xref: /openbmc/linux/kernel/bpf/verifier.c (revision 1c2dd16a)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have UNKNOWN_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	65536
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 	[NOT_INIT]		= "?",
183 	[UNKNOWN_VALUE]		= "inv",
184 	[PTR_TO_CTX]		= "ctx",
185 	[CONST_PTR_TO_MAP]	= "map_ptr",
186 	[PTR_TO_MAP_VALUE]	= "map_value",
187 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
189 	[FRAME_PTR]		= "fp",
190 	[PTR_TO_STACK]		= "fp",
191 	[CONST_IMM]		= "imm",
192 	[PTR_TO_PACKET]		= "pkt",
193 	[PTR_TO_PACKET_END]	= "pkt_end",
194 };
195 
196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197 static const char * const func_id_str[] = {
198 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199 };
200 #undef __BPF_FUNC_STR_FN
201 
202 static const char *func_id_name(int id)
203 {
204 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205 
206 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 		return func_id_str[id];
208 	else
209 		return "unknown";
210 }
211 
212 static void print_verifier_state(struct bpf_verifier_state *state)
213 {
214 	struct bpf_reg_state *reg;
215 	enum bpf_reg_type t;
216 	int i;
217 
218 	for (i = 0; i < MAX_BPF_REG; i++) {
219 		reg = &state->regs[i];
220 		t = reg->type;
221 		if (t == NOT_INIT)
222 			continue;
223 		verbose(" R%d=%s", i, reg_type_str[t]);
224 		if (t == CONST_IMM || t == PTR_TO_STACK)
225 			verbose("%lld", reg->imm);
226 		else if (t == PTR_TO_PACKET)
227 			verbose("(id=%d,off=%d,r=%d)",
228 				reg->id, reg->off, reg->range);
229 		else if (t == UNKNOWN_VALUE && reg->imm)
230 			verbose("%lld", reg->imm);
231 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
232 			 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 			 t == PTR_TO_MAP_VALUE_ADJ)
234 			verbose("(ks=%d,vs=%d,id=%u)",
235 				reg->map_ptr->key_size,
236 				reg->map_ptr->value_size,
237 				reg->id);
238 		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
239 			verbose(",min_value=%lld",
240 				(long long)reg->min_value);
241 		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 			verbose(",max_value=%llu",
243 				(unsigned long long)reg->max_value);
244 	}
245 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
246 		if (state->stack_slot_type[i] == STACK_SPILL)
247 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
248 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
249 	}
250 	verbose("\n");
251 }
252 
253 static const char *const bpf_class_string[] = {
254 	[BPF_LD]    = "ld",
255 	[BPF_LDX]   = "ldx",
256 	[BPF_ST]    = "st",
257 	[BPF_STX]   = "stx",
258 	[BPF_ALU]   = "alu",
259 	[BPF_JMP]   = "jmp",
260 	[BPF_RET]   = "BUG",
261 	[BPF_ALU64] = "alu64",
262 };
263 
264 static const char *const bpf_alu_string[16] = {
265 	[BPF_ADD >> 4]  = "+=",
266 	[BPF_SUB >> 4]  = "-=",
267 	[BPF_MUL >> 4]  = "*=",
268 	[BPF_DIV >> 4]  = "/=",
269 	[BPF_OR  >> 4]  = "|=",
270 	[BPF_AND >> 4]  = "&=",
271 	[BPF_LSH >> 4]  = "<<=",
272 	[BPF_RSH >> 4]  = ">>=",
273 	[BPF_NEG >> 4]  = "neg",
274 	[BPF_MOD >> 4]  = "%=",
275 	[BPF_XOR >> 4]  = "^=",
276 	[BPF_MOV >> 4]  = "=",
277 	[BPF_ARSH >> 4] = "s>>=",
278 	[BPF_END >> 4]  = "endian",
279 };
280 
281 static const char *const bpf_ldst_string[] = {
282 	[BPF_W >> 3]  = "u32",
283 	[BPF_H >> 3]  = "u16",
284 	[BPF_B >> 3]  = "u8",
285 	[BPF_DW >> 3] = "u64",
286 };
287 
288 static const char *const bpf_jmp_string[16] = {
289 	[BPF_JA >> 4]   = "jmp",
290 	[BPF_JEQ >> 4]  = "==",
291 	[BPF_JGT >> 4]  = ">",
292 	[BPF_JGE >> 4]  = ">=",
293 	[BPF_JSET >> 4] = "&",
294 	[BPF_JNE >> 4]  = "!=",
295 	[BPF_JSGT >> 4] = "s>",
296 	[BPF_JSGE >> 4] = "s>=",
297 	[BPF_CALL >> 4] = "call",
298 	[BPF_EXIT >> 4] = "exit",
299 };
300 
301 static void print_bpf_insn(struct bpf_insn *insn)
302 {
303 	u8 class = BPF_CLASS(insn->code);
304 
305 	if (class == BPF_ALU || class == BPF_ALU64) {
306 		if (BPF_SRC(insn->code) == BPF_X)
307 			verbose("(%02x) %sr%d %s %sr%d\n",
308 				insn->code, class == BPF_ALU ? "(u32) " : "",
309 				insn->dst_reg,
310 				bpf_alu_string[BPF_OP(insn->code) >> 4],
311 				class == BPF_ALU ? "(u32) " : "",
312 				insn->src_reg);
313 		else
314 			verbose("(%02x) %sr%d %s %s%d\n",
315 				insn->code, class == BPF_ALU ? "(u32) " : "",
316 				insn->dst_reg,
317 				bpf_alu_string[BPF_OP(insn->code) >> 4],
318 				class == BPF_ALU ? "(u32) " : "",
319 				insn->imm);
320 	} else if (class == BPF_STX) {
321 		if (BPF_MODE(insn->code) == BPF_MEM)
322 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
323 				insn->code,
324 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
325 				insn->dst_reg,
326 				insn->off, insn->src_reg);
327 		else if (BPF_MODE(insn->code) == BPF_XADD)
328 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
329 				insn->code,
330 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
331 				insn->dst_reg, insn->off,
332 				insn->src_reg);
333 		else
334 			verbose("BUG_%02x\n", insn->code);
335 	} else if (class == BPF_ST) {
336 		if (BPF_MODE(insn->code) != BPF_MEM) {
337 			verbose("BUG_st_%02x\n", insn->code);
338 			return;
339 		}
340 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
341 			insn->code,
342 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
343 			insn->dst_reg,
344 			insn->off, insn->imm);
345 	} else if (class == BPF_LDX) {
346 		if (BPF_MODE(insn->code) != BPF_MEM) {
347 			verbose("BUG_ldx_%02x\n", insn->code);
348 			return;
349 		}
350 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
351 			insn->code, insn->dst_reg,
352 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 			insn->src_reg, insn->off);
354 	} else if (class == BPF_LD) {
355 		if (BPF_MODE(insn->code) == BPF_ABS) {
356 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
357 				insn->code,
358 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 				insn->imm);
360 		} else if (BPF_MODE(insn->code) == BPF_IND) {
361 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
362 				insn->code,
363 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
364 				insn->src_reg, insn->imm);
365 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
366 			verbose("(%02x) r%d = 0x%x\n",
367 				insn->code, insn->dst_reg, insn->imm);
368 		} else {
369 			verbose("BUG_ld_%02x\n", insn->code);
370 			return;
371 		}
372 	} else if (class == BPF_JMP) {
373 		u8 opcode = BPF_OP(insn->code);
374 
375 		if (opcode == BPF_CALL) {
376 			verbose("(%02x) call %s#%d\n", insn->code,
377 				func_id_name(insn->imm), insn->imm);
378 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
379 			verbose("(%02x) goto pc%+d\n",
380 				insn->code, insn->off);
381 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
382 			verbose("(%02x) exit\n", insn->code);
383 		} else if (BPF_SRC(insn->code) == BPF_X) {
384 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
385 				insn->code, insn->dst_reg,
386 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
387 				insn->src_reg, insn->off);
388 		} else {
389 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
390 				insn->code, insn->dst_reg,
391 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
392 				insn->imm, insn->off);
393 		}
394 	} else {
395 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
396 	}
397 }
398 
399 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
400 {
401 	struct bpf_verifier_stack_elem *elem;
402 	int insn_idx;
403 
404 	if (env->head == NULL)
405 		return -1;
406 
407 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
408 	insn_idx = env->head->insn_idx;
409 	if (prev_insn_idx)
410 		*prev_insn_idx = env->head->prev_insn_idx;
411 	elem = env->head->next;
412 	kfree(env->head);
413 	env->head = elem;
414 	env->stack_size--;
415 	return insn_idx;
416 }
417 
418 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
419 					     int insn_idx, int prev_insn_idx)
420 {
421 	struct bpf_verifier_stack_elem *elem;
422 
423 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
424 	if (!elem)
425 		goto err;
426 
427 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
428 	elem->insn_idx = insn_idx;
429 	elem->prev_insn_idx = prev_insn_idx;
430 	elem->next = env->head;
431 	env->head = elem;
432 	env->stack_size++;
433 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
434 		verbose("BPF program is too complex\n");
435 		goto err;
436 	}
437 	return &elem->st;
438 err:
439 	/* pop all elements and return */
440 	while (pop_stack(env, NULL) >= 0);
441 	return NULL;
442 }
443 
444 #define CALLER_SAVED_REGS 6
445 static const int caller_saved[CALLER_SAVED_REGS] = {
446 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
447 };
448 
449 static void init_reg_state(struct bpf_reg_state *regs)
450 {
451 	int i;
452 
453 	for (i = 0; i < MAX_BPF_REG; i++) {
454 		regs[i].type = NOT_INIT;
455 		regs[i].imm = 0;
456 		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
457 		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
458 	}
459 
460 	/* frame pointer */
461 	regs[BPF_REG_FP].type = FRAME_PTR;
462 
463 	/* 1st arg to a function */
464 	regs[BPF_REG_1].type = PTR_TO_CTX;
465 }
466 
467 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
468 {
469 	regs[regno].type = UNKNOWN_VALUE;
470 	regs[regno].id = 0;
471 	regs[regno].imm = 0;
472 }
473 
474 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
475 {
476 	BUG_ON(regno >= MAX_BPF_REG);
477 	__mark_reg_unknown_value(regs, regno);
478 }
479 
480 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
481 {
482 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
483 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
484 }
485 
486 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
487 					     u32 regno)
488 {
489 	mark_reg_unknown_value(regs, regno);
490 	reset_reg_range_values(regs, regno);
491 }
492 
493 enum reg_arg_type {
494 	SRC_OP,		/* register is used as source operand */
495 	DST_OP,		/* register is used as destination operand */
496 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
497 };
498 
499 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
500 			 enum reg_arg_type t)
501 {
502 	if (regno >= MAX_BPF_REG) {
503 		verbose("R%d is invalid\n", regno);
504 		return -EINVAL;
505 	}
506 
507 	if (t == SRC_OP) {
508 		/* check whether register used as source operand can be read */
509 		if (regs[regno].type == NOT_INIT) {
510 			verbose("R%d !read_ok\n", regno);
511 			return -EACCES;
512 		}
513 	} else {
514 		/* check whether register used as dest operand can be written to */
515 		if (regno == BPF_REG_FP) {
516 			verbose("frame pointer is read only\n");
517 			return -EACCES;
518 		}
519 		if (t == DST_OP)
520 			mark_reg_unknown_value(regs, regno);
521 	}
522 	return 0;
523 }
524 
525 static int bpf_size_to_bytes(int bpf_size)
526 {
527 	if (bpf_size == BPF_W)
528 		return 4;
529 	else if (bpf_size == BPF_H)
530 		return 2;
531 	else if (bpf_size == BPF_B)
532 		return 1;
533 	else if (bpf_size == BPF_DW)
534 		return 8;
535 	else
536 		return -EINVAL;
537 }
538 
539 static bool is_spillable_regtype(enum bpf_reg_type type)
540 {
541 	switch (type) {
542 	case PTR_TO_MAP_VALUE:
543 	case PTR_TO_MAP_VALUE_OR_NULL:
544 	case PTR_TO_MAP_VALUE_ADJ:
545 	case PTR_TO_STACK:
546 	case PTR_TO_CTX:
547 	case PTR_TO_PACKET:
548 	case PTR_TO_PACKET_END:
549 	case FRAME_PTR:
550 	case CONST_PTR_TO_MAP:
551 		return true;
552 	default:
553 		return false;
554 	}
555 }
556 
557 /* check_stack_read/write functions track spill/fill of registers,
558  * stack boundary and alignment are checked in check_mem_access()
559  */
560 static int check_stack_write(struct bpf_verifier_state *state, int off,
561 			     int size, int value_regno)
562 {
563 	int i;
564 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
565 	 * so it's aligned access and [off, off + size) are within stack limits
566 	 */
567 
568 	if (value_regno >= 0 &&
569 	    is_spillable_regtype(state->regs[value_regno].type)) {
570 
571 		/* register containing pointer is being spilled into stack */
572 		if (size != BPF_REG_SIZE) {
573 			verbose("invalid size of register spill\n");
574 			return -EACCES;
575 		}
576 
577 		/* save register state */
578 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
579 			state->regs[value_regno];
580 
581 		for (i = 0; i < BPF_REG_SIZE; i++)
582 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
583 	} else {
584 		/* regular write of data into stack */
585 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
586 			(struct bpf_reg_state) {};
587 
588 		for (i = 0; i < size; i++)
589 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
590 	}
591 	return 0;
592 }
593 
594 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
595 			    int value_regno)
596 {
597 	u8 *slot_type;
598 	int i;
599 
600 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
601 
602 	if (slot_type[0] == STACK_SPILL) {
603 		if (size != BPF_REG_SIZE) {
604 			verbose("invalid size of register spill\n");
605 			return -EACCES;
606 		}
607 		for (i = 1; i < BPF_REG_SIZE; i++) {
608 			if (slot_type[i] != STACK_SPILL) {
609 				verbose("corrupted spill memory\n");
610 				return -EACCES;
611 			}
612 		}
613 
614 		if (value_regno >= 0)
615 			/* restore register state from stack */
616 			state->regs[value_regno] =
617 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
618 		return 0;
619 	} else {
620 		for (i = 0; i < size; i++) {
621 			if (slot_type[i] != STACK_MISC) {
622 				verbose("invalid read from stack off %d+%d size %d\n",
623 					off, i, size);
624 				return -EACCES;
625 			}
626 		}
627 		if (value_regno >= 0)
628 			/* have read misc data from the stack */
629 			mark_reg_unknown_value_and_range(state->regs,
630 							 value_regno);
631 		return 0;
632 	}
633 }
634 
635 /* check read/write into map element returned by bpf_map_lookup_elem() */
636 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
637 			    int size)
638 {
639 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
640 
641 	if (off < 0 || size <= 0 || off + size > map->value_size) {
642 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
643 			map->value_size, off, size);
644 		return -EACCES;
645 	}
646 	return 0;
647 }
648 
649 /* check read/write into an adjusted map element */
650 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
651 				int off, int size)
652 {
653 	struct bpf_verifier_state *state = &env->cur_state;
654 	struct bpf_reg_state *reg = &state->regs[regno];
655 	int err;
656 
657 	/* We adjusted the register to this map value, so we
658 	 * need to change off and size to min_value and max_value
659 	 * respectively to make sure our theoretical access will be
660 	 * safe.
