map)
1545 			goto error;
1546 		break;
1547 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1548 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1549 		if (func_id != BPF_FUNC_map_lookup_elem)
1550 			goto error;
1551 		break;
1552 	case BPF_MAP_TYPE_SOCKMAP:
1553 		if (func_id != BPF_FUNC_sk_redirect_map &&
1554 		    func_id != BPF_FUNC_sock_map_update &&
1555 		    func_id != BPF_FUNC_map_delete_elem)
1556 			goto error;
1557 		break;
1558 	default:
1559 		break;
1560 	}
1561 
1562 	/* ... and second from the function itself. */
1563 	switch (func_id) {
1564 	case BPF_FUNC_tail_call:
1565 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1566 			goto error;
1567 		break;
1568 	case BPF_FUNC_perf_event_read:
1569 	case BPF_FUNC_perf_event_output:
1570 	case BPF_FUNC_perf_event_read_value:
1571 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1572 			goto error;
1573 		break;
1574 	case BPF_FUNC_get_stackid:
1575 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1576 			goto error;
1577 		break;
1578 	case BPF_FUNC_current_task_under_cgroup:
1579 	case BPF_FUNC_skb_under_cgroup:
1580 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1581 			goto error;
1582 		break;
1583 	case BPF_FUNC_redirect_map:
1584 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1585 		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1586 			goto error;
1587 		break;
1588 	case BPF_FUNC_sk_redirect_map:
1589 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1590 			goto error;
1591 		break;
1592 	case BPF_FUNC_sock_map_update:
1593 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1594 			goto error;
1595 		break;
1596 	default:
1597 		break;
1598 	}
1599 
1600 	return 0;
1601 error:
1602 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1603 		map->map_type, func_id_name(func_id), func_id);
1604 	return -EINVAL;
1605 }
1606 
1607 static int check_raw_mode(const struct bpf_func_proto *fn)
1608 {
1609 	int count = 0;
1610 
1611 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1612 		count++;
1613 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1614 		count++;
1615 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1616 		count++;
1617 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1618 		count++;
1619 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1620 		count++;
1621 
1622 	return count > 1 ? -EINVAL : 0;
1623 }
1624 
1625 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1626  * are now invalid, so turn them into unknown SCALAR_VALUE.
1627  */
1628 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1629 {
1630 	struct bpf_verifier_state *state = env->cur_state;
1631 	struct bpf_reg_state *regs = state->regs, *reg;
1632 	int i;
1633 
1634 	for (i = 0; i < MAX_BPF_REG; i++)
1635 		if (reg_is_pkt_pointer_any(&regs[i]))
1636 			mark_reg_unknown(env, regs, i);
1637 
1638 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1639 		if (state->stack[i].slot_type[0] != STACK_SPILL)
1640 			continue;
1641 		reg = &state->stack[i].spilled_ptr;
1642 		if (reg_is_pkt_pointer_any(reg))
1643 			__mark_reg_unknown(reg);
1644 	}
1645 }
1646 
1647 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1648 {
1649 	const struct bpf_func_proto *fn = NULL;
1650 	struct bpf_reg_state *regs;
1651 	struct bpf_call_arg_meta meta;
1652 	bool changes_data;
1653 	int i, err;
1654 
1655 	/* find function prototype */
1656 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1657 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1658 			func_id);
1659 		return -EINVAL;
1660 	}
1661 
1662 	if (env->ops->get_func_proto)
1663 		fn = env->ops->get_func_proto(func_id);
1664 
1665 	if (!fn) {
1666 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1667 			func_id);
1668 		return -EINVAL;
1669 	}
1670 
1671 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1672 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1673 		verbose(env, "cannot call GPL only function from proprietary program\n");
1674 		return -EINVAL;
1675 	}
1676 
1677 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1678 
1679 	memset(&meta, 0, sizeof(meta));
1680 	meta.pkt_access = fn->pkt_access;
1681 
1682 	/* We only support one arg being in raw mode at the moment, which
1683 	 * is sufficient for the helper functions we have right now.
1684 	 */
1685 	err = check_raw_mode(fn);
1686 	if (err) {
1687 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1688 			func_id_name(func_id), func_id);
1689 		return err;
1690 	}
1691 
1692 	/* check args */
1693 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1694 	if (err)
1695 		return err;
1696 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1697 	if (err)
1698 		return err;
1699 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1700 	if (err)
1701 		return err;
1702 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1703 	if (err)
1704 		return err;
1705 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1706 	if (err)
1707 		return err;
1708 
1709 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1710 	 * is inferred from register state.
1711 	 */
1712 	for (i = 0; i < meta.access_size; i++) {
1713 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1714 		if (err)
1715 			return err;
1716 	}
1717 
1718 	regs = cur_regs(env);
1719 	/* reset caller saved regs */
1720 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1721 		mark_reg_not_init(env, regs, caller_saved[i]);
1722 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1723 	}
1724 
1725 	/* update return register (already marked as written above) */
1726 	if (fn->ret_type == RET_INTEGER) {
1727 		/* sets type to SCALAR_VALUE */
1728 		mark_reg_unknown(env, regs, BPF_REG_0);
1729 	} else if (fn->ret_type == RET_VOID) {
1730 		regs[BPF_REG_0].type = NOT_INIT;
1731 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1732 		struct bpf_insn_aux_data *insn_aux;
1733 
1734 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1735 		/* There is no offset yet applied, variable or fixed */
1736 		mark_reg_known_zero(env, regs, BPF_REG_0);
1737 		regs[BPF_REG_0].off = 0;
1738 		/* remember map_ptr, so that check_map_access()
1739 		 * can check 'value_size' boundary of memory access
1740 		 * to map element returned from bpf_map_lookup_elem()
1741 		 */
1742 		if (meta.map_ptr == NULL) {
1743 			verbose(env,
1744 				"kernel subsystem misconfigured verifier\n");
1745 			return -EINVAL;
1746 		}
1747 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1748 		regs[BPF_REG_0].id = ++env->id_gen;
1749 		insn_aux = &env->insn_aux_data[insn_idx];
1750 		if (!insn_aux->map_ptr)
1751 			insn_aux->map_ptr = meta.map_ptr;
1752 		else if (insn_aux->map_ptr != meta.map_ptr)
1753 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1754 	} else {
1755 		verbose(env, "unknown return type %d of func %s#%d\n",
1756 			fn->ret_type, func_id_name(func_id), func_id);
1757 		return -EINVAL;
1758 	}
1759 
1760 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1761 	if (err)
1762 		return err;
1763 
1764 	if (changes_data)
1765 		clear_all_pkt_pointers(env);
1766 	return 0;
1767 }
1768 
1769 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1770 {
1771 	/* clear high 32 bits */
1772 	reg->var_off = tnum_cast(reg->var_off, 4);
1773 	/* Update bounds */
1774 	__update_reg_bounds(reg);
1775 }
1776 
1777 static bool signed_add_overflows(s64 a, s64 b)
1778 {
1779 	/* Do the add in u64, where overflow is well-defined */
1780 	s64 res = (s64)((u64)a + (u64)b);
1781 
1782 	if (b < 0)
1783 		return res > a;
1784 	return res < a;
1785 }
1786 
1787 static bool signed_sub_overflows(s64 a, s64 b)
1788 {
1789 	/* Do the sub in u64, where overflow is well-defined */
1790 	s64 res = (s64)((u64)a - (u64)b);
1791 
1792 	if (b < 0)
1793 		return res < a;
1794 	return res > a;
1795 }
1796 
1797 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1798  * Caller should also handle BPF_MOV case separately.
1799  * If we return -EACCES, caller may want to try again treating pointer as a
1800  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1801  */
1802 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1803 				   struct bpf_insn *insn,
1804 				   const struct bpf_reg_state *ptr_reg,
1805 				   const struct bpf_reg_state *off_reg)
1806 {
1807 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1808 	bool known = tnum_is_const(off_reg->var_off);
1809 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1810 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1811 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1812 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1813 	u8 opcode = BPF_OP(insn->code);
1814 	u32 dst = insn->dst_reg;
1815 
1816 	dst_reg = &regs[dst];
1817 
1818 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1819 		print_verifier_state(env, env->cur_state);
1820 		verbose(env,
1821 			"verifier internal error: known but bad sbounds\n");
1822 		return -EINVAL;
1823 	}
1824 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1825 		print_verifier_state(env, env->cur_state);
1826 		verbose(env,
1827 			"verifier internal error: known but bad ubounds\n");
1828 		return -EINVAL;
1829 	}
1830 
1831 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1832 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1833 		if (!env->allow_ptr_leaks)
1834 			verbose(env,
1835 				"R%d 32-bit pointer arithmetic prohibited\n",
1836 				dst);
1837 		return -EACCES;
1838 	}
1839 
1840 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1841 		if (!env->allow_ptr_leaks)
1842 			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1843 				dst);
1844 		return -EACCES;
1845 	}
1846 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1847 		if (!env->allow_ptr_leaks)
1848 			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1849 				dst);
1850 		return -EACCES;
1851 	}
1852 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1853 		if (!env->allow_ptr_leaks)
1854 			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1855 				dst);
1856 		return -EACCES;
1857 	}
1858 
1859 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1860 	 * The id may be overwritten later if we create a new variable offset.
1861 	 */
1862 	dst_reg->type = ptr_reg->type;
1863 	dst_reg->id = ptr_reg->id;
1864 
1865 	switch (opcode) {
1866 	case BPF_ADD:
1867 		/* We can take a fixed offset as long as it doesn't overflow
1868 		 * the s32 'off' field
1869 		 */
1870 		if (known && (ptr_reg->off + smin_val ==
1871 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1872 			/* pointer += K.  Accumulate it into fixed offset */
1873 			dst_reg->smin_value = smin_ptr;
1874 			dst_reg->smax_value = smax_ptr;
1875 			dst_reg->umin_value = umin_ptr;
1876 			dst_reg->umax_value = umax_ptr;
1877 			dst_reg->var_off = ptr_reg->var_off;
1878 			dst_reg->off = ptr_reg->off + smin_val;
1879 			dst_reg->range = ptr_reg->range;
1880 			break;
1881 		}
1882 		/* A new variable offset is created.  Note that off_reg->off
1883 		 * == 0, since it's a scalar.
1884 		 * dst_reg gets the pointer type and since some positive
1885 		 * integer value was added to the pointer, give it a new 'id'
1886 		 * if it's a PTR_TO_PACKET.
1887 		 * this creates a new 'base' pointer, off_reg (variable) gets
1888 		 * added into the variable offset, and we copy the fixed offset
1889 		 * from ptr_reg.
1890 		 */
1891 		if (signed_add_overflows(smin_ptr, smin_val) ||
1892 		    signed_add_overflows(smax_ptr, smax_val)) {
1893 			dst_reg->smin_value = S64_MIN;
1894 			dst_reg->smax_value = S64_MAX;
1895 		} else {
1896 			dst_reg->smin_value = smin_ptr + smin_val;
1897 			dst_reg->smax_value = smax_ptr + smax_val;
1898 		}
1899 		if (umin_ptr + umin_val < umin_ptr ||
1900 		    umax_ptr + umax_val < umax_ptr) {
1901 			dst_reg->umin_value = 0;
1902 			dst_reg->umax_value = U64_MAX;
1903 		} else {
1904 			dst_reg->umin_value = umin_ptr + umin_val;
1905 			dst_reg->umax_value = umax_ptr + umax_val;
1906 		}
1907 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1908 		dst_reg->off = ptr_reg->off;
1909 		if (reg_is_pkt_pointer(ptr_reg)) {
1910 			dst_reg->id = ++env->id_gen;
1911 			/* something was added to pkt_ptr, set range to zero */
1912 			dst_reg->range = 0;
1913 		}
1914 		break;
1915 	case BPF_SUB:
1916 		if (dst_reg == off_reg) {
1917 			/* scalar -= pointer.  Creates an unknown scalar */
1918 			if (!env->allow_ptr_leaks)
1919 				verbose(env, "R%d tried to subtract pointer from scalar\n",
1920 					dst);
1921 			return -EACCES;
1922 		}
1923 		/* We don't allow subtraction from FP, because (according to
1924 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1925 		 * be able to deal with it.
1926 		 */
1927 		if (ptr_reg->type == PTR_TO_STACK) {
1928 			if (!env->allow_ptr_leaks)
1929 				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1930 					dst);
1931 			return -EACCES;
1932 		}
1933 		if (known && (ptr_reg->off - smin_val ==
1934 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1935 			/* pointer -= K.  Subtract it from fixed offset */
1936 			dst_reg->smin_value = smin_ptr;
1937 			dst_reg->smax_value = smax_ptr;
1938 			dst_reg->umin_value = umin_ptr;
1939 			dst_reg->umax_value = umax_ptr;
1940 			dst_reg->var_off = ptr_reg->var_off;
1941 			dst_reg->id = ptr_reg->id;
1942 			dst_reg->off = ptr_reg->off - smin_val;
1943 			dst_reg->range = ptr_reg->range;
1944 			break;
1945 		}
1946 		/* A new variable offset is created.  If the subtrahend is known
1947 		 * nonnegative, then any reg->range we had before is still good.
