1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 /* bpf_check() is a static code analyzer that walks eBPF program 25 * instruction by instruction and updates register/stack state. 26 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 27 * 28 * The first pass is depth-first-search to check that the program is a DAG. 29 * It rejects the following programs: 30 * - larger than BPF_MAXINSNS insns 31 * - if loop is present (detected via back-edge) 32 * - unreachable insns exist (shouldn't be a forest. program = one function) 33 * - out of bounds or malformed jumps 34 * The second pass is all possible path descent from the 1st insn. 35 * Since it's analyzing all pathes through the program, the length of the 36 * analysis is limited to 64k insn, which may be hit even if total number of 37 * insn is less then 4K, but there are too many branches that change stack/regs. 38 * Number of 'branches to be analyzed' is limited to 1k 39 * 40 * On entry to each instruction, each register has a type, and the instruction 41 * changes the types of the registers depending on instruction semantics. 42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 43 * copied to R1. 44 * 45 * All registers are 64-bit. 46 * R0 - return register 47 * R1-R5 argument passing registers 48 * R6-R9 callee saved registers 49 * R10 - frame pointer read-only 50 * 51 * At the start of BPF program the register R1 contains a pointer to bpf_context 52 * and has type PTR_TO_CTX. 53 * 54 * Verifier tracks arithmetic operations on pointers in case: 55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 57 * 1st insn copies R10 (which has FRAME_PTR) type into R1 58 * and 2nd arithmetic instruction is pattern matched to recognize 59 * that it wants to construct a pointer to some element within stack. 60 * So after 2nd insn, the register R1 has type PTR_TO_STACK 61 * (and -20 constant is saved for further stack bounds checking). 62 * Meaning that this reg is a pointer to stack plus known immediate constant. 63 * 64 * Most of the time the registers have UNKNOWN_VALUE type, which 65 * means the register has some value, but it's not a valid pointer. 66 * (like pointer plus pointer becomes UNKNOWN_VALUE type) 67 * 68 * When verifier sees load or store instructions the type of base register 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer 70 * types recognized by check_mem_access() function. 71 * 72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 73 * and the range of [ptr, ptr + map's value_size) is accessible. 74 * 75 * registers used to pass values to function calls are checked against 76 * function argument constraints. 77 * 78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 79 * It means that the register type passed to this function must be 80 * PTR_TO_STACK and it will be used inside the function as 81 * 'pointer to map element key' 82 * 83 * For example the argument constraints for bpf_map_lookup_elem(): 84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 85 * .arg1_type = ARG_CONST_MAP_PTR, 86 * .arg2_type = ARG_PTR_TO_MAP_KEY, 87 * 88 * ret_type says that this function returns 'pointer to map elem value or null' 89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 90 * 2nd argument should be a pointer to stack, which will be used inside 91 * the helper function as a pointer to map element key. 92 * 93 * On the kernel side the helper function looks like: 94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 95 * { 96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 97 * void *key = (void *) (unsigned long) r2; 98 * void *value; 99 * 100 * here kernel can access 'key' and 'map' pointers safely, knowing that 101 * [key, key + map->key_size) bytes are valid and were initialized on 102 * the stack of eBPF program. 103 * } 104 * 105 * Corresponding eBPF program may look like: 106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 110 * here verifier looks at prototype of map_lookup_elem() and sees: 111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 113 * 114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 116 * and were initialized prior to this call. 117 * If it's ok, then verifier allows this BPF_CALL insn and looks at 118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 120 * returns ether pointer to map value or NULL. 121 * 122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 123 * insn, the register holding that pointer in the true branch changes state to 124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 125 * branch. See check_cond_jmp_op(). 126 * 127 * After the call R0 is set to return type of the function and registers R1-R5 128 * are set to NOT_INIT to indicate that they are no longer readable. 129 */ 130 131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 132 struct bpf_verifier_stack_elem { 133 /* verifer state is 'st' 134 * before processing instruction 'insn_idx' 135 * and after processing instruction 'prev_insn_idx' 136 */ 137 struct bpf_verifier_state st; 138 int insn_idx; 139 int prev_insn_idx; 140 struct bpf_verifier_stack_elem *next; 141 }; 142 143 #define BPF_COMPLEXITY_LIMIT_INSNS 65536 144 #define BPF_COMPLEXITY_LIMIT_STACK 1024 145 146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 147 148 struct bpf_call_arg_meta { 149 struct bpf_map *map_ptr; 150 bool raw_mode; 151 bool pkt_access; 152 int regno; 153 int access_size; 154 }; 155 156 /* verbose verifier prints what it's seeing 157 * bpf_check() is called under lock, so no race to access these global vars 158 */ 159 static u32 log_level, log_size, log_len; 160 static char *log_buf; 161 162 static DEFINE_MUTEX(bpf_verifier_lock); 163 164 /* log_level controls verbosity level of eBPF verifier. 165 * verbose() is used to dump the verification trace to the log, so the user 166 * can figure out what's wrong with the program 167 */ 168 static __printf(1, 2) void verbose(const char *fmt, ...) 169 { 170 va_list args; 171 172 if (log_level == 0 || log_len >= log_size - 1) 173 return; 174 175 va_start(args, fmt); 176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); 177 va_end(args); 178 } 179 180 /* string representation of 'enum bpf_reg_type' */ 181 static const char * const reg_type_str[] = { 182 [NOT_INIT] = "?", 183 [UNKNOWN_VALUE] = "inv", 184 [PTR_TO_CTX] = "ctx", 185 [CONST_PTR_TO_MAP] = "map_ptr", 186 [PTR_TO_MAP_VALUE] = "map_value", 187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj", 189 [FRAME_PTR] = "fp", 190 [PTR_TO_STACK] = "fp", 191 [CONST_IMM] = "imm", 192 [PTR_TO_PACKET] = "pkt", 193 [PTR_TO_PACKET_END] = "pkt_end", 194 }; 195 196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x) 197 static const char * const func_id_str[] = { 198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN) 199 }; 200 #undef __BPF_FUNC_STR_FN 201 202 static const char *func_id_name(int id) 203 { 204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID); 205 206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id]) 207 return func_id_str[id]; 208 else 209 return "unknown"; 210 } 211 212 static void print_verifier_state(struct bpf_verifier_state *state) 213 { 214 struct bpf_reg_state *reg; 215 enum bpf_reg_type t; 216 int i; 217 218 for (i = 0; i < MAX_BPF_REG; i++) { 219 reg = &state->regs[i]; 220 t = reg->type; 221 if (t == NOT_INIT) 222 continue; 223 verbose(" R%d=%s", i, reg_type_str[t]); 224 if (t == CONST_IMM || t == PTR_TO_STACK) 225 verbose("%lld", reg->imm); 226 else if (t == PTR_TO_PACKET) 227 verbose("(id=%d,off=%d,r=%d)", 228 reg->id, reg->off, reg->range); 229 else if (t == UNKNOWN_VALUE && reg->imm) 230 verbose("%lld", reg->imm); 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE || 232 t == PTR_TO_MAP_VALUE_OR_NULL || 233 t == PTR_TO_MAP_VALUE_ADJ) 234 verbose("(ks=%d,vs=%d,id=%u)", 235 reg->map_ptr->key_size, 236 reg->map_ptr->value_size, 237 reg->id); 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE) 239 verbose(",min_value=%lld", 240 (long long)reg->min_value); 241 if (reg->max_value != BPF_REGISTER_MAX_RANGE) 242 verbose(",max_value=%llu", 243 (unsigned long long)reg->max_value); 244 } 245 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 246 if (state->stack_slot_type[i] == STACK_SPILL) 247 verbose(" fp%d=%s", -MAX_BPF_STACK + i, 248 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]); 249 } 250 verbose("\n"); 251 } 252 253 static const char *const bpf_class_string[] = { 254 [BPF_LD] = "ld", 255 [BPF_LDX] = "ldx", 256 [BPF_ST] = "st", 257 [BPF_STX] = "stx", 258 [BPF_ALU] = "alu", 259 [BPF_JMP] = "jmp", 260 [BPF_RET] = "BUG", 261 [BPF_ALU64] = "alu64", 262 }; 263 264 static const char *const bpf_alu_string[16] = { 265 [BPF_ADD >> 4] = "+=", 266 [BPF_SUB >> 4] = "-=", 267 [BPF_MUL >> 4] = "*=", 268 [BPF_DIV >> 4] = "/=", 269 [BPF_OR >> 4] = "|=", 270 [BPF_AND >> 4] = "&=", 271 [BPF_LSH >> 4] = "<<=", 272 [BPF_RSH >> 4] = ">>=", 273 [BPF_NEG >> 4] = "neg", 274 [BPF_MOD >> 4] = "%=", 275 [BPF_XOR >> 4] = "^=", 276 [BPF_MOV >> 4] = "=", 277 [BPF_ARSH >> 4] = "s>>=", 278 [BPF_END >> 4] = "endian", 279 }; 280 281 static const char *const bpf_ldst_string[] = { 282 [BPF_W >> 3] = "u32", 283 [BPF_H >> 3] = "u16", 284 [BPF_B >> 3] = "u8", 285 [BPF_DW >> 3] = "u64", 286 }; 287 288 static const char *const bpf_jmp_string[16] = { 289 [BPF_JA >> 4] = "jmp", 290 [BPF_JEQ >> 4] = "==", 291 [BPF_JGT >> 4] = ">", 292 [BPF_JGE >> 4] = ">=", 293 [BPF_JSET >> 4] = "&", 294 [BPF_JNE >> 4] = "!=", 295 [BPF_JSGT >> 4] = "s>", 296 [BPF_JSGE >> 4] = "s>=", 297 [BPF_CALL >> 4] = "call", 298 [BPF_EXIT >> 4] = "exit", 299 }; 300 301 static void print_bpf_insn(struct bpf_insn *insn) 302 { 303 u8 class = BPF_CLASS(insn->code); 304 305 if (class == BPF_ALU || class == BPF_ALU64) { 306 if (BPF_SRC(insn->code) == BPF_X) 307 verbose("(%02x) %sr%d %s %sr%d\n", 308 insn->code, class == BPF_ALU ? "(u32) " : "", 309 insn->dst_reg, 310 bpf_alu_string[BPF_OP(insn->code) >> 4], 311 class == BPF_ALU ? "(u32) " : "", 312 insn->src_reg); 313 else 314 verbose("(%02x) %sr%d %s %s%d\n", 315 insn->code, class == BPF_ALU ? "(u32) " : "", 316 insn->dst_reg, 317 bpf_alu_string[BPF_OP(insn->code) >> 4], 318 class == BPF_ALU ? "(u32) " : "", 319 insn->imm); 320 } else if (class == BPF_STX) { 321 if (BPF_MODE(insn->code) == BPF_MEM) 322 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", 323 insn->code, 324 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 325 insn->dst_reg, 326 insn->off, insn->src_reg); 327 else if (BPF_MODE(insn->code) == BPF_XADD) 328 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", 329 insn->code, 330 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 331 insn->dst_reg, insn->off, 332 insn->src_reg); 333 else 334 verbose("BUG_%02x\n", insn->code); 335 } else if (class == BPF_ST) { 336 if (BPF_MODE(insn->code) != BPF_MEM) { 337 verbose("BUG_st_%02x\n", insn->code); 338 return; 339 } 340 verbose("(%02x) *(%s *)(r%d %+d) = %d\n", 341 insn->code, 342 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 343 insn->dst_reg, 344 insn->off, insn->imm); 345 } else if (class == BPF_LDX) { 346 if (BPF_MODE(insn->code) != BPF_MEM) { 347 verbose("BUG_ldx_%02x\n", insn->code); 348 return; 349 } 350 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", 351 insn->code, insn->dst_reg, 352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 353 insn->src_reg, insn->off); 354 } else if (class == BPF_LD) { 355 if (BPF_MODE(insn->code) == BPF_ABS) { 356 verbose("(%02x) r0 = *(%s *)skb[%d]\n", 357 insn->code, 358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 359 insn->imm); 360 } else if (BPF_MODE(insn->code) == BPF_IND) { 361 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", 362 insn->code, 363 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 364 insn->src_reg, insn->imm); 365 } else if (BPF_MODE(insn->code) == BPF_IMM) { 366 verbose("(%02x) r%d = 0x%x\n", 367 insn->code, insn->dst_reg, insn->imm); 368 } else { 369 verbose("BUG_ld_%02x\n", insn->code); 370 return; 371 } 372 } else if (class == BPF_JMP) { 373 u8 opcode = BPF_OP(insn->code); 374 375 if (opcode == BPF_CALL) { 376 verbose("(%02x) call %s#%d\n", insn->code, 377 func_id_name(insn->imm), insn->imm); 378 } else if (insn->code == (BPF_JMP | BPF_JA)) { 379 verbose("(%02x) goto pc%+d\n", 380 insn->code, insn->off); 381 } else if (insn->code == (BPF_JMP | BPF_EXIT)) { 382 verbose("(%02x) exit\n", insn->code); 383 } else if (BPF_SRC(insn->code) == BPF_X) { 384 verbose("(%02x) if r%d %s r%d goto pc%+d\n", 385 insn->code, insn->dst_reg, 386 bpf_jmp_string[BPF_OP(insn->code) >> 4], 387 insn->src_reg, insn->off); 388 } else { 389 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", 390 insn->code, insn->dst_reg, 391 bpf_jmp_string[BPF_OP(insn->code) >> 4], 392 insn->imm, insn->off); 393 } 394 } else { 395 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); 396 } 397 } 398 399 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx) 400 { 401 struct bpf_verifier_stack_elem *elem; 402 int insn_idx; 403 404 if (env->head == NULL) 405 return -1; 406 407 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); 408 insn_idx = env->head->insn_idx; 409 if (prev_insn_idx) 410 *prev_insn_idx = env->head->prev_insn_idx; 411 elem = env->head->next; 412 kfree(env->head); 413 env->head = elem; 414 env->stack_size--; 415 return insn_idx; 416 } 417 418 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 419 int insn_idx, int prev_insn_idx) 420 { 421 struct bpf_verifier_stack_elem *elem; 422 423 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 424 if (!elem) 425 goto err; 426 427 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); 428 elem->insn_idx = insn_idx; 429 elem->prev_insn_idx = prev_insn_idx; 430 elem->next = env->head; 431 env->head = elem; 432 env->stack_size++; 433 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 434 verbose("BPF program is too complex\n"); 435 