661 	 */
662 	if (log_level)
663 		print_verifier_state(state);
664 	env->varlen_map_value_access = true;
665 	/* The minimum value is only important with signed
666 	 * comparisons where we can't assume the floor of a
667 	 * value is 0.  If we are using signed variables for our
668 	 * index'es we need to make sure that whatever we use
669 	 * will have a set floor within our range.
670 	 */
671 	if (reg->min_value < 0) {
672 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
673 			regno);
674 		return -EACCES;
675 	}
676 	err = check_map_access(env, regno, reg->min_value + off, size);
677 	if (err) {
678 		verbose("R%d min value is outside of the array range\n",
679 			regno);
680 		return err;
681 	}
682 
683 	/* If we haven't set a max value then we need to bail
684 	 * since we can't be sure we won't do bad things.
685 	 */
686 	if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
687 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
688 			regno);
689 		return -EACCES;
690 	}
691 	return check_map_access(env, regno, reg->max_value + off, size);
692 }
693 
694 #define MAX_PACKET_OFF 0xffff
695 
696 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
697 				       const struct bpf_call_arg_meta *meta,
698 				       enum bpf_access_type t)
699 {
700 	switch (env->prog->type) {
701 	case BPF_PROG_TYPE_LWT_IN:
702 	case BPF_PROG_TYPE_LWT_OUT:
703 		/* dst_input() and dst_output() can't write for now */
704 		if (t == BPF_WRITE)
705 			return false;
706 		/* fallthrough */
707 	case BPF_PROG_TYPE_SCHED_CLS:
708 	case BPF_PROG_TYPE_SCHED_ACT:
709 	case BPF_PROG_TYPE_XDP:
710 	case BPF_PROG_TYPE_LWT_XMIT:
711 		if (meta)
712 			return meta->pkt_access;
713 
714 		env->seen_direct_write = true;
715 		return true;
716 	default:
717 		return false;
718 	}
719 }
720 
721 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
722 			       int size)
723 {
724 	struct bpf_reg_state *regs = env->cur_state.regs;
725 	struct bpf_reg_state *reg = &regs[regno];
726 
727 	off += reg->off;
728 	if (off < 0 || size <= 0 || off + size > reg->range) {
729 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
730 			off, size, regno, reg->id, reg->off, reg->range);
731 		return -EACCES;
732 	}
733 	return 0;
734 }
735 
736 /* check access to 'struct bpf_context' fields */
737 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
738 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
739 {
740 	/* for analyzer ctx accesses are already validated and converted */
741 	if (env->analyzer_ops)
742 		return 0;
743 
744 	if (env->prog->aux->ops->is_valid_access &&
745 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
746 		/* remember the offset of last byte accessed in ctx */
747 		if (env->prog->aux->max_ctx_offset < off + size)
748 			env->prog->aux->max_ctx_offset = off + size;
749 		return 0;
750 	}
751 
752 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
753 	return -EACCES;
754 }
755 
756 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
757 {
758 	if (env->allow_ptr_leaks)
759 		return false;
760 
761 	switch (env->cur_state.regs[regno].type) {
762 	case UNKNOWN_VALUE:
763 	case CONST_IMM:
764 		return false;
765 	default:
766 		return true;
767 	}
768 }
769 
770 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
771 				   int off, int size)
772 {
773 	if (reg->id && size != 1) {
774 		verbose("Unknown alignment. Only byte-sized access allowed in packet access.\n");
775 		return -EACCES;
776 	}
777 
778 	/* skb->data is NET_IP_ALIGN-ed */
779 	if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
780 		verbose("misaligned packet access off %d+%d+%d size %d\n",
781 			NET_IP_ALIGN, reg->off, off, size);
782 		return -EACCES;
783 	}
784 
785 	return 0;
786 }
787 
788 static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
789 				   int size)
790 {
791 	if (size != 1) {
792 		verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
793 		return -EACCES;
794 	}
795 
796 	return 0;
797 }
798 
799 static int check_ptr_alignment(const struct bpf_reg_state *reg,
800 			       int off, int size)
801 {
802 	switch (reg->type) {
803 	case PTR_TO_PACKET:
804 		return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
805 		       check_pkt_ptr_alignment(reg, off, size);
806 	case PTR_TO_MAP_VALUE_ADJ:
807 		return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
808 		       check_val_ptr_alignment(reg, size);
809 	default:
810 		if (off % size != 0) {
811 			verbose("misaligned access off %d size %d\n",
812 				off, size);
813 			return -EACCES;
814 		}
815 
816 		return 0;
817 	}
818 }
819 
820 /* check whether memory at (regno + off) is accessible for t = (read | write)
821  * if t==write, value_regno is a register which value is stored into memory
822  * if t==read, value_regno is a register which will receive the value from memory
823  * if t==write && value_regno==-1, some unknown value is stored into memory
824  * if t==read && value_regno==-1, don't care what we read from memory
825  */
826 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
827 			    int bpf_size, enum bpf_access_type t,
828 			    int value_regno)
829 {
830 	struct bpf_verifier_state *state = &env->cur_state;
831 	struct bpf_reg_state *reg = &state->regs[regno];
832 	int size, err = 0;
833 
834 	if (reg->type == PTR_TO_STACK)
835 		off += reg->imm;
836 
837 	size = bpf_size_to_bytes(bpf_size);
838 	if (size < 0)
839 		return size;
840 
841 	err = check_ptr_alignment(reg, off, size);
842 	if (err)
843 		return err;
844 
845 	if (reg->type == PTR_TO_MAP_VALUE ||
846 	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
847 		if (t == BPF_WRITE && value_regno >= 0 &&
848 		    is_pointer_value(env, value_regno)) {
849 			verbose("R%d leaks addr into map\n", value_regno);
850 			return -EACCES;
851 		}
852 
853 		if (reg->type == PTR_TO_MAP_VALUE_ADJ)
854 			err = check_map_access_adj(env, regno, off, size);
855 		else
856 			err = check_map_access(env, regno, off, size);
857 		if (!err && t == BPF_READ && value_regno >= 0)
858 			mark_reg_unknown_value_and_range(state->regs,
859 							 value_regno);
860 
861 	} else if (reg->type == PTR_TO_CTX) {
862 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
863 
864 		if (t == BPF_WRITE && value_regno >= 0 &&
865 		    is_pointer_value(env, value_regno)) {
866 			verbose("R%d leaks addr into ctx\n", value_regno);
867 			return -EACCES;
868 		}
869 		err = check_ctx_access(env, off, size, t, &reg_type);
870 		if (!err && t == BPF_READ && value_regno >= 0) {
871 			mark_reg_unknown_value_and_range(state->regs,
872 							 value_regno);
873 			/* note that reg.[id|off|range] == 0 */
874 			state->regs[value_regno].type = reg_type;
875 		}
876 
877 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
878 		if (off >= 0 || off < -MAX_BPF_STACK) {
879 			verbose("invalid stack off=%d size=%d\n", off, size);
880 			return -EACCES;
881 		}
882 		if (t == BPF_WRITE) {
883 			if (!env->allow_ptr_leaks &&
884 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
885 			    size != BPF_REG_SIZE) {
886 				verbose("attempt to corrupt spilled pointer on stack\n");
887 				return -EACCES;
888 			}
889 			err = check_stack_write(state, off, size, value_regno);
890 		} else {
891 			err = check_stack_read(state, off, size, value_regno);
892 		}
893 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
894 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
895 			verbose("cannot write into packet\n");
896 			return -EACCES;
897 		}
898 		if (t == BPF_WRITE && value_regno >= 0 &&
899 		    is_pointer_value(env, value_regno)) {
900 			verbose("R%d leaks addr into packet\n", value_regno);
901 			return -EACCES;
902 		}
903 		err = check_packet_access(env, regno, off, size);
904 		if (!err && t == BPF_READ && value_regno >= 0)
905 			mark_reg_unknown_value_and_range(state->regs,
906 							 value_regno);
907 	} else {
908 		verbose("R%d invalid mem access '%s'\n",
909 			regno, reg_type_str[reg->type]);
910 		return -EACCES;
911 	}
912 
913 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
914 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
915 		/* 1 or 2 byte load zero-extends, determine the number of
916 		 * zero upper bits. Not doing it fo 4 byte load, since
917 		 * such values cannot be added to ptr_to_packet anyway.
918 		 */
919 		state->regs[value_regno].imm = 64 - size * 8;
920 	}
921 	return err;
922 }
923 
924 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
925 {
926 	struct bpf_reg_state *regs = env->cur_state.regs;
927 	int err;
928 
929 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
930 	    insn->imm != 0) {
931 		verbose("BPF_XADD uses reserved fields\n");
932 		return -EINVAL;
933 	}
934 
935 	/* check src1 operand */
936 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
937 	if (err)
938 		return err;
939 
940 	/* check src2 operand */
941 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
942 	if (err)
943 		return err;
944 
945 	/* check whether atomic_add can read the memory */
946 	err = check_mem_access(env, insn->dst_reg, insn->off,
947 			       BPF_SIZE(insn->code), BPF_READ, -1);
948 	if (err)
949 		return err;
950 
951 	/* check whether atomic_add can write into the same memory */
952 	return check_mem_access(env, insn->dst_reg, insn->off,
953 				BPF_SIZE(insn->code), BPF_WRITE, -1);
954 }
955 
956 /* when register 'regno' is passed into function that will read 'access_size'
957  * bytes from that pointer, make sure that it's within stack boundary
958  * and all elements of stack are initialized
959  */
960 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
961 				int access_size, bool zero_size_allowed,
962 				struct bpf_call_arg_meta *meta)
963 {
964 	struct bpf_verifier_state *state = &env->cur_state;
965 	struct bpf_reg_state *regs = state->regs;
966 	int off, i;
967 
968 	if (regs[regno].type != PTR_TO_STACK) {
969 		if (zero_size_allowed && access_size == 0 &&
970 		    regs[regno].type == CONST_IMM &&
971 		    regs[regno].imm  == 0)
972 			return 0;
973 
974 		verbose("R%d type=%s expected=%s\n", regno,
975 			reg_type_str[regs[regno].type],
976 			reg_type_str[PTR_TO_STACK]);
977 		return -EACCES;
978 	}
979 
980 	off = regs[regno].imm;
981 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
982 	    access_size <= 0) {
983 		verbose("invalid stack type R%d off=%d access_size=%d\n",
984 			regno, off, access_size);
985 		return -EACCES;
986 	}
987 
988 	if (meta && meta->raw_mode) {
989 		meta->access_size = access_size;
990 		meta->regno = regno;
991 		return 0;
992 	}
993 
994 	for (i = 0; i < access_size; i++) {
995 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
996 			verbose("invalid indirect read from stack off %d+%d size %d\n",
997 				off, i, access_size);
998 			return -EACCES;
999 		}
1000 	}
1001 	return 0;
1002 }
1003 
1004 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1005 				   int access_size, bool zero_size_allowed,
1006 				   struct bpf_call_arg_meta *meta)
1007 {
1008 	struct bpf_reg_state *regs = env->cur_state.regs;
1009 
1010 	switch (regs[regno].type) {
1011 	case PTR_TO_PACKET:
1012 		return check_packet_access(env, regno, 0, access_size);
1013 	case PTR_TO_MAP_VALUE:
1014 		return check_map_access(env, regno, 0, access_size);
1015 	case PTR_TO_MAP_VALUE_ADJ:
1016 		return check_map_access_adj(env, regno, 0, access_size);
1017 	default: /* const_imm|ptr_to_stack or invalid ptr */
1018 		return check_stack_boundary(env, regno, access_size,
1019 					    zero_size_allowed, meta);
1020 	}
1021 }
1022 
1023 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1024 			  enum bpf_arg_type arg_type,
1025 			  struct bpf_call_arg_meta *meta)
1026 {
1027 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1028 	enum bpf_reg_type expected_type, type = reg->type;
1029 	int err = 0;
1030 
1031 	if (arg_type == ARG_DONTCARE)
1032 		return 0;
1033 
1034 	if (type == NOT_INIT) {
1035 		verbose("R%d !read_ok\n", regno);
1036 		return -EACCES;
1037 	}
1038 
1039 	if (arg_type == ARG_ANYTHING) {
1040 		if (is_pointer_value(env, regno)) {
1041 			verbose("R%d leaks addr into helper function\n", regno);
1042 			return -EACCES;
1043 		}
1044 		return 0;
1045 	}
1046 
1047 	if (type == PTR_TO_PACKET &&
1048 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1049 		verbose("helper access to the packet is not allowed\n");
1050 		return -EACCES;
1051 	}
1052 
1053 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1054 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1055 		expected_type = PTR_TO_STACK;
1056 		if (type != PTR_TO_PACKET && type != expected_type)
1057 			goto err_type;
1058 	} else if (arg_type == ARG_CONST_SIZE ||
1059 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1060 		expected_type = CONST_IMM;
1061 		/* One exception. Allow UNKNOWN_VALUE registers when the
1062 		 * boundaries are known and don't cause unsafe memory accesses
1063 		 */
1064 		if (type != UNKNOWN_VALUE && type != expected_type)
1065 			goto err_type;
1066 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1067 		expected_type = CONST_PTR_TO_MAP;
1068 		if (type != expected_type)
1069 			goto err_type;
1070 	} else if (arg_type == ARG_PTR_TO_CTX) {
1071 		expected_type = PTR_TO_CTX;
1072 		if (type != expected_type)
1073 			goto err_type;
1074 	} else if (arg_type == ARG_PTR_TO_MEM ||
1075 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1076 		expected_type = PTR_TO_STACK;
1077 		/* One exception here. In case function allows for NULL to be
1078 		 * passed in as argument, it's a CONST_IMM type. Final test
1079 		 * happens during stack boundary checking.