1948 		 */
1949 		if (signed_sub_overflows(smin_ptr, smax_val) ||
1950 		    signed_sub_overflows(smax_ptr, smin_val)) {
1951 			/* Overflow possible, we know nothing */
1952 			dst_reg->smin_value = S64_MIN;
1953 			dst_reg->smax_value = S64_MAX;
1954 		} else {
1955 			dst_reg->smin_value = smin_ptr - smax_val;
1956 			dst_reg->smax_value = smax_ptr - smin_val;
1957 		}
1958 		if (umin_ptr < umax_val) {
1959 			/* Overflow possible, we know nothing */
1960 			dst_reg->umin_value = 0;
1961 			dst_reg->umax_value = U64_MAX;
1962 		} else {
1963 			/* Cannot overflow (as long as bounds are consistent) */
1964 			dst_reg->umin_value = umin_ptr - umax_val;
1965 			dst_reg->umax_value = umax_ptr - umin_val;
1966 		}
1967 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1968 		dst_reg->off = ptr_reg->off;
1969 		if (reg_is_pkt_pointer(ptr_reg)) {
1970 			dst_reg->id = ++env->id_gen;
1971 			/* something was added to pkt_ptr, set range to zero */
1972 			if (smin_val < 0)
1973 				dst_reg->range = 0;
1974 		}
1975 		break;
1976 	case BPF_AND:
1977 	case BPF_OR:
1978 	case BPF_XOR:
1979 		/* bitwise ops on pointers are troublesome, prohibit for now.
1980 		 * (However, in principle we could allow some cases, e.g.
1981 		 * ptr &= ~3 which would reduce min_value by 3.)
1982 		 */
1983 		if (!env->allow_ptr_leaks)
1984 			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1985 				dst, bpf_alu_string[opcode >> 4]);
1986 		return -EACCES;
1987 	default:
1988 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
1989 		if (!env->allow_ptr_leaks)
1990 			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1991 				dst, bpf_alu_string[opcode >> 4]);
1992 		return -EACCES;
1993 	}
1994 
1995 	__update_reg_bounds(dst_reg);
1996 	__reg_deduce_bounds(dst_reg);
1997 	__reg_bound_offset(dst_reg);
1998 	return 0;
1999 }
2000 
2001 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2002 				      struct bpf_insn *insn,
2003 				      struct bpf_reg_state *dst_reg,
2004 				      struct bpf_reg_state src_reg)
2005 {
2006 	struct bpf_reg_state *regs = cur_regs(env);
2007 	u8 opcode = BPF_OP(insn->code);
2008 	bool src_known, dst_known;
2009 	s64 smin_val, smax_val;
2010 	u64 umin_val, umax_val;
2011 
2012 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2013 		/* 32-bit ALU ops are (32,32)->64 */
2014 		coerce_reg_to_32(dst_reg);
2015 		coerce_reg_to_32(&src_reg);
2016 	}
2017 	smin_val = src_reg.smin_value;
2018 	smax_val = src_reg.smax_value;
2019 	umin_val = src_reg.umin_value;
2020 	umax_val = src_reg.umax_value;
2021 	src_known = tnum_is_const(src_reg.var_off);
2022 	dst_known = tnum_is_const(dst_reg->var_off);
2023 
2024 	switch (opcode) {
2025 	case BPF_ADD:
2026 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2027 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2028 			dst_reg->smin_value = S64_MIN;
2029 			dst_reg->smax_value = S64_MAX;
2030 		} else {
2031 			dst_reg->smin_value += smin_val;
2032 			dst_reg->smax_value += smax_val;
2033 		}
2034 		if (dst_reg->umin_value + umin_val < umin_val ||
2035 		    dst_reg->umax_value + umax_val < umax_val) {
2036 			dst_reg->umin_value = 0;
2037 			dst_reg->umax_value = U64_MAX;
2038 		} else {
2039 			dst_reg->umin_value += umin_val;
2040 			dst_reg->umax_value += umax_val;
2041 		}
2042 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2043 		break;
2044 	case BPF_SUB:
2045 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2046 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2047 			/* Overflow possible, we know nothing */
2048 			dst_reg->smin_value = S64_MIN;
2049 			dst_reg->smax_value = S64_MAX;
2050 		} else {
2051 			dst_reg->smin_value -= smax_val;
2052 			dst_reg->smax_value -= smin_val;
2053 		}
2054 		if (dst_reg->umin_value < umax_val) {
2055 			/* Overflow possible, we know nothing */
2056 			dst_reg->umin_value = 0;
2057 			dst_reg->umax_value = U64_MAX;
2058 		} else {
2059 			/* Cannot overflow (as long as bounds are consistent) */
2060 			dst_reg->umin_value -= umax_val;
2061 			dst_reg->umax_value -= umin_val;
2062 		}
2063 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2064 		break;
2065 	case BPF_MUL:
2066 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2067 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2068 			/* Ain't nobody got time to multiply that sign */
2069 			__mark_reg_unbounded(dst_reg);
2070 			__update_reg_bounds(dst_reg);
2071 			break;
2072 		}
2073 		/* Both values are positive, so we can work with unsigned and
2074 		 * copy the result to signed (unless it exceeds S64_MAX).
2075 		 */
2076 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2077 			/* Potential overflow, we know nothing */
2078 			__mark_reg_unbounded(dst_reg);
2079 			/* (except what we can learn from the var_off) */
2080 			__update_reg_bounds(dst_reg);
2081 			break;
2082 		}
2083 		dst_reg->umin_value *= umin_val;
2084 		dst_reg->umax_value *= umax_val;
2085 		if (dst_reg->umax_value > S64_MAX) {
2086 			/* Overflow possible, we know nothing */
2087 			dst_reg->smin_value = S64_MIN;
2088 			dst_reg->smax_value = S64_MAX;
2089 		} else {
2090 			dst_reg->smin_value = dst_reg->umin_value;
2091 			dst_reg->smax_value = dst_reg->umax_value;
2092 		}
2093 		break;
2094 	case BPF_AND:
2095 		if (src_known && dst_known) {
2096 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2097 						  src_reg.var_off.value);
2098 			break;
2099 		}
2100 		/* We get our minimum from the var_off, since that's inherently
2101 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2102 		 */
2103 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2104 		dst_reg->umin_value = dst_reg->var_off.value;
2105 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2106 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2107 			/* Lose signed bounds when ANDing negative numbers,
2108 			 * ain't nobody got time for that.
2109 			 */
2110 			dst_reg->smin_value = S64_MIN;
2111 			dst_reg->smax_value = S64_MAX;
2112 		} else {
2113 			/* ANDing two positives gives a positive, so safe to
2114 			 * cast result into s64.
2115 			 */
2116 			dst_reg->smin_value = dst_reg->umin_value;
2117 			dst_reg->smax_value = dst_reg->umax_value;
2118 		}
2119 		/* We may learn something more from the var_off */
2120 		__update_reg_bounds(dst_reg);
2121 		break;
2122 	case BPF_OR:
2123 		if (src_known && dst_known) {
2124 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2125 						  src_reg.var_off.value);
2126 			break;
2127 		}
2128 		/* We get our maximum from the var_off, and our minimum is the
2129 		 * maximum of the operands' minima
2130 		 */
2131 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2132 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2133 		dst_reg->umax_value = dst_reg->var_off.value |
2134 				      dst_reg->var_off.mask;
2135 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2136 			/* Lose signed bounds when ORing negative numbers,
2137 			 * ain't nobody got time for that.
2138 			 */
2139 			dst_reg->smin_value = S64_MIN;
2140 			dst_reg->smax_value = S64_MAX;
2141 		} else {
2142 			/* ORing two positives gives a positive, so safe to
2143 			 * cast result into s64.
2144 			 */
2145 			dst_reg->smin_value = dst_reg->umin_value;
2146 			dst_reg->smax_value = dst_reg->umax_value;
2147 		}
2148 		/* We may learn something more from the var_off */
2149 		__update_reg_bounds(dst_reg);
2150 		break;
2151 	case BPF_LSH:
2152 		if (umax_val > 63) {
2153 			/* Shifts greater than 63 are undefined.  This includes
2154 			 * shifts by a negative number.
2155 			 */
2156 			mark_reg_unknown(env, regs, insn->dst_reg);
2157 			break;
2158 		}
2159 		/* We lose all sign bit information (except what we can pick
2160 		 * up from var_off)
2161 		 */
2162 		dst_reg->smin_value = S64_MIN;
2163 		dst_reg->smax_value = S64_MAX;
2164 		/* If we might shift our top bit out, then we know nothing */
2165 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2166 			dst_reg->umin_value = 0;
2167 			dst_reg->umax_value = U64_MAX;
2168 		} else {
2169 			dst_reg->umin_value <<= umin_val;
2170 			dst_reg->umax_value <<= umax_val;
2171 		}
2172 		if (src_known)
2173 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2174 		else
2175 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2176 		/* We may learn something more from the var_off */
2177 		__update_reg_bounds(dst_reg);
2178 		break;
2179 	case BPF_RSH:
2180 		if (umax_val > 63) {
2181 			/* Shifts greater than 63 are undefined.  This includes
2182 			 * shifts by a negative number.
2183 			 */
2184 			mark_reg_unknown(env, regs, insn->dst_reg);
2185 			break;
2186 		}
2187 		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2188 		if (dst_reg->smin_value < 0) {
2189 			if (umin_val) {
2190 				/* Sign bit will be cleared */
2191 				dst_reg->smin_value = 0;
2192 			} else {
2193 				/* Lost sign bit information */
2194 				dst_reg->smin_value = S64_MIN;
2195 				dst_reg->smax_value = S64_MAX;
2196 			}
2197 		} else {
2198 			dst_reg->smin_value =
2199 				(u64)(dst_reg->smin_value) >> umax_val;
2200 		}
2201 		if (src_known)
2202 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2203 						       umin_val);
2204 		else
2205 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2206 		dst_reg->umin_value >>= umax_val;
2207 		dst_reg->umax_value >>= umin_val;
2208 		/* We may learn something more from the var_off */
2209 		__update_reg_bounds(dst_reg);
2210 		break;
2211 	default:
2212 		mark_reg_unknown(env, regs, insn->dst_reg);
2213 		break;
2214 	}
2215 
2216 	__reg_deduce_bounds(dst_reg);
2217 	__reg_bound_offset(dst_reg);
2218 	return 0;
2219 }
2220 
2221 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2222  * and var_off.
2223  */
2224 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2225 				   struct bpf_insn *insn)
2226 {
2227 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2228 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2229 	u8 opcode = BPF_OP(insn->code);
2230 	int rc;
2231 
2232 	dst_reg = &regs[insn->dst_reg];
2233 	src_reg = NULL;
2234 	if (dst_reg->type != SCALAR_VALUE)
2235 		ptr_reg = dst_reg;
2236 	if (BPF_SRC(insn->code) == BPF_X) {
2237 		src_reg = &regs[insn->src_reg];
2238 		if (src_reg->type != SCALAR_VALUE) {
2239 			if (dst_reg->type != SCALAR_VALUE) {
2240 				/* Combining two pointers by any ALU op yields
2241 				 * an arbitrary scalar.
2242 				 */
2243 				if (!env->allow_ptr_leaks) {
2244 					verbose(env, "R%d pointer %s pointer prohibited\n",
2245 						insn->dst_reg,
2246 						bpf_alu_string[opcode >> 4]);
2247 					return -EACCES;
2248 				}
2249 				mark_reg_unknown(env, regs, insn->dst_reg);
2250 				return 0;
2251 			} else {
2252 				/* scalar += pointer
2253 				 * This is legal, but we have to reverse our
2254 				 * src/dest handling in computing the range
2255 				 */
2256 				rc = adjust_ptr_min_max_vals(env, insn,
2257 							     src_reg, dst_reg);
2258 				if (rc == -EACCES && env->allow_ptr_leaks) {
2259 					/* scalar += unknown scalar */
2260 					__mark_reg_unknown(&off_reg);
2261 					return adjust_scalar_min_max_vals(
2262 							env, insn,
2263 							dst_reg, off_reg);
2264 				}
2265 				return rc;
2266 			}
2267 		} else if (ptr_reg) {
2268 			/* pointer += scalar */
2269 			rc = adjust_ptr_min_max_vals(env, insn,
2270 						     dst_reg, src_reg);
2271 			if (rc == -EACCES && env->allow_ptr_leaks) {
2272 				/* unknown scalar += scalar */
2273 				__mark_reg_unknown(dst_reg);
2274 				return adjust_scalar_min_max_vals(
2275 						env, insn, dst_reg, *src_reg);
2276 			}
2277 			return rc;
2278 		}
2279 	} else {
2280 		/* Pretend the src is a reg with a known value, since we only
2281 		 * need to be able to read from this state.