goto err; 436 } 437 return &elem->st; 438 err: 439 /* pop all elements and return */ 440 while (pop_stack(env, NULL) >= 0); 441 return NULL; 442 } 443 444 #define CALLER_SAVED_REGS 6 445 static const int caller_saved[CALLER_SAVED_REGS] = { 446 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 447 }; 448 449 static void init_reg_state(struct bpf_reg_state *regs) 450 { 451 int i; 452 453 for (i = 0; i < MAX_BPF_REG; i++) { 454 regs[i].type = NOT_INIT; 455 regs[i].imm = 0; 456 regs[i].min_value = BPF_REGISTER_MIN_RANGE; 457 regs[i].max_value = BPF_REGISTER_MAX_RANGE; 458 } 459 460 /* frame pointer */ 461 regs[BPF_REG_FP].type = FRAME_PTR; 462 463 /* 1st arg to a function */ 464 regs[BPF_REG_1].type = PTR_TO_CTX; 465 } 466 467 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno) 468 { 469 regs[regno].type = UNKNOWN_VALUE; 470 regs[regno].id = 0; 471 regs[regno].imm = 0; 472 } 473 474 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno) 475 { 476 BUG_ON(regno >= MAX_BPF_REG); 477 __mark_reg_unknown_value(regs, regno); 478 } 479 480 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno) 481 { 482 regs[regno].min_value = BPF_REGISTER_MIN_RANGE; 483 regs[regno].max_value = BPF_REGISTER_MAX_RANGE; 484 } 485 486 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs, 487 u32 regno) 488 { 489 mark_reg_unknown_value(regs, regno); 490 reset_reg_range_values(regs, regno); 491 } 492 493 enum reg_arg_type { 494 SRC_OP, /* register is used as source operand */ 495 DST_OP, /* register is used as destination operand */ 496 DST_OP_NO_MARK /* same as above, check only, don't mark */ 497 }; 498 499 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno, 500 enum reg_arg_type t) 501 { 502 if (regno >= MAX_BPF_REG) { 503 verbose("R%d is invalid\n", regno); 504 return -EINVAL; 505 } 506 507 if (t == SRC_OP) { 508 /* check whether register used as source operand can be read */ 509 if (regs[regno].type == NOT_INIT) { 510 verbose("R%d !read_ok\n", regno); 511 return -EACCES; 512 } 513 } else { 514 /* check whether register used as dest operand can be written to */ 515 if (regno == BPF_REG_FP) { 516 verbose("frame pointer is read only\n"); 517 return -EACCES; 518 } 519 if (t == DST_OP) 520 mark_reg_unknown_value(regs, regno); 521 } 522 return 0; 523 } 524 525 static int bpf_size_to_bytes(int bpf_size) 526 { 527 if (bpf_size == BPF_W) 528 return 4; 529 else if (bpf_size == BPF_H) 530 return 2; 531 else if (bpf_size == BPF_B) 532 return 1; 533 else if (bpf_size == BPF_DW) 534 return 8; 535 else 536 return -EINVAL; 537 } 538 539 static bool is_spillable_regtype(enum bpf_reg_type type) 540 { 541 switch (type) { 542 case PTR_TO_MAP_VALUE: 543 case PTR_TO_MAP_VALUE_OR_NULL: 544 case PTR_TO_MAP_VALUE_ADJ: 545 case PTR_TO_STACK: 546 case PTR_TO_CTX: 547 case PTR_TO_PACKET: 548 case PTR_TO_PACKET_END: 549 case FRAME_PTR: 550 case CONST_PTR_TO_MAP: 551 return true; 552 default: 553 return false; 554 } 555 } 556 557 /* check_stack_read/write functions track spill/fill of registers, 558 * stack boundary and alignment are checked in check_mem_access() 559 */ 560 static int check_stack_write(struct bpf_verifier_state *state, int off, 561 int size, int value_regno) 562 { 563 int i; 564 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 565 * so it's aligned access and [off, off + size) are within stack limits 566 */ 567 568 if (value_regno >= 0 && 569 is_spillable_regtype(state->regs[value_regno].type)) { 570 571 /* register containing pointer is being spilled into stack */ 572 if (size != BPF_REG_SIZE) { 573 verbose("invalid size of register spill\n"); 574 return -EACCES; 575 } 576 577 /* save register state */ 578 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = 579 state->regs[value_regno]; 580 581 for (i = 0; i < BPF_REG_SIZE; i++) 582 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; 583 } else { 584 /* regular write of data into stack */ 585 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = 586 (struct bpf_reg_state) {}; 587 588 for (i = 0; i < size; i++) 589 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; 590 } 591 return 0; 592 } 593 594 static int check_stack_read(struct bpf_verifier_state *state, int off, int size, 595 int value_regno) 596 { 597 u8 *slot_type; 598 int i; 599 600 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; 601 602 if (slot_type[0] == STACK_SPILL) { 603 if (size != BPF_REG_SIZE) { 604 verbose("invalid size of register spill\n"); 605 return -EACCES; 606 } 607 for (i = 1; i < BPF_REG_SIZE; i++) { 608 if (slot_type[i] != STACK_SPILL) { 609 verbose("corrupted spill memory\n"); 610 return -EACCES; 611 } 612 } 613 614 if (value_regno >= 0) 615 /* restore register state from stack */ 616 state->regs[value_regno] = 617 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE]; 618 return 0; 619 } else { 620 for (i = 0; i < size; i++) { 621 if (slot_type[i] != STACK_MISC) { 622 verbose("invalid read from stack off %d+%d size %d\n", 623 off, i, size); 624 return -EACCES; 625 } 626 } 627 if (value_regno >= 0) 628 /* have read misc data from the stack */ 629 mark_reg_unknown_value_and_range(state->regs, 630 value_regno); 631 return 0; 632 } 633 } 634 635 /* check read/write into map element returned by bpf_map_lookup_elem() */ 636 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 637 int size) 638 { 639 struct bpf_map *map = env->cur_state.regs[regno].map_ptr; 640 641 if (off < 0 || size <= 0 || off + size > map->value_size) { 642 verbose("invalid access to map value, value_size=%d off=%d size=%d\n", 643 map->value_size, off, size); 644 return -EACCES; 645 } 646 return 0; 647 } 648 649 /* check read/write into an adjusted map element */ 650 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno, 651 int off, int size) 652 { 653 struct bpf_verifier_state *state = &env->cur_state; 654 struct bpf_reg_state *reg = &state->regs[regno]; 655 int err; 656 657 /* We adjusted the register to this map value, so we 658 * need to change off and size to min_value and max_value 659 * respectively to make sure our theoretical access will be 660 * safe. 661 */ 662 if (log_level) 663 print_verifier_state(state); 664 env->varlen_map_value_access = true; 665 /* The minimum value is only important with signed 666 * comparisons where we can't assume the floor of a 667 * value is 0. If we are using signed variables for our 668 * index'es we need to make sure that whatever we use 669 * will have a set floor within our range. 670 */ 671 if (reg->min_value < 0) { 672 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 673 regno); 674 return -EACCES; 675 } 676 err = check_map_access(env, regno, reg->min_value + off, size); 677 if (err) { 678 verbose("R%d min value is outside of the array range\n", 679 regno); 680 return err; 681 } 682 683 /* If we haven't set a max value then we need to bail 684 * since we can't be sure we won't do bad things. 685 */ 686 if (reg->max_value == BPF_REGISTER_MAX_RANGE) { 687 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", 688 regno); 689 return -EACCES; 690 } 691 return check_map_access(env, regno, reg->max_value + off, size); 692 } 693 694 #define MAX_PACKET_OFF 0xffff 695 696 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 697 const struct bpf_call_arg_meta *meta, 698 enum bpf_access_type t) 699 { 700 switch (env->prog->type) { 701 case BPF_PROG_TYPE_LWT_IN: 702 case BPF_PROG_TYPE_LWT_OUT: 703 /* dst_input() and dst_output() can't write for now */ 704 if (t == BPF_WRITE) 705 return false; 706 /* fallthrough */ 707 case BPF_PROG_TYPE_SCHED_CLS: 708 case BPF_PROG_TYPE_SCHED_ACT: 709 case BPF_PROG_TYPE_XDP: 710 case BPF_PROG_TYPE_LWT_XMIT: 711 if (meta) 712 return meta->pkt_access; 713 714 env->seen_direct_write = true; 715 return true; 716 default: 717 return false; 718 } 719 } 720 721 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 722 int size) 723 { 724 struct bpf_reg_state *regs = env->cur_state.regs; 725 struct bpf_reg_state *reg = ®s[regno]; 726 727 off += reg->off; 728 if (off < 0 || size <= 0 || off + size > reg->range) { 729 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 730 off, size, regno, reg->id, reg->off, reg->range); 731 return -EACCES; 732 } 733 return 0; 734 } 735 736 /* check access to 'struct bpf_context' fields */ 737 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size, 738 enum bpf_access_type t, enum bpf_reg_type *reg_type) 739 { 740 /* for analyzer ctx accesses are already validated and converted */ 741 if (env->analyzer_ops) 742 return 0; 743 744 if (env->prog->aux->ops->is_valid_access && 745 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) { 746 /* remember the offset of last byte accessed in ctx */ 747 if (env->prog->aux->max_ctx_offset < off + size) 748 env->prog->aux->max_ctx_offset = off + size; 749 return 0; 750 } 751 752 verbose("invalid bpf_context access off=%d size=%d\n", off, size); 753 return -EACCES; 754 } 755 756 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 757 { 758 if (env->allow_ptr_leaks) 759 return false; 760 761 switch (env->cur_state.regs[regno].type) { 762 case UNKNOWN_VALUE: 763 case CONST_IMM: 764 return false; 765 default: 766 return true; 767 } 768 } 769 770 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg, 771 int off, int size) 772 { 773 if (reg->id && size != 1) { 774 verbose("Unknown alignment. Only byte-sized access allowed in packet access.\n"); 775 return -EACCES; 776 } 777 778 /* skb->data is NET_IP_ALIGN-ed */ 779 if ((NET_IP_ALIGN + reg->off + off) % size != 0) { 780 verbose("misaligned packet access off %d+%d+%d size %d\n", 781 NET_IP_ALIGN, reg->off, off, size); 782 return -EACCES; 783 } 784 785 return 0; 786 } 787 788 static int check_val_ptr_alignment(const struct bpf_reg_state *reg, 789 int size) 790 { 791 if (size != 1) { 792 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n"); 793 return -EACCES; 794 } 795 796 return 0; 797 } 798 799 static int check_ptr_alignment(const struct bpf_reg_state *reg, 800 int off, int size) 801 { 802 switch (reg->type) { 803 case PTR_TO_PACKET: 804 return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 : 805 check_pkt_ptr_alignment(reg, off, size); 806 case PTR_TO_MAP_VALUE_ADJ: 807 return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 : 808 check_val_ptr_alignment(reg, size); 809 default: 810 if (off % size != 0) { 811 verbose("misaligned access off %d size %d\n", 812 off, size); 813 return -EACCES; 814 } 815 816 return 0; 817 } 818 } 819 820 /* check whether memory at (regno + off) is accessible for t = (read | write) 821 * if t==write, value_regno is a register which value is stored into memory 822 * if t==read, value_regno is a register which will receive the value from memory 823 * if t==write && value_regno==-1, some unknown value is stored into memory 824 * if t==read && value_regno==-1, don't care what we read from memory 825 */ 826 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off, 827 int bpf_size, enum bpf_access_type t, 828 int value_regno) 829 { 830 struct bpf_verifier_state *state = &env->cur_state; 831 struct bpf_reg_state *reg = &state->regs[regno]; 832 int size, err = 0; 833 834 if (reg->type == PTR_TO_STACK) 835 off += reg->imm; 836 837 size = bpf_size_to_bytes(bpf_size); 838 if (size < 0) 839 return size; 840 841 err = check_ptr_alignment(reg, off, size); 842 if (err) 843 return err; 844 845 if (reg->type == PTR_TO_MAP_VALUE || 846 reg->type == PTR_TO_MAP_VALUE_ADJ) { 847 if (t == BPF_WRITE && value_regno >= 0 && 848 is_pointer_value(env, value_regno)) { 849 verbose("R%d leaks addr into map\n", value_regno); 850 return -EACCES; 851 } 852 853 if (reg->type == PTR_TO_MAP_VALUE_ADJ) 854 err = check_map_access_adj(env, regno, off, size); 855 else 856 err = check_map_access(env, regno, off, size); 857 if (!err && t == BPF_READ && value_regno >= 0) 858 mark_reg_unknown_value_and_range(state->regs, 859 value_regno); 860 861 } else if (reg->type == PTR_TO_CTX) { 862 enum bpf_reg_type reg_type = UNKNOWN_VALUE; 863 864 if (t == BPF_WRITE && value_regno >= 0 && 865 is_pointer_value(env, value_regno)) { 866 verbose("R%d leaks addr into ctx\n", value_regno); 867 return -EACCES; 868 } 869 err = check_ctx_access(env, off, size, t, ®_type); 870 if (!err && t == BPF_READ && value_regno >= 0) { 871 mark_reg_unknown_value_and_range(state->regs, 872 value_regno); 873 /* note that reg.[id|off|range] == 0 */ 874 state->regs[value_regno].type = reg_type; 875 } 876 877 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) { 878 if (off >= 0 || off < -MAX_BPF_STACK) { 879 verbose("invalid stack off=%d size=%d\n", off, size); 880 return -EACCES; 881 } 882 if (t == BPF_WRITE) { 883 if (!env->allow_ptr_leaks && 884 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL && 885 size != BPF_REG_SIZE) { 886 verbose("attempt to corrupt spilled pointer on stack\n"); 887 return -EACCES; 888 } 889 err = check_stack_write(state, off, size, value_regno); 890 } else { 891 err = check_stack_read(state, off, size, value_regno); 892 } 893 } else if (state->regs[regno].type == PTR_TO_PACKET) { 894 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 895 verbose("cannot write into packet\n"); 896 return -EACCES; 897 } 898 if (t == BPF_WRITE && value_regno >= 0 && 899 is_pointer_value(env, value_regno)) { 900 verbose("R%d leaks addr into packet\n", value_regno); 901 return -EACCES; 902 } 903 err = check_packet_access(env, regno, off, size); 904 if (!err && t == BPF_READ && value_regno >= 0) 905 mark_reg_unknown_value_and_range(state->regs, 906 value_regno); 907 } else { 908 verbose("R%d invalid mem access '%s'\n", 909 regno, reg_type_str[reg->type]); 910 return -EACCES; 911 } 912 913 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks && 914 state->regs[value_regno].type == UNKNOWN_VALUE) { 915 /* 1 or 2 byte load zero-extends, determine the number of 916 * zero upper bits. Not doing it fo 4 byte load, since 917 * such values cannot be added to ptr_to_packet anyway. 