1080 		 */
1081 		if (type == CONST_IMM && reg->imm == 0)
1082 			/* final test in check_stack_boundary() */;
1083 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1084 			 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1085 			goto err_type;
1086 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1087 	} else {
1088 		verbose("unsupported arg_type %d\n", arg_type);
1089 		return -EFAULT;
1090 	}
1091 
1092 	if (arg_type == ARG_CONST_MAP_PTR) {
1093 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1094 		meta->map_ptr = reg->map_ptr;
1095 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1096 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1097 		 * check that [key, key + map->key_size) are within
1098 		 * stack limits and initialized
1099 		 */
1100 		if (!meta->map_ptr) {
1101 			/* in function declaration map_ptr must come before
1102 			 * map_key, so that it's verified and known before
1103 			 * we have to check map_key here. Otherwise it means
1104 			 * that kernel subsystem misconfigured verifier
1105 			 */
1106 			verbose("invalid map_ptr to access map->key\n");
1107 			return -EACCES;
1108 		}
1109 		if (type == PTR_TO_PACKET)
1110 			err = check_packet_access(env, regno, 0,
1111 						  meta->map_ptr->key_size);
1112 		else
1113 			err = check_stack_boundary(env, regno,
1114 						   meta->map_ptr->key_size,
1115 						   false, NULL);
1116 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1117 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1118 		 * check [value, value + map->value_size) validity
1119 		 */
1120 		if (!meta->map_ptr) {
1121 			/* kernel subsystem misconfigured verifier */
1122 			verbose("invalid map_ptr to access map->value\n");
1123 			return -EACCES;
1124 		}
1125 		if (type == PTR_TO_PACKET)
1126 			err = check_packet_access(env, regno, 0,
1127 						  meta->map_ptr->value_size);
1128 		else
1129 			err = check_stack_boundary(env, regno,
1130 						   meta->map_ptr->value_size,
1131 						   false, NULL);
1132 	} else if (arg_type == ARG_CONST_SIZE ||
1133 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1134 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1135 
1136 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1137 		 * from stack pointer 'buf'. Check it
1138 		 * note: regno == len, regno - 1 == buf
1139 		 */
1140 		if (regno == 0) {
1141 			/* kernel subsystem misconfigured verifier */
1142 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1143 			return -EACCES;
1144 		}
1145 
1146 		/* If the register is UNKNOWN_VALUE, the access check happens
1147 		 * using its boundaries. Otherwise, just use its imm
1148 		 */
1149 		if (type == UNKNOWN_VALUE) {
1150 			/* For unprivileged variable accesses, disable raw
1151 			 * mode so that the program is required to
1152 			 * initialize all the memory that the helper could
1153 			 * just partially fill up.
1154 			 */
1155 			meta = NULL;
1156 
1157 			if (reg->min_value < 0) {
1158 				verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1159 					regno);
1160 				return -EACCES;
1161 			}
1162 
1163 			if (reg->min_value == 0) {
1164 				err = check_helper_mem_access(env, regno - 1, 0,
1165 							      zero_size_allowed,
1166 							      meta);
1167 				if (err)
1168 					return err;
1169 			}
1170 
1171 			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1172 				verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1173 					regno);
1174 				return -EACCES;
1175 			}
1176 			err = check_helper_mem_access(env, regno - 1,
1177 						      reg->max_value,
1178 						      zero_size_allowed, meta);
1179 			if (err)
1180 				return err;
1181 		} else {
1182 			/* register is CONST_IMM */
1183 			err = check_helper_mem_access(env, regno - 1, reg->imm,
1184 						      zero_size_allowed, meta);
1185 		}
1186 	}
1187 
1188 	return err;
1189 err_type:
1190 	verbose("R%d type=%s expected=%s\n", regno,
1191 		reg_type_str[type], reg_type_str[expected_type]);
1192 	return -EACCES;
1193 }
1194 
1195 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1196 {
1197 	if (!map)
1198 		return 0;
1199 
1200 	/* We need a two way check, first is from map perspective ... */
1201 	switch (map->map_type) {
1202 	case BPF_MAP_TYPE_PROG_ARRAY:
1203 		if (func_id != BPF_FUNC_tail_call)
1204 			goto error;
1205 		break;
1206 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1207 		if (func_id != BPF_FUNC_perf_event_read &&
1208 		    func_id != BPF_FUNC_perf_event_output)
1209 			goto error;
1210 		break;
1211 	case BPF_MAP_TYPE_STACK_TRACE:
1212 		if (func_id != BPF_FUNC_get_stackid)
1213 			goto error;
1214 		break;
1215 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1216 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1217 		    func_id != BPF_FUNC_current_task_under_cgroup)
1218 			goto error;
1219 		break;
1220 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1221 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1222 		if (func_id != BPF_FUNC_map_lookup_elem)
1223 			goto error;
1224 	default:
1225 		break;
1226 	}
1227 
1228 	/* ... and second from the function itself. */
1229 	switch (func_id) {
1230 	case BPF_FUNC_tail_call:
1231 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1232 			goto error;
1233 		break;
1234 	case BPF_FUNC_perf_event_read:
1235 	case BPF_FUNC_perf_event_output:
1236 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1237 			goto error;
1238 		break;
1239 	case BPF_FUNC_get_stackid:
1240 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1241 			goto error;
1242 		break;
1243 	case BPF_FUNC_current_task_under_cgroup:
1244 	case BPF_FUNC_skb_under_cgroup:
1245 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1246 			goto error;
1247 		break;
1248 	default:
1249 		break;
1250 	}
1251 
1252 	return 0;
1253 error:
1254 	verbose("cannot pass map_type %d into func %s#%d\n",
1255 		map->map_type, func_id_name(func_id), func_id);
1256 	return -EINVAL;
1257 }
1258 
1259 static int check_raw_mode(const struct bpf_func_proto *fn)
1260 {
1261 	int count = 0;
1262 
1263 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1264 		count++;
1265 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1266 		count++;
1267 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1268 		count++;
1269 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1270 		count++;
1271 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1272 		count++;
1273 
1274 	return count > 1 ? -EINVAL : 0;
1275 }
1276 
1277 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1278 {
1279 	struct bpf_verifier_state *state = &env->cur_state;
1280 	struct bpf_reg_state *regs = state->regs, *reg;
1281 	int i;
1282 
1283 	for (i = 0; i < MAX_BPF_REG; i++)
1284 		if (regs[i].type == PTR_TO_PACKET ||
1285 		    regs[i].type == PTR_TO_PACKET_END)
1286 			mark_reg_unknown_value(regs, i);
1287 
1288 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1289 		if (state->stack_slot_type[i] != STACK_SPILL)
1290 			continue;
1291 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1292 		if (reg->type != PTR_TO_PACKET &&
1293 		    reg->type != PTR_TO_PACKET_END)
1294 			continue;
1295 		reg->type = UNKNOWN_VALUE;
1296 		reg->imm = 0;
1297 	}
1298 }
1299 
1300 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1301 {
1302 	struct bpf_verifier_state *state = &env->cur_state;
1303 	const struct bpf_func_proto *fn = NULL;
1304 	struct bpf_reg_state *regs = state->regs;
1305 	struct bpf_reg_state *reg;
1306 	struct bpf_call_arg_meta meta;
1307 	bool changes_data;
1308 	int i, err;
1309 
1310 	/* find function prototype */
1311 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1312 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1313 		return -EINVAL;
1314 	}
1315 
1316 	if (env->prog->aux->ops->get_func_proto)
1317 		fn = env->prog->aux->ops->get_func_proto(func_id);
1318 
1319 	if (!fn) {
1320 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1321 		return -EINVAL;
1322 	}
1323 
1324 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1325 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1326 		verbose("cannot call GPL only function from proprietary program\n");
1327 		return -EINVAL;
1328 	}
1329 
1330 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1331 
1332 	memset(&meta, 0, sizeof(meta));
1333 	meta.pkt_access = fn->pkt_access;
1334 
1335 	/* We only support one arg being in raw mode at the moment, which
1336 	 * is sufficient for the helper functions we have right now.
1337 	 */
1338 	err = check_raw_mode(fn);
1339 	if (err) {
1340 		verbose("kernel subsystem misconfigured func %s#%d\n",
1341 			func_id_name(func_id), func_id);
1342 		return err;
1343 	}
1344 
1345 	/* check args */
1346 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1347 	if (err)
1348 		return err;
1349 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1350 	if (err)
1351 		return err;
1352 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1353 	if (err)
1354 		return err;
1355 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1356 	if (err)
1357 		return err;
1358 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1359 	if (err)
1360 		return err;
1361 
1362 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1363 	 * is inferred from register state.
1364 	 */
1365 	for (i = 0; i < meta.access_size; i++) {
1366 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1367 		if (err)
1368 			return err;
1369 	}
1370 
1371 	/* reset caller saved regs */
1372 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1373 		reg = regs + caller_saved[i];
1374 		reg->type = NOT_INIT;
1375 		reg->imm = 0;
1376 	}
1377 
1378 	/* update return register */
1379 	if (fn->ret_type == RET_INTEGER) {
1380 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1381 	} else if (fn->ret_type == RET_VOID) {
1382 		regs[BPF_REG_0].type = NOT_INIT;
1383 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1384 		struct bpf_insn_aux_data *insn_aux;
1385 
1386 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1387 		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1388 		/* remember map_ptr, so that check_map_access()
1389 		 * can check 'value_size' boundary of memory access
1390 		 * to map element returned from bpf_map_lookup_elem()
1391 		 */
1392 		if (meta.map_ptr == NULL) {
1393 			verbose("kernel subsystem misconfigured verifier\n");
1394 			return -EINVAL;
1395 		}
1396 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1397 		regs[BPF_REG_0].id = ++env->id_gen;
1398 		insn_aux = &env->insn_aux_data[insn_idx];
1399 		if (!insn_aux->map_ptr)
1400 			insn_aux->map_ptr = meta.map_ptr;
1401 		else if (insn_aux->map_ptr != meta.map_ptr)
1402 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1403 	} else {
1404 		verbose("unknown return type %d of func %s#%d\n",
1405 			fn->ret_type, func_id_name(func_id), func_id);
1406 		return -EINVAL;
1407 	}
1408 
1409 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1410 	if (err)
1411 		return err;
1412 
1413 	if (changes_data)
1414 		clear_all_pkt_pointers(env);
1415 	return 0;
1416 }
1417 
1418 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1419 				struct bpf_insn *insn)
1420 {
1421 	struct bpf_reg_state *regs = env->cur_state.regs;
1422 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1423 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1424 	struct bpf_reg_state tmp_reg;
1425 	s32 imm;
1426 
1427 	if (BPF_SRC(insn->code) == BPF_K) {
1428 		/* pkt_ptr += imm */
1429 		imm = insn->imm;
1430 
1431 add_imm:
1432 		if (imm < 0) {
1433 			verbose("addition of negative constant to packet pointer is not allowed\n");
1434 			return -EACCES;
1435 		}
1436 		if (imm >= MAX_PACKET_OFF ||
1437 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1438 			verbose("constant %d is too large to add to packet pointer\n",
1439 				imm);
1440 			return -EACCES;
1441 		}
1442 		/* a constant was added to pkt_ptr.