2282 		 */
2283 		off_reg.type = SCALAR_VALUE;
2284 		__mark_reg_known(&off_reg, insn->imm);
2285 		src_reg = &off_reg;
2286 		if (ptr_reg) { /* pointer += K */
2287 			rc = adjust_ptr_min_max_vals(env, insn,
2288 						     ptr_reg, src_reg);
2289 			if (rc == -EACCES && env->allow_ptr_leaks) {
2290 				/* unknown scalar += K */
2291 				__mark_reg_unknown(dst_reg);
2292 				return adjust_scalar_min_max_vals(
2293 						env, insn, dst_reg, off_reg);
2294 			}
2295 			return rc;
2296 		}
2297 	}
2298 
2299 	/* Got here implies adding two SCALAR_VALUEs */
2300 	if (WARN_ON_ONCE(ptr_reg)) {
2301 		print_verifier_state(env, env->cur_state);
2302 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2303 		return -EINVAL;
2304 	}
2305 	if (WARN_ON(!src_reg)) {
2306 		print_verifier_state(env, env->cur_state);
2307 		verbose(env, "verifier internal error: no src_reg\n");
2308 		return -EINVAL;
2309 	}
2310 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2311 }
2312 
2313 /* check validity of 32-bit and 64-bit arithmetic operations */
2314 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2315 {
2316 	struct bpf_reg_state *regs = cur_regs(env);
2317 	u8 opcode = BPF_OP(insn->code);
2318 	int err;
2319 
2320 	if (opcode == BPF_END || opcode == BPF_NEG) {
2321 		if (opcode == BPF_NEG) {
2322 			if (BPF_SRC(insn->code) != 0 ||
2323 			    insn->src_reg != BPF_REG_0 ||
2324 			    insn->off != 0 || insn->imm != 0) {
2325 				verbose(env, "BPF_NEG uses reserved fields\n");
2326 				return -EINVAL;
2327 			}
2328 		} else {
2329 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2330 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2331 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2332 				verbose(env, "BPF_END uses reserved fields\n");
2333 				return -EINVAL;
2334 			}
2335 		}
2336 
2337 		/* check src operand */
2338 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2339 		if (err)
2340 			return err;
2341 
2342 		if (is_pointer_value(env, insn->dst_reg)) {
2343 			verbose(env, "R%d pointer arithmetic prohibited\n",
2344 				insn->dst_reg);
2345 			return -EACCES;
2346 		}
2347 
2348 		/* check dest operand */
2349 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2350 		if (err)
2351 			return err;
2352 
2353 	} else if (opcode == BPF_MOV) {
2354 
2355 		if (BPF_SRC(insn->code) == BPF_X) {
2356 			if (insn->imm != 0 || insn->off != 0) {
2357 				verbose(env, "BPF_MOV uses reserved fields\n");
2358 				return -EINVAL;
2359 			}
2360 
2361 			/* check src operand */
2362 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2363 			if (err)
2364 				return err;
2365 		} else {
2366 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2367 				verbose(env, "BPF_MOV uses reserved fields\n");
2368 				return -EINVAL;
2369 			}
2370 		}
2371 
2372 		/* check dest operand */
2373 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2374 		if (err)
2375 			return err;
2376 
2377 		if (BPF_SRC(insn->code) == BPF_X) {
2378 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2379 				/* case: R1 = R2
2380 				 * copy register state to dest reg
2381 				 */
2382 				regs[insn->dst_reg] = regs[insn->src_reg];
2383 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2384 			} else {
2385 				/* R1 = (u32) R2 */
2386 				if (is_pointer_value(env, insn->src_reg)) {
2387 					verbose(env,
2388 						"R%d partial copy of pointer\n",
2389 						insn->src_reg);
2390 					return -EACCES;
2391 				}
2392 				mark_reg_unknown(env, regs, insn->dst_reg);
2393 				/* high 32 bits are known zero. */
2394 				regs[insn->dst_reg].var_off = tnum_cast(
2395 						regs[insn->dst_reg].var_off, 4);
2396 				__update_reg_bounds(&regs[insn->dst_reg]);
2397 			}
2398 		} else {
2399 			/* case: R = imm
2400 			 * remember the value we stored into this reg
2401 			 */
2402 			regs[insn->dst_reg].type = SCALAR_VALUE;
2403 			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2404 		}
2405 
2406 	} else if (opcode > BPF_END) {
2407 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2408 		return -EINVAL;
2409 
2410 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2411 
2412 		if (BPF_SRC(insn->code) == BPF_X) {
2413 			if (insn->imm != 0 || insn->off != 0) {
2414 				verbose(env, "BPF_ALU uses reserved fields\n");
2415 				return -EINVAL;
2416 			}
2417 			/* check src1 operand */
2418 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2419 			if (err)
2420 				return err;
2421 		} else {
2422 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2423 				verbose(env, "BPF_ALU uses reserved fields\n");
2424 				return -EINVAL;
2425 			}
2426 		}
2427 
2428 		/* check src2 operand */
2429 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2430 		if (err)
2431 			return err;
2432 
2433 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2434 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2435 			verbose(env, "div by zero\n");
2436 			return -EINVAL;
2437 		}
2438 
2439 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2440 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2441 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2442 
2443 			if (insn->imm < 0 || insn->imm >= size) {
2444 				verbose(env, "invalid shift %d\n", insn->imm);
2445 				return -EINVAL;
2446 			}
2447 		}
2448 
2449 		/* check dest operand */
2450 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2451 		if (err)
2452 			return err;
2453 
2454 		return adjust_reg_min_max_vals(env, insn);
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2461 				   struct bpf_reg_state *dst_reg,
2462 				   enum bpf_reg_type type,
2463 				   bool range_right_open)
2464 {
2465 	struct bpf_reg_state *regs = state->regs, *reg;
2466 	u16 new_range;
2467 	int i;
2468 
2469 	if (dst_reg->off < 0 ||
2470 	    (dst_reg->off == 0 && range_right_open))
2471 		/* This doesn't give us any range */
2472 		return;
2473 
2474 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2475 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2476 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2477 		 * than pkt_end, but that's because it's also less than pkt.
2478 		 */
2479 		return;
2480 
2481 	new_range = dst_reg->off;
2482 	if (range_right_open)
2483 		new_range--;
2484 
2485 	/* Examples for register markings:
2486 	 *
2487 	 * pkt_data in dst register:
2488 	 *
2489 	 *   r2 = r3;
2490 	 *   r2 += 8;
2491 	 *   if (r2 > pkt_end) goto <handle exception>
2492 	 *   <access okay>
2493 	 *
2494 	 *   r2 = r3;
2495 	 *   r2 += 8;
2496 	 *   if (r2 < pkt_end) goto <access okay>
2497 	 *   <handle exception>
2498 	 *
2499 	 *   Where:
2500 	 *     r2 == dst_reg, pkt_end == src_reg
2501 	 *     r2=pkt(id=n,off=8,r=0)
2502 	 *     r3=pkt(id=n,off=0,r=0)
2503 	 *
2504 	 * pkt_data in src register:
2505 	 *
2506 	 *   r2 = r3;
2507 	 *   r2 += 8;
2508 	 *   if (pkt_end >= r2) goto <access okay>
2509 	 *   <handle exception>
2510 	 *
2511 	 *   r2 = r3;
2512 	 *   r2 += 8;
2513 	 *   if (pkt_end <= r2) goto <handle exception>
2514 	 *   <access okay>
2515 	 *
2516 	 *   Where:
2517 	 *     pkt_end == dst_reg, r2 == src_reg
2518 	 *     r2=pkt(id=n,off=8,r=0)
2519 	 *     r3=pkt(id=n,off=0,r=0)
2520 	 *
2521 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2522 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2523 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
2524 	 * the check.
2525 	 */
2526 
2527 	/* If our ids match, then we must have the same max_value.  And we
2528 	 * don't care about the other reg's fixed offset, since if it's too big
2529 	 * the range won't allow anything.
2530 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2531 	 */
2532 	for (i = 0; i < MAX_BPF_REG; i++)
2533 		if (regs[i].type == type && regs[i].id == dst_reg->id)
2534 			/* keep the maximum range already checked */
2535 			regs[i].range = max(regs[i].range, new_range);
2536 
2537 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2538 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2539 			continue;
2540 		reg = &state->stack[i].spilled_ptr;
2541 		if (reg->type == type && reg->id == dst_reg->id)
2542 			reg->range = max(reg->range, new_range);
2543 	}
2544 }
2545 
2546 /* Adjusts the register min/max values in the case that the dst_reg is the
2547  * variable register that we are working on, and src_reg is a constant or we're
2548  * simply doing a BPF_K check.
2549  * In JEQ/JNE cases we also adjust the var_off values.
2550  */
2551 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2552 			    struct bpf_reg_state *false_reg, u64 val,
2553 			    u8 opcode)
2554 {
2555 	/* If the dst_reg is a pointer, we can't learn anything about its
2556 	 * variable offset from the compare (unless src_reg were a pointer into
2557 	 * the same object, but we don't bother with that.
2558 	 * Since false_reg and true_reg have the same type by construction, we
2559 	 * only need to check one of them for pointerness.
2560 	 */
2561 	if (__is_pointer_value(false, false_reg))
2562 		return;
2563 
2564 	switch (opcode) {
2565 	case BPF_JEQ:
2566 		/* If this is false then we know nothing Jon Snow, but if it is
2567 		 * true then we know for sure.
2568 		 */
2569 		__mark_reg_known(true_reg, val);
2570 		break;
2571 	case BPF_JNE:
2572 		/* If this is true we know nothing Jon Snow, but if it is false
2573 		 * we know the value for sure;
2574 		 */
2575 		__mark_reg_known(false_reg, val);
2576 		break;
2577 	case BPF_JGT:
2578 		false_reg->umax_value = min(false_reg->umax_value, val);
2579 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2580 		break;
2581 	case BPF_JSGT:
2582 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2583 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2584 		break;
2585 	case BPF_JLT:
2586 		false_reg->umin_value = max(false_reg->umin_value, val);
2587 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2588 		break;
2589 	case BPF_JSLT:
2590 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2591 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2592 		break;
2593 	case BPF_JGE:
2594 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2595 		true_reg->umin_value = max(true_reg->umin_value, val);
2596 		break;
2597 	case BPF_JSGE:
2598 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2599 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2600 		break;
2601 	case BPF_JLE:
2602 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2603 		true_reg->umax_value = min(true_reg->umax_value, val);
2604 		break;
2605 	case BPF_JSLE:
2606 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2607 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2608 		break;
2609 	default:
2610 		break;
2611 	}
2612 
2613 	__reg_deduce_bounds(false_reg);
2614 	__reg_deduce_bounds(true_reg);
2615 	/* We might have learned some bits from the bounds. */
2616 	__reg_bound_offset(false_reg);
2617 	__reg_bound_offset(true_reg);
2618 	/* Intersecting with the old var_off might have improved our bounds
2619 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2620 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2621 	 */
2622 	__update_reg_bounds(false_reg);
2623 	__update_reg_bounds(true_reg);
2624 }
2625 
2626 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2627  * the variable reg.
2628  */
2629 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2630 				struct bpf_reg_state *false_reg, u64 val,
2631 				u8 opcode)
2632 {
2633 	if (__is_pointer_value(false, false_reg))
2634 		return;
2635 
2636 	switch (opcode) {
2637 	case BPF_JEQ:
2638 		/* If this is false then we know nothing Jon Snow, but if it is
2639 		 * true then we know for sure.