918 */ 919 state->regs[value_regno].imm = 64 - size * 8; 920 } 921 return err; 922 } 923 924 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn) 925 { 926 struct bpf_reg_state *regs = env->cur_state.regs; 927 int err; 928 929 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 930 insn->imm != 0) { 931 verbose("BPF_XADD uses reserved fields\n"); 932 return -EINVAL; 933 } 934 935 /* check src1 operand */ 936 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 937 if (err) 938 return err; 939 940 /* check src2 operand */ 941 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 942 if (err) 943 return err; 944 945 /* check whether atomic_add can read the memory */ 946 err = check_mem_access(env, insn->dst_reg, insn->off, 947 BPF_SIZE(insn->code), BPF_READ, -1); 948 if (err) 949 return err; 950 951 /* check whether atomic_add can write into the same memory */ 952 return check_mem_access(env, insn->dst_reg, insn->off, 953 BPF_SIZE(insn->code), BPF_WRITE, -1); 954 } 955 956 /* when register 'regno' is passed into function that will read 'access_size' 957 * bytes from that pointer, make sure that it's within stack boundary 958 * and all elements of stack are initialized 959 */ 960 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 961 int access_size, bool zero_size_allowed, 962 struct bpf_call_arg_meta *meta) 963 { 964 struct bpf_verifier_state *state = &env->cur_state; 965 struct bpf_reg_state *regs = state->regs; 966 int off, i; 967 968 if (regs[regno].type != PTR_TO_STACK) { 969 if (zero_size_allowed && access_size == 0 && 970 regs[regno].type == CONST_IMM && 971 regs[regno].imm == 0) 972 return 0; 973 974 verbose("R%d type=%s expected=%s\n", regno, 975 reg_type_str[regs[regno].type], 976 reg_type_str[PTR_TO_STACK]); 977 return -EACCES; 978 } 979 980 off = regs[regno].imm; 981 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 982 access_size <= 0) { 983 verbose("invalid stack type R%d off=%d access_size=%d\n", 984 regno, off, access_size); 985 return -EACCES; 986 } 987 988 if (meta && meta->raw_mode) { 989 meta->access_size = access_size; 990 meta->regno = regno; 991 return 0; 992 } 993 994 for (i = 0; i < access_size; i++) { 995 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { 996 verbose("invalid indirect read from stack off %d+%d size %d\n", 997 off, i, access_size); 998 return -EACCES; 999 } 1000 } 1001 return 0; 1002 } 1003 1004 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1005 int access_size, bool zero_size_allowed, 1006 struct bpf_call_arg_meta *meta) 1007 { 1008 struct bpf_reg_state *regs = env->cur_state.regs; 1009 1010 switch (regs[regno].type) { 1011 case PTR_TO_PACKET: 1012 return check_packet_access(env, regno, 0, access_size); 1013 case PTR_TO_MAP_VALUE: 1014 return check_map_access(env, regno, 0, access_size); 1015 case PTR_TO_MAP_VALUE_ADJ: 1016 return check_map_access_adj(env, regno, 0, access_size); 1017 default: /* const_imm|ptr_to_stack or invalid ptr */ 1018 return check_stack_boundary(env, regno, access_size, 1019 zero_size_allowed, meta); 1020 } 1021 } 1022 1023 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1024 enum bpf_arg_type arg_type, 1025 struct bpf_call_arg_meta *meta) 1026 { 1027 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1028 enum bpf_reg_type expected_type, type = reg->type; 1029 int err = 0; 1030 1031 if (arg_type == ARG_DONTCARE) 1032 return 0; 1033 1034 if (type == NOT_INIT) { 1035 verbose("R%d !read_ok\n", regno); 1036 return -EACCES; 1037 } 1038 1039 if (arg_type == ARG_ANYTHING) { 1040 if (is_pointer_value(env, regno)) { 1041 verbose("R%d leaks addr into helper function\n", regno); 1042 return -EACCES; 1043 } 1044 return 0; 1045 } 1046 1047 if (type == PTR_TO_PACKET && 1048 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1049 verbose("helper access to the packet is not allowed\n"); 1050 return -EACCES; 1051 } 1052 1053 if (arg_type == ARG_PTR_TO_MAP_KEY || 1054 arg_type == ARG_PTR_TO_MAP_VALUE) { 1055 expected_type = PTR_TO_STACK; 1056 if (type != PTR_TO_PACKET && type != expected_type) 1057 goto err_type; 1058 } else if (arg_type == ARG_CONST_SIZE || 1059 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1060 expected_type = CONST_IMM; 1061 /* One exception. Allow UNKNOWN_VALUE registers when the 1062 * boundaries are known and don't cause unsafe memory accesses 1063 */ 1064 if (type != UNKNOWN_VALUE && type != expected_type) 1065 goto err_type; 1066 } else if (arg_type == ARG_CONST_MAP_PTR) { 1067 expected_type = CONST_PTR_TO_MAP; 1068 if (type != expected_type) 1069 goto err_type; 1070 } else if (arg_type == ARG_PTR_TO_CTX) { 1071 expected_type = PTR_TO_CTX; 1072 if (type != expected_type) 1073 goto err_type; 1074 } else if (arg_type == ARG_PTR_TO_MEM || 1075 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1076 expected_type = PTR_TO_STACK; 1077 /* One exception here. In case function allows for NULL to be 1078 * passed in as argument, it's a CONST_IMM type. Final test 1079 * happens during stack boundary checking. 1080 */ 1081 if (type == CONST_IMM && reg->imm == 0) 1082 /* final test in check_stack_boundary() */; 1083 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE && 1084 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type) 1085 goto err_type; 1086 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1087 } else { 1088 verbose("unsupported arg_type %d\n", arg_type); 1089 return -EFAULT; 1090 } 1091 1092 if (arg_type == ARG_CONST_MAP_PTR) { 1093 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1094 meta->map_ptr = reg->map_ptr; 1095 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1096 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1097 * check that [key, key + map->key_size) are within 1098 * stack limits and initialized 1099 */ 1100 if (!meta->map_ptr) { 1101 /* in function declaration map_ptr must come before 1102 * map_key, so that it's verified and known before 1103 * we have to check map_key here. Otherwise it means 1104 * that kernel subsystem misconfigured verifier 1105 */ 1106 verbose("invalid map_ptr to access map->key\n"); 1107 return -EACCES; 1108 } 1109 if (type == PTR_TO_PACKET) 1110 err = check_packet_access(env, regno, 0, 1111 meta->map_ptr->key_size); 1112 else 1113 err = check_stack_boundary(env, regno, 1114 meta->map_ptr->key_size, 1115 false, NULL); 1116 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1117 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1118 * check [value, value + map->value_size) validity 1119 */ 1120 if (!meta->map_ptr) { 1121 /* kernel subsystem misconfigured verifier */ 1122 verbose("invalid map_ptr to access map->value\n"); 1123 return -EACCES; 1124 } 1125 if (type == PTR_TO_PACKET) 1126 err = check_packet_access(env, regno, 0, 1127 meta->map_ptr->value_size); 1128 else 1129 err = check_stack_boundary(env, regno, 1130 meta->map_ptr->value_size, 1131 false, NULL); 1132 } else if (arg_type == ARG_CONST_SIZE || 1133 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1134 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1135 1136 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1137 * from stack pointer 'buf'. Check it 1138 * note: regno == len, regno - 1 == buf 1139 */ 1140 if (regno == 0) { 1141 /* kernel subsystem misconfigured verifier */ 1142 verbose("ARG_CONST_SIZE cannot be first argument\n"); 1143 return -EACCES; 1144 } 1145 1146 /* If the register is UNKNOWN_VALUE, the access check happens 1147 * using its boundaries. Otherwise, just use its imm 1148 */ 1149 if (type == UNKNOWN_VALUE) { 1150 /* For unprivileged variable accesses, disable raw 1151 * mode so that the program is required to 1152 * initialize all the memory that the helper could 1153 * just partially fill up. 1154 */ 1155 meta = NULL; 1156 1157 if (reg->min_value < 0) { 1158 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n", 1159 regno); 1160 return -EACCES; 1161 } 1162 1163 if (reg->min_value == 0) { 1164 err = check_helper_mem_access(env, regno - 1, 0, 1165 zero_size_allowed, 1166 meta); 1167 if (err) 1168 return err; 1169 } 1170 1171 if (reg->max_value == BPF_REGISTER_MAX_RANGE) { 1172 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1173 regno); 1174 return -EACCES; 1175 } 1176 err = check_helper_mem_access(env, regno - 1, 1177 reg->max_value, 1178 zero_size_allowed, meta); 1179 if (err) 1180 return err; 1181 } else { 1182 /* register is CONST_IMM */ 1183 err = check_helper_mem_access(env, regno - 1, reg->imm, 1184 zero_size_allowed, meta); 1185 } 1186 } 1187 1188 return err; 1189 err_type: 1190 verbose("R%d type=%s expected=%s\n", regno, 1191 reg_type_str[type], reg_type_str[expected_type]); 1192 return -EACCES; 1193 } 1194 1195 static int check_map_func_compatibility(struct bpf_map *map, int func_id) 1196 { 1197 if (!map) 1198 return 0; 1199 1200 /* We need a two way check, first is from map perspective ... */ 1201 switch (map->map_type) { 1202 case BPF_MAP_TYPE_PROG_ARRAY: 1203 if (func_id != BPF_FUNC_tail_call) 1204 goto error; 1205 break; 1206 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1207 if (func_id != BPF_FUNC_perf_event_read && 1208 func_id != BPF_FUNC_perf_event_output) 1209 goto error; 1210 break; 1211 case BPF_MAP_TYPE_STACK_TRACE: 1212 if (func_id != BPF_FUNC_get_stackid) 1213 goto error; 1214 break; 1215 case BPF_MAP_TYPE_CGROUP_ARRAY: 1216 if (func_id != BPF_FUNC_skb_under_cgroup && 1217 func_id != BPF_FUNC_current_task_under_cgroup) 1218 goto error; 1219 break; 1220 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1221 case BPF_MAP_TYPE_HASH_OF_MAPS: 1222 if (func_id != BPF_FUNC_map_lookup_elem) 1223 goto error; 1224 default: 1225 break; 1226 } 1227 1228 /* ... and second from the function itself. */ 1229 switch (func_id) { 1230 case BPF_FUNC_tail_call: 1231 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1232 goto error; 1233 break; 1234 case BPF_FUNC_perf_event_read: 1235 case BPF_FUNC_perf_event_output: 1236 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1237 goto error; 1238 break; 1239 case BPF_FUNC_get_stackid: 1240 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1241 goto error; 1242 break; 1243 case BPF_FUNC_current_task_under_cgroup: 1244 case BPF_FUNC_skb_under_cgroup: 1245 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1246 goto error; 1247 break; 1248 default: 1249 break; 1250 } 1251 1252 return 0; 1253 error: 1254 verbose("cannot pass map_type %d into func %s#%d\n", 1255 map->map_type, func_id_name(func_id), func_id); 1256 return -EINVAL; 1257 } 1258 1259 static int check_raw_mode(const struct bpf_func_proto *fn) 1260 { 1261 int count = 0; 1262 1263 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1264 count++; 1265 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1266 count++; 1267 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1268 count++; 1269 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1270 count++; 1271 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1272 count++; 1273 1274 return count > 1 ? -EINVAL : 0; 1275 } 1276 1277 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1278 { 1279 struct bpf_verifier_state *state = &env->cur_state; 1280 struct bpf_reg_state *regs = state->regs, *reg; 1281 int i; 1282 1283 for (i = 0; i < MAX_BPF_REG; i++) 1284 if (regs[i].type == PTR_TO_PACKET || 1285 regs[i].type == PTR_TO_PACKET_END) 1286 mark_reg_unknown_value(regs, i); 1287 1288 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 1289 if (state->stack_slot_type[i] != STACK_SPILL) 1290 continue; 1291 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 1292 if (reg->type != PTR_TO_PACKET && 1293 reg->type != PTR_TO_PACKET_END) 1294 continue; 1295 reg->type = UNKNOWN_VALUE; 1296 reg->imm = 0; 1297 } 1298 } 1299 1300 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1301 { 1302 struct bpf_verifier_state *state = &env->cur_state; 1303 const struct bpf_func_proto *fn = NULL; 1304 struct bpf_reg_state *regs = state->regs; 1305 struct bpf_reg_state *reg; 1306 struct bpf_call_arg_meta meta; 1307 bool changes_data; 1308 int i, err; 1309 1310 /* find function prototype */ 1311 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1312 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id); 1313 return -EINVAL; 1314 } 1315 1316 if (env->prog->aux->ops->get_func_proto) 1317 fn = env->prog->aux->ops->get_func_proto(func_id); 1318 1319 if (!fn) { 1320 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id); 1321 return -EINVAL; 1322 } 1323 1324 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1325 if (!env->prog->gpl_compatible && fn->gpl_only) { 1326 verbose("cannot call GPL only function from proprietary program\n"); 1327 return -EINVAL; 1328 } 1329 1330 changes_data = bpf_helper_changes_pkt_data(fn->func); 1331 1332 memset(&meta, 0, sizeof(meta)); 1333 meta.pkt_access = fn->pkt_access; 1334 1335 /* We only support one arg being in raw mode at the moment, which 1336 * is sufficient for the helper functions we have right now. 1337 */ 1338 err = check_raw_mode(fn); 1339 if (err) { 1340 verbose("kernel subsystem misconfigured func %s#%d\n", 1341 func_id_name(func_id), func_id); 1342 return err; 1343 } 1344 1345 /* check args */ 1346 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1347 if (err) 1348 return err; 1349 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1350 if (err) 1351 return err; 1352 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1353 if (err) 1354 return err; 1355 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1356 if (err) 1357 return err; 1358 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1359 if (err) 1360 return err; 1361 1362 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1363 * is inferred from register state. 