1443 		 * Remember it while keeping the same 'id'
1444 		 */
1445 		dst_reg->off += imm;
1446 	} else {
1447 		if (src_reg->type == PTR_TO_PACKET) {
1448 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1449 			tmp_reg = *dst_reg;  /* save r7 state */
1450 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1451 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1452 			/* if the checks below reject it, the copy won't matter,
1453 			 * since we're rejecting the whole program. If all ok,
1454 			 * then imm22 state will be added to r7
1455 			 * and r7 will be pkt(id=0,off=22,r=62) while
1456 			 * r6 will stay as pkt(id=0,off=0,r=62)
1457 			 */
1458 		}
1459 
1460 		if (src_reg->type == CONST_IMM) {
1461 			/* pkt_ptr += reg where reg is known constant */
1462 			imm = src_reg->imm;
1463 			goto add_imm;
1464 		}
1465 		/* disallow pkt_ptr += reg
1466 		 * if reg is not uknown_value with guaranteed zero upper bits
1467 		 * otherwise pkt_ptr may overflow and addition will become
1468 		 * subtraction which is not allowed
1469 		 */
1470 		if (src_reg->type != UNKNOWN_VALUE) {
1471 			verbose("cannot add '%s' to ptr_to_packet\n",
1472 				reg_type_str[src_reg->type]);
1473 			return -EACCES;
1474 		}
1475 		if (src_reg->imm < 48) {
1476 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1477 				src_reg->imm);
1478 			return -EACCES;
1479 		}
1480 		/* dst_reg stays as pkt_ptr type and since some positive
1481 		 * integer value was added to the pointer, increment its 'id'
1482 		 */
1483 		dst_reg->id = ++env->id_gen;
1484 
1485 		/* something was added to pkt_ptr, set range and off to zero */
1486 		dst_reg->off = 0;
1487 		dst_reg->range = 0;
1488 	}
1489 	return 0;
1490 }
1491 
1492 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1493 {
1494 	struct bpf_reg_state *regs = env->cur_state.regs;
1495 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1496 	u8 opcode = BPF_OP(insn->code);
1497 	s64 imm_log2;
1498 
1499 	/* for type == UNKNOWN_VALUE:
1500 	 * imm > 0 -> number of zero upper bits
1501 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1502 	 */
1503 
1504 	if (BPF_SRC(insn->code) == BPF_X) {
1505 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1506 
1507 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1508 		    dst_reg->imm && opcode == BPF_ADD) {
1509 			/* dreg += sreg
1510 			 * where both have zero upper bits. Adding them
1511 			 * can only result making one more bit non-zero
1512 			 * in the larger value.
1513 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1514 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1515 			 */
1516 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1517 			dst_reg->imm--;
1518 			return 0;
1519 		}
1520 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1521 		    dst_reg->imm && opcode == BPF_ADD) {
1522 			/* dreg += sreg
1523 			 * where dreg has zero upper bits and sreg is const.
1524 			 * Adding them can only result making one more bit
1525 			 * non-zero in the larger value.
1526 			 */
1527 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1528 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1529 			dst_reg->imm--;
1530 			return 0;
1531 		}
1532 		/* all other cases non supported yet, just mark dst_reg */
1533 		dst_reg->imm = 0;
1534 		return 0;
1535 	}
1536 
1537 	/* sign extend 32-bit imm into 64-bit to make sure that
1538 	 * negative values occupy bit 63. Note ilog2() would have
1539 	 * been incorrect, since sizeof(insn->imm) == 4
1540 	 */
1541 	imm_log2 = __ilog2_u64((long long)insn->imm);
1542 
1543 	if (dst_reg->imm && opcode == BPF_LSH) {
1544 		/* reg <<= imm
1545 		 * if reg was a result of 2 byte load, then its imm == 48
1546 		 * which means that upper 48 bits are zero and shifting this reg
1547 		 * left by 4 would mean that upper 44 bits are still zero
1548 		 */
1549 		dst_reg->imm -= insn->imm;
1550 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1551 		/* reg *= imm
1552 		 * if multiplying by 14 subtract 4
1553 		 * This is conservative calculation of upper zero bits.
1554 		 * It's not trying to special case insn->imm == 1 or 0 cases
1555 		 */
1556 		dst_reg->imm -= imm_log2 + 1;
1557 	} else if (opcode == BPF_AND) {
1558 		/* reg &= imm */
1559 		dst_reg->imm = 63 - imm_log2;
1560 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1561 		/* reg += imm */
1562 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1563 		dst_reg->imm--;
1564 	} else if (opcode == BPF_RSH) {
1565 		/* reg >>= imm
1566 		 * which means that after right shift, upper bits will be zero
1567 		 * note that verifier already checked that
1568 		 * 0 <= imm < 64 for shift insn
1569 		 */
1570 		dst_reg->imm += insn->imm;
1571 		if (unlikely(dst_reg->imm > 64))
1572 			/* some dumb code did:
1573 			 * r2 = *(u32 *)mem;
1574 			 * r2 >>= 32;
1575 			 * and all bits are zero now */
1576 			dst_reg->imm = 64;
1577 	} else {
1578 		/* all other alu ops, means that we don't know what will
1579 		 * happen to the value, mark it with unknown number of zero bits
1580 		 */
1581 		dst_reg->imm = 0;
1582 	}
1583 
1584 	if (dst_reg->imm < 0) {
1585 		/* all 64 bits of the register can contain non-zero bits
1586 		 * and such value cannot be added to ptr_to_packet, since it
1587 		 * may overflow, mark it as unknown to avoid further eval
1588 		 */
1589 		dst_reg->imm = 0;
1590 	}
1591 	return 0;
1592 }
1593 
1594 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1595 				struct bpf_insn *insn)
1596 {
1597 	struct bpf_reg_state *regs = env->cur_state.regs;
1598 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1599 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1600 	u8 opcode = BPF_OP(insn->code);
1601 	u64 dst_imm = dst_reg->imm;
1602 
1603 	/* dst_reg->type == CONST_IMM here. Simulate execution of insns
1604 	 * containing ALU ops. Don't care about overflow or negative
1605 	 * values, just add/sub/... them; registers are in u64.
1606 	 */
1607 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1608 		dst_imm += insn->imm;
1609 	} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1610 		   src_reg->type == CONST_IMM) {
1611 		dst_imm += src_reg->imm;
1612 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1613 		dst_imm -= insn->imm;
1614 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1615 		   src_reg->type == CONST_IMM) {
1616 		dst_imm -= src_reg->imm;
1617 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1618 		dst_imm *= insn->imm;
1619 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1620 		   src_reg->type == CONST_IMM) {
1621 		dst_imm *= src_reg->imm;
1622 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1623 		dst_imm |= insn->imm;
1624 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1625 		   src_reg->type == CONST_IMM) {
1626 		dst_imm |= src_reg->imm;
1627 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1628 		dst_imm &= insn->imm;
1629 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1630 		   src_reg->type == CONST_IMM) {
1631 		dst_imm &= src_reg->imm;
1632 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1633 		dst_imm >>= insn->imm;
1634 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1635 		   src_reg->type == CONST_IMM) {
1636 		dst_imm >>= src_reg->imm;
1637 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1638 		dst_imm <<= insn->imm;
1639 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1640 		   src_reg->type == CONST_IMM) {
1641 		dst_imm <<= src_reg->imm;
1642 	} else {
1643 		mark_reg_unknown_value(regs, insn->dst_reg);
1644 		goto out;
1645 	}
1646 
1647 	dst_reg->imm = dst_imm;
1648 out:
1649 	return 0;
1650 }
1651 
1652 static void check_reg_overflow(struct bpf_reg_state *reg)
1653 {
1654 	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1655 		reg->max_value = BPF_REGISTER_MAX_RANGE;
1656 	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1657 	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1658 		reg->min_value = BPF_REGISTER_MIN_RANGE;
1659 }
1660 
1661 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1662 				    struct bpf_insn *insn)
1663 {
1664 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1665 	s64 min_val = BPF_REGISTER_MIN_RANGE;
1666 	u64 max_val = BPF_REGISTER_MAX_RANGE;
1667 	u8 opcode = BPF_OP(insn->code);
1668 
1669 	dst_reg = &regs[insn->dst_reg];
1670 	if (BPF_SRC(insn->code) == BPF_X) {
1671 		check_reg_overflow(&regs[insn->src_reg]);
1672 		min_val = regs[insn->src_reg].min_value;
1673 		max_val = regs[insn->src_reg].max_value;
1674 
1675 		/* If the source register is a random pointer then the
1676 		 * min_value/max_value values represent the range of the known
1677 		 * accesses into that value, not the actual min/max value of the
1678 		 * register itself.  In this case we have to reset the reg range
1679 		 * values so we know it is not safe to look at.
1680 		 */
1681 		if (regs[insn->src_reg].type != CONST_IMM &&
1682 		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1683 			min_val = BPF_REGISTER_MIN_RANGE;
1684 			max_val = BPF_REGISTER_MAX_RANGE;
1685 		}
1686 	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1687 		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1688 		min_val = max_val = insn->imm;
1689 	}
1690 
1691 	/* We don't know anything about what was done to this register, mark it
1692 	 * as unknown.
1693 	 */
1694 	if (min_val == BPF_REGISTER_MIN_RANGE &&
1695 	    max_val == BPF_REGISTER_MAX_RANGE) {
1696 		reset_reg_range_values(regs, insn->dst_reg);
1697 		return;
1698 	}
1699 
1700 	/* If one of our values was at the end of our ranges then we can't just
1701 	 * do our normal operations to the register, we need to set the values
1702 	 * to the min/max since they are undefined.
1703 	 */
1704 	if (min_val == BPF_REGISTER_MIN_RANGE)
1705 		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1706 	if (max_val == BPF_REGISTER_MAX_RANGE)
1707 		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1708 
1709 	switch (opcode) {
1710 	case BPF_ADD:
1711 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1712 			dst_reg->min_value += min_val;
1713 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1714 			dst_reg->max_value += max_val;
1715 		break;
1716 	case BPF_SUB:
1717 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1718 			dst_reg->min_value -= min_val;
1719 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1720 			dst_reg->max_value -= max_val;
1721 		break;
1722 	case BPF_MUL:
1723 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1724 			dst_reg->min_value *= min_val;
1725 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1726 			dst_reg->max_value *= max_val;
1727 		break;
1728 	case BPF_AND:
1729 		/* Disallow AND'ing of negative numbers, ain't nobody got time
1730 		 * for that.  Otherwise the minimum is 0 and the max is the max
1731 		 * value we could AND against.
1732 		 */
1733 		if (min_val < 0)
1734 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1735 		else
1736 			dst_reg->min_value = 0;
1737 		dst_reg->max_value = max_val;
1738 		break;
1739 	case BPF_LSH:
1740 		/* Gotta have special overflow logic here, if we're shifting
1741 		 * more than MAX_RANGE then just assume we have an invalid
1742 		 * range.
1743 		 */
1744 		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1745 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1746 		else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1747 			dst_reg->min_value <<= min_val;
1748 
1749 		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1750 			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1751 		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1752 			dst_reg->max_value <<= max_val;
1753 		break;
1754 	case BPF_RSH:
1755 		/* RSH by a negative number is undefined, and the BPF_RSH is an
1756 		 * unsigned shift, so make the appropriate casts.
1757 		 */
1758 		if (min_val < 0 || dst_reg->min_value < 0)
1759 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1760 		else
1761 			dst_reg->min_value =
1762 				(u64)(dst_reg->min_value) >> min_val;
1763 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1764 			dst_reg->max_value >>= max_val;
1765 		break;
1766 	default:
1767 		reset_reg_range_values(regs, insn->dst_reg);
1768 		break;
1769 	}
1770 
1771 	check_reg_overflow(dst_reg);
1772 }
1773 
1774 /* check validity of 32-bit and 64-bit arithmetic operations */
1775 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1776 {
1777 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1778 	u8 opcode = BPF_OP(insn->code);
1779 	int err;
1780 
1781 	if (opcode == BPF_END || opcode == BPF_NEG) {
1782 		if (opcode == BPF_NEG) {
1783 			if (BPF_SRC(insn->code) != 0 ||
1784 			    insn->src_reg != BPF_REG_0 ||
1785 			    insn->off != 0 || insn->imm != 0) {
1786 				verbose("BPF_NEG uses reserved fields\n");
1787 				return -EINVAL;
1788 			}
1789 		} else {
1790 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1791 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1792 				verbose("BPF_END uses reserved fields\n");
1793 				return -EINVAL;
1794 			}
1795 		}
1796 
1797 		/* check src operand */
1798 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1799 		if (err)
1800 			return err;
1801 
1802 		if (is_pointer_value(env, insn->dst_reg)) {
1803 			verbose("R%d pointer arithmetic prohibited\n",
1804 				insn->dst_reg);
1805 			return -EACCES;
1806 		}
1807 
1808 		/* check dest operand */
1809 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1810 		if (err)
1811 			return err;
1812 
1813 	} else if (opcode == BPF_MOV) {
1814 
1815 		if (BPF_SRC(insn->code) == BPF_X) {
1816 			if (insn->imm != 0 || insn->off != 0) {
1817 				verbose("BPF_MOV uses reserved fields\n");
1818 				return -EINVAL;
1819 			}
1820 
1821 			/* check src operand */
1822 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1823 			if (err)
1824 				return err;
1825 		} else {
1826 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1827 				verbose("BPF_MOV uses reserved fields\n");
1828 				return -EINVAL;
1829 			}
1830 		}
1831 
1832 		/* check dest operand */
1833 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1834 		if (err)
1835 			return err;
1836 
1837 		/* we are setting our register to something new, we need to
1838 		 * reset its range values.