2640 		 */
2641 		__mark_reg_known(true_reg, val);
2642 		break;
2643 	case BPF_JNE:
2644 		/* If this is true we know nothing Jon Snow, but if it is false
2645 		 * we know the value for sure;
2646 		 */
2647 		__mark_reg_known(false_reg, val);
2648 		break;
2649 	case BPF_JGT:
2650 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2651 		false_reg->umin_value = max(false_reg->umin_value, val);
2652 		break;
2653 	case BPF_JSGT:
2654 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2655 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2656 		break;
2657 	case BPF_JLT:
2658 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2659 		false_reg->umax_value = min(false_reg->umax_value, val);
2660 		break;
2661 	case BPF_JSLT:
2662 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2663 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2664 		break;
2665 	case BPF_JGE:
2666 		true_reg->umax_value = min(true_reg->umax_value, val);
2667 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2668 		break;
2669 	case BPF_JSGE:
2670 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2671 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2672 		break;
2673 	case BPF_JLE:
2674 		true_reg->umin_value = max(true_reg->umin_value, val);
2675 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2676 		break;
2677 	case BPF_JSLE:
2678 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2679 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2680 		break;
2681 	default:
2682 		break;
2683 	}
2684 
2685 	__reg_deduce_bounds(false_reg);
2686 	__reg_deduce_bounds(true_reg);
2687 	/* We might have learned some bits from the bounds. */
2688 	__reg_bound_offset(false_reg);
2689 	__reg_bound_offset(true_reg);
2690 	/* Intersecting with the old var_off might have improved our bounds
2691 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2692 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2693 	 */
2694 	__update_reg_bounds(false_reg);
2695 	__update_reg_bounds(true_reg);
2696 }
2697 
2698 /* Regs are known to be equal, so intersect their min/max/var_off */
2699 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2700 				  struct bpf_reg_state *dst_reg)
2701 {
2702 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2703 							dst_reg->umin_value);
2704 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2705 							dst_reg->umax_value);
2706 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2707 							dst_reg->smin_value);
2708 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2709 							dst_reg->smax_value);
2710 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2711 							     dst_reg->var_off);
2712 	/* We might have learned new bounds from the var_off. */
2713 	__update_reg_bounds(src_reg);
2714 	__update_reg_bounds(dst_reg);
2715 	/* We might have learned something about the sign bit. */
2716 	__reg_deduce_bounds(src_reg);
2717 	__reg_deduce_bounds(dst_reg);
2718 	/* We might have learned some bits from the bounds. */
2719 	__reg_bound_offset(src_reg);
2720 	__reg_bound_offset(dst_reg);
2721 	/* Intersecting with the old var_off might have improved our bounds
2722 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2723 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2724 	 */
2725 	__update_reg_bounds(src_reg);
2726 	__update_reg_bounds(dst_reg);
2727 }
2728 
2729 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2730 				struct bpf_reg_state *true_dst,
2731 				struct bpf_reg_state *false_src,
2732 				struct bpf_reg_state *false_dst,
2733 				u8 opcode)
2734 {
2735 	switch (opcode) {
2736 	case BPF_JEQ:
2737 		__reg_combine_min_max(true_src, true_dst);
2738 		break;
2739 	case BPF_JNE:
2740 		__reg_combine_min_max(false_src, false_dst);
2741 		break;
2742 	}
2743 }
2744 
2745 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2746 			 bool is_null)
2747 {
2748 	struct bpf_reg_state *reg = &regs[regno];
2749 
2750 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2751 		/* Old offset (both fixed and variable parts) should
2752 		 * have been known-zero, because we don't allow pointer
2753 		 * arithmetic on pointers that might be NULL.
2754 		 */
2755 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2756 				 !tnum_equals_const(reg->var_off, 0) ||
2757 				 reg->off)) {
2758 			__mark_reg_known_zero(reg);
2759 			reg->off = 0;
2760 		}
2761 		if (is_null) {
2762 			reg->type = SCALAR_VALUE;
2763 		} else if (reg->map_ptr->inner_map_meta) {
2764 			reg->type = CONST_PTR_TO_MAP;
2765 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2766 		} else {
2767 			reg->type = PTR_TO_MAP_VALUE;
2768 		}
2769 		/* We don't need id from this point onwards anymore, thus we
2770 		 * should better reset it, so that state pruning has chances
2771 		 * to take effect.
2772 		 */
2773 		reg->id = 0;
2774 	}
2775 }
2776 
2777 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2778  * be folded together at some point.
2779  */
2780 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2781 			  bool is_null)
2782 {
2783 	struct bpf_reg_state *regs = state->regs;
2784 	u32 id = regs[regno].id;
2785 	int i;
2786 
2787 	for (i = 0; i < MAX_BPF_REG; i++)
2788 		mark_map_reg(regs, i, id, is_null);
2789 
2790 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2791 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2792 			continue;
2793 		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2794 	}
2795 }
2796 
2797 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2798 				   struct bpf_reg_state *dst_reg,
2799 				   struct bpf_reg_state *src_reg,
2800 				   struct bpf_verifier_state *this_branch,
2801 				   struct bpf_verifier_state *other_branch)
2802 {
2803 	if (BPF_SRC(insn->code) != BPF_X)
2804 		return false;
2805 
2806 	switch (BPF_OP(insn->code)) {
2807 	case BPF_JGT:
2808 		if ((dst_reg->type == PTR_TO_PACKET &&
2809 		     src_reg->type == PTR_TO_PACKET_END) ||
2810 		    (dst_reg->type == PTR_TO_PACKET_META &&
2811 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2812 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2813 			find_good_pkt_pointers(this_branch, dst_reg,
2814 					       dst_reg->type, false);
2815 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2816 			    src_reg->type == PTR_TO_PACKET) ||
2817 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2818 			    src_reg->type == PTR_TO_PACKET_META)) {
2819 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
2820 			find_good_pkt_pointers(other_branch, src_reg,
2821 					       src_reg->type, true);
2822 		} else {
2823 			return false;
2824 		}
2825 		break;
2826 	case BPF_JLT:
2827 		if ((dst_reg->type == PTR_TO_PACKET &&
2828 		     src_reg->type == PTR_TO_PACKET_END) ||
2829 		    (dst_reg->type == PTR_TO_PACKET_META &&
2830 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2831 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2832 			find_good_pkt_pointers(other_branch, dst_reg,
2833 					       dst_reg->type, true);
2834 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2835 			    src_reg->type == PTR_TO_PACKET) ||
2836 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2837 			    src_reg->type == PTR_TO_PACKET_META)) {
2838 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
2839 			find_good_pkt_pointers(this_branch, src_reg,
2840 					       src_reg->type, false);
2841 		} else {
2842 			return false;
2843 		}
2844 		break;
2845 	case BPF_JGE:
2846 		if ((dst_reg->type == PTR_TO_PACKET &&
2847 		     src_reg->type == PTR_TO_PACKET_END) ||
2848 		    (dst_reg->type == PTR_TO_PACKET_META &&
2849 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2850 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2851 			find_good_pkt_pointers(this_branch, dst_reg,
2852 					       dst_reg->type, true);
2853 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2854 			    src_reg->type == PTR_TO_PACKET) ||
2855 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2856 			    src_reg->type == PTR_TO_PACKET_META)) {
2857 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2858 			find_good_pkt_pointers(other_branch, src_reg,
2859 					       src_reg->type, false);
2860 		} else {
2861 			return false;
2862 		}
2863 		break;
2864 	case BPF_JLE:
2865 		if ((dst_reg->type == PTR_TO_PACKET &&
2866 		     src_reg->type == PTR_TO_PACKET_END) ||
2867 		    (dst_reg->type == PTR_TO_PACKET_META &&
2868 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2869 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2870 			find_good_pkt_pointers(other_branch, dst_reg,
2871 					       dst_reg->type, false);
2872 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2873 			    src_reg->type == PTR_TO_PACKET) ||
2874 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2875 			    src_reg->type == PTR_TO_PACKET_META)) {
2876 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2877 			find_good_pkt_pointers(this_branch, src_reg,
2878 					       src_reg->type, true);
2879 		} else {
2880 			return false;
2881 		}
2882 		break;
2883 	default:
2884 		return false;
2885 	}
2886 
2887 	return true;
2888 }
2889 
2890 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2891 			     struct bpf_insn *insn, int *insn_idx)
2892 {
2893 	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2894 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2895 	u8 opcode = BPF_OP(insn->code);
2896 	int err;
2897 
2898 	if (opcode > BPF_JSLE) {
2899 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2900 		return -EINVAL;
2901 	}
2902 
2903 	if (BPF_SRC(insn->code) == BPF_X) {
2904 		if (insn->imm != 0) {
2905 			verbose(env, "BPF_JMP uses reserved fields\n");
2906 			return -EINVAL;
2907 		}
2908 
2909 		/* check src1 operand */
2910 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2911 		if (err)
2912 			return err;
2913 
2914 		if (is_pointer_value(env, insn->src_reg)) {
2915 			verbose(env, "R%d pointer comparison prohibited\n",
2916 				insn->src_reg);
2917 			return -EACCES;
2918 		}
2919 	} else {
2920 		if (insn->src_reg != BPF_REG_0) {
2921 			verbose(env, "BPF_JMP uses reserved fields\n");
2922 			return -EINVAL;
2923 		}
2924 	}
2925 
2926 	/* check src2 operand */
2927 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2928 	if (err)
2929 		return err;
2930 
2931 	dst_reg = &regs[insn->dst_reg];
2932 
2933 	/* detect if R == 0 where R was initialized to zero earlier */
2934 	if (BPF_SRC(insn->code) == BPF_K &&
2935 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2936 	    dst_reg->type == SCALAR_VALUE &&
2937 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2938 		if (opcode == BPF_JEQ) {
2939 			/* if (imm == imm) goto pc+off;
2940 			 * only follow the goto, ignore fall-through
2941 			 */
2942 			*insn_idx += insn->off;
2943 			return 0;
2944 		} else {
2945 			/* if (imm != imm) goto pc+off;
2946 			 * only follow fall-through branch, since
2947 			 * that's where the program will go
2948 			 */
2949 			return 0;
2950 		}
2951 	}
2952 
2953 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2954 	if (!other_branch)
2955 		return -EFAULT;
2956 
2957 	/* detect if we are comparing against a constant value so we can adjust
2958 	 * our min/max values for our dst register.
2959 	 * this is only legit if both are scalars (or pointers to the same
2960 	 * object, I suppose, but we don't support that right now), because
2961 	 * otherwise the different base pointers mean the offsets aren't
2962 	 * comparable.
2963 	 */
2964 	if (BPF_SRC(insn->code) == BPF_X) {
2965 		if (dst_reg->type == SCALAR_VALUE &&
2966 		    regs[insn->src_reg].type == SCALAR_VALUE) {
2967 			if (tnum_is_const(regs[insn->src_reg].var_off))
2968 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
2969 						dst_reg, regs[insn->src_reg].var_off.value,
2970 						opcode);
2971 			else if (tnum_is_const(dst_reg->var_off))
2972 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2973 						    &regs[insn->src_reg],
2974 						    dst_reg->var_off.value, opcode);
2975 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2976 				/* Comparing for equality, we can combine knowledge */
2977 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
2978 						    &other_branch->regs[insn->dst_reg],
2979 						    &regs[insn->src_reg],
2980 						    &regs[insn->dst_reg], opcode);
2981 		}
2982 	} else if (dst_reg->type == SCALAR_VALUE) {
2983 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2984 					dst_reg, insn->imm, opcode);
2985 	}
2986 
2987 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2988 	if (BPF_SRC(insn->code) == BPF_K &&
2989 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2990 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2991 		/* Mark all identical map registers in each branch as either
2992 		 * safe or unknown depending R == 0 or R != 0 conditional.
2993 		 */
2994 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2995 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2996 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
2997 					   this_branch, other_branch) &&
2998 		   is_pointer_value(env, insn->dst_reg)) {
2999 		verbose(env, "R%d pointer comparison prohibited\n",
3000 			insn->dst_reg);
3001 		return -EACCES;
3002 	}
3003 	if (env->log.level)
3004 		print_verifier_state(env, this_branch);
3005 	return 0;
3006 }
3007 
3008 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3009 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3010 {
3011 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3012 
3013 	return (struct bpf_map *) (unsigned long) imm64;
3014 }
3015 
3016 /* verify BPF_LD_IMM64 instruction */
3017 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3018 {
3019 	struct bpf_reg_state *regs = cur_regs(env);
3020 	int err;
3021 
3022 	if (BPF_SIZE(insn->code) != BPF_DW) {
3023 		verbose(env, "invalid BPF_LD_IMM insn\n");
3024 		return -EINVAL;
3025 	}
3026 	if (insn->off != 0) {
3027 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3028 		return -EINVAL;
3029 	}
3030 
3031 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3032 	if (err)
3033 		return err;
3034 
3035 	if (insn->src_reg == 0) {
3036 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3037 
3038 		regs[insn->dst_reg].type = SCALAR_VALUE;
3039 		__mark_reg_known(&regs[insn->dst_reg], imm);
3040 		return 0;
3041 	}
3042 
3043 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3044 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3045 
3046 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3047 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3048 	return 0;
3049 }
3050 
3051 static bool may_access_skb(enum bpf_prog_type type)
3052 {
3053 	switch (type) {
3054 	case BPF_PROG_TYPE_SOCKET_FILTER:
3055 	case BPF_PROG_TYPE_SCHED_CLS:
3056 	case BPF_PROG_TYPE_SCHED_ACT:
3057 		return true;
3058 	default:
3059 		return false;
3060 	}
3061 }
3062 
3063 /* verify safety of LD_ABS|LD_IND instructions:
3064  * - they can only appear in the programs where ctx == skb
3065  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3066  *   preserve R6-R9, and store return value into R0
3067  *
3068  * Implicit input:
3069  *   ctx == skb == R6 == CTX
3070  *
3071  * Explicit input:
3072  *   SRC == any register
3073  *   IMM == 32-bit immediate
3074  *
3075  * Output:
3076  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3077  */
3078 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3079 {
3080 	struct bpf_reg_state *regs = cur_regs(env);
3081 	u8 mode = BPF_MODE(insn->code);
3082 	int i, err;
3083 
3084 	if (!may_access_skb(env->prog->type)) {
3085 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3086 		return -EINVAL;
3087 	}
3088 
3089 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3090 	    BPF_SIZE(insn->code) == BPF_DW ||
3091 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3092 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3093 		return -EINVAL;
3094 	}
3095 
3096 	/* check whether implicit source operand (register R6) is readable */
3097 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3098 	if (err)
3099 		return err;
3100 
3101 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3102 		verbose(env,
3103 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3104 		return -EINVAL;
3105 	}
3106 
3107 	if (mode == BPF_IND) {
3108 		/* check explicit source operand */
3109 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3110 		if (err)
3111 			return err;
3112 	}
3113 
3114 	/* reset caller saved regs to unreadable */
3115 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3116 		mark_reg_not_init(env, regs, caller_saved[i]);
3117 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3118 	}
3119 
3120 	/* mark destination R0 register as readable, since it contains
3121 	 * the value fetched from the packet.