1364 */ 1365 for (i = 0; i < meta.access_size; i++) { 1366 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1); 1367 if (err) 1368 return err; 1369 } 1370 1371 /* reset caller saved regs */ 1372 for (i = 0; i < CALLER_SAVED_REGS; i++) { 1373 reg = regs + caller_saved[i]; 1374 reg->type = NOT_INIT; 1375 reg->imm = 0; 1376 } 1377 1378 /* update return register */ 1379 if (fn->ret_type == RET_INTEGER) { 1380 regs[BPF_REG_0].type = UNKNOWN_VALUE; 1381 } else if (fn->ret_type == RET_VOID) { 1382 regs[BPF_REG_0].type = NOT_INIT; 1383 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1384 struct bpf_insn_aux_data *insn_aux; 1385 1386 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1387 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0; 1388 /* remember map_ptr, so that check_map_access() 1389 * can check 'value_size' boundary of memory access 1390 * to map element returned from bpf_map_lookup_elem() 1391 */ 1392 if (meta.map_ptr == NULL) { 1393 verbose("kernel subsystem misconfigured verifier\n"); 1394 return -EINVAL; 1395 } 1396 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1397 regs[BPF_REG_0].id = ++env->id_gen; 1398 insn_aux = &env->insn_aux_data[insn_idx]; 1399 if (!insn_aux->map_ptr) 1400 insn_aux->map_ptr = meta.map_ptr; 1401 else if (insn_aux->map_ptr != meta.map_ptr) 1402 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1403 } else { 1404 verbose("unknown return type %d of func %s#%d\n", 1405 fn->ret_type, func_id_name(func_id), func_id); 1406 return -EINVAL; 1407 } 1408 1409 err = check_map_func_compatibility(meta.map_ptr, func_id); 1410 if (err) 1411 return err; 1412 1413 if (changes_data) 1414 clear_all_pkt_pointers(env); 1415 return 0; 1416 } 1417 1418 static int check_packet_ptr_add(struct bpf_verifier_env *env, 1419 struct bpf_insn *insn) 1420 { 1421 struct bpf_reg_state *regs = env->cur_state.regs; 1422 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; 1423 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 1424 struct bpf_reg_state tmp_reg; 1425 s32 imm; 1426 1427 if (BPF_SRC(insn->code) == BPF_K) { 1428 /* pkt_ptr += imm */ 1429 imm = insn->imm; 1430 1431 add_imm: 1432 if (imm < 0) { 1433 verbose("addition of negative constant to packet pointer is not allowed\n"); 1434 return -EACCES; 1435 } 1436 if (imm >= MAX_PACKET_OFF || 1437 imm + dst_reg->off >= MAX_PACKET_OFF) { 1438 verbose("constant %d is too large to add to packet pointer\n", 1439 imm); 1440 return -EACCES; 1441 } 1442 /* a constant was added to pkt_ptr. 1443 * Remember it while keeping the same 'id' 1444 */ 1445 dst_reg->off += imm; 1446 } else { 1447 if (src_reg->type == PTR_TO_PACKET) { 1448 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */ 1449 tmp_reg = *dst_reg; /* save r7 state */ 1450 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */ 1451 src_reg = &tmp_reg; /* pretend it's src_reg state */ 1452 /* if the checks below reject it, the copy won't matter, 1453 * since we're rejecting the whole program. If all ok, 1454 * then imm22 state will be added to r7 1455 * and r7 will be pkt(id=0,off=22,r=62) while 1456 * r6 will stay as pkt(id=0,off=0,r=62) 1457 */ 1458 } 1459 1460 if (src_reg->type == CONST_IMM) { 1461 /* pkt_ptr += reg where reg is known constant */ 1462 imm = src_reg->imm; 1463 goto add_imm; 1464 } 1465 /* disallow pkt_ptr += reg 1466 * if reg is not uknown_value with guaranteed zero upper bits 1467 * otherwise pkt_ptr may overflow and addition will become 1468 * subtraction which is not allowed 1469 */ 1470 if (src_reg->type != UNKNOWN_VALUE) { 1471 verbose("cannot add '%s' to ptr_to_packet\n", 1472 reg_type_str[src_reg->type]); 1473 return -EACCES; 1474 } 1475 if (src_reg->imm < 48) { 1476 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n", 1477 src_reg->imm); 1478 return -EACCES; 1479 } 1480 /* dst_reg stays as pkt_ptr type and since some positive 1481 * integer value was added to the pointer, increment its 'id' 1482 */ 1483 dst_reg->id = ++env->id_gen; 1484 1485 /* something was added to pkt_ptr, set range and off to zero */ 1486 dst_reg->off = 0; 1487 dst_reg->range = 0; 1488 } 1489 return 0; 1490 } 1491 1492 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn) 1493 { 1494 struct bpf_reg_state *regs = env->cur_state.regs; 1495 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; 1496 u8 opcode = BPF_OP(insn->code); 1497 s64 imm_log2; 1498 1499 /* for type == UNKNOWN_VALUE: 1500 * imm > 0 -> number of zero upper bits 1501 * imm == 0 -> don't track which is the same as all bits can be non-zero 1502 */ 1503 1504 if (BPF_SRC(insn->code) == BPF_X) { 1505 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 1506 1507 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 && 1508 dst_reg->imm && opcode == BPF_ADD) { 1509 /* dreg += sreg 1510 * where both have zero upper bits. Adding them 1511 * can only result making one more bit non-zero 1512 * in the larger value. 1513 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47) 1514 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47) 1515 */ 1516 dst_reg->imm = min(dst_reg->imm, src_reg->imm); 1517 dst_reg->imm--; 1518 return 0; 1519 } 1520 if (src_reg->type == CONST_IMM && src_reg->imm > 0 && 1521 dst_reg->imm && opcode == BPF_ADD) { 1522 /* dreg += sreg 1523 * where dreg has zero upper bits and sreg is const. 1524 * Adding them can only result making one more bit 1525 * non-zero in the larger value. 1526 */ 1527 imm_log2 = __ilog2_u64((long long)src_reg->imm); 1528 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2); 1529 dst_reg->imm--; 1530 return 0; 1531 } 1532 /* all other cases non supported yet, just mark dst_reg */ 1533 dst_reg->imm = 0; 1534 return 0; 1535 } 1536 1537 /* sign extend 32-bit imm into 64-bit to make sure that 1538 * negative values occupy bit 63. Note ilog2() would have 1539 * been incorrect, since sizeof(insn->imm) == 4 1540 */ 1541 imm_log2 = __ilog2_u64((long long)insn->imm); 1542 1543 if (dst_reg->imm && opcode == BPF_LSH) { 1544 /* reg <<= imm 1545 * if reg was a result of 2 byte load, then its imm == 48 1546 * which means that upper 48 bits are zero and shifting this reg 1547 * left by 4 would mean that upper 44 bits are still zero 1548 */ 1549 dst_reg->imm -= insn->imm; 1550 } else if (dst_reg->imm && opcode == BPF_MUL) { 1551 /* reg *= imm 1552 * if multiplying by 14 subtract 4 1553 * This is conservative calculation of upper zero bits. 1554 * It's not trying to special case insn->imm == 1 or 0 cases 1555 */ 1556 dst_reg->imm -= imm_log2 + 1; 1557 } else if (opcode == BPF_AND) { 1558 /* reg &= imm */ 1559 dst_reg->imm = 63 - imm_log2; 1560 } else if (dst_reg->imm && opcode == BPF_ADD) { 1561 /* reg += imm */ 1562 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2); 1563 dst_reg->imm--; 1564 } else if (opcode == BPF_RSH) { 1565 /* reg >>= imm 1566 * which means that after right shift, upper bits will be zero 1567 * note that verifier already checked that 1568 * 0 <= imm < 64 for shift insn 1569 */ 1570 dst_reg->imm += insn->imm; 1571 if (unlikely(dst_reg->imm > 64)) 1572 /* some dumb code did: 1573 * r2 = *(u32 *)mem; 1574 * r2 >>= 32; 1575 * and all bits are zero now */ 1576 dst_reg->imm = 64; 1577 } else { 1578 /* all other alu ops, means that we don't know what will 1579 * happen to the value, mark it with unknown number of zero bits 1580 */ 1581 dst_reg->imm = 0; 1582 } 1583 1584 if (dst_reg->imm < 0) { 1585 /* all 64 bits of the register can contain non-zero bits 1586 * and such value cannot be added to ptr_to_packet, since it 1587 * may overflow, mark it as unknown to avoid further eval 1588 */ 1589 dst_reg->imm = 0; 1590 } 1591 return 0; 1592 } 1593 1594 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env, 1595 struct bpf_insn *insn) 1596 { 1597 struct bpf_reg_state *regs = env->cur_state.regs; 1598 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; 1599 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 1600 u8 opcode = BPF_OP(insn->code); 1601 u64 dst_imm = dst_reg->imm; 1602 1603 /* dst_reg->type == CONST_IMM here. Simulate execution of insns 1604 * containing ALU ops. Don't care about overflow or negative 1605 * values, just add/sub/... them; registers are in u64. 1606 */ 1607 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) { 1608 dst_imm += insn->imm; 1609 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X && 1610 src_reg->type == CONST_IMM) { 1611 dst_imm += src_reg->imm; 1612 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) { 1613 dst_imm -= insn->imm; 1614 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X && 1615 src_reg->type == CONST_IMM) { 1616 dst_imm -= src_reg->imm; 1617 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) { 1618 dst_imm *= insn->imm; 1619 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X && 1620 src_reg->type == CONST_IMM) { 1621 dst_imm *= src_reg->imm; 1622 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) { 1623 dst_imm |= insn->imm; 1624 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X && 1625 src_reg->type == CONST_IMM) { 1626 dst_imm |= src_reg->imm; 1627 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) { 1628 dst_imm &= insn->imm; 1629 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X && 1630 src_reg->type == CONST_IMM) { 1631 dst_imm &= src_reg->imm; 1632 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) { 1633 dst_imm >>= insn->imm; 1634 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X && 1635 src_reg->type == CONST_IMM) { 1636 dst_imm >>= src_reg->imm; 1637 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) { 1638 dst_imm <<= insn->imm; 1639 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X && 1640 src_reg->type == CONST_IMM) { 1641 dst_imm <<= src_reg->imm; 1642 } else { 1643 mark_reg_unknown_value(regs, insn->dst_reg); 1644 goto out; 1645 } 1646 1647 dst_reg->imm = dst_imm; 1648 out: 1649 return 0; 1650 } 1651 1652 static void check_reg_overflow(struct bpf_reg_state *reg) 1653 { 1654 if (reg->max_value > BPF_REGISTER_MAX_RANGE) 1655 reg->max_value = BPF_REGISTER_MAX_RANGE; 1656 if (reg->min_value < BPF_REGISTER_MIN_RANGE || 1657 reg->min_value > BPF_REGISTER_MAX_RANGE) 1658 reg->min_value = BPF_REGISTER_MIN_RANGE; 1659 } 1660 1661 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env, 1662 struct bpf_insn *insn) 1663 { 1664 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1665 s64 min_val = BPF_REGISTER_MIN_RANGE; 1666 u64 max_val = BPF_REGISTER_MAX_RANGE; 1667 u8 opcode = BPF_OP(insn->code); 1668 1669 dst_reg = ®s[insn->dst_reg]; 1670 if (BPF_SRC(insn->code) == BPF_X) { 1671 check_reg_overflow(®s[insn->src_reg]); 1672 min_val = regs[insn->src_reg].min_value; 1673 max_val = regs[insn->src_reg].max_value; 1674 1675 /* If the source register is a random pointer then the 1676 * min_value/max_value values represent the range of the known 1677 * accesses into that value, not the actual min/max value of the 1678 * register itself. In this case we have to reset the reg range 1679 * values so we know it is not safe to look at. 1680 */ 1681 if (regs[insn->src_reg].type != CONST_IMM && 1682 regs[insn->src_reg].type != UNKNOWN_VALUE) { 1683 min_val = BPF_REGISTER_MIN_RANGE; 1684 max_val = BPF_REGISTER_MAX_RANGE; 1685 } 1686 } else if (insn->imm < BPF_REGISTER_MAX_RANGE && 1687 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) { 1688 min_val = max_val = insn->imm; 1689 } 1690 1691 /* We don't know anything about what was done to this register, mark it 1692 * as unknown. 1693 */ 1694 if (min_val == BPF_REGISTER_MIN_RANGE && 1695 max_val == BPF_REGISTER_MAX_RANGE) { 1696 reset_reg_range_values(regs, insn->dst_reg); 1697 return; 1698 } 1699 1700 /* If one of our values was at the end of our ranges then we can't just 1701 * do our normal operations to the register, we need to set the values 1702 * to the min/max since they are undefined. 1703 */ 1704 if (min_val == BPF_REGISTER_MIN_RANGE) 1705 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1706 if (max_val == BPF_REGISTER_MAX_RANGE) 1707 dst_reg->max_value = BPF_REGISTER_MAX_RANGE; 1708 1709 switch (opcode) { 1710 case BPF_ADD: 1711 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1712 dst_reg->min_value += min_val; 1713 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1714 dst_reg->max_value += max_val; 1715 break; 1716 case BPF_SUB: 1717 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1718 dst_reg->min_value -= min_val; 1719 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1720 dst_reg->max_value -= max_val; 1721 break; 1722 case BPF_MUL: 1723 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1724 dst_reg->min_value *= min_val; 1725 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1726 dst_reg->max_value *= max_val; 1727 break; 1728 case BPF_AND: 1729 /* Disallow AND'ing of negative numbers, ain't nobody got time 1730 * for that. Otherwise the minimum is 0 and the max is the max 1731 * value we could AND against. 1732 */ 1733 if (min_val < 0) 1734 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1735 else 1736 dst_reg->min_value = 0; 1737 dst_reg->max_value = max_val; 1738 break; 1739 case BPF_LSH: 1740 /* Gotta have special overflow logic here, if we're shifting 1741 * more than MAX_RANGE then just assume we have an invalid 1742 * range. 1743 */ 1744 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) 1745 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1746 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE) 1747 dst_reg->min_value <<= min_val; 1748 1749 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE)) 1750 dst_reg->max_value = BPF_REGISTER_MAX_RANGE; 1751 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1752 dst_reg->max_value <<= max_val; 1753 break; 1754 case BPF_RSH: 1755 /* RSH by a negative number is undefined, and the BPF_RSH is an 1756 * unsigned shift, so make the appropriate casts. 