1839 		 */
1840 		reset_reg_range_values(regs, insn->dst_reg);
1841 
1842 		if (BPF_SRC(insn->code) == BPF_X) {
1843 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1844 				/* case: R1 = R2
1845 				 * copy register state to dest reg
1846 				 */
1847 				regs[insn->dst_reg] = regs[insn->src_reg];
1848 			} else {
1849 				if (is_pointer_value(env, insn->src_reg)) {
1850 					verbose("R%d partial copy of pointer\n",
1851 						insn->src_reg);
1852 					return -EACCES;
1853 				}
1854 				mark_reg_unknown_value(regs, insn->dst_reg);
1855 			}
1856 		} else {
1857 			/* case: R = imm
1858 			 * remember the value we stored into this reg
1859 			 */
1860 			regs[insn->dst_reg].type = CONST_IMM;
1861 			regs[insn->dst_reg].imm = insn->imm;
1862 			regs[insn->dst_reg].max_value = insn->imm;
1863 			regs[insn->dst_reg].min_value = insn->imm;
1864 		}
1865 
1866 	} else if (opcode > BPF_END) {
1867 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1868 		return -EINVAL;
1869 
1870 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1871 
1872 		if (BPF_SRC(insn->code) == BPF_X) {
1873 			if (insn->imm != 0 || insn->off != 0) {
1874 				verbose("BPF_ALU uses reserved fields\n");
1875 				return -EINVAL;
1876 			}
1877 			/* check src1 operand */
1878 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1879 			if (err)
1880 				return err;
1881 		} else {
1882 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1883 				verbose("BPF_ALU uses reserved fields\n");
1884 				return -EINVAL;
1885 			}
1886 		}
1887 
1888 		/* check src2 operand */
1889 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1890 		if (err)
1891 			return err;
1892 
1893 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1894 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1895 			verbose("div by zero\n");
1896 			return -EINVAL;
1897 		}
1898 
1899 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1900 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1901 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1902 
1903 			if (insn->imm < 0 || insn->imm >= size) {
1904 				verbose("invalid shift %d\n", insn->imm);
1905 				return -EINVAL;
1906 			}
1907 		}
1908 
1909 		/* check dest operand */
1910 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1911 		if (err)
1912 			return err;
1913 
1914 		dst_reg = &regs[insn->dst_reg];
1915 
1916 		/* first we want to adjust our ranges. */
1917 		adjust_reg_min_max_vals(env, insn);
1918 
1919 		/* pattern match 'bpf_add Rx, imm' instruction */
1920 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1921 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1922 			dst_reg->type = PTR_TO_STACK;
1923 			dst_reg->imm = insn->imm;
1924 			return 0;
1925 		} else if (opcode == BPF_ADD &&
1926 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1927 			   dst_reg->type == PTR_TO_STACK &&
1928 			   ((BPF_SRC(insn->code) == BPF_X &&
1929 			     regs[insn->src_reg].type == CONST_IMM) ||
1930 			    BPF_SRC(insn->code) == BPF_K)) {
1931 			if (BPF_SRC(insn->code) == BPF_X)
1932 				dst_reg->imm += regs[insn->src_reg].imm;
1933 			else
1934 				dst_reg->imm += insn->imm;
1935 			return 0;
1936 		} else if (opcode == BPF_ADD &&
1937 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1938 			   (dst_reg->type == PTR_TO_PACKET ||
1939 			    (BPF_SRC(insn->code) == BPF_X &&
1940 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
1941 			/* ptr_to_packet += K|X */
1942 			return check_packet_ptr_add(env, insn);
1943 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1944 			   dst_reg->type == UNKNOWN_VALUE &&
1945 			   env->allow_ptr_leaks) {
1946 			/* unknown += K|X */
1947 			return evaluate_reg_alu(env, insn);
1948 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1949 			   dst_reg->type == CONST_IMM &&
1950 			   env->allow_ptr_leaks) {
1951 			/* reg_imm += K|X */
1952 			return evaluate_reg_imm_alu(env, insn);
1953 		} else if (is_pointer_value(env, insn->dst_reg)) {
1954 			verbose("R%d pointer arithmetic prohibited\n",
1955 				insn->dst_reg);
1956 			return -EACCES;
1957 		} else if (BPF_SRC(insn->code) == BPF_X &&
1958 			   is_pointer_value(env, insn->src_reg)) {
1959 			verbose("R%d pointer arithmetic prohibited\n",
1960 				insn->src_reg);
1961 			return -EACCES;
1962 		}
1963 
1964 		/* If we did pointer math on a map value then just set it to our
1965 		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1966 		 * loads to this register appropriately, otherwise just mark the
1967 		 * register as unknown.
1968 		 */
1969 		if (env->allow_ptr_leaks &&
1970 		    BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
1971 		    (dst_reg->type == PTR_TO_MAP_VALUE ||
1972 		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1973 			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1974 		else
1975 			mark_reg_unknown_value(regs, insn->dst_reg);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1982 				   struct bpf_reg_state *dst_reg)
1983 {
1984 	struct bpf_reg_state *regs = state->regs, *reg;
1985 	int i;
1986 
1987 	/* LLVM can generate two kind of checks:
1988 	 *
1989 	 * Type 1:
1990 	 *
1991 	 *   r2 = r3;
1992 	 *   r2 += 8;
1993 	 *   if (r2 > pkt_end) goto <handle exception>
1994 	 *   <access okay>
1995 	 *
1996 	 *   Where:
1997 	 *     r2 == dst_reg, pkt_end == src_reg
1998 	 *     r2=pkt(id=n,off=8,r=0)
1999 	 *     r3=pkt(id=n,off=0,r=0)
2000 	 *
2001 	 * Type 2:
2002 	 *
2003 	 *   r2 = r3;
2004 	 *   r2 += 8;
2005 	 *   if (pkt_end >= r2) goto <access okay>
2006 	 *   <handle exception>
2007 	 *
2008 	 *   Where:
2009 	 *     pkt_end == dst_reg, r2 == src_reg
2010 	 *     r2=pkt(id=n,off=8,r=0)
2011 	 *     r3=pkt(id=n,off=0,r=0)
2012 	 *
2013 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2014 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2015 	 */
2016 
2017 	for (i = 0; i < MAX_BPF_REG; i++)
2018 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2019 			/* keep the maximum range already checked */
2020 			regs[i].range = max(regs[i].range, dst_reg->off);
2021 
2022 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2023 		if (state->stack_slot_type[i] != STACK_SPILL)
2024 			continue;
2025 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2026 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2027 			reg->range = max(reg->range, dst_reg->off);
2028 	}
2029 }
2030 
2031 /* Adjusts the register min/max values in the case that the dst_reg is the
2032  * variable register that we are working on, and src_reg is a constant or we're
2033  * simply doing a BPF_K check.
2034  */
2035 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2036 			    struct bpf_reg_state *false_reg, u64 val,
2037 			    u8 opcode)
2038 {
2039 	switch (opcode) {
2040 	case BPF_JEQ:
2041 		/* If this is false then we know nothing Jon Snow, but if it is
2042 		 * true then we know for sure.
2043 		 */
2044 		true_reg->max_value = true_reg->min_value = val;
2045 		break;
2046 	case BPF_JNE:
2047 		/* If this is true we know nothing Jon Snow, but if it is false
2048 		 * we know the value for sure;
2049 		 */
2050 		false_reg->max_value = false_reg->min_value = val;
2051 		break;
2052 	case BPF_JGT:
2053 		/* Unsigned comparison, the minimum value is 0. */
2054 		false_reg->min_value = 0;
2055 		/* fallthrough */
2056 	case BPF_JSGT:
2057 		/* If this is false then we know the maximum val is val,
2058 		 * otherwise we know the min val is val+1.
2059 		 */
2060 		false_reg->max_value = val;
2061 		true_reg->min_value = val + 1;
2062 		break;
2063 	case BPF_JGE:
2064 		/* Unsigned comparison, the minimum value is 0. */
2065 		false_reg->min_value = 0;
2066 		/* fallthrough */
2067 	case BPF_JSGE:
2068 		/* If this is false then we know the maximum value is val - 1,
2069 		 * otherwise we know the mimimum value is val.
2070 		 */
2071 		false_reg->max_value = val - 1;
2072 		true_reg->min_value = val;
2073 		break;
2074 	default:
2075 		break;
2076 	}
2077 
2078 	check_reg_overflow(false_reg);
2079 	check_reg_overflow(true_reg);
2080 }
2081 
2082 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2083  * is the variable reg.
2084  */
2085 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2086 				struct bpf_reg_state *false_reg, u64 val,
2087 				u8 opcode)
2088 {
2089 	switch (opcode) {
2090 	case BPF_JEQ:
2091 		/* If this is false then we know nothing Jon Snow, but if it is
2092 		 * true then we know for sure.
2093 		 */
2094 		true_reg->max_value = true_reg->min_value = val;
2095 		break;
2096 	case BPF_JNE:
2097 		/* If this is true we know nothing Jon Snow, but if it is false
2098 		 * we know the value for sure;
2099 		 */
2100 		false_reg->max_value = false_reg->min_value = val;
2101 		break;
2102 	case BPF_JGT:
2103 		/* Unsigned comparison, the minimum value is 0. */
2104 		true_reg->min_value = 0;
2105 		/* fallthrough */
2106 	case BPF_JSGT:
2107 		/*
2108 		 * If this is false, then the val is <= the register, if it is
2109 		 * true the register <= to the val.
2110 		 */
2111 		false_reg->min_value = val;
2112 		true_reg->max_value = val - 1;
2113 		break;
2114 	case BPF_JGE:
2115 		/* Unsigned comparison, the minimum value is 0. */
2116 		true_reg->min_value = 0;
2117 		/* fallthrough */
2118 	case BPF_JSGE:
2119 		/* If this is false then constant < register, if it is true then
2120 		 * the register < constant.
2121 		 */
2122 		false_reg->min_value = val + 1;
2123 		true_reg->max_value = val;
2124 		break;
2125 	default:
2126 		break;
2127 	}
2128 
2129 	check_reg_overflow(false_reg);
2130 	check_reg_overflow(true_reg);
2131 }
2132 
2133 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2134 			 enum bpf_reg_type type)
2135 {
2136 	struct bpf_reg_state *reg = &regs[regno];
2137 
2138 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2139 		if (type == UNKNOWN_VALUE) {
2140 			__mark_reg_unknown_value(regs, regno);
2141 		} else if (reg->map_ptr->inner_map_meta) {
2142 			reg->type = CONST_PTR_TO_MAP;
2143 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2144 		} else {
2145 			reg->type = type;
2146 		}
2147 		/* We don't need id from this point onwards anymore, thus we
2148 		 * should better reset it, so that state pruning has chances
2149 		 * to take effect.
2150 		 */
2151 		reg->id = 0;
2152 	}
2153 }
2154 
2155 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2156  * be folded together at some point.
2157  */
2158 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2159 			  enum bpf_reg_type type)
2160 {
2161 	struct bpf_reg_state *regs = state->regs;
2162 	u32 id = regs[regno].id;
2163 	int i;
2164 
2165 	for (i = 0; i < MAX_BPF_REG; i++)
2166 		mark_map_reg(regs, i, id, type);
2167 
2168 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2169 		if (state->stack_slot_type[i] != STACK_SPILL)
2170 			continue;
2171 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2172 	}
2173 }
2174 
2175 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2176 			     struct bpf_insn *insn, int *insn_idx)
2177 {
2178 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2179 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2180 	u8 opcode = BPF_OP(insn->code);
2181 	int err;
2182 
2183 	if (opcode > BPF_EXIT) {
2184 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2185 		return -EINVAL;
2186 	}
2187 
2188 	if (BPF_SRC(insn->code) == BPF_X) {
2189 		if (insn->imm != 0) {
2190 			verbose("BPF_JMP uses reserved fields\n");
2191 			return -EINVAL;
2192 		}
2193 
2194 		/* check src1 operand */
2195 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2196 		if (err)
2197 			return err;
2198 
2199 		if (is_pointer_value(env, insn->src_reg)) {
2200 			verbose("R%d pointer comparison prohibited\n",
2201 				insn->src_reg);
2202 			return -EACCES;
2203 		}
2204 	} else {
2205 		if (insn->src_reg != BPF_REG_0) {
2206 			verbose("BPF_JMP uses reserved fields\n");
2207 			return -EINVAL;
2208 		}
2209 	}
2210 
2211 	/* check src2 operand */
2212 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2213 	if (err)
2214 		return err;
2215 
2216 	dst_reg = &regs[insn->dst_reg];
2217 
2218 	/* detect if R == 0 where R was initialized to zero earlier */
2219 	if (BPF_SRC(insn->code) == BPF_K &&
2220 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2221 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2222 		if (opcode == BPF_JEQ) {
2223 			/* if (imm == imm) goto pc+off;
2224 			 * only follow the goto, ignore fall-through
2225 			 */
2226 			*insn_idx += insn->off;
2227 			return 0;
2228 		} else {
2229 			/* if (imm != imm) goto pc+off;
2230 			 * only follow fall-through branch, since
2231 			 * that's where the program will go
2232 			 */
2233 			return 0;
2234 		}
2235 	}
2236 
2237 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2238 	if (!other_branch)
2239 		return -EFAULT;
2240 
2241 	/* detect if we are comparing against a constant value so we can adjust
2242 	 * our min/max values for our dst register.
2243 	 */
2244 	if (BPF_SRC(insn->code) == BPF_X) {
2245 		if (regs[insn->src_reg].type == CONST_IMM)
2246 			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2247 					dst_reg, regs[insn->src_reg].imm,
2248 					opcode);
2249 		else if (dst_reg->type == CONST_IMM)
2250 			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2251 					    &regs[insn->src_reg], dst_reg->imm,
2252 					    opcode);
2253 	} else {
2254 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2255 					dst_reg, insn->imm, opcode);
2256 	}
2257 
2258 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2259 	if (BPF_SRC(insn->code) == BPF_K &&
2260 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2261 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2262 		/* Mark all identical map registers in each branch as either
2263 		 * safe or unknown depending R == 0 or R != 0 conditional.