3122 	 * Already marked as written above.
3123 	 */
3124 	mark_reg_unknown(env, regs, BPF_REG_0);
3125 	return 0;
3126 }
3127 
3128 static int check_return_code(struct bpf_verifier_env *env)
3129 {
3130 	struct bpf_reg_state *reg;
3131 	struct tnum range = tnum_range(0, 1);
3132 
3133 	switch (env->prog->type) {
3134 	case BPF_PROG_TYPE_CGROUP_SKB:
3135 	case BPF_PROG_TYPE_CGROUP_SOCK:
3136 	case BPF_PROG_TYPE_SOCK_OPS:
3137 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3138 		break;
3139 	default:
3140 		return 0;
3141 	}
3142 
3143 	reg = cur_regs(env) + BPF_REG_0;
3144 	if (reg->type != SCALAR_VALUE) {
3145 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3146 			reg_type_str[reg->type]);
3147 		return -EINVAL;
3148 	}
3149 
3150 	if (!tnum_in(range, reg->var_off)) {
3151 		verbose(env, "At program exit the register R0 ");
3152 		if (!tnum_is_unknown(reg->var_off)) {
3153 			char tn_buf[48];
3154 
3155 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3156 			verbose(env, "has value %s", tn_buf);
3157 		} else {
3158 			verbose(env, "has unknown scalar value");
3159 		}
3160 		verbose(env, " should have been 0 or 1\n");
3161 		return -EINVAL;
3162 	}
3163 	return 0;
3164 }
3165 
3166 /* non-recursive DFS pseudo code
3167  * 1  procedure DFS-iterative(G,v):
3168  * 2      label v as discovered
3169  * 3      let S be a stack
3170  * 4      S.push(v)
3171  * 5      while S is not empty
3172  * 6            t <- S.pop()
3173  * 7            if t is what we're looking for:
3174  * 8                return t
3175  * 9            for all edges e in G.adjacentEdges(t) do
3176  * 10               if edge e is already labelled
3177  * 11                   continue with the next edge
3178  * 12               w <- G.adjacentVertex(t,e)
3179  * 13               if vertex w is not discovered and not explored
3180  * 14                   label e as tree-edge
3181  * 15                   label w as discovered
3182  * 16                   S.push(w)
3183  * 17                   continue at 5
3184  * 18               else if vertex w is discovered
3185  * 19                   label e as back-edge
3186  * 20               else
3187  * 21                   // vertex w is explored
3188  * 22                   label e as forward- or cross-edge
3189  * 23           label t as explored
3190  * 24           S.pop()
3191  *
3192  * convention:
3193  * 0x10 - discovered
3194  * 0x11 - discovered and fall-through edge labelled
3195  * 0x12 - discovered and fall-through and branch edges labelled
3196  * 0x20 - explored
3197  */
3198 
3199 enum {
3200 	DISCOVERED = 0x10,
3201 	EXPLORED = 0x20,
3202 	FALLTHROUGH = 1,
3203 	BRANCH = 2,
3204 };
3205 
3206 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3207 
3208 static int *insn_stack;	/* stack of insns to process */
3209 static int cur_stack;	/* current stack index */
3210 static int *insn_state;
3211 
3212 /* t, w, e - match pseudo-code above:
3213  * t - index of current instruction
3214  * w - next instruction
3215  * e - edge
3216  */
3217 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3218 {
3219 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3220 		return 0;
3221 
3222 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3223 		return 0;
3224 
3225 	if (w < 0 || w >= env->prog->len) {
3226 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3227 		return -EINVAL;
3228 	}
3229 
3230 	if (e == BRANCH)
3231 		/* mark branch target for state pruning */
3232 		env->explored_states[w] = STATE_LIST_MARK;
3233 
3234 	if (insn_state[w] == 0) {
3235 		/* tree-edge */
3236 		insn_state[t] = DISCOVERED | e;
3237 		insn_state[w] = DISCOVERED;
3238 		if (cur_stack >= env->prog->len)
3239 			return -E2BIG;
3240 		insn_stack[cur_stack++] = w;
3241 		return 1;
3242 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3243 		verbose(env, "back-edge from insn %d to %d\n", t, w);
3244 		return -EINVAL;
3245 	} else if (insn_state[w] == EXPLORED) {
3246 		/* forward- or cross-edge */
3247 		insn_state[t] = DISCOVERED | e;
3248 	} else {
3249 		verbose(env, "insn state internal bug\n");
3250 		return -EFAULT;
3251 	}
3252 	return 0;
3253 }
3254 
3255 /* non-recursive depth-first-search to detect loops in BPF program
3256  * loop == back-edge in directed graph
3257  */
3258 static int check_cfg(struct bpf_verifier_env *env)
3259 {
3260 	struct bpf_insn *insns = env->prog->insnsi;
3261 	int insn_cnt = env->prog->len;
3262 	int ret = 0;
3263 	int i, t;
3264 
3265 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3266 	if (!insn_state)
3267 		return -ENOMEM;
3268 
3269 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3270 	if (!insn_stack) {
3271 		kfree(insn_state);
3272 		return -ENOMEM;
3273 	}
3274 
3275 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3276 	insn_stack[0] = 0; /* 0 is the first instruction */
3277 	cur_stack = 1;
3278 
3279 peek_stack:
3280 	if (cur_stack == 0)
3281 		goto check_state;
3282 	t = insn_stack[cur_stack - 1];
3283 
3284 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3285 		u8 opcode = BPF_OP(insns[t].code);
3286 
3287 		if (opcode == BPF_EXIT) {
3288 			goto mark_explored;
3289 		} else if (opcode == BPF_CALL) {
3290 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3291 			if (ret == 1)
3292 				goto peek_stack;
3293 			else if (ret < 0)
3294 				goto err_free;
3295 			if (t + 1 < insn_cnt)
3296 				env->explored_states[t + 1] = STATE_LIST_MARK;
3297 		} else if (opcode == BPF_JA) {
3298 			if (BPF_SRC(insns[t].code) != BPF_K) {
3299 				ret = -EINVAL;
3300 				goto err_free;
3301 			}
3302 			/* unconditional jump with single edge */
3303 			ret = push_insn(t, t + insns[t].off + 1,
3304 					FALLTHROUGH, env);
3305 			if (ret == 1)
3306 				goto peek_stack;
3307 			else if (ret < 0)
3308 				goto err_free;
3309 			/* tell verifier to check for equivalent states
3310 			 * after every call and jump
3311 			 */
3312 			if (t + 1 < insn_cnt)
3313 				env->explored_states[t + 1] = STATE_LIST_MARK;
3314 		} else {
3315 			/* conditional jump with two edges */
3316 			env->explored_states[t] = STATE_LIST_MARK;
3317 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3318 			if (ret == 1)
3319 				goto peek_stack;
3320 			else if (ret < 0)
3321 				goto err_free;
3322 
3323 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3324 			if (ret == 1)
3325 				goto peek_stack;
3326 			else if (ret < 0)
3327 				goto err_free;
3328 		}
3329 	} else {
3330 		/* all other non-branch instructions with single
3331 		 * fall-through edge
3332 		 */
3333 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3334 		if (ret == 1)
3335 			goto peek_stack;
3336 		else if (ret < 0)
3337 			goto err_free;
3338 	}
3339 
3340 mark_explored:
3341 	insn_state[t] = EXPLORED;
3342 	if (cur_stack-- <= 0) {
3343 		verbose(env, "pop stack internal bug\n");
3344 		ret = -EFAULT;
3345 		goto err_free;
3346 	}
3347 	goto peek_stack;
3348 
3349 check_state:
3350 	for (i = 0; i < insn_cnt; i++) {
3351 		if (insn_state[i] != EXPLORED) {
3352 			verbose(env, "unreachable insn %d\n", i);
3353 			ret = -EINVAL;
3354 			goto err_free;
3355 		}
3356 	}
3357 	ret = 0; /* cfg looks good */
3358 
3359 err_free:
3360 	kfree(insn_state);
3361 	kfree(insn_stack);
3362 	return ret;
3363 }
3364 
3365 /* check %cur's range satisfies %old's */
3366 static bool range_within(struct bpf_reg_state *old,
3367 			 struct bpf_reg_state *cur)
3368 {
3369 	return old->umin_value <= cur->umin_value &&
3370 	       old->umax_value >= cur->umax_value &&
3371 	       old->smin_value <= cur->smin_value &&
3372 	       old->smax_value >= cur->smax_value;
3373 }
3374 
3375 /* Maximum number of register states that can exist at once */
3376 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3377 struct idpair {
3378 	u32 old;
3379 	u32 cur;
3380 };
3381 
3382 /* If in the old state two registers had the same id, then they need to have
3383  * the same id in the new state as well.  But that id could be different from
3384  * the old state, so we need to track the mapping from old to new ids.
3385  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3386  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3387  * regs with a different old id could still have new id 9, we don't care about
3388  * that.
3389  * So we look through our idmap to see if this old id has been seen before.  If
3390  * so, we require the new id to match; otherwise, we add the id pair to the map.
3391  */
3392 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3393 {
3394 	unsigned int i;
3395 
3396 	for (i = 0; i < ID_MAP_SIZE; i++) {
3397 		if (!idmap[i].old) {
3398 			/* Reached an empty slot; haven't seen this id before */
3399 			idmap[i].old = old_id;
3400 			idmap[i].cur = cur_id;
3401 			return true;
3402 		}
3403 		if (idmap[i].old == old_id)
3404 			return idmap[i].cur == cur_id;
3405 	}
3406 	/* We ran out of idmap slots, which should be impossible */
3407 	WARN_ON_ONCE(1);
3408 	return false;
3409 }
3410 
3411 /* Returns true if (rold safe implies rcur safe) */
3412 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3413 		    struct idpair *idmap)
3414 {
3415 	if (!(rold->live & REG_LIVE_READ))
3416 		/* explored state didn't use this */
3417 		return true;
3418 
3419 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3420 		return true;
3421 
3422 	if (rold->type == NOT_INIT)
3423 		/* explored state can't have used this */
3424 		return true;
3425 	if (rcur->type == NOT_INIT)
3426 		return false;
3427 	switch (rold->type) {
3428 	case SCALAR_VALUE:
3429 		if (rcur->type == SCALAR_VALUE) {
3430 			/* new val must satisfy old val knowledge */
3431 			return range_within(rold, rcur) &&
3432 			       tnum_in(rold->var_off, rcur->var_off);
3433 		} else {
3434 			/* if we knew anything about the old value, we're not
3435 			 * equal, because we can't know anything about the
3436 			 * scalar value of the pointer in the new value.
3437 			 */
3438 			return rold->umin_value == 0 &&
3439 			       rold->umax_value == U64_MAX &&
3440 			       rold->smin_value == S64_MIN &&
3441 			       rold->smax_value == S64_MAX &&
3442 			       tnum_is_unknown(rold->var_off);
3443 		}
3444 	case PTR_TO_MAP_VALUE:
3445 		/* If the new min/max/var_off satisfy the old ones and
3446 		 * everything else matches, we are OK.
3447 		 * We don't care about the 'id' value, because nothing
3448 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3449 		 */
3450 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3451 		       range_within(rold, rcur) &&
3452 		       tnum_in(rold->var_off, rcur->var_off);
3453 	case PTR_TO_MAP_VALUE_OR_NULL:
3454 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3455 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3456 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3457 		 * checked, doing so could have affected others with the same
3458 		 * id, and we can't check for that because we lost the id when
3459 		 * we converted to a PTR_TO_MAP_VALUE.