1757 */ 1758 if (min_val < 0 || dst_reg->min_value < 0) 1759 dst_reg->min_value = BPF_REGISTER_MIN_RANGE; 1760 else 1761 dst_reg->min_value = 1762 (u64)(dst_reg->min_value) >> min_val; 1763 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE) 1764 dst_reg->max_value >>= max_val; 1765 break; 1766 default: 1767 reset_reg_range_values(regs, insn->dst_reg); 1768 break; 1769 } 1770 1771 check_reg_overflow(dst_reg); 1772 } 1773 1774 /* check validity of 32-bit and 64-bit arithmetic operations */ 1775 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 1776 { 1777 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1778 u8 opcode = BPF_OP(insn->code); 1779 int err; 1780 1781 if (opcode == BPF_END || opcode == BPF_NEG) { 1782 if (opcode == BPF_NEG) { 1783 if (BPF_SRC(insn->code) != 0 || 1784 insn->src_reg != BPF_REG_0 || 1785 insn->off != 0 || insn->imm != 0) { 1786 verbose("BPF_NEG uses reserved fields\n"); 1787 return -EINVAL; 1788 } 1789 } else { 1790 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 1791 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) { 1792 verbose("BPF_END uses reserved fields\n"); 1793 return -EINVAL; 1794 } 1795 } 1796 1797 /* check src operand */ 1798 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 1799 if (err) 1800 return err; 1801 1802 if (is_pointer_value(env, insn->dst_reg)) { 1803 verbose("R%d pointer arithmetic prohibited\n", 1804 insn->dst_reg); 1805 return -EACCES; 1806 } 1807 1808 /* check dest operand */ 1809 err = check_reg_arg(regs, insn->dst_reg, DST_OP); 1810 if (err) 1811 return err; 1812 1813 } else if (opcode == BPF_MOV) { 1814 1815 if (BPF_SRC(insn->code) == BPF_X) { 1816 if (insn->imm != 0 || insn->off != 0) { 1817 verbose("BPF_MOV uses reserved fields\n"); 1818 return -EINVAL; 1819 } 1820 1821 /* check src operand */ 1822 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 1823 if (err) 1824 return err; 1825 } else { 1826 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 1827 verbose("BPF_MOV uses reserved fields\n"); 1828 return -EINVAL; 1829 } 1830 } 1831 1832 /* check dest operand */ 1833 err = check_reg_arg(regs, insn->dst_reg, DST_OP); 1834 if (err) 1835 return err; 1836 1837 /* we are setting our register to something new, we need to 1838 * reset its range values. 1839 */ 1840 reset_reg_range_values(regs, insn->dst_reg); 1841 1842 if (BPF_SRC(insn->code) == BPF_X) { 1843 if (BPF_CLASS(insn->code) == BPF_ALU64) { 1844 /* case: R1 = R2 1845 * copy register state to dest reg 1846 */ 1847 regs[insn->dst_reg] = regs[insn->src_reg]; 1848 } else { 1849 if (is_pointer_value(env, insn->src_reg)) { 1850 verbose("R%d partial copy of pointer\n", 1851 insn->src_reg); 1852 return -EACCES; 1853 } 1854 mark_reg_unknown_value(regs, insn->dst_reg); 1855 } 1856 } else { 1857 /* case: R = imm 1858 * remember the value we stored into this reg 1859 */ 1860 regs[insn->dst_reg].type = CONST_IMM; 1861 regs[insn->dst_reg].imm = insn->imm; 1862 regs[insn->dst_reg].max_value = insn->imm; 1863 regs[insn->dst_reg].min_value = insn->imm; 1864 } 1865 1866 } else if (opcode > BPF_END) { 1867 verbose("invalid BPF_ALU opcode %x\n", opcode); 1868 return -EINVAL; 1869 1870 } else { /* all other ALU ops: and, sub, xor, add, ... */ 1871 1872 if (BPF_SRC(insn->code) == BPF_X) { 1873 if (insn->imm != 0 || insn->off != 0) { 1874 verbose("BPF_ALU uses reserved fields\n"); 1875 return -EINVAL; 1876 } 1877 /* check src1 operand */ 1878 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 1879 if (err) 1880 return err; 1881 } else { 1882 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 1883 verbose("BPF_ALU uses reserved fields\n"); 1884 return -EINVAL; 1885 } 1886 } 1887 1888 /* check src2 operand */ 1889 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 1890 if (err) 1891 return err; 1892 1893 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 1894 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 1895 verbose("div by zero\n"); 1896 return -EINVAL; 1897 } 1898 1899 if ((opcode == BPF_LSH || opcode == BPF_RSH || 1900 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 1901 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 1902 1903 if (insn->imm < 0 || insn->imm >= size) { 1904 verbose("invalid shift %d\n", insn->imm); 1905 return -EINVAL; 1906 } 1907 } 1908 1909 /* check dest operand */ 1910 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); 1911 if (err) 1912 return err; 1913 1914 dst_reg = ®s[insn->dst_reg]; 1915 1916 /* first we want to adjust our ranges. */ 1917 adjust_reg_min_max_vals(env, insn); 1918 1919 /* pattern match 'bpf_add Rx, imm' instruction */ 1920 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && 1921 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) { 1922 dst_reg->type = PTR_TO_STACK; 1923 dst_reg->imm = insn->imm; 1924 return 0; 1925 } else if (opcode == BPF_ADD && 1926 BPF_CLASS(insn->code) == BPF_ALU64 && 1927 dst_reg->type == PTR_TO_STACK && 1928 ((BPF_SRC(insn->code) == BPF_X && 1929 regs[insn->src_reg].type == CONST_IMM) || 1930 BPF_SRC(insn->code) == BPF_K)) { 1931 if (BPF_SRC(insn->code) == BPF_X) 1932 dst_reg->imm += regs[insn->src_reg].imm; 1933 else 1934 dst_reg->imm += insn->imm; 1935 return 0; 1936 } else if (opcode == BPF_ADD && 1937 BPF_CLASS(insn->code) == BPF_ALU64 && 1938 (dst_reg->type == PTR_TO_PACKET || 1939 (BPF_SRC(insn->code) == BPF_X && 1940 regs[insn->src_reg].type == PTR_TO_PACKET))) { 1941 /* ptr_to_packet += K|X */ 1942 return check_packet_ptr_add(env, insn); 1943 } else if (BPF_CLASS(insn->code) == BPF_ALU64 && 1944 dst_reg->type == UNKNOWN_VALUE && 1945 env->allow_ptr_leaks) { 1946 /* unknown += K|X */ 1947 return evaluate_reg_alu(env, insn); 1948 } else if (BPF_CLASS(insn->code) == BPF_ALU64 && 1949 dst_reg->type == CONST_IMM && 1950 env->allow_ptr_leaks) { 1951 /* reg_imm += K|X */ 1952 return evaluate_reg_imm_alu(env, insn); 1953 } else if (is_pointer_value(env, insn->dst_reg)) { 1954 verbose("R%d pointer arithmetic prohibited\n", 1955 insn->dst_reg); 1956 return -EACCES; 1957 } else if (BPF_SRC(insn->code) == BPF_X && 1958 is_pointer_value(env, insn->src_reg)) { 1959 verbose("R%d pointer arithmetic prohibited\n", 1960 insn->src_reg); 1961 return -EACCES; 1962 } 1963 1964 /* If we did pointer math on a map value then just set it to our 1965 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or 1966 * loads to this register appropriately, otherwise just mark the 1967 * register as unknown. 1968 */ 1969 if (env->allow_ptr_leaks && 1970 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD && 1971 (dst_reg->type == PTR_TO_MAP_VALUE || 1972 dst_reg->type == PTR_TO_MAP_VALUE_ADJ)) 1973 dst_reg->type = PTR_TO_MAP_VALUE_ADJ; 1974 else 1975 mark_reg_unknown_value(regs, insn->dst_reg); 1976 } 1977 1978 return 0; 1979 } 1980 1981 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 1982 struct bpf_reg_state *dst_reg) 1983 { 1984 struct bpf_reg_state *regs = state->regs, *reg; 1985 int i; 1986 1987 /* LLVM can generate two kind of checks: 1988 * 1989 * Type 1: 1990 * 1991 * r2 = r3; 1992 * r2 += 8; 1993 * if (r2 > pkt_end) goto <handle exception> 1994 * <access okay> 1995 * 1996 * Where: 1997 * r2 == dst_reg, pkt_end == src_reg 1998 * r2=pkt(id=n,off=8,r=0) 1999 * r3=pkt(id=n,off=0,r=0) 2000 * 2001 * Type 2: 2002 * 2003 * r2 = r3; 2004 * r2 += 8; 2005 * if (pkt_end >= r2) goto <access okay> 2006 * <handle exception> 2007 * 2008 * Where: 2009 * pkt_end == dst_reg, r2 == src_reg 2010 * r2=pkt(id=n,off=8,r=0) 2011 * r3=pkt(id=n,off=0,r=0) 2012 * 2013 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2014 * so that range of bytes [r3, r3 + 8) is safe to access. 2015 */ 2016 2017 for (i = 0; i < MAX_BPF_REG; i++) 2018 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id) 2019 /* keep the maximum range already checked */ 2020 regs[i].range = max(regs[i].range, dst_reg->off); 2021 2022 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2023 if (state->stack_slot_type[i] != STACK_SPILL) 2024 continue; 2025 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 2026 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id) 2027 reg->range = max(reg->range, dst_reg->off); 2028 } 2029 } 2030 2031 /* Adjusts the register min/max values in the case that the dst_reg is the 2032 * variable register that we are working on, and src_reg is a constant or we're 2033 * simply doing a BPF_K check. 2034 */ 2035 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2036 struct bpf_reg_state *false_reg, u64 val, 2037 u8 opcode) 2038 { 2039 switch (opcode) { 2040 case BPF_JEQ: 2041 /* If this is false then we know nothing Jon Snow, but if it is 2042 * true then we know for sure. 2043 */ 2044 true_reg->max_value = true_reg->min_value = val; 2045 break; 2046 case BPF_JNE: 2047 /* If this is true we know nothing Jon Snow, but if it is false 2048 * we know the value for sure; 2049 */ 2050 false_reg->max_value = false_reg->min_value = val; 2051 break; 2052 case BPF_JGT: 2053 /* Unsigned comparison, the minimum value is 0. */ 2054 false_reg->min_value = 0; 2055 /* fallthrough */ 2056 case BPF_JSGT: 2057 /* If this is false then we know the maximum val is val, 2058 * otherwise we know the min val is val+1. 2059 */ 2060 false_reg->max_value = val; 2061 true_reg->min_value = val + 1; 2062 break; 2063 case BPF_JGE: 2064 /* Unsigned comparison, the minimum value is 0. */ 2065 false_reg->min_value = 0; 2066 /* fallthrough */ 2067 case BPF_JSGE: 2068 /* If this is false then we know the maximum value is val - 1, 2069 * otherwise we know the mimimum value is val. 2070 */ 2071 false_reg->max_value = val - 1; 2072 true_reg->min_value = val; 2073 break; 2074 default: 2075 break; 2076 } 2077 2078 check_reg_overflow(false_reg); 2079 check_reg_overflow(true_reg); 2080 } 2081 2082 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg 2083 * is the variable reg. 2084 */ 2085 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2086 struct bpf_reg_state *false_reg, u64 val, 2087 u8 opcode) 2088 { 2089 switch (opcode) { 2090 case BPF_JEQ: 2091 /* If this is false then we know nothing Jon Snow, but if it is 2092 * true then we know for sure. 2093 */ 2094 true_reg->max_value = true_reg->min_value = val; 2095 break; 2096 case BPF_JNE: 2097 /* If this is true we know nothing Jon Snow, but if it is false 2098 * we know the value for sure; 2099 */ 2100 false_reg->max_value = false_reg->min_value = val; 2101 break; 2102 case BPF_JGT: 2103 /* Unsigned comparison, the minimum value is 0. */ 2104 true_reg->min_value = 0; 2105 /* fallthrough */ 2106 case BPF_JSGT: 2107 /* 2108 * If this is false, then the val is <= the register, if it is 2109 * true the register <= to the val. 2110 */ 2111 false_reg->min_value = val; 2112 true_reg->max_value = val - 1; 2113 break; 2114 case BPF_JGE: 2115 /* Unsigned comparison, the minimum value is 0. */ 2116 true_reg->min_value = 0; 2117 /* fallthrough */ 2118 case BPF_JSGE: 2119 /* If this is false then constant < register, if it is true then 2120 * the register < constant. 2121 */ 2122 false_reg->min_value = val + 1; 2123 true_reg->max_value = val; 2124 break; 2125 default: 2126 break; 2127 } 2128 2129 check_reg_overflow(false_reg); 2130 check_reg_overflow(true_reg); 2131 } 2132 2133 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2134 enum bpf_reg_type type) 2135 { 2136 struct bpf_reg_state *reg = ®s[regno]; 2137 2138 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2139 if (type == UNKNOWN_VALUE) { 2140 __mark_reg_unknown_value(regs, regno); 2141 } else if (reg->map_ptr->inner_map_meta) { 2142 reg->type = CONST_PTR_TO_MAP; 2143 reg->map_ptr = reg->map_ptr->inner_map_meta; 2144 } else { 2145 reg->type = type; 2146 } 2147 /* We don't need id from this point onwards anymore, thus we 2148 * should better reset it, so that state pruning has chances 2149 * to take effect. 2150 */ 2151 reg->id = 0; 2152 } 2153 } 2154 2155 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2156 * be folded together at some point. 2157 */ 2158 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2159 enum bpf_reg_type type) 2160 { 2161 struct bpf_reg_state *regs = state->regs; 2162 u32 id = regs[regno].id; 2163 int i; 2164 2165 for (i = 0; i < MAX_BPF_REG; i++) 2166 mark_map_reg(regs, i, id, type); 2167 2168 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2169 if (state->stack_slot_type[i] != STACK_SPILL) 2170 continue; 2171 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type); 2172 } 2173 } 2174 2175 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2176 struct bpf_insn *insn, int *insn_idx) 2177 { 2178 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state; 2179 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2180 u8 opcode = BPF_OP(insn->code); 2181 int err; 2182 2183 if (opcode > BPF_EXIT) { 2184 verbose("invalid BPF_JMP opcode %x\n", opcode); 2185 return -EINVAL; 2186 } 2187 2188 if (BPF_SRC(insn->code) == BPF_X) { 2189 if (insn->imm != 0) { 2190 verbose("BPF_JMP uses reserved fields\n"); 2191 return -EINVAL; 2192 } 2193 2194 /* check src1 operand */ 2195 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 2196 if (err) 2197 return err; 2198 2199 if (is_pointer_value(env, insn->src_reg)) { 2200 verbose("R%d pointer comparison prohibited\n", 2201 insn->src_reg); 2202 return -EACCES; 2203 } 2204 } else { 2205 if (insn->src_reg != BPF_REG_0) { 2206 verbose("BPF_JMP uses reserved fields\n"); 2207 return -EINVAL; 2208 } 2209 } 2210 2211 /* check src2 operand */ 2212 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 2213 if (err) 2214 return err; 2215 2216 dst_reg = ®s[insn->dst_reg]; 2217 2218 /* detect if R == 0 where R was initialized to zero earlier */ 2219 if (BPF_SRC(insn->code) == BPF_K && 2220 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2221 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) { 2222 if (opcode == BPF_JEQ) { 2223 /* if (imm == imm) goto pc+off; 2224 * only follow the goto, ignore fall-through 2225 */ 2226 *insn_idx += insn->off; 2227 return 0; 2228 } else { 2229 /* if (imm != imm) goto pc+off; 2230 * only follow fall-through branch, since 2231 * that's where the program will go 2232 */ 2233 return 0; 2234 } 2235 } 2236 2237 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 2238 if (!other_branch) 2239 return -EFAULT; 2240 2241 /* detect if we are comparing against a constant value so we can adjust 2242 * our min/max values for our dst register. 