2264 		 */
2265 		mark_map_regs(this_branch, insn->dst_reg,
2266 			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2267 		mark_map_regs(other_branch, insn->dst_reg,
2268 			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2269 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2270 		   dst_reg->type == PTR_TO_PACKET &&
2271 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2272 		find_good_pkt_pointers(this_branch, dst_reg);
2273 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2274 		   dst_reg->type == PTR_TO_PACKET_END &&
2275 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2276 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2277 	} else if (is_pointer_value(env, insn->dst_reg)) {
2278 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2279 		return -EACCES;
2280 	}
2281 	if (log_level)
2282 		print_verifier_state(this_branch);
2283 	return 0;
2284 }
2285 
2286 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2287 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2288 {
2289 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2290 
2291 	return (struct bpf_map *) (unsigned long) imm64;
2292 }
2293 
2294 /* verify BPF_LD_IMM64 instruction */
2295 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2296 {
2297 	struct bpf_reg_state *regs = env->cur_state.regs;
2298 	int err;
2299 
2300 	if (BPF_SIZE(insn->code) != BPF_DW) {
2301 		verbose("invalid BPF_LD_IMM insn\n");
2302 		return -EINVAL;
2303 	}
2304 	if (insn->off != 0) {
2305 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2306 		return -EINVAL;
2307 	}
2308 
2309 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2310 	if (err)
2311 		return err;
2312 
2313 	if (insn->src_reg == 0) {
2314 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2315 
2316 		regs[insn->dst_reg].type = CONST_IMM;
2317 		regs[insn->dst_reg].imm = imm;
2318 		return 0;
2319 	}
2320 
2321 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2322 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2323 
2324 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2325 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2326 	return 0;
2327 }
2328 
2329 static bool may_access_skb(enum bpf_prog_type type)
2330 {
2331 	switch (type) {
2332 	case BPF_PROG_TYPE_SOCKET_FILTER:
2333 	case BPF_PROG_TYPE_SCHED_CLS:
2334 	case BPF_PROG_TYPE_SCHED_ACT:
2335 		return true;
2336 	default:
2337 		return false;
2338 	}
2339 }
2340 
2341 /* verify safety of LD_ABS|LD_IND instructions:
2342  * - they can only appear in the programs where ctx == skb
2343  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2344  *   preserve R6-R9, and store return value into R0
2345  *
2346  * Implicit input:
2347  *   ctx == skb == R6 == CTX
2348  *
2349  * Explicit input:
2350  *   SRC == any register
2351  *   IMM == 32-bit immediate
2352  *
2353  * Output:
2354  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2355  */
2356 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2357 {
2358 	struct bpf_reg_state *regs = env->cur_state.regs;
2359 	u8 mode = BPF_MODE(insn->code);
2360 	struct bpf_reg_state *reg;
2361 	int i, err;
2362 
2363 	if (!may_access_skb(env->prog->type)) {
2364 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2365 		return -EINVAL;
2366 	}
2367 
2368 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2369 	    BPF_SIZE(insn->code) == BPF_DW ||
2370 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2371 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2372 		return -EINVAL;
2373 	}
2374 
2375 	/* check whether implicit source operand (register R6) is readable */
2376 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2377 	if (err)
2378 		return err;
2379 
2380 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2381 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2382 		return -EINVAL;
2383 	}
2384 
2385 	if (mode == BPF_IND) {
2386 		/* check explicit source operand */
2387 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2388 		if (err)
2389 			return err;
2390 	}
2391 
2392 	/* reset caller saved regs to unreadable */
2393 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2394 		reg = regs + caller_saved[i];
2395 		reg->type = NOT_INIT;
2396 		reg->imm = 0;
2397 	}
2398 
2399 	/* mark destination R0 register as readable, since it contains
2400 	 * the value fetched from the packet
2401 	 */
2402 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2403 	return 0;
2404 }
2405 
2406 /* non-recursive DFS pseudo code
2407  * 1  procedure DFS-iterative(G,v):
2408  * 2      label v as discovered
2409  * 3      let S be a stack
2410  * 4      S.push(v)
2411  * 5      while S is not empty
2412  * 6            t <- S.pop()
2413  * 7            if t is what we're looking for:
2414  * 8                return t
2415  * 9            for all edges e in G.adjacentEdges(t) do
2416  * 10               if edge e is already labelled
2417  * 11                   continue with the next edge
2418  * 12               w <- G.adjacentVertex(t,e)
2419  * 13               if vertex w is not discovered and not explored
2420  * 14                   label e as tree-edge
2421  * 15                   label w as discovered
2422  * 16                   S.push(w)
2423  * 17                   continue at 5
2424  * 18               else if vertex w is discovered
2425  * 19                   label e as back-edge
2426  * 20               else
2427  * 21                   // vertex w is explored
2428  * 22                   label e as forward- or cross-edge
2429  * 23           label t as explored
2430  * 24           S.pop()
2431  *
2432  * convention:
2433  * 0x10 - discovered
2434  * 0x11 - discovered and fall-through edge labelled
2435  * 0x12 - discovered and fall-through and branch edges labelled
2436  * 0x20 - explored
2437  */
2438 
2439 enum {
2440 	DISCOVERED = 0x10,
2441 	EXPLORED = 0x20,
2442 	FALLTHROUGH = 1,
2443 	BRANCH = 2,
2444 };
2445 
2446 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2447 
2448 static int *insn_stack;	/* stack of insns to process */
2449 static int cur_stack;	/* current stack index */
2450 static int *insn_state;
2451 
2452 /* t, w, e - match pseudo-code above:
2453  * t - index of current instruction
2454  * w - next instruction
2455  * e - edge
2456  */
2457 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2458 {
2459 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2460 		return 0;
2461 
2462 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2463 		return 0;
2464 
2465 	if (w < 0 || w >= env->prog->len) {
2466 		verbose("jump out of range from insn %d to %d\n", t, w);
2467 		return -EINVAL;
2468 	}
2469 
2470 	if (e == BRANCH)
2471 		/* mark branch target for state pruning */
2472 		env->explored_states[w] = STATE_LIST_MARK;
2473 
2474 	if (insn_state[w] == 0) {
2475 		/* tree-edge */
2476 		insn_state[t] = DISCOVERED | e;
2477 		insn_state[w] = DISCOVERED;
2478 		if (cur_stack >= env->prog->len)
2479 			return -E2BIG;
2480 		insn_stack[cur_stack++] = w;
2481 		return 1;
2482 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2483 		verbose("back-edge from insn %d to %d\n", t, w);
2484 		return -EINVAL;
2485 	} else if (insn_state[w] == EXPLORED) {
2486 		/* forward- or cross-edge */
2487 		insn_state[t] = DISCOVERED | e;
2488 	} else {
2489 		verbose("insn state internal bug\n");
2490 		return -EFAULT;
2491 	}
2492 	return 0;
2493 }
2494 
2495 /* non-recursive depth-first-search to detect loops in BPF program
2496  * loop == back-edge in directed graph
2497  */
2498 static int check_cfg(struct bpf_verifier_env *env)
2499 {
2500 	struct bpf_insn *insns = env->prog->insnsi;
2501 	int insn_cnt = env->prog->len;
2502 	int ret = 0;
2503 	int i, t;
2504 
2505 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2506 	if (!insn_state)
2507 		return -ENOMEM;
2508 
2509 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2510 	if (!insn_stack) {
2511 		kfree(insn_state);
2512 		return -ENOMEM;
2513 	}
2514 
2515 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2516 	insn_stack[0] = 0; /* 0 is the first instruction */
2517 	cur_stack = 1;
2518 
2519 peek_stack:
2520 	if (cur_stack == 0)
2521 		goto check_state;
2522 	t = insn_stack[cur_stack - 1];
2523 
2524 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2525 		u8 opcode = BPF_OP(insns[t].code);
2526 
2527 		if (opcode == BPF_EXIT) {
2528 			goto mark_explored;
2529 		} else if (opcode == BPF_CALL) {
2530 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2531 			if (ret == 1)
2532 				goto peek_stack;
2533 			else if (ret < 0)
2534 				goto err_free;
2535 			if (t + 1 < insn_cnt)
2536 				env->explored_states[t + 1] = STATE_LIST_MARK;
2537 		} else if (opcode == BPF_JA) {
2538 			if (BPF_SRC(insns[t].code) != BPF_K) {
2539 				ret = -EINVAL;
2540 				goto err_free;
2541 			}
2542 			/* unconditional jump with single edge */
2543 			ret = push_insn(t, t + insns[t].off + 1,
2544 					FALLTHROUGH, env);
2545 			if (ret == 1)
2546 				goto peek_stack;
2547 			else if (ret < 0)
2548 				goto err_free;
2549 			/* tell verifier to check for equivalent states
2550 			 * after every call and jump
2551 			 */
2552 			if (t + 1 < insn_cnt)
2553 				env->explored_states[t + 1] = STATE_LIST_MARK;
2554 		} else {
2555 			/* conditional jump with two edges */
2556 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2557 			if (ret == 1)
2558 				goto peek_stack;
2559 			else if (ret < 0)
2560 				goto err_free;
2561 
2562 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2563 			if (ret == 1)
2564 				goto peek_stack;
2565 			else if (ret < 0)
2566 				goto err_free;
2567 		}
2568 	} else {
2569 		/* all other non-branch instructions with single
2570 		 * fall-through edge
2571 		 */
2572 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2573 		if (ret == 1)
2574 			goto peek_stack;
2575 		else if (ret < 0)
2576 			goto err_free;
2577 	}
2578 
2579 mark_explored:
2580 	insn_state[t] = EXPLORED;
2581 	if (cur_stack-- <= 0) {
2582 		verbose("pop stack internal bug\n");
2583 		ret = -EFAULT;
2584 		goto err_free;
2585 	}
2586 	goto peek_stack;
2587 
2588 check_state:
2589 	for (i = 0; i < insn_cnt; i++) {
2590 		if (insn_state[i] != EXPLORED) {
2591 			verbose("unreachable insn %d\n", i);
2592 			ret = -EINVAL;
2593 			goto err_free;
2594 		}
2595 	}
2596 	ret = 0; /* cfg looks good */
2597 
2598 err_free:
2599 	kfree(insn_state);
2600 	kfree(insn_stack);
2601 	return ret;
2602 }
2603 
2604 /* the following conditions reduce the number of explored insns
2605  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2606  */
2607 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2608 				   struct bpf_reg_state *cur)
2609 {
2610 	if (old->id != cur->id)
2611 		return false;
2612 
2613 	/* old ptr_to_packet is more conservative, since it allows smaller
2614 	 * range. Ex:
2615 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2616 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2617 	 * further and found no issues with the program. Now we're in the same
2618 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2619 	 * will only be looking at most 10 bytes after this pointer.
2620 	 */
2621 	if (old->off == cur->off && old->range < cur->range)
2622 		return true;
2623 
2624 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2625 	 * since both cannot be used for packet access and safe(old)
2626 	 * pointer has smaller off that could be used for further
2627 	 * 'if (ptr > data_end)' check
2628 	 * Ex:
2629 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2630 	 * that we cannot access the packet.
2631 	 * The safe range is:
2632 	 * [ptr, ptr + range - off)
2633 	 * so whenever off >=range, it means no safe bytes from this pointer.
2634 	 * When comparing old->off <= cur->off, it means that older code
2635 	 * went with smaller offset and that offset was later
2636 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2637 	 * Say, 'old' state was explored like:
2638 	 * ... R3(off=0, r=0)
2639 	 * R4 = R3 + 20
2640 	 * ... now R4(off=20,r=0)  <-- here
2641 	 * if (R4 > data_end)
2642 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2643 	 * ... the code further went all the way to bpf_exit.
2644 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2645 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2646 	 * goes further, such cur_R4 will give larger safe packet range after
2647 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2648 	 * so they will be good with r=30 and we can prune the search.
2649 	 */
2650 	if (old->off <= cur->off &&
2651 	    old->off >= old->range && cur->off >= cur->range)
2652 		return true;
2653 
2654 	return false;
2655 }
2656 
2657 /* compare two verifier states
2658  *
2659  * all states stored in state_list are known to be valid, since
2660  * verifier reached 'bpf_exit' instruction through them
2661  *
2662  * this function is called when verifier exploring different branches of
2663  * execution popped from the state stack. If it sees an old state that has
2664  * more strict register state and more strict stack state then this execution
2665  * branch doesn't need to be explored further, since verifier already
2666  * concluded that more strict state leads to valid finish.
2667  *
2668  * Therefore two states are equivalent if register state is more conservative
2669  * and explored stack state is more conservative than the current one.
2670  * Example:
2671  *       explored                   current
2672  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2673  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2674  *
2675  * In other words if current stack state (one being explored) has more
2676  * valid slots than old one that already passed validation, it means
2677  * the verifier can stop exploring and conclude that current state is valid too
2678  *
2679  * Similarly with registers. If explored state has register type as invalid
2680  * whereas register type in current state is meaningful, it means that
2681  * the current state will reach 'bpf_exit' instruction safely
2682  */
2683 static bool states_equal(struct bpf_verifier_env *env,
2684 			 struct bpf_verifier_state *old,
2685 			 struct bpf_verifier_state *cur)
2686 {
2687 	bool varlen_map_access = env->varlen_map_value_access;
2688 	struct bpf_reg_state *rold, *rcur;
2689 	int i;
2690 
2691 	for (i = 0; i < MAX_BPF_REG; i++) {
2692 		rold = &old->regs[i];
2693 		rcur = &cur->regs[i];
2694 
2695 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2696 			continue;
2697 
2698 		/* If the ranges were not the same, but everything else was and
2699 		 * we didn't do a variable access into a map then we are a-ok.
2700 		 */
2701 		if (!varlen_map_access &&
2702 		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2703 			continue;
2704 
2705 		/* If we didn't map access then again we don't care about the
2706 		 * mismatched range values and it's ok if our old type was
2707 		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2708 		 */
2709 		if (rold->type == NOT_INIT ||
2710 		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2711 		     rcur->type != NOT_INIT))
2712 			continue;
2713 
2714 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2715 		    compare_ptrs_to_packet(rold, rcur))
2716 			continue;
2717 
2718 		return false;
2719 	}
2720 
2721 	for (i = 0; i < MAX_BPF_STACK; i++) {
2722 		if (old->stack_slot_type[i] == STACK_INVALID)
2723 			continue;
2724 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2725 			/* Ex: old explored (safe) state has STACK_SPILL in
2726 			 * this stack slot, but current has has STACK_MISC ->
2727 			 * this verifier states are not equivalent,
2728 			 * return false to continue verification of this path
2729 			 */
2730 			return false;
2731 		if (i % BPF_REG_SIZE)
2732 			continue;
2733 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2734 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2735 			   sizeof(old->spilled_regs[0])))
2736 			/* when explored and current stack slot types are
2737 			 * the same, check that stored pointers types
2738 			 * are the same as well.
2739 			 * Ex: explored safe path could have stored
2740 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2741 			 * but current path has stored:
2742 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2743 			 * such verifier states are not equivalent.