3460 		 */
3461 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3462 			return false;
3463 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3464 			return false;
3465 		/* Check our ids match any regs they're supposed to */
3466 		return check_ids(rold->id, rcur->id, idmap);
3467 	case PTR_TO_PACKET_META:
3468 	case PTR_TO_PACKET:
3469 		if (rcur->type != rold->type)
3470 			return false;
3471 		/* We must have at least as much range as the old ptr
3472 		 * did, so that any accesses which were safe before are
3473 		 * still safe.  This is true even if old range < old off,
3474 		 * since someone could have accessed through (ptr - k), or
3475 		 * even done ptr -= k in a register, to get a safe access.
3476 		 */
3477 		if (rold->range > rcur->range)
3478 			return false;
3479 		/* If the offsets don't match, we can't trust our alignment;
3480 		 * nor can we be sure that we won't fall out of range.
3481 		 */
3482 		if (rold->off != rcur->off)
3483 			return false;
3484 		/* id relations must be preserved */
3485 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3486 			return false;
3487 		/* new val must satisfy old val knowledge */
3488 		return range_within(rold, rcur) &&
3489 		       tnum_in(rold->var_off, rcur->var_off);
3490 	case PTR_TO_CTX:
3491 	case CONST_PTR_TO_MAP:
3492 	case PTR_TO_STACK:
3493 	case PTR_TO_PACKET_END:
3494 		/* Only valid matches are exact, which memcmp() above
3495 		 * would have accepted
3496 		 */
3497 	default:
3498 		/* Don't know what's going on, just say it's not safe */
3499 		return false;
3500 	}
3501 
3502 	/* Shouldn't get here; if we do, say it's not safe */
3503 	WARN_ON_ONCE(1);
3504 	return false;
3505 }
3506 
3507 static bool stacksafe(struct bpf_verifier_state *old,
3508 		      struct bpf_verifier_state *cur,
3509 		      struct idpair *idmap)
3510 {
3511 	int i, spi;
3512 
3513 	/* if explored stack has more populated slots than current stack
3514 	 * such stacks are not equivalent
3515 	 */
3516 	if (old->allocated_stack > cur->allocated_stack)
3517 		return false;
3518 
3519 	/* walk slots of the explored stack and ignore any additional
3520 	 * slots in the current stack, since explored(safe) state
3521 	 * didn't use them
3522 	 */
3523 	for (i = 0; i < old->allocated_stack; i++) {
3524 		spi = i / BPF_REG_SIZE;
3525 
3526 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3527 			continue;
3528 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3529 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3530 			/* Ex: old explored (safe) state has STACK_SPILL in
3531 			 * this stack slot, but current has has STACK_MISC ->
3532 			 * this verifier states are not equivalent,
3533 			 * return false to continue verification of this path
3534 			 */
3535 			return false;
3536 		if (i % BPF_REG_SIZE)
3537 			continue;
3538 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
3539 			continue;
3540 		if (!regsafe(&old->stack[spi].spilled_ptr,
3541 			     &cur->stack[spi].spilled_ptr,
3542 			     idmap))
3543 			/* when explored and current stack slot are both storing
3544 			 * spilled registers, check that stored pointers types
3545 			 * are the same as well.
3546 			 * Ex: explored safe path could have stored
3547 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3548 			 * but current path has stored:
3549 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3550 			 * such verifier states are not equivalent.
3551 			 * return false to continue verification of this path
3552 			 */
3553 			return false;
3554 	}
3555 	return true;
3556 }
3557 
3558 /* compare two verifier states
3559  *
3560  * all states stored in state_list are known to be valid, since
3561  * verifier reached 'bpf_exit' instruction through them
3562  *
3563  * this function is called when verifier exploring different branches of
3564  * execution popped from the state stack. If it sees an old state that has
3565  * more strict register state and more strict stack state then this execution
3566  * branch doesn't need to be explored further, since verifier already
3567  * concluded that more strict state leads to valid finish.
3568  *
3569  * Therefore two states are equivalent if register state is more conservative
3570  * and explored stack state is more conservative than the current one.
3571  * Example:
3572  *       explored                   current
3573  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3574  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3575  *
3576  * In other words if current stack state (one being explored) has more
3577  * valid slots than old one that already passed validation, it means
3578  * the verifier can stop exploring and conclude that current state is valid too
3579  *
3580  * Similarly with registers. If explored state has register type as invalid
3581  * whereas register type in current state is meaningful, it means that
3582  * the current state will reach 'bpf_exit' instruction safely
3583  */
3584 static bool states_equal(struct bpf_verifier_env *env,
3585 			 struct bpf_verifier_state *old,
3586 			 struct bpf_verifier_state *cur)
3587 {
3588 	struct idpair *idmap;
3589 	bool ret = false;
3590 	int i;
3591 
3592 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3593 	/* If we failed to allocate the idmap, just say it's not safe */
3594 	if (!idmap)
3595 		return false;
3596 
3597 	for (i = 0; i < MAX_BPF_REG; i++) {
3598 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3599 			goto out_free;
3600 	}
3601 
3602 	if (!stacksafe(old, cur, idmap))
3603 		goto out_free;
3604 	ret = true;
3605 out_free:
3606 	kfree(idmap);
3607 	return ret;
3608 }
3609 
3610 /* A write screens off any subsequent reads; but write marks come from the
3611  * straight-line code between a state and its parent.  When we arrive at a
3612  * jump target (in the first iteration of the propagate_liveness() loop),
3613  * we didn't arrive by the straight-line code, so read marks in state must
3614  * propagate to parent regardless of state's write marks.
3615  */
3616 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3617 				  struct bpf_verifier_state *parent)
3618 {
3619 	bool writes = parent == state->parent; /* Observe write marks */
3620 	bool touched = false; /* any changes made? */
3621 	int i;
3622 
3623 	if (!parent)
3624 		return touched;
3625 	/* Propagate read liveness of registers... */
3626 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3627 	/* We don't need to worry about FP liveness because it's read-only */
3628 	for (i = 0; i < BPF_REG_FP; i++) {
3629 		if (parent->regs[i].live & REG_LIVE_READ)
3630 			continue;
3631 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3632 			continue;
3633 		if (state->regs[i].live & REG_LIVE_READ) {
3634 			parent->regs[i].live |= REG_LIVE_READ;
3635 			touched = true;
3636 		}
3637 	}
3638 	/* ... and stack slots */
3639 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3640 		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3641 		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3642 			continue;
3643 		if (state->stack[i].slot_type[0] != STACK_SPILL)
3644 			continue;
3645 		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3646 			continue;
3647 		if (writes &&
3648 		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3649 			continue;
3650 		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3651 			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3652 			touched = true;
3653 		}
3654 	}
3655 	return touched;
3656 }
3657 
3658 /* "parent" is "a state from which we reach the current state", but initially
3659  * it is not the state->parent (i.e. "the state whose straight-line code leads
3660  * to the current state"), instead it is the state that happened to arrive at
3661  * a (prunable) equivalent of the current state.  See comment above
3662  * do_propagate_liveness() for consequences of this.
3663  * This function is just a more efficient way of calling mark_reg_read() or
3664  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3665  * though it requires that parent != state->parent in the call arguments.
3666  */
3667 static void propagate_liveness(const struct bpf_verifier_state *state,
3668 			       struct bpf_verifier_state *parent)
3669 {
3670 	while (do_propagate_liveness(state, parent)) {
3671 		/* Something changed, so we need to feed those changes onward */
3672 		state = parent;
3673 		parent = state->parent;
3674 	}
3675 }
3676 
3677 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3678 {
3679 	struct bpf_verifier_state_list *new_sl;
3680 	struct bpf_verifier_state_list *sl;
3681 	struct bpf_verifier_state *cur = env->cur_state;
3682 	int i, err;
3683 
3684 	sl = env->explored_states[insn_idx];
3685 	if (!sl)
3686 		/* this 'insn_idx' instruction wasn't marked, so we will not
3687 		 * be doing state search here
3688 		 */
3689 		return 0;
3690 
3691 	while (sl != STATE_LIST_MARK) {
3692 		if (states_equal(env, &sl->state, cur)) {
3693 			/* reached equivalent register/stack state,
3694 			 * prune the search.
3695 			 * Registers read by the continuation are read by us.
3696 			 * If we have any write marks in env->cur_state, they
3697 			 * will prevent corresponding reads in the continuation
3698 			 * from reaching our parent (an explored_state).  Our
3699 			 * own state will get the read marks recorded, but
3700 			 * they'll be immediately forgotten as we're pruning
3701 			 * this state and will pop a new one.
3702 			 */
3703 			propagate_liveness(&sl->state, cur);
3704 			return 1;
3705 		}
3706 		sl = sl->next;
3707 	}
3708 
3709 	/* there were no equivalent states, remember current one.
3710 	 * technically the current state is not proven to be safe yet,
3711 	 * but it will either reach bpf_exit (which means it's safe) or
3712 	 * it will be rejected. Since there are no loops, we won't be
3713 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3714 	 */
3715 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3716 	if (!new_sl)
3717 		return -ENOMEM;
3718 
3719 	/* add new state to the head of linked list */
3720 	err = copy_verifier_state(&new_sl->state, cur);
3721 	if (err) {
3722 		free_verifier_state(&new_sl->state, false);
3723 		kfree(new_sl);
3724 		return err;
3725 	}
3726 	new_sl->next = env->explored_states[insn_idx];
3727 	env->explored_states[insn_idx] = new_sl;
3728 	/* connect new state to parentage chain */
3729 	cur->parent = &new_sl->state;
3730 	/* clear write marks in current state: the writes we did are not writes
3731 	 * our child did, so they don't screen off its reads from us.
3732 	 * (There are no read marks in current state, because reads always mark
3733 	 * their parent and current state never has children yet.  Only
3734 	 * explored_states can get read marks.)
3735 	 */
3736 	for (i = 0; i < BPF_REG_FP; i++)
3737 		cur->regs[i].live = REG_LIVE_NONE;
3738 	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3739 		if (cur->stack[i].slot_type[0] == STACK_SPILL)
3740 			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3741 	return 0;
3742 }
3743 
3744 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3745 				  int insn_idx, int prev_insn_idx)
3746 {
3747 	if (env->dev_ops && env->dev_ops->insn_hook)
3748 		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3749 
3750 	return 0;
3751 }
3752 
3753 static int do_check(struct bpf_verifier_env *env)
3754 {
3755 	struct bpf_verifier_state *state;
3756 	struct bpf_insn *insns = env->prog->insnsi;
3757 	struct bpf_reg_state *regs;
3758 	int insn_cnt = env->prog->len;
3759 	int insn_idx, prev_insn_idx = 0;
3760 	int insn_processed = 0;
3761 	bool do_print_state = false;
3762 
3763 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3764 	if (!state)
3765 		return -ENOMEM;
3766 	env->cur_state = state;
3767 	init_reg_state(env, state->regs);
3768 	state->parent = NULL;
3769 	insn_idx = 0;
3770 	for (;;) {
3771 		struct bpf_insn *insn;
3772 		u8 class;
3773 		int err;
3774 
3775 		if (insn_idx >= insn_cnt) {
3776 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3777 				insn_idx, insn_cnt);
3778 			return -EFAULT;
3779 		}
3780 
3781 		insn = &insns[insn_idx];
3782 		class = BPF_CLASS(insn->code);
3783 
3784 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3785 			verbose(env,
3786 				"BPF program is too large. Processed %d insn\n",
3787 				insn_processed);
3788 			return -E2BIG;
3789 		}
3790 
3791 		err = is_state_visited(env, insn_idx);
3792 		if (err < 0)
3793 			return err;
3794 		if (err == 1) {
3795 			/* found equivalent state, can prune the search */
3796 			if (env->log.level) {
3797 				if (do_print_state)
3798 					verbose(env, "\nfrom %d to %d: safe\n",
3799 						prev_insn_idx, insn_idx);
3800 				else
3801 					verbose(env, "%d: safe\n", insn_idx);
3802 			}
3803 			goto process_bpf_exit;
3804 		}
3805 
3806 		if (need_resched())
3807 			cond_resched();
3808 
3809 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
3810 			if (env->log.level > 1)
3811 				verbose(env, "%d:", insn_idx);
3812 			else
3813 				verbose(env, "\nfrom %d to %d:",
3814 					prev_insn_idx, insn_idx);
3815 			print_verifier_state(env, state);
3816 			do_print_state = false;
3817 		}
3818 
3819 		if (env->log.level) {
3820 			verbose(env, "%d: ", insn_idx);
3821 			print_bpf_insn(verbose, env, insn,
3822 				       env->allow_ptr_leaks);
3823 		}
3824 
3825 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3826 		if (err)
3827 			return err;
3828 
3829 		regs = cur_regs(env);
3830 		env->insn_aux_data[insn_idx].seen = true;
3831 		if (class == BPF_ALU || class == BPF_ALU64) {
3832 			err = check_alu_op(env, insn);
3833 			if (err)
3834 				return err;
3835 
3836 		} else if (class == BPF_LDX) {
3837 			enum bpf_reg_type *prev_src_type, src_reg_type;
3838 
3839 			/* check for reserved fields is already done */
3840 
3841 			/* check src operand */
3842 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3843 			if (err)
3844 				return err;
3845 
3846 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3847 			if (err)
3848 				return err;
3849 
3850 			src_reg_type = regs[insn->src_reg].type;
3851 
3852 			/* check that memory (src_reg + off) is readable,
3853 			 * the state of dst_reg will be updated by this func
3854 			 */
3855 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3856 					       BPF_SIZE(insn->code), BPF_READ,
3857 					       insn->dst_reg);
3858 			if (err)
3859 				return err;
3860 
3861 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3862 
3863 			if (*prev_src_type == NOT_INIT) {
3864 				/* saw a valid insn
3865 				 * dst_reg = *(u32 *)(src_reg + off)
3866 				 * save type to validate intersecting paths
3867 				 */
3868 				*prev_src_type = src_reg_type;
3869 
3870 			} else if (src_reg_type != *prev_src_type &&
3871 				   (src_reg_type == PTR_TO_CTX ||
3872 				    *prev_src_type == PTR_TO_CTX)) {
3873 				/* ABuser program is trying to use the same insn
3874 				 * dst_reg = *(u32*) (src_reg + off)
3875 				 * with different pointer types:
3876 				 * src_reg == ctx in one branch and
3877 				 * src_reg == stack|map in some other branch.