2243 */ 2244 if (BPF_SRC(insn->code) == BPF_X) { 2245 if (regs[insn->src_reg].type == CONST_IMM) 2246 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2247 dst_reg, regs[insn->src_reg].imm, 2248 opcode); 2249 else if (dst_reg->type == CONST_IMM) 2250 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 2251 ®s[insn->src_reg], dst_reg->imm, 2252 opcode); 2253 } else { 2254 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2255 dst_reg, insn->imm, opcode); 2256 } 2257 2258 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 2259 if (BPF_SRC(insn->code) == BPF_K && 2260 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2261 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2262 /* Mark all identical map registers in each branch as either 2263 * safe or unknown depending R == 0 or R != 0 conditional. 2264 */ 2265 mark_map_regs(this_branch, insn->dst_reg, 2266 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE); 2267 mark_map_regs(other_branch, insn->dst_reg, 2268 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE); 2269 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2270 dst_reg->type == PTR_TO_PACKET && 2271 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2272 find_good_pkt_pointers(this_branch, dst_reg); 2273 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2274 dst_reg->type == PTR_TO_PACKET_END && 2275 regs[insn->src_reg].type == PTR_TO_PACKET) { 2276 find_good_pkt_pointers(other_branch, ®s[insn->src_reg]); 2277 } else if (is_pointer_value(env, insn->dst_reg)) { 2278 verbose("R%d pointer comparison prohibited\n", insn->dst_reg); 2279 return -EACCES; 2280 } 2281 if (log_level) 2282 print_verifier_state(this_branch); 2283 return 0; 2284 } 2285 2286 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 2287 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 2288 { 2289 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 2290 2291 return (struct bpf_map *) (unsigned long) imm64; 2292 } 2293 2294 /* verify BPF_LD_IMM64 instruction */ 2295 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 2296 { 2297 struct bpf_reg_state *regs = env->cur_state.regs; 2298 int err; 2299 2300 if (BPF_SIZE(insn->code) != BPF_DW) { 2301 verbose("invalid BPF_LD_IMM insn\n"); 2302 return -EINVAL; 2303 } 2304 if (insn->off != 0) { 2305 verbose("BPF_LD_IMM64 uses reserved fields\n"); 2306 return -EINVAL; 2307 } 2308 2309 err = check_reg_arg(regs, insn->dst_reg, DST_OP); 2310 if (err) 2311 return err; 2312 2313 if (insn->src_reg == 0) { 2314 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 2315 2316 regs[insn->dst_reg].type = CONST_IMM; 2317 regs[insn->dst_reg].imm = imm; 2318 return 0; 2319 } 2320 2321 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 2322 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 2323 2324 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 2325 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 2326 return 0; 2327 } 2328 2329 static bool may_access_skb(enum bpf_prog_type type) 2330 { 2331 switch (type) { 2332 case BPF_PROG_TYPE_SOCKET_FILTER: 2333 case BPF_PROG_TYPE_SCHED_CLS: 2334 case BPF_PROG_TYPE_SCHED_ACT: 2335 return true; 2336 default: 2337 return false; 2338 } 2339 } 2340 2341 /* verify safety of LD_ABS|LD_IND instructions: 2342 * - they can only appear in the programs where ctx == skb 2343 * - since they are wrappers of function calls, they scratch R1-R5 registers, 2344 * preserve R6-R9, and store return value into R0 2345 * 2346 * Implicit input: 2347 * ctx == skb == R6 == CTX 2348 * 2349 * Explicit input: 2350 * SRC == any register 2351 * IMM == 32-bit immediate 2352 * 2353 * Output: 2354 * R0 - 8/16/32-bit skb data converted to cpu endianness 2355 */ 2356 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 2357 { 2358 struct bpf_reg_state *regs = env->cur_state.regs; 2359 u8 mode = BPF_MODE(insn->code); 2360 struct bpf_reg_state *reg; 2361 int i, err; 2362 2363 if (!may_access_skb(env->prog->type)) { 2364 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 2365 return -EINVAL; 2366 } 2367 2368 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 2369 BPF_SIZE(insn->code) == BPF_DW || 2370 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 2371 verbose("BPF_LD_[ABS|IND] uses reserved fields\n"); 2372 return -EINVAL; 2373 } 2374 2375 /* check whether implicit source operand (register R6) is readable */ 2376 err = check_reg_arg(regs, BPF_REG_6, SRC_OP); 2377 if (err) 2378 return err; 2379 2380 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 2381 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 2382 return -EINVAL; 2383 } 2384 2385 if (mode == BPF_IND) { 2386 /* check explicit source operand */ 2387 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 2388 if (err) 2389 return err; 2390 } 2391 2392 /* reset caller saved regs to unreadable */ 2393 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2394 reg = regs + caller_saved[i]; 2395 reg->type = NOT_INIT; 2396 reg->imm = 0; 2397 } 2398 2399 /* mark destination R0 register as readable, since it contains 2400 * the value fetched from the packet 2401 */ 2402 regs[BPF_REG_0].type = UNKNOWN_VALUE; 2403 return 0; 2404 } 2405 2406 /* non-recursive DFS pseudo code 2407 * 1 procedure DFS-iterative(G,v): 2408 * 2 label v as discovered 2409 * 3 let S be a stack 2410 * 4 S.push(v) 2411 * 5 while S is not empty 2412 * 6 t <- S.pop() 2413 * 7 if t is what we're looking for: 2414 * 8 return t 2415 * 9 for all edges e in G.adjacentEdges(t) do 2416 * 10 if edge e is already labelled 2417 * 11 continue with the next edge 2418 * 12 w <- G.adjacentVertex(t,e) 2419 * 13 if vertex w is not discovered and not explored 2420 * 14 label e as tree-edge 2421 * 15 label w as discovered 2422 * 16 S.push(w) 2423 * 17 continue at 5 2424 * 18 else if vertex w is discovered 2425 * 19 label e as back-edge 2426 * 20 else 2427 * 21 // vertex w is explored 2428 * 22 label e as forward- or cross-edge 2429 * 23 label t as explored 2430 * 24 S.pop() 2431 * 2432 * convention: 2433 * 0x10 - discovered 2434 * 0x11 - discovered and fall-through edge labelled 2435 * 0x12 - discovered and fall-through and branch edges labelled 2436 * 0x20 - explored 2437 */ 2438 2439 enum { 2440 DISCOVERED = 0x10, 2441 EXPLORED = 0x20, 2442 FALLTHROUGH = 1, 2443 BRANCH = 2, 2444 }; 2445 2446 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 2447 2448 static int *insn_stack; /* stack of insns to process */ 2449 static int cur_stack; /* current stack index */ 2450 static int *insn_state; 2451 2452 /* t, w, e - match pseudo-code above: 2453 * t - index of current instruction 2454 * w - next instruction 2455 * e - edge 2456 */ 2457 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 2458 { 2459 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 2460 return 0; 2461 2462 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 2463 return 0; 2464 2465 if (w < 0 || w >= env->prog->len) { 2466 verbose("jump out of range from insn %d to %d\n", t, w); 2467 return -EINVAL; 2468 } 2469 2470 if (e == BRANCH) 2471 /* mark branch target for state pruning */ 2472 env->explored_states[w] = STATE_LIST_MARK; 2473 2474 if (insn_state[w] == 0) { 2475 /* tree-edge */ 2476 insn_state[t] = DISCOVERED | e; 2477 insn_state[w] = DISCOVERED; 2478 if (cur_stack >= env->prog->len) 2479 return -E2BIG; 2480 insn_stack[cur_stack++] = w; 2481 return 1; 2482 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 2483 verbose("back-edge from insn %d to %d\n", t, w); 2484 return -EINVAL; 2485 } else if (insn_state[w] == EXPLORED) { 2486 /* forward- or cross-edge */ 2487 insn_state[t] = DISCOVERED | e; 2488 } else { 2489 verbose("insn state internal bug\n"); 2490 return -EFAULT; 2491 } 2492 return 0; 2493 } 2494 2495 /* non-recursive depth-first-search to detect loops in BPF program 2496 * loop == back-edge in directed graph 2497 */ 2498 static int check_cfg(struct bpf_verifier_env *env) 2499 { 2500 struct bpf_insn *insns = env->prog->insnsi; 2501 int insn_cnt = env->prog->len; 2502 int ret = 0; 2503 int i, t; 2504 2505 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 2506 if (!insn_state) 2507 return -ENOMEM; 2508 2509 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 2510 if (!insn_stack) { 2511 kfree(insn_state); 2512 return -ENOMEM; 2513 } 2514 2515 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 2516 insn_stack[0] = 0; /* 0 is the first instruction */ 2517 cur_stack = 1; 2518 2519 peek_stack: 2520 if (cur_stack == 0) 2521 goto check_state; 2522 t = insn_stack[cur_stack - 1]; 2523 2524 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 2525 u8 opcode = BPF_OP(insns[t].code); 2526 2527 if (opcode == BPF_EXIT) { 2528 goto mark_explored; 2529 } else if (opcode == BPF_CALL) { 2530 ret = push_insn(t, t + 1, FALLTHROUGH, env); 2531 if (ret == 1) 2532 goto peek_stack; 2533 else if (ret < 0) 2534 goto err_free; 2535 if (t + 1 < insn_cnt) 2536 env->explored_states[t + 1] = STATE_LIST_MARK; 2537 } else if (opcode == BPF_JA) { 2538 if (BPF_SRC(insns[t].code) != BPF_K) { 2539 ret = -EINVAL; 2540 goto err_free; 2541 } 2542 /* unconditional jump with single edge */ 2543 ret = push_insn(t, t + insns[t].off + 1, 2544 FALLTHROUGH, env); 2545 if (ret == 1) 2546 goto peek_stack; 2547 else if (ret < 0) 2548 goto err_free; 2549 /* tell verifier to check for equivalent states 2550 * after every call and jump 2551 */ 2552 if (t + 1 < insn_cnt) 2553 env->explored_states[t + 1] = STATE_LIST_MARK; 2554 } else { 2555 /* conditional jump with two edges */ 2556 ret = push_insn(t, t + 1, FALLTHROUGH, env); 2557 if (ret == 1) 2558 goto peek_stack; 2559 else if (ret < 0) 2560 goto err_free; 2561 2562 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 2563 if (ret == 1) 2564 goto peek_stack; 2565 else if (ret < 0) 2566 goto err_free; 2567 } 2568 } else { 2569 /* all other non-branch instructions with single 2570 * fall-through edge 2571 */ 2572 ret = push_insn(t, t + 1, FALLTHROUGH, env); 2573 if (ret == 1) 2574 goto peek_stack; 2575 else if (ret < 0) 2576 goto err_free; 2577 } 2578 2579 mark_explored: 2580 insn_state[t] = EXPLORED; 2581 if (cur_stack-- <= 0) { 2582 verbose("pop stack internal bug\n"); 2583 ret = -EFAULT; 2584 goto err_free; 2585 } 2586 goto peek_stack; 2587 2588 check_state: 2589 for (i = 0; i < insn_cnt; i++) { 2590 if (insn_state[i] != EXPLORED) { 2591 verbose("unreachable insn %d\n", i); 2592 ret = -EINVAL; 2593 goto err_free; 2594 } 2595 } 2596 ret = 0; /* cfg looks good */ 2597 2598 err_free: 2599 kfree(insn_state); 2600 kfree(insn_stack); 2601 return ret; 2602 } 2603 2604 /* the following conditions reduce the number of explored insns 2605 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet 2606 */ 2607 static bool compare_ptrs_to_packet(struct bpf_reg_state *old, 2608 struct bpf_reg_state *cur) 2609 { 2610 if (old->id != cur->id) 2611 return false; 2612 2613 /* old ptr_to_packet is more conservative, since it allows smaller 2614 * range. Ex: 2615 * old(off=0,r=10) is equal to cur(off=0,r=20), because 2616 * old(off=0,r=10) means that with range=10 the verifier proceeded 2617 * further and found no issues with the program. Now we're in the same 2618 * spot with cur(off=0,r=20), so we're safe too, since anything further 2619 * will only be looking at most 10 bytes after this pointer. 2620 */ 2621 if (old->off == cur->off && old->range < cur->range) 2622 return true; 2623 2624 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0) 2625 * since both cannot be used for packet access and safe(old) 2626 * pointer has smaller off that could be used for further 2627 * 'if (ptr > data_end)' check 2628 * Ex: 2629 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean 2630 * that we cannot access the packet. 2631 * The safe range is: 2632 * [ptr, ptr + range - off) 2633 * so whenever off >=range, it means no safe bytes from this pointer. 2634 * When comparing old->off <= cur->off, it means that older code 2635 * went with smaller offset and that offset was later 2636 * used to figure out the safe range after 'if (ptr > data_end)' check 2637 * Say, 'old' state was explored like: 2638 * ... R3(off=0, r=0) 2639 * R4 = R3 + 20 2640 * ... now R4(off=20,r=0) <-- here 2641 * if (R4 > data_end) 2642 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access. 2643 * ... the code further went all the way to bpf_exit. 2644 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0). 2645 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier 2646 * goes further, such cur_R4 will give larger safe packet range after 2647 * 'if (R4 > data_end)' and all further insn were already good with r=20, 2648 * so they will be good with r=30 and we can prune the search. 2649 */ 2650 if (old->off <= cur->off && 2651 old->off >= old->range && cur->off >= cur->range) 2652 return true; 2653 2654 return false; 2655 } 2656 2657 /* compare two verifier states 2658 * 2659 * all states stored in state_list are known to be valid, since 2660 * verifier reached 'bpf_exit' instruction through them 2661 * 2662 * this function is called when verifier exploring different branches of 2663 * execution popped from the state stack. If it sees an old state that has 2664 * more strict register state and more strict stack state then this execution 2665 * branch doesn't need to be explored further, since verifier already 2666 * concluded that more strict state leads to valid finish. 