2744 			 * return false to continue verification of this path
2745 			 */
2746 			return false;
2747 		else
2748 			continue;
2749 	}
2750 	return true;
2751 }
2752 
2753 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2754 {
2755 	struct bpf_verifier_state_list *new_sl;
2756 	struct bpf_verifier_state_list *sl;
2757 
2758 	sl = env->explored_states[insn_idx];
2759 	if (!sl)
2760 		/* this 'insn_idx' instruction wasn't marked, so we will not
2761 		 * be doing state search here
2762 		 */
2763 		return 0;
2764 
2765 	while (sl != STATE_LIST_MARK) {
2766 		if (states_equal(env, &sl->state, &env->cur_state))
2767 			/* reached equivalent register/stack state,
2768 			 * prune the search
2769 			 */
2770 			return 1;
2771 		sl = sl->next;
2772 	}
2773 
2774 	/* there were no equivalent states, remember current one.
2775 	 * technically the current state is not proven to be safe yet,
2776 	 * but it will either reach bpf_exit (which means it's safe) or
2777 	 * it will be rejected. Since there are no loops, we won't be
2778 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2779 	 */
2780 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2781 	if (!new_sl)
2782 		return -ENOMEM;
2783 
2784 	/* add new state to the head of linked list */
2785 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2786 	new_sl->next = env->explored_states[insn_idx];
2787 	env->explored_states[insn_idx] = new_sl;
2788 	return 0;
2789 }
2790 
2791 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2792 				  int insn_idx, int prev_insn_idx)
2793 {
2794 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2795 		return 0;
2796 
2797 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2798 }
2799 
2800 static int do_check(struct bpf_verifier_env *env)
2801 {
2802 	struct bpf_verifier_state *state = &env->cur_state;
2803 	struct bpf_insn *insns = env->prog->insnsi;
2804 	struct bpf_reg_state *regs = state->regs;
2805 	int insn_cnt = env->prog->len;
2806 	int insn_idx, prev_insn_idx = 0;
2807 	int insn_processed = 0;
2808 	bool do_print_state = false;
2809 
2810 	init_reg_state(regs);
2811 	insn_idx = 0;
2812 	env->varlen_map_value_access = false;
2813 	for (;;) {
2814 		struct bpf_insn *insn;
2815 		u8 class;
2816 		int err;
2817 
2818 		if (insn_idx >= insn_cnt) {
2819 			verbose("invalid insn idx %d insn_cnt %d\n",
2820 				insn_idx, insn_cnt);
2821 			return -EFAULT;
2822 		}
2823 
2824 		insn = &insns[insn_idx];
2825 		class = BPF_CLASS(insn->code);
2826 
2827 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2828 			verbose("BPF program is too large. Processed %d insn\n",
2829 				insn_processed);
2830 			return -E2BIG;
2831 		}
2832 
2833 		err = is_state_visited(env, insn_idx);
2834 		if (err < 0)
2835 			return err;
2836 		if (err == 1) {
2837 			/* found equivalent state, can prune the search */
2838 			if (log_level) {
2839 				if (do_print_state)
2840 					verbose("\nfrom %d to %d: safe\n",
2841 						prev_insn_idx, insn_idx);
2842 				else
2843 					verbose("%d: safe\n", insn_idx);
2844 			}
2845 			goto process_bpf_exit;
2846 		}
2847 
2848 		if (log_level && do_print_state) {
2849 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2850 			print_verifier_state(&env->cur_state);
2851 			do_print_state = false;
2852 		}
2853 
2854 		if (log_level) {
2855 			verbose("%d: ", insn_idx);
2856 			print_bpf_insn(insn);
2857 		}
2858 
2859 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2860 		if (err)
2861 			return err;
2862 
2863 		if (class == BPF_ALU || class == BPF_ALU64) {
2864 			err = check_alu_op(env, insn);
2865 			if (err)
2866 				return err;
2867 
2868 		} else if (class == BPF_LDX) {
2869 			enum bpf_reg_type *prev_src_type, src_reg_type;
2870 
2871 			/* check for reserved fields is already done */
2872 
2873 			/* check src operand */
2874 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2875 			if (err)
2876 				return err;
2877 
2878 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2879 			if (err)
2880 				return err;
2881 
2882 			src_reg_type = regs[insn->src_reg].type;
2883 
2884 			/* check that memory (src_reg + off) is readable,
2885 			 * the state of dst_reg will be updated by this func
2886 			 */
2887 			err = check_mem_access(env, insn->src_reg, insn->off,
2888 					       BPF_SIZE(insn->code), BPF_READ,
2889 					       insn->dst_reg);
2890 			if (err)
2891 				return err;
2892 
2893 			if (BPF_SIZE(insn->code) != BPF_W &&
2894 			    BPF_SIZE(insn->code) != BPF_DW) {
2895 				insn_idx++;
2896 				continue;
2897 			}
2898 
2899 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2900 
2901 			if (*prev_src_type == NOT_INIT) {
2902 				/* saw a valid insn
2903 				 * dst_reg = *(u32 *)(src_reg + off)
2904 				 * save type to validate intersecting paths
2905 				 */
2906 				*prev_src_type = src_reg_type;
2907 
2908 			} else if (src_reg_type != *prev_src_type &&
2909 				   (src_reg_type == PTR_TO_CTX ||
2910 				    *prev_src_type == PTR_TO_CTX)) {
2911 				/* ABuser program is trying to use the same insn
2912 				 * dst_reg = *(u32*) (src_reg + off)
2913 				 * with different pointer types:
2914 				 * src_reg == ctx in one branch and
2915 				 * src_reg == stack|map in some other branch.
2916 				 * Reject it.
2917 				 */
2918 				verbose("same insn cannot be used with different pointers\n");
2919 				return -EINVAL;
2920 			}
2921 
2922 		} else if (class == BPF_STX) {
2923 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
2924 
2925 			if (BPF_MODE(insn->code) == BPF_XADD) {
2926 				err = check_xadd(env, insn);
2927 				if (err)
2928 					return err;
2929 				insn_idx++;
2930 				continue;
2931 			}
2932 
2933 			/* check src1 operand */
2934 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2935 			if (err)
2936 				return err;
2937 			/* check src2 operand */
2938 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2939 			if (err)
2940 				return err;
2941 
2942 			dst_reg_type = regs[insn->dst_reg].type;
2943 
2944 			/* check that memory (dst_reg + off) is writeable */
2945 			err = check_mem_access(env, insn->dst_reg, insn->off,
2946 					       BPF_SIZE(insn->code), BPF_WRITE,
2947 					       insn->src_reg);
2948 			if (err)
2949 				return err;
2950 
2951 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2952 
2953 			if (*prev_dst_type == NOT_INIT) {
2954 				*prev_dst_type = dst_reg_type;
2955 			} else if (dst_reg_type != *prev_dst_type &&
2956 				   (dst_reg_type == PTR_TO_CTX ||
2957 				    *prev_dst_type == PTR_TO_CTX)) {
2958 				verbose("same insn cannot be used with different pointers\n");
2959 				return -EINVAL;
2960 			}
2961 
2962 		} else if (class == BPF_ST) {
2963 			if (BPF_MODE(insn->code) != BPF_MEM ||
2964 			    insn->src_reg != BPF_REG_0) {
2965 				verbose("BPF_ST uses reserved fields\n");
2966 				return -EINVAL;
2967 			}
2968 			/* check src operand */
2969 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2970 			if (err)
2971 				return err;
2972 
2973 			/* check that memory (dst_reg + off) is writeable */
2974 			err = check_mem_access(env, insn->dst_reg, insn->off,
2975 					       BPF_SIZE(insn->code), BPF_WRITE,
2976 					       -1);
2977 			if (err)
2978 				return err;
2979 
2980 		} else if (class == BPF_JMP) {
2981 			u8 opcode = BPF_OP(insn->code);
2982 
2983 			if (opcode == BPF_CALL) {
2984 				if (BPF_SRC(insn->code) != BPF_K ||
2985 				    insn->off != 0 ||
2986 				    insn->src_reg != BPF_REG_0 ||
2987 				    insn->dst_reg != BPF_REG_0) {
2988 					verbose("BPF_CALL uses reserved fields\n");
2989 					return -EINVAL;
2990 				}
2991 
2992 				err = check_call(env, insn->imm, insn_idx);
2993 				if (err)
2994 					return err;
2995 
2996 			} else if (opcode == BPF_JA) {
2997 				if (BPF_SRC(insn->code) != BPF_K ||
2998 				    insn->imm != 0 ||
2999 				    insn->src_reg != BPF_REG_0 ||
3000 				    insn->dst_reg != BPF_REG_0) {
3001 					verbose("BPF_JA uses reserved fields\n");
3002 					return -EINVAL;
3003 				}
3004 
3005 				insn_idx += insn->off + 1;
3006 				continue;
3007 
3008 			} else if (opcode == BPF_EXIT) {
3009 				if (BPF_SRC(insn->code) != BPF_K ||
3010 				    insn->imm != 0 ||
3011 				    insn->src_reg != BPF_REG_0 ||
3012 				    insn->dst_reg != BPF_REG_0) {
3013 					verbose("BPF_EXIT uses reserved fields\n");
3014 					return -EINVAL;
3015 				}
3016 
3017 				/* eBPF calling convetion is such that R0 is used
3018 				 * to return the value from eBPF program.
3019 				 * Make sure that it's readable at this time
3020 				 * of bpf_exit, which means that program wrote
3021 				 * something into it earlier
3022 				 */
3023 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3024 				if (err)
3025 					return err;
3026 
3027 				if (is_pointer_value(env, BPF_REG_0)) {
3028 					verbose("R0 leaks addr as return value\n");
3029 					return -EACCES;
3030 				}
3031 
3032 process_bpf_exit:
3033 				insn_idx = pop_stack(env, &prev_insn_idx);
3034 				if (insn_idx < 0) {
3035 					break;
3036 				} else {
3037 					do_print_state = true;
3038 					continue;
3039 				}
3040 			} else {
3041 				err = check_cond_jmp_op(env, insn, &insn_idx);
3042 				if (err)
3043 					return err;
3044 			}
3045 		} else if (class == BPF_LD) {
3046 			u8 mode = BPF_MODE(insn->code);
3047 
3048 			if (mode == BPF_ABS || mode == BPF_IND) {
3049 				err = check_ld_abs(env, insn);
3050 				if (err)
3051 					return err;
3052 
3053 			} else if (mode == BPF_IMM) {
3054 				err = check_ld_imm(env, insn);
3055 				if (err)
3056 					return err;
3057 
3058 				insn_idx++;
3059 			} else {
3060 				verbose("invalid BPF_LD mode\n");
3061 				return -EINVAL;
3062 			}
3063 			reset_reg_range_values(regs, insn->dst_reg);
3064 		} else {
3065 			verbose("unknown insn class %d\n", class);
3066 			return -EINVAL;
3067 		}
3068 
3069 		insn_idx++;
3070 	}
3071 
3072 	verbose("processed %d insns\n", insn_processed);
3073 	return 0;
3074 }
3075 
3076 static int check_map_prealloc(struct bpf_map *map)
3077 {
3078 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3079 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3080 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3081 		!(map->map_flags & BPF_F_NO_PREALLOC);
3082 }
3083 
3084 static int check_map_prog_compatibility(struct bpf_map *map,
3085 					struct bpf_prog *prog)
3086 
3087 {
3088 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3089 	 * preallocated hash maps, since doing memory allocation
3090 	 * in overflow_handler can crash depending on where nmi got
3091 	 * triggered.
3092 	 */
3093 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3094 		if (!check_map_prealloc(map)) {
3095 			verbose("perf_event programs can only use preallocated hash map\n");
3096 			return -EINVAL;
3097 		}
3098 		if (map->inner_map_meta &&
3099 		    !check_map_prealloc(map->inner_map_meta)) {
3100 			verbose("perf_event programs can only use preallocated inner hash map\n");
3101 			return -EINVAL;
3102 		}
3103 	}
3104 	return 0;
3105 }
3106 
3107 /* look for pseudo eBPF instructions that access map FDs and
3108  * replace them with actual map pointers
3109  */
3110 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3111 {
3112 	struct bpf_insn *insn = env->prog->insnsi;
3113 	int insn_cnt = env->prog->len;
3114 	int i, j, err;
3115 
3116 	err = bpf_prog_calc_tag(env->prog);
3117 	if (err)
3118 		return err;
3119 
3120 	for (i = 0; i < insn_cnt; i++, insn++) {
3121 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3122 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3123 			verbose("BPF_LDX uses reserved fields\n");
3124 			return -EINVAL;
3125 		}
3126 
3127 		if (BPF_CLASS(insn->code) == BPF_STX &&
3128 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3129 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3130 			verbose("BPF_STX uses reserved fields\n");
3131 			return -EINVAL;
3132 		}
3133 
3134 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3135 			struct bpf_map *map;
3136 			struct fd f;
3137 
3138 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3139 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3140 			    insn[1].off != 0) {
3141 				verbose("invalid bpf_ld_imm64 insn\n");
3142 				return -EINVAL;
3143 			}
3144 
3145 			if (insn->src_reg == 0)
3146 				/* valid generic load 64-bit imm */
3147 				goto next_insn;
3148 
3149 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3150 				verbose("unrecognized bpf_ld_imm64 insn\n");
3151 				return -EINVAL;
3152 			}
3153 
3154 			f = fdget(insn->imm);
3155 			map = __bpf_map_get(f);
3156 			if (IS_ERR(map)) {
3157 				verbose("fd %d is not pointing to valid bpf_map\n",
3158 					insn->imm);
3159 				return PTR_ERR(map);
3160 			}
3161 
3162 			err = check_map_prog_compatibility(map, env->prog);
3163 			if (err) {
3164 				fdput(f);
3165 				return err;
3166 			}
3167 
3168 			/* store map pointer inside BPF_LD_IMM64 instruction */
3169 			insn[0].imm = (u32) (unsigned long) map;
3170 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3171 
3172 			/* check whether we recorded this map already */
3173 			for (j = 0; j < env->used_map_cnt; j++)
3174 				if (env->used_maps[j] == map) {
3175 					fdput(f);
3176 					goto next_insn;
3177 				}
3178 
3179 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3180 				fdput(f);
3181 				return -E2BIG;
3182 			}
3183 
3184 			/* hold the map. If the program is rejected by verifier,
3185 			 * the map will be released by release_maps() or it
3186 			 * will be used by the valid program until it's unloaded
3187 			 * and all maps are released in free_bpf_prog_info()
3188 			 */
3189 			map = bpf_map_inc(map, false);
3190 			if (IS_ERR(map)) {
3191 				fdput(f);
3192 				return PTR_ERR(map);
3193 			}
3194 			env->used_maps[env->used_map_cnt++] = map;
3195 
3196 			fdput(f);
3197 next_insn:
3198 			insn++;
3199 			i++;
3200 		}
3201 	}
3202 
3203 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3204 	 * 'struct bpf_map *' into a register instead of user map_fd.