3878 				 * Reject it.
3879 				 */
3880 				verbose(env, "same insn cannot be used with different pointers\n");
3881 				return -EINVAL;
3882 			}
3883 
3884 		} else if (class == BPF_STX) {
3885 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3886 
3887 			if (BPF_MODE(insn->code) == BPF_XADD) {
3888 				err = check_xadd(env, insn_idx, insn);
3889 				if (err)
3890 					return err;
3891 				insn_idx++;
3892 				continue;
3893 			}
3894 
3895 			/* check src1 operand */
3896 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3897 			if (err)
3898 				return err;
3899 			/* check src2 operand */
3900 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3901 			if (err)
3902 				return err;
3903 
3904 			dst_reg_type = regs[insn->dst_reg].type;
3905 
3906 			/* check that memory (dst_reg + off) is writeable */
3907 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3908 					       BPF_SIZE(insn->code), BPF_WRITE,
3909 					       insn->src_reg);
3910 			if (err)
3911 				return err;
3912 
3913 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3914 
3915 			if (*prev_dst_type == NOT_INIT) {
3916 				*prev_dst_type = dst_reg_type;
3917 			} else if (dst_reg_type != *prev_dst_type &&
3918 				   (dst_reg_type == PTR_TO_CTX ||
3919 				    *prev_dst_type == PTR_TO_CTX)) {
3920 				verbose(env, "same insn cannot be used with different pointers\n");
3921 				return -EINVAL;
3922 			}
3923 
3924 		} else if (class == BPF_ST) {
3925 			if (BPF_MODE(insn->code) != BPF_MEM ||
3926 			    insn->src_reg != BPF_REG_0) {
3927 				verbose(env, "BPF_ST uses reserved fields\n");
3928 				return -EINVAL;
3929 			}
3930 			/* check src operand */
3931 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3932 			if (err)
3933 				return err;
3934 
3935 			/* check that memory (dst_reg + off) is writeable */
3936 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3937 					       BPF_SIZE(insn->code), BPF_WRITE,
3938 					       -1);
3939 			if (err)
3940 				return err;
3941 
3942 		} else if (class == BPF_JMP) {
3943 			u8 opcode = BPF_OP(insn->code);
3944 
3945 			if (opcode == BPF_CALL) {
3946 				if (BPF_SRC(insn->code) != BPF_K ||
3947 				    insn->off != 0 ||
3948 				    insn->src_reg != BPF_REG_0 ||
3949 				    insn->dst_reg != BPF_REG_0) {
3950 					verbose(env, "BPF_CALL uses reserved fields\n");
3951 					return -EINVAL;
3952 				}
3953 
3954 				err = check_call(env, insn->imm, insn_idx);
3955 				if (err)
3956 					return err;
3957 
3958 			} else if (opcode == BPF_JA) {
3959 				if (BPF_SRC(insn->code) != BPF_K ||
3960 				    insn->imm != 0 ||
3961 				    insn->src_reg != BPF_REG_0 ||
3962 				    insn->dst_reg != BPF_REG_0) {
3963 					verbose(env, "BPF_JA uses reserved fields\n");
3964 					return -EINVAL;
3965 				}
3966 
3967 				insn_idx += insn->off + 1;
3968 				continue;
3969 
3970 			} else if (opcode == BPF_EXIT) {
3971 				if (BPF_SRC(insn->code) != BPF_K ||
3972 				    insn->imm != 0 ||
3973 				    insn->src_reg != BPF_REG_0 ||
3974 				    insn->dst_reg != BPF_REG_0) {
3975 					verbose(env, "BPF_EXIT uses reserved fields\n");
3976 					return -EINVAL;
3977 				}
3978 
3979 				/* eBPF calling convetion is such that R0 is used
3980 				 * to return the value from eBPF program.
3981 				 * Make sure that it's readable at this time
3982 				 * of bpf_exit, which means that program wrote
3983 				 * something into it earlier
3984 				 */
3985 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3986 				if (err)
3987 					return err;
3988 
3989 				if (is_pointer_value(env, BPF_REG_0)) {
3990 					verbose(env, "R0 leaks addr as return value\n");
3991 					return -EACCES;
3992 				}
3993 
3994 				err = check_return_code(env);
3995 				if (err)
3996 					return err;
3997 process_bpf_exit:
3998 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
3999 				if (err < 0) {
4000 					if (err != -ENOENT)
4001 						return err;
4002 					break;
4003 				} else {
4004 					do_print_state = true;
4005 					continue;
4006 				}
4007 			} else {
4008 				err = check_cond_jmp_op(env, insn, &insn_idx);
4009 				if (err)
4010 					return err;
4011 			}
4012 		} else if (class == BPF_LD) {
4013 			u8 mode = BPF_MODE(insn->code);
4014 
4015 			if (mode == BPF_ABS || mode == BPF_IND) {
4016 				err = check_ld_abs(env, insn);
4017 				if (err)
4018 					return err;
4019 
4020 			} else if (mode == BPF_IMM) {
4021 				err = check_ld_imm(env, insn);
4022 				if (err)
4023 					return err;
4024 
4025 				insn_idx++;
4026 				env->insn_aux_data[insn_idx].seen = true;
4027 			} else {
4028 				verbose(env, "invalid BPF_LD mode\n");
4029 				return -EINVAL;
4030 			}
4031 		} else {
4032 			verbose(env, "unknown insn class %d\n", class);
4033 			return -EINVAL;
4034 		}
4035 
4036 		insn_idx++;
4037 	}
4038 
4039 	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4040 		env->prog->aux->stack_depth);
4041 	return 0;
4042 }
4043 
4044 static int check_map_prealloc(struct bpf_map *map)
4045 {
4046 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4047 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4048 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4049 		!(map->map_flags & BPF_F_NO_PREALLOC);
4050 }
4051 
4052 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4053 					struct bpf_map *map,
4054 					struct bpf_prog *prog)
4055 
4056 {
4057 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4058 	 * preallocated hash maps, since doing memory allocation
4059 	 * in overflow_handler can crash depending on where nmi got
4060 	 * triggered.
4061 	 */
4062 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4063 		if (!check_map_prealloc(map)) {
4064 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4065 			return -EINVAL;
4066 		}
4067 		if (map->inner_map_meta &&
4068 		    !check_map_prealloc(map->inner_map_meta)) {
4069 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4070 			return -EINVAL;
4071 		}
4072 	}
4073 	return 0;
4074 }
4075 
4076 /* look for pseudo eBPF instructions that access map FDs and
4077  * replace them with actual map pointers
4078  */
4079 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4080 {
4081 	struct bpf_insn *insn = env->prog->insnsi;
4082 	int insn_cnt = env->prog->len;
4083 	int i, j, err;
4084 
4085 	err = bpf_prog_calc_tag(env->prog);
4086 	if (err)
4087 		return err;
4088 
4089 	for (i = 0; i < insn_cnt; i++, insn++) {
4090 		if (BPF_CLASS(insn->code) == BPF_LDX &&
4091 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4092 			verbose(env, "BPF_LDX uses reserved fields\n");
4093 			return -EINVAL;
4094 		}
4095 
4096 		if (BPF_CLASS(insn->code) == BPF_STX &&
4097 		    ((BPF_MODE(insn->code) != BPF_MEM &&
4098 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4099 			verbose(env, "BPF_STX uses reserved fields\n");
4100 			return -EINVAL;
4101 		}
4102 
4103 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4104 			struct bpf_map *map;
4105 			struct fd f;
4106 
4107 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
4108 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4109 			    insn[1].off != 0) {
4110 				verbose(env, "invalid bpf_ld_imm64 insn\n");
4111 				return -EINVAL;
4112 			}
4113 
4114 			if (insn->src_reg == 0)
4115 				/* valid generic load 64-bit imm */
4116 				goto next_insn;
4117 
4118 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4119 				verbose(env,
4120 					"unrecognized bpf_ld_imm64 insn\n");
4121 				return -EINVAL;
4122 			}
4123 
4124 			f = fdget(insn->imm);
4125 			map = __bpf_map_get(f);
4126 			if (IS_ERR(map)) {
4127 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4128 					insn->imm);
4129 				return PTR_ERR(map);
4130 			}
4131 
4132 			err = check_map_prog_compatibility(env, map, env->prog);
4133 			if (err) {
4134 				fdput(f);
4135 				return err;
4136 			}
4137 
4138 			/* store map pointer inside BPF_LD_IMM64 instruction */
4139 			insn[0].imm = (u32) (unsigned long) map;
4140 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
4141 
4142 			/* check whether we recorded this map already */
4143 			for (j = 0; j < env->used_map_cnt; j++)
4144 				if (env->used_maps[j] == map) {
4145 					fdput(f);
4146 					goto next_insn;
4147 				}
4148 
4149 			if (env->used_map_cnt >= MAX_USED_MAPS) {
4150 				fdput(f);
4151 				return -E2BIG;
4152 			}
4153 
4154 			/* hold the map. If the program is rejected by verifier,
4155 			 * the map will be released by release_maps() or it
4156 			 * will be used by the valid program until it's unloaded
4157 			 * and all maps are released in free_bpf_prog_info()
4158 			 */
4159 			map = bpf_map_inc(map, false);
4160 			if (IS_ERR(map)) {
4161 				fdput(f);
4162 				return PTR_ERR(map);
4163 			}
4164 			env->used_maps[env->used_map_cnt++] = map;
4165 
4166 			fdput(f);
4167 next_insn:
4168 			insn++;
4169 			i++;
4170 		}
4171 	}
4172 
4173 	/* now all pseudo BPF_LD_IMM64 instructions load valid
4174 	 * 'struct bpf_map *' into a register instead of user map_fd.
4175 	 * These pointers will be used later by verifier to validate map access.
4176 	 */
4177 	return 0;
4178 }
4179 
4180 /* drop refcnt of maps used by the rejected program */
4181 static void release_maps(struct bpf_verifier_env *env)
4182 {
4183 	int i;
4184 
4185 	for (i = 0; i < env->used_map_cnt; i++)
4186 		bpf_map_put(env->used_maps[i]);
4187 }
4188 
4189 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4190 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4191 {
4192 	struct bpf_insn *insn = env->prog->insnsi;
4193 	int insn_cnt = env->prog->len;
4194 	int i;
4195 
4196 	for (i = 0; i < insn_cnt; i++, insn++)
4197 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4198 			insn->src_reg = 0;
4199 }
4200 
4201 /* single env->prog->insni[off] instruction was replaced with the range
4202  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4203  * [0, off) and [off, end) to new locations, so the patched range stays zero
4204  */
4205 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4206 				u32 off, u32 cnt)
4207 {
4208 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4209 	int i;
4210 
4211 	if (cnt == 1)
4212 		return 0;
4213 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4214 	if (!new_data)
4215 		return -ENOMEM;
4216 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4217 	memcpy(new_data + off + cnt - 1, old_data + off,
4218 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4219 	for (i = off; i < off + cnt - 1; i++)
4220 		new_data[i].seen = true;
4221 	env->insn_aux_data = new_data;
4222 	vfree(old_data);
4223 	return 0;
4224 }
4225 
4226 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4227 					    const struct bpf_insn *patch, u32 len)
4228 {
4229 	struct bpf_prog *new_prog;
4230 
4231 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4232 	if (!new_prog)
4233 		return NULL;
4234 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4235 		return NULL;
4236 	return new_prog;
4237 }
4238 
4239 /* The verifier does more data flow analysis than llvm and will not explore
4240  * branches that are dead at run time. Malicious programs can have dead code
4241  * too. Therefore replace all dead at-run-time code with nops.