2667 * 2668 * Therefore two states are equivalent if register state is more conservative 2669 * and explored stack state is more conservative than the current one. 2670 * Example: 2671 * explored current 2672 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 2673 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 2674 * 2675 * In other words if current stack state (one being explored) has more 2676 * valid slots than old one that already passed validation, it means 2677 * the verifier can stop exploring and conclude that current state is valid too 2678 * 2679 * Similarly with registers. If explored state has register type as invalid 2680 * whereas register type in current state is meaningful, it means that 2681 * the current state will reach 'bpf_exit' instruction safely 2682 */ 2683 static bool states_equal(struct bpf_verifier_env *env, 2684 struct bpf_verifier_state *old, 2685 struct bpf_verifier_state *cur) 2686 { 2687 bool varlen_map_access = env->varlen_map_value_access; 2688 struct bpf_reg_state *rold, *rcur; 2689 int i; 2690 2691 for (i = 0; i < MAX_BPF_REG; i++) { 2692 rold = &old->regs[i]; 2693 rcur = &cur->regs[i]; 2694 2695 if (memcmp(rold, rcur, sizeof(*rold)) == 0) 2696 continue; 2697 2698 /* If the ranges were not the same, but everything else was and 2699 * we didn't do a variable access into a map then we are a-ok. 2700 */ 2701 if (!varlen_map_access && 2702 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0) 2703 continue; 2704 2705 /* If we didn't map access then again we don't care about the 2706 * mismatched range values and it's ok if our old type was 2707 * UNKNOWN and we didn't go to a NOT_INIT'ed reg. 2708 */ 2709 if (rold->type == NOT_INIT || 2710 (!varlen_map_access && rold->type == UNKNOWN_VALUE && 2711 rcur->type != NOT_INIT)) 2712 continue; 2713 2714 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET && 2715 compare_ptrs_to_packet(rold, rcur)) 2716 continue; 2717 2718 return false; 2719 } 2720 2721 for (i = 0; i < MAX_BPF_STACK; i++) { 2722 if (old->stack_slot_type[i] == STACK_INVALID) 2723 continue; 2724 if (old->stack_slot_type[i] != cur->stack_slot_type[i]) 2725 /* Ex: old explored (safe) state has STACK_SPILL in 2726 * this stack slot, but current has has STACK_MISC -> 2727 * this verifier states are not equivalent, 2728 * return false to continue verification of this path 2729 */ 2730 return false; 2731 if (i % BPF_REG_SIZE) 2732 continue; 2733 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE], 2734 &cur->spilled_regs[i / BPF_REG_SIZE], 2735 sizeof(old->spilled_regs[0]))) 2736 /* when explored and current stack slot types are 2737 * the same, check that stored pointers types 2738 * are the same as well. 2739 * Ex: explored safe path could have stored 2740 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8} 2741 * but current path has stored: 2742 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16} 2743 * such verifier states are not equivalent. 2744 * return false to continue verification of this path 2745 */ 2746 return false; 2747 else 2748 continue; 2749 } 2750 return true; 2751 } 2752 2753 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 2754 { 2755 struct bpf_verifier_state_list *new_sl; 2756 struct bpf_verifier_state_list *sl; 2757 2758 sl = env->explored_states[insn_idx]; 2759 if (!sl) 2760 /* this 'insn_idx' instruction wasn't marked, so we will not 2761 * be doing state search here 2762 */ 2763 return 0; 2764 2765 while (sl != STATE_LIST_MARK) { 2766 if (states_equal(env, &sl->state, &env->cur_state)) 2767 /* reached equivalent register/stack state, 2768 * prune the search 2769 */ 2770 return 1; 2771 sl = sl->next; 2772 } 2773 2774 /* there were no equivalent states, remember current one. 2775 * technically the current state is not proven to be safe yet, 2776 * but it will either reach bpf_exit (which means it's safe) or 2777 * it will be rejected. Since there are no loops, we won't be 2778 * seeing this 'insn_idx' instruction again on the way to bpf_exit 2779 */ 2780 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER); 2781 if (!new_sl) 2782 return -ENOMEM; 2783 2784 /* add new state to the head of linked list */ 2785 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); 2786 new_sl->next = env->explored_states[insn_idx]; 2787 env->explored_states[insn_idx] = new_sl; 2788 return 0; 2789 } 2790 2791 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 2792 int insn_idx, int prev_insn_idx) 2793 { 2794 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook) 2795 return 0; 2796 2797 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx); 2798 } 2799 2800 static int do_check(struct bpf_verifier_env *env) 2801 { 2802 struct bpf_verifier_state *state = &env->cur_state; 2803 struct bpf_insn *insns = env->prog->insnsi; 2804 struct bpf_reg_state *regs = state->regs; 2805 int insn_cnt = env->prog->len; 2806 int insn_idx, prev_insn_idx = 0; 2807 int insn_processed = 0; 2808 bool do_print_state = false; 2809 2810 init_reg_state(regs); 2811 insn_idx = 0; 2812 env->varlen_map_value_access = false; 2813 for (;;) { 2814 struct bpf_insn *insn; 2815 u8 class; 2816 int err; 2817 2818 if (insn_idx >= insn_cnt) { 2819 verbose("invalid insn idx %d insn_cnt %d\n", 2820 insn_idx, insn_cnt); 2821 return -EFAULT; 2822 } 2823 2824 insn = &insns[insn_idx]; 2825 class = BPF_CLASS(insn->code); 2826 2827 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 2828 verbose("BPF program is too large. Processed %d insn\n", 2829 insn_processed); 2830 return -E2BIG; 2831 } 2832 2833 err = is_state_visited(env, insn_idx); 2834 if (err < 0) 2835 return err; 2836 if (err == 1) { 2837 /* found equivalent state, can prune the search */ 2838 if (log_level) { 2839 if (do_print_state) 2840 verbose("\nfrom %d to %d: safe\n", 2841 prev_insn_idx, insn_idx); 2842 else 2843 verbose("%d: safe\n", insn_idx); 2844 } 2845 goto process_bpf_exit; 2846 } 2847 2848 if (log_level && do_print_state) { 2849 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx); 2850 print_verifier_state(&env->cur_state); 2851 do_print_state = false; 2852 } 2853 2854 if (log_level) { 2855 verbose("%d: ", insn_idx); 2856 print_bpf_insn(insn); 2857 } 2858 2859 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 2860 if (err) 2861 return err; 2862 2863 if (class == BPF_ALU || class == BPF_ALU64) { 2864 err = check_alu_op(env, insn); 2865 if (err) 2866 return err; 2867 2868 } else if (class == BPF_LDX) { 2869 enum bpf_reg_type *prev_src_type, src_reg_type; 2870 2871 /* check for reserved fields is already done */ 2872 2873 /* check src operand */ 2874 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 2875 if (err) 2876 return err; 2877 2878 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); 2879 if (err) 2880 return err; 2881 2882 src_reg_type = regs[insn->src_reg].type; 2883 2884 /* check that memory (src_reg + off) is readable, 2885 * the state of dst_reg will be updated by this func 2886 */ 2887 err = check_mem_access(env, insn->src_reg, insn->off, 2888 BPF_SIZE(insn->code), BPF_READ, 2889 insn->dst_reg); 2890 if (err) 2891 return err; 2892 2893 if (BPF_SIZE(insn->code) != BPF_W && 2894 BPF_SIZE(insn->code) != BPF_DW) { 2895 insn_idx++; 2896 continue; 2897 } 2898 2899 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 2900 2901 if (*prev_src_type == NOT_INIT) { 2902 /* saw a valid insn 2903 * dst_reg = *(u32 *)(src_reg + off) 2904 * save type to validate intersecting paths 2905 */ 2906 *prev_src_type = src_reg_type; 2907 2908 } else if (src_reg_type != *prev_src_type && 2909 (src_reg_type == PTR_TO_CTX || 2910 *prev_src_type == PTR_TO_CTX)) { 2911 /* ABuser program is trying to use the same insn 2912 * dst_reg = *(u32*) (src_reg + off) 2913 * with different pointer types: 2914 * src_reg == ctx in one branch and 2915 * src_reg == stack|map in some other branch. 2916 * Reject it. 2917 */ 2918 verbose("same insn cannot be used with different pointers\n"); 2919 return -EINVAL; 2920 } 2921 2922 } else if (class == BPF_STX) { 2923 enum bpf_reg_type *prev_dst_type, dst_reg_type; 2924 2925 if (BPF_MODE(insn->code) == BPF_XADD) { 2926 err = check_xadd(env, insn); 2927 if (err) 2928 return err; 2929 insn_idx++; 2930 continue; 2931 } 2932 2933 /* check src1 operand */ 2934 err = check_reg_arg(regs, insn->src_reg, SRC_OP); 2935 if (err) 2936 return err; 2937 /* check src2 operand */ 2938 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 2939 if (err) 2940 return err; 2941 2942 dst_reg_type = regs[insn->dst_reg].type; 2943 2944 /* check that memory (dst_reg + off) is writeable */ 2945 err = check_mem_access(env, insn->dst_reg, insn->off, 2946 BPF_SIZE(insn->code), BPF_WRITE, 2947 insn->src_reg); 2948 if (err) 2949 return err; 2950 2951 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 2952 2953 if (*prev_dst_type == NOT_INIT) { 2954 *prev_dst_type = dst_reg_type; 2955 } else if (dst_reg_type != *prev_dst_type && 2956 (dst_reg_type == PTR_TO_CTX || 2957 *prev_dst_type == PTR_TO_CTX)) { 2958 verbose("same insn cannot be used with different pointers\n"); 2959 return -EINVAL; 2960 } 2961 2962 } else if (class == BPF_ST) { 2963 if (BPF_MODE(insn->code) != BPF_MEM || 2964 insn->src_reg != BPF_REG_0) { 2965 verbose("BPF_ST uses reserved fields\n"); 2966 return -EINVAL; 2967 } 2968 /* check src operand */ 2969 err = check_reg_arg(regs, insn->dst_reg, SRC_OP); 2970 if (err) 2971 return err; 2972 2973 /* check that memory (dst_reg + off) is writeable */ 2974 err = check_mem_access(env, insn->dst_reg, insn->off, 2975 BPF_SIZE(insn->code), BPF_WRITE, 2976 -1); 2977 if (err) 2978 return err; 2979 2980 } else if (class == BPF_JMP) { 2981 u8 opcode = BPF_OP(insn->code); 2982 2983 if (opcode == BPF_CALL) { 2984 if (BPF_SRC(insn->code) != BPF_K || 2985 insn->off != 0 || 2986 insn->src_reg != BPF_REG_0 || 2987 insn->dst_reg != BPF_REG_0) { 2988 verbose("BPF_CALL uses reserved fields\n"); 2989 return -EINVAL; 2990 } 2991 2992 err = check_call(env, insn->imm, insn_idx); 2993 if (err) 2994 return err; 2995 2996 } else if (opcode == BPF_JA) { 2997 if (BPF_SRC(insn->code) != BPF_K || 2998 insn->imm != 0 || 2999 insn->src_reg != BPF_REG_0 || 3000 insn->dst_reg != BPF_REG_0) { 3001 verbose("BPF_JA uses reserved fields\n"); 3002 return -EINVAL; 3003 } 3004 3005 insn_idx += insn->off + 1; 3006 continue; 3007 3008 } else if (opcode == BPF_EXIT) { 3009 if (BPF_SRC(insn->code) != BPF_K || 3010 insn->imm != 0 || 3011 insn->src_reg != BPF_REG_0 || 3012 insn->dst_reg != BPF_REG_0) { 3013 verbose("BPF_EXIT uses reserved fields\n"); 3014 return -EINVAL; 3015 } 3016 3017 /* eBPF calling convetion is such that R0 is used 3018 * to return the value from eBPF program. 3019 * Make sure that it's readable at this time 3020 * of bpf_exit, which means that program wrote 3021 * something into it earlier 3022 */ 3023 err = check_reg_arg(regs, BPF_REG_0, SRC_OP); 3024 if (err) 3025 return err; 3026 3027 if (is_pointer_value(env, BPF_REG_0)) { 3028 verbose("R0 leaks addr as return value\n"); 3029 return -EACCES; 3030 } 3031 3032 process_bpf_exit: 3033 insn_idx = pop_stack(env, &prev_insn_idx); 3034 if (insn_idx < 0) { 3035 break; 3036 } else { 3037 do_print_state = true; 3038 continue; 3039 } 3040 } else { 3041 err = check_cond_jmp_op(env, insn, &insn_idx); 3042 if (err) 3043 return err; 3044 } 3045 } else if (class == BPF_LD) { 3046 u8 mode = BPF_MODE(insn->code); 3047 3048 if (mode == BPF_ABS || mode == BPF_IND) { 3049 err = check_ld_abs(env, insn); 3050 if (err) 3051 return err; 3052 3053 } else if (mode == BPF_IMM) { 3054 err = check_ld_imm(env, insn); 3055 if (err) 3056 return err; 3057 3058 insn_idx++; 3059 } else { 3060 verbose("invalid BPF_LD mode\n"); 3061 return -EINVAL; 3062 } 3063 reset_reg_range_values(regs, insn->dst_reg); 3064 } else { 3065 verbose("unknown insn class %d\n", class); 3066 return -EINVAL; 3067 } 3068 3069 insn_idx++; 3070 } 3071 3072 verbose("processed %d insns\n", insn_processed); 3073 return 0; 3074 } 3075 3076 static int check_map_prealloc(struct bpf_map *map) 3077 { 3078 return (map->map_type != BPF_MAP_TYPE_HASH && 3079 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 3080 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 3081 !(map->map_flags & BPF_F_NO_PREALLOC); 3082 } 3083 3084 static int check_map_prog_compatibility(struct bpf_map *map, 3085 struct bpf_prog *prog) 3086 3087 { 3088 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 3089 * preallocated hash maps, since doing memory allocation 3090 * in overflow_handler can crash depending on where nmi got 3091 * triggered. 