3205 	 * These pointers will be used later by verifier to validate map access.
3206 	 */
3207 	return 0;
3208 }
3209 
3210 /* drop refcnt of maps used by the rejected program */
3211 static void release_maps(struct bpf_verifier_env *env)
3212 {
3213 	int i;
3214 
3215 	for (i = 0; i < env->used_map_cnt; i++)
3216 		bpf_map_put(env->used_maps[i]);
3217 }
3218 
3219 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3220 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3221 {
3222 	struct bpf_insn *insn = env->prog->insnsi;
3223 	int insn_cnt = env->prog->len;
3224 	int i;
3225 
3226 	for (i = 0; i < insn_cnt; i++, insn++)
3227 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3228 			insn->src_reg = 0;
3229 }
3230 
3231 /* single env->prog->insni[off] instruction was replaced with the range
3232  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
3233  * [0, off) and [off, end) to new locations, so the patched range stays zero
3234  */
3235 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3236 				u32 off, u32 cnt)
3237 {
3238 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3239 
3240 	if (cnt == 1)
3241 		return 0;
3242 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3243 	if (!new_data)
3244 		return -ENOMEM;
3245 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3246 	memcpy(new_data + off + cnt - 1, old_data + off,
3247 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3248 	env->insn_aux_data = new_data;
3249 	vfree(old_data);
3250 	return 0;
3251 }
3252 
3253 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3254 					    const struct bpf_insn *patch, u32 len)
3255 {
3256 	struct bpf_prog *new_prog;
3257 
3258 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3259 	if (!new_prog)
3260 		return NULL;
3261 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
3262 		return NULL;
3263 	return new_prog;
3264 }
3265 
3266 /* convert load instructions that access fields of 'struct __sk_buff'
3267  * into sequence of instructions that access fields of 'struct sk_buff'
3268  */
3269 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3270 {
3271 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3272 	const int insn_cnt = env->prog->len;
3273 	struct bpf_insn insn_buf[16], *insn;
3274 	struct bpf_prog *new_prog;
3275 	enum bpf_access_type type;
3276 	int i, cnt, delta = 0;
3277 
3278 	if (ops->gen_prologue) {
3279 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3280 					env->prog);
3281 		if (cnt >= ARRAY_SIZE(insn_buf)) {
3282 			verbose("bpf verifier is misconfigured\n");
3283 			return -EINVAL;
3284 		} else if (cnt) {
3285 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3286 			if (!new_prog)
3287 				return -ENOMEM;
3288 
3289 			env->prog = new_prog;
3290 			delta += cnt - 1;
3291 		}
3292 	}
3293 
3294 	if (!ops->convert_ctx_access)
3295 		return 0;
3296 
3297 	insn = env->prog->insnsi + delta;
3298 
3299 	for (i = 0; i < insn_cnt; i++, insn++) {
3300 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3301 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3302 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3303 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3304 			type = BPF_READ;
3305 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3306 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3307 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3308 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3309 			type = BPF_WRITE;
3310 		else
3311 			continue;
3312 
3313 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3314 			continue;
3315 
3316 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3317 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3318 			verbose("bpf verifier is misconfigured\n");
3319 			return -EINVAL;
3320 		}
3321 
3322 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3323 		if (!new_prog)
3324 			return -ENOMEM;
3325 
3326 		delta += cnt - 1;
3327 
3328 		/* keep walking new program and skip insns we just inserted */
3329 		env->prog = new_prog;
3330 		insn      = new_prog->insnsi + i + delta;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 /* fixup insn->imm field of bpf_call instructions
3337  * and inline eligible helpers as explicit sequence of BPF instructions
3338  *
3339  * this function is called after eBPF program passed verification
3340  */
3341 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3342 {
3343 	struct bpf_prog *prog = env->prog;
3344 	struct bpf_insn *insn = prog->insnsi;
3345 	const struct bpf_func_proto *fn;
3346 	const int insn_cnt = prog->len;
3347 	struct bpf_insn insn_buf[16];
3348 	struct bpf_prog *new_prog;
3349 	struct bpf_map *map_ptr;
3350 	int i, cnt, delta = 0;
3351 
3352 	for (i = 0; i < insn_cnt; i++, insn++) {
3353 		if (insn->code != (BPF_JMP | BPF_CALL))
3354 			continue;
3355 
3356 		if (insn->imm == BPF_FUNC_get_route_realm)
3357 			prog->dst_needed = 1;
3358 		if (insn->imm == BPF_FUNC_get_prandom_u32)
3359 			bpf_user_rnd_init_once();
3360 		if (insn->imm == BPF_FUNC_tail_call) {
3361 			/* If we tail call into other programs, we
3362 			 * cannot make any assumptions since they can
3363 			 * be replaced dynamically during runtime in
3364 			 * the program array.
3365 			 */
3366 			prog->cb_access = 1;
3367 
3368 			/* mark bpf_tail_call as different opcode to avoid
3369 			 * conditional branch in the interpeter for every normal
3370 			 * call and to prevent accidental JITing by JIT compiler
3371 			 * that doesn't support bpf_tail_call yet
3372 			 */
3373 			insn->imm = 0;
3374 			insn->code |= BPF_X;
3375 			continue;
3376 		}
3377 
3378 		if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3379 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
3380 			if (map_ptr == BPF_MAP_PTR_POISON ||
3381 			    !map_ptr->ops->map_gen_lookup)
3382 				goto patch_call_imm;
3383 
3384 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3385 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3386 				verbose("bpf verifier is misconfigured\n");
3387 				return -EINVAL;
3388 			}
3389 
3390 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3391 						       cnt);
3392 			if (!new_prog)
3393 				return -ENOMEM;
3394 
3395 			delta += cnt - 1;
3396 
3397 			/* keep walking new program and skip insns we just inserted */
3398 			env->prog = prog = new_prog;
3399 			insn      = new_prog->insnsi + i + delta;
3400 			continue;
3401 		}
3402 
3403 patch_call_imm:
3404 		fn = prog->aux->ops->get_func_proto(insn->imm);
3405 		/* all functions that have prototype and verifier allowed
3406 		 * programs to call them, must be real in-kernel functions
3407 		 */
3408 		if (!fn->func) {
3409 			verbose("kernel subsystem misconfigured func %s#%d\n",
3410 				func_id_name(insn->imm), insn->imm);
3411 			return -EFAULT;
3412 		}
3413 		insn->imm = fn->func - __bpf_call_base;
3414 	}
3415 
3416 	return 0;
3417 }
3418 
3419 static void free_states(struct bpf_verifier_env *env)
3420 {
3421 	struct bpf_verifier_state_list *sl, *sln;
3422 	int i;
3423 
3424 	if (!env->explored_states)
3425 		return;
3426 
3427 	for (i = 0; i < env->prog->len; i++) {
3428 		sl = env->explored_states[i];
3429 
3430 		if (sl)
3431 			while (sl != STATE_LIST_MARK) {
3432 				sln = sl->next;
3433 				kfree(sl);
3434 				sl = sln;
3435 			}
3436 	}
3437 
3438 	kfree(env->explored_states);
3439 }
3440 
3441 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3442 {
3443 	char __user *log_ubuf = NULL;
3444 	struct bpf_verifier_env *env;
3445 	int ret = -EINVAL;
3446 
3447 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3448 	 * allocate/free it every time bpf_check() is called
3449 	 */
3450 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3451 	if (!env)
3452 		return -ENOMEM;
3453 
3454 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3455 				     (*prog)->len);
3456 	ret = -ENOMEM;
3457 	if (!env->insn_aux_data)
3458 		goto err_free_env;
3459 	env->prog = *prog;
3460 
3461 	/* grab the mutex to protect few globals used by verifier */
3462 	mutex_lock(&bpf_verifier_lock);
3463 
3464 	if (attr->log_level || attr->log_buf || attr->log_size) {
3465 		/* user requested verbose verifier output
3466 		 * and supplied buffer to store the verification trace
3467 		 */
3468 		log_level = attr->log_level;
3469 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3470 		log_size = attr->log_size;
3471 		log_len = 0;
3472 
3473 		ret = -EINVAL;
3474 		/* log_* values have to be sane */
3475 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3476 		    log_level == 0 || log_ubuf == NULL)
3477 			goto err_unlock;
3478 
3479 		ret = -ENOMEM;
3480 		log_buf = vmalloc(log_size);
3481 		if (!log_buf)
3482 			goto err_unlock;
3483 	} else {
3484 		log_level = 0;
3485 	}
3486 
3487 	ret = replace_map_fd_with_map_ptr(env);
3488 	if (ret < 0)
3489 		goto skip_full_check;
3490 
3491 	env->explored_states = kcalloc(env->prog->len,
3492 				       sizeof(struct bpf_verifier_state_list *),
3493 				       GFP_USER);
3494 	ret = -ENOMEM;
3495 	if (!env->explored_states)
3496 		goto skip_full_check;
3497 
3498 	ret = check_cfg(env);
3499 	if (ret < 0)
3500 		goto skip_full_check;
3501 
3502 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3503 
3504 	ret = do_check(env);
3505 
3506 skip_full_check:
3507 	while (pop_stack(env, NULL) >= 0);
3508 	free_states(env);
3509 
3510 	if (ret == 0)
3511 		/* program is valid, convert *(u32*)(ctx + off) accesses */
3512 		ret = convert_ctx_accesses(env);
3513 
3514 	if (ret == 0)
3515 		ret = fixup_bpf_calls(env);
3516 
3517 	if (log_level && log_len >= log_size - 1) {
3518 		BUG_ON(log_len >= log_size);
3519 		/* verifier log exceeded user supplied buffer */
3520 		ret = -ENOSPC;
3521 		/* fall through to return what was recorded */
3522 	}
3523 
3524 	/* copy verifier log back to user space including trailing zero */
3525 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3526 		ret = -EFAULT;
3527 		goto free_log_buf;
3528 	}
3529 
3530 	if (ret == 0 && env->used_map_cnt) {
3531 		/* if program passed verifier, update used_maps in bpf_prog_info */
3532 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3533 							  sizeof(env->used_maps[0]),
3534 							  GFP_KERNEL);
3535 
3536 		if (!env->prog->aux->used_maps) {
3537 			ret = -ENOMEM;
3538 			goto free_log_buf;
3539 		}
3540 
3541 		memcpy(env->prog->aux->used_maps, env->used_maps,
3542 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3543 		env->prog->aux->used_map_cnt = env->used_map_cnt;
3544 
3545 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3546 		 * bpf_ld_imm64 instructions
3547 		 */
3548 		convert_pseudo_ld_imm64(env);
3549 	}
3550 
3551 free_log_buf:
3552 	if (log_level)
3553 		vfree(log_buf);
3554 	if (!env->prog->aux->used_maps)
3555 		/* if we didn't copy map pointers into bpf_prog_info, release
3556 		 * them now. Otherwise free_bpf_prog_info() will release them.
3557 		 */
3558 		release_maps(env);
3559 	*prog = env->prog;
3560 err_unlock:
3561 	mutex_unlock(&bpf_verifier_lock);
3562 	vfree(env->insn_aux_data);
3563 err_free_env:
3564 	kfree(env);
3565 	return ret;
3566 }
3567 
3568 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3569 		 void *priv)
3570 {
3571 	struct bpf_verifier_env *env;
3572 	int ret;
3573 
3574 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3575 	if (!env)
3576 		return -ENOMEM;
3577 
3578 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3579 				     prog->len);
3580 	ret = -ENOMEM;
3581 	if (!env->insn_aux_data)
3582 		goto err_free_env;
3583 	env->prog = prog;
3584 	env->analyzer_ops = ops;
3585 	env->analyzer_priv = priv;
3586 
3587 	/* grab the mutex to protect few globals used by verifier */
3588 	mutex_lock(&bpf_verifier_lock);
3589 
3590 	log_level = 0;
3591 
3592 	env->explored_states = kcalloc(env->prog->len,
3593 				       sizeof(struct bpf_verifier_state_list *),
3594 				       GFP_KERNEL);
3595 	ret = -ENOMEM;
3596 	if (!env->explored_states)
3597 		goto skip_full_check;
3598 
3599 	ret = check_cfg(env);
3600 	if (ret < 0)
3601 		goto skip_full_check;
3602 
3603 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3604 
3605 	ret = do_check(env);
3606 
3607 skip_full_check:
3608 	while (pop_stack(env, NULL) >= 0);
3609 	free_states(env);
3610 
3611 	mutex_unlock(&bpf_verifier_lock);
3612 	vfree(env->insn_aux_data);
3613 err_free_env:
3614 	kfree(env);
3615 	return ret;
3616 }
3617 EXPORT_SYMBOL_GPL(bpf_analyzer);
3618