4242  */
4243 static void sanitize_dead_code(struct bpf_verifier_env *env)
4244 {
4245 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4246 	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4247 	struct bpf_insn *insn = env->prog->insnsi;
4248 	const int insn_cnt = env->prog->len;
4249 	int i;
4250 
4251 	for (i = 0; i < insn_cnt; i++) {
4252 		if (aux_data[i].seen)
4253 			continue;
4254 		memcpy(insn + i, &nop, sizeof(nop));
4255 	}
4256 }
4257 
4258 /* convert load instructions that access fields of 'struct __sk_buff'
4259  * into sequence of instructions that access fields of 'struct sk_buff'
4260  */
4261 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4262 {
4263 	const struct bpf_verifier_ops *ops = env->ops;
4264 	int i, cnt, size, ctx_field_size, delta = 0;
4265 	const int insn_cnt = env->prog->len;
4266 	struct bpf_insn insn_buf[16], *insn;
4267 	struct bpf_prog *new_prog;
4268 	enum bpf_access_type type;
4269 	bool is_narrower_load;
4270 	u32 target_size;
4271 
4272 	if (ops->gen_prologue) {
4273 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4274 					env->prog);
4275 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4276 			verbose(env, "bpf verifier is misconfigured\n");
4277 			return -EINVAL;
4278 		} else if (cnt) {
4279 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4280 			if (!new_prog)
4281 				return -ENOMEM;
4282 
4283 			env->prog = new_prog;
4284 			delta += cnt - 1;
4285 		}
4286 	}
4287 
4288 	if (!ops->convert_ctx_access)
4289 		return 0;
4290 
4291 	insn = env->prog->insnsi + delta;
4292 
4293 	for (i = 0; i < insn_cnt; i++, insn++) {
4294 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4295 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4296 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4297 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4298 			type = BPF_READ;
4299 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4300 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4301 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4302 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4303 			type = BPF_WRITE;
4304 		else
4305 			continue;
4306 
4307 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4308 			continue;
4309 
4310 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4311 		size = BPF_LDST_BYTES(insn);
4312 
4313 		/* If the read access is a narrower load of the field,
4314 		 * convert to a 4/8-byte load, to minimum program type specific
4315 		 * convert_ctx_access changes. If conversion is successful,
4316 		 * we will apply proper mask to the result.
4317 		 */
4318 		is_narrower_load = size < ctx_field_size;
4319 		if (is_narrower_load) {
4320 			u32 off = insn->off;
4321 			u8 size_code;
4322 
4323 			if (type == BPF_WRITE) {
4324 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4325 				return -EINVAL;
4326 			}
4327 
4328 			size_code = BPF_H;
4329 			if (ctx_field_size == 4)
4330 				size_code = BPF_W;
4331 			else if (ctx_field_size == 8)
4332 				size_code = BPF_DW;
4333 
4334 			insn->off = off & ~(ctx_field_size - 1);
4335 			insn->code = BPF_LDX | BPF_MEM | size_code;
4336 		}
4337 
4338 		target_size = 0;
4339 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4340 					      &target_size);
4341 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4342 		    (ctx_field_size && !target_size)) {
4343 			verbose(env, "bpf verifier is misconfigured\n");
4344 			return -EINVAL;
4345 		}
4346 
4347 		if (is_narrower_load && size < target_size) {
4348 			if (ctx_field_size <= 4)
4349 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4350 								(1 << size * 8) - 1);
4351 			else
4352 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4353 								(1 << size * 8) - 1);
4354 		}
4355 
4356 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4357 		if (!new_prog)
4358 			return -ENOMEM;
4359 
4360 		delta += cnt - 1;
4361 
4362 		/* keep walking new program and skip insns we just inserted */
4363 		env->prog = new_prog;
4364 		insn      = new_prog->insnsi + i + delta;
4365 	}
4366 
4367 	return 0;
4368 }
4369 
4370 /* fixup insn->imm field of bpf_call instructions
4371  * and inline eligible helpers as explicit sequence of BPF instructions
4372  *
4373  * this function is called after eBPF program passed verification
4374  */
4375 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4376 {
4377 	struct bpf_prog *prog = env->prog;
4378 	struct bpf_insn *insn = prog->insnsi;
4379 	const struct bpf_func_proto *fn;
4380 	const int insn_cnt = prog->len;
4381 	struct bpf_insn insn_buf[16];
4382 	struct bpf_prog *new_prog;
4383 	struct bpf_map *map_ptr;
4384 	int i, cnt, delta = 0;
4385 
4386 	for (i = 0; i < insn_cnt; i++, insn++) {
4387 		if (insn->code != (BPF_JMP | BPF_CALL))
4388 			continue;
4389 
4390 		if (insn->imm == BPF_FUNC_get_route_realm)
4391 			prog->dst_needed = 1;
4392 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4393 			bpf_user_rnd_init_once();
4394 		if (insn->imm == BPF_FUNC_tail_call) {
4395 			/* If we tail call into other programs, we
4396 			 * cannot make any assumptions since they can
4397 			 * be replaced dynamically during runtime in
4398 			 * the program array.
4399 			 */
4400 			prog->cb_access = 1;
4401 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4402 
4403 			/* mark bpf_tail_call as different opcode to avoid
4404 			 * conditional branch in the interpeter for every normal
4405 			 * call and to prevent accidental JITing by JIT compiler
4406 			 * that doesn't support bpf_tail_call yet
4407 			 */
4408 			insn->imm = 0;
4409 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4410 			continue;
4411 		}
4412 
4413 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4414 		 * handlers are currently limited to 64 bit only.
4415 		 */
4416 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4417 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4418 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4419 			if (map_ptr == BPF_MAP_PTR_POISON ||
4420 			    !map_ptr->ops->map_gen_lookup)
4421 				goto patch_call_imm;
4422 
4423 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4424 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4425 				verbose(env, "bpf verifier is misconfigured\n");
4426 				return -EINVAL;
4427 			}
4428 
4429 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4430 						       cnt);
4431 			if (!new_prog)
4432 				return -ENOMEM;
4433 
4434 			delta += cnt - 1;
4435 
4436 			/* keep walking new program and skip insns we just inserted */
4437 			env->prog = prog = new_prog;
4438 			insn      = new_prog->insnsi + i + delta;
4439 			continue;
4440 		}
4441 
4442 		if (insn->imm == BPF_FUNC_redirect_map) {
4443 			/* Note, we cannot use prog directly as imm as subsequent
4444 			 * rewrites would still change the prog pointer. The only
4445 			 * stable address we can use is aux, which also works with
4446 			 * prog clones during blinding.
4447 			 */
4448 			u64 addr = (unsigned long)prog->aux;
4449 			struct bpf_insn r4_ld[] = {
4450 				BPF_LD_IMM64(BPF_REG_4, addr),
4451 				*insn,
4452 			};
4453 			cnt = ARRAY_SIZE(r4_ld);
4454 
4455 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4456 			if (!new_prog)
4457 				return -ENOMEM;
4458 
4459 			delta    += cnt - 1;
4460 			env->prog = prog = new_prog;
4461 			insn      = new_prog->insnsi + i + delta;
4462 		}
4463 patch_call_imm:
4464 		fn = env->ops->get_func_proto(insn->imm);
4465 		/* all functions that have prototype and verifier allowed
4466 		 * programs to call them, must be real in-kernel functions
4467 		 */
4468 		if (!fn->func) {
4469 			verbose(env,
4470 				"kernel subsystem misconfigured func %s#%d\n",
4471 				func_id_name(insn->imm), insn->imm);
4472 			return -EFAULT;
4473 		}
4474 		insn->imm = fn->func - __bpf_call_base;
4475 	}
4476 
4477 	return 0;
4478 }
4479 
4480 static void free_states(struct bpf_verifier_env *env)
4481 {
4482 	struct bpf_verifier_state_list *sl, *sln;
4483 	int i;
4484 
4485 	if (!env->explored_states)
4486 		return;
4487 
4488 	for (i = 0; i < env->prog->len; i++) {
4489 		sl = env->explored_states[i];
4490 
4491 		if (sl)
4492 			while (sl != STATE_LIST_MARK) {
4493 				sln = sl->next;
4494 				free_verifier_state(&sl->state, false);
4495 				kfree(sl);
4496 				sl = sln;
4497 			}
4498 	}
4499 
4500 	kfree(env->explored_states);
4501 }
4502 
4503 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4504 {
4505 	struct bpf_verifier_env *env;
4506 	struct bpf_verifer_log *log;
4507 	int ret = -EINVAL;
4508 
4509 	/* no program is valid */
4510 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4511 		return -EINVAL;
4512 
4513 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4514 	 * allocate/free it every time bpf_check() is called
4515 	 */
4516 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4517 	if (!env)
4518 		return -ENOMEM;
4519 	log = &env->log;
4520 
4521 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4522 				     (*prog)->len);
4523 	ret = -ENOMEM;
4524 	if (!env->insn_aux_data)
4525 		goto err_free_env;
4526 	env->prog = *prog;
4527 	env->ops = bpf_verifier_ops[env->prog->type];
4528 
4529 	/* grab the mutex to protect few globals used by verifier */
4530 	mutex_lock(&bpf_verifier_lock);
4531 
4532 	if (attr->log_level || attr->log_buf || attr->log_size) {
4533 		/* user requested verbose verifier output
4534 		 * and supplied buffer to store the verification trace
4535 		 */
4536 		log->level = attr->log_level;
4537 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4538 		log->len_total = attr->log_size;
4539 
4540 		ret = -EINVAL;
4541 		/* log attributes have to be sane */
4542 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4543 		    !log->level || !log->ubuf)
4544 			goto err_unlock;
4545 	}
4546 
4547 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4548 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4549 		env->strict_alignment = true;
4550 
4551 	if (env->prog->aux->offload) {
4552 		ret = bpf_prog_offload_verifier_prep(env);
4553 		if (ret)
4554 			goto err_unlock;
4555 	}
4556 
4557 	ret = replace_map_fd_with_map_ptr(env);
4558 	if (ret < 0)
4559 		goto skip_full_check;
4560 
4561 	env->explored_states = kcalloc(env->prog->len,
4562 				       sizeof(struct bpf_verifier_state_list *),
4563 				       GFP_USER);
4564 	ret = -ENOMEM;
4565 	if (!env->explored_states)
4566 		goto skip_full_check;
4567 
4568 	ret = check_cfg(env);
4569 	if (ret < 0)
4570 		goto skip_full_check;
4571 
4572 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4573 
4574 	ret = do_check(env);
4575 	if (env->cur_state) {
4576 		free_verifier_state(env->cur_state, true);
4577 		env->cur_state = NULL;
4578 	}
4579 
4580 skip_full_check:
4581 	while (!pop_stack(env, NULL, NULL));
4582 	free_states(env);
4583 
4584 	if (ret == 0)
4585 		sanitize_dead_code(env);
4586 
4587 	if (ret == 0)
4588 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4589 		ret = convert_ctx_accesses(env);
4590 
4591 	if (ret == 0)
4592 		ret = fixup_bpf_calls(env);
4593 
4594 	if (log->level && bpf_verifier_log_full(log))
4595 		ret = -ENOSPC;
4596 	if (log->level && !log->ubuf) {
4597 		ret = -EFAULT;
4598 		goto err_release_maps;
4599 	}
4600 
4601 	if (ret == 0 && env->used_map_cnt) {
4602 		/* if program passed verifier, update used_maps in bpf_prog_info */
4603 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4604 							  sizeof(env->used_maps[0]),
4605 							  GFP_KERNEL);
4606 
4607 		if (!env->prog->aux->used_maps) {
4608 			ret = -ENOMEM;
4609 			goto err_release_maps;
4610 		}
4611 
4612 		memcpy(env->prog->aux->used_maps, env->used_maps,
4613 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4614 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4615 
4616 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4617 		 * bpf_ld_imm64 instructions
4618 		 */
4619 		convert_pseudo_ld_imm64(env);
4620 	}
4621 
4622 err_release_maps:
4623 	if (!env->prog->aux->used_maps)
4624 		/* if we didn't copy map pointers into bpf_prog_info, release
4625 		 * them now. Otherwise free_bpf_prog_info() will release them.
4626 		 */
4627 		release_maps(env);
4628 	*prog = env->prog;
4629 err_unlock:
4630 	mutex_unlock(&bpf_verifier_lock);
4631 	vfree(env->insn_aux_data);
4632 err_free_env:
4633 	kfree(env);
4634 	return ret;
4635 }
4636