3092 */ 3093 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 3094 if (!check_map_prealloc(map)) { 3095 verbose("perf_event programs can only use preallocated hash map\n"); 3096 return -EINVAL; 3097 } 3098 if (map->inner_map_meta && 3099 !check_map_prealloc(map->inner_map_meta)) { 3100 verbose("perf_event programs can only use preallocated inner hash map\n"); 3101 return -EINVAL; 3102 } 3103 } 3104 return 0; 3105 } 3106 3107 /* look for pseudo eBPF instructions that access map FDs and 3108 * replace them with actual map pointers 3109 */ 3110 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 3111 { 3112 struct bpf_insn *insn = env->prog->insnsi; 3113 int insn_cnt = env->prog->len; 3114 int i, j, err; 3115 3116 err = bpf_prog_calc_tag(env->prog); 3117 if (err) 3118 return err; 3119 3120 for (i = 0; i < insn_cnt; i++, insn++) { 3121 if (BPF_CLASS(insn->code) == BPF_LDX && 3122 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 3123 verbose("BPF_LDX uses reserved fields\n"); 3124 return -EINVAL; 3125 } 3126 3127 if (BPF_CLASS(insn->code) == BPF_STX && 3128 ((BPF_MODE(insn->code) != BPF_MEM && 3129 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 3130 verbose("BPF_STX uses reserved fields\n"); 3131 return -EINVAL; 3132 } 3133 3134 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 3135 struct bpf_map *map; 3136 struct fd f; 3137 3138 if (i == insn_cnt - 1 || insn[1].code != 0 || 3139 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 3140 insn[1].off != 0) { 3141 verbose("invalid bpf_ld_imm64 insn\n"); 3142 return -EINVAL; 3143 } 3144 3145 if (insn->src_reg == 0) 3146 /* valid generic load 64-bit imm */ 3147 goto next_insn; 3148 3149 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 3150 verbose("unrecognized bpf_ld_imm64 insn\n"); 3151 return -EINVAL; 3152 } 3153 3154 f = fdget(insn->imm); 3155 map = __bpf_map_get(f); 3156 if (IS_ERR(map)) { 3157 verbose("fd %d is not pointing to valid bpf_map\n", 3158 insn->imm); 3159 return PTR_ERR(map); 3160 } 3161 3162 err = check_map_prog_compatibility(map, env->prog); 3163 if (err) { 3164 fdput(f); 3165 return err; 3166 } 3167 3168 /* store map pointer inside BPF_LD_IMM64 instruction */ 3169 insn[0].imm = (u32) (unsigned long) map; 3170 insn[1].imm = ((u64) (unsigned long) map) >> 32; 3171 3172 /* check whether we recorded this map already */ 3173 for (j = 0; j < env->used_map_cnt; j++) 3174 if (env->used_maps[j] == map) { 3175 fdput(f); 3176 goto next_insn; 3177 } 3178 3179 if (env->used_map_cnt >= MAX_USED_MAPS) { 3180 fdput(f); 3181 return -E2BIG; 3182 } 3183 3184 /* hold the map. If the program is rejected by verifier, 3185 * the map will be released by release_maps() or it 3186 * will be used by the valid program until it's unloaded 3187 * and all maps are released in free_bpf_prog_info() 3188 */ 3189 map = bpf_map_inc(map, false); 3190 if (IS_ERR(map)) { 3191 fdput(f); 3192 return PTR_ERR(map); 3193 } 3194 env->used_maps[env->used_map_cnt++] = map; 3195 3196 fdput(f); 3197 next_insn: 3198 insn++; 3199 i++; 3200 } 3201 } 3202 3203 /* now all pseudo BPF_LD_IMM64 instructions load valid 3204 * 'struct bpf_map *' into a register instead of user map_fd. 3205 * These pointers will be used later by verifier to validate map access. 3206 */ 3207 return 0; 3208 } 3209 3210 /* drop refcnt of maps used by the rejected program */ 3211 static void release_maps(struct bpf_verifier_env *env) 3212 { 3213 int i; 3214 3215 for (i = 0; i < env->used_map_cnt; i++) 3216 bpf_map_put(env->used_maps[i]); 3217 } 3218 3219 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 3220 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 3221 { 3222 struct bpf_insn *insn = env->prog->insnsi; 3223 int insn_cnt = env->prog->len; 3224 int i; 3225 3226 for (i = 0; i < insn_cnt; i++, insn++) 3227 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 3228 insn->src_reg = 0; 3229 } 3230 3231 /* single env->prog->insni[off] instruction was replaced with the range 3232 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 3233 * [0, off) and [off, end) to new locations, so the patched range stays zero 3234 */ 3235 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 3236 u32 off, u32 cnt) 3237 { 3238 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 3239 3240 if (cnt == 1) 3241 return 0; 3242 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 3243 if (!new_data) 3244 return -ENOMEM; 3245 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 3246 memcpy(new_data + off + cnt - 1, old_data + off, 3247 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 3248 env->insn_aux_data = new_data; 3249 vfree(old_data); 3250 return 0; 3251 } 3252 3253 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 3254 const struct bpf_insn *patch, u32 len) 3255 { 3256 struct bpf_prog *new_prog; 3257 3258 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 3259 if (!new_prog) 3260 return NULL; 3261 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 3262 return NULL; 3263 return new_prog; 3264 } 3265 3266 /* convert load instructions that access fields of 'struct __sk_buff' 3267 * into sequence of instructions that access fields of 'struct sk_buff' 3268 */ 3269 static int convert_ctx_accesses(struct bpf_verifier_env *env) 3270 { 3271 const struct bpf_verifier_ops *ops = env->prog->aux->ops; 3272 const int insn_cnt = env->prog->len; 3273 struct bpf_insn insn_buf[16], *insn; 3274 struct bpf_prog *new_prog; 3275 enum bpf_access_type type; 3276 int i, cnt, delta = 0; 3277 3278 if (ops->gen_prologue) { 3279 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 3280 env->prog); 3281 if (cnt >= ARRAY_SIZE(insn_buf)) { 3282 verbose("bpf verifier is misconfigured\n"); 3283 return -EINVAL; 3284 } else if (cnt) { 3285 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 3286 if (!new_prog) 3287 return -ENOMEM; 3288 3289 env->prog = new_prog; 3290 delta += cnt - 1; 3291 } 3292 } 3293 3294 if (!ops->convert_ctx_access) 3295 return 0; 3296 3297 insn = env->prog->insnsi + delta; 3298 3299 for (i = 0; i < insn_cnt; i++, insn++) { 3300 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 3301 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 3302 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 3303 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 3304 type = BPF_READ; 3305 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 3306 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 3307 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 3308 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 3309 type = BPF_WRITE; 3310 else 3311 continue; 3312 3313 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 3314 continue; 3315 3316 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog); 3317 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 3318 verbose("bpf verifier is misconfigured\n"); 3319 return -EINVAL; 3320 } 3321 3322 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 3323 if (!new_prog) 3324 return -ENOMEM; 3325 3326 delta += cnt - 1; 3327 3328 /* keep walking new program and skip insns we just inserted */ 3329 env->prog = new_prog; 3330 insn = new_prog->insnsi + i + delta; 3331 } 3332 3333 return 0; 3334 } 3335 3336 /* fixup insn->imm field of bpf_call instructions 3337 * and inline eligible helpers as explicit sequence of BPF instructions 3338 * 3339 * this function is called after eBPF program passed verification 3340 */ 3341 static int fixup_bpf_calls(struct bpf_verifier_env *env) 3342 { 3343 struct bpf_prog *prog = env->prog; 3344 struct bpf_insn *insn = prog->insnsi; 3345 const struct bpf_func_proto *fn; 3346 const int insn_cnt = prog->len; 3347 struct bpf_insn insn_buf[16]; 3348 struct bpf_prog *new_prog; 3349 struct bpf_map *map_ptr; 3350 int i, cnt, delta = 0; 3351 3352 for (i = 0; i < insn_cnt; i++, insn++) { 3353 if (insn->code != (BPF_JMP | BPF_CALL)) 3354 continue; 3355 3356 if (insn->imm == BPF_FUNC_get_route_realm) 3357 prog->dst_needed = 1; 3358 if (insn->imm == BPF_FUNC_get_prandom_u32) 3359 bpf_user_rnd_init_once(); 3360 if (insn->imm == BPF_FUNC_tail_call) { 3361 /* If we tail call into other programs, we 3362 * cannot make any assumptions since they can 3363 * be replaced dynamically during runtime in 3364 * the program array. 3365 */ 3366 prog->cb_access = 1; 3367 3368 /* mark bpf_tail_call as different opcode to avoid 3369 * conditional branch in the interpeter for every normal 3370 * call and to prevent accidental JITing by JIT compiler 3371 * that doesn't support bpf_tail_call yet 3372 */ 3373 insn->imm = 0; 3374 insn->code |= BPF_X; 3375 continue; 3376 } 3377 3378 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) { 3379 map_ptr = env->insn_aux_data[i + delta].map_ptr; 3380 if (map_ptr == BPF_MAP_PTR_POISON || 3381 !map_ptr->ops->map_gen_lookup) 3382 goto patch_call_imm; 3383 3384 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 3385 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 3386 verbose("bpf verifier is misconfigured\n"); 3387 return -EINVAL; 3388 } 3389 3390 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 3391 cnt); 3392 if (!new_prog) 3393 return -ENOMEM; 3394 3395 delta += cnt - 1; 3396 3397 /* keep walking new program and skip insns we just inserted */ 3398 env->prog = prog = new_prog; 3399 insn = new_prog->insnsi + i + delta; 3400 continue; 3401 } 3402 3403 patch_call_imm: 3404 fn = prog->aux->ops->get_func_proto(insn->imm); 3405 /* all functions that have prototype and verifier allowed 3406 * programs to call them, must be real in-kernel functions 3407 */ 3408 if (!fn->func) { 3409 verbose("kernel subsystem misconfigured func %s#%d\n", 3410 func_id_name(insn->imm), insn->imm); 3411 return -EFAULT; 3412 } 3413 insn->imm = fn->func - __bpf_call_base; 3414 } 3415 3416 return 0; 3417 } 3418 3419 static void free_states(struct bpf_verifier_env *env) 3420 { 3421 struct bpf_verifier_state_list *sl, *sln; 3422 int i; 3423 3424 if (!env->explored_states) 3425 return; 3426 3427 for (i = 0; i < env->prog->len; i++) { 3428 sl = env->explored_states[i]; 3429 3430 if (sl) 3431 while (sl != STATE_LIST_MARK) { 3432 sln = sl->next; 3433 kfree(sl); 3434 sl = sln; 3435 } 3436 } 3437 3438 kfree(env->explored_states); 3439 } 3440 3441 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 3442 { 3443 char __user *log_ubuf = NULL; 3444 struct bpf_verifier_env *env; 3445 int ret = -EINVAL; 3446 3447 /* 'struct bpf_verifier_env' can be global, but since it's not small, 3448 * allocate/free it every time bpf_check() is called 3449 */ 3450 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 3451 if (!env) 3452 return -ENOMEM; 3453 3454 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 3455 (*prog)->len); 3456 ret = -ENOMEM; 3457 if (!env->insn_aux_data) 3458 goto err_free_env; 3459 env->prog = *prog; 3460 3461 /* grab the mutex to protect few globals used by verifier */ 3462 mutex_lock(&bpf_verifier_lock); 3463 3464 if (attr->log_level || attr->log_buf || attr->log_size) { 3465 /* user requested verbose verifier output 3466 * and supplied buffer to store the verification trace 3467 */ 3468 log_level = attr->log_level; 3469 log_ubuf = (char __user *) (unsigned long) attr->log_buf; 3470 log_size = attr->log_size; 3471 log_len = 0; 3472 3473 ret = -EINVAL; 3474 /* log_* values have to be sane */ 3475 if (log_size < 128 || log_size > UINT_MAX >> 8 || 3476 log_level == 0 || log_ubuf == NULL) 3477 goto err_unlock; 3478 3479 ret = -ENOMEM; 3480 log_buf = vmalloc(log_size); 3481 if (!log_buf) 3482 goto err_unlock; 3483 } else { 3484 log_level = 0; 3485 } 3486 3487 ret = replace_map_fd_with_map_ptr(env); 3488 if (ret < 0) 3489 goto skip_full_check; 3490 3491 env->explored_states = kcalloc(env->prog->len, 3492 sizeof(struct bpf_verifier_state_list *), 3493 GFP_USER); 3494 ret = -ENOMEM; 3495 if (!env->explored_states) 3496 goto skip_full_check; 3497 3498 ret = check_cfg(env); 3499 if (ret < 0) 3500 goto skip_full_check; 3501 3502 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 3503 3504 ret = do_check(env); 3505 3506 skip_full_check: 3507 while (pop_stack(env, NULL) >= 0); 3508 free_states(env); 3509 3510 if (ret == 0) 3511 /* program is valid, convert *(u32*)(ctx + off) accesses */ 3512 ret = convert_ctx_accesses(env); 3513 3514 if (ret == 0) 3515 ret = fixup_bpf_calls(env); 3516 3517 if (log_level && log_len >= log_size - 1) { 3518 BUG_ON(log_len >= log_size); 3519 /* verifier log exceeded user supplied buffer */ 3520 ret = -ENOSPC; 3521 /* fall through to return what was recorded */ 3522 } 3523 3524 /* copy verifier log back to user space including trailing zero */ 3525 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { 3526 ret = -EFAULT; 3527 goto free_log_buf; 3528 } 3529 3530 if (ret == 0 && env->used_map_cnt) { 3531 /* if program passed verifier, update used_maps in bpf_prog_info */ 3532 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 3533 sizeof(env->used_maps[0]), 3534 GFP_KERNEL); 3535 3536 if (!env->prog->aux->used_maps) { 3537 ret = -ENOMEM; 3538 goto free_log_buf; 3539 } 3540 3541 memcpy(env->prog->aux->used_maps, env->used_maps, 3542 sizeof(env->used_maps[0]) * env->used_map_cnt); 3543 env->prog->aux->used_map_cnt = env->used_map_cnt; 3544 3545 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 3546 * bpf_ld_imm64 instructions 3547 */ 3548 convert_pseudo_ld_imm64(env); 3549 } 3550 3551 free_log_buf: 3552 if (log_level) 3553 vfree(log_buf); 3554 if (!env->prog->aux->used_maps) 3555 /* if we didn't copy map pointers into bpf_prog_info, release 3556 * them now. Otherwise free_bpf_prog_info() will release them. 3557 */ 3558 release_maps(env); 3559 *prog = env->prog; 3560 err_unlock: 3561 mutex_unlock(&bpf_verifier_lock); 3562 vfree(env->insn_aux_data); 3563 err_free_env: 3564 kfree(env); 3565 return ret; 3566 } 3567 3568 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 3569 void *priv) 3570 { 3571 struct bpf_verifier_env *env; 3572 int ret; 3573 3574 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 3575 if (!env) 3576 return -ENOMEM; 3577 3578 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 3579 prog->len); 3580 ret = -ENOMEM; 3581 if (!env->insn_aux_data) 3582 goto err_free_env; 3583 env->prog = prog; 3584 env->analyzer_ops = ops; 3585 env->analyzer_priv = priv; 3586 3587 /* grab the mutex to protect few globals used by verifier */ 3588 mutex_lock(&bpf_verifier_lock); 3589 3590 log_level = 0; 3591 3592 env->explored_states = kcalloc(env->prog->len, 3593 sizeof(struct bpf_verifier_state_list *), 3594 GFP_KERNEL); 3595 ret = -ENOMEM; 3596 if (!env->explored_states) 3597 goto skip_full_check; 3598 3599 ret = check_cfg(env); 3600 if (ret < 0) 3601 goto skip_full_check; 3602 3603 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 3604 3605 ret = do_check(env); 3606 3607 skip_full_check: 3608 while (pop_stack(env, NULL) >= 0); 3609 free_states(env); 3610 3611 mutex_unlock(&bpf_verifier_lock); 3612 vfree(env->insn_aux_data); 3613 err_free_env: 3614 kfree(env); 3615 return ret; 3616 } 3617 EXPORT_SYMBOL_GPL(bpf